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Kurzfassung
In dieser Diplomarbeit werden exakte und heuristische Methoden entwickelt um das k-node Mini-
mum Label Spanning Arborescence (k-MLSA) Problem zu lösen. Dieses Problem ist eine Kombina-
tion des Minimum Label Spanning Tree (MLST) Problems und des k-cardinality Tree Problems, die
beide NP-vollständig sind. Beim MLST Problem soll in einem gerichteten Graphen, dessen Kan-
ten ein oder mehrere Label zugeordnet sind, die minimale Teilmenge an Labels gefunden werden,
sodass die entsprechenden Kanten einen gerichteten Baum mit zumindest k Knoten des Graphen en-
thalten. Dieses Problem ergibt sich im Kontext eines laufenden Projektes am Institut für Computer
Graphik und Algorithmen (Technische Universität Wien), in dem ein neuer graphenbasierter Ansatz
zur Datenkompression entwickelt wurde. Neben den exakten und heuristischen Methoden zur Lösung
des k-MLSA Problems wird in dieser Diplomarbeit ein neuer Preprocessing Algorithmus entwickelt
um die initialen Labels zu erzeugen.

Die entwickelte Heuristik ist ein memetischer Algorithmus (MA), d.h. die Kombination eines
genetischen Algorithmus mit lokalen Suchmethoden, die dazu dienen die mittels evolutionärer Op-
eratoren gefundenen Kandidatenlösungen weiter zu verbessern. Der exakte Algorithmus basiert auf
Methoden der mathematischen Programmierung. Zur Lösung des zugrundeliegenden ganzzahligen
linearen Modells werden Branch-and-Cut und Spalten Generierung zu einem Branch-and-Cut-and-
Price (BCP) Algorithmus verbunden. Dieser Algorithmus erzeugt neue (Label) Variablen und Nebenbe-
dingungen dynamisch während des Branch-and-Bound Prozesses, und fügt diese zu einem ursprünglich
unvollständigen Modell hinzu. Die neuen Variablen werden erzeugt indem das Pricing Problem
basierend auf den Werten der dualen Variablen der jeweiligen Lösung berechnet wird. In diesem
Ansatz müssen die (Label) Variablen nicht mehr in einem Preprocessing Schritt generiert werden. Da
das Pricing Problem im Verlauf des BCP Prozesses häufig gelöst werden muss, erfordert es besonders
effiziente Algorithmen. Zu diesem Zweck wird eine Methode vorgestellt, die auf der Suche von nicht
dominierten Intervallen basiert und effiziente Lösungen sowohl für das Pricing Problem als auch für
den Preprocessing Schritt generieren kann.

Obwohl die in dieser Diplomarbeit vorgestellte BCP Methode grössere Instanzen in kürzerer Zeit
lösen kann als die schon entwickelten Branch-and-Cut und Branch-and-Price Algorithmen ist für
praktische Anwendungen der MA geeigneter, da dieser fast optimale Lösungen für grössere Instanzen
in sehr kurzer Zeit findet. Die neue Preprocessing Methode reduziert die Berechnungskomplexiät im
Vergleich zur früheren Methode, die einen Flaschenhals im Verfahren bildete, signifikant.



Abstract
In this thesis, exact and heuristic methods for solving the k-node minimum label spanning arbores-
cence (k-MLSA) problem are developed. The k-MLSA problem is a combination of the minimum label
spanning tree problem and the k-cardinality tree problem, which are both NP-complete. Given a com-
plete, directed graph in which one or more labels are associated with each arc, the goal is to derive a
minimum cardinality subset of labels such that their corresponding arcs contain a directed tree con-
necting at least k nodes of the graph. The problem arises in the context of a data-compression model,
which has been developed as part of a project at the Institute of Computer Graphics and Algorithms
(Vienna University of Technology). In addition to exact and heuristic methods for solving the k-MLSA
problem, this thesis contributes a new preprocessing algorithm for constructing the initial labels.

The heuristic method is a memetic algorithm (MA), i.e. a combination of a genetic algorithm with
local search methods, which are used to further improve candidate solutions derived by the evolution-
ary operators. The exact algorithm is based on mathematical programming. It solves the underlying
integer programming formulation by combining branch-and-cut with column generation in a branch-
and-cut-and-price (BCP) approach. In this approach, new (label) variables and constraints are added
dynamically to an incomplete initial model during the branch-and-bound process. The new variables
are generated by solving the pricing problem, which is based on the values of the dual variables of the
current solution. Hence, the label variables no longer need to be constructed in a preprocessing step.
As the pricing problem needs to be solved frequently as part of the overall BCP process, efficient algo-
rithms are required. For this purpose, a method based on non-dominated interval search is proposed.
It provides an efficient solution to the pricing problem as well as to the preprocessing step.

The BCP approach proposed in this thesis can solve larger instances than previously developed
branch-and-cut and branch-and-price algorithms. However, for practical applications, the MA is more
appropriate as it is able to find near-optimal solutions for larger instances within short running times.
The new preprocessing method significantly reduces computational complexity compared to the pre-
vious method, which has been the bottleneck in the overall procedure.
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1. Introduction
In this thesis, both exact and heuristic methods are developed to solve the k-node minimum label
spanning arborescence (k-MLSA) problem. For the k-MLSA problem we are given a complete directed
graph with (multiple) labels associated with its arcs. The goal is to derive a minimum cardinality
subset of the labels such that their corresponding arcs contain a directed tree connecting at least k
nodes of the initial graph.

The application background is the compression of fingerprints for embedding into images using
digital watermarking techniques. For instance, biometric passports could contain two fingerprints
of the passport holder embedded into the photo as an additional security feature. Since the size of
the photograph is just 6 − 20 kilobytes, it allows for the storage of only one fingerprint. Hence,
new compression methods are required in order to embed both fingerprints [22]. These methods
are obviously compression methods for very small datasets. A comparison of our approach to other
compression techniques is given in [22]. Fingerprint images can be represented by their so called
minutiae, i.e. distinctive features like ridge endings, crossover, bifurcations, islands and pores. Our
model uses four attributes to describe minutiae: type, x and y coordinates as well the angle θ between
x-axis and the tangent of the ridge that ends in the respective point. This angle indicates the orientation
of the minutiae.

The input data comprises n minutiae, which are interpreted as four-dimensional points. These
points are represented by the nodes of a complete directed graph G = (V, A). For the compression
a subset k of all points is selected and connected by a directed spanning tree. Thus, the arcs can be
represented relative to each other. Furthermore we use a dictionary. This dictionary contains template
arcs and each arc is represented as a reference to the most similiar template arc and a correction vector.
Considering these template arcs as edge labels allows us to transform the problem into the problem of
finding a directed k-node minimum label spanning arborescence (k-MLSA).

The k-MLSA problem is an extension of the minimum label spanning tree (MLST) problem and
the k-cardinality tree problem, which are both NP-complete. The input to the MLST problem is an
undirected graph with labeled arcs. The goal is to find a spanning tree that contains the minimum
number of labels. An application of the MLST problem is, for example, the design of communication
networks, where uniformity is often required. The k-MLSA problem extends the MLST problem in-
sofar as the graph is directed and only a subset of k nodes is connected. Moreover, in our approach,
the labels have geometric properties. Even though no proof exists, it is assumed that the k-MLSA
problem is also NP-hard. Insofar as only a subset k of the nodes is selected, the problem is related to
the k-cardinality problem, also known as k-minimum spanning tree problem, which is also NP-hard.
That problem receives an undirected graph G(V, A), an edge weight function and a number k as input
and tries to find the minimum subgraph G′ ⊂ G that contains k nodes.

This master’s thesis is part of an ongoing project at the Institute of Computer Graphics and Algo-
rithms (Vienna University of Technology) where the described graph based compression method has
been developed [41, 18]. Two problems that were raised in previous work are solved in this thesis:

1. Instances with a large number of variables could not be solved by the existing branch-and-cut
(BC) and branch-and-price (BP) approaches.

2. The template arcs (labels) used in our problem are not provided as input. They have to be
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constructed in a preprocessing step, which turned out to be a bottleneck. On the one hand, the
existing methods were too slow to meet the practical requirement of a running time of merely a
few minutes. On the other hand, the preprocessing of large data sets was not possible at all, due
to high memory usage.

The contribution of this work is the development of new exact and heuristic methods for solving the k-
MLSA problem as well as a new approach to solving the related preprocessing problem. The memetic
algorithm MA is a combination of a genetic algorithm and local search methods, which are used to
further improve candidate solutions derived by the evolutionary operators.

The exact algorithm combines branch-and-cut and column-generation to branch-and-cut-and-
price (BCP) to solve the underlying integer programming formulation. In this approach, new (label)
variables and constraints are dynamically added to an incomplete initial model during the branch-and-
bound process. For the preprocessing step, two approaches where conceived. In the first approach, the
template arcs are not constructed in advance. Instead, they are constructed on demand in the pricing
step of the BCP method. The second approach is a completely new preprocessing algorithm called
non-dominated interval search (NIS). It constructs all candidate template arcs from the input dataset
very quickly and with low memory usage.

1.1 Related Work

The MLST problem was introduced by Chang and Leu [10]. It has been solved with heuristic (Max-
imum Vertex Covering Algorithm (MVCA), Edge Replacement) and exact (A*-Algorithm) algorithms.
Chang and Leu also proved that the MLST problem is NP-complete by reducing the set covering
problem to it. Their proof works as follows: A decision version of the MLST problem, the bounded
labeling spanning tree problem (BLST) is defined and its NP-completeness is shown.

Definition 1. (BLST problem) Given a graph G = (V, A), a positive integer J and a labeling function
L(a) ∀a ∈ A , is there a spanning tree T for G, such that |LT | ≤ J [10]?

It is easy to see that BLS T ∈ NP. First, a subset of edges is guessed. Then it is checked in
polynomial time whether this subset connects all vertices and whether LT is smaller than or equal to
J. It is proved by transforming the problem to a minimum set cover problem, which is known to be
NP-complete. Given a set S = {x1, ..., xn} and the subsets C1 = {xi1 , x j1 , xk1}, ...,Cm = {xim , x jm , xkm} of
S , the minimum set cover problem asks for a minimum number of subsets that can cover all elements
of S . The next step in the proof is to construct a graph from S that contains a cover of k − 1 subsets,
if and only if it has a minimum label spanning tree with j labels. It can be shown that this graph
contains a MLST with J labels if and only if a minimum cover with J − 1 subsets exists and that
the construction of MLST can be done in polynomial time. The MVCA, introduced by Chang and
Leu [10], is a polynomial time heuristic which constructs a MLST. It starts with an empty graph and
successively adds the label that covers the most uncovered nodes until all nodes are covered. This
heuristic has the drawback that the constructed graph is not necessarily connected, even though all
nodes are covered.

The MVCA version introduced by Krumke and Wirth [31] solves this problem by reducing greedily
the number of connected components instead of the number of nodes. The algorithm starts with an
empty graph and adds the label that minimizes the number of connected components most, until only
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one component is left. If more than one label minimizes the components equally, one of them is
selected randomly. This algorithm has a performance guarantee of (1 + log(n − 1)). This bound was
further improved by Wan et al. [48] to a (1 + log(n − 1))-approximation. In 2005, Xiong et al. [51]
showed that the worst case bound of MVCA is the bth-harmonic number hb, if the label frequency is
bounded by b. Another strategy is to use local search techniques. Brüggemann et al. [7] applied local
search techniques that are based on k-switch neighborhoods to a restricted version of MLST problem,
the so called MLS Tr problem. In the MLS Tr problem, every label occurs at most r times (r ≥ 2)
on the edges of G. With the k-switch neighborhood search technique, each k-switch replaces up to
k colors from a feasible solution by other colors. Formally, the k-switch neighborhood is defined as
follows:

Definition 2. Let k ≤ 1 be an integer, and let C1, C2 be two feasible color sets for some instance of
MLST. Then the set C2 is in the k-switch neighborhood of the set C1, if and only if |C1 −C2| ≤ k and
|C2 −C1| ≤ k [7].

Thus the color set C2 can be derived from the color set C1 through the removal of up to k colors
from C1, and then the addition of up to k colors. In the same paper, a proof is given showing that
there exists an instance G of MLST and a spanning tree T for G that is a local optimum with respect
to a k-switch neighborhood, such that the value of this local optimum is a r/2 + ε approximation of
the optimal objective value. Other heuristic approaches to the MLST problem are Genetic Algorithms
(GA). These approaches outperform the MVCA in many cases. Xiong et al. [52] proposed a GA which
encodes a candidate solution as a set of labels. A characteristic feature of this GA is that it uses only a
single parameter p, which determines the population size. The fitness of an individual is the number
of labels. The objective function minimizes the number of labels. Encoding only the labels is much
easier than encoding the spanning tree. It is also sufficient, since all spanning trees induced by the
labels are solutions for the MLST problem. The reason is that the structure of the tree does not matter;
only the number of labels is significant.

For the initial population, the chromosomes are built by adding randomly selected labels (genes)
until the solution is feasible. The crossover operator selects the labels in an offspring solution from
the union of the parents. First, the union of the parents is built, then the labels are sorted in descending
order of their frequency. The offspring is created by adding labels according their sort order until the
solution is feasible. In the mutation step, one label is added and redundant labels are removed. This
removal of redundant labels can also be seen as local search step. A time consuming operation in this
algorithm is to validate a solution using depth first searches (DFSs). A single DFS has the running
time O(m + n), where m denotes the number of edges and n denotes the number of nodes. Since DFSs
are performed after each addition of a label, the running time for crossover and mutation is O(l(m+n))
each, where l denotes the number of labels. If p denotes the number of generations and the population
size, p crossover and p mutation steps are performed in each generation. Thus, the worst case running
time of the algorithm is O(p2l(m + n)).

