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Kurzfassung

Es ist mittlerweile unbestritten, dass asynchrone Logik zahlreiche Vorteile im Vergleich
zur herkömmlichen synchronen Logik hat. Ein zentrales Problem jedoch ist die schwie-
rige Vorhersagbarkeit der zeitlichen Abläufe eines asynchronen Designs. Aufgrund eines
fehlenden (hochpräzisen) Schwingquarzes hängt die tatsächliche Ausführungsgeschwindig-
keit maßgeblich von Faktoren wie Umbgebungstemperatur und Versorgungsspannung ab,
wobei bereits minimale Fluktuationen messbare Auswirkungen auf die Geschwindigkeit
haben können. Klarerweise werden asynchrone Schaltungen daher als gänzlich ungeeignet
für den Einsatz in Echtzeitsystemen angesehen. Diesem Umstand soll mit dem Projekt
ARTS1 (Asynchronous Logic in Real-Time Systems) entgegengewirkt werden, indem die
genauen zeitlichen Charakteristika von ungetakteten Digitalschaltungen auf ihre Taug-
lichkeit für Echtzeitsysteme (und zwar speziell für das zeitgesteuerte Protokoll TTP)
untersucht werden. Zu diesem Zwecke wird in dieser Arbeit ein geeignetes Zeitmodel ent-
wickelt, welches neben deterministischen auch probabilistische Signallaufzeitvariationen
modellieren kann. Darauf aufbauend wird ein sich automatisch auf den TTP Datenstrom
kalibrierendes System entwickelt, welches eine geeignete (asynchrone) Zeitbasis für einen
asynchronen TTP-Kontroller zur Verfügung stellt. Wie sich heraus stellt, sind unter allen
Designalternativen jene mit linear rückgekoppelten Schieberegistern (LFSR) am besten
für unsere Anforderungen geeignet. Um die Funktionsfähigkeit und Robustheit der vor-
gestellten Lösung zu demonstrieren, unterziehen wir das Design verschieden empirischen
Tests, wie zum Beispiel Temperatur- und Spannungstests, und untersuchen die jeweiligen
Auswirkungen auf Jitter und Frequenzstabilität.

In Verbindung mit den theoretischen Untersuchungen können einige sehr interessante
Erkenntnisse im Zusammenhang mit zeitlicher Vorhersagbarkeit von asynchronen Schal-
tungen gemacht werden: Trotz der speziellen Eigenschaften des verwendeten Design-Stiles
gibt es erheblichen datenabhängigen Signaljitter. Weiters wurde festgestellt, dass Herstel-
lungsvariationen gravierenden Einfluss auf die Geschwindigkeit und Jittercharakteristika
haben. Nichtsdestotrotz wirken sich diese Einflüsse nicht negativ auf die automatische
Kalibrierung aus. Untersuchungen am fertigen und funktionierenden asynchronen TTP-
Kontroller zeigen deutlich, dass es grundsätzlich möglich ist, asynchrone Logik für Echt-
zeitanwendungen — mit gewissen Einschränkungen — einzusetzen.

1Das Projekt ARTS mit der Projektnummer 813578 wird vom FIT-IT Programm des Österreichischen
Ministeriums für Verkehr, Innovation und Technology (bm:vit, http://www.bmvit.gv.at/) finanziert.
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Abstract

While asynchronous logic has many potential advantages compared to traditional syn-
chronous designs, one of the major drawbacks is its unpredictability with respect to tem-
poral behavior. Having no high-precision oscillator, a self-timed circuit’s execution speed
is heavily dependent on temperature and supply voltage. Small fluctuations of these pa-
rameters already result in noticeable changes of the design’s throughput and performance.
Without further provisions this jitter makes the use of asynchronous logic hardly feasible
for real-time applications. In this work, which is part of project ARTS2 (Asynchronous
Logic in Real-Time Systems), we investigate the temporal characteristics of self-timed cir-
cuits regarding their usage in real-time systems, especially the Time-Triggered Protocol.
We propose a timing model capable of dealing with deterministic as well as probabilistic
timings caused — besides others — by PVT (process, voltage, temperature) variations,
and elaborate self-adapting circuits which shall derive a suitable notion of time for an
asynchronous TTP controller. Out of the proposed variants we find the simple LFSR
(linear feedback shift register) implementation with rate correction most promising for
our purposes. We further introduce and analyze the jitter compensation concept, which
is a three-fold mechanism to keep the asynchronous circuit’s notion of time tightly syn-
chronized to the remaining communication participants. To demonstrate the robustness
of our solution, we perform different tests and investigate their impact on jitter and fre-
quency stability. These tests include, e.g., varying operating temperature, changing core
supply voltage, and process variations among several devices of the same type.

The experiments in combination with the theoretical analysis reveal some interesting
insights for the temporal behavior of self-timed circuits: Even though the used design
style is strongly indicating, considerable data-dependent jitter effects can be identified.
It also turns out that process variations significantly influence the jitter characteristics
and performance of asynchronous circuits. Nevertheless, the proposed self-adaptive time
reference generation circuit is capable of tolerating different temporal conditions. Mea-
surements with the fully functional asynchronous TTP controller reveal that it is indeed
possible to use asynchronous logic in real-time systems. However, there are some major
limitations (especially for actively sending messages in a time-triggered system) that must
be considered.

2The ARTS project received funding from the FIT-IT program of the Austrian Federal Ministry of
Transport, Innovation and Technology (bm:vit, http://www.bmvit.gv.at/), project no. 813578.
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Chapter 1

Preface

In the beginning the Universe was created. This
has made a lot of people very angry and been
widely regarded as a bad move.

Douglas Adams

1.1 Motivation

Asynchronous circuit design techniques can provide economic solutions in cases where the
traditional synchronous design is facing its limitations [89]. Still, however, industry in gen-
eral is reluctant to consider asynchronous design a viable alternative in these cases. There
are several reasons for this, one prominent being the common belief that asynchronous
logic is not suitable for real-time applications due to its apparently unpredictable temporal
behavior.

One of the most frequently cited statements in conjunction with asynchronous designs
is that they operate as fast as they can, thereby achieving average case performance.
Although this property clearly is one of the biggest advantages of asynchronous circuits,
it also manifests as a major drawback when it comes to temporal predictability. Fur-
thermore, asynchronous circuits’ ability to adapt their operating speed to the respective
environmental conditions directly translates into a variation of the hardware execution
time for a given task. The origin is the inherent closed-loop flow control that allows for
automatic adaptation of the operating speed, which stands in contrast to the rigid tem-
poral (open-loop) control in synchronous systems. The seemingly undetermined behavior
is due to a complex interaction of several factors — starting from the switching speed of
each single transistor to the handshake interaction of entire functional blocks. All these
aspects have to be considered when determining an asynchronous circuit’s speed of op-
eration. However, in a synchronous design we have to deal with all these effects as well.
The main difference is that the synchronous paradigm divides the task of system design
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into two separate parts [20]: The timing analysis deals with low level aspects of digital
circuits and provides the clock period as a result. The logic and functional design con-
siders the behavior of the system at a high level of abstraction and uses the clock period
as basic time unit. In this way synchronous systems have a clear separation/interface
between those domains, which allows considering each part independently from the other
— thereby simplifying the modeling of the entire system with respect to functionality and
timing. However, this separation has its price, as it results in a waste of performance and
reduced robustness. As a matter of fact, the temporal behavior of asynchronous circuits
is by no means more undetermined than the synchronous one. After all, the underlying
technology is the same. However, it is more complex to model, since asynchronous circuits
do not have a clock signal that would enable a separation between logic design and timing
analysis. At the same time this clearly leverages a higher potential for optimization and
robustness.

Nowadays, to allow for minimal clock skew throughout the die and of course for max-
imum performance, lots of effort is invested in designing the clock distribution network
properly [13, 35, 46, 58, 76]. Furthermore, highly sophisticated power saving mechanisms
are implemented: Reducing the clock frequency in case of low CPU load, lowering the
chip’s supply/core voltage, and clock gating are only some examples. Again, asynchronous
circuits have great potential to overcome at least some of the limiting issues of their syn-
chronous counterparts. Regarding the enormous power dissipation of cutting-edge tech-
nology, one of the most promising properties of asynchronous designs might be that the
underlying functional blocks are only running if there is indeed work to be done. Clearly,
such power-saving behavior can only be achieved by a thorough system design, which is
— generally speaking — also one of the major drawbacks of asynchronous circuits: The
entire design process is far more complex compared to synchronous designs. This situation
is further worsened by the fact that almost all available development tools are optimized
for synchronous logic only. Also rapid prototyping with Field Programmable Gate Arrays
(FPGA) still is difficult, as estimates on performance, chip size, and power dissipation
are hardly representative for asynchronous systems. Nevertheless, a lot of academic re-
search is conducted in this area, and various impressing asynchronous designs have already
been realized (e.g., asynchronous processors [38, 92], cryptographic applications [84], or
clockless crossbar switches [16], also refer to Section 1.3.4).

Simultaneously, while industry still seems to avoid this promising design alternative
in their products, it is important to increase the reputation and acceptance of the asyn-
chronous design paradigm, especially with respect to reliability, determinism, and pre-
dictability. In the course of this work we want to make a step in this direction by
combining real-time systems and asynchronous logic. Our goal is to design an asyn-
chronous communication controller for the Time-Triggered Protocol (TTP) that is able
to communicate with a set of synchronous counterparts even under changing environmen-
tal conditions (such as voltage and temperature variations). In this context we elaborate
a model for determining the timing behavior of a suitable asynchronous logic design style.
As there is no high-precision reference clock available, we need to exploit the strict de-
terminism and predictability of TTP to derive a feasible notion of time for the low-level
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Figure 1.1: General flow control (handshaking) of logic circuits [20].

system services. Without a dedicated clock, however, the jitter of logic circuits becomes
a major issue: If the execution cycles of the designs jitter too much, synchronization with
TTP cannot be maintained. To this end, high-frequency jitter (as induced by classical
jitter sources such as simultaneous switching noise or cross-talk) as well as low-frequency
jitter (e.g., temperature drift or voltage fluctuations) must be addressed and compensated
accordingly.

Before we start with a detailed description of our research project Asynchronous Logic
in Real-Time Systems (ARTS), the following sections provide a comprehensive summary of
several important topics that are directly related to this work. In the next section we will
introduce different logic design styles and point out their major benefits and drawbacks.
Section 1.3 then describes delay-insensitive asynchronous design methodologies which we
use for implementing our circuits. Before finally taking a closer look at the aims and
contributions of the project ARTS in Section 1.6, Section 1.5 explains the basic concepts
of the Time-Triggered Protocol.

1.2 Design Methodologies

When considering (real-world) logical circuits in general, one might notice that functional
blocks almost always follow the simple data flow model [20] of Figure 1.1: There is a
data source, which provides the input data x, a (boolean) function f which implements
the desired functionality and maps x to the respective result y = f(x), and a data sink
which finally stores the computation result y. Although this basically is the definition of
a simple mathematical function f : x 7→ f(x), there are some major issues to consider
for practical electrical/digital systems, which severely complicate things compared to the
strict mathematical formulation above. For the sake of simplicity let us assume that a
data word x is represented as a vector of n bits xi, 0 ≤ i < n. The bit-widths of input x
and output y do not necessarily have to be the same.

• Acknowledgement: The source must hold its current value until all processing has
finished and the sink has successfully stored the result. Only then new data can
safely be assigned to the source’s output1.

1For this overview we assume the combinational logic to obey the inertial delay model rather than,
e.g., the transport delay model as supported by VHDL [91].

3



1.2. DESIGN METHODOLOGIES

R
eg

is
te

r

x f(x)f()

R
eg

is
te

r

clock

Figure 1.2: The synchronous design paradigm.

• Request: Furthermore, there must be a way to signal the arrival of new data to
the sink — even if the result f(x) does not change for two successive and probably
different input words x. This is realized by means of completion detection: Assum-
ing input vector x to be stable and consistent2 at the source, the calculation of the
result y = f(x) needs some (variable) time ∆ to finish. To be more precise, each bit
yi, 0 ≤ i < m of the resulting data vector y may need some slightly different amount
of time until the final and correct value is reached. Consequently, the sink must
have some means to determine a point in time when it is safe to store the entire cal-
culation result, i.e., when all bits are stable and consistent. We will present different
methodologies for implementing completion detection in Sections 1.2.1 and 1.3.3.

As one can imagine, there are many different ways to solve the above issues on the log-
ical level [20]. The following paragraphs give an overview to existing and well-established
digital design methodologies. We will see that the applied solutions are indeed quite
diverse, and cannot easily be mixed or exchanged.

1.2.1 Synchronous Paradigm

In industry, synchronous designs are by far the most common ones. In a synchronous logic
circuit, there is a periodic, globally available clock signal. This signal not only defines the
speed of operation, but also solves the basic issues described above (illustrated in Fig-
ure 1.2). The desired functionality is implemented using “ordinary” boolean logic (which
is considered “formally incomplete” [25] as it does not provide any means for expressing
validity, consistency, or temporal relationships), whereas the data sinks and data sources
are realized as edge-triggered registers. All registers of an isochronic region [3] are con-
nected to a common, periodic clock signal, whose (usually positive) edges mark points in
time where new data is assigned to all registers. The basic assumption for this mechanism
to work properly is that the clock’s signal transitions occur almost simultaneously all over
the chip. In this context, the clock signal is a very simple way to solve all fundamental
issues:

2Informally speaking, consistency means that all logical values represented by the single bits xi of a
data vector x belong the the same data word.
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• In synchronous designs, there is no need for an explicit acknowledgement from the
sink to the source, as the mere progression of time (i.e., a positive clock transition)
guarantees proper storage of data at the sink.

• Likewise, an explicit request signal from the source to the sink can also be omitted as
each positive clock transition is automatically interpreted as new request. Comple-
tion detection is moved to the time domain by setting the period of the clock signal
to an appropriate duration for the logic function f to safely complete its operation
and produce stable output. The data sink can thus be sure by design that its input
is consistent and stable whenever a positive clock edge occurs.

All implementation and technology specific timing properties and constraints (as de-
fined in [20], e.g.) are directly or indirectly masked by the concept of a global clock in the
time domain. To put it in other words, the synchronous design methodology solves all
“synchronization issues” between source and sink in the time domain rather than in the
signal/information domain. This clearly has some remarkable advantages. To mention
just a few, the resulting circuitry is very simple and efficient. Designers can focus on
implementing the desired functionality instead of thinking about control flow, and on the
logical level there is hardly any overhead. Furthermore, as the clock is usually generated
with high-precision crystal oscillators, an accurate notion of time can be derived without
additional effort. All in all, the synchronous design paradigm has proven itself very useful
and efficient in many terms.

However, with every upside comes a downside as well. Especially the last few years
have shown that it becomes more and more difficult to further increase the clock fre-
quencies. With ever increasing performance requirements and technology scaling, not
only the rapidly increasing power consumption, but also the design of the clock distri-
bution network [35] itself become limiting factors. Without sophisticated compensation
mechanisms a multi-GHz chip can no longer be considered isochronous, as clock skew be-
comes too large throughout the complex clock tree [35, 46]. Another issue related to the
synchronous design style is reduced robustness against process variability and changing
operating conditions, since they directly influence the execution speed of the underlying
hardware. Consequently, appropriate safety margins need to be foreseen when specifying
a system’s clock frequency. After all, the overall clock frequency is determined by a static
worst case timing analysis. Yet another drawback comes at system or module interfaces:
Systems running with different clocks (even if their nominal frequencies match) cannot
easily be connected. Special synchronizer circuits must be implemented [40], thereby
increasing not only complexity but possibly also reducing performance. While consid-
erably simplifying the design process, decoupling the control flow from the data flow
by means of a global time reference negatively impacts on performance, flexibility, and
power consumption. It is not easily possible to switch off idle modules (i.e., zero-skew
clock gating [13,76]), or to combine modules with different performance.
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1.2.2 Globally-Asynchronous Locally-Synchronous

A possible solution to the clock skew and distribution problems is the so called Globally-
Asynchronous Locally-Synchronous (GALS) approach [14, 51, 83]: A complex design is
built up of several independent functional units, each of which has its own clock signal.
The relatively small blocks can be implemented using the conventional synchronous de-
sign approach with all its advantages (and without some of the disadvantages coming
with technology scaling and increased system complexity). The communication among
the synchronous blocks has, because of the independent clock sources, to take place asyn-
chronously. Figure 1.3 illustrates a possible structure of a GALS design. The asyn-
chronous interconnect is responsible for data transfer between the different synchronous
blocks. As indicated in the figure, these blocks generally do not have the same operat-
ing frequency. Depending on the exact system setup, the following taxonomy of timing
relationships between the different clock domains is commonly used in literature [61,83].
This classification directly impacts the actual implementation of the asynchronous inter-
connect.

• A mesochronous relationship between two synchronous blocks means that both com-
munication participants operate at exactly the same frequency. However, there is a
stable but unknown phase difference between the two blocks. For example, blocks
1, 2 and 3 in Figure 1.3 share the same clock source. If the frequency multipliers
are set to 1, these three nodes are said to be mesochronous.

• Assume that both clock sources in the figure have the same nominal frequency.
Now, blocks 2 and 4 are said to be plesiochronous. While having the same nominal
operating speed, the two independent clock sources are subject to drifting phases
(e.g., due to minor frequency deviations in the range of a few parts per million).

• Finally, when a sender and receiver operate at totally different clock frequencies,
the blocks are considered heterochronous. Assuming that both clock sources and
frequency multipliers are set to different values, all four blocks are heterochronous
with respect to each other.

The latter class of heterochronous systems can further be subdivided into ratiochronous
and nonratiochronous designs. Again consider Figure 1.3: Blocks 1, 2 and 3 share the
same clock source, but nodes 1 and 3 have frequency multipliers and additional delays in
their clock path. As the frequency multipliers are also fed by Clock Source 1, there is a
predictable and periodic relationship between the different clocks’ phases. This relation-
ship is called ratiochronous (as the clocks are exact rational multiples of each other) and
can be exploited when designing the asynchronous interconnect.

According to Figure 1.4, all the above “synchrony characteristics” belong to the supe-
rior class of loosely synchronous GALS designs. However, a more distinctive classification
can be made due to the different possible GALS design styles.

• Loosely Synchronous. This design style exploits the known relationships between
the operating frequencies of communicating blocks in order to optimize throughput
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and latency, as well as to ensure that all timing constraints are met. While allowing
for high efficiency (for both area consumption and performance), this style suffers
flexibility as changes in the clock frequencies cannot be handled without a redesign.

• Asynchronous. This style represents the most flexible way of communication be-
tween different clock domains. Usually, explicit request and acknowledge signals
are used for implementing flow control in asynchronous systems (see Section 1.3 for
more details). It is not necessary to make any assumptions on the relationships
of the respective clock domains. However, this advantage comes with the severe
drawback of reduced throughput and relatively high latency.

• Pausible Clock. In this design style the clocks are usually generated locally by
means of (pausible and stretchable) ring oscillators. While data transmission is
active, the clock can be paused, thus totally avoiding potential metastability. While
pausing the clock introduces performance penalties on the respective synchronous
block, robustness and power consumption are the main benefits of this approach
(no dynamic power is consumed while the clock is paused).

While the idea of pausible clocks sounds reasonable and efficient, the main problem
with industrial designs are the ring oscillators. As they are strongly sensitive to operating
temperature, supply voltage and process variations, they need careful (and thus expensive)
calibration. A general issue with all GALS approaches is that the asynchronous intercon-
nect will degrade system performance due to the overhand introduced by the handshaking
protocols. On the other hand, GALS designs have great potential when it comes to power
reduction, as it is easily possible to set the supply voltage and operating frequency of
each synchronous block independently. Furthermore, the single blocks may also save
some power due to the reduced complexity of the clock distribution network. Another
important advantage especially for industrial designs originates in reduced electromag-
netic interference. The different (possibly uncorrelated) clock domains may significantly
reduce signal noise because register switching is distributed in time, thus leading to a flat-
ter power spectrum. This can also weaken the requirements on the power supply network
and the needed number of power pads. Interestingly, a flatter power spectrum (caused by
different uncorrelated clocks) may also increase immunity against power analysis attacks,
thus rendering GALS designs useful especially for cryptographic applications [42].

To summarize one can say that GALS designs offer an interesting alterative to the
ordinary, strictly synchronous design approach. They combine some possible advantages
of asynchronous designs (e.g., power consumption, modularity, etc.) with the comfort of
synchronous circuit design. As system integration and technology scaling further advance,
one can expect GALS design style — besides other alternative digital design methodologies
— to gain more importance in future.

1.2.3 Asynchronous Paradigm

Today’s mostly synchronous logic is based upon two assumptions: First, signals are limited
to binary values, and second, it is assumed that time is discrete. The former allows for the
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use of simple boolean logic, whereas the latter facilitates that hazards and feedbacks can
mostly be ignored [43]. For asynchronous circuits, these central assumptions are basically
removed: On the one hand, replacing the global clock with local handshaking protocols
allows events to happen at any time (they are not triggered by clock-edges any more). On
the other hand, multi-rail encodings are often used to represent data in different code-sets
and allow for efficient completion detection. Appropriate examples for such encodings
are presented in Section 1.3. By changing the logic design paradigm, some interesting
potential benefits can be identified [43,81,89]:

• Since there is no (global) clock signal, clock skew and all related problems (e.g.,
clock distribution) can be ignored by definition.

• Without a clock signal, unused modules are not clocked and therefore need less
power. The overall power consumption can benefit from an asynchronous design,
without implementing dedicated power saving mechanisms.

• The clock frequency in synchronous designs results from the critical path’s propa-
gation delay, which is the worst case performance. Even worse, steadily increasing
process and fabrication variations result in a very pessimistic estimation of the worst
case timing. In contrast, asynchronous systems generally do not need to wait for
any clock transition if a task is finished. This average case performance may lead
to considerable improvements in speed.

• Not having a system clock, asynchronous circuits need alternative means for com-
pletion detection. These circuits often have the benefit of automatically adapting
themselves to changing physical and environmental conditions (e.g., temperature
drift, supply voltage fluctuations, fabrication process variations).

• The often problematic electromagnetic emissions generated by thousands of almost
simultaneously switching registers are significantly reduced in asynchronous designs.
The reason for this behavior is based on the fact that signal transitions tend to occur
without synchronization to a global clock.

• The simple handshake interfaces allow for better composability and modularity.

Unfortunately, many asynchronous design styles have a significant overhead in area
consumption. This is mainly caused by the — compared to synchronous logic — relatively
complex control structures (e.g., completion detection, handshaking, etc.), and may also
negatively influence system performance. From an engineer’s point of view, the lack of
sophisticated CAD tools that actually support asynchronous design methodologies is one
of the most severe drawbacks. Another major issue concerns testability, as asynchronous
circuits cannot simply be stopped and started by means of clock transitions. Design for
testability is thus far more complex and thereby increases the overall costs dramatically.

It is undoubted that asynchronous circuit design has great potential and offers a lot
of new possibilities to hardware engineers. It is important to notice that the existing
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Figure 1.5: Example circuit to illustrate different delay models (Source: [81]).

asynchronous design styles (some examples are presented later in this chapter) all have
strengths and weaknesses of their own. The challenge is to find solutions that combine
most of the above properties, and simultaneously keep the design and resource overheads
low.

1.3 Asynchronous Circuit Design

In the last sections we have discussed some abstract design methodologies for digital
circuits. We have seen that asynchronous logic offers interesting properties and oppor-
tunities to design engineers. In this section, we now take a closer look to asynchronous
logic design and its underlying principles. We present the most common delay models,
exemplary asynchronous design techniques, as well as various asynchronous application
examples. Furthermore, we discusses the design style used for our implementations in
more detail.

1.3.1 Delay Models

There are four major delay models to classify asynchronous circuits [43, 65, 81]. These
models form the very basis of each design (asynchronous as well as synchronous) because
they make fundamental assumptions about signal, gate, and wire delays. Clearly, these
assumptions have to be based upon the physical properties of the target technology, and
if they are violated the circuit will most likely not work at all. To better illustrate the
different delay models, Figure 1.5 shows a simple circuit consisting of three gates A,B,C
with associated propagation delays ∆A,B,C and the corresponding interconnect with delays
∆1,2,3, respectively.

• Self-Timed. Also often called bounded delay model, the timing characteristics of
digital circuits are modeled on an elaborate engineering level. The propagation
delays of wires and gates are defined to be bounded and known. This model there-
fore is the basis for all synchronous designs, as a sophisticated critical path tim-
ing analysis is only possible with detailed knowledge of the technology’s timing
properties. For the example in the figure this means that all delays have well-
defined values. The worst case propagation delay can therefore be easily expressed
as ∆A + ∆1 + max(∆2 + ∆B,∆3 + ∆C).
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Figure 1.6: Bundled Data (a) and Dual-Rail approach (b) (Source: [81]).

• Speed-Independent (SI). These types of asynchronous logic are also known as Muller
circuits. The delay model assumes that while gate delays are bounded but unknown,
wire delays are negligible, i.e., zero. For Figure 1.5 this requires all three ∆A,∆B,
and ∆C to arbitrary (but greater than zero), and ∆1 = ∆2 = ∆3 = 0.

• Quasi Delay-Insensitive (QDI). By going one step further and allowing also arbitrary
∆1 and ∆2, but at the same time requiring ∆2 = ∆3, we obtain the so called Quasi
Delay-Insensitive (QDI) model. Since wire delays can not be considered negligible
(in fact they already dominate gate delays significantly), the QDI model makes more
realistic assumptions on wire delays (compared to SI). By introducing isochronic
forks, which have the property that signal transitions reach all end-points at the
same time, the gap between SI and DI (see below) circuits is closed.

• Delay-Insensitive (DI). An extremely robust delay model is obtained by allowing
all delays for gates and wires to be unbounded, finite, and unknown. For Figure 1.5
this leads to arbitrary (positive) values for all the delays ∆A,B,C,1,2,3. As the de-
signer cannot make any predictions on the actual delays, validity of data must be
implemented in the value domain rather than in the time domain (as it is done
in synchronous designs, e.g.). The weak assumptions made by this design model
result in a very limited number of truly DI circuits, because only C-elements [75]
and inverters may be used as building blocks [59].

As we will see in Section 1.3.3, delay-insensitive circuits built out of usual boolean
gates (such as AND or XOR) are, strictly speaking, only quasi delay-insensitive: The
basic building blocks (e.g., delay-insensitive boolean gates) are modeled on a low abstrac-
tion level, where the designer can directly control the wire delays. All necessary timing
assumption are hidden inside these basic low-level blocks. A complex circuit composed
of such gates can indeed be considered delay-insensitive, because all timing dependencies
are masked at a higher level of abstraction.

The following few paragraphs will provide an overview over the most common types of
asynchronous (handshake) protocols [81]. In Figure 1.6, the initiator (sender) is marked
with a black dot.

Bundled Data. In this single-railed approach data values are encoded as usual
boolean values. All bits of an entire data-vector are bundled, and associated with a pair
of request and acknowledge signals. These control signals are used to communicate
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Figure 1.8: 4-Phase Dual-Rail example waveform (a) and encoding (b) (Source: [81]).

with handshaking when new data is available (request) at the sender, and when data
has been captured (acknowledge) by the receiver (cf. Figure 1.6(a)). In order to exchange
n bits of data between sender and receiver, n+2 signal wires are necessary. There are two
possible implementation alternatives for the actual handshaking protocol. As illustrated
in Figure 1.7, the 4-phase protocol works in return-to-zero (RTZ) fashion using state
signaling: The sender prepares the data and sets its request. The receiver captures the
data and asserts is acknowledge line. In response, the sender de-asserts request, followed
by resetting acknowledge to its initial value. Obviously, the last two transitions (both
request and acknowledge return to zero) cost unnecessary time and energy. This can
be overcome using the two-phase protocol depicted in Figure 1.7(b), which is based on
transition signaling and therefore also called non-return-to-zero (NRZ) protocol. Again,
the sender prepares the data which shall be transmitted and generates a transition on
the request line. After the receiver has captured the data, it sends a transition back
on acknowledge, which finalizes the data transfer. Although this method in principle
saves time and energy, logic responding to signal events (rather than signal states) is
considerably more complex. Both these handshaking protocols have in common that they
rely on the correct order of events (at both sender and receiver3), as the data-vector needs
to be stable before the receiver starts capturing. Clearly, neither the SI nor (Q)DI delay
model can guarantee this prerequisite, leaving self-timed the only option for the bundled
data

Dual-Rail. In contrast to single-rail encoding, a logical value is represented by two
physical signal lines in dual-rail circuits. As four different states can be encoded with
two binary signals, it is possible to move part of the handshaking (and of the associated

3Different lengths in signal wires may lead to an inconsistent view of the order of events at sender and
receiver. Therefore, special care must be taken when placing and routing these components.
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timing constraints) to the value domain. Depending on the exact coding scheme, one
can again distinguish between two-phase and four-phase protocols. While the former is
explained in greater detail in Section 1.3.3, we will focus on the latter in this paragraph.
Both methodologies have in common that they need 2n + 1 wires to transmit n bits of
data, as indicated in Figure 1.6(b). The four-phase protocol, however, uses a different
coding scheme (cf. Figure 1.8(b)) to represent logical values than the two-phase protocol.
According to the state diagram in the figure, logical values are one-hot encoded, and
any two consecutive logical values are always separated by the empty state (the fourth
state marked as “invalid” is not used). This leads to the exemplary waveform shown
in Figure 1.8(a): As a response to valid data (V) (which is basically a request encoded
in the data bits themselves) the acknowledge line is asserted, signaling that data has
been captured. The source then assigns the “empty” data word (E) as a spacer, which
is followed by de-asserting acknowledge to its initial value. This powerful encoding is
fully delay-insensitive, as wire delays do not matter any more: A bit is considered valid
as soon as one of its signal lines is 1, regardless of the (routing) delays that might occur.
It is of course also possible to bundle n dual-rail data bits to a data vector, as completion
detection (i.e., a check whether all data bits are valid) comes down to a simple test of any
bits still being“empty”. Speaking more formally, there are three disjoint (and practically
easy to identify) sets of codewords [90]: (i) The empty codeword contains n “empty”-only
data bits. (ii) The intermediate codewords contain some “empty” and some “valid” data
bits. (iii) The valid codeword contains n “valid”-only data bits. Generally, the transition
from (i) to (iii) and vice versa also includes a period of time where intermediate codewords
(ii) can be observed. The subsequent circuitry “just” has to wait until the intermediate
state is left.

This clever encoding in combination with the properties (i)-(iii) allows for a rather
efficient implementation scheme for delay-insensitive circuits. It is called Null Convention
Logic (NCL) and was proposed (and also used in numerous applications) by Theseus Logic,
Inc., in 1996 [25] (refer to Section 1.3.4 for application examples). The main advantages of
NCL are its great flexibility, high modularity, and inherent robustness. Especially when it
comes to changing environmental conditions (e.g., huge temperature and supply voltage
fluctuations) and fabrication process variability, delay-insensitive circuits can show their
full potential.

Others. The implementation schemes described so far are only a subset of the various
possibilities that exist for implementing asynchronous logic. For instance, the bundled
data protocols can be adapted from acting as push channel (i.e., actively offering data to
the receiver) to a pull channel, where data is requested explicitly by the receiver. Clearly,
the protocol needs to be changed such that data is valid when the receiver actually wants
to capture it. It is also possible to extend the protocol for exchanging data in both
directions, e.g., by bundling data of node A with request and data of node B with the
acknowledge signal.

In this section we introduced some of the most important and most often used method-
ologies to implement asynchronous logic. Especially the delay-insensitive alternatives
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Figure 1.9: Micropipeline control structure without (a) and with data processing (b)
(Source: [82]).

(2-phase and 4-phase dual-rail) are directly or indirectly based on micropipelines. Fur-
thermore, the structure of micropipelines forms a powerful and relatively simple control
structure for asynchronous circuits in general. Thus they are worth explaining in the
following section.

1.3.2 Micropipelines

In 1989, Ivan E. Sutherland first introduced the amazing and extremely powerful — yet
relatively simple — concept of micropipelines [82]. Generally speaking, if no processing
logic is inserted into any pipeline, it just acts like a series of storage elements through
which data can pass. Pipelines can be categorized into clocked or event-driven and elastic
or inelastic. As the names suggest, clocked pipelines depend on a globally distributed clock
signal whereas event-driven pipelines are controlled by locally generated events. A pipeline
is said to be inelastic if the amount of data in it is fixed, which implies that the input
and output data rates must match. On the other hand, an elastic pipeline may contain
a varying amount of data because of internal buffering. Without any processing logic,
inelastic and elastic pipelines can be compared to shift registers and FIFOs, respectively.
Sutherland’s micropipelines are event-driven and elastic. This solution totally avoids
setup- and hold-time violations normally induced by different clock sources at the FIFO’s
inputs and outputs.

Control Circuit. Figure 1.9(a) shows the control circuitry of a three-stage mi-
cropipeline. Each of these stages i has a request input (coming from the previous stage
i − 1) and output (going to the next stage i + 1) as well as an acknowledge output (to
confirm the request to its predecessor i − 1) and input (to get a confirmation from its
successor). The composability of micropipelines benefits from this interface since single
stages (which may run at different speeds) can easily be connected together. The behavior
of the micropipeline can be explained by looking at a single stage (i.e., a C-element with
one inverted input): “if the predecessor and the successor differ in state then copy prede-
cessor’s state else hold present state” [82]. Assuming that all stages are in the same state
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(which corresponds to an empty pipe), an input transition on Rin propagates through the
pipeline stage by stage. Without an acknowledgement on Aout, all but the last stages are
then in the same state (now, the pipe is partially filled). Further input transitions on
Rin will eventually cause the pipe to be full, which is characterized by opposite states of
adjacent stages. An acknowledgement on Aout will remove the rightmost transition from
the pipe, thereby producing an empty stage. This empty slot now moves backwards, stage
by stage, until it reaches the pipe’s beginning, which is signaled via Ain to the environ-
ment — a new input transition on Rin is allowed to occur. This concept can abstractly
be seen as “bubbles” and “tokens” moving back and forth in the pipe. As we will see in
Section 1.3.3, the method of dual-rail two-phase asynchronous circuits is quite similar.

Micropipeline with Processing.. A micropipeline that contains both storage el-
ements and combinational logic is presented in Figure 1.9(b), and can be seen as yet
another way to realize asynchronous circuits (in addition to the methods presented in the
previous section). To realize such a FIFO, special event-driven storage elements must
be used. As indicated in the figure, each register REG has two control inputs (Capture
and Pass) and two control outputs (Capture done and Pass done). Whenever the values
of C and P match, data can directly pass through the register (thus not acting as stor-
age element). Otherwise, i.e., when P 6= C, the current value is preserved. The control
outputs Pd and Cd are slightly delayed copies of the corresponding control inputs and
serve as acknowledgement signals (they are applied as soon as the register has finished
its work). The delay elements explicitly included in the drawing are of fundamental im-
portance: The control signals must be delayed long enough for the combinational logic
to finish its computations, in order to guarantee stable data when the next stage is ac-
tivated (matched delays, refer to the self-timed delay model in the previous section). In
comparison with the presented delay models, Micropipelines can be seen as combination
of the bundled-data and bounded-delay models.

