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Everything should be made as simple as possible – but no simpler.
Albert Einstein

Man soll die Dinge so einfach machen wie möglich – aber nicht einfacher.
Albert Einstein
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Kurzfassung

Sowohl in der Holzforschung als auch im Ingenieurholzbau ist eine korrekte mathema-
tische Beschreibung des Materials von größter Bedeutung. Im Falle von Holz ist das
schwierig, handelt es sich doch um ein Material mit ausgeprägter Orthotropie und zeit-
und feuchteabhängigem Verhalten. Einen weiteren Einfluss auf die Materialeigenschaften
haben unter anderem Holzart, Wachstumsbedingungen, Dichte sowie Temperatur. Dies
hat eine breite Streuung sämtlicher Materialeigenschaften zur Folge, sogar innerhalb
ein und desselben Baumes. Aufgrund dieser Tatsachen scheint die Formulierung eines
universell anwendbaren Materialmodells beinahe unmöglich.

Das Ziel der vorliegenden Arbeit ist es, die dem beobachteten (makroskopischen) Materi-
alverhalten zugrundeliegenden Prozesse zu verstehen und darauf aufbauend ein physika-
lisch korrektes Materialmodell zu formulieren. Ausgangspunkt dafür ist die demMaterial
eigene Mikrostruktur. Holz weist eine optimierte und streng hierarchisch gegliederte
Struktur auf, beginnend bei den mit freiem Auge sichtbaren Jahresringen über die
Zellstruktur bis hin zu den Holzpolymeren Zellulose, Hemizellulose und Lignin auf
der Molekülebene. Auf dieser kleinen Längenskala lassen sich die Ursachen für das
zeitabhängige Verhalten von Holz sowie dessen Interaktion mit Wasser identifizieren.
Aufbauend auf diesen Grundlagen wird anschließend eine thermodynamisch korrekte,
makroskopische Beschreibung für Holz formuliert. Sie besteht aus Massenerhaltungs-
gleichungen für die beiden Wasserphasen, einem Energieerhaltungssatz sowie den mecha-
nischen Gleichgewichtsbedingungen. Zusammen mit den konstitutiven Gleichungen steht
hiermit eine allgemein gültige Materialbeschreibung zur Verfügung, mit klar definierten
Anwendungsgrenzen bei verschiedenen Sonderfällen.

Mithilfe der Kontinuumsmikromechanik werden die benötigten Materialeigenschaften
bestimmt. Bei Verwendung dieser Methode wird die Mikrostruktur von Holz math-
ematisch nachgebildet, was die Abschätzung von Materialeigenschaften für ein bes-
timmtes Stück Holz ermöglicht. Auf Grundlage dieses Konzepts werden Modelle für die
Wärmeleitfähigkeit, den stationären Diffusionskoeffizient von Wasser sowie das zeitab-
hängige mechanische Verhalten von Holz präsentiert. Anhand von Vergleichen zwischen
experimentell bestimmten Materialparametern und entsprechenden Modellvorhersagen
wurden die Modelle erfolgreich validiert.

Ein weiterer wichtiger Prozess ist die Aufnahme und Abgabe von Wasser durch die
Zellwand (Sorption). Um diesen zeitabhängigen Prozess korrekt beschreiben zu können,
wird ein analytisches Sub-Modell einer Holzzelle hergeleitet. Weiters gezeigt wird eine
physikalisch plausible Erklärung für die Sorptionshysterese. Für diese Theorie werden
Poromechanik, zeitabhängiges Materialverhalten sowie Thermodynamik kombiniert.

Die abschließenden Kapitel befassen sich mit instationären Transportprozessen in Holz
unter dem Fasersättigungspunkt. Nach Ermittlung der benötigten Materialparameter
wird eine numerische Lösung des resultierenden Gleichungssystems mittels der Meth-
ode der finiten Elemente präsentiert. Auch dieses Modell wurde anhand zweier experi-
menteller Versuchsreihen (improved cup method, Kernspinresonanzspektroskopie) vali-
diert. Sämtliche experimentellen Ergebnisse konnten mit dem Modell vorhergesagt wer-
den, erneut ohne Verwendung rückgerechneter Faktoren oder sonstiger unphysikalischer
Parameter. Es steht nun erstmalig ein Modell zur Verfügung, das auf einer physikalisch
korrekten Materialbeschreibung basiert und somit zuverlässige Vorhersagen ermöglicht.
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Abstract

In wood science as well as in timber engineering, a suitable material description is of
utmost significance. However, wood is not a “simple” material, it rather exhibits a time-
dependent, orthotropic material behavior, which in addition depends amongst others
on wood species, growing conditions, density, moisture content, and temperature. This
leads to strong variations in material properties even within one tree. Overall, the strive
for a universal material model seems almost impossible.

This thesis aims at a deeper understanding of the processes and the physical basics that
influence the observed (macroscopic) material behavior and, finally, at the derivation
of a physically correct mathematical material description. For this purpose, the mate-
rial’s microstructure is investigated first. Wood is a well-organized and hierarchically
structured material – from the annual rings on the macroscale down to the basic wood
polymers cellulose, hemicellulose, and lignin on the molecular scale. On this small length
scale, the origin for the time-dependent material behavior and the interaction with water
can be identified in a physically correct manner. Based on these findings, a macroscopic
continuum description for wood is given afterwards. It comprises balance laws for the
different water phases, energy, momentum and momentum of momentum. Information
about the material comes in through constitutive equations and according material prop-
erties. This comprehensive and generally applicable set of equations is then adapted for
relevant special cases (e.g. steady state moisture transport) with clearly defined limits
of applicability.

The material properties of wood are derived in the framework of continuum microme-
chanics. This method allows to give estimates for a particular piece of clear wood (wood
without growth irregularities like knots) by reproducing the hierarchical structure of
wood in a mathematical way. Within this concept, models for thermal conduction,
steady state moisture diffusion, and the viscoelastic mechanical behavior of wood are
formulated and successfully validated by comparing model predictions to according ex-
perimental results at the clear wood level.

An important process in wood-water interrelations is sorption, describing the uptake
and release of moisture by the wood cell walls. In order to describe this time-dependent
process, an analytical sub-model for the structure of a wood cell is derived. In addition,
a suitable theory for the description of sorption hysteresis is given by combining porome-
chanics (extended by time-dependent mechanical behavior) and thermodynamics.

The last chapters of this thesis deal with the special case of transient transport processes
at structural level in wood below the fiber saturation point. After clarifying the thereon
needed material properties, a numerical solution of the mathematical problem in the
framework of the finite element method is derived. For validation purposes, two series
of experiments were conducted using an improved cup method and proton magnetic
resonance imaging (NMR). All experimental results are suitably predicted by the model
without any back-calculated or unphysical parameters, underlining again the quality of
the model. Thus, unlike previous modeling attempts, the model accomplishes physically
correct and reliable predictions for such processes.
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Chapter1
Introduction

1.1 Motivation

Wood is currently facing a revival in the construction sector all over the world and
is increasingly used, both for common building and for special engineering purposes.
To meet the resulting high demands on wood in design and dimensioning, accurate
knowledge of the material behavior is necessary. However, due to its natural origin the
material properties of wood exhibit a broad variability, not only between different wood
species, but also within one tree. In addition, the actual behavior of wood is strongly
related to its moisture content. All these facts complicate the derivation of a suitable
material description. Existing material models are mostly restricted to subproblems like
the mechanical behavior, swelling/shrinkage, heat transport or moisture transport. The
problems of these isolated views are their inexplicit limits of applicability – in some
cases they are efficient, in other cases they fail or lead to strange results, which are then
labeled as “phenomena” or “special behavior”. At the moment this lack of knowledge
is tackled by material modification factors (for the influence of the climatic conditions
and the long-term material behavior) and high safety coefficients in timber engineering.
This results in partly inefficient timber structures, which still cannot ensure the desired
reliability of the constructions.

This thesis aims at a deeper understanding of the material wood and at a physically
correct description of appearing processes. This will be the scientific basis for a more
reliable, efficient, and intelligent use of this fascinating material.

1.2 Previous work

Comprehensive material descriptions for wood are rare in literature. In the 1950s, Barkas
[5] was one of the first to discuss the thermodynamical background of sorption, swelling,
and the mechanical behavior of wood. A macroscopic continuum description of wood
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was given in 1971 by Lesse and Christensen [60] in the framework of non-linear thermo-
dynamics. However, owing to the stage of development in computer science at that time,
numerical solutions of coupled problems were almost unaccessible and, in addition, some
of the required material parameters were not known. Therefore no relevant publications
in this field can be found from the following years, rather the focus was on particular
topics like moisture transport or the sophisticated mechanical behavior of wood.

As for models that allow for a macroscopic mathematical description of moisture trans-
port processes in wood, a lot of theoretical and experimental work was done. Below
the fiber saturation point, moisture transport was accepted to be governed by a single
diffusive process [55], which is usually described by Fick’s law of diffusion. On this the-
oretical basis, experimental work was done in the 1960s to define the according diffusion
coefficients [11, 10] based on a macroscopic gradient in moisture content. Under steady-
state conditions this approach led to suitable and reproducible results – in contrast to
transient conditions, where some unphysical phenomena like thickness-dependent diffu-
sion coefficients were observed. These findings motivated theoretical research (see e.g.
[97, 72, 96]), mostly focusing on the macroscopic formulation of non-isothermal mois-
ture transport in wood. In parallel, the progress in computer technology allowed for
the first time numerical studies of non-linear and coupled moisture transport processes
[106, 78]. In these models, three differential equations describe conservation of liquid,
energy, and air inside wood. They allow for numerical studies of drying processes in
wood, including high temperature conditions and sample-specific material properties
and geometries. However, no validation (i.e. a comparison with an independent set of
experimental results) of these models is given in literature.

At the same time another approach to the description of transient moisture transport
was developed [57, 27]. Its main idea is to describe the microscale transport processes
on their inherent length scale, to formulate based thereon two separate Fickian diffusion
processes for bound water and water vapor, and to couple these phases by a sorption
rate term. The advantage of this approach is that it more suitably describes the physics
of moisture transport in wood since it abandons the joint treatment of water vapor and
bound water which is impossible because of disequilibrium of the average concentra-
tions of these two phases under transient conditions. This allows for a more realistic
description of experimentally derived results. However, the sorption term is described
phenomenologically. It has to be fitted to experimental results, which limits the appli-
cability of this approach to non-tested conditions.

The mentioned material descriptions all involve material properties. For wood these show
a high variability, originating from differences between wood tissues at the macroscale,
microscale, and nanoscale. This fact motivated quite many research efforts to establish
links between the macroscale and physical quantities at lower scales. As for transport
properties, the most common approach is to define a single tracheid as representative
“unit-cell” and to formulate relations between the transport properties and apparent
densities as well as moisture contents of wood [95, 104, 35, 77] on this basis. However,
many of the required material data, especially the material properties of the cell wall, are
not known from experiments. The need to guess or back-calculate material parameters
[95, 104] limits the applicability of such models to tested conditions.

The use of wood as a construction material of course also requires detailed knowledge
about its mechanical properties. Since this is directly related to an economic use of
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the material, a multitude of studies was made in this regard, both experimentally and
theoretically. The idea of relating the macroscopic behavior to smaller length scales
of the material was also successfully applied to mechanical properties, a comprehensive
review of according models for wood is given by Hofstetter and Gamstedt (2009) [43].

1.3 Scope and Structure

In wood science, a multitude of different material models is used. The aim of this thesis
is to derive a physically correct and therefore generally applicable material description
for wood below the fiber saturation point with particular emphasis on the interaction of
wood and water. The material behavior of wood is strongly influenced by its microstruc-
ture, this information is incorporated via multiscale homogenization approaches, that
link the macroscopic behavior of wood to its basic constituents and processes on the
molecular scale. Finally, the performance of the model is checked by comparing model
predictions to independent experimental results. The gained excellent prediction quality
justifies the extensive formulation of the approach.

From a macroscopic point of view wood exhibits a complex behavior, that complicates
a suitable material description or even makes it impossible. However, the origin of this
behavior is the structure and composition on the material’s smaller length scales. In ad-
dition, the interaction between wood and water can be explained – at least qualitatively
– on the microscale. Therefore the thesis starts with an comprehensive investigation of
this physical background of the material behavior of wood in Chapter 2.

Based on this background, a macroscopic continuum description is given in Chapter 3.
It comprises balance equations for energy, momentum, momentum of momentum, and
the masses of the water phases in wood. In addition, the according constitutive relations
are introduced which define the material. This comprehensive set of coupled equations
is then specified for some special cases, which are important e.g. for validation purposes.

Although the description of wood is formulated on the macroscale, the information
about the material on the smaller length scales has to be included. This is done via the
material properties used in the constitutive relations. In the framework of continuum
micromechanics it is possible to upscale the material behavior from small scales to the
macroscale. Starting from the molecular scale, where a few basic constituents of wood
can be defined, the hierarchical structure of wood is revisited. Thus it is possible to cal-
culate macroscopic material properties of wood. In this line models for several material
properties are developed and presented in this thesis: a multiscale homogenization model
for thermal conductivity in Chapter 4, a model for steady state moisture diffusivity in
Chapter 5, and – predicated on an existing model for elastic properties – a model for
viscoelastic material behavior in Chapter 6. Based on basic information – wood species,
density, temperature, and moisture content – these models allow for suitable estimations
for specific wood samples. This is verified by comparison with experimentally derived
results.

In Chapter 7, a mathematical description for sorption is derived. Sorption is the ex-
change process between water vapor in air and bound water in the wood cell walls.
Again a multiscale approach enables a suitable macroscopic description of this process.
The driving force of sorption is the strive to reach equilibrium between the two wa-
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ter phases. Such conditions can be described via sorption isotherms, relating a given
relative humidity to an according equilibrium moisture content. For wood, these sorp-
tion isotherms possess a distinct hysteresis, i.e. the equilibrium moisture content is not
unique for a specific relative humidity but depends on sorption history. To account for
this effect, an empirical and a possible theoretical description are given, the latter by
accounting for the time-dependent deformations of the wood cell wall.

The last Chapters deal with the special case of transient moisture transport in wood.
After definition of several additional material parameters in Chapter 8, a numerical
solution procedure for the according mathematical problem in the framework of the finite
element method is derived in Chapter 9, including the implementation in the commercial
finite element code ABAQUS. Together with the sample-specific properties estimated
using the multiscale homogenization models this enables predictions of transient moisture
transport processes in wood. Verification of this approach is again based on comparison
with experimental results. This is done in Chapters 10 and 11 for results gained with an
improved cup method and nuclear magnetic resonance imaging, respectively. The latter
allows for non-destructive investigation of moisture distributions inside a material. In
both cases a good prediction quality will be shown, proving the suitability of the whole
modeling approach.

Finally, this thesis is concluded in Chapter 12.

1.4 Nomenclature

Symbols

a ellipsoidal radius
A area
b external energy source
b Biot tensor
c concentration
ĉ microscopic concentration
ċ sorption rate
cV specific heat capacity at constant volume
C stiffness tensor
D diffusion tensor
D compliance tensor
e specific internal energy
E internal energy
E modulus of elasticity
E macroscopic strain tensor
Eel macroscopic elastic strain tensor
Epl macroscopic plastic strain tensor
EMC equilibrium moisture content
εr strain within phase r
f volume fraction
f heat flux
g body force vector
G shear modulus
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Symbols cont’d

h specific enthalpy
I second order unity tensor
I fourth order unity tensor
J creep compliance
J mass flux
k film boundary coefficient
K thermal conductivity tensor
κ mass supply rate
ℓ length
λ thermal conductivity
m mass
M molar mass
MC moisture content
µ chemical potential
n normal vector
N interpolation function
N number of molecules per volume
ν Poisson’s ratio
p pressure
P second order Hill tensor
P fourth order Hill tensor
φ surface flux
φ cell wall porosity
ϕ relative humidity
r radius
R universal gas constant
R relaxation tensor
ρ mass density
s specific entropy
s complex variable in the Laplace-Carson domain
s dimensionless sorption parameter
S entropy
S surface
σr stress within phase r
Σ macroscopic stress tensor
t time
t cell wall thickness
T temperature
θ microfibril angle
Θ Heaviside function
u displacement vector
V volume
x coordinate vector
ξ reduction factor for vapor diffusion in wood
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Subscripts / Superscripts

0 initial
a adsorption
a ambient
air air
amocel amorphous cellulose
ann annual rings
ash ash
atm atmospheric
b bound water
cel cellulose
circcyl right circular cylindrical
crycel crystalline cellulose
cwm cell wall material
d desorption
dry dry (without any water)
early earlywood
ell ellipsoidal
ellcyl elliptic cylindrical
exp experimental
ext extractives
H2O water
hemcel hemicellulose
hom homogenized
iso isotropic
late latewood
lig lignin
long longitudinal
lum lumen
L macroscopic longitudinal material direction
MT mori Tanaka scheme
−o standard conditions
poly polymer network
por porosity
ray ray cell
ref reference
rot rotated
R macroscopic radial material direction
s solid wood material
sat saturated
sph spherical
SC self-consistent scheme
trans transversal
T macroscopic tangential material direction
v water vapor
ves vessel
wet wet (including water)
wood wood (macroscale)
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Subscripts / Superscripts cont’d

|| parallel
⊥ perpendicular
∗ Laplace-Carson domain

Accents used in the multiscale homogenization models

�̃ relating to an representative volume element (RVE) of polymer network

�̀ relating to an representative volume element (RVE) of cellulose
� relating to an representative volume element (RVE) of cell wall material

�̂ relating to an representative volume element (RVE) of earlywood
�̌ relating to an representative volume element (RVE) of latewood

�̇ relating to an representative volume element (RVE) of ray cells
�̄ relating to an representative volume element (RVE) of earlywood with vessels

�̈ relating to an representative volume element (RVE) of annual rings

�́ relating to an representative volume element (RVE) of clear wood
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Chapter2
Physical Background

Wood exhibits strongly anisotropic, time-dependent material behavior. It shows different
failure mechanisms depending on the load type and loading direction, for example brittle
fracture under tension load in grain direction and plastic deformation (within certain
limits) under a pressure load across the grain. In addition it shrinks and swells upon
changes in moisture content, its material properties are dependent on moisture content
and temperature, and it may be destroyed by fungi, insects, and fire. Finally, each piece
of wood exhibits individual material behavior. Overall, a correct purely macroscopic
description of the material wood is very complicated and sometimes seems to be almost
impossible.

The macroscopic behavior of wood is influenced by morphology, chemical composition
and processes on lower length scales. By observing these scales, many macroscopically
observed phenomena can be explained on a scientific basis. Further, knowledge about
the physical background enables the derivation of suitable mathematical descriptions,
which then may help to understand and, ideally, to predict the material behavior.

In this chapter the morphology and processes inside wood are recapitulated, particular
attention is paid to water and its interaction with wood.

2.1 Composition and structure of wood

Wood is a fascinating biological material with a highly optimized and specialized struc-
ture on several length scales – from the molecular scale up to the structural scale of a
tree. This thesis is restricted to so-called clear wood, which is wood without structural
growth irregularities like knots or spiral growth [26, 37]. Following pertinent work in the
field [56, 73, 25, 110], one may distinguish six levels of organization in clear wood.

The stem cross-section of wood is built up by the sequence of earlywood and latewood,
formed in concentric rings [see Fig. 2.1(a)]. These growth or annual rings with origin in
the center of the stem are a consequence of the growing process during each season. They



10 2 Physical background

result in the three macroscopic principal material directions of wood – the longitudinal
(L), radial (R), and tangential (T) direction. The longitudinal direction coincides with
the longitudinal axis of the stem (except for spiral grain), while the radial direction
points normal to the annual rings. Hence, the tangential material direction is defined by
the local tangent to the annual rings. The typical length scale of the annual rings is 2 to
4mm. At a similar length scale, wood rays form can be observed, they form pathways
throughout the whole stem in the radial direction [see Fig. 2.1(b)].

On a length scale of several tens of micrometers, several types of wood cells are observed.
Softwood species consist to the main part of tracheids, which are hollow tubes aligned
in the stem direction with characteristic cell diameters of 20 to 50 µm, lengths of 2 to
10mm, and wall thicknesses of 2 to 20 µm [cf. Fig. 2.1(c)]. In earlywood, the tracheids
have thin cell walls with larger lumens and a polygonal or rectangular cross-section. By
contrast, the latewood cells have thick cell walls and smaller pores. Tracheids are formed
by division of the same initial cell in the cambium. Thus the cells are elongated in the
radial direction, while in the tangential direction they are randomly arranged.

Hardwood species are younger in biological evolution compared to softwoods and exhibit
a more diversified microstructure, including different specialized cell types. Tracheids,
fibers, and parenchyma cells constitute the longitudinally oriented tissue, all of them
showing similar dimensions. Moreover, hardwood species contain vessels of large diam-
eters up to 500 µm, which form an interconnected pipe-like structure (cf. Fig. 2.1(d)).

Wood rays are built up by single cells too, showing approximately circular cross-sections
(Fig. 2.1(b)), diameters of 20 to 50 µm, lengths of 50 to 500 µm, and wall thicknesses
of 2 to 20 µm. In the living tree one function of all wood cells – both in softwood and
hardwood species – is the transport of water and nutrients. For this purpose, neighboring
cells are interconnected by pits.

The cell wall is characterized by sequentially arranged layers. From the lumen towards
the outer surface of the cell there is the tertiary layer (T), the secondary layer 2 (S2),
which represents about 80-90% by volume of the entire cell wall, the secondary layer
1 (S1), and the primary cell wall (P). Finally the compound middle lamella (CML)
connects the single wood cells. All layers differ in thickness (see Fig. 2.1(e)) and in the
fractions and arrangements of their constituents as detailed next.

In the cell wall layers, cellulosic fibers are embedded in a non-cellulosic matrix. These
fibers have diameters of about 50 to 200 nm [73] and are divided into smaller microfibrils
(see Fig. 2.1(f)). The orientation of these microfibrils varies from layer to layer. In the
S2 layer, the inclination angle of the fibers to the cell axis (microfibril angle θ) typically
ranges between 0° and 30° in normal wood. The cellulose microfibrils itself are composed
of cellulose chains (see Fig. 2.1(h)). Only the inner core of a fibril is crystalline, while
the surface region is more or less amorphous [76].

Finally, the embedding matrix is built up by non-cellulosic polysaccharides (commonly
denoted as hemicelluloses), lignin, extractives, and inorganic compounds. Lignin and
hemicelluloses constitute the major part. Extractives and inorganic compounds make
up only 2 to 4% in volume. The typical length scale of the mixture of the constituents
is about 8 to 20 nm [38]. An example of the molecular structure of lignin is shown in
Fig. 2.1(g). In addition, water molecules intrude into the matrix and are absorbed phys-
ically at sorption sites (hydroxyl groups) that are mainly located on the polysaccharides.
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Figure 2.1: Hierarchical organization of wood (extended version of Fig. 2 in [44]): (a)
cross-section of a log(1); (b) longitudinal section through a hardwood (Betula alba),
showing the ray cells, Transmission electron micrograph (TEM)(4); (c) transverse sec-
tion through a softwood (Picea abies), Transmission electron micrograph (TEM)(4); (d)
transverse section through a hardwood (Fraxinus excelsior), Transmission electron mi-
crograph (TEM)(4); (e) section through the cell wall, showing the cell wall layers(2);
(f) fibrillar structure of the S2 (and S1) wall(3); (g) chemical structure of lignin(5); (h)
model of the crystal structure of a cellulose chain(5); (1)...adapted from Wood Handbook
[107]; (2)...adapted from Fengel and Wegener [25]; (3)...adapted from Hafren et al. [38];
(4)...adapted from Schoch et al. [93]; (5)...adapted from Wikipedia
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This bound water has a huge influence on almost all wood properties, therefore it will
be discussed in detail in the following section.

2.2 Water in wood

Water can be found in wood not as bulk phase, it rather exists in three states in parallel.
They exhibit different properties and affect the material wood in different ways.

2.2.1 Liquid water

The first state is liquid water located in the cell lumens. It solely exists in the living
tree or in wood being in contact with liquid water. When wood is exposed to air, the
liquid water evaporates (except for capillary condensation that occurs in presence of a
relative humidity in air above 98%, see [22]). The influence of liquid water on mechanical
properties is negligibly small [55], while it is a precondition for biological degradation
due to fungal growth. Therefore, wood is dried before it is used for constructional
purposes, and it has to be protected from permanent contact to liquid water (ideally by
means of constructional wood protection). The transport of water is mainly governed
by a flow process driven by pressure gradients. This flow is important for the tree
because thus minerals are transported inside the stem; it is enabled by the open pits
interconnecting the cell lumens. When the moisture content decreases, the pits get
aspirated to prevent the tree from loosing liquid water; in consequence water transport
is decelerated dramatically.

2.2.2 Water vapor

During wood drying, the liquid water in the cell lumens is replaced by air, that comprises
water vapor, i.e. the second state of water in wood. As long as liquid water and water
vapor are present at the same time, the relative humidity of air is approximately 100%.
However, on the surface of wood the relative humidity inside the lumens and in the
ambience is equal, therefore all liquid water inside wood evaporates when the surrounding
relative humidity is below 100%. The main transport process of water vapor inside wood
is diffusion, driven by gradients in chemical potential which is mainly a function of vapor
concentration in air and temperature. The flow of air is effectively retarded by the closed
pits that block the throughgoing pathways in wood.

2.2.3 Bound water

As long as liquid water is present, the cell walls are saturated with bound water – the
third occurrence of water in wood. It consists of water molecules that are physically
bound to the sorption sites as mentioned in the previous section. The point, where no
liquid water is present but the cell walls are still saturated is called the fiber saturation
point (FSP), such a condition is present at about 100% relative humidity and a moisture
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content (usually denoted as MC or u) of about 30%1. Subjected to lower relative
humidities, also the cell walls start to dry – the bound water concentration inside the
cell walls decreases. In contrast to the other two water phases (liquid water and water
vapor), changes in bound water concentration strongly affect the material behavior of
wood and lead to changes in volume of the cell walls. Due to the anisotropic morphology
of wood these eigenstrains lead to eigenstresses inside the material, in addition they cause
the shrinkage and swelling observed on the macroscale.

Bound water is transported by a diffusive process, the according diffusion coefficient
strongly depends on bound water concentration. The driving force of this process is the
chemical potential of bound water, which is a function of concentration, temperature,
the chemical composition of the cell wall (which influences the number and interaction
of the sorption sites) and pressure due to stresses inside the cell wall. Water may also
change its state; for changes from bound water to water vapor and vice versa this is
called sorption. Equilibrium conditions between these two phases imply equal chemical
potentials. The equilibrium moisture content (EMC) for wood is therefore a function
of relative humidity, temperature, chemical composition of the cell wall, mechanical
state, and history. For practical reasons the equilibrium conditions are described by
sorption isotherms, plotting EMC against relative humidity. These sorption isotherms
are not unique for a specific relative humidity but show a pronounced hysteresis effect,
indicating that the EMC is not solely a function of relative humidity and temperature.
Additionally, due to different chemical composition each sample of wood exhibits its
individual sorption behavior.

Overall, the interaction of wood with water is of greatest importance for a comprehensive
understanding of the material. Therefore, the governing processes will be defined in the
following sections to serve as physical background for the modeling work shown later on.
In wood used for constructional purposes, conditions below the fiber saturation point are
prevailing. Therefore this thesis is restricted to such conditions, where only two water
phases are present: bound water in the cell walls and water vapor in the lumens.

2.3 Transport of water on the microscale

As mentioned in the previous chapter, both bound water and water vapor are trans-
ported by diffusion. The physical foundation of moisture transport in wood can be best
studied on the microscale, where the phases bound water and water vapor can be clearly
distinguished.

2.3.1 Static conditions

In Fig. 2.2, a cell wall cross-section and the water concentrations for equilibrium con-
ditions are displayed schematically. The cell wall contains bound water with a concen-
tration of cb (calculated as mass of bound water divided by the volume of pure cell wall
material), while the lumens contain water vapor with a concentration cv (calculated as
mass of water vapor divided by the volume of pure air). Since the gradients of the

1The moisture content in wood is usually calculated by relating the mass of water in wood to the
oven-dry mass of the same wood sample.
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concentrations cb and cv have to be zero under static conditions, no moisture transport
will take place within the phases. On the boundaries between lumens and cell wall the
concentrations are in equilibrium (e.g. described by a sorption isotherm). When water
changes from one phase to the other, the phase transition is accompanied by a change
in entropy S of water:

• water vapor → bound water “adsorption” ∆SH2O < 0,
• bound water → water vapor “desorption” ∆SH2O > 0.

To accomplish a phase transition, energy must be supplied or adsorbed by the surround-
ing. This leads to a increase in internal energy E in the surrounding during adsorption
of water and to a decrease in internal energy for desorption. This change in inter-
nal energy is accompanied by changes in temperature T and volume V of the system
(dE = CV dT + [T (∂p/∂T )V − p] dV ). In wood the first is predominant, therefore the
phase change of water mainly causes changes in temperature (a temperature increase for
adsorption, a temperature decrease for desorption). Under static conditions (Fig. 2.2),
no moisture transport occurs and, thus, no phase transition and no changes in energy
and temperature2.
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Figure 2.2: Moisture and heat transport at the microscale under static conditions.

2.3.2 Steady state conditions

In a steady state moisture transport process below the fiber saturation point, water
is transported by diffusion. The cell wall and the air in the lumen exhibit specific
diffusion coefficients, which depend on water concentration and temperature. Steady
state conditions implicate constancy of concentration and temperature in each material
point over time. Accordingly, on the boundary between cell wall and lumen the two
phases are still in equilibrium (Fig. 2.3).

2From the standpoint of statistical mechanics water always changes its phase. Under static conditions
the amounts of adsorbed and desorbed water are equal on average.
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Figure 2.3: Moisture and heat transport at the microscale under steady state conditions.

The concentration gradient results in a diffusive moisture flux J, which is equal in both
phases to satisfy mass balance. The adsorption of water vapor to bound water on the
left hand side of the cell wall in Fig. 2.3 is accompanied by energy release. On the right
hand side of the same cell wall, desorption of bound water to water vapor is endothermic
and, thus, results in absorption of energy. The amounts of water adsorbed and desorbed
on opposite sides of one cell wall are equal in steady state processes. Therefore, also the
amounts of energy released and absorbed are equal. They lead to a microscopic heat
flux f in the cell wall in the direction of the moisture flux J. From a macroscopic point
of view, there is no change in energy and temperature, i.e., ∂E/∂t = 0, where E denotes
the macroscopic internal energy and t the time.

For these two reasons – macroscopic isothermal equilibrium of bound water and water
vapor (according to a sorption isotherm), no macroscopically relevant change in energy
due to transport processes – steady state diffusion in wood can be described as single
Fickian diffusion process on the macroscale. A possible additional thermal conduction
process at the macroscale can be treated independently from the diffusion processes,
because all thermal processes resulting from the moisture transport occur on a micro-
scopic scale only and do not produce macroscopic relevant heat fluxes or temperature
gradients.

2.3.3 Transient conditions

In transient processes, the state variables, namely moisture concentrations cb and cv
and temperature T , change with time. To explain the physical background of transient
transport processes, the special case of drying of small piece of wood with cutted lumens
is considered (Fig. 2.4). Therein, the macroscopic moisture transport is mainly controlled
by water vapor diffusion in the cut lumens in the longitudinal direction of wood. The
macroscopic gradients of water vapor and bound water in the transverse direction of
wood are approximately zero, leading to no macroscopic moisture flux in this direction.
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In addition to the macroscopic transverse moisture flux (which is equal to zero in this
case), local concentration gradients develop in the transverse direction of the cell wall
towards the lumens (Fig. 2.4). The macroscopic bound water concentration, cb, is the
mean value of the variable microscopic distribution of bound water concentration, ĉb.
At each cell wall surface, the microscopic bound water concentration is in equilibrium
with the water vapor concentration in the adjacent lumen. However, from a macroscopic
point of view, there is an imbalance between macroscopic bound water concentration cb
and water vapor concentration cv (Fig. 2.4). This imbalance prohibits treatment of the
two water phases as one on a macroscopic level.
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Figure 2.4: Moisture and heat transport at the microscale under transient conditions.

The special drying case in Fig. 2.4 involves desorption on both surfaces of the cell wall.
Thus, energy is absorbed on both sides of the cell wall, resulting in an energy decrease
also influential on the macroscale (∂E/∂t < 0), which further leads to a macroscopic
temperature decrease. The relevance of this thermal effect will be illustrated by a simple
numerical example: theoretically, the removal of all bound water by desorption from a
fiber-saturated piece of wood (MC ≈ 30%) with a density of 400 kg/m3 requires energy
of approximately 280MJ/m3 (using thermodynamic quantities according to Skaar [98]).
If the surroundings would not supply heat, this process would lead to a theoretical
decrease in temperature of 410K (considering a specific heat of wood of approximately
1.7 kJ/(kgK) [112] and neglecting the mechanical work). In reality, such a significant
decrease has never been measured and certainly does not occur. The reason for this
is the dependence of the equlibrium moisture content in wood on temperature. This
influence is displayed in Fig. 2.5 showing sorption isotherms for temperatures of 15 °C to
25 °C (calculated according to the Wood Handbook of the Forest Products Laboratory
[107]). Usually, sorption isotherms are plotted for relative humidity on the abscissa; here,
the water vapor concentration cv is chosen instead to better illustrate the investigated
example and the following considerations.

At point 1O in Fig. 2.5, the sorption isotherms indicate equilibrium of a water vapor
concentration cv of 17 g/m3 and a moisture content MC of approximately 19% at a
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Figure 2.5: Sorption isotherms for wood at temperatures from 15 °C to 25 °C, as a
function of water vapor concentration.

temperature of 22 °C. Decreasing the water vapor concentration to 14 g/m3 would result
in an moisture content MC of approximately 13.5%, if T is kept constant (point 2O
in Fig. 2.5). However, such a change in bound water content is accompanied by a
considerable absorption of energy. As the sorption process on the microscale is faster
than the heat transfer on the macroscale, this results in local decrease in temperature
and, thus, in another equilibrium moisture content according to the prevailing sorption
isotherm in Fig. 2.5. The corresponding point 3O is only slightly below the equilibrium
moisture content at point 1O. To reach lower moisture contents, heat has to be supplied
to the wood sample to balance the absorbed energy during desorption. Such energy
transfer is usually achieved by thermal conduction in the wood sample.

Based on these theoretical considerations, a correct macroscopic mathematical descrip-
tion of transient moisture transport in wood requires a separated treatment of the two
water phases. In addition, an energy balance has to be one part of such a description.

2.4 Mechanical behavior of the cell walls

Besides the honeycomb-like cell structure of wood the mechanical behavior of the cell
wall material has the widest influence on the macroscopic mechanical behavior of wood.
Again an optimized structure can be observed in the cell walls. Together with the non-
cellulosic matrix material the cellulose microfibrils constitute a fiber-reinforced compos-
ite. The highly oriented microfibrils are responsible for the high tension stiffness and
strength, while the hemicellulose-lignin-matrix makes for shear and compression stiff-
ness by interconnecting the microfibrils. Different inclinations of the cellulose fibrils
with respect to the cell axis enable the tree to react to different loading types.
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Crystalline cellulose shows an almost purely elastic, anisotropic mechanical behavior
with brittle failure under tension. In contrast, the amorphous structure of hemicel-
lulose and lignin is characterized by different deformation mechanisms. Sliding of the
polymer chains including breaking and reconnection of hydrogen bonds results in a time-
dependent behavior [99]. The thereon released elastic energy is stored in the surrounding
material (most likely in its cellulosic parts). Thus the time-dependent deformation is
(almost) recoverable. The deformation behavior of the wood cell wall therefore consists
of an elastic component and a viscoelastic component (up to a certain mechanical state,
where plastic deformations and/or damage occur in addition). Further, the mechani-
cal behavior of the polymer matrix materials is depending on temperature, especially
because of the glass transition of the wood polymers (hemicelluloses and lignin) at a
certain temperature, which is in addition depending on moisture content.

Being part of the molecular structure of wood, the bound water also strongly influ-
ences the stiffness and time-dependent behavior of wood. High levels of bound water
concentration implicate a lowered stiffness and increased viscosity of wood, since water
acts as a plasticizer [91]. Furthermore, a variable moisture content history results in an
accelerated creep, a so called mechano-sorptive behavior [105].

Deformations of the cell wall material origin from mechanical loading, from changes in
moisture content (as mentioned in Section 2.2.3), and from thermal expansion. Obvi-
ously, these different origins have to be considered in the material description.

2.5 Summary

In this chapter the theoretical basis was laid for the mathematical description of wood.
Both transport behavior and mechanical behavior are predicated on processes and be-
havior on the molecular and cellular scale. The effective macroscopic behavior of wood
in addition is strongly influenced by the structure and composition on all length scales
as described in Section 2.1. Based thereon, a consistent macroscopic mathematical de-
scription for wood is derived in the following chapter.



Chapter3
Macroscopic continuum
description of wood

Although the behavior of wood and the underlying processes are best described on a
small length scale as done in the previous chapter, the material wood is used for objects,
constructions, and structures on a much larger scale. An approach that explains the
system behavior in terms of the properties on the microscale, might be useful from the
viewpoint of material science, but will meet difficulties when it comes to large scale sys-
tems. To overcome this problem, usually a macroscopic continuum approach is chosen,
which is – superficially – not concerned with the internal structure of the material but
deals with the properties of the system as a whole instead [60]. However, the continuum
description of a material has to incorporate macroscopically relevant information from
lower scales. This is especially important for a diversified material like wood.

The mathematical description of a material as a continuum is based on several differen-
tial equations. Starting point will be the basic physical laws for conservation of mass,
momentum, momentum of momentum, and energy. In addition, constitutive equations
are needed, which define the material behavior. Finally, initial conditions and boundary
conditions (which include the geometry of the sample) define the individual problems.

In addition, the comprehensive set of equations for “wood” will be specialized for some
important special cases at the end of this chapter. In the formulation of the according
differential equations, simplifying assumptions will be made. These assumptions are
accompanied by limits of applicability of the resulting sets of equations.

Across this thesis, the correct formulation and consideration of all strong and weak cou-
plings will turn out to be of great importance, justifying a more extensive formulation
compared to existing approaches in this field. In many cases experimentally observed
material behavior can be explained on a physical basis. In addition, unphysical parame-
ters stemming from a wrong (in most cases oversimplified) macroscopic set of equations
are avoided. Due to the correct derivation of balance equations and constitutive relations
all parameters have a clearly defined physical meaning.
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3.1 Macroscopic balance equations

Irrespective of the considered material, the basic balance laws of physics apply at all times
(as long as the continuum exists – e.g. macroscopic fracture is a structural problem
which is not contained in a continuum description). For each system they consist of
conservation of mass, balance of momentum, balance of momentum of momentum, and
conservation of energy [60] [23]. In addition, the second law of thermodynamics must be
satisfied.

In this chapter, a linearized approach is presented, i.e. no differentiation is made between
reference x and current configuration X of the solid parts, therefore there is no need
to differentiate between material and particulate derivatives. All balance equations are
formulated for a unit volume. In this volume, each constituent i is assigned a mass
density ρi(x, t), depending on space x and time t. For a system made up of n constituents,
the total density per unit volume ρ(x, t) is defined by

ρ(x, t) =
n∑

i=1

ρi(x, t). (3.1)

Since the scope of this thesis is wood under conditions below the fiber saturation point,
meaningful components of wood from a macroscopic point of view are� solid (s), incorporating all immobile phases within a wood tissue,� bound water (b), and� water vapor (v).

This nonexhaustive enumeration of course may be extended, for example liquid water (l)
for conditions above the fiber saturation point. For convenience, the mass concentrations
of bound water cb, (mass per volume of pure cell wall material) and water vapor, cv (mass
per volume of pure lumen) are introduced as

cb ≡
ρb

fcwm
, cv ≡ ρv

flum
, (3.2)

with fcwm and flum denoting the volume fractions of cell wall material and lumen, re-
spectively.

3.1.1 Conservation of mass

For each constituent i of a material, its mass conservation can be written as [60]

∂ρi
∂t

+
∂

∂x
· Ji − ρκi = 0, (3.3)

with Ji denoting the mass flux and κi denoting the mass supply rate for component i
upon chemical reactions or phase changes. To satisfy conservation of mass for the whole
system,

n∑

i=1

κi = 0 (3.4)
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must hold. Specification of Eqs. (3.3) and (3.4) for wood yields two mass conservation
equations for bound water and water vapor, reading as

∂ρb
∂t

+
∂

∂x
· Jb − ρκb = 0, (3.5)

∂ρv
∂t

+
∂

∂x
· Jv − ρκv = 0. (3.6)

with ρκb = −ρκv ≡ ċ accounting for changes in mass densities upon sorption, expressed
by the sorption rate ċ. In combination with Eq. (3.2), Eqs. (3.5) and (3.6) can thus be
rewritten as

∂(cb fcwm)

∂t
+

∂

∂x
· Jb − ċ = 0, (3.7)

∂(cv flum)

∂t
+

∂

∂x
· Jv + ċ = 0. (3.8)

3.1.2 Balance of momentum

For static conditions, the balance of momentum for the system reads as

∂

∂x
·Σ+ ρg = 0, (3.9)

where Σ denotes the macroscopic stress tensor and g is the body force vector. Momen-
tum supply due to the movement of water vapor and bound water is neglected.

3.1.3 Balance of moment of momentum

The balance of moment of momentum results in [23]

Σ−ΣT = 0, (3.10)

The superscript T denotes the transpose of the according matrix. Eq. (3.10) implies
that the macroscopic stress tensor is symmetric, i.e. that Σkl = Σlk, k, l ∈ [1, 2, 3].

3.1.4 Conservation of energy

The conservation of energy may be expressed as

d(ρe)

dt
−Σ :

dE

dt
+

∂

∂x
· f − ρ b+

∂

∂x
· Jb hb +

∂

∂x
· Jv hv + ċ (hv − hb) = 0, (3.11)

where e is the specific internal energy, E is the (macroscopically observable) strain tensor,
b is an external energy source per unit mass, f is the heat flux, and hb and hv are the
specific enthalpies of bound water and water vapor, respectively. The term (hv − hb) is
the specific enthalpy of the phase transition of water from the bound state to the vapor
state, while hb is the average enthalpy of bound water [106].
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3.1.5 Clausius-Duhem inequality

The Clausius-Duhem inequality is a way to express the second law of thermodynamics,
commonly used in continuum mechanics. It is useful to determine the admissibility of
constitutive relations of a material. In differential form it reads as [23]

d(ρs)

dt
≥ − ∂

∂x
·
(
f

T

)
+

ρ b

T
− ∂

∂x
· Jb sb −

∂

∂x
· Jv sv − ċ

hv − hb
T

(3.12)

In Eq. (3.12), s denotes the specific entropy and T the thermodynamic (absolute) tem-
perature.

3.2 Constitutive equations

The six field equations (3.7) – (3.9) and (3.11) cannot be solved since they don’t con-
tain information about the material yet. This comes in through so-called constitutive
relations, connecting the variables in the field equations. It is worth being noticed that
the constitutive relations are independent from size or shape of the sample or from the
boundary conditions.

The independent field variables in the six balance equations are� the mass concentration of bound water cb(x, t),� the mass concentration of water vapor cv(x, t),� the strain tensor E(x, t), and� the absolute temperature T (x, t).

The six independent components of the strain tensor E can further be expressed as func-
tion of the displacement vector of the solid us(x, t) = (u1, u2, u3)

T
s (x, t). In continuum

mechanics the infinitesimal strain theory is often used, approximating the strain tensor
E by Cauchy’s strain tensor ε as

E ≈ ε =
1

2

(
(gradus)

T + gradus

)
. (3.13)

The infinitesimal strain theory is restricted to small displacements and small displace-
ment gradients, i.e. ‖us‖ ≪ 1 and ‖gradus‖ ≪ 1.