Another, very similiar, GA was developed by Numella and Julstrom [39]. A characteristic of this
GA is that a chromosome encodes all labels, and the fitness of a chromosome is the number of labels
needed to build a feasible solution. Thus, the labels at the beginning of the chromosome encode
a feasible solution. This feasible solution is called feasible set of the chromosome. In the crossover
operation, called alternating crossover, the labels are alternatingly taken from the parent chromosomes
and added to the offspring. If there are duplicates, the later occurrence of a label is eliminated. In the
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mutation step, either two randomly chosen labels are swapped, or one label from the feasible set is
swapped with a label from outside this set. A local search step tries to reduce the number of labels
needed for a feasible solution by reordering the labels. The GA is 1−elitist, i.e. it always preserves the
best chromosome.

Cerulli et al. applied the so called Pilot method to the MLST problem [9]. The Pilot method is a
tempered greedy heuristic with additional lookahead results, so called pilots. It was developed by Duin
and Voss [23]. Compared to other meta-heuristics like simulated annealing, variable neighborhood
search and reactive tabu search, the Pilot method achieves better results in most cases. However, the
running times are quite long. A modified genetic algorithm (MGA), developed by Xiong et al.[53],
lead to the best results for the MLST problem, regarding the solution quality and the running time.

A new approach, which compared favorably with existing heuristics, is to use ant colony optimiza-
tion for the MLST [15]. There are few approaches to solving the MLST problem with mathematical
programming techniques. A MIP formulation, which is based on a single commodity flow, was de-
veloped by Captivo [8]. A branch-and-cut-and-price approach was developed in [14], and several
mathematical programming techniques where developed in [16].

As part of this project, the k-MLSA problem was solved using the exact methods branch-and-
cut (BC) [18] and branch-and-price (BP) [46] as well as a heuristic method GRASP [22]. The BCP
aproach integrates the BC and the BP approach. It uses a similiar ILP model and the same cuts as
the BC method. This is described in detail in Chapter 5. The GRASP algorithm is compared with the
delveloped MA in Chapter 4.

Regarding the application background the compression of fingerprints, Dietzel [22] gives a a de-
tailed comparison of our approach to other compression techniques. A survey of the current state of
the art in fingerprint recognition is given in [36]. Jain and Uludag present an application of water-
marking and steganography where fingerprint data are hidden in an image [28]. A review of general
data compression techniques is given in [43].

1.2 Outline of the Thesis

In the first part of this thesis, an algorithm for constructing the labels is developed. In the second part,
the k-MLSA problem is solved with exact and heuristic methods. For the exact approach, the problem
is modeled as a mixed integer program (MIP) and solved using a branch-and-cut-and-price (BCP)
method. Extending the BC approach towards a BCP algorithm was motivated by the large number of
labels in our problem. The BCP algorithm starts with a small subset of labels and adds new labels on
demand in the pricing step. The BCP method is superior to BC and a BP because it can solve much
larger instances.

The second chapter describes the compression approach in detail and introduces the datasets that
were used for the tests. The third chapter deals with the construction of candidate template arcs T c.
After a short introduction to the structure of the problem, two different approaches for the generation
of template arcs are presented. In the first approach, the set of all template arcs T c is generated in
advance, using an algorithm called non-dominated interval search (NIS), which is explained in detail.
In the second approach, template arcs are generated on demand to be used within the BCP framework
presented in Chapter 5. The construction of template arcs on demand is done using a variant of NIS
called dynamic non-dominated interval search tree (DNIST). As DNIST is invoked very frequently in
the pricing step, it has to be very efficient. It is also explained in detail. In the final part of the chapter
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the results are presented and discussed. The fourth chapter presents a memetic algorithm MA for the
solution of the k-MLSA problem. Besides giving a short general introduction to genetic algorithms
and known techniques for solving the related MLST problem, the newly developed memetic algorithm
is described in detail, and the results are presented and compared with a GRASP approach. In the
menetic algorithm, feasible arborescences are searched for very frequently using depth first searches
(DFS).

A technique to reduce the number of DFS calls is also introduced in Chapter 4. The fifth chapter
presents a BCP approach to solving the k-MLSA problem. It gives a short general introduction to
BCP and presents the ILP model as well as the cutting plane separation with cycle elimination cuts
and directed connection inequalities. The directed connection cuts are separated by computing the
maximum flow and can be improved by back-cuts and creep flow. After presenting the pricing model,
the different variants of branch-and-cut-and-price (BCP) algorithms are described. Furthermore, pre-
processing strategies with the MA as an initial heuristic and the computation of a lower bound for a
reduced version of the problem are discussed. Also in this chapter, different BCP variants are com-
pared based on computational experiments. Chapter 6 discusses some implementation details such as
third party libraries, frameworks and solvers as well as parameter settings and the software design. In
Chapter 7, results and possible further developments are discussed.
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2. Formal Description of the Problem
This chapter describes the compression model as well as the structure of the input dataset. We give
only a short illustration of the compression model, since a more detailed description is already given
in [18].

2.1 Compression Model

Our input data set consists of n minutiae. Each minutia is interpreted as a d-dimensional point, i.e. as
a vector ~̃v = {v1, . . . , vn} from a discrete domain D = {0, . . . , ṽ1 − 1} × . . . × {0, . . . , ṽd − 1}, D ⊆ Nd.
The compression can be lossy or lossless. In the first case, a subset k of the n minutiae is selected,
whilst in the second case all minutiae are used, i.e. k = n. Our compression approach is based on the
following two ideas:

1. Select k points from n and connect them by a k-node arborescence: For this purpose we start
with a complete directed graph G = (V, A) with A = {(u, v) | u, v ∈ V, u , v}. Each node V of this
graph corresponds to one of the n minutiae. In this graph a k-node arborescence is constructed,
so each arc in the arborescence represents the relative geometric position of its endpoint relative
to its starting point [18].

2. Use a codebook: We use a small codebook of template arcs, which are selected from the set
of candidate template arcs T c (see Chapter 4), and encode each arc relative to the most similiar
template arc. The idea behind this strategy is that it should require less space to store the arcs
as they can be encoded by their difference to their corresponding template arc. The difference
of each arc to its template arc is expressed by a so called correction vector ~̃δ ∈ D′ from a
prespecified, small domain D′ ⊆ D with D′ = {0, . . . , δ̃1 − 1} × . . . × {0, . . . , δ̃d − 1} [18].

The objective of our optimization is to minimize the number of candidate template arcs by solving
the resulting k-MLSA problem, while the size of the correction vector domain is prespecified. Note
that other objectives are also possible and could be subject for further research: E.g., the size of the
correction vector could be minimized while the number of candidate template arcs stays the same. Or,
in a multi-objective optimization, the size of the correction vector as well as the number of template
arcs (i.e. the size of the codebook) could be minimized. The result of our optimization is a minimum
labeled spanning arborescence, and a solution consists of:

1. The codebook that contains the candidate template arcs T c.

2. A rooted, outgoing tree GT = (VT , AT ) with VT ⊆ V and AT ⊆ A connecting precisely |VT | = k
nodes. Each arc of this tree is associated with a candidate template arc index κi, j ∈ {1, . . . ,m}
and a correction vector δi, j ∈ D

′ [18].

Starting at the root of the tree we can derive every point from the relation of the source and target
node vi and v j of each arc. So for each arc the relation

v j = (vi + tκi, j + δi, j) mod ṽ, ∀(i, j) ∈ AT , (2.1.1)
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holds, i.e. each arc v j can be derived from vi by adding a small correction vector δi, j to the index of
the template arc κi, j that corresponds to it [18]. We use a modulo-calculation so we do not have to
deal with negative values and we avoid considering domain boundaries explicitly. For the modulo-
calculation the domain border ~̃v is defined as ṽl = maxi=1,...,n vl

i, l = 1, . . . , d. From this specific
domain border, which is the maximum from one input instance, we have to distinguish the overall
domain ~̃ξl, ξ̃l = maxI ṽ

l
I , l = 1, . . . , d, which is the maximum over all input instances I.

The compressed information we have to store consists of the codebook, the correction vector ~̃δ
and the tree. We encode the structure of the tree as a bit string by traversing the arborescence depth
first and storing 1 if an arc has been traversed in forward direction and 0 if it is traversed backwards.
The following Equation (see Equation (2.1.2)) shows the complete compressed information on binary
level.

λ(m, ~δ, k, ~̃v, ~ξ, ~χ) = size
(
CD′

)
+ 2 · 7︸︷︷︸

values k,m

+ 2 ·
d∑

l=1

dχl ld ξ̃le︸             ︷︷             ︸
root node, domain ~̃v

+ 2 · (k − 1)︸     ︷︷     ︸
encoding of tree structure

+
⌈
m ·

d∑
l=1

χl ld ṽl⌉
︸              ︷︷              ︸

template arcs

+(k − 1) ·
⌈

ld m︸︷︷︸
index to template arc

+

d∑
l=1

χl ld δ̃l

︸      ︷︷      ︸
δ̃−values

+

d̃∑
l=1

(1 − χl) ld ṽl

︸             ︷︷             ︸
remaining dimensions

⌉
(2.1.2)

Data of constant size are designated by CD, this variable contains for example the offset
values for each dimension. For the number of nodes in the arborescence k and the number of template
arcs m we reserve 2×7 bits. Not all dimensions of the vector are necessarily represented by a template
arc and a correction vector. To exclude these dimensions we define the following function:

χl =
{ 1 dimension l is considered by the compression method

0 otherwise
(2.1.3)

The third term of Equation (2.1.2) contains the bits reserved for the root node and the respective
domain borders ṽl. Term four contains the bits reserved for the bit-string to store the tree structure.
Term five contains the bits that hold the template arcs, and term six contains the bits that hold the arcs.
To represent each arc we need the index of the template arc. The space required to store these indices
is ld m. Furthermore we have to store the correction vector and the remaining dimensions, which are
not encoded by the correction vector. Note that we round up the whole fifth term of Equation (2.1.2),
which saves bits compared to rounding up each term individually. To demonstrate the encoding we
quote the complete encoding example from [18]. This example shows the encoding for two dimensions
with ~̃δ = (5, 5)T , k = 9 and the following input:

200
200
21

,
208
304
30

,
211
386
97

,
261
356
210

,
313
330
293

,
314
409
22

,
503
252
268

,
608
280
157

,
414
356
77

,
662
332
104

,
702
676
78


 .
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The offsets are 200 for the first and second coordinate and the domain borders are ~̃v = (503, 477, 294)T .

root node

ṽ

7 + 7 = 14 bit

ld ξ = 27 bit

ld ξ = 27 bit

tree structure 2 · (k − 1) = 2 · 8 = 16 bit

template arcs

k,m 9 2

(303, 52, 268)

(503, 477, 294)

1111001100011000

m · d∑d
l=1 χ

l ld vle = 2 · 18 = 36 bit

(k − 1) · dld m+
∑d

l=1 χ
l ld δ̃l +

∑d̃
l=1(1− χl) ld ṽle

t1 = (100, 25)

t2 = (50, 50)

tree arcs 1 5 3 157

1 3 4 30

1 5 1 293

2

2

2

idx δ1 δ2 remaining dimension

3 2 210

4 2 104

972 4

Encoding

(303, 52, 268)

(408, 80, 157)

(8, 104, 30)(8, 104, 30)

(462, 132, 104)
(113, 130, 293)

(114, 209, 22)
(11, 186, 97)

= 8 · (1 + 4.64 + 8.19) = 112 bit

(61, 156, 210)

2 3 3 22

(214, 156, 77)

1 1 1 77

Figure 1: This figure shows a concrete encoding example. The first block basically contains information to be
able to process the following blocks. It is followed by the list of the template arcs. This can be compared to a
dictionary or codebook of traditional compression methods. The block on the bottom contains the actual tree
information, i.e. a list of arcs encoded by an index to one of the template arcs, the respective correction vectors,
and finally the values of the dimensions which are not considered for compression. The black dots indicate
that the size of the respective (sub)blocks is not known in advance, because it depends on output values of the
compression algorithm (like the number of template arcs m). Caption and image source [18].

2.1.1 The Set of Candidate Template Arcs T c

The set of candidate template arcs T c is now described in more detail, since its construction will
play an important role in this thesis. Each arc (i, j) ∈ A represents the geometric information of a
d-dimensional vector a, where al denotes the coordinate of dimension l of that vector and l = 1, . . . , d.
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Let A′ ⊆ A, A′ , ∅ be some subset of arcs from A. A set A′ is dominated by a set A′′ if A′ ⊂ A′′.
We want to determine all different non-dominated subsets of A that can be represented together by a
common template arc t ∈ D. A template arc t can represent all arcs within the domain of the predefined
correction vector D′ ⊆ D (see Figure 2). Recall that we use a modulo structure instead of subtraction,
so each arc can be represented by adding t to the respective correction vector δ̃. Thus, each t can
represent the following subspace D(t) ⊆ D:

D(t) = {t1, . . . , (t1 + δ̃1 − 1) mod ṽ1} × . . . × {td, . . . , (td + δ̃d − 1) mod ṽd}. (2.1.4)

The set A′ ⊂ A may be representable by several different template arcs t, one of which is chosen as
the so called standard template arc τ(A′) by selecting the smallest coordinate al from E ⊂ A′ in each
dimension l where E comprises only arcs in A′ that are reachable without crossing the domain border.

Figure 2: Each point within the light-green areas anchored at a1 and a2 can represent a1 and a2 respectively.
Each point within the dark green area can represent both a1 and a2 together. We designate the point with the
greatest dimension values within the dark green area as τl(a1, a2) (the red dot in the upper right corner of the
dark green area). That point is also the one whose dimension values coincide with the smallest dimension values
from the set of the points it represents (a1 and a2 in this case). This figure does not show the special case of
crossing the domain border.

