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Abstract 

 

Traditional design decisions have been based on a product´s performance, quality, 

and price. There is an assumption that the development of products with 

environmental-conscious characteristics is more cost intensive than traditional 

design. Critical decisions to the cost for recycling and disposal are done in the early 

phases of product development and significantly affect environmental performance 

for the entire product life-cycle. 

 

It is difficult to persuade manufacturers to make changes to the product that would 

improve the environmental impact, especially when changes occur in additional cost 

or have a negative effect on the performance, functionality or affordability. Therefore 

it is even more important to have an effective and efficient design development 

process and the ability address environmental issues as part of it. 

 

The purpose of this thesis is to describe various tools and methods, for usage during 

the design development process, to optimize the use of material, reduce waste and 

make products more sustainable.  

 

Autodesk is represented as supplier for 3D CAD, simulation and analysis software 

solutions and those will guide us in improving workflows during the product 

development process.  

 

Starting with the challenges in the product development process, the thesis focuses 

on the design of plastic products and how mold fill simulation and other tools can 

impact the environmental quality. The topic of optimization for material reduction by 

using FEA analysis and simulation of energy loss is also discussed. 
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1 Introduction  

 

Environmental concerns are becoming increasingly important to producers and 

customers alike. With that, product disposal, along with the treatment of waste from 

production requires attention during the design of both, the product and the process 

(Blanchard and Fabrycky, 2006). 

 

For a design development project it is vital to look at the entire product life-cycle and 

understand where the key environmental impacts are. A general challenge 

manufacturers are facing, is that innovative product design often involves new 

materials and processes - and that can be hard to acquire (Ashby and Johnson, 2009).  

In order to perform tests on objective things like performance, safety and energy, 

manufacturers rely on physical prototypes, which can result in high development 

costs.  Design technology can play a key role to remove obstacles and help designing 

products which are more efficient, use less materials or energy.  

 

The purpose of this thesis is to describe methods and tools in the product design 

development that have an impact on achieving environmental design targets. 

Autodesk has been chosen as a software vendor due to their comprehensive product 

portfolio and market position in the CAD and simulation market. 

 

The first part of the thesis will describe fundamentals of the factors for promoting 

environmental design practices. ECO Labels and regulatory directives are considered 

as an important driver for environmental design and they are listed as important 

mechanisms to communicate the environmental performance of a product (Wimmer, 

et al., 2004). A comparison of the various types of ECO labelling is provided by Lee 

and Uehara, (2003). In addition, the most popular directives and regulation are 

illuminated in this section.  

 

By developing a new product, or updating an existing product, there are many factors 

influencing the design process for improvements on the environmental impact.  
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While many manufactures are concerned about implication from cost standpoint, 

internal and external influences are defined by Ashby and Johnson (2009) and 

considered as driving parameters for product design.  

 

Furthermore the development process from a product-life-cycle perspective will be 

illustrated, including typical considerations for recycle and disposal of the product at 

the end-of-life. This section concludes with a summary of the framework for 

principles of environmental engineering based on the IEEE paper “Design through 

the 12 Principles of Green Engineering” (Anastas and Zimmermann, 2007) 

 

Throughout the development process there are numerous challenges that prevent the 

cost-effective development of environmental conscious products, such as the 

communication of engineering changes and the creation of a physical prototype for 

performance testing. We will look into the process of digital prototyping and how 

simulation can help to address some these issues. 

 

During the work various simulation methods and technologies are introduced. It is 

not the intention to describe those technologies in detail rather than bringing them 

into perspective of improving the design process from an environmental point of 

view.   

 

Parts of the thesis have been presented at the IFAC International Workshop on 

“Supplemental Ways for Improving International Stability” SWIIS 2010 in Prishtina. 

(Kaltseis, 2010) 

 

The thesis concludes with a summary of potential business benefits and some 

recommendations for further works on this topic. 
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2 Fundamentals 

 

According to the ASME/Autodesk 2010 study on sustainability design, there is an 

increase of 6% over the last year on engineers who believe sustainable design will be 

further incorporated into their work. With 3000 responses to the survey, more than 

24% reported that their companies were extremely involved and 43% somewhat 

involved in sustainability design efforts. (Winters, 2010) 

 

More than 70% also responded that their companies produce designs to specifically 

comply with governmental standards and regulation. Standards and regulations are 

considered as an important driving factor for environment friendly product design. 

Based on the book System Engineering and Analysis, Blanchard and Fabrycky 

(2006), we will indicate additional promoting factors for environmental design 

practices. An Overview of available ECO-labels based on ISO 14020 and regulatory 

directives is provided based on the book Ecodesign Implementation, Wimmer, et al., 

(2004) and EU directives (European Union, 2010abcd). 

 

2.1 Factors for promoting environmental design practices 

 

The reuse value of recoverable materials and components from most products at the 

time of disposal is usually small in relation to the production cost. Accordingly, it is 

difficult to persuade manufacturers to make changes to the product that would 

improve the eventual case of recovery of these materials.  

This is especially true if those changes create costs or have even a small effect on 

performance, functionality, or affordability (Blanchard and Fabrycky, 2006).  

 

However this situation is changing. Most leading companies have increasingly taken 

initiatives to optimize unsustainable products, processes, and systems that are 

currently in place. Also, market opportunities are expanding for the production of 

environmental friendly products.  
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The following factors are recognized by Blanchard and Fabrycky (2006), System 

Engineering and Analysis, as primary drivers toward environmental cautiousness: 

 

2.1.1 Competitive differentiation 

 

Traditional design decisions have been based on a product´s performance, quality, 

and price. In the world-class competition of today, some non-price factors are been 

included in the company´s competitive strategy. All signs indicate that environmental 

impacts, one of the non-price factors, became the most important issue in the 

commercial world. ECO-labeling is an important method to communicate the 

environmental performance of a product as competitive advantage (Wimmer, et al., 

2004). ECO-labels are explained in chapter 2.2 in further detail. 

 

2.1.2 Customer consciousness 

 

Most people believe that a healthy natural environment not only enhances their 

quality of life, but assures them that the quality of life will be sustained.  

Customers are becoming increasingly concerned about the environmental quality of 

the products they use and the quality of the environment in which they live. 

Consumer awareness of potential damage inflicted on the environment by abuse of 

technology is beginning to create pressure to develop green products and clean 

manufacturing operations. Regulatory bodies tend to respond to this change in 

attitudes by developing legislation for use against those that neglect environmental 

issues. 

 

Based on the Green Shopper study done by GMA/Deloitte, 2009 with more than 

6,000 shoppers at 11 leading U.S. retailers, in total, approximately 54% consider 

sustainability as a decision-making factor in product and store selection, and one of 

five consider it a dominant factor in many product categories. (Figure 1) 
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2.2 ECO Labels as a driver for environmental design 

practices 

 

Wimmer, et al., (2004) describes the communication of environmental performance 

for the improved product equally important than the design process itself.  

 

Environment labeling, although it is voluntary in nature, can exert significant impact 

on the market if the environmental awareness of consumers is high. By highlighting 

the difference or improvements over the other products, one can distinguish the 

product from others. Many companies use ECO labels to increase market share of the 

product and to enhance their corporate image. Products that cannot obtain the label, 

or choose not to apply, may have a competitive disadvantage to products that do have 

the label. ECO labels according to the ISO 14020 standard are subdivided into the 

following categories: 

 
 Type I ECO Labeling  

 Type II Self-declared Environmental Claim 

 Type III Environmental Product Declaration 

 

2.2.1 Type I ECO Labeling  

 

Type I environmental labeling according to the ISO 14024 standard is a voluntary 

system that is widely used in many parts of the world and requires certification by an 

independent third party organization. To meet the requirements of the Type I 

environment labeling program awards, a set of predetermined requirements based on 

lifecycle considerations need to be met.  

