
Easy RDF for PHP (ERP) API

A PHP API for processing RDF Resources

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Alexander Aigner
Matrikelnummer 0625287

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Hannes Werthner
Mitwirkung: Projektass. Mag.rer.soc.oec. Birgit Dippelreiter

Wien, 25.01.2012
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Easy RDF for PHP (ERP) API

A PHP API for processing RDF Resources

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Alexander Aigner
Registration Number 0625287

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ. Prof. Dr. Hannes Werthner
Assistance: Projektass. Mag.rer.soc.oec. Birgit Dippelreiter

Vienna, 25.01.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alexander Aigner
Ospelgasse 12-14/6/8, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I would like to thank a number of people who have supported me while writing this
masters thesis. First of all, I want to thank Prof, Dr. Hannes Werthner who gave me the
possibility to write this work. Further, I want to thank Mag. Birgit Dippelreiter for her
continuing support and all the valuable suggestions during writing my thesis. At last, I
would like to thank to my family and my girlfriend for their support and for repedently
proofreading this work.

Alexander Aigner

iii

Abstract

The vision of the Semantic Web and its concepts represent the future of the Web. Ap-
plication programming interfaces (APIs), which simplify the integration of semantic
technologies, are an important part in realizing this vision. The Resource Description
Framework (RDF) defines one of these semantic technologies, which is used to describe
the resources of the Web to make them interpretable by machines. While RDF APIs are
getting more popular amongst programming languages like Java or .Net, there is still
a lack of efficient and satisfying RDF interfaces for PHP. Considering that PHP is the
fourth most used programming language for Web development, it is necessary to pro-
vide usable interfaces. Therefore, we decided to create an easy to use RDF API for PHP,
namely, the ”Easy RDF for PHP (ERP)” API. By evaluating and comparing popular
RDF APIs from various programming languages, we were able to extract strengths and
weaknesses, which were considered during the development of our API. This enabled
us to introduce valuable, but previously unused concepts to PHP, creating an efficient
and easy to use API. Further, the comparison illustrates that most APIs do not provide
efficient and satisfying interfaces for RDF. In a final comparison, it is illustrated that
the ERP API achieves high ratings in the characteristics efficiency, effectiveness and
satisfaction and, therefore, it presents opportunities for the development of other APIs.

v

Kurzfassung

Die Vision des Semantischen Webs und dessen Konzepten repräsentiert die Zukunft des
Webs. Application Programming Interfaces (APIs), welche die Integration semantischen
Technologien vereinfachen, repräsentieren einen wichtigen Teil zur Realisierung dieser
Vision. Das Resource Description Framework (RDF) ist eine von diesen semantischen
Technologien, welche es ermöglicht Ressourcen aus dem Web zu beschreiben und da-
durch für Maschinen interpretierbar zu machen. Während RDF APIs bereits vermehrt
für Programmiersprachen wie Java oder dotNet existieren, besteht immer noch ein Man-
gel an effizienten und zufriedenstellenden Schnittstellen für PHP. Wenn man bedenkt,
dass PHP die viert häufigst verwendete Programmiersprache im Bereich Webentwick-
lung ist, ist es notwendig, auch für diese Programmiersprache brauchbare Schnittstellen
zur Verfügung zu stellen. Deswegen haben wir uns entschieden, eine leicht zu verwen-
dende RDF API für PHP zu entwickeln. Diese API nennt sich ”Easy RDF for PHP

(ERP)” API. Durch evaluieren und vergleichen von bereits existierenden und weitver-
breiteten RDF APIs, basierend auf verschiedenen Programmiersprachen, haben wir es
geschafft, einige Stärken und Schwächen zu definieren, welche während der Entwick-
lung unserer API beachtet wurden. Dies ermöglichte uns wertvolle Konzepte in die ERP
API einzubringen, welche zuvor noch nicht in PHP verwendet wurden. Weiters zeigt der
Vergleich, dass die meisten APIs keine effizienten und zufriedenstellenden Schnittstel-
len für RDF zur Verfügung stellen. Eine abschließende Gegenüberstellung illustriert,
dass die ERP API eine hohe Bewertung in den Kategorien Effektivität, Effizienz und
Zufriedenheit erreicht und deshalb einige Verbesserungsmöglichkeiten für die Entwick-
lung anderer APIs präsentiert.

vii

Acronyms

API Application Programming Interface
ARC Appmosphere RDF Classes
CSV Comma-Separated Values
ERP Easy RDF for PHP
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
ISO International Organization for Standardization
JavaDoc Java Documentor
JSON JavaScript Object Notation
Nt N-Triple
OOP Object-Oriented Programming
OWL Web Ontology Language
PHP PHP: Hypertext Preprocessor
PHPDoc PHP Documentor
RAP RDF API for PHP
RDF Resource Description Framework
RDFS Resource Description Framework Shema
RIF Rule Interchange Format
RSS Really Simple Syndication
SGML Standard Generalized Markup Language
SPARQL SPARQL Protocol and RDF Query Language
SWRL Semantic Web Rule Language
UCS Universal Character Set
URI Uniform Resource Identifier

ix

URL Uniform Resource Locator
URN Uniform Resource Name
UTF Unicode Transformation Format
W3C World Wide Web Consortium
WWW World Wide Web
XML Extensible Markup Language
XMLS Extensible Markup Language Shema

Contents

1 Introduction 1

2 Basic principles 5
2.1 The Internet . 5

2.2 The Web . 6

2.3 The Semantic Web . 7

2.3.1 Hypertext Web technologies 9

2.3.2 Standardized Semantic Web technologies 12

2.3.3 Unrealized Semantic Web technologies 13

2.4 The Resource Description Framework 15

2.4.1 RDF Concepts . 17

2.5 PHP: Hypertext Preprocessor . 23

2.6 Application Programming Interface . 24

3 State of the art of RDF APIs 25
3.1 RDF APIs for PHP . 25

3.2 RDF APIs for other programming languages 28

4 Comparison of RDF APIs 31
4.1 The evaluation model . 31

4.1.1 ISO/IEC 25010 quality model 32

4.1.2 The quality in use model . 34

4.2 The evaluation catalogue . 39

4.3 The evaluation method . 41

4.4 Evaluation results and comparison . 43

xi

5 Implementation of the ERP prototype 51
5.1 Motivations for developing the ERP API 51
5.2 Objectives and requirements for developing the ERP API 52
5.3 Influences from other APIs for developing the ERP API 57
5.4 Architecture of the ERP API . 58

5.4.1 Classes of the ERP API . 58
5.4.2 Packages of the ERP API . 60
5.4.3 Advantages of PHPDoc . 62

5.5 Usage of the ERP API . 63
5.5.1 Statement-centric usage . 63
5.5.2 Resource-centric usage . 64
5.5.3 Edit statements or resources of a model 65
5.5.4 Search statements or resources within a model 66
5.5.5 Parsing and serializing models 66
5.5.6 RDFS and OWL . 73
5.5.7 Perform SPARQL queries . 75

5.6 Tests of the ERP API . 77

6 Comparison between ERP and ARC 79
6.1 Evaluation of ERP and ARC . 79
6.2 Comparison of ERP and ARC . 80

7 Conclusion 87

8 Future Work 89

List of Figures 93

List of Tables 95

List of Codes 97

Bibliography 99

Index 105

xii

CHAPTER 1
Introduction

Most of the services we use daily, heavily depend on technologies and information
stored on systems around the world. Therefore, the Internet, which connects companies
and people around the world, is one of the most important technologies of our times.
By allowing us to exchange, publish or search for all kinds of information, it has great
impact in our lives.

Even though, there are lot of different uses for the Internet, the Web may be its most
popular one. While the Internet can be seen as the physical connection between different
computer networks around the world, the Web defines the concepts which allows users
to access information, which is stored on computers in these networks. Therefore, the
web contains a vast amount of information, which is accessible from all around the
world.

Unfortunately, the Web, as it is known these days, does not allow us to use its in-
formation efficiently. Most of the information on the Web is unstructured and thus
"inaccessible" for machines. To enable machines to access and interpret information on
the Web, the vision of the Semantic Web was born.

The Semantic Web represents the future of the Web and aims to extend it rather than
to replace it. It can be seen as a collection of technologies that aim to describe the acces-
sible resources on the Web, therefore, making them processable by machines. Semantic
technologies encode meanings separately from data. Thus, it enables machines as well
as humans to understand, share and process them at execution time.

1

Application Programming Interfaces (APIs) that support semantic technologies are
an important part in realizing this vision. It is necessary that Web developers are pro-
vided by APIs, which simplify the integration of these technologies within applications.
Unfortunately, we argue as long as such APIs don’t provide efficient and easy to use
interfaces, developers will continue avoiding these technologies. The majority of Web
sites are created by a small group of people, often just one person. Nowadays, the in-
tegration of sematic technologies into Web applications may not bring any real benefit
for such developers. Further, if the APIs are slow or hard to include, developers will not
spend the extra efforts to use them.

The Resource Description Framework (RDF) is one of such semantic technologies.
It is a framework for describing the Web’s accessible resources and an important part of
the Semantic Web. While RDF APIs are already more popular amongst programming
languages like Java or .Net, there is still a lack of efficient and satisfying APIs for PHP
(PHP: Hypertext Preprocessor) . Considering that PHP is the fourth most used pro-
gramming language for Web development, it is necessary to provide usable interfaces
to developers.

Aim of this work is to analyze the current situation of RDF APIs for PHP and cre-
ate an easy to use API (for the average users). This API is called "Easy RDF for PHP

(ERP)" API. To achieve high usability, we perform a comparison of all PHP APIs and
popular APIs of other programming languages. This comparison points out opportuni-
ties and requirements for the development of the ERP API. Furthermore, it allowed us
to extract valuable concepts for the proposed API, which were not implemented before,
but improve the usability significantly.

The API supports all basic manipulation methods such as adding, deleting and edit-
ing RDF resources. Besides a simple parameter search the API also supports the pop-
ular SPARQL (SPARQL Protocol and RDF Query Language) language. Additionally it
is possible to to use concepts of RDFS (Resource Description Framework Shema) and
OWL (Web Ontology Language).

By using object-oriented programming paradigms, we were able to develop an API
that provides an easy to use interface without resigning on powerful functionality. There-
fore, inexperienced as well as experienced are able to use this API.

The work is structured as follows: First, we define basic principals and concepts

2

that are necessary for understanding the work. Next, we introduce APIs from PHP and
other programming languages. After that, we evaluate these APIs using the ISO/IEC
25000 quality in use model and use this evaluation for comparing these APIs. Then we
highlight the ERP API as well as the objectives and motivations for its development.
We also illustrate and describe the usage of the ERP API by presenting a few examples.
Finally, the ERP API is evaluated using the ISO/IEC 25000 quality in use model and
compared to the ARC API. For winding up the work we conclude our research and
describe ways of improving the API in the future.

3

CHAPTER 2
Basic principles

Target of this chapter is to specify the basic principles of necessary technologies and
concepts that are important for understanding the practical part of this work. Besides
specifying technologies and concepts, it is also an aim to delineate their relations and
dependencies. Further, we mention their role in nowadays society and information tech-
nology.

First of all, we explain the Internet and the Web as well as their relationship. Next,
we introduce the idea of Semantic Web and highlight its concepts and technologies by
introducing and describing the Semantic Web stack. Last, we outline the most important
concepts regarding our prototype. These are RDF, PHP and API.

2.1 The Internet

The Internet (from interconnected network) is a global system of interconnected com-
puter networks. Using electronic, wireless and optical networking technologies it con-
nects billions of users around the world. The Internet allows users to interchange a vast
range of information and other resources. Further, it enables a huge number of services
used regularly by its users, such as downloading and reading the inter-linked hypertext
documents of the Web or enabling the infrastructure of electronic mail. The Internet can
be considered as the physical foundation of the Web [50].

5

2.2 The Web

The Web (W3, WWW or World-Wide-Web) was developed in 1989 by physicians and
engineers at CERN (an European Particle Physics Laboratory in Geneva, Switzerland).
The early Web enabled employees and collaborators to exchange ideas and information
about common projects. Besides exchanging information, it aimed to enable linkage
between related information. This allowed its users to extract combined or even new
knowledge. Linkage between information is defined by the Web’s property called scal-
ing. Since scaling wasn’t an issue, soon developers started developing new features for
the Web. Scaling allowed the Web to expand rapidly from its origins at CERN across
the whole world. In 1991 the Web was introduced to the public [4].

Another aim of the development of the Web was to end incompatibilities between
the different computer systems that were available in that time. The Web aims to share,
for example, interlinked pages of text, images, animations, sounds or videos, every-
thing independent of server or client architecture. Before the Web access to network
information was dominated by system requirements and different command languages1

[4, 6].

Nowadays, information on the Web is mainly stored in so called hypertext docu-

ments. The term hypertext (already mentioned 1945 in the article ’As We May Think’
[11]) defines an easy-to-use and flexible format for sharing and interlinking information.
Hypertext documents define the structure of the Web and are considered the underlying
concept of the Web as we know it [4, 44].

The success of the Web is based on three core concepts [4, 7] that are still impor-
tant in the present. These technologies are called Uniform Resource Identifier (URI),
Hypertext Transfer Protocol (HTTP) and Hypertext Markup Language (HTML).

URI describes the concept of a special string used to completely identify a resource on
the Web. Further explanation of this concept is provided in section 2.3.

HTTP is an alternative to the File Transfer Protocol (FTP). It defines a networking
protocol for distributed, collaborative and hypermediated information systems for

1A command language is a domain-specific interpreted language. Common examples of command
languages are shell or batch programming languages. These languages can be used directly at the com-
mand line, but can also automate tasks that would normally be performed manually at the command
line.

6

transferring hypertext documents over a network. Since FTP’s target is to provide
a reliable protocol for transferring files, it does not provide the speed required for
hypertext documents. HTTP slightly loosened the requirements of reliability in
tradeoff with increased speed and thus, enabling the speed that is necessary for
fast traversal of hypertext links [4, 44].

HTML is defined as a data format for interchanging hypertext by allowing it to be
transmitted over a network. HTML is used to describe and structure information
and can be seen as the building blocks of hypertext documents. Even though
HTML was developed in 1990, it is still important in the present. Nowadays there
exist a variety of server-side programming languages that present the backbone
of Web sites. Anyway, most of the server-side results are still transferred using
the HTML format [4, 44]. One such server-side programming language, used for
more complex tasks is PHP (see section 2.5)

With the development of the Web new datatypes and protocols arise. This leaded
to concerns of fragmentation of the Web. Fragmentation could have destroyed the uni-
verse of interlinked information that evolved during the usage of the Web. To counter
this trend, the World Wide Web Consortium (W3C) was founded in 1994. These days,
the W3C has about 150 members, including major Web technology developers and Web
depended organizations. The W3C tries to introduce common and generally accepted
standards of Web technologies and concepts [4]. The combination of these Web tech-
nologies will enable the Semantic Web.

2.3 The Semantic Web

While the Web is linking hypertext documents (Web of documents), the Semantic Web

refers to W3C’s vision of the Web of linked data [52].

Originally, the Web intended to provide information equally to human users and
machines. Unfortunately, nowadays the majority of this information is only intended to
be readable by human users. Humans are able to use different sources of information
(for example, hypertext documents) and to put them in relation with each other. For
machines this process is much harder or sometimes even impossible. For instance,

7

consider a hypertext document that contains the information that Vienna is the capital of
Austria and another document that contains that Austria is a country of Europe. Human
users understand the information and might even infer that Vienna is in Europe. Most
machines can’t extract or even process such information if it is not further described by
using semantic technologies [52].

This leads to the fact that even though the Web carries a vast amount of information,
it is not easy to find or even process it. Even search engines that use complex statistical
methods are not able to find all relevant information on a certain topic. Most search
engines use an approach of comparing query strings with strings contained in hypertext
documents. Unfortunately, often information is stored in databases and dynamically in-
cluded into hypertext documents. These dynamics combined with the usage of different
technologies make it hard to enclose such information. Therefore, a need emerged of a
more context-based and less text-based search: a semantic search [52].

The goal of the Semantic Web is to transform the Web from a linked document
repository into a distributed knowledge base. That would improve the effectivity of
exploiting the Web’s vast amount of information and services, especially for machines
[20, 52].

To achieve such transformation the W3C developed languages to describe the Web’s
accessible resources (the fundamental elements of the Web). These languages are de-
signed to capture information and, therefore, enable applications to gain a better under-
standing of the resources. If machines are able to understand information on the Web,
they can use them more intelligently. Semantic Web technologies aim to structure the
meaningful content of Web pages, creating an environment where software agents can
carry out sophisticated tasks for users [5, 20, 52].

To illustrate the relation of Semantic Web technologies Tim Berners-Lee introduced
the Semantic Web stack presented in figure 2.1. It highlights that the vision of the Se-
mantic Web is based on different concepts and technologies. Only if all these concepts
and technologies are realized the vision of the Semantic Web can come reality. The
Semantic Web stack can be divided into three categories [32]:

1. Hypertext Web technologies,

2. Standardized Semantic Web technologies and

8

Figure 2.1: Semantic Web Stack (modified according to [32]).

3. Unrealized Semantic Web technologies

These categories and their corresponding technologies and concepts are described
in more detail in the following.

2.3.1 Hypertext Web technologies

The two bottom layers of the Semantic Web stack describe technologies that are already
well known from the original hypertext Web. The concepts of URI, Unicode and XML
define the building blocks and, therefore, the foundation of the Semantic Web. This
category also shows that the Semantic Web intends to be an extension of the existing
Web rather than a replacement.

9

URI

As mentioned before, an Uniform Resource Identifier (URI) describes the con-
cept of a string used for completely identifying a resource. URIs are commonly
used in the Web, for example, for identifying hypertext documents, files or other
resources. As the concepts of HTML, HTTP matured and the functionalities of
Web browser increased, a need emerged to distinguish:

1. a string that provided a location of a resource or

2. a string that merely named a resource.

The term Uniform Resource Locator (URL) represents the first and the more con-
tentious Uniform Resource Name (URN) the second option.

URLs describe a resource by a special string that represents the location of the
resource. Originally, URLs were the only kinds of URIs. Therefore, the two
terms are often used synonymical.

The concept of URNs was to identify a resource by a freely chosen name.