Figure 2 shows how the position of the standard template arc is chosen. Although all template
arcs in the dark green area can represent both arcs the standard template arc is set in the upper right
corner. A standard template arc τ(A′) is dominated by another standard template arc τ(A′′) if A′ ⊂ A′′.
The number of this non-dominated template arcs can become very high. An upper bound of the
number of non-dominated template arcs |T c| is given by O(|A|d), as illustrated in [18]. Figure 2.1.1
demonstrates the construction of this upper bound. Bold dots represent the vector set A, small dots the
non-dominated standard template arcs T c. Obviously, |T c| = (|A|/4 + 1)2 = Θ(|A|2) [18].

2.2 Test Instances

We used test instances from the Fraunhofer Institute Berlin (Fraunhofer Templates) and the U.S. Na-
tional Institute of Standards and Technology [24] (NIST data). The test instances are described in
more detail in [18].
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δ̃ = (6, 6)
|A| = 20

|T c| = (|A|4 + 1)2 = 36

∈ A

∈ T c

1 2 3 4

1

3

2

4

5

6

7

8

9

10

11

12

65 7 8 9 10 11 12 13 14

Figure 3: Example for |T c| = Θ(|A|d) with d = 2. Image credits to [18].

Table 1: Overview about the Fraunhofer test instances used for our experiments.

short name full name |V | short name full name |V |

ft-01 P0001 F00 R00 31 ft-11 P0001 F03 R00 38
ft-02 P0001 F00 R01 38 ft-12 P0001 F03 R01 28
ft-03 P0001 F00 R02 35 ft-13 P0001 F03 R02 25
ft-04 P0001 F00 R03 20 ft-14 P0001 F03 R03 33
ft-05 P0001 F00 R04 39 ft-15 P0001 F03 R04 29
ft-06 P0001 F01 R00 15 ft-16 P0014 F00 R00 37
ft-07 P0001 F01 R01 28 ft-17 P0014 F00 R01 31
ft-08 P0001 F01 R02 27 ft-18 P0014 F00 R02 40
ft-09 P0001 F01 R03 27 ft-19 P0014 F00 R03 35
ft-10 P0001 F01 R04 31 ft-20 P0014 F00 R04 28

The Fraunhofer templates are multiple scans of four different fingers from two individuals, and
each of them contains 15 to 40 minutiae. Each minutia is encoded as ~̃ξ = (ξx, ξy, ξθ, ξtype)T =

(29, 29, 29, 21)T . The size of CD is 14 bits, i.e. 7 bits for the offset value of the respective
spatial dimension. Group NIST contains 12 exemplary templates from each of the the three classifica-
tion categories ugly, bad and good. Each minutia is encoded with resolution ~̃ξ = (ξx, ξy, ξθ, ξtype)T =

(212, 212, 29, 21)T . The size of CD is 33, which is the offset of the respective dimensions x, y
and θ. Each instance contains between 53 and 120 minutiae. The compression ratio ρ is computed
as follows:

ρ [%] = 100 −
100 · λraw

λenc
, (2.2.1)

where λraw is the size (in bits) of the original raw data:

λraw = size(CD) + n ·
d∑

l=1

dld ξ̃le. (2.2.2)
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Table 2: Overview about the NIST test instances used for our experiments.

short name full name |V | short name full name |V | short name full name |V |

nist-u-01-t u201t6i 99 nist-b-01-t b101t9i 106 nist-g-01-t g001t2i 99
nist-u-02-t u202t8i 93 nist-b-02-t b102t0i 94 nist-g-02-t g002t3i 101
nist-u-03-t u204t2i 100 nist-b-03-t b104t8i 107 nist-g-03-t g003t8i 102
nist-u-04-t u205t4i 84 nist-b-04-t b105t2i 81 nist-g-04-t g004t8i 120
nist-u-05-t u206t3i 72 nist-b-05-t b106t8i 93 nist-g-05-t g005t8i 80
nists-u-06-t u299t8i 70 nists-b-06-t b117t0i 77 nists-g-06-t g013t4i 87
nists-u-07-t u298t2i 63 nists-b-07-t b118t8i 82 nists-g-07-t g012t4i 74
nists-u-08-t u277t9i 74 nists-b-08-t b119t0i 76 nists-g-08-t g030t1i 99
nists-u-09-t u274t9i 69 nists-b-09-t b120t9i 76 nists-g-09-t g033t7i 53
nists-u-10-t u267t3i 76 nists-b-10-t b124t5i 63 nists-g-10-t g042t2i 76
nists-u-11-t u249t3i 63 nists-b-11-t b129t7i 80 nists-g-11-t g045t9i 67
nists-u-12-t u232t4i 80 nists-b-12-t b132t7i 85 nists-g-12-t g050t7i 84

The size (in bits) of the compressed data λenc is computed as shown before (see Section 2.1.2).
Note that ρ is the compression ratio of the k selected points, not that of all points.
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3. Creating the Candidate Template Arcs T c

This chapter deals with the construction of candidate template arcs T c. After a short introduction to the
structure of the problem, two different approaches for the generation of template arcs are presented.
In the first approach, the set of all template arcs T c is generated in advance, using an algorithm called
non dominated interval search (NIS), which is explained in detail. In the second approach, template
arcs are generated on demand to be used within the BCP framework presented in Chapter 5. The
construction of template arcs on demand is done using a variant of NIS called dynamic non-dominated
interval search tree (DNIST). As DNIST is invoked very frequently in the pricing step, it has to be
very efficient. It is also explained in detail. In the final part of the chapter the results are presented and
discussed.

3.1 Introduction

Prior to running the optimization algorithm candidate template arcs T c have to be generated from the
input dataset, i.e. from the minutiae. The optimization algorithm then computes a subset T of T c,
called the codebook, by solving a k-node minimum label spanning arborescence problem. Recall the
following from Chapter 2.1.1: The set T c contains all non-dominated template arcs. A template arc t
can represent all arcs within the domain of the predefined correction vector ~̃δ, i.e. within the domain
(tl + δ̃l − 1) mod ṽ where l = 1, . . . , d. Each arc (i, j) ∈ A represents the geometric information of a
d-dimensional vector a, where al denotes dimension l of that vector and l = 1, . . . , d. Constructing
the set of all non-dominated template arcs can also be seen as the determination of all different non-
dominated subsets of A that can be represented together by a common template arc t.

Two different approaches are used for the generation of T c. The first approach is to create the
whole set T c in advance in a preprocessing step. The second approach is to generate the candidate
template arcs on demand by solving a pricing problem. Our first approach to compute T c, called
non-dominated interval search (NIS), replaces an older method that was slow and could not generate
more than about 40000 candidate template arcs (see [18]). To be applicable in practice, the entire
compression run, including preprocessing as well as the heuristic or exact optimization procedure,
should not take more than a few minutes. The geometric structure of our problem, in which each
candidate template arc represents a particular interval in each dimension, seems to suggest that the
well known interval tree [20] might be applicable. However, our problem does not benefit from a
balanced tree since we do not perform range search. We have two uses cases. In the first one, NIS is
used to construct all template arcs as part of the preprocessing step. A similarity to the interval tree
is that we take all points reachable to the left and right from a so called center point. However NIS
chooses the position of the center points quite differently as will be explained shortly. The second use
case is to generate template arcs on demand, to be used within the BCP framework already mentioned
in Chapter 1 and to be discussed in more detail in Chapter 5. For this purpose, we have developed a
variant of NIS, which we call dynamic non dominated interval search tree (DNIST). Contrary to NIS,
DNIST partially retains the state of the recursion in the form of a tree. On-demand retrieval does not
benefit from a balanced tree either, because what is requested is the template arc with the greatest
value (see Section 3.3) and not template arcs within a particular interval.
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3.2 Non-dominated Interval Search (NIS)

The algorithm NIS computes all non-dominated candidate template arcs T c. It avoids building dom-
inated arc sets from the outset, and therefore only has to deal with a small subset of all possible
template arcs. The algorithm comprises two phases which are not executed strictly one after the other
but interleaved as part of a recursive procedure that can be seen as a depth first tree traversal. We start
with the set of all arcs. Each phase cycles through all requested dimensions once and divides the sets
in non-disjoint subsets according to the respective dimension. A distinctive feature of the algorithm
is that it can decide whether a set is dominated using the geometric position of the arcs. If a set is
dominated, it is not built at all.

In phase one, sets are built that contain at least one element representable together with all other
elements in respect of each dimension. These sets overlap only their neighboring sets. In phase
two, the sets are divided further, so that all elements contained in one set are representable together
regarding the respective dimension. In phase two, this is done by traversing the arcs, which are
sorted in ascending order in descending order and collecting all arcs that lie within the domain of the
correction vector ~̃d minus one. Phase two also divides the sets according to each dimension, so the
elements are representable together regarding each of the requested dimensions at the end of phase
two. These elements can therefore be represented by the same template arc. Since we never build
dominated sets, we do not have to decide if a template arc is dominated at the end of phase two.

The goal of phase one is to reduce the number of possible combinations of arcs before building all
sets of arcs that contain only elements that are representable together, of which there is a much greater
number. More formally, we can describe the construction of subsets as follows:

Let S r
x denote an arc set where r = 0, . . . , 2d denotes the depth of the recursion, d denotes the

number of requested dimensions l and x denotes the arc set number. The set of all arcs is S 0
1 =

A. In each recursion the set of arcs S r
x is divided in up to |S r

x| further not disjoint subsets S r+1
y ⊂

S r
x, where y = 1 · · · |S r

x| such that no subset is dominated by any other subset. Note the difference
between recursion depth and dimension: Since we cycle through all requested dimensions twice the
maximum recursion depth is 2d In the following Subsections 3.2.1 and 3.2.2 phase one and phase two
are described in detail. After that, we describe how dominated sets are detected (see Subsection 3.2.3).
At the end of Subsection 3.2.3 algorithms as well as examples for the whole procedure are presented.

3.2.1 Phase One

The size of each interval I in phase one is chosen as follows: We choose an initial arc on the left
(assuming arcs are arranged left to right in ascending order of the respective dimension) and call it
center arc al

c1
. The interval is chosen so that the center arc can potentially be represented by a candidate

template arc together with either all arcs on its left or all arcs on its right.
A center arc can be represented all arc within the interval [max(0, (al

c1
−δ̃l+1)), (al

c1
+δ̃l−1) mod ṽl],

∀l = 1, . . . , d. The first arc outside this interval al > (al
c1

+δ̃l−1) mod ṽl is chosen as the next center arc
al

c2
and we build the next interval around it. The advantage of this partitioning approach is that only

neighboring intervals can overlap and hence only arcs within such neighboring intervals can possibly
be covered by the same template arc. Note that due to the ring structure the first and the last intervals
are neighbors and can overlap. We start in the first dimension, l = 1, r = 1, with the set of all arcs,
S 0

1 = A, sorted in ascending order of their value in that dimension: al
1 ≤ al

2 ≤ · · · ≤ al
|A|. Now this

set is divided into overlapping intervals, Il
x, which differ in at least one arc. However, the algorithm
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proceeds depth first, i.e. before the second interval of the current dimension is computed, the first
interval is processed recursively, going through both phases.

The first arc set S 1
1 ⊂ A is built from arcs within the first interval in dimension 1, I1

1 , and the arcs
it contains are sorted according to the next dimension ((l + 1) mod d). Then the arc set S 2

1 ⊂ S 1
1 is

built from arcs within the first interval I2
1 in dimension l + 1 and sorted according to the following

dimension. This routine is repeated until we reach the last dimension, d, at which point the first set
S r

1 ⊂ S r−1
1 enters phase two where the actual template arcs are built. Note that the arcs collected

during the final recursion of phase one are sorted by dimension 1 in preparation for phase two (see
below).

Running time in phase one: Since only neighboring intervals overlap, the greatest number of arcs
we may have to traverse in each arc set is 2 · |S r−1

x |. Consequently, the number of arcs can only double
in each recursion step. Using balanced binary search trees for traversal and sorting of arcs generally
leads to logarithmic complexity. Thus, the running time for traversal and sorting is O(|A|log(|A|)) and
an upper bound for the running time of phase one is O(2d · |A|log(A)).

3.2.1.1 Determining the First and the Last Center Arc

As a consequence of the ring structure the first and the last center arc have to be chosen differently,
depending on whether the first and the last interval are overlapping (Case 2) or not (Case 1).

Definition 3. (First and last center arc) Case 1: Arcs are not representable across the domain border
((al
|S r−1 |

+ δ̃l − 1) mod ṽl) < al
1, regarding the respective dimension l. The first center arc al

c1
is the

greatest arc that can be represented together with all smaller arcs (al
c1
− δ̃l + 1) ≤ al

1. Let C denote the
set of center arcs from the respective dimension l. The last center arc al

c|C| is the smallest arc that can be
represented together with all greater arcs (al

c|C| + δ̃
l −1) ≥ al

|S r−1 |
. Case 2: Arcs are representable across

the domain border ((al
|S r−1 |

+ δ̃l−1) mod ṽl) ≥ al
1, regarding the respective dimension l. The first center

arc is the first arc that cannot be represented together with the last center arc al
c1
> (al

c|C|+δ̃
l−1) mod ṽl.

The last center arc is the greatest arc al
|S r−1 |

.

In Case 2 we always choose the greatest arc al
|S r−1 |

as the last center arc, because for reasons
explained in Section 3.2.3, we have to know how far the last interval reaches when we process the
first interval. Due to this choice, it is possible that not only the last, but also the penultimate interval
overlaps with the first interval, which is the single exception to the rule that only neighboring intervals
can overlap.

3.2.2 Phase Two

In the second phase we also build sets using depth first traversal. In contrast to phase one, we now
generate all possible non-dominated intervals of arcs that can be represented together, not just intervals
around a particular center arc. All arcs have to be representable together in terms of all dimensions,
because in phase two the actual candidate template arcs are generated. Therefore we start in dimension
1 and iterate through all requested dimensions again.