1.3.3 Two-Phase Dual-Rail

We have already learned about Null Convention Logic and its encoding and properties in
Section 1.3. Recalling the dual-rail coding scheme of Figure 1.8(b), the question arises if
there is another, from a mathematical point of view maybe more efficient, way to repre-
sent the logic values. Not surprisingly, the answer to this question is yes. As illustrated
in Figure 1.10(a), the coding differs from its four-phase counterpart in that it uses all
available states as valid codewords. Thereby, the logical values 0 and 1 are both repre-
sented by two codewords each. Hence, in addition to the logical value itself, the codewords
also contain a phase, which is either ϕ0 or ϕ1. This is also evident from Figure 1.10(b),
where an exemplary waveform is illustrated. Each transition of the acknowledge line
(in combination with a transition of exactly one of the two signal rails per bit) signals
a new data wave, making an explicit “empty” state superfluous and thereby potentially
increasing performance. State transitions are only allowed between codewords of alter-
nate phase, i.e., two successive states always differ in at least their phase (and maybe
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Figure 1.10: LEDR coding scheme (a) and exemplary LEDR waveform (b).

their logical value). The coding was chosen in a way that from one state to another,
exactly one physical signal needs to change its value. In literature, this encoding scheme
is usually referred to as Level-Encoded (Two-Phase) Dual-Rail (LEDR) [18, 60]. In [56],
phased logic, an entire new design methodology based upon LEDR, was proposed. It al-
lows to design delay-insensitive, asynchronous circuits while conceptually still supporting
the well-known synchronous design paradigm.

When directly comparing LEDR to NCL, one might wonder which of these two design
alternatives is better suited for implementing delay-insensitive circuits. To answer this
question, one can use a code’s characteristic rate R and redundancy r [90], defined as
follows:

R =
logM

n
(1.1)

r = n− logM (1.2)

In these equations, n is the code’s length (number of bits per word), andM is the code’s
size (number of valid codewords). For the two-phase code we have M2−phase = 4, as all
possible codewords are valid “messages”. In contrast, M4−phase = 2, because one codeword
is unused, and the empty codeword does not encode actual data. Clearly, both codes are
dual-rail and hence share n = 2. While R2−phase = 1 and r2−phase = 0 is the optimum that
can be reached, the four-phase scheme having R4−phase = 0.5 and r4−phase = 1 is by far
not optimal from a strictly mathematical point of view. However, it is also important how
efficiently a code can be ciphered and deciphered by the communication participants. As
it turns out, actual hardware implementations are significantly more efficient (in terms of
area consumption and as a consequence also performance) for the four-phase methodology.
We have already mentioned earlier that transition signaling (e.g., LEDR) is more complex
to handle than state signaling (e.g., NCL).

For all asynchronous implementations in our project we use LEDR, as they exhibit
more pronounced “asynchronous” properties than bounded delay circuits, and we have
already gained some practical experience with it [19,45]. The target technology are Field
Programmable Gate Arrays (FPGAs), so obviously the actual implementations follow
the QDI delay model. However, on LEDR-gate abstraction level (e.g., 2-input dual-rail
logic gates) the circuits can be considered delay-insensitive. In this approach, completion
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detection comes down to a check whether the phases of all associated signals have changed
and match. As usual, handshaking between register/pipeline stages is performed by virtue
of a capture done signal (and the request implicitly coded in the data rails).

Figure 1.11 shows an exemplary LEDR circuit with two sequential registers (reg0→2)
and a feedback loop (reg0→1→0). Direct feedback (i.e., without a shadow register like
reg1) is not possible, as race conditions and deadlocks may occur when a register issues
its own acknowledges and requests. Also notice the phase inverter in the feedback path.
The acknowledge line is a combination of acknowledges from all n directly succeeding
stages, combined by an n-input C-gate. The structure resembled in the figure (with the
exception of reg1) has some similarities to micropipelines. The inherent handshaking
between the register stages leads to virtual “tokens” and “bubbles” moving back and
forth in the pipeline, depending on the “fill state” of the pipeline. Notice that in contrast
to synchronous logic, the single stages are only active if new data is assigned to their
inputs, and the succeeding stages have already issued their acknowledge. In principle,
the single logic stages can perform their operations concurrently. Similar to synchronous
designs, where fast stages have to idly wait on the next clock transition, fast LEDR stages
need to wait for new data (or the respective acknowledge) from neighboring slower stages.
Consider a simple LEDR pipeline with n stages, each of which having a unique stage delay
∆i, 1 ≤ i ≤ n. Now the following observations concerning the total propagation delay in
case of a full (τf ) and empty (τe) pipeline can be made (compared to the synchronous
case τs with a clock period ∆clk):

τf = nmax (∆i) (1.3)

τe =
n∑
i=1

∆i (1.4)

τs = n∆clk ≥ nmax ∆i (1.5)

Consequently, when looking at LEDR circuits at pipeline abstraction level, average case
performance is generally possible. However, when directly considering the function blocks
themselves (e.g., combinational logic), one can observe that they are strongly indicat-
ing [81] and therefore always exhibit worst case latency. Strongly indicating means that a
function block does not compute any output until all its inputs are valid and consistent.
Obviously, both the LEDR and NCL design methodologies as we have presented them
fulfill this property.
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So far, we have seen various possibilities to realize asynchronous hardware. Especially
NCL and LEDR seem to be very promising as they resemble the synchronous design
paradigm in may ways. In the next section we present some real-world examples of
asynchronous designs.

1.3.4 Application Examples

There are numerous asynchronous designs available today. While being interesting and
promising research objects for academia, also industry is increasingly using asynchronous
circuits. For example, Infineon Technologies, Intel, Sun Microsystems (led by Ivan Suther-
land), Boeing, and many others have current research activities in the field of asynchronous
logic. Products using asynchronous technology are for example offered by Philips Semi-
conductors, Myricom, and Sharp Corporation [22]. In this section we introduce some
impressive asynchronous designs that have been developed over the last few decades. We
will see from these examples that it is immanent to combine different asynchronous de-
sign methodologies and exploit the specific circuit properties in order to obtain highly
optimized, economically competitive systems.

AMULET. Fabricated in 2000, AMULET3 is the third version of the 32-bit ARM-
based asynchronous processor core developed at the Department of Computer Science at
the University of Manchester (U.K.) [37,39]. The overall architecture is based on Suther-
land’s Micropipelines in order to allow for low power and area consumption. The pipeline
of AMULET does not consume dynamic power if there is no actual work to be done. To
optimize silicon area, the designers decided to use ordinary 4-phase latches with 6 tran-
sistors each, which considerably saves area but at the same time requires more complex
control structures for 2-phase to 4-phase conversion. An interesting optimization has been
applied to the ALU in order to achieve average case performance: A special circuit deter-
mines the longest carry propagate path and dynamically adjusts the corresponding delay
of the pipeline stage accordingly. Compared to its synchronous counterpart, performance,
area and power-consumption are almost similar, while power dissipation in idle mode and
electromagnetic emissions are considerable better. This proves that also rather complex
asynchronous designs are competitive.

AsyncRFID. In 2006, Caucheteux et al. presented a fully asynchronous implementa-
tion for contactless systems [12]. An asynchronous solution seems well suited for this kind
of application, as low power consumption and adaptability to varying operating condi-
tions (especially supply voltage) are of central concern. The strictly data-driven activation
methodology of QDI circuits in combination with reduced electromagnetic emissions (and
consequently lower noise on the supply voltage lines) reduces power consumption and con-
siderably eases power management. AsyncRFID uses the 3-state 4-phase asynchronous
protocol (NCL). However, purely asynchronous logic also requires the communication link
to be remodeled, because without a fixed operating speed, serial communication cannot
be established. To this end, an asynchronous event-based communication scheme has
been developed. Similar to the dual-rail encoding shown in Figure 1.6(b), the “phase
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information” is encoded in the data stream, making the communication insensitive to
timing delays. The authors also compare their new design to other existing solutions and
find that while having the lowest downlink data rate, the power consumption is far less
(about 100µA instead of 150µA and 400µA, respectively). It is also evident from the
measurements that increasing the distance from the transmitter from 0 to 6cm, the power
consumptions decreases hand in hand with the data rate.

Atmel AVR. For the use in Wireless Sensor Networks, a low cost processor with
extremely high energy efficiency was needed. In [68] an asynchronous counterpart to
a well-known 8-bit AVR has been developed. For this project the focus has been set
on short design time and low power consumption, rather than on high performance.
This is the reason why the developer used so called desynchronization (see Section 1.4)
to transform a synchronous design into an asynchronous design. D-flipflops have been
replaced by latches, and combinational logic has been supplemented with matched delays
(thus, no performance gain can be expected, as these delays must reflect worst-case timing
assumptions). The process of desynchronization added a 5% overhead in area consumption
and did not have any impact on the system’s speed. However, the asynchronous version
can be operated at 0.5V (instead of nominally 1.2V ). Compared to the synchronous
design, a gain in energy efficiency of a factor of 5 for 1.2V , and a factor of 10 for 0.5V
could be achieved, respectively.

Clockless Crossbar Switch. Fulcrum Mircosystems presented a 16-port clockless
crossbar switch in 2004 called PivotPoint [16]. This device is capable of routing 1.6 ter-
abits of data per second with an effective operating frequency of 1.4GHz at nominal
voltage and temperature. The design itself is a mixture of synchronous and asynchronous
modules, depending on which design style brings more benefits for a given functional-
ity. The design uses dual-rail four-phase handshaking protocols for implementing the
asynchronous modules. In order to improve performance, “Fulcrum’s circuit technology
combines the four-phase handshake with domino logic in a method called integrated pipelin-
ing” [16]. While domino logic can achieve very high speeds, low latencies and low power
consumption, it at the same time suffers from higher delay variability and reduced noise
immunity.

As we have seen so far, there are plenty of relatively diverse applications of asyn-
chronous circuits. Having in mind the bad support by professional software tools, one
might wonder how such complex designs can actually be implemented. Unfortunately,
the answer to that is not that simple, as there is a huge number of modeling and synthe-
sis techniques. To stay within the scope of this work, we will only present the automated
design flow used at our department for implementing asynchronous circuits in the follow-
ing section.
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1.4 Asynchronous Design Flow

For efficiently implementing complex asynchronous circuits it is of upmost importance that
sophisticated software tool support exists. We have already seen in the previous sections
that asynchronous logic design has many quite diverse facets. The unique properties of
various asynchronous design styles need to be reflected by the used software tools. The
overall complexity and diversity (and the associated lack of acceptance) compared to
synchronous circuit design lead to a relatively low support by (commercial) tools.

However, the special area of automated synchronous-to-asynchronous converters gains
more and more interest. This procedure, which is also called desynchronization, has the
major advantage that designers need not care about the fallacies and pitfalls of asyn-
chronous design. The systems can be described in a synchronous fashion, and an (opti-
mally fully) automated tool chain converts it accordingly. A good overview to existing
design flows using automated circuit conversion has recently been presented in [79], while
e.g. [8] goes into more detail and focuses especially on handshake protocols. The approach
taken at our department [55] is also a form of desynchronization, and is explained in more
detail in the next few paragraphs.

The general idea behind automated circuit conversion is to use a suitable circuit rep-
resentation (one which designers are familiar with), and let a software tool convert the
circuit into an asynchronous representation. In the process, the tool needs to identify
concurrency, as well as temporal and causal dependencies, and must of course guarantee
functional and temporal4 equivalence between the input and output circuits.

The design flow used throughout this work is illustrated in Figure 1.12. Although in
general the design flow is not limited to systems described in VHDL (Very High speed
Integrated Circuit Hardware Description Language), we limit this description to pure
VHDL projects. An ordinary synchronous and synthesizable circuit description is com-
piled with the Synopsys Design Compiler (or any other suitable synthesis tool) against
the ASYN library. This library only contains D-flipflops and all combinational gates sup-
ported by the asynchronous library (i.e., 2-input AND, OR, XOR, NAND, and the single-input
inverter INV). The result of this first step is a gate-level netlist containing only instances
of supported asynchronous elements (i.e., only elements of the ASYN library).

This very netlist now serves as input for the tool developed at our department [55].
The PC-based application analyzes the netlist, generates a graph representation out of
it, identifies the registers, and detects all data dependencies between the registers. All
information obtained in these steps is combined to build a register topology graph, which
in turn is used to decide about the structural extensions necessary for building the final
asynchronous circuit. As also indicated in the figure, the software has to perform several
central steps before the final netlist can be generated:

1. Replacing single-rail signals with dual-rail signals.

2. Replacing the gates from the netlist with their dual-rail pendents.

4This just addresses the order of events, not their exact timing. The latter must obviously be expected
to change when the clock is removed.
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Figure 1.12: ASYN design flow.

3. Replacing the synchronous registers with latch-based asynchronous registers.

4. Adding handshaking circuitry between the registers according to the topology graph.

5. Adding handshaking signals to the design’s entity.

6. Converting the entity’s interface according to the designer’s requirements.

7. Removing obsolete clock signals from the entity and the netlist.

8. Generating a valid token assignment (can be controlled by designer).

9. Check for deadlocks in the initial token assignment (if it has been performed man-
ually).

As a result of this conversion, another gate-level netlist is obtained. While the input
netlist describes the original synchronous circuit, the output netlist now represents the
respective asynchronous design. In combination with the (technology dependent) VHDL
source code of the ASYN library, the final design can now easily be generated using
practically any suitable commercial tool. In our case, we use the Altera Quartus software
design suite to generate the programming and simulation output files for the target FPGA
devices. Obviously, the ASYN library needs to be adapted manually for each target
technology, because different hardware platforms require different implementations to
guarantee the internal timing constraints of the basic LEDR gates (this is especially true
for FPGAs).
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Figure 1.13: LEDR AND gate block diagram [19] (a) and technology mapping for Altera
Cyclone II FPGA (b).

The presented design flow is almost fully automated, and there are just a few manual
steps included. It also offers us different levels of abstraction for simulation (behavioral
and functional of the synchronous design, pre-layout of the generated gate-level netlist,
and finally post-layout simulation of the resulting programming files, see Figure 1.12), and
at the same time integrates relatively seamlessly into existing tool chains. It should be
clear that synchronous-to-asynchronous conversion is a complex procedure. For instance,
the initial phase and token assignment algorithms are topics of their own. Another rather
interesting issue is the construction and layout of dual-rail LEDR gates and registers,
and their mapping to a specific target technology. Figure 1.13(a) shows the latch-based
structure of an LEDR AND gate [19]: The dual-rail inputs A and B are both fed to
combinational functions which calculate set and reset signals for the output latches of
Z0 and Z1, respectively. The inputs’ current phases and logical values thereby determine
whether a latch has to hold or toggle its value — only if both A and B are in the same
phase, the output Z is allowed to change. The structure can easily be mapped to any
LUT-based FPGA architecture. The result of technology mapping for an Altera Cyclone
II device is shown in Figure 1.13(b). One can clearly identify the output latches with
their set and reset inputs, as well as the combinational functions which generate these
signals. Implementation details for registers, phase detectors, phase inverters, and other
basic LEDR gates can be found in the respective literature [8, 19, 45,55,79].

1.5 The Time-Triggered Protocol

The Time-Triggered Protocol (TTP) has been developed for the demanding requirements
of distributed (hard) real-time systems [48,49]. It provides several sophisticated means to
incorporate fault tolerance and at the same time keep the communication overhead low.
TTP uses extensive knowledge of the distributed system to implement its services in a
very efficient and flexible way.
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This basic system architecture is illustrated in Figure 1.14. A TTP system generally
consists of a set of fail-silent units (FSUs), all of which have access to two duplicated
broadcast communication channels (labeled A and B in the figure). Two replicated FSUs
are usually further grouped into a Fault-Tolerant Unit (FTU), whereby both units are
guaranteed to perform the same state changes at about the same time (within some
known, system-dependent precision Π). A fundamental concept of TTP is to trigger all
activities by the progression of time. The required global notion of time is established by a
clock synchronization service that is part of the protocol. According to the time-triggered
philosophy, the access to the communication channel is performed in a TDMA (Time Di-
vision Multiple Access) fashion: Communication is organized in periodic TDMA rounds
(typically with a duration in the order of milliseconds), which are further subdivided into
the single sending slots for the communicating nodes (Figure 1.15). Each node has stati-
cally assigned sending slots, thus the entire schedule as well as all message delivery times
are already known at design-time. Since each node knows exactly when other nodes are
expected to access the bus, collision avoidance, membership service, clock synchroniza-
tion, and fault detection can be handled without considerable communication overhead.
Explicit Bus Guardian units (BG) are used to limit bus access to the node’s respective
time-slots even in the case of faults. The physical communication layer is not part of the
TTP specification [86], but usually 1 up to 4 Mbit/s Manchester coded data streams with
open collector bus drivers are used. Notice, however, that modern applications usually
use a star architecture rather than this linear structure for reasons of efficiency and de-
pendability. In that case the bus guardian units are located at the centralized star-coupler
unit rather than locally at each FSU.

The following list provides an (incomplete) overview over the most important system
properties and services that the Time-Triggered-Architecture offers:
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• Communication latency: The static nature of TTP makes it easy to guarantee
timeliness of messages and to calculate upper bounds on communication latency.

• Bus access: Since each node has predefined time-slots in each TDMA-round, there
is no need for collision detection. Collisions are avoided by design. The so called
MEDL (Message Descriptor List) holds the exact schedule of the entire system
(which data is transferred, in which slot is it transmitted, which tasks must be
executed, etc.).

• Acknowledgement: All (correct) messages are explicitly acknowledged in the mes-
sage of the subsequent time-slot. This way, both sender and receiver are able to
determine whether a message has been transmitted successfully to all (correct) nodes
or not.

• Controller-State (C-state): For TTP to work properly, all (correct) nodes must
agree upon their internal state (i.e., mode, time and membership). State changes
amongst duplicated FSUs must be guaranteed to happen consistently and approxi-
mately simultaneously (within the precision Π of course).

• Clock Synchronization: This is the main prerequisite for all services to work
properly. It is performed once per TDMA round, using a fault-tolerant distributed
convergence-averaging algorithm. In this algorithm each node compares the arrival
times of the messages received from the other nodes with the respective expected
values (according to the static schedule) and corrects its local clock according to the
perceived differences. This periodic state correction compensates the imperfections
of the local clock sources. The attainable precision Π typically is in the order of
microseconds.

• Membership Service: All nodes sustain a membership vector which indicates the
enabled and disabled (i.e., faulty) nodes. All correct nodes must have a consistent
view of the membership vector. To save communication bandwidth, the membership
vector is not explicitly transmitted over the bus in each message, but is part of the
CRC calculation. Thus an invalid checksum indicates either a faulty message or an
inconsistent membership vector (or possibly both).

• Sparse timebase: In TTP, events (e.g., sending/receiving messages) are restricted
to occur at a globally synchronized lattice of action points in time. Thus, the
time-line is not continuous but sparse, and can therefore be handled much more
efficiently. This is especially important to maintain a consistent order of events at
the distributed nodes.

• Fault hypothesis: For TTP, it is assumed that faulty nodes behave in a fail-silent
manner. Since receivers can detect faulty messages and inconsistent C-states, such
messages can be ignored, which equals a fail-silent behavior. However, notice that
designing fail-silent nodes actually is a quite complex task.
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In the next section we will introduce our research project ARTS. The deterministic
nature of TTP, in combination with its strict timeliness of events (as we have seen in this
section), should make it quite obvious that a self-timed asynchronous logic design is not
well suited as basis for real-time applications. The project overview shall point out the
basic ideas to overcome these intrinsic obstacles.

1.6 ARTS - Aims and Contributions

The aim of the ARTS (Asynchronous Logic in Real-Time Systems) research project is
to investigate the temporal predictability and stability of asynchronous (quasi) delay-
insensitive hardware designs. More specifically, we want to compile models for the timing
uncertainties of hardware execution times and extend these to make quantitative and
qualitative statements on the timing behavior of self-timed circuits. The theoretical and
experimental analyses and considerations shall also provide indications for improving the
temporal stability of self-timed circuits. As introduced in previous sections, our design
flow supports the generation of (Q)DI asynchronous logic. By its definition, however, any
form of delay-insensitivity strictly contradicts the requirements of time-triggered systems.
As no delay assumptions can be made, predicting the execution time of a DI block is
simply not possible. In contrast to the properties of the model, real hardware does not
behave in a delay-insensitive manner: Depending on various factors, propagation delays
have upper and lower bounds (and are subject to jitter). Thus, while operating with
circuits that are in principle (quasi) delay-insensitive, we consider all logic elements to
follow the more realistic bounded delay model — and these upper/lower bounds of an
asynchronous block are the very properties we are interested in.

The tangible project result shall be an asynchronous implementation of a TTP con-
troller operating in an ensemble of conventional, synchronous controllers as illustrated in
Figure 1.16. It is evident from the explanation in Section 1.5 that TTP’s static bus access
schedule as well as its clock synchronization and data transmission protocol rely on the
stability of the constituent nodes’ local clock sources. Therefore it seems quite daring to
implement the controller logic in an asynchronous design style. However, moving such
a deeply synchronous application to an asynchronous implementation is an interesting
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Figure 1.17: TTP-node block diagram.

and informative challenge of its own, and a very convincing case study for demonstrating
the temporal predictability of asynchronous logic. In this context we need to solve two
fundamental problems, whereby it is mandatory to derive quantitative boundaries for the
attained properties in both cases:

1. We have to make our design operate stable enough to meet TTP’s stringent require-
ments on execution times and jitter. Conceptually this issue has to do with the fact
that control flow in self-timed circuits is flexible and not strictly time driven, as in
the synchronous paradigm.

2. We have to provide a stable local time reference for bit timing and bus access. This
issue originates from the fact that in synchronous systems the clock sources can also
be used as time reference — which is missing in a self-timed approach.

Figure 1.17 shows the internal structure of the envisioned asynchronous TTP con-
troller. It is very similar to the existing TTP communication chip from TTTech Com-
putertechnik AG [87], our project partner. The interface to the controlling host CPU is
called Communication Network Interface (CNI) and will remain synchronous, thus exist-
ing soft- and hardware-solutions for TTP can be used without any modifications. In our
setup, the host CPU is a Motorola MPC555 microprocessor, which executes the node’s
application software. The CNI is realized as a standard parallel memory interface with
address, data, and some control signals. In the synchronous solution, both the host CPU
and the communication controller share the same clock source, thus defining a tight phase
relationship between the two chips. However, the “central” parts (TxD, RxD, ref-time:
bus access, receiver-unit, transmitter-unit, etc.) of the controller will be replaced by fully
asynchronous implementations. The higher level services and the overall protocol man-
agement units (Clock synchronization, membership, consistency checks, etc.) will at least
partially be realized as software stack executed on a suitable microprocessor core. A dual-
ported RAM separates the CNI from the TTP-core, thereby forming not only a temporal
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firewall [48], but also dividing the synchronous from the asynchronous parts5. The entire
controller will be synthesized for FPGA technology only, as ASIC (Application Specific
Integrated Circuit) designs are too costly. It should be noted that the asynchronous
controller implementation is intended solely as an academic case study and not as a pro-
totype for an industrial design. Consequently, we will not implement all features defined
in the TTP specification or supported by existing solutions, but only a feasible subset
that allows us to demonstrate the project goals.

1.6.1 Contribution

• Since in fact the temporal behavior of asynchronous logic is not unpredictable but
just more difficult to model than in the synchronous case, we will elaborate a timing
model for asynchronous circuits that allows us to predict its execution time for a
given hardware task.

– Besides a worst case timing analysis (which is also performed for synchronous
systems), asynchronous logic also requires a statistical investigation of the tim-
ing behavior, as deterministic and random jitter sources significantly influence
the overall temporal behavior of a circuit.

– Another very important part of the timing analysis and prediction addresses
varying environmental conditions such as fluctuations in supply voltage, op-
erating temperature, or fabrication-related parameter variations. These fluc-
tuations clearly affect the circuit’s speed, and they are usually masked with
additional margins of a synchronous systems’ clock period. Obviously, asyn-
chronous designs need to actively deal with changing operating speeds.

• In real-time applications a time reference is needed for communication, scheduling,
timers etc. While this reference comes for free with the clock in a synchronous
design, explicit measures are needed for this purpose in an asynchronous design.
We shall propose and investigate appropriate solutions here as well.

• In order to guide our investigation by the actual needs of a practical application we
use a TTP controller as our showcase. The controller for a time-triggered commu-
nication system is commonly accepted as a demanding real-time design, therefore it
is a tough benchmark for our approach that makes our results convincing.

• The design and implementation process of an asynchronous TTP controller is, from
an engineering point of view, an interesting task of its own. It will highlight many
fallacies and pitfalls associated with asynchronous design, especially when embed-
ding an asynchronous module into an existing (synchronous) environment.

5Both host-CPU and TTP controller share a global time-base, thus concurrent access to the dual-
ported RAM can be controlled to avoid collisions.
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• Another contribution concerns asynchronous QDI modules interfacing with the “out-
side” world (which is obviously the case for a TTP controller). First of all, input
signals are mostly neither delay-insensitive nor dual-rail. Suitable conversion blocks
and adequate timing constraints need to be defined. Furthermore, especially for
FPGAs, some hardware components (e.g., internal memory blocks) just have syn-
chronous interfaces. In order to use them as well in asynchronous blocks, special
wrapper modules need to be constructed.

1.7 Chapter Organization

In this chapter we have presented the basic goals and ideas behind the research project
ARTS. Besides the detailed overview to asynchronous circuit design in combination with
delay models, coding schemes, and automated tools support, we also introduced the con-
cept of the Time-Triggered Protocol and presented the almost entirely automated design
flow for implementing asynchronous hardware.

However, as we have seen in Section 1.6, focusing solely on asynchronous logic will not
be sufficient for our demonstrator design. One can conclude from the block diagram in
Figure 1.17 that we need some interfaces to the outside world. This outside world shows
many different facets, which are not obviously and directly compatible to the self-timed
(and theoretically delay-insensitive) design approach. For one, there is the host interface.
Although we intend to keep this interface synchronous for reasons of compatibility (and
direct reuse of the existing hardware platform), the synchronous and asynchronous parts
interact with each other via the dual-ported RAM. Another issue is the bus interface
itself. It is, from the asynchronous receiver’s point of view, a single-rail signal, thus not
capable of performing any handshaking interactions. A third obvious interface is needed
to use an FPGA’s built-in memory. Some devices (such as the one used in our case) only
support registered memory access, thus necessitating an appropriate interface. All these
interfacing issues are discussed in detail in Chapter 2.

Afterwards, in Chapter 3, we take a closer look on the temporal characteristics of self-
timed logic. To this end, we investigate signal jitter as defined for synchronous systems
and adapt these definitions to our (asynchronous) purposes. We also elaborate a suitable
timing model in order to better understand the temporal behavior of asynchronous logic.
Based upon this very model we present some case studies which show how deterministic
and predictable asynchronous logic actually is.

Having a solid theoretical timing model, Chapter 4 puts all timing relevant topics to-
gether and shows actual implementation strategies for time reference generation units. In
this chapter we elaborate a detailed list of requirements in preparation for the final TTP
controller implementation, and we show how these requirements can efficiently be imple-
mented. Clearly we also include some experimental results to demonstrate the correct
functionality of the proposed solution.

The resulting implementation of a functional TTP controller is finally explained in
Chapter 5. Here we show how to integrate the time reference generation unit into the
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remaining system. This is a major challenge as we have to deal with different design
methodologies here: Not only are there synchronous and asynchronous modules, also
memory interfaces and temporally independently running self-timed units need to be
integrated accordingly. A software stack must be developed which actually implements
TTP’s protocol stack. The inadequacies of the time reference (compared to a crystal
oscillator) must be compensated, and full compatibility to the host CPU needs to be
guaranteed. We further present the experimental results of our test setup in this chapter.
We perform different tests to investigate the robustness and capability of our design to
adapt itself to changing operating conditions.

The work is concluded in Chapter 6, where we — besides giving a summary of the key
contributions made in this work — critically discuss the obtained results. This discussion
includes, e.g., remarks on usability in industrial designs, the impact on fault-tolerance
of TTP when using asynchronous hardware, and the major benefits and drawback when
using self-timed logic for time critical applications. Clearly, we also present some outlook
and explain possible future projects and work to be done.
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Chapter 2

Interfacing Asynchronous Circuits

A picture is worth a thousand words. An
interface is worth a thousand pictures.

Ben Shneiderman

In the previous chapter several commonly used design methodologies for digital sys-
tems have been presented. In order to obtain a highly optimized circuit it is often nec-
essary to combine different implementation paradigms in one design. For example, one
style might be very efficient in terms of area consumption, while another one greatly re-
duces signal transitions and therefore power consumption. Yet another style might offer
good performance at the cost of reduced modularity. While it is up to designer to create
a modular system architecture by efficiently interchanging the supported design alterna-
tives, the interfaces between these modules shall be as simple, fast, and transparent as
possible.

As we will see in later chapters, for the implementation of our TTP controller we
will also need efficient interfacing and conversion techniques. Not only do we need to
synchronize the physical bus-signal to our internal timing, there are also independently
running asynchronous modules (which can potentially be realized using different design
styles) in combination with a microprocessor core. In order to allow data exchange and
manage control flow among these units, proper interfacing and conversion techniques
must be elaborated. Therefore, this chapter introduces design methodologies and concrete
implementation strategies for such building blocks. We consider two major interface types:
(i) Interfaces based on handshaking protocols which convert one code into another one
(e.g., NCL, LEDR, two-/four-phase bundled data), and (ii) interfaces between different
timing domains without the possibility of back-pressure in the control path [26,29,30].

As our main implementation platform are common (synchronous) FPGAs, we try
to restrict ourselves to basic gates or elements which can be synthesized in most FPGA
technologies. We further consider gate level circuits only as they can be ported to different
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FPGA families without considerable effort, and they allow us to study the properties and
pitfalls on a relatively high level.

2.1 Related Work

2.1.1 Synchronization Techniques

Synchronizing external signals with the internal clock domain in case of “ordinary” syn-
chronous logic is an interesting topic that has already been discussed in great detail in lit-
erature [17,40,47]. When also considering asynchronous logic, synchronous/asynchronous
interfaces can be classified by the degree of concurrency allowed for the interconnected
circuit parts. Thus, we distinguish between loosely-coupled and strongly-coupled meth-
ods for interfacing synchronous and asynchronous modules. Loosely-coupled components
operate fully parallel most of the time. Asynchronous and synchronous modules perform
computations concurrently and are only stopped and synchronized in case there is data
to be exchanged. Strongly-coupled circuits, on the other hand, run in lockstep mode. All
modules are synchronized with each computation step. This is typically used in pipelined
circuit structures where data is passed on from one stage to another after each cycle.

The discussion in this section will be focused on asynchronous producers and syn-
chronous consumers. Passing data in the other direction is straight-forward since a syn-
chronous producer can issue a new request at any time as long as the asynchronous
receiver is ready. This readiness is signaled by the acknowledge signal which indicates
that the previous data request has been processed. Since the acknowledge signal is an
asynchronous input to the synchronous producer, it needs to be synchronized using one
of the methods presented below.

2.1.1.1 Loosely-coupled

Since both the synchronous and the asynchronous module are allowed to run freely, the
asynchronous module may initiate a data transfer at any point in time. Consider a typical
4-phase bundled data interface with a dedicated request signal indicating the availability
of new data. The most simple solution for reading is to latch the asynchronous request
signal with a commonly used 2-stage synchronizer (cf. Figure 2.1(a)). This synchronizer
reduces the probability of metastability to an acceptable level1. Once the synchronized
request signal changes to high, a data register can safely latch the input data word. The
downside of this methodology is the increased latency when passing on data from an
asynchronous producer to a synchronous consumer, even when there is no metastable
upset.

Another approach for completely preventing synchronization failures at the interfaces
is based on the idea of stoppable clocks [14,74], which is very common in GALS systems
(recall Section 1.2.2). A local clock generator provides a periodic clock signal for the

1It is assumed that in future the resolution time for metastable states will increase relative to the
clock period and therefore three or more synchronizer stages will be required [6].

32



CHAPTER 2. INTERFACING ASYNCHRONOUS CIRCUITS

Asyn Syn
D Q
en

D Q

Data

Req

Ack FSM

D Q

(a)

Asyn

SynData

Req

Ack

ARB
ring 
oscillator

D Q

(b)

Figure 2.1: Loosely coupled: 2-stage synchronizer (a), and stoppable clock (b).

synchronous component, which is thus able to perform its computation steps without any
impediment as long as no asynchronous inputs need to be processed. However, in case
a request occurs, the clock of the synchronous circuit is halted. Stoppable clocks are
typically built from gated ring oscillators since an external crystal oscillator could not be
stopped or restarted fast enough. As can be seen in Figure 2.1(b) an arbiter is used to
decide whether an asynchronous request is processed or another clock tick is issued to the
synchronous system. If the asynchronous request is granted, the input register is clocked
and the system clock of the synchronous module is halted until the asynchronous data
input has been latched and it is safe to continue computation. Obviously the arbiter can
become metastable itself if a transition of the request signal occurs close to the next clock
edge generated by the ring oscillator. In this case the whole circuit may be delayed as
long as the arbiter tries to resolve the upset. Thus, synchronization failures on the data
interface are effectively mitigated.

2.1.1.2 Strongly-coupled

Data-driven a.k.a. request-driven clocks can also be used to synchronize asynchronous
and synchronous modules in GALS systems. The key idea is to exploit the request sig-
nal of the asynchronous circuit to derive a clock signal for the synchronous receiver [64].
Figure 2.2(a) illustrates how a simple ring oscillator can be extended to a request-driven
clock generator. By adding a Muller C-element the oscillator requires a transition on the
request input and an event at the output of the delay-element before the next clock edge
can be generated. This signal can be used to clock the synchronous circuit parts. Asyn-
chronous data inputs can safely be latched without any additional synchronizers. The
delay element of the ring oscillators defines the minimum clock period. Obviously, this
delay needs to be adjusted to the operating frequency of the synchronous circuit. Using a
data-driven clocking scheme has the big advantage that the synchronous module is only
active when new data is available. No superfluous computations or signal transitions are
performed. Thus, this interfacing method can be beneficial for low-power applications. In
some cases, however, multiple clock cycles might be necessary for completing a compu-
tation. Therefore several clock ticks need to be generated upon a single input request of
the asynchronous module. In [52] a solution is proposed, which combines request-driven
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Figure 2.2: Strongly coupled: Request/Data driven (a), and Globally Synchronous Locally
Asynchronous (b).

clocking with free-running local clock generators in order to flush the data out of the
synchronous module.