Originally, an URI was intended to be part of either an URL or an URN. Since
URIs were developed that didn’t fit in any of these classes, the strict classification
was relinquished. Nowadays, URLs and URNs are considered a partition of URIs
[4, 7] as illustrated in figure 2.2.

Figure 2.2: Venn-Diagram of URI, URL and URN.

URIs are one of the most important technologies for the Semantic Web. The
central layers of the Semantic Web stack heavily rely on this concept.

10

Unicode

Unicode is a standard for the consistent encoding, representation and handling of
text expressed (in most of the world’s) writing systems. Developed in conjunction
with the Universal Character Set (UCS)2 standard, the latest version of Unicode
(6.0) consists of a repertoire of more than 109,000 characters [45].

The development of Unicode is coordinated by the nonprofit organization Uni-
code Consortium. Their target is to replace existing character encoding schemes
with Unicode. To use Unicode, the Unicode Consortium provides character en-
coding sets called Unicode Transformation Format (UTF). UTF is a method for
mapping Unicode-characters to bytes. Thus, it allows it to be implemented by
computers [45].

UTF-8 (8-bit variable-width encoding) and UTF-16 (16-bit variable-width encod-
ing) became the main method of encoding characters on most Unix-like operating
systems or Windows. UTF-8 is the most common Unicode encoding method used
within HTML documents [45].

XML

The Extensible Markup Language (XML) is a flexible text format for specifying
semi or completely structured data. XML derived from SGML (Standard Gener-
alized Markup Language [54]) and was originally designed to meet the challenges
of large-scale electronic publishing [62].

XML is a tool for creating structured documents, but it doesn’t impose semantic
constraints on the meaning of these documents. The flexibility of XML didn’t
only influence hypertext Web technologies like HTML, but also defined an im-
portant fundament for the Standardized Semantic Web technologies [55, 62].

Nowadays, XML plays an important role for the exchange of data on the Web
and in the Internet. Because XML documents sometimes need to be further char-
acterized, the concept of XML Schema (XMLS) was introduced. XMLS is a lan-
guage for restricting the structure of XML documents and also extends XML with
datatypes. [61, 62]

2The Universal Character Set is a standard set of characters upon which many character encodings
are based. The UCS contains nearly 100.000 abstract characters, each identified by an unambiguous name
and an integer number called its code point [46].

11

2.3.2 Standardized Semantic Web technologies

The following technologies were introduced and already standardized by the W3C to
extend the Web and enable developers to build Semantic Web applications.

RDF

The Resource Description Framework (RDF) is a datamodel for describing ob-
jects ("resources") and relations between them. It is a general-purpose language
for representing all kinds of information on the Web. Since RDF is a model of
metadata and only addresses many of the encoding issues that transportation and
file storage require by reference, RDF relies on the support of XML [51].

RDF is an important concept for the practical part of this work and is described
in more detail in section 2.4.

RDFS

RDF Schema (variously abbreviated as RDFS, RDF(S), RDF-S, or RDF/S) ex-
tends the basic vocabulary of RDF and has strong similarities to XML Shema. It
is a W3C recommendation since 2004 [59].

RDF properties can be interpreted as attributes of resources. Further, they can
represent relationships between resources. Unfortunately, RDF itself provides no
mechanisms for describing such properties or relationships between properties
and other resources. This is where RDF relies on RDFS. RDFS is used for, for
example, creating hierarchies of classes or specifying own datatypes. RDFS el-
ements are typically identified by a rdfs prefix and can also be described using
RDF’s concepts. [59].

SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language and
can be used to query any RDF-based document including, for example, statements
involving RDFS and OWL.

SPARQL is an important part of the Semantic Web stack, since it allows Semantic
Web applications to retrieve information from RDF documents and use them [37,
60].

12

OWL

If machines are expected to perform useful reasoning tasks on information, the
language must go beyond the basic semantics of RDFS [61].

The Web Ontology Language (OWL) is an extension to RDF and RDFS. It for-
mally describes the meaning of terminology used in Web documents. It is based
on description logic and thus enables reasoning within the Semantic Web. OWL
is designed to be used by applications, which need to process the content of infor-
mation rather than such that just present it to humans [61].

In practice, the concrete syntax to store OWL ontologies and to exchange them
among tools and applications is the RDF/XML syntax. This is the only syntax
supported by all OWL tools. As a result, also OWL syntax can be described using
the RDF language. Therefore, it is possible to use SPARQL within OWL [61].

While the RDF/XML format already ensures interoperability among OWL tools,
other syntaxes are also supported. These include alternative RDF serializations
such as Turtle or N-Triple. Further, there exists an extra OWL XML serialization
syntax [61].

2.3.3 Unrealized Semantic Web technologies

The top layers of the Semantic Web stack contain technologies that are not yet stan-
dardized or contain just ideas that should be implemented in order to realize the Seman-
tic Web. Until not all of these layers are standardized, the Semantic Web can not be
achieved completely. Never the less, these technologies are already in development and
partially already usable.

RIF/SWRL

The Rule Interchange Format (RIF) or the Semantic Web Rule Language (SWRL)

are Semantic Web rule-languages, which support rules within the Semantic Web.
They define relations that can’t be directly described within the layers below. For
example, a rule could state that: if A is brother of B and B is a woman we can
infer that B is sister of A [5]. Even though RIF is already in a later stage of
development, it is not finally decided which rule-language should be used.

13

Unifying logic

The target of this layer is to remove the differences between the logics of the
layers below, creating an unified logic [26]. This should lead to a state allowing
all layers above to have full access to the data from the layers below [5].

For example, developers can use different terms to describe a resource. While
one developer may name a resource fullName, another one would only name it
name. Even though the content of these resources are identical, machines are not
able to "understand" that. The aim of the Unifying logic layer is to remove such
inequalities.

Proof

This layer is intended to enable users (humans or machines) to request proof of
certain data that is provided by a service. For example, a Web service would
provide relevant Web pages as proof of the correctness of its information, if the
service consumer requires it. Although services are still far from using the com-
plete power of the Semantic Web, there are already existing services that are able
to provide and exchange proofs (mostly implemented as a function of the specific
Web application) [5].

Cryptography

Cryptography can be seen as the science of hiding information. Applications of
cryptography include, for example, computer passwords or secure connections
on the Web. Cryptography is important to ensure and verify that Semantic Web
statements are provided by a trusted source. This can be achieved by appropriate
digital signature of RDF statements [5].

Trust

Trust to derived statements will be supported by [5]:

(a) verifying that the premises come from trusted source and by

(b) relying on formal logic during deriving new information.

14

User interface and applications

The user interface is the final layer that enables humans to use Semantic Web
applications such as Web sites or other applications. Further, this layer consid-
ers machines, which use the Semantic Web for different purposes (for example,
processing information) [5].

2.4 The Resource Description Framework

The Resource Description Framework (RDF) is a framework developed by the World
Wide Web Consortium to describe and represent resources on the Web. There are a
variety of applications for RDF that increased the motivation for its development. An
incomplete list of possible applications [51] is as follows:

• Web metadata: provide information about Web resources and the systems that use
them.

• Machine processable information: allow data to be processed outside the particu-
lar environment in which it was created.

• Interworking among applications: combining data from several applications to
create new information.

• Automated processing of Web information: allow data to be processed by soft-
ware agents and increase efficiency of exploiting the information of the Web.

• Represent information in a minimal constraining and flexible way.

These applications inspired the development of RDF and to further improve it until
it became a World Wide Web Consortium (W3C) recommendation. One reason of the
success of RDF is due to its design. The design of RDF is intended to meet the following
requirements [51]:

A simple data model

Create a simple data model usable for applications. The data model is independent
of any specific serialization syntax [51].

15

Formal semantics and inference

RDF has a formal semantic, which provides a dependable basis for reasoning
about the meaning of a RDF expression. In particular, it supports defined notions
of entailment that can be used for defining rules of inference in RDF data [51].

Extensible URI-based vocabulary

The vocabulary is fully extensible, because it is based on URIs. It also allows
optional fragment identifiers (URI references, or URIrefs). Another kind of value
that appears in RDF data is a literal, which is described later in this section [51].

XML-based syntax

RDF has a recommended XML serialization form that can be used to encode the
data model for exchange of information among applications [51].

Use XML Schema datatypes

Since RDF has a XML serialization, it can use values represented according to
XMLS datatypes. This improves the exchange of information between RDF and
other XML applications [51].

Anyone can make statements about any resource

To facilitate operation at Internet scale, RDF is an open-world framework, which
allows anyone to make statements about any resource. Unfortunately, RDF does
not prevent anyone from making assertions, which are nonsensical or inconsistent
with other statements. This has to be considered by designers [51].

These requirements leaded to the definition of RDF [51] in terms of:

• an abstract syntax that reflects a simple graph-based data model and

• a formal semantic with a rigorously defined notion of entailment.

The concepts used to realize this definition are presented in the next section.

16

2.4.1 RDF Concepts

RDF uses a variety of concepts to ensure flexibility and extendability. The following
presents a list of used concepts followed by a detailed description of each of them:

• Graph data model

• URI-based vocabulary

• Datatypes

• Literals

• Expression of simple facts

• Entailment

• XML serialization syntax

Graph data model

The underlying structure of any expression in RDF is a collection of triples [51].
Each triple consists of:

1. a subject that is represented as a node in the graph,

2. an object that is represented as a node in the graph and

3. a predicate (also called a property) that denotes a relationship and represents
an arc in the graph that always points towards the object.

Figure 2.3: Graphical representation of a RDF triple.

The concept of such triple is illustrated in figure 2.3. A triple is also called a
statement and a set of statements is called a RDF graph. Such graph can be

17

illustrated using nodes and directed-arcs, where each statement is represented as
a node-arc-node link [51].

URI-based vocabulary and node identification

As mentioned before, the vocabulary of RDF is fully extensible, because RDF is
based on URIs. Using URIs we can define two types of nodes in a RDF graph: an
URI node or blank node [51]. Additionally, RDF allows, so called, literals.

An URI or a literal, used as a node, identifies what that node represents (for exam-
ple, a person). An URI reference used as a predicate (arc) defines a relationship
between the things represented by the nodes it connects. By default, it is not
allowed to use a literal node as a subject [51].

To allow several statements referring the same unidentified resource, a blank node
identifier can be used. This is a local identifier that can be distinguished from all
URIs and literals of the graph. A blank node is a node that is neither a URI
reference or a literal. In the RDF abstract syntax, a blank node is just an unique
node that can be used in one or more RDF statements, but has no intrinsic name
[51]. To use more blank nodes within the same graph an ID can be added.

Datatypes

Datatypes are used by RDF to represent values such as integers, floating point
numbers or dates. They consist of a lexical space, a value space and a lexical-to-
value mapping [51].

For example, the lexical-to-value mapping for the XML Schema datatype xsd:boolean,
where each member of the value space (represented here as ’T’ and ’F’) has two
lexical representations, is as follows [51]:

Value Space: {T, F}

Lexical Space: {"0", "1", "true", "false"}

Lexical-to-Value Mapping: {<"true", T>, <"1", T>, <"0", F>, <"false", F>}

RDF has no built-in concept of numbers, dates or other common values. Further,
it does not provide any mechanisms for defining datatypes by itself. RDF rather
depends on datatypes that are defined separately and can be identified using URI

18

references. The predefined XML Schema datatypes are widely used for this pur-
pose [51].

Literals

Literals are used to identify values such as numbers and dates. Anything repre-
sented by a literal can also be represented by an URI, but often it’s more conve-
nient to use literals. A literal may be an object of a RDF statement, but it is not
allowed to be used for a subject or a predicate [51].

RDF allows two kinds of literals, namely, plain or typed literals. A plain literal is
a string combined with an optional language tag preferably used for plain text in
a natural language. A typed literal is a string combined with a datatype URI and,
therefore, it denotes the member of the identified datatype’s value space. The
value space is obtained by applying the lexical-to-value mapping to the literal
string [51]. Continuing the xsd:boolean example, the typed literals that can be
defined are shown in table 2.1 .

Table 2.1: Lexical-to-Value Mapping for the xsd:boolean example [51].

Typed Literal Lexical-to-Value Mapping Value

<xsd:boolean, "true"> <"true", T> T
<xsd:boolean, "1"> <"1", T> T

<xsd:boolean, "false"> <"false", F> F
<xsd:boolean, "0"> <"0", F> F

Table 2.1 illustrates four examples of typed literals that represent boolean values.
The datatype xsd:boolean, defined by XMLS, allows the corresponding system
to identify the literal value as boolean. Therefore, the system is able to use the
Lexical-to-Value Mapping to map the string to a boolean value.

RDF Expression of Simple Facts

A simple fact that indicates a relationship between two things is represented as
a RDF triple. In this triple the predicate names the relationship and the subject
and object denote the related things. A row in a table of a relational database is
a familiar representation of such a fact. The table contains one column for the

19

subject and the object. The name of the table can be seen as their relation and,
therefore, as the predicate of the RDF triple [51].

Unfortunately, relational databases normally allow a table to have more than just
two columns. Therefore, each row has to be decomposed to allow its data to
be represented as RDF triples. A simple form of decomposition introduces a new
blank node, corresponding to the row, and a new triple for each cell in the row. The
subject of each triple is the newly created blank node, the predicate corresponds
to the column name and the object corresponds to the value in the cell [51].

Table 2.2: Example of a relational table for storing student information.

ID firstname lastname birthday

.
e0625287 Alexander Aigner 28-04-1968

.

The simple table named student_personalInf represents a possible way to store
personal information on students of a university. It contains an ID and the columns
firstname, lastname and birthday for storing corresponding information of the
student. A possible decomposition of table 2.2 is represented in figure 2.4.

Figure 2.4: Decomposition of the relational table 2.2 to RDF.

20

Entailment

The ideas on meaning and inference in RDF are described by the formal concept
of entailment (logical consequence) [51]. Entailment is a concept of the science of
formal logic. For example, if a RDF expression A entails another RDF expression
B, every possible arrangement of things in the world that makes A true also makes
B true. In logics this would be described with the formula A |= B.

XML serialization syntax

A RDF graph contains nodes and directed arcs that connect pairs of nodes. As
mentioned, this can be defined as triples containing a subject, predicate and an
object [51].

In order to transform the graph to XML, all elements of the graph need to be
interpretable in XML terms. To represent URI references, the RDF/XML syntax
uses XML QNames as defined in Namespaces. Every QName has a namespace
name and a short local name. Both together represent the URI reference [51, 62].

Code 2.1: Example of using QNames within XML.

1 <?xml version=’1.0’?>
2 <student xmlns:x="http://tuwien.ac.at/student/">
3 <x:name>Alexander Aigner</x:name>
4 <student>

Code 2.1 illustrates an example of using QNames. The command xmlns:x =

"http://tuwien.ac.at/student/ in line two declares the prefix x to be associated with
the namespace http://tuwien.ac.at/student/. Further on, this prefix can be used as
abbreviation for this namespace. Subsequently, the tag x:name in line three is a
valid QName, because it uses the x as namespace reference and name as local part.
Therefore, <x:name> is an abbreviation of <http://tuwien.ac.at/student/name>.
The tag <student> in line two also contains a valid QName, only consisting of
a local part. QNames without namespace references generally use the default
namespace.

As mentioned before, a graph can be seen as a collection of paths of the form
node-arc-node-arc-node-....-node. In RDF/XML syntax, this is translated into

21

sequences of elements inside elements, where the node at the start of the sequence
turns into the outermost and the node on the end in the innermost node [51].

Figure 2.5: Example of an RDF graph.

Figure 2.5 illustrates a simple RDF graph for describing a student and what he/she
is studying. The student has a name and is identified by an immatriculation num-
ber. Further, the study contains a study code as well as a german and english title.
The RDF/XML code, shown in code 2.2, represents the serialized version of this
RDF graph.

Code 2.2: Example of a RDF document.

1 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2 xmlns:student="http://tuwien.ac.at/student/"
3 xmlns:study="http://tuwien.ac.at/study/">
4
5 <rdf:Description rdf:about="student:e0625287">
6 <student:fullName>Alexander Aigner</student:fullName>
7 <student:study>
8 <rdf:Description rdf:about="study:businessInf">
9 <study:titleEN>Business Informatics</study:titleEN>

10 <study:titleGER>Wirtschaftsinformatik</study:titleGER>
11 <study:studyCode>E 066 925</study:studyCode>
12 </rdf:Description>
13 </student:study>
14 </rdf:Description>
15
16 </rdf:RDF>

22

As mentioned prior, the node at the start of the sequence turns into the outermost
and the node on the end in the innermost node. Since nesting can lead to very
complex structures, the rdf:resource attribute enables humans to understand the
context easier. For machines it does not matter if this attribute is used or not [51].
The altered code is shown in code 2.3.

Code 2.3: Example of using the rdf:resource attribute.

5 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:student="http://tuwien.ac.at/student/"
7 xmlns:study="http://tuwien.ac.at/study/">
8
9 <rdf:Description rdf:about="student:e0625287">

10 <student:fullName>Alexander Aigner</student:fullName>
11 <student:study rdf:resource="study:bussinessInf" />
12 </rdf:Description>
13
14 <rdf:Description rdf:about="study:businessInf">
15 <study:titleEN>Business Informatics</study:titleEN>
16 <study:titleGER>Wirtschaftsinformatik</study:titleGER>
17 <study:studyCode>E 066 925</study:studyCode>
18 </rdf:Description>
19
20 </rdf:RDF>

Further, the rdf:resource attribute is used to avoid multiple declaration of the same
resource. If a few triples refer to the same object, this object does not have to be
serialized multiple times (if it is an URI). Instead, it is declared only once and all
other statements refer to the same object by using the rdf:resource attribute [51].

XML is not the only way of serializing RDF, but it describes the most common
one. This is probably because the World Wide Web Consortium introduced the
RDF/XML syntax and the RDF abstract syntax in the same time [51, 62]. Nowa-
days, there are various other serialization syntaxes like, for example, N-Triple
[57], Turtle [63] or JSON [12].

2.5 PHP: Hypertext Preprocessor

PHP: Hypertext Preprocessor (PHP) is a general-purpose open source Web develop-
ment language. PHP is the fourth most used programming language in the Web [13]
and an important language to consider for developing Web projects. It is a server-side

23

scripting language, meaning that the code is interpreted on the server and only the result
(normally HTML code) is send to the client. In contrast to Java Script, where the client
has access to the complete code, PHP code is invisible to the client [40, 41, 42].