Phase two starts with the arc set S r
x constructed in phase one, where r = d. The greatest interval

between two arcs of this set is 2 · (δ̃l − 1) for all dimensions l. Again beginning with dimension 1, this
set is further divided into subsets where the greatest interval between two arcs contained in a subset is
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(δ̃l−1). Note the relationship between the dimension l and the depth of the recursion r. The dimension
counter l runs from 1, ..., d in each phase whereas r is increased throughout the entire recursion taking
on the values 0, ..., 2d and r = 1 in dimension 1. Hence, at the beginning of phase two, l = 1, r = d + 1
and the current arc set is sorted by dimension 1.

In phase two the arcs are traversed in descending order. We choose an initial arc, which we call
start arc al

s1
and add all arcs within the interval (al

s1
− δ̃l + 1) mod ṽl to the set S r

1. Unlike before,
we choose as the next start arc al

s2
the greatest arc that can reach at least one arc al

i not covered
by the previous interval [(al

i < (al
s1
− δ̃l + 1) mod ṽl), (al

i ≥ (al
s2
− δ̃l + 1) mod ṽl)]. We repeat this

depth first traversal for all dimensions. Once the last dimension is reached, all arcs within a set S r
x are

representable by a common template arc τ(S r
x) with regard to all dimensions. The interval construction

in phase two is shown in Figure 6 for dimension 1 and in Figure 7 for dimension 2.
Now the purpose of phase one becomes obvious. In phase one, the number of intervals in each

dimension is much smaller than in phase two, because the intervals are only built in reference to the
center arc. Phase one divided s many sets of arcs into subsets that are within an interval in terms
of their previous but not their later dimensions. So these sets never make it to phase two where all
possible intervals are built, which is a much greater number.

If, for example, some arcs are within interval one in dimensions 1 and 2, and therefore in the same
set S 2

1, but each of them is in a separate interval in dimension 3 , the set S 2
1 is further divided into |S 2

1|

different sets in dimension 3. Assume the number of dimensions is three and we now enter phase two.
Phase two does not get one large set of size |S 2

1|, but |S 2
1| different sets, each of size one, so no further

sets are built. Thus, as a result of phase one, we have to build up to |S 2
1|

d−1 fewer sets in phase two.
Without phase one a worst case scenario would be to build |S 2

1|
d−1 sets in dimension 1 (recursion

level 4) and 2 (recursion level 5) before they are finally all divided in subsets, each containing one
element in dimension 3 (recursion level 6). Running time in phase two: Let I denote the set of
intervals within a dimension. An upper bound for the traversal and insertion into each arc set is
O(|I| · |A|log(|A|)).

How many intervals can be built in phase two? The intervals in phase two have the size 2 · (δ̃l − 1)
for all dimensions l. Since each interval must differ in at least one arc, and the arc values in each
dimension are integers, the maximal number of intervals in each dimension is δ̃l − 1. Let δrmmax be
the maximal correction vector δrmmax = max δ̃l, l = 1, . . . , d. Hence, the running time for phase two
is O(δd

max · |A|log|A|).

3.2.2.1 Determining the First Start Arc

Recall that in phase two the arcs are traversed in descending order. In contrast to phase one we do not
generate intervals around one center arc, but collect all arcs that are representable together beginning
with a so called start arc.

Definition 4. (First start Arc) Case 1: Arcs are not representable across the domain border ((al
|S r−1 |

+

δ̃l − 1) mod ṽl) < al
1. The first start arc al

s1
is simply the last arc al

|S r−1 |
. Case 2: Arcs are representable

across the domain border ((al
|S r−1 |

+ δ̃l − 1) mod ṽl) ≥ al
1. The first start arc is the greatest arc that

cannot be represented together with the smallest arc al
s1
< (al

1 − δ̃
l + 1 + ṽl).

We do not have to define a last start arc explicitly, since we build intervals as long as we can reach
arcs not covered by the previous interval.
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Figure 4: Phase one: interval construction in dimension 1.

3.2.2.2 Example

In the following example, phase one and two are demonstrated. Since this example contains no new
information it can be skipped. We demonstrate the construction of the intervals on the basis of the
following example which we will use throughout this chapter: Let ~̃v = (112, 110)T , ~̃δ = (30, 30)T .

A =

{
a0 =

(
1
58

)
, a1 =

(
7

85

)
, a2 =

(
30
53

)
, a3 =

(
46
40

)
, a4 =

(
50
20

)
, a5 =

(
50
6

)
, a6 =

(
70
25

)
, a7 =

(
80
1

)
, a8 =

(
85
45

)
, a9 =

(
85
70

)
, a10 =

(
95
85

)
, a11 =

(
111
109

)}
.

In the following examples, arcs are denoted by their index number.
The interval construction in phases one and two is demonstrated on the basis of this example and

shown in figures 4, 5, 6 and 7. Interval construction in phase one: In phase one sets of arcs are built
that contain at least one element (the center arc) that is representable together with each other arc in
the interval. Figure 4 shows the construction of intervals in dimension 1. The first center arc a1

c1
= 30

since this is the first arc outside the previous interval I1
last = [82, 28], which is delimited by the red

dotted lines. As explained before, if the last interval overlaps the first interval, we always designate
the final arc as last center arc (see Paragraph 3.2.1.1 case 2). The first center arc a1

c1
= 30 can be

represented together with all arcs within the interval I1
1 = [a1

c1
− δ̃1 + 1, a1

c1
+ δ̃1 − 1] = [1, 59]. This

interval is delimited by the green dotted lines and contains the arc set {0, 1, 2, 3, 4, 5}. The second
center arc a1

c2
= 70 is the first arc located outside the first interval. The second interval I1

2 = [41, 99]
is delimited by the blue dotted lines and contains the arc set {3, 4, 5, 6, 7, 8, 9, 10}. The first arc outside
the second interval is also the final arc a1

c1
= 111. The third interval I1

2 = [82, 28] is delimited by the
red dotted lines and contains the arc set {0, 1, 10, 11, 9, 8}.
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Figure 5: Phase one: interval construction in dimension 2

The intervals built in dimension 1 are further partitioned in dimension 2. Figure 5 shows the
construction of intervals in dimension 2.

We start with the first interval from dimension 1, delimited by the green dashed lines, which con-
tains the arc set {0, 1, 2, 3, 4, 5}. The first center arc within this interval is a2

c1
= 20. It spans the interval

I2
1 = [103, 49], delimited by the light green lines. This interval contains the arc set {3, 4, 5}. The first

arc outside this interval is a2
c2

= 53. So the second interval is I2
2 = [24, 82]. It contains the arc set

{2, 0, 3} and is delimited by the dark green lines. The next center arc a2
c3

= 85 so the third interval is
I2
3 = [56, 4] it contains the arc set {1} and is delimited by the green lines. The next interval constructed

in dimension 1 is delimited by the blue dashed lines and contains the arc set {3, 4, 5, 6, 7, 8, 9, 10}. It
is further divided into interval I2

1 = [108, 54], delimited by the dark blue lines. It has the center arc
a2

c1
= 25 and contains the arc set {3, 4, 5, 6, 7, 8}. The second interval I2

2 = [41, 99] is delimited by the
cyan lines. It has the center arc a2

c2
= 70 and contains the arc set {8, 9, 10}. The next interval from

dimension 1 is delimited by the red dashed lines and contains the arc set {8, 9, 10, 11, 1, 0}. The first
center arc is a2

c1
= 70. It spans the interval I2

1 = [41, 89], delimited by the red lines. This interval
contains the arc set {8, 9, 10, 1, 0}. The second center arc is a2

c2
= 109. It spans interval I2

2 = [111, 90],
which is delimited by the dark red lines and contains the arc set {0, 11, 1}.

Interval construction in phase two: In phase two sets that contain only elements that are all rep-
resentable together are constructed. We cycle again through all dimensions and at the end of phase
two all elements from a set are representable by one template arc. Figures 6 and 7 do not show all
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Figure 6: Phase Two: interval construction in di-
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Figure 7: Phase Two: interval construction in di-
mension 2

intervals but demonstrate phase two with the arc set {3, 4, 5, 6, 7, 8}, i.e. the intervals I1
2 = [41, 99] and

I2
1 = [108, 54]. Note that we do not show the part of interval I2

1 = [108, 54] across the domain border
because within this part [108, 110] lie no arcs. The arcs are now traversed in descending order.

Figure 6 shows the interval construction in dimension 1. The first start arc is a3
s1

= 85 (see Section
3.2.2.1 case 1). This start arc can represent the arcs within the interval I3

1 : [a1
s1
, a1

s1
− δ̃1 +1] = [85, 56]

which are the arcs {6, 7, 8}. This interval is delimited by the red dotted lines. The next arc outside
I3
1 = [85, 56] is arc 5 = (50, 6). The next arc that can reach it and therefore the second start arc is

a3
s2

= 70 with the interval I3
2 : [70, 41]. This interval is delimited by the blue doted lines and contains

the arc set {3, 4, 5, 6}. Regarding the first dimension all arcs within one interval are now representable
by one template arc.

Figure 7 shows the interval construction in dimension 2. In dimension 2 we start with interval
I3
1 = [85, 56] from dimension 1 which is delimited by the red dashed lines and contains the arc set
{6, 7, 8}. The first start arc is a4

s1
= 45 with interval I4

1 = [45, 16]. The interval is delimited by the
red lines and contains arc set {8, 6}. The arcs in this set can be represented together regarding all
dimension, so we construct the template arc t(70, 25). The next start arc is a4

s2
= 25, since it can

also represent arc 7 = (80, 1). It spans the interval I4
2 = [106, 25] which is deliminated by the orange

line. The constructed template arc is t(60, 1). The second interval from dimension 1 is I3
2 = [70, 41].

It is delimited by the cyan dashed lines and contains the arc set {3, 4, 5, 6}. Start arc is a4
s1

= 40, it
spans the interval I4

1 = [40, 11], delimited by the dark blue lines and contains the arc set {3, 6, 4}.
The constructed template arc is t(46, 20). The next start arc a4

s2
= 25, since it can also represent arc

5 = (50, 6). The interval is I4
2 = [106, 25] delimited by the cyan lines and contains the arc set {4, 5, 6}.

The constructed template arc is t(50, 6).
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3.2.3 How to Avoid Dominated Sets

Avoiding to build dominated sets reduces the complexity of the algorithm significantly.

Definition 5. (Dominance of an interval) Let A(Il
x) denote the set of arcs A an interval Il

x can represent.
The interval Il

x is dominated by interval Il
x+1 if and only if A(Il

x+1) ⊂ A(Il
x).

Intervals are never dominated in the dimension in which they are constructed as every interval
must differ in at least one arc in order to be constructed at all. Therefore, a set is never dominated in
the dimension in which it is built. The problem arises on later recursion levels when previously unique
sets become dominated because arcs that defined their difference are cut off.

The following example illustrates this situation. In dimension 1 we have the sets A1
1 = {1, 2, 3, 4}

and B1
1 = {2, 3, 4, 5}. Neither is dominated. In dimension 2, the sets are divided further into A2

1 = {1, 2},
A2

2 = {3, 4}, B2
1 = {2, 3, 4} and B2

2 = {4, 5}. As we can see, set A2
2 has become dominated and should not

be built. Obviously, a set is dominated by its ancestors as each set is a subset of its parent. This form
of dominance does not matter, since our goal is to construct non dominated template arcs in the last
recursion step. If we associate each set with the node of a tree, the sets corresponding to a node n or the
descendants of n must not be dominated by sets corresponding to siblings or descendants of siblings
of n. Since sets are never dominated in the dimension in which they are built, sets corresponding to
a node n are never dominated by sets corresponding to siblings of n. Thus we only have to check for
the sets corresponding to descendants of a node n if they have become dominated by sets associated
to nodes in a branch of the tree that has its origin in a sibling of n.

3.2.3.1 Dominated Sets in Phase One

In order to detect which sets have become dominated in phase one, we store in each recursion r, where
r = 1, ..., d for the respective dimension l, where l = 1, ...d the successor sr and the predecessor pr. The
successor sr is the smallest integer that can be reached from the next center arc aci+1 . The predecessor
pr is the greatest integer that can be reached form the previous center arc aci−1 .

Note that the recursion level denotes the depth of the tree, while the dimension value of the arc is
compared to the predecessor and the successor. Since in phase one all dimensions are traversed for
the first time, the recursion level and the dimension value are the same. Assuming we are currently in
interval Ir

x, with center arc acx , we can define predecessor and successor as follows:

Definition 6. (Predecessor and Successor)

1. pr = (ar
cx−1

+ δ̃r − 1) mod ṽr

2. sr = (ar
cx+1
− δ̃r + 1)

Lemma 1. If a set contains at least one arc ar < sr and at least one arc ar > pr, it is not dominated
with regard to recursion level r, where r = 1, . . . , d.

It is not necessarily the same arc that has to be greater than the predecessor and smaller than the
successor. If it is the same arc, that arc lies in the interval ar ∈ (pr, sr) and we know for sure that this
arc ar cannot be represented by any other set (except of course ancestors of the set. In the rest of this
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text we will not mention this trivial fact again). We call the condition ar ∈ (pr, sr) a strong condition
and the condition from Lemma 1 a weak condition. If only the weak condition is fulfilled, the interval
contains a combination of arcs, with one arc ar < sr and one arc ar > pr that can not be represented
by any other set.

E.g., In recursion 1, we have the sets A1
1 = {1, 2} and B1

1 = {2, 3, 4, 5} and C1
1 = {4, 5}. Assume that

in recursion 2 the sets are divided further and set B2
1 = {2, 3, 4}. Set B2

1 fulfills the strong condition,
since it contains arc 3, which is in interval (p1, s1). Arc 3 is not represented by any other set since it is
neither reachable from the preceding nor from the subsequent interval. Assume on the other hand that
B2

1 does not contain arc 3 but B2
1 = {2, 4}. In that case, the weak condition is fulfilled and B2

1 contains
a combination of arcs that is not represented by any other set.