 

Products that meet the specific values imposed by the program can obtain the label 

and are certified to carry a logo on the product. Usually only 20 to 30% of the 

products within a category are awarded labels due to a selective principle. (Wimmer, 

et al., 2004)   
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2.2.3 Type III Environmental Product Declaration (EPD) 

 

Unlike ECO labeling, only a logo or self-declared claims, the EPD presents 

environmental aspects throughout its entire Life-cycle and other product related 

environmental information. Quantified information of the products environmental 

loads and impact are extracted from the LCA results and presented in a categorized 

manner.  

 

The typical target audience for an EPD can be usually found in the B2B environment 

(e.g. supply chain manufactures), or B2C (e.g. retail and institutional level 

consumers). According to the ISO 14040 standard, LCA data are critically reviewed 

by an external, independent third party organization and define the basics for the 

EPD. (Wimmer, et al., 2004) 
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2.3 Different types of environmental labels in comparison 

 

As shown in Table 2), environmental labels are targeted at different market 

segments. Lee and Uehara (2003); Wimmer, et al., (2004) describe the different 

types of environmental labels and declarations, the advantages, disadvantages and 

the use in various application areas. 

 

Table. 2 Types of environmental labels - Lee and Uehara (2003) 

 

Item Type I Type II Type II 

Generic Name ECO Labeling Self-declared 
Environmental Claim 

Environmental Product 
Declaration 

Target Audience Retail Consumers Retail/Industrial/ 
Institutional 
Consumers 

Industrial/ 
Institutional/Retail 
Consumers 

Communication 
Method 

Environmental Label Text and Symbol Environmental Profile 
Data sheet 

Scope Whole Life Cycle Single aspect Whole Life Cycle 

Use of LCA No No Yes 

Advantage Easily identified  

Quick decision  

Credibility through 
third party 

Market oriented 

Flexible approach to 
market needs 

Tool for inter-business 
competition 

Detailed data via 
common method  

Credibility via 
scientific quantitative 
data 

Disadvantage Uses only a symbol 
(logo) 

No detailed 
information 

No linkage to 
company’s unique 
effort 

Relatively low 
credibility 

Need to face consumer 
directly (no third party) 

Claim is about single 
issue or limited 

Complicated LCA 
analysis 

Insufficient back-
ground data 

Not easy to implement 

Application Area Home use products 

Simple function 
products 

Low priced products 

Products in general Products for industrial 
use / relatively 
complicated and high  
priced products / 
durable products 

Standard ISO 14024  ISO 14021 ISO 14025 
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2.4.2 RoHS (Reduction of Hazardous Substances) 

 

Innovation cycles for many electrical and electronic products are short, and such 

products often contain a great variety of materials and components, some of which 

are hazardous. Anastas and Zimmermann, (2007) mentions as a first step towards an 

environmental friendly product the elimination of hazardous materials. 

 

The RoHS Directive is intended to restrict the use of certain hazardous substances in 

electrical and electronic equipment. This increases the protection of human health 

and aids the environmentally-sound recovery and disposal of waste electrical and 

electronic equipment. 

 

The ban of four heavy metals (lead, cadmium, mercury, hexavalent chromium) and 

two categories of brominated flame retardants (PBBs and PBDEs) entered into force 

in July 2006, although certain applications of these substances have been temporarily 

exempted until their substitution becomes scientifically and technically feasible 

(European Union, 2010b). 

 

2.4.3 EuP (Energy using Products) 

 

The Ecodesign directive provides with consistent EU-wide rules for improving the 

environmental performance of energy related products through ecodesign. 

 

The production, distribution, use and end-of-life management of energy-using 

products (EuPs) is associated with a considerable number of important impacts on 

the environment, namely the consequences of energy consumption, consumption of 

other materials/resources, waste generation and release of hazardous substances to 

the environment.   
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It is estimated that over 80% of all product-related environmental impacts are 

determined during the design phase of a product. Against this background, Eco-

design aims to improve the environmental performance of products throughout the 

life-cycle by systematic integration of environmental aspects at a very early stage in 

the product design. (European Union, 2010c) 

 

The proposal does not introduce directly binding requirements for specific products, 

but does define conditions and criteria for setting, through subsequent implementing 

measures (European Union, 2010c). 

 

2.4.4 REACH (Registration, Evaluation and Authorization of Chemicals) 

 

With providing appropriate safety information to their users, REACH makes the 

industry responsible for assessing and managing the risks posed by chemicals. Since 

coming into effect in 2007, manufacturers or importers of chemicals must register 

chemicals (European Union, 2010d). 

 

All manufacturers and importers of chemicals must identify and manage risks linked 

to the substances they manufacture and market. For substances manufactured or 

imported in quantities of 1 ton or more per year per company, manufacturers and 

importers need to demonstrate that they have appropriately done so by means of a 

registration dossier, which must be submitted to the European Chemicals Agency 

(ECHA) (European Union, 2010d). 
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3 State of the art  

 
Based on the books “Cost-Efficient Design” (Ehrlenspiel, et al.,  2006) and  

“Materials and Design” (Ashby and Johnson, 2009) we will describe the product 

design processes from cost perspective and other influential factors in product 

design.  

 

Supplementary insights to the life-cycle of a product, the life-cycle analysis, and the 

relationship to recycling and disposal are described based on the book “Ecodesign 

Implementation” (Wimmer, et al., 2004) and “Systems Engineering and Analysis” 

(Blanchard and Fabrycky, 2006). 

 

In addition the IEEE paper “Design through the 12 Principles of Green Engineering” 

(Anastas and Zimmermann, 2007), provides a framework for achieving sustainability 

through science and technology. 

 

3.1 Product design from a cost perspective 

 
There is a general assumption that environmental consideration in manufacturing 

drive additional costs to the product overall production costs. This can certainly be 

true, if environmental considerations are added late in the design development 

process. However, if the environmental considerations are done in the very 

beginning, it can have a positive effect to the overall cost. There is a direct 

relationship between environmental impact and costs. The design of products which 

are more efficient, use less materials or energy can bring benefits to both, producers 

and consumers. (Willis, 2009) 

 
The product development phase leads the start of regular production. On average, 

approximately 88% of the total product costs are committed by the technical 

planning department (product development and product planning). (Fig3.) In 

contrast, all decisions made afterwards determine only 12% for the remaining 

production-cycle of the product (Ehrlenspiel, et al., 2006).  
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This includes typical trends such as more restrictive environmental laws and 

standards, changing consumer behavior due to changing life-style or higher demand 

due to changes in the demographic distribution of people in industrial countries.  

Some of those are related to environmental issues.  

 

Wimmer, et al., (2004) also mentions, by working from an overall view to a detailed 

view ensures to keep the focus on relevant aspects of the product system, the 

development of an optimal solution through a stepwise procedure and the limitation 

of planning expenses. 

 

Ashby and Johnson, (2009) define the elements of the integrated design process as 

follows: 

 

Customer Requirements  

The design process generally commences with the identification of a “want” or 

“desire” for something and is based on a real (or perceived) deficiency. In the 

developed countries many products have saturated, almost everyone who needs 

them, has them. The market force is generated by desire ("want") not necessity 

("need").   

 

Numerous product designs today are driven by desire, and one of the things 

consumer desire is greater functionality.  It is usual to suggest that designers respond 

to market needs, but sometimes it is the designer who creates the need.  It is 

important that the results reflect a true customer requirement, particularly in today’s 

environment where available resources are limited. 