Since HTML is static, PHP can be embedded into HTML documents and, therefore,
can be used for creating dynamic Web sites. A common use of PHP is querying data in
a MySQL database and present them to the user using the HTML format (often used for
for a news page). PHP provides all known concepts of other programming languages
like, for example, loops, interfaces or classes [40, 41, 42].

During its development, PHP introduced a lot of new functions. For instance, PHP
allows object-oriented programming paradigms (introduced in PHP release 5) or inter-
operability with other programming languages like, for example, Java or Perl. Even
though PHP is also used for developing Desktop applications or command-line scripts,
it’s main usage is still in the field of Web development [40, 41, 42].

2.6 Application Programming Interface

An Application Programming Interface (API) is a set of rules and specifications to en-
able software programs access to resources or to communicate with services. It normally
does not contain any user interface but rather serves as an interface between different
software programs and facilitates their interaction, similar to the way the user interface
facilitates interaction between humans and computers [48].

For this work we focus on APIs that enable developers to use RDF within their
projects. A RDF API is a collection of methods or functions to simplify the work with
RDF resources. By including a RDF API, developers can rather easily add semantic
technologies to their projects.

24

CHAPTER 3
State of the art of RDF APIs

Since a few years the interest of using semantic technologies has steadily grown. New
tools and frameworks have been developed and more developers started to use these
technologies. Since the introduction of the Resource Description Framework (RDF) and
its definition as a standard Web concept, a lot of different RDF toolkits were developed.
Some of these tools support developers by using RDF within their projects. These tools
are Application Programming Interfaces (APIs).

This chapter introduces the state of the art of APIs for processing RDF based data.
In fact, the topic of this work is the development of an RDF API for PHP. Therefore,
this chapter is even more important. First of all, we list and describe all available RDF
APIs for PHP. Next, we point out some of their strengths and weaknesses. Since RDF
APIs are available for nearly all available programming languages, the second part of
this chapter introduces and describes a few popular APIs, which are based on other
programming languages.

3.1 RDF APIs for PHP

Even though PHP is a popular programming language for Web development, PHP de-
velopers are provided by only four APIs, namely, ARC [30], RAP [33], PEAR:RDF [38]
and PHP XML Classes [2]. Initially, this seems adequate, but, unfortunately, three of

25

these four APIs are outdated and not further developed. In the following these four APIs
are described in more detail.

ARC (Appmosphere RDF Classes 2) is promoted as a lightweight, SPARQL-enabled
RDF system. It facilitates the integration of RDF in PHP, basic SPARQL func-
tions and allows configuration of a SPARQL endpoint. It supports a variety of
RDF input and output formats like JSON, XML, COUNT, RDF/XML or Tur-
tle/N3. ARC requires PHP (4.3 or higher) and MySQL (4.0.18 or higher). ARC is
the only RDF API for PHP that is still up-to-date and fully compatible with the lat-
est version of PHP. Therefore, most of the developers have to use this API, which
results in a growing usage of ARC. ARC is currently in version v2 (07.01.2011)
and recalled to "ARC 2" [30, 31].

RAP (RDF API for PHP) is a PHP API for parsing, querying, manipulating and serial-
izing RDF models [33]. It supports a variety of ways to work with RDF and also
allows querying using SPARQL. RAP allows importing and exporting RDF using
formats like RDF/XML, N3, Nt and TriX. This API is probably still one of the
most well known RDF APIs even though its development was already stopped a
few years ago. The latest version of RAP is V0.9.6 (beta) and was committed on
29.02.2008 [33, 34].

PEAR:RDF is part of the PEAR framework, which also develops the PHPUnit1 pack-
age. PEAR is a framework and distribution system for reusable PHP components.
The RDF component of PEAR is an early and slightly modified version of the
core RAP API. Therefore, PEAR:RDF provides the same functionalities as al-
ready presented for RAP. One of the main differences is that PEAR:RDF does
not support as much different ways of storing RDF data. The latest version of
PEAR:RDF is 0.2.0 (alpha) and was released on 05.10.2010 [38].

PHP XML Classes is a collection of PHP classes for processing XML-based docu-
ments in PHP [2]. One class of the collection, the RDF parser, is dedicated to
handle RDF documents. This class provides an event-driven interface for parsing
RDF statements. The document is passed to this parser, which then processes it.

1PHPUnit is a package developed within the PEAR framework, which allows to perform unit tests
on PHP classes [3].

26

If an RDF statement is found, a handler (a PHP function), which is previously de-
fined by the developer, is called and the RDF triple delivered. PHP XML Classes
do not provide any other kind of manipulation or query methods for RDF. As a
workaround, other XML classes of the collection can be used to manipulate the
RDF/XML document, but this requires extra knowledge of the RDF/XML syntax.
Further, there are no serializers and also the functionality of the parser is limited.
The RDF parser is in version v1.1 (20.06.2002), but the whole PHP XML Classes
package is still in beta phase [2].

Table 3.1: List of PHP APIs with latest release date, current version number and development
status.

Name Latest release date Current Version Development status

ARC 07.01.2011 2.0.0 (final) in development
RAP 29.02.2008 0.9.6 (beta) stopped

PEAR;RDF 05.10.2010 0.2.0 (alpha) stopped
PHP XML Classes 20.06.2002 1.1.0 (final) stopped

A comparison of release dates and development status is highlighted in table 3.1. As
illustrated, the development of the PEAR:RDF, RAP and PHP XML Classes APIs has
been stopped already. Thus, using these APIs often lead to incompatibilities and errors.
The only way of using these APIs is if users fix all occurring errors by themselves.
This may work for a period of time, but with future updates of PHP the necessary API
changes increase. Therefore, ARC is left as the only future-proof option for PHP Web
developers in the field of RDF manipulation and reasoning. Unfortunately, ARC is
missing a usable documentation.

Although RAP is not developed any longer, it was the only API for PHP developers
for a long time. Further, it is part of the PEAR framework and, therefore, we can assume
that it is still used within some Web applications. RAP provides the most flexible way of
working with RDF data for PHP by providing various ways of interaction. Thus, RAP,
aside of ARC, will be included within the comparison and evaluation of the state of the
art APIs in chapter 4.

27

We want to mention that this section exclusively presented RDF APIs for the pro-
gramming language PHP. For PHP developers also other RDF tools are available like
converters, browsers, editors or validators. These tools are Web applications on their
own rather than interfaces that can be used by other developers.

Further we want to note that during the final stages of this work the development of
the ARC API was officially cancelled [30].

3.2 RDF APIs for other programming languages

RDF APIs are implemented in various programming languages to support as much com-
puter systems as possible. RDF APIs for other programming languages are often more
advanced than for PHP, which makes this section quite interesting. It gives an intro-
duction to well known and popular APIs for the common programming languages Java,
.Net and C/C++.

Java represents an important programming language, which is already used by more
then 6.5 million software developers. Besides supporting all common computer sys-
tems, Java allows software development on handhelds or mobile-phones [36]. There-
fore, we decided to present two APIs for Java, namely, Jena [16] and Sesame [1].

Another programming language of growing interest is called .Net (dot Net). It is
a platform for developing software introduced by Microsoft. Even though .Net is also
available for unix-based systems, the full functionality can be only utilized on Windows-
based systems [29]. The API we have chosen for representing .Net is called dotNetRDF
[43].

The last and probably most popular programming language in our list is C/C++. It is
a standardized and common used programming language. Lots of features provided by
common operating systems are implemented using the C/C++ language and basically
all operating systems allow interpretation of C/C++ code [49]. OpenLink Virtuoso [35]
is used as API for this programming language.

These APIs present an incomplete list of API for their corresponding programming
languages. Since Java, .Net and C/C++ are very popular programming languages, used
for desktop and Web development, there are much more APIs than for PHP. Anyway,
according to [53] they define some of the most popular and most used APIs for their pro-

28

gramming languages. For a list of all available APIs, the World Wide Web Consortium
provides an up-to-date list at [53].

Jena is the first and probably most well known API for Java. It is a leading Semantic
Web toolkit for Java programmers, first released in 2000 [16]. The API provides
an environment for RDF, RDFS and OWL. Further, Jena supports SPARQL and
includes a rule-based inference engine. It is open source and a result of research
of the HP Labs Semantic Web Program (for more information see [19]). The Jena
API allows reading and writing RDF in RDF/XML, N3 and N-Triples as well
as in-memory or persistent storage. It provides a SPARQL query engine, but also
methods for handling OWL documents. Jena is currently in version 2.8.8 released
on 21.04.2011 [16, 27].

Sesame is another popular API based on Java. Sesame was developed during the EU
research project OnToKnowledge (for more information see [25]). It supports
the same functionalities as Jena with the extension that it can be deployed on
top of a variety of storage systems (relational databases, in-memory, file-systems,
keyword indexers, etc.). Sesame has been designed with flexibility in mind and
offers a large scale of tools to developers to leverage the power of RDF and re-
lated standards. It enables full support of the SPARQL query language and offers
transparent access to remote RDF repositories. Sesame supports all main stream
RDF file formats, including RDF/XML, Turtle, N-Triples, TriG and TriX. Sesame
is also the basis for other toolkits that are implemented as plug-ins for Sesame.
The latest version of Sesame is 2.4.2 and was released on 14.07.2011 [1, 10].

dotNetRDF is an open source .Net library, using the latest versions of the .Net frame-
work. It provides an API for working with RDF using the programming languages
.Net or C# (C-Sharp). It provides support for different external stores (also, for
example, Sesame). Further, there is a comprehensive SPARQL implementation
that already includes support for many of the SPARQL 1.1 features. The API
includes additional tools like, for example, a rdfEditor, a rdfConvert or a Store
Manager. According to the developers, it is also usable for development on Win-
dows Phone 7. dotNetRDF is still in beta state and currently in version 0.4.1
(released on 19.11.2010) [43].

29

OpenLink Virtuoso is the last API we want to present. It can be seen as a multi-
platform API, because it is implemented using the programming language C/C++
and distributed as an executable. Therefore, it can be queried by all programming
languages, which can access local processes, for example, Python, Java, Java
Script or C#. Anyway, since the API is written in C/C++, we decided to use
it for this language. According to the developers, it supports all common RDF
manipulation methods, but also provides basic OWL manipulation capabilities.
It does not only provide a SPARQL query engine, but also the possibility to set
up an own SPARQL endpoint. Virtuoso is currently in version 6.2.0, which was
released on 09.07.2010 [17, 35]. OpenLink Virtuoso is also the only commercial
API we used. For testing this API we used a 15 days trial license.

Table 3.2: List of non-PHP APIs with latest release date, current version number and develop-
ment status.

Name Prog. Lang. Latest release date Current Version Development status

Jena Java 21.04.2011 2.8.8 (final) in development
Sesame Java 14.07.2011 2.4.2 (final) in development

dotNetRDF .Net 19.11.2010 0.4.1 (beta) in development
Virtuoso C/C++ 09.07.2010 6.2.0 (final) in development

A brief conclusion of the above presented APIs for programming languages, besides
PHP, is presented in table 3.2.

Because ARC is the only PHP API, which is still in development, there is no point in
evaluating only PHP APIs. ARC would outperform the other PHP APIs in all categories
and, therefore, the evaluation would not have much significance. Thus, we decided that
ARC and RAP, in conjunction with these four non-PHP APIs, will be subject to the
evaluation and comparison in chapter 4.

30

CHAPTER 4
Comparison of RDF APIs

In this chapter we present an evaluation and comparison of popular APIs for PHP, Java,
.Net and C/C++. The comparison of APIs independent of their programming languages,
highlight strengths and weaknesses. APIs for programming languages, other than PHP,
are generally more advanced. Therefore, with this comparison, we aim to discover
valuable concepts that ease the use of an API, but were not used before in PHP APIs.
Thus, the comparison of the APIs has great impact on the development of the PHP API
in the practical part of this work.

In the first part of this chapter, we introduce the evaluation model, which we used for
evaluation the APIs. Next, we present the evaluation catalogue as well as the evaluation
method. In the last part of this chapter, the API evaluations are illustrated, the APIs are
compared and the results are discussed.

4.1 The evaluation model

For a descriptive comparison it is necessary to choose a widely accepted evaluation
model. Using a common model, we allow the reader to gain better understanding of the
model as well as enable others to repeat our comparison.

There are numerous models available that are dedicated to quality evaluation. Any-
way, for evaluating software products the well established International Organization

for Standardization (ISO) [23] and the International Electrotechnical Commission (IEC)

31

[21] introduced the ISO/IEC 9126 standard in 1991 [22]. It was first revised in 2001
[22] and later on replaced by the ISO/IEC 25010 standard in March 2011 [24].

The objective of this standard is to provide a widely accepted way of measuring
software quality during development as well as during usage. Since this model was
designed to test software and provides a detailed definition of the quality characteristics,
we think it is a good choice for evaluating APIs.

First, we want to give a brief introduction to the ISO/IEC 25010 standard, followed
by a more detailed description of the quality in use model, which is the part of ISO/IEC
25010 and was used for the evaluation.

4.1.1 ISO/IEC 25010 quality model

The ISO/IEC 25010 standard was released in March 2011 by one of the departments of
ISO called SQuaRE (Software Product Quality Requirements and Evaluation) [24]. It
is a revision of ISO/IEC 9126 and inherited the well known views of software quality
[22, 24], which are:

Internal quality refers to the static properties of the structure of the software prod-
uct produced during the development process. Static properties are, for instance,
the number of lines of code, modular complexity, number of faults found in a
sequence or an activity diagram. It provides a white box1 view of the product
[24].

External quality refers to the software perspective on the computer system. It evalu-
ates the software execution in a testing environment, on a specific hardware using
a specific operating system. For example, it is possible to measure the number
of faults detected during a test and so estimate the faults present in the whole
software. It provides a black box2 view of the product [24].

Quality in use refers to the perception of quality by the end users. This perception can
be observed by executing the final software product for a specific context. Qual-

1White box test: the tester has access to the internal structures and algorithms including the code that
implement these.

2Black box test: treats the software as a "black box", without any knowledge of internal implemen-
tation.

32

ity in use is effected by the external quality, which is depending on the internal
quality. It provides a mixture of a black and grey box3 view of the product [24].

The relationship between these software quality requirements and the whole system
requirements is illustrated in figure 4.2.

Figure 4.1: System requirement categorization (modified according to[22]).

These views can be used to measure different aspects of quality:

Internal and external quality is related to software quality during software devel-
opment. To measure these qualities, a hierarchy of characteristics is used. This
multi-level hierarchy has eight top level characteristics, which are further refined
into sub-characteristics. The last abstraction level is constituted by the attributes.
By assigning metrics to the attributes, they can be used as the measurable elements
[8, 22, 24]. The hierarchy is presented in figure 4.2.

Quality in use can be seen as a traditional view of usability (during usage). Also the
quality in use view uses quality characteristics as a set of attributes for measuring
quality. It is also described as a hierarchy of characteristics, but in contrast to the
internal/external quality hierarchy, the quality in use model contains only three
top level characteristics.

3Grey Box test: involves having knowledge of internal data structures and algorithms, but testing at
the user, or black-box level.

33

Figure 4.2: Product quality model (modified according to [24]).

Since the model defined as the quality in use view provides us a way of measur-
ing the quality of an API during its usage, we used it for the evaluation of the APIs.
Therefore, it is described in more detail in the following section.

4.1.2 The quality in use model

As mentioned above, the quality in use model can be seen as a traditional view of usabil-
ity and represents the users perception of quality of a product. Usability is commonly
defined as the combination of attributes of the user interface. Therefore, it describes if
a product easy to use or not. A more general definition of usability is:

"Usability: the extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context

of use" [22].

This definition was incorporated in the revision of ISO 9126 (2001) and renamed to
quality in use. The quality in use hierarchy has three top level characteristics, namely
usability, safety and flexibility [8, 24]. This hierarchy is illustrated in figure 4.3 and the
characteristics are described in more detail below.

Usability describes the extent a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context
[22]. It is the user’s perspective of the quality when using a product. [8, 24].
The sub-characteristics of usability are effectiveness, efficiency and satisfaction
[8, 24].

34

Figure 4.3: Quality in use model (modified according to [24]).

Effectiveness, which is characterized in terms of "accuracy and completeness",
refers to doing the right things (do we achieve the wanted effect?). It con-
stantly measures if the actual output meets the desired output [8, 24].

Efficiency is defined in terms of "expended resources" and checks if things are
done in the right way. Scientifically, it is defined as the output to input ratio
and focuses on achieving maximum output by using a minimum of resources
[8, 24].

Satisfaction, previously interpreted in terms of "comfort and acceptability", has
been given a broader interpretation in ISO/IEC 25010. Current approaches
to satisfaction typically assess the users perception, so that if users perceive
the product as effective and efficient, it is assumed to be satisfying [18]. In
addition, aspects like fun or enjoyment can be part of the users experience,
but were not considered before. Nowadays, we know that they contribute
significantly to overall satisfaction with a product [8, 24].

In order to deal with the overall user experience, we need to further include
experience, results and consequences (including safety). The satisfaction
characteristic of the quality in use model suggested that satisfaction can be
summarized within this four sub-characteristics [8, 24]:

Likability is represented in terms of "cognitive satisfaction" and describes
the satisfaction with the ease of use and the achievement of pragmatic

35

goals (goals defined by the task).

Trust, specified in terms of "satisfaction with security", describes how the
user is satisfied, because the product behaves as intended and with ac-
ceptable perceived consequences.

Pleasure is defined in terms of "emotional satisfaction" and describes the
users satisfaction with their perceived achievement of hedonic goals
(goals defined by the person), stimulation, identification and evocation
as well as associated emotional responses.

Comfort is delineated in terms of "physical satisfaction". It describes the
extend the user is satisfied with physical comfort.

Whereas efficiency and effectiveness can be measured rather simple, measuring
satisfaction is rather complicated. For many developers satisfaction is seen as a
personal response of the user that can hardly be quantified. Most usability tests
obtain only qualitative feedback on satisfaction [8]. Qualitative feedback contains
normally personal views on the quality. Sub-characteristics like trust or pleasure
are often ignored.