3.2.3.2 Dominated Sets in Phase Two

Recall that in phase two we traverse the arcs in descending order. The names successor and predeces-
sor refer to the order in which the arcs are traversed and not the sort order of the arcs. In phase two
we traverse all dimensions for the second time, i.e. we traverse the recursion levels r = d + 1, ..., 2d.
Since we always compare dimension values, we have to normalize the recursion value r by setting the
variable l, which denotes the dimension, to l = r mod d.

In order to detect which sets have become dominated, we store in each recursion the successor sr,
i.e. the next start arc asi+1 and the predecessor pr, i.e. the smallest integer that can be reached form
the previous start arc asi−1 . Assuming we are currently in interval Ir

x, with start arc asx , we can define
predecessor and successor as follows:

Definition 7. (Predecessor and Successor)

1. sr = al
sx+1

2. pr = (ṽl + (al
sx−1
− δ̃l + 1)) mod ṽl

Thus, a non-dominated interval must contain at least one arc al > sr and at least one arc al < pr.

Lemma 2. If a set contains at least one arc al > sr and at least one arc ar < pr, it is not dominated
with regard to recursion level r, where r = d + 1, . . . , 2d.

3.2.3.3 Non-dominated Sets Over All Recursion Levels

In the following proof of Lemma 1 and 2 we first show that an interval that does not overlap its direct
neighbors does not overlap any other interval either. We then show that this condition is met if the set
built from the arcs within this interval contains an arc or a combination of arcs not contained in any of
the neighboring intervals.

Proof. All intervals differ in at least one arc and the arcs are sorted in ascending order of the respective
dimension. In phase one, the successor sr is defined as the smallest integer reachable by the subsequent
interval in recursion level r. The predecessor pr is defined as the greatest integer reachable by the
preceding interval. So if an interval does not overlap its preceding and subsequent interval on recursion
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level r, where r = 1, . . . , d, it cannot overlap any other interval on this recursion level. Therefore a set
that contains one arc such that ar > pr and one arc such that ar < sr cannot overlap any other set with
regard to recursion level r.

The same is true for phase two. If an interval in phase two contains one arc such that ar mod d < pr

and one arc such that ar mod d > sr, it does not overlap its preceding and subsequent interval on
recursion level r, where r = d + 1, . . . , 2d, and it can therefore not overlap any other interval on
this recursion level. Thus, if a set contains one arc such that ar mod d < pr and one arc such that
ar mod d > sr, it is not dominated with regard to recursion level r. �

In the following steps we extend the definitions of Lemma 1 and 2 to all recursion levels. Let A(nr)
denote the set of arcs corresponding to a tree node nr in recursion depth r.

Lemma 3. The sets corresponding to the descendants of node nr, where r = 1, . . . , d, which contain
one ar ∈ A(nr) such that ar > pr and one ar ∈ A(nr) such that ar < sr, cannot be dominated by sets
corresponding to siblings or descendants of siblings of nr.

For phase two the corresponding properties are defined by Lemma 4.

Lemma 4. The sets corresponding to the descendants of node nr, where r = d + 1, . . . , 2d, which
contain one al ∈ A(nr), where l = r mod d, such that al < pr and one al ∈ A(nr) such that al > sr

cannot be dominated by sets corresponding to siblings or the descendants of siblings of nr.

Proof. Lemma 3 and 4 associate each set of a recursion level r with a tree node nr and state that a
set corresponding to a node nr, which fulfills the condition of Lemma 1 and 2 and is therefore not
dominated by siblings of nr, is also not dominated by the descendants of siblings of nr. This is easy
to show. Since in each recursion step a set is divided further into subsets, it holds that A(nt+1) ⊆
A(nr), ∀t = r + 1, . . . , 2d. Thus, a set corresponding to a node nr, which is not dominated by sets
corresponding to siblings of this node, cannot be dominated by sets corresponding to descendants of
the siblings. �

The next step is to extend this principles to all preceding recursion levels of a node nr. Since the set
corresponding to nr can still be dominated by sets corresponding to siblings of its ancestors nt, where
t = 0, . . . , r − 1.

Theorem 5. If a set corresponding to node nr fulfills the condition of both Lemma 3 and Lemma 4
regarding all previous recursion levels t = 1, . . . , r − 1, it can not be dominated by any set 1.

Proof. In Lemma 1 and Lemma 2 we showed that an arc set is not dominated on recursion level r if it
contains at least one arc not representable by the preceding interval and one arc not representable by
the subsequent interval. We then showed in Lemma 3 and Lemma 4 that an arc set A(nr) corresponding
to a node nr cannot be dominated by sets corresponding to siblings or descendants of siblings of nr. In
a third step we have to show that if A(nr) is not dominated on any of the preceding recursion levels, it
is not dominated by sets corresponding to siblings of its ancestors A(nt), where t = 1, . . . , r − 1 or by
their descendants. If a set corresponding to node nr contains at least one arc such that at < st, at least
one arc such that at > pt, ∀t = 1, . . . ,min(r-1,d), at least one arc such that at mod d > st and at least one
arc such that at mod d < pt, ∀t = d + 1, ..., r − 1, it cannot be dominated by any set. Note that whenever
a new set is built, we have to check again if it is not dominated on any preceding recursion level. �

1We imply the trivial fact that a set corresponding to nr is dominated by the sets corresponding to the ancestors of nr.
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3.2.3.4 Normalization of the Arc Comparisons

In the following, we list the cases where the comparison of the arc value with its predecessor or
successor has to be adapted to the ring structure. Even though it should be clear implicitly where
comparisons have to be normalized in order to account for the ring structure, we will list these special
cases here.

3.2.3.4.1 Phase One In phase one, the last or the penultimate interval can overlap the first interval.
In this case, we define the greatest arc al

|S r−1 |
as the last center arc (see Section 3.2.1) and the last

interval as predecessor of the first interval. If intervals go across the domain border, the following two
cases can occur.

Case 1: The predecessor pl belongs to an interval that goes across the domain border (i.e. it
belongs to the last or the penultimate interval). To meet the condition al > pl, the compared arc al

must also not lie in the last interval. Thus, it has to meet the additional condition al < ṽ − δ̃l + 1. Case
2: Inversely, an arc also meets the condition al > pl if (al < δ̃l − 1)∧ (pl ≥ δ̃l − 1). This case can occur
if the predecessor is in the penultimate interval, and al is in the last interval.

3.2.3.4.2 Phase Two In phase two we traverse the arcs in descending order. Thus, the first start
arc al

s1
is defined as the first arc not reachable from the smallest arc al

s1
< al

1 − δ̃
l + 1 + ṽl (see Section

3.2.2.1). If intervals go across the domain border, we have to normalize the arcs in the following two
cases. Case 1: The condition al < pl is not met if (al ≤ δ̃l − 1) ∧ (pl ≥ ṽl − δ̃l + 1). Case 2: The
condition al > sl is not met if (sl ≤ δ̃l − 1) ∧ (al ≥ ṽl − δ̃l + 1).

3.2.3.5 Recursive Detection of Dominance

The following part describes how dominated sets are detected and avoided from the outset. If a set is
not dominated, its intervals have to be non-dominated in all preceding recursion levels. To improve
the efficiency of the dominance checks we use two flags, ndp and nds, which indicate whether or not
the current interval is dominated by its predecessor or successor in any of the preceding dimensions
(ndp/s means not dominated by predecessor/successor).

During the collection of the arcs within an interval, a comparison of each arc with its predecessors
and successors in the former dimensions is performed by procedure arcSubsumption (Algorithm 1),
which receives the current arc and the recursion depth − 1 as input parameters. Table 3 shows the
symbols used in the following algorithms.

Procedure arcSubsumption (Algorithm 1) sets the two flags ndp and nds.

Algorithm 1: arcSubsumption(a,x)

ndp[r] =

ar mod d > pr ∀r = 0, ..., x
ar mod d < pr ∀r = d + 1, ..., x1

nds[r] =

ar mod d < sr ∀r = 0, ..., x
ar mod d > sr ∀r = d + 1, ..., x2
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Table 3: Symbols used in buildRange (Algorithm 4), buildTAs (Algorithm 5), noTAExists (Algorithm 3),
arcSubsumption (Algorithm 1) and checkDomination (Algorithm 2.)

Symbol Purpose

T c Set of template arcs
L Ordered set for arc lookup where the arc position corresponds to the arc identity

on each position L[a] the template arcs that correspond to the arc a are stored
A(t) Arcs a specific template arc t can represent

p Vector containing one predecessor for each recursion level
s Vector containing one successor for each recursion level

ndp Vector for predecessor lookup containing a domination flag for each recursion level
nds Vector for successor lookup containing a domination flag for each recursion level
B newly constructed ordered set of template arcs
S ordered set of template arcs

In phase one ndp[r] is set to true if ar > pr and nds[r] is set to true if ar < sr. In phase two ndp[r]
is set to true if ar mod d < p and nds[r] is set to true if ar mod d > sr.

The direction is reversed for phase two because the traversal is performed in descending order
and the subsequent arc is therefore smaller than the current arc. Note that only the predecessor from
the directly preceding interval and the successor from the immediately following interval have to be
stored, for only neighboring intervals can overlap.

At any point during the entire procedure no more than 4d − 2 predecessor-successor pairs have to
be stored, i.e two pairs for each dimension for each of the two phases, except for the last dimension
in phase two. An exception to this rule is the first and the last interval, provided there are arcs repre-
sentable across the domain border. Because of the ring structure, the last interval is the predecessor of
the first interval and the first interval is the successor of the last interval. As mentioned before, pr in
the first interval is known before all arcs have been traversed, because the last arc is always designated
as the last center arc.

The procedure checkDomination always starts on recursion level one and makes use of the pre-
viously collected predecessor-successor pairs in order to speed up the operation. If the predecessor-
successor pair ndp[ j] and nds[ j] are both true the interval is not dominated on recursion level j (line
2) and build is set to true.

A special case arises when two intervals are exactly the same. Since we want to build the set only
once, each interval I1

n must be processed on its last possible occurrence, because otherwise it may be
dominated by a set built from a subsequent interval I1

n+1. If nds[ j] = f alse the subsequent interval
overlaps the current interval completely, i.e. it is not the last occurrence of the interval and f alse is
returned (line 7-9).

We know that a particular occurrence of an interval is the last one if it does not overlap its succes-
sor, since in this case it represents arcs that are no longer represented by the succeeding interval. Ob-
viously, the first occurrence of intervals that go across the domain border (across[ j] = true) is an ex-
ception, since their predecessor is built later. So if ndp[ j] = f alse, nds[ j] = true and across[ j] = true
(line 3) it is the last occurrence of the interval in recursion level j, and we set build to true. We also
set checkTA to true (line 5), to indicate that we have to check later if the set already exists, provided
build is still true. Note that the interval could overlap with its successor on a later recursion level, in
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which case False is returned.
Whenever a decision is made about whether or not to build a new set, we check if it is dominated

on any of the preceding recursion levels. Procedure checkDomination (Algorithm 2) checks each
recursion level preceding the current one to see if it is dominated (line 1 - 10) and returns true if the
interval is not dominated on any recursion level.

If it is the last occurrence of an interval with regard to all preceding recursions and checkT A = true
we have to check if a template arc exists that covers all arcs from this interval. Note that we have to
check if a template arc already exists only in special cases. Because it has to be the last occurrence of
an interval regarding all recursion levels and this interval must not be dominating.

Whenever a candidate template arc t ⊂ T c is constructed the arcs it represents, A(t) ⊂ A, are
associated with it. Conversely, each arc contains a set of pointers to candidate template arcs, T (a) ⊂
T c, by which it can be represented. The arcs represented by the newly constructed template arc are
stored in a global array L. The arc position in this array corresponds to the arc number. Thus, arc ai

has position i. L is initially empty.

Algorithm 2: checkDomination(S , r)

for j = 1, . . . , r do //check all previous recursion levels1

build← ndp[j] ∧ nds[j]2

if build = false ∧ nds[j] = true ∧ across[j] = false then3

build← true //last occurrence of interval4

checkTA← true5

end6

if build = false then7

return f alse8

end9

end10

if checkTA then11

build← noTaExists(S ) //returns f alse if S ⊆ A(t)12

end13

return build14

The procedure noTaExists (Algorithm 3) checks whether a template arc that covers all arcs
within an interval already exists. It first performs a lookup to see if each arc within the interval I is
represented by at least one template arc (line 1-5). The complexity of this lookup is O(|A(I)|).

Note that it is only checked whether all arcs within the current set S are represented at all, and
therefore the position that corresponds to the arc index in the global array L[a] is not empty. These
arcs may be represented by different template arcs.