 

Technology factors 

New technologies that enable innovation in material and processes influence and 

stimulate the product design process. The drive towards miniaturization creates new 

mechanical and thermal requirements and drives the discovery and development. 

Science reveals new technologies, from these technologies new materials and 

processes emerge. These in turn, stimulate new opportunity for product design. 
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Sustainability and the Environmental impact 

Considering the entire life-cycle of a product, the sum of undesired byproducts 

exceeds the capacity of the environment to absorb them. Material reductions are 

made possible by recycling, by use of renewable material made from things that 

grow, by miniaturization and by replacing goods and services. 

Energy reductions can be achieved by lightweight design of transport systems, by 

optimized thermal management and by increased efficiency of energy conversion 

and utilization in industry. 

 

Blanchard and Fabrycky, (2006) mention, an evolutionary design paradigm, that 

starts with considerations of environmental impact caused by the products and 

product related processes is known as environmental conscious design and 

manufacturing. A significant difference to waste management and pollution 

prevention is seen in the proactive approach. The objective is to reduce 

environmental impact in the early stages of the design. 

 

Economics and Investment Climate 

Many product designs have never reached the marketplace. Translating a design into 

a successful product requires investment, and investment depends on confidence, on 

establishing economic viability. In the rapidly changing technology world of today, 

the speed at which new products can be brought to the market often determines the 

financial success of a company.  The investment required to commercialize a 

technically viable product will be forthcoming only of if the technical, market and 

business case assessment are all attractive. 

 

Product features and Aesthetics 

Aesthetics arouse interest, stimulate and appeal. Form follows function. Both, 

technical and industrial design influences the product success.  
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Life Cycle Impact Assessment, LCIA  

In the phase of the LCA inventory data on inputs and outputs are translated into 

indicators about the product systems potential impacts on the environment, on human 

health, and on the availability of natural resources. 

 

Interpretation  

With the interpretation, the results of the LCI and LCIA are interpreted according to 

the goal of the study and where sensitivity and uncertainty analysis are performed to 

qualify the results and the conclusions. 
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3.5 Life-Cycle Relationships for Recycling and Disposal 

 

During the life-cycle of a product there are different stages of the evaluation for 

reuse, recycling and disposal. Blanchard and Fabrycky (2006) describe in Figure 7 

the relationship of recycling and disposal within the various stages of a product life-

cycle. Components and material are subjected to a classification and decision 

procedure that will focus on the design characteristics supporting disposability. If 

environmental requirements are well specified during the design phase, the 

classification can help in the implementation of environmental friendly recycle and 

disposal procedures. 

 

Fig. 7 Component/Material retirement, phase out, recycling and disposal relationship 

(Blanchard and Fabrycky, 2006) 
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By considering recyclability and disposability as a design dependent parameter, 

producers are able to predict and compare alternatives. If environmental 

requirements are specified well, design alternatives can be evaluated against them 

along with other requirements. 

 

Blanchard and Fabrycky, (2006) describe the essential processes for the purpose of 

reuse, remanufacture/redesign and recovery/recycling. Both, the manufacturing and 

de-manufacturing processes are affected by design decisions. 

 

Reuse 

Energy and material resources are saved be designing them for reuse. Reuse is the 

highest form of waste reduction and potentially increases the end-of-life value. Reuse 

is most easily justified in the case of components with high manufacturing costs, 

long innovation cycles and long lifetime. 

 

Remanufacturing/Redesign 

Remanufacturing is the redesign of a product and its life cycle to minimize 

environmental impact and increase value. Another strategy is inverse manufacturing, 

where the useful life of the product is prolonged by designing reuse features into it. 

Remanufacturing requires disassembly efforts that contribute to the de-

manufacturing cost. The recycled components and parts may be used for 

reproduction either the same or for different products, according to the closed loop or 

open-loop recycling concept. 

 
Recovery/Recycling 

With recycling, waste is recovered and transformed into new products and materials. 

In addition, when waste is recycled, the energy needed to extract new natural 

resources is saved. The reduction of disposal volume and costs, recovery from 

products to obtain raw materials or reusable components is most important. 
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3.6 Defining the different types of environmental waste in 

manufacturing 

 

With the rapid growth in population and widespread manufacturing, the generation 

of wastes associated with the production, use and disposal of goods and services is of 

great concern. These byproducts of market transaction impact the environmental 

quality (Blanchard and Fabrycky, 2006). 

 

Under the principles of lean production, non-value added activities are considered as 

waste and need to be eliminated. There is a close connection between the lean 

thinking and environmental efficiency. Lean thinking promotes waste reduction at 

every stage of a life-cycle of a product. Willis, (2009) derives the basics of lean 

production into seven types of waste from an environmental perspective.  

 

 Energy  

 Water 

 Material 

 Garbage 

 Transportation 

 Emission 

 Biodiversity 

 

Energy  

Energy is often used to describe a broad range of activities, but in context of 

environmental waste it refers to the consumption of electricity and fuels to power 

devices. 

 

Figure 8 displays how the energy consumption differs throughout the life-cycle by 

the type of the product. On average, the energy consumption for the production of an 
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3.7 Principles of Environmental Friendly design 

 

Based on the IEEE paper “Design through the 12 Principles of Green Engineering” 

(Anastas and Zimmermann, 2007), the fundamentals for achieving sustainability 

through science and technology are described. Those principles will guide us for 

applying tools and methodologies in the product development cycle and provide a 

systematic and comprehensive framework for green engineering that moves beyond 

baseline engineering quality and safety specifications to consider environmental, 

economic, and social factors.  

 

Hazardous material 

It is not an economically or environmental sustainable approach to put effort into 

minimizing hazardous substances. The inherent nature of selected material and 

energy inputs should be evaluated as a first step toward a sustainable product. For 

hazards that are eliminated in process through purification or cleanup steps from the 

final product, there is still a risk of failure for safety precautions, storage and 

disposal. All material and energy inputs and outputs are required to be inherently 

non-hazardous as possible to reduce the risk of failure and expenditure for 

monitoring and contact. 

 

Prevention 

It may seem to be obvious that waste generation should be avoided wherever 

possible. Technology targeted waste free designs are based on the concept of 

designing inputs to be part of outputs. 

 

Design for separation 

The ease of product separation can be impacted at the earliest stage in product design 

(Economic and technical limitations). Obstacles in recovery recycle and reuse is in 

economic and technical limitations in separating materials and components. 

Obstacles can be overcome by avoiding permanent bonds between two different 

materials. 
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Maximize mass, energy, speed and time efficiency 

Resources are being wasted all throughout the life cycle of a product, if a system is 

designed, used or applied at less than maximum efficiency. 

 

Output-pulled versus input pushed 

Output-pulled versus input pushed in manufacturing systems waste, associated with 

overproduction waiting time, processing, inventory can be eliminated by planning for 

final output, goods produced to meet the end user demand exactly for timelines, 

quality and quantity based on just-in-time manufacturing systems. 

 

Conserve complexity 

Recycling of material could be counterproductive and sacrifice the value for high 

complex, high/entropy substances (down cycling). End-of-life design decisions for 

recycling, reuse or beneficial disposal should be based on the invested material and 

energy subsequent complexity across all design scales. 

 

Durability rather immortality 

Environmental problems often results of products that last well beyond their useful 

commercial life. The risk to human and environmental health can be significantly 

reduced by targeting durability and not immortality as a design goal. 

 

Meet need, minimize excess 

Optimizing the design for the worst case scenarios or extreme an unrealistic 

conditions increase the material and energy costs unnecessarily. There is a tendency 

to design for the worst case scenarios, which requires incorporating and treating 

components whose function will not realized under most operating conditions. 