The remaining dependent variables are� the mass flux vector of bound water Jb,� the mass flux vector of water vapor Jv,� the stress tensor Σ,� the sorption rate ċ,� the heat flux vector f , and
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In general, each of these variables may be a function of all independent field variables
and their derivatives with respect to space and time. In addition they also may depend
on time. This yields to the following set of constitutive equations:

F = F
(
cb,

∂cb
∂x

,
∂cb
∂t

, cv ,
∂cv
∂x

,
∂cv
∂t

,E,
∂E

∂t
, T,

∂T

∂x
,
∂T

∂t
, t

)
,

F ∈ {Jb,Jv, ċ,Σ, f , e} .
(3.14)

Eq. 3.14 is in agreement with the principle of equipresence [60] that each independent
variable should be present in all constitutive equations unless this is in contradiction to
the second law of thermodynamics [see Eq. (3.12)].

Whereas the balance equations as presented in Section 3.1 are basic laws of physic and
apply to each material, the constitutive relations refer to the characteristic properties
of one particular material, in this case the material wood. As described in Chapter 2,
wood exhibits differences in geometry and composition observed at the macro-, micro-,
and ultra-structural scale. This results in wide variability of all macroscopic material
properties associated with the constitutive equations, which should be accounted for in
measurements and theoretical derivations of material properties of wood.

3.2.1 Mass fluxes of bound water and water vapor

As mentioned in Chapter 2, the main transport process of both bound water and water
vapor under conditions below the fiber saturation point is diffusion. In general, diffu-
sion is driven by gradients in chemical potential, which is a function of concentration,
temperature and stress (pressure). Fick’s first law of diffusion links a diffusive flux J of
a substance and a corresponding gradient in chemical potential µ:

J = −Dµ · ∂µ
∂x

, (3.15)

with D denoting the diffusion tensor. The macroscopic (effective) fluxes Jb and Jv can
be described using macroscopic (effective) diffusion tensors Db and Dv. In general, these
tensors depend on the state variables cb, cv, E, and T .

Neglecting the dependence of chemical potential on temperature and stress, Fick’s first
law may also be written using directly a gradient in concentration:

J = −D · ∂c
∂x

. (3.16)

This representation is prevalent in wood science. However, it might lead to problems
under pronounced gradients in temperature.

3.2.2 Heat flux

Heat is transported in wood mainly by heat conduction. This is described by Fourier’s
law, linking a heat flux f and a gradient in temperature T by the thermal conductivity
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tensor K:

f = −K · ∂T
∂x

. (3.17)

The macroscopic (effective) thermal conductivity tensor of wood is in good approxima-
tion solely a function of bound water concentration cb and temperature T .

3.2.3 Stress

The causes for (macroscopic) stress in wood are (macroscopic) strains, changes in bound
water concentration and changes in temperature. Neglecting the latter (which are usually
small compared to the other), the constitutive equation for stress may be written in the
framework of microporoplasticity as [16]

Σ = C :
(
E−Epl

)
− b(pb − pb,0), (3.18)

where C is the macroscopic stiffness tensor, Epl are the plastic strains, b is the Biot
tensor, and pb is the pressure in the bound water phase. pb,0 denotes the initial bound
water pressure. In general, both material properties (C, b) are functions of bound water
concentration, temperature, strain, and – in addition – time.

3.2.4 Sorption rate

As described in Chapter 2, sorption is the exchange process between bound water and
water vapor. This process is driven by differences in chemical potential of the two phases.
The time dependence of sorption presumably arises from two causes: first because of
the transport process inside the cell wall (see Section 2.3.3) and second because of the
time-dependent evolution of stress stemming from the volume changes accompanied with
sorption (stress influences sorption because of the pressure-dependence of the chemical
potential of bound water).

In addition, the equilibrium state between water vapor and bound water is dependent on
loading history (again probably because of the pressure-dependence of chemical potential
of bound water). In general, sorption may be expressed as

ċ = ḟ(cb, T ) [µv(cv, T )− µb(cb, T,E)] , (3.19)

where the term in squared brackets is the difference in chemical potential between the
two phases, while ḟ(cb, T ) is a function representing the transport process in the cell wall.
For the latter, a model is derived in Section 7.2 of this thesis.

3.2.5 Internal energy

The internal energy is the sum of all forms of energy intrinsic to the system. It may
be divided into potential energy and kinetic energy, the first arises from motion of all
particles (electrons, atoms, molecules,...) in the system, the latter includes all energies
given by the mass of the system’s components, for instance chemical energy, nuclear
energy, and deformation energy.
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Internal energy is therefore a function of all state variables. In the balance equa-
tion (3.11), the differential of the internal energy per unit volume, d(ρe), is used. It
may be written as

d(ρe) = Td(ρs) +Σ : dEel +
n∑

i=1

µidNi, (3.20)

where Eel is the elastic strain tensor, and Ni = ρi/Mi is the number of molecules per
volume, with Mi denoting the molar mass of component i. As introduced before, s is
the specific entropy.

Under conditions, where the changes of the strain tensor E and the concentrations ρi are
negligibly small, the differential of internal energy per unit unit volume may be written
only as function of temperature T as

d(ρe) = ρde = ρ

(
∂e

∂T

)

V,Ni

dT = ρ cV dT, (3.21)

where cV is the specific heat capacity of wood at constant volume. It is a function of T
and cb [112].

3.3 Initial conditions

For each material point in the considered domain (i.e. inside the wood sample), the values
of all field variables cb, cv , u, and T at time t0 must be specified as initial conditions.
Usually, local near-equilibrium conditions are chosen at each point.

3.4 Boundary conditions

In addition to the geometry of the particular sample, the interaction of the sample on its
surface with the surrounding has to be specified via boundary conditions. Several types
of boundary conditions can be distinguished. The first one is the direct specification of
state variables (Dirichlet boundary conditions):

cb = c̄b, cv = c̄v , T = T̄ , u = ū. (3.22)

The specification of the derivative of a state variable is called Neumann boundary condi-
tion. Especially a Neumann boundary condition equal to zero is of practical importance.
In case of cb, cv, and T , this describes a perfectly dense and insulated macroscopic sur-
face (symmetry planes), while in the mechanical problem this represents a free, unloaded
surface. The according mathematical representations read as

∂cb
∂n

= 0,
∂cv
∂n

= 0,
∂T

∂n
= 0,

∂u

∂n
= 0, (3.23)

where n is the normal vector of the surface.

Other possible boundary conditions consist in the direct specification of dependent vari-
ables. This reads as

Jb = J̄b, Jv = J̄v, f = f̄ , Σ = Σ̄. (3.24)
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It should be mentioned that the prescribed values may also depend on the state variables
on the surface. For example at a surface that is in contact with air, interaction with
the surrounding is limited to water vapor flux and heat flux. Usually, water vapor
concentration and temperature are known in some distance from the sample surface,
denoted in the following by c0v and T 0. The transport of water and energy towards the
sample involves a combination of moisture diffusion and heat conduction as well as of
air flow and convection, depending on conditions like surrounding air speed and surface
roughness. If detailed modeling of these processes should be avoided, so-called film
boundary conditions can be used instead as a simplified phenomenological description:

J̄v = −kv
(
cv − c0v

)
n, (3.25)

f̄ = −kT
(
T − T 0

)
n, (3.26)

with kv and kT denoting the film boundary coefficients for water vapor and temperature,
respectively.

3.5 Special cases

If all constitutive equations (3.14) are known exactly, the field equations (3.7) – (3.9) and
(3.11) in combination with the initial and boundary conditions yield the mathematical
description of any process in a particular sample. However, often the components of the
constitutive relations are not accessible in detail. In addition, solving the complete set
of coupled differential field equations is a demanding task.

Fortunately, there are specific situations where some of the field variables are – at least in
good approximation – constant. Hence, the field equations and constitutive equations get
partly decoupled and the required number of equations reduces. As for experiments, the
accurate monitoring of all variables at the same time is impossible, some of them are not
even measurable. Thus, also in experiments usually only special cases are investigated.

In the following, several situations are presented where the mechanical and transport
problems may be treated in a decoupled manner, accompanied by remarks regarding the
used material properties.

3.5.1 Static conditions

Static conditions in an open thermodynamic system as wood imply that all derivations
with respect to time equal zero. In addition, the external energy source in Eq. (3.11) is
zero too, as are the gradients in concentration and temperature – no transport of energy
and moisture occurs. Thus, only Eq. (3.9) has to be considered, in combination with
Eq. (3.18) this yields

∂

∂x
·
[
C :
(
E−Epl

)]
+ ρg = 0. (3.27)

In this equation, the only material property is the stiffness tensor C(ρi, T ). It can be de-
rived either experimentally or theoretically based on the microstructural characteristics
of the material. An according approach for the initial linear elastic response (Epl = 0)
is given and validated in [44, 45, 46].



3.5 Special cases 27

3.5.2 Time-dependent mechanical material behavior

Under constant climatic conditions as in the previous subsection and under negligence of
the work term in the energy balance, the time-dependent evolution of stresses and strains
may be described by Eq. (3.27) in good approximation. For this purpose, the time-
dependent relaxation tensor R(ρi, T, t) has to be determined. This is done in Chapter 9
of this thesis, again for loads below the limit of linear viscoelasticity1 .

3.5.3 Steady state conditions: temperature gradient

Again conditions are considered where all time derivatives vanish. In addition no relevant
moisture transport occurs. The only process is heat conduction, caused by a superim-
posed gradient in temperature. Considering the constitutive relation (3.17), Eq. (3.11)
may be written under negligence of the external volumetric heat sources as

∂

∂x
·
(
K · ∂T

∂x

)
= 0. (3.28)

The according thermal conductivity tensor K is derived theoretically in Chapter 4 of this
thesis. A concurrent static mechanical problem can be calculated subsequently, using
the temperature field resulting from Eq. (3.28) as input.

3.5.4 Steady state conditions: moisture gradient

The time derivatives of all field variables are zero again, in addition the heat flux is
zero. The only transport process now is steady state moisture transport caused by a
time-independent gradient in moisture content. As mentioned in Section 2.3.2, such
conditions involve equilibrium of bound water and water vapor and a vanishing sorption
rate. Thus only one mass balance equation is needed, leading in combination with Fick’s
law of diffusion (3.16) to

∂

∂x
·
(
D · ∂c

∂x

)
= 0. (3.29)

In this equation, c stands for an arbitrarily chosen value of water concentration (e.g.
moisture content, bound water concentration, relative humidity), while D denotes the
according diffusion tensor. A theoretical derivation of the moisture diffusion tensor under
steady state conditions is given in Chapter 5 of this thesis.

Again a concurrent mechanical problem can be calculated subsequently, using the wa-
ter concentration field resulting from Eq. (3.29) in combination with hygroexpansion
coefficients as input.

1The term “linear viscoelasticity” implies that the compliance of the material does not dependend
on stress or strain. Accordingly, the Boltzmann superposition principle applies, allowing to describe
the combined effect of different loadings at different time instances. Above a certain state of stress and
strain, the time-dependent mechanical behavior of wood becomes more and more non-linear, this state
is labeled as “limit of linear viscoelasticity”.
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3.5.5 Transient moisture transport

The last presented special case is that of transient moisture transport, when the concen-
trations of bound water and water vapor change with time. A changing moisture content
also implies a shrinkage and swelling of the material. In principle, the thus according
mechanical work has to be accounted for in conservation of energy. However, compared
to the amount of energy resulting from sorption the mechanical work is relatively small
and can thus be neglected in Eq. (3.11). To account for the influence of stress state on
the equilibrium between the two water phases a suitable empirical model exists (Section
7.3). Thus the mechanical problem decouples from the transport problem, a separate
treatment is possible.

Fig. 3.1 schematically shows the different transport processes in wood and also the
interaction between wood and its ambiance on the microscopic scale. At this scale, the
spatial separation of the two phases of water allows for a simple but physically correct
representation of the processes occurring in wood subjected to a transient change in
moisture content.

cell wall

diffusion, Jv

desorption

adsorption

lumen

open pit

adsorption

closed pit

thermal conduction, f internal energy e

water vapor cv

bound water cb

ambience wood

diffusion, Jb

thermal conduction/

convection

diffusion/

convection

Figure 3.1: Illustration of the various time-dependent processes within wood, separated
for the three state variables bound water concentration cb, the water vapor concentration
cv and internal energy e.

The relevant state variables describing a transient moisture transport process are the
bound water mass concentration cb, the water vapor mass concentration cv, and energy
in terms of thermodynamic temperature T . Their temporal change is governed by three
coupled differential equations:

∂(cb fcwm)

∂t
+

∂

∂x
· Jb − ċ = 0, (3.30)

∂(cv flum)

∂t
+

∂

∂x
· Jv + ċ = 0, (3.31)

d(ρe)

dt
+

∂

∂x
· f + ∂

∂x
· Jb hb +

∂

∂x
· Jv hv + ċ (hv − hb) = 0. (3.32)
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Compared to the other special cases, this formulation contains a larger number of ma-
terial properties. An experimental determination of these properties is impossible, since
they hardly can be controlled separately. In addition, analytical solutions for three
coupled non-linear differential equations are not possible.

To overcome these deficiencies, in Chapter 8 of this thesis the material parameters are
derived analytically, while in Chapter 9 a numerical solution of the problem is derived
in the framework of the Finite Element Method. These tools enable the description of
transient moisture transport in wood. Their successful operation is validated in Chapters
10 and 11.
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Chapter4
Multiscale model for thermal
conductivity

This chapter covers the development and validation of a multiscale homogenization
model for macroscopic transport properties of wood. The starting point is the intrinsic
structural hierarchy of wood and its elementary constituents on the molecular scale as
described in Section 2.1. Thereon the macroscopic material behavior of wood is derived
by revisiting – in a mathematical way – the microstructure of wood.

Model validation rests on statistically and physically independent experiments: the
macroscopic thermal conductivity values predicted by the multiscale homogenization
model on the basis of tissue-independent (“universal”) phase conductivity properties of
hemicellulose, cellulose, lignin, and water (input data set I) for tissue-specific data (in-
put data set II) are compared to corresponding experimentally determined tissue-specific
conductivity values (experimental data set).

4.1 Introduction

In comparison to other building materials, wood exhibits a low thermal conductivity. The
reason for that is the porous microstructure of the material, which is also responsible for
the anisotropic macroscopic material behavior. Overall, the differences in geometry and
composition observed at the macro-, micro-, and ultra-structural scale (see Chapter 2)
result in wide variability of macroscopic material properties such as heat conductivities
and moisture diffusivities.

In order to establish a model that can predict properties also for non-tested conditions,
one has to start from tissue-independent material properties. In wood such properties
can be found only on the molecular scale, where elementary constituents of wood can be
identified. In order to derive macroscopic properties therefrom, one has to consider the
entire hierarchical organization of clear (knot free) wood as presented in Chapter 2 and to
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account for the individual design of structural features in particular samples. This is done
via a multiscale homogenization model in the present work, which allows to calculate
macroscopic properties of wood by means of an analytical approach resulting in closed
form solutions. Since the structure of the governing constitutive equations is analogous
for thermal conduction and steady state moisture diffusion, the model developed herein
is also applied to diffusion in the following chapter.

4.2 Fundamentals of continuum micromechanics

Continuum micromechanics1 is the analysis of heterogeneous materials on the level of
the single phases that constitute this material. A material is understood as a macro-
homogeneous, but micro-heterogeneous body filling a representative volume element
(RVE) with characteristic length ℓ, ℓ ≫ d, d standing for the characteristic length of in-
homogeneities within the RVE (see Fig. 4.1), and ℓ ≪ L, L standing for the characteristic
length of a structure built up by the material defined on the RVE.

In general, the microstructure within the RVE is so complicated that it cannot be de-
scribed in complete detail. Therefore, quasi-homogeneous sub-domains with known
physical properties (such as volume fractions and thermal conductivities) are reason-
ably chosen. They are called material phases. The homogenized behavior of the overall
material, i.e. the relation between temperature gradients acting on the boundary of the
RVE and resulting (average) thermal fluxes in case of heat transport, can then be esti-
mated from the behavior of the homogeneous phases (representing the inhomogeneities
within the RVE), their volume fractions within the RVE, their characteristic shapes, and
their interactions.

Originally these concepts were formulated for the equivalent mechanical problem, aiming
at estimation of homogenized stiffness properties. Due to the similarity of the governing
differential equations, the approach is also applicable to transport processes. Based
on solutions of matrix–inclusion problems, an estimate for the homogenized thermal
conductivity tensor Khom of the material reads as [15]:

Khom =

{∑

r

fr Kr ·
[
I+P0

r ·
(
Kr −K0

)]−1

}
·
{∑

s

fs
[
I+P0

s ·
(
Ks −K0

)]−1

}−1

,

(4.1)

where Kr and fr denote the thermal conductivity tensor and the volume fraction of
phase r, respectively, and I is the second order unity tensor. The two sums are taken
over all phases of the heterogeneous material in the RVE. The second order P-tensor or
Hill tensor, P0

r , accounts for the characteristic shape of phase r in a matrix with thermal
conductivity tensor K0. Two different formations of the phases can be mathematically
reproduced: For K0 corresponding to one of the phase thermal conductivity tensors
(Mori-Tanaka scheme), a composite material is represented (continuous matrix with
inclusions); for K0 = Khom (self-consistent scheme), a dispersed arrangement of the
phases is considered.

1The term ’micromechanics’ is rooted in history and is applied in conjunction with the homogenization
of elasticity properties as well as that of transport properties.
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In mechanical analysis, the Hill tensor P0
r is conventionally derived from Eshelby’s so-

lution for mechanical matrix–inclusion problems. The application of this solution to
transport processes and the derivation of the respective second order Hill Tensor for
spherical inclusions is presented in [15] and [16]. Its generalization to ellipsoidal inclu-
sions with ellipsoidal radii a1, a2, and a3 results in the following formulation for its
components [20]:

P 0
ell,ij =

1

4π

+1∫

−1

2π∫

0

ξi ξj
(
K0

kl ξk ξl
)−1

dϕ̂dξ̂3, i, j, k, l ∈ [1, 2, 3] , (4.2)

with

ξ1 =
ξ̂1
a1

=

√
1− ξ̂23 cos ϕ̂

a1
, ξ2 =

ξ̂2
a2

=

√
1− ξ̂23 sin ϕ̂

a2
, ξ3 =

ξ̂3
a3

. (4.3)

Certainly this formulation covers the special cases of spherical inclusions (a1 = a2 = a3)
as well as cylindrical inclusions (for example a1 = ∞).

If a single phase exhibits a heterogeneous microstructure itself, its behavior can be esti-
mated by introduction of an RVE within this phase, with dimensions ℓ2 ≤ d, comprising
again smaller phases with characteristic length d2 ≪ ℓ2, and so on (see Fig. 4.1). This
procedure is continued until a scale is reached, on which the properties of the phases
are all known and independent of the particular sample for the considered group of
materials.

d

ℓ

ℓ2

d2

Figure 4.1: Multiscale homogenization

This leads to a multiscale homogenization scheme. A hierarchically structured material
like wood of course suggests the use of such a homogenization scheme.

4.3 Thermal conductivities of the elementary components

of wood

Considering the hierarchical organization of wood (see Section 2.1), sample-independent
phases with “universal” properties inherent to all wood species may be identified only
at an observation scale below the cell wall. Therefore, like it is done in Hofstetter
et al. [44] for mechanical properties, its components (cellulose, hemicellulose, lignin,
extractives, inorganic compounds, and water) are lumped into tissue-independent phases,
characterized by different thermal properties.
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• Water and wood extractives: The term “wood extractives” covers a large number
of different compounds, which can be extracted from wood by means of organic
solvents [25]. They are generally in the solute state, which motivates their common
treatment with water in one phase, indicated by the subscript H2Oext. Water in
the cell wall is in a bound state, resulting in a higher density and probably also a
higher thermal conductivity of water. However, applicable values for bound water
properties are not known to the author, therefore the values of free water were
taken, which are tabulated in steam tables (e.g. [33]). Fitting a polynomial to
these thermal conductivity values for temperatures between the freezing and the
boiling point at normal pressure results in:

λH2O = −0.7282 + 7.299 × 10−3 T − 9.454 × 10−6 T 2 [W/(mK)] , (4.4)

where T denotes the actual temperature in [K]. Water is of course a thermally
isotropic material, so that the thermal conductivity does not depend on the spatial
direction of the temperature gradient.

• Hemicellulose: Hemicellulose is assumed to exhibit thermally isotropic material
behavior as well. Its thermal conductivity is set equal to the value of glassy glucose
at 20 °C, which amounts to λhemcel = 0.34W/(mK) [31].

• Lignin: Also this component is assumed to show a thermally isotropic material be-
havior. Values for the thermal conductivity of pure lignin have not been measured
yet. Therefore the thermal conductivity is back-calculated from the corresponding
characteristic value of ARBOFORM® F45 nature [70], which is a thermoplastic
material, with lignin occupying about 70% of the dry volume. Additional natural
particles make up the rest of the composite. A typical thermal conductivity of
ARBOFORM® is λARBOFORM = 0.384W/(mK), measured at a water content of
6% [70].

The thermal behavior of ARBOFORM® can be estimated from that of its con-
stituents with a Mori-Tanaka scheme, considering lignin as continuous matrix,
and the natural particles and water as inclusions. The thermal conductivities
can be suitably chosen as λpart = 0.34W/(mK) for the natural particles (equal
to the value of hemicellulose), and λH2O = 0.60W/(mK) for water (see Eq.
(4.4), T = 293.15K). Therewith the estimated thermal conductivity tensor of
ARBOFORM® is

KMT
ARBOFORM =

{
fligKlig +

∑

r

frKr ·
[
I+Plig

sph · (Kr −Klig)
]−1
}
·

{
fligI+

∑

s

fs

[
I+Plig

sph · (Ks −Klig)
]−1
}−1

, (4.5)

r, s ∈ [part, H2O] ,
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with volume fractions, taking into account the water content of 6%,

flig =
0.70

1 + 0.06
= 0.660,

fpart =
0.30

1 + 0.06
= 0.283, (4.6)

fH2O =
0.06

1 + 0.06
= 0.057,

and with

Kr = λr I, r ∈ [lig, part, H2O, ARBOFORM] . (4.7)

Solving Eq. (4.5) for the thermal conductivity of lignin, λlig, which is the only
unknown variable, the value for dry lignin is gained as

λlig = 0.39W/(mK). (4.8)

• Cellulose: The fourth tissue-independent component is cellulose. Although the
thermal conductivity of cellulose insulations is well documented in literature, no
values for the material cellulose itself are available. In order to estimate the thermal
conductivities of partly crystalline cellulose as it is found in wood from these values,
empirical relations derived from stretched polymers are employed, assuming sim-
ilarity of the thermal behavior of partly crystalline cellulose and partly stretched
polymers. Stretching of an amorphous polymer results in partial alignment of
the polymer chains, so that structural and, in consequence, thermo-mechanical
anisotropy of the material is introduced. Eiermann [19] proposes an empirical
equation to relate the thermal conductivity of the unstretched isotropic polymer,
λiso, to its corresponding properties parallel and perpendicular to the stretching
direction, λ‖ and λ⊥, respectively:

3

λiso
=

1

λ‖ +
2

λ⊥ . (4.9)

Analogously also anisotropy of the thermal expansion behavior is introduced by
extensive stretching of polymers. Relations between the anisotropy ratios in ther-
mal conductivity and linear thermal expansion coefficients were again formulated
by [19]:

λiso

λ‖ = 0.8

(
α‖

αiso

)
+ 0.2, (4.10)

λiso

λ⊥ = 0.8

(
α⊥

αiso

)
+ 0.2, (4.11)

where α‖ and α⊥ denote thermal expansion coefficients parallel and perpendicular
to the fiber direction. αiso is the expansion coefficient of the unstretched (isotropic)
polymer.

Assuming that the partial alignment of polymer chains upon stretching has a simi-
lar effect on the thermal behavior of amorphous polymers as the partial alignment
of glucose chains in partly crystalline cellulose, Eqs. (4.9)-(4.11) can be applied to
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wood cellulose. The thermal conductivity of amorphous cellulose is set equal to the
value of glassy glucose, i.e. λiso

cel = 0.34W/(mK), as it was done for hemicellulose.
Thermal expansion coefficients of cellulose are known both parallel and perpendic-

ular to the direction of the glucose chains. They amount to α
‖
cel = 0.60×10−5 1/K

in the longitudinal direction and to α⊥
cel = 5.30 × 10−5 1/K in the transverse one

for partly crystalline wood cellulose [47]. Inserting Eqs. (4.10) and (4.11) in (4.9)

and solving for λ
‖
cel and λ⊥

cel, respectively, yields

λ
‖
cel =

10α⊥
cel + 5α

‖
cel

2α⊥
cel + 13α

‖
cel

λiso
cel =

= 3.0435λiso
cel = 3.0435 × 0.34W/(mK) = 1.04W/(mK), (4.12)

λ⊥
cel =

10α⊥
cel + 5α

‖
cel

14α⊥
cel + 1α

‖
cel

λiso
cel =

= 0.7487λiso
cel = 0.7487 × 0.34W/(mK) = 0.26W/(mK). (4.13)

Assuming a reference frame in which axis 3 is aligned with the fiber direction, the
resulting thermal conductivity tensor shows the following non-zero components:

Kcel,33 = λ
‖
cel and Kcel,11 = Kcel,22 = λ⊥

cel.

• Air: Since heat transport takes place also in the air filling the cell lumens, (moist)
air constitutes another (tissue-independent) phase in the micromechanical model.
Since the thermal conductivities of air and water vapor are very similar, they are
not treated as separate phases, and the influence of the water vapor content on
the overall thermal conductivity of air is neglected. Further, radiative convective
or diffusive heat transfer within the cell lumens is not accounted for in this model
for thermal conduction – the first two processes are negligible small due to the
relatively low temperature level and the small temperature differences within one
lumen, the latter is described by another process (flux of water vapor, see Chapter
3). Based on experimental results [52], the (isotropic) thermal conductivity of air
is approximated by a polynomial depending on temperature:

λair = 3.102 × 10−4 + 9.500 × 10−5 T − 2.917 × 10−8 T 2 [W/(mK)] , (4.14)

with T as absolute temperature in [K].

Inorganic compounds such as, e.g., ash are only found in traces of typically 0.1− 0.5%.
Given, in addition, their presumably similarly thermal conductivity compared to the
other phases (for example λash = 0.14 − 0.31W/(mK) [84]), they hardly affect the
thermal properties of wood at the macroscopic scale. Hence, they are not regarded in
the model.

The obtained thermal conductivities of the remaining phases are summarized in Ta-
ble 4.1.
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Table 4.1: Input data set I: ’Universal’ phase thermal conductivity values

Phase Material behavior λ [W/(mK)]

hemicellulose isotropic 0.34
lignin isotropic 0.39
water + extractives isotropic λH2O, see Eq. (4.4)
lumen, vessel isotropic λair, see Eq. (4.14)

Kij [W/(mK)]

cellulose transversely isotropic Kcel,11 = 0.26
Kcel,22 = 0.26
Kcel,33 = 1.04

4.4 Definition of the multiscale homogenization model

Recalling the microstructure of wood as described in Section 2.1, the interaction of
elementary components is considered in eight homogenization steps on six hierarchical
levels, see Fig. 4.2. All steps are described in detail in the following subsections.

4.4.1 Step I: Polymer network

In the first homogenization step, an RVE of polymer network with 8–20 nm charac-
teristic length is defined (see Fig. 4.2(I)). The polymer network is composed of hemi-
cellulose, lignin, and water. These components are intimately mixed, occupying the
volume fractions f̃hemcel, f̃lig and f̃H2Oext, with f̃hemcel + f̃lig + f̃H2Oext = 1. Within the
network, the polymers and the water are mixed in a disordered manner. Hence a self-
consistent scheme with inclusions of spherical shape is used. Thus, in order to estimate
the thermal conductivity of the polymer network, KSC

poly, Eq. (4.1) is specified for three

(spherical) inclusion phases, i.e. for r, s ∈ [hemcel, lig, H2Oext], for K0 = KSC
poly, and for

P0
hemcel = P0

lig = P0
H2Oext = Ppoly

sph , resulting in

KSC
poly =

{∑

r

f̃rKr ·
[
I+Ppoly

sph ·
(
Kr −KSC

poly

)]−1
}

·
{∑

s

f̃s

[
I+Ppoly

sph ·
(
Ks −KSC

poly

)]−1
}−1

, (4.15)

r, s ∈ [hemcel, lig, H2Oext] ,

with Khemcel, Klig, and KH2Oext according to Table 4.1. The non-zero components of

the symmetric tensor Ppoly
sph read as follows:

P poly
sph,11 = P poly

sph,22 = P poly
sph,33 = 1/

(
3KSC

poly,11

)
. (4.16)

Since KSC
poly,11 = KSC

poly,22 = KSC
poly,33 is the only unknown variable, the implicit Eq. (4.15)

can be solved directly.
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Figure 4.2: Six-level homogenization procedure for thermal conductivity of wood
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4.4.2 Step II: Cell wall material

In the next homogenization step, the conductivity tensor of the cell wall material is
determined. A distinction of the different layers of the cell wall is not made. Mean values
of the chemical composition and an average microfibril angle of 20° [45] are considered
instead. An RVE with a characteristic length of 0.5–1 µm is defined. Therein, circular
cylindrical inclusions representing cellulose fibers (with volume fraction fcel), exhibiting
typical diameters of 20–100 nm, are embedded in a contiguous polymer matrix (with
volume fraction fpoly = 1 − fcel). The behavior of such a composite material can be
calculated by a Mori-Tanaka scheme. Thus, in order to estimate the thermal conductivity
of the cell wall material, KMT

cwm, Eq. (4.1) is specified for one (right circular cylindrical)
inclusion phase, i.e. for r, s ∈ [cel, poly], for K0 = KSC

poly from Eq. (4.15), and for

P0
cel = Ppoly

circcyl, resulting in

KMT
cwm =

{
fpolyK

SC
poly + fcelKcel ·

[
I+Ppoly

circcyl ·
(
Kcel −KSC

poly

)]−1
}
·

{
fpolyI+ fcel

[
I+Ppoly

circcyl ·
(
Kcel −KSC

poly

)]−1
}−1

, (4.17)

with Kcel according to Table 4.1. The non-zero components of the symmetric tensor
Ppoly

circcyl read as follows:

P poly
circcyl,11 = P poly

circcyl,22 = 1/
(
2KSC

poly,11

)
. (4.18)

The inclination of the cellulose fibers and, thus, of the principal material directions
of the cell wall material in relation to the cell axis is implemented by rotation of the
conductivity tensor KMT

cwm.

4.4.3 Step III(a) / Step III(b): Earlywood, latewood

In homogenization steps III(a) and III(b), the thermal conductivities of the cellular
structures in earlywood and latewood – made up of wood tracheids, and, in hardwood
samples, also of parenchyma cells and fibers – are calculated. All of these cells show simi-
lar dimensions and properties and, thus, can be treated together. The cell lumens, which
show rectangular or polygonal cross sections and a strongly elongated shape aligned in
the longitudinal direction, are approximated by ellipsoids in the model. The behavior of
such a material is again suitably estimated by a Mori-Tanaka scheme. For earlywood,
the RVE is defined at 100–150 µm characteristic length. It contains ellipsoidal pores with
characteristic diameters of 10–50 µm, representing the cell lumens, embedded in a con-
tiguous matrix built up by the cell wall material of homogenization step II (Eq. (4.17)).
The volume fractions occupied by these two phases are f̂lum and f̂cwm, f̂lum + f̂cwm = 1.
In order to formulate a Mori-Tanaka scheme for the estimation of the thermal conduc-
tivity of earlywood, KMT

early, Eq. (4.1) is specified for one (ellipsoidal) inclusion phase,

and the cell wall matrix, i.e. for r, s ∈ [lum, cwm], for K0 = KMT
cwm from Eq. (4.17), and
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for P0
lum = Pcwm

ell,early, resulting in

KMT
early =

{
f̂cwmK

MT
cwm + f̂lumKair ·

[
I+Pcwm

ell,early ·
(
Kair −KMT

cwm

)]−1
}
·

{
f̂cwmI+ f̂lum

[
I+Pcwm

ell,early ·
(
Kair −KMT

cwm

)]−1
}−1

, (4.19)

with Kair according to Table 4.1. The components of the tensor Pcwm
ell,early are calculated

from Eq. (4.2) with lumen diameters derived subsequently in Subsection 4.5.2.

The homogenized thermal conductivity tensor of latewood, KMT
late, follows from substitu-

tion of ’early’ by ’late’, and of ’f̂r’ by ’f̌r’ in Eq. (4.19). The components of the tensor
Pcwm

ell,late follow (as for earlywood) from Eq. (4.2) by use of the lumen diameters according
to Subsection 4.5.2.

4.4.4 Step III(c): Ray cell material

Within an RVE of ray cell material with 50–500 µm characteristic length, ellipsoidal pores
oriented in the radial direction with characteristic diameters of 5–15 µm, representing the
ray cell lumens, are embedded in a contiguous matrix built up by the cell wall material
of homogenization step II (Eq. 4.17). The slight difference in chemical composition
between ray cells and the longitudinally oriented cells is neglected, but the different
main microfibril orientation in ray cells, which is now parallel to the ray cell axis, is
accounted for. The homogenization procedure is similar to homogenization steps III(a)
and III(b), but the main axis of the pores and of the cellulose fibers in the cell wall is
now oriented in radial direction. The volume fractions occupied by the two phases are
ḟlum and ḟcwm, ḟlum+ ḟcwm = 1. Using again a Mori-Tanaka scheme for the estimation of
the thermal conductivity of the ray cells, KMT

ray , Eq. (4.1) is specified for one (ellipsoidal)
inclusion phase as the ray cell lumens, and one cell wall matrix, i.e. for r, s ∈ [lum, cwm],
for Kair according to Table 4.1, for K0 = KMT

cwm,rot according to Eq. (4.21), and for
P0

lum = Pcwm
ell,ray, resulting in

KMT
ray =

{
ḟcwmK

MT
cwm + ḟlumKair ·

[
I+Pcwm

ell,ray ·
(
Kair −KMT

cwm

)]−1
}
·

{
ḟcwmI+ ḟlum

[
I+Pcwm

ell,ray ·
(
Kair −KMT

cwm

)]−1
}−1

, (4.20)

with

KMT
cwm,rot,11 = KMT

cwm,33,

KMT
cwm,rot,22 = KMT

cwm,rot,33 = KMT
cwm,11, (4.21)

KMT
cwm,rot,ij = 0 for i 6= j.

The components of the tensor Pcwm
ell,ray can again be calculated with Eq. (4.2), this time

with the lumen diameters according to Subsection 4.5.2.

4.4.5 Step IV: Hardwood with vessels

In softwood tissues, all cells oriented in longitudinal direction show similar dimensions.
In hardwood species, however, the vessels constitute additional cells at a larger length
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scale, making a fourth homogenization step necessary. Because of the predominant
location of vessels in earlywood, vessels are only considered in this tissue type (and not
in latewood) in the model. A further distinction regarding ring porous hardwood and
diffusive porous hardwood is not made.

Within an RVE of hardwood with vessels showing 1–2mm characteristic length, cylindri-
cal pores oriented in longitudinal direction with characteristic diameters of 200–500 µm,
representing the vessels, are embedded in a contiguous matrix built up by earlywood
of homogenization step III(a) [Eq. (4.19)]. The volume fractions occupied by these two
phases are f̄ves and f̄early, f̄ves + f̄early = 1. Using again a Mori-Tanaka scheme for the
estimation of the thermal conductivity of hardwood with vessels, KMT

hard+ves, Eq. (4.1)
is specified for one (cylindrical) inclusion phase as the vessels, and the earlywood ma-
trix, i.e. for r, s ∈ [ves, early], for Kves = Kair according to Table 4.1, for K0 = KMT

early

according to Eq. (4.19), and for P0
ves = Pearly

circcyl, resulting in

KMT
hard+ves =

{
f̄earlyK

MT
early + f̄vesKves ·

[
I+Pearly

circcyl ·
(
Kves −KMT

early

)]−1
}
·

{
f̄earlyI+ f̄ves

[
I+Pearly

circcyl ·
(
Kves −KMT

early

)]−1
}−1

. (4.22)

The components of the tensor Pearly
circcyl can be calculated by specializing Eq. (4.2) for

circular cylindrical inclusions, i.e. for a1 = a2 = 1, a3 = ∞.

4.4.6 Step V: Annual rings

The arrangement in layers of earlywood and latewood in the annual rings at a length
scale of about 5–10 mm is taken into account by rules of mixture: While the layers are
connected in series in radial direction, they are arranged in parallel in tangential and
longitudinal direction. Therefore, the homogenized thermal conductivities of the annual
ring material in relation to its principal material directions can be written as:

K
S/P
ann,11 =

(
f̈(hard+ves)/K

MT
hard+ves,11 + f̈late/K

MT
late,11

)−1
,

K
S/P
ann,22 = f̈(hard+ves)K

MT
hard+ves,22 + f̈lateK

MT
late,22, (4.23)

K
S/P
ann,33 = f̈(hard+ves)K

MT
hard+ves,33 + f̈lateK

MT
late,33.

All homogenization steps till step V result in orthotropic material behavior with respect
to the three principal material axes of wood. This means that off-diagonal components of
KMT

hard+ves and KMT
late are equal to zero. In consequence, also the off-diagonal components

ofK
S/P
ann vanish when represented in relation to the principal material directions, resulting

again in an orthotropic material behavior expressed by the following structure of the
conductivity tensor:

KS/P
ann =




K
S/P
ann,11 0 0

0 K
S/P
ann,22 0

0 0 K
S/P
ann,33


 . (4.24)
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4.4.7 Step VI: Clear wood sample

Finally, the wood rays traversing the layered clear wood material have to be considered.
This is done in another homogenization step formulated for an RVE of clear wood with
about 5–10 mm characteristic length. Therein, elliptic cylindrical inclusions with main
extension in radial direction and characteristic diameters of 50-500 µm, representing the
ray cell material of homogenization step III(c), are embedded in a contiguous matrix built
up by the layered material of homogenization step IV. The volume fractions occupied by
these two phases are f́ray and f́ann, f́ray + f́ann = 1. Using again a Mori-Tanaka scheme
for the estimation of the thermal conductivity of the wood sample, KMT

wood, Eq. (4.1) is
specified for one (elliptic cylindrical) inclusion phase as the wood rays, and the annual

ring matrix, i.e. for r, s ∈ [ray, ann], for KMT
ray from Eq. (4.20), for K0 = K

S/P
ann from

Eq. (4.24), and for P0
ray = Pann

ellcyl, resulting in

KMT
wood =

{
f́annK

S/P
ann + f́rayK

MT
ray ·

[
I+Pann

ellcyl ·
(
KMT

ray −KS/P
ann

)]−1
}
·

{
f́annI+ f́ray

[
I+Pann

ellcyl ·
(
KMT

ray −KS/P
ann

)]−1
}−1

. (4.25)

The components of the P-tensor Pann
ellcyl can be calculated from Eq. (4.2) with diameters

derived subsequently in Subsection 4.5.2.

The cross-sectional dimensions of the rays are similar to those of the vessels and, thus,
clearly below the characteristic widths of the growth rings considered in homogenization
step V. Still homogenization step VI does not mean an interference with the principle
of separation of scales invoked in Section 4.2, since the decisive dimensions of the two
steps are different (R for step V, L and T for step VI), and therefore the steps don’t
affect each other. Actually, they are exchangeable without effect on the final result.

4.5 Composition and morphological properties of wood

4.5.1 Composition of different wood samples

Evaluation of the multiscale homogenization model requires determination of the volume
fractions of the different phases of homogenization steps I to VI (Fig. 4.2). The volume
fractions of steps I and II are determined as described in Hofstetter et al. [44]. The only
difference to Hofstetter et al. [44] is the aggregation of the crystalline cellulose phase
and the amorphous cellulose phase into one cellulose phase, with fcel = fcrycel + famocel.
The steps III, V, and VI are somewhat different to Hofstetter et al. [44]. The calculation
of their associated volume fractions is presented in the following.

Volume fractions in earlywood, latewood, ray cell material (homogenization
steps III(a), III(b), III(c))

The determination of the volume fractions of phases in earlywood emanates from the
mass density of earlywood (including vessels). Kollmann [55] gives an according empir-
ical equation for wood based on an average volumetric moisture expansion coefficient.



4.5 Composition and morphological properties of wood 43

Approximately, this relation also applies to earlywood and latewood, therefore the de-
pendence of the actual mass density on the dry density of earlywood ρdryhard+ves (see
Eq. (4.30)) and the actual moisture content MC, respectively, can be approximated by:

ρwethard+ves = ρdryhard+ves

1 +MC

1 + 0.84 ρdryhard+ves MC
. (4.26)

The mass density of the wet cell wall material, ρwetcwm, is calculated according to Hofstetter
et al. [44] as the weighted average of the mass densities of the chemical constituents
(cellulose, hemicellulose, lignin, extractives) and of water, with the according volume
fractions as weights. Knowledge of the mass densities ρwethard+ves and ρwetcwm allows for
computation of the total porosity (comprising lumens and vessels) in earlywood with
empty pores, from

f̂por = 1− ρwethard+ves

ρwetcwm

. (4.27)

Change of the reference volume from that of hardwood with vessels to that of earlywood
without vessels results in

f̂lum =
f̂por − f̂ves

1− f̂ves
. (4.28)

In softwoods, no vessels exist (f̂ves = 0), so that Eq. (4.28) reduces to f̂lum = f̂por.

The volume fractions in latewood follow from substitution of ’hard+ves’ by ’late’, and
of ’f̂r’ by ’f̌r’, r ∈ [cwm, lum], in Eqs. (4.26)-(4.28). For the ray cells, the according
substitutions are ’hard+ves’ by ’ray’, and ’f̂r’ by ’ḟr’, r ∈ [cwm, lum], in Eqs. (4.26)-
(4.28). In both cases – latewood and ray tissue – the vessel volume fraction is zero
(f̌ves = ḟves = 0). The density of the wood rays is set equal to the mean density of the

whole wood sample, ρdryray = ρdrywood.

Volume fractions in annual rings (homogenization step V)

The actually continuous density distribution across an annual ring is approximated by
two sections with constant densities: the earlywood and the latewood sections with
average mass densities of ρhard+ves and ρlate, respectively. The volume fractions within
the annual rings, i.e. that of earlywood f̈hard+ves and that of latewood f̈late [Fig. 4.2(V),
Eq. (4.24)], are calculated following Kollmann [55]. For a sample with known wood

species and given mean density ρdrywood in the dry state, at first the volume fraction of

latewood, f̈late, is calculated by use of species-dependent correlations between dry wood
densities ρdrywood and latewood contents (stated in Table 4.2). Thereon, the volume fraction

of hardwood with vessels, f̈hard+ves, is obtained as

f̈hard+ves = 1− f̈late. (4.29)

Finally, by use of again species-dependent density ratios (ρlate/ρhard+ves)dry (see Ta-

ble 4.2), the densities of dry hardwood with vessels and latewood, ρdryhard+ves and ρdrylate,
follow from:

ρdryhard+ves =
ρdrywood

f̈hard+ves + f̈late

(
ρlate

ρhard+ves

)
dry

, (4.30)



44 4 Multiscale model for thermal conductivity

ρdrylate = ρdryhard+ves

(
ρlate

ρhard+ves

)
dry

. (4.31)

Volume fractions in clear wood sample (homogenization step VI)

The volume fractions within a clear wood sample, i.e. that of wood rays f́ray and that

of annual ring material, f́ann = 1− f́ray (Fig. 4.2(VI), Eq. (4.25)), are determined based

on literature data [110] for f́ray depending on the wood species (cf. Table 4.2).