Flexibility: As mentioned above, usability is related to a particular context. Therefore,
considering the context is an important task. Often software products are used for
more than just one context, but this can falsify the measured usability. Software
that is usable in one context probably doesn’t achieve same usability in another
context with different users, tasks or environments [8, 24].

For example, it is possible to use a Web browser to browse the local file system,
but it may not provide the same level of usability than for its intended context:
surfing the Web. Unfortunately, developers sometimes trick users by demonstrate
high levels of usability by a carefully selected, but unrepresentative, users, tasks
and environments. To continue the previous example, this would mean to adver-
tise the Web browser’s functionality of browsing the file system with the usability
value for browsing the Web.

The way a software product persists in its intended context or in other unintended
contexts is described by the characteristic flexibility. Flexibility was firstly intro-

36

duced in the ISO/IEC 25010 and is described by three attributes, namely, context
conformity, context extendibility and accessibility [8, 24].

Context conformity characterized the degree to which usability and safety meet
requirements in all the intended contexts. This provides the basis for mea-
suring the achieved level of usability in the intended contexts.

Context extendibility defines the degree of usability and safety in unintended
contexts. It can be achieved by adapting a product for additional user groups,
tasks and cultures. Context extendibility enables products to take account of
circumstances, opportunities and individual preferences that are not antici-
pated in advance. If a product is not designed for context extendibility, it is
not recommended to use the product in unintended contexts.

Accessibility specified the degree of usability of users with specified disabilities.
Unfortunately, it is an objective, which is difficult to quantify.

Although it is hard to measure flexibility, it is an important task to specify the
requirements. Specification of user groups, tasks and environments lead to addi-
tional design requirements for product features. Such requirements are mandatory
to increase usability within all intended contexts. Unfortunately, not all contexts
are testable. Context conformity in these contexts is assessed by expert judgment
[8].

Also context extendibility is difficult to specify and to be measured in advance.
Anyway, there are two ways to facilitate context extendibility [8]:

1. design a product, allowing it to be configured for specific needs (for exam-
ple: language, culture, task steps), or

2. the product allows adaptation by the user to suit individual capabilities and
requirements.

Products (especially software products) are frequently used for unanticipated pur-
poses. This characteristic of a product often increases the usability significantly
[8].

Accessibility can be tested by establishing objectives of usability for users with
particular types of disabilities [8].

37

Safety is the last top characteristic of the quality in use model. It is defined as the de-
gree of expected impact or harm to people, businesses, data, software, property or
the environment that may happen during the intended contexts. While effective-
ness and efficiency measure the positive outcome, safety is a way to measure the
potential negative consequences, which might result from incomplete or incorrect
output [8, 24]. Depending on the consumer and the product, negative outcome
might vary from just personal inconvenience or loss of data up to financial loss.
Safety has four attributes [8, 24]:

Commercial damage specifies the degree of expected impact of harm to com-
mercial property, operations or reputation. This could include the adminis-
trative costs of correcting faulty output, inability to provide a service or loss
of current or future sales. An example is the lack of sales due to poor web
site design.

Operator health and safety defines the degree of expected impact of harm to
the operator or user. For example, incorrect or unintended usage could result
in higher risk of injury of the operator.

Public health and safety characterizes the degree of expected impact of harm
to the public. For example, the public is introduced to extra risks due to
incorrect usage of the product or development errors. For most software
this attribute may not be that important, but it is crucial for, for example,
software regulating a Nuclear power plant.

Environmental harm describes the degree of expected impact of harm to prop-
erty or the environment. By extending the previous example of the Nuclear
power plant, it is coherent that faulty software has also impact on the envi-
ronment.

Specification and measurement of usability should always be considered in con-
junction with associated safety risks. It is not easy to measure product safety,
but it is usually possible to list the potential consequences of product failures or
human errors based on previous experience with similar products or systems [8].

38

4.2 The evaluation catalogue

Although the quality in use model provides a sophisticated way of measuring quality of
an API, we think it is still essential to specify a more API-related interpretation of the
attributes and characteristics. The quality in use model is defined as a general model
for evaluating all kinds of software rather than for evaluating APIs. Therefore, by defin-
ing an API-related interpretation we are able to perform a more API related evaluation.
Further, we enable others to repeat the evaluation and allow them to gain a better under-
standing of the evaluation results. The interpretations of the quality attributes we used
for the evaluation are defined in more detail below.

Usability

Effectiveness is measured by checking if the API works as intended. It can be
interpreted as the questions: Does the API work as we expect? Are we able
to achieve the expected effects/results?

Efficiency evaluates the input-output ratio in terms of invested resources in re-
lation to output. Such resources are, for example, time or lines of code. We
try to answer the question: How much resources we have to invest in order
to achieve our goal?

Satisfaction

Likability is measured in terms of pragmatic goals. It can be interpreted
as the questions: Do we like to use the API? Are we able to achieve all
goals of the task?

Trust takes the personal feeling of security and support into account. It can
be interpreted as the questions: Does the API work as it is intended? Do
we accept the consequences of using the API?

Pleasure considers hedonic goals and can be interpreted as questions like:
Are we satisfied with the API? Did we enjoy working with the API?

Comfort is originally defined in terms of physical satisfaction. We ex-
tended this category to be interpreted as the questions: Is there a usable
documentation? Is the API easier to use than others? Are there usable
code samples? Do we have less stress because of these benefits?

39

Flexibility

Context conformity is measured according to following simple context of use,
which we defined as:

"The API should allow adding, updating, deleting and searching RDF re-

sources. It should not just be able to present the result on screen but also

store it in a file so it can be accessed by other APIs/software. It should also

be possible to perform simple SPARQL queries."

To test this context we decided to create a simple RDF model. The RDF
model contains student and study resources. The model represents students
of an university and the study they are inscribed in. The student has a name
and is identified by his immatriculation number. The study has a german and
english title and is identified by the study code. This graph uses references
as well as literals. Further, the study and the student resources are part of
two different namespaces.

The target was to implement this model by using each API. Further, it is
required that we can export the model as well as import it in order to continue
working with it. This includes the search of statements as well as performing
modifications (updating and deleting statements) within the model. At the
end, we performed SPARQL select-queries on our model.

Context extendibility depends on the other functions of the API. It will be mea-
sured in terms of customizability of the API. A simple extended context is
to use an API as replacement of a SQL database.

Accessibility is not measured since everybody, who uses a computer and has
knowledge of a programming language, is able to use an API. The accessi-
bility of the API depends on the accessibility of the device (computer) it is
used on. Therefore, we would have to rank all APIs the equally. Since this
would only distort the mean and standard deviation we decided to exclude
this attribute for the evaluation of the APIs.

Safety

Commercial damage is measured in terms of support of the API. If a company
is using an API that is regularly updated, there is low risk of commercial

40

damage. In contrast, if the development of an API was already stopped, the
company has to fix errors by themselves, leading to a higher risk of com-
mercial damage. This characteristic tries to answer the following questions:
Are we able to rely on the API? Are there regular updates/bug fixes?

The characteristics "Operator health and safety", "Public health and safety" and
"Environmental harm" depend on the kind of software the API is used in. Since
the API is used by other software, these characteristics are more interesting for
the main application. It is possible that an API failure could lead to an error
in the main application but it is hard to measure since its not dependent on the
API. Therefore we decided to quantify these characteristics equally for all APIs.
Therefore, we decided to exclude these characteristics for the calculation of the
characteristic safety, as they would just distort the result.

4.3 The evaluation method

Based on the quality in use model and the evaluation catalogue we already know what
to measure and how the single characteristics are interpreted. The last point to define,
before we can start the evaluation, is a way to measure the characteristics and to apply
a rating to them.

For measuring the single characteristics, we decided to use a simple Likert scale

[28]. Therefore, we defined each attribute as a Likert item and used a typical five-level
format with the following categories.

1. Very bad

2. Bad

3. OK

4. Good

5. Excellent

By utilizing these items, we designed an evaluation chart, which is presented in
figure 4.4. Using this chart we can select one of the predefined five categories and

41

Figure 4.4: Evaluation chart based on ISO/IEC 25010 quality in use model.

assign our rating to a specific quality attribute. The rating mirrors the testers personal
perception of quality of a single characteristic.

To process the collected data of the evaluation and allow to compare the APIs we
further assigned numeric values to each category. The assignment of the numerical

42

Table 4.1: Assigned numerical values to measured characteristics.

Category Numerical value

Very Bad 20
Bad 40
OK 60

Good 80
Excellent 100

values to each characteristic is illustrated in table 4.1.

The values of the top level characteristics are defined as the arithmetic mean from all
their sub-characteristics. Mathematically we defined the value of the top characteristic
as follows:

If the sample space A = {a1, . . . , an} describes the measured values for all n sub

characteristics, the top characteristic is defined as ā = 1
n

∑n
i=1 ai with ai ∈ A.

ā then defines the arithmetic mean of all sub-characteristics and, therefore, the

value of the top characteristic.

Using this method of calculation, we are able to calculate a single value for each API,
which defines its quality in use. Unfortunately, this value is not very expressive, because
it is calculated from relatively independent values. Therefore, we decided to compare
the APIs in terms of the three sub-characteristics usability, flexibility and safety instead
of one quality in use value.

4.4 Evaluation results and comparison

After defining the evaluation catalogue as well as the method of measuring each quality
characteristic, we are finally able to perform a descriptive evaluation and comparison of
the APIs listed in chapter 3.

Since the evaluation covers different programming languages it is not easy to cre-
ate an objective comparison. To define a foundation for maximizing the objectivity, we
prepared a standard runtime environment for each programming language. If the envi-
ronment had to be modified to enable execution of the API, deductions in the efficiency

43

attribute were accordingly given. Further, we did not deduct points for the implementa-
tion as long as it would be naturally to the programming language (no strange constructs,
common function names, similar to the programming language). These specifications
aim to increase the objectivity for measuring usability and to reduce subjectivity as
much as possible.

As mentioned prior, the evaluation was performed by implementing the context by
using each API. As expected, the level of usability, flexibility and safety are generally
high due to the choice of popular, powerful and well established APIs. Another reason
for the high levels is the choice of the relatively simple intended context. Unfortunately,
we were limited to only one person, which performed all the API evaluations. Anyway,
the results of the evaluation of the APIs are presented in table 4.2.

Table 4.2: Results of the evaluation of state of the art APIs.

Category RAP ARC dotNetRDF Sesame Jena Virtuoso

Usability 50 75 70 77 98 37
Effectiveness 80 100 80 80 100 20
Efficiency 20 60 60 80 100 40
Satisfaction 50 65 70 70 95 50

Likability 60 60 60 80 100 40
Trust 20 80 60 100 100 100
Pleasure 60 60 80 60 100 20
Comfort 60 60 80 40 80 40

Flexibility 90 90 90 90 90 100
Context Conformity 100 100 100 100 100 100
Context Extendibility 80 80 80 80 80 100
Accessibility - - - - - -

Safety 40 80 80 100 80 100
Commercial Harm 40 80 80 100 80 100
Operator Health - - - - - -
Public Health - - - - - -
Environmental Harm - - - - - -

In addition to the evaluation results, table 4.3 outlines the arithmetic mean and the
standard deviation of all evaluated APIs.

44

Table 4.3: Mean and standard deviation of the evaluation results.

Category Mean Standard deviation

Usability 67.83 21.53
Flexibility 90.00 6.32

Safety 80.00 21.91

Even though the mean and standard deviation are calculated by a small sample size
of only six APIs, it gives an impression of the overall performance. The following
paragraphs compare the results of the top characteristics usability, flexibility and safety
in more detail.

Usability is measured with an arithmetic mean of 67.83 points, which is relatively low
in compare to flexibility and safety. The lowered usability mean is due to two
APIs, namely, RAP and OpenLink Virtuoso, which got relatively low value for
usability.

RAP is actually a very powerful API, but due to the fact that it was necessary
to fix API related errors during the implementation it received lower points in
efficiency. As it is not updated any longer, further deductions were given in the
sub-characteristic trust. This leaded to a low usability value of 50 points.

OpenLink Virtuoso is also a very powerful API. Unfortunately, due to bad doc-
umentation of basic functionality and relatively complex implementation it re-
ceived an usability value of only 37 points. This is the lowest measured value
for usability, therefore, decreasing the arithmetic mean and increasing the stan-
dard deviation. Using the OpenLink Virtuoso API we had to spend most time for
implement the intended context. Further, due to the time restriction of the trial
version we were not able to perform all tests. Also by using the API’s command
line interaction we didn’t achieve better results.

ARC (75 points), dotNetRDF (70 points) and Sesame (77 points) provide similar
functionality, but all these APIs had their pros and contras. Therefore, these APIs
are ranked between OK (60 points) and Good (80 points).

45

The best API in the characteristic usability is Jena. Jena has a well documented
user guide and the implementation is very native to the language. Implementing
the defined context in Jena was faster, but also more satisfying than with the other
APIs. Therefore, Jena achieved the highest usability value of 98 points, which
is very near to the maximum value of 100 points (Excellent). Jena allows a very
efficient implementation using a object oriented approach. This level of usability
is incomparable to the level of PHP APIs. The only PHP API that can compete
with Jena is RAP (if it would not be necessary to fix API errors). Therefore, Jena
and RAP present great opportunities to increase the efficiency for PHP APIs. We
tried to consider these opportunities during the development of our own PHP API.

Flexibility has the highest mean (90 points) and is ranked directly between Good (80
points) and Excellent (100 points). This high rating is due to two reasons.

1. The first reason is that the context is chosen relatively simple. Since we
compared popular and widely used APIs, all of them provide the necessary
functions to implement the intended context. Therefore, all APIs achieved
100 points (Excellent) in the characteristic context conformity.

2. The second reason is also due to the choice of the APIs. All chosen APIs
offer a lot of extra functions (for example, SPARQL, RDFS, OWL or various
export formats) that can be used to extend the defined context.

Even though OpenLink Virtuoso received a relatively low value for usability,
it is by far the most flexible API of all evaluated ones. Since it is distributed
as an executable, it can be used by all programming languages that can ac-
cess local processes. Therefore, it can not only be used by C/C++ programs
but also for various other programming languages. This leaded to the maxi-
mum value in the characteristic flexibility.

Using the other APIs it is not that simple to make them accessible as a system
process. They are intended to be used within their corresponding program-
ming language rather than within other programming languages. Anyway,
they allow modification of the source code and often provide a list of con-
stants that can be changed according to the developers needs. Since they

46

all allow similar capabilities, they are ranked equally with 80 points in the
characteristic context extendibility.

Safety is another characteristic, where most APIs achieved high ratings. In our evalu-
ation, safety is defined only by the category commercial harm. To measure com-
mercial harm, we tried to evaluate how long it would take to update an API to
run on an updated system (for example a new Java version). Since all APIs ex-
cept RAP are regularly updated, they all ranked between Good (80 points) and
Excellent (100 points).

Because the development of RAP has been stopped, we expect that there are no
further updates any longer. Thus, all errors that appear in future system updates
have to be fixed by the company. RAP uses a lot of PHP functions, which means
that it can still provide some security for future updates. Unfortunately, some of
these functions are already deprecated and it is unclear how long they will still
be part of the PHP framework. Therefore, RAP is ranked with only 40 points
(Bad), which decreased the mean and increased the standard deviation of this
characteristic.

In overall, we can state that the best API of our comparison is certainly Jena. While
flexibility and safety are more or less equal throughout all APIs, it provided by far the
best level of usability.

For the development of the ERP API the characteristic usability presents the most
importance. Efficiency and effectiveness are of great importance, but also satisfaction
presents a strong opportunity where our API can score. Even though we chose popular
APIs, the rankings of the characteristic usability were rather disappointing. Only Jena
could convince us. It scored the highest in the characteristic satisfaction as well as
efficiency and effectiveness. Therefore, Jena became a great source of inspiration for the
development of the ERP API. By introducing some of Jena’s concepts to the ERP API, it
might be possible to achieve similar values in effectiveness, efficiency and satisfaction.

Flexibility is achieved by gradually improving and extending the API during time.
The target of the development of the ERP API was to provide the most important fea-
tures. Therefore, the ERP API is not be able to provide the same flexibility as APIs
that are developed for years. Anyway, during maturing of the API and by extending its

47

features, the flexibility of the API will increase. Thus, this characteristic is not of much
importance at this point of the development.

Safety is another characteristic, in which we will not be able to achieve high rankings
for the beginning. Even though we plan to continue the development of the ERP API,
we still don’t have the same support as the other APIs. Most of the APIs are developed
by developer teams and supported by their users. Since our API is still unknown, we
still can’t achieve the same level of safety. Even though safety does not solely depend on
the number of developers, it reduces the risk of using the API if there is more than one
dedicated developer. Further, if users and developers work together, it is more likely to
provide a good foundation for future updates. Anyway, it is possible to achieve higher
rankings of safety if the ERP API gets more popular and is supported by its users and
other developers.

Now that we have evaluated and compared the APIs for their usage, we still want
to give a brief comparison of the features of these APIs. Following features were com-
pared:

• OOP (Object-oriented programming) Support: This category defines if an API
allows users to use object-oriented programming paradigms.

• RDFS/OWL Support: Since RDFS and OWL concepts can be created by using
basic RDF, all APIs are able to create statements using these concepts. Anyway,
if an API does not provide extra functions for creating these constructs (classes,
properties, instances), it is categorized as unsupported.

• SPARQL Support: This category specifies if an API supports SPARQL.

• Add, Update, Delete, Search Statements: These categories check if the function-
alities are supported.

• Modifiable: It checks if the API can be modified by the user to be adapted for
certain needs.

• Import/Export Formats: Specifies how many formats are supported by the API.

• Documentation: Describes which kind of documentation is available for the API.

48

The comparison of these features are presented in table 4.4.

Table 4.4: Comparison of API functionalities.

Category RAP ARC dotNetRDF Sesame Jena Virtuoso

OOP Support Yes No Yes Yes Yes No
RDFS Support Partial No No No Yes No
OWL Support Partial No No No Yes No
SPARQL Support Yes Yes Yes Yes Yes Yes
Add Statements Yes Yes Yes Yes Yes Yes
Update Statements Yes Yes Yes Yes Yes Yes
Delete Statements Yes Yes Yes Yes Yes Yes
Search Statements Yes Yes Yes Yes Yes Yes
Modifiable Yes Yes Yes Yes Yes No
Import Formats 6 14 8 7 5 4
Export Formats 5 11 7 7 5 4

Documentation
Web,

Web Web
Web, Web,

Web
PHPDoc JavaDoc JavaDoc

As illustrated in table 4.4, all APIs support the basic functionalities of adding, up-
dating, deleting and searching RDF statements. All APIs support a variety of different
import and export formats. The following formats are supported by all APIs:

• N-Triples,

• RDF/JSON,

• RDF/XML and

• Turtle.