 

Minimize Material diversity 

When considering end-of-life decisions the diversity of materials becomes an issue 

and it determines the ease of disassembly. Through the use of mono-material design 

strategies it is no longer necessary to disassemble for recovery and recycling. 
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Integrate local material and energy flow 

The need to generate and acquire energy and process raw materials is minimized by 

taking advantage of existing energy and material flows. Anastas and Zimmermann, 

(2007) describe an example of a regenerative braking system in hybrid electric 

vehicles. Heat generated by the braking system is captured reversing the electric 

motor. 

 

Design for commercial afterlife 

Waste can be reduced by using a design strategy that encourages up-front modular 

design for components to remain functional and valuable, so they can be recovered 

for reuse and reconfiguration. Products that are designed that way can be used 

commercially after end-of-life. 

 

Renewable rather than depleting 

Virgin materials requires repetitive extractive processes; used in a consumptive 

manner incrementally moves the substance toward depletion. A waste product used 

as an alternative feedstock or recyclable input is considered renewable from 

sustainability perspective.  

  



35 

 

4 Problem description 

 

A product is called environmental conscious when it simultaneously satisfies the cost 

performance target and the environmental target throughout the entire product life-

cycle. Environmental issues are so important that the manufacturing industry must 

consider them; however they face challenges during the product development phase. 

 

When developing a new, or updating an existing product there many aspects to the 

environmental friendliness of a product. It seems to be obvious that the design phase 

defines the environmental consciousness for the entire life-cycle of a product.  

However, the reality is that companies practice little environmental considerations 

unless they are forced by legislation regulatory. Some of the obstacles are listed as 

following:  

 

 Lack of material information 

 Lack of readily available life-cycle-analyse tools 

 There is no full description of the product model available  

 Simulation tools are difficult to use 

 Simulation tools are not readily accessible 

 

Whether it is a new product development or responding to a specific customer 

requirement, the optimization begins in the initial concept design phase. While many 

companies rely on a physical prototype for performing test and validation of the 

product, this stays in contradiction with conceptual optimization. 
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4.1 Challenges in product development 

 

Autodesk, (2010d), mentions a number of challenges manufacturers are facing in 

product development. Throughout the development process of a product, 

manufacturing companies rely on various design tools to complete the technical 

description of a product.  

 

In the initial phase of concept design, information is gathered and digital data rarely 

exists or is often only available in an incompatible format. The engineering team 

must re-create information in a format which they can use throughout the 

development-cycle. This results in duplication and additional conversion efforts and 

adds significant costs and time delay.  

 

At a certain stage in the development, many companies rely on a physical prototype 

for product performance testing and validation. Based on the maturity of the product 

development stage, a physical prototype is built and used for testing.  In the case of a 

required design change, manufacturing needs to go back and request modification to 

the original design.   

 

The refinement of the physical prototype is an iterative process and usually requires 

multiple engineering change orders and is repeated in multiple cycles. (Fig. 9 

Traditional design process using a physical prototype) 

 

Fig. 9 Traditional design process using a physical prototype  

 



37 

 

Also, manufacturing is heavily dependent on paper-based processes. Communication 

back to engineering is often done in an analogue form e.g. by doing modification on 

the paper drawing. Early and effective manufacturing process input is critical to 

make the right decisions in improving the quality of the design.  

According to the 10x rule, the propagation of errors at each development stage cost 

10 times the cost of the original estimates. (Ehrlenspiel, et al., 2006) 

 

To lower the environmental impact in product design engineers need to trace new 

ways and innovative approaches. New technologies and materials are explored; 

production processes which never have been done before need to be considered, as 

well as new suppliers etc. This implies a high risk of failure in the development 

process. 

 

Autodesk, (2010d) proposes with Digital Prototyping a method to “Get it right the 

first time” enabled by a simulation driven design development approach. Instead of 

building a physical prototype for testing, simulation and analyze is done on the 

virtual product.  

 

Fig.10 Design Process with simulation on a virtual model 

 

The aim of Digital Prototyping is to reduce and eliminate the need for recreation of 

data and conversion efforts by maintaining a single digital prototype of the product. 

A digital prototype is a digital simulation of a product that can be used to test form, 

fit and function and enables the user to virtually explore a product before it is 

manufactured. 

 



38 

 

Although there are discussions about the benefits of digital prototypes for many 

years, the budget or the tools required for building and testing a true digital prototype 

have been rarely achieved.  In addition to the positive impacts on the development 

workflow, Autodesk’s approach with digital prototyping is an enabler for 

environmental design considerations.  

A central requirement is to keep all data digital throughout the design development 

lifecycle. Simulation of the digital prototype determines optimal material choice and 

other critical design criteria. 

 

It is probably too idealistic to think that a digital prototype eliminates the physical 

prototype entirely; however a digital prototype can help to reduce the number of 

physical prototypes significantly. 

 

Aberdeen Research, (2009) states that best in class companies take advantage of 

other methods to assess product performance that allow them to reduce physical 

prototypes by 37% compared to industry average. 
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5 Main Part  

 

Computer based simulation of 3D CAD models is primarily seen as a method to 

reduce costs and design-cycle time and increase the performance quality of products. 

While this has been practiced since several years, there is a potential use for 

improving the environmental impact while leveraging the benefits for cost and 

design-cycle time reduction. 

 

When developing a new, or updating an existing product there are a lot of different 

ways to improve the environmental impact of a product. Many companies only focus 

their efforts on the operational level to reduce costs; however the design phase has a 

significant impact of the overall environmental performance of a product.   

 

5.1 The development of design knowledge - Autodesk 

Digital Prototyping 

 

Autodesk proposes digital prototyping as a design methodology that makes 

information available early and uses them for evaluation in a digital simulation 

process. By doing so, the designer is able to choose between design and material 

alternatives and base their decision on data rather relying on experience or tests with 

physical prototypes.  

 

Figure 11 illustrates the shift of the knowledge development progress towards the 

earlier phases in the product development. As a consequence of that, the designer has 

information at the time available when costs of change are still low. Considering the 

dynamic of new product development this is important because unwanted design 

decisions which cannot be reverted later on can be avoided. 
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Fig. 11 Shift of knowledge development progress (Autodesk, 2010d) 

 

The core of digital prototyping is a 3D model done by Autodesk® Inventor® 

describing the characteristics of the product. Knowledge about the product is built 

throughout the design process with the support of digital simulation. It is important 

to say, that a digital prototype contains all characteristics of the product, including 

electrical and hydraulic / pneumatic components. This allows the view of product 

characteristics from a holistic perspective, including all aspects of the product. 

 

The ability to perform simulation on the digital model benefits in fewer physical 

prototypes. Performance test which in the past required a physical prototype can now 

be done on the virtual model of the product.  

 

Depending on the complexity of analysis the simulation tools are either embedded 

into the 3D CAD software or integrated of optimized exchange of data. Some 
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During the critical concept development phase, in which designers map customer 

requirements into functional specification, the complexity and time to market can be 

mitigated by developing and composing a model of the complete product system 

function. The ability to evaluate alternatives earlier in the process leads into more 

innovative solutions that meet environmental objectives as well as improving the 

entire development process. 

 

Simulation allows critical engineering decisions early in the process.  Autodesk 

offers multiple products to study the design intent and accurately predict the 

performance of a digital prototype. An overview of products with simulation 

capabilities is shown in Figure 13. 