Another interesting approach for interfacing synchronous and asynchronous compo-
nents is presented in [80]. The proposed solution is based on a globally synchronous locally
asynchronous architecture. Asynchronous components are embedded into a conventional
synchronous pipeline (see Figure 2.2(b)). A stoppable clock generates clock ticks and
request signals for the synchronous and the asynchronous stages. Thus, the asynchronous
modules operate in lockstep with the synchronous ones. After a clock tick has been
issued, the clock generator is stopped until all asynchronous stages have indicated com-
pletion of their computations. This method allows to increase average-case performance
of a synchronous pipeline by replacing the slowest stages with asynchronous modules.
The synchronous stages do not need to be redesigned.

2.1.2 Conversion Techniques

When it comes to converting different asynchronous design styles and communication pro-
tocols into each other, several interesting papers are worth mentioning. For instance, [71]
proposes an interface called SCAFFI for GALS systems. The interface uses clock stretch-
ers to avoid metastability issues in the synchronous sender and receiver circuits. The
stretchers are controlled by special output and input ports, respectively. These ports
use two-phase protocols to communicate with the synchronous designs, while actually
transmitting data from one module to another employing a four-phase handshaking pro-
tocol with the bundled data approach. For large communication lines where signal delays
cannot be predicted reliably any more, SCAFFI also provides the possibility to use delay-
insensitive dual-rail encoding (NCL) for data transmission.

[63] proposes efficient two-phase to four-phase converters specifically designed for
LEDR and NCL. While this is similar to what we want to achieve in the following sec-
tions, the problem with this solution is that it is optimized for off-chip communication
only. In contrast, we focus on on-chip protocol conversion, thus area requirements (and
performance) are of central importance. The need for explicit phase detectors and output
latches introduces considerable area overhead, which we can avoid with our solution.

34



CHAPTER 2. INTERFACING ASYNCHRONOUS CIRCUITS

LE
D

R

N
C

L

ac
kl

... ...

ackn
2n 2n

reset

(a)

INPUTS:   L0,L1,ackn
OUTPUTS:  t,f,ackl

P0

t+ ? L0

f+ ? !L0

L0

L1

P1

P4

ackn+ P2

ackl

t- ? L0

f- ? !L0

ackn-

P3

(b)

Figure 2.3: Conversion interface for LEDR to NCL (a), and Petri-Net representation (b).

Yet another interesting alternative is described in [54]. The authors implement a
CMOS transistor-level two-phase to four-phase conversion circuit for the use in a specially
designed asynchronous FPGA. The solution is for one bit only, and without modifications
the circuit scales relatively bad for large bit-widths, because a “consistency detector” for
the NCL part is needed. Furthermore, transistor-level circuits are not well-suited for our
purposes as FPGA devices do not allow such a fine-grained modeling.

2.2 Lockstep Conversion

2.2.1 LEDR to NCL

The first case we consider is the conversion from LEDR design style to NCL. As both of
these styles are considered delay-insensitive, the conversion circuit must be built in a way
to maintain this property. When considering Figure 2.3(a) one can see that the interfaces
on both sides of the conversion block are basically the same: There are 2n signal lines
for parallel transmission of n logical bits, and an explicit acknowledge line back to the
producer. Clearly, and despite the similarities, the semantics are completely different and
must be converted correctly inside the block. In order to maintain delay-insensitivity,
the producer’s (LEDR) acknowledge ackl must not be asserted until after the consumer
(NCL) has successfully received and stored the data and the empty word. Both of these
events are indicated by asserting (and de-asserting) the signal ackn by the consumer.

Figure 2.3(b) shows the Petri-Net representation of a simplified conversion block for
only one (dual-rail) data bit. The physical signals from LEDR’s dual-rails data input
are labeled L0 and L1, and the NCL outputs are called t and f . In addition, ackn and
ackl are the (single-rail) acknowledge signals as shown in Figure 2.3(a). For this example,
we consider the following scenario (point (1) one from the list below): NCL issues the
empty word, LEDR the first data word (in phase ϕ0) to convert. Initially (P1) we set
ackn = ackl = 0. In addition, and depending on the data input L0, one of the NCL
outputs t or f is preset accordingly. The block then waits for the NCL register to store
and acknowledge the new data word by generating a positive edge on ackn. We finish the
4-phase cycle by clearing the NCL data lines (P2 → P3) and waiting for the respective
negative ackn transition. Now that the NCL part is completed, we can safely assert (i.e.,

35



2.2. LOCKSTEP CONVERSION

toggle) ackl to the waiting LEDR circuit. We are at place P4 now, where we wait for any
of the signals of the dual-rail input to toggle (which indicates a change of phase and thus
new data). As soon as this happens, a new cycle starts by asserting the respective NCL
output after P0.

In principle, this is a fundamental mode Huffman circuit, because only one input
changes at a time (ackn+ → ackn− → L0|1, where either L0 or L1 changes, but not
both). Although this property is not required by our design, it simplifies logic synthesis
and helps to avoid hazards. To achieve maximum concurrency and increase performance,
one could insert the assertion of ackl directly after transition ackn+ (or anywhere else
between ackn+ and ackn−). However, this would complicate the Petri-Net and possibly
introduce new states as the LEDR block might produce new data while the converter is
still waiting on ackn−. Without applying timing restrictions on the environment (which
clearly would violate the property of delay-insensitivity) or implementing additional logic,
such “optimizations” are difficult and troublesome to apply.

The major problem that we face here is to change from a two-phase to a four-phase
protocol, as we need to insert an empty word followed by the respective value word for
each data wave of the LEDR part. This directly implies the conversion block to contain a
(simple) state-machine, thus making the circuit more complex than one would expect in
the first place. As direct consequence of the non-stateless structure, the block itself needs
to be reset in accordance to the producer’s and consumer’s initial states (inconsistencies
in the initial state will result in immediate deadlock). To define a suitable initial state of
our conversion block, there are several possibilities:

1. An obvious situation is that the producer presents the first data word during reset
already, while the consumer is set to the empty word. Therefore it can receive
the first data vector immediately after the reset is de-asserted. Consequently, the
conversion block must not validate ackl until it receives the corresponding ackn

from the NCL circuit (place P1 in Figure 2.3(b)).

2. Another reasonable possibility is to reset both LEDR and NCL with the same data
vector. The first conversion would then be obsolete and would not consume any
time after reset. In this case the conversion block can initially assert ackl, as ackn
will also be asserted on reset (P4).

3. Depending on the application, it might also be possible to store the second data
vector (if known at design time already) in the LEDR part and initialize the NCL
circuit with the first data vector. In contrast to the previous situation, ackl must
be de-asserted now, as LEDR’s data vector is not yet consumed by NCL (P3).

In the example of Figure 2.3(b) we chose place P1 to be our initial place. However, we
could also choose, e.g., place P4 to be our reset state. This would be the scenario where
NCL issues the empty word, and the converter is waiting for the LEDR block to send
new data (the reset data is already acknowledged during reset). It is important to notice
that all signals (inputs as well as outputs) must in either case be reset to a value that
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is consistent with the initial state, otherwise the state-machine will not work properly.
Based on the presented Petri Net representation and the considerations mentioned above,
we can now synthesize a conversion circuit for arbitrary bit length.

A very quick and simple method to derive a working circuit description out of the Petri
Net representation is to use the free tool petrify [15]. The tool performs multiple checks
on the input description, such as deadlock detection, inconsistency checks, and unstable
initial state detection. It automatically generates a state transition graph and inserts — if
necessary — additional states to resolve ambiguities. However, manual review of the cir-
cuit is necessary, especially to identify and separate control logic from bit-conversion logic.
This step is needed to generalize the design for arbitrary input/output bit-widths. We can
also apply some optimizations because the environment (i.e., the LEDR and NCL blocks)
behaves totally deterministically and strictly follows the steps defined in Figure 2.3(b).
The result of the described implementation procedure is depicted in Figure 2.4. While
the control circuitry is relatively complex and contains feedbacks and Muller C-gates for
state preservation, the actual bit-conversion logic is quite simple. The conversion block’s
area (e.g., gate or transistor count) therefore scales quite well with increasing bit width, as
only three additional gates are needed for each dual-rail bit. It is important to notice that
the conversion circuit itself does not use latches (or other sequential elements) to store
the outputs for t and f (which is usually necessary for delay-insensitive circuits). This
can be justified because the LEDR block does not change its data word until the respec-
tive acknowledge has been issued. In other words, we just use the LEDR block’s output
latches and simply feed through the values to NCL in order to keep the area requirements
low. The small bit-conversion part also exploits the fact that for each cycle, either L0 or
L1 can change, but not both. If correctly initialized, the control circuitry always keeps
track of the current phase the LEDR circuit is in (this is obvious, as it must generate
the correct ackl signal), and can therefore use the XNOR gate as a kind of enable signal
for data feed-through. The fundamental mode assumption can be extended to multi-bit
input vectors, as all data lines can be considered independently from each other.

The main advantage of this solution compared to the implementations presented in
the related work section is the fact that it scales good for large bit widths. This is because
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Figure 2.5: NCL to LEDR block diagram (a) and single bit conversion circuit (b).
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the LEDR part does not need an explicit phase detector (which needs 2n − 1 gates2, n
being the number of dual-rail bits). Similarly, there is no need for an explicit consistency
detector for the NCL side as well — all the information is implicitly provided by the
respective acknowledge signals ackl and ackn. The circuit can be kept quite simple as
we exploit the restricted properties of the surrounding blocks. Thus, no additional buffers
are needed (except for the control logic). On the downside stands the need for correct
initialization. The presented circuit needs the LEDR module to be initialized in phase
ϕ0 to work properly. For other initial states, the conversion circuit needs to be reset
differently. As we do not implement a dedicated phase detector, and also spare output
latches, we decrease system robustness. However, the presented solution targets in-chip
protocol conversion only, and the physical proximity of the blocks to the conversion circuits
relativizes this drawback.

2.2.2 NCL to LEDR

A quite common use-case is the conversion from four-phase NCL to two-phase LEDR.
The former is often used to realize combinatorial circuits, while the latter is well suited
for interfacing with other modules over probably long distances. What we need to take
into account for this case is the fact that the NCL part does not hold its signal values for
the entire computation cycle. This return-to-zero property stands in contrast to LEDR,
where all signals are stable until a new computation phase starts. Figure 2.5(a) shows the
basic block diagram of such a conversion circuit: From NCL’s point of view, the converter
is the data sink, therefore it is necessary to perform a validity check on the data inputs.

2One needs n XORs and n− 1 C-gates if only two-input gates are available.
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This checker module shall return logic 1 if all dual-rail data lines show valid data, and 0
if all data lines are zero. For all other (intermediate) states, the module shall implement
a hysteresis and hold its old value. In order to reduce the gate count and increase the
scaling capabilities for large bit widths as much as possible, we again separate the control
logic from the local (per-bit) conversion circuit.

The control block itself has two inputs (ackl as capture-done coming from LEDR,
and valid as “phase” signal coming from NCL’s validity detector), and three outputs
(ena to set the output latches transparent, phase to indicate LEDR’s output phase, and
ackn to acknowledge data transfers to NCL). Figure 2.5(b) shows the conversion circuit
for a single bit cell. According to Figure 2.5(a) each bit has the t and f data lines from
the NCL block as input, and the LEDR data lines line0 and line1 as output. From the
control block there are two additional inputs phase (indicating the desired phase at the
output) and ena (the enable signal for the output-latch of line1). Data conversion from
the one-hot encoded NCL to the LEDR scheme can be achieved easily by Muller C-gate
C1. Generating the data-dependent phase signal line1 can, for instance, be implemented
using a simple latch and an XOR gate.

Having this general structure in mind, it is straight forward to describe the desired
conversion functionality of the control block in terms of a Petri Net (see Figure 2.6).
Starting in P0 (LEDR output is valid and ready to be acknowledged), we first need to
wait until signal ackl is issued. By applying ena- we then we set the output-latches of the
LEDR-side to “hold” and acknowledge the capturing of all data with ackn+. After waiting
for NCL to show the empty word (valid-), we assign the new LEDR output-phase to an
internal variable phase3 and acknowledge the reception of the empty word with ackn-.
The timing constraint that ena- needs to reach all latches before transition phase does
can be denoted4 as t−2 < t3 according to Figure 2.5(b). Eventually, NCL assigns new
data and forces valid+. Before actually enabling the output latches with ena+, another
timing constraint needs to be fulfilled: The data signals coming from NCL must reach
the latch’s input D before ena+ reaches the latches in order to avoid hazards (t1 < t+2 ).
The Petri-Net representation can be transformed into a hazard-free circuit using the tool
petrify [15], which has already been presented in the previous section.

There exist several possibilities for circuit initialization. In the examples shown above
we assume state P0 to be the initial state (latches set transparent, data word of NCL
input is assigned to LEDR output in phase ϕ0). However, it is also possible to reset the
circuit in states P1 (latches disabled, NCL starts with the empty word) or P2 (same as
P0 with latches disabled). The main disadvantage of selecting one of the alternatives on
reset is that in those cases the latch and also gate C1 must be reset explicitly. In the
presented setup, however, they are initialized implicitly by their input signals.

3While this variable holds the same information as input signal ackl, it is assigned at a time when
the latches are not transparent any more.

4We denote the point in time when rising/falling/any transitions reach a specific location as t+/t−/t,
respectively.
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2.2.3 Bundled Data as Consumer

As there exist both two-phase and four-phase handshaking solutions for the bundled data
interface, NCL as well as LEDR can be converted with moderate effort. The request
signal, which is needed to indicate the arrival of new data to the receiver, can easily be
extracted directly out of the dual-rail data lines using a phase or validity detector.

In case of NCL a validity detector as mentioned previously is needed. It can be directly
seen by comparing Figure 1.7(a) and Figure 1.8(a) that the validity detector resembles
the bundled data’s request signal. Furthermore, the acknowledge signal can also directly
be connected to NCL’s ack line. Similar to the other solutions it is important to notice
that there are timing constraints that must be met. The data inputs from the bundled
data modules must be stable before the validity detector produces a positive transition
and thereby triggers capturing of the data.

On the other hand, also LEDR can be converted quite easily by using the two-phase
handshaking technique for bundled data. Again, the request signal can be obtained by
evaluating the phase of the input data vector. As above, this phase detector outputs
the current phase of the applied data in case all bits are consistent, and holds its value
otherwise. Also similar to above, the acknowledge output can directly be connected
to LEDR’s capture done input. Care must be taken only for the initial state, as the
polarities of request/acknowledge must match the reset state of the LEDR block. In case
of a mismatch, the circuit does not work at all due to deadlock.

2.2.4 Bundled Data as Producer

Let us again start with the four-phase protocols, as they are relatively easy to handle
because of the favorable return-to-zero property. One timing constraint that comes with
bundled data is that all data needs to be stable before the respective request signal arrives
at the consumer. Baring this prerequisite in mind, it is possible to use the request signal
directly to generate valid and empty words as needed for NCL. The acknowledge signal
can, similar to the previous section, directly be connected to the corresponding bundled
data’s acknowledge line. This is also illustrated in Figure 2.7(a): The request signal
is used to switch the and gates transparent (for a valid data word) and force them to
zero (for the empty word). No buffers or other conversion logic is required. The only
timing requirement is that all data lines are stable at the converter gates before the
enabling/disabling request transition occurs (t1 < t2 in Figure 2.7(a)).

The second case is slightly more complicated because we need to generate the correct
phase signal for each bit. As this signal not only depends on the current phase, but also
on the current data value, several critical timing constraints must be fulfilled in order to
obtain a glitch-free, correctly working circuit. There are many concrete implementation
alternatives to realize such a conversion circuit, and we will present three variants in
the following paragraphs which seem to be most promising considering complexity, per-
formance and area requirements. All the proposed solutions have in common that they
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Figure 2.7: Conversion circuit for bundled data to NCL (a) and LEDR (b).

rely on a reliable way of generating the enable signal for the (line1-)output latches of
Figure 2.7(b):

• As shown in the Figure one can exploit the delay between the request and the
acknowledgment. As soon as request toggles, an XOR gate generates a high level
until the corresponding acknowledge is issued. During this phase the latches of all
line1 signals are transparent. The advantage of this solution is that the duration
of the high-pulse is automatically adapted such that all latches actually reach a
stable state (LEDR does not acknowledge until all data is in correct phase — and
the enable pulse stays high accordingly). The case where only data lines line0

change may result in an extremely short enable pulse (the phase of each bit changes
without the need of any line1 signal). But as both input and output of the latches
show the same value, there is no risk of metastability or inconsistency. The timing
constraints for this solution are easy to identify: The inputs of the latches must be
stable as soon as en goes high (max(t1, t2) < t+3 ), and need to stay stable until it
returns to zero again (t−3 < min(t1, t2)).

• Another possibility to create the latches’ enable signal is an XOR gate with a delayed
input (cf. edge generation circuit in Figure 2.8). A pulse with the duration of the
delay element in the signal path is generated for each transition of req. The duration
must be chosen with respect to the latches’ timing requirements, but it must also
be chosen short enough to be disabled before the next data wave arrives at the
converter. The disadvantage compared to the previous solution is to find a proper
delay for optimum performance and reliability. The delay element now moved out
of the critical signal path and performance can be increased assuming the LEDR
module is not too fast.

• A third alternative is to use a four-phase instead of a two-phase bundled data
interface. This way, it is possible — similar to the NCL conversion shown at the
beginning of this section — to use the request line directly as enable signal for the
output latches. However, the converter now needs to translate two-phase to four-
phase handshaking protocols (and vice versa) which increases circuit complexity.

41



2.3. FREE CONVERSION

D Q

F3

D Q

F4

D Q

F1

D Q

F2

Δ

(o
pt

.) 
ed

ge
 

ge
ne

ra
tio

n

synchronizer

data

sample

line1

line0

Figure 2.8: Converting single bits to LEDR without back-pressure.

2.3 Free Conversion

In the previous sections we exclusively dealt with interlocked conversion mechanisms,
where the consumer is able to signal successful data reception to the producer. The
latter is therefore able to wait upon this acknowledgment before sending the next data
vector. Both sender and receiver hence operate in a lockstep way, which means that their
execution speeds (at least at their interfaces) directly depend upon each other — one step
at the producer (new data to send) means one step at the receiver (reception of that very
data).

In contrast to the already presented conversion methodologies there might also be a
situation where lockstep operation is not possible or desired. For example, state signals
(interrupt requests, digital inputs, . . . ) or serial interfaces (UART, SPI, CAN, I2C, . . . )
do not provide the necessary means for applying back-pressure on the sender to achieve
an interlocked operation. Often this would not make sense at all, especially when the
progression of time itself is part of a signal’s or communication protocol’s semantics. Using
such inputs in asynchronous (QDI) circuits directly implies that the asynchronous modules
must meet certain timing requirements5. The operating speed needs to be fast enough
to reliably sample the respective input signals, and to allow the design to reach a stable
state between any two changes of the input signal. Furthermore, for serial communication
interfaces, the asynchronous designs must incorporate some notion of time to restore the
original serialized bitstream (this issue is addressed in the remaining chapters of this work).
Without a dedicated back-channel there is also no known relation between the consumer’s
execution cycles and the sender’s signal transitions. The receiver must therefore treat the
input as asynchronous signal, and effectively avoid metastability issues by adequately
synchronizing it to the internal timing.

Let us consider Figure 2.8. The circuit shows a design which converts a single-rail input
signal to dual-rail LEDR without providing an acknowledgement back to the sender. For
this solution we deliberately use edge-driven flipflops as they have well-known properties
with respect to metastability and signal synchronization. As we can see, there is an
ordinary two-stage synchronizer consisting of sequential gates F3 and F4, which simply
clock the data signal in and finally provide the data line line0 for the LEDR output.

5In that cases we speak of self-timed circuits, as delay-insensitivity contradicts any timing deadlines.
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Flipflop F2 is used to generate the respective phase signal line1 by XORing the current
data signal with the expected phase (stored in F1). As the phase changes after each
execution cycle, F1 simply alternates it value continuously. Notice that F1 must be reset
according to LEDR’s initial phase to prevent deadlocks. There are four possibilities which
signal shall be used for clocking (sample):

1. Data Clock: For synchronous serial interfaces there is a data-clock available (e.g.,
SPI) which may serve as input to sample. In most cases this data clock can be used
directly without the need of the edge generation unit (marked as optional in the
figure). There is also no need for the 2-stage synchronizer because the data-clock
only ticks when data is guaranteed to be stable — thus one flipflop driven by the
data clock is sufficient in this case. Then, however, the remaining circuit needs to be
adapted as well: F2 must trigger on the rising rather than on the falling edge, and
the XOR gate’s input must directly be connected to data rather than F3’s output.
The subsequent LEDR circuit performs exactly one execution step for each positive
data-clock transition.

2. External Sampling: Another feasible way is to use a separate signal for sample.
Wherever this signal comes from6, each positive transition triggers one execution
cycle of the LEDR module. This saves power as the asynchronous block is only
active when a sample is taken. Again, the edge generation circuit is not needed.

3. Capture-Done: Using the LEDR’s (or NCL’s) capture done signal is the most
obvious possibility. However, as LEDR is a two-phase protocol, we need a separate
edge generation unit which produces a rising edge for any transition of signal sample.
An XOR gate with one delayed input can be used, but choosing an appropriate ∆
is critical for correct operation — alternatively, double-edge flipflops could be used.
Notice that in this case the receiver runs at full speed (non-blocking).

4. Data Line: For state signals (e.g., switch or button states, interrupt requests, etc.)
it is further possible to connect the data signal itself to sample. Each change of
data then again triggers one execution step. For this solution, however, an addi-
tional delay needs to be inserted directly after the edge generator to guarantee an
appropriate setup time for data at the flipflops. Furthermore, there is no need for
the 2-stage synchronizer because the timing relationship between data and sample
is fixed by the implemented delays in the edge generator. Similar to case (1), one
flipflop is sufficient here.

While in general forks should be avoided in synchronizer circuits in order to avoid
glitches and race conditions, splitting F3’s output is not a problem as long as it is guar-
anteed that the sample signal’s rising and falling transitions do not occur too close to
each other so that the flipflops always capture stable (and thus consistent) data. The

6E.g., a synchronous timer unit which toggles sample at the desired bit-rate. This also solves the
problem of deriving a suitable notion of time.
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Figure 2.9: Alternative circuit implementation (b).

XOR in the synchronizer circuit reduces the duration of the available resolution time in
case of metastability, which either decreases the circuit’s MTBF (Mean Time Between
Failure [40, 47]) or the maximum clock frequency. Choosing a suitable ∆ for the edge
generator has a central influence on the correct functionality of the synchronizer. In
particular, it must be large enough to guarantee (up to the required probability) any
metastable states to be resolved before the falling edge triggers F2,4. As the latter two
flipflops trigger on the falling edge, a new data value is already available at the outputs
after one asynchronous execution cycle, thus decreasing total latency. Notice that using
both rising and falling edges as trigger for synchronizer flipflops is rather unusual. How-
ever, in LEDR each transition of signal cDone indicates an entire execution cycle and is
thus comparable to one clock period. Another important constraint is the fact that the
sampling rate must be slower than or equal to the asynchronous logic’s execution speed.

When concatenating more of these modules to synchronize different inputs with the
same LEDR block, flipflop F1 can be used as provider of the next phase for all bits. It is
also possible to replace F1 with LEDR’s capture done signal, but this introduces another
race condition especially for case (3).

The same basic structure can also be used so synchronize a signal to NCL. A conversion
circuit similar to the one in Figure 2.7(a) can be implemented following the two-stage
synchronizer. F1 and F2 are not needed, also the edge generator can be omitted due to
the four-phase protocol of NCL.

2.3.1 Implementation Alternative

The main disadvantage of the free running conversion circuit is the need for an explicit
edge generation unit. While such a unit is relatively easy to implement for ASIC de-
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signs, FPGAs are a bit more difficult to control when it comes to explicit delay lines.
Especially portability between different FPGA families becomes troublesome, as most
tools have their own way of specifying delays. Consequently, we are looking for an al-
ternative implementation strategy with a more general approach. The result is shown
in Figure 2.9(b), where logical submodules from Figure 2.9(a) are grouped together by
rectangles to simplify the following explanation.

The sync block just consists of two cascaded D-flip-flops and forms a 2-stage syn-
chronizer. Similar to the previous section, both rising and falling transitions are used to
capture data. The MUX block is a simple 2-way multiplexer, which selects between ϕ0 and
ϕ1, respectively7. ϕ0 is generated directly out of the data block, which by itself is only
another D-flip-flop F4 that stores the data-signal for line1. Likewise, block ϕ1 is created
by inverting the incoming data signal in F3. Finally, block sel chooses whether to use
ϕ0 or ϕ1. If data is stable, sel must alternately select between ϕ0 and ϕ1, otherwise the
LEDR.line1 needs to maintain its value.

Notice that the internal timing constraints of this design are derived from common
synchronous design methodologies. As already mentioned above, the solution uses rising
and falling edges of the trigger signal PhaseIn to interleave all signal assignments and
generate a clean LEDR output. Figure 2.10 contains a waveform which illustrates the
timing of this circuit. The arcs (dashed and solid) illustrate the dependencies between
the input phase and the internal flip-flops. The dashed lines show changes due to the
first positive transition of DataIn, whereas the solid arcs indicate changes caused by the
second negative transition. For the output LEDR.line0, the figure further shows which of
the phase blocks is actually selected by MUX to generate the output. Element F2 assigns
new data with the rising edge only. Consequently, it makes sense to precalculate ϕ0 (F4)
and ϕ1 (F3) with the falling edge of PhaseIn. As long as DataIn is stable, register F5

stores constantly logical one (F3,4 are stable as well), thereby making the subsequent
AND-gate transparent. The incoming phase signal toggles the multiplexer and selects the
corresponding output. As all input signals of MUX are constant and unequal, no glitches
occur. On the other hand, as soon as F1 gets a new value, F3 changes with the next

7A standard 2-way multiplexor produces static-one hazards if both data-inputs are 1 and the select-
input toggles. Inserting redundant logic can eliminate this behavior.
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Figure 2.11: Simulation of LEDR to NCL conversion.

falling edge. Now, F5 will store a logical 0 with the same edge that triggers F2. At this
time, F3 = F4, so changing the MUX selection does not do any harm - the LEDR output
is stable. There are two valid situations right now: Either F1 still has its old value, or
F1 has changed again (at the same time as F2 and F5 have changed). The former case
is trivial, as F3 6= F4 with the next falling edge. This state is similar to the initial state,
simply with all flip-flops having inverted values. For the latter case, i.e., F1 has toggled
again, F3 = F4 also holds for the next cycle and prevents MUX from switching. Again,
stable output is guaranteed.

2.4 Experimental Results

So far, we introduced various different techniques for converting asynchronous design
styles into each other. In this section we present simulation results of the described cir-
cuits and discuss the specific properties of these simulations. To this end we generate
gate-level representations of the proposed modules (using standard combinatorial gates,
latches and Muller-C elements). We assign static propagation delays to all gates and
interconnects (of course in a way that all necessary timing constraints are met). In addi-
tion, to achieve realistic results and at the same time simulate fabrication variations, all
gates and interconnects are subjected to Gaussian jitter. Concrete performance evaluation
does not make sense at this abstraction level as no specific target technology is specified.
Our toolchain consists of Synopsys Design Compiler as synthesis tool and Modelsim as
simulator. Notice that we manually redrew most of the simulator screenshots in order
to improve readability. In the presented waveforms the grayed areas indicate durations
where data vectors actually change, while non-grayed signals mark stable states.

First we want to consider the conversion from LEDR to NCL. Figure 2.11 shows a
waveform obtained by simulating the circuit of Figure 2.4. Both data source and sink are
implemented to need arbitrary (but bounded) time for “processing” and ack generation.
The gray areas between any two consistent data vectors indicate the durations when the
respective dual-rail bits are inconsistent (i.e., a mixture of different phases or valid/empty
bits, respectively). The sequence of states according to Figure 2.3(b) is indicated by the
arrows, starting with state P4 while waiting for LEDR to apply new data. After the
NCL output is consistent (P1), it will eventually be acknowledged (ackn+, P2), directly
followed by applying the empty word (P3) and the waiting for the respective acknowledge
(ackn-). Finally, the LEDR part is informed that all data has been stored to start a new
transaction (toggle ackl, P4).
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Figure 2.14: Simulation of self-triggered single-bit to LEDR conversion.

The next case we consider is the conversion of NCL signals into LEDR. As illustrated
in Figure 2.12, the transitions from empty to valid data bits are directly propagated to
the LEDR part (t1). However, as long as not all bits are valid, the validity detector
does not issue the ena signal for line1’s output latch (recall Figure 2.5(a)). As a result,
only those bits that actually changed their logical value since the last cycle will toggle
during t1. Only after all NCL bits are valid, ena is asserted and the remaining LEDR bits
can change accordingly (t2, we chose a long delay for signal ena to better illustrate this
behavior). Eventually, all LEDR bits are in ϕ1 and ackl will be asserted. This finishes
the cycle by acknowledging NCL and issuing the empty word.

The next two cases we consider are shown in Figure 2.13. As mentioned in Section 2.2,
conversion from any dual-rail design style to bundled data is quite straight forward, as
both two-phase and four-phase bundled data protocols exist. In case of LEDR (right part
of the figure), a phase detector is used to determine data consistency and generate signal
req. Each change of phase triggers a new data transmission request, which is consequently
acknowledged by the consumer. The phase detector assures that all data bits are stable
before the request is asserted. While the overall procedure is similar for NCL (left part
of the figure), it is important to notice that the inputs to the bundled data module are
all zero in case the empty word is issued. However, as data is captured during the valid
phase only, this behavior does not incur any restrictions.
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Finally, we want to take a closer look on the circuit presented in Figure 2.8. In the
simulation waveform shown in Figure 2.14 we connect the capture done signal to the
sample input (case (3) of the list in Section 2.3), thus the circuit continuously samples
the data line in a non-blocking way. The figure also shows a signal named clk, which is
the output of the edge generation circuit. The delay element has been given a value high
enough for good visualization, the exact margins strongly depend on the technology and
the achievable synchronization reliability. We can see from the waveform that each falling
clk edge generates a new LEDR word. By using both rising and falling edge of clk it is
possible to achieve minimum latency of only one execution cycle.

2.5 Chapter Notes

In this chapter we demonstrated how to construct different asynchronous conversion cir-
cuits for two-phase dual-rail, four-phase dual-rail, and bundled data asynchronous com-
munication protocols. Generally speaking, conversion from LEDR as a producer has the
advantage that all applied signals are stable for the entire execution cycle, thus simpli-
fying the conversion logic in that no latches (or other sequential elements) are needed.
On the other hand, the four-phase protocols are simpler to design (i.e., their area re-
quirements are more beneficial), because state signaling can be handled more efficiently
than transition signaling. Compared to related solutions (as presented in Section 2.1) our
strategies are optimized for on-chip communication. By exploiting the specific protocol
properties we are able to achieve solutions that scale well for large bit-widths and allow
good performance with relatively few timing constraints to consider (this also simplifies
concrete implementations considerably).

Another aspect we discussed in this chapter focused on interfacing serial communi-
cation interfaces without a dedicated back-channel (cf. Figure 2.8). We identified four
major alternatives for sampling the incoming data line, each of which with its own advan-
tages and disadvantages. Depending on the application, the generic interface block can be
operated in blocking (exactly one asynchronous execution step is performed for each sam-
ple) or non-blocking mode (the asynchronous circuit runs freely and continuously samples
the data line). An edge generation circuit allows us to achieve very low synchronization
latencies of only one asynchronous execution cycle by exploiting both rising and falling
signal edges for the flip-flops. As we trigger a new conversion for each alternation of the
subsequent LEDR-block’s phase, the average sampling error introduced is also limited by
one execution cycle. On the downside of this solution stands the edge generation unit with
the delay element. The delay must be chosen long enough to allow any metastabilities to
settle (with the desired probability, also considering setup- and hold-time requirements),
but also short enough to not negatively influence system performance. Clearly, the en-
tire block must reach a stable state before the sample input toggles again. Especially
for FPGAs it is sometimes troublesome to realize a precise delay element. By cascading
various buffer elements, the delay can vary considerably from compilation to compila-
tion depending on the exact placement and routing of the entire circuit. Furthermore,
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adaption of the delay might be necessary in case the frequency of signal sample changes.
Although the solution is very useful and efficient in terms of performance and area usage,
it is not well suited for prototyping circuits that still undergo lots of changes.

In contrast to the generic interface block, the design alternative presented in Sec-
tion 2.3.1 allows a straight forward, easily portable implementation of a non-blocking
single-rail to LEDR converter, which uses only standard gates that are available for vir-
tually all FPGA platforms. The module itself can be constructed using synchronous
design techniques while interpreting signal cdone as local clock source. On the downside,
however, the alternative solution uses considerably more resources. Furthermore, it only
provides new data with the rising edge of signal cdone, which means that the latency is
much higher compared to the generic solution (three execution cycles). As new conver-
sions are triggered by falling cdone edges only, the average sampling error is two execution
cycles at most.

We will see in later chapters that the presented conversion and interfacing blocks come
in handy for the implementation of the TTP controller. Not only the independently run-
ning submodules need to be synchronized to each other, also the asynchronous bit stream
on the TTP bus needs to be sampled accordingly. Furthermore, control and status signals
must be handled using some of the above converters. As mentioned earlier, interchanging
different asynchronous design styles also necessitates the existence of suitable converters.
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Chapter 3

Temporal Characteristics

Gosh, that takes me back. Or forward. That’s
the trouble with time travel; you can never
remember.

The Doctor, Dr. Who

So far, we have introduced different widely-used asynchronous design styles and de-
scribed in detail how conversion and interfacing with these implementation methodologies
can be achieved. While this knowledge forms important background information especially
for Chapters 4 and 5, we now want to take a closer look on the temporal characteristics
and timing predicability of asynchronous logic.

We have already pointed out earlier that asynchronous circuits may elegantly overcome
some of the limiting issues of their synchronous counterparts. Two prominent potential
advantages of asynchronous logic are reduced power consumption and inherent robust-
ness against changing environmental conditions. Especially the latter is important as
recent silicon technology suffers from high parameter variations and high susceptibility
to transient faults [62]. A substantial part of this robustness originates in the ability of
asynchronous (QDI) circuits to adapt their speed of operation to the actual propagation
delays of the underlying hardware structures, which is accomplished by the feedback sig-
nals for completion detection and handshaking. However, while asynchronous circuits’
adaptive speed is hence a desirable feature with respect to robustness, it becomes a prob-
lem in real-time applications that are based on a stable clock and a fixed (worst-case)
execution time. Therefore asynchronous logic is commonly considered inappropriate for
such real-time applications, which excludes its use in an important share of fault-tolerant
applications that would benefit from its robustness.