Thus if all arcs are represented, we check if they are represented by a single template arc (line
6-12). We take an arbitrary arc from our interval and look it up in the global arc vector. Then we
iterate over the set of template arcs associated with it, which can be done in O(|T (a)|). We check, for
each template arc, if it can represent all arcs within the interval (line 8). This is done in O(|A(I)|). If
a template arc can be found that represents all arcs contained in the interval A(i) noTAExists returns
f alse and build is set to true, because the set must not be built. If none of the template arcs represents
all of them, build is set to true (line 12).
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Algorithm 3: noTAExists(S )

foreach a ∈ S do //are all arcs represented1

if L[a] = 0 then2

return true3

end4

end5

let a be an arbitrary arc from S6

foreach t ∈ L[a] do //check if S represented by a template arc associated with a7

if S ⊆ A(t) then8

return false9

end10

end11

return true12

Now we can describe the whole NIS procedure. Procedure buildRange (Algorithm 4) gets the
ordered set of all arcs S 0

1 = A as input. The arcs are ordered by dimension 1. On each recursion
level r new ordered arc sets B are built, so we construct an empty set in line 1. The position of the
first center arc ar

c (line 1) is either the first arc that can represent all smaller arcs (see Section 3.2.1.1
case 1) or, if arcs are representable across the domain border, the first arc not reachable from the last
center arc (see Section 3.2.1.1 case 2). Variable m stores the value of the predecessor from the first
interval, which we assign to the predecessor variable p[r] in line 4. Note that the value of m can
be negative, in which case the condition that the interval has to contain one variable greater than the
predecessor is always true. The value of the predecessor of the first interval is either the value of
the last arc reached by the last interval if arcs are representable across the domain border or negative
(line 2). Starting with the first center arc we iterate over all arcs (line 3) and collect the arcs within
the right (line 5-11) and the left (line 12-18) range of that center arc. The arcs that are representable
across the domain border are collected on lines 19-28. The collected arcs are sorted according to the
next dimension. Once the requested dimension has been reached, the arcs are once again sorted by
dimension 1 in preparation for the invocation of buildTA, which starts phase two. While collecting
the arcs the procedure arcSubsumption (Algorithm 1) also collects the predecessor-successor pairs
of the preceding recursion levels u = r − 1...1 (line 8,15,23). If the interval is not dominated on any
of the previous recursion levels, which is checked by checkDomination (Algorithm 2), the new set
is built (line 31-37). The procedure buildRange is called recursively (line 32-34) until the requested
dimension d is reached. When d is reached buildTA (Algorithm 5) is called (line 35). At this point
buildRange has constructed a group of arcs where each arc is representable together with at least one
other arc regarding each dimension.

The value of the predecessor from the next interval is the last arc reached by the current center arc
(line 29). The successor of this interval is the smallest arc reached by the next center arc (line 30).
The procedure buildTA builds the sets that can be represented by one candidate template arc. It starts
again in dimension 1, but the arcs are now traversed in descending order. The position of the first start
arc is either the last arc (see Section 3.2.2.1 case 1) or, if arcs are representable across the domain
border, the first arc not representable together with the smallest arc (see Section 3.2.2.1 case 2).
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Algorithm 4: buildRange(S , r)

B← ∅1

pos← position of first center arc2

m← S [|S |]r + δ̃r − 1 − ṽr //last arc reached by previous center arc a3

while pos ≤ |S | do //the arcs in S are sorted by r4

ar
c ← S [pos]r; i← pos; j← 1; p[r]← m5

while S [pos]r ≤ (ar
c + δ̃r − 1) do6

B← B ∪ S [pos]7

if r > 1 then8

arcSubsumption(S [pos], r − 1) //set global variables nds and ndp9

end10

pos← pos + 111

end12

while S [i]r ≥ (ar
c − δ̃

r + 1) ∧ (i ≥ 0) do13

B← B ∪ S [i]14

if r > 1 then15

arcSubsumption(S [i], r − 1)16

end17

i← i − 118

end19

if (ar
c + δ̃r − 1) ≥ ṽr then20

while S [ j]r ≤ (ar
c + δ̃r − 1) mod ṽr do21

B← B ∪ S [ j]22

if r > 1 then23

arcSubsumption(S [ j], r − 1)24

end25

j← j + 126

end27

pos← |S | //get position of next center arc across the domain border28

end29

m← (ar
c + δ̃r − 1) mod ṽr //value of predecessor from next interval30

s[r]← S [pos]r − δ̃r + 1 //successor from this interval31

if r < 2 ∨ checkDomination(B, r − 1) then32

sort B in next dimension (r mod d) + 133

if r < d then34

buildRange(B, r + 1)35

else36

buildTA(B, r + 1)37

end38

end39

end40

aBecause of the ring structure the last interval overlaps with the first interval.
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Algorithm 5: buildTA(S ,r)

B← ∅ ; pos← position of first start arc1

h← (r − 1) mod d + 1 //dimension in which arcs are sorted2

m← S [1]h − δ̃h + 1 + ṽh //first interval overlaps last interval3

while pos > 0 do //traverse in descending order4

p[r]← m5

bound← (S [pos]h − δ̃h + 1)6

while S [pos]h ≥ bound do //arcs representable together7

B← B ∪ S [pos]8

arcSubsumption(S [pos], r − 1) //set global variables nds and ndp9

pos← pos − 110

end11

if bound ≤ 0 then //arcs representable together across the domain border12

pos← |S |13

while S [pos]h ≥ (ṽh + bound) do14

B← B ∪ S [pos]15

arcSubsumption(S [pos], r − 1)16

pos← pos − 117

end18

as ← max(a ∈ S : (ah − δ̃h + 1) ≤ S[pos]h ∧ (ah − δ̃h + 1) ≤ δ̃h) //next start arc19

else20

as ← max(a ∈ S : (ah − δ̃h + 1) ≤ S[pos]h) //next start arc21

end22

if checkDomination(B, r − 1) then23

if h < d then24

sort B in next dimension h + 125

buildTA(B,r + 1)26

else27

t ← τ(B) //set candidate template arc28

T c ← T c ∪ t29

L← L ∪ B //insert represented arcs in global arc lookup30

end31

end32

pos← position of next start arc as33

s[r]← S [pos]r //successor of this interval is the next start arc34

m← bound //value of predecessor from next interval35

end36

The procedure buildTA iterates over all arcs until the smallest arc is reached (line 4-35). All arcs
within the range of the respective start arc are collected (line 4-11). The arcs that are representable
across the domain border are collected in line 12-19. The collected arcs are sorted according to
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the next dimension (line 8,15). While collecting the arcs arcSubsumption (Algorithm 1) is called
(line 9,16). If the interval is not dominated in any of the previous recursions, which is verified by
checkDomination, the new set is built (line 22-29).

The procedure buildTA is called recursively (line 23-25) until the requested recursion depth 2d
is reached. If 2d is reached we are finished and the new candidate template arc, which can represent
the newly built arc set, is constructed by selecting the smallest dimension value al from E ⊂ B in each
dimension (line 27), where E comprises only arcs in B that are reachable without crossing the domain
border. The candidate template arc is stored in the global arc set T c (line 28). All arcs within the
interval are stored in the global arc lookup table L, where each position corresponds to the arc identity.
Furthermore, each arc is associated with the template arcs T (a) that can represent it (line 29). The
next start arc is the greatest arc that can represent the first arc (S [pos]h) outside the current range (line
16, 19).

3.2.3.6 Space Complexity of the Entire Procedure

During the entire procedure, only T c, the global array of arcs and the directly preceding recursion steps
2d · |A| are stored. Let tmax denote the template arc that represents the greatest number of arcs, and let
amax denote the arc that is represented by the greatest number of candidate template arcs. Therefore
the space complexity is O(|T |c · |A(tmax)|+ |A| · |T c|(amax)+2d · |A|). Note that we have to represent both
arrays, since a smaller tmax leads to a greater amax and in the extreme case one template arc represents
all arcs.

3.2.3.7 Example: Demonstration of NIS

Figure 8 illustrates the functionality of NIS on the basis of the previous example (see Section 3.2.2.2).
Note that the impact of pruning the tree is much greater in a realistic application when we typically deal
with thousands of arcs and three dimensions. Note that even though a tree is used in this illustration,
the algorithm avoids storing tree nodes in order to be more memory efficient. We describe the first
branch of the tree shown in 8 in the order of its construction. At the beginning the arcs are sorted in
ascending order by dimension 1.

Recursion depth 1, interval number 1: The tree traversal starts in dimension 1. Arc 2 is chosen as
first center arc a1

c1
= 30 (2), since this is the first arc not reachable by the last center arc. As stated

before (see Section 3.2.1.1 case 2) we designate the final arc as last center arc. Therefore we know
that the last interval is I1

last : [82, 28]. The arcs representable together with a1
c1

are within I1
1 : [1, 59]

because (a1
c1

+ δ̃1 − 1) mod ṽ = 59 and (a1
c1
− δ̃1 + 1) mod ṽ = 1. The last interval overlaps the first

interval in [0, 28], so the predecessor p1 = 28. The next center arc is a1
c2

= 70 (6) since this is the the
smallest arc outside the current interval. The smallest integer representable by the next center arc a1

c2

is 41, and hence the successor of the current interval is s1 = 41.
The predecessor p1 and successor s1 become relevant when the set is divided in later recursions.

The children of the set built from the first interval must always contain at least one arc greater than
p1 = 28 and one arc smaller than s1 = 41 regarding dimension 1 (see Section 3.2.3.3).

Recursion depth 2, interval number 1: As the tree is traversed depth first, the next step is to divided
the set along dimension 2, and the first center arc a2

c1
= 20 (4) in dimension 2 is arc 4. Although the

interval I2
1 : [103, 49] goes across the domain border, no arcs are representable across the domain

border, since the greatest arc regarding dimension 2 is 85. Thus, the first interval has no preceding
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interval and the predecessor p2 is therefore negative . In the Figure we set it to the dummy value −1.
Since the next center arc a2

c2
= 53 (2), the successor is set to s2 = 24.

While the arcs {3, 4, 5} contained in this interval are collected, we check whether one of them has
a dimension 1 value greater than the predecessor p1 = 28 and wether one of them has a dimension 1
value smaller than the successor s1 = 41. Since arc 0 is 50 in dimension 1, it is greater than p1 = 28.
Thus the interval does not overlap its preceding interval regarding dimension 1. The outcome of
the successor check is that none of the arcs is smaller than s1 = 41. Thus the interval overlaps the
subsequent interval regarding dimension 1, so we must not build the set and the whole branch of the
tree is pruned.

Recursion depth 2, interval number 2: The next center arc is a2
c2

= 53 (2), the interval is I2
1 :

[24, 82] and the arc set is {2, 3, 0}. The interval does not overlap regarding dimension 1, since arc 2
is 30 in dimension 1 and therefore greater than the predecessor p1 = 28 and also smaller than the
successor s1 = 41. Thus the new set is built. The predecessor in dimension 2 is p2 = 49 and the
successor in dimension 2 is s2 = 56, because the first arc not reachable by this interval, and hence the
next center arc, is a2

c3
= 85 (1).

Recursion depth 3, interval number 1: At this point the algorithm enters phase two. In phase
two, we collect all arcs that are representable together. We start again in dimension 1 (note that
recursion depth 3 equals dimension 1) and build, in each dimension, intervals of size δ̃r − 1. Note that
we now proceed in descending order, i.e. we start with the greatest arc. Consequently, predecessor
and successor are also reversed in phase two, so each interval must contain an arc smaller than its
predecessor and one arc greater than its successor. The greatest arc, and therefore the start arc, is
a3

s1
= 46 (3), the interval is I3

1 : [46, 7] and the arc set is {3, 2}. Now, two preceding dimensions have
to be checked for dominance. Since the coordinate value of arc 2 is 30 in dimension 1, it is greater
than p1 = 28 and also smaller than s1 = 41. The coordinate value of arc 2 is 53 in dimension 2. Thus,
it is greater than p2 = 49 and it is also smaller than s2 = 56. Because the dominance check is negative
for both dimensions a new set is built. Since no arcs are representable across the domain border, the
predecessor of this interval is set to p3 = ∞. Note that in contrast to phase one the next start arc is the
arc that can reach an arc not reachable by the previous start arc, because we want to build all groups
of arcs that are representable together now. The next start arc is a3

s1
= 30 and therefore s3 = 30.

Recursion depth 4, interval number 1: The first start arc on recursion level 4 is a4
s1

= 53 (2), the
interval is I4

1 : [53, 24], and the arc set is {3, 2}. Since this set is exactly the same as in dimension 3 the
dominance checks are redundant. For the sake of clarity we describe them anyway: We have to check
three preceding dimensions for dominance. The coordinate value of arc 2 is 30 in dimension 1, thus it
is greater than p1 = 28 and also smaller than s1 = 41. The coordinate value of arc 2 is 53 in dimension
2, so it is greater than p2 = 49 and also smaller than s2 = 56. In phase two predecessor and successor
are reversed. The interval is automatically smaller than the predecessor because p3 = ∞ and arc 3 is
46, so it is greater than its successor s3 = 30. So a new template arc is built, which has the coordinates
(30, 40), i.e. the smallest dimension value al from the arc set {3, 2} in each dimension l.

Recursion depth 3, interval number 2: The second start arc on recursion level 3 is the first arc that
can reach an arc outside the current interval. This is a3

s2
= 30 (2), the interval is I3

2 : [30, 1] and the
arc set is {2, 0}. Since the coordinate of value of arc 2 is 30 in dimension 1, it is greater than p1 = 28
and also smaller than s1 = 41. The coordinate value of arc 2 is 53 in dimension 2, so it is greater than
p2 = 49 and also smaller than s2 = 56. Since the dominance check is negative for both dimensions a
new set is built.
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Figure 8: The upper right of the figure shows the set of arcs with their respective numbers and coordinates.
In the tree diagram only the arc numbers are quoted. The caption of the ingoing arc of each node describes
the specific data of this node, i.e. the center arc al

cx
or in phase two the start arc al

sx
, the representable interval

Il
x : [..., ...], the predecessor pr and successor sr of the interval (in orange), and in curly braces the set of arcs that

the node can represent. The superscript always denotes the recursion level r, and the subscript x always denotes
the number of the respective interval. Let us look at the leftmost child of the root node, for instance: a1

c1
= 30(2)

means the center arc is the first center arc and it is in recursion level 1. The value of this center arc is 30 and it
has arc number 2. The first interval in dimension 1 goes from 11 to 69 (I1

1 : [11, 69]). The predecessor of this
interval is 11 (p1 = 11), the successor of this interval is 31 (s1 = 31) and {0, 1, 2, 3, 4, 5} is the represented arc
set. The dominated sets (which are not built) are marked red, where ≥ sr means the set contains only arcs greater
than the successor and is therefore dominated by the subsequent interval and ≤ pr means that the set contains
only arcs smaller than the predecessor and the interval is therefore dominated by the preceding interval. E.g., all
elements from the set {3, 4, 5} are ≥ 41 = s1 regarding dimension 1 and therefore dominated by the subsequent
arc set {3, 4, 5, 6, 7, 8, 9, 10} in interval I1

2 : [41, 99]. The pruned branches are marked with a red cross, and the
red dotted arrow points from the dominated set to its dominating set, e.g from {3, 4, 5} to {3, 4, 5, 6, 7, 8, 9, 10}.
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Recursion depth 4, interval number 1: The first start arc on recursion level 4 is a4
s1

= 58 (0), the
interval is I4

1 : [58, 29], and the arc set is {2, 0}. Since this set is exactly the same as in dimension 3 the
dominance checks are redundant. A new template arc is built, which has the coordinates (1, 53).