Further, some APIs support other in-official formats such as CSV (Comma-Separated

Values) [39] or RSS (Really Simple Syndication) [9].

As a positive, all APIs support the SPARQL query language. All APIs provide a
documentation on the Web. some even provide a more comprehensive documentation
of the API by using documentation generators such as PHPDoc or JavaDoc.

49

Unfortunately, most APIs don’t provide extra functions for processing RDFS or
OWL data. Therefore, users depend on the standard RDF functions. This sometimes
requires workarounds and produces problems with parsers and serializers.

Also in the comparison of functionality, we considered Jena as the clear winner.
It provides everything a user needs while working with RDF and more. Even though
it supports less import/export formats than most other APIs, it provides all important
ones. Considering the high level of usability and the great support for all important
functionalities, we think that Jena is the best RDF API that is available at the moment.
Therefore, we aim to enable PHP users to have an API with the same level of usability
as Jena.

50

CHAPTER 5
Implementation of the ERP prototype

This chapter gives a detailed introduction to the prototype of the Easy RDF for PHP

API (ERP). The ERP API represents the practical part of this work and considers all the
gathered information of the prior chapters.

First of all, we introduce our motivations that leaded to the development of the ERP
API. Then we list and explain the API requirements, followed by a description of the
major influences for the development of the ERP API. Next, we give an overview of the
API’s architecture and describe its functionality and usage.

Further, this chapter serves as a documentation of the ERP API and provides devel-
opers with all information necessary to include the ERP API in their projects.

5.1 Motivations for developing the ERP API

The idea for creating a RDF API was born during a seminar work on the technical
university of Vienna in 2010. The task was to extend a PHP-based project manage-
ment system to store RDF-based information and enable reasoning of the data using
SPARQL.

Our first approach to this problem was to use the RAP API. Unfortunately, the RAP
API was already outdated and various errors appeared during its usage. On beginning
we tried to fix them and repair the API. After some time we reached a point, where we

51

created so many helper functions that the API was practically useless. Anyway, at this
point we realized that there are no usable options for RDF APIs in the PHP language.

We also tried the ARC API, but, since the ARC is badly documented and we already
had our own functions for processing RDF resources, we didn’t use it for RDF. Anyway,
we decided to use ARC to set up a SPARQL Endpoint, which we included within the
application.

During this project the idea to develop a new, easy to use and powerful API evolved.
Considering that PHP is one of the most used programming languages (ranked 4th after
C, Java and C++) for Web development, it is necessary to provide a usable interface and
thus support the vision of the Semantic Web.

Besides that, we want to introduce new concepts to PHP APIs to inspire the future
development of RDF APIs for PHP. The ERP API shows that even complex manipu-
lation of RDF documents can be achieved by using a simple and easy to use interface.
This work and the API should inspire developers of APIs to simplify their APIs, so that
also inexperienced users can include RDF within their projects.

Till now, the inclusion of sematic technologies within Web applications seemed like
a lot of extra effort without any real benefit. Even though we can’t increase the benefit
for developers, the ERP API aims to minimize extra work by increasing efficiency. Only
when the usage of semantic technologies increases, developers will be able to gain the
benefits they expect.

5.2 Objectives and requirements for developing the
ERP API

To achieve an API that is easy to use as well as powerful, we created a list of objec-
tives. These objectives aimed to create an API that can outperform its concurrence and
inspire other API developers to rethink their, often too complex, interfaces. We gath-
ered this list of objectives during the evaluation and comparison of the APIs. Further,
since we aim for high usability, we also considered the quality in use model for defining
some objectives such as effectiveness and efficiency. Our main objectives are presented
below:

52

• Effectiveness: Create an API that achieves the desired effect for the user.

• Efficiency: Achieve high efficiency by allowing easy inclusion and handling.
Also use common names for functions that are also present in other APIs, so that
a switch to ERP can be processed relative easily.

• Simple and complex: Since we want to provide an easy to use and powerful API,
we want to provide simple usage for inexperienced users as well as enable more
complex usage for experienced users.

• Unit tests and code coverage: Perform tests on all classes and achieve a high
code coverage (percentage of tested code). This allows users to perform adap-
tions to the API without using the functionality, since all changes can be tested
immediately.

• Fast: Design the API in the way that it doesn’t reduce the speed of the main
application. The best way to achieve a usable performance is to heavily rely on
available PHP functions. They are normally implemented more efficient than own
functions.

• Formats: Allow a variety of common import and export formats. The comparison
of functionalities in chapter 4 pointed out that RDF/XML, RDF/JSON, Turtle and
N-Triple are most important.

• Natural implementation: Design the API in the way that the used paradigms are
natural to PHP. Every programming language has its own syntax. Therefore, the
API needs to be naturally implementable for every PHP user.

• Fast and easy inclusion: Allow developers to include the API in a time-saving
way by minimizing the required lines of code.

Using these objectives and the results of the comparison of chapter 4, we were able
to define a list of requirements for the development of the ERP API.

Most of the requirements are oriented on the best practice methods of program-
ming (for instance: loose coupling, unit testing, interfaces, ...)1. Other requirements are

1For more info’s on best practice for programming see [47]

53

simply due to the required functionalities or result of the findings of the comparison
in chapter 4. And the last part of the requirements are simply due to our experiences
with previous projects. In the following, the architectural, functional and non-functional
requirements are listed.

Architectural requirements

• The ERP API is implemented by using the PHP programming language.

• RDF manipulation without depending on other technologies like, for exam-
ple, MySQL.

• Provide a modular architecture to allow exchangeability of single modules.

• Coupling between classes should be minimal.

• Define often used classes by interfaces.

• Reuse code by using inheritance.

Functional requirements

• Provide static functions for performing various checks on objects and param-
eters (for example: checking instances, value ranges or regular expressions).

• Creation of a RDF graph/model.

• Enable retrieval of model size (number of statements in the model).

• Creation and manipulation of nodes objects (Resource node, Literal node,
Blank node).

• Creation of nodes by using static API functions to increase efficiency.

• Creation of nodes by the model. If the model creates a node it is done by a
name parameter and by using the predefined base namespace.

• Creation of resource nodes by allowing either full URIs or a combination of
namespace and name parameters.

• Creation and manipulation of plain and named literals.

• Predefine important constants (standard URIs, namespaces, datatypes, ...).

• Creation and manipulation of statements containing three nodes.

54

• Enable the user to create all kinds of RDF statements including RDFS (for
example: Concepts, RDFS properties) and OWL.

• Statement-centric way of working with the API. To allow the creation and
manipulation of statements within the model (objects, interfaces, classes).

• Storing all statements as a RDF model.

• Add statements to an RDF model.

• Update statements within the RDF model.

• Delete statements within the RDF model.

• Searching statements within the RDF model.

• Resource-centric way of working with the API. Allow the creation of re-
sources as an object with properties as well as the manipulation of these
objects. Therefore, enable the user to use modern programming paradigms.

• Storing all resources and their properties as a RDF model.

• Add resources to a RDF model. Resources without properties are not al-
lowed.

• Update resources within the RDF model.

• Delete resources within the RDF model.

• Searching resources within the RDF model.

• Retrieve a list of all statements/resources.

• Transform a list of statements to a list of resources.

• Transform a list of resources to a list of statements.

• Provide the following serializers and parsers: N-Triple, Turtle, RDF/JSON,
RDF/XML.

• Enable serializers to return a string representation of the model or save it to
a file.

• Provide access to parsers and serializers within the model class as well as by
static getter functions of the API.

• Retrieve a string representation of the model by using different formats (Nt,
Turtle, JSON, XML).

55

• Format a list of statements/resources to a string in different formats (Nt,
Turtle, JSON, XML).

• Enable simple inclusion of the API by providing an Autoloader class that
loads all necessary classes for using the API.

Non-functional requirements

• The source code should be formatted according to the PHP guidelines.

• Perform parameter input checks for every function to prevent errors and
wrong usage.

• Provide comments for functions and global variables.

• Use PHPDoc comments and prefixes to enable the use of PHPDoc.

• Use static code analysis tools to scan the code for unwanted antipatterns.

• Provide maximum possible code coverage.

• After each development iteration, it is important to ensure that the existing
tests pass.

• Make the source code easy to scan by using commonly known patterns and
formats.

• Create compact but expressive source code.

• Comment only what the source code can’t say.

• Make the source code readable by using spacing, both horizontal and verti-
cal.

• Make the source code self-documenting by choosing descriptive (but rela-
tively short) names for objects, types, functions, etc.

• Avoid using modifiable global variables.

• Each variable should have the smallest possible scope. For example, a local
object can be declared right before its first usage.

• Make functions short and focused on a single task.

• Functions should have few parameters (four is a good upper bound).

56

• Try to get some developers to support the API by sharing it on a social
coding platform.

• Minimize necessary configurations.

These are the requirements that we defined for the development of the ERP API.
Further, the functional requirements can be seen as a list of all the features of the ERP
API. A few examples of the usage of the API and how these functional requirements are
implemented are given later this chapter in section 5.5.

5.3 Influences from other APIs for developing the ERP
API

The comparison of the APIs in chapter 4 visualized that there are ways of implementing
an API to achieve high usability without resigning powerful functionality. The best
example for this is the Jena API for Java. Jena nearly achieved the top ranking in all
three characteristics by providing a simple, but powerful way of implementation.

Therefore, Jena became one of the most influencing APIs for the development of the
ERP API. We tried to utilize some of Jena’s concepts (for example, the resource-centric
approach of the ERP API is similar to Jena’s implementation approach) and introduce
them to PHP.

Unfortunately, it was not as easy as expected. Since concepts from other APIs are
often possible only due to the corresponding programming language, it is sometimes
hard to introduce them to another programming language. Even though PHP does not
support some programming paradigms in the same way as Java, we managed to transfer
a few of Jena’s concepts into our API.

Other influences were the ARC and RAP APIs. ARC is a powerful API, allowing
the user to perform complex tasks like, for example, creating a SPARQL store. Since
we also want to enable our users to perform such tasks, we included some of ARCs
functionalities. ARC mostly influenced us for the creation of the parsers and serializers.

RAP allows inexperienced users to use RDF by providing a simple way of working
with statements. RAP provides various ways of creating RDF models and thus it is
probably the most flexible API from all APIs that we compared. RAP was a great

57

inspiration for the statements-centric approach of the ERP API and, therefore, it also
had some influence on the ERP API.

5.4 Architecture of the ERP API

The ERP API is a powerful API that allows creation, storage and manipulation of RDF
based documents. This includes RDF as well as concepts from RDFS and OWL. Since
RDFS and OWL concepts can be seen as special URIs, basically all concepts are sup-
ported. Anyway, as discussed later in this chapter, to use these concepts the user still
has to use some workarounds.

The prototype of the API provides a modular, easy understandable and extendable
platform for developers. It can be easily included within existing or new Web projects
and allows two ways of interaction. For inexperienced users there is a simple statement-
centric approach and for experienced users we provide a resource-centric approach.

The statement-centric approach allows users to create statements and add them to
the model. On the other hand, the resource-centric approach enables the user to create
and handle the data using more complex object oriented structures. Both approaches are
explained in more detail later this chapter.

The latest version of the API, published on September 1st, 2011, consists of 30 PHP
files (50 including PHPUnit test files). These files contain 1.937 lines of code (3.511
with tests). Further, the API contains 2.038 lines of comments that allow the users to
gain a better understanding of the API. The API, including PHPDoc, is available at
its project Web site at http://github.com/m0mo/ERPAPI. The API is imple-
mented by using the latest version of PHP, which is 5.3.8.

This section deals with the technical implementation of the ERP API and gives an
introduction to its classes and packages.

5.4.1 Classes of the ERP API

To illustrate the architecture of the API, figure 5.1 presents a simplified version of the
ERP API class diagram.

58

http://github.com/m0mo/ERPAPI

Figure 5.1: Simplified class diagram of the ERP API.

As highlighted, the whole API is centered around the Model class. An object of
this class represents an in-memory RDF model (the model is stored in the computer’s
memory) and provides various functions for processing its statements and resources.

A Model object contains all the RDF data as a list of statements. Each statement
consists of three nodes. We distinguish between three kinds of nodes in our API:

Literal Node: A literal node is represented by a LiteralNode object. This class sup-
ports both kinds of available literals in RDF, namely, plain or typed literals.

Resource Node: A resource node basically represents an object or a Web resource. It
is implemented by the Resource class and identified by an URI.

Blank Node: A blank node is a node that is neither a resource or a literal. In RDF’s
abstract syntax, a blank node is defined as an unique node that can be used in
one or more RDF statements, but has no intrinsic name [51]. Blank nodes within
the ERP API are represented by the BlankNode class. To use more blank nodes
within the same graph the API allows to identify them by an ID.

The hierarchical structure of the nodes is highlighted in figure 5.2.

59

Figure 5.2: Class-diagram of the nodes of the ERP API.

Since resources described by RDFS or OWL can be represented as RDF statements,
the API has no problem in processing and storing such kind of data. Therefore, these
three nodes enable the user to create all kinds of RDF based documents. A more detailed
description on RDFS and OWL is presented in section 5.5.6. Further, the Model class
allows parsing (importing) and serializing (exporting) the model. Parsers and serializes
as well as the supported formats are described in section 5.5.5 later this chapter.

In addition, the Model class allows to be queried by using SPARQL. More informa-
tion on the SPARQL implementation is presented in section 5.5.7.

5.4.2 Packages of the ERP API

To ensure modularity we aimed for loose coupling between the classes and packages.
The current version of the ERP API consists of six packages, namely, model, serializer,
parser, util, sparql and sparqlEngine (shown in figure 5.3).

By defining extra interfaces to describe structures of classes, they or even complete
packages can be altered or replaced by different implementations. Thus, these interfaces
also allow developers to extend the API. For example, all new parsers and serializers that
include the corresponding interfaces will work with the API.

In order to use the ERP API, users have to simply include the API.php file within
their projects. This file requires all necessary packages and classes and, therefore, allows

60

Figure 5.3: Package diagram of the ERP API

general usage. This includes the model package as well as all helper classes of the util

package. The model package contains all node classes as well as the Statement and
Model class. All other packages or classes are only included if they are needed. This
allows the API to be more memory efficient.

We already gave a brief introduction to the packages model, serializer, parser and
sparql corresponding to the classes presented prior, the packages util and sparqlEngine

were not explained till now.

The util package provides useful static functions for the users and the API. Some
examples for such functions are functions for checking the format of URIs or if an
object is of a specific instance.

The sparqlEngine package is the SPARQL implementation of the ERP API. It is
implemented as a plug-in and defined by the ISparqlEngine interface. By using this
interface, it is also possible to use different SPARQL engines.

61

5.4.3 Advantages of PHPDoc

To ease the use of the API, all functions and global variables of the ERP API are de-
scribed by using PHPDoc. PHPDoc extracts comments of functions and classes and
generates a documentation of all available functions. Development environments take
use of such comments and present the user a description of the available functions, their
parameters and return values. This allows the users of the ERP API to achieve a better
understanding of the API and, therefore, use it more efficiently. In addition, PHPDoc
allows the definition of datatypes, which is not supported by PHP by default [15]. An
example of the benefits of adding PHPDoc is presented in figure 5.4.

Figure 5.4: Example of the benefits of using PHPDoc within the ERP API.

62

5.5 Usage of the ERP API

As we discussed, it is easy to include the ERP API within new or existing projects. The
easiest way is to include the API.php using the code require_once ’path/to/API.php’;,
which will load all necessary classes. The only setting a user has to configure (depend-
ing on the system) is the inclusion path, which is located in /util/Constants.php. After
that, the API is fully functional and ready to use. Further, the API provides static helper
functions for creating all kinds of objects (for instance, line $model = ERP::getModel();

creates a Model object). Therefore, the user can fully concentrate on the task rather than
learn the API’s architecture.

5.5.1 Statement-centric usage

As mentioned prior, the API provides two approaches for storing data: a statement-
centric and a resource-centric approach. The statement-centric approach is similar to
the approach from RAP. The user simply creates a few Statement objects and sequently
adds them to the model. Code 5.1 illustrates the usage of this method.

Code 5.1: Example of using the statement-centric approach of the ERP API.

1 <?php
2 require_once ’path/to/API.php’;
3
4 $model = ERP::getModel(); // create a new model using ERP function
5
6 //Create statements
7 $statement1 = new Statement(new Resource(NS . "e0625287"),
8 new Resource(NS . "firstName"),
9 new LiteralNode("Alexander"));

10 $statement2 = new Statement(new Resource(NS . "e0625287"),
11 new Resource(NS . "lastName"),
12 new LiteralNode("Aigner"));
13 // ...
14
15 // Add statements to the model
16 $model->add($statement1);
17 $model->add($statement2);
18 // ...
19 ?>

Further, line two of code 5.1 presents a common use of the static helper functions of
the ERP API by creating a Model object using the code $model = ERP::getModel();.

63

5.5.2 Resource-centric usage

For more experienced users the ERP API provides the resource-centric approach. Here,
the user creates a Resource or BlankNode object, which can be seen as the subject
of a statement. These objects provide a function to add properties. Each property
consist of two parameters: a predicate and an object node, for example, $subject-

>addProperty($predicate, $object);.

To increase efficiency we implemented "chain-adding". Chain-adding allows the
user to minimize the written code by adding more properties in the same line. For ex-
ample, the code $subject->addProperty($p1, $o1)->addProperty($p2, $o2); adds two
properties to the $subject. As mentioned before, this concept was adopted from a similar
concept of Jena. The ERP API is the only RDF API for PHP that enables this possibility.
Example of the resource-centric approach with and without chain-adding is presented
in code snippet 5.2.

Code 5.2: Example of using the resource-centric approach of the ERP API.