 

 

Fig. 13 Simulation Methods / Autodesk Products (Autodesk, 2010d) 
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Other calculation/simulation methods are: 

 Gear generator (Spur, Bevel, Worm) 

 Shaft generator 

 Cam generator 

 V-Belt, Synchronous belt generator 

 Roller chain generator 

 Key connection  

 Frame Generator 

 etc. 

 

5.1.2 Dynamic Motion Simulation 

Dynamic motion simulation includes static and modal finite element analysis (FEA) 

of parts, assemblies and load-bearing frames. 

 

5.1.3 Assembly Linear Stress Simulation 

Finite element analysis helps reduce and optimize the amount of materials used in the 

design. Digital Prototyping decreases the number of physical prototypes and reduces 

operational waste. 

 

5.1.4 Mold fill simulation 

The mold fill simulation includes plastic simulation tools to validate the design of 

injection molds for plastic parts. By simulating the injection mold process, 

alternative material candidates are evaluated.  

 
The creation of injection-molded plastic parts is a complicated process that can lead 

into unexpected delays and increased costs. Mold fill simulation is used to simulate 

the fill behavior of plastic parts during the injection molding process. Mold cooling 

simulation improves the cooling system efficiency, minimize part warpage, and 

achieve smooth surfaces. The choice of material has a critical impact on the 

product’s environmental quality. 
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5.1.5 Fluid dynamics and heat transfer analysis 

With fluid dynamics, detailed fluid flow behavior and the thermal characteristics of 

the product design is simulated. To avoid product failures, heat transfer analysis 

provide insights to a product’s temperature profile. Heat flow and heat flux can be 

identified when temperature or loads vary over time. Energy efficiency in fluid 

systems as well as improvements on efficiency for heat transfer systems and 

incorporate thermal energy recovery systems are some benefits of fluid dynamics and 

heat transfer analysis. 

 

5.1.6 Mechanical event simulation 

Design decision can be enhanced with accurate simulation by using multi-body 

dynamics with the support of large-scale motion, large deformation, and large strain 

with body-to-body contact. 

5.1.7 Advanced Mold simulation 

In addition to regular mold fill simulation, advanced mold simulation provides 

simulation of state-of-the-art process applications such as gas-assisted injection 

molding and co-injection molding. This includes predictions how molds will fill with 

or without fiber-reinforced pre-forms. Simulating the most advanced injection 

molding processes predicts and corrects part defects and optimizes the part and mold 

designs. 

 

5.1.8 Multiphysics analysis 

Multiphysics analysis allows the study of result from multiple physical factors acting 

simultaneously. By combining the results from different analysis, real-world product 

performance can be predicted. 

 

 Fluid and Thermal Analysis 

 Thermal Stress Analysis 

 Fluid and Structural Analysis 

 Electrostatic Analysis 

 Joule Heating Analysis 

 Electromechanical Analysis 
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5.2 Designing environmental friendly plastic products  

 

Designing plastic components for injection molding is a highly complex and 

demanding task that involves designers, plastic material specialists, engineers and 

tool makers. Full collaboration by the experts is required to realize the benefits of an 

environmental friendly product. Also, the process of injection molding involves high 

tooling costs and demands high volumes in order to be cost effective.  

Material selection is primarily based on the physical and mechanical requirements of 

a product and their characteristics have obviously a significant effect on 

environmental issues. The embodied energy consumption for the plastic material 

varies drastically depending on the selected vendor and has a main influence on the 

environmental impact of the product.  

Plastic material selection criteria from an environmental perspective are (Autodesk, 

2010b): 

 

 Carbon footprint – material with lower carbon reduces the generated CO2  

 Embodied energy – material with lower embodied energy reduces the energy 

requirements 

 Embodied water – material with lower embodied water lessens water 

resources required 

 

Autodesk provides with Autodesk® Moldflow® software a comprehensive set of 

tools for validating and optimizing plastic parts and the mold injection process. 

Manufacturers can evaluate various material candidates and helps to predict the flow 

behavior of melted plastics to achieve higher-quality manufacturing and 

sustainability requirements. 

 



 

 

Potential m

15 Mold b

plastic ma

material re

and choos

 

From env

improvem

 

5.2.1 Ex

 

There are

Disposabl

additives. 

properties

 

While env

the financ

to explore

effect on 

performan

      Fig

manufactur

base, create

aterial testi

ecommenda

e the most s

vironmental 

ments by mo

xploring en

e many dev

e products 

Autodesk®

 of more tha

vironmental

cial risk inv

e and compa

engineerin

nce needs as

g. 15 Mold 

ing defects 

ed in Autod

ing service

ation wizard

sustainable 

perspectiv

ld fill simul

nvironment

velopments 

are produc

®Moldflow

an 8000 pla

 friendly m

olved by po

are alternati

ng. It ident

s well as sus
47

base (Autod

can be pre

desk® Inven

s, Autodes

ds enabling

material fo

ve, followin

lation with 

tally friendl

that reduc

ced in biop

w® software

astic materia

materials are 

otentially p

ive material

tifies the b

stainability 
7 

desk® Inve

edicted befo

ntor® Tooli

k supplies 

g designers 

r their proje

ng areas ca

Autodesk®

ly material

ce the envir

plastics or 

e comprise

als.  

often too n

roduction f

l selection a

best materi

alternatives

entor® Tool

ore mold too

ing). Also w

energy us

to reduce e

ect.   

an be iden

®Moldflow®

ls 

ronmental 

thermoplas

es of a ma

narrowly con

failures, a m

and simulat

ial that me

s.  

 

ling) 

oling is cut

with state-o

sage indicat

energy requi

ntified for p

® software: 

impact of 

stics with b

aterial libra

nsidered be

manufacture

te to unders

eets functio

t (Figure 

of-the-art 

tors and 

irements 

potential 

plastics. 

bioactive 

ary with 

ecause of 

er is able 

stand the 

onal and 



 

Figure 16 

indicator. 

alternative

for the pro

 

Fig. 16 Se

 

Fig. 17 En

 

and 17 illu

With this 

es can be se

oject. (Figur

election of p

nergy usage

ustrate selec

classificati

earched and

re 18) 

plastic famil

e indicator (A

48

ction criteri

ion, plastic

d compared

ly (Autodes

Autodesk®

8 

ia for the pl

c materials 

d to choose 

sk® Moldflo

® Moldflow®

lastic family

are catego

the most s

ow®) 

®) 

y and energ

orized and 

sustainable 

 

gy usage 

various 

material 

 



 

Fig.18 Co

5.2.2 Ma

 

Beside the

feature pe

runner loc

required. A

part. Mold

for materi

 

mparison o

aterial Red

e product ch

erspective d

cation or im

A plastic pa

d fill simula

al reduction

Fig. 19

f materials

 

duction  

haracteristic

during the d

mproved cav

art should i

ation is able

n.  

9 Mold fill 

 

49

(Autodesk®

cs, there are

design phas

vity layout a

ideally have

e to provide

analysis (A

9 

® Moldflow

e a number 

se of a plas

are ways to 

e an even w

e suggestion

Autodesk® M

 

w®) 

of consider

stic product

reduce the 

wall thickne

ns and optim

Moldflow®)

rations from

t.  Optimiz

amount of 

ess across th

mize the pla

) 

m a mold 

zing gate 

material 

he entire 

astic part 

 



50 

 

5.2.3 Thermoplastic Scrap Reduction 

Thermoplastic scrap can be directly recycled in the process of injection molding. 

Some applications, such as food packaging and medical devices require a high level 

of virgin material, whereas garden furniture may require less virgin material for 

adequate structural, hygiene and coloring capabilities.  