Recursion depth 2, interval number 3: The next center arc in dimension 2 is a2
c3

= 85 (1), the
interval is I2

3 : [56, 4], and the arc set is {1}. This interval overlaps the last interval (which is its
preceding interval) regarding dimension 1, because arc 1 is 7 in dimension 1, so it is smaller than
p1 = 28 and the set is not built. We can see that arc 1 is contained in the arc set {8, 9, 10, 11, 1, 0} of
the rightmost node. In this case arc 1 is represented across the domain border.

3.3 Dynamic Non-Dominated Interval Search Tree (DNIST)

The algorithm DNIST is a modified variant of NIS. It is used for solving the pricing problem in a BCP
process described in Chapter 5.3.3. In the pricing approach, values are assigned to the arcs. More
precisely, in each pricing step, each arc is assigned the value of its corresponding dual variable. We
denote these values as ci, j. The value of a candidate template arc is the sum of the arc values it can
represent. The pricing problem is to find the most valuable candidate template arc in terms of its arc
values. The pricing-problem needs to be solved frequently within the overall BCP process, where the
arc values change in each request while the arcs stay the same.

The procedure DNIST returns the candidate template arc with the greatest value whenever a pricing
request is made. Instead of storing only the sets generated in the directly preceding recursion steps,
as in NIS, we now store all generated sets in a tree structure. Every node nr

x of the tree represents the
corresponding set of arcs S r

x in the respective recursion depth r.
The value of each node is the sum of the arc values it represents. This sum is a local upper

bound ub(nr
x) of this node, since it can only become smaller or stay the same in later recursion steps.

Whenever a candidate template arc is requested the previously stored parts of the tree are searched.
If necessary new branches are created and stored for further requests. The tree is built using preorder
traversal as described before.

The best template arc found in a request obviously constitutes a global lower bound lb∗ for this
pricing step. Whenever the local upper bound of a node is smaller than or equal to the global lower
bound ub(nr

x) ≤ lb∗ the algorithm does not need to traverse or build the children of the current node as
it is impossible to find a better candidate template arc down that path. Recall that in each request a new
dual value is assigned to each arc. Hence, different branches of the tree may be built and traversed,
depending on the arc values.

The search starts with the root node. If the root node has children they are traversed depth first in
order of their creation, as long as their upper bound is greater than lb∗. If no children exists the tree is
built further as described before for algorithm NIS .

The one difference to NIS is that the nodes are stored now and branches are only built from nodes
nr

x where ub(nr
x > lb∗). Thus the reason that a branch is not built further is either that it is dominated

or that th value of ub(nr
x is to low. Dominated arc sets in the final recursion step need to be treated

specially, because although we do not build these arc sets, we know at this point that a candidate
template arc with at least this value must exist. Whenever an arc set in the final recursion step is
dominated and the sum of its arc values is greater than lb∗, we store this sum minus a tiny ε value as
the new lb∗ . We have to subtract this tiny value as we also want to find dominating template arcs that
are equal to lb∗.
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The algorithm performs even better if we store the number of arcs a node can represent (|A(n)|). If
this number times the greatest assigned dual value (cmax) is smaller than or equal to the lower bound
(|A(n)| · cmax ≤ lb∗) we do not have to add the arc values within that node, since their sum will never
be greater than lb∗.

Note that whenever a branch of the tree is not built further because the local upper bound of the
node is too small, we have to store the predecessor pl and successor sl vectors as well as the lookup
tables ndp and nds within this node, because we need to know its dominance information in case we
want to build this branch further in a later call. Note that an alternative strategy would be to traverse the
branches best-first along the best local upper bound ub(nr

x). This strategy was used for a segmentation
tree developed for the same pricing purpose in [14, 46]. However, we did not pursue this approach,
since it did not seem to be promising regarding the structure of our tree as its depth is only 2 · d and
the branches do not contain dominated arcs.

The sets which are built in phase one are relatively big. Therefore, a large upper bound in this
phase does not say much about the value of the template arc. Whereas the recursion depth in phase
two is only d. Furthermore since dominated branches are never built, we do not need to avoid them
with the strategy only to visit branches with greater lower bounds. The idea behind the later is, that
if a node nr

x is dominated by node nr
y it has always a smaller upper bound than its dominating node

ub(nr
x) ≤ ub(nr

Y ).

3.4 Results

All tests were run on a Dual Core Opteron 270 CPU (2.0 GHz.) with 4GB RAM under Linux kernel
2.6.62. The algorithms are implemented in C++ using the Standard Template Library (STL) and Boost
(http://www.boost.org/). We used g++-4.1 to compile the code. For set and graph data structures as
well as graph algorithms we used LEDA (Library of Efficient Data Types and Algorithms) version
5 [33]. Our algorithms are embedded in a framework developed by Dietzel, see [22] for a detailed
description.

3.4.1 NIS Results

Table 4 shows the running time of NIS for all NIST instances. Table 5 shows the running time of
NIS for large ~̃δ values. For the NIST instances that could be solved. Missing values are indicated by
a ’-’ character. The procedure NIS takes only a few seconds to generate of up to 100000 candidate
template arcs. It generates half a million candidate template arcs in just a few minutes and can be used
to generate up to 1.5 million candidate template arcs.

3.4.2 DNIST Results

Table 6 shows the running time of DNIST for 1000 iterations, where the arcs are initialized with
random values, to simulate the pricing problem. We see that DNIS can generate template arcs on
demand very fast, especially in relation to the BCP method presented in Chapter 5. The developed
BCP method can successfully solve instances from the NIST dataset containing up to 9000 template
arcs and 90 nodes with a correction vector size of ~̃δ = (50, 50, 50)T in a reasonable amount of time.
For instances of this size the runtime of DNIS T is less than a second.
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Table 4: Number of candidate template arcs |T c| and running times of NIS for the NIST data.

~̃δ (40, 40, 40)T (80, 80, 80)T (120, 120, 120)T (130, 130, 130)T

inst. |Tc| t[s] |Tc| t[s] |Tc| t[s] |Tc| t[s]

nist-u-01-t 7339 0.19 25032 1.05 106756 10.42 156137 21.37
nist-u-02-t 6924 0.17 25560 1.23 108946 12.85 155000 28.73
nist-u-03-t 9260 0.28 44834 2.55 239528 49.66 366274 132.73
nist-u-04-t 5238 0.11 14490 0.57 54618 4.47 79124 9.38
nist-u-05-t 4002 0.10 10565 0.43 38467 3.08 55091 6.25
nist-b-01-t 9559 0.25 39870 1.99 191019 27.84 283884 69.77
nist-b-02-t 8278 0.25 38826 2.20 194689 34.85 289420 89.77
nist-b-03-t 10142 0.28 42600 2.33 206608 32.72 309440 79.33
nist-b-04-t 4986 0.12 13611 0.55 51060 4.00 69336 7.67
nist-b-05-t 7150 0.18 27287 1.36 120638 15.06 168582 31.00
nist-g-01-t 7996 0.20 26776 1.28 112871 13.50 163900 30.87
nist-g-02-t 7820 0.18 25548 1.16 109406 10.48 150206 22.06
nist-g-03-t 9618 0.26 42035 2.29 198267 34.47 288411 85.17
nist-g-04-t 12657 0.36 52759 2.81 248842 37.51 355886 88.02
nist-g-05-t 4764 0.10 13130 0.52 50303 3.87 70240 8.15

~̃δ (140, 140, 140)T (150, 150, 150)T (160, 160, 160)T (170, 170, 170)T

inst. |Tc| t[s] |Tc| t[s] |Tc| t[s] |Tc| t[s]

nist-u-01-t 220914 45.67 315322 106.72 451665 272.99 636632 814.78
nist-u-02-t 220970 64.39 312336 158.01 457700 431.09 647866 1048.10
nist-u-03-t 542574 390.49 820830 1227.64 1169763 4682.64 1657232 10504.00
nist-u-04-t 111073 19.48 155297 40.33 224364 97.27 319632 245.46
nist-u-05-t 77374 12.59 107045 26.17 157276 61.95 212538 111.32
nist-b-01-t 402073 178.27 589198 477.87 869852 1543.89 1226542 4418.00
nist-b-02-t 410884 236.00 591532 609.38 874004 2329.24 1244119 6718.76
nist-b-03-t 465228 222.30 668902 639.24 958216 2170.07 1376313 7032.33
nist-b-04-t 99113 15.83 135304 31.81 189207 71.31 270754 160.87
nist-b-05-t 245192 74.03 350845 186.98 487907 489.50 682166 1266.62
nist-g-01-t 232484 70.19 343638 177.74 507706 506.84 742149 1442.22
nist-g-02-t 217917 49.07 306137 112.78 433021 275.88 594481 560.14
nist-g-03-t 428795 215.40 627226 597.52 915942 2161.18 1370066 7327.17
nist-g-04-t 514112 227.85 779460 767.36 1187806 2845.4 - -
nist-g-05-t 96446 15.6 133290 33.91 189306 77.82 263606 166.65

3.4.3 Comparison with Other Preprocessing Methods and Earlier Approaches

In an earlier version of NIS we did not avoid building dominated branches of the tree through prede-
cessor and successor comparisons. We only checked whether a template arc already exists by calling
noTaExists (Algorithm 3) in the last recursion step. Obviously, this leads to a much greater number
of sets being created as dominance is only detected in the last recursion step. The following Table 8
shows the speedup of the candidate template arc construction achieved by the new approach. We call
the earlier version of NIS EVNIS. Table 7 shows a comparison of the previous preprocessing algorithm
PP and NIS .

Finally, we can say that the two phase interval construction with NIS is a very efficient strategy and
that the further improvement of pruning dominated branches reduces the space and time complexity
of the algorithm significantly.
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Table 5: Number of candidate template arcs |T c| and running times of NIS for large ~̃δ values.

~̃δ (180, 180, 180)T (190, 190, 190)T (200, 200, 200)T

inst. |Tc| t[s] |Tc| t[s] |Tc| t[s]

nist-u-01-t 894186 1394.10 1176418 3153.79 1551236 7660.54
nist-u-02-t 915069 2130.18 1226780 4641.15 1532387 9972.58
nist-u-04-t 445778 447.92 583266 915.45 730458 1683.56
nist-u-05-t 279507 214.49 364574 386.49 458466 738.74
nist-b-01-t 1696518 8295.49 - - - -
nist-b-04-t 358524 272.83 451805 487.06 583386 919.53
nist-b-05-t 970713 2531.70 1280962 5278.04 1657834 11602.10
nist-g-01-t 1037960 2811.48 1320905 5778.04 1614272 10174.10
nist-g-02-t 810362 1112.06 1059842 2767.13 1371250 5123.53
nist-g-05-t 361926 285.00 461576 561.35 580814 915.33

Table 6: Running times for 1000 iterations of DNIST for the NIST data where the arcs are initialized
with random values between 1 and 100.

~̃δ (40, 40)T (40, 40, 40)T (80, 80)T (80, 80, 80)T (120, 120)T (120, 120, 120)T

nist-u-01 3.94 4.17 18.27 14.35 81.03 114.09
nist-u-02 3.74 3.48 16.94 12.36 68.92 85.08
nist-u-03 5.77 5.33 37.11 26.08 192.55 277.49
nist-u-04 2.57 2.44 9.54 6.30 34.24 40.68
nist-u-05 1.78 1.95 6.86 6.37 22.39 33.07
nist-b-01 5.36 4.84 31.11 21.69 143.80 183.80
nist-b-02 5.59 4.45 38.80 20.77 166.97 221.68
nist-b-03 5.63 5.41 29.51 17.68 125.41 159.84
nist-b-04 1.99 2.39 8.44 7.11 35.30 38.76
nist-b-05 3.97 3.94 21.31 13.68 105.87 104.42
nist-g-01 3.74 3.84 16.15 11.59 53.59 75.97
nist-g-02 3.55 4.05 16.29 13.17 63.73 87.97
nist-g-03 5.37 5.20 32.56 23.43 133.19 200.13
nist-g-04 7.53 6.67 45.66 28.46 203.00 277.67
nist-g-05 2.08 2.39 7.91 7.83 30.68 40.05

Table 7: Comparison of PP and NIS.

inst. ~̃δ |Tc| PP t[s] NIS t[s]

ft-01 (30, 30, 30)T 1693 51.70 0.07
ft-18 (30, 30, 30)T 3963 325.61 0.17
ft-03 (40, 40, 40)T 6464 1153.62 0.62
ft-11 (45, 45, 45)T 17137 13338.20 2.18
nist-u-04-t (40, 40, 40)T 5238 2395.28 0.11
nist-u-01-t (80, 80, 80)T 25032 11583.10 1.05
nist-u-01-t (120, 120, 120)T 106756 - 10.24
nist-u-05-t (120, 120, 120)T 38467 37112.10 3.08
nist-b-01-t (120, 120, 120)T 191019 - 27.84
nist-b-03-t (120, 120, 120)T 206608 - 32.72
nist-u-03-t (120, 120, 120)T 239528 - 49.66
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Table 8: Number of candidate template arcs |T c| and running times of the early (EVNIS) and the
improved version of NIS.