It is consequently reasonable to take a closer look at the actual stability and pre-
dictability of asynchronous logic’s temporal behavior. After all, synchronous designs
operate on exactly the same technology, but hide their imperfections with respect to tim-
ing behind a strictly time driven control flow that is based on worst-case timing analysis
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(which is the root of the current substantial problems with parameter variations). This
masking provides a convenient, stable abstraction for higher layers. Asynchronous de-
signs, on the other hand, simply allow the variations to happen and propagate them to
higher layers. There is no fundamental obstacle to handle these variations on higher layers
(although this may create considerable efforts), thus the interesting question is: Which
character and magnitude do these variations have?

In this chapter we want to elaborate a convenient model for describing the temporal
characteristics of asynchronous circuits on a qualitative level. We start by exploring jitter
in synchronous systems and adapt the classifications for asynchronous designs accord-
ingly [28, 32]. We also perform some experimental case studies in order to validate the
proposed model. Based on the results from this chapter we then continue with the actual
implementation of an asynchronous time reference generator unit in Chapter 4.

3.1 Related Work

When in comes to temporal behavior of logic circuits, plenty of literature can be found in
the field of jitter. Especially for high-speed communication systems, jitter is one of the
major factors limiting the maximum transmission speeds by making the “eye” (i.e., the
valid area of an eye-diagram [77]) even narrower1. For our investigation, we want to start
by examining the concepts of signal jitter for synchronous systems, which shall form the
foundation for our asynchronous jitter definitions in Section 3.2.

3.1.1 Jitter in Synchronous Circuits

In synchronous systems we have the abstraction of an equally spaced time grid to which all
transitions are aligned, and all deviations from this ideal behavior are commonly subsumed
under the term jitter. Often jitter is associated with a synchronous clock source like a
crystal oscillator, where it is obviously an undesired effect. Consequently, attempts have
been made to identify the different sources and effects of jitter in order to mitigate the
most relevant ones.

Literature generally distinguishes deterministic and random (indeterministic) jitter,
as illustrated in Figure 3.1. The term random thereby refers to the statistical and thus
random characteristics of jitter, and by that the corresponding magnitude is in principle
unbounded. In contrast, deterministic jitter sources have well-defined origins, are always
bounded in magnitude, can basically be predicted, and are thus reproducible2. The
following list shortly explains the most common sources of jitter [78, 85, 95]. Notice that
the single items are not mutually exclusive – even worse, measurements mostly indicate
a combination of several if not all of these types.

1In combination with relatively shallow slopes, tight voltage ranges, and very high bit rates.
2Notice that random effects may also have well-defined origins and be reproducible, but this only

applies for their statistical parameters.
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Figure 3.1: Jitter classification scheme (Source: [85]).

• Data Dependent Jitter (DDJ) is added to a signal according to the sequence of
processed data values. Intersymbol interference (ISI), simultaneous switching noise
(SSN), etc. are common sources of DDJ. Furthermore, data-dependencies can be
observed in cases where the voltage level does not reach its absolute end value during
one bit time. Then, if two equal bits are sent in succession, the voltage fully settles
and the next opposing transition will take longer to reach its respective threshold
value (cf. Figure 4.1(b)). In a jitter histogram, DDJ can often be identified as
multiple separated peaks, caused by the concrete influence of the actual data values
on the physical signals.

• Bounded Uncorrelated Jitter (BUJ) (which is not shown in the figure) is used to
model crosstalk effects from other transmission lines. Consequently, the resulting
jitter is uncorrelated to a communication channel’s own data stream [53].

• Duty Cycle Dependent Jitter (DCD) has its origin in differences of the slopes of rising
and falling signal transitions. High and low pulses of periodic signals appear to have
different lengths, which manifests as two distinct peaks in the jitter histogram (as
illustrated in Figure 3.1). A similar effect can be observed (even in case of matching
slopes) if the decision threshold for binary values is not at 50% of the supply voltage
VDD.

• Periodic Jitter (PJ) is induced by periodic external events, such as switching power
supply noise or strong local RF (Radio Frequency) carriers, and is per definition
uncorrelated to any data-streams. Due to its periodicity, pronounced peaks in the
corresponding FFT (Fast Fourier Transformation) plots can be identified, for which
reason it is also called sinusoidal jitter. In jitter histograms the characteristic curve
of PJ often looks like a bathtub when jitter continuously changes between two
periods.
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• Random Jitter (RJ) can be seen as the (statistical) sum of multiple uncorrelated
random effects (e.g., thermal or supply voltage noise). Although in theory any
probability distribution is possible, it is usually assumed that RJ has Gaussian-like
characteristics for modeling3. Due to its random nature RJ is not predictable and
in principle unbounded in magnitude.

• Process and fabrication variations introduce significantly different timings and delay
characteristics among different devices. In that sense, they are not directly related
to the other jitter types of the above list, because they can only be observed when
comparing timing characteristics of different chips to each other.

Again notice that in practical circuits we typically observe superpositions of different
types of jitter. It is therefore an intricate task to distinguish them in a measurement,
even though powerful support by special jitter oscilloscopes is available. With the above
abstract classification in mind, we can now derive concrete definitions of jitter [78,94,95,97]
for periodic signals.

• Timing or Absolute Jitter is the deviation of a signal transition from its ideal po-
sition. For a clock signal this means that the nominal values are integral multiples
of the clock period T , and the measured (absolute) deviation for each transition is
called timing jitter. This type of jitter accumulates over time and always specifies
the absolute deviation from the nominal value.

• Period or Cycle Jitter is the deviation of a signal’s period from its nominal value.
Period jitter is determined separately for each cycle. In other words, it is not
accumulated over multiple cycles.

• Long Term (Accumulated) Jitter, on the other hand, is defined as deviation of the
measured multi-cycle time-interval from the respective nominal value. Especially
random jitter accumulates over time, and thus its absolute value increases when
observing long time intervals. Considering the interval error for multiple cycles is a
generalization of period jitter, which only accounts for a single cycle.

• Cycle-to-Cycle Period Jitter is the variation in the deviations of cycle-periods of
adjacent cycles compared to their nominal cycle times. In other words, cycle-to-
cycle jitter is the second order difference of the measured cycle periods [95].

Figure 3.2 graphically illustrates the different types of jitter mentioned above. Ac-
cording to Figure 3.2(a) we assume a periodic signal with nominal period T , whereby
the actual transitions jitter around the average period T . Consequently, timing jitter
(Figure 3.2(b)) can be identified as the difference from the nominal to the actual period,
as shown in the following equations. In these equations, the timing jitter of the n-th
period is denoted as ∆Tn, while nT defines the reference time after n periods, and Tn the

3Thermal noise follows a Normal distribution, and the composition of many (uncorrelated) noise
sources also approaches a Gaussian distribution [85].
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Figure 3.2: Jitter manifestations: General (a), Timing jitter (b), Period jitter (c), and
Cycle-to-Cycle jitter (d) (Source: [94]).

respective actual time. Notice that timing jitter defines the absolute deviation of the n-th
transition of a square-wave signal from its nominal value.

∆Tn = Tn − nT (3.1)

Likewise, Figure 3.2(c) shows the case for period jitter J , which is defined as the instanta-
neous period minus the nominal period T (Equation 3.2) [94]. The instantaneous period
for cycle n can be expressed using the (instantanous) angular frequency ω[n] = 2πf [n],
and shall highlight the continuously changing nature of J [n].

J [n] =
2π

ω[n]
− T (3.2)

Finally, Figure 3.2(d) illustrates cycle-to-cycle jitter, which is defined by Equation 3.3 and
directly follows from the difference of period jitter of adjacent cycles [94].

Jcc[n] = J [n+ 1]− J [n] =
2π

ω[n+ 1]
− 2π

ω[n]
(3.3)

On the basis of these definitions, long term accumulated jitter can either be defined similar
to timing jitter (but over a long period m and under the assumption ∆T0 = 0), or using
period jitter J , which is expressed in Equation 3.4 for the observation/reference interval
(0,mT ).

Jlt =
m∑
i=1

J [i] = ∆Tm (3.4)

Although both timing and period jitter can be used to express long term accumulated
jitter, it is important to notice the subtle difference between these two types. For instance,
∆Tn gives no indication about the actual duration of the respective periods (while J does).
Furthermore, period jitter is only applied to one single period, while timing jitter is an
absolute measure of error, even over multiple cycles.
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3.1.2 Timing Analysis

Although the timing model we want to elaborate is not intended as tool in the same sense
as industry uses timing analysis to predict the (worst-case) performance of a given circuit,
there are some significant similarities with respect to our needs after all. In this section
we therefore give a concise overview to the complex topics of static-timing analysis (STA)
and statistical static-timing analysis (SSTA), based on the work presented in [7,57,66,67].
Especially [7] provides basic information in combination with more detailed insight to both
STA and SSTA, while the other references mostly focus on specific problems associated
with SSTA. For timing analysis of digital circuits STA has so far been an efficient and
effective way of determining a circuit’s (worst-case) delays and retrieve the achievable
performance. Four major factors can be identified which account for the widespread
use of STA in industry [7]: (i) Basically, STA scales linearly with circuit size, allowing
for complex circuits to be analyzed efficiently. (ii) Analysis results can be considered
conservative, which means that the estimated performance is guaranteed under certain
environmental conditions. (iii) The STA algorithms themselves are relatively sophisticated
and address many different timing issues. (iv) Last but not least, the process of deriving
delay characteristics for given cell libraries is well defined.

The deterministic result of STA has many years been a sufficient measure of the
chip’s performance. However, in order to address manufacturing variations (which become
increasingly significant for deep sub-micron devices), STA usually uses so-called corner
files, which contain timing characteristics of gates under specific process conditions (e.g.,
varying gate-widths). By repeatedly executing the STA algorithms on a given design using
different corner files, the expected performance under changing process parameters can
be estimated. Notice, however, that corner files only simulate die-to-die variations, as all
gates of the chip are modeled with the same parameters. Therefore, within-die variations
cannot be handled by traditional STA. It has been shown in [7] that this fact may — for
certain circuit topologies — lead to either over- or underestimations of propagation delay,
which mainly depends on the correlation assumptions made between different paths4.
SSTA on the other hand tries to addresses the increasing process variability by including
statistical analysis in the algorithms. Three major approaches have been developed over
the past few years [7]:

• Numerical-Integration Method: This approach uses numerical integration over the
entire process parameter space in order to derive the circuit delay for critical paths
under all conditions. While this is a very general and flexible method, numeric in-
tegration over the entire (feasible) parameter space is an extremely time-consuming
task, especially for balanced circuits with many potential critical paths.

• Monte Carlo Method: This approach is based on traditional STA. Process parame-
ters are (randomly) chosen according to their statistical distribution, and determin-
istic STA is performed for each fixed set of parameters. After a sufficient number

4This is also true for SSTA when unrealistic correlation assumption are made to simplify the calculation
models.
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of “samples” the probability distribution of critical paths can be estimated and the
timing yield can be found. Similar to before, the main drawback is the associated
computation time (due to the huge number of runs). On the upside, existing and
sophisticated timing analysis tools can be used for simulations, and the technique is
completely general in the sense that arbitrary process parameter distributions can
be used. As we will see in the next sections, our solution is also based on the Monte
Carlo Method.

• Probabilistic Analysis Method: In contrast to the methods above, where the entire
sample-space is enumerated, this technique models gate delays and signal arrival
times as random variables. By applying statistical sum and maximum operations,
arrival times (i.e, their probability distribution functions) are propagated through
the timing graph and a probability distribution function is obtained for each critical
path, allowing to estimate the achievable timing yield. However, implementing the
statistical operators is not trivial and execution speed rather time consuming. The
approach also looses some generality as often normal distributions are assumed in
order to simplify statistical calculations.

3.2 Jitter in QDI Circuits

Before we actually start with the elaboration of a suitable timing model for LEDR circuits,
it is necessary to take a closer look at jitter in asynchronous systems. Compared to the
synchronous case, measuring jitter effects in asynchronous circuits is somewhat different.
Taking into consideration the above definitions of jitter manifestations, we see that (except
for cycle-to-cycle jitter in Equation 3.3) the nominal period T is present in all equations.
In this sense, however, the question arises: What is the nominal period for asynchronous
systems? (Quasi) delay insensitive circuits in general, and LEDR designs in particular
do not have a predefined operating speed, consequently there is no nominal point in time
where the transitions are supposed to occur. The property of delay insensitivity makes
it impossible to define such ideal behavior even on a conceptual level, which renders the
above definitions more or less useless for our purposes. However, also in our asynchronous
design there are some signals that must have a predefined frequency for the system to work
properly (e.g., reference time, bit-timing, macrotick generation, etc.). For these signals
nominal properties (period/frequency, phase, etc.) exist and the common synchronous
jitter definitions can be applied accordingly. The remainder of this section deals with
the case where no reference signals can be found (i.e., the free-running asynchronous
modules).

The first and most central point is that we do not operate in the multi Gigahertz com-
munication domain. In contrast, our purpose is to establish an accurate-enough notion of
time to allow for relatively low baudrates (in the range of 100kHz to 1MHz), distributed
clock synchronization and macrotick generation (both in the range of milliseconds). In-
stead of tweaking communication channels towards their physical limits, what we need
is to generate a stable time reference. Jitter itself is, on a high level of abstraction and
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within certain bounds, not the central problem at all — the average frequency, on the
other hand, needs to be stable after all. While some of the presented jitter sources con-
tribute only very little jitter (in the picosecond domain, e.g., crosstalk induced jitter, SSN,
etc.) and thus play a minor role for our timing model, new sources and types of jitter
must be defined in order to accommodate for the specific properties of asynchronous logic.
The absence of the clock signal has severe influence on jitter: Most importantly, clock
related jitter sources such as duty cycle distortion or uncertainties introduced by the clock
distribution network need not be considered any more. On the downside, asynchronous
systems need to deal with all the timing characteristics and jitter sources that are usu-
ally indirectly eliminated by the edge-triggered flip flops and high-precision oscillators
(refer to item “Data Dependent Execution Jitter” in the list below for a more detailed
explanation).

Considering once again the exemplary LEDR circuit of Figure 1.11 on page 17, there
is yet another more fundamental question to answer: When there is no clock signal, how
can we measure and classify the execution speed of our system? The phase of any register,
represented by the respective cDone signal, is a suitable measure of execution speed, as
it changes exactly once per execution cycle. The inherent handshaking guarantees the
average rate of execution cycles for all coupled registers to be the same. However, due
to the fact that LEDR circuits are “elastic”, there may be substantial differences in the
execution speeds of adjacent pipeline stages for consecutive cycles. We can now define
execution jitter to be the deviation in the durations of execution steps. Notice that there
is no dedicated (ideal) reference period T , and simply defining T = µT = 1

n

∑
Ti to be the

average over all sampled periods Ti, i = 1 . . . n is dangerous for large n. The reason is that
µT is not stable over time, as the operating speed of a logical device continuously drifts
(e.g., temperature changes due to warm-up or external cooling, supply voltage drops due
to additional consumers, etc.). The corresponding variance (i.e., the signal jitter) would
then be considered much higher than expected due to the drifting mean value. In practice
one should therefore either use reasonably short measurement periods, or consider cycle-
to-cycle jitter instead. The first order difference5 practically eliminates even drifting
constant components. The following list gives a detailed overview to the jitter types and
sources we want to investigate separately in this work. In order to distinguish the new
definitions from the original ones, we generally label them as execution jitter to indicate
its asynchronous nature.

• Data-Dependent Execution Jitter (DDEJ): Similar to the common definition
of DDJ, this kind deals with cases where the actual data values induce jitter on
a signal. However, and quite in contrast to synchronous systems, DDEJ has dif-
ferent origins and has a much more pronounced influence on signals. The reason
for this is the missing clock signal, which usually synchronizes all internal signals
to a defined transition. For example, consider the most significant bit of a simple
ripple-carry adder. Depending on the current state of the adder, the MSB assumes

5In the asynchronous case, cycle-to-cycle jitter is only a first order difference as there is no predefined
signal period T .
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its final value after different durations. If the MSB changes due to propagation of
the carry signal through all preceding bits, the calculation will take considerably
longer compared to the case where the bit is set directly (without carry). However,
in a synchronous design, the final value is not made public before the next clock
transition — independently from the actual completion time of the calculation. In
LEDR designs, on the other hand, all operations are performed asynchronously and
can thus finish at arbitrary times. This naturally generates large amounts of jitter
on a signal. Notice that our definition of DDEJ also subsumes all remaining data
dependent jitter effects (such as inter symbol interference), even if their magnitude
can be expected to be marginally small in comparison. We will further discuss this
important type in Section 3.3, especially with respect to the specific properties of
LEDR circuits.

• Bounded Uncorrelated Execution Jitter (BUEJ): A typical example of this
kind of jitter is, similar to the already presented definitions, crosstalk. However, the
magnitude of BUEJ can be expected to be negligibly small four our considerations.

• Random Execution Jitter (REJ): We define random execution jitter to subsume
all random jitter effects, such as local thermal or voltage noise. In that sense the
definition is not different from the original one. It is just important to realize that
the magnitude of REJ can be expected to be substantially higher compared to syn-
chronous circuits. The reason is again the missing clock signal, which at least partly
hides accumulated (random) jitter effects behind edge driven flip flops. In LEDR
circuits, however, a signal propagates through different stages and thereby accu-
mulates large amounts of random jitter, which are directly visible at the respective
endpoint/output.

• Process and fabrication variations: For our investigation, these properties are
of central interest, because they severely influence a chip’s overall operating speed
(refer to Section 4.4.5 for details on fabrication variations and their influence on
execution speed). However, fabrication variations for a specific device are fixed
(neglecting aging effects, which are so slow that we can safely ignore them), and can
only be observed when comparing different devices to each other6. We will discuss
this issue again when we investigate the impact of process variations, supply voltage
and operating temperature on asynchronous designs.

From an abstract point of view, we can categorize jitter into two major groups. On the one
hand, systematic jitter (DDEJ, global voltage and temperature change, e.g.) describes all
effects that can be reproduced by our system setup. Consequently, for a given circuit, if we
apply the same input transitions in the same state under the same operating conditions,
we may expect the delay to be the same as well. If this is not the case, random jitter
(BUEJ, REJ: local voltage and temperature fluctuations, noise, ageing, e.g.) has been

6In that context we do not treat process variations as jitter, but as static influence on delays. This is
also expressed in the timing model of Section 3.3.2.1.
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experienced. Obviously, the latter cannot be controlled by the system setup. Recalling
the different types of jitter from Section 3.1.1, we consider DDJ and PJ to be systematic,
while BUJ, DCD and RJ are considered random. Although BUJ and DCD seem to be
systematic after all (they show very little dynamics, which are almost constant over a
chip’s lifetime), it is hardly possible to influence them by means of system setup. The
classification as “random” therefore seems adequate; it can also be expected that they
are not a major source of frequency instabilities for QDI circuits.

Notice that the above definition of data-dependent execution jitter does not directly
fit the commonly used definition: As will be shown below, data-dependencies are induced
at gate-level, mostly because signals take different paths through the combinational logic
depending on the current state and thus need different amounts of time to complete.
Another reason is that the actual value and the respective signal transitions inside the
gates result in different gate-propagation delays (e.g., falling edges may have sharper
slopes than rising edges, or zeros may propagate more quickly through a gate than ones).
The original definition refers to effects at the physical/electrical level caused by data-
dependencies, rather than on gate-level effects (which are usually masked out by the
global clock signal in synchronous systems).

3.3 Circuit Timing

Keeping the above classification of jitter sources in mind, we now examine sources of data-
dependent and random jitter from a logic designer’s point of view. It is important to realize
that the main goal of our approach is to better understand the temporal characteristics of
asynchronous circuits. We want to investigate the influence of PVT variations on a specific
design, rather than build another tool for detailed timing analysis — STA and SSTA
already provide adequate techniques for this purpose. Our model is intended to operate on
a relatively high level of abstraction (i.e., LEDR-gate level): Figure 3.3 shows an example
circuit with two gates A,B, five interconnect delays ∆I1,2,3,4,z, and two gate delays ∆GA,B.
For reasons of simplicity the gates are single-rail only, but due to the modular approach
generalization to dual-rail is relatively simple. Let us further define the arrival times of
input and output transitions at the ports a, b, c, z as ta, tb, tc, tz, respectively. Likewise,
t1, t2, t3, t4 shall denote the signal arrival times at the gates’ inputs, and tA, tB represent
the points in time when a transition actually reaches a gate’s output. Under the not
necessarily valid assumption that the gates’ input-to-output delays ∆GA and ∆GB are
the same for both input ports and any combination of input values, deterministic static
timing analysis evaluates the maximum delay ∆Pmax for the given circuit as:

∆Pmax = max(∆I1 + ∆GB + ∆Iz,

∆I2 + ∆GA + ∆I4 + ∆GB + ∆Iz,

∆I3 + ∆GA + ∆I4 + ∆GB + ∆Iz) (3.5)

This equation is especially valid for the synchronous case where ports a, b, c are directly
driven by clocked registers (ta = tb = tc = 0). Otherwise, analysis must be extended to
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Figure 3.3: Timing model, example circuit.

also include concrete signal arrival times at the circuit’s input ports. In the case of STA
all necessary propagation delays are well known as soon as a concrete circuit layout has
been created for the desired technology, and the analysis returns the critical path of the
circuit. The overall delay ∆Pmax must not exceed the duration of one clock period, already
including margins for timing uncertainties and setup-/hold-times of the flip flops. The
case would be more complex for SSTA, especially if all three paths have approximately
the same delay. Statistical analysis must then be performed for all three paths instead
of only one, and the results must be evaluated against the desired timing yield. While
modern STA is far more complex compared to this basic model, this deliberately simple
view is sufficient for now in order to demonstrate some important properties that must
be considered for asynchronous circuits. Later on, we will enhance the model to account
for more complex gate implementations, random timing variations (jitter) and process
variations.

3.3.1 Data-Dependent Execution Jitter

In this section we demonstrate the sources of data-dependent execution jitter using a
simple example. We first consider the case of ordinary synchronous logic before extending
the explanation to LEDR circuits. Again consider Figure 3.3, and assume both gates
to be OR gates, all ∆I = 2 time units and all ∆G = 1. For simplicity, we denote as
∆x = tz− tx for x ∈ {a, b, c} the propagation delays from the input ports to the output z,
which results in delays of 5, 8, 8 time units for ∆a,∆b,∆c in this special case, respectively.
Having all inputs set to 0 and simultaneously changing a, b to 1 results in z = 1 after a
delay of ∆a = 5 time units. Gate B being an OR gate makes ∆a the dominating path as
the gate does not need to wait for the second input. On the other hand, if after some time
both a and b are (simultaneously) reset to zero, the output transition at node z is now
delayed by ∆b = 8 time units. A similar situation can be observed if only c changes to
1 in the initial state, which results in a positive output transition after time ∆c = 8. So
even for this extremely simple case with just two gates and matching delay values we can
observe significantly different delays. One can imagine more complex circuits with even
more complex timing assumptions to have a quite pronounced distribution of possible
propagation delays. In synchronous circuits all those variations are masked by the global
clock, and the only delay of interest is that of the critical path. Although it is also evident
from the presented example, it is important to notice that the observed variations solely
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depend on the circuit structure, the associated logic function and the current state of the
system (i.e., the actual data values) — hence the name data-dependent execution jitter.
Based on these facts, a transition from some specific state S1 → S2 always leads to the
same propagation delays. Out of this analysis it is easy to see that DDEJ is systematic,
although difficult to predict for complex paths, especially under the presence of significant
process variations.

Since we are operating at gate-level (with relatively large delays), transistor-level ef-
fects such as the Charlie- or Drafting-effects [96], as well as SSN (Simultaneous Switching
Noise [11]) can be neglected. The latter is covered indirectly by DDEJ anyway. However,
there is a comparable behavior for the Charlie-effect at gate-level as well (which directly
follows from the delay assumptions we made): We need to look at the relative arrival
times of input transitions at gates. Assume in Figure 3.3 that the falling edges of inputs
a, b arrive simultaneously, which results in the output changing to zero after ∆b = 8 time
units. However, if input b arrives 3 time units before a (i.e., ta = 0, tb = −3), we evaluate
t1 = 2 and t4 = 2. Consequently, output z already changes after 5 time units after the
arrival of the last input signal. To put it in other words, a larger separation between
different input events might lead to a bounded decrease in total propagation time. This
behavior is especially true for asynchronous logic, as signals feeding combinational logic
are relatively loosely coupled rather than changing simultaneously.

Extending the model to LEDR circuits seems quite straightforward because it can be
applied hierarchically by simply replacing the 2-input gates with more complex (dual-
rail) LEDR gates. Although this is basically true, the problem with LEDR circuits is
their property to be strongly indicating [81]. This means that the realized logic functions
always exhibit worst case performance, because each LEDR gate needs to wait until all
of its input are present in the same phase before actually changing the output. For the
example from above this means that even if t1 < t4, B holds its current output until the
second input arrives at time t4 and only then changes the output accordingly (resulting
in a worst case delay of max(∆a,∆b,∆c)). However, also LEDR gates show considerable
data-dependent jitter because their internals are based on ordinary single-rail components
(and consequently the very same effects as described above can be observed). Making the
delay assumptions of a single gate more complex allows us to model the actual behavior
of LEDR gates more accurately — thereby maintaining the high level of abstraction and
allowing to better understand the temporal characteristics of LEDR circuits on LEDR-
gate level. Most importantly we need to deal with dual-rail inputs (and outputs), delay
dependencies with respect to the current execution phase, varying delays due to different
arrival times of inputs, and many more.

3.3.2 Timing Variations

According to Figure 3.3 we just distinguish two kinds of delays: Interconnect and gate
delays. Both types are subject to process, voltage, temperature (PVT) variations and
can therefore not be considered constant. Adequate modeling of these dependencies is
necessary to gain further insight to the temporal behavior of asynchronous circuits. As
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we operate on FPGA devices for our experiments, it is worth noticing that interconnect
delays also include the delays introduced by FPGAs’ interconnect switches — we do not
model them separately. The resulting model is in turn used as basis to perform Monte
Carlo simulations (recall Section 3.1.2). Given a LEDR circuit, we define interconnect
and gate delay parameters for all LEDR gates and assign static and random delays to
the single components. After performing a reasonable number of simulation runs the
results reflect the expected circuit behavior under the given probabilistic conditions. The
main advantage compared to traditional deterministic timing analysis and simulation is
that we operate on a relatively high level of abstraction (LEDR-gates). This allows us to
include jitter, voltage and temperature effects in the simulations while still keeping the
simulation time low. For post layout simulations of FPGA devices it is — depending on
the tools — not always possible to include indeterministic timing effects in the simulations
on a low level (e.g., on signal level), because neither the timing files nor the simulation
tools support it. However, the listed advantages come at the cost of reduced accuracy
as all LEDR gates are modeled in the same way, while timing variations due to different
placement and routing parameters are not considered.

3.3.2.1 Interconnect Delay

We first consider interconnect delays which are labeled ∆I in Figure 3.3. Basically, the
resulting delay can be written as

∆Ix = i(p(∆x, Px), V, T, Jx) (3.6)

where ∆Ix denotes the interconnect delay of a specific segment x, i() is a function returning
the actual delay depending on the specified parameters. ∆x defines the static delay, and
Px, V, T, Jx the process variation, voltage, temperature, and random jitter component
for interconnect instance x, respectively. For simplicity we assume both voltage V and
temperature T to be the same for all instances over the entire chip (thus omitting the
subscript). The static delay ∆x is the nominal delay according to the length, width,
thickness, and spacing of the wire segment. It is subject to process variations Px, which
leads to an overall static delay given by function p(∆x, Px). Neglecting aging effects this
latter term is considered constant for each segment over a chip’s lifetime. The random
jitter component is modeled as normally distributed probability function Jx = N(0, σ)
with µ = 0 and a standard deviation σ ∝ p(∆x, Px) being proportional to the static
delay of segment x. On the other hand, process variations are modeled to be uniformly
distributed. Function p randomly varies the nominal ∆x with a factor of interval [1 −
Px, 1 + Px], 0 ≤ Px < 1.

Given the fact that p(∆x, Px) is only evaluated once per segment and then kept con-
stant, only V, T, Jx remain as variable sources for delay. Further assuming V, T to be
constant for an entire simulation run, Jx is the only source for timing uncertainties and
will consequently always lead to a Gaussian distribution. If necessary, the model can
further be extended to include thermal and power supply noise as well. In that case,
V and T must not be considered constant for all instances, but need to be defined as
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random variables themselves (e.g., V = N(Vnom, σV ), T = N(Tnom, σT )). One is not re-
stricted to Normal distributions for noise effects, any reasonable probability function can
be used accordingly. While the random jitter component Jx is considered independent
(and to follow a Gaussian distribution) for all instances by definition, V and T can also
be used to model correlations among adjacent segments. Due to their physical proximity,
adjacent segments tend to have correlated temperature and/or supply voltage. Sharing
the same random variables for V, T among several instances covers this correlation to a
certain extent (the same is true for process variations). However, this requires placement
information, which is usually not available at early design stages.

The physical parameters affecting delay of an interconnect segment are resistance R
and capacitance C. Besides the exact geometry, these parameters depend on wire length,
thickness, width, and material [69]. However, capacitance is independent of temperature,
while the resistance changes significantly with temperature. This relationship is also
shown in Equation 3.7, where kT is the material and temperature dependent scaling
factor [69].

∆I ∝ R(T ) C = kT R C (3.7)

3.3.2.2 Gate Delays

From the theoretical point of view, gate delay modeling is quite similar to the already
presented interconnect delays. One main difference is the introduction of data-dependent
delays. As already mentioned, not only the logic function itself, but also the relative
arrival times of inputs have a significant effect on the gates’ overall propagation delays.
All other characteristics are basically the same as above, with the difference that some of
them have another impact on gates than on interconnect wires.

∆Gy = g(p(∆y, Py), V, T, Jy, dy) (3.8)

In this equation, function g() maps the specified parameters to the respective gate delay
of gate instance y. As one can see, the parameters are basically the same as in the
previous section. There is just one new argument dy, which defines the actual data values
of a gate’s inputs. This parameter is of crucial importance to model the data dependent
effects mentioned in Section 3.3.1, and holds all important information of a gate’s inputs:
The old and new data values of each signal, the corresponding phase, and the actual
arrival times at the gates’ ports. Out of this information, the resulting delay ∆Gy is
computed. Notice that this scheme only works for strongly indicating circuits, because
calling function g() implies that the arrival times of all input signals are already known —
early propagation of signals cannot be modeled directly. However, LEDR circuits preserve
their output until all inputs have performed a change of phase, thus calling g() not before
all inputs are updated is legitimate (the early input will not be propagated anyway).

Another significant difference compared to interconnects is related to the impact of
voltage and temperature on a gate’s performance. The delay τ of a given gate depends
on the transistor’s resistance R and the respective load capacitance CL [69,70], as shown
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in Equation 3.9. The resistance R can be substituted by its respective voltage-to-current
ratio, whereby Vdd is the transistor’s supply voltage and Id is a complex combination
of technology dependent constants α and β, the supply voltage Vdd and the threshold
voltage Vth (see Equations 3.10 and 3.11). Without going into much detail, the velocity
saturation index α is determined empirically. The capacitance per unit area of gate oxide
is described by parameter Cox, the carrier mobility by symbol µ, and the gate’s width and
length by W and L, respectively [69]. Combining Equations 3.9 to 3.11 and substituting
all constants with symbol K finally leads to the expression for gate delay [70] shown in
Equation 3.12.

τ = CL R = CL
Vdd
Id

(3.9)

Id = β (Vdd − Vth)α (3.10)

β = µ Cox
W

L
(3.11)

τ = K
Vdd

(Vdd − Vth)α
µ−1 (3.12)

Equation 3.12 is of central importance as it illustrates the relationship between gate
delay τ , supply voltage Vdd, threshold voltage Vth, and carrier mobility µ. However,
neither carrier mobility nor threshold voltage are constant, but depend on the operating
temperature T :

µ(T ) = µ(Tr)(
T

Tr
)−kµ (3.13)

Vth(T ) = Vth(Tr)− kvt(T − Tr) (3.14)

In these equations, Tr defines the reference temperature, and kµ and kvt are empirical
constants usually in the range of (1.2, 2.0) and (0.5, 3.0)mV/K, respectively [69]. Carrier
mobility decreases with higher temperature and thus leads to increasing gate delay τ .
On the other hand, the threshold voltage gets smaller and therefore slightly compensates
temperature degradation. To summarize, one can find the following relationship between
gate delay τ , voltage Vdd and temperature T :

τ(V, T ) = K
V

(V − Vth(T ))α
µ(T )−1 (3.15)

3.4 Case Studies

We now present a couple of elementary circuits and study their characteristics according
to the properties elaborated in the previous section. All designs consist of a free-running,
closed-loop LEDR circuit with two registers (one of which being a shadow register with a
phase inverter, recall Section 1.3.3 stating that direct feedback is not possible). The first
two examples are a 4-bit and a 16-bit counter, respectively. Both counters are realized as
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CNT 4bit CNT 16-bit CNT 16-bit opt. CNT 64bit
LEDR-Gates (+inv.) 5 + 1 29 + 13 109 + 47 125 + 61

LEDR-Registers 2 ∗ 4 2 ∗ 16 2 ∗ 16 2 ∗ 64
Logic Depth 3 15 7 63
Avg. Speed 16ns 25ns 16ns 94ns

Avg. Speed, sim. 22ns 36ns 22ns 134ns
Counting Period 262ns 1.66ms 1.02ms n/a
Execution Jitter 1.19ns 400ps 800ps 3.08ns
Counting Jitter 1.13ns 46ns 31ns n/a

Table 3.1: Characteristic figures of example circuits.

ripple-carry adders, thus the logic depth increases linearly with the widths of the counting
registers. The third design again is a 16-bit counter, but this time with optimizations
turned on. While this significantly decreases logic depth, it at the same time increases
the necessary number of LEDR gates and produces a relatively balanced circuit. The
final example (for the measurements in Section 3.4.2) use a 64-bit counter.

The characteristic figures of each design are summarized in Table 3.1. Row “LEDR-
Gates” and “LEDR-Registers” specify how many dedicated combinational LEDR-gates
and registers are used, respectively. Notice that all registers are duplicated (shadow
registers), which is indicated by the multiplication factor of 2. “Logic Depth” defines the
maximum number of LEDR-gates connected in series (excluding registers), and “Avg.
Speed” and “Avg. Speed, sim.” give the average delay of asynchronous execution steps
for actual hardware and ordinary post-layout simulation, respectively. “Counter Period”
gives the time it takes the circuit for an entire counting cycle (i.e., 2n cycles for the
counters). Finally, “Execution Jitter” and “Counting Jitter” show the standard deviation
of jitter of single execution steps and entire counting cycles (measured on the device),
respectively.