 

If there are different types of materials used, considerations for easy disassembly are 

important. Snap fit or other mechanical fastener can improve the disassembly of 

components and facilitate the dispose of parts with minimal environmental impact. 

(Anastas and Zimmermann, 2007) 

 

5.2.4 Recycle Existing Resources 

Because of the high tooling costs involved in injection molding increased lifetime of 

the molding can significantly reduce costs and therefore the environmental impact.  

In some cases the life-time of existing tooling can be extended by adoption of 

existing molds. 

 

5.2.5 Product Durability 

By considering the optimization of plastic component better predictions can be made 

to the stability and end-of-life of a product. Often excessive part failures are faced 

due to high mechanical forces. By redesigning the part using different materials or 

additives (e.g. fiber filled plastic) the product life can be significantly improved.  

 

5.2.6 Energy consumption involved in the production process 

Optimizing the part design and runner system for a mold has direct impact on the 

clamp tonnage. The lower the clamp force, the less energy is needed. Injection 

pressure and clamp force can significantly influence the energy consumption. The 

mechanical properties of a material play a major role influencing requirement for 

clamping force and therefore energy consumption. 
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 Ease with which the part is processed 

 Likelihood of defective parts 

 Production rates and cycle times 

 Range of processing parameters that will produce a good part 

 

Undercuts 

An undercut is a design feature that interferes with the ejection of a formed part from 

the mold. An undercut can include features such as holes or bosses that are not 

aligned with the direction of ejection, threaded sections, and snap fingers. 

 

Wall thickness 

Ideally, a plastic part should have an even wall thickness across the entire part 

otherwise quality problems can occur. The thickness also defines the filling and 

cooling of the part. Molten plastic will prefer to flow through thick sections of the 

mold so excessively thin areas may have problems filling. Excessively thick areas 

will take longer to cool which may lead to the part deforming as the molten plastic 

solidifies. The wall thickness indicator examines the part thickness and 

Manufacturability indicator. 

 

5.4.2 Cost efficiency indicator 

 

Cost efficiency indicator is a combination of the following contributing factors: 

 Material cost 

 Mold cost 

 Production cost 

 

Material cost 

The Material cost depends on a range of factors. Some of the characteristics 

considered when determining this value include the following: 

 

 Volume of the part 

 Number of gates and the volume of the associated feed system 
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 A projected scrap rate based on how the material processing 

 characteristics 

 Cost of the material 

 

Mold cost 

The cost to produce a mold depends on a range of factors. Some of the characteristics 

considered when determining this value include the following: 

 

 The size, volume and complexity of the part 

 Number of gates and the associated feed system 

 Extent and type of undercuts required 

 

Production cost 

The production cost depends on a range of factors. Some of the characteristics 

considered when determining this value include the following: 

 

 Part cooling time 

 Total machine cycle time 

 

5.4.3 Plastic material impact indicator 

 

Different plastic material families have different characteristics and applications. 

Autodesk project Krypton provides an initial guide to selecting an appropriate 

material, and enables the design engineer to make sensible choices (Autodesk, 

2010a). 

Plastic material impact is measured by a combination of the following 

considerations: 

 

 Emissions (i.e. carbon footprint) 

 Energy usage 

 Water usage 

 End of life (i.e. recyclability) 
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Emission 

The carbon footprint is a measure of the amount of CO2 gas produced by the 

production of the selected material. 

 

Embodied water 

Embodied water is a measure of the amount of water required to produce the selected 

material.  

 

Recyclability 

The recyclability of a material is a measure of the percentage of the material that is 

recovered as scrap and subsequently reprocessed into useful products. 
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5.5 Meet the needs with Optimization  

 

In absence of analysis, engineers usually go for the save choice in their design. From 

safety viewpoint, this may be the right choice but the over-engineered design results 

in unnecessary bounded resources from material and also process perspective. An 

important principle in reducing the environmental effect is to use less material 

wherever possible. (Anastas and Zimmermann, 2007; Willis, 2009)  

 

Organizations are striving to reduce the impact of their consumption patterns on the 

environment. This is known as dematerialization. Originally, dematerialization is 

conceived as an approach to reduce the weight of materials used in manufacturing. 

Gordon, (2001) points out improving resource productivity by process improvements 

in all value-adding activities.  

 

A way to avoid superfluous material is to check stresses with the help of FEA 

calculation to identify areas where material can be removed. The FEA calculation is 

usually done on a given maturity state of the model and is a static process. 

Depending on the situation this may be done in a state of early concepts or when a 

full 3D model is available. Preferably, simulation is done in the early stages of the 

design.  

 

One of the advantages in 3D parametric design is the way modifications are done on 

the model. By changing parameter values, the model can be adapted in size, shape, 

material and color. FEA calculation provides feedback on the stresses within the 3D 

model and parameters can be optimized for a range of values to get the best result 

while still maintaining the required safety factors.  

 

The limitations with the optimization approach come with the complexity of the 

model. As soon as the numbers of parameters grow, which are considered for the 

optimization, multiple configuration of the FEA model need to be calculated. Each 

combination results in another configuration for calculating the FEA model.  
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The calculation of complex models is very processor intensive and can be time 

consuming. Autodesk, (2010c) points out, new technologies such as cloud computing 

can be beneficial to reduce the processing time, since it enables the user to work in 

parallel by offloading time consuming computations to web services. 

 

5.5.1 Optimization of multiple parameters 

 

Autodesk recently announced a new web based service, called Inventor® 

Optimization, as a technology preview (http://labs.autodesk.com) for optimization of 

3D CAD models. (Autodesk, 2010c) 

 

The Inventor® Optimization Technology Preview allows designers and engineers 

that use Autodesk® Inventor® to optimize their designs. It is a simple, web-based 

simulation tool to help an engineer minimize weight and cost while improving 

product safety. 
 

A 3D model is optimized based on a number of parameter values. In a 3D model, 

multiple calculations are combined into an optimization model and checked for 

validity. The calculations are offloaded to a set of web services that provide resizable 

dynamic computational and data storage capabilities via the internet (“The cloud”). 

The user can continue to work in parallel without any performance degradation. 

Once the optimization is finished the user gets automatic notification by email.  

 

Leveraging additional processing resources offered by the cloud service allows the 

user to do multiple design configurations in parallel. Computations can be done in 

less time and without excessive hardware requirements. The cloud is a reference to a 

set of web services that provide resizable dynamic computational and data storage 

capabilities that can be accessed via an internet connection. 
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5.6.2 Contact test (drop test) 

 

A drop test is a technique for measuring the durability of a part or material by 

subjecting it to a free fall, from a predetermined height to a surface, under prescribed 

conditions. 

 

The interaction and transfer of loads can be accurately simulated between multiple 

parts of an assembly, for both linear and nonlinear contact scenarios. Autodesk® 

Algor® Simulation software supports bonded, welded, free/no, surface, and edge 

contact. Nonlinear contact includes additional contact methods such as coupling 

elements, dashpot elements, and surface-to-surface contact. Surfaces and parts are 

specified that may come into contact throughout an event. 
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5.8 Simulation of energy loss 

 

Products are becoming increasingly more complex and manufacturers are using a 

mechatronics based approach to integrate electronic, mechanical and software 

components. The integrated approach provides new capabilities in analyzing energy 

loss in mechatronic systems. 

 

Autodesk provides with AutoCAD® Electrical® software, which estimates in the 

area of power conductor size versus energy losses. Designing to meet minimum code 

requirements can conflict with environmental design.  

 

For example, designing to the minimum conductor size for a given load can provide 

short-term savings on material cost but run up longer-term expense due to higher 

heating losses in the wiring. Over the life of the installation, the energy loss in 

heating up the minimum-sized wiring, instead of reaching the load to do useful work, 

could be substantial.  