Table 4.2: Input data set II: Composition and morphology of different wood species

Species f̂ves f́ray

(
a2
a3

)
ray

(
ρlate

ρhard+ves

)
dry

f̈late

Softwood

Cedar - 0.096 16/200 2.60 0.857 ρdrywood − 0.234

Douglas fir - 0.070 12/80 2.80 1.161 ρdrywood − 0.268

Fir - 0.096 16/200 2.30 3.478 ρdrywood − 1.009

Hemlock - 0.088 17/245 2.60 3.750 ρdrywood − 1.270

Larch - 0.088 16/190 2.40 0.857 ρdrywood − 0.234

Pine - 0.055 25/285 2.60 1.161 ρdrywood − 0.268

Spruce - 0.047 11/150 2.60 3.750 ρdrywood − 1.270

Hardwood

Ash 0.12 0.149 27/290 1.30 1.846 ρdrywood − 0.577

Balsa 0.04 0.180 95/1850 1.10 0.20

Beech 0.25 0.157 60/1000 1.86 2.313 ρdrywood − 1.163

Birch 0.25 0.105 15/240 1.10 0.25

Hickory 0.29 0.200 20/130 1.30 1.846 ρdrywood − 0.577

Maple 0.07 0.172 25/270 1.50 4.000 ρdrywood − 2.000

Oak 0.24 0.228 50/600 2.81 1.678 ρdrywood − 0.552

Poplar 0.11 0.120 13/250 1.68 4.061 ρdrywood − 1.299

Source [44] [110] [110] [110] [55]

4.5.2 Morphological properties of different wood samples

Evaluation of the multiscale homogenization model also requires input of morphological
properties of the inclusions making up the different phases in the homogenization steps
I to VI (Fig. 4.2). In step I (polymer network) spherical inclusions are assumed, in steps
II and IV (cell wall material, hardwood with vessels) circular cylindrical inclusions. The
second order P-tensor used to describe these morphologies can be calculated directly
from Eqs. (4.16) and (4.18) without specification of further morphological characteristics.
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For steps III(a), III(b), III(c), and VI, dimensions of the involved inclusions of ellipsoidal
and elliptic cylindrical shape are detailed next.

Dimensions of lumens in earlywood and latewood (homogenization steps
III(a) and III(b))

Calculation of the second order P-tensor for ellipsoidal inclusions requires specification
of the three principal radii of the ellipsoids (more precisely their ratios relative to one
another). Depending on the local density of wood, the thickness of the cell walls and
the dimensions of the tracheids change, especially in radial direction. The tangential
cell diameter shows a much smaller variation and is set constant as âT = 50µm. The
length of the tracheids (in longitudinal direction) is taken as âL = 1.50mm [77]. The
radial cell diameter, the cell wall thickness, and the thus following dimensions of the
lumens are determined by empirical relations depending on local dry density proposed
by Perré [77]. These relations are actually based on a rectangular representation of the
cross-sections of the tracheids, but are used here as reasonable approximations as well.
Starting with earlywood, the radial dimension of the wood cell reads as

âR = 5.75 × 10−5 − 3.75 × 10−5 ρdryearly

[
g/cm3

]
[m] . (4.32)

Based on the radial and tangential dimensions, âR and âT, and the volume fraction of
the cell wall, f̂cwm, the cell wall thickness can be calculated as

t̂ =
1

4
âR +

1

4
âT − 1

4

√
â2R + 2 âR âT + â2T − 4 f̂cwm âR âT. (4.33)

Unlike the model of Perré [77], moisture-dependent changes of the cell wall thickness are
taken into account through considering the cell wall fraction f̂cwm in the wet state. In
a simplified manner, the ratio of radial and tangential cell dimensions is held constant
during changes of the moisture content, meaning that isotropy of dimensional changes
in the transverse plane is assumed.

In the multiscale model, the lumens are considered as ellipsoidal inclusions, having di-
ameters equal to the dimensions of the cuboid-shaped inclusions described afore. The
aspect ratios of their diameters are determined from the three dimensions of the lumens,
âR, âT, and âL, and the cell wall thickness t̂:

â1
â3

=
âR − 2 t̂

âL
,

â2
â3

=
âT − 2 t̂

âL
. (4.34)

For a shorter calculation time of the micromechanical model, the longitudinal dimension
âL is assumed to be infinite for the case of thermal conduction. This is physically
permissible, since the cell walls act as mean heat transport routes, and the lumens only
contribute a minor share, because of the much lower thermal conductivity of the lumens
compared to the cell walls.

The corresponding ellipsoidal dimensions of the lumens in latewood, ǎ1, ǎ2, and ǎ3, follow
from substitution of “hard+ves” by “late”, and of “f̂cwm” by “f̌cwm” in Eqs. (4.32)-
(4.34). Again, the ellipsoids are replaced by cylinders in practical applications in order
to reduce calculation time.
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Dimensions of lumens in the ray cell material (homogenization step III(c))

The shape of the cells building up the wood rays is reproduced by ellipsoidal inclusions
with circular cross-sections. Based on pictures of sections through ray cell bundles in
Wagenführ [110], the ratios of the three principal ellipsoidal radii are chosen as:

ȧ1
ȧ3

= 4,
ȧ2
ȧ3

= 1. (4.35)

For the case of thermal conductivity, ȧ1
ȧ3

is assumed to be infinite. As described before
in relation to the longitudinal extension of the lumen, this reduces calculation time
while being physically admissible due to the predominance of the heat transport routes
through the cell walls.

Dimension of wood rays (homogenization step VI)

Wood rays are represented by ellipsoidal cylinders in the model which run throughout
the wood tissue in the radial direction. Based on typical dimensions of wood rays
specified by Wagenführ [110], average ratios of tangential and longitudinal radii of ray
cells, (a2/a3)ray, of different wood species can be calculated. They are summarized in
Table 4.2. The ratios of the three radii, which are required for the calculation of the
P-tensor of the ray cells, are therefore:

á1
á3

= ∞,
á2
á3

=

(
a2
a3

)

ray

. (4.36)

4.6 Experimental validation

4.6.1 Strategy

The validation of the multiscale model for thermal conductivity is based on experimental
data from literature. Model predictions, i.e. conductivity valuesKMT

wood, are computed on
the basis of tissue-independent phase conductivities λhemcel, λlig, λH2Oext, Kcel, and λair

(input data set I, Table 4.1) and given sample-specific volume fractions and morphologi-
cal properties (input data set II, Table 4.2). These model predictions are compared with
corresponding experimentally determined thermal conductivities of macroscopic (clear)
wood samples (experimental data set, Section 4.6.2).

4.6.2 Tissue-dependent thermal properties of different wood samples

The thermal conductivities of different wood samples are usually determined by means
of a steady-state hot-plate method. A review of test data for wood is given by Ratcliffe
[80, 81, 82]. Evaluation of the presented multiscale model requires knowledge of� species,� oven-dry density,
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Only test results where all of these data are specified are considered in the model valida-
tion, namely results reported by Griffiths [32], Rowley [86], Wangaard [111], Narayana-
murti [71]), and MacLean [63]. In Maku [64], Ražnjević [83], and Grønli [34], unfortu-
nately the moisture content is not reported, so that the respective data sets cannot be
used. In the end, 452 complete data sets of 48 different European and American wood
species (see Table 4.4 in the appendix of this chapter) could be collected.

All data sets confirm the orthotropy of the thermal conductivity of wood with principal
material directions along the stem axis (longitudinal direction L), normal to the growth
rings (radial direction R), and tangential to them (tangential direction T), see Fig. 2.1(a).
The difference between axial and transverse properties, e.g. between thermal conduc-
tivities λL and λR, is by far larger than that between radial and tangential properties,
e.g. between λR and λT. Some of the sources specify values for the “radial–oblique”, the
“transversal/oblique”, and the “tangential–oblique” directions, which denote measuring
directions not coinciding with the principal material directions of wood. For compari-
son, the thermal conductivity was evaluated at inclination angles of 22.5°, 45.0° or 67.5°,
respectively, towards the radial direction in the cross-sectional plane in these cases.

4.6.3 Comparison between model estimates and experimental thermal
conductivity values

The experimental validation of the developed multiscale model is done by a comparison
of model predictions for thermal conductivities, computed from Eq. (4.25), for given
sample-specific volume fractions and morphological properties, with corresponding ex-
perimental measurement results. The comparison is illustrated in Fig. 4.3, where each
marker indicates one pair of thermal conductivity measurement and corresponding model
prediction. Different markers are used for softwood and hardwood species and for the
three principal material directions L, R, and T. Measurements in the transverse plane
inclined to the principal directions R and T are referred to as “trans” without further
differentiation. The solid diagonal line indicates perfect agreement between model pre-
dicted and experimental values.

In order to quantify the agreement, differences between predicted estimates and experi-
mental measurements are determined in terms of mean values and standard deviations
of relative prediction errors, ē and s. Beside these error measures, the correlation coef-
ficients r2 are determined.

The model estimates for the transversal thermal conductivity (i.e. radial, tangential,
and transversal values), λtrans, show a good agreement with the measured values. The
correlation coefficient is r2 = 90.7%, the error measures amount to ē = −11.5% and s =
9.1%. Obviously, the model tends to slightly underestimate the transversal conductivity
of macroscopic wood. The quality of correlation slightly depends on the source of the
values, which might be due to different measurement methods.
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Figure 4.3: Comparison of predicted and measured thermal conductivities

As compared to the mean values of the errors between model predictions and exper-
imental results, the corresponding standard deviations are relatively low and can be
explained by variations within the species – in the model average values for each species
are used – and, eventually, by limited accuracy of the underlying experimental results.
The general tendency to underestimation might be caused by inaccurate and insecure
input values for the thermal conductivities of the cell wall constituents, which partly
had to be estimated for lack of suitable direct measurement results.

For the longitudinal thermal conductivity λL only eight data sets are available from
only one literature source [32]. Thus the correlation coefficient of r2 = 41.2% has
only a limited significance. The error measures of ē = +2.8% and s = 4.4% show a
slight overestimation of the longitudinal thermal conductivity by the model. A similar
tendency to overestimation was also observed for the transversal data from the same
source. On the whole, the prediction quality of the model for longitudinal thermal
conductivity appears reasonable.

4.7 Macroscopic regression functions based on the multi-

scale model

The model presented in this chapter allows for predictions of thermal conductivities
for many different, also non-tested configurations. Due to its analytical formulation this
takes only a few seconds. However, in practical use (e.g. in a finite element calculation) a
regression function is more convenient. For this purpose, the predictions of the multiscale
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model for a specific wood species were fitted by an appropriate polynomial, considering
dependence on density, temperature, and moisture content. The polynomial reads as

λi = λref
i

(
a10,i + a11,i ρ+ a12,i ρ

2 + a13,i ρ
3
)

(
a20,i + a21,i T + a22,i T

2
)

(
a30,i + a31,i MC + a32,i MC

2
)

[W/(mK)], i ∈ [R, T, L] (4.37)

where ρ, T , and MC are density, temperature, and moisture content related to reference
conditions:

ρ =
ρdrywood

450 kg/m3
, T =

T

293.15K
, MC =

MC

12%
. (4.38)

λref
i is the thermal conductivity in direction i = R, T, L at reference conditions. The

fitting coefficients a for spruce are given in Table 4.3. They are valid for a density ρdrywood
from 300 to 750 kg/m³, a moisture content MC from 0.05 to 0.25, and a temperature T
from 273.15 to 353.15 K (0–80 °C).
Table 4.3: Reference values λref

i [W/(mK)] and coefficients ai for directions i = R, T, L,
used in Eq. (4.37) for spruce clear wood, calculated based on results of the multiscale
homogenization model.

i R (radial) T (tangential) L (longitudinal)

λref
i 0.08952 0.10571 0.22230

a10,i -0.28394 -0.37026 0.23787
a11,i 3.38383 1.96078 0.52149
a12,i -3.69203 -0.89819 0.20161
a13,i 1.51439 0.21972 -0.04841

a20,i 0.36715 0.39537 0.59275
a21,i 0.75548 0.73931 0.48164
a22,i -0.20293 -0.22270 -0.16189

a30,i 0.82074 0.80087 0.85721
a31,i 0.08485 0.09854 0.04871
a32,i 0.04990 0.05198 0.02636

4.8 Summary

In this chapter, the basic model for multiscale modeling of transport processes is de-
veloped and evaluated for thermal conductivity. The obtained results demonstrate the
considerably good predictive capabilities of the application of mean-field homogenization
techniques to the hierarchically structured material wood, as it was already shown by an
existing micromechanical model for the material’s elastic behavior [44]. In contrast to
currently available models for estimation of thermal transport properties, the presented
model starts at a tissue-independent level and allows to calculate the overall behavior of
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a macroscopic wood sample only based on its microstructure and physical properties of
elementary constituents at the microscale. Average thermal conductivities of the dry cell
wall (back-calculated from macroscopic measurements) are not needed in the presented
model. In the following chapter, the model will be adapted for diffusion.

4.9 Appendix: Thermal conductivity measurements

Table 4.4: Experimental data set: Thermal conductivities of wood samples, with corre-
sponding density, moisture content and temperature

No. Species Direction MC T ρdrywood λexp

(as reported) [1] [K]
[
g/cm3

]
[W/(mK)]

1 Ash T 0.155 293.15 0.740 0.153 [32]
2 Ash T 0.155 298.15 0.740 0.160 [32]
3 Ash R 0.150 293.15 0.740 0.155 [32]
4 Ash R 0.150 298.15 0.740 0.155 [32]
5 Ash L 0.143 293.15 0.740 0.299 [32]

6 Ash L 0.143 298.15 0.740 0.304 [32]
7 Ash T 0.160 293.15 0.740 0.194 [32]
8 Ash T 0.160 298.15 0.740 0.196 [32]
9 Ash R 0.166 293.15 0.740 0.174 [32]
10 Ash R 0.166 298.15 0.740 0.176 [32]

11 Ash L 0.149 293.15 0.740 0.316 [32]
12 Ash L 0.149 298.15 0.740 0.323 [32]
13 Spruce T 0.152 298.15 0.700 0.164 [32]
14 Spruce T 0.152 299.15 0.700 0.167 [32]
15 Spruce R 0.152 300.15 0.700 0.147 [32]

16 Spruce R 0.152 301.15 0.700 0.148 [32]
17 Spruce L 0.145 302.15 0.700 0.294 [32]
18 Spruce L 0.145 303.15 0.700 0.300 [32]
19 Spruce T 0.149 304.15 0.700 0.174 [32]
20 Spruce T 0.149 305.15 0.700 0.175 [32]

21 Spruce R 0.127 306.15 0.700 0.162 [32]
22 Spruce R 0.127 307.15 0.700 0.164 [32]
23 Spruce L 0.152 308.15 0.700 0.325 [32]
24 Spruce L 0.152 309.15 0.700 0.331 [32]
25 Oak R 0.137 293.15 0.600 0.117 [32]

26 Cedar R 0.134 293.15 0.490 0.121 [32]
27 Cedar R 0.127 293.15 0.480 0.106 [32]
28 Cedar R 0.106 293.15 0.480 0.116 [32]
29 Balsa R 0.130 293.15 0.100 0.046 [32]
30 Fir trans 0.150 293.15 0.600 0.117 [32]

31 Pinus excelsa R 0.110 293.55 0.480 0.108 [71]
32 Cedrus deodara R 0.070 294.15 0.542 0.131 [71]
33 Picea morinda T 0.140 294.09 0.571 0.120 [71]

Continued on next page
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Table 4.4 – continued from previous page

No. Species Direction MC T ρdrywood λexp

(as reported) [1] [K]
[
g/cm3

]
[W/(mK)]

34 Quercus T 0.124 292.81 0.897 0.190 [71]
35 Aspen, bigtooth trans 0.000 302.59 0.410 0.102 [63]

36 Balsa trans 0.000 302.59 0.160 0.059 [63]
37 Douglas-fir trans 0.000 302.59 0.460 0.110 [63]
38 Fir, white trans 0.000 302.59 0.410 0.102 [63]
39 Hemlock, western trans 0.000 302.59 0.460 0.114 [63]
40 Larch, western trans 0.000 302.59 0.570 0.136 [63]

41 Maple, sugar trans 0.000 302.59 0.680 0.163 [63]
42 Oak, red trans 0.000 302.59 0.670 0.172 [63]
43 Pine, southern yellow trans 0.000 302.59 0.560 0.136 [63]
44 Pine, white trans 0.000 302.59 0.400 0.104 [63]
45 Redcedar, western trans 0.000 302.59 0.340 0.092 [63]

46 Spruce, Engelmann trans 0.000 302.59 0.340 0.089 [63]
47 Pine, white trans 0.000 302.59 0.400 0.104 [63]
48 Ash, white trans 0.156 302.59 0.560 0.175 [63]
49 Aspen, bigtooth trans 0.121 302.59 0.410 0.118 [63]
50 Balsa trans 0.080 302.59 0.170 0.068 [63]

51 Birch, yellow trans 0.108 302.59 0.640 0.172 [63]
52 Douglas-fir trans 0.184 302.59 0.460 0.140 [63]
53 Larch, western trans 0.126 302.59 0.460 0.140 [63]
54 Maple, sugar trans 0.117 302.59 0.660 0.202 [63]
55 Oak, red trans 0.124 302.59 0.620 0.195 [63]

56 Oak, white trans 0.111 302.59 0.620 0.198 [63]
57 Pine, southern yellow trans 0.138 302.59 0.530 0.162 [63]
58 Pine, white trans 0.098 302.59 0.360 0.111 [63]
59 Redcedar, western trans 0.133 302.59 0.320 0.100 [63]
60 Spruce, Engelmann trans 0.130 302.59 0.350 0.110 [63]

61 Beech, American trans 0.111 302.59 0.590 0.169 [63]
62 Fir, white trans 0.117 302.59 0.380 0.113 [63]
63 Maple, silver trans 0.099 302.59 0.470 0.154 [63]
64 Sycamore, American trans 0.090 302.59 0.520 0.154 [63]
65 Ponderosa Pine trans 0.019 297.04 0.375 0.096 [86]

66 Ponderosa Pine trans 0.035 297.04 0.373 0.098 [86]
67 Ponderosa Pine trans 0.075 297.04 0.368 0.103 [86]
68 Ponderosa Pine trans 0.087 297.04 0.366 0.104 [86]
69 Ponderosa Pine trans 0.158 297.04 0.352 0.112 [86]
70 Ponderosa Pine trans 0.227 297.04 0.343 0.121 [86]

71 Ponderosa Pine trans 0.036 297.04 0.489 0.114 [86]
72 Ponderosa Pine trans 0.044 297.04 0.487 0.115 [86]
73 Ponderosa Pine trans 0.072 297.04 0.480 0.118 [86]
74 Ponderosa Pine trans 0.113 297.04 0.470 0.124 [86]
75 Ponderosa Pine trans 0.155 297.04 0.460 0.130 [86]

Continued on next page
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Table 4.4 – continued from previous page

No. Species Direction MC T ρdrywood λexp

(as reported) [1] [K]
[
g/cm3

]
[W/(mK)]

76 Ponderosa Pine trans 0.189 297.04 0.454 0.136 [86]
77 Ponderosa Pine trans 0.020 297.04 0.391 0.105 [86]
78 Ponderosa Pine trans 0.067 297.04 0.387 0.114 [86]
79 Ponderosa Pine trans 0.070 297.04 0.385 0.113 [86]
80 Ponderosa Pine trans 0.194 297.04 0.371 0.134 [86]

81 Ponderosa Pine trans 0.237 297.04 0.366 0.142 [86]
82 Ponderosa Pine trans 0.297 297.04 0.365 0.153 [86]
83 Ponderosa Pine trans 0.126 297.04 0.421 0.125 [86]
84 Ponderosa Pine trans 0.137 297.04 0.414 0.124 [86]
85 Ponderosa Pine trans 0.139 297.04 0.418 0.123 [86]

86 Ponderosa Pine trans 0.225 297.04 0.407 0.142 [86]
87 Ponderosa Pine trans 0.299 297.04 0.402 0.156 [86]
88 Shortleaf Yellow Pine trans 0.001 297.04 0.585 0.124 [86]
89 Shortleaf Yellow Pine trans 0.039 297.04 0.573 0.131 [86]
90 Shortleaf Yellow Pine trans 0.101 297.04 0.554 0.140 [86]

91 Shortleaf Yellow Pine trans 0.135 297.04 0.544 0.144 [86]
92 Shortleaf Yellow Pine trans 0.005 297.04 0.526 0.128 [86]
93 Shortleaf Yellow Pine trans 0.031 297.04 0.521 0.131 [86]
94 Shortleaf Yellow Pine trans 0.055 297.04 0.518 0.136 [86]
95 Shortleaf Yellow Pine trans 0.070 297.04 0.509 0.141 [86]

96 Shortleaf Yellow Pine trans 0.123 297.04 0.498 0.147 [86]
97 Shortleaf Yellow Pine trans 0.139 297.04 0.494 0.147 [86]
98 Shortleaf Yellow Pine trans 0.012 297.04 0.482 0.111 [86]
99 Shortleaf Yellow Pine trans 0.067 297.04 0.476 0.123 [86]

100 Shortleaf Yellow Pine trans 0.069 297.04 0.476 0.123 [86]

101 Shortleaf Yellow Pine trans 0.293 297.04 0.442 0.166 [86]
102 Shortleaf Yellow Pine trans 0.002 297.04 0.489 0.119 [86]
103 Shortleaf Yellow Pine trans 0.033 297.04 0.485 0.122 [86]
104 Shortleaf Yellow Pine trans 0.068 297.04 0.481 0.127 [86]
105 Shortleaf Yellow Pine trans 0.120 297.04 0.455 0.134 [86]

106 Shortleaf Yellow Pine trans 0.169 297.04 0.447 0.139 [86]
107 Shortleaf Yellow Pine trans 0.178 297.04 0.448 0.141 [86]
108 Shortleaf Yellow Pine trans 0.192 297.04 0.441 0.143 [86]
109 Shortleaf Yellow Pine trans 0.229 297.04 0.434 0.144 [86]
110 White Oak trans 0.051 297.04 0.749 0.173 [86]

111 White Oak trans 0.072 297.04 0.737 0.176 [86]
112 White Oak trans 0.087 297.04 0.727 0.178 [86]
113 White Oak trans 0.106 297.04 0.721 0.181 [86]
114 White Oak trans 0.065 297.04 0.600 0.156 [86]
115 White Oak trans 0.074 297.04 0.596 0.157 [86]

116 White Oak trans 0.094 297.04 0.585 0.160 [86]
117 White Oak trans 0.114 297.04 0.577 0.162 [86]
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118 Red Oak trans 0.048 297.04 0.731 0.170 [86]
119 Red Oak trans 0.055 297.04 0.733 0.173 [86]
120 Red Oak trans 0.061 297.04 0.735 0.177 [86]

121 Red Oak trans 0.077 297.04 0.723 0.176 [86]
122 Red Oak trans 0.088 297.04 0.714 0.178 [86]
123 Red Oak trans 0.101 297.04 0.706 0.179 [86]
124 Red Oak trans 0.055 297.04 0.658 0.162 [86]
125 Red Oak trans 0.055 297.04 0.667 0.164 [86]

126 Red Oak trans 0.060 297.04 0.665 0.163 [86]
127 Red Oak trans 0.068 297.04 0.660 0.164 [86]
128 Red Oak trans 0.091 297.04 0.646 0.167 [86]
129 Red Oak trans 0.119 297.04 0.633 0.169 [86]
130 Yellow Birch trans 0.057 297.04 0.598 0.138 [86]

131 Yellow Birch trans 0.078 297.04 0.590 0.140 [86]
132 Yellow Birch trans 0.093 297.04 0.584 0.142 [86]
133 Yellow Birch trans 0.157 297.04 0.559 0.150 [86]
134 Yellow Birch trans 0.056 297.04 0.560 0.126 [86]
135 Yellow Birch trans 0.098 297.04 0.550 0.134 [86]

136 Yellow Birch trans 0.118 297.04 0.543 0.136 [86]
137 Yellow Birch trans 0.169 297.04 0.526 0.141 [86]
138 Yellow Birch trans 0.035 297.04 0.620 0.123 [86]
139 Yellow Birch trans 0.060 297.04 0.617 0.128 [86]
140 Yellow Birch trans 0.155 297.04 0.582 0.139 [86]

141 Yellow Birch trans 0.166 297.04 0.578 0.140 [86]
142 Yellow Birch trans 0.017 297.04 0.709 0.139 [86]
143 Yellow Birch trans 0.041 297.04 0.697 0.148 [86]
144 Yellow Birch trans 0.066 297.04 0.691 0.149 [86]
145 Yellow Birch trans 0.120 297.04 0.652 0.166 [86]

146 Yellow Birch trans 0.138 297.04 0.648 0.166 [86]
147 Yellow Birch trans 0.151 297.04 0.642 0.170 [86]
148 Yellow Birch trans 0.228 297.04 0.618 0.177 [86]
149 Yellow Birch trans 0.253 297.04 0.606 0.173 [86]
150 Douglas Fir trans 0.108 297.04 0.458 0.106 [86]

151 Douglas Fir trans 0.108 297.04 0.453 0.109 [86]
152 Douglas Fir trans 0.108 297.04 0.509 0.112 [86]
153 Douglas Fir trans 0.101 297.04 0.479 0.110 [86]
154 Douglas Fir trans 0.105 297.04 0.449 0.104 [86]
155 Douglas Fir trans 0.103 297.04 0.494 0.110 [86]

156 Douglas Fir trans 0.109 297.04 0.521 0.114 [86]
157 Douglas Fir trans 0.109 297.04 0.489 0.110 [86]
158 Douglas Fir trans 0.109 297.04 0.470 0.106 [86]
159 Douglas Fir trans 0.056 297.04 0.443 0.099 [86]
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160 Douglas Fir trans 0.059 297.04 0.482 0.103 [86]

161 Douglas Fir trans 0.056 297.04 0.526 0.108 [86]
162 Douglas Fir trans 0.065 297.04 0.422 0.102 [86]
163 Hard Maple trans 0.056 297.04 0.637 0.156 [86]
164 Hard Maple trans 0.061 297.04 0.712 0.160 [86]
165 Hard Maple trans 0.061 297.04 0.705 0.165 [86]

166 Hard Maple trans 0.061 297.04 0.666 0.161 [86]
167 Hard Maple trans 0.060 297.04 0.641 0.160 [86]
168 Hard Maple trans 0.066 297.04 0.619 0.159 [86]
169 Hard Maple trans 0.059 297.04 0.627 0.151 [86]
170 Hard Maple trans 0.060 297.04 0.648 0.155 [86]

171 Longleaf Yellow Pine trans 0.066 297.04 0.648 0.144 [86]
172 Longleaf Yellow Pine trans 0.077 297.04 0.611 0.135 [86]
173 Longleaf Yellow Pine trans 0.071 297.04 0.597 0.133 [86]
174 Longleaf Yellow Pine trans 0.066 297.04 0.535 0.128 [86]
175 Longleaf Yellow Pine trans 0.067 297.04 0.518 0.120 [86]

176 Longleaf Yellow Pine trans 0.631 297.04 0.320 0.118 [86]
177 Longleaf Yellow Pine trans 0.074 297.04 0.459 0.123 [86]
178 Longleaf Yellow Pine trans 0.075 297.04 0.455 0.125 [86]
179 Norway Pine trans 0.068 297.04 0.498 0.119 [86]
180 Norway Pine trans 0.064 297.04 0.487 0.116 [86]

181 Norway Pine trans 0.071 297.04 0.479 0.122 [86]
182 Norway Pine trans 0.059 297.04 0.478 0.118 [86]
183 Norway Pine trans 0.065 297.04 0.463 0.117 [86]
184 Norway Pine trans 0.062 297.04 0.458 0.109 [86]
185 Norway Pine trans 0.064 297.04 0.415 0.104 [86]

186 Norway Pine trans 0.064 297.04 0.390 0.104 [86]
187 Norway Pine trans 0.061 297.04 0.369 0.107 [86]
188 Ponderosa Pine trans 0.083 297.04 0.513 0.126 [86]
189 Ponderosa Pine trans 0.089 297.04 0.482 0.120 [86]
190 Ponderosa Pine trans 0.082 297.04 0.464 0.115 [86]

191 Ponderosa Pine trans 0.063 297.04 0.443 0.108 [86]
192 Ponderosa Pine trans 0.081 297.04 0.409 0.112 [86]
193 Ponderosa Pine trans 0.086 297.04 0.389 0.107 [86]
194 Ponderosa Pine trans 0.091 297.04 0.387 0.107 [86]
195 Red Oak trans 0.054 297.04 0.754 0.185 [86]

196 Red Oak trans 0.071 297.04 0.642 0.165 [86]
197 Red Oak trans 0.067 297.04 0.643 0.158 [86]
198 Red Oak trans 0.056 297.04 0.626 0.155 [86]
199 Red Oak trans 0.058 297.04 0.598 0.151 [86]
200 Red Oak trans 0.059 297.04 0.582 0.150 [86]

201 Shortleaf Yellow Pine trans 0.072 297.04 0.603 0.157 [86]
Continued on next page



4.9 Appendix: Thermal conductivity measurements 55

Table 4.4 – continued from previous page

No. Species Direction MC T ρdrywood λexp

(as reported) [1] [K]
[
g/cm3

]
[W/(mK)]

202 Shortleaf Yellow Pine trans 0.061 297.04 0.591 0.140 [86]
203 Shortleaf Yellow Pine trans 0.067 297.04 0.455 0.127 [86]
204 Shortleaf Yellow Pine trans 0.059 297.04 0.522 0.139 [86]
205 Shortleaf Yellow Pine trans 0.059 297.04 0.388 0.115 [86]

206 Shortleaf Yellow Pine trans 0.046 297.04 0.394 0.116 [86]
207 Shortleaf Yellow Pine trans 0.060 297.04 0.395 0.113 [86]
208 Shortleaf Yellow Pine trans 0.066 297.04 0.502 0.133 [86]
209 Shortleaf Yellow Pine trans 0.068 297.04 0.468 0.123 [86]
210 Sitka Spruce trans 0.063 297.04 0.445 0.098 [86]

211 Sitka Spruce trans 0.063 297.04 0.424 0.091 [86]
212 Sitka Spruce trans 0.064 297.04 0.438 0.096 [86]
213 Sitka Spruce trans 0.066 297.04 0.398 0.094 [86]
214 Sitka Spruce trans 0.060 297.04 0.390 0.096 [86]
215 Sitka Spruce trans 0.064 297.04 0.385 0.092 [86]

216 Sitka Spruce trans 0.066 297.04 0.347 0.084 [86]
217 Sitka Spruce trans 0.069 297.04 0.329 0.089 [86]
218 Soft Maple trans 0.060 297.04 0.590 0.139 [86]
219 Soft Maple trans 0.065 297.04 0.546 0.141 [86]
220 Soft Maple trans 0.061 297.04 0.571 0.135 [86]

221 Soft Maple trans 0.060 297.04 0.571 0.137 [86]
222 Soft Maple trans 0.063 297.04 0.587 0.144 [86]
223 Soft Maple trans 0.061 297.04 0.625 0.143 [86]
224 Sugar Pine trans 0.084 297.04 0.400 0.104 [86]
225 Sugar Pine trans 0.084 297.04 0.386 0.094 [86]

226 Sugar Pine trans 0.086 297.04 0.357 0.090 [86]
227 Sugar Pine trans 0.083 297.04 0.355 0.093 [86]
228 Sugar Pine trans 0.083 297.04 0.346 0.092 [86]
229 Sugar Pine trans 0.089 297.04 0.340 0.091 [86]
230 Western Larch trans 0.100 297.04 0.650 0.153 [86]

231 Western Larch trans 0.097 297.04 0.612 0.153 [86]
232 Western Larch trans 0.105 297.04 0.599 0.142 [86]
233 Western Larch trans 0.103 297.04 0.576 0.142 [86]
234 Western Larch trans 0.103 297.04 0.545 0.139 [86]
235 Western Larch trans 0.108 297.04 0.476 0.128 [86]

236 Western Larch trans 0.106 297.04 0.475 0.120 [86]
237 Western Red Cedar trans 0.110 297.04 0.381 0.112 [86]
238 Western Red Cedar trans 0.116 297.04 0.360 0.101 [86]
239 Western Red Cedar trans 0.102 297.04 0.327 0.089 [86]
240 Western Red Cedar trans 0.100 297.04 0.330 0.089 [86]

241 Western Red Cedar trans 0.097 297.04 0.333 0.088 [86]
242 Western Red Cedar trans 0.083 297.04 0.323 0.087 [86]
243 Western Red Cedar trans 0.081 297.04 0.324 0.081 [86]
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244 Western Red Cedar trans 0.084 297.04 0.330 0.087 [86]
245 Western Red Cedar trans 0.051 297.04 0.431 0.118 [86]

246 Western Red Cedar trans 0.064 297.04 0.312 0.084 [86]
247 White Ash trans 0.086 297.04 0.678 0.168 [86]
248 White Ash trans 0.097 297.04 0.663 0.162 [86]
249 White Ash trans 0.088 297.04 0.624 0.147 [86]
250 White Ash trans 0.085 297.04 0.618 0.152 [86]

251 White Ash trans 0.087 297.04 0.570 0.135 [86]
252 White Ash trans 0.086 297.04 0.564 0.147 [86]
253 White Ash trans 0.081 297.04 0.476 0.131 [86]
254 White Fir trans 0.088 297.04 0.323 0.082 [86]
255 White Fir trans 0.083 297.04 0.331 0.083 [86]

256 White Fir trans 0.084 297.04 0.332 0.085 [86]
257 White Fir trans 0.085 297.04 0.345 0.086 [86]
258 White Fir trans 0.084 297.04 0.357 0.086 [86]
259 White Fir trans 0.085 297.04 0.374 0.090 [86]
260 White Fir trans 0.085 297.04 0.391 0.096 [86]

261 White Fir trans 0.086 297.04 0.370 0.095 [86]
262 White Fir trans 0.084 297.04 0.402 0.100 [86]
263 White Oak trans 0.068 297.04 0.771 0.179 [86]
264 White Oak trans 0.073 297.04 0.658 0.170 [86]
265 White Oak trans 0.067 297.04 0.642 0.164 [86]

266 White Oak trans 0.069 297.04 0.599 0.157 [86]
267 Northern White Pine trans 0.063 297.04 0.489 0.127 [86]
268 Northern White Pine trans 0.068 297.04 0.469 0.131 [86]
269 Northern White Pine trans 0.062 297.04 0.421 0.109 [86]
270 Northern White Pine trans 0.069 297.04 0.402 0.115 [86]

271 Northern White Pine trans 0.067 297.04 0.402 0.115 [86]
272 Northern White Pine trans 0.066 297.04 0.368 0.102 [86]
273 Northern White Pine trans 0.614 297.04 0.237 0.095 [86]
274 Northern White Pine trans 0.065 297.04 0.346 0.096 [86]
275 Northern White Pine trans 0.063 297.04 0.317 0.096 [86]

276 Yellow Birch trans 0.097 297.04 0.662 0.147 [86]
277 Yellow Birch trans 0.091 297.04 0.645 0.145 [86]
278 Yellow Birch trans 0.092 297.04 0.609 0.139 [86]
279 Yellow Birch trans 0.095 297.04 0.552 0.124 [86]
280 Red oak R-trans 0.102 300.93 0.599 0.164 [111]

281 Red oak R-trans 0.148 300.93 0.599 0.164 [111]
282 Red oak R-trans 0.088 300.93 0.610 0.169 [111]
283 Red oak R 0.145 300.93 0.610 0.173 [111]
284 Red oak R-trans 0.085 300.93 0.620 0.151 [111]
285 Red oak R-trans 0.083 300.93 0.620 0.164 [111]
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286 Red oak R 0.084 300.93 0.630 0.163 [111]
287 Southern red oak trans 0.117 300.93 0.620 0.147 [111]
288 Southern red oak trans 0.081 300.93 0.630 0.136 [111]
289 Southern red oak R-trans 0.137 300.93 0.679 0.183 [111]
290 Southern red oak trans 0.062 300.93 0.690 0.157 [111]

291 Southern red oak trans 0.059 300.93 0.690 0.166 [111]
292 Southern red oak R-trans 0.112 300.93 0.700 0.175 [111]
293 Southern red oak R-trans 0.076 300.93 0.721 0.164 [111]
294 Southern red oak R-trans 0.108 300.93 0.670 0.160 [111]
295 Southern red oak R-trans 0.103 300.93 0.680 0.151 [111]

296 Southern red oak trans 0.101 300.93 0.679 0.144 [111]
297 Southern red oak trans 0.110 300.93 0.679 0.151 [111]
298 Southern red oak trans 0.103 300.93 0.679 0.151 [111]
299 Southern red oak trans 0.101 300.93 0.690 0.151 [111]
300 Southern red oak R 0.134 300.93 0.620 0.153 [111]

301 Southern red oak R 0.084 300.93 0.639 0.162 [111]
302 Southern red oak R 0.097 300.93 0.639 0.170 [111]
303 Southern red oak R 0.091 300.93 0.639 0.169 [111]
304 Southern red oak R-trans 0.081 300.93 0.650 0.159 [111]
305 White oak trans 0.150 300.93 0.580 0.162 [111]

306 White oak trans 0.093 300.93 0.599 0.144 [111]
307 White oak trans 0.089 300.93 0.610 0.150 [111]
308 White oak R 0.150 300.93 0.641 0.182 [111]
309 White oak R-trans 0.071 300.93 0.670 0.172 [111]
310 White oak R 0.092 300.93 0.679 0.159 [111]

311 White oak R 0.108 300.93 0.679 0.164 [111]
312 White oak R 0.089 300.93 0.679 0.169 [111]
313 Paper birch R-trans 0.146 300.93 0.540 0.138 [111]
314 Paper birch R-trans 0.090 300.93 0.561 0.132 [111]
315 Paper birch R-trans 0.094 300.93 0.561 0.135 [111]

316 Paper birch R-trans 0.085 300.93 0.561 0.125 [111]
317 Paper birch R-trans 0.087 300.93 0.561 0.136 [111]
318 Yellow birch R-trans 0.147 300.93 0.580 0.146 [111]
319 Yellow birch R-trans 0.096 300.93 0.590 0.131 [111]
320 Yellow birch R-trans 0.071 300.93 0.590 0.136 [111]

321 Yellow birch R-trans 0.070 300.93 0.590 0.142 [111]
322 Yellow birch R-trans 0.070 300.93 0.590 0.141 [111]
323 Yellow birch R-trans 0.069 300.93 0.590 0.139 [111]
324 Yellow birch trans 0.088 300.93 0.601 0.131 [111]
325 Yellow birch trans 0.105 300.93 0.601 0.131 [111]

326 Blue beech R-trans 0.108 300.93 0.639 0.176 [111]
327 Blue beech R-trans 0.116 300.93 0.639 0.176 [111]
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328 Blue beech trans 0.115 300.93 0.650 0.167 [111]
329 Silver maple trans 0.102 300.93 0.551 0.137 [111]
330 Silver maple R 0.106 300.93 0.561 0.159 [111]

331 Striped maple T 0.111 300.93 0.490 0.125 [111]
332 Striped maple T 0.111 300.93 0.490 0.128 [111]
333 Striped maple T 0.114 300.93 0.509 0.134 [111]
334 Bigleaf maple R 0.085 300.93 0.570 0.154 [111]
335 Bigleaf maple R 0.097 300.93 0.580 0.166 [111]

336 Bigleaf maple R 0.140 300.93 0.580 0.170 [111]
337 Bigleaf maple R 0.080 300.93 0.590 0.157 [111]
338 Bigleaf maple R 0.079 300.93 0.590 0.159 [111]
339 Red ash R-trans 0.097 300.93 0.500 0.126 [111]
340 Red ash R-trans 0.098 300.93 0.509 0.132 [111]

341 Red ash R-trans 0.083 300.93 0.509 0.124 [111]
342 Red ash R-trans 0.089 300.93 0.521 0.128 [111]
343 White ash T 0.094 300.93 0.639 0.159 [111]
344 White ash T 0.088 300.93 0.639 0.153 [111]
345 Balsa trans 0.090 300.93 0.110 0.055 [111]

346 Balsa trans 0.086 300.93 0.110 0.055 [111]
347 Balsa trans 0.133 300.93 0.110 0.060 [111]
348 Balsa trans 0.087 300.93 0.110 0.053 [111]
349 Balsa trans 0.086 300.93 0.110 0.055 [111]
350 Balsa trans 0.093 300.93 0.120 0.056 [111]

351 Western white pine trans 0.147 300.93 0.370 0.104 [111]
352 Western white pine trans 0.077 300.93 0.380 0.088 [111]
353 Western white pine R 0.070 300.93 0.401 0.109 [111]
354 Loblolly pine T-trans 0.162 300.93 0.521 0.156 [111]
355 Loblolly pine trans 0.119 300.93 0.540 0.156 [111]

356 Loblolly pine T-trans 0.116 300.93 0.549 0.150 [111]
357 Loblolly pine R-trans 0.177 300.93 0.549 0.149 [111]
358 Loblolly pine T-trans 0.210 300.93 0.561 0.176 [111]
359 Loblolly pine T-trans 0.157 300.93 0.570 0.163 [111]
360 Loblolly pine T-trans 0.123 300.93 0.580 0.147 [111]

361 Shortleaf pine T-trans 0.131 300.93 0.530 0.147 [111]
362 Shortleaf pine T-trans 0.160 300.93 0.530 0.149 [111]
363 Shortleaf pine trans 0.113 300.93 0.540 0.139 [111]
364 Shortleaf pine T-trans 0.132 300.93 0.561 0.156 [111]
365 Shortleaf pine R-trans 0.109 300.93 0.630 0.150 [111]

366 Shortleaf pine R-trans 0.129 300.93 0.650 0.177 [111]
367 Shortleaf pine R-trans 0.144 300.93 0.490 0.144 [111]
368 Shortleaf pine R-trans 0.089 300.93 0.500 0.129 [111]
369 Shortleaf pine R 0.090 300.93 0.519 0.130 [111]
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370 Longleaf pine trans 0.172 300.93 0.610 0.170 [111]

371 Longleaf pine trans 0.146 300.93 0.620 0.167 [111]
372 Longleaf pine T-trans 0.171 300.93 0.620 0.179 [111]
373 Longleaf pine trans 0.133 300.93 0.630 0.164 [111]
374 Longleaf pine trans 0.130 300.93 0.630 0.159 [111]
375 Longleaf pine trans 0.122 300.93 0.639 0.164 [111]

376 Longleaf pine T-trans 0.166 300.93 0.639 0.175 [111]
377 Longleaf pine T-trans 0.144 300.93 0.650 0.185 [111]
378 Longleaf pine trans 0.122 300.93 0.660 0.164 [111]
379 Northern white pine R-trans 0.076 300.93 0.360 0.100 [111]
380 Northern white pine R-trans 0.078 300.93 0.370 0.096 [111]

381 Northern white pine R 0.140 300.93 0.401 0.116 [111]
382 Northern white pine R 0.076 300.93 0.410 0.112 [111]
383 Northern white pine R 0.059 300.93 0.410 0.103 [111]
384 Northern white pine R 0.063 300.93 0.410 0.103 [111]
385 Northern white pine R 0.074 300.93 0.410 0.108 [111]

386 Northern white pine R 0.067 300.93 0.410 0.102 [111]
387 Northern white pine T-trans 0.136 300.93 0.420 0.108 [111]
388 Northern white pine T-trans 0.081 300.93 0.431 0.100 [111]
389 Northern white pine T-trans 0.080 300.93 0.431 0.099 [111]
390 Northern white pine R 0.067 300.93 0.431 0.100 [111]

391 Northern white pine R 0.090 300.93 0.431 0.109 [111]
392 Northern white pine R 0.068 300.93 0.431 0.103 [111]
393 Northern white pine R 0.089 300.93 0.431 0.105 [111]
394 Northern white pine R 0.143 300.93 0.431 0.117 [111]
395 Northern white pine R 0.055 300.93 0.439 0.105 [111]

396 Northern white pine R 0.077 300.93 0.439 0.115 [111]
397 Norway pine R 0.149 300.93 0.410 0.122 [111]
398 Norway pine R 0.145 300.93 0.410 0.119 [111]
399 Norway pine R 0.082 300.93 0.420 0.110 [111]
400 Norway pine R 0.081 300.93 0.420 0.117 [111]

401 Norway pine R 0.076 300.93 0.429 0.109 [111]
402 Norway pine R 0.070 300.93 0.429 0.112 [111]
403 Norway pine R 0.072 300.93 0.429 0.113 [111]
404 Lodgepole pine R 0.110 300.93 0.460 0.117 [111]
405 Lodgepole pine R 0.148 300.93 0.481 0.131 [111]

406 Lodgepole pine R 0.091 300.93 0.490 0.129 [111]
407 Lodgepole pine R 0.097 300.93 0.490 0.126 [111]
408 Lodgepole pine R 0.092 300.93 0.490 0.121 [111]
409 Ponderosa pine R-trans 0.181 300.93 0.429 0.128 [111]
410 Ponderosa pine R-trans 0.106 300.93 0.450 0.117 [111]

411 Ponderosa pine R-trans 0.102 300.93 0.450 0.116 [111]
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412 Ponderosa pine R-trans 0.098 300.93 0.469 0.121 [111]
413 Ponderosa pine R-trans 0.072 300.93 0.469 0.116 [111]
414 Ponderosa pine R 0.091 300.93 0.479 0.122 [111]
415 Ponderosa pine R 0.084 300.93 0.479 0.121 [111]

416 Ponderosa pine R 0.085 300.93 0.479 0.124 [111]
417 Limber pine R 0.091 300.93 0.380 0.102 [111]
418 Limber pine R 0.111 300.93 0.380 0.103 [111]
419 Limber pine R 0.101 300.93 0.380 0.102 [111]
420 Limber pine R 0.162 300.93 0.380 0.109 [111]

421 Limber pine R 0.105 300.93 0.389 0.103 [111]
422 Lowland white fir trans 0.086 300.93 0.441 0.109 [111]
423 Lowland white fir trans 0.085 300.93 0.441 0.110 [111]
424 Lowland white fir trans 0.050 300.93 0.450 0.099 [111]
425 Lowland white fir trans 0.050 300.93 0.450 0.106 [111]

426 Lowland white fir trans 0.050 300.93 0.450 0.111 [111]
427 Lowland white fir trans 0.054 300.93 0.450 0.106 [111]
428 Lowland white fir trans 0.144 300.93 0.450 0.112 [111]
429 Lowland white fir trans 0.086 300.93 0.460 0.110 [111]
430 Lowland white fir trans 0.116 300.93 0.469 0.122 [111]

431 Lowland white fir R-trans 0.115 300.93 0.479 0.116 [111]
432 Lowland white fir R 0.138 300.93 0.500 0.117 [111]
433 Lowland white fir R 0.086 300.93 0.521 0.110 [111]
434 Lowland white fir R 0.083 300.93 0.521 0.110 [111]
435 Engelmann spruce R-trans 0.092 300.93 0.420 0.094 [111]

436 Engelmann spruce R-trans 0.097 300.93 0.420 0.098 [111]
437 Engelmann spruce R 0.087 300.93 0.429 0.091 [111]
438 Douglas fir R 0.096 300.93 0.479 0.115 [111]
439 Douglas fir R 0.074 300.93 0.490 0.115 [111]
440 Douglas fir R 0.100 300.93 0.490 0.119 [111]

441 Douglas fir R 0.140 300.93 0.490 0.131 [111]
442 Douglas fir R 0.077 300.93 0.500 0.114 [111]
443 Douglas fir R 0.073 300.93 0.509 0.115 [111]
444 Western red cedar R-trans 0.094 300.93 0.290 0.083 [111]
445 Western red cedar R-trans 0.151 300.93 0.290 0.090 [111]

446 Western red cedar R-trans 0.133 300.93 0.290 0.091 [111]
447 Western red cedar R 0.089 300.93 0.280 0.085 [111]
448 Western red cedar R 0.093 300.93 0.280 0.083 [111]
449 Western red cedar R 0.089 300.93 0.290 0.084 [111]
450 Western red cedar R 0.092 300.93 0.290 0.081 [111]

451 Western red cedar R-trans 0.075 300.93 0.300 0.084 [111]
452 Southern white cedar R 0.138 300.93 0.290 0.093 [111]



Chapter5
Multiscale model for moisture
diffusivity

In this chapter, a multiscale homogenization model for steady state moisture transport in
wood is developed and validated. The model aims at prediction of macroscopic diffusion
properties of clear wood samples from their microstructure and the physical properties
of a few microscale constituents. In the preceding Chapter 4, the theoretical background
and fundamentals of the model were presented, and its specification for the estimation of
macroscopic thermal conductivities was shown. Now the model is applied to steady state
moisture diffusion below the fiber saturation point. A suitable mathematical description
of moisture diffusion on a molecular scale is not available at the moment, therefore the
model starts on a scale of about 50 micrometers, where the wood cells form a honeycomb-
like structure. In a first homogenization step, the effective moisture transport behavior
of the cell structure is determined from moisture diffusion properties of the cell walls
and the (moist) air in lumens, respectively. Further homogenization steps account for
the larger vessels that exist in hardwood species, the annual rings which are a succes-
sion of layers with different densities, and finally wood rays, that form pathways in the
radial direction throughout the stem. The model validation rests on experiments as in
the case of heat conduction: The macroscopic diffusion coefficients predicted based on
tissue-independent diffusion properties of cell walls and lumens (input data set I) by
the multiscale homogenization model for tissue-specific composition data (input data
set II) are compared to corresponding experimentally determined tissue-specific diffu-
sion coefficients under steady state conditions (experimental data set). As for thermal
conductivity, the good agreement of model predictions and test data underlines the
suitability of the presented multiscale model.
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5.1 Introduction

Diffusion is the movement of a substance through another substance. In isothermal pro-
cesses, this movement is driven by concentration gradients [see Eq. (3.16)]. The resulting
flux from higher concentration to lower concentration is due to the strive for equilibrium.
The presented multiscale model is limited to these conditions and furthermore to trans-
port processes below the fiber saturation point: diffusion processes in wood below the
FSP involve the movement of water vapor through the void structure and the movement
of bound water through the cell walls.