3.4.1 Measurement Setup

The experiments conducted in this section are threefold: First of all, post-layout simu-
lation is performed on all evaluated circuits. Static timing analysis is used as reference
to compare the real-world measurements and the enhanced simulations according to our
model against. For static timing simulation, the timing outputs obtained by the EDA
tools are used without modifications. As these tools do not include signal jitter or any
other indeterministic effects, the results are strictly discrete. In a second simulation run
we simulate the circuits according to the model we presented earlier in this chapter. This
is done my means of Monte Carlo simulations over the specified process space, so that
well-established and powerful EDA tools can be used. Certainly, we are also interested
in the real-world behavior of the investigated circuits, thus we also download them to an
FPGA board and measure their execution speed and jitter characteristics.

66



CHAPTER 3. TEMPORAL CHARACTERISTICS

As a target platform we use Altera Cyclone II EP2C35F484C6 devices (90nm technol-
ogy, approx. 35k logic elements) mounted on an Hpe mini evaluation board. We monitor
the LEDR circuit’s acknowledge signal cDone as it is a direct measure of the design’s
execution speed (it toggles for each execution cycle of the asynchronous system). We also
monitor the counter values in order to find correlations between the current state and
the respective execution speed. All real-world measurements are performed on the same
board with the same power-supply at room temperature. Neither temperature nor supply
voltage are subject to (deliberate) changes. The designs have been implemented according
to the design-flow described in Section 1.4, and are synthesized with Altera Quartus II
(V 10.1) software toolkit. As simulation tool we use Mentor Graphics Modelsim (V 6.5) in
combination with the timing output files produced by Quartus.

3.4.2 Voltage-Temperature Characteristics

For a more detailed characterization of the relationship between voltage, temperature and
delay, a parameter sweep for both voltage and temperature has been performed on one
of the available Hpe mini evaluation boards. As design under test an asynchronous 64-
bit counter has been synthesized and its respective execution speed has been monitored
continuously. The evaluation board has been modified such that the core supply voltage
could be controlled by an external laboratory power supply, and the entire system was put
into a laboratory oven in order to regulate the environmental temperature accordingly.
The measurements cover a temperature range starting at 30◦C up to 80◦C, in steps
of 5◦C. For each temperature step, the system was given sufficient time to acquire the
environmental temperature. Afterwards, the core supply voltage was modified from 0.75V
to 1.6V in steps of 50mV , while the ambient temperature was kept at a constant level.

Figure 3.4(a) illustrates the measurement results in a 3D colormap diagram. The well-
known dependence of circuit delay on supply voltage is clearly visible in the figure: Core
supply voltages considerably lower than the nominal voltage (1.2V ) lead to severe perfor-
mance penalties due to this relationship. On the other hand, increasing the voltage results
in performance gain, but this benefit is much less pronounced due to the decreasing slope
of the curve. This relationship also is in accordance with Equation 3.15. However, the
temperature dependent behavior does not meet the expectations over the entire observed
range. While for voltages around 1.1V or higher the circuit indeed looses performance
with rising temperature (due to the high dynamic range of the 3D diagram this is hardly
visible in the figure), the effect decreases with falling supply voltage until it almost dimin-
ishes at 1.1V and even reverses for lower voltages. This means that at low supply voltages
the asynchronous counter runs even faster if the temperature is high. Figure 3.4(b) shows
how the temperature’s influence on the speed changes with voltage: We define parameter
Γ(V ) = ∆P (30◦C, V )/∆P (80◦C, V ) to be the voltage dependent temperature coefficient
by dividing the circuit delay ∆P at lowest temperature by the delay at highest temper-
ature (for a given supply voltage). One can clearly see the non-linear relationship, and
the fact that for low supply voltages, high operating temperatures considerably speed up
circuit execution.
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Figure 3.4: Voltage, temperature, delay relationship for Cyclone II FPGA (a) and voltage
dependent temperature coefficient Γ (b).

A possible explanation for the unexpected temperature-delay relationship can be found
by looking at Equation 3.15: While the operating temperature increases, carrier mobility
and threshold voltage Vth decrease. For low VDD, lowering Vth might indeed result in a
significant performance gain, because VDD − Vth is relatively small and electrical signals
approach VDD asymptotically — when the signal’s slope is approaching 0, even a small
change of Vth can lead to a major decrease in delay. On the other hand, for high VDD
even a major change of Vth does not notably change the overall timing of a transistor
because Vth is then in the region where the signal’s slope is steepest. It is important to
notice that considering just the characteristics of a single transistor might not be sufficient
to fully explain the observed effects. After all, the measurements are performed on an
evaluation board with plenty of external components. Furthermore, FPGAs themselves
are extremely complex devices, thus reducing the findings to a single transistor certainly
is inadequate.

3.4.3 Data-Dependent Execution Jitter

3.4.3.1 4-bit Counter

The 4-bit asynchronous counter shall be considered in this section. This circuit has a total
of 16 different states (one for each counter value), and the relationship between value and
associated LEDR phase is always the same for each value (i.e., all even numbers are
always associated with ϕ0, and all odd numbers with ϕ1, respectively). If we had an
odd number of counting states, the association would alternate for any two consecutive
counting periods — the number of states to consider would then consequently be twice the
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Figure 3.5: Post-layout simulation (left), FPGA measurements and Monte Carlo simu-
lation (middle), and cycle-to-cycle jitter (right) of a 4-bit asynchronous counter’s cDone

signal.

number of counting states. For illustration purposes the original design7 has been altered
by manually distributing the LEDR gates all over the entire available chip area. This way,
the interconnects between the gates become considerably larger and the resulting jitter
histogram becomes more widespread and shows several distinct peaks instead of just one
accumulated hump.

The jitter histogram of signal cDone for an ordinary post-layout simulation is shown in
Figure 3.5(left). Notice that the simulation results are of course discrete (the red vertical
bars), but we added some random jitter by means of convolution in order to get the easier-
to-compare dark blue graph8. The figure clearly reveals two facts: (i) Each state has a
deterministic and discrete execution duration (for some states, this duration is almost the
same, thus leading to higher bars in the jitter histogram). (ii) There is a clear separation
of the execution speeds of different phases: Odd values (i.e., odd execution phases) are
significantly faster compared to even values (i.e., even execution phases).

Measurements on the actual FPGA device have been taken and the results are sum-
marized in Figure 3.5 (middle) in the non-shaded blue graph. Like in the post-layout
simulation, there is a significant separation between different execution phases, and there
are several distinct peaks caused by the different states of the counter (data-dependent
execution jitter). In contrast to before, however, the peaks now have a real jitter com-
ponent: Instead of being completely discrete, the peaks now naturally “spread” because
of accumulated random jitter. Another interesting observation can be made: The results
obtained by post-layout simulation are about 30% slower compared to the circuit running
on actual hardware, which obviously demonstrates the huge safety margins included in the

7“Original” means that placement and routing is not altered manually but remains as chosen by the
fitting application.

8This jitter composition has nothing to do with real jitter, it is just used to obtain a more demonstrative
looking shape for the simulation results
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timing specification of FPGA devices9. Figure 3.5 (middle) also shows the jitter histogram
obtained by performing Monte Carlo simulations based upon the model of Section 3.3 in
the red-shaded graph. Again, a distinct separation between alternating execution phases
is evident. It can be observed that the manually increased interconnect delays between
LEDR gates also result in several distinct peaks instead of one accumulated hump in the
jitter histogram (compared to measurements performed on the original circuit). Follow-
ing the model presented earlier this is no surprise: It can be expected that each counting
state has an associated characteristic propagation delay. With only 16 states and rela-
tively large interconnects, these delays become even more separated from each other. On
the other hand, as we will see for the 16-bit counter, having much more different states
results in a superposition of a huge number of almost similar “characteristic” peaks in the
jitter histogram.

Finally, Figure 3.5(right) illustrates the cycle-to-cycle (C2C) jitter for the real-world
measurements of the middle figure. One can see the usefulness of cycle-to-cycle jitter for
asynchronous systems (especially for a simple design like the current one): C2C jitter
histograms clearly highlight the significantly different execution durations of adjacent
stages. Furthermore, the random component can directly be determined by the width
of the single peaks (still, some peaks are superpositions). With the constant component
eliminated, the graph provides an appropriate illustration of data-dependent as well as
random jitter.

The discrepancies between the shapes of the simulated (shaded) and measured his-
tograms in Figures 3.5 (middle) have several fundamental reasons:

• Some of the empirical data needed for our model are directly extracted from the
post-layout timing files. We have already seen that these files contain worst-case
information rather that realistic values.

• Our model makes some significant simplifications compared to a fully placed and
routed netlist simulation. We model all LEDR gates the same way, thus neglecting
timing variations due to different routing and placement. The same is true for
interconnect delays, thus routing information does not directly reflect the specific
layout of the netlist.

• As we will see in more detail in Section 4.4.5, fabrication variations significantly
influence the resulting characteristics of jitter histograms. Even if the Monte Carlo
simulation was tweaked to produce outputs similar to the blue graph in Figure 3.5
(middle), the results would not be valid any more if another FPGA device was used.

Besides the obvious differences, there are some important similarities as well. First of all
(and most importantly), the jitter characteristics of our model closely match the measured
ones. Not only are the standard deviations of cDone almost the same (1.18ns vs. 1.21ns
for measurement and Monte Carlo simulation, respectively), also the jitter components

9This is not only true for the simple 4-bit counter, but for all designs we investigated throughout this
work.
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Figure 3.6: Measurement vs. Monte Carlo simulations for non-optimized (a) and optimized
(b) 16-bit counter.

of single peaks (associated with a specific counter value) are closely related. Taking into
consideration that back annotated timing information from the place and route tool is
not available at the considered level of abstraction, the Monte Carlo simulation results are
quite useful indeed for estimating jitter effects and data-dependent timing characteristics
of a given circuit.

3.4.4 16-bit Counter

In this section a slightly more complex circuit is considered. An asynchronous 16-bit
counter is synthesized in two different ways: (i) as unoptimized ripple-carry adder, and
(ii) with optimizations turned on. While optimizing the circuit reduces the logic depth
(cf. Table 3.1) it at the same time introduces a considerable increase of the LEDR gate
count. When comparing the speed of the 4-bit counter to the 16-bit counters, one must
take into consideration that the 4-bit counter has been altered manually is thus slower
than one would expect due to lower logic depth. Without any modifications the 4-bit
counter achieves an execution period of approximately 9ns, and produces a significantly
narrower jitter histogram.

Figures 3.6(a) and 3.6(b) show a comparison of the measured jitter histograms (blue
graphs) versus the simulated ones (red-shaded graphs) for both the non-optimized and
the optimized circuits, respectively. In contrast to the previous section the circuit now has
216 different states, thus identifying separate peaks for each distinct state is not possible
any more. In the non-optimized case all the states superimpose each other and result in
only one remaining hump. On the other hand, due to the reduced logic depth and a more
balanced logical structure, the histogram in Figure 3.6(b) clearly shows two peaks — one
for each associated execution phase ϕ0,1.
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3.5 Chapter Notes

In this chapter a detailed discussion on asynchronous execution speed and jitter charac-
teristics have been given. After providing an overview to existing jitter definitions and
sources, adequate redefinitions and extensions have been introduced to fit the proper-
ties of asynchronous circuits. Not only the deterministic and systematic data-dependent
execution jitter (DDEJ) plays an important role when characterizing a given circuit’s tem-
poral behavior, but also random execution jitter (REJ) considerably influences a signal’s
timing.

The main focus in this chapter has been to provide an adequate model for describing
LEDR circuits in the temporal domain. Starting with a simple hierarchical model based
on two gates, major properties of interconnect and gate delays have been identified. Most
importantly, it has been shown that even though LEDR designs are strongly indicating,
they exhibit considerable data-dependent variations of their propagation delay. In order
to obtain a suitable model, supply voltage V , operating temperature T , process variations
P , and random jitter J are considered in the presented calculations. Furthermore, exper-
imental results showed that especially gate delays also depend on the actual data value
and the implemented logic function (amongst other things because of DDEJ). The com-
bined model is applied to example circuits using Monte Carlo simulations, which has the
main advantage of being extremely flexible (with respect to the complexity of modeling),
and is based on well-established and well-supported deterministic static timing analysis
(thus there is no need for separate tools). All in all our model is able to consider PVT
variations and jitter at a relatively high level of abstraction (at LEDR gate level), without
the need for back-annotated placement and routing information. It has also been demon-
strated (and we will again discuss this topic in Section 4.4.5) that “ordinary” post-layout
simulations are only of limited use for asynchronous circuits.

Recalling Section 3.4.2 an interesting finding was made: While digital circuits are
usually expected to slow down with increasing temperature, this seems only to be true for
high supply voltages. As the core voltage decreases significantly below the nominal value,
the impact of temperature on reducing the threshold voltage Vth seems to be dominating
and in turn lower the observed execution delays. However, for voltages around and above
the nominal voltage, temperature indeed decreases performance as expected.

The last part of this chapter presented some simple case studies in order to check the
predictability and usefulness of the proposed model. While our model does not include
placement and routing information, obtaining the same results as on a real device is
hardly possible. Furthermore, as we will see in the next chapter, jitter characteristics
are strongly influenced by process variations — the same design may produce completely
different jitter histograms on different devices (of the same type).
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Asynchronous Reference Time

How do we know the age of a fossil? How do
we know the age of the Earth? How, for that
matter, do we know the age of the universe?
We need clocks, and clocks are the subject of
the next chapter.

Richard Dawkins

We have already mentioned in the introduction the main problem of project ARTS
being the fact of a missing time reference. While in synchronous systems a crystal os-
cillator usually provides a feasible notion of time, asynchronous circuits do not have any
sufficiently accurate reference. The inherent handshaking protocols between asynchronous
modules result in considerably varying signal delays: According to the previous chapter,
gate and wire delays are not only a function of the (fixed) technology parameters, but also
of the actual operating temperature, the circuit’s supply voltage, and (submicron) inter-
as well as intra-die parameter variations. We have also seen that static timing analysis
is only of very limited interest for asynchronous circuits, as it does not comprehend all
these uncertainties and variations. Consequently, we need to find another way for estab-
lishing absolute time within an asynchronous node, which shall be the central topic of
this chapter.

Before we start with actual implementation strategies, a short review on existing
clocking techniques for logic circuits is provided (especially focused on self-timed ring
oscillators and distributed clocks), followed by an introduction to Allan Variance, which is
often used to classify the frequency stability of a given clock. After a detailed discussion of
possible circuit implementations, a series of experiments is conducted to test the precision
and suitability of the proposed designs under the aspect of changing operating conditions
(temperature, supply voltage and fabrication variations) [27, 28, 31, 32]. In Chapter 5
the most promising implementation of all proposed designs is finally integrated into the
TTP controller itself, and further adapted to meet the stringent requirements of the time-
triggered architecture.
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4.1 Related Work

4.1.1 Design Options

As already mentioned, the focus of this chapter will be on how to attain a stable time
reference in the context of self-timed logic. From an abstract point of view this problem
results from our attempt to insert an asynchronous TTP node into an ensemble of other-
wise fully synchronous nodes. Let us first review the most common options for building
time references in synchronous systems:

1. Crystal Oscillators: This approach exploits mechanical vibrations paired with the
piezo-electric effect, which attains highest precision at high frequencies. One of the
severe drawbacks of crystal oscillators is their incompatibility with standard process
technology. They need to be attached externally, which is area consuming, costly,
and unreliable (as soldering contacts may break in harsh environments). Another
drawback is the relatively long startup time of crystal oscillators (in the range of one
to ten milliseconds). Furthermore, susceptibility to mechanical vibrations, humidity
and shock are considerably higher compared to alternative solutions.

2. RC Oscillators [5]: Here the time constant associated with charging a capacitance
over a resistor is used to define the time reference. While resistors and capacitors
are very cheap components and can be integrated on silicon, they suffer from high
fabrication variations as well as relatively large temperature and supply voltage de-
pendencies. RC oscillators provide a good alternative to external crystal resonators,
as long as high frequency and high precision are not major concerns.

3. Integrated Silicon (Ring-)Oscillators: In this approach the oscillations produced by
a negative digital feedback loop, usually a ring spanning an odd number of invert-
ers, are exploited [93]. The implementation is fully compatible with the CMOS
fabrication process, but the produced frequency is determined by the delay path
through the closed loop and hence heavily dependent on fabrication variations, sup-
ply voltage, and temperature. Different circuit structures are conceivable, from a
simple chain of inverters to more complex solutions, as for example a free running
self-timed circuit based on micropipelines [23], which we will discuss later.

4. Distributed Clock Generation [33]: For the use in embedded systems, distributed al-
gorithms can be implemented to generate clock signals in a fault-tolerant distributed
way. Each node can have its own clock source (i.e., an instance of the distributed
algorithm) that remains in synchrony with the others within some known precision
bounds. This approach can be viewed as a complex distributed silicon ring oscil-
lator, inheriting the properties of the method above, but being more complex and
robust due to the desired fault tolerance.

From the list above, items (3) and (4) have interesting properties with respect to
asynchronous circuits: They have in common with asynchronous logic that their timing is
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solely determined by their propagation delays rather than a (probably external) reference
clock. In addition, these solutions can fully be realized in the digital domain, no external
or analog modules are necessary. Consequently, it seems adequate to further look into
these techniques in the following sections.

4.1.1.1 Distributed Clocks

In contrast to the strictly synchronous design paradigm, which has been presented in
Chapter 1.2.1 and has mainly dealt with phase synchronization, there are also high-level
solutions to the clock synchronization problem. Notice, however, that these methodologies
do not solve the on-chip clock distribution problems: The goal is rather to ensure that two
distributed clocks do not drift apart indefinitely, but stay within a predefined maximum
precision. In this context, a hardware clock (e.g., an oscillator) in combination with a
counter register is used to establish a local concept of time. Each positive transition of
the clock signal increments the counter by one. Consequently, the counter value can be
interpreted as the node’s local time (this is called a logical clock). Clock synchronization
now means that, at any time, the difference of the counter values of two synchronized
nodes is not greater than a predefined precision π [48]. Usually, not the clock-cycles
themselves are synchronized, but the logical clocks are adapted by means of rate or state
correction to guarantee synchrony of time. Basically, it is not possible to achieve clock
synchronization by means of high precision oscillators only. After a sufficient amount of
time, even small differences in their frequencies would lead to unacceptable variations
in the corresponding counter values. As a consequence, correctable clocks such as, e.g.,
VCXOs (Voltage Controlled Crystal Oscillators) are usually needed to implement proper
clock calibration.

There are three major clock synchronization principles, each of which assuming that
every node has a separate clock generator which increments a local counter. Furthermore,
every node executes the same algorithm and is able to send messages to all other nodes.
A very good overview to (fault-tolerant) clock synchronization techniques in distributed
systems is provided in [72]:

• Convergence-based [72] methods send one message containing the local counter value
to all other nodes in each round of synchronization. After receiving enough mes-
sages, the convergence algorithm (e.g., averaging) calculates the new time value and
changes the local counter accordingly. The algorithm assumes that all local clocks
are synchronized at start-up, that each message can uniquely be assigned to its
sender and that the message delay is bounded. The upper bound of the message
delay has central influence on the algorithm’s precision. This technique is used in
TTP to establish a global notion of time among all non-faulty, distributed nodes.

• The consistency-based [72] principle works similar to the one above. All nodes
broadcast a message, but this time each processor additionally forwards the re-
ceived counter values (which increases network traffic). Consequently, all non-faulty
processors have a consistent snapshot of the system. The new time is calculated

75



4.1. RELATED WORK

using the median of the received messages. Again, the algorithm assumes that the
message delay is bounded and that messages can be associated with their senders.

• In general, probabilistic [4, 72] algorithms receive and store the data of other nodes
and as soon as enough data is collected, statistical analysis is performed to derive a
new time. It is not necessary to uniquely identify a message’s origin. The drawbacks
of this principle are that collecting data can take very long, synchronization is only
reached with a probability of less than 1 and hardware implementations are —
because of the statistical tests — infeasible.

A different approach is to actually generate a distributed clock signal, rather than to
synchronize independent hardware clocks to each other. The authors in [36] present a
simple fault-tolerant tick generation algorithm (based on Srikanth and Toueg’s consistent
broadcast primitive), prove its correctness, and also propose an appropriate asynchronous
VLSI implementation. Rather than performing state or rate correction on logical clocks
locally at each node, the algorithm directly generates distributed ticks which are guaran-
teed to be synchronous within some precision π. The main disadvantage of this solution
is the fact that a fully-connected 1-bit network is required for the algorithm to work.

4.1.1.2 Self-Timed Oscillator Rings

While TTP uses a convergence-average-based algorithm for global time synchronization on
a high level, distributed clock synchronization algorithms (on a hardware level) seem to be
overly complex for our purposes. Moreover, distributed solutions have the disadvantage
that we would also need to modify the synchronous reference nodes to participate in
the synchronization procedure – this clearly contradicts the goal to integrate a single
asynchronous node in an otherwise untouched synchronous TTP cluster.

We therefore want to take a closer look at self-timed oscillator rings in this section, as
they seem to offer very promising solutions to our problems and form an important alter-
native for generating precise time references. Compared to simple inverter rings, which
consist of a chain of cascaded inverters only, self-timed rings are based on Sutherland’s
micropipelines [82]. A lot of research has been conducted on self-timed oscillator rings.
For example, [24] proposes a methodology for using self-timed circuitry for global clocking.
The same authors also use basic asynchronous FIFO stages to generate multiple phase-
shifted clock signals for high precision timing in [23]. Furthermore, it has been found that
event spacing in self-timed oscillator rings can be controlled [93, 96]. The Charlie- and
the drafting-effects have thereby been identified as major forces controlling event spacing
in self-timed rings [21,23]:

• Given a two-input gate (with inputs a, b and output z, and respective transition
times ta, tb and tz), such as an ordinary AND gate or a more complex Muller-
C Element, the Charlie Effect describes the gate’s delay from the average input
arrival time m = (ta + tb)/2 to the output transition tz = m + Charlie(s) + c as a
function of the input separation time s = (ta − tb)/2 and some constant gate delay
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Figure 4.1: Charlie Diagram (Source: [93]) (a) and Drafting Effect (Source: [85]) (b).

c. As it turns out, the delay through a gate increases when the input transitions are
close to each other. Explanations can be obtained by looking at the gate’s respective
transistor level circuit: For largely separated inputs, the respective transistors are
already saturated when the other transition occurs. Consequently, the output is
reached quicker. In contrast, for (almost) simultaneous transitions, transistors in
series need to switch at the same time, thereby increasing the overall delay. A
typical Charlie Diagram [93] is shown in Figure 4.1(a): We can see that around
s = 0 the overall delay is greater than just the gate’s static delay. For large s, on
the other hand, the delay approaches the asymptotes (tz ≈ m+ c).

• The Drafting Effect, on the other hand, targets the separation of output events. Load
capacitances force electrical signals to approach their Vdd or GND asymptotically
rather than instantaneously. Considering Figure 4.1(b), in the case of fast output
transitions the final voltage level has not been reached completely, allowing the
next transition to cross the threshold Vth earlier (tquick). On the other hand, for the
dashed red signal tslow > tquick because the lower transition frequency allows the
signal to almost reach Vdd — the subsequent falling transition consequently needs
more time to cross Vth again. Notice that this is one of the reasons for data dependent
jitter as introduced in Section 3.1.1.

Self-timed rings have the very same structure as shown in Figure 1.9(a), however,
the first and last micropipeline stages are connected to each other in order to obtain
a self-oscillating closed loop. Fairbanks and Moore even proposed a special C-element
consisting of six inverters only for the use in these ring structures [23]. Depending on the
concrete initialization of a micropipeline ring, one can adjust the number of “tokens” and
“bubbles” actively shifting through the ring, thereby regulating the resulting oscillation
frequency. Using the outputs of different pipeline stages provides several clock signals, all
of which have the same frequency and a fixed phase-relationship to each other.

Although we are not using self-timed oscillator rings directly as described above in our
implementation, it is worth noticing that both the NCL as well as the LEDR design style
are based (when seen from an abstract point of view) on the very same control structures
— as long as the system is free running, with no blocking inputs from the environment.
To summarize, self-timed oscillator rings have the advantage of being fully compatible
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with the digital domain, are almost directly applicable to the LEDR asynchronous design
style, and are — just as LEDR circuits themselves — subject to timing deviations caused
by PVT variations. Especially the latter is of major importance, because the investigation
of timing variations due to PVT fluctuations is the central topic of this work.

4.1.2 Allan Variance

So far in this chapter we investigated various methodologies to generate clock signals.
Now the immediate question arises, how to quantify the accuracy and stability of these
time references. One can expect that self-timed rings or distributed synchronization
algorithms do not achieve the same precision and frequency stability compared to ordinary
crystal oscillators. A well established statistical technique for characterizing the frequency
stability of clocks (crystal oscillators or atomic clocks, e.g.) is called Allan variance or
two-sample variance [1, 2, 44].

Due to the fact that the observed random noise of clock signals consists not only
of white amplitude noise, but also of white frequency noise as well as flicker frequency
noise [2], traditional statistical measures such as the standard deviation do not converge
and are thus only of limited use for the examination of frequency stability (it turns out
that for special types of noise they become a function of data length rather than converging
to a specific value [1]). The Allan variance, named after David Allan, overcomes these
issues. It is the special case of the M -sample variance with M = 2 and defined as follows:

σ2
y(τ) =

1

2
〈(∆y)2〉 (4.1)

=
1

2
〈(yn+1 − yn)2〉 (4.2)

In Equation 4.2, the angle brackets indicate the statistical expectation value over the entire
observation window n. Furthermore, τ is the duration of the observation window (also
called averaging window), and yn describes the normalized frequency-deviation, which can
also be written in two alternative forms:

yn = 〈δf
f
〉 =

1

τ
(xn+1 − xn) (4.3)

xn = x0 + τ
n−1∑
i=0

yi (4.4)

In Equation 4.3, δf is the frequency deviation and f the nominal frequency, again averaged
over an entire averaging window of duration τ . An alternative way of defining yn is to
use time deviation xn instead of frequency deviation, which is shown in Equation 4.4.
The time deviation xn of period n is simply the sum of all preceding frequency deviations
yi, 0 ≤ i < n. This last expression is especially useful for our purposes as oscilloscopes (or
logic analyzers) usually return period- instead of frequency-measurements (even though
the transformation would be trivial). Alternatively, we can now write the Allan variance
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depending on the time deviations xn rather than frequency deviations yn, as shown in
Equation 4.5:

σ2
y(τ) =

1

2τ 2
〈(xn+2 − 2xn+1 + xn)2〉 (4.5)

In addition to the already mentioned benefits, Allan variance also offers another impor-
tant feature. Instead of a single number, Allan deviation is usually displayed as (log-log)
graph for gradually increasing durations τ of the averaging window. It therefore com-
bines measures for both short (e.g., execution steps) and long (e.g., generated ticks for
bit-timing) term stability in a single plot. Later in this chapter we will see some Allan
variance plots and discuss them in detail.

4.1.3 PVT Variations

To start with, a very comprehensive overview to the topic of PVT variations in general
and process variations in particular is presented in [88] and [9]. The former presents a
classification of parameter variations (process related or environmental), and then further
details sources and possible compensation techniques for process, voltage and temper-
ature variations. More formal approaches to model PVT variations are presented, e.g,
in [10] and [73]. The latter paper proposes an intuitive model for process variations and
timing errors caused by parameter variations. On the other hand, the former work inves-
tigates the impact of die-to-die as well as intra-die variations on the maximum operating
frequency. In the context of statistical static-timing analysis, [7] focuses on process vari-
ations and their related physical origins. Most notably is the authors’ classification of
physical parameter variations in systematic (detailed analysis allows deterministic and
premanufacturing modeling of layout-dependent variations) and random (only statistical
parameters are known at design time, must be modeled as random variables) sources.
Especially for process variations, the following distinction can be made [7]:

• Die-to-die variations, which are sometimes also called inter-die or global variations,
affect certain parameters of a die in the same way. For example, for a specific die
all the gate widths may be slightly higher than nominal, whereas for another die all
widths are slightly lower. As source for these variations [7] states that ”die-to-die
variations are the result of shifts in the process that occur from lot to lot, wafer to
wafer, reticle to reticle, and across a reticle if the reticle contains more than one
copy of a chip layout”.

• Within-die variations are also sometimes called local or intra-die variations, and
have different influence on gates even within a single die. As a consequence, nom-
inally equal gates have slightly different actual parameters after manufacturing.
According to [7] ”within-die variations are only caused by across-reticle variations
within the confines of a single chip layout”.

In another interesting work, Krishnamurthy et al. propose a method for dynamic calibra-
tion of critical delay paths under temperature variations [50]. By reconfiguring critical
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paths as ring oscillators the maximum operating frequency can be computed (for different
temperatures). This technique is robust against process variations, and achieves precise
estimations at little design overhead. While this last approach actively adapts the speed
of operation to the current physical conditions, we try to use the opposite technique: We
just let the variations happen, which results in a different operating speed of our asyn-
chronous circuit. At a higher level of abstraction we then try to derive the magnitude of
these fluctuations and to compensate them accordingly in order to obtain a stable time
reference.

4.2 Implementation Concept

For both bit synchronization as well as for the alignment of the sending slots to the global
schedule, the resulting asynchronous controller must have a precise notion of time. As
there is no accurate reference time available in the case of asynchronous logic, we design a
circuit that uses the TTP communication stream to derive a suitable and sufficiently sta-
ble timebase. We construct an adjustable tick-generator and periodically synchronize it to
incoming message bits. In our specific configuration, the bitstream of TTP uses Manch-
ester coding [34] (thus there is at least one signal transition for each bit), which we can
potentially use for calibration. The Manchester encoding is a line code which represents
the logical values 1 and 0 as falling and rising transitions, respectively. Consequently,
each bit is transmitted using two successive symbols, and the necessary communication
bandwidth is double the actual bitrate. This encoding scheme has the advantage of be-
ing self-clocking, which means that the clock signal can be recovered directly from the
bitstream (encoding is done by XORing the data bits with the virtual Manchester-clock).
From an electrical point of view, Manchester codes provide a DC-free (direct current)
physical interface.

We define for the rest of this work that the idle state of the bus is represented by a high
voltage level. Furthermore, falling edges (at 50% of the bit time) shall represent logical
1s being transmitted, and a rising edges shall be interpreted as logical 0s, respectively.
These properties also match the settings of the used TTP cluster. The illustration in
Figure 4.2 shows an exemplary frame as it is encoded by existing TTP controllers: The
first bit (SOF) always is a logical 1, followed by a bunch of data bits (1− 0− 0− 1 in this
example). Each frame ends with a special sequence of three 0 half-bits followed by three
1 half-bits (EOF or postamble in TTP notation). Notice that this is specific to TTP and
has nothing to do with Manchester coding. We will learn about the exact fields of TTP
messages in the next chapter, for now the semantics of single bits are not important.

Before we start to compile the requirements of the time reference generation circuit
there is one important issue to discuss. As mentioned before, the circuit will be im-
plemented using the (asynchronous) LEDR design style. LEDR is, however, considered
delay-insensitive, which clearly contradicts the goal of designing a circuit which produces
a stable reference time. In the context of delay-insensitivity it is always possible that a
signal is delayed arbitrarily, consequently rendering any measures of (worst-case) propa-
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Figure 4.2: TTP-specific Manchester encoding of frames.

gation delay useless. For the course of the project it is therefore necessary to apply the
bounded delay (or self-timed) timing model rather than strict delay-insensitivity. From
a practical point of view this model is more realistic anyway, because real hardware has
(assuming constant operating conditions) upper and lower bounds for the respective prop-
agation delays. From a theoretical point of view, any delay-insensitive circuit also works
under the bounded delay assumption by definition.

4.2.1 Requirements

In order to get a profound understanding of the requirements for the time reference gener-
ation circuit let us first consider the red part at the top of Figure 4.3(a), where a sequence
of three Manchester coded bits is shown. As already mentioned, Manchester coding uses
two symbols to transmit a single bit, thus the “feature-size” τref of the communication
stream is half the actual bit-time τbit. In order to correctly receive messages, the sampling
points need to be located at 25% and 75% of τbit, respectively. We intend to achieve this
quarter-bit-alignment by doubling the generated tick-frequency (τgen =

τref
2

). Although
there are alternative ways to accomplish this, we could not identify significant advantages
of other solutions over the chosen one. The intended reference time signal ref-time is
marked in blue color at the bottom of Figure 4.3(a). Obviously, each rising edge of signal
ref-time defines an optimal sampling point. As our circuit is implemented asynchronously,
the generated reference signal can be expected to jitter considerably. Furthermore, tem-
perature and voltage fluctuations will also change the reference’s signal period τgen. It is
therefore necessary to make the circuit self-adaptive to changing operating conditions.

The basic idea for the envisioned time reference generation circuit is to use a free
running, asynchronous counter and “measure” the duration τref in terms of the attained
counter value cntref . We can then approximate the original duration τref by continuously
counting to the reference value cntref . We will discuss advantages, disadvantages as well
as fallacies and pitfalls in detail in this chapter. Let us now review the list of basic
requirements that a potential solution must fulfill:
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1. As each logical bit on the bus is represented by either a falling or a rising edge at
50% of the bit time, it is necessary to sample (at least) twice per τbit, ideally at 25%
and 75% of the bit time.

2. While the nominal bit length at a specific transmission rate is τbit, the Manchester
coding exhibits a “feature size” of only 0.5τbit (see Figure 4.3(a)). The quarter-
bit-alignment necessary for the optimum sampling points might further half the
resulting period τgen. For high bit-rates it is therefore important that the underlying
reference circuitry is fast enough in order to achieve an acceptable precision.

3. The time reference needs to remain synchronized with the other local references
in the system. Recall that this requires periodic re-synchronization even in the
synchronous case. It is therefore mandatory to have a reference whose timing can
precisely be adjusted.

4. In the synchronous case the resolution of the adjustment is determined by the local
clock generator. With a typical clock frequency of 40MHz we have a resolution R
of some 25ns. It seems reasonable to strive for a similar resolution in our case.

5. Re-synchronization in TTP is usually performed once every TDMA round in the
synchronous case. As we expect the asynchronous reference to be considerably less
stable than a crystal clock, we have to perform re-synchronization more often (e.g.,
for each message or even each bit).

6. For the purpose of our study we want to consider all provisions to compensate for the
non-ideal behavior of our reference. Among these are the elimination of long-term
effects by virtue of periodic re-calibration, masking of random effects by means of
averaging, and avoidance of systematic effects by means of design measures. These
points are discussed in more detail in Section 4.2.2.