 

During wire sizing, a list of the valid wire sizes meeting the ampacity requirements 

of the load is displayed, and also a list of the estimated maximum energy loss cost for 

each wire size. This set of calculations allows better environmental design decisions.  

 

For example, if the conductors for a motor are oversized, heat losses will be reduced. 

This results in a higher initial cost for material and installation labor.  However, this 

cost is recovered many times over in reduced energy losses in the wiring during the 

life of the installation.  

 

For reducing energy waste, the entire life-cycle of a product needs to be considered 

and taken into account when introducing environmental friendly practices. 
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5.9 Assessment of the environmental impact 

 

Understanding the life-cycle implications of your product early in the design process 

is a vital step towards an improved environmental friendly product development. 

Designers often lack information about specific characteristics of their components, 

which results in irreversible design failures. The more important is it to evaluate the 

life-cycle in the early phase of conceptual design. 

 

Autodesk collaborates with Sustainable Minds brought about a way for Autodesk® 

Inventor® users to analyze a product’s environmental impact from an exported bill 

of materials (BOM). 

 

5.9.1 Lifecycle Analysis with Inventor® and Sustainable Minds 

 

Sustainable Minds is a Web-based service for a comprehensive and standardized 

system that allows you to estimate, evaluate, compare and track the life cycle 

environmental and human health performance of products in an early stage of the 

design. Sustainable Minds can be accessed by http://www.sustainableminds.com/. 

 

Sustainable Minds, 2010 assesses and compares alternatives of product concepts for 

their life-cycle performance. The LCA is performed at any point, as early as during 

the concept design phase. Sustainable Minds closely follows the steps for LCA 

defined by the ISO 14040 standard, starting with the goal and scope definition. For 

the creation of the reference project, BOM data can be loaded from the CAD model. 

The material names in AutoCAD® Inventor® are mapped to the Sustainable Minds 

impact factor database. 

 

By defining the system bill of materials (SBOM) all the materials in the product and 

packaging, major material processing steps in manufacturing, energy, fuel and other 

consumables used during the use phase, end of life scenarios, and transportation 

activities are specified. In this step, the user identifies what contributes the most to 

the overall environmental impact of the product. 
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The scorecard allows users to gauge the new concept against the reference design to 

find how decisions affect the environmental impact of the design. In the example 

shown in Figure 33, material choices combined with component reduction through 

redesign have improved the environmental score. 

 

5.10  CAD/PLM Solution Suppliers and Sustainability 

Development 

 

Sustainability issues are becoming increasingly important to manufacturers and many 

of today’s leading CAD/PLM solution suppliers are offering capabilities for 

supporting sustainability efforts. Despite that the focus on the thesis was on design 

and simulation solution within the Autodesk software environment, there are other 

software suppliers offering solutions to address environmental issues.  

 

CAD/PLM solution providers such as Dassault Systems with Catia and Simulia, 

Parametric Technology with Windchill and Siemens PLM with Teamcenter rely on 

their PDM solutions to connect sustainable design issues with the manufacturing 

process. By utilizing the PDM capabilities for BOM management, the core data 

management tools manages the tracking, the management and reporting of 

compliance and related sustainability issues. PDM/PLM allows decisions made 

across product design and manufacturing to be documented, tracked, and made 

visible. (Siemens, 2010; Parametric Technology, 2010; Dassault Systems, 2010) 
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5.10.2 Dassault Systemes Solidworks 

 

Dassault Systemes offers with SolidWorks Sustainability a tool to visualize the 

impact of the user's choices in areas such as carbon emissions, energy, air, and water 

throughout life-cycle stages like: materials, manufacturing, product use, and end-of-

life. (Solidworks, 2010a) SolidWorks Sustainability is available as entry level 

version SolidWorks SustainabilityXpress free of charge and the full cost of charge 

version SolidWorks Sustainability. A comparison of the product features is shown in 

Table 5. (Solidworks,2010b) 

 

 Table 5 Comparison SolidWorks SustainibilityXpress with SolidWorks 

Sustainibility 

Functionality SolidWorks 

SustainabilityXpress 

SolidWorks Sustain

ability 

Integrated into SolidWorks Interface x x 

LCA of Parts x x 

Find Similar Material x x 

Impact Factor Dashboard with Key 

Categories 

x x 

Establish Baseline x x 

Customizable Reports x x 

Detailed Report for Parts x x 

Baseline Comparison Report x x 

LCA of Assemblies  x 

SolidWorks Configuration Support  x 

"Use Phase" Energy  x 

Specify Transportation Type  x 

Report Includes BOM with 

Best/Worst Components 

 x 

Assembly Visualization Support  x 
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6  Results of the thesis  

 

Addressing environmental issues poses risks and offers opportunities to 

manufactures. Blus (2010) explores opportunities for sustainable product 

development in context of common business challenges. Related to the product 

development process the most important opportunities are: 

 

6.1.1 Potential Business Benefits 

 

Profitability 

Using fewer material cuts costs and as a consequence, overhead and production costs 

are reduced by using less energy. More sustainable materials may or may not reduce 

costs at the front end; however it can contribute to reduce waste, emissions and 

pollution. 

 

Competition 

Customers are willing to pay more for safe, healthy, green products. Environmental 

consciousness in the product design can reveal a competitive advantage and a chance 

to regain market share for some types of products. Reduced operating costs with 

minimal energy and/or water consumption during the product life-time are likely to 

influence the consumer buying behavior. 

 

Compliance and Managing Risk  

Regulatory pressures will continue to increase and expand to cover materials and 

products whose cumulative environmental impact is deemed unacceptable (such as 

non-biodegradable plastic). A sustainable approach reduces the risk for non-

compliance. Manufacturers are less impacted by the consequences of material 

shortages, energy price increase, higher fees of disposal and pollution abatement. 
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Market Opportunities / Growth 

Emissions reporting and mitigation plans are increasingly demanded from the supply 

chain partner by major corporations and public agencies. A valued third party 

certification can help to put products on the shortlist for companies that have 

implemented preferable purchasing policies for environmentally products.  

 

6.1.2 Adoption and Implementation of Software Tools 

 

Digital prototyping is defined as dealing with the complete product before it becomes 

real, from the conceptual design phase through the manufacturing process. There is a 

general tendency to provide simulation methods earlier in the design process. This is 

supported by the ever improving ease of use in software products. 

 

While in the past simulation software required a lot of training to reach an expert 

level, today’s tools allow easy access to even complex simulation and analyze. This 

does not mean downsizing of the required design engineering skills; it rather offers 

an opportunity to shift the development effort for improved innovation.  
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7 Summary and further works 

 

The thesis covers a broad number of concepts for improving the environmental 

impact of products by utilizing tools and methods involved in the design 

development course. Many of them allow as a side effect to improve operational 

efficiency and cost reduction. 

 

Since the nature of the topic is very broad, no study on the effectiveness has been 

attempted. This leaves an opportunity on further research to quantify the business 

benefits in the context of design development. 

 

The thesis introduces new technology products from Autodesk such as Inventor® 

Optimization and plastic part analysis with Project Krypton. These products are 

available as technology preview and can potentially contribute to accelerate the 

adoption of environmental design thoughts. Additionally, simulation tools utilizing 

cloud computing in a business environment are a relatively new technology and 

deserve further attention. 

 

Furthermore, product material related considerations are seen as a major contributor 

to the environmental impact. Anastas and Zimmerman, (2007) mention that the 

inherent nature of selected material and energy inputs should be evaluated. Further 

research is required to overcome obstacles in the implementation of such concept in 

the design development process.   