In this chapter, only transport processes under steady state conditions are considered.
Fluxes and concentrations in each material point do not change with time then, and
the two phases of water in wood (bound water and water vapor) are in equilibrium (see
Chapter 2). They can therefore be treated together, because knowing the concentration
of one phase allows straightforward calculation of the concentration of the other phase
by use of a sorption isotherm (e.g. according to the USDA Wood Handbook [107]). In
case of diffusion as governing transport process, a steady state process is described by
Fick’s first law of diffusion [Eq. (3.29)].

The variability of macroscopic moisture diffusion coefficients is even wider than that of
thermal conductivities [55]. Again, it originates from differences between wood tissues
at the macro-, micro-, and nanoscale. This has already motivated multiscale modeling
efforts for moisture transport in wood, e.g. by Siau [95] and Perré [77]. Their models
for the estimation of moisture diffusivities in wood based on a single tracheid “unit-
cell” relate the macroscopic diffusion coefficients to apparent densities, temperatures,
and moisture contents. The present model aims at an improved representation of the
morphology of wood, resulting in a good prediction quality for macroscopic diffusion
coefficients across different wood species, and a more appropriate formulation of the
physical background.

The link between microscale characteristics and resulting properties at higher length
scales is again established by means of homogenization. Since the structure of the
governing equations of steady state moisture diffusion (Fick’s first law of diffusion) and
thermal conduction (Fourier’s law) is the same, the same homogenization techniques can
be used. Hence, continuum micromechanics and, for the annual ring structure, rules of
mixture are applied as in the model for thermal conductivity in the previous chapter.
Substitution of thermal conductivity tensors K by corresponding moisture diffusivity
tensors D allows straightforward application of the basic considerations and relations
as presented in Chapter 4. This is elaborated in detail for the formulated diffusion
homogenization steps in Section 5.3. Besides the information provided in the previous
chapter, more comprehensive descriptions of continuum micromechanics are given by
Dormieux [15] and Zaoui [113].

5.2 Diffusion coefficients of cell wall and lumen

As mentioned before, the wide variability of macroscopic moisture diffusion properties
of wood originates for the most part from differences in the microstructures of individual
samples. Herein, we start from the scale of wood cells and represent the influences of cell
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structure and annual rings by means of a multiscale homogenization scheme. Moreover,
also the variability of the diffusivity of the cell wall in consequence of variable mois-
ture contents contributes to the macroscopic variability of moisture diffusion, as well as
variable shares and arrangements of the microscale constituents cellulose, hemicellulose,
and lignin. Contrary to the situation in heat transport, the moisture diffusivity of the
cell wall cannot be derived from the diffusivities of these constituents by means of some
homogenization technique. Rather, water acts as a constituent of the cell wall itself,
and the diffusion process through the cell wall is influenced by the interaction of bound
water with the solid constituents. Moreover, the properties of bound water are strongly
dependent on its concentration, which might complicate or even hinder a continuum
representation.

Through the cell walls, pits interconnecting adjacent lumens provide fast transport routes
inside wood, especially in the longitudinal material direction. Most pits become aspirated
during wood drying. Nevertheless, the small portion of remaining unaspirated pits allows
water vapor to penetrate much faster through the open pathways into the wood sample
and, thus, affects the overall diffusion behavior. Moreover, although a closed pit hinders
the flow of liquid water, it is still much more permeable than the surrounding cell wall,
as could be shown in own numerical simulations of a single pit (see Section 5.7 of this
chapter). In steady state processes, the moisture concentrations of lumens and cell walls
are in equilibrium also if unaspirated pits exist. Although the geometry of pits is known
(see e.g. Siau [95]), the number of aspirated pits depends on several parameters, for
example the density, drying history, wood species etc. So the “degree of aspiration” is
very difficult to determine. Hence their effect is considered in a smeared manner by
applying an increased cell wall diffusivity as compared to the cell wall material itself in
the presented model.

The according diffusivity of the cell wall is formulated in terms of moisture content
and temperature. Siau [95] proposes application of the Arrhenius equation in order to
describe these influences. His widely-used relation for the transversal cell wall diffusivity
Dcwm,trans reads as

Dcwm,trans,Siau = D0 exp

(
− Eb

RT

)
= 7 · 10−6 exp

(
−38500 − 29000MC

RT

)
[m2/s],

(5.1)

with R = 8.314472 Jmol−1 K−1 as the universal gas constant, T as the actual temper-
ature in [K], and MC as the moisture content, which is specified in the conventional
manner as mass of water in wood in relation to dry mass of wood. Eq. (5.1) was de-
rived based on experimental results at a temperature of 26.7 °C. In order to consider the
nonlinear dependence of the activation energy Eb on moisture content at smaller values
of MC and to better reproduce experimental data reported by Kollmann [55] for spruce
diffusivity at different temperatures, the following slightly modified relation was used in
the present approach:

Dcwm,trans = 1.832 · 10−4 exp

(
−43623 − 20625MC − 1227 lnMC

RT

)
[m2/s]. (5.2)

For a temperature of 26.7 °C, Eqs. (5.1) and (5.2) provide nearly equal results. As
already mentioned, this relation covers the influence of pits on the cell wall diffusivity.
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The longitudinal cell wall diffusivity Dcwm,long is calculated according to Siau [95] from
the transverse one as

Dcwm,long = 2.5Dcwm,trans. (5.3)

The orthotropic second order diffusion tensor of the cell wall material, Dcwm, therefore
reads as

Dcwm =




Dcwm,trans 0 0
0 Dcwm,trans 0
0 0 Dcwm,long


 . (5.4)

Below the fiber saturation point the lumens are filled with a mixture of air and water
vapor. The diffusion coefficient of water vapor in moist air, D̊air, was determined by a
semi-empirical equation given by Schirmer [89]:

D̊air = 2.31 · 10−5

(
patm

patm + pv

) (
T

273.15

)1.81

[m2/s], (5.5)

with patm denoting the atmospheric pressure, pv the vapor pressure, and T the actual
temperature in [K]. The diffusion behavior of air is isotropic, therefore the diffusion
tensor of air used in the model reads as:

D̊air = D̊air I, (5.6)

where I denotes the second order unity tensor.

5.3 Definition of the multiscale homogenization model

In consequence of the analogous structure of the governing equations of steady state
moisture diffusion and thermal conduction and the use of the same homogenization
techniques, the multiscale homogenization model derived for thermal conduction in the
previous chapter can be easily adapted to diffusion. The first two steps of the homoge-
nization model for thermal conductivity account for the mixture of hemicellulose, lignin,
and cellulose in the cell wall, resulting in a homogenized thermal conductivity of the cell
wall material. Since the diffusion coefficient of the cell wall material marks the starting
point of the homogenization model for moisture diffusion coefficients, only steps III to
VI of the multiscale model for thermal conductivity are required here. This yields a
four-level homogenization procedure as shown in Fig. 5.1.

In addition, particular attention was paid to the precise formulation of the conversion
of the particular diffusion tensors from one representative volume element to the other.

It is obvious that the morphological parameters and phase volume fractions of the various
homogenization steps are independent of the homogenized material property. Therefore
densities, volume fractions, and aspect ratios of the single phases can be directly taken
from Chapter 4.
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• transversal isotropic matrix

STEP IV
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• orthotropic components

STEP VI
clear wood sample
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lumen lumen

dlate = 20 µm
dray = 20 µm

Figure 5.1: Four-level homogenization procedure for diffusion coefficients of wood

5.3.1 Step III(a) / Step III(b) / Step III(c): Earlywood, latewood, ray
cells

In step III(a) the wood cell structure of earlywood is reproduced by embedding ellip-
soids (representing lumens filled with moist air) into a matrix material (representing
the cell walls with diffusivities as described before). A Mori-Tanaka scheme is employed
as homogenization method in the framework of continuum micromechanics. Substitut-
ing the moisture diffusion tensor of the cell wall material and the lumens, D̂cwm and
D̂air, respectively, for the corresponding thermal conductivity tensors KMT

cwm and Kair in
Eq. (4.19), yields the effective diffusion tensor of earlywood D̂MT

early as

D̂MT
early =

{
f̂cwmD̂cwm + f̂lumD̂air ·

[
I+Pcwm

ell,early ·
(
D̂air − D̂cwm

)]−1
}
·

{
f̂cwmI+ f̂lum

[
I+Pcwm

ell,early ·
(
D̂air − D̂cwm

)]−1
}−1

, (5.7)

with f̂cwm and f̂lum denoting the volume fractions of cell wall material and lumens,
respectively. The Hill tensor Pcwm

ell,early accounts for the ellipsoidal shape of the lumens.
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The effective diffusion tensor of earlywood D̂MT
early relates the effective moisture flux to

the gradient of moisture concentration in earlywood. In contrast, the diffusion tensors of
cell wall material and air specified in Section 5.2, Dcwm and D̊air, are based on a gradient
of moisture concentration in pure cell wall material and pure air, respectively. Therefore
these two diffusion tensors have to be expressed in terms of moisture concentration
gradients in earlywood. The resulting flux is the same, irrespective of the reference
volume chosen for the concentration gradient. Fick’s first law of diffusion gives a relation
between these two diffusion coefficients of moisture in air: D̊air, based on a gradient of
moisture concentration in air and D̂air, based on a gradient of moisture concentration
in earlywood:

J = −D̊air

∂
m̊H2O

Vair

∂x
= −D̂air

∂
m̂H2O

Vearly

∂x
, (5.8)

with Vair and Vearly as the volumes of lumens and earlywood and m̊H2O and m̂H2O as
the mass of water, contained in these volumes of lumens and earlywood, respectively.
Reformulating the second and third term in Eq. (5.8) for D̂air yields

D̂air = D̊air

∂
m̊H2O

Vair

∂
m̂H2O

Vearly

= D̊air

∂m̊H2O

Vair

f̂lum
∂m̊H2O

Vair
+ f̂cwm

∂mH2O

Vcwm

= D̊air
1

f̂lum + f̂cwm
∂mH2O

∂m̊H2O

Vair

Vcwm

,

(5.9)

with mH2O denoting the mass of water in the cell walls within a volume of Vcwm.

The term
∂mH2O

∂m̊H2O

Vair
Vcwm

in Eq. (5.9) can be further evaluated by use of a sorption isotherm,

which is usually specified in terms of moisture content MC of wood and relative humidity
ϕ in the surrounding air. In order to relate the mass of water in the lumens m̊H2O to
relative humidity ϕ, the ideal gas law is invoked:

pv = pv,sat ϕ =
n̊H2O

Vair
RT =

m̊H2ORT

VairMH2O
, (5.10)

where n̊H2O is the amount of vapor in the air volume Vair, R the universal gas constant
introduced before, and MH2O = 18.01528 g/mol the molecular weight of water. The
saturated water pressure pv,sat can be calculated depending on temperature T by a
fitted polynomial taken from Schmidt [90]:

pv,sat = 2.2064 · 107 exp
[
647.14

T [K]

(
− 7.85823τ + 1.83991τ1.5 (5.11)

−11.7811τ3 + 22.6705τ3.5 − 15.9393τ4 + 1.77516τ7.5
)]

[Pa],

with

τ = 1− T [K]

647.14
. (5.12)

Rewriting Eq. (5.10) yields the mass of water in air m̊H2O as a function of relative
humidity ϕ:

m̊H2O =
pv,satMH2O

RT
Vair ϕ. (5.13)



5.3 Definition of the multiscale homogenization model 67

The mass of water in the cell wall, mH2O, can be expressed as function of moisture
content MC as

mH2O = ρdrycwm V dry
cwmMC = ρdrycwm

(
1− f̃H2O fpoly

)
VcwmMC, (5.14)

with ρdrycwm as the dry mass density of the cell wall material, f̃H2O as the volume fraction
of water in the polymer network, and fpoly as the volume fraction of polymer network
in the moist cell wall material (see Chapter 4). Substituting Eqs. (5.13) and (5.14) in
Eq. (5.9) yields finally

D̂air = Dair
1

f̂lum + f̂cwm
ρdrycwm(1−f̃H2O

fpoly)RT

pv,sat MH2O

∂MC

∂ϕ

. (5.15)

The term ∂MC
∂ϕ denotes the slope of the sorption isotherm. In the model calculations the

sorption data given in the USDA Wood Handbook [107] was used for its determination.
This data is averaged over test results for different wood species as well as over adsorption
and desorption data, respectively. If available, use of sorption data determined for a
specific specimen of wood will increase the accuracy of the predictions by the multiscale
model.

Similar to the diffusion coefficient of air, also the cell wall diffusion coefficient Dcwm,
which is based on a concentration gradient of water in the cell wall, has to be converted
into a diffusion coefficient D̂cwm based on a concentration gradient in earlywood. In
analogy to Eq. (5.9) this conversion reads mathematically as

D̂cwm = Dcwm
1

f̂cwm + f̂lum
∂m̊H2O

∂mH2O

Vcwm

Vair

. (5.16)

Substituting Eqs. (5.13) and (5.14) in Eq. (5.16) yields

D̂cwm = Dcwm
1

f̂cwm + f̂lum
pv,sat MH2O

ρdrycwm(1−f̃H2O
fpoly)RT

∂ϕ

∂MC

. (5.17)

The second term in the denominator of Eq. (5.17) is very small compared to f̂cwm, so
that Eq. (5.17) reduces in good approximation to

D̂cwm ≈ Dcwm
1

f̂cwm

. (5.18)

Steps III(b) and III(c) are performed analogously to step III(a) with according mor-
phological characteristics of the cells in latewood and ray tissue, and results in effective
properties of latewood and ray cells.

5.3.2 Step IV: Hardwood with vessels

In case of hardwood, step IV is used to include additional large vessels that mainly
appear in earlywood. Again a Mori-Tanaka scheme is used, this time with cylindrical
inclusions representing the vessels oriented in the longitudinal direction of wood, and
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also filled with moist air. Starting again from the corresponding equation (4.22) for
thermal conduction in Chapter 4, substitution of D̄MT

early and D̄air for KMT
early and Kair

results in

D̄MT
hard+ves =

{
f̄earlyD̄

MT
early + f̄vesD̄air ·

[
I+Pearly

circcyl ·
(
D̄air − D̄MT

early

)]−1
}
·

{
f̄earlyI+ f̄ves

[
I+Pearly

circcyl ·
(
D̄air − D̄MT

early

)]−1
}−1

, (5.19)

with f̄early and f̄ves denoting the volume fractions of earlywood and vessels in their

combined tissue, respectively. The Hill tensor Pearly
circcyl accounts for the circular cylindrical

shape of the vessels in earlywood.

Again the reference volume for the concentration changes during the homogenization
step, this time to the volume of hardwood with vessels. Therefore the diffusion tensors
of earlywood and air, D̂MT

early and D̊air, have to be expressed in terms of concentrations
in hardwood with vessels. In analogy to Eq. (5.9) this is done for the diffusion tensor of
air by

D̄air = D̊air
1

f̄ves + f̄early
∂m̂H2O

∂m̊H2O

Vair

Vearly

. (5.20)

Neglecting the minor contribution of the water in the lumens, the mass of water in
earlywood m̂H2O can be approximately expressed as function of moisture content MC as

m̂H2O ≈ ρdrycwm

(
1− f̃H2O fpoly

)
f̂cwm Vearly MC. (5.21)

Substituting Eqs. (5.13) and (5.21) in Eq. (5.20) yields

D̄air ≈ D̊air
1

f̄ves + f̄early
ρdrycwm(1−f̃H2O

fpoly)f̂cwm RT

pv,sat MH2O

∂MC

∂ϕ

. (5.22)

Similar to the diffusion coefficient of air also the earlywood diffusion coefficient D̂MT
early,

which is originally based on a concentration gradient of water in earlywood, has to be
converted to a diffusion coefficient D̄MT

early, based on a concentration gradient in hardwood
with vessels. In analogy to Eq. (5.20) this is done by

D̄MT
early = D̂MT

early

1

f̂early + f̂ves
∂m̊H2O

∂m̂H2O

Vearly

Vair

. (5.23)

Neglecting again the water in the lumens and substituting Eqs. (5.13) and (5.21) in
Eq. (5.23) yields

D̄MT
early ≈ D̂MT

early

1

f̂early + f̂ves
pv,sat MH2O

ρdrycwm(1−f̃H2O
fpoly)f̂cwm RT

∂ϕ
∂MC

. (5.24)

As before, the second term in the denominator of Eq. (5.24) is very small compared to
f̂early, so that Eq. (5.24) reduces in good approximation to

D̄MT
early ≈ D̂MT

early

1

f̂early
. (5.25)
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5.3.3 Step V: Annual rings

Step V accounts for the layered configuration of earlywood and latewood, that is visible
as annual rings on the macroscale. In the longitudinal and tangential direction the
moisture fluxes of the two materials act in parallel, while in the radial direction they are
connected in series. Reformulating Eqs. (4.24) in Chapter 4 for moisture diffusion with

D̈
S/P
ann , D̈MT

hard+ves, and D̈MT
late instead of K

S/P
ann , KMT

hard+ves, and KMT
late yields the non-zero

components of D̈
S/P
ann as

D̈
S/P
ann,11 =

(
f̈hard+ves/D̈

MT
hard+ves,11 + f̈late/D̈

MT
late,11

)−1
,

D̈
S/P
ann,22 = f̈hard+ves D̈

MT
hard+ves,22 + f̈late D̈

MT
late,22, (5.26)

D̈
S/P
ann,33 = f̈hard+ves D̈

MT
hard+ves,33 + f̈late D̈

MT
late,33,

with f̈hard+ves and f̈late denoting the volume fractions of hardwood with vessels and
latewood, respectively, in the layered wood material across the annual rings. As long as
the reference coordinate system is chosen parallel and perpendicular to the layers, and,
thus, to the principal material directions, the off-diagonal tensor components vanish.

As in the previous steps, the diffusion tensors of hardwood with vessels and of late-
wood have to be expressed in terms of concentration gradients in the annual rings. Via
adapting Eq. (5.9), this is done by

D̈MT
hard+ves = D̄MT

hard+ves

1

f̈hard+ves + f̈late
∂m̌H2O

∂m̄H2O

Vhard+ves

Vlate

. (5.27)

Neglecting again the water contained in the lumens, the mass of water in latewood m̌H2O

and the mass of water in hardwood with vessels, m̄H2O, can be approximately expressed
as functions of moisture content MC alone as

m̌H2O ≈ ρdrycwm

(
1− f̃H2O fpoly

)
f̌cwm VlateMC, (5.28)

m̄H2O ≈ ρdrycwm

(
1− f̃H2O fpoly

)
f̄early f̂cwm Vhard+ves MC. (5.29)

Substituting Eqs. (5.28) and (5.29) in Eq. (5.27) yields the approximate relation

D̈MT
hard+ves ≈ D̄MT

hard+ves

1

f̈hard+ves + f̈late
f̌cwm

f̄earlyf̂cwm

. (5.30)

The conversion of the diffusion coefficient of latewood is carried out analogously as:

D̈MT
late = ĎMT

late

1

f̈late + f̈hard+ves
∂m̄H2O

∂m̌H2O

Vlate

Vhard+ves

. (5.31)

Substituting Eqs. (5.28) and (5.29) in Eq. (5.31) finally yields

D̈MT
late ≈ ĎMT

late

1

f̈late + f̈hard+ves
f̄earlyf̂cwm

f̌cwm

. (5.32)
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5.3.4 Step VI: Clear wood sample

In the last step the wood rays are included in the annual ring material of the previous
step in order to complete the homogenization procedure. These additional pathways
for moisture transport in the radial direction are represented by ellipsoidal cylinders,

consisting of the material of homogenization step III(c). Substituting KMT
wood, K

S/P
ann , and

KMT
ray by D́MT

wood, D́
S/P
ann , and D́MT

ray in Eq. (4.25) of Chapter 4 finally results in the sought
estimate for the homogenized moisture diffusion tensor of clear wood:

D́MT
wood =

{
f́annD́

S/P
ann + f́rayD́

MT
ray ·

[
I+Pann

ellcyl ·
(
D́MT

ray − D́S/P
ann

)]−1
}
·

{
f́annI+ f́ray

[
I+Pann

ellcyl ·
(
D́MT

ray − D́S/P
ann

)]−1
}−1

. (5.33)

with f́ann and f́ray denoting the volume fractions of annual rings and wood rays, respec-
tively. The Hill tensor Pann

ellcyl accounts for the elliptic cylindrical shape of the wood rays
in the annual rings.

As before, the reference volume for the concentration is changed during the homogeniza-
tion step. Therefore the diffusion tensors of annual rings and rays have to be expressed
in terms of concentrations in wood. In analogy to Eq. (5.9) this is performed again for
the diffusion tensor of the annual ring material by

D́S/P
ann = D̈S/P

ann

1

f́ann + f́ray
∂ṁH2O

∂m̈H2O

Vann

Vray

. (5.34)

Neglecting the water in the lumens, the mass of water in the annual rings m̈H2O and the
mass of water in the rays ṁH2O can be expressed as functions of moisture content MC
in good approximation as

ṁH2O ≈ ρdrycwm

(
1− f̃H2O fpoly

)
ḟcwm Vray MC, (5.35)

m̈H2O ≈ ρdrycwm

(
1− f̃H2O fpoly

)(
f̈hard+ves f̄early f̂cwm + f̈late f̌cwm

)
Vann MC. (5.36)

Substituting Eqs. (5.35) and (5.36) in Eq. (5.34) yields

D́S/P
ann ≈ D̈S/P

ann

1

f́ann + f́ray
ḟcwm

f̈hard+ves f̄early f̂cwm+f̈late f̌cwm

. (5.37)

The density of wood rays was set equal to the mean density of the wood sample (see
Chapter 4), therefore – assuming the same cell wall material as in earlywood and late-
wood – the volume fraction of cell wall material in the ray cells is the same as in the
annual rings:

ḟcwm = f̈hard+ves f̄early f̂cwm + f̈late f̌cwm︸ ︷︷ ︸
f̈cwm

. (5.38)

With this relation, Eq. (5.37) reduces to

D́S/P
ann ≈ D̈S/P

ann

1

f́ann + f́ray
= D̈S/P

ann . (5.39)



5.4 Experimental validation 71

Finally, the conversion of the ray cell diffusion coefficient follows from

D́MT
ray ≈ ḊMT

ray

1

f́ray + f́ann
∂m̈H2O

∂ṁH2O

Vray

Vann

. (5.40)

Substituting Eqs. (5.35) and (5.36) in Eq. (5.40) and considering Eq. (5.38) yields

D́MT
ray ≈ ḊMT

ray

1

f́ray + f́ann
f̈hard+ves f̄early f̂cwm+f̈late f̌cwm

ḟcwm

(5.41)

= ḊMT
ray

1

f́ray + f́ann 1
= ḊMT

ray . (5.42)

5.4 Experimental validation

Pursuing the same strategy as for the thermal conductivity predictions, validation of
the developed multiscale model for steady state diffusion is based on experimental data
from literature. In particular, model predictions for diffusion coefficients, computed
based on sample-independent diffusivities of cell wall material and air (input data set I)
for given sample-specific volume fractions and morphological properties (input data set
II), are compared with corresponding experimental results measured under steady state
conditions (experimental data set).

Required sample-specific input data for the model are wood species, moisture content,
temperature, and the dry mass density of the sample. In order to accomplish the com-
parison, also knowledge of the direction of measurement is needed. Therefore only those
experimental results with all these values reported were used, resulting in 190 complete
data sets (from Kollmann [55], Sehlstedt-Persson [94], Comstock [11], and Choong [10]).

The comparison is illustrated in Fig. 5.2, where each marker indicates one pair of a
measured diffusion coefficient and the corresponding model prediction. Different markers
are used for softwood and hardwood and for the three principal material directions L,
R, and T, respectively. Due to the wide range of values a log-log plot is used. The solid
diagonal line indicates perfect agreement between model predicted and experimental
values.

In order to quantify the agreement, differences between model estimates and experimen-
tal measurements are determined in terms of mean values and standard deviations of
relative prediction errors ē and s. Beside these error measures, correlation coefficients
r2 are determined. Error measures as well as correlation coefficients are summarized in
Table 5.1 for exclusively softwood samples, exclusively hardwood samples, and for all
samples.

The model estimates for the diffusion coefficients in radial, tangential, and longitudi-
nal direction, D́MT

wood, show a good agreement with the corresponding measured values

D́exp
wood. The correlation coefficient of the diffusion coefficients of r2 = 98.0% across all

samples and material directions is very good. The mean errors of ē show a slight overes-
timation of the diffusion coefficient by the model for softwood, but an underestimation
for hardwood. This could indicate a systematic error of the model. However, all data
of hardwood specimens are taken from only one literature source, so that more hard-
wood specimens, particularly from different experimental campaigns, should be taken
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Figure 5.2: Comparison of predicted and measured diffusion coefficients

Table 5.1: Agreement of model predictions and experimental results of moisture diffusion
coefficients of wood: Correlation coefficients and error measures.

r2 ē s

Softwood samples 97.9% +4.8% 20.5%
Hardwood samples 83.4% −19.5% 12.6%
All samples 98.0% +2.0% 21.3%

into account before drawing such conclusions. Data for softwood specimens origin from
three different literature sources and incorporates 168 samples from three different wood
species, which provides a good basis for validating the model and for confirming its good
predictive capabilities.

The standard deviations of relative prediction errors s display the spreading of the predic-
tion errors. A possible reason for the observed deviations of the model predictions from
the experimental results is the negligence of the influence of the chemical composition
of the cell wall and of the degree of pit aspiration on the supposed diffusion coefficients
of the cell wall material. Another reason might be inaccuracy of some measurements,
since the experimental determination of exact diffusion coefficients is difficult, even for
steady state conditions. The standard deviation s is lower for the hardwood specimens,
for which all experimental values refer to only one author. This might indicate that the
high standard deviation for the total set of specimens is a consequence of different mea-
suring methods applied by the different authors. On the whole, the prediction quality
of the model for steady state moisture diffusion coefficients is quite satisfactory.
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Considerable improvement of the model is expected from an extension to lower length
scales, since wood species differ in chemical composition and therefore also in bound
water diffusivity. However, this is still an active field of research. As already mentioned,
the consideration of pits (in aspirated as well as in unaspirated state) would constitute
a further possibility of improvement, but as long as the bound water diffusivity of the
cell wall is not known exactly itself, the use of one overall diffusion coefficient for the
cell wall including the pits seems reasonable.

5.5 Macroscopic regression functions based on the multi-

scale model

As done for thermal conductivity, regression functions were fitted to results of the mul-
tiscale homogenization model for moisture diffusivity. The used polynomial reads as

D́i = D́ref
i

(
a10,i + a11,i ρ+ a12,i ρ

2 + a13,i
1

ρ3

)
·

(
a20,i + a21,i T + a22,i T

2
+ a23,i T

3
+ a24,i T

4
)
·

(
a30,i + a31,i MC + a32,i MC

2
+ a33,iMC

3
+ a34,i MC

4
)

i ∈ [R, T, L],

(5.43)

where ρ, T , and MC are density, temperature, and moisture content related to reference
conditions:

ρ =
ρdrywood

450 kg/m3
, T =

T

293.15K
, MC =

MC

12%
. (5.44)

D́ref
i is the diffusion coefficient in direction i = R, T, L at reference conditions. An

according gradient has to be specified based on mass of water per total volume of wood.
The fitting coefficients a for spruce are given in Table 5.2.

5.6 Summary

In this chapter, the formulation and experimental validation of a model for moisture
diffusion under steady state conditions is shown. The model revisits the morphology of
wood on four different length scales that are reproduced by six homogenization steps:
the wood cell structure, additional larger vessels in case of a hardwood sample, the
succession of earlywood and latewood in the annual rings, and, finally, the wood rays.
Thus it is possible to account for the differences in morphology of various wood species,
resulting in a very good prediction quality of the model and a good correlation of cal-
culated and corresponding measured values. This underlines the dominant influence of
microstructural features such as the cell structure and the growth ring pattern on the
macroscopic moisture diffusion behavior.

The presented multiscale model for the homogenization of steady state diffusion coeffi-
cients is an important special case (because of its suitability for direct validation) and
an intermediate step on the way to the transient moisture diffusion model (see Chapter
9).
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Table 5.2: Reference values D́ref
i [m2/s] and coefficients ai for directions i = R, T, L,

used in Eq. (5.43) for spruce clear wood, calculated based on results of the multiscale
homogenization model.

i R (radial) T (tangential) L (longitudinal)

D́ref
i 1.599×10−11 1.886×10−11 3.320×10−10

a10,i 0.79964 1.83956 1.81373
a11,i -0.00613 -0.21138 -0.75624
a12,i -0.10923 -0.49070 -0.00787
a13,i 0.31421 -0.13778 -0.04962

a20,i 4401.98 4178.56 11244.7
a21,i -17643.3 -16783.2 -43901.4
a22,i 26607.3 25367.3 64336.4
a23,i -17908.8 -17115.1 -41970.5
a24,i 4543.81 4353.44 10291.7

a30,i 0.09338 -0.10869 -4.14141
a31,i 0.69667 2.13629 31.6792
a32,i 0.35840 -3.51368 -57.8508
a33,i 0.38874 4.57444 41.0617
a34,i -0.17671 -1.66885 -10.2242

5.7 Appendix A: Numerical investigation of the influence
of pits

In a short numerical study the influence of pits on diffusive moisture transport was
investigated. For this purpose, the effective moisture fluxes through an undistorted cell
wall, a closed bordered pit, and an open bordered pit were calculated using the finite
element program ABAQUS. As for material properties, the following values were used
in the calculation:

air: diffusivity 2.5× 107 µm2/s

solubility 1.75× 10−17 g/µm3

cell wall material: diffusivity 2µm2/s

solubility 4.60× 10−13 g/µm3

The geometries of the three investigated situations are given in Fig. 5.3, the dimensions
were suitably chosen based on the photograph of the cross-section of a bordered pit. For
convenience, perfect radial symmetry of the pit was assumed, therefore axisymmetric
elements could be used in the calculation. By applying different concentrations to top
and bottom of the model steady state conditions were gained.

The results of the examination are given in Table 5.3. The average diffusive moisture
flux is almost three times higher through a closed pit than through an undistorted cell
wall, and – as could be expected – more than 17 times higher through an open pit. It
can be seen that, even if a pit is closed, it will clearly affect the transport behavior of
water in wood.
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Figure 5.3: Model representation of (a) an undistorted cell wall, (b) a closed pit, and (c)
an open pit. In (d) the according microscopical image is shown [25]. The dash-dotted
lines denote the middle axes of the axisymmetric models.

Table 5.3: Numerical results for the effective flux.

undistorted cell wall closed pit open pit

Flux J [g/(µm2 s)] 3.786 × 10−13 1.087 × 10−12 6.567 × 10−12

Relation 100% 287% 1735%

5.8 Appendix B: Steady state moisture diffusivity mea-
surements

Table 5.4: Experimental set IIa: Diffusion coefficients of wood samples, with correspond-
ing density, moisture content and temperature

No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

1 Spruce R 0.055 313.15 0.404 1.06·10−10 [55]
2 Spruce R 0.067 313.15 0.404 1.22·10−10 [55]
3 Spruce R 0.071 313.15 0.404 1.28·10−10 [55]
4 Spruce R 0.083 313.15 0.404 1.58·10−10 [55]
5 Spruce R 0.087 313.15 0.404 1.56·10−10 [55]

6 Spruce R 0.089 313.15 0.404 1.67·10−10 [55]
7 Spruce R 0.091 313.15 0.404 1.50·10−10 [55]
8 Spruce R 0.094 313.15 0.404 1.78·10−10 [55]
9 Spruce R 0.101 313.15 0.404 1.97·10−10 [55]

10 Spruce R 0.107 313.15 0.404 1.72·10−10 [55]

11 Spruce R 0.117 313.15 0.404 1.89·10−10 [55]
12 Spruce R 0.124 313.15 0.404 1.86·10−10 [55]

Continued on next page
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Table 5.4 – continued from previous page

No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

13 Spruce R 0.134 313.15 0.404 2.22·10−10 [55]
14 Spruce R 0.138 313.15 0.404 2.47·10−10 [55]
15 Spruce R 0.141 313.15 0.404 2.42·10−10 [55]

16 Spruce R 0.151 313.15 0.404 2.61·10−10 [55]
17 Spruce R 0.160 313.15 0.404 2.86·10−10 [55]
18 Spruce R 0.167 313.15 0.404 2.83·10−10 [55]
19 Spruce R 0.169 313.15 0.404 3.19·10−10 [55]
20 Spruce R 0.178 313.15 0.404 3.06·10−10 [55]

21 Spruce R 0.182 313.15 0.404 3.33·10−10 [55]
22 Spruce R 0.193 313.15 0.404 3.47·10−10 [55]
23 Spruce R 0.207 313.15 0.404 3.61·10−10 [55]
24 Spruce R 0.222 313.15 0.404 4.00·10−10 [55]
25 Spruce R 0.227 313.15 0.404 4.17·10−10 [55]

26 Spruce R 0.240 313.15 0.404 4.17·10−10 [55]
27 Spruce R 0.255 313.15 0.404 5.03·10−10 [55]
28 Spruce R 0.274 313.15 0.404 5.97·10−10 [55]
29 Spruce R 0.285 313.15 0.404 6.22·10−10 [55]
30 Spruce R 0.030 333.15 0.404 2.00·10−10 [55]

31 Spruce R 0.042 333.15 0.404 2.36·10−10 [55]
32 Spruce R 0.044 333.15 0.404 2.31·10−10 [55]
33 Spruce R 0.049 333.15 0.404 2.72·10−10 [55]
34 Spruce R 0.055 333.15 0.404 2.89·10−10 [55]
35 Spruce R 0.062 333.15 0.404 3.28·10−10 [55]

36 Spruce R 0.063 333.15 0.404 2.75·10−10 [55]
37 Spruce R 0.068 333.15 0.404 3.33·10−10 [55]
38 Spruce R 0.069 333.15 0.404 3.58·10−10 [55]
39 Spruce R 0.074 333.15 0.404 3.50·10−10 [55]
40 Spruce R 0.079 333.15 0.404 3.25·10−10 [55]

41 Spruce R 0.084 333.15 0.404 3.94·10−10 [55]
42 Spruce R 0.087 333.15 0.404 3.81·10−10 [55]
43 Spruce R 0.092 333.15 0.404 4.36·10−10 [55]
44 Spruce R 0.096 333.15 0.404 4.06·10−10 [55]
45 Spruce R 0.103 333.15 0.404 5.11·10−10 [55]

46 Spruce R 0.106 333.15 0.404 4.94·10−10 [55]
47 Spruce R 0.114 333.15 0.404 4.94·10−10 [55]
48 Spruce R 0.120 333.15 0.404 5.11·10−10 [55]
49 Spruce R 0.128 333.15 0.404 5.86·10−10 [55]
50 Spruce R 0.135 333.15 0.404 6.00·10−10 [55]

51 Spruce R 0.157 333.15 0.404 6.39·10−10 [55]
52 Spruce R 0.164 333.15 0.404 6.72·10−10 [55]
53 Spruce R 0.173 333.15 0.404 7.56·10−10 [55]
54 Spruce R 0.176 333.15 0.404 7.11·10−10 [55]

Continued on next page
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Table 5.4 – continued from previous page

No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

55 Spruce R 0.191 333.15 0.404 7.67·10−10 [55]

56 Spruce R 0.209 333.15 0.404 8.19·10−10 [55]
57 Spruce R 0.221 333.15 0.404 9.33·10−10 [55]
58 Spruce R 0.237 333.15 0.404 1.09·10−9 [55]
59 Spruce R 0.247 333.15 0.404 1.08·10−9 [55]
60 Spruce R 0.260 333.15 0.404 1.16·10−9 [55]

61 Spruce R 0.270 333.15 0.404 1.28·10−9 [55]
62 Spruce R 0.028 353.15 0.404 3.97·10−10 [55]
63 Spruce R 0.036 353.15 0.404 3.78·10−10 [55]
64 Spruce R 0.040 353.15 0.404 4.86·10−10 [55]
65 Spruce R 0.048 353.15 0.404 5.33·10−10 [55]

66 Spruce R 0.049 353.15 0.404 4.64·10−10 [55]
67 Spruce R 0.055 353.15 0.404 5.22·10−10 [55]
68 Spruce R 0.057 353.15 0.404 6.00·10−10 [55]
69 Spruce R 0.060 353.15 0.404 5.69·10−10 [55]
70 Spruce R 0.068 353.15 0.404 7.39·10−10 [55]

71 Spruce R 0.069 353.15 0.404 6.36·10−10 [55]
72 Spruce R 0.070 353.15 0.404 6.72·10−10 [55]
73 Spruce R 0.079 353.15 0.404 8.00·10−10 [55]
74 Spruce R 0.080 353.15 0.404 7.33·10−10 [55]
75 Spruce R 0.087 353.15 0.404 8.19·10−10 [55]

76 Spruce R 0.089 353.15 0.404 8.75·10−10 [55]
77 Spruce R 0.100 353.15 0.404 9.72·10−10 [55]
78 Spruce R 0.100 353.15 0.404 9.22·10−10 [55]
79 Spruce R 0.110 353.15 0.404 1.02·10−9 [55]
80 Spruce R 0.121 353.15 0.404 1.22·10−9 [55]

81 Spruce R 0.124 353.15 0.404 1.21·10−9 [55]
82 Spruce R 0.144 353.15 0.404 1.43·10−9 [55]
83 Spruce R 0.154 353.15 0.404 1.48·10−9 [55]
84 Spruce R 0.157 353.15 0.404 1.54·10−9 [55]
85 Spruce R 0.184 353.15 0.404 1.83·10−9 [55]