Requirements (2), (3) and (4) spoil our hope to use the operation cycles of the asyn-
chronous controller as a time reference – due to the complexity, these will neither be fast
enough nor adjustable. Therefore, we decided to use a separate, small circuit as a time
reference generator that is not dependent on the remaining controller’s control flow. A
counter suggests itself here to count up to a threshold cntref , whose adjustment already
implements the rate correction desired in (5). The price for this decoupling is the need for
an explicit synchronization of the operation cycles of the remaining controller logic to this
reference, which can be achieved by one of the methods already presented in Chapter 2.

We will exploit the deterministic nature of TTP and use features of known length in
the periodic data stream provided by the other (synchronous) communication participants
as a reference to periodically adjust our local timing1. According to (3) we have to adjust
the reference as often as possible. We can take advantage of the start of frame (SOF)
sequence (HI followed by LO with a length of 0.5τbit each) for our measurement. More

1We are well aware that this may become a circular argument in case of all nodes in the system being
implemented asynchronously. This is, however, not our intention in this work.
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Figure 4.3: Manchester code with sampling points (a), TTP-slots, resynchronization (b).

specifically we use the first LO as our “reference half-bit” (see Figure 4.3(b)). Measuring
just a half-bit cell instead of a much longer interval clearly increases the quantization error.
However, longer intervals tend to become dependent on the system configuration (number
of involved nodes, configured message length, etc.), thereby considerably complicating the
measurement circuitry because more control logic is necessary. This increased complexity
not only downgrades performance (which in turn increases the quantization error), but
also introduces more jitter and makes timing analysis/predictions substantially harder.

To summarize shortly, the proposed procedure comprises two phases: (i) A measure-
ment phase m during which the reference counter’s threshold cntref is determined by
starting at 0 at the beginning of the reference half-bit and simply stopping the counter at
the observed half-bit’s end. (ii) A reproduction phase r during which the observed half-bit
length is periodically reproduced by having the counter wrap around to 0 as soon as it
reaches the threshold determined above (with a proper initial alignment of 0.25τbit accord-
ing to (1)). Implementation details, especially design alternatives and optimizations, will
be discussed in Section 4.3. For now, however, we restrict ourselves to the basic concept
and analyze it in more detail.

4.2.2 Temporal Properties

The above procedure implies absolute rate correction of the local time, as the internal
time is corrected upon completion of the start of frame field. In addition, continuous
rate correction can be achieved by adjusting the threshold value cntref for every bit. The
latter allows for a very tight matching between the current sender’s actual bit length and
the period of our reference counter (which is subject to variations caused by changing
operating conditions). True random jitter effects are automatically averaged by counting
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to the (same) measured threshold value over and over again. The temporal proximity of
measurement and associated reproduction phases is beneficial, as it facilitates an effective
compensation of long term variations (long with respect to the frame length). In other
words, the disturbing impact of environmental fluctuations is automatically compensated
over time, because the periodic re-synchronization events will lead to different cntref
values depending on the actual speed of the free running asynchronous counter circuit.

The obvious questions that arise are, which properties does our solution have with
respect to frequency stability, and how can changing environmental conditions be dealt
with. The following list summarizes all effects that need to be taken into account and
discusses their impact on our design. To this end, we need to define some parameters for a
simple quantification. τbit has already been introduced as the duration of one Manchester
coded bit on the bus. We further define τstep,m and τstep,r to be the average durations of
single execution cycles in measurement phase and reproduction phase, respectively. τstep
is used if the difference between these two phases is not important. Finally, τref denotes
the duration of the reference signal to be measured. Consequently, cntref = b τref

τstep,m
c is

the average number of execution steps (i.e., the counter threshold) for the measured pulse
of length τref .

1. The quantization error clearly depends on the type of synchronizer used. For in-
stance, the version presented in Section 2.3.1 provides new data in phase 1 only,
resulting in |errquant| ≤ 2τstep,m. On the other hand, the more generic synchronizer
of Section 2.3 (which we actually use) is able to sample data with each change of
phase, thereby halving |errquant| ≤ τstep,m compared to before. For the measured
counter value this means cntref = cntopt± 1, with cntopt being the optimal or nomi-
nal counter value for the current execution speed τstep,m. By keeping τstep,m as low as
possible, errquant can be improved accordingly. In addition, with increasing cntref ,
the relative error introduced by a single tick decreases.

2. As a direct consequence from the timing model presented in Chapter 3 we identify
systematic errors to be introduced by data dependent jitter. Two major cases need
to be distinguished for our design:

(a) The single execution steps while counting up to the measured threshold value
show considerable DDJ with respect to each other. A detailed discussion of
this effect has already been presented earlier (recall the case study with a 4-bit
counter of Section 3.4.3.1, e.g.). Considering entire counting cycles, however,
the timing variations are exactly the same for each run (assuming matching
cntref ), thus the “error” is compensated automatically.

(b) As measurement and reproduction phase are different states with slightly dif-
ferent register/input values, their average execution speeds typically do not
match exactly, i.e., τstep,m 6= τstep,r (because different signal paths are enabled,
recall the previous chapter). The relative deviation of the generated time ref-
erence from its measured value can be expressed as factor fdev = τstep,r

τstep,m
and

should optimally be fdev = 1 (which in practice, it is not). These timing errors
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can at least partially be compensated by clever circuit design and complex
correction measures at logic level. In contrast to above, the absolute error in
case of f 6= 1 can be kept low only by keeping cntref low.

3. Systematic long term effects are mainly caused by slow changes in temperature
or supply voltage. Given these fluctuations are slow enough (compared to one
TDMA slot), they are compensated automatically at each resynchronization point
(cf. Figure 4.3(b)), because depending on the current speed of the counter circuit
there will be a different reference value cntref . Systematic in this case means “non-
random”, e.g., when the circuit is heating up after startup.

4. Random effects cannot be compensated at all. However, when averaging over long
periods, statistical outliers become less important and frequency stability improves
(this is also evident in the Allan plots from the experiments in Section 4.4). For our
design, averaging occurs automatically due to the periodic counting-cycles. Notice
that not only the number of counting cycles is important, but also the associated
circuit state for each cycle — otherwise, DDEJ is not compensated adequately.
Consequently, as for quantization errors, large values of cntref are desirable (in
contrast to systematic errors, where lower threshold values are preferable in case
fdev 6= 1 in order to keep the absolute error low).

5. Short term effects (either random or systematic) that occur faster than a TDMA slot
can only be compensated on the bit-transmission level while actually receiving mes-
sages. This is, however, insufficient for active message transmission, because TTP
requires frames to hit a very narrow action window, which can only be calculated
and adjusted once for every receiving TDMA slot.

It is important to realize the severity of the systematic error fdev with respect to the achiev-
able accuracy. During the measurement phase, we obtain a suitable reference counter
value cntref by resolving the following expression (neglecting random jitter):

cntref∑
i=1

τstep,m(i) = τref − errquant (4.6)

Following the theoretical model of the previous section, τstep,m(i) is not constant but
depends on the current state, in this case the current counter value i. However, we have
already seen that this state-dependency is always the same for matching i, thus we can
replace τstep,m(i) with the average duration τstep,m of a single step. This results in the
following equation for cntref :

cntref = b τref
τstep,m

c+ [
errquant
τstep,m

] (4.7)

The reproduction phase now performs basically the same task as described by Equa-
tion 4.6, but in the opposite direction. The goal is to achieve a reproduced period τrep
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Figure 4.4: Illustration of all characteristic temporal system properties.

that approximates τref as good as possible2. The optimum case is indicated in Equation
4.8, and uses the original executions speed τstep,m of the measurement phase as well as
the quantization error errquant. In reality, however, the situation looks like Equation 4.9:
During reproduction, the execution speed is determined by another circuit state and must
be replaced with τstep,r. Furthermore, the quantization error is unknown by the system,
and cannot be compensated for.

τref = τrep =

cntref∑
i=1

τstep,m(i) + errquant ≈ cntrefτstep,m + errquant (4.8)

τref ≈ τrep =

cntref∑
i=1

τstep,r(i) ≈ cntrefτstep,r = cntrefτstep,mfdev (4.9)

Ignoring the quantization error (e.g., for large cntref ), consider the case where fdev = 1.01,
which means that the average execution cycle in the reproduction phase is 1% longer than
in the measurement phase. While this may seem to be acceptable at a first glance, a typical
(short) TTP message consists of approximately 200 bits. An error of 1% means that we
are off by two entire bit-times for a single frame, which is a significant deviation that
might not be tolerable.

The resulting τrep may substantially differ from the optimum τref . The overall sys-
tematic error errsys can be written as shown below. While fdev is almost constant for
a given circuit (under specific operating conditions), errquant can be different for each
measurement, thus errsys is variable as well.

errsys = errquant + (1− fdev)cntrefτstep,m = errquant + cntref (τstep,m − τstep,r) (4.10)

Finally, long term accumulated jitter (by definition indeterministic and unbounded)
causes additional inaccuracies during the reproduction phase. Assuming a normal distri-
bution for random jitter induced in every execution step, the accumulated jitter can be
approximated as jacc = N(0, σ2

acc) with σ2
acc = cntrefσ

2
step (where σ2

step is the variance of a
single execution step).

All the introduced characteristic figures are summarized in Figure 4.4. The top signal
labeled Bus represents the bus-line, where only one low-pulse with duration τref is shown.

2We actually want to achieve τgen = τref/2 by halving cntref . For now, we neglect frequency doubling
and use just with τref and τrep = 2τgen as direct result of the reproduction phase.
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On the other hand, the bottom signal with label Reference Time symbolizes the output
generated by our time reference generator during reproduction phase, also with just one
pulse shown. The red (and blue) arrows in between indicate the sampling points, which are
equivalent to the execution steps of the asynchronous circuit (we sample the bus in each
cycle). Notice the extremely high value of fdev = 0.75 which was chosen for illustration
purposes. The resulting pulse of duration τrep + jacc is, in this example, considerably
shorter than the original pulse because of the severe deviation of τstep,r and τstep,m. As
can be seen in the figure, errquant1 reduces the length of the measured pulse-width, while
errquant2 prolongs it. Therefore, errquant = errquant2 − errquant1 is (according to Equation
4.10) part of errsys. Notice that we use τrep instead of τgen in Figure 4.4. The reason is
that the period we actually want to reproduce is half that of τrep = 2τgen.

4.3 Implementation Details

According to the requirements of the previous section, we want to design a circuit which
uses the TTP-communication stream to derive a suitable, stable time-base (the known
baudrate of the communication bus is the only external “time reference” available). Our
idea is to construct an adjustable tick-generator and periodically synchronize it to incom-
ing message-bits. We will now present a feasible strategy for implementing an adaptive
time-reference generation circuit. We start with a straight-forward implementation and
will include optimizations and enhancements afterwards. This way, we are able to clas-
sify the effectiveness of the incorporated optimizations and cross-check them with the
predictions made by the corresponding theoretical models.

Let us now take a closer look at the proposed designs of the time reference generator
circuit, the basic structure of which is shown in Figure 4.5. As one can see, the interface
of the design is quite simple:

• bus-in: This signal simply is the single-bit receive-line of the TTP-bus, directly
coming from the bus transceiver.

• ref-time: This signal is the asynchronously generated time reference with known
period τrep.
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• bus-out is the “synchronized” signal bus-in. We need this signal for the higher
levels (which actually interpret the received bitstream). To avoid race conditions
between the reference time generator and the higher level, bus-out is sampled by
the low-level modules and passed on to the remaining system with a short (but
constant) delay.

The control block continuously monitors bus-in. If it detects the Start Of Frame
sequence (i.e., a falling edge on the bus after a long period of idle-time, cf. Figure 4.3(a)),
it resets the free running counter-unit to zero. This asynchronous counter periodically
increments its own value at a certain rate τstep(counter) depending on the current value
counter and is on average τstep,m or τstep,r in measurement or reproduction phase, respec-
tively. The exact value of τstep mainly depends on the circuit structure, placement and
routing, the circuit’s state, and on environmental conditions such as supply voltage and
operating temperature. After time τref , the corresponding rising edge of the SOF sequence
will eventually be detected by the control-block. As a consequence, the current counter
value is preserved in a separate register cntref and counter is restarted. The controller is
now able to reproduce the measured low-period τref by periodically counting from zero to
cntref − 1, and generating a signal transition on line ref-time on every compare match.
However, so far the generated reference signal does not provide the required 25%/75%
alignment for the optimal sampling points. In order to achieve this we double the output
frequency by simply dividing cntref by two (i.e., shifting, and possibly loosing one LSB
precision for odd cntref ).

It is obvious from this description that we have exactly one resynchronization point
for each TTP-message (the SOF sequence). Consequently, slow changes in the system’s
execution speed are automatically compensated: If, for example, increasing supply voltage
levels speed up the circuit, a higher cntref counteracts the expected increase of the output
frequency. In order to study the properties and characteristics of the structure presented
in Figure 4.5, we realize the following five implementation alternatives. We choose a
uniform width of 16 bits for the respective counter registers for all measurements.

• CntRef : Our reference implementation is a one-to-one mapping of Figure 4.5, with
all optimizations turned off. Consequently, the incrementer circuit will be synthe-
sized as simple ripple-carry adder.

• CntManual : We apply manual optimizations to reduce the propagation delay. The
most important one being that the 16-bit counter unit is replaced by four pipelined
4-bit incrementers. Also the comparator is pipelined to reduce maximum logic depth
and thus propagation delay.

• LFSRRef : This alternative is based on CntRef, the only difference being that the
counter-unit is replaced by a much simpler Linear Feedback Shift Register (LFSR).
The rationale is to positively change execution speed and area consumption, but
LFSRs have the severe drawback that halving cntref to achieve quarter-bit alignment
is not possible. Instead we integrate a second LFSR circuit, which counts at the
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Figure 4.6: LFSR counting at half speed due to shadow registers Si.

half speed of the original one. A more detailed discussion of this issue is presented
below.

• CntRate: Based on CntManual, we now also apply continuous rate correction for
each bit of a message to further increase precision. The SOF signature is again
measured absolutely, however, cntref is additionally incremented or decremented by
one for each bit, depending on whether the actual bus-transitions occur later or
earlier than expected. This issue is also discussed in more detail below.

• LFSRRate: This alternative is based on CntRate, but again with all increment and
decrement circuits replaced by simple LFSRs. As LFSR-values cannot easily be
divided by two, we now just perform bitwise rate correction, so the SOF sequence of
duration τref is not measured explicitly any more (this simplifies the control logic,
absolute rate correction is disabled). However, without an absolute measurement
of τref , it is necessary for this solution to work properly that the initial cntref
corresponds to a time period τgen ≈ τref

4
in the range of

τref
5
< τgen <

τref
3

(refer to
Equations 5.1 and 5.2 on page 117). This initial value can either be obtained by
measurement, post-layout simulation, or a rough estimation. Our synchronization
strategy allows the initial value of τgen to be off its optimum according to the above
relation. Once these limits are exceeded, the circuit will not be able to synchronize
itself correctly to the incoming bit-stream.

The above list introduced several new cases that we now discuss in more detail. The
first significant optimization we apply to the basic circuit is to use Linear Feedback Shift
Registers (LFSR) instead of full adders. LFSR do not count in a regular “ordered”
fashion, but rather generate pseudo random numbers while executing. However, the
generated sequence of numbers is deterministic. In our case we do not need a strict
ordering of the counting events, it is sufficient if the sequence of states is unique and
reproducible. There exist different implementation alternatives, but we use so called
Galois LFSRs [41] as they have a logic depth of only one gate equivalent. Using LFSRs
one can achieve maximum counting periods for almost arbitrary bit widths with just one
XNOR gate inside the shift registers (for some widths, three gates need to be deployed).
By reversing the shift direction and changing the positions of the feedback tabs, LFSRs are
also able to “count backwards”, i.e., reverse the sequence of states. Compared to ordinary
counter implementations, LFSRs are extremely efficient in terms of area consumption and
performance, at the expense of no structured ordering of states.

This latter property is a major drawback, because we need to divide the measured
counter value cntref by two, which is a simple shift operation in the case of an ordinary
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incrementer. This is not possible with LFSRs, thus we need to add a second LFSR which
changes states at exactly the half rate compared to the first one. This can be achieved
by inserting shadows registers Si after each ordinary register Ri, as shown in Figure 4.6.
Consequently, an effective change of state is only performed every second execution step.

In the above list we also introduced a new feature called continuous rate correction.
Due to the properties of Manchester coding, it is possible to slightly adjust the internal
timing for each bit by means of rate correction. The SOF sequence is again measured at
the beginning of a frame (absolute rate correction), but with each bit we further check
whether the bus-transitions occur before or after we actually expected them. As we are
assuming the incoming messages to be correct in terms of timing, “late transitions” mean
that the internal time-base is too fast (thus we increment cntref by one for compensation).
On the other hand, “early transitions” indicate that the asynchronous controller is too
slow, making a decrease of cntref necessary. The resulting block diagram is shown in
Figure 4.7, and Figure 4.8 shows an example on how continuous rate correction actually
works. Using the described technique we can increase accuracy compared to performing
the absolute measurement of τref only. Another important advantage is that we have
significantly more resynchronization points (each bit rather than each message), thus
allowing better adjustment in case of changing execution speeds.
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4.4 Experimental Results

After discussing the measurement setup and comparing the five design alternatives in the
next two sections, we will take a detailed look at measurements with different operating
temperature (Section 4.4.3), varying core power supply (Section 4.4.4), and with different
FPGA devices of the same type (Section 4.4.5).

4.4.1 Measurement Setup

Unless otherwise stated, all measurements have been taken on an Altera FPGA-Evaluation
board at room temperature 25◦C. The precise FPGA device used is an EP2C35F484C6N,
which is a Cyclone II device from Altera’s low-cost FPGA family. A laboratory power
supply is used instead of the shipped power supplies, as the latter usually have very
bad stability characteristics. Both the I/O voltage (3.3V ) as well as FPGA core supply
voltage (1.2V ) are directly connected to the lab power supply using the available test
pins. The mounted power-ICs and some related components have been removed from
the evaluation board in order to obtain a high quality power supply and remove some
potential sources of noise. It is important to notice that we used the same evaluation
board for all measurements (the only exception being Section 4.4.5). This is a necessary
prerequisite because fabrication and parameter variations (both affecting the FPGA chip
itself as well as the external electrical components) considerably change the characteristics
of various system parameters (e.g., FPGA timing, jitter, supply ripple/noise, etc.). In
order to obtain expressive measurements we only investigate one system parameter at a
time (while holding all remaining conditions as constant as possible).

As our primary concern is to gain accurate and reproducible results, we thoroughly
prepared the system setup by assuring equal conditions during all measurements. Espe-
cially for Section 4.4.5 setting up the trigger condition is crucial in order to guarantee
equal preconditions for all measurements, and also the operating temperature including
the warm-up phase shall be equal among all runs.

Besides the measurement conditions described above, we use a second FPGA board
to emulate the TTP bus. At this point we are not yet interested in global clock synchro-
nization and data exchange (or any other TTP related issues), thus a synchronous FPGA
design just periodically generates (random) TTP messages which the asynchronous cir-
cuit can use for calibration. While the proposed circuits differ in their specific internal
implementation, there are two signals which need to be monitored for all designs:

• cDone: The capture-done signal from the time reference generation unit directly
represents the low-level circuit’s execution speed. This signal toggles once for each
execution step performed by the synchronous logic (τstep).

• ref-time: This signal toggles once for each compare match of the current counter
value and the reference cntref . It is the adjusted time-base which will be used
by higher-level logic to read/write from/to the bus and perform other time-related
tasks (τrep).
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CntRef* CntRef CntManual LFSRRef CntRate LFSRRate
LEDR Gates 134+16 237+46 200+64 156+86 432+81 212+42

LEDR Registers 39 39 43 72 52 42
Logic Depth 16+1 10+0 4+2 4+3 10+1 6+0

Avg. Performance 32ns 25ns 21ns 20ns 25ns 17ns
f = τstep,r/τstep,m 0.99710 0.99650 0.99397 0.99683 1.00010 1.00029

Table 4.1: Comparison of the implementation alternatives for the time reference generator.

The measurements are executed using a 4 Gigasamples digital oscilloscope. Using
all four channels, a single shot can store four million data samples per channel with a
resolution of 500ps. Assuming cDone has an average period of 30ns (which is worst case), a
single shot can store at least ≈ 65000 signal transitions. For example, a confidence interval
of α = 1% for the mean value (assuming n = 65000) results in [x̄± t(1−α/2, n− 1) s√

n
] ≈

[x̄ ± 0.01s], with s being the sample deviation, x̄ the sample mean, and t being the
Student-t distribution. In other words, the relatively large number of samples allows us
to provide good confidence in the estimated statistical figures.

4.4.2 Comparison

Table 4.1 summarizes the most representative properties of all proposed alternatives. The
row “Avg. Performance” shows the respective mean execution speed τstep, averaged over
approximately 60000 to 115000 samples, depending on the actual speed of the circuit under
test. A second interesting property is shown in row “Logic Depth”, which displays the
number of (two-input) combinational LEDR gates in the critical path. Inverter stages are
explicitly written after the plus symbol. Even for LEDR, inverter stages are just inverters,
but they are realized as explicit components. Consequently, they introduce additional
interconnect delays. In the table we also point out parameter f (recall Section 4.2.2)
to demonstrate that there is a small yet observable difference between τstep,r and τstep,m.
Notice the additional column labeled CntRef* is the very same design as CntRef, but
with all synthesis and compile optimizations turned off. This design serves as reference
for comparisons.

It is evident from the table that parameter f usually deviates less than 1% from 1 for
the chosen implementations. Especially for the designs with continuous rate correction,
f is even closer to its optimum value, as we explicitly tried to balance measurement
and reproduction phases for these designs (the performed tasks in both states need to
be as similar as possible). Although LFSRs are efficient implementation alternatives
to ordinary counters, including a second LFSR which counts at the half rate increases
complexity (control logic) and area consumption (more registers) in the case of LFSRRef.
Consequently, we removed SOF-measurement entirely in LSFRRate, and just perform
continuous rate correction there. Comparing CntRate and LFSRRate also proves the
effectiveness of LFSRs both in terms of performance and area consumption. We can save
almost 50% of the logic gates as well as 20% of the registers and at the same time even
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Figure 4.9: Exemplary histograms (a) and cycle-to-cycle jitter (b) for signal cDone.

decrease the logic depth by four gate equivalents (40%). Even compared to LFSRRef,
LFSRRate is superior as we save 30 Registers (42%) by removing the half-speed LFSR,
and at the same time adding the continuous rate correction functionality.

Let us now take a closer look at the single execution steps of the asynchronous counter.
Figure 4.9(a) shows the histograms for designs LFSRRate and CntManual. Notice that
all other implementations show similar characteristics — of course with different scaling
on the x-axis according to the circuit’s speed, so the discussion can be generalized accord-
ingly. Similar to the experimental results of Section 3.4 we observe two distinct peaks,
which are caused by execution steps performed in alternate phases (in other words, one
peak corresponds to steps of ϕ0, the other peak to steps of ϕ1 — the separation is caused
by data-dependent execution jitter). This fact is important when it comes to the average
execution speed: The mean value of cDone for LFSRRate is approximately 17.5ns. How-
ever, the circuit only performs execution steps with a duration of approximately 16.5ns or
18.7ns, respectively. In the reproduction phase, this introduces some error depending on
whether there is an odd or even number of execution steps per period (in our model, we
only consider the average duration τstep). Random execution jitter accumulated during
signal propagation manifests itself as Gaussian-like shape of the single peaks. To bet-
ter compare jitter characteristics of different implementation alternatives with different
speeds, Figure 4.9(b) shows the cycle-to-cycle jitter (first order difference) of designs LF-
SRRate and LFSRRef. Cycle-to-cycle jitter effectively removes the constant component
and just leaves “real jitter”. The figure confirms the significant separation of execution
steps performed in different phases and the quite similar jitter characteristics of the two
designs.

In Figures 4.10(a) and 4.10(b) we show jitter histograms of the generated time reference
signal ref-time. Notice that the histograms in Figure 4.10 have been obtained during
reproduction phase only, i.e., the results shown are for fixed cntref and thus exhibit
mostly random execution jitter (in case of cntref being odd, there is some additional data
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Figure 4.10: Histograms for design without (a) and with (b) continuous rate correction
for signal ref-time.

dependent jitter because the relationship between counting states and associated phase
changes after each entire period). The figures are separated for designs with (right side)
and without (left side) continuous rate correction capability. In this setup, we choose a
low reference duration τref = 10µs to keep the relative quantization error legibly low.
We can see in the figures that the LFSR implementations have a considerably narrower
jitter histogram compared to the counter implementations, which clearly is a result of the
reduced complexity due to the replacement of the full adders with simple shift registers.
It is also evident from the figure that continuous rate correction considerably increases
accuracy: Both designs that incorporate continuous rate correction have their mean values
quite close to the optimum at 10µs. In contrast, the simple versions deviate significantly
from this optimum, which is at least partly caused by the quantization error and parameter
f being less than one. Since both LFSRRef and CntManual are very flat designs with a
logic depth of only four gate equivalents, the resulting jitter histograms of Figure 4.10(a)
are tighter than the more complex designs in Figure 4.10(b). For our needs, however, it is
more important to keep the average execution speed as constant as possible rather than
limiting signal jitter.

In order to classify the frequency stability of the different designs we use Allan Variance
(avar). These plots show the frequency stability of a given signal (y-axis) over steadily
increasing averaging windows τ (x-axis) (recall Section 4.1.2). Figure 4.11(a) shows the
Allan variance of single execution steps (cDone) for both the LFSR and the counter imple-
mentation with continuous rate correction capability. As expected, the LFSR design is one
to two orders of magnitudes better than the counter (for small τ). This can be explained
by the simple structure of LFSRs and the corresponding decreased data-dependencies.
For τ ≥ 2 ∗ 10−6s, however, both plots are approximately the same. This behavior also
satisfies the expectations as for larger τ , data-dependent execution jitter becomes less and
less significant, and random jitter dominates. According to the theoretical considerations

94



CHAPTER 4. ASYNCHRONOUS REFERENCE TIME

10
−8

10
−7

10
−6

10
−5

10
−410

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

tau [s]

A
lla

n
 V

ar
ia

n
ce

 [
H

z]

 

 

LFSR

Counter

(a)

10
−6

10
−4

10
−2

10
0

10
210

−12

10
−10

10
−8

10
−6

10
−4

tau [s]

A
lla

n
 V

ar
ia

n
ce

 [
H

z]

1kHz

100kHz

(b)

Figure 4.11: Allan Variance of signal cDone for counter and LFSR implementation with
continuous rate correction (a) and signal ref-time for two exemplary baudrates (b).

of the previous chapter, data-dependent jitter is systematic. By periodically counting
to cntref , all data-dependent jitter effects are the same for each entire counting period.
In other words, longer observation periods directly result in less DDEJ (relative to the
increasing observation period τ). On the other hand, random execution jitter accumu-
lates over time without any bounds. Increasing τ therefore also results in a considerable
increase of REJ, making it the dominating jitter component for long observation windows.

Another interesting observation can be made for small τ in this Allan plot: There are
two “branches” that converge at about 2 ∗ 10−7s and 2 ∗ 10−6s, respectively. These lines
represent the different delays for phases ϕ0 and ϕ1, because they introduce instabilities
for short observation periods. The longer the observation window gets, the less influence
these differences have on overall frequency stability.

Even more interesting is the plot shown in Figure 4.11(b). It illustrates the Allan vari-
ances for the generated time reference ref-time with a nominal bitrate τref of 100k and
1k (thus the generated signals have frequencies of about 400kHz and 4kHz, respectively).
Figure 4.11(b) is representative for both the counter and LFSR design alternatives, as our
measurements did not reveal major differences for the two implementations. Although
thorough analyzing of the data reveals that the counter design is slightly inferior to the
LFSR implementation, the deviations would not clearly be visible in the figure. This
fact is also in accordance with the already mentioned influence of DDEJ and REJ on
the frequency stability for different observation periods. For both designs, DDEJ gets
insignificant for increasing τ , while only random execution jitter remains. As the counter
implementation is more complex, more REJ accumulates over time, thus degrading fre-
quency stability.

As can be seen in Figure 4.11(b), the baudrate itself has only minor influence on
frequency stability. At low bitrates, however, an unapparent effect can be observed:
There are differences in the low- and high-widths of the generated time-signal, indicated
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Figure 4.12: Temperature vs. normalized execution speed (a) and LFSR-index cntref vs.
duration τrep of ref-time (b).

by two branches of the 1kHz Allan plot that converge at approximately τ = 2 ∗ 10−1s.
The reason for this difference can be explained as follows: If there is an odd number
of counting steps, the phase - value alignment toggles for each period (i.e., the counter
alternately restarts in phase ϕ0 and ϕ1). This causes minor changes in the respective
propagation delays which accumulate over time, hence the effect can only be observed
for low frequencies where there is more time for accumulation. It gradually disappears as
the frequencies increase. It can also be observed that the Allan variance of the generated
time-signal is up to five orders of magnitude more stable than the underlying execution
steps themselves (because the data-dependent jitter is eliminated for matching counting-
periods). Suppose we drew the Allan Variance of both cDone and ref-time in a single
plot, we could observe a smooth transition from avar(cDone) to avar(ref−time), because
the latter is directly created out of a sequence of the former — their variances are thus
strongly correlated. This is also indicated in Figure 4.11, where the right diagram basically
is a detailed view of the marked area of the left diagram (notice the scales of both axis).
Clearly, the measurements in Figure 4.11(b) have been taken with an adapted sample
period to allow for the prolonged observation duration.

4.4.3 Temperature Tests

One of the main advantages of our solution is the automatic adaption to changing operat-
ing conditions. To this end we will now exemplarily investigate the behavior of LFSRRate
under changing operating temperatures. Comparing all measured data reveals that the
results can — on a qualitative basis — also be applied to the alternative designs. In
Figure 4.12(a) we show the normalized execution speed (normalized with respect to the
“nominal” speed at room temperature) in combination with the temperature measured
on the evaluation board of design LFSRRate. We plot the normalized execution speed for
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intervals of one second. As our design is fully asynchronous, changing the operating tem-
perature directly impacts on performance (recall that τstep is, besides others, a function of
temperature). In our case the performance loss is, at peak-to-peak temperatures, about
3.5%. Considering the high temperature difference of approximately 55◦C this might not
seem to be dramatic, but it certainly is a showstopper for reliable TTP-communication.
Notice that all measurements have been taken during reproduction phase in order to
obtain more accurate results.

To demonstrate the effectiveness of the proposed solution, Figure 4.12(b) compares
the LFSR-index of the corresponding cntref to the signal period of ref-time. While
the ambient temperature increases, the LFSR-index steadily decreases because the circuit
slows down. The period of ref-time makes an approximate step of τstep (≈ 19ns in this
example, the duration of a single execution step) each time the LFSR-index changes. Dur-
ing the periods where the changes in execution speed cannot be compensated by adapting
cntref (because they are too small), ref-time slowly drifts away from the nominal value
of 5µs. Without any compensation measures the duration of ref-time would be about
5.180µs at the maximum temperature, instead of being in the range of about 5µs± 38ns
(±0.76%), no matter what temperature (±38ns equals the duration of two execution
steps). We are well aware that the presented results can only be seen as snapshot for
our specific setup and technology. Changing the execution platform will certainly change
the outcomes of our measurements, as jitter and the corresponding frequency instabilities
mainly depend on the circuit structure and the used technology. However, from a quali-
tative point of view, our results are of course valid for other platforms and technologies
as well, even if concrete measurements must be taken for a quantitative evaluation.

4.4.4 Supply Voltage Tests

Far more pronounced delay variations compared to the previous section can be obtained by
changing the core supply voltage. For the following measurements, the core supply voltage
was increased in steps of 20mV from 0.8V to 1.68V . The execution speed of the self-timed
circuit increases from about τstep ≈ 80ns per step at lowest to 15ns for the highest supply
voltage, as shown in Figure 4.13(right). This plot illustrates the durations of cDone versus
the FPGA’s core supply voltage on the x-axis. Thereby, the densities of the histogram are
coded in gray-scale (dark lines indicate dense distributions). This illustration shows other
interesting facts (magnified for better illustration in the close-up): For one, almost all
voltages have at least two separate humps in their histograms. These are caused by data-
dependencies that originate in the different phases ϕ0,1. Furthermore, for low voltages,
additional peaks appear in the histograms and the separations between the phases increase
as well. It seems as though the histograms get “streched”, which can be explained as data-
dependent effects caused by different delays through logic stages are magnified while the
circuit slows down. This characteristic is better illustrated in Figure 4.13(left), where
cycle-to-cycle execution jitter is plotted over the supply voltage. The graph appears
almost symmetrically along the x-axis, which is caused by the continuous alternation of
phases. As one can see, the gap between execution steps performed in different phases is
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Figure 4.13: Cycle-to-Cycle jitter (left) and jitter histograms of signal cDone (right) under
varying supply voltage.
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Figure 4.14: Allan Variance of ref-time under varying supply voltage.

as high as 15ns and rapidly decreases with increasing voltage. We also see that there is
an optimum voltage level for which the overall jitter is minimal. For this example it is
around 1.3V . Unfortunately, this cannot be generalized as jitter depends on the specific
circuit structure and device parameters — it has to be found for each design and device
individually, and is thus only of very limited use for optimizations.

Let us now take a look at the frequency stability of the generated time signals ref-time.
For each setting of the core supply voltage we performed a measurement of signal ref-time
(as usual in reproduction phase only to avoid resynchronization during data capturing)
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Figure 4.15: Box-and-whiskers plot of cDone signal for all 17 boards.

and plotted its respective Allan Variance in Figure 4.14. Notice that two axis are shown in
logarithmic scale to make the Allan plot more expressive. On the x-axis the figure shows
the averaging window log τ , while the vertical axis depicts log(avar(ref-time)). The
color-bar therefore represents the exponent of the actual Allan variance. The remaining
axis finally shows the corresponding supply voltage levels. As we can see in the figure,
lowering the system’s supply voltage significantly degrades the achievable accuracy (by
slightly more than two orders of magnitude from the best to worst case). Clearly this is
directly correlated to the spreading of the jitter histograms we have seen before, which
results in a more significant accumulation of jitter throughout the logic stages. How-
ever, decreasing circuit speed also negatively impacts on the achievable resolution: With
steadily falling cntref the quantization error increases and so does errsys.

We conclude that varying operating conditions not only affect the speed of asyn-
chronous circuits, but also the respective jitter characteristics. In this perspective, slower
circuits tend to have higher jitter, which is further magnified by increased quantization
errors due to the low sampling rate. Depending on the specific circuit and device, it might
be possible to find an optimum operating point (with respect to jitter) by adjusting the
core supply voltage accordingly.