 

Last but not least, Anastas and Zimmerman, (2007) mentions, that just as every 

parameter in a system cannot be optimized at the same time, especially when they are 

interdependent, the same is true for design principles. It is important to balance the 

design requirements to achieve optimum solutions from cost and environmental 

impact point of view.   
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9 LIST OF FIGURES  

 

Fig. 1  Impact of purchasing decisions (GMA/Deloitte,2009)  

 

Fig. 2  WEEE symbol for marking products (European Union, 2010a) 

 

Fig. 3  Production costs in %  - according to Ehrlenspiel, et al., (2006) 

 

Fig. 4  Inputs to the design process  
   - according to Ashby M. and Johnson K. (2009) 

 

Fig. 5  The Lifecycle of a product  - according to Blanchard and Fabrycky,  
  (2006) 
 

Fig. 6  The 4 phases of LCA  (Wimmer, et al., 2004) 

 

Fig. 7  Component/Material retirement, phase out, recycling and disposal 
    relationship (Blanchard and Fabrycky, 2006) 

 

Fig. 8  Energy consumption during product life-cycle,  
    (Ashby and Johnson, 2009) 

 

Fig. 9  Traditional design process using a physical prototype (Autodesk,  
  2010d) 
 

Fig. 10  Design Process with simulation on a virtual model (Autodesk, 2010d) 

 

Fig. 11  Shift of knowledge development progress (Autodesk, 2010d) 

 

Fig. 12  Simulation methods (Autodesk, 2010d) 

 

Fig. 13  Simulation Methods / Autodesk Products (Autodesk, 2010d) 

 

Fig. 14  Calculation for Bolted Connection (Autodesk® Inventor® Software) 

 

Fig. 15  Mold base (Autodesk® Inventor® Tooling Software, 2010) 
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Fig. 16  Selection of plastic family (Autodesk® Moldflow® Software) 

 

Fig. 17  Energy usage indicator (Autodesk® Moldflow® Software) 

 

Fig. 18  Comparison of materials (Autodesk® Moldflow® Software) 

 

Fig. 19  Mold fill analysis (Autodesk® Moldflow® Software) 

 

Fig. 20  Injection mold fill time analysis (Autodesk® Moldflow® Software) 

 

Fig. 21  Injection mold sink mark analysis (Autodesk® Moldflow® Software) 

 

Fig. 22  Photorealistic defect visualization (Autodesk® Moldflow® Software) 
 

Fig. 23  Photorealistic defect visualization  
      with alternative material selection (Autodesk® Moldflow®;  

  Autodesk®  Showcase®) 
 

Fig. 24  Nominal wall thickness analyze (Autodesk® Moldflow® Software) 

 

Fig. 25 Performance indicator gauge, (Autodesk, 2010a) 

 

Fig. 26   Draft angle analyze (Autodesk® Inventor® Software,     
                  Project Krypton Technology Preview) 
 

Fig. 27  Parametric model of crane gripper (Autodesk® Inventor® Software,     
                  Inventor Optimization Technology Preview) 
 

Fig. 28  Safety Factor Results (Autodesk® Inventor® Software,     
                  Inventor Optimization Technology Preview) 
 

Fig. 29  Optimization results (Autodesk® Inventor® Software,     
                  Inventor Optimization Technology Preview) 
 

Fig. 30  Fatigue calculation for Bolted Connection (Autodesk® Inventor®  
       Software) 
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Fig. 31  Assembly documentation (Autodesk® Inventor® Publisher Software) 

 

Fig. 32  System Bill of Material (SBOM) (Sustainable Minds, 2010) 

 

Fig. 33  System Bill of Material (Sustainable Minds, 2010) 

 

Fig. 34  PTC Insight (Parametric Technology, 2010) 
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11 List of abbreviations 

 

B2B – Business to Business 

B2C – Business to Consumer 

BOM – Bill of Material 

CAD – Computer aided design 

EU – European Union 

EuP – Energy using Products 

EPD – Environmental Product Declaration 

ECHA – European Chemicals Agency 

LCA – Life cycle assessment 

PBB – Polyprominated biphenyls 

PBDE – Polybrominated diphenyl ethers  

PDM – Product Data Management 

PLM – Product Life-cycle Management 

RoHS – Reduction of Hazardous Substances  

REACH –   Registration, Evaluation and Authorization of Chemicals 

SBOM – System Bill of Material 

WEEE – Waste from Electrical and Electronic Equipment 
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12 Appendix:  

12.1  Autodesk Product Portfolio 

 

Product Name: Description 

Autodesk® Algor® Simulation 

Express 2011  

Autodesk® Algor® Simulation software 

provides a broad range of mechanical simulation 

tools to help designers and engineers make 

critical decisions earlier in the design process. 

First-pass, linear static stress analysis tool to 

validate and optimize single-part designs before 

manufacturing. 

Autodesk® Algor® Simulation 

2011  

Design validation and optimization with a broad 

range of mainstream engineering simulation tools 

in a multi-CAD environment. 

Autodesk® Algor® Simulation 

CFD 2011  

All the functionality of Algor Simulation along 

with fluid flow analysis, computational fluid 

dynamics and mass transfer analysis. 

Autodesk® Algor® Simulation 

MES 2011  

All the functionality of Algor Simulation along 

with nonlinear static and dynamic analysis, rigid-

body motion analysis, and combined stress and 

flexible-body motion analysis. 

Autodesk® Algor® Simulation 

Professional 2011  

All the functionality of Algor Simulation, Algor 

Simulation CFD, and Algor Simulation MES 

along with electrostatic analysis and the ability to 

combine analysis types for full multiphysics 

simulations. 
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Autodesk® Inventor® Publisher  Autodesk® Inventor® Publisher is innovative 

technical communications software that can help 

manufacturers explain and differentiate their 

products with clear, accurate, and compelling 2D 

and interactive 3D technical documentation. 

Autodesk® Alias® Design The Autodesk® Alias® product line ― Alias® 

Sketch, Alias® Design, Alias® Surface and 

Alias® Automotive ― provides industry-leading 

surfacing capabilities supported by best-in-class 

sketching, modeling and visualization tools. for 

Autodesk® Inventor® users. 

Autodesk® Inventor® Autodesk® Inventor® mechanical design 

software takes engineers beyond 3D to Digital 

Prototyping by enabling them to design, 

visualize, and simulate products before they are 

ever built. 

Autodesk® Showcase®  Autodesk® Showcase® 2011 visual 

communication software enables designers, 

engineers, and marketing teams to tell the stories 

of their designs with vividly immersive 3D 

presentations and highly realistic renderings. 

AutoCAD® Electrical® AutoCAD® Electrical is AutoCAD® software 

for controls designers, purpose-built to accelerate 

the creation of electrical control systems by 

automating electrical engineering tasks and 

providing comprehensive symbol libraries. 
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Factory Design Suite® Autodesk® Factory Design Suite is an integrated 

2D/3D factory layout solution purpose-built to 

help you make better layout decisions by creating 

a digital prototype of your factory. 

Autodesk® Inventor® Tooling Autodesk® Inventor® Tooling software helps 

automate key aspects of the design of injection 

molds for plastic parts. 

Autodesk® Moldflow® Autodesk® Moldflow® Adviser injection 

molding simulation software provides wizard-

based tools to help validate and optimize plastic 

part, injection mold, and tool designs before 

manufacturing begins. 

Autodesk® Vault The Autodesk® Vault product line helps 

workgroups control project-related design data, 

manage change processes to minimize costly 

mistakes, and more efficiently release and revise 

designs. 
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