1 <?php
2 require_once ’path/to/API.php’;
3
4 $model = ERP::getModel(); // create a new model using ERP function
5 $model->addBaseNamespace(PREFIX, NS); // setting a base NS
6
7 // Without chain-adding
8 $res = $model->newResource("e0625287");
9 $res->addProperty($model->newResource("firstName"),

10 new LiteralNode("Alexander"));
11 $res->addProperty($model->newResource("lastName"),
12 new LiteralNode("Aigner"));
13
14 // With chain-adding
15 $res = $model->newResource("e0625287")
16 ->addProperty($model->newResource("firstName"),
17 new LiteralNode("Alexander"))
18 ->addProperty($model->newResource("lastName"),
19 new LiteralNode("Aigner"));
20
21 // Add to model
22 $model->add($res);
23 ?>

Code 5.2 also shows usage of $model as node creator. The benefits from using this
way of creating nodes is that the user can define a base namespace and all nodes that are
created by the $model are created within this namespace.

64

For example, if the constant NS is defined as http://example.org/, the code $model-

>newResource("firstName") creates a new resource object, which is identified by the
URI http://example.org/firstName. This is due the definition of a base namespace by
using the code $model->addBaseNamespace(PREFIX, NS); in line five.

As we can see, such a definition is particularly useful, especially, if most nodes
within a model belong to the same namespace. In code 5.1 we create the nodes by
ourselves and have to assign a namespace by hand. Also here we used the namespace
saved in the constant NS. It is obvious that for big RDF models it is probably more
efficient to use the base namespace method.

Besides defining a base namespace, it is also recommended to define all used names-
paces by adding them to the model using the line $model->addNamespace($prefix,

$ns);. This ensures correct serialization and execution of SPARQL queries.

To add a statement or a resource we use the $model->add($object, $bool) function
of the Model class. By default, this function allows to add duplicate entries. Therefore,
it is not necessary to pass the second parameter. Anyway, it is possible to disable this by
defining $bool = false;. It is important to note, that this method disables double entries
only for a single addition. If the user wants to forbid double additions globally, he/she
can disable it in the /util/Config.php file.

5.5.3 Edit statements or resources of a model

Another important feature is to allow resources or statements to be edited. For this
reason, the Model class provides a simple function called edit(). An example for editing
a Statement object is illustrated in code 5.3.

Code 5.3: Example of editing statements using the ERP API.

1 <?php
2 require_once ’path/to/API.php’;
3 // create or load a model, define a statement, e.g., $oldStatement
4
5 // Add to model
6 $model->add($oldStatement);
7
8 // modify statement
9 $model->edit($oldStatement, $newStatement);

10 ?>

65

As shown, the function edit() takes two parameters, the original statement and the
edited one. For the resource-centric approach, the same function can be used by passing
the original and edited Resource object.

5.5.4 Search statements or resources within a model

Further, it is possible to search statements in the model. The search function contains
three parameters, namely, subject, predicate and object, and returns an array containing
all results. If a parameters is defined as NULL, it can be seen as a placeholder and
is true for all statements in the model. Since we want to enable users to further use
the resource-centric approach we added two search functions. The function $result =

$model->search($subject, $predicate, $object) merely returns a list of statements, while
the function $result = $model->searchResources($subject, $predicate, $object) returns
a list of resources with properties. Usage of the search functions is presented in code
snippet 5.4.

Code 5.4: Example of searching statements or resources in the ERP API.

1 <?php
2 require_once ’path/to/API.php’;
3
4 // create or load model
5 // create the $subject, $predicate, $object
6
7 // returns list of statements
8 $result = $model->search($subject, $predicate, $object);
9

10 // returns list of resources + properties
11 $result = $model->searchResources($subject, $predicate, $object);
12 ?>

5.5.5 Parsing and serializing models

Supported formats of the ERP API

One of our objectives was to support a variety of import and export formats. For the
prototype of the API we included parsers and serializes allowing users to import or
export RDF based documents of the following formats:

66

• RDF/XML

• N-Triple

• Turtle

• RDF/JSON

These four formats are supported by the ERP API as parsers as well as serializes.
All of these parsers and serializes implement the corresponding ISerializer or IParser
interface. Therefore, we allow easy extendability of the packages or exchange of the
implementation.

As mentioned, they don’t cover all available formats, but provide a usable foundation
for the ERP API. Further, they are the most common ones used (see the comparison of
APIs in chapter 4) by other APIs. Therefore, it is possible to import RDF documents
created with other APIs to the ERP API. To parse or serialize a model, we only need
one line of code as presented in code 5.5.

Code 5.5: Example of using ERP parsers and serializes.

1 <?php
2 require_once ’path/to/API.php’;
3
4 $model = ERP::getModel(); // create a new model using ERP function
5
6 // Parsing a file
7 // $type is one of: rdf, ntriple, turtle or json
8 $model->load($filename, $type);
9

10 // process model ...
11
12 // Serializing to a file
13 // $type is one of: rdf, ntriple, turtle or json
14 $model->save($filename, $type);
15 ?>

Both the $model->load($filename, $type); and the $model->save($filename, $type);

have two parameters. The parameter $filename simply defines the name of the file for
loading or saving the model. The second parameter, $type, is more interesting. By
default, the variable $type is set to rdf, which stands for the RDF/XML format.

67

To further illustrate the usage of parsers and serializers, we want to present the
output of our serializes using the same example as for comparing the APIs. In summary,
we created a model with one student identified by a matriculation number. Further,
information about the birthday, name and the inscribed studies are added. For a specific
study we added the studies code as well as an english and a german title. The creation
of this model (using the resource-centric approach) is shown in code 5.6.

Code 5.6: Implementation of the example model for illustrating the serializers output.

1 <?php
2 require_once ’path/to/API.php’;
3
4 $model = ERP::getModel();
5 $model->addBaseNamespace("ex", "http://example.org/");
6
7 $res = $model->newResource("e0625287")
8 ->addProperty($model->newResource("firstName"),
9 new LiteralNode("Alexander", STRING))

10 ->addProperty($model->newResource("lastName"),
11 new LiteralNode("Aigner", STRING))
12 ->addProperty($model->newResource("birthday"),
13 new LiteralNode("1986-04-28", DATE))
14 ->addProperty($model->newResource("studies"),
15 $model->newResource("businessInf")
16 ->addProperty($model->newResource("titleEN"),
17 new LiteralNode("Business Informatics", STRING, "en"))
18 ->addProperty($model->newResource("titleDE"),
19 new LiteralNode("Wirtschaftsinformatik", STRING, "de"))
20 ->addProperty($model->newResource("studyCode"),
21 new LiteralNode("E 066 925"))
22);
23
24 $model->add($res);
25 ?>

RDF/XML format

The first format we want to discuss is the RDF/XML format. RDF/XML is probably
the most important format for serializing a RDF graph. We implemented this format
by using the XML functions that are already provided by PHP. Therefore, we provide
increased speed and a solid foundation for easy extendability. The ERP API is the only
PHP API using this way of implementation for the XML parser and serializer. For
improving the parsers speed we took advantage of the XPath query engine. XPath can
be described as a query language for querying XML based documents. Using XPath, it

68

is not necessary to process every line of the document, since we can jump directly to the
nodes that are important for us. More information on XPath can be found at [56].

Using the command $model->save($filename); we serialize (save) the model into
a file, identified by the variable $filename. Since RDF/XML is the default format, we
don’t have to pass the $type variable to the save function. For all serializers counts that a
new file is created or overwritten if it already exists. This means that the ERP API (like
all other APIs that are used for writing files) need to have permissions to create files on
the local system. The content of the created file of our example model is shown in code
5.7.

Code 5.7: Example of RDF/XML code produced by the ERP API.

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:ex="http://example.org/">
4 <rdf:Description rdf:about="http://example.org/businessInf">
5 <ex:titleEN rdf:datatype="xmlns:string" xml:lang="en">
6 Business Informatics
7 </ex:titleEN>
8 <ex:titleDE rdf:datatype="xmlns:string" xml:lang="de">
9 Wirtschaftsinformatik

10 </ex:titleDE>
11 <ex:studyCode rdf:datatype="xmlns:string">
12 E 066 925
13 </ex:studyCode>
14 </rdf:Description>
15 <rdf:Description rdf:about="http://example.org/e0625287">
16 <ex:firstName rdf:datatype="xmlns:string">
17 Alexander
18 </ex:firstName>
19 <ex:lastName rdf:datatype="xmlns:#string">
20 Aigner
21 </ex:lastName>
22 <ex:birthday rdf:datatype="xmlns:date">
23 1986-04-28
24 </ex:birthday>
25 <ex:studies rdf:resource="http://example.org/businessInf"/>
26 </rdf:Description>
27 </rdf:RDF>

N-Triple format

N-Triple and Turtle are related formats, as Turtle is a superset of N-Triple. Both parsers
and serializers are implemented by using the PHP’s file writer and reader functions.

69

The N-Triple format can be seen as a list of statements. Every line contains a string
with three parts: the subject, predicate and object. These three sub-strings are separated
by a whitespace. A dot on the end of the line indicates that the statement is complete.

URIs are represented by simply enclosing them in angle brackets, for example,
<http://example.org/e0625287>. Literals are enclosed by quotation marks (for exam-
ple, "Alexander"). The datatype of the literal is added by separating the literal value by
two circumflexes and the string representation of the datatype enclosed in angle brack-
ets (for example, "Alexander"ˆˆ<string>). The language part is identified by an "at sign"
(@) and a language tag identified by two characters (for example, "Business Informat-

ics"@en) [57, 58].

To include the output of the N-Triple serializer within this work, we had to re-format
the code by adding a line break before the object string. Unfortunately, this was neces-
sary to be able to include the code in this document. By default, the strings representing
the subject, predicate and object are printed in one line. The (modified) content of the
produced output file, using the command $model->save($filename, "nt");, is presented
in code 5.8.

Code 5.8: Example of N-Triple code produced by the ERP API.

1 <http://example.org/e0625287> <http://example.org/firstName>
2 "Alexander"^^<string> .
3 <http://example.org/e0625287> <http://example.org/lastName>
4 "Aigner"^^<string> .
5 <http://example.org/e0625287> <http://example.org/birthday>
6 "1986-04-28"^^<date> .
7 <http://example.org/businessInf> <http://example.org/titleEN>
8 "Business Informatics"@en^^<string> .
9 <http://example.org/businessInf> <http://example.org/titleDE>

10 "Wirtschaftsinformatik"@de^^<string> .
11 <http://example.org/businessInf> <http://example.org/studyCode>
12 "E 066 925"^^<string> .
13 <http://example.org/e0625287> <http://example.org/studies>
14 <http://example.org/businessInf> .

Turtle format

As mentioned prior, Turtle is a superset of N-Triple. It extends N-Triple by adding
the support of using prefixes. Prefixes are defined on the beginning of each document
by using the term @prefix, for example, @prefix ex:<http://example.org/>. The de-

70

fined prefix can be used to abbreviate the full namespace (like in XML) and, therefore,
shorten the output code. Generally, Turtle has the same syntax as N-Triple. It also rep-
resents a RDF model as a list of statements, separating subject, predicate and object by
whitespaces and a dot on the end of each line [63].

Since we can use prefixes, there is a difference in the representation of URIs. As
mentioned, they are abbreviated using the pre-defined prefixes. Further, if using a pre-
fix, they don’t need to be enclosed within angle brackets. Anyway, if an URI does not
fit a pre-defined prefix, it is saved using the N-Triple notation (full URI within angle
brackets) [63]. To pursue our example, the command $model->save($filename, "tur-

tle"); creates a turtle document, which’s content is presented in code 5.9.

Code 5.9: Example of Turtle code produced by the ERP API.

1 @prefix ex:<http://example.org/> .
2 ex:e0625287 ex:firstName "Alexander"^^<string> .
3 ex:e0625287 ex:lastName "Aigner"^^<string> .
4 ex:e0625287 ex:birthday "1986-04-28"^^<date> .
5 ex:businessInf ex:titleEN "Business Informatics"@en^^<string> .
6 ex:businessInf ex:titleDE "Wirtschaftsinformatik"@de^^<string> .
7 ex:businessInf ex:studyCode "E 066 925"^^<string> .
8 ex:e0625287 ex:studies ex:businessInf .

RDF/JSON format

The JavaScript Object Notation (JSON) is another important format. JSON’s primary
use is to transmit data between a server and Web application, serving as an alternative
to XML [12, 14]. JSON is built on two structures [12, 14]:

1. A collection of name/value pairs. This is often realized as, for example, an object.

2. An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

While the ERP serializer is implemented as string serialization, the ERP parser uses
the build in PHP JSON decoder. Therefore, we achieve increased speed and provide
further reliability.

71

Code 5.10: Example of RDF JSON code produced by the ERP API.

1 { "http:\/\/example.org\/businessInf":
2 {
3 "http:\/\/example.org\/studyCode":[
4 {
5 "value":"E 066 925",
6 "type":"literal",
7 "datatype":"string"
8 }],
9 "http:\/\/example.org\/titleEN":[

10 {
11 "value":"Business Informatics",
12 "type":"literal",
13 "datatype":"string",
14 "language":"en"
15 }],
16 ...
17 },
18 "http:\/\/example.org\/e0625287":
19 {
20 "http:\/\/example.org\/birthday":[
21 {
22 "value":"1986-04-28",
23 "type":"literal",
24 "datatype":"date"
25 }],
26 "http:\/\/example.org\/firstname":[
27 {
28 "value":"Alexander",
29 "type":"literal",
30 "datatype":"string"
31 }]
32 ...,
33 "http:\/\/example.org\/studies":[
34 {
35 "value":"http:\/\/example.org\/businessInf",
36 "type":"uri"
37 }]
38 }
39 }

Unfortunately, since the code is very space taking, we had to shorten the output code
of our JSON serializer. However, the concept of JSON should be still understandable.
The shortened RDF/JSON output, for our example, is presented in code 5.10.

As we can see in the JSON output, the ERP serializer also provides character escap-
ing for the URIs and literals.

72

5.5.6 RDFS and OWL

As mentioned prior, the ERP API supports RDFS and OWL constructs. Since they can
be described by using RDF triples, it is possible to simply create a Statement object to
define RDFS or OWL constructs. To increase efficiency, we provide predefined con-
stants for namespaces and prefixes as well as for important URIs such as owl:Class,
owl:subClass or rdfs:Comment.

As we presented prior, it is easy to add a statement to the model. We simply have to
use the node and statement objects of the ERP API and create elements using the right
URIs. For instance, code 5.11 illustrates the creation of a statement for describing an
OWL class called Person.

Code 5.11: Example of creating an OWL class within the ERP API.

1 <?php
2 $s = new Statements(
3 new BlankNode("Person"),
4 new Resource(RDF_TYPE),
5 new Resource(OWL_CLASS)
6);
7 ?>

If we add this statement to a model, we created our first OWL statement. As usual,
other statements can simply refer to this statement. Code 5.12 illustrates, how we can
simply define the sutdent of the previous example to be an instance of the Person class.

Code 5.12: Example of using an OWL statement within the ERP API.

1 <?php
2 $r = $model->newResource("e0625287")
3 ->addProperty(
4 new Resource(RDF_TYPE),
5 new BlankNode("person)
6);
7 ?>

Alike this example, we can also define RDFS and other OWL resources for the
model. Using the same way as presented in code 5.12 it is also possible to define re-
lationships such as rdfs:subClassOf (for example, the line $r->addProperty(new Re-

73

source(RDFS_SUBCLASSOF), new BlankNode("animal")) defines the class person to
be a sub-class of the animal class).

Further, since these constructs are creating using the statement-centric or resource-
centric approach, they can be simply edited, removed or searched by using the same
functions as normal statements or resources. For instance, the command $result =

$model->search(NULL, NULL, OWL_CLASS); returns a list of all OWL classes. An
example for editing a class is illustrated in code 5.13.

Code 5.13: Example of editing an OWL class using the ERP API.

1 <?php
2 require_once ’path/to/API.php’;
3
4 // create or load a model
5 // define a statement, e.g., $oldStatement
6
7 $oldClass = new Statements(
8 new BlankNode("Person"),
9 new Resource(RDF_TYPE),

10 new Resource(OWL_CLASS)
11);
12
13 $newClass = new Statements(
14 new BlankNode("PersonNew"),
15 new Resource(RDF_TYPE),
16 new Resource(OWL_CLASS)
17);
18
19 // modify statement
20 $model->edit($oldClass, $newClass);
21 ?>

Serializers such as Turtle or N-Triple, which simply use the URI strings for describ-
ing a triple, have no problem to serialize statements as defined in code 5.14. Anyway,
other serializers and parsers may need further adaptation. For instance, the RDF/XML
serializer. By default, subject nodes are described using a rdf:Description XML node.
An example of this serialization of the previously defined OWL class is illustrated in
code 5.14.

Even though the fragment in code 5.14 is a valid description of an OWL class, it
is not what more experienced users are expecting. For the definition of an OWL class,
experienced users expect output such as <owl:Class rdf:about="#person" />.

Anyway, The RDF fragment of code 5.14 presents the the raw form of the RDF

74

Code 5.14: Example of a default OWL class created by the RDF/XML serializer of the ERP
API.

1 <rdf:Description rdf:ID="person">
2 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class">
3 </rdf:Description>

serialization into XML for such a statement. In terms of RDF’s information model, it
expresses the same semantics as the compressed form <owl:Class rdf:about="#person"

/>. Therefore, the two code fragments are equivalent.

However, <owl:Class rdf:about="#person" /> is considerably easier to read and
tends to be the form most people come across when reading OWL. Therefore, we im-
plemented a variable called $type that can be used to specify the name of the subject
node for the RDF/XML serialization. For instance, using the constant OWL_CLASS, we
can define the type of a subject $r by using the function $r->setType(OWL_CLASS).

As expected, the default type is rdf:Description or, in terms of available constants,
RDF_DESCRIPTION. If types are set correctly, it is possible to create a more defined
serialization output. For example, by defining the type of the subject (using the com-
mand $r->setType(OWL_CLASS)) we achieve a serialization of the form <owl:Class

rdf:about="#person" />.

Anyway, we still consider this implementation as a "workaround". Future devel-
opment for the ERP API will contain the implementation of special classes and ob-
ject (for instance, an OWL class could be defined by using the code $c = new OWL-

Class("person") to further ease the creation of OWL and RDFS constructs. Another idea
how to refine the use of OWL and RDFS is to extend the API by a further RDF/XML
serializer to provide both, the raw RDF output as well as a compressed output.