4.4.5 Fabrication Variations

In this section, we want to investigate how process variations affect the execution speed
of asynchronous circuits. To this end we synthesize LFSRRate for an Altera Cyclone IV
(EP4CE115F29C7) device and download this one programming file to 17 identical FPGA
development boards3. For each board, we perform a series of measurements to determine

3Unfortunately we do not have as many Cyclone II board, thus we needed to change the device family
to Cyclone IV. Furthermore, it was not possible to control the core supply voltage without applying risky
modifications on the development boards, so we need to address this issue separately.
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Figure 4.16: Voltage-speed relationship (a) with detailed measurements around 1.2V (b).

the specific speed of the time reference generation circuit. An investigation of achievable
execution speeds and jitter characteristics among several “identical” devices will certainly
reveal interesting insights about process variations. The properties we investigate are
the execution speeds and jitter characteristics of the low-level reference time generator.
Figure 4.15 summarizes the results taken for signal cDone as box-and-whisker diagram.
These diagrams represent statistical data in a very concise form and are thus well suited
to visually compare different data sets to each other: The solid box in the middle marks
the upper and lower quartiles, while the line inside this box defines the median. The
whiskers (dotted lines starting from upper and lower quartiles, respectively) indicate the
total range of data (excluding outliers — those are sometimes included as separate circles
or dots beyond the whiskers). The results in the figure have been sorted by the statistical
mean values in ascending order. The x-axis defines the FPGA board number, and the
y-axis shows the duration of execution cycles in nanoseconds. Analyzing the data reveals
that the execution cycles have an average duration varying from approximately 15.12ns
to 16.95ns. While this does not seem to be significant at a first glance, the relative change
(compared to the slowest board) is as high as 12%. Taking into consideration that the
device manufacturer already performs a rather strict pre-selection of the devices according
to their specific speed-grade, and the fact that a (random) sample of only 17 devices does
most probably not cover extreme outliers, the results are remarkable indeed.

In our setup we have taken care to establish equal and reproducible conditions. There-
fore, the variations in execution speeds shown in Figure 4.15 are mainly caused by process
and fabrication variations among the different FPGA devices. However, also the other
components on the development boards are subject to fabrication uncertainties. In other
words, the measured data does not only reflect process variations of the FPGA device, it
subsumes all variations of the entire development board (most importantly of the board’s
supply voltage, see Section 4.4.4). In practice, this is a fact that cannot be changed
anyway, because different units will always have different electrical characteristics. How-
ever, we want to take a closer look on how critical the voltage fluctuations are for our
target platform. We exemplarily performed a series of voltage measurements on one of
the boards, minimally varying the supply voltage around the nominal value of 1.2V (we
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Figure 4.17: Jitter histograms for two exemplary boards.

changed the voltage from 1.17V to 1.25V in steps of 10mV , as these are the minimum and
maximum voltages measured throughout all boards). The results of these measurements
are illustrated in Figure 4.16(b). The color-map shows the histogram of the monitored
cDone signal. Like before, dark areas indicate higher densities for the corresponding du-
rations, and there again are two separated peaks for phases ϕ0,1. The line in the center
highlights the mean values of the data series and shows only a very decent voltage depen-
dency of less than 1% for the depicted range. Consequently, it can be assumed that it does
not notably affect the delay and jitter characteristics. However, following the non-linear
trend in Figure 4.13(right) one can suspect that the speed/voltage relationship would be
considerably more pronounced for, e.g., the 1V devices of the Cyclone IV family.

Another observation can be made: When comparing the jitter histograms measured on
different boards, the specific characteristics are often completely different from each other.
Figure 4.17 shows two jitter histograms taken from different devices. While one has a gap
of almost 2ns between two separated peaks, the other one is considerably more concen-
trated around its mean value at 15.5ns. This observation can be explained by within-die
or intra-die [7, 50] process variations that do not affect the entire chip in the same way.
Adjacent islands with approximately matching properties can be identified [73], but from
a global point of view, a systematic influence is difficult to identify. In contrast, die-to-die
or inter-die variations are of a more systematic nature and apply to all timing paths in
a statistically similar way (in our case within a range of ≈ 12%). As the asynchronous
part of our design is rather complex and area-consuming, it uses a wide-spread portion of
the available die. Consequently, some parts (interconnects, combinational logic, etc.) are
faster, some other parts are slower specifically for each device. During propagation of a
signal from a location A to another location B it passes different “speed regions” on the
chip and accumulates chip-specific jitter on its way, thus resulting in completely different
jitter histograms.
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Figure 4.18: Simulation histograms for three different speed-grades

4.4.5.1 Simulation

One remaining question is whether computer simulations also show fabrication variations
in the execution speeds of asynchronous designs. We therefore synthesize our design with
Altera Quartus II and perform post layout / post fitting simulations with Modelsim VHDL
simulator (using static timing models only). The advantage compared to real-world mea-
surements is that we now do not have any temperature, voltage or process variations
that influence the results. Furthermore, signal propagation delays are deterministic, as
they are not subject to any signal jitter. Figure 4.18 shows three different simulation
histograms for the available 1.2V speed-grades C7, C8 and I74. The spikes under C8’s
graph are the original discrete simulation results (scaled vertically to improve readabil-
ity), which are difficult to read/interpret. To obtain a more illustrative curve, we apply
Gaussian jitter to the simulated values by means of convolution. It is important to notice
that this does not resemble the actual behavior of real circuits, because we apply jitter to
the final signal transitions only, rather than for each logic primitive or interconnect along
the signal’s propagation path.

We can see that also the computer simulations result in relatively wide-spread “jitter”
histograms. All delay variations have their origin in data-dependencies inside the asyn-
chronous design — different states possibly enable different signal paths, thus leading to
different propagation delays. Considering curve C7 we have a spread from ≈ 23ns to
≈ 26ns, or 12% compared to the average duration. The deviation of the simulation re-
sults is thus in the same range as the variations observed among the different development
boards, consequently both effects significantly influence the overall signal characteristics of
the asynchronous design. Also notice the discrepancies between simulated and measured
execution speeds (approx. 24ns vs. 16ns for the very same design), which allows rough
estimations on the safety margins included in static timing analysis. When comparing
the simulation results of different speed-grades to each other, we see that while C7 and

4The devices just differ in their speed grade, the design is the same for all three devices. C and I
speed-grades specify commercial and industrial devices, respectively.
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Figure 4.19: Reference time histogram (left) and Allan Variance with and without resyn-
chronization (right).

I7 operate basically at the same speed, C8 reaches only about 85% of C7’s performance.
Even for the simulations the shapes of the histograms do not match, which further proves
the critical impact of inter-chip timing variations on the overall signal characteristics.
Taking a closer look at the timing characteristics of different speed grades one notices
that not all elements of a chip are affected similarly: For example, lookup tables might
have a different relative “speedup” than memory cells, and global/local interconnection
speed most probably scales differently than that of multiplier blocks (recall inter-die vari-
ations). Consequently, switching to another speed grade does not simply “squeeze” or
“stretch” the jitter histogram, but leads to a totally new curve.

4.4.6 Frequency Stability

In this section we focus on the quality of the generated time reference, which is the central
component of our TTP controller. In Figure 4.19(left) we measure the duration of the
generated time reference while no communication is active on the bus. This is necessary
in order to prevent the module from resynchronizing itself to the bit-stream, which would
lead to considerable changes in the signal’s period and thus invalidate any investigations
on frequency stability. We can see in the graph that the signal is slightly off the opti-
mum value (which is 5µs for the given setup) having a mean value of only 4.975µs. The
Gaussian-like shape of the histogram is a result of accumulated random jitter, and has
a standard deviation of σ = 18.4ns. Interestingly, the relatively distinct shapes of jitter
histograms presented earlier (e.g., in Figure 4.17) are not observable any more — statis-
tical averaging over thousands of execution cycles (thus eliminating data-dependent jitter
effects) leaves a relatively clean Gaussian-like characteristic, which is also predicted by
the model in Chapter 3. We further want to consider Figure 4.19(right) which shows two
Allan Variance plots of the same time reference signal (both measured on the same board).
However, one time bus communication was active (the red one at the top, measurement
phases occur periodically), while for the other graph no communication was allowed (the
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bottom blue one, reproduction phase only). Not surprisingly, resynchronization nega-
tively impacts frequency stability because the reference counter-values are continuously
updated. For our application, however, it is important that the frequency of the reference
signal stays constant if no communication is active, because in that case the previous
measurements are the only information available to keep the internal time accurate. The
bottom blue graph represents this latter case and clearly shows that frequency stability
is one to two orders of magnitudes better compared to the other case. This behavior also
reflects our expectations.

4.5 Chapter Notes

In this chapter we proposed a method to generate a time-reference for our envisioned
asynchronous controller out of the bit-stream provided by TTP. We presented five con-
crete implementations with different levels of optimizations, and compared them to each
other with respect to performance, frequency stability, and other important properties.
Although there are no significant differences in frequency stability, the designs with con-
tinuous rate correction are more accurate as they better compensate quantization errors
and systematic delay-variations. We also used these designs under changing operating
conditions and performed systematic measurements:

• The temperature tests show that when heating up the system from about 25◦C to
85◦C a performance loss of approximately 3.5% can be observed. However, the
proposed circuits are capable of adapting themselves to changing operating temper-
atures while maintaining a relatively stable reference duration (with approximately
±2τstep).

• A far more pronounced impact on the execution speeds of the asynchronous designs
is observed when varying the core supply voltage. Here the execution period of the
design significantly increases from just 15ns at 1.68V to almost 80ns at 0.8V , which
is a factor of 5.3. We have also seen that the jitter histograms spread considerably
with lower supply voltage — in combination with the reduced sampling rate this
results in loss of accuracy for the generated time reference.

• Finally we have investigated the impact of fabrication variations on our design.
While we observed a difference of almost 12% regarding the execution speeds of the
asynchronous circuit, reproduction accuracy was relatively stable among all tested
boards. We further found that process variations significantly influence the jitter
and delay characteristics of signals propagating though the chip, which results in
totally different jitter histograms for the very same design running on other devices.
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Chapter 5

Asynchronous TTP Controller

There is a theory which states that if ever
anyone discovers exactly what the Universe is
for and why it is here, it will instantly
disappear and be replaced by something even
more bizarre and inexplicable. There is another
theory which states that this has already
happened.

Douglas Adams

In this chapter we finally integrate the previously presented time reference generation
unit into a fully operating TTP cluster. While we have already discussed the advantages
and disadvantages of the various implementation alternatives in Chapter 4, only the most
promising design (i.e., design LFSRRate, the LFSR implementation with continuous rate-
correction and without absolute SOF measurement) is considered. Recalling Table 4.1
of the previous chapter, LFSRRate is superior compared to the other alternatives (and
especially the counter designs):

• The gate count is relatively low as LFSR are very simple counting constructs.

• The logic depth is very low. Actually, control logic dominates the logic depth while
the counting logic itself has a depth of only one gate equivalent.

• There is no more overhead in registers as SOF measurement has been removed
(recall the LFSR counting at half speed using additional shadow registers).

• The corresponding jitter histogram is relatively narrow, especially compared to de-
sign CntRate because of the reduced complexity.

Also for measurements on physical devices, LFSRRate produces slightly better results
than any of the other designs while using less area and achieving better performance.
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Figure 5.1: Block diagram of simplified asynchronous TTP controller.

The remainder of this chapter describes in detail the implementation structure of
envisioned TTP controller, and the system architecture of the TTP cluster. As we will
also see in this chapter, it is necessary to make some modifications to the time reference
generator design in order to allow for convenient interaction with the controlling software.
Before explaining the experimental results, we also review the expected limitations of the
proposed setup. Experiments are concerned with both passive (listening mode only) and
active (sending, hitting sending slots, synchronization) TTP communication.

5.1 Implementation Details

This section describes the architecture of the asynchronous TTP controller’s hard- and
software, while the cluster configuration is finally presented in Section 5.1.3. Table 5.1
summarizes all function blocks from Figure 5.1 (see also Sections 5.1.1 for details on
hardware blocks, and 5.1.2 for information on software components) and shortly describes
their respective tasks.

5.1.1 Hardware

Figure 1.17 on page 26 illustrates the basic blocks of the existing synchronous TTP con-
troller solution. To shortly summarize, there is an external host-CPU (usually a Motorola
MPC555 microprocessor), which uses the Communication Network Interface to commu-
nicate with the TTP controller. Communication is performed in a memory mapped
manner, which means that the host just read/writes from/to specific memory addresses
inside the TTP controller via a default memory interface with data-, address-, and some
control-signals. Clearly, the block marked “ref-time” is not present for synchronous TTP
controllers, as crystal oscillators are available for generating a time reference. Inside the
TTP controller, there is a dual-ported RAM which temporally separates the CNI from the
TTP core. Following a modular concept, bus access is achieved using external physical
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Block Description

CPU Synchronous CPU core:
– Executes “TTP app” with each receive interrupt request rx-irq

ext: UART Extension module:
– Receives code for CPU via serial interface from controlling PC;

ext: UDP Extension module:
– Sends high-speed data via ethernet interface to the controlling PC;

TTP app Software that runs on CPU:
– Evaluates and interprets incoming messages
– Assembles new messages
– Calculates checksums, time correction factor, etc.

ext: TTP Extension module:
– Provides access to DP-RAM
– Provides access to ctrl, tx-irq and TTP control register

MEDL Necessary data of the TTP schedule
– Message lengths
– Slot-assignments
– Message-type, etc.

DP-RAM Dual-ported RAM:
– Temporal firewall for synchronous and asynchronous modules
– Data exchange between “ext: TTP” and “TTP core”

TTP core Managing hardware layer:
– Read and write access to DP-RAM
– Execution steps triggered by “ref-time”
– Generates TTP timestamps
– Controls sending and receiving messages

Txd Transmitter unit:
– Generates TTP specific Manchester code
– Generation of preamble and postamble
– Bit-encoding

Rxd Receiver unit:
– Decodes incoming bit-stream
– Detection of preamble and postable

ref-time Generates reference time for “TTP core”:
– Measures bit-durations, adapts cntref
– Allows manual correction of cntref with control signals ctrl

– Automatic adaption to changing operating speed
– Periodic time reference generation if bus is idle

Controlling PC Personal Computer:
– Compile and download “TTP app”
– Receive debug data via ethernet interface
– Store, evaluate and illustrate collected data

Table 5.1: Overview of the different function blocks (cf. Figure 5.1).
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layer boards for all kinds of transmission and encoding standards. From the controller’s
point of view, there is just one input signal for reading, and one output signal for writing.

Based on this structure we develope the asynchronous version of the controller. The
result is shown in Figure 5.1, and has some significant differences compared to the original
design (the implications of which are described in detail in Section 5.2). As can be seen
in the picture, a (synchronous) processor core is integrated in the otherwise asynchronous
design (the orange and yellow blocks are fully asynchronous). This core manages all
communication with the controlling development computer, i.e., application download
using the serial UART interface, and measurement/debug data transmission using UDP
packages on the ethernet interface1. It is important to notice that this processor core does
not perform any time-critical operations, nor does it use any synchronous timers. It would
in principle be possible to replace the synchronous core with an asynchronous version,
as its functionality is limited to managing/debugging tasks which are neither time- nor
performance critical. However, for reasons of simplicity, a synchronous core is used. As
indicated in the figure, the processor can be extended with memory-mapped “extension
modules”. The TTP controller itself is also integrated in the scope of such an extension
module. Data exchange between the synchronous and asynchronous parts are handled
using a dual ported RAM: The asynchronous receiver stores the raw data (in combination
with an asynchronously generated timestamp) of received messages in the DP-RAM,
and signals the processor core the arrival of new data with a dedicated interrupt signal
rx-irq. The only timing assumption made is that the processor must read these data
before the next message is received, otherwise the old data is lost (this assumption is easily
fulfilled because of the known operating and transmission speeds). Similar to receiving
messages, the transmitter (in our case the CPU) can store messages with associated
timestamps in the DP-RAM and assert the transmit-request to the “TTP-Core” unit
with another dedicated interrupt line tx-irq. As soon as the specified time is reached,
the message is transmitted automatically. Generating the reference time is completely
managed in the lower-level asynchronous block labeled “ref-time” (i.e., design variant
LFSRRate from Chapter 4). This module runs independently from the remaining designs,
continuously monitors the TTP bus, and generates the reference time signal ref-time
out of the received bit-stream. This is achieved by measuring (and in turn reproducing)
the durations of single bits with an asynchronous, free-running counter (cf. Chapter 4).
Clearly, however, due to process, voltage and temperature variations, it is necessary to
periodically adjust the measured counter value to the bitstream as changing environmental
conditions lead to variations in the operating speed. During the experiments it turned
out that additional means for controlling block “ref-time” need to be included in the
design. Consequently, four additional signals (labeled ctrl in the figure) are introduced
to perform the following actions:

1The SPEAR (Scalable Processor for Embedded Applications in Real-time environments) processor
was developed at our department, is easy to integrate into the controller design, has relatively low resource
requirements, and features a working gcc toolchain. Although the processor was developed for real-time
applications, none of the respective features are needed for the current work.
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• ref-inc: Each transition on this signal increases the current counter value cntref by
one. This way, the software can directly control the duration of the time reference
and circumvent automatic resynchronization (in combination with ref-freeze).

• ref-dec: Each transition on this signal decreases the current counter value cntref
by one. This way, the software can directly control the duration of the time reference
and circumvent automatic resynchronization (in combination with ref-freeze).

• ref-freeze: When set, the current value of cntref does not change during resyn-
chronization. This feature is useful to test the robustness of the design when resyn-
chronization is disabled. When cleared, each received bit is used to resynchronize
according to the current operating speed, thereby eventually adjusting cntref .

• mask-bus: When this signal is active, module “ref-time” is disconnected from the
TTP bus (i.e., it receives the idle state, no matter what the bus currently transmits).
This feature is useful to deliberately hide (entire or parts of) messages.

We also see in the figure that the interface to the outside world is relatively simple.
There are two extension modules for the SPEAR processor core: The UART module for
downloading new software using the serial interface, and the UDP module for transmitting
high-speed debug data from the TTP core (i.e., received messages with timestamps, data,
checksums, and other useful information needed for evaluation). Besides the physical bus
interface, which just consist of two signals for bus-read and bus-write access, there is
only one additional debug signal cDone in order to monitor the low-level asynchronous
execution speed. Most notably, there is no dedicated Communication Network Interface
for interaction with the host CPU (in contrast to Figure 1.17): In order to keep the
focus on the relevant effects, we decided to execute the simple TTP application (“TTP
app”, cf. Figure 5.2) directly within the already existing CPU core. This does not in any
way influence the functionality or change the temporal characteristics of the real-time
application.

5.1.2 Software

The main CPU, i.e., the SPEAR processor core, executes the TTP application. However,
this task is only a very small part of the software that is actually executed. Figure 5.2
shows a flow-chart of the entire software stack run by the CPU. As one can see, the host
application itself, labeled “TTP task” in the figure, is only one of many different blocks.
A detailed description of all TTP hardware configuration registers, the most important
data structures, as well as the host application are provided in Appendix A. While the
software is idle most of the time, it waits for the arrival of a receive interrupt by means of
signal rx-irq. After reading out the message from DP-RAM, checking both the C-state’s
and the message’s CRC, extracting the C-state and retrieving the data, the routine takes
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Figure 5.2: Flow chart of the main controlling application software.

two different branches depending on wether the own sending slot is active or not2. In any
case, before leaving the subroutine and waiting for another rx-irq, debug information
(i.e., message data, C-state, synchronous and asynchronous timestamps, global time, etc.)
is sent to the controlling PC via the ethernet interface.

In case the currently active TDMA slot is the node’s own slot, a couple of additional
tasks must be executed. First of all, the host application “TTP task” must run in order to
evaluate all received data messages and store the node’s own data in the respective data
structure. We will return the to host application in the next section. After assembling
the final message, calculating the corresponding C-state and determining the message’s
CRC values, the critical task of evaluating the actual sending time is performed (how
this is done is explained later in this section). Finally, the complete message including
message length and pre-determined sending time are stored in DP-RAM and the transmit
interrupt request is asserted with signal tx-irq. Only now the asynchronous controller
accesses the DP-RAM and retrieves the timestamp and message data for transmission.

Calculating the sending time is a central task performed by the software. It does of
course not use any synchronous timestamps to calculate the respective sending point. In

2The rx-irq marks the end of a specific TDMA round, which means that upon execution of the
interrupt service routine, the current slot is the one succeeding the one whose message has just been
received.
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contrast, only the timestamps generated by the asynchronous TTP core are used for evalu-
ation. As the message schedule is deterministic and all information is available at compile
time already, it is easily possible to compare the actual arrival times to the expected ones.
Due to the predefined baudrate, we know exactly how long one asynchronous execution
step is supposed to last (according to Section 4.2.2 this ideal duration was named τref ).
Let further ωi, Σnom,i, Σact,i, ti, and δi be the nominal duration, the nominal number
of asynchronous execution steps, the actual number of performed execution steps, the
asynchronous timestamp, and the difference between actual and nominal execution steps
of slot i, respectively. Obviously, Σnom,i = ωi

τref
, Σact,i = ti − ti−1, and δi = Σact,i − Σnom,i.

Generally we can expect δi 6= 0 and even |δi| > 1 because of several reasons already
mentioned in Section 4.2.2 (quantization error, τstep,m 6= τstep,r, etc.). By deriving a re-

spective correction factor fcorr =
Σact,i
Σnom,i

we can now easily evaluate the expected sending

time of our own message: ti+1 = ti + fcorr ∗Σnom,i. For the special case where all sending
slots have equal duration (which is true for our setup), i.e., Σnom,i = Σnom ∀i, this can
also be written in terms of the actually observed execution steps, thus no floating point
operations are necessary: ti+1 = ti + Σact,i.

Together with this feature, the proposed TTP controller allows for up to three levels
of resynchronization:

• Absolute rate correction: Performing an absolute measurement of the duration of
the first half-bit of each transmitted message. Recall that this feature has been
removed for the used design LFSRRate in order to improve performance and reduce
complexity. An adequate initial value must be provided by software in this case.

• Continuous rate correction: Each received bit allows to adjust the internal reference
value cntref . This is possible due to the fact that Manchester code provides at least
one transition per bit which can be used as resynchronization point.

• High Level correction: The controlling software knows about the nominal and actual
slot durations and can calculate a respective correction factor out of these numbers
and change the respective message sending time according to the current speed of
operation of the asynchronous logic.

5.1.3 TTP Cluster

Figure 5.3 presents a photograph of the TTP cluster architecture used for all experiments.
There is the actual TTP cluster (on the very left), which contains four synchronous nodes.
These nodes are labeled nodeA for the leftmost throughout nodeD for the rightmost de-
vice. Furthermore, in the middle of the figure, there is a so called Monitoring-Node,
which passively monitors TTP communication and provides all received data in combi-
nation with debug and timing information to a visual interface on the respective personal
computer or notebook using the ethernet interface. The Monitoring-Node also provides
services for application software and schedule updates. The bus itself consists of a series of
twisted-pair cables, forming a line topology where all four nodes and the Monitoring-Node
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Figure 5.3: TTP cluster architecture, symbolic photo (with the courtesy of TTTech Com-
putertechnik AG, source: http://www.tttech.com/products/ttp/).
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Figure 5.4: TTP schedule (nodes, TDMA slots, TTP-round).

are connected to. Notice that only nodeD will be replaced by an asynchronous controller
design — the other three nodes remain synchronous in any case.

The central property besides the hardware configuration for a TTP system is of course
its schedule. Figure 5.4 illustrates the schedule for the previously described cluster. For
simplicity, all nodes send the same frame types, have the same net data length, and
therefore have similar slot durations. Notice, however, that this is not a restriction of
the asynchronous node. Irregular schedules with different message types and slot lengths
are of course supported by our design. Nevertheless, using a more complex configuration
does not provide any additional insights, so we stick to the regular system configuration.
One TTP round is configured to last 3200µs, which gives each TDMA-slot a total amount
of 800µs for data transmission and is sufficiently long for the lowest valid baudrate (in-
cluding inter-frame gaps and spacings). Keeping these values constant, the actual ratio
of data transmission time to idle time obviously depends on the configured baudrate. A
higher transmission speed for the same amount of data and the same duration of the
sending slot automatically increases idle times. As shown in the figure, the four slots per
round are statically assigned to the respective nodes starting with nodeA through nodeD.
Consequently, the asynchronous nodeD always transmits last in each round.

TTP distinguishes (besides others) two basic types of frames: I-frames and X-frames.
The former only contain a 4-bit header, followed by the user-data field and a 24-bit
checksum. The C-state is not explicitly contained in I-frames, but it is included in the
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Figure 5.5: Bit-fields of X-frames for our configuration.

Name Bits Description

ID [15...12] One-hot encoded ID. Node A has 0001, node D has 1000.
Sum [11...8] Sum of Cnt fields of all other nodes.
CntD [7...4] Last received Cnt from node D (asynchronous node)
Cnt [3...0] Node-specific, independent counter. Increments once each round.

Table 5.2: Semantics of the 16-bit data field for the host application.

CRC calculation to allow the receiving nodes to find out whether their local C-state are
consistent with the remaining cluster. On the other hand, X-frames contain the C-state
explicitly, which is the reason why all nodes in our system are configured to send X-
frames only. This makes message allocation and traffic monitoring must easier, but clearly
introduces some overheads in message length. Figure 5.5 shows the single bit-fields of an
X-frame including the respective bit-width for each field. Fields shaded in light-blue are
not part of the actual message, but are added/removed by the transceiver to/from each
message automatically. These fields are pre (preamble, fixed sequence 1010), SOF (start
of frame sequence, fixed sequence 1011), and post (postamble, fixed sequence violating
Manchester encoding3). The actual message consists of a 4-bit header containing the
type of frame (i.e., I-frame or X-frame), directly followed by the 6 ∗ 16-bit wide C-state
(containing global time in macro-ticks, slot count, and the 64-bit membership vector).
Both header and C-state are validated by a 24-bit CRC. After a dummy byte the actual
data section starts. In our very simple case, this data section is only one word wide, but
TTP supports up to 127 words for the data section. Finally, the entire message (i.e., also
the header, the C-state, and the respective CRC) are secured by another checksum. To
summarize, all messages sent by any node of the described system have a fixed length of
185 bits and always send the C-state as part of the message.

Finally, Table 5.2 shows the semantics of the application specific 16-bit user data field
(also refer to A.4 for a more detailed explanation of the host application). All nodes
basically execute the same application4, thus the table is valid for all nodes. Clearly,
the node-specific counter Cnt must be substituted accordingly for each node (i.e., CntA,
CntB, etc.).

3The half-bit sequence 000111 is sent as postamble. As Manchester encoding does not allow more
than two consecutive half-bits of same polarity, this is a violation.

4Clearly, this is not necessary, but we want to keep the complexity low and maximize debug capabilities.
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5.2 Limitations and Restrictions

In this section we want to take a closer look on limitations and restrictions that are
introduced by the use of our asynchronous TTP controller. Some of the limitations are
only of minor interest for the reliable functionality of TTP, and are rather concerned with
maintainability and compatibility. However, having a totally independent asynchronous
node in the system also leads to some disadvantages concerning reliability, precision,
and fault-tolerance of the remaining system. Notice that the following list restricts itself
to limitations that directly follow from our implementation and the characteristics and
requirements of TTP. Findings during the experimental evaluation are discussed later.

• While the controller itself is fully compatible with the existing hardware platform,
the host interface (CNI, see Figure 1.17) is not implemented. Therefore, using an
external host CPU is not supported. This also implies that software (e.g., the host
application) and schedule updates cannot be performed using the well established
tools provided by TTTech. Instead, software must be downloaded manually via the
serial interface.

• The data structure of the TTP schedule is not compatible with the existing one.
Our implementation only accounts for features that are essential for our purposes.
As a consequence, changes in the schedule must be adopted manually for the asyn-
chronous node. All necessary information must be extracted manually from TT-
Tech’s tools (e.g., baudrate, slot-durations, message length, frame-type, schedule-
ID, etc.). This is also the main reason why a regular schedule is beneficial in our
case.

• Due to the fact that FPGAs are not well suited for asynchronous logic design,
performance is a limiting issue as well. The main problem is achievable resolution
and counting speed of module “ref-time”, which limits the number of counting events
(cntref ) per bit-time and therefore the maximum achievable baudrate.

• The asynchronous TTP core runs at a speed directly proportional to the baudrate.
Consequently, the achievable granularity (e.g., for macrotick generation, global time,
hitting the correct transmission window) directly depends on the baudrate. Given
the implementation from the previous chapter, the maximum achievable granularity
is 1/(2fbaud).

• The previous item is especially true for macrotick generation. It is not possible
to achieve all configurable macrotick durations as integral multiple of the above
mentioned granularity. Consequently, the macrotick must be chosen according to
the baudrate and cannot be configured freely.

• Up to now, only Manchester encoding is supported. Other techniques (such as MII)
cannot be used.
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• TTP offers a lot of features for sophisticated fault-tolerant applications. The existing
software tools allow a great variation of settings and optimizations. However, as
the goal of project ARTS is not to rebuild an already existing controller in all its
details for industrial use, these features have not been implemented. Anyway, no
additional insights regarding the use of asynchronous logic in real-time systems can
be expected.

• For the asynchronous controller to be able to integrate itself into the communication
scheme, it is important that the remaining synchronous nodes are up and running,
because it needs an already existing communication stream to adjust its internal
timing.

• As the asynchronous controller has no separate crystal oscillator but relies on the
correct timing of the remaining nodes, system properties like fault-tolerance, reliabil-
ity, and synchronization precision can be expected to significantly degrade compared
to a fully synchronous setup.

5.3 Experimental Results

In this section we experimentally evaluate some important properties of the asynchronous
TTP controller when running in an otherwise synchronous system. We distinguish the
following two cases:

• Passive Communication: The controller is not allowed to write to the bus, but only
to monitor it. While having all four synchronous nodes running, we can check how
good the asynchronous node would perform in case bus access was granted. Thus
direct comparison with the non-modified cluster is possible.

• Active Communication: In this case nodeD is replaced by the asynchronous con-
troller. During the communication slots of the remaining nodes it must be able to
correctly receive all messages, extract the data, calculate timing correction terms,
and determine the estimated transmission time of its own sending slot. During data
transmission, the bitrate must be as stable as possible to avoid receive errors at the
other nodes.

5.3.1 Passive Communication

As mentioned above, in passive communication mode the asynchronous TTP controller
only has read access to the bus. The TTP cluster consists of four synchronous TTP nodes.
The (fifth) asynchronous node is granted read access to the TTP bus, while write access is
prohibited — thus it is impossible for our controller to jeopardize TTP communication or
negatively influence global clock synchronization of the other nodes in any way. In order to
check the robustness of the asynchronous controller, the cluster is configured with various
different bitrates: Starting at the lowest possible speed (275kb/s) the bitrate is increased
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Figure 5.6: cntref values for different baudrates with upper and lower bounds for correct
message reception.

in steps of 25kb/s until 500kb/s, which seems to be the highest reasonable communication
speed given our setup and the FPGA’s performance constraints. However, for reasons of
completeness, also 1Mb/s is added to all measurements, because it is a commonly used
speed. As mentioned before, we just modify the baudrate. All other parameters (i.e., slot
duration, round duration, etc.) remain unchanged.

The first property we investigate are the measured reference values cntref for the
respective baudrates. Figure 5.6 summarizes the results, whereby the x-axis shows the
baudrate5 and the y-axis the respective reference counter values. The highest and lowest
measured values of cntref are indicated as squares and circles in the figure, respectively.
The red line in between these upper and lower resynchronization bounds indicates the
ideal value of cntref , which can usually not be reached as it is not an integral value. It
is calculated as average over all measured cntref for each baudrate. Due to sampling
and quantization errors, cntref always “jitters” for at least 1 LSB (in case supply voltage
and operating temperature are constant), sometimes even for 2 LSB — this issue is also
evident in Figure 5.7 and is further discussed below. Figure 5.6 also shows the upper and
lower bounds of cntref -values (as dotted blue lines) for which receiving messages still works
reliably (i.e., without CRC or synchronization errors). In other words, manually setting
cntref beyond these bounds will eventually lead to decoding errors of the bitstream. Not
surprisingly, these upper and lower bounds directly follow from the ideal cntref -value by
multiplication with a factor of 4/3 or 4/5, respectively, which is also in accordance with

5Notice the kump of the scale as the bitrate changes from 500kb/s to 1Mb/s.
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Figure 5.7: Relative error in percent of one bittime with 1 LSB upper/lower bounds.

the theoretical considerations made earlier (cf. Figure 4.3 on page 83): For a Manchester
code the bus signal does not change its polarity for at most one bit-time τbit, which equals
4τgen in the ideal case. After at most one bit-time, a transition is guaranteed to happen,
thus resynchronization points are separated at most by τbit. For the lower bound of τgen
it is important that no more than four transitions of ref-time occur during one τbit.
Likewise, for the upper bound there must be at least three transitions per τbit to keep
up synchrony. If these constraints are violated, the phase-relationship between sampling
signal ref-time and the actual bus-signal is lost. The following two equations summarize
this simple relationship (using the definition 4τgen,nom = τbit, and f being the unknown
factor such that (f τgen,nom) = τgen):

5 (f τgen,nom) > 4τgen,nom ⇒ 4

5
< f (5.1)

3 (f τgen,nom) < 4τgen,nom ⇒ f <
4

3
(5.2)

Another interesting aspect is presented in Figure 5.7. While the x-axis again represents
the configured bitrates, the y-axis defines the relative error of signal ref-time in percent
of one nominal bit-time. The red lines represent the relative errors of ±1 LSB: As the
counting period τstep is independent of the baudrate, the relative error introduced by
one counting step linearly increases with rising communication speed. Obviously, this is
also the case for the measured relative errors, because 1 LSB becomes more and more
significant as the ideal cntref decreases with speed. Resynchronization usually jitters for
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Figure 5.8: Exemplary jitter histogram for 275k for two cntref values.

about 1 LSB, only in less than 5% of all cases even for 2 LSBs (given that environmental
conditions are kept constant as good as possible). In the figure, the former case is indicated
by the solid blue lines, and the rare latter case by the dashed blue lines. Notice that local
voltage and temperature fluctuations inside the chip can in general not be controlled,
therefore deviations larger than 2 LSBs can be expected to be observed eventually —
this is, however, the very nature of our design and must not be considered as unintended
behavior.

Finally Figure 5.8 shows the jitter histogram of signal ref-time for 275kb/s: In
accordance to the previous figures, cntref jitters between the values 47 and 48. Analyzing
the data reveals that the optimum value is approximately 47.467, which is indicated by the
vertical red line. In the figure, the x-axis shows the period of ref-time in nanoseconds,
while the left histogram corresponds to a cntref = 47 and the right one to cntref = 48,
respectively. The widths of the histograms are caused by the random jitter components
which accumulate during repeated execution of the counting procedure. One can see that,
depending on the magnitude of the jitter, the periods of ref-time for consecutive counter
values are not necessarily clearly separated from each other (they overlap slightly in the
middle). Consequently, speaking of an ideal value of cntref has only theoretical meaning
to better understand the basic effects, but is only of limited interest for practical purposes
when jitter must also be considered.