86 Spruce R 0.200 353.15 0.404 2.08·10−9 [55]
87 Spruce R 0.203 353.15 0.404 2.10·10−9 [55]
88 Spruce R 0.235 353.15 0.404 2.67·10−9 [55]
89 Spruce R 0.021 373.15 0.404 8.44·10−10 [55]
90 Spruce R 0.026 373.15 0.404 9.97·10−10 [55]

91 Spruce R 0.031 373.15 0.404 1.56·10−9 [55]
92 Spruce R 0.033 373.15 0.404 1.14·10−9 [55]
93 Spruce R 0.041 373.15 0.404 1.35·10−9 [55]
94 Spruce R 0.042 373.15 0.404 1.35·10−9 [55]
95 Spruce R 0.045 373.15 0.404 1.60·10−9 [55]

96 Spruce R 0.048 373.15 0.404 1.34·10−9 [55]
Continued on next page
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Table 5.4 – continued from previous page

No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

97 Spruce R 0.050 373.15 0.404 2.06·10−9 [55]
98 Spruce R 0.053 373.15 0.404 1.69·10−9 [55]
99 Spruce R 0.053 373.15 0.404 1.41·10−9 [55]
100 Spruce R 0.060 373.15 0.404 2.01·10−9 [55]

101 Spruce R 0.061 373.15 0.404 1.79·10−9 [55]
102 Spruce R 0.063 373.15 0.404 2.32·10−9 [55]
103 Spruce R 0.065 373.15 0.404 1.74·10−9 [55]
104 Spruce R 0.070 373.15 0.404 2.52·10−9 [55]
105 Spruce R 0.074 373.15 0.404 2.24·10−9 [55]

106 Spruce R 0.078 373.15 0.404 2.57·10−9 [55]
107 Spruce R 0.090 373.15 0.404 2.38·10−9 [55]
108 Spruce R 0.097 373.15 0.404 2.46·10−9 [55]
109 Spruce R 0.101 373.15 0.404 2.32·10−9 [55]
110 Spruce R 0.112 373.15 0.404 3.12·10−9 [55]

111 Spruce R 0.115 373.15 0.404 2.36·10−9 [55]
112 Spruce R 0.121 373.15 0.404 2.81·10−9 [55]
113 Spruce R 0.131 373.15 0.404 2.66·10−9 [55]
114 Spruce R 0.143 373.15 0.404 3.43·10−9 [55]
115 Spruce R 0.153 373.15 0.404 2.98·10−9 [55]

116 Spruce R 0.167 373.15 0.404 4.34·10−9 [55]
117 Spruce R 0.170 373.15 0.404 2.83·10−9 [55]
118 Spruce R 0.177 373.15 0.404 3.87·10−9 [55]
119 Spruce R 0.197 373.15 0.404 4.71·10−9 [55]
120 Spruce R 0.198 373.15 0.404 4.10·10−9 [55]

121 Spruce R 0.209 373.15 0.404 5.65·10−9 [55]
122 Norway spruce heartwood T 0.150 333.15 0.377 8.54·10−10 [94]
123 Norway spruce heartwood T 0.150 333.15 0.433 7.36·10−10 [94]
124 Norway spruce heartwood T 0.150 333.15 0.431 6.86·10−10 [94]
125 Norway spruce heartwood T 0.150 333.15 0.432 6.71·10−10 [94]

126 Norway spruce heartwood T 0.150 333.15 0.557 5.07·10−10 [94]
127 Norway spruce heartwood T 0.150 333.15 0.549 4.24·10−10 [94]
128 Norway spruce sapwood T 0.150 333.15 0.398 7.42·10−10 [94]
129 Norway spruce sapwood T 0.150 333.15 0.403 7.95·10−10 [94]
130 Norway spruce sapwood T 0.150 333.15 0.418 7.51·10−10 [94]

131 Norway spruce sapwood T 0.150 333.15 0.441 6.18·10−10 [94]
132 Norway spruce sapwood T 0.150 333.15 0.453 6.57·10−10 [94]
133 Norway spruce sapwood T 0.150 333.15 0.578 5.01·10−10 [94]
134 Scots pine heartwood T 0.150 333.15 0.507 4.71·10−10 [94]
135 Scots pine heartwood T 0.150 333.15 0.550 4.36·10−10 [94]

136 Scots pine heartwood T 0.150 333.15 0.577 3.36·10−10 [94]
137 Scots pine heartwood T 0.150 333.15 0.583 3.77·10−10 [94]
138 Scots pine heartwood T 0.150 333.15 0.583 3.71·10−10 [94]

Continued on next page
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No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

139 Scots pine heartwood T 0.150 333.15 0.633 3.08·10−10 [94]
140 Scots pine sapwood T 0.150 333.15 0.553 5.36·10−10 [94]

141 Scots pine sapwood T 0.150 333.15 0.553 5.09·10−10 [94]
142 Scots pine sapwood T 0.150 333.15 0.558 4.92·10−10 [94]
143 Scots pine sapwood T 0.150 333.15 0.565 4.89·10−10 [94]
144 Scots pine sapwood T 0.150 333.15 0.581 4.88·10−10 [94]
145 Scots pine sapwood T 0.150 333.15 0.650 4.12·10−10 [94]

146 Yellow poplar desorp. T 0.072 313.15 0.449 9.00·10−11 [11]
147 Yellow poplar desorp. T 0.072 313.15 0.450 8.80·10−11 [11]
148 Yellow poplar desorp. T 0.094 313.15 0.447 1.66·10−10 [11]
149 Yellow poplar desorp. T 0.095 313.15 0.445 1.65·10−10 [11]
150 Yellow poplar desorp. T 0.112 313.15 0.441 2.14·10−10 [11]

151 Yellow poplar desorp. T 0.113 313.15 0.450 2.26·10−10 [11]
152 Yellow poplar desorp. T 0.108 313.15 0.447 1.55·10−10 [11]
153 Yellow poplar desorp. T 0.109 313.15 0.446 1.57·10−10 [11]
154 Yellow poplar desorp. T 0.125 313.15 0.443 2.26·10−10 [11]
155 Yellow poplar desorp. T 0.127 313.15 0.448 2.42·10−10 [11]

156 Yellow poplar adsorp. T 0.068 313.15 0.449 1.46·10−10 [11]
157 Yellow poplar adsorp. T 0.067 313.15 0.450 1.30·10−10 [11]
158 Yellow poplar adsorp. T 0.085 313.15 0.447 1.58·10−10 [11]
159 Yellow poplar adsorp. T 0.086 313.15 0.445 1.54·10−10 [11]
160 Yellow poplar adsorp. T 0.101 313.15 0.441 1.84·10−10 [11]

161 Yellow poplar adsorp. T 0.103 313.15 0.450 1.71·10−10 [11]
162 Yellow poplar adsorp. T 0.101 313.15 0.447 1.80·10−10 [11]
163 Yellow poplar adsorp. T 0.103 313.15 0.446 1.82·10−10 [11]
164 Yellow poplar adsorp. T 0.116 313.15 0.443 1.86·10−10 [11]
165 Yellow poplar adsorp. T 0.119 313.15 0.448 2.04·10−10 [11]

166 Yellow poplar adsorp. T 0.145 313.15 0.450 2.16·10−10 [11]
167 Yellow poplar adsorp. T 0.149 313.15 0.444 2.22·10−10 [11]
168 Western fir R 0.060 303.15 0.360 9.22·10−11 [10]
169 Western fir R 0.080 303.15 0.360 1.11·10−10 [10]
170 Western fir R 0.100 303.15 0.360 1.30·10−10 [10]

171 Western fir R 0.120 303.15 0.360 1.48·10−10 [10]
172 Western fir R 0.140 303.15 0.360 1.67·10−10 [10]
173 Western fir R 0.050 313.15 0.360 9.60·10−11 [10]
174 Western fir R 0.060 313.15 0.360 1.08·10−10 [10]
175 Western fir R 0.080 313.15 0.360 1.60·10−10 [10]

176 Western fir R 0.100 313.15 0.360 2.12·10−10 [10]
177 Western fir R 0.120 313.15 0.360 2.66·10−10 [10]
178 Western fir R 0.140 313.15 0.360 3.18·10−10 [10]
179 Western fir R 0.150 313.15 0.360 3.24·10−10 [10]
180 Western fir R 0.060 323.15 0.360 1.67·10−10 [10]

Continued on next page
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Table 5.4 – continued from previous page

No. Species Direction MC T ρdrywood D́exp
wood

(as reported) [1] [K]
[
g/cm3

] [
m2/s

]

181 Western fir R 0.080 323.15 0.360 2.45·10−10 [10]
182 Western fir R 0.100 323.15 0.360 3.22·10−10 [10]
183 Western fir R 0.120 323.15 0.360 4.00·10−10 [10]
184 Western fir R 0.140 323.15 0.360 4.76·10−10 [10]
185 Western fir R 0.050 333.15 0.360 2.10·10−10 [10]

186 Western fir R 0.060 333.15 0.360 2.36·10−10 [10]
187 Western fir R 0.080 333.15 0.360 4.01·10−10 [10]
188 Western fir R 0.100 333.15 0.360 5.74·10−10 [10]
189 Western fir R 0.120 333.15 0.360 7.38·10−10 [10]
190 Western fir R 0.150 333.15 0.360 9.30·10−10 [10]



Chapter6
Multiscale model for
viscoelasticity of softwood

This chapter covers the development and validation of a multiscale homogenization
model for linear viscoelastic properties (see footnote on page 27) of wood. Starting
point is again the intrinsic structural hierarchy of wood, which is accounted for by
several homogenization steps. Using the correspondence principle, an existing homog-
enization model for the prediction of elastic properties of wood is adapted herein for
upscaling of viscoelastic characteristics. Accordingly, self-consistent, Mori-Tanaka, and
unit-cell-based techniques are employed, leading to pointwise defined tensorial creep and
relaxation functions in the Laplace-Carson domain. Subsequently, these functions are
back-transformed into the time domain by means of the Gaver-Stehfest algorithm. With
this procedure the orthotropic macroscopic creep behavior of wood can be derived from
the isotropic creep behavior in shear of the lignin-hemicellulose phase. A comparison of
model predictions for viscoelastic properties of softwood with corresponding experimen-
tally derived values yields very promising results and confirms the principal suitability
of the model.

6.1 Introduction

Wood is a viscoelastic material [69]. It shows an orthotropic creep and relaxation behav-
ior, where the principal material directions are oriented along the stem axis (longitudinal
direction L) and in the transverse plane perpendicular and parallel to the growth rings
(radial and tangential directions R and T). For moderate load levels the viscoelastic be-
havior of wood can be suitably described by the linear viscoelastic theory [91]. The stress
level at which non-linear viscoelastic effects start to evolve depends on the wood species,
temperature, moisture content, and the type of loading (tension, compression, bending,
etc.) and is usually given as a fraction of the rupture stress. According to Schniewind
[91], the limit of linear behavior can range from 36 to 84 % of the static strength. The
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model presented in the following is formulated for linear viscoelastic behavior and, thus,
is only applicable below this limit stress.

The time-dependent behavior of wood is very sensitive to moisture content [51]. High
levels of moisture content implicate a lowered stiffness and an increased viscosity of wood
[91], since water acts as plasticizer. Furthermore, a variable moisture content history
results in so-called mechano-sorptive creep. This effect is not considered in this thesis.
Rather, it focuses on time-dependent effects at constant climatic conditions for which a
corresponding multiscale modeling approach is presented.

Due to the diversified microstructure of wood (see Chapter 2), involving for example the
longitudinally aligned honeycomb-type cell structure, it exhibits a strongly orthotropic
material behavior on the macroscale. Similar to linear elastic orthotropy with nine
independent material properties, nine independent creep functions are necessary to de-
scribe the linear viscoelastic response of wood. These functions can be represented either
mathematically by regression functions or by means of rheological models consisting of
combinations of springs and dashpots that are arranged either in series or in parallel, see
Fig. 6.1. Since these are phenomenological approaches, the unknown model parameters
have to be determined by means of curve fitting methods from experimental results.

The simplest models for the description of time-dependent behavior are the Maxwell
model (spring and linear dashpot in series) and the Kelvin Voigt model (spring and
linear dashpot in parallel), see Fig. 6.1. Their combination in series, resulting in the
Burgers model, provides a suitable description of the rheological behavior of wood and
is frequently applied (see, e.g. [29], [30], [54], [58]). In general, this type of model is only
applicable to a limited time range, namely either to short-term or to long-term behavior).
To overcome this limitation, generalized models like the generalized Maxwell model or
the generalized Kelvin Voigt model were developed (see, e.g. [39], [41]). These consist of
a multitude of Maxwell or Kelvin Voigt models arranged in parallel, each with a different
characteristic time. The large number of parameters included in these models enables
to adjust the model response to measured creep curves. The main advantage of these
generalized models is their rather easy implementation in finite element codes for numer-
ical simulations [108]. However, a large number of parameters complicates relating the
observed effects and the single rheological elements to underlying physical phenomenons
and furthermore requires large sets of experimental data for their identification.

A very promising model for the time-dependent behavior of wood in the cross-grain
directions is the power law model specified in Fig. 6.1(e) (see, e.g., [69, 92, 50]). This
model consists of a linear spring connected in series with a nonlinear, so-called parabolic
or fractional dashpot.

As for macroscopic transport properties, the wide variability of viscoelastic material
properties stems from differences in morphology and chemical composition on lower
length scales. This motivates to follow the same homogenization strategy as presented
in Chapter 4 and 5. Along these lines, the model for viscoelastic properties of wood
builds up on the multiscale homogenization model for wood stiffness [44, 45, 46, 4].
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Figure 6.1: Rheological models, model parameters for the description of deviatoric creep,
creep compliance J(t), and Laplace-Carson transform J∗(s): (a) Maxwell model [3]; (b)
Kelvin Voigt model [3]; (c) three-parameter model [3]; (d) fractional dashpot; (e) power-
law model [3]; (f) fractional Zener model [74]

6.2 Upscaling of mechanical properties

As mentioned in the introduction, a combination of continuum micromechanics and the
unit cell method turned out suitable to represent the morphology of wood across the
different length scales for upscaling of elastic properties of wood [44, 45, 46, 4], see
Fig. 6.2. Using the Laplace-Carson transform and the correspondence principle, this
model will serve as basis for the upscaling of viscoelastic properties in this paper.

6.2.1 Homogenization of elastic properties of randomly organized ma-
terials: Continuum micromechanics

As done for transport properties, continuum micromechanics may be used as an ana-
lytical technique for determination of the effective mechanical properties of a macro-
homogeneous but micro-heterogeneous material. Again the material is described in a
statistical manner by a so-called representative volume element (RVE) composed of
homogeneous subdomains, so-called material phases r, with known properties such as
volume fraction fr and a phase elasticity law reading as

σr = Cr : εr, (6.1)
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where Cr is the stiffness tensor, and σr and εr are the stress and strain within phase
r. The effective (homogenized) stiffness Chom of the overall material, i.e. the relation
between homogeneous deformations acting on the boundary of the RVE and resulting
(average) stresses in the RVE, can be derived from Eshelby-Laws-type matrix-inclusion
problems [24, 59] as

Chom =
∑

r

frCr :
[
I+ P0

r : (Cr − C0)
]−1

:

{∑

s

fs
[
I+ P0

s : (Cs − C0)
]−1

}−1

, (6.2)

where I is the fourth order unity tensor, and P0
r is the Hill tensor accounting for the

shape of the inclusion embedded in a matrix with stiffness C0 [113, 24, 40]. The two
sums are taken over all phases in the RVE.

6.2.2 Homogenization of elastic properties of periodically organized
materials: Unit cell method

The unit cell method [7, 68] is used to determine the effective mechanical behavior of
a micro-heterogeneous material through approximating the real microstructure by a pe-
riodic one and by studying the mechanical behavior of the basic repetitive unit (the
unit cell). Subjecting the unit cell to periodic deformations at its boundaries (which are
compatible with the macroscopic strains) allows for determination of the resulting inho-
mogeneous stress and strain fields in the microstructure. Depending on the complexity
of the microstructure, these fields can be determined analytically [9, 46] or numerically,
e.g. by means of the finite element method [8, 53]. The homogenized mechanical behav-
ior is estimated from evaluating the average values of the periodic micro-stress field in
the unit cell in relation to the macroscopic strains acting on the boundary of the unit
cell.

6.2.3 Homogenization of viscoelastic material properties: Elastic-vis-
coelastic correspondence principle

In general, viscoelasticity is the behavior of materials showing an accumulation of strains
under constant stress (creep) and/or a reduction of stress under constant strain (relax-
ation). The constitutive behavior of a viscoelastic material phase r for a specific strain
history εr(t) can be expressed by

σr(t) =

∫ t

0
Rr(t− τ) : ε̇r(τ) dτ, (6.3)

where ε̇r is the time derivative of the strain tensor, Rr is the fourth order relaxation
tensor, t is the time, and τ is an integration variable marking the time when ε̇ was
imposed. Thereby, Rr(t = τ) refers to instantaneous elasticity, while Rr(t > τ) refers
to viscoelastic deformations. The special case of constant Rr(t) refers to pure elasticity,
i.e. Rr(t) = Cr, with Cr being the fourth-order elastic stiffness tensor of phase r.
Alternatively, the local viscoelastic material behavior of phase r can be characterized by
the creep function Dr(t), relating microscopic strains and stresses by

εr(t) =

∫ t

0
Dr(t− τ) : σ̇r(τ) dτ. (6.4)
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In Eqs. (6.3) and (6.4) the Boltzmann superposition principle is used, which states that
– given a linear relation between stresses and strains – the combined effect of several
loads is the sum of the effects of the individual loads. By applying a Laplace-Carson
(LC) transform, the convolution-type constitutive relations Eqs. (6.3) and (6.4) in the
time-domain become standard algebraic equations in the Laplace-Carson domain. This
transform is defined as [14]

f∗(s) = LC [f(t)] = sL [f(t)] = s f̂(s) = s

∫ ∞

0
f(t)e−s t dt, (6.5)

where f∗(s) is the LC transform of the time-dependent function f(t), s is the complex
variable in the LC domain, and f̂(s) is the Laplace transform of f(t). Application of
Eq. (6.5) to the relaxation law [Eq. (6.3)] and to the creep law [Eq. (6.4)] yields the
according algebraic constitutive equations [36]

σ∗
r(s) = R∗

r(s) : ε
∗
r(s) (6.6)

and

ε∗r(s) = D∗
r(s) : σ

∗
r(s). (6.7)

The analogy between Eq. (6.6) and the linear-elastic constitutive law [Eq. (6.1)] is the ba-
sis for the solution of viscoelastic problems by means of the correspondence principle (see
e.g. [65]). Hereby, the material parameters in the solution of the respective elastic prob-
lem are replaced by the respective LC transformed viscoelastic parameters. For example,
the elastic shear compliance 1/µ is replaced by the LC transformed creep-compliance
function for deviatoric creep, j∗dev(s). With the elastic solution for the effective proper-
ties of composite materials at hand [Eq. (6.2)], the correspondence principle gives access
to the macroscopic viscoelastic state equations as

Σ∗(s) = Rhom,∗(s) : E∗(s), (6.8)

with Rhom,∗(s) denoting the LC-transform of the homogenized macroscopic relaxation
tensor. The inverse LC transform delivers the corresponding solutions in the time do-
main:

f(t) = LC−1 [f∗(s)] =
1

2iπ

∫

Γ

f∗(s)
s

ept ds, (6.9)

where Γ is parallel to the imaginary axis having all poles of f∗(s) on the left [3]. A further
advantage of the LC transform is that time-independent functions remain unaffected, i.e.
they are equivalent in the time-domain (f(t) = f = const) and in the Laplace Carson
domain (f∗(s) = f = const). Application of the LC transform to purely elastic material
properties therefore yields:

R∗
r,elastic(s) = Cr,elastic. (6.10)

Equation (6.10) allows for combination of viscoelastic and elastic materials in a homog-
enization procedure.
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6.3 Definition of the multiscale homogenization model

On the basis of the correspondence principle, exploiting the analogy between elastic
and LC-transformed viscoelastic constitutive equations, the multiscale homogenization
model derived for elasticity of softwood by Hofstetter [46] can be easily adopted to
viscoelasticity (see Fig. 6.2). The resulting multistep homogenization procedure involves
four RVEs at different length scales:� an RVE of polymer network consisting of lignin, hemicellulose, and water;� an RVE of cellulose consisting of crystalline cellulose fibrils embedded in amorphous

cellulose;� an RVE of cell wall material consisting of cellulose fibers surrounded by a matrix
of polymer network;� an RVE of softwood as porous honeycomb made up of cell wall material, where the
pores are referred to as “lumens”.

amorph. cellulose matrix
cylindrical inclusions

Mori−Tanaka scheme

hexagonal lumens
unit cell methodpolymer network matrix

Mori−Tanaka scheme

cylindrical inclusions

self−consistent scheme

spherical inclusions
polymer network matrix

I(b) cellulose

l c
e
l=

2
0
n
m

lT

lR

α
lumens

l S
W
=
1
0
0
-1
5
0
µ
m

III softwood

cell wall
material

L

R

L

R, T
Tdcwm=20 nm

fiber
cellulose

polymer
network

microfibril angle θ̄ t

lR/4

cryst.
cellulose

amorph.
cellulose

l p
o
ly
n
e
t
=
2
0
n
m

lignin +
hemicellulose

I(a) polymer network

water +
extract.

2

1

3

3

1

l c
w
m
=
0
.5
-1

µ
m

II cell wall material

dpolynet=3-5 nm

dcel=3-5 nm

Figure 6.2: Four-step homogenization scheme on three hierarchical levels.

The morphological parameters and phase volume fractions of the various homogenization
steps are independent of the considered material property. Therefore, densities, volume
fractions, and aspect ratios of the single phases can be directly taken from the elastic
model [46]. The chosen RVEs and their morphology are again a model representation of
the much more complicated real structure of wood.

Compared to the homogenization approaches given in the preceding chapters, obviously
a different representation is chosen. The reason is that the influence of microstructural
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characteristics is different with regard to the considered material property. For example,
cellulose strongly influences the macroscopic mechanical behavior, therefore a more de-
tailed representation for cellulose is chosen in step I(b). In addition, step III is adapted
for a better description of the mechanical response of the cellular structure by using
a unit cell approach. As for transport properties, steps IV, V, and VI in the models
presented in Chapters 4 and 5 represent in detail the hollow transport routes (lumens,
vessels, and rays). As for mechanical properties these steps are much less significant,
therefore they were omitted. In general, simplifications on lower scales in a modeling
approach can be accepted as long as they don’t affect the macroscopic behavior beyond
commonly accepted levels of modeling inaccuracies.

6.3.1 Step I(a): Polymer network

In step I(a) the dispersed structure of polymer network is reproduced by mixing spher-
ical inclusions, representing the phases lignin, hemicellulose, and water. In contrast to
the model of Hofstetter [44], lignin and hemicellulose are treated together as lignin-
hemicellulose phase, since individual viscoelastic properties of these two phases are not
known yet and difficult if not impossible to access experimentally. Substituting the LC-
transformed viscoelastic quantities of the phases for the corresponding elastic quantities,
(e.g. R∗

H2Oext(s) for CH2Oext) in Eq. (5) in [44], yields a relation for the LC-transformed

relaxation tensor Rhom,∗
poly (s),

Rhom,∗
poly (s) =

{∑

r

f̃rR∗
r(s) :

[
I+ Ppoly,∗

sph (s) :
(
R∗
r(s)− Rhom,∗

poly (s)
)]−1

}
:

{∑

t

f̃t

[
I+ Ppoly,∗

sph (s) :
(
R∗
t (s)− Rhom,∗

poly (s)
)]−1

}−1

,

r, t ∈ [lig+hemcel, H2Oext] ,

(6.11)

with f̃lig+hemcel = f̃hemcel + f̃lig and f̃H2Oext denoting the volume fractions of the lignin-
hemicellulose matrix and of water mixed with extractives, respectively. The LC-trans-
formed Hill tensor Ppoly,∗

sph (s) accounts for the distribution and the characteristic shape
of these phases in the polymer network (see e.g. [40] for its components).

6.3.2 Step I(b): Cellulose

Step I(b) represents the structure of cellulose macrofibrils. This step is an improvement
of the homogenization scheme presented in Hofstetter et al. [44], where crystalline and
amorphous parts of cellulose are considered as individual phases in the cell wall (cf.
Bader et al. [4]). Replacing the LC-transformed viscoelastic properties of crystalline
and amorphous celluloses by the corresponding elastic properties in Eq. (32) in Bader
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et al. [4], the LC-transformed relaxation tensor of cellulose Rhom,∗
cel (s) reads as

Rhom,∗
cel (s) =

{
f̀amocelR∗

amocel(s) + f̀crycelR∗
crycel(s) :

[
I+ Pamocel,∗

cyl (s) :
(
R∗
crycel(s)− R∗

amocel(s)
)]−1

}
:

{
f̀amocelI+ f̀crycel

[
I+ Pamocel,∗

cyl (s) :
(
R∗
crycel(s)− R∗

amocel(s)
)]−1

}−1

.

(6.12)

The components of the LC-transformed Hill tensor Pamocel,∗
cyl (s) can be derived from

that specified in [4] by replacing the components of the elastic stiffness tensor by the
corresponding components of the LC-transformed relaxation tensor.

6.3.3 Step II: Cell wall material

The RVE of cell wall material comprises the material phases “cellulose” with volume
fraction fcel and LC-transformed relaxation tensor Rhom,∗

cel (s) as described in the previous
Subsection 6.3.2, and “polymer network” with volume fraction fpoly = 1− fcel and LC-
transformed viscoelastic behavior characterized by the LC-transformed relaxation tensor
Rhom,∗
poly (s), see Subsection 6.3.1. According to the correspondence principle, the equations

for elasticity given in [45] and for LC-transformed viscoelasticity again show the same

structure. Thus, the LC-transformed relaxation tensor Rhom,∗
cwm (s) of the cell wall material

reads as

Rhom,∗
cwm (s) =

{
fpoly Rhom,∗

poly (s) +
1

2π

2π∫

0

R∗
cel(ϕ, θ̄, s) :

[
I+ Ppoly,∗

cyl (ϕ, θ̄, s) :
(
Rhom,∗
cel (ϕ, θ̄, s)− Rhom,∗

poly (s)
)]−1

dϕ

}
:

{
fpolyI+ fcel

1

2π

2π∫

0

[
I+ Ppoly,∗

cyl (ϕ, θ̄, s) :
(
Rhom,∗
cel (ϕ, θ̄, s)− Rhom,∗

poly (s)
)]−1

dϕ

}−1

,

(6.13)

where θ̄ (identical to the average microfibril angle in the S2 layer) and ϕ denote the two
Euler angles describing the position of the macrofibril axis in a Cartesian coordinate
system. These two angles account for the helically wound arrangement of the cellulose
fibers in the wood cell wall. As in the previous steps, the LC-transformed Hill ten-
sor Ppoly,∗

cyl (s) accounts for the distribution and the characteristic shape of the cellulose
phase embedded in a matrix of polymer network. A more detailed description of this
homogenization step is given in [45].

6.3.4 Step III: Softwood

From a modeling point of view, the structure of softwood can be suitably approximated
by a large number of identical, periodically arranged unit cells, which motivates the use
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of the unit cell method with periodic boundary conditions. Application of this method
for estimation of elastic material properties of wood has been shown in [46]. As in the
previous steps, the LC transform allows for adaptation of the elastic formulation to
viscoelastic behavior. The LC-transformed relaxation tensor of softwood, Rhom,∗

SW (s), can
be calculated directly based on the equations for the stiffness tensor of softwood given
in Appendix C in [46] by replacing the components of the stiffness tensor of the cell wall
material, ccwm,ijkl, by the corresponding components of the LC-transformed relaxation

tensor of the cell wall material, Rhom,∗
cwm,ijkl(s) [Eq. 6.13].

6.4 Inversion of the Laplace-Carson transform – determi-

nation of creep and relaxation functions in the time
domain

The viscoelastic material properties for softwood estimated by means of the multiscale
homogenization scheme presented in the previous section are obtained in the LC domain.
Corresponding solutions in the time domain can be determined through the inverse
LC transformation as specified in Eq. (6.9). This inverse transform can be performed
analytically only for simple rheological models, while numerical techniques are required
for materials with a more complex rheological behavior, as it is the case for wood. Use
of the Gaver-Stehfest algorithm [101] provides discrete values of the time-dependent
functions, e.g. of relaxation tensor Rhom

SW (t) and creep compliance tensor Dhom
SW (t) of

softwood, at a given time t as

Rhom
SW (t) = LC−1

{
Rhom,∗
SW (s)

}
, (6.14)

Dhom
SW (t) = LC−1

{
Dhom,∗
SW (s)

}
= LC−1

{[
Rhom,∗
SW (s)

]−1
}
. (6.15)

Given the orthotropic material behavior of wood, the LC-transformed creep compliance
tensor Dhom,∗

SW (s) can be formulated in terms of nine independent viscoelastic material
parameters, reading in compressed matrix notation as

Dhom,∗
SW (s) =




1
E∗

R(s) −ν∗RT(s)
E∗

R(s) −ν∗RL(s)
E∗

R(s) 0 0 0

1
E∗

T(s)
−ν∗TL(s)

E∗
T(s)

0 0 0
1

E∗
L(s)

0 0 0
1

G∗
RT(s) 0 0

1
G∗

TL(s)
0

symm. 1
G∗

LR(s)




hom

SW

. (6.16)

In Eq. (6.16) the three LC-transformed relaxation moduli E∗
R(s), E

∗
T(s), E

∗
L(s), the three

LC-transformed time-dependent Poisson’s ratios ν∗RT(s), ν
∗
RL(s), ν

∗
TL(s), and the three

LC-transformed time-dependent shear moduli G∗
RT(s), G

∗
TL(s), G

∗
LR(s) are employed as

such parameters.

In order to end up with a (analytical) macroscopic rheological model and according
model parameters, suitable creep-compliance functions (cf. Fig. 6.1) can be fitted to the
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pointwise estimated compliance function Dhom
SW (ti). For the choice of a macroscopic rhe-

ological model and, thus, of a creep compliance function, the depiction of the estimates
by the multiscale model in a Cole-Cole diagram is very useful. This is detailed in Sec-
tion 6.7. First, the viscoelastic input parameters are identified, and then an experimental
model validation is performed.

6.5 Identification of rheological properties of the elemen-

tary components

As mentioned in the introduction, the lignin-hemicellulose phase is assumed to be the
only elementary component of wood exhibiting viscoelastic material behavior. The
other constituents of wood (amorphous and crystalline cellulose, water clustered with
extractives) are assumed to exhibit a purely elastic behavior, leading in accordance with
Eq. (6.10) to

R∗
r(s) = Cr, r ∈ [amocel, crycel,H2Oext] , (6.17)

with the stiffness tensors Cr according to Table 6.1. As for water, two assumptions are
made therein: First, viscosity of water is neglected, expressed by zero shear modulus
µH2Oext = 0. Second, the model is restricted to constant moisture content, therefore the
volume fraction of water is constant and independent of the mechanical stress state.

The lignin-hemicellulose phase is assumed to exhibit isotropic creep behavior at shear
loading [6]. Under hydrostatic loading, the phase is assumed to behave elastically, so
that the LC transform of the bulk modulus, k∗lig+hemcel(s), is constant and equals the
mean elastic bulk modulus of this phase, klig+hemcel = 6.40GPa (Table 6.1). This yields
the following constitutive relation:

R∗
lig+hemcel(s) =

[
D∗
lig+hemcel(s)

]−1
= 3klig+hemcel K+ 2µ∗

lig+hemcel(s)J, (6.18)

where µ∗
lig+hemcel(s) is the LC-transformed shear modulus of the lignin-hemicellulose

phase. K denotes the volumetric part of the fourth-order unity tensor with components
Kijkl = 1/3δijδkl, and J = I−K the deviatoric part of the fourth order unity tensor.

Table 6.1: Input data set I: Tissue-independent elastic phase properties

Phase Material Bulk modulus Shear modulus Source
behavior [GPa] [GPa]

Amorphous cellulose isotropic kamocel = 5.56 µamocel = 1.85 [18]
Lignin + hemicellulose isotropic klig+hemcel = 6.40 µlig+hemcel = 2.24 [12, 13]
Water + extractives isotropic kH2Oext = 2.30 µH2Oext = 0

Stiffness tensor components Cijkl [GPa]

Crystalline cellulose transversely Ccrycel,1111 = 34.86 Ccrycel,1122 = 0 [103]
isotropic Ccrycel,1111 = 167.79 Ccrycel,2233 = 0

Ccrycel,1111 = 5.81

The viscoelastic shear behavior of typical polymers is well described by a power-law
model [79], as depicted in Fig. 6.1. This model consists of a linear spring connected
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in series with a nonlinear, so-called parabolic or fractional dashpot. The corresponding
LC-transformed shear relaxation modulus reads as

µ∗
lig+hemcel(s) =

(
1

µ0,lig+hemcel
+ Ja,lig+hemcel

1

(s ta)
αlig+hemcel

Γ (1 + αlig+hemcel)

)−1

,

(6.19)

where µ0,lig+hemcel [GPa] is the instantaneous elastic shear modulus, Ja,lig+hemcel [GPa−1]
is the viscous part of the creep compliance at time t = ta, and αlig+hemcel denotes the
creep exponent of the lignin-hemicellulose phase. The power-law model exhibits two
regimes of evolving strains provoked by constant stress: (i) an instantaneous elastic
response, followed by (ii) a degrading creep response. The creep exponent α governs
the creep kinetics: For α = 0, the fractional dashpot behaves like a spring, while it
resembles a linear dashpot for α = 1. Typical values of α for polymers specified in liter-
ature range from 0.04 (cross-linked polyethylene [75]) to 0.346 (vinyl ester [79]). Due to
lack of experimentally derived creep properties of lignin and hemicellulose, respectively,
these two phases were treated together and calibrated by matching model predictions to
results of a macroscopic normal creep experiment perpendicular to the grain reported
by Schniewind [92] (board No. 267, Douglas-fir, dry density ρ = 477 kg/m3, moisture
content MC = 10%). The microfibril angle was set to θ = 15◦, which is a typical value
for softwoods. For this specific sample, Schniewind specified the following tangential
creep compliance function based on his test results (transformed to SI units):

Jexp
T (t) = 1.3268GPa−1 + 0.08016GPa−1

(
t

1min

)0.2075

. (6.20)

This relation can be represented rheologically by a power-law model (see Fig. 6.1). Us-
ing the multiscale model presented in Section 6.3 and considering the sample-specific
input parameters (wood species, density, moisture content, and microfibril angle), the
viscoelastic material parameters of the lignin-hemicellulose phase in Eq. (6.19) were de-
termined such that the resulting model predictions match the creep compliance function
in Eq. (6.20) as closely as possible. This yields:

µ0,lig+hemcel = 3.6765GPa,
Ja,lig+hemcel = 0.0104GPa−1 (ta = 1 s),
αlig+hemcel = 0.221.

(6.21)

The initial elastic shear modulus µ0 is higher than the values used for lignin and hemi-
cellulose in the elastic model for wood (see Table 6.1). This can be appropriate, because
creep starts immediately after application of a load, and therefore also the “elastic”
shear modulus typically observed in quasi-static testing already comprises a viscoelastic
share.

6.6 Experimental validation

The experimental validation of the developed multiscale model is based on a comparison
of model predictions for given sample-specific volume fractions and morphological prop-
erties (input data set II), with corresponding experimental data, namely the remaining
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Figure 6.3: Relative creep curves. The points are experimental values given by
Schniewind [92], the solid lines denote the creep behavior predicted with the multi-
scale model. The experimental data for normal creep in tangential direction was used
to calibrate the model, what is indicated by a dash-dotted line for the according model
prediction.

data given in Schniewind [92] and additional data from Lotfy [61] (experimental data
set).

First the verification of the behavior of the model over a longer period is made by com-
parison of experimentally derived relative creep curves [92] and corresponding model
predictions (Fig. 6.3). Three different types of creep compliances are considered: nor-
mal creep in longitudinal direction and transverse creep in tangential direction under a
longitudinal load and shear creep for a shear load in the tangential-longitudinal plane.
Points in Fig. 6.3 indicate the experimental values, lines show associated model predic-
tions. The data for normal creep in tangential direction was used for the calibration of
the model, therefore the according model prediction is labeled as dash-dotted line.

Also for the other three types of compliances, a very good correlation between model
predictions and associated experimental values can be observed. This confirms the suit-
ability of assigning the microscale origin of creep to the lignin-hemicellulose phase and is
the main advantage of the model: different macroscopic creep effects both in longitudinal
and in transverse direction, can be explained by only one creep law on the nanometer
scale. So far, it was common to employ different formulations for creep in these two
directions.

The prediction quality of the model for different samples is checked by means of the fur-
ther test data published by Schniewind for samples of other densities [92] and Lotfy [61]
for samples of different microfibril angle. Normal creep in longitudinal and transversal
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(radial and tangential) direction as well as shear creep in the transversal-longitudinal
plane are considered. A one-to-one comparison of experimental and modeling data is
illustrated in Fig. 6.4, where each marker indicates one pair of creep measurement (ab-
scissa) and corresponding model prediction (ordinate). Different markers are used to
depict the different principal material directions as well as different sources. Two plots
are drawn for each compliance characteristic: the initial compliance and the increase in
compliance within 60 minutes for data given by Lotfy [∆Ji = Ji(t = 60min)−Ji(t = 0)]
and within 1000 minutes [∆Ji = Ji(t = 1000min) − Ji(t = 0)] for data of Schniewind.
The solid diagonal lines indicate perfect agreement of model predicted and experimental
values.

As for the initial normal compliance in longitudinal direction, model predictions are
suitable [cf. Fig. 6.4(a)], although the relatively wide spread in the experimental values
cannot be completely reproduced by the model. This might be caused by variability of
microstructural characteristics, such as MFA or chemical composition, which was not
taken into account due to missing information in the references.

For the time-dependent increase in normal compliance [Fig. 6.4(b)], the wide spread
of experimental values is even more pronounced, though not reproduced by the model
either. Several possible reasons for this deviation can be given. For example, there are
inevitable inaccuracies of the measurements. Due to the low normal compliance in lon-
gitudinal material direction and the small resulting strains, already small absolute mea-
surement errors might affect the test results pronouncedly. Again, also the disregarded
variability of microstructural characteristics in the model evaluations could contribute
to deviations between experimental and predicted values. Moreover, simplifications in
the model could also contribute to the observed deviations. According possible model
improvements are given at the end of this section.

As for the radial and the tangential direction, both the initial normal compliances [see
Fig. 6.4(c)] and their increases are quite well reproduced [see Fig. 6.4(d)]. The influence
of time-dependent effects on normal compliance is much more pronounced for loads
in transverse direction than for loads in longitudinal direction. This is caused by the
alignment of the purely elastic macrofibrils mainly in the latter direction.

The best agreement is observed for the initial shear compliance [Fig. 6.4(e)] and its creep-
induced increase [Fig. 6.4(f)]. Both comparisons show a very good prediction quality of
the multiscale model for this material parameter.

As shown, the model predictions are very suitable for creep in radial and tangential direc-
tion as well as for shear creep. In these directions the choice of the lignin-hemicellulose-
complex being the origin of wood creep is reasonable. In longitudinal direction, only
the initial compliance is feasibly predicted, while the additional creep compliance is
underestimated. Possible reasons for this deficiency of the model are:� The amorphous parts of the cellulose macrofibrils might exhibit (anisotropic) vis-

coelastic material behavior.� In the direction of the macrofibril axis, the crystalline parts of cellulose are in-
terrupted by paracrystalline sections [87] which might show viscoelastic material
behavior.� Hemicellulose is partly aligned in the direction of the macrofibrils [102]. Its material
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Figure 6.4: Comparison of model predictions with experimental results for initial normal
compliances (left column) and increases in normal compliances within 60 minutes (Lotfy)
and 1000 minutes (Schniewind) [Schniewind (�, +, ×), Lotfy (�)]: (a) and (b) longitudinal
material direction; (c) and (d) radial (+) and tangential (×) material direction; (e) and
(f) radial-longitudinal (+) and tangential-longitudinal (×) material direction.

behavior might therefore be anisotropic, with different creep behavior parallel and
perpendicular to the fiber axis.

According model extensions would require more detailed information about the viscoelas-
tic material behavior of the single phases, including a much higher number of material
parameters especially for the case of anisotropic behavior. Since this information is not
available at the moment, the presented simplified model appears justified.



6.7 Macroscopic rheological characteristics of the multiscale model 95

6.7 Macroscopic rheological characteristics of the multi-

scale model

To illustrate the performance of the model and to identify possible macroscopic rheo-
logical representations, the three relaxation moduli ER(t), ET(t), EL(t), the three vis-
coelastic Poisson’s ratios νRT(t), νRL(t), νTL(t), and the three viscoelastic shear moduli
GRT(t), GTL(t), GLR(t) are depicted in so-called Cole-Cole diagrams. These show the
characteristics of a particular material parameter by plotting its complex part against
its real part for different frequencies in the LC domain. In case of a relaxation modulus
E∗, the real part E′ is also called storage modulus, while the complex part E′′ is called
loss modulus.

Each rheological model shows a characteristic curve in the Cole-Cole diagram. For
example, a Maxwell model is characterized by a semi circle with the center point on
the real axis and both loss modulus and storage modulus approaching zero for low
frequencies, while a Kelvin-Voigt model is represented by a vertical straight line, due to
a constant storage modulus and a loss modulus tending against infinity for frequencies
approaching zero.

Figure 6.5 shows the resulting curves for the aforementioned viscoelastic material param-
eters for spruce with a density of ρdrywood = 450 kg/m3, a moisture content of MC = 10%,
and a microfibril angle of θ̄ = 15◦. Two classes can be distinguished:� For the radial and tangential relaxation moduli and the radial-tangential shear

relaxation modulus, the rheological behavior can be described by a power-law
model as depicted in Fig. 6.1. The associated Cole-Cole diagram shows a parabolic
curve and – as for the Maxwell model – a loss modulus and a storage modulus
of zero at low frequencies. This behavior can be explained by the continuous
viscoelastic polymer network phase in the radial-tangential plane.� For the longitudinal relaxation modulus and the viscoelastic shear moduli in the
tangential-longitudinal and longitudinal-radial direction, a residual resistance also
at low frequencies, i.e. for long term loads, is observed. This is a consequence
of the stiff, purely elastic behavior of the macrofibrils. In the Cole-Cole diagram
such a behavior is characterized by a non-zero storage modulus for low frequen-
cies. A power law model with an additional spring in parallel, as depicted in the
corresponding plots (Fig. 6.5), provides a suitable description of this behavior.

Also the three Poisson’s ratios νRT, νTL, νLR are time-dependent material parameters.
In contrast to the relaxation and viscoelastic shear moduli, the real parts of the two
Poisson’s ratios νRT and νLR increase in the LC domain with decreasing frequency,
while their complex parts have negative signs. In the simplest way, involving the smallest
number of model parameters, this is suitably represented by a power law model with an
additional spring in parallel, where the creep exponent α has a negative sign, producing
the slight increase of the two Poisson’s ratios in the time domain with time. The Poisson’s
ratio in the tangential-longitudinal direction, νTL, increases with increasing frequency.
This behavior again can be described by a power law model, this time with a positive
exponent α.

After definition of a macroscopic rheological model, the associated model parameters
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Figure 6.5: Cole-Cole diagrams for different viscoelastic material parameters predicted
by the multiscale homogenization model and suitable macroscopic rheological mod-
els: (a) radial relaxation modulus ER, (b) tangential relaxation modulus ET, (c)
longitudinal relaxation modulus EL, (d) radial-tangential shear relaxation modulus
GRT, (e) tangential-longitudinal shear relaxation modulus GTL, (f) longitudinal-radial
shear relaxation modulus GLR, (g) radial-tangential Poisson’s ratio νRT, (h) tangential-
longitudinal Poisson’s ratio νTL, (i) longitudinal-radial Poisson’s ratio νLR. Calculated

for spruce with a density of ρdrywood = 450 kg/m3, a moisture content of MC = 10%, and
a microfibril angle of θ̄ = 15◦.
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can be easily obtained by minimizing the error between the predictions of the chosen
rheological model and the pointwise estimated creep behavior for different times. For
the spruce wood example shown in Fig. 6.5, the parameters are listed in Table 6.2 for
the according equations given in Fig. 6.1.