5.5.7 Perform SPARQL queries

SPARQL is an important part of an API, because it enables the user to perform complex
reasoning tasks. Therefore, it was important to provide a SPARQL implementation,
even though the development time was restricted.

To test the modularity of the ERP API, we implemented the SPARQL engine as a

75

module for the ERP API by using the ISparqlEngine interface. By sending a SPARQL
query to the engine, the query string is first parsed to a SPARQL query object. This
query object contains all necessary information and is used by the SPARQL engine to
create a pattern for efficient querying.

The pattern is build according to this simple method: First, we check all elements of
the WHERE block of the query. Next, the algorithm checks if some of this statements are
connected (for example, the object of one statement is the subject of another one). If that
is the case, the algorithm creates a tree, where the outermost "node" is the most general
query and the innermost "node" is the most specific query. This algorithm expects, that
statements, which are related to other statements by an object-subject connection, are
more general. On the other hand, statements that are not related to others over their
objects most likely contain actual data (no variables). The created pattern is then used
to query the RDF model starting with the innermost queries. Further, if there are more
possible choices of queries to start, the one with the least variables is used first.

The ERP SPARQL engine allows two return formats. By default, the engine returns
the data as an array containing string values, commonly known by other SPARQL im-
plementations. Since we wanted to go a step further, we decided to allow the API to
return actual objects by providing an optional parameter. Therefore, users of the ERP
API are able to directly process the returned information rather than simply presenting
it to the user.

For both formats, the engine returns an array containing three elements: query, time
and table.

1. The query element is the original query as a string.

2. The time element contains the time the query needed for execution. This can be
used to tune the query for a better performance.

3. The table entry is the entry that contains the actual returned data in form of a two
dimensional array (either strings or objects).

An example of using the SPARQL engine is shown in code snippet 5.15.

76

Code 5.15: Example of querying the model using SPARQL.

1 <?php
2 require_once ’path/to/API.php’;
3
4 // create or load the model ...
5
6 // performing a query against the model
7 // returns a array containing strings
8 $model->sparqlQuery($query);
9

10 // performing a query against the model
11 // returns a array containing objects
12 $model->sparqlQuery($query, "objectarray");
13 ?>

5.6 Tests of the ERP API

To ensure the functionality of the ERP API, we performed a number of tests using
PHPUnit [3] and by implementing it into two existing Web applications, namely, www.
boogiehasen.com and www.dancebook.at.

In overall, we implemented 165 unit test cases, which perform 437 assertions. Using
all these test cases, we tested all classes that belong to the ERP API.

As mentioned prior, one of our objectives was to achieve high code coverage. We
managed to achieve 100% code coverage, which means that our tests executed all of the
1.937 lines of code at least once. Even though we can’t ensure that there are no errors
left, we can provide a high level of correctness of our API. Further, these tests present
all possibilities of the ERP API and developers can use them as examples.

To perform further tests and collect data for the evaluation and comparison of the
ERP API, we included it within two existing web-projects:

1. www.boogiehasen.com: This is a Web site of a successful Austrian Boogie
Woogie dancing Club. The Web site is developed mainly by using PHP and Java
Script. Most information is stored in a MySQL databases. Further, they maintain
an admin-area, containing a list of all members. in addition, they store a list of
all couples, danced competitions and results. The ERP API was included within
the couple system and thus saving the couples and their competition results as a
RDF document. By simply adding four lines of code (include the API, load the

77

www.boogiehasen.com
www.boogiehasen.com
www.dancebook.at
www.boogiehasen.com

model, add the data and save the model), we were able to achieve the inclusion of
the API within this Web application. We included it in the way that, if new data
was added, it would be automatically be saved within an RDF model. We further
performed some simple SPARQL queries and searches. We also discovered that
there is still potential for increasing the speed of SPARQL execution. This can be
achieved by improving the pattern used for the execution.

2. www.dancebook.at: Dancebook is a growing social network for dancers in
Europe. It maintains information about member profiles, events and more. By
September 2011 dancebook lists 389 members and needs to process a vast amount
of information. Together with the developer of dancebook, we included the ERP
API within the member storage. Also here we included it in the way that new
data was automatically added to a RDF model. The target was to test the API
with a huge amount of data. Even though the ERP API is still in an early phase
of development, it performed quite well in processing the information and didn’t
decrease the speed of the Web application significantly. For security reasons, we
didn’t process or save any usernames or passwords.

For both Web applications, we decided to save the data using the RDF/XML format.
Further, we exported the model using other formats, but the RDF/XML format was the
most convenient for the Web application’s developers.

To include data that was already saved, we had to write a small PHP script, which
iterates through the data and transforms it into a RDF model. We had to create such
script for both Web applications.

In overall, the ERP API performed quite well if we consider the current level of its
development. Even though the API works as intended, we are aware that there is still
potential for improving the API.

78

www.dancebook.at

CHAPTER 6
Comparison between ERP and ARC

This chapter outlines a final comparison between the ARC and ERP APIs. As mentioned
prior, the ARC API is the only PHP API that is still in development. Therefore, it
presents the only future proof option for developers, who want to use RDF within their
projects.

This means that ARC marks the only concurrence for the ERP API. Thus, we think
that it is important to create this comparison. It allows us to determine which fields it
can still improve or where the ERP API is performing better.

6.1 Evaluation of ERP and ARC

We evaluated the ERP API based on the same evaluation model as used in chapter 4.
Thus, we could reuse the evaluation results of the ARC API. Further, then both APIs
are evaluated according to the same evaluation method and can be compared in all the
previously defined characteristics. Therefore, we can also draw a more comprehensive
comparison between the evaluation results of the ERP API and the results of chapter 4.
The results of the evaluations of the ERP and the ARC APIs are presented in table 6.1.

79

Table 6.1: Results of the evaluation of the ARC and ERP APIs

Category ARC ERP

Usability 75 95
Effectiveness 100 100
Efficiency 60 100
Satisfaction 65 85

Likability 60 100
Trust 80 60
Pleasure 60 80
Comfort 60 100

Flexibility 90 70
Context Conformity 100 100
Context Extendibility 80 40
Accessibility - -

Safety 80 60
Commercial Harm 80 60
Operator Health - -
Public Health - -
Environmental Harm - -

6.2 Comparison of ERP and ARC

As we expected, the ARC API achieved better results in the characteristics flexibility
and safety. As discussed prior, these characteristics raise as the API matures.

In the flexibility characteristic, the ERP API achieved 70 points. Since the ERP
API is still in an early state of development, it is clear that the ARC API and its plug-
ins present a more extendable API. Anyway, the ERP API provides good documented
source code and usable interfaces. Thus, it allows developers to relatively easy extend
its codebase. Further, the ERP API allows a flexible way of handling RDF data and
enables users to take advantage of two different approaches to work with RDF models.
The ERP API also provides a PHPDoc, which allows to get a better understanding of
the functions and therefore how to use them more intelligent.

Also safety, defined by the characteristic commercial harm, is ranked lower than
ARC. We previous defined commercial harm as the time it would take to update an API

80

to run on an updated system (for example, a new PHP version). Since ARC, nowadays,
is developed by more people, the risk is relatively low. Anyway, the plug-ins for ARC
don’t provide the same reliability. Further, the API wasn’t updated for quite a while,
therefore, leading to a value of 80 points. In addition, ARC does not include any test
cases that allow users to test the correctness of the API. The ERP API, on the other
hand, presents higher risk due to low support by other developers. Since the ERP API
is new and unknown in compare to ARC, the risk lowers as the API gets more popular
and supported. In addition, the ERP API includes various PHPUnit test cases that make
it easier to find errors and thus reduce the risk. Further, it is developed using the latest
version of PHP and thus lowering the risk of errors in future PHP versions. Therefore,
the ERP API achieved 60 points in the safety characteristic.

In the last characteristic, usability, the ERP API reached more points then the ARC
API, which happens due to various reasons.

First, the use of PHPDoc. While ARC has an external documentation it does not
use the power of PHPDoc. As mentioned above, by using PHPDoc the user can see a
short description of all classes as well as their functions, which allows them to be used
more effective. Since ARC does not use such documentation, most of its functions are
undocumented. Therefore, the user often has no idea about the effect of a function as
well as which parameter datatypes are required or what is the return value. Further, this
makes it hard to describe all functionalities of the ARC API, since the documentation is
rather spare.

The second reason is the use of unit tests. Unfortunately, the ARC API does not
include test cases or examples. The only source of information is the spare documenta-
tion. The documentation provides enough information for setting up the general usage,
but most of the functions are not documented. Therefore, it is hard to efficiently use the
API, even it has more functionalities than the ERP API.

Third, ARC does not enable its users to take advantage of object-oriented program-
ming paradigms. While the ERP API allows the creation of Node, Statement or Model
objects to handle the data, ARC goes a different direction. It stores most of the data in
multi-dimensional arrays. This approach is not as bad, but since most developers are
already common by using objects, it is rather uncomfortable. For example, if we want
to create a simple statement, we have to create arrays within arrays and fill them with

81

URIs by hand. Since PHP is relatively flexible with the creation of arrays (in compare
to, for example, Java), it is easy to make mistakes on filling the arrays. The ERP API has
various predefined constants for standard namespaces and prefixes, which is not avail-
able in the ARC API. Therefore, all URIs or namespaces have to be written as strings
by the user. Functions such as adding a base namespace are not supported. Since ARC
stores the data in arrays, it does not provide any helper functions for creating important
objects. Thus, the users have to deal with the array structures themselves.

The fourth reason is the relatively complex setup of the API. Even though the setup
is described in the documentation, it is not a common way of setting up an API for PHP.
Mostly, PHP applications provide a configuration file where the user can find predefined
variables that need to be changed according to the users needs. A common example is to
define the MySQL username and password in the config file. Also for this the ARC API
relies on arrays. The configuration of the API is performed by calling an API function
and submitting an array of settings. Unfortunately, the possible settings are not well
described and it is often not clear what they mean.

On the positive side, the SPARQL implementation of the ARC API is probably the
API’s most powerful functionality. It is even possible to set up a remote SPARQL store
for querying the RDF document. The SPARQL implementation of the ARC API is
very powerful and basically provides all possibilities of SPARQL. Unfortunately, ARC
requires a MySQL database to perform SPARQL queries. Before the user can send
SPARQL queries, the RDF document has to be transformed into a MySQL database.
Therefore, also all SPARQL queries need to be transformed to MySQL queries. Since
there is no available documentation of this SPARQL implementation, we can not really
give a detailed description on the way ARC executes queries.

These are further system requirements that need to be considered and require addi-
tional configurations. Further, this approach also has downsides. Unfortunately, while
testing we experienced that the MySQL version of our RDF model was not updated as
we performed changes. This sometimes leaded to data loss and wrong SPARQL results.
For example, the database still contained resources and statements that we have already
deleted or newly added statements were not added. Even though ARC provides a setting
to refresh the database on every use, the only way we could remove these flaws was to
write a few lines of code that erased the database before sending the query. This forced

82

the API to reload all data and we achieved up to date information. Therefore, ARC
received lower points in the efficiency characteristic.

The SPARQL implementation of the ERP API is still not as powerful, but queries
can be performed without any additional requirements. ERP only relies on PHP func-
tions to extract, filter and return the queried data. As mentioned before, the ERP
SPARQL implementation allows to return objects rather than just string results. There-
fore, efficiency can be increased, because the user can just continue working rather than
create all objects again. Further, the use of PHP functions ensures that only the actual
model is queried rather than a previously stored one. Unfortunately, due to the restricted
development time, not all concepts of SPARQL are supported by the ERP SPARQL
module till now. However, the SPARQL engine is already prepared for including the
rest of the functionality. Further information on the ERP SPARQL implementation can
be found in chapter 5. Due to these reasons, the ERP API was ranked with 95 and the
ARC API with 75 points in the characteristic usability.

Generally, the functionalities of the ARC and ERP APIs are very similar. Both allow
processing RDF elements as well as RDFS and OWL constructs. Up until now, the ERP
API does not provide extra classes for RDFS and OWL elements. Even though RDFS
and OWL can be used already, there are still opportunities to improve their usage. ARC
does not provide any functions for RDFS or OWL. Within ARC they are seen as other
kinds of URIs that need to be put in arrays.

The main functionality in which the ARC API is still leading is the implementation
of SPARQL. Even though it has its problems, it presents a lot of opportunities for the
ERP API. A SPARQL store allows the user to send remote queries and extends the
possibilities of an API. Fortunately, such a store is not that hard to implement in a basic
version.

The ARC API also provides more serializers and parsers. Due to the time restriction
of the development, we were forced to choose some of the formats. During future
development, new parsers and serializers will be included.

To conclude the differences of the two APIs, a brief comparison of functionalities is
presented in table 6.2.

In a general comparison using all the evaluates APIs of chapter 4 the ERP API

83

Table 6.2: Comparison of functionalities of the ERP and ARC APIs.

Category ERP ARC

OOP Support Yes No
RDFS Support Partial No
OWL Support Partial No
SPARQL Support Partial Yes
Add Statements Yes Yes
Update Statements Yes Yes
Delete Statements Yes Yes
Search Statements Yes Yes
Modifiable Yes Yes
Modular Yes Yes
PHP Unit Tests Yes No
Import Formats 4 14
Export Formats 4 11
Other requirements none MySQL

Documentation
Web,

Web
PHPDoc

ranks second place behind Jena in the characteristic usability. As mentioned before, the
context we used for the evaluation is defined relatively simple. Therefore, we can’t infer
that the ERP API is better than all the other APIs. Anyway, we can state that the ERP
API offers higher usability for basic RDF manipulation functionality. It should be clear
that the other APIs still outmatch the ERP API in overall functionality, but, by providing
a solid foundation, we increase the functionality of the API during maturing.

Even though, we can’t say that the ERP API is performing better than the others
in real usage, we think that the basic level of processing RDF documents is the most
important. If common APIs don’t provide high usability for this level, users might not
be able to use the API at all.

Note: During the final stage of this work, the active code development of the ARC
API was officially discontinued due to lack of funds and the inability to efficiently im-
plement the ever-growing stack of RDF specifications. The ARC API is now hosted on

84

the same social-coding platform as the ERP API (github.com) and only updated by
user submissions. Therefore, The ERP API is the only RDF API for PHP that is still in
development.

85

github.com

CHAPTER 7
Conclusion

During writing this work, we realized that the situation of APIs is worse than we initially
imagined. The comparison of popular APIs in chapter 4 pointed out that even well
established APIs are still not able to provide easy interfaces for general users. The only
satisfying API for RDF is Jena. It allows complex processing of RDF documents by
providing easy to use interfaces. Jena is one of the best documented APIs and thus
allowing the user to gain a better understanding of the API’s functionality.

The results of the comparison were partially expectable, but still disappointing. We
expected that by using only well established APIs we would be able to extract more
strengths, but we mainly found weaknesses. We want to mention again, that we were
limited by only one person who evaluated all the APIs. Anyway, during developing the
ERP API, we tried to use these weaknesses as opportunities and we managed to create
a considerable RDF API for PHP.

Even though the ERP API is still in an early stage of development, we can see great
potential for this API. The evaluation of state of the art APIs from different systems
pointed out lot of opportunities for the ERP API. ERP combines the strengths of famous
RDF APIs like Jena, ARC or RAP and redefines the standard of RDF APIs for PHP.

Our research pointed out that there is a lack of usable PHP APIs and that the existing
APIs are often too complicated for average users. Developers, who use such APIs, often
see just the extra work, lowered performance and more problems. Unfortunately, till
now there is no real benefit for average developers to use semantic technologies. The

87

benefits of using semantic technologies can only be enabled if these technologies get
used more often. The ERP API might not increase the benefit to its users now, but it
provides a simple and useful interface. Thus, it tries to reduce the negative impressions
of using RDF APIs and like that encourage other developers to use them.

While Jena is a great example for an easy to use but powerful API for Java, PHP
developers had no other future proof choice than using the ARC API. ARC also presents
a powerful API, but does not provide usable interfaces for regular users. Further, ARC
only provides a spare documentation and most of its functionalities are not documented.

By providing simple interfaces for adding, updating, deleting and searching RDF
statements, the ERP API states an easy to use API. Further, it allows execution of
SPARQL queries without any further requirements, besides PHP. It can parse and load
as well as create a string representation of an RDF model by providing four different
formats. By using interfaces to describe the single classes, the API provides an extensi-
ble and modular architecture. It already provides basic usage of RDFS and OWL and,
therefore, it can be seen as a powerful API.

Further, the ERP API takes advantage of using PHPDoc. Thus, it provides a compre-
hensive documentation of all available functions and classes of the API. By providing
various unit test cases, we include a lot of examples of using the API as well as make it
easy to find errors during development. Therefore, users can easily gain understanding
of the API and use it more efficiently.

We hope that the ERP API inspires developers of other RDF APIs for PHP or other
languages to focus on regular users and provide easy and customizable interfaces. Only
by providing usable APIs we can achieve the vision of the Semantic Web.

88

CHAPTER 8
Future Work

This work pointed out that semantic technologies, especially RDF, are still not used as
often as desired. While there are already some promising APIs available, others often
lack usable interfaces for average users. Therefore, the development of the ERP API
aimed to combine valuable concepts from different APIs and show that a powerful API
does not need to be complicated to use.

In the first step of the development of the ERP API, the target was to provide the
most important functionalities. Besides providing an effective and efficient set of inter-
faces for manipulating and creating RDF documents, we managed to implement a good
foundation for the API. Thus, we as well as other developers can improve and extend
it. We hope that other (API) developers will contribute to the ERP API or get inspired
by the newly introduced concepts of the API. Also, by providing the API on a social
coding platform, we hope to encourage other developers to join the development.

Since the ERP API is still a prototype, there might be still errors or problems which
we did not find. Even though, we performed extensive testing using PHPUnit tests and
by implementing the API in existing Web applications, majority of problems will arise
during the usage of the API by different users or by using the API in different contexts.
To keep track of eventual problems, we can take advantage of the social coding platform
where the API is provided. There, users can inform us about issues or even contribute
to the ERP API.

But there are already a few points that we think are of importance for the future

89

development. The first point is the implementation of RDFS and OWL. Even though it
is already possible to create OWL models or use RDFS within the ERP API, it might
be still inconvenient. Therefore, in further versions of the API we will improve this
functionality by implementing further interfaces for these uses.