5.3.2 Active Communication

The system setup for active communication is quite similar to above. There is again the
cluster with four synchronous nodes. In addition, however, the asynchronous controller
takes the role of nodeD. Clearly, either the synchronous or the asynchronous nodeD are
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Figure 5.9: Scope screenshot of running TTP cluster (a) and jitter of SOF transition of
synchronous and asynchronous node (b).

allowed to write to the bus, but never both of them. This setup has the advantage
the we can compare the temporal behavior of the asynchronous node to the respective
synchronous one in real-time. Which node is actually granted write access to the bus
can easily be configured by setting hardware jumpers. Let us first consider Figure 5.9(a):
The image presents a screenshot from an Agilent oscilloscope showing the actual bus line
in yellow, the message sent in slot 4 by the asynchronous controller in purple, and the
transmit-enable signal in violet. The timebase is configured at 1ms per division in order
to see two entire TTP rounds (i.e., one cluster cycle). The assignment from slot to node
is shown in the image. According to the cluster’s configuration, one slot has a duration
of 800µs. Given the bitrate6 of 273, 973 b/s and a message length of 185 bits, we evaluate
the transmission time per slot to be 675.25µs or 84.4%. Consequently, the idle time or
inter-frame gap has a duration of 124.75µs or 15.6%. The magnified area in Figure 5.9(a)
shows the start of transmission for slot 4 of nodeD : The yellow channel represents the
transitions generated by the synchronous node, which serves as a reference. The purple
channel, on the other hand, shows the bit-pattern sent by the asynchronous controller. We
can see that we hit the action window very well, as we are only approximately 500ns off the
synchronous reference transition (each message starts with three preamble sequences, the
first of which is highlighted in the figure). Notice, however, that this relationship changes
with the bitrate, the actual speed of the hardware, the message and slot length, and the
current value of cntref . In general terms, we can achieve an error which is bounded by
the following inequality, where bitsIFG defines the number of bit-times in the inter-frame
gap (which need not necessarily be an integral value):

|error| < (4 ∗ τstep,r cntref − τbit) bitsIFG = (4τgen − τbit) bitsIFG (5.3)

6The nominal bitrate is of course 275kb/s, but as the cluster operates at 40MHz this baudrate cannot
be precisely achieved. Instead of the correct prescaler of 145.4̄5, the value is ceiled to the next integer by
the provided software tools. This leads to an actual rate of 273, 973 b/s.
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Figure 5.10: Absolute error made for cntref = 47 (large slope) and cntref = 48 (low slope)
.

Notice that τgen is subject to jitter. For our given setup and hardware configuration we find
those values to be τstep,r ≈ 18.11ns, τbit = 3.65µs, bitsIFG ≈ 34.2, and cntref ∈ {47, 48}.
This leads to an error of no more than approximately 3.6µs and 1µs for the two possible
values of cntref , respectively.

Another interesting aspect is illustrated in Figure 5.9(b). The magnitude of the jitter
of the very first transition of a message is compared for the synchronous nodeD and for
the asynchronous target. In this setup, the scope is triggered at the last transition of
slot 3 by synchronous nodeC. Since the targets do not share a common oscillator, even
the synchronous devices introduce some jitter to the start of message transmission. For
reasons of comparability, the histograms in the figure are centered around zero — any
static deviation has been removed to better compare the significance of jitter. The area
shaded in dark blue jitters with a magnitude of at most ±25ns, which equals exactly ±1
clock cycles at 40MHz. In contrast, the asynchronous node produces considerably more
jitter. The maximum deviation is almost three times that of the synchronous reference.
As before, the actual width of the jitter histogram depends on many different factors, thus
the figure only represents a snapshot of the concrete setup we used for these measurements.

The central question which is still not answered is the following: Can the asynchronous
controller actively take part in TTP communication? The short answer is yes, but with
some major limitations, which leads to the long answer. It is indeed possible to replace
the synchronous nodeD with its asynchronous pendent without jeopardizing the correct
operation of the cluster. Our controller is not only able to correctly receive all messages
sent on the bus, it also is capable of calculating the correct transmission time of its
own slot (based on the asynchronous timestamps of the received messages) and actually
send its message such that the other nodes accept it without any error (i.e., correct
action window, correct C-state, correct timing, etc.). The problem is, however, that
the synchronous nodes seem to be very sensitive with respect to the actual bit-timing.
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For a given hardware operating speed (and at the baudrate of 275kb/s, which is the
lowest speed supported), there is only one value of cntref which is actually “accepted”
by the synchronous nodes for message transmission. This problem is also illustrated in
Figure 5.10: The chart shows the accumulated error made for a given cntref depending
on the bit-count (x-axis) over an entire message consisting of 185 bits. The dashed green
lines show the durations of single bit-times, while the red solid lines indicate macrotick
durations. In other words, if for example the blue graph crosses the first green line it
means that the accumulated error has reached the duration of an entire bit-time. It is
obvious from the figure that cntref = 48 performs much better than cntref = 47. While
the former accumulates an error of slightly more than one macrotick or 1.5 bit-times, the
latter is off the nominal timing by more than four macroticks or six bit-times. It is thus
no surprise that the receivers consider the latter messages as incorrect. Without having
the source code and VLSI files of the synchronous TTP nodes available, it is difficult to
say what exactly causes message transmission to fail. The following three options seem
reasonable:

1. Bittiming: It is possible that the receivers at the synchronous nodes do not toler-
ate inaccurate bit-times, even though Manchester code would allow relatively large
deviations due to the implicitly encoded clock signal.

2. Relative deviation: It is also possible that the accumulated error must stay within
certain bounds relative to the baudrate (e.g., ±1 bittime). Even if single bits are
allowed to significantly deviate from their nominal durations, the accumulated error
over an entire message must be bounded. Too large deviations result in receive
errors due to misaligned signal transitions.

3. Absolute deviation: A third possibility is that the actual time of the end of frame
is compared to the expected time. This is in some sense similar to the previous
option, as the absolute deviation of the last bit is too large to be still tolerated as
correct (e.g., ±1 macrotick). However, this option allows the message itself to be
received correctly, while the receive timestamp forces the message to be dropped as
erroneous. Furthermore, the macrotick duration does not change with the baudrate.

Clearly, TTP assumes synchronous nodes only, thus it is convenient to allow only very
tight margins. Too large deviations might indicate a broken PLL or crystal oscillator,
thus the observed behavior helps to improve error detection and fault containment, but
at the same time makes the integration of our asynchronous controller far more difficult.

5.3.3 Discussion

Regarding the software and hardware implementation of the asynchronous TTP controller,
especially considering the resynchronization techniques presented in Chapter 4, there are
some open questions to discuss.

Resynchronization. First of all, let us consider passive communication only. While
reading messages from the bus, the resynchronization circuit is enabled. Consequently,
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each incoming message (to be more precise, each bit received) allows the asynchronous
controller to readapt its internal timebase to the remaining TTP nodes. As long as it
is not transmitting for itself, the exact counter value cntref is not that important —
given of course that it stays within the relatively wide theoretical bounds presented in
Equations 5.1 and 5.2. In contrast, just before the controller’s own sending slot starts,
cntref is set to the “correct” value by software. Hereby, the term “correct” means the
reference value which leads to a timing that is accepted by the remaining nodes of the
TTP cluster. As explained in Appendix A, the software is able to deactivate automatic
resynchronization, as well as to read and write the reference counter value manually. We
have already seen that the reference counter usually only deviates for approximately ±1
LSB from its ideal value, thus software correction is mostly restricted to a correction of
just 1 LSB to allow for correct message transmission.

Correct counter value. From the previous paragraph we know that software sets
cntref to the “correct” value just before the controller’s own sending slot starts. Obvi-
ously, this value must be evaluated beforehand. To this end, the software stack evaluates
the measured cntref while receiving messages. This value is a good starting point, as the
actual value we need for sending messages is somewhere around cntref ± 1, so usually
just three adjacent reference values are potential candidates. The application then tries
to send messages with one of these values, and evaluates the membership vector received
from the other nodes during the next TDMA round. As long as the remaining commu-
nication participants do not mark the asynchronous node as “correct” in the vector, the
current reference value is regarded as incorrect, and the next one is used in the following
communication round. Once active message transmission has been established success-
fully (as indicated by the other nodes’ membership vectors), the reference value is saved
and also used in the future. While this algorithm is quite straight-forward and simple,
its obvious drawbacks are as follows: (i) First of all, finding the correct value in the first
place might take a couple of rounds. During these rounds, the transmitted messages are
considered faulty by the other nodes. Consequently, integration of the node into the TTP
communication scheme takes longer than for synchronous nodes. (ii) When the operating
conditions of the asynchronous controller change (e.g., due to increasing temperature),
the timing characteristics change and the “correct” counter value must be adapted ac-
cordingly. During this phase, however, active message transmission is likely to fail until
the new correct cntref is found.

Lower baudrate. Based on the given implementation and the used FPGA devices,
one might ask which baudrate would be suitable to allow active communication without
the need for finding a “correct” reference value by software whenever the operating condi-
tions change. In other words, how low should the baudrate be in order to use the reference
values found by the automatic resynchronization feature during message reception? One
precondition is that at least cntref ± 1 reference values (i.e., at least three counter values)
are accepted as “correct” by the system. Only this way, transmitted messages are not
considered invalid even if cntref is slightly off its “optimum”. According to the three
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options listed on page 121 as possible causes of the message acceptance problems at the
synchronous nodes, the following three cases can be distinguished:

1. Bittiming: If inaccurate bittimes are not accepted by the synchronous receivers,
lowering the baudrate might indeed improve the situation. Lower bitrates result in
higher reference counter values, which means that one LSB has less significance with
respect to the duration of one bit. Since the current configuration with 275kbit/s
allows for exactly one “correct” cntref only, a rough estimate would be to use just a
third of this baudrate, effectively tripling cntref and possibly allowing cntref ± 1 to
be acceptable values as well. A verification of this, however, is not possible, since
the synchronous TTP nodes cannot be configured for frequencies below 275kb/s.
Notice that this is an implementation-related issue, not a conceptual one.

2. Relative deviation: According to Figure 5.10 it might also be possible that the
synchronous receivers allow a deviation of the entire message length of up to two
bittimes from the nominal value. Similar to above, lower baudrates would indeed
improve message transmission capability because the error introduced by a deviation
of one LSB is always constant. Having an average counting speed of τstep = 20ns
and a message length of 185 bits, the maximum error introduced by one LSB during
an entire message is 20ns ∗ 4 ∗ 185 ≈ 15µs. Consequently, the acceptance window
for tolerating ±1 LSB would be ±1.5 ∗ 15µs = ±22.5µs. Therefore, the resulting
baudrate must fulfil the condition that two bittimes are at least 22.5µs long, which
equals approximately 88.9kbit/s. Similar to above, this is about a third of the
original baudrate.

3. Absolute deviation: If the maximum acceptable deviation is bounded by absolute
restrictions (e.g., ±1 macrotick), then lowering the baudrate has no effect at all.
The point here is, as already mentioned above, that the deviation inflicted by one
LSB is constant for a given message length. Lowering the baudrate changes the
relative error with respect to message transmission duration, but the absolute error
remains unchanged. The only ways to counteract would be to change the duration
of the macrotick or to speed up hardware in order to lower τstep. However, it is
not possible to configure macrotick durations of arbitrary lengths, and accelerating
hardware by a factor of three is not feasible as well.

Higher baudrate. In contrast to the previous paragraph, what must be done in order to
allow for higher baudrates? The answer to that is comparatively simple, as increasing the
counting speed τstep would do the trick. A higher sampling rate not only improves accu-
racy, it also reduces the quantization error and the relative error done by one LSB of the
counter. Increasing the operating speed would also solve case (3) from above, because the
accumulated absolute error inflicted by one LSB during an entire message would decrease
accordingly. For our particular case, tripling the execution speed (from 20ns to ≈ 7ns
per step) would probably be sufficient to allow stable operation even for active communi-
cation. However, neither changing the device type to a more sophisticated high-end chip,
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nor further optimizing the design will gain a factor of three in performance. Having an
ASIC implementation, on the other hand, might achieve the desired performance gain.
It might be necessary to change the design style from LEDR to NCL, as the latter is
better suited for combinatorial circuits. The respective dual-rail gates are mostly based
on Muller C-gates, for which highly optimized transistor level implementations exist7.

5.4 Chapter Notes

According Figure 5.1 on page 106 it is obvious that the different modules cannot simply
be connected together. At the respective interfaces, the interfacing and conversion circuits
from Chapter 2 are used extensively. For instance, the four control signals ctrl as well
as the two interrupt lines rx-irq and tx-irq can properly be converted to the respective
time and value domain with the “free conversion circuit” presented in Section 2.3. This
is also valid for sampling the bus-signal. While module “ref-time” always runs freely (i.e.,
only non-blocking synchronization techniques are applied), the “TTP core” itself runs in
blocking mode — after each execution step, the module waits for the next step indicated
by signal ref-time, thus necessitating configuration 4 from the list on page 43. Another
issue concerns the dual-ported RAM, which is not available as fully asynchronous RAM
in Cyclone II devices. Consequently, the respective interface on the asynchronous side
needs to accommodate for this circumstance and also provide a feasible interface (at least
for the write-enable and the memory-clock signals, while data and address can be
bundled).

The main part of this chapter focused on the integration of the asynchronous time
reference generator into the asynchronous TTP module and the combination with the
SPEAR processor core. While the actual bus communication (i.e., sending and receiving
messages, Manchester encoding, etc.) and basic TTP services (i.e., message timestamps,
etc.) are entirely realized as asynchronous hardware, some non-time-critical services (e.g.,
message assembly, CRC check, etc.) are simply realized as software stack running on an
ordinary synchronous microprocessor. Communication between the synchronous and the
asynchronous parts is implemented by means of a dual-ported RAM with two interrupt
signals (tx-irq and rx-irq) for synchronization and concurrent access avoidance. It has
further been shown that the software stack does not perform any time-critical tasks, but
is only needed for handling the TTP application, assembling and disassembling the TTP
messages, and providing debug information and monitoring data to the personal com-
puter for offline evaluation. After discussing limitations and restrictions, experimental
results with the TTP cluster revealed some interesting insights. As it turns out, passive
communication (i.e., only monitoring the bus) allows a relatively wide range of bitrates
(up to 1Mb/s) without loosing synchrony to the remaining system. On the other hand,

7We tried to implement some parts of our design using the NCL design style. While area consumption
of the FPGA device was considerably less compared to LEDR, no improvement in execution speed could
be observed. The problem is that in FPGAs, even Muller C-gates must be constructed with LUTs and
local feedbacks, which slows down circuit speed.
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actively sending messages is more critical, as the synchronous nodes seem to expect rela-
tively accurate message transmission times. Regarding these issues, several possible causes
have been discussed. For instance, an important question is whether the comparatively
high baudrate is the main cause of the observed restrictions regarding the reference value
cntref . If it were possible to lower communication speed, the relative deviation of one
LSB of cntref compared to one bit-time would be less significant. Consequently it could
be possible that the observed limitations would not be present any more for lower bau-
drates. Unfortunately, it is neither possible to further lower communication speed (not
supported by the current synchronous controllers), nor to improve hardware execution
speed by a factor of approximately three. Without further investigation it is therefore
difficult to make any definite conclusions on this topic. Nevertheless, we have shown that
TTP communication is — besides the mentioned limitations — in principle possible even
with asynchronous hardware.
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Chapter 6

Conclusion and Outlook

I don’t know why I did it, I don’t know why I
enjoyed it, and I don’t know why I will do it
again.

Matt Groening

In this work we extensively studied the temporal behavior and predictability of asyn-
chronous logic. To this end, the adaption of existing timing models towards a more
suitable model for our purposes was necessary. Based on jitter definitions for the syn-
chronous world, respective adaptions have been performed and suitable jitter character-
istics have been identified especially for asynchronous circuits. Based on ordinary static
timing analysis and more complex statistical timing analysis, a timing model has been
elaborated which accounts for the special properties of asynchronous logic: Not only are
voltage fluctuations, temperature drift, and process variations modeled accordingly, but
also random jitter is taken into account for both gate- and interconnect delays. Using
case studies with elementary circuits we have shown the practical usefulness of our model.
It has been demonstrated that — in accordance with simulations based on the theoret-
ical model — even strongly indicating circuits such as LEDR designs show a significant
amount of data-dependent jitter. In addition, the combined temperature and voltage
measurements revealed an interesting observation: As the core supply voltage decreases,
increasing temperature seems to lead to a significant speedup of a circuit’s performance.
The expected behavior (i.e., higher temperature slows down the execution speed) is only
observed around the nominal supply voltage (or for higher voltages). A possible expla-
nation was found as the increasing temperature lowers the transistors’ threshold voltages
and may consequently increase performance for low supply voltages.

On the practical side we have elaborated a way of synchronizing asynchronous logic
to some deterministic external events (in our case the predefined TTP communication
stream). The basic idea of using a free-running counter to measure the duration of an
external event has been implemented in different ways. A practical examination revealed
that linear feedback shift registers are well suited for the given task as they provide a
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deterministic order of states and have extremely low area requirements as well as good
performance. Each transition on the TTP bus is used as resynchronization point for
adapting the internal reference counter and adjust the timing accordingly. Consequently,
changing hardware execution times caused by PVT variations are compensated automati-
cally over time. This has been shown in various measurements with changing temperature,
core supply voltage, and even different devices of the same type. As main result of these
investigations one can summarize that the proposed design is capable of tolerating and
compensating all the induced variations. However, process variations tend to severely in-
fluence the actual jitter characteristics. It is therefore difficult to make any predictions on
the temporal behavior for an entire device family by just considering one “representative”
device.

Finally we have seen that both active and passive communication using our asyn-
chronous TTP controller basically work. While reading messages is relatively robust and
works reliably for a comparatively high communication speed, active communication is
more error prone due to the fact that the synchronous nodes do not tolerate too large
deviations of the nominal timing. Nevertheless, this proves that the presented compensa-
tion strategy in priciple works. Throughout this work we have shown that asynchronous
logic shows substantial variations in hardware execution time. Consequently, without any
additional measures, asynchronous circuits are basically unsuited for real-time applica-
tions. However, we have further shown that it is indeed possible to “hide” these timing
uncertainties from higher levels using the presented calibration techniques. As it turns
out, it is possible to devise appropriate and sufficiently effective countermeasures (with
respect to timing variations) on top of the known asynchronous design styles after all.

For future work, there are still some interesting open questions to answer, and some
implementation tasks yet unattended:

• Host interface: Implementing the entire host-interface (CNI) would allow to be fully
compatible with the existing hardware interfaces and software tools, thereby elimi-
nating the manual steps during cluster configuration. Downloading an application
could then also be performed using the Monitoring Node rather than the local serial
interface. Furthermore, having an external host-CPU has the advantage of offer-
ing more performance. In the current implementation, the complexity of the TTP
application is limited by the little time available besides handling the actual TTP
stack.

• Macrotick generation: A separate hardware module for generating the macrotick
would be preferable. Now, the macrotick of the TTP cluster must be configured de-
pending on the baudrate in order to allow the asynchronous node to generate it cor-
rectly. A separate module would increase flexibility and would allow the macrotick
to be freely configurable.

• Asynchronous Cluster: Investigating the behavior of a TTP cluster containing more
than just one asynchronous node might be interesting as well. Theoretically, one
synchronous node could be enough to keep the timing deviations bounded. However,
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synchronization precision and fault tolerance clearly decrease for such a configura-
tion. In case not a single synchronous node is present, timing can be expected to
drift “indefinitely”, as each node introduces a little error and no reference is present
to reset or bound that error. Furthermore, investigating algorithms to bound the
maximum deviations (e.g., using temperature and supply voltage sensors to estimate
the operating speed) would be interesting as well.

• Software execution jitter versus hardware jitter: A detailed comparison between
software and hardware execution jitter would be interesting. As the commercial
TTP controller uses a software stack for executing the TTP protocol, one can ex-
pect a substantial amount of software jitter (because different software-branches are
executed, which might have different complexity and thus need different amounts
of time to finish).

• Receive sensitivity: We have seen that the synchronous nodes are very sensible to
inaccurate timing regarding the messages sent by the asynchronous controller. It
would be of central interest to further investigate the exact reason for this behavior.
Without knowing the root cause of the problem, finding an appropriate solution is
difficult.

• Synchronization algorithm: The currently used simple synchronization algorithm for
finding the “correct” reference value to allow for active message transmission could
be improved. A continuous statistical analysis of measured reference counter values
during message reception might allow to detect immanent changes in operating
speed even before message transmission actually fails. It might be possible to enable
sending messages without interruptions by corrupt counter values.

• Synchronization accuracy and fault-tolerance: As the asynchronous controller uses
solely the messages sent by other nodes to derive its local timebase, it does not
contribute to increase clock synchronization precision. Consequently, it would be
interesting to investigate the exact impact on timing precision (as well as fault-
tolerance, which is partly correlated to a consistent and precise notion of time).
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Appendix A

Software Implementation

A.1 Register Definitions

This section provides an overview to the register definitions of the SPEAR processor’s
TTP extension module which has been developed in the course of this work (refer to
Figure 5.1 on page 106). The CPU can access all necessary control and debug features of
the asynchronous TTP controller via memory mapped register access. Table A.1 shows
an overview to all available registers. In the table, column “Flags” defines the address
offset in bytes, as well as the access rights to the respective registers: R (read only), W
(write only), and RW for both read and write access. The following subsection describe
all those registers and the respective bit-definitions of the TTP extension module.

Register Flags Description
status-reg +0 (R) SPEAR-specific status register
config-reg +2 (RW) SPEAR-specific configuration register
timer-reg +4 (R) Synchronous reference timer for debug
control-reg +8 (RW) TTP control register
lfsr-reg +12 (R) TTP LFSR value register
asyn-timer-reg +16 (R) Asynchronous TTP reference timer
timestamp-reg +20 (R) Synchronous receive timestamp reference for debug

Table A.1: Register overview for TTP extension module.

A.1.1 Status Register

The status register is combination from 8 SPEAR-specific status bits, and additional 8
module-specific status bits. This register is read-only.
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15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0
LOOR RESH RESL FSS BUSY ERR RDY INT

Table A.2: Bit-definitions of status-reg.

• INT: If 1, an interrupt request is pending. The respective IRQ line is active.

• RDY: Not used. Bit is always read as 1.

• ERR: Not used. Bit is always read as 0.

• BUSY: Not used. Bit is always read as 0.

• FSS: Not used. Bit is always read as 0.

• RESL: Not used. Bit is always read as 0.

• RESH: Not used. Bit is always read as 0.

• LOOR: Not used. Returns the value last written in config-reg.loow.

A.1.2 Configuration Register

The configuration register is combination from 8 SPEAR-specific config bits, and addi-
tional 8 module-specific config bits. This register can only be written. Reading from this
register always returns the module’s version (upper 8 bits) and the module’s ID (lower 8
bits).

15 14 13 12 11 10 9 8
- - - - - - - -

7 6 5 4 3 2 1 0
LOOW RESH RESL EFSS OUTD SRES ID INTA

Table A.3: Bit-definitions of config-reg.

• INTA: If an interrupt request is pending, and the corresponding interrupt service
routine is executed, a 1 must be written to this bit in order to reset the interrupt
request and clear the status-reg.int flag.

• ID: Not used. Write access has no effect.

• SRES: Not used. Write access has no effect.
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• OUTD: Not used. Write access has no effect.

• EFSS: Not used. Write access has no effect.

• RESL: Not used. Write access has no effect.

• RESH: Not used. Write access has no effect.

• LOOW: Not used. Sets the value in config-reg.loor accordingly.

A.1.3 Timer Register

This register is a simple 32-bit (unsigned) counter register, which is clocked by the CPU’s
main clock source (40MHz). This is an ordinary synchronous counter which can be used
for debug and comparison purposes. Notice that this timer is not used to perform any
timing critical operations, or trigger any timing critical tasks. The register is read only.

31 30 29 28 27 26 25 24
timer[31..24]

23 22 21 20 19 18 17 16
timer[23..16]

15 14 13 12 11 10 9 8
timer[15..8]

7 6 5 4 3 2 1 0
timer[7..0]

Table A.4: Bit-definitions of timer-reg.

• timer: 32-bit wide synchronous timer register for debug and reference.

A.1.4 Control Register

The TTP control register allow access to the most important features of the TTP con-
troller. Is provides means for triggering transmit interrupts and allow to read important
debug and status information. This register can be read and written.
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31 30 29 28 27 26 25 24
LED2 LED1 LED0 MASK FREEZE INC DEC -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - LFSR-init[10..7]

7 6 5 4 3 2 1 0
LFSR-init[6..0] PHASE RST

Table A.5: Bit-definitions of control-reg.

• RST: If 0, the entire asynchronous controller is in reset mode. All registers and
counters are reset, and the controller is not running. the controller must be in reset
state when fields phase and LFSR-init are accessed.

• PHASE: Defines the initial phase of the LFSR init value (see also LFSR-init. Usually,
this bit needs not to be changed and is 0, as the asynchronous hardware is in phase
0 after reset.

• LFSR-init: The initial value of the reference value cntref must be set within certain
bound (which depend on the desired baudrate). As it is inconvenient to recompile
the VLSI design every time the baudrate changes, this bitfield can be used to set the
initial value of cntref . Bit rst must be active whenever this field is accessed. Notice
that this field defines the actual LFSR value, rather than the counter-equivalent
(i.d., the index). Use function ttp getLFSR() to get the LFSR value from a given
index.

• DEC: Each transition of this bit causes the reference counter cntref to decrease by
one. No range checks are performed. Bit freeze is ignored, which means that cntref
is decremented independently from the status of freeze.

• INC: Each transition of this bit causes the reference counter cntref to increase by
one. No range checks are performed. Bit freeze is ignored, which means that cntref
is incremented independently from the status of freeze.

• FREEZE: If 1, the reference value cntref is frozen and does not change (even if bus
transitions for resynchronization are received). This is useful to avoid resynchro-
nization, but at the same time allow read-access to the bus (affects only module
“ref-time”, not the “TTP core” itself).

• MASK: If 1, the “ref-time” module is not connected to the physical bus any more. It
always receives the bus idle state. This is useful to deliberately mask out entire (or
parts of) messages and to avoid the resynchronization process.
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• LED0: If 1, switches on debug LED 0.

• LED1: If 1, switches on debug LED 1.

• LED2: If 1, switches on debug LED 2.

A.1.5 LFSR Register

This register can be used to retrieve the current value of cntref . It is important to notice
that this value is only updated when a receive interrupt rx-irq occurs. The reason is
that the asynchronous logic runs independently from the (synchronous) extension module.
After a message was received, the bus is guaranteed to be idle for some time. During this
time, however, cntref cannot change because there is no bus-activity which can be used
for resynchronization — it is thus save to update the respective register only upon a
transition of rx-irq. This register can only be read.

31 30 29 28 27 26 25 24
- - - - - - - -

23 22 21 20 19 18 17 16
- - - - - - - -

15 14 13 12 11 10 9 8
- - - - - LFSR[10..8]

7 6 5 4 3 2 1 0
LFSR[7..0]

Table A.6: Bit-definitions of lfsr-reg.

• LFSR: Returns the current 11-bit value of the LFSR reference value (cntref ). This
is the actual LFSR value rather than the corresponding counter-equivalent (LFSR
index). The PC tool provides a function to get the index for a given LFSR value.

A.1.6 Asynchronous Timer Register

This register returns the timer value generated by the asynchronous module. this timer
reflects the number of events generated by module “ref-time”, or half-bit times in other
words. As the extension module and the asynchronous logic run independently from each
other, this value is only updated at the falling edge of signal ref-time. It is guaranteed
that the asynchronous timer is stable for the entire low-period of signal ref-time, thus
it is save to update the corresponding synchronous register at this point in time. The
asynchronous timer reflects the elapsed time of the asynchronous TTP module and forms
the basis for all time-critical calculations.
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31 30 29 28 27 26 25 24
asyn-timer[31..24]

23 22 21 20 19 18 17 16
asyn-timer[23..16]

15 14 13 12 11 10 9 8
asyn-timer[15..8]

7 6 5 4 3 2 1 0
asyn-timer[7..0]

Table A.7: Bit-definitions of asyn-timer-reg.

• asyn-timer: 32-bit wide asynchronously generated timer value. It reflects the time
as seen by the asynchronous controller and forms the basis for all time critical
calculations.

A.1.7 Timestamp Register

This register represents the timestamp of the reception of the SOF field of a TTP message.
The timestamp is generated synchronously (i.e., by the extension module rather than
the asynchronous controller) and serves as references for evaluation of the accuracy of
the asynchronous design. Each message received is associated with an asynchronous
timestamp as well (cf. Section A.3. Having a synchronous reference is a simple method
for measuring the achieved accuracy.

31 30 29 28 27 26 25 24
timestamp[31..24]

23 22 21 20 19 18 17 16
timestamp[23..16]

15 14 13 12 11 10 9 8
timestamp[15..8]

7 6 5 4 3 2 1 0
timestamp[7..0]

Table A.8: Bit-definitions of timestamp-reg.

• timestamp: 32-bit wide synchronously generated timestamp of the SOF field of a
TTP message. Please refer to Chapter 5 for a detailed explanation of the SOF field.
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A.2 Message Descriptor List

As mentioned in Chapter 5, the structure of the MEDL (message descriptor list) differs
from the reference design of the synchronous nodes. For reasons of simplicity, we only
included those fields which we actually need for our purposes. The severely simplified
data structure is presented below.

1 struct s c h e d u l e t {
2 u i n t 1 6 t s l o t s ;
3 u i n t 1 6 t rounds ;
4 u i n t 3 2 t s c h e d u l e i d h i g h ;
5 u i n t 3 2 t s c h e d u l e i d l o w ;
6 u i n t 3 2 t c r c i n i t ;
7 u i n t 1 6 t s l o t t i m e s u s [SCHEDULE SLOTS ] ;
8 u i n t 1 6 t s l o t t i m e s m t [SCHEDULE SLOTS ] ;
9 u i n t 1 6 t s l o t t i m e s t i c k s [SCHEDULE SLOTS ] ;

10 u i n t 1 6 t s lot t imes mt acum [SCHEDULE SLOTS ] ;
11 u i n t 1 6 t s l o t t imes us acum [SCHEDULE SLOTS ] ;
12 u i n t 1 6 t message l engths [SCHEDULE SLOTS ] ;
13 u i n t 1 6 t message types [SCHEDULE SLOTS ] ;
14 } ;

In this listing, SCHEDULE SLOTS defines the number of TDMA slots (8 in our case). There
is a 64 bit long schedule-ID, which is uniquely generated for each specific schedule and
stored in fields schedule id high and schedule id low. Out of this ID, the initial value
for CRC calculation can be retrieved and is stored in crc init. The remaining fields
starting with prefix slot time * define the lengths of the respective slots in microseconds,
macrotick-counts, asynchronous execution ticks, accumulated macrotick-counts, and accu-
mulated microseconds, respectively. Finally, message length and message types define
the message length in bytes, and the message types (i.e., X-frame, I-frame, N-frame, etc.),
respectively. some of the fields are redundant and calculated at runtime for performance
optimization.

A.3 Message Data Structure

The data structure which represents a TTP message (whether received or to be trans-
mitted) is shown in the following code listing. It can be seen that each message has an
associated synchronous timestamp syn timestamp measured (this field is only important
for received messages), and an asynchronous timestamp timestamp. The latter defines
the point in time when either a message has been received or shall be transmitted. The
actual message is stored in fields header and data. The former can further be divided
into the single header fields.
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1 typedef struct {
2 u i n t 3 2 t syn timestamp measured ;
3 u i n t 3 2 t timestamp ;
4 union {
5 struct {
6 u i n t 3 2 t l ength : 8 ;
7 u i n t 3 2 t header : 4 ;
8 u i n t 3 2 t unused : 20 ;
9 } f i e l d s ;

10 u i n t 3 2 t a l l ;
11 } header ;
12 u i n t 8 t data [ TTP MSG SIZE ] ;
13 } t tp msg t ;

A.4 TTP Application

The next below code listing shows the source code of the very simple TTP applica-
tion we used for the experiments. Each node just transmits one 16-bit value which is
calculated as shown below. These values are named stored in ttp system.counterA

to ttp system.counterD, for nodes 0 to 3, respectively. Function ttp set LED() and
ttp clear LED() are used to turn on some debug LEDs for visual feedback. Notice that
all nodes execute a very similar application: The lowest 4 bits are a node-specific counter,
which is incremented once in each round. The second nibble is the last received value
(lowest 4 bits) of the asynchronous controller, i.e., nodeD or counterD. While the most
significant nibble holds a unique ID for each node (one-hot encoding), the third nibble
contains the sum of the other three counter values. It is therefore easily possible to iden-
tify the origin of each message (using the ID), and check whether all nodes have correctly
received the messages of all other nodes, especially the ones sent by the asynchronous
controller. The code listing below shows the application for nodeD with associated value
counterD.

1 ( t tp system . counterD & 0x0008 ) ?
2 ( ttp set LED (TTP LED2) ) : ( ttp c lear LED (TTP LED2 ) ) ;
3 o l d c n t = ttp system . counterD & 0x000F ;
4 counter = ( ( ttp system . counterD & 0x000F ) + 1) & 0x000F ;
5 counter |= 0x8000 ;
6 counter |= ( ( o l d c n t << 4) & 0x00F0 ) ;
7 t tp system . counterD = counter ;
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A.5 Index to LFSR conversion

A function referenced above is shown in the next code listing. This function takes an
LFSR index val as input and returns the corresponding LFSR value. In other words,
val defines the number of shift-and-XOR operations performed — starting from the

initial value 0 — in order to obtain the respective LFSR value. This function can easily
be modified to also perform the opposite task: Return an index for a given LFSR value.
This is, however, not shown below.

1 u i n t 1 6 t ttp getLFSR ( u i n t 1 6 t v a l ) {
2 // 11− b i t : Poly : x ˆ11 + x ˆ9 + 1
3 #d e f i n e POLY BIT0 9
4 #d e f i n e POLY BIT1 11
5 #d e f i n e POLY LEN POLY BIT1
6 #d e f i n e POLY MASK (1 << (POLY BIT0−1))
7 u i n t 1 6 t l f s r = 0 ;
8 u i n t 1 6 t xor mask , b i t ;
9 while ( ( va l−−) > 0) {

10 b i t = ( l f s r & 0x0001 ) ;
11 xor mask = ( u i n t 1 6 t )(−1 + b i t ) & POLY MASK;
12 l f s r = ( l f s r >> 1 ) ;
13 l f s r ˆ= xor mask ;
14 i f ( b i t ) {
15 l f s r |= (1 << (POLY LEN−1)) ;
16 } else {
17 l f s r &= ˜(1 << (POLY LEN−1)) ;
18 }
19 }
20 return l f s r ;
21 }
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