Table 6.2: Rheological models and associated model parameters fitted to multiscale
predictions (see Fig. 6.1) for the nine independent viscoelastic material parameters of
wood. Parameters specified for spruce with a dry density of 450 kg/m3, a moisture
content of 10%, and a microfibril angle of 15°.
Material parameter rheological model µp [GPa] µ0 [GPa] Ja [GPa−1] α

ER power-law - 0.6841 0.0365 (ta = 1 s) 0.2064
ET power-law - 0.6293 0.0398 (ta = 1 s) 0.2065
EL fractional Zener 10.527 1.6387 0.0167 (ta = 1 s) 0.2121
GRT power-law - 0.0777 0.3209 (ta = 1 s) 0.2067
GTL fractional Zener 0.3189 0.3511 0.0816 (ta = 1 s) 0.2129
GLR fractional Zener 0.3014 0.3318 0.0861 (ta = 1 s) 0.2129

Material parameter rheological model µp [1] µ0 [1] Ja [1] α

νRT fractional Zener 0.6231 0.0458 1358.2 (ta = 1 s) -0.2153
νTL power-law - 0.0141 0.5770 (ta = 1 s) 0.2268
νLR fractional Zener 0.2572 0.1214 275.95 (ta = 1 s) -0.2155

6.8 Summary

In this chapter, a multiscale model for the prediction of viscoelastic material properties
of softwood is presented. The starting point is the viscoelastic behavior of the lignin-
hemicellulose matrix under shear load on the molecular scale, which is described by a
so-called power-law model. Through revisiting the morphology of softwood across differ-
ent length scales, the viscoelastic properties of polymer network, cell wall, and softwood
are determined. The orthotropic material behavior of softwood with nine independent
material functions is successfully derived from the (isotropic) viscoelastic shear behavior
of the lignin-hemicellulose phase. The viscoelastic model parameters obtained for soft-
wood by the multiscale model are compared with respective experimental data, showing
a considerably good prediction quality for both initial compliance and time-dependent
increase of compliance of the model, especially for shear loading and loading in radial and
tangential material directions. For each material parameter (relaxation moduli, shear
moduli, Poisson’s ratios), the model yields a characteristic viscoelastic behavior that can
be described by macroscopic rheological models. The presented model thus allows for
prediction of sets of viscoelastic material parameters for a specific sample of softwood
suitable for further macroscopic calculations.
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Chapter7
Sorption

In this chapter, a mathematical description of sorption is given. After a short recapit-
ulation of the background of this process, a sub-model on the cell wall scale is derived.
This model allows for description of the time-dependence of sorption based on a diffusion
process across the cell wall. To quantify sorption hysteresis, a suitable empirical model
that is also used in the numerical approach presented in Chapter 9 is given. In addition,
a possible theoretical description for sorption hysteresis based on physical assumptions
is given.

7.1 Introduction

Sorption is the phase change process between water vapor and bound water. It is driven
by differences in chemical potentials, which are functions of mechanical pressure, con-
centration, and temperature. When the concentrations of bound water and water vapor
are constant in time, equilibrium is reached. In wood, this equilibrium is not unique,
but dependent on moisture content history, resulting in a pronounced sorption hysteresis
effect.

Sorption in wood is different from the capillary force driven sorption in other porous
materials, since the driving force for sorption is primarily of chemical nature [27]. The
wood polymers, making up the solid part of the cell wall, are interconnected mainly by
hydrogen bonds between hydroxyl groups. The unbounded hydroxyl groups have a great
affinity to water and are thus the reason for sorption in wood. Each of this hydroxyl
groups constitutes a possible place for adsorbed water molecules, accordingly they are
also called sorption sites. Adsorption of bound water is accompanied by swelling of
the cell walls and – partially – breaking of hydrogen bonds between the wood polymers.
Upon this breaking additional sorption sites become accessible and even more water may
get adsorbed [27]. Upon desorption, the broken hydrogen bonds will re-establish, but
since bound water molecules occupy parts of the involved sorption sites, this process will
be delayed [27]. This is the commonly accepted reason for sorption hysteresis: during
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desorption wood is able to contain more bound water at a preset relative humidity than
during adsorption.

In the author’s opinion the time dependence of sorption has two reasons. On the one
hand the transport process inside the cell wall takes time, while on the other hand the
time-dependent mechanical behavior of the cell wall also affects the time that is needed
to reach the final equilibrium state. The second may be observed in the investigation
of very small specimen (see e.g. [42]), a possible theoretical explanation for this effect
is given in Section 7.4. As for the transport process inside the cell wall, an according
sub-model is derived in the following section.

7.2 Microscale sub-model for the cell wall

The sorption rate ċ, that mathematically describes the exchange of water between the
two water phases (bound water in the cell wall and water vapor in the lumens), cannot be
suitably captured on the macroscale because of its microscale origin. However, a correct
description is possible on a length scale where the two water phases can be distinguished
spatially. Thus, a single tracheid cell is examined. The microscopic distribution of bound
water inside the cell wall, ĉb(x, t), follows from Fick’s second law of diffusion, reading as

∂ĉb
∂t

=
∂

∂x
·
[
Dcwm(ĉb)

∂ĉb
∂x

]
+ ṁb, (7.1)

where ṁb denotes an internal volumetric source term due to the macroscopic flux and
Dcwm the diffusion tensor of bound water in the cell wall material. Main gradients inside
the cell wall due to sorption develop mainly in through-thickness direction of the cell
wall. Therefore the transport problem through a cell wall arising from sorption can
be approximately treated as axisymmetric, considering the cross-section of the cell as
circular ring as shown in Figure 7.1(b). Therein, the outer radius r2 is taken as the
average radius of the tracheid, lying in the range of 10 to 25 µm. The inner radius r1
follows from

r22 π flum = r21 π ⇒ r1 = r2
√

flum, (7.2)

where flum again denotes the volume fraction of the lumens.

Moreover, the tracheids show a by far larger longitudinal dimension compared to their
cross-sectional dimensions. Microscale variations of the transport process along the
cell can be neglected for this reason, and the tracheids are treated as circular cylin-
ders. Therefore the originally three-dimensional problem [Eq. (7.1)] simplifies to a one-
dimensional one when formulated in a cylindrical coordinate system, since ĉb depends
under these assumptions only on the radial coordinate r:

∂ĉb
∂t

=
∂

∂r

(
Dcwm,r

∂ĉb
∂r

)
+ ṁb, (7.3)

Dcwm,r denotes the diffusion coefficient of bound water in pure cell wall material in
the radial direction of the cell. Microscopic gradients of water vapor concentration and
temperature are not taken into account, because they are negligibly small.
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(b)(a)

r2

r1

Figure 7.1: Model representation of a wood cell: (a) natural shape of wood cell, (b)
simplified representation as circular cylinder

The diffusion tensor of bound water in the cell wall material, Dcwm, is assumed to be
transversely isotropic with the plane of isotropy perpendicular to the cell axis. There-
fore the radial diffusion coefficient Dcwm,r equals the transversal diffusion coefficient
Dcwm,trans (for values see [100, 95]). In principal, the diffusion properties of the cell wall
are functions of bound water concentration ĉb. However, since the variation of this con-
centration throughout the cell wall is only very small, Dcwm,r is assumed to be constant
with respect to r in Eq. (7.3).

At the interface of cell walls and lumens, the microscopic concentration of bound water
in the cell wall, ĉb, is in local equilibrium with the water vapor concentration inside the
lumen according to a sorption isotherm. This yields the first boundary condition for the

r

ĉb = ρdrycwmEMC(cv, T )

cb

ĉb(r)

ċ
∂ĉb
∂r

= 0

ĉb, cb

r1 r2

lumen cell wall

Figure 7.2: Microscopic distribution of bound water concentration in radial direction

problem at the inner side of the cell wall, reading as

ĉb

∣∣∣
r=r1

= ρdrycwm EMC(cv, T ), (7.4)

where ρdrycwm denotes the dry density of the cell wall with approximately 1500 kg/m3 [95]
and EMC(cv, T ) the equilibrium moisture content (see Fig. 7.2). As indicated, EMC is a
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function of water vapor concentration cv and temperature T . It may be calculated based
on a sorption isotherm, to describe sorption hysteresis the empirical approach given in
the following section may be used. Accounting only for microscopic fluxes towards the
cell wall surface, in the middle of the cell wall a Neumann boundary condition is applied:

∂ĉb
∂r

∣∣∣∣
r=r2

= 0. (7.5)

The microscopic flow across the cell wall quickly approaches steady-state conditions.
Therefore the time derivative of ĉb in Eq. (7.3) can be set to zero, resulting in

∂

∂r

(
Dcwm,r

∂ĉb
∂r

)
+ ṁb = 0. (7.6)

Integration of Eq. 7.6 with respect to r yields

Dcwm,r
∂ĉb
∂r

+

∫
ṁb dr = Dcwm,r

∂ĉb
∂r

+ ṁb r + C1 = 0. (7.7)

Evaluating Eq. (7.7) for r = r2 and considering the boundary condition specified in
Eq. (7.5), the constant of integration, C1, follows as

ṁb r2 + C1 = 0, C1 = −ṁb r2. (7.8)

Inserting Eq. (7.8) into Eq. (7.7) thus yields

Dcwm,r
∂ĉb
∂r

+ ṁb r − ṁb r2 = 0. (7.9)

Dividing Eq. (7.9) by Dcwm and integrating again with respect to r gives the microscopic
distribution of bound water as

ĉb =

∫ (
− ṁb

Dcwm,r
r +

ṁb r2
Dcwm

)
dr = − ṁb

2Dcwm,r
r2 +

ṁb r2
Dcwm,r

r +C2. (7.10)

The second constant of integration C2 is derived from the boundary condition stated in
Eq. (7.4) as

C2 = ρdrycwmEMC +
ṁb r

2
1

2Dcwm
− ṁb r1 r2

Dcwm,r
. (7.11)

Inserting Eq. (7.11) into Eq. (7.10) yields the solution of the differential equation (7.6)

ĉb(r) = − ṁb

2Dcwm,r
r2 +

ṁb r2
Dcwm,r

r + ρdrycwmEMC +
ṁb r

2
1

2Dcwm,r
− ṁb r1 r2

Dcwm,r

=
ṁb

2Dcwm,r

(
−r2 + 2 r2 r + r21 − 2 r1 r2

)
+ ρdrycwm EMC. (7.12)

The link between the microscopic and the macroscopic moisture transport problem is
established by claiming equality of the integrals of the microscopic bound water concen-
tration ĉb(r) and of the macroscopic bound water concentration cb over the volume V of
a tracheid (calculated for unit length):

∫

V
ĉb dV =

∫

V
cb dV,

∫ r2

r1

∫ 2π

0
r ĉb dϕdr = cb π

(
r22 − r21

)
. (7.13)
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The only remaining unknown variable in Eq. (7.12) is the internal volumetric source
term ṁb. Using Eq. (7.12) in Eq. (7.13) yields

cb =
1

π
(
r22 − r21

)
∫ r2

r1

∫ 2π

0
r ĉb dϕdr

=
2(

r22 − r21
)
∫ r2

r1

[
ṁb

2Dcwm,r

(
−r2 + 2 r2 r + r21 − 2 r1 r2

)
+ ρdrycwm EMC

]
r dr

=
ṁb

(
5 r32 − 7 r1 r

2
2 − r21 r2 + 3 r31

)

12Dcwm,r (r2 + r1)
+ ρdrycwmEMC. (7.14)

Rearranging Eq. (7.14) allows to eliminate the unknown internal volumetric source term
ṁb by

ṁb =
12Dcwm,r (r2 + r1)

(
cb − ρdrycwm EMC

)

5 r32 − 7 r1 r22 − r21 r2 + 3 r31
. (7.15)

Inserting Eq. (7.15) in Eq. (7.12) yields the final equation for the microscopic distribution
of bound water in the cell wall as

ĉb(r) =
6 (r2 + r1)

(
cb − ρdrycwm EMC

)

5 r32 − 7 r1 r22 − r21 r2 + 3 r31

(
−r2 + 2 r2 r + r21 − 2 r1 r2

)
+ ρdrycwmEMC.

(7.16)

Finally, the sought sorption rate ċ is derived as the flux across the inner interface between
lumen and cell wall. This flux can be calculated by evaluating Fick’s first law of diffusion
at the cell wall surface:

ċ = − Ai

Vcwm
Dcwm,r fcwm

∂ĉb
∂r

∣∣∣∣
r=r1

= − 2 r1
r22 − r21

Dcwm,r fcwm
∂ĉb
∂r

∣∣∣∣
r=r1

. (7.17)

In Eq. (7.17), the volume fraction fcwm relates the sorption rate to the total volume of
wood instead of volume of pure cell wall material. This is due to the definition of ċ,
see Section 3.1.1. Inserting Eq. (7.15) in Eq. (7.12) and subsequently in Eq. (7.17), the
coupling term ċ finally follows under consideration of Eq. (7.2) as

ċ = − 2 r1
r22 − r21

Dcwm,r fcwm

6 (r2 + r1)
(
cb − ρdrycwmEMC

)

5 r32 − 7 r1 r22 − r21 r2 + 3 r31
(−2 r1 + 2 r2)

=
24Dcwm,r fcwm

(
ρdrycwmEMC − cb

)
f

1
2
lum

r22

(
5− 7 f

1
2
lum − flum + 3 f

3
2
lum

) . (7.18)

In order to check this approach, macroscopic steady state conditions are considered,
where ċ must equal zero. Such conditions imply that cb = ρdrycwmEMC across the cell
wall, making ċ in Eq. (7.18) to vanish. This confirms the plausibility of Eq. (7.18).

7.3 Empirical description of sorption hysteresis

Due to the pronounced hysteresis observed in sorption processes, several empirical models
were developed in the last decades [28] to describe this phenomenon. In this section,
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the approach developed by Frandsen et al. [27, 28] is reproduced. It provides a good
description of the hysteresis phenomena observed for the equilibrium moisture content.
In addition it doesn’t require a history variable and has advantages regarding numerical
stability and time integration in numerical models, see Subsection 9.4.3 in Chapter 9.
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Figure 7.3: Graphical representation of Frandsen’s hysteresis model: equilibrium mois-
ture content EMC(ϕ) (i.e. the sorption isotherm) and parameter s(ϕ) for (a) adsorption
and (b) desorption. The curves MCa(ϕ) and MCd(ϕ) are the boundary curves for ad-
sorption and desorption, respectively.

The main idea is that the equilibrium moisture content EMC(ϕ) can be described in
closed form as

EMC(ϕ) = MCa(ϕ) +
[
MCd(ϕ) −MCa(ϕ)

]
s(ϕ), (7.19)

where MCa(ϕ) and MCd(ϕ) are the adsorption and desorption boundary curves, respec-
tively, and ϕ = cv/cv,sat(T ) denotes the relative humidity. The dimensionless parameter
s(ϕ) can take values between 0 and 1. Reformulating Eq. (7.19), s can be calculated as

s(ϕ) =
EMC(ϕ)−MCa(ϕ)

MCd(ϕ)−MCa(ϕ)
. (7.20)

Apparently, for s = 0 the equilibrium moisture content equals the adsorption scanning
curve, i.e. EMC(ϕ) = MCa(ϕ), while for s = 1 it equals the desorption scanning curve,
i.e. EMC(ϕ) = MCd(ϕ). Starting from an initial state given by ϕ0 and s0, the actual
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parameter s follows from

s(ϕ) =





−1 + 2

(
1−ϕ

1−ϕ0
d

)

 d1

ln[d2(1−ϕ0
d)]




(
ϕ̇ > 0

)
∧
(
s0 > 0

)

ad
so
rp
ti
on

0
(
ϕ̇ > 0

)
∧
(
s0 = 0

)

2− 2

(
ϕ

ϕ0
a

)
(

d1
ln(d2 ϕ0

a)

)

(
ϕ̇ < 0

)
∧
(
s0 < 1

)

d
es
or
p
ti
on

1
(
ϕ̇ < 0

)
∧
(
s0 = 1

)

(7.21)

with

ϕ0
a = ϕ0 (d2 ϕ0)

q1 , (7.22)

ϕ0
d = 1− (1− ϕ0) [d2 (1− ϕ0)]

q2 , (7.23)

and

q1 = − ln [ln(2)]− ln [ln(2− s0)]

ln [ln(2)]− ln [ln(2− s0)]− d1
, (7.24)

q2 = − ln [ln(2)]− ln [ln(1 + s0)]

ln [ln(2)]− ln [ln(1 + s0)]− d1
. (7.25)

In Eqs. (7.21) to (7.25), d1 and d2 are parameters defining the shape of the scanning
curves. In addition, the adsorption and desorption boundary curves have to be defined.
In this context, the Hailwood-Horrobin isotherm proved to be suitable, which is defined
as

MCα(ϕ) =
ϕ

fα
1 + fα

2 ϕ+ fα
3 ϕ2

, α ∈ {a, d} . (7.26)

The shape parameters fα
i have to be calibrated to experimental results.

7.4 Theoretical description of sorption hysteresis

Although the empirical description of sorption hysteresis presented in the previous sec-
tion is capable to suitably reproduce macroscopic experimental findings, its general ap-
plicability is not assured due to its lack of physical background. In this section, a theory
is proposed that provides a possible description of sorption hysteresis. It incorporates
the time-dependent mechanical work due to shrinkage and swelling of the cell wall by
accounting for the pressure dependency of the chemical potential of bound water.

7.4.1 Chemical potentials of water vapor and bound water

Starting point of the following considerations are the equal chemical potentials of water
vapor and bound water at equilibrium conditions. Both potentials can be written as
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functions of temperature, pressure, and concentration of the according phase. For water
vapor this reads as [2]

µv = µ−o
v + αv

(
T − T−o)+RT ln

(
psat
p−o

)
+RT ln(ϕ), (7.27)

where the chemical potential µ−o
v of water vapor and the temperature coefficient αv at

standard conditions (T−o = 298K, p−o = 101, 325 kPa) are specified as

µ−o
v = −228.59

kJ

mol
, αv = −188.72

J

molK
. (7.28)

In Eq. (7.27), T denotes the temperature in [K], R is the universal gas constant, and
psat the saturation vapor pressure at given temperature. Accordingly, the second term
in Eq. (7.27) accounts for changes in chemical potential upon temperature changes,
the third term for changes upon pressure changes, while the fourth term describes the
concentration-dependency of the chemical potential of water vapor. Fig. 7.4(a) exem-
plarily shows this concentration-dependency for water vapor at a temperature of 23 °C
and a pressure of 101.325 kPa.

Also the chemical potential of bound water is a function of temperature T , concentration,
now expressed in terms of moisture content MC, and pressure pb. In contrast to water
vapor exact values are not available. However, based on a chemical potential µb,0 at
known initial conditions (T0, MC0, pb,0), the chemical potential µb can be linearized as

µb = µb,0 + αb (T − T0) + βb (pb − pb,0) + γb (MC −MC0) . (7.29)

From a Maxwell relation it follows that the pressure coefficient βb equals molar volume
of bound water. In addition the concentration coefficient γb is the derivative of the non-
linearized equation for chemical potential (µb = µb,0 +RT ln MC

MC0
+ . . . ) with respect to

moisture content MC at point MC0. Thus the coefficients βb and γb can be calculated
as

βb =
MH2O

ρb
, γb =

RT

MC0
, (7.30)

with MH2O = 18.02 g/mol denoting the molar mass of water, while ρb is the density
of bound water [44]. Based on these coefficients, Fig. 7.4(b) shows several isobars at a
temperature of of 23 °C.
In the following, a very small sample of wood (negligible influence of time-dependent
transport processes inside the sample) and ideal Dirichlet boundary conditions (direct
specification of relative humidity ϕ and temperature T at the surface of the sample)
are assumed. Under equilibrium conditions, µv = µb must apply. Therefore, when
the chemical potential of water vapor changes upon a shift in relative humidity, also
the chemical potential of bound water will change. Assuming isothermal conditions
T = T0 (that are motivated based on the much faster temperature equilibration than
the time-dependent deformations), solely the pressure pb and the moisture content MC
will change. Initially, conditions will arise according to the elastic compliance of the cell
wall. This is depicted in Fig. 7.4 for a drop in chemical potential as “initial change”:
Some water is removed from the cell wall, leading to a lower moisture content, but also
to a negative strain inside the cell wall, which further causes a negative pressure change
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Figure 7.4: Chemical potentials of (a) water vapor and (b) bound water as functions
of concentrations ϕ and MC and pressure change (pb − pb,0) in case of bound water.
The curve of chemical potential µb for zero pressure is backcalculated based on a typical
sorption isotherm of wood. The solid red lines denote an initial change in chemical
potential upon a drop in relative humidity, while the dashed red line depicts the time-
dependent change in moisture content due to the time-dependent compliance of the cell
wall.

in the bound water phase. Certainly – as shown in Chapter 6 – the compliance of the
cell wall is not only elastic. Therefore stress relaxation will occur: the absolute value
of pressure will be reduced with time, accompanied by a further decrease in moisture
content. During this process, the chemical potential of bound water is always constant
because of the equilibrium with the water vapor phase. By contrast the moisture content
is not constant but a function of time – the derivation of this function is the aim of this
section.

So far, pressure pb and moisture content MC constitute two independent variables. In
the following subsection, they will be linked using poromechanical considerations.

7.4.2 Moisture content as function of pore pressure

Poromechanics allows to describe the macroscopic stress Σ of a material as function of
macroscopic strain E and bound water pressure pb. In general terms, poromechanics
under saturated conditions – i.e. all “pores” completely filled with “liquid” – captures
changes of amounts of this liquid via eigenstrains in an RVE (for wood starting in the
polymer network). In an existing poromechanical model for wood [4], the actual liquid
state is expressed in terms of pore pressure pb. Admittedly, the concept of “pores” and
according “pore pressure” in the wood cell wall is worth discussing, whereas eigenstrains
due to changes in moisture content are reasonable. In this subsection poromechanics is
just used as a tool to explain the influence of the mechanical behavior of the cell wall
on the equilibrium moisture state through according eigenstrains, which is also possible
with the existing poromechanical formulation. Excluding plastic strains, the according
equation [resulting from Eq. (3.18)] reads as

Σ = C : E− b(pb − pb,0). (7.31)
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Specifying this equation for free shrinkage and swelling (i.e. Σ = 0) allows to express
the strain tensor as function of the change in pore pressure,

E = C−1 : b(pb − pb,0). (7.32)

Using this relation in the second state equation of poromechanics [4] gives the change in
cell wall porosity (φ− φ0) as function of pressure change (pb − pb,0) as

φ− φ0 = b : E+
1

N
(pb − pb,0)

= b : C−1 : b (pb − pb,0) +
1

N
(pb − pb,0)

= J(pb − pb,0), (7.33)

with N denoting the Biot modulus. For convenience, the variable J is introduced, which
can be interpreted as “sorption compliance” of the cell wall:

J = b : C−1 : b+
1

N
. (7.34)

Like C and b, also J is a function of moisture content. J – as defined in Eq. (7.34) –
is a purely elastic quantity depending on the definition of C and b. However, only the
initial mechanical behavior of wood is elastic (see Chapter 6), followed by an additional
time-dependent compliance. Therefore it is obvious to assume that J exhibits a time-
dependent behavior as well. Presuming a power-law type behavior as it is suitable for
other mechanical parameters (see Chapter 6), the time-dependent sorption compliance
J(t) can be expressed as

J(t) = J0 + Ja

(
t

ta

)α

. (7.35)

For small changes in pressure (neglecting the dependence of J on pressure), the time-
dependent change of pore space can be given as

φ(t) = φ0 +

∫ t

0
J(t− τ) ṗb(τ) dτ. (7.36)

In the following, “saturated conditions” in poromechanical terms are assumed. This
implies that the pore space is completely filled with “fluid”. Accordingly, the moisture
content MC is directly related to porosity φ. In good approximation, this relation is
linear (see Fig. 5 in [4]); in combination with Eq. (7.36), this allows to express moisture
content as time-dependent function of bound water pressure:

MC(t) = MC0 +
∂MC

∂φ

∫ t

0
J(t− τ) ṗb(τ) dτ, (7.37)

where the initial moisture content MC0 equals (∂MC/∂φ)φ0. This equation constitutes
the missing link between moisture content and bound water pressure. In the next subsec-
tion, an analytical solution for the evolution of moisture content due to steps in relative
humidity is derived therefrom.
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7.4.3 Time-dependent evolution of moisture content due to steps in
relative humdity

When determining a sorption isotherm, relative humidity usually is changed stepwise.
This results in according steps in chemical potential of water vapor. For one step ∆µ at
time t = 0, the function of chemical potential can be written as

µv(t) = µv,0 +∆µ(0)Θ(t), (7.38)

where µv,0 is the initial chemical potential of water vapor and Θ(t) is the Heaviside step
function, which is defined as

Θ(t) =

{
0 for t < 0
1 for t ≥ 0

(7.39)

Obligatory, the chemical potential of bound water must be equal to that of water vapor,
i.e. µv(t) = µb(t). Under isothermal conditions and under consideration of µb,0 = µv,0,
combination of Eq. (7.38) with Eq. (7.29) therefore yields

µb(t) = µb,0 +∆µ(0)Θ(t) = µb,0 + βb (pb(t)− pb,0) + γb (MC(t)−MC0) . (7.40)

Canceling the initial chemical potential µb,0, considering an initial condition pb,0 = 0,
and substituting MC with the expression specified in Eq. (7.37) yields a differential
equation for the pressure pb(t):

∆µ(0)Θ(t) = βb pb(t) + γb
∂MC

∂φ

∫ t

0
J(t− τ) ṗb(τ) dτ. (7.41)

A direct solution of this differential equation is not available. Therefore it is tried
to obtain the solution in the Laplace-Carson domain. Applying the Laplace-Carson
transform as defined in Eq. (6.5) to Eq. (7.41) yields

∆µ(0) = βb p
∗
b(s) + γb

∂MC

∂φ
J∗(s) p∗b(s). (7.42)

Inserting the LC transform (see Fig. 6.1) of the sorption compliance as defined in
Eq. (7.35) into Eq. (7.42) yields

∆µ(0) = βb p
∗
b(s) + γb

∂MC

∂φ
J0 p

∗
b(s) + γb Ja

(
1

s ta

)α

Γ (1 + α) p∗b(s) (7.43)

Rearrangement of this equation results in the sought expression for pressure p∗b(t) in the
LC domain:

p∗b(s) =
∆µ(0)

βb + γb
∂MC
∂φ J0 + γb

∂MC
∂φ Ja

(
1

s ta

)α
Γ (1 + α)

. (7.44)

The according representation in the Laplace domain is derived by dividing this equation
by the complex variable s:

p̂b(s) =
∆µ(0)s−1

βb + γb
∂MC
∂φ J0 + γb

∂MC
∂φ Ja

(
1

s ta

)α
Γ (1 + α)

(7.45)
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For this function no tabulated back-transform exists. Therefore, Eq. (7.45) is developed
in a Taylor series ( 1

1+x =
∑∞

k=0(−1)k xk for |x| < 1); since a series in the Laplace domain
can be inversely transformed in a term-wise manner:

p̂b(s) =
∆µ(0)s−1

(
βb + γb

∂MC
∂φ J0

)−1

1 +
γb

∂MC
∂φ

Ja

βb+γb
∂MC
∂φ

J0

(
1

s ta

)α
Γ (1 + α)

= ∆µ(0)s−1

(
βb + γb

∂MC

∂φ
J0

)−1 ∞∑

k=0

(−1)k

[
γb

∂MC
∂φ Ja

βb + γb
∂MC
∂φ J0

(
1

s ta

)α

Γ (1 + α)

]k

= ∆µ(0)
∞∑

k=0

(−1)k

(
γb

∂MC
∂φ Ja

)k

(
βb + γb

∂MC
∂φ J0

)k+1

(
1

ta

)αk

[Γ (1 + α)]k
1

sαk+1
. (7.46)

For this series, the term-wise transformation to the time-domain reads as:

pb(t) = ∆µ(0)
∞∑

k=0

(−1)k

(
γb

∂MC
∂φ Ja

)k

(
βb + γb

∂MC
∂φ J0

)k+1

(
1

ta

)αk

[Γ (1 + α)]k
tαk

Γ(1 + αk)
(7.47)

= ∆µ(0)R(t), (7.48)

where the abbreviation R(t) is introduced for convenience. Eq. (7.47) converges for

t < ta

[
βb + γb

∂MC
∂φ J0

γb
∂MC
∂φ Ja Γ(1 + α)

] 1
α

. (7.49)

Eq. (7.47) describes the time-dependent evolution of pb due to one step in chemical
potential. It is a linearized approach and therefore only valid for small steps in chem-
ical potential. Applying the Boltzmann superposition principle, this approach can be
generalized for n steps as

pb(t) = pb,0R(t) +
n∑

i=0

∆µ(i)R(t− ti)Θ(t− ti). (7.50)

This equation allows to calculate the actual pressure pb(t) for several steps in chemical
potential. Hence, the evolution of moisture content, MC(t), follows from Eq. (7.40) as

MC(t) = MC0 +

∑n
i=0∆µ(i)Θ(t− ti)− βb (pb(t)− pb,0)

γb
. (7.51)

7.4.4 Numerical example

In order to validate the theoretical approach presented in the previous subsections, a
numerical example is evaluated and compared to corresponding experimentally derived
results. The latter are taken from an experiment that was conducted to define the
sorption isotherm for a piece of wood. Fortunately, also the time instants of the mea-
surements were logged in detail. The required parts of the experimental results are
summarized in Table 7.1.
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Table 7.1: Experimental results derived during determination of a sorption isotherm:
absolute time ti, relative humidity ϕ(i), step in relative humidity ∆ϕ(i), and measured

moisture content MC
(i)
exp at each time instance. In either case the steps in relative

humidity were applied after measuring the moisture content. The sample was a piece of
spruce wood with a dry density of 400 kg/m3. Temperature during the experiment was
23 °C.
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1
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1

0
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1
1
.0
1
.2
0
1
1

1
7
:5
5

i -3 -2 -1 0 1 2 3 4 5 6

ti [min] -10110 -7200 -3805 0 3225 20290 23425 26465 30240 32200

ϕ(i) [%] 95 85 75 65 50 35 50 65 50 35
∆ϕ(i) [%] -10 -10 -10 -15 -15 +15 +15 -15 -15

MC
(i)
exp [%] 14.3 11.5 8.8 10.4 12.9 11.1 9.1

Since the approach derived in the previous subsection is linearized, not the whole exper-
iment is considered but only a part where relative humidity was changed from 65% to
35% to 65% and to 35% back again (instances 0 to 6), in each case with an additional
measurement at 50%. Naturally, also the preceding humidity steps influence the results,
therefore also the three previous steps (denoted as time instances -3, -2, and -1) were
accounted for in the calculation of pressure. The starting point t3 was chosen since the
humidity of ϕ = 95% was hold for a longer time before, so preceding humidity steps
should not have a significant influence on the considered period. The experimental val-
ues show a distinct hysteresis, i.e. for a relative humidity of 65% two different moisture

contents were measured (MC
(0)
exp = 14.3% and MC

(4)
exp = 12.9%).

For a moisture content of MC = 14.3% and a temperature of T = 296.15K the param-
eters βb and γb follow from Eqs. (7.30) as

βb = 0.0000154
m3

mol
, γb = 17200

J

mol
. (7.52)

As for the rheological model parameters, the initial compliance J0 was determined
based on the poromechanical model given in [4] (evaluated for a dry sample density
of 400 kg/m3 and a moisture content of 14.3%) and Eq. (7.34) as J0 = 0.05GPa−1. The
creep exponent was chosen in accordance with the findings in Chapter 6 as α = 0.22.
The creep compliance Ja is not directly accessible at the moment. It was suitably taken
as Ja = 0.012GPa−1. This choice best reproduces the experimental results, however, it
is of the same order of magnitude as the values given Table 6.2 and therefore appears
reasonable.

In Fig. 7.5, the results of the numerical example are displayed. Based on the chronolog-
ical sequence of relative humidity, ϕ(t), the chemical potential µv(t) = µb(t) = µ(t) is
calculated based on Eq. (7.27). Accordingly, the bound water pressure pb(t) follows from
Eq. (7.50), it is calculated including the relative humidity steps i from -3 to 5. The initial
pressure pb,0 was taken as zero, the initial moisture content was set to MC0 = 17.1%,
so that MC(t = t0) = 14.3%. Finally, the evolution of moisture content was calculated
based on Eq. (7.51).
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Figure 7.5: Experimental (blue) and numerical (red) values for different parameters
during a sorption experiment: relative humidity ϕ(t), chemical potential of water vapor
and bound water µ(t) = µv(t) = µb(t), bound water pressure pb(t), and moisture content
MC(t).

As can be seen, the experimentally observed hysteresis (blue markers) in moisture con-
tent is suitably reproduced by the theoretical approach (red lines) – MC(t4) is lower
than MC(t0) despite equal prevailing relative humidities. Further, the graph of MC(t)
obviously shows that the moisture content has never reached constancy (according to
the calculated lines) when it was measured during the experiment. However, at these
instances the change of moisture content with time, ∂MC/∂t, is between 0.02 and 0.15%
per day. This is below usual measurement precisions, so that from an “experimentalist’s
point of view”, constant moisture content was reached. Certainly, although the mois-
ture content is not constant, the system is in (local) equilibrium. Theoretically, the final
equilibrium appears after infinite time. Since such equilibrium conditions will never be
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reached – not during a sorption experiment nor in life time of a structure this might be
an explanation for the phenomenon of sorption hysteresis.

The usual explanation for sorption hysteresis is that the number of sorption sites is not
constant but changes during adsorption and desorption. In this subsection, sorption hys-
teresis could be explained without consideration of this effect. Admittedly, one unknown
parameter of the model (the time-dependent sorption compliance Ja) was suitably chosen
to reach this model performance. Therefore it is not assured that the time-dependent
deformation of the cell wall material are the only reason for sorption hysteresis. At
least it could be shown that the time-dependent deformation of the cell wall has a sig-
nificant influence on the sorption behavior of wood. This is also in accordance with
experimental findings, e.g. Hill [42] showed that the sorption behavior of small samples
shows the same mathematical structure as a creep law. The presented approach is the
required theoretical background for further investigations, including intensive discussion
and more comprehensive validation, e.g. by Dynamic Vapor Sorption (DVS), that al-
lows to track the evolution of moisture content upon changes in relative humidity for
very small samples, for which the time-dependent influence of transport processes on the
overall observed sorption behavior is small.
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Chapter8
Additional material properties

In the previous chapters, the material properties of wood governing thermal conduc-
tivity, moisture diffusivity, viscoelasticity, and sorption were clarified. However, in the
macroscopic set of equations specified in Chapter 3 several additional material properties
appear. In this chapter, these missing properties needed for the description of transient
transport processes (as specified in Subsection 3.5.5) are derived, in particular thermo-
dynamic properties of solid wood, bound water, and water vapor as well as diffusion
properties separated for the bound water phase and the water vapor phase.

8.1 Thermodynamic quantities

8.1.1 Specific heat capacity of wood

The specific heat capacity at constant volume cV describes the change of internal energy
e upon a change in thermodynamic temperature T . Based on statistical mechanics it
was derived for dry wood by Yang [112] as

cdryV,wood = −0.60453 + 0.006714T

[
kJ

kgK

]
. (8.1)

For wet wood, Yang gives the specific heat capacity as

cwetV,wood =
cdryV,wood +MC cV,b

1 +MC
, (8.2)

where cV,b is the specific heat capacity of bound water. It was taken equal to that of
liquid water, i.e. cV,b ≈ 4.185 kJ kg−1 K−1 [90].
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8.1.2 Specific enthalpies of water vapor and bound water

The specific enthalpy of water vapor, hv, was taken from steam tables [33]. For conve-
nience, a polynomial was fitted to temperatures between 0 and 100 °C, reading as

hv = 2060.5 + 1.3798T + 8, 4808 × 10−4 T 2

[
kJ

kg

]
. (8.3)

As for bound water, comprehensive information about enthalpies can be found in Skaar
[98]. The enthalpy for bound water depends on chemical composition of the cell wall
and therefore is slightly different for different wood species. For spruce [98] it is given
as (converted to SI units)

hb = −1143.1 + 4.185T − 1146.4 exp (−14.48MC)

[
kJ

kg

]
. (8.4)

8.2 Transport properties

In Chapters 2 and 3 it was shown that for transient processes the two water phases have
to be treated separately. Therefore diffusion properties for the individual phases have to
be specified. The model developed in Chapter 5 for moisture diffusivity is restricted to
steady state conditions, since such conditions imply the equilibrium of the two phases.
This multiscale model can be adapted for the determination of the bound water diffusion
tensor Db. For this purpose the diffusion of water vapor in the lumens is deactivated in
the model. This is done by setting the diffusivity of water vapor in air equal to zero.
The values of the resulting macroscopic diffusion tensor thus exclusively describe bound
water diffusion as observed at the macroscopic scale, incorporating tortuosity effects due
to the cell structure of wood.

For use in the finite element model described in Chapter 9, estimates of the multiscale
model for different bound water contents, temperatures, and densities were fitted by
polynomials for each material direction, reading as

Db,i = Dref
b,i

(
a10,i + a11,i ρ+ a12,i ρ

2 + a13,i
1

ρ3

)
·

(
a20,i + a21,i T + a22,i T

2
+ a23,i T

3
+ a24,i T

4
)
·

(
a30,i + a31,i cb + a32,i c

2
b + a33,i c

3
b + a34,i c

4
b

)

i ∈ [R, T, L], (8.5)

where ρ, T , and cb are density, temperature, and bound water concentration related to
reference conditions:

ρ =
ρdrywood

450 kg/m3
, T =

T

293.15K
, cb =

cb
200 kg/m3

. (8.6)

Dref
b,i is the diffusion coefficient in direction i = R, T, L at reference conditions based on

a gradient of cb (mass of bound water per cell wall volume). The fitting coefficients a
are given in Table 8.1.
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Table 8.1: Reference values Dref
b,i [m

2/s] and coefficients ai for direction i = R, T, L,
used in Eq. (8.5) for spruce clear wood and calculated based on results of the multiscale
homogenization model.

i R (radial) T (tangential) L (longitudinal)

Dref
b,i 1.036×10−12 1.155×10−12 3.893×10−12

a10,i 0.08897 0.24842 0.00910
a11,i 0.86953 0.82168 1.04024
a12,i 0.04272 0.02451 -0.04727
a13,i -0.00348 -0.09434 -0.00208

a20,i 3296.19 3297.70 3296.43
a21,i -13304.7 -13310.5 -13305.6
a22,i 20220.6 20229.0 20221.8
a23,i -13726.8 -13732.1 -13727.5
a24,i 3515.65 3516.92 3515.82

a30,i 0.38481 0.38566 0.36887
a31,i -1.84532 -1.85116 -1.73025
a32,i 5.25007 5.26252 5.00110
a33,i -4.92452 -4.93665 -4.67909
a34,i 2.13290 2.13758 2.03743

The diffusion properties of water vapor in wood are more difficult to determine. As
mentioned, the lumens of adjacent wood cells are interconnected by pits. When wood is
dried from green conditions to conditions below the fiber saturation point, most of the
pits get aspirated. But even in an aspirated state, the pits are much more permeable
than the surrounding cell wall material. Thus the diffusion coefficients of water vapor
are considerably affected by pit density, size, and aspiration state. These are hard to
quantify, so that the water vapor diffusion coefficient in pure air is taken as basis and
multiplied by empirical reduction factors ξi, i ∈ [L,R,T], for each principal material
direction [28]. These factors capture the different effects of the pits on water vapor
diffusion in wood.

The diffusion coefficient for water vapor in wood can therefore be given as function of
water vapor concentration and temperature as

Dv,i = ξiDair = ξi
0.026593T

1.81

1013 + 13.529 cv T
[m2/s], i ∈ [R, T, L]. (8.7)

with

ξR = 0.07, ξT = 0.05, ξL = 0.98. (8.8)

Therein, the diffusion coefficient of water vapor in air, Dair, was gained from com-
bining a semi-empirical equation given by Schirmer [89] with the ideal gas law. cv =
cv/(0.01 kg/m

3) denotes the related water vapor concentration. The slightly higher value
of ξR in radial direction than ξT in tangential direction arises from the influence of wood
rays in this direction.
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Chapter9
Numerical solution of the
transient transport problem using
FEM

As presented in Chapter 3, different sets of balance laws are needed to describe specific
situations. For steady state moisture transport, steady state heat conduction, and the
mechanical problem, single uncoupled balance laws are needed. Such problems can be
solved analytically or numerically, e.g. by using a commercial finite element program
and appropriate elements.

For the description of transient transport problems on a structural scale, three coupled,
non-linear differential equations have to be solved in parallel. Unfortunately neither
analytical solutions nor “ready-made” numerical solution are accessible for this problems.
Hence, an own numerical solution is presented in this chapter in the framework of the
finite element method. After deriving the weak form of the equations, their spatial
discretization bases on interpolation function (depending on the chosen element type),
while for the temporal discretization the backward Euler method is employed. The
resulting set of discretized equations is then solved by means of a Newton-Raphson type
iterative procedure.

For practical use, the model was implemented in the commercial finite element code
ABAQUS. The most important parts of the according user element code are documented
and described in the last section of this chapter.

9.1 Weak form of balance laws

Since an analytic solution of the three balance laws (3.30) to (3.32) cannot be achieved,
they are discretized in space by means of the finite element method (FEM). For this
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purpose, weak forms of the aforementioned equations are derived first [1]:

∫

V

δcb

(
∂(cb fcwm)

∂t
+

∂

∂x
· Jb − ċ

)
dV = 0, (9.1)

∫

V

δcv

(
∂(cv flum)

∂t
+

∂

∂x
· Jv + ċ

)
dV = 0, (9.2)

∫

V

δT

(
∂(ρe)

∂t
+

∂

∂x
· f + ∂

∂x
· Jb hb +

∂

∂x
· Jv hv + ċ (hv − hb)

)
dV = 0, (9.3)

where δcb, δcv and δT are arbitrary variational fields, and V is an arbitrary volume. The
variational fields have to fulfill the same boundary conditions as the actual fields cb, cv,
and T , e.g. if cb = c̄b applies to one point of the surface of the body, then cb + δcb = c̄b
has to apply too, i.e. δcb = 0 at the respective point.