~̃δ (40, 40)T (40, 40, 40)T (80, 80)T

inst. |Tc| EVNIS t[s] NIS t[s] |Tc| EVNIS t[s] NIS t[s] |Tc| EVNIS t[s] NIS t[s]

nist-u-01-t 10310 0.40 0.19 7339 0.72 0.19 25990 3.34 0.88
nist-u-02-t 9667 0.42 0.20 6924 0.74 0.17 26398 4.30 0.93
nist-u-03-t 13656 0.78 0.29 9260 1.29 0.28 37326 10.60 1.66
nist-u-04-t 6405 0.24 0.12 5238 0.47 0.11 16098 1.48 0.48
nist-u-05-t 4692 0.20 0.08 4002 0.37 0.10 11075 1.05 0.31
nist-b-01-t 13674 0.77 0.29 9559 1.12 0.25 37124 7.15 1.42
nist-b-02-t 12517 0.74 0.25 8278 1.26 0.25 33910 10.31 1.54
nist-b-03-t 14764 0.72 0.32 10142 1.17 0.28 39073 9.28 1.73
nist-b-04-t 5895 0.22 0.10 4986 0.51 0.12 14243 1.26 0.42
nist-b-05-t 10040 0.55 0.20 7150 0.81 0.18 27118 4.28 0.96
nist-g-01-t 10386 0.44 0.21 7996 0.87 0.20 28375 4.31 0.98
nist-g-02-t 9845 0.39 0.20 7820 0.90 0.18 26316 2.88 0.82
nist-g-03-t 13804 0.73 0.29 9618 1.26 0.26 36329 9.31 1.62
nist-g-04-t 18215 0.99 0.39 12657 1.50 0.36 49874 11.02 2.13
nist-g-05-t 5834 0.21 0.09 4764 0.50 0.10 14158 1.24 0.40
~̃δ (80, 80, 80)T (120, 120)T (120, 120, 120)T

inst. |Tc| EVNIS t[s] NIS t[s] |Tc| EVNIS t[s] NIS t[s] |Tc| EVNIS t[s] NIS t[s]
nist-u-01-t 25032 6.44 1.05 49754 26.19 2.92 106756 81.13 10.42
nist-u-02-t 25560 7.84 1.22 50033 38.79 3.17 108946 145.43 12.85
nist-u-03-t 44834 18.91 2.55 65888 113.54 5.75 239528 832,56 49.66
nist-u-04-t 14490 3.58 0.57 30482 11.09 1.50 54618 34.80 4.47
nist-u-05-t 10565 2.22 0.43 20791 6.18 0.96 38467 25.03 3.08
nist-b-01-t 39870 13.90 1.99 68219 72.26 4.96 191019 392.56 27.84
nist-b-02-t 38826 17.85 2.2 58296 107.66 4.95 194689 640.82 34.85
nist-b-03-t 42600 16.31 2.33 71028 98.76 5.98 206608 524.83 32.72
nist-b-04-t 13611 3.07 0.55 27264 8.83 1.25 51060 35.56 4.00
nist-b-05-t 27287 8.26 1.36 50953 41.95 3.48 120638 184.82 15.06
nist-g-01-t 26776 10.00 1.28 52880 38.02 3.26 112871 175.18 13.50
nist-g-02-t 25548 6.67 1.16 50035 25.99 2.64 109406 102.52 10.48
nist-g-03-t 42035 18.13 2.29 65499 113.93 5.34 198267 613.28 34.47
nist-g-04-t 52759 18.67 2.81 90508 125.90 6.86 248842 564.38 37.51
nist-g-05-t 13130 2.71 0.52 26763 9.45 1.31 50303 32.88 3.87
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4. A Memetic Algorithm for Solving the
k-MLSA Problem

This chapter presents a memetic algorithm for the solution of the k-node minimum labeled spanning
arborescence (k-MLSA) problem. After a short general introduction to genetic algorithms and known
technics for solving the related MLST problem, the newly developed memetic algorithm (MA) is de-
scribed in detail. In the menetic algorithm, feasible arborescences are searched very frequently using
depth first searches (DFS). A technique to reduce the number of DFS calls is introduced in the next
part of the chapter. At the end of the chapter the results are presented and compared with a GRASP
approach.

4.1 Theoretical Background

Evolutionary algorithms are stochastic search methods that imitate the principles of evolution theory,
selection, recombination and mutation. The term genetic algorithm was first used by Holland [26],
although in the 1960s similiar ideas where developed in Germany by Rechenberg [42] and Schwefel
[44] (evolution strategies). In recent decades, various different types of evolutionary algorithms have
been developed. The best known are evolution strategy (ESs), genetic algorithms (GAs), genetic
programming (GPs) and evolutionary programming (EP). Although there is no strict definition of
what exactly falls under the name GA, most GAs start from an initial population, i.e. a set of solutions,
where each solution is represented by a chromosome, which is then evolved by applying the three
operators, selection, mutation and recombination.

In the original form of GA, the population is represented as a set of strings, which are called chro-
mosomes in analogy to evolution theory. Each chromosome represents an individual. The elements of
a chromosome are called genes. Each individual has a so-called fitness, a mapping of the value of its
objective function. The selection operator selects individuals from the population according to their
fitness. From these indiviudals the next generation is built. The encoding of a chromosome is called
its genotype. Genetic algorithms operate on the genotype and evaluate the phenotype. Thus, search
and solution space are distinct. A good genotype to phenotype mapping is essential for the efficacy of
the algorithm.

At the start of the algorithm, a set of initial solutions is constructed, which may or may not be
feasible. The goal is to find better solutions in the following generations. In each generation, new
solutions are generated by pairwise recombination of individuals, selected according to their fitness
values. The class of methods used for recombination is called crossover. The newly generated in-
dividuals are then slightly modified in the mutation step [37, 4]. The purpose of the mutation step
is to maintain the diversity of the population by introducing new or previously lost genetic material.
If local improvement methods are applied as part of the GA, the resulting hybrid algorithm is often
called memetic algorithm MA. In the following, we describe the basic elements of a genetic algorithm
in more detail. The genetic algorithm starts with a randomly distributed initial population of chromo-
somes selected from the search space. This initial population should cover the whole search space and
can either be uniformly distributed or use a bias usually torwards the global optimum. In the selection
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step chromosomes with high fitness values are selected as parent chromosomes. This selection can
either be stochastic or deterministic.

An example for stochastic selection is tournament selection, where k solutions are selected random
uniformly. Then a tournament is held over the k solutions and the winner of it is chosen as a parent
chromosome. The tournament size k goes from two (binary tournament) to the size of the population.

Probably the most common stochastic selection technique is stochastic sampling with replacement,
also called roulette wheel or fitness proportional selection. The selection probability is based on the
relative fitness of each chromosome, and the fittest members of the population are selected with the
highest probability. The name roulette wheel has its origin in the analogy to a roulette wheel, where
the amount of space a chromosome occupies reflects its fitness. Another technique is elitist selection,
where the best or the best and some good chromosomes are always selected for the next generation,
while the rest of the chromosomes is selected using different criteria. This technique increases the
performance of the GA, because good chromosomes are not lost and the best solution is guaranteed to
survive the evolutionary process.

In the selection of parent chromosomes, there is a danger of converging to a local optimum result-
ing from a population that becomes too uniform. We denote the selection of fitter parents as selection
bias. In order to avoid local optima, the factor that determines the selection bias in favor of good solu-
tions must not be set too high. If, on the other hand, a very low selection bias is chosen, the algorithm
does not converge quickly enough and degrades into a random search.

In the recombination step the selected chromosomes are combined to a new chromosome through
crossover operations. There are many types of crossover. Some of the more important ones are
single-point crossover, two-point crossover, multi-point crossover, uniform crossover and arithmetic
crossover. In single-point crossover, a crossover point is chosen randomly. Everything before this
crossover point, including the point itself, is copied from the first parent into the first newly generated
chromosome. Everything after the crossover point is copied from the second parent into the first new
chromosome. The reverse is done for the second offspring. In two-point crossover, the same operation
is performed with two crossover points, and the string is interpreted as ring structure. Multi-point
crossover is a generalization of two-point crossover.

Uniform crossover is a generalization of multi-point crossover insofar as multi-point crossover
defines places where a chromosome can be split while uniform crossover decides for each gene from
which parent it is taken. Besides this basic crossover operation, there are many more problem specific
crossover types. In the mutation step a small part of the chromosome is changed either randomly or
according to some criteria. In this way, lost material is brought back into the population.

The solution can be further improved by local search methods. Hybridizing local and genetic
search can lead to large performance improvements. Combining these two features exploits comple-
mentary properties of both strategies. Global exploration of the search space is performed by the
genetic search, while local search is used for local exploitation around the chromosomes [37]. The
type of local search used is extremly problem dependent.

There are different strategies to combine the GA with a local search method. One strategy is to
use local search only once after the GA proper has finished. Another strategy is to include it in each
generation, either unconditionally or with some probability. Usually, local search is invoked at least a
few times during the run of the GA.

Local search may affect only the fitness function or both the fitness function and the genotype of
the indivudual. This is the difference between Lamarckian evolution, where learning (i.e. local search)
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also affects the genotype, and the Baldwin effect, where only the fitness of an individual is affected.
In the Lamarckian case, the changed individual is copied back into the population, while in the

Baldwin case only the fitness function is changed. The Lamarckian search is much faster but can have
the disatvantage to converge towards a local optimum [25]. A genetic algorithm combined with local
search methods is often called memetic algorithm (MA).

There are two main types of genetic algorithm in terms of offspring construction. Stationary, also
called steady-state GAs, and generational GAs. In a generational GA, a new offspring is generated
from the members of the old population and placed in a new population. The new population has the
same size as the old population and replaces it completely.

In a steady-state GA, only a single offspring is generated and replaces either the worst, a relatively
bad (tournament selection) or a randomly chosen chromosome from the existing population. Dupli-
cates are eliminated. The steady-state GA converges faster than the generational GA, but it can have
the disadvantage to explore the landscape less thoroughly than the generational GA as its population
is less diverse. It is still debated why and how genetic algorithms work and several attempts have been
made to explain their functionality theoretically.

4.2 Related Work

The memetic algorithm for solving the k-MLSA problem, which is described in the following, is mainly
based on Xiong et al. [52] as well as Nummela and Julstrom [39] who solved the similiar, NP-hard
MLST problem with genetic algorithms. Xiong et al. [52] proposed a GA which encodes a candidate
solution as a set of labels. A characteristic feature of this GA is that it uses only a single parameter
p, which determines the population size. The fitness of an individual is the number of labels. The
objective function minimizes the number of labels. Encoding only the labels is much easier than
encoding the spanning tree. It is also sufficient, since all spanning trees induced by the labels are
solutions of the same quality as the structure of the tree does not matter but only the number of labels
has an impact on the objective function.

For the initial population, the chromosomes are built by adding randomly selected labels (genes)
until the solution is feasible. The crossover operator selects the labels in an offspring solution from
the union of the parents. First, the union of the parents is built, then the labels are sorted in descending
order of their frequency. The offspring is created by adding labels according their sort order until the
solution is feasible. In the mutation step, one label is added and redundant labels are removed. This
removal of redundant labels can also be seen as local search step.

A time consuming operation in this algorithm is to validate a solution using depth first searches
(DFSs). A single DFS has the running time O(m + n), where m denotes the numer of edges and n
denotes the number of nodes. Since DFSs are performed after each addition of a label, the running
time for crossover and mutation is O(l(m+n)) each, where l denotes the number of labels. If p denotes
the number of generations and the population size, p crossover and p mutation steps are performed in
each generation. Thus, the worst case running time of the algorithm is O(p2l(m + n)).

Another, very similiar, GA was developed by Numella and Julstrom [39]. A characteristic of this
GA is that a chromosome encodes all labels, and the fitness of a chromosome is the number of labels
needed to build a feasible solution.Thus, the labels at the beginning of the chromosome encode a
feasible solution. This feasible solution is called feasible set of the chromosome.

In the crossover operation, called alternating crossover, the labels are alternatingly taken from the
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parent chromosomes and added to the offspring. If there are duplicates, the later occurrence of a label
is eliminated. In the mutation step, either two randomly chosen labels are swapped, or one label from
the feasible set is swapped with a label from outside this set. A local search step tries to reduce the
number of labels needed for a feasible solution by reordering the labels. The GA is 1−elitist, i.e. it
always preserves the best chromosome.

The following text is mostly a repetition of the description of the MA in [18], which was my
contribution to the paper. For the same problem, a GRASP method was developed by Dietzel as part
of the same project, see [22] and [18].

4.3 Steady-State MA

The MA is based on a steady-state framework, where in each iteration a single offspring solution is
derived and locally improved.

Algorithm 6: k-MLSA-MA()

randomly create initial population1

t ← 02

while t < tmax do3

select parents T ′ and T ′′ by tournament selection4

T ← crossover(T ′, T ′′)5

mutation(T )6

local improvement(T )7

t ← t + 18

end9

It replaces a randomly chosen candidate solution from the population, to retain diversity. The
algorithm uses tournament selection, and local improvement steps are performed for each new can-
didate solution after the application of the evolutionary operators, i.e. recombination and mutation.
Algorithm 6 shows the overall framework where T denotes a chromosome.

4.3.1 Encoding

To create a feasible solution, it must be possible to build a directed rooted spanning tree from the
edges represented by the chosen labels. The spanning tree has to include either all nodes or a subset
of nodes whose size is