Second point are the formats. The ERP API already provides four popular formats
for serializing and parsing RDF models. Anyway, there are a lot of other formats avail-
able for that purpose. One important format that we still have to include is the N3
format. Since it is a superset of Turtle, we already have a good foundation for imple-
menting this format.

Third, it is still necessary to increase the number of unit tests. Even though we have
a high test coverage, it is possible that not all functionalities are tested extensive enough.

Fourth point is the search algorithm within the Model class. Until now the search
algorithm iterates the statements to find the ones fitting to the input parameters. This
method is commonly used by other APIs but can be still improved by indexing the
statement array. Without indices and large amount of data, we might have to, in the
worst case, iterate all statements to find the right one on the last position. By indexing
the array in different ways, it is possible to achieve a higher efficiency of the search
function, because the search function can use the indexes to order the array.

The fifth and most valuable point is the SPAQRL implementation of the ERP API.
Due the complexity of SPARQL, we were not able to implement the complete syn-
tax in the current state of the API. Up till now, the query functionality is implemented
completely. Fortunately, we already prepared the ERP SPARQL engine so that the im-
plementation of the rest of the syntax can be achieved rather easily. Anyway, to create
an effective SPARQL implementation we need to perform further tests and require feed-
back by users. In addition, it is still possible to increase the efficiency and, therefore,
the execution speed of the SPARQL engine by further improving the pattern used for
querying the data.

Another point related to SPARQL is the implementation of the SPARQL parsers.
This parser transforms the query string into a query object, so it can be used by the
engine. While we increase the functionality of the engine, we also have to improve
the parser. Until now, we realized the parser by using regular expressions to check the
format as well as extract the necessary information of the query. By exploring other

90

possibilities to parse the query we might still be able to increase the speed of the parser.

While there might be other points too, in our eyes, these are the most important ones.
By implementing these functionalities, we can create an API that can not only compete
in the basic manipulation level but also in more complex areas.

91

List of Figures

2.1 Semantic Web Stack (modified according to [32]). 9
2.2 Venn-Diagram of URI, URL and URN. 10
2.3 Graphical representation of a RDF triple. 17
2.4 Decomposition of the relational table 2.2 to RDF. 20
2.5 Example of an RDF graph. 22

4.1 System requirement categorization (modified according to[22]). 33
4.2 Product quality model (modified according to [24]). 34
4.3 Quality in use model (modified according to [24]). 35
4.4 Evaluation chart based on ISO/IEC 25010 quality in use model. 42

5.1 Simplified class diagram of the ERP API. 59
5.2 Class-diagram of the nodes of the ERP API. 60
5.3 Package diagram of the ERP API . 61
5.4 Example of the benefits of using PHPDoc within the ERP API. 62

93

List of Tables

2.1 Lexical-to-Value Mapping for the xsd:boolean example [51]. 19
2.2 Example of a relational table for storing student information. 20

3.1 List of PHP APIs with latest release date, current version number and de-
velopment status. 27

3.2 List of non-PHP APIs with latest release date, current version number and
development status. 30

4.1 Assigned numerical values to measured characteristics. 43
4.2 Results of the evaluation of state of the art APIs. 44
4.3 Mean and standard deviation of the evaluation results. 45
4.4 Comparison of API functionalities. 49

6.1 Results of the evaluation of the ARC and ERP APIs 80
6.2 Comparison of functionalities of the ERP and ARC APIs. 84

95

List of Codes

2.1 Example of using QNames within XML. 21
2.2 Example of a RDF document. 22
2.3 Example of using the rdf:resource attribute. 23

5.1 Example of using the statement-centric approach of the ERP API. . . . 63
5.2 Example of using the resource-centric approach of the ERP API. 64
5.3 Example of editing statements using the ERP API. 65
5.4 Example of searching statements or resources in the ERP API. 66
5.5 Example of using ERP parsers and serializes. 67
5.6 Implementation of the example model for illustrating the serializers out-

put. 68
5.7 Example of RDF/XML code produced by the ERP API. 69
5.8 Example of N-Triple code produced by the ERP API. 70
5.9 Example of Turtle code produced by the ERP API. 71
5.10 Example of RDF JSON code produced by the ERP API. 72
5.11 Example of creating an OWL class within the ERP API. 73
5.12 Example of using an OWL statement within the ERP API. 73
5.13 Example of editing an OWL class using the ERP API. 74
5.14 Example of a default OWL class created by the RDF/XML serializer of

the ERP API. 75
5.15 Example of querying the model using SPARQL. 77

97

Bibliography

[1] Aduna. openrdf.com . . . home of sesame. http://www.openrdf.org/. Last Accessed:
2011-08-02.

[2] Luis Argerich. Php xml classes a collection of classes and resources to process xml
using php. http://phpxmlclasses.sourceforge.net/. Last Accessed: 2011-08-02.

[3] Sebastian Bergmann. Phpunit. http://github.com/sebastianbergmann/phpunit,
September 2011. Last Accessed: 2011-09-07.

[4] Tim Berners-Lee. Www: Past, present and future. Computer, 29(10):69–77, Oc-
tober 1996.

[5] Tim Berners-Lee. The semantic web. Scientific American, pages 34–43, 2001.

[6] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and
Arthur Secret. The world-wide web. Magazine: Communications of the ACM,
Volume 37 Issue 8, Aug. 1994, August 1994.

[7] Tim Berners-Lee, Larry Masinter, and Michael McCahill. Uniform resource lo-
cators (url). Technical report, Network Working Group T. Berners-Lee Network
Working Group, 1994.

[8] Nigel Bevan. Extending quality in use to provide a framework for usability mea-
surement. In Masaaki Kurosu, editor, Human Centered Design, volume 5619 of
Lecture Notes in Computer Science, pages 13–22. Springer Berlin / Heidelberg,
2009.

[9] Advisory R. S. S. Board. RSS 2.0 Specification. Technical report, RSS Advisory
Board, 06 2007.

99

[10] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Ian Horrocks and
James Hendler, editors, The Semantic Web — ISWC 2002, volume 2342 of Lecture

Notes in Computer Science, pages 54–68. Springer Berlin / Heidelberg, 2002.

[11] Vannevar Bush. As we may think. interactions, 3:35–46, March 1996.

[12] Douglas Crockford. Introducing json. http://www.json.org/. Last Accessed: 2011-
09-07.

[13] DedaSys LLC. Programming language popularity. http://langpop.com/. Last Ac-
cessed: 2011-08-09.

[14] ecma INTERNATIONAL. ECMA Script Language Specification (Standard
ECMA-262). Technical Report Edition 5.1, ecma INTERNATIONAL, June 2011.

[15] Joshua Eichorn. phpdocumentor. http://www.phpdoc.org/, March 2008. Last Ac-
cessed: 2011-09-07.

[16] Epimorphics Ltd. Jena – a semantic web framework for java.
http://jena.sourceforge.net/. Last Accessed: 2011-08-02.

[17] Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms. In Tassilo
Pellegrini, Sóren Auer, Klaus Tochtermann, and Sebastian Schaffert, editors, Net-

worked Knowledge - Networked Media, volume 221 of Studies in Computational

Intelligence, pages 7–24. Springer Berlin / Heidelberg, 2009.

[18] Marc Hassenzahl. The Effect of Perceived Hedonic Quality on Product Appeal-
ingness. International Journal of Human-Computer Interaction, 13(4):481–499,
2001.

[19] Hewlett-Packard Development Company, L.P. Hp labs semantic web research.
http://www.hpl.hp.com/semweb/, 10 2009. Last Accessed: 2011-11-03.

[20] Ian Horrocks. Semantic web: the story so far. In Proceedings of the 2007 interna-

tional cross-disciplinary conference on Web accessibility (W4A), W4A ’07, pages
120–125, New York, NY, USA, 2007. ACM.

100

[21] International Electrotechnical Commission. International electrotechnical com-
mission. http://www.iec.ch/, 10 2011. Last Accessed: 2011-11-03.

[22] International Organization for Standardization. Iso/iec 9126:2001, 2001.

[23] International Organization for Standardization. International organization for stan-
dardization. http://www.iso.org/, 10 2011. Last Accessed: 2011-11-03.

[24] International Organization for Standardization. Iso/iec fdis 25010:2011, 03 2011.

[25] Karlsruher Institut für Tehcnologie. Content-driven knowledge-management
through evolving ontologies - http://www.aifb.kit.edu/web/on-to-knowledge, 09
2002. Last Accessed: 2011-11-03.

[26] Michael Kifer, Jos De Bruijn, Harold Boley, and Dieter Fensel. A realistic archi-
tecture for the semantic web. In In RuleML, pages 17–29. Springer, 2005.

[27] Brian McBride. Jena: Implementing the RDF Model and Syntax Specification. In
Semantic Web Workshop 2001, 2001.

[28] Car McDaniel and Roger Gates. Marketing research essentials. International
Thomson Publishing, 2nd edition, 1998. Pages 247-249.

[29] Microsoft Corporation. About dotnet. http://www.microsoft.com/net. Last Ac-
cessed: 2011-09-29.

[30] Benjamin Nowack. Easy rdf and sparql for lamp systems. http://arc.semsol.org/.
Last Accessed: 2011-08-02.

[31] Benjamin Nowack. Arc: appmosphere RDF classes for php developers. In Sören
Auer, Chris Bizer, and Libby Miller, editors, Proceedings of 1st Workshop on

Scripting for the Semantic Web (SFSW05), volume 135 of CEUR Workshop Pro-

ceedings ISSN 1613-0073, June 2006.

[32] Marek Obitko. Semantic web architecture. http://obitko.com/tutorials/ontologies-
semantic-web/semantic-web-architecture.html. Last Accessed: 2011-05-12.

101

[33] Radoslaw Oldakowski, Christian Bizer, and Daniel Westphal. Rap - rdf api for
php v0.9.6. http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/. Last Accessed: 2011-
08-02.

[34] Radoslaw Oldakowski, Christian Bizer, and Daniel Westphal. Rap: Rdf api for
php. In IN PROC. INTERNATIONAL WORKSHOP ON INTERPRETED LAN-

GUAGES. MIT Press, 2004.

[35] OpenLink Software. Virtuoso universal server. http://virtuoso.openlinksw.com/.
Last Accessed: 2011-08-02.

[36] Oracle Corporation. About java. http://java.com/en/about/. Last Accessed: 2011-
09-29.

[37] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of sparql. ACM Trans. Database Syst., 34:16:1–16:45, September 2009.

[38] Davey Shafik. Pear package information: Rdf. http://pear.php.net/package/rdf.
Last Accessed: 2011-08-02.

[39] Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. Technical Report RFC 4180, IETF, October 2005.

[40] Steve Suehring, Tim Converse, and Joyce Park. PHP 6 and MySQL. Wiley Pub-
lishing, Inc., 2009.

[41] The PHP Group. php.net. http://php.net/. Last Accessed: 2011-09-07.

[42] Larry Ullman. PHP 6 AND MySQL 5. Peachpit Press, 2007.

[43] Rob Vesse. dotnetrdf - semantic web/rdf library for c#/.net.
http://www.dotnetrdf.org/. Last Accessed: 2011-08-02.

[44] Noah Wardrip-Fruin. What hypertext is. In HYPERTEXT ’04 Proceedings of the

fifteenth ACM conference on Hypertext and hypermedia, 2004.

[45] Wikipedia. Unicode. http://en.wikipedia.org/wiki/unicode. Last Accessed: 2011-
05-12.

102

[46] Wikipedia. Universal character set. http://en.wikipedia.org/wiki/universal_character_set.
Last Accessed: 2011-05-12.

[47] Wikipedia. Best coding practices, http://en.wikipedia.org/wiki/best_coding_practices,
01 12. Last Accessed: 2012-01-19.

[48] Wikipedia. Application programming interface. http://en.wikipedia.org/wiki/api,
10 2011. Last Accessed: 2011-11-03.

[49] Wikipedia. C (programming language). http://en.wikipedia.org/wiki/c_(programming_language),
09 2011. Last Accessed:2011-09-29.

[50] Wikipedia. The internet. http://en.wikipedia.org/wiki/internet, 09 2011. Last Ac-
cessed: 2011-09-29.

[51] World Wide Web Consortium. Resource description framework (rdf): Concepts
and abstract syntax. http://www.w3.org/tr/rdf-concepts/. Last Accessed: 2011-07-
29.

[52] World Wide Web Consortium. Semantic web.
http://www.w3.org/standards/semanticweb/. Last Accessed: 2011-05-12.

[53] World Wide Web Consortium. Tools that are listed as relevant to rdf.
http://www.w3.org/2001/sw/wiki/rdf. Last Accessed: 2011-08-02.

[54] World Wide Web Consortium. Overview of sgml resources.
http://www.w3.org/markup/sgml/, 2004 03. Last Accessed: 2011-11-03.

[55] World Wide Web Consortium. Xml schema. http://www.w3.org/xml/schema, 2011
11. Last Accessed: 2011-11-03.

[56] World Wide Web Consortium. Xml path language (xpath).
http://www.w3.org/tr/xpath/, 11 1999. Last Accessed: 2011-11-03.

[57] World Wide Web Consortium. N-triples - w3c rdf core wg internal working draft.
http://www.w3.org/2001/sw/rdfcore/ntriples/, September 2001. Last Accessed:
2011-09-07.

103

[58] World Wide Web Consortium. Rdf test cases. http://www.w3.org/tr/rdf-
testcases/#ntriples, February 2004. Last Accessed: 2011-09-07.

[59] World Wide Web Consortium. Rdf vocabulary description language 1.0: Rdf
schema. http://www.w3.org/tr/rdf-schema/, February 2004. Last Accessed: 2011-
09-08.

[60] World Wide Web Consortium. Sparql query language for rdf.
http://www.w3.org/tr/rdf-sparql-query/, January 2008. Last Accessed: 2011-09-
08.

[61] World Wide Web Consortium. Owl 2 web ontology language document overview.
http://www.w3.org/tr/owl2-overview/, October 2009. Last Accessed: 2011-05-12.

[62] World Wide Web Consortium. Extensible markup language (xml).
http://www.w3.org/xml/, 04 2011. Last Accessed: 2011-11-03.

[63] World Wide Web Consortium. Turtle - terse rdf triple language.
http://www.w3.org/teamsubmission/turtle/, March 2011. Last Accessed: 2011-
09-07.

104

Index

.Net, 28

Accessibility, 37
API, 24
Application Programming Interface, 24
ARC, 26

C/C++, 28
Comfort, 36
Command language, 6
Commercial damage, 38
Context conformity, 37
Context extendibility, 37
Cryptography, 14

dotNetRDF, 29

Effectiveness, 34
Efficiency, 35
Entailment, 21
Environmental harm, 38
ERP Architecture, 58
Extensible Markup Language, 11
Extensible Markup Language Shema, 11
External quality, 32

Flexibility, 36

HTML, 7
HTTP, 6
Hypertext document, 6
Hypertext Markup Language, 7
Hypertext Transfer Protocol, 6
Hypertext Web technologies, 9

IEC, 31
Internal quality, 32
International Electrotechnical Commis-

sion, 31
International Organization for Standard-

ization, 31
Internet, 5
ISO, 31
ISO/IEC 25010, 32

Java, 28
Jena, 29
JSON format, 71

Likability, 35
Literal Node, 19
Literals, 19

N-Triple format, 69
Node Identification, 18

105

OpenLink Virtuoso, 29
Operator health and safety, 38
OWL, 13

PEAR, 26
PHP XML Classes, 26
PHP: Hypertext Preprocessor, 23
PHPDocumentor, 62
PHPUnit, 77
Plain literal, 19
Pleasure, 36
Public health and safety, 38

Quality in use, 34

RAP, 26
RDF, 15
RDF Concepts, 17
RDF Graph Data Model, 17
RDF Shema, 12
RDF/XML format, 21
RDFS, 12
Resource Description Framework, 15
Resource Description Framework Shema,

12
Resource-centric, 64
RIF, 13
Rule Interchange Format, 13

Safety, 37
Satisfaction, 35
Semantic Web, 7
Semantic Web Rule Language, 13
Semantic Web Stack, 8
Sesame, 29

SPARQL, 12

SPARQL Protocol and RDF Query Lan-
guage, 12

Standardized Semantic Web technologies,
12

Statement-centric, 63

SWRL, 13

Trust, 36

Turtle format, 70

Typed literal, 19

Unicode, 11

Unicode Transformation Format, 11

Uniform Resource Locator, 10

Uniform Resource Name, 10

Unifying logic, 14

Universal Character Set, 11

Unrealized Semantic Web technologies,
13

URI, 10

URI-based Vocabulary, 18

URL, 10

URN, 10

Usability, 34

UTF-16, 11

UTF-8, 11

W3C, 7

Web, 6

Web of documents, 7

Web of linked data, 7

Web Ontology Language, 13

World Wide Web Consortium, 7

106

World-Wide Web, 6

XML, 11
XML QNames, 21
XML Shema, 11
XMLS, 11

107

	Introduction
	Basic principles
	The Internet
	The Web
	The Semantic Web
	Hypertext Web technologies
	Standardized Semantic Web technologies
	Unrealized Semantic Web technologies

	The Resource Description Framework
	RDF Concepts

	PHP: Hypertext Preprocessor
	Application Programming Interface

	State of the art of RDF APIs
	RDF APIs for PHP
	RDF APIs for other programming languages

	Comparison of RDF APIs
	The evaluation model
	ISO/IEC 25010 quality model
	The quality in use model

	The evaluation catalogue
	The evaluation method
	Evaluation results and comparison

	Implementation of the ERP prototype
	Motivations for developing the ERP API
	Objectives and requirements for developing the ERP API
	Influences from other APIs for developing the ERP API
	Architecture of the ERP API
	Classes of the ERP API
	Packages of the ERP API
	Advantages of PHPDoc

	Usage of the ERP API
	Statement-centric usage
	Resource-centric usage
	Edit statements or resources of a model
	Search statements or resources within a model
	Parsing and serializing models
	RDFS and OWL
	Perform SPARQL queries

	Tests of the ERP API

	Comparison between ERP and ARC
	Evaluation of ERP and ARC
	Comparison of ERP and ARC

	Conclusion
	Future Work
	List of Figures
	List of Tables
	List of Codes
	Bibliography
	Index