In consideration of the product rule, Eqs. (9.1) to (9.3) can be rewritten as

∫

V

[
δcb

∂(cb fcwm)

∂t
+

∂

∂x
· (δcb Jb)− Jb ·

∂δcb
∂x

− δcb ċ

]
dV = 0, (9.4)

∫

V

[
δcv

∂(cv flum)

∂t
+

∂

∂x
· (δcv Jv)− Jv ·

∂δcv
∂x

+ δcv ċ

]
dV = 0, (9.5)

∫

V

[
δT

∂(ρe)

∂t
+

∂

∂x
· (δT f)− ∂δT

∂x
· f + ∂

∂x
· (δT Jb)hb −

∂δT

∂x
· Jb hb

+
∂

∂x
· (δT Jv)hv −

∂δT

∂x
· Jv hv + δT ċ (hv − hb)

]
dV = 0. (9.6)

Applying the divergence theorem, Eqs. (9.4) to (9.6) can be written as

∫

V

δcb
∂(cb fcwm)

∂t
dV −

∫

V

∂δcb
∂x

· Jb dV −
∫

V

δcb ċdV +

∫

S

δcb n · Jb dS = 0, (9.7)

∫

V

δcv
∂(cv flum)

∂t
dV −

∫

V

∂δcv
∂x

· Jv dV +

∫

V

δcv ċ dV +

∫

S

δcv n · Jv dS = 0, (9.8)

∫

V

δT
∂(ρe)

∂t
dV −

∫

V

∂δT

∂x
· f dV −

∫

V

∂δT

∂x
· Jb hb dV

−
∫

V

∂δT

∂x
· Jv hv dV +

∫

V

δT ċ (hv − hb) dV

+

∫

S

δT n · f dS +

∫

S

δT n · Jb hb dS +

∫

S

δT n · Jv hv dS = 0, (9.9)
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where S is the surface of the arbitrary volume V and n is the outward normal to S.
Now, introducing the constitutive relations of Eqs. (3.15), (3.17), and (3.21), Eqs. (9.1)
to (9.3) can be written as

∫

V

δcb
∂(cb fcwm)

∂t
dV +

∫

V

∂δcb
∂x

·Db ·
∂cb
∂x

dV −
∫

V

δcbċdV −
∫

S

δcbφb dS = 0, (9.10)

∫

V

δcv
∂(cv flum)

∂t
dV +

∫

V

∂δcv
∂x

·Dv ·
∂cv
∂x

dV +

∫

V

δcv ċ dV −
∫

S

δcvφv dS = 0, (9.11)

∫

V

δT ρ cV
∂T

∂t
dV +

∫

V

∂δT

∂x
·K · ∂T

∂x
dV +

∫

V

∂δT

∂x
·Db ·

∂cb
∂x

hb dV

+

∫

V

∂δT

∂x
·Dv ·

∂cv
∂x

hv dV +

∫

V

δT ċ (hv − hb) dV

−
∫

S

δT φT dS −
∫

S

δT φb hb dS −
∫

S

δT φv hv dS = 0, (9.12)

where φb
def
= −n · Jb, φv

def
= −n · Jb and φT

def
= −n · f are the bound water flux, the water

vapor flux, and the heat flux, respectively, entering the body across S.

9.2 Spatial and temporal discretization

Following standard FEM, the unknown variables in the element domain are expressed
in terms of their values at the element nodes by means of interpolation functions N:

δcb = NM δcMb , cb = NM cMb ,

δcv = NN δcNv , cv = NN cNv ,

δT = NO δTO, T = NO TO,

(9.13)

where discretized quantities are indicated by uppercase superscripts (for example cNb ).
Summation convention applies for these superscripts. Using Eqs. (9.13) in Eqs. (9.10) to
(9.12) and considering that the variational fields δcb, δcv , and δT are arbitrarily chosen
yields the discretized forms FM

cb
, FN

cv , and FO
T as

FM
cb

=

∫

V

NM ∂(cb fcwm)

∂t
dV +

∫

V

∂NM

∂x
·Db ·

∂cb
∂x

dV

−
∫

V

NM ċdV −
∫

S

NMφb dS = 0, (9.14)

FN
cv =

∫

V

NN ∂(cv flum)

∂t
dV +

∫

V

∂NN

∂x
·Dv ·

∂cv
∂x

dV

+

∫

V

NN ċ dV −
∫

S

NNφv dS = 0, (9.15)
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FO
T =

∫

V

NO ρ cV
∂T

∂t
dV +

∫

V

∂NO

∂x
·K · ∂T

∂x
dV +

∫

V

∂NO

∂x
·Db ·

∂cb
∂x

hb dV

+

∫

V

∂NO

∂x
·Dv ·

∂cv
∂x

hv dV +

∫

V

NO ċ (hv − hb) dV

−
∫

S

NO φT dS −
∫

S

NO φb hb dS −
∫

S

NO φv hv dS = 0, (9.16)

For time integration, the backward Euler method is employed, yielding for time step ∆t:

FM
cb

=
1

∆t

∫

V

NM

(
(cb fcwm)

∣∣∣
t+∆t

− (cb fcwm)
∣∣∣
t

)
dV +

∫

V

∂NM

∂x
·Db ·

∂cb
∂x

dV

−
∫

V

NM ċ dV −
∫

S

NMφb dS = 0, (9.17)

FN
cv =

1

∆t

∫

V

NN

(
(cv flum)

∣∣∣
t+∆t

− (cv flum)
∣∣∣
t

)
dV +

∫

V

∂NN

∂x
·Dv ·

∂cv
∂x

dV

+

∫

V

NN ċdV −
∫

S

NNφv dS = 0, (9.18)

FO
T =

1

∆t

∫

V

NO ρ cV

(
T
∣∣∣
t+∆t

− T
∣∣∣
t

)
dV +

∫

V

∂NO

∂x
·K · ∂T

∂x
dV

+

∫

V

∂NO

∂x
·Db ·

∂cb
∂x

hb dV +

∫

V

∂NO

∂x
·Dv ·

∂cv
∂x

hv dV

+

∫

V

NO ċ (hv − hb) dV −
∫

S

NO φT dS

−
∫

S

NO φb hb dS −
∫

S

NO φv hv dS = 0, (9.19)

9.3 Solution method

The set of equations (9.17) – (9.19) is solved by means of a Newton-Raphson type
iterative procedure [114]. The present case of three coupled differential equations results
in the following system of equations for each integration point:



KMP
cbcb

KMQ
cbcv KMR

cbT

KNP
cvcb

KNQ
cvcv KNR

cvT

KOP
Tcb

KOQ
Tcv

KOR
TT



i

·




rPcb

rQcv

rRT



i+1

=




∂FM
cb

∂cPb

∂FM
cb

∂cQv

∂FM
cb

∂TR

∂FN
cv

∂cPb

∂FN
cv

∂cQv

∂FN
cv

∂TR

∂FO
T

∂cPb

∂FO
T

∂cQv

∂FO
T

∂TR



i

·




rPcb

rQcv

rRT



i+1

=




− FM
cb

− FN
cv

− FO
T



i

(9.20)
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where i is the iteration index. The components of the coefficient matrix are derived
from variations of Eqs. (9.17) to (9.19) with respect to the three state variables (cb, cv,
and T ) at time t+∆t. For uncoupled problems, the off-diagonal terms of the coefficient
matrix vanish. The present case of strong connectivity between the state variables is
characterized by non-zero off-diagonal terms. In the following, the components of the
stiffness matrix are given. As regards boundary conditions, film boundary conditions for
water vapor and temperature are considered [φv = kv(cv − c0v) and φT = kT (T −T 0)] for
surface S̄, see Section 3.4.

KMP
cbcb

=
∂FM

cb

∂cPb

∣∣∣∣∣
t+∆t

=
1

∆t

∫

V

NM fcwmNP dV +
1

∆t

∫

V

NM cb
∂fcwm(cb)

∂cb
NP dV

+

∫

V

∂NM

∂x
·Db ·

∂NP

∂x
dV

+

∫

V

∂NM

∂x
· ∂Db(cb, T )

∂cb
· ∂cb
∂x

NP dV

−
∫

V

NM ∂ċ(cb, cv, T )

∂cb
NP dV (9.21)

KMQ
cbcv

=
∂FM

cb

∂cQv

∣∣∣∣∣
t+∆t

= −
∫

V

NM ∂ċ(cb, cv, T )

∂cv
NQ dV (9.22)

KMR
cbT

=
∂FM

cb

∂TR

∣∣∣∣∣
t+∆t

=

∫

V

∂NM

∂x
· ∂Db(cb, T )

∂T
· ∂cb
∂x

NR dV

−
∫

V

NM ∂ċ(cb, cv, T )

∂T
NR dV (9.23)

KNP
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KNQ
cvT

=
∂FN

cv

∂TR

∣∣∣∣∣
t+∆t

=

∫

V

∂NN

∂x
· ∂Dv(cb, cv , T )

∂T
· ∂cv
∂x

NR dV

+

∫

V
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NO ∂ċ(cb, cv, T )

∂cb
NP (hv − hb) dV (9.27)
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The components of the coefficient matrix give rise to an unsymmetrical system of equa-
tions, requiring the use of a nonsymmetric matrix storage and solution scheme.
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9.4 Implementation of the model in ABAQUS

The numerical solution scheme presented in this chapter was implemented as user-
element in the commercial finite element code ABAQUS 6.9. The two-dimensional 4-
node element utilizes bilinear interpolation functions and includes all strong and weak
couplings as given in Eq. (9.20). For each element the material orientation and the local

density ρdrycwm have to be specified. Optionally, film boundary conditions may be used.

The strongest coupling arises from sorption, which is described by the microscale sub-
model [see Eq. (7.18)]. In the user-element, this sub-model is evaluated in each integra-
tion point at each time step for the actual bound water concentration cb, water vapor
concentration cv, and temperature T .

9.4.1 User element subroutine UEL

In ABAQUS, the user element subroutine “UEL” enables the user to define an element.
It offers complete control over the calculation, but on the other hand requires consider-
able coding in FORTRAN by the user. In order to solve the coupled system of equations
as specified in Eq. (9.20), an according user element was developed. The general for-
mulation of the main element subroutine can be easily adapted to different types of
elements. The three degrees of freedom (DOF) or basic solution variables of the element
are:� DOF 11: bound water concentration cb (CB) in [kg/m3],� DOF 12: water vapor concentration cv (CV) in [10−4 kg/m3],� DOF 13: thermodynamic temperature T (T) in [K].

The units were chosen to get similar orders of magnitude of the components of the
coefficient matrix, which can be crucial for the stability of the calculation.

In general, several variables (RHS, AMATRX, SVARS, ENERGY) have to be defined in a user
element subroutine. Which variables are relevant in a particular computation depends
on the chosen solver and is controlled by so-called flags (LFLAGS). In order to carry out
the computations, many variables are passed over to the subroutine by ABAQUS [1].
The most important of these variables are:� NNODE is the user-defined number of nodes of the element, and NDOFEL is the number

of degrees of freedom in the element.� The array COORDS(I,J) contains the original coordinates of the element’s nodes.
For example, COORDS(2,4) is the second coordinate of the fourth node of the
element� The arrays U(I) and DU(I) contain the current estimates of the basic solution vari-
ables (concentrations and temperature) and their incremental values, respectively,
at the nodes of the element at the end of the current increments. For example, for
an element with four nodes (NNODE = 4) and three DOF (NDOFEL = 3), the array
U is organized as follows:
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Variable number I Node number Degree of freedom

1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 3
10 4 1
11 4 2
12 4 3� The variables TIME(1), TIME(2) and DTIME are the current values of step time,

total time, and time increment, respectively.� Several properties may be defined by the user in the input file of the calculation.
They are passed into the subroutine in the vector PROPS. The number of user-
specified properties is given by NPROPS.

In the header of the subroutine, first the number types and dimensions of all variables
passed by ABAQUS are defined.

1 SUBROUTINE UEL(RHS ,AMATRX ,SVARS ,ENERGY ,NDOFEL ,NRHS ,NSVARS ,PROPS ,

2 1 NPROPS ,COORDS ,MCRD ,NNODE ,U,dU ,V,A,JTYPE ,TIME ,dTIME ,KSTEP ,KINC ,

3 2 JELEM ,PARAMS ,NDLOAD ,JDLTYP ,ADLMAG ,PREDEF ,NPREDF ,LFLAGS ,

4 3 MLVARX ,DDLMAG ,MDLOAD ,PNEWDT ,JPROPS ,NJPROP ,PERIOD )

5 C

6 IMPLICIT NONE

7 C

8 C Variables passed by ABAQUS

9 REAL *8 RHS ,AMATRX ,SVARS ,ENERGY ,PROPS ,COORDS ,U,DU ,V,A,TIME ,DTIME

10 REAL *8 PARAMS ,ADLMAG ,PREDEF ,MLVARX ,DDLMAG ,PNEWDT ,PERIOD

11 INTEGER NDOFEL ,NRHS ,NSVARS ,NPROPS ,MCRD ,NNODE ,JTYPE ,KSTEP ,KINC

12 INTEGER JELEM ,NDLOAD ,JDLTYP ,NPREDF ,LFLAGS ,MDLOAD ,JPROPS ,NJPROP

13 C

14 DIMENSION RHS (MLVARX ,*) ,AMATRX (NDOFEL ,NDOFEL ),SVARS (NSVARS ),

15 1 ENERGY (24),PROPS (*) ,COORDS (MCRD ,NNODE),

16 2 U(NDOFEL ),DU(MLVARX ,*) ,V(NDOFEL ),A(NDOFEL ),TIME (2) ,

17 3 PARAMS (2) ,JDLTYP (MDLOAD ,*) ,ADLMAG (MDLOAD ,*) ,

18 4 DDLMAG (MDLOAD ,*) ,PREDEF (2, NPREDF ,NNODE ),LFLAGS (*) ,JPROPS (*)

In addition to the variables given by ABAQUS, user-variables are defined. The nomen-
clature is in general equal to that in this thesis, in particular the additional variables
are:� CB, CV, and T are the bound water concentration, the water vapor concentration,

and temperature at time t+∆t in the integration point.� CBold, CVold, and Told are the bound water concentration, the water vapor con-
centration, and temperature at time t in the integration point.� Dcb and Dcv denote the diffusion tensors of bound water and water vapor, while K
is the thermal conductivity tensor.
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Hbint is the integral enthalpy of bound water and RHOxcV the heat capacity per
unit volume.� ra denotes the outer radius of a wood cell, fcwm and flum are the volume fractions
of cell wall material and lumens, respectively.� EMC is the equilibrium moisture content as function of temperature and concen-
tration of water vapor (which define the actual relative humidity), Dcwm is the
diffusion coefficient of the cell wall material, and Cdot is the sorption rate term.� XI, ETA, and ZETA are the isoparametric coordinates ξ, η, and ζ of the finite element.
N are the according interpolation functions.� As for numerical integration, GPX, GPY and GPZ are the isoparametric coordinates of
the Gauss points, GWEI are the Gauss weights, detJACOBIAN is the determinant of
the Jacobian matrix, and WE denotes the Gauss weight multiplied by the Jacobian
determinant.� SURFACE is a variable to be defined in the input file of a calculation, it is needed for
using film boundary conditions. Each digit of the variable SURFACE represents one
surface of the used element and is either 0 or 1. 1 implies that this element surface
is on the boundary. For example, SURFACE= {0110} means that the surfaces 2 and
3 of this element exhibit film boundary conditions. For coding reasons, the string
SURFACE is converted later into the vector S with the same content.� The chosen iterative procedure requires many derivatives. In the subroutine a
derivative of A with respect to B is represented by dA dB.� ROTMATRX is the three-dimensional rotation matrix, its transpose is denoted as
ROTMATRX T.� I, J, KI, and KJ are used as indices. GP is the index of the actual Gauss point.� Finally, VMV is a user defined function (see Section 9.4.4), calculating the product
of a transposed vector times a square matrix times a vector.

19 C Variables used in this Subroutine

20 REAL *8 RHO ,SURFACE ,GPX ,GPY ,GPZ ,GWEI ,GWE

21 REAL *8 XI,ETA ,ZETA

22 REAL *8 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA

23 REAL *8 dX_dXI ,dX_dETA , dX_dZETA

24 REAL *8 dY_dXI ,dY_dETA , dY_dZETA

25 REAL *8 dZ_dXI ,dZ_dETA , dZ_dZETA

26 REAL *8 detJACOBIAN ,WE

27 REAL *8 CB,CBold ,dCB_dX ,dCB_dY ,dCB_dZ ,dCB_dXvec

28 REAL *8 CV,CVold ,dCV_dX ,dCV_dY ,dCV_dZ ,dCV_dXvec

29 REAL *8 T,Told ,dT_dX ,dT_dY ,dT_dZ ,dT_dXvec

30 REAL *8 Dcb ,dDcb_dCB ,dDcb_dCV ,dDcb_dT

31 REAL *8 Dcv ,dDcv_dCB ,dDcv_dCV ,dDcv_dT

32 REAL *8 K,dK_dCB ,dK_dT

33 REAL *8 RHOxcV ,dRHOxcV_dCB ,dRHOxcV_dT

34 REAL *8 Hb,dHb_dCB ,dHb_dT ,Hv ,dHv_dT

35 REAL *8 Hbint ,dHbint_dCB ,dHbint_dT

36 REAL *8 R2
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37 REAL *8 fcwm ,dfcwm_dC ,flum ,dflum_dCB ,fcwmold ,flumold

38 REAL *8 EMC ,dEMC_dCV ,dEMC_dT

39 REAL *8 Dcwm ,dDcwm_dCB , dDcwm_dT

40 REAL *8 Cdot ,dCdot_dCB ,dCdot_dCV ,dCdot_dT

41 REAL *8 dNI_dXvec ,dNJ_dXvec ,VMV

42 REAL *8 K_T ,T_0 ,K_CV ,CV_0

43 REAL *8 DS

44 REAL *8 ROTMATRX , ROTMATRX_T

45 C

46 INTEGER NUMGP

47 INTEGER I,J,GP ,KI ,KJ

48 INTEGER S

49 C

50 DIMENSION GPX (20),GPY (20),GPZ (20)

51 DIMENSION GWEI (20) ,GWE (20)

52 DIMENSION N(NNODE),dN_dX (NNODE ),dN_dY(NNODE),dN_dZ(NNODE)

53 DIMENSION dN_dXI (NNODE ),dN_dETA (NNODE),dN_dZETA (NNODE)

54 DIMENSION dCB_dXvec (3) ,dCV_dXvec (3) ,dT_dXvec (3)

55 DIMENSION Dcb (3,3) ,dDcb_dCB (3,3) ,dDcb_dCV (3,3) ,dDcb_dT (3,3)

56 DIMENSION Dcv (3,3) ,dDcv_dCB (3,3) ,dDcv_dCV (3,3) ,dDcv_dT (3,3)

57 DIMENSION K(3,3) ,dK_dCB (3,3) ,dK_dT (3,3)

58 DIMENSION dNI_dXvec (3) ,dNJ_dXvec (3)

59 DIMENSION S(6)

60 DIMENSION ROTMATRX (3,3) ,ROTMATRX_T (3,3)

61 C

62 C Internal material property definition

63 C

64 SURFACE = PROPS (1)

65 RHO = PROPS (2)

First, the right hand side vector RHS and the coefficient matrix AMATRX are initialized by
setting all coefficients to zero.

66 C Initialization (NRHS =1)

67 C

68 DO 6 I=1,3* NNODE

69 RHS(I,NRHS)=0D0

70 DO 4 J=1,3* NNODE

71 AMATRX (J,I)=0D0

72 4 CONTINUE

73 6 CONTINUE

As already mentioned, the variables to be defined are controlled by flags. A transient
heat transfer analysis with a maximum allowable nodal temperature change given is
indicated by LFLAGS(3) equaling 33. This procedure uses the requested backward time
integration and a Newton-Raphson type iterative scheme [1].

74 IF (LFLAGS (1) .EQ .33) THEN

In the next step, the isoparametric coordinates of the Gauss points and the according
Gauss weights are determined. The do loop labeled by 300 is a loop through all Gauss
points. At first the isoparametric coordinates, the real coordinates, the values of the
interpolation functions in the element’s nodes and all derivatives as well as the prefactors
for numerical integration are determined.

75 C Determination of Gauss point locations

76 C

77 CALL GSPT(GPX ,GPY ,GPZ ,NUMGP )

78 C

79 C Determination of Gauss weights

80 C

81 CALL GSWT(GWEI ,GWE)

82 C

83 DO 300 GP = 1,NUMGP
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84 C Loop through Gauss points

85 XI = GPX (GP)

86 ETA = GPY (GP)

87 ZETA = GPZ (GP)

88 CALL DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

89 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

90 2 dX_dXI ,dX_dETA ,dX_dZETA ,

91 3 dY_dXI ,dY_dETA ,dY_dZETA ,

92 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,

93 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

94 C

95 C Prefactor for numerical integration of parametric elements

96 WE = GWEI(GP)*detJACOBIAN

After their initialization, the values for bound water concentration, water vapor concen-
tration, and temperature at the integration points are identified based on their values
at the element’s nodes. In addition, all their derivatives are derived and assembled in
the vectors dCB dXvec, dCV dXvec, and dT dXvec.

97 CB = 0

98 CBold = 0

99 C

100 dCB_dX = 0

101 dCB_dY = 0

102 dCB_dZ = 0

103 C

104 CV = 0

105 CVold = 0

106 C

107 dCV_dX = 0

108 dCV_dY = 0

109 dCV_dZ = 0

110 C

111 T = 0

112 Told = 0

113 C

114 dT_dX = 0

115 dT_dY = 0

116 dT_dZ = 0

117 C

118 DO I=1, NNODE

119 KI=3*I-2

120 CB = U(KI)*N(I)+CB

121 CBold = (U(KI)-dU(KI ,NRHS))*N(I)+CBold

122 dCB_dX = U(KI)*dN_dX (I)+dCB_dX

123 dCB_dY = U(KI)*dN_dY (I)+dCB_DY

124 dCB_dZ = U(KI)*dN_dZ (I)+dCB_dZ

125 C

126 KI=3*I-1

127 CV = U(KI)*N(I)+CV

128 CVold = (U(KI)-dU(KI ,NRHS))*N(I)+CVold

129 dCV_dX = U(KI)*dN_dX (I)+dCV_dX

130 dCV_dY = U(KI)*dN_dY (I)+dCV_dY

131 dCV_dZ = U(KI)*dN_dZ (I)+dCV_dZ

132 C

133 KI=3* I

134 T = U(KI)*N(I)+T

135 Told = (U(KI)-dU(KI ,NRHS))*N(I)+Told

136 dT_dX = U(KI)*dN_dX (I)+dT_dX

137 dT_dY = U(KI)*dN_dY (I)+dT_dY

138 dT_dZ = U(KI)*dN_dZ (I)+dT_dZ

139 END DO

140 C

141 dCB_dXvec (1) = dCB_dX

142 dCB_dXvec (2) = dCB_dY

143 dCB_dXvec (3) = dCB_dZ

144 C
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145 dCV_dXvec (1) = dCV_dX

146 dCV_dXvec (2) = dCV_dY

147 dCV_dXvec (3) = dCV_dZ

148 C

149 dT_dXvec (1) = dT_dX

150 dT_dXvec (2) = dT_dY

151 dT_dXvec (3) = dT_dZ

All material properties are defined in the separate subroutines MPROP D, MPROP K, and
MPROP THERMO as functions of bound water concentration, water vapor concentration,
temperature and density. The according values were derived as described in Chapters 4
to 8 of this thesis.

152 CALL MPROP_D (CB,CV,T,RHO ,Dcb ,dDcb_dCB ,dDcb_dCV ,dDcb_dT ,

153 1 Dcv ,dDcv_dCB ,dDcv_dCV ,dDcv_dT )

154 CALL MPROP_K (CB,T,RHO ,K,dK_dCB ,dK_dT )

155 CALL MPROP_THERMO(CB ,CV ,T,CBold ,CVold ,Told ,RHO ,

156 1 RHOxcV ,dRHOxcV_dCB ,dRHOxcV_dT ,

157 2 Hb ,dHb_dCB ,dHb_dT ,Hbint ,dHbint_dCB ,dHbint_dT ,

158 3 Hv ,dHv_dT )

The subroutine ROTMATRIX defines the local material orientation based on the coordinates
of the actual Gauss point and the element’s number. Thus individual samples with
known fiber orientation may be defined. The following code lines rotate the material
properties from local to global coordinates.

159 CALL ROTMATRIX (COORDS ,JELEM ,ROTMATRX ,ROTMATRX_T )

160 C

161 Dcb = MATMUL (MATMUL (ROTMATRX ,Dcb ),ROTMATRX_T )

162 dDcb_dCB = MATMUL (MATMUL (ROTMATRX ,dDcb_dCB ),ROTMATRX_T )

163 dDcb_dT = MATMUL (MATMUL (ROTMATRX ,dDcb_dT ),ROTMATRX_T )

164 Dcv = MATMUL (MATMUL (ROTMATRX ,Dcv ),ROTMATRX_T )

165 dDcv_dCB = MATMUL (MATMUL (ROTMATRX ,dDcv_dCB ),ROTMATRX_T )

166 dDcv_dCV = MATMUL (MATMUL (ROTMATRX ,dDcv_dVB ),ROTMATRX_T )

167 dDcv_dT = MATMUL (MATMUL (ROTMATRX ,dDcv_dT ),ROTMATRX_T )

168 K = MATMUL (MATMUL (ROTMATRX ,K ),ROTMATRX_T )

169 dK_dCB = MATMUL (MATMUL (ROTMATRX ,dK_dCB ),ROTMATRX_T )

170 dK_dT = MATMUL (MATMUL (ROTMATRX ,dK_dT ),ROTMATRX_T )

The volume fractions of cell wall and lumen are defined in another subroutine as functions
of density and bound water concentration:

171 CALL VOLUMEFRACTIONS(CB ,CBold ,RHO ,fcwm ,dfcwm_dCB ,flum ,dflum_dCB ,

172 1 fcwmold ,flumold )

In the next step, the sorption rate and its derivatives with respect to the basic solution
variables are calculated. The average outer radius R2 of a tracheid cross section (see
Fig 7.1) is derived based on an equation given by Perré [77] as function of density. The
equilibrium moisture content EMC and the diffusion coefficient of the cell wall Dcwm are
defined in additional subroutines as functions of bound water concentration, water vapor
concentration, and temperature. As for the equilibrium moisture content EMC, it can be
specified directly by a sorption isotherm or include sorption hysteresis in addition. This
was done in this thesis based on the approach specified by Frandsen et al. [28], see
Section 7.3.

The sorption rate Cdot then can be calculated based on Eq. (7.18).

173 C average outer radius of tracheid cross section

174 R2 = 0.5*(5D -5+(5.75 D-5 -3.75 D-5*( RHO /1000) ))

175 C

176 C Equilibrium moisture content and its derivatives wrt CV and T
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177 CALL MPROP_EMC (CBold ,CVold ,Told ,CV ,T,EMC ,dEMC_dCV ,dEMC_dT )

178 C

179 C Diffusion coefficient of the cell wall in transversal direction

180 CALL MPROP_DCWM (CB,T,Dcwm ,dDcwm_dCB ,dDcwm_dT )

181 C

182 C Sorption rate Cdot

183 Cdot = (24* Dcwm *(EMC -CB)*flum **0.5* fcwm)/(R2 **2*(5 -7* flum **0.5

184 1 -flum +3* flum **1.5) )

185 C

186 C Derivative of Cdot wrt CB

187 dCdot_dCB = (24*( EMC -CB)*flum **0.5* fcwm)

188 1 /(R2 **2*(5 -7* flum **0.5 - flum +3* flum **1.5) )*dDcwm_dCB

189 2 -(24* Dcwm*flum **0.5* fcwm)

190 3 /(R2 **2*(5 -7* flum **0.5 - flum +3* flum **1.5) )

191 4 +(12* Dcwm*(EMC -CB)*(5+ flum -6* flum **1.5) *fcwm)

192 5 /(R2 **2*(5* flum **0.25 -7* flum **0.75 - flum **1.25

193 6 +3* flum **1.75) )*dflum_dCB

194 7 +(24* Dcwm*(EMC -CB)*flum **0.5)

195 8 /(R2 **2*(5 -7* flum **0.5 - flum +3* flum **1.5) )*dfcwm_dCB

196 C

197 C Derivative of Cdot wrt CV

198 dCdot_dCV = (24* Dcwm*flum **0.5* fcwm)/(R2 **2*(5 -7* flum **0.5

199 1 -flum +3* flum **1.5) )*dEMC_dCV

200 C

201 C Derivative of Cdot wrt T

202 dCdot_dT = (24*( EMC -CB)*flum **0.5* fcwm)

203 1 /(R2 **2*(5 -7* flum **0.5 - flum +3* flum **1.5) )*dDcwm_dT

204 2 +(24* Dcwm*flum **0.5) /(R2 **2*(5 -7* flum **0.5

205 3 -flum +3* flum **1.5) )*dEMC_dT

Finally, the solution vector RHS and the coefficient matrix AMATRX can be defined. They
directly follow from Eqs. (9.17) to (9.19) and Eqs. (9.21) to (9.29), respectively.

206 C Loops over nodes

207 DO I=1, NNODE

208 dNI_dXvec (1) = dN_dX(I)

209 dNI_dXvec (2) = dN_dY(I)

210 dNI_dXvec (3) = dN_dZ(I)

211 C --> RHS : Fcb (DOF 11)

212 KI=3*I-2

213 RHS(KI,NRHS) = RHS(KI ,NRHS)-WE*(0

214 1 +N(I)*(CB*fcwm -CBold*fcwmold )/dTIME

215 2 +VMV(dNI_dXvec ,Dcb ,dCB_dXvec ,3)

216 3 -N(I)*Cdot

217 X )

218 DO J=1, NNODE

219 dNJ_dXvec (1) = dN_dX(J)

220 dNJ_dXvec (2) = dN_dY(J)

221 dNJ_dXvec (3) = dN_dZ(J)

222 C --> AMATRX : derivative Fcb wrt CB

223 KJ=3*J-2

224 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

225 1 +N(I)*fcwm*N(J)/dTIME

226 2 +N(I)*CB*dfcwm_dCB *N(J)/dTIME

227 3 +VMV(dNI_dXvec ,Dcb ,dNJ_dXvec ,3)

228 4 +VMV(dNI_dXvec ,dDcb_dCB ,dCB_dXvec ,3)*N(J)

229 5 -N(I)*dCdot_dCB *N(J)

230 X )

231 C --> AMATRX : derivative Fcb wrt CV

232 KJ=3*J-1

233 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

234 1 -N(I)*dCdot_dCV *N(J)

235 X )

236 C --> AMATRX : derivative Fcb wrt T

237 KJ=3*J

238 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

239 1 +VMV(dNI_dXvec ,dDcb_dT ,dCB_dXvec ,3)*N(J)

240 2 -N(I)*dCdot_dT *N(J)
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241 X )

242 END DO

243 C --> RHS : Fcv (DOF 12)

244 KI=3*I-1

245 RHS(KI,NRHS) = RHS(KI ,NRHS)-WE*(0

246 1 +N(I)*(CV*flum -CVold*flumold )/dTIME

247 2 +VMV(dNI_dXvec ,Dcv ,dCV_dXvec ,3)

248 3 +N(I)*Cdot *1D4

249 X )

250 DO J=1, NNODE

251 dNJ_dXvec (1) = dN_dX(J)

252 dNJ_dXvec (2) = dN_dY(J)

253 dNJ_dXvec (3) = dN_dZ(J)

254 C --> AMATRX : derivative Fcv wrt CB

255 KJ=3*J-2

256 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

257 1 +N(I)*CV*dflum_dCB *N(J)/dTIME

258 2 +VMV(dNI_dXvec ,dDcv_dCB ,dCB_dXvec ,3)*N(J)

259 3 +N(I)*dCdot_dCB *N(J)*1D4

260 X )

261 C --> AMATRX : derivative Fcv wrt CV

262 KJ=3*J-1

263 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

264 1 +N(I)*flum*N(J)/dTIME

265 2 +VMV(dNI_dXvec ,Dcv ,dNJ_dXvec ,3)

266 3 +VMV(dNI_dXvec ,dDcv_dCV ,dCV_dXvec ,3)*N(J)

267 4 +N(I)*dCdot_dCV *N(J)*1D4

268 X )

269 C --> AMATRX : derivative Fcv wrt T

270 KJ=3*J

271 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

272 1 +VMV(dNI_dXvec ,dDcv_dT ,dCV_dXvec ,3)*N(J)

273 2 +N(I)*dCdot_dT *N(J)*1D4

274 X )

275 END DO

276 C --> RHS : Ft (DOF 13)

277 KI=3*I

278 RHS(KI,NRHS) = RHS(KI ,NRHS)-WE*(0

279 1 +N(I)*RHOxcV *(T-Told)/dTIME

280 2 +VMV(dNI_dXvec ,K,dT_dXvec ,3)

281 3 +VMV(dNI_dXvec ,Dcb ,dCB_dXvec ,3) *Hbint

282 4 +VMV(dNI_dXvec ,Dcv ,dCV_dXvec ,3) *Hv

283 5 +N(I)*Cdot *(Hv -Hb)

284 X )

285 DO J=1, NNODE

286 dNJ_dXvec (1) = dN_dX(J)

287 dNJ_dXvec (2) = dN_dY(J)

288 dNJ_dXvec (3) = dN_dZ(J)

289 C --> AMATRX : derivative Ft wrt CB

290 KJ=3*J-2

291 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

292 1 +N(I)*dRHOxcV_dCB *(T-Told)*N(J)/dTIME

293 2 +VMV(dNI_dXvec ,dK_dCB ,dT_dXvec ,3)*N(J)

294 3 +VMV(dNI_dXvec ,Dcb ,dCB_dXvec ,3)*N(J)*dHbint_dCB

295 4 +VMV(dNI_dXvec ,Dcb ,dNJ_dXvec ,3)*Hbint

296 5 +VMV(dNI_dXvec ,dDcb_dCB ,dCB_dXvec ,3)*N(J)*Hbint

297 6 +VMV(dNI_dXvec ,dDcv_dCB ,dCV_dXvec ,3)*N(J)*Hv

298 7 -N(I)*Cdot*N(J)*dHb_dCB

299 8 +N(I)*dCdot_dCB *N(J)*(Hv -Hb)

300 X )

301 C --> AMATRX : derivative Ft wrt CV

302 KJ=3*J-1

303 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

304 1 +VMV(dNI_dXvec ,Dcv ,dNJ_dXvec ,3)*Hv

305 2 +VMV(dNI_dXvec ,dDcv_dCV ,dCV_dXvec ,3)*N(J)*Hv

306 3 +N(I)*dCdot_dCV *N(J)*(Hv -Hb)

307 X )

308 C --> AMATRX : derivative Ft wrt T
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309 KJ=3*J

310 AMATRX (KI,KJ) = AMATRX (KI ,KJ)+WE*(0

311 1 +N(I)*RHOxcV_dT *N(J)/dTIME

312 2 +N(I)*dRHOxcV_dT *(T-Told)*N(J)/dTIME

313 3 +VMV(dNI_dXvec ,K,dNJ_dXvec ,3)

314 4 +VMV(dNI_dXvec ,dK_dT ,dT_dXvec ,3)*N(J)

315 5 +VMV(dNI_dXvec ,Dcb ,dCB_dXvec ,3)*N(J)*dHbint_dT

316 6 +VMV(dNI_dXvec ,dDcb_dT ,dCB_dXvec ,3)*N(J)*Hbint

317 7 +VMV(dNI_dXvec ,Dcv ,dCV_dXvec ,3)*N(J)*dHv_dT

318 8 +VMV(dNI_dXvec ,dDcv_dT ,dCV_dXvec ,3)*N(J)*Hv

319 9 +N(I)*Cdot*N(J)*(dHv_dT -dHb_dT )

320 0 +N(I)*dCdot_dT *N(J)*(Hv-Hb)

321 X )

322 END DO

323 END DO

324 C

325 300 CONTINUE

As mentioned, the user element allows for using film boundary conditions. As shown
in Eqs. (9.17) to (9.19) and Eqs. (9.21) to (9.29), film boundary conditions result in
additional terms in the solution vector RHS and the coefficient matrix AMATRX of the actual
element. The following code for the film boundary conditions is explicitly formulated
for a two-dimensional bilinear element. This element exhibits four faces, for each face
the film boundary conditions have to be specified separately.

First it is checked if particular faces of the element exhibit film boundary conditions.
Afterwards the digits of the integer SURFACE are assigned to the components of vector
S. The properties of the film boundary conditions, i.e. the film boundary coefficients
for water vapor and energy, kv and kT , respectively, as well as the ambient climate
specified by the ambient water vapor concentration cv,0 and the ambient temperature
T0 are defined in the additional subroutine FILM BC.

326 C Check if element is at the boundary (else no film boundary conditions )

327 IF (SURFACE .NE. 0D0) THEN

328 C Extract digits of PROPS (1)

329 S(1) = INT (SURFACE /1000)

330 S(2) = INT (SURFACE /100) -10*S(1)

331 S(3) = INT (SURFACE /10) -10*S(2) -100*S(1)

332 S(4) = INT (SURFACE /1) -10*S(3) -100*S(2) -1000* S(1)

333 C Assign film properties

334 CALL FILM_BC (K_T ,T_0 ,K_CV ,CV_0)

Next the film boundary conditions for surfaces No. 1 (η = −1), No. 2 (ξ = +1), No.
3 (η = +1), and No. 4 (ξ = −1) are calculated (for the definition of the surfaces see
Fig. 9.1 on page 138). After checking if the particular surface exhibits film boundary
conditions, the additional terms in the solution vector RHS and the coefficient matrix
AMATRX are calculated. Numerical integration of the surface integral is performed with
two Gauss points on the respective surface.

335 C Film boundary conditions , surface No. 1 (ETA = -1)

336 C

337 IF (S(1) .EQ. 1) THEN

338 C Loop through surface Gauss points

339 DO GP = 1,2

340 XI = GPY (GP)

341 ETA = -1

342 ZETA = 0

343 CALL DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

344 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

345 2 dX_dXI ,dX_dETA ,dX_dZETA ,

346 3 dY_dXI ,dY_dETA ,dY_dZETA ,

347 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,
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348 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

349 C Determination of state variables in the surface Gauss point

350 T = 0

351 CV = 0

352 DO I=1, NNODE

353 KI = 3*I-1

354 CV = U(KI)*N(I)+CV

355 KI = 3*I

356 T = U(KI)*N(I)+T

357 END DO

358 C Prefactor for numerical integration for parametric elements

359 DS = GWE(GP)*SQRT(dX_dXI *dX_dXI + dY_dXI *dY_dXI )

360 C Loops over Nodes

361 DO I=1, NNODE

362 C --> RHS : Fcv (DOF 12)

363 KI=3*I-1

364 RHS(KI,NRHS) = RHS (KI ,NRHS)

365 1 -DS*N(I)*K_CV *(CV -CV_0)

366 DO J=1, NNODE

367 C --> AMATRX : derivative Fcv wrt CV

368 KJ=3*J-1

369 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

370 1 -DS*N(I)*K_CV*N(J)

371 END DO

372 C --> RHS : Ft (DOF 13)

373 KI=3*I

374 RHS(KI,NRHS) = RHS (KI ,NRHS)

375 1 -DS*N(I)*K_T *(T-T_0 )

376 DO J=1, NNODE

377 C --> AMATRX : derivative Ft wrt T

378 KJ=3*J

379 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

380 1 -DS*N(I)*K_T *N(J)

381 END DO

382 END DO

383 END DO

384 END IF

385 C

386 C Film boundary conditions , surface No. 2 (XI = +1)

387 C

388 IF (S(2) .EQ. 1) THEN

389 C Loop through surface Gauss points

390 DO GP = 1,2

391 XI = 1

392 ETA = GPY (GP)

393 ZETA = 0

394 CALL DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

395 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

396 2 dX_dXI ,dX_dETA ,dX_dZETA ,

397 3 dY_dXI ,dY_dETA ,dY_dZETA ,

398 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,

399 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

400 C Determination of state variables in the surface Gauss point

401 T = 0

402 CV = 0

403 DO I=1, NNODE

404 KI = 3*I-1

405 CV = U(KI)*N(I)+CV

406 KI = 3*I

407 T = U(KI)*N(I)+T

408 END DO

409 C Prefactor for numerical integration for parametric elements

410 DS = GWE(GP)*SQRT(dX_dETA *dX_dETA + dY_dETA *dY_dETA )

411 C Loops over Nodes

412 DO I=1, NNODE

413 C --> RHS : Fcv (DOF 12)

414 KI=3*I-1

415 RHS(KI,NRHS) = RHS (KI ,NRHS)
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416 1 -DS*N(I)*K_CV *(CV -CV_0)

417 DO J=1, NNODE

418 C --> AMATRX : derivative Fcv wrt CV

419 KJ=3*J-1

420 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

421 1 -DS*N(I)*K_CV*N(J)

422 END DO

423 C --> RHS : Ft (DOF 13)

424 KI=3*I

425 RHS(KI,NRHS) = RHS (KI ,NRHS)

426 1 -DS*N(I)*K_T *(T-T_0 )

427 DO J=1, NNODE

428 C --> AMATRX : derivative Ft wrt T

429 KJ=3*J

430 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

431 1 -DS*N(I)*K_T *N(J)

432 END DO

433 END DO

434 END DO

435 END IF

436 C

437 C Film boundary conditions cont Surface No. 3 (ETA = +1)

438 C

439 IF (S(3) .EQ. 1) THEN

440 C Loop through surface Gauss points

441 DO GP = 1,2

442 XI = GPY (GP)

443 ETA = 1

444 ZETA = 0

445 CALL DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

446 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

447 2 dX_dXI ,dX_dETA ,dX_dZETA ,

448 3 dY_dXI ,dY_dETA ,dY_dZETA ,

449 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,

450 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

451 C Determination of state variables in the surface Gauss point

452 T = 0

453 CV = 0

454 DO I=1, NNODE

455 KI = 3*I-1

456 CV = U(KI)*N(I)+CV

457 KI = 3*I

458 T = U(KI)*N(I)+T

459 END DO

460 C Prefactor for numerical integration for parametric elements

461 DS = GWE(GP)*SQRT(dX_dXI *dX_dXI + dY_dXI *dY_dXI )

462 C Loops over Nodes

463 DO I=1, NNODE

464 C --> RHS : Fcv (DOF 12)

465 KI=3*I-1

466 RHS(KI,NRHS) = RHS (KI ,NRHS)

467 1 -DS*N(I)*K_CV *(CV -CV_0)

468 DO J=1, NNODE

469 C --> AMATRX : derivative Fcv wrt CV

470 KJ=3*J-1

471 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

472 1 -DS*N(I)*K_CV*N(J)

473 END DO

474 C --> RHS : Ft (DOF 13)

475 KI=3*I

476 RHS(KI,NRHS) = RHS (KI ,NRHS)

477 1 -DS*N(I)*K_T *(T-T_0 )

478 DO J=1, NNODE

479 C --> AMATRX : derivative Ft wrt T

480 KJ=3*J

481 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

482 1 -DS*N(I)*K_T *N(J)

483 END DO
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484 END DO

485 END DO

486 END IF

487 C

488 C Film boundary conditions cont Surface No. 4 (XI = -1)

489 C

490 IF (S(4) .EQ. 1) THEN

491 C Loop through surface Gauss points

492 DO GP = 1,2

493 XI = -1

494 ETA = GPY (GP)

495 ZETA = 0

496 CALL DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

497 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

498 2 dX_dXI ,dX_dETA ,dX_dZETA ,

499 3 dY_dXI ,dY_dETA ,dY_dZETA ,

500 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,

501 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

502 C Determination of state variables in the surface Gauss point

503 T = 0

504 CV = 0

505 DO I=1, NNODE

506 KI = 3*I-1

507 CV = U(KI)*N(I)+CV

508 KI = 3*I

509 T = U(KI)*N(I)+T

510 END DO

511 C Prefactor for numerical integration for parametric elements

512 DS = GWE(GP)*SQRT(dX_dETA *dX_dETA + dY_dETA *dY_dETA )

513 C Loops over Nodes

514 DO I=1, NNODE

515 C --> RHS : Fcv (DOF 12)

516 KI=3*I-1

517 RHS(KI,NRHS) = RHS (KI ,NRHS)

518 1 -DS*N(I)*K_CV *(CV -CV_0)

519 DO J=1, NNODE

520 C --> AMATRX : derivative Fcv wrt CV

521 KJ=3*J-1

522 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

523 1 -DS*N(I)*K_CV*N(J)

524 END DO

525 C --> RHS : Ft (DOF 13)

526 KI=3*I

527 RHS(KI,NRHS) = RHS (KI ,NRHS)

528 1 -DS*N(I)*K_T *(T-T_0 )

529 DO J=1, NNODE

530 C --> AMATRX : derivative Ft wrt T

531 KJ=3*J

532 AMATRX (KI,KJ) = AMATRX (KI ,KJ)

533 1 -DS*N(I)*K_T *N(J)

534 END DO

535 END DO

536 END DO

537 END IF

538 C

539

540 END IF

Finally, the user element subroutine is concluded by:

541 END IF

542 RETURN

543 END
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9.4.2 Subroutines defining the element type

Except for the film boundary conditions, the user element subroutine presented in the
previous subsection is generally formulated in terms of the element type. It might
be adapted for one-, two-, or three-dimensional elements with arbitrary isoparametric
interpolation functions. In this thesis, a two-dimensional 4-node element with linear
interpolation functions was chosen (a preliminary two-dimensional 8-node element with
quadratic interpolation function showed numerical instabilities for some model configu-
rations). The according numberings of nodes, integration points and faces are given in
Fig. 9.1.
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Figure 9.1: Two-dimensional bilinear element: Numbering of nodes (◦), integration
points (×), and faces. ξ and η are the parameterized local coordinates.

The number of Gauss points and their isoparametric coordinates [66] are specified in
subroutine GSPT:

1 SUBROUTINE GSPT(GPX ,GPY ,GPZ ,NUMGP )

2 C

3 REAL *8 GPX ,GPY ,GPZ ,R

4 INTEGER NUMGP

5 C

6 DIMENSION GPX (4) ,GPY (4) ,GPZ (4)

7 C

8 NUMGP = 4

9 C

10 R=1/ SQRT (3)

11 C

12 GPX (1)=-R

13 GPX (2)= R

14 GPX (3)= R

15 GPX (4)=-R

16 C

17 GPY (1)=-R

18 GPY (2)=-R

19 GPY (3)= R

20 GPY (4)= R

21 C

22 GPZ (1)= 0

23 GPZ (2)= 0

24 GPZ (3)= 0

25 GPZ (4)= 0

26 C

27 RETURN

28 END
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The according Gauss weights GWEI for each Gauss point [66] (in this case equal to 1) are
defined in subroutine GSWT.

1 SUBROUTINE GSWT(GWEI ,GWE )

2 C

3 REAL *8 GWEI ,GWE

4 INTEGER I,J,GP

5 C

6 DIMENSION GWEI (4) ,GWE (2)

7 C

8 GWE (1) =1

9 GWE (2) =1

10 DO 10 I=1,2

11 DO 10 J=1,2

12 GP=(I-1) *2+J

13 GWEI(GP)=GWE(I)*GWE(J)

14 10 CONTINUE

15 RETURN

16 END

The subroutine DER defines the value of the interpolation functions Ni (one for each
node i) and their derivatives with respect to the three spatial directions x, y, and z
for given isoparametric coordinates ξ, η, and ζ. In addition, the determinant of the
Jacobian matrix is defined. For the chosen two-dimensional bilinear element, subroutine
DER reads as:

1 SUBROUTINE DER(XI ,ETA ,ZETA ,GPX ,GPY ,GPZ ,GWEI ,

2 1 N,dN_dX ,dN_dY ,dN_dZ ,dN_dXI ,dN_dETA ,dN_dZETA ,

3 2 dX_dXI ,dX_dETA ,dX_dZETA ,

4 3 dY_dXI ,dY_dETA ,dY_dZETA ,

5 4 dZ_dXI ,dZ_dETA ,dZ_dZETA ,

6 5 detJACOBIAN ,COORDS ,MCRD ,NNODE)

7 C

8 REAL *8 XI,ETA ,ZETA ,

9 REAL *8 GPX ,GPY ,GPZ ,GWEI

10 REAL *8 dX_dXI ,dX_dETA , dX_dZETA

11 REAL *8 dY_dXI ,dY_dETA , dY_dZETA

12 REAL *8 dZ_dXI ,dZ_dETA , dZ_dZETA

13 REAL *8 N

14 REAL *8 dN_dX ,dN_dY ,dN_dZ

15 REAL *8 dN_dXI ,dN_dETA , dN_dZETA

16 REAL *8 detJACOBIAN

17 REAL *8 COORDS

18 INTEGER MCRD ,NNODE

19 INTEGER I,J

20 C

21 DIMENSION N(NNODE)

22 DIMENSION dN_dX(NNODE),dN_dY(NNODE),dN_dZ(NNODE)

23 DIMENSION dN_dXI (NNODE ),dN_dETA (NNODE),dN_dZETA (NNODE)

24 DIMENSION COORDS (MCRD ,NNODE )

25 C

26 C Interpolation functions

27 C

28 N(1) = 0.25*(1 - XI)*(1- ETA)

29 N(2) = 0.25*(1+ XI)*(1- ETA)

30 N(3) = 0.25*(1+ XI)*(1+ ETA)

31 N(4) = 0.25*(1 - XI)*(1+ ETA)

32 C

33 C Derivatives wrt to XI

34 C

35 dN_dXI (1) = -0.25*(1 - ETA )

36 dN_dXI (2) = 0.25*(1 - ETA )

37 dN_dXI (3) = 0.25*(1+ ETA )

38 dN_dXI (4) = -0.25*(1+ ETA )

39 C

40 C Derivatives wrt to ETA

41 C
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42 dN_dETA (1) = -0.25*(1 - XI)

43 dN_dETA (2) = -0.25*(1+ XI)

44 dN_dETA (3) = 0.25*(1+ XI)

45 dN_dETA (4) = 0.25*(1 - XI)

46 C

47 C Derivatives wrt to ZETA

48 C

49 dN_dZETA (1) = 0

50 dN_dZETA (2) = 0

51 dN_dZETA (3) = 0

52 dN_dZETA (4) = 0

53 C

54 dX_dXI = 0

55 dX_dETA = 0

56 dX_dZETA = 0

57 dY_dXI = 0

58 dY_dETA = 0

59 dY_dZETA = 0

60 dZ_dXI = 0

61 dZ_dETA = 0

62 dZ_dZETA = 0

63

64 DO 3 I=1, NNODE

65 dX_dXI = dX_dXI + COORDS (1,I)*dN_dXI (I)

66 dX_dETA = dX_dETA + COORDS (1,I)*dN_dETA (I)

67 dY_dXI = dY_dXI + COORDS (2,I)*dN_dXI (I)

68 dY_dETA = dY_dETA + COORDS (2,I)*dN_dETA (I)

69 3 CONTINUE

70 C

71 C Calculation of the Jacobian determinant

72 C

73 detJACOBIAN = (dX_dXI *dY_dETA -dX_dETA *dY_dXI )

74 C

75 C Derivatives of N wrt to X, Y, and Z

76 C

77 DO 5 I=1, NNODE

78 dN_dX (I) = (dN_dXI (I) *dY_dETA -dN_dETA (I)*dY_dXI )/detJACOBIAN

79 dN_dY (I) = (dN_dETA (I)*dX_dXI -dN_dXI (I) *dX_dETA )/detJACOBIAN

80 dN_dZ (I) = 0

81 5 CONTINUE

82 RETURN

83 END

9.4.3 Subroutine for equilibrium moisture content including hysteresis

For the calculation of the equilibrium moisture content the approach given by Frandsen
(see Section 7.3) is used. The nomenclature in the Fortran code is again equal to that
used in this thesis. In the header of the subroutine, the number types of all used variables
are defined.

1 SUBROUTINE MPROP_EMC (CBold ,CVold ,Told ,CV ,T,EMC ,dEMC_dCV ,dEMC_dT )

2 C

3 REAL *8 CBold ,CVold ,Told

4 REAL *8 tau ,dtau_dT

5 REAL *8 CV,T,CVsat ,dCVsat_dT

6 REAL *8 PHI ,dPHI_dT , dPHI_dCV

7 REAL *8 EMC ,dEMC_dCV ,dEMC_dT

8 REAL *8 F1a ,F2a ,F3a ,F1d ,F2d ,F3d ,D1 ,D2 ,Q1 ,Q2

9 REAL *8 PHI0 ,MC0 ,S0

10 REAL *8 PHIa0 ,PHId0 ,MCa0 ,MCd0

11 REAL *8 MCa ,MCd ,dMCa_dPHI ,dMCd_dPHI

12 REAL *8 S,dS_dPHI ,dEMC_dPHI
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In the next step, the parameters defining the sorption boundary curves and the shape
of the scanning curve are defined. The values are equal to that in Chapter 11.

13 C Hailwood -Horrobin adsorption boundary curve

14 F1a = 1.234

15 F2a = 10.214

16 F3a = -8.122

17 C

18 C Hailwood -Horrobin desorption boundary curve

19 F1d = 2.456

20 F2d = 10.311

21 F3d = -8.791

22 C

23 C Shape parameter

24 D1 = -1.50

25 D2 = 0.85

The conditions at time t are used as initial conditions for the calculation. The initial
relative humidity PHI0 is calculated by relating the water vapor concentration at time t,
CVold, to the according saturation vapor concentration CVsat. The latter is calculated
based on an empirical equation given in [90] using the temperature at time t, Told.

26 tau = 1-Told /647.14

27 C

28 C Saturation vapor concentration for given temperature [kg/m^3]

29 CVsat = (47806.90077/ Told)*EXP ((647.14/ Told)*

30 1 ( -7.85823* tau +1.83991* tau **1.5

31 2 -11.7811* tau **3+22.6705*tau **3.5

32 3 -15.9393* tau **4+1.77516*tau **7.5) )

33 C

34 C Relative humidity [1]

35 PHI0 = CVold /(CVsat *1D4)

The initial moisture content MC0 is gained by dividing the bound water concentration
at time t, CBold, by the dry density of the cellwall (1530 kg/m3). Based on the initial
relative humidity PHI0, the initial boundary values for adsorption and desorption are
calculated by use of the Hailwood-Horrobin isotherm [see Eq. (7.26)].

36 MC0 = CBold /1530

37 C

38 MCa0 = PHI0/( F1a+F2a*PHI0+F3a*PHI0 **2)

39 C

40 MCd0 = PHI0/( F1d+F2d*PHI0+F3d*PHI0 **2)

The initial parameter S0 follows from Eq. (7.20).

41 C Parameter S0

42 S0 = (MC0 -MCa0)/(MCd0 -MCa0)

Now the initial state (PHI0,S0) is defined, thus the auxiliary variables Q1, Q2, PHIa0,
and PHId0 are calculated as given in Eqs. (7.22) to (7.25).

43 Q1 = -(LOG (LOG (2))-LOG(LOG (2-S0)))/

44 1 (LOG (LOG (2))-LOG(LOG (2-S0))-D1)

45 C

46 Q2 = -(LOG (LOG (2))-LOG(LOG (1+ S0)))/

47 1 (LOG (LOG (2))-LOG(LOG (1+ S0))-D1)

48 C

49 PHIa0 = PHI0 *(( D2*PHI0)**Q1)

50 PHId0 = 1-(1- PHI0)*(D2*(1- PHI0))**Q2

Also for the actual state (time t+∆t) the relative humidity PHI is calculated. In addition,
its derivatives with respect to water vapor concentration and temperature, dPHI dCV and
dPHI dT, are computed.
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51 tau = 1-T/647.14

52 dtau_dT = -1/647.14

53 C

54 C Saturation vapor concentration for given temperature [kg/m^3]

55 CVsat = (47806.90077/T)*EXP ((647.14/ T)*

56 1 ( -7.85823* tau +1.83991* tau **1.5

57 2 -11.7811* tau **3+22.6705*tau **3.5

58 3 -15.9393* tau **4+1.77516*tau **7.5) )

59 C

60 C Derivative of CVsat wrt T

61 dCVsat_dT = (-1/T)*CVsat +CVsat *(

62 1 ( -647.14/T**2)*

63 2 ( -7.85823* tau +1.83991* tau **1.5

64 3 -11.7811* tau **3+22.6705*tau **3.5

65 4 -15.9393* tau **4+1.77516*tau **7.5)

66 5 +(647.14/ T)*dtau_dT *

67 6 ( -7.85823 +1.83991*1.5*tau **0.5

68 7 -11.7811*3* tau **2+22.6705*3.5* tau **2.5

69 8 -15.9393*4* tau **3+1.77516*7.5* tau **6.5) )

70 C

71 C Relative humidity [1]

72 PHI = CV/( CVsat *1D4)

73 dPHI_dCV = 1/( CVsat *1D4)

74 dPHI_dT = -CV/( CVsat **2*1 D4)*dCVsat_dT

The actual scanning curve parameter S then directly follows from Eq. (7.21). Further,
its derivative with respect to relative humidity, dS dPHI, is derived.

75 IF (PHI .GE.PHI0) THEN

76 IF (S0.EQ.0) THEN

77 S = 0

78 dS_dPHI = 0

79 ELSE

80 S = -1+2**(((1- PHI)/(1- PHId0))**( D1/(LOG(D2*(1- PHId0)))))

81 dS_dPHI = -1*2**(((1- PHI)/(1- PHId0))**( D1/(LOG(D2*(1- PHId0 )))))

82 1 *(((1 - PHI)/(1- PHId0))**( D1/(LOG(D2*(1- PHId0)))))

83 2 *(D1/( LOG(D2*(1- PHId0))))*LOG (2) /(1- PHI)

84 END IF

85 ELSE

86 IF (S0.EQ.1) THEN

87 S = 1

88 dS_dPHI = 0

89 ELSE

90 S = 2 -2**(( PHI/PHIa0 )**( D1/(LOG(D2*PHIa0))))

91 dS_dPHI = -1*2**(( PHI/PHIa0)**( D1/(LOG (D2*PHIa0 ))))

92 1 *(( PHI/PHIa0)**( D1/(LOG (D2*PHIa0 ))))

93 2 *(D1/( LOG(D2*PHIa0)))*LOG (2)/PHI

94 END IF

95 END IF

The values of the boundary curves based on the actual relative humidity are again
calculated using the Hailwood-Horrobin isotherms.

96 MCa = PHI /(F1a+F2a*PHI+F3a*PHI **2)

97 dMCa_dPHI = (F1a -F3a*PHI **2) /(( F1a+F2a*PHI +F3a*PHI **2) **2)

98 C

99 MCd = RH/(F1d +F2d*PHI+F3d*PHI **2)

100 dMCd_dPHI = (F1d -F3d*PHI **2) /(( F1d+F2d*PHI +F3d*PHI **2) **2)

Finally, the actual equilibriummoisture content, EMC follows from Eq. (7.19). In addition,
the solution scheme of the user element requires the derivatives of EMC with respect to
water vapor concentration and temperature, they are calculated using the chain rule of
differentiation.

102 EMC = 1530*(( MCd -MCa)*S+MCa )

103 C
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104 C Derivative of EMC wrt CV

105 dEMC_dCV = 1530* dPHI_dCV *( dMCa_dPHI

106 1 +dMCd_dPHI *S+MCd*dS_dPHI

107 2 -dMCa_dPHI *S-MCa*dS_dPHI )

108 C

109 C Derivative of EMC wrt T

110 dEMC_dT = 1530* dPHI_dT *( dMCa_dPHI

111 1 +dMCd_dPHI *S+MCd *dS_dPHI

112 2 -dMCa_dPHI *S-MCa *dS_dPHI )

113 C

114 RETURN

115 END

9.4.4 Additional functions

As mentioned before, the user subroutine often requires the calculation of the scalar
product of a transposed vector VEC1, a square matrix MATRX, and another vector VEC2.
For simplification, an according function was generally defined, with M as the number of
rows / columns of VEC1, MATRX, and VEC2.

1 REAL *8 FUNCTION VMV(VEC1 ,MATRX ,VEC2 ,M)

2 C

3 REAL *8 VEC1 ,MATRX ,VEC2

4 INTEGER I,J,M

5 C

6 DIMENSION VEC1(M),VEC2(M)

7 DIMENSION MATRX(M,M)

8 C

9 VMV = 0

10 DO I=1,M

11 DO J=1,M

12 VMV = VMV + VEC1(J)*MATRX(J,I)*VEC2(I)

13 END DO

14 END DO

15 RETURN

16 END
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Chapter10
Validation I: Improved cup
method

In the previous chapters of this thesis, a mathematical description of the hygro-thermo-
mechanical material wood was developed, the therein needed material properties were
derived using multiscale approaches, and a numerical solution for transient transport
problems was given in the framework of the finite element method. However, what is still
missing is the validation and verification of the whole model. The aim of modeling work
is to provide predictions of the behavior of materials and structures in real situations –
therefore validation is based on comparisons of model predicted values with according
experimental results at a structural scale.

Under special conditions, e.g. steady state diffusion processes as specified in Eq. 3.29,
processes are largely defined by one material property, e.g. by the diffusion coefficient.
For such cases, a suitable validation may rest on a direct comparison of model predicted
material properties and according measurements, as it was done in Chapters 4, 5, and 6
of this thesis for thermal conductivity, steady state moisture diffusivity, and viscoelastic
properties of wood.

In contrast, transient transport processes cannot be suitably captured by solely one ma-
terial property, rather they are governed by at least three coupled differential equations
[see Eq. (3.30) to (3.32)] including several material properties. Therefore the validation
of the according model rests on the prediction of whole processes.

A first validation of the model is based on experimental results gained with the improved
cup method. The aim was to design a special test setup that excludes possible uncer-
tainties regarding the diffusion properties coming from microstructural characteristics.
Thus, only longitudinal moisture transport was permitted in the test, because in this
direction the transport routes of both water vapor and bound water are clearly defined
as a consequence of the longitudinally aligned cell lumens. For modeling purposes, the
diffusion coefficient of water vapor in air (see e.g. [89]) can be directly used in the model
without consideration of reduction factors. A further reason why to look at longitudi-
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nal moisture transport is that for this direction the most significant differences between
steady-state and transient moisture transport behavior are observed.

10.1 Introduction

Water vapor transport in air is significantly faster than bound water transport in the
wood cell wall. As a consequence of the longitudinally aligned cell lumens, the moisture
flow in the longitudinal direction consists of two diffusion processes in parallel.

When the longitudinal dimension of a wood sample approaches zero, the influence of
the tapered ends of the tracheids vanishes and the longitudinal diffusion coefficient of
water vapor in cell lumens Dv,L reaches its limit given by the moisture diffusion coef-
ficient of pure air Dair. Thus Eqs. (3.30) and (3.31) reduce for thin specimens in good
approximation to [48]

∂(cb fcwm)

∂t
≈ ċ, (10.1)

∂(cv flum)

∂t
≈ ∂

∂z

(
Dair

∂cv
∂z

)
− ċ, (10.2)

where z is the longitudinal material direction. In sorption tests without cup, only the
changes in bound water concentration in terms of total weight increase or decrease
are measured. With the modified method the relative humidities on both sides of the
specimens are measured in addition, constituting important additional values for model
validation.

The primary aim of the improved cup method was the direct measurement of the sorption
rate ċ, assuming that Eqs. (10.1) and (10.2) are the complete description of transient
transport processes. But, as shown in Chapter 3, also an energy balance is needed in
addition. Therefore the sorption rate could not be suitably correlated to the difference in
concentrations alone (see Publication 6 in the appendix of this thesis). In the following
section, the corresponding test setup and testing procedure are described in detail.

10.2 Materials and methods

10.2.1 Sample preparation

Norway Spruce (Picea abies) specimens were cut with a circular saw, with the smallest
dimension in the longitudinal material direction (referred to as thickness in Table 10.1).
To fit into the cups, the dimensions of the specimens were approximately 65 × 40mm2.
Specimens contained no growth irregularities (knots, reaction wood).

The specimen preparation with a saw resulted in a rough-textured surface with macrofib-
rils sticking out. Removal of these fibrils by sanding resulted in filling the lumens with
residue, this would be unacceptable for later tests that require open lumens. Thus,
the rough surfaces were left untreated, and no further processing of the specimens was
performed.

To fit into a diffusion cup, the wood specimens were centered in a plastic ring. A layer
of silicone kept the specimen in place and, together with aluminum foil, ensured a vapor
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Figure 10.1: Specimen for the improved cup method.

Table 10.1: Dimensions and densities of test specimens

Specimen No. thickness area volume dry mass dry density
[mm] [mm2] [mm3] [g] [g/cm3]

1 1.55 2801 4341 1.952 0.450
2 1.55 2548 3950 1.763 0.446
3 2.70 2365 7512 2.841 0.445
4 2.76 2794 7711 3.419 0.443
5 3.06 2827 8651 3.830 0.443
6 3.45 2462 8493 3.730 0.439
7 6.45 2768 17853 7.864 0.440
8 6.42 2831 18178 7.987 0.439

tight seal (see Figs. 10.1 and 10.2). Dimensions and densities of the eight specimens
analyzed in this study are given in Table 10.1.

Further, the sorption isotherm, which is similar for all samples, was determined as

MC =
ϕ

4.182 + 9.342ϕ − 10.319ϕ2
, 5% < ϕ < 80%. (10.3)

10.2.2 Method

A diffusion cup is a cylindrical metal container, consisting of a cup and a screw cap
with a circular opening (see Fig. 10.2). Between these two parts, a specimen is fitted
with one surface inward and the other outward the cup. Rubber ring-sealings assure the
tightness of the whole assembly ensuring transport into or out of the cup through the
specimen without leakage. In a traditional cup test a salt solution is used to establish
a specific constant humidity inside the cup, while the outside of the cup is exposed to a
different constant humidity. Assuming validity of a transport law like Fick’s first law of
diffusion [see Eq. (3.16)], a steady state diffusion coefficient can be calculated (as done
e.g. by Comstock [11]). The concentration gradient ∂c/∂x is the concentration difference
between inside and outside of the cup divided by the thickness of the specimen, while
the flux J is the mass loss of the specimen per time divided by the specimen area. The
mass loss per time is usually determined by repeated weighing of the whole cup.

The improved cup method aimed at direct measurement of the sorption process inside
wood during a transient transport process. In contrast to the common cup method,
the “improved” cup contains no salt solution but a small data logger (Tinytag Ultra 2
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TGU-4500) in order to monitor the course of relative humidity and temperature inside
the cup during the sorption test. This setup (see Fig. 10.2) allows for a more precise
measurement and experimental analysis of the transport and sorption processes in wood.
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Figure 10.2: Test setup of the improved cup method and according model representation.

In addition to the eight cups with specimens, two reference cups were prepared. In order
to test the configuration for tightness, one reference cup contained a completely sealed
dummy specimen. The second reference cup was open to check the sorption behavior of
the rubber sealing and the data logger and to monitor the climatic conditions inside the
chamber. In all assembled cups, a special vacuum grease (Apiezon® M Grease) on the
rubber sealings was used to assure complete impermeability.

All cups were assembled and placed in one climate cabinet at a temperature of +20°C and
a relative humidity (ϕ) of 4 %, which corresponds to an equilibrium moisture content
below 1 %. Equilibrium was reached within 2 days. Subsequently, relative humidity
inside the chamber was changed in three steps:� step 1: from 4.0 to 22.5 %,� step 2: from 22.5 to 41.0 %,� step 3: from 41.0 to 76.5 %.

Each step was a uniform change of relative humidity in the climate cabinet. Establishing
a new humidity in the cabinet took between 1000 and 1500 seconds. Afterwards this
humidity was kept constant until all specimens reached mass constancy. A PC-logger
recorded temperature and relative humidity in the climate chamber and a fan ensured
uniform water vapor concentration. By periodic weighing the cups, the mass changes of
the specimens were determined. The moisture content for each specimen was calculated
as the fractional actual mass over dry mass of the specimen.
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10.3 Boundary conditions

Diffusion inside wood is not the only transport process in wetting and drying of a wood
specimen. Depending on air velocity, humidity in air, temperature, and surface roughness
of the specimen, there is a boundary layer of air between the specimen surface and the
moving air in the surrounding atmosphere – an additional barrier, in which moisture and
energy are transported both by diffusion and convection. Particularly for specimens with
relatively fast internal transport (as it is the case for the longitudinal material direction
in wood), this boundary layer essentially influences the results and has to be accounted
for.

Also in cup tests a boundary layer of air between the specimen surface and the moving
air in the chamber slows down water transport to the specimen. Such an additional
resistance can be suitably expressed in terms of a film boundary condition [see Eq. (3.26)]:

J̄v = −kv (cv,s − cv,a) n. (10.4)

where J̄v is the flux through the surface, cv,s is the surface vapor concentration, cv,a is the
ambient vapor concentration, and kv is a mass transfer coefficient. It strongly depends on
air velocity and temperature, but only very slightly on relative humidity [27]. Therefore
a simple test was developed, where the surface flux and both vapor concentrations are
exactly known. For direct measurement of this mass transfer coefficient a standard

diffusion cup

water (ϕs = 100%)

climate chamber

balance
m(t)

ϕa, T

n

A

Figure 10.3: Test assembly for the measurement of boundary conditions

diffusion cup as used for the improved cup method was assembled without a specimen
but completely filled with water (see Fig. 10.3). This cup was placed in the climate
chamber. Above the water surface the relative humidity ϕs naturally is 100%. The
climate chamber was set to a relative humidity of ϕa = 30% and a temperature of
19.6 °C, resulting in water evaporation from the water surface and therefore a loss of
mass of the water-filled cup. The transport of water vapor from the water surface towards
the climate chamber due to the air flow in the climate chamber is the only transport
process in this system, inside water certainly no mass transport occurs. Thus the mass
transfer coefficient can be calculated directly – the surface flux is the mass change with
time (∆m/∆t) divided by the free water surface area A:

J̄v · n =
∆m

A ·∆t
. (10.5)
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Consequently, rearraring Eq. (10.4) yields

kv = − ∆m

A ·∆t
· 1

cv,s − cv,a
= − ∆m

A ·∆t
· 1

cv,sat(ϕs − ϕa)
, (10.6)

where cv,sat denotes the saturated water vapor concentration (for numerical values see
e.g. [33]). For the actual temperature of 19.6 °C cv,sat is 0.0168 kg/m

3 . The mass change
with time was measured by continuously weighing, to be ∆m/∆t = −1.43 · 10−7 kg/s,
the free water surface area A was 0.005m2. Using these numerical values in Eq. (10.6)
yields

kv = 0.00243m/s. (10.7)

For illustration, this value can be divided by the actual diffusion coefficient of air, re-
sulting in an equivalent layer thickness of stagnant air of 1.02 cm. The corresponding
heat transfer coefficient kT was calculated [27] as kT = 2.655W/(m2K). Heat transfer
towards the sample surface pointing inwards the cup was negligibly small due to the
stagnant air inside the cup.

10.4 Comparison of experimental results and model pre-

dictions

The test can be suitably represented by a one-dimensional model shown in Fig. 10.2.
The coupled system of equations for the heat and moisture transport in the sample was
solved using the user-defined finite element explained in Chapter 9. Validation of the
model was then based on comparing model predictions for two characteristics and their
change over time with corresponding test results: the average moisture content MC of
the sample and the relative humidity ϕi inside the cup. The latter was calculated based
on water vapor concentration cv and temperature T on the lower face of the sample.

Figures 10.4 to 10.11 show the results of the comparison for all samples and the three
different humidity steps. Therein, moisture contents and relative humidities predicted
by the model are plotted against time, together with the corresponding experimental
results. The courses of moisture content and relative humidity are predicted very well
for all thicknesses and different steps in relative humidity.

The obviously good agreement of experimental and computational results for different
configurations shows the plausibility of the underlying assumptions in the model. This
is an important step towards real prediction of transport processes in wood, which in
the end should be applicable also to non-tested conditions.

10.5 Summary

This chapter covers the development and the application of an improved cup method.
It aims to investigate moisture transport in the longitudinal material direction of wood
below the fiber saturation point in thin specimens, where water is transported primarily
by water vapor diffusion, while changes in bound water content are governed by sorption
and not by bound water transport. The experiment was conducted on eight specimens



10.5 Comparison of experimental results and model predictions 151

of Norway Spruce with different thicknesses and for three steps in relative humidity.
Finally a first validation of the modeling approach developed in this thesis is presented,
based on comparison of simulation results to independent experimental results. The
gained results are very promising and verify the validity of the underlying theory.
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Step 1: relative humidity 4.0 → 22.5%
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Step 2: relative humidity 22.5 → 41.0%
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Step 3: relative humidity 41.0 → 76.5%
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Figure 10.4: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 1: Norway spruce, thickness ℓ = 1.55mm, dry density ρdrywood = 450 kg/m3.
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Figure 10.5: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 2: Norway spruce, thickness ℓ = 1.55mm, dry density ρdrywood = 446 kg/m3.
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Figure 10.6: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 3: Norway spruce, thickness ℓ = 2.70mm, dry density ρdrywood = 445 kg/m3.
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Figure 10.7: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 4: Norway spruce, thickness ℓ = 2.76mm, dry density ρdrywood = 443 kg/m3.
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Figure 10.8: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 5: Norway spruce, thickness ℓ = 3.06mm, dry density ρdrywood = 443 kg/m3.
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Figure 10.9: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 6: Norway spruce, thickness ℓ = 3.45mm, dry density ρdrywood = 439 kg/m3.
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Figure 10.10: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 7: Norway spruce, thickness ℓ = 6.45mm, dry density ρdrywood = 440 kg/m3.
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Figure 10.11: Comparison of experimental results and corresponding model predictions:
Average moisture content MC and internal relative humidity ϕi over time for sample
No. 8: Norway spruce, thickness ℓ = 6.42mm, dry density ρdrywood = 439 kg/m3.
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Chapter11
Validation II: Multinuclear
resonance imaging

In the previous chapter, a first validation of the transient transport model could be
given. It is based on a comparison of the overall mass increase and the relative humidity
on the surface of the samples, but no detailed information about the process inside the
sample was accessible. However, especially such information is of great importance in
order to check the suitability of a model for transport process. In this chapter an addi-
tional experimental study is presented that allows for a non-destructive determination
of bound water distributions inside a sample using proton magnetic resonance imaging.
The gained experimental results then served as basis for an enhanced validation of the
transient transport model.

11.1 Introduction

The classical way to examine transient moisture transport in wood are sorption exper-
iments (see e.g. Section 10 or the work of Wadsö [109]), in which the mass increase of
a sample is recorded over time. Gradients inside the sample can only be determined by
cutting the sample into thin slices [49] in a destructive way. Therefore in the last years
several non-destructive experimental methods were developed, based on X-ray computer
tomography (CT) [85], neutron imaging [67], and proton magnetic resonance imaging
(MRI) [17]. These methods allow for a continuous monitoring of moisture profiles during
transient changes of the environmental conditions. In the experimental study presented
in this chapter MRI was used because of its non-invasive nature, spatial selectivity, short
measurement times, and quantitative response. Moisture distributions were measured in
three samples with different orientations of the principal material directions subjected
to three steps in relative humidity. Thus it was possible to validate the model by com-
paring model predictions not only to the overall mass increase of a sample but also to
experimentally derived moisture profiles inside the sample at different time instances.
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11.2 Materials and methods

The tests aimed at measuring the moisture transport behavior of wood in its three
principal material directions. The three cylindrical samples – one for each material
direction – used in the experiment were cut from one board of Norway spruce with
dimensions and mean densities as given in Table 11.1.

Table 11.1: Sample properties

No. direction ρdrywood [kg/m3] height [mm] diameter [mm]

1 radial 378.84 21.6 7.90
2 tangential 431.86 20.2 7.90
3 longitudinal 401.30 23.3 7.88

The samples were sealed with adhesive tape on all sides except for one which was exposed
to controlled climatic conditions. This results in a one-dimensional moisture transport
process with a moisture flux normal to the unsealed surface. The prepared wood samples
were assembled in an NMR tube as shown in Fig. 11.1. Different saturated salt solutions
were employed to establish different humidity conditions inside the glass tube, while the
temperature remained constant at 23 ◦C. Initially the samples were in the green state.
They were dried first and afterwards equilibrated at a relative humidity of 65%. Then,
by exchanging the salt solution, three steps in relative humidity were imposed:� Step 1: 65 → 95 %� Step 2: 95 → 35 %� Step 3: 35 → 65 %

For each step, the evolution of the moisture concentration profile with time was measured
at increasingly distant time instants using MRI. The lower part of the samples was
investigated, in which the major gradients could be expected (depicted as “investigated
area” in Fig. 11.1), until equilibrium.

Proton nuclear magnetic resonance imaging measurements were performed at a reso-
nance frequency of 300MHz on a Bruker Avance II spectrometer equipped with mi-
croimaging Mic2.5 probe with a three-directional gradient of maximum 1.5T/m. Con-
stant time imaging sequence [21] was used with phase encoding time of 70 µm and the rf
pulse length 0.5 µs. The acquired images covered a field of view of 20mm with a spatial
resolution of 78 nm. All measurements were conducted by Sergey Dvinskikh at KTH
in Stockholm, Sweden, who is greatfully acknowledged again at this point for the good
collaboration.

Microstructural information on the samples was gathered through SilviScan measure-
ments [88, 62] on sample No. 1 after the MRI experiment. Since all three samples were
cut from the same board, the microstructural characteristics of sample No. 2 and 3 can
be assumed to be similar to that of sample No. 1. SilviScan is a measuring device devel-
oped for micro-characterization of wood, involving video-microscopy, X-ray absorption,
and X-ray diffraction. It allows determination of cell dimensions in radial and tangential
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Figure 11.1: Experimental setup and according model representation

material direction, wood density, and microfibril angles along thin wooden strips. Mostly
radial cuts are investigated, for which the microstructural properties vary according to
the growth rings (cf. density profile measurements on sample No. 1 in Fig. 11.2).

Based on this additional microstructural information the material properties Db, Dv,
and K were determined by means of multiscale considerations as outlined in Chapters 4,
5, and 8. This allows to consider sample specific variations of these properties, result-
ing from the specific cell morphology determined by SilviScan. For use in the finite
element model, estimates of the multiscale model for different bound water contents,
temperatures, and densities, were fitted by polynomials for each material direction. For
the radial direction, the homogenization step that accounts for the annual rings was
omitted, since the measurements provided information on a lower scale in this direction.

The sorption behavior of the material was determined in a climate cabinet on a piece
of wood from the same board as the MRI-samples. This test showed the expected
behavior with a pronounced sorption hysteresis. The following set of shape parameters
for Frandsen’s sorption model (see Section 7.3) suitably represents the observed behavior:

fa
1 = 1.234, fa

2 = 10.214, fa
3 = −8.122,

fd
1 = 2.456, fd

2 = 10.311, fd
3 = −8.791,

d1 = −1.5, d2 = 0.85.

(11.1)

The initial conditions at the beginning of step 1 were taken as T = 296.15K, ϕ0 = 65%
and MC = 12.1%.
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Figure 11.2: Density profile in radial direction of sample No. 1

11.3 Boundary conditions

Water transport towards the wood sample is severely limited due to the stagnant air
between salt solution and wood sample, where water is transported mainly by diffusion.
Such conditions can be represented by a film boundary condition for the water vapor
phase. The according film boundary coefficient can be calculated as

kv =
Dair(23

◦C)
ℓ

=
2.482 × 10−5 m2/s

0.029m
= 8.558 · 10−4 m/s, (11.2)

where Dair is the diffusion coefficient of water vapor in air [89]. ℓ denotes the distance
between salt solution and wood sample (see Fig. 11.1). As for temperature, a Dirichlet
boundary condition is applied on the upper side of the sample with T = 23 ◦C. At
the lower side of the sample, where the sample surface is exposed to air, again a film
boundary condition was chosen. The film boundary coefficient is set to

kT =
Kair(23

◦C)
ℓ1

=
0.0259W/(mK)

0.005m
= 5.180W/(m2K), (11.3)

where Kair is the thermal conductivity of air. ℓ1 was chosen as the inner radius of the
NMR glass tube amounting to 5mm.

Another process that could influence the experimental results is evaporation and con-
densation at the surface of the salt solution and the according changes in temperature.
Due to the slow process ( 80 days for each step) and the distance between sample and
salt solution this influence was neglected in this study. Certainly, for a smaller distance
and therefore faster process the temperature change due to evaporation of water will
get more and more significant and should therefore be accounted for. Alternatively,
a different method to control relative humidity could (and should) be chosen, e.g. by
combining the NMR measurements with a dynamic vapor sorption (DVS) device.
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11.4 Comparison of experimental results and model pre-

dictions

Based on the specified sample geometry, density, material properties including sorption
behavior, and boundary conditions, distributions of bound water concentration cb, water
vapor concentration cv and temperature T were computed with the finite element model
(see Figure 11.1 and Chapter 9) at the time instants as of the NMR measurements. Since
the portion of water vapor is negligibly small, the macroscopic moisture concentration
was calculated by multiplying the bound water concentration cb with the local cell wall
volume fraction fcwm. The latter is a function of density.

In Figs. 11.3 – 11.5 the experimentally determined moisture profiles are shown together
with the corresponding model results for the different steps in relative humidity. The
experimental results clearly show the significant influence of the boundary conditions:
Close to the surface, moisture equilibrium with the environmental humidity according
to the salt solution is reached in the sample only after considerably long time, resulting
in low moisture gradients inside the sample. This is most pronounced for sample No. 3
because of the relatively fast moisture transport in the longitudinal material direction,
following from the longitudinally aligned hollow wood cells. As for sample No. 1, the
density variations of the annual rings can be clearly seen in the moisture concentration
profiles: In regions of higher density with a higher fraction of cell wall material a larger
amount of bound water is found.

Comparing the model predicted moisture profiles to the corresponding experimental re-
sults shows the very good prediction quality of the numerical model. In particular,
the gradients inside the investigated area are predicted very well. As for absolute val-
ues, deviations between experimental results and model predictions are obtained in the
lower range of humidity. These deviations might result from the lower accuracy of the
estimation of the water NMR signal intensity at lower moisture contents due to increas-
ing relative contributions of the background signal of wood macromolecules and also
from the protons in the sealing tape. Therefore the equilibrium moisture contents mea-
sured by NMR (i.e. the final moisture concentration after equilibrium) differ from that
obtained within the climate cabinet (cf. Section 11.2) used for determination of the
sorption behavior. Since the latter serves as input parameter in the model, the simu-
lation approaches a different moisture content compared to the experiment. Another
fact is that the NMR measurements took more than 80 days for each step, while during
the experimental determination of the sorption isotherm one step lasted on average only
4 days. These different time scales could also be the reason for the deviation (see the
theory proposed in Section 7.4. Besides this input value problem, the process itself is re-
produced very well, which proves the suitability of the underlying physical assumptions.
With one consistent set of physically meaningful parameters, the model is capable to
predict transient transport processes in different material directions, for different sample
densities, and different humidity steps.
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11.5 Summary

In this chapter, the successful application of almost all models shown in this thesis for
the simulation of moisture transport processes is presented. This is done based on a
comparison of experimentally determined values with according model predictions for
distributions of water concentration. Using proton magnetic resonance imaging, mois-
ture profiles of three samples during transient change in moisture content were deter-
mined non-destructively. SilviScan measurements delivered detailed information about
the morphology of the samples, serving as input for the model. The model predicted
moisture profiles agreed well with the test results, underlining again the suitability of
the underlying model assumptions. In addition some phenomena observed in the ex-
periments could be explained on a physical basis, e.g. the influence of the boundary
conditions on moisture distributions inside the sample. In combination with the MRI
measurements, a better understanding of the underlying processes could be gained.
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Figure 11.3: Comparison of experimentally determined moisture profiles (solid lines)
and corresponding model results (dashed lines) for sample No. 1 (transport in radial
direction) at different time instants: (a) RH step 65 → 95 %, (b) RH step 95 → 35 %,
(c) RH step 35 → 65 %
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Figure 11.4: Comparison of experimentally determined moisture profiles (solid lines) and
corresponding model results (dashed lines) for sample No. 2 (transport in tangential
direction) at different time instants: (a) RH step 65 → 95 %, (b) RH step 95 → 35 %,
(c) RH step 35 → 65 %
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Figure 11.5: Comparison of experimentally determined moisture profiles (solid lines) and
corresponding model results (dashed lines) for sample No. 3 (transport in longitudinal
direction) at different time instants: (a) RH step 65 → 95 %, (b) RH step 95 → 35 %,
(c) RH step 35 → 65 %
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Chapter12
Conclusions and perspectives

This thesis aims at giving a physically correct description of the hygromechanical behav-
ior of the material wood, with a particular focus on moisture transport. To achieve this
objective, several ideas and methods have been developed and applied. Starting point
of all considerations is the microstructure of wood – on the microscale the behavior of
wood like the viscoelastic deformation of the material or the interaction between wood
and moisture can be suitably explained at least in a qualitative manner. In addition
some basic constituents of wood inherent to all wood species can be defined on this
small length scale. Macroscopic differences between individual wood samples therefore
stem from their different chemical composition and their inherent microstructure.

Based on this physical background, a set of thermodynamically correct macroscopic bal-
ance equations is derived, forming the starting point of any hygro-mechanical analysis.
Information about the material behavior enters through constitutive relations and ac-
cording (macroscopic) material properties. For wood, the latter exhibit a wide variability,
complicating a purely macroscopic material description. However, in the framework of
continuum micromechanics it is possible to relate the macroscopic material properties to
smaller length scales. Starting with material properties of the basic constituents of wood
and revisiting, in a mathematical way, the influence of individual chemical composition
and structure on several length scales allows to estimate the macroscopic properties of an
individual sample. This is successfully done for transport properties and for viscoelastic
behavior of wood under constant climatic conditions.

Particular attention is payed to sorption, which is the exchange process between water
vapor in air and bound water in the wood cell walls. A purely macroscopic description
of this process is hard to derive or even impossible, but looking at the smaller length
scales again allows to derive a suitable description. This description is complicated by
sorption hysteresis – the equilibrium moisture content at a specific relative humidity is
history-dependent. To account for this phenomenon, a convenient empirical description
is recapitulated first, followed by a possible theoretical description.

Finally, transient moisture transport is investigated in detail. The according mathe-
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matical description involves three strongly coupled non-linear differential equations. An
analytical solution of such problems at structural scale is impossible. Therefore a nu-
merical solution is derived using the finite element method. Having this tool at hand,
suitable predictions can be made for transport problems in engineering applications.

The strength of all models presented in this thesis lies in the involvement of solely input
values with a clear physical meaning, circumventing the need to back-calculate model
parameters from macroscopic (sample-specific) test results (except for the model for
viscoelastic properties). The success of this approach is proven by several comparisons
between model predictions and corresponding experimental results, justifying a more
extensive model formulation compared to existing approaches in this field. It allows
to explain some phenomena observed in experiments on a physical basis. This shows
that a close cooperation of experimental and computational material science is very
important, though not yet fully established in practice: Still computational models
neglecting experimental results and experimentalists using obsolete mathematical models
are encountered. As shown in this work the two disciplines may learn a lot of each other:
On the one hand models without experimental validation are more or less worthless, on
the other hand knowledge about the physical background and the governing equations
assists the design of experiments. For example the correct consideration of boundary
conditions upon the interpretation of results can be of great importance as shown in this
thesis.

There are certainly several aspects in this thesis which could be further elaborated. For
example, a promising idea would be to further investigate thermodynamic relationships
between different material properties. After deriving the Helmholtz free energy, the
thereon deduced Maxwell relations may bring out some of these connections. Another
important topic is the interaction of water and wood polymers at the molecular scale.
Especially regarding the rheological behavior of the wood polymers the presented model
shows room for improvement. In addition a better qualitative and quantitative knowl-
edge of the molecular processes could help to explain phenomena like mechanosorption.

As for the macroscopic continuum description, an extension of the existing finite element
model for the mechanical problem would be interesting. For example this would enable a
detailed investigation of the influence of climatic conditions on constructional elements.
At the moment only a sequentially coupled analysis of the transport problem and the
according mechanical problem is possible.

Finally, science is most fruitful when its findings are used in practice. Although the
work presented in this thesis is clearly assigned to the field of basic research, the gained
results help to understand the macroscopically observed behavior, which is of course also
relevant in praxis. Relying upon the progress in computer technology, a comprehensive
material model implemented into commercial statics software with high user-friendliness
could be possible soon, enabling structural engineers to investigate critical moisture-
related problems in wood constructions without the current uncertainty regarding ma-
terial description and according parameters.

Overall, this work constitutes part of the required scientific basis in wood science and
timber engineering that will enable – as mentioned in the beginning of this thesis – a
more reliable, efficient, and intelligent use of this fascinating material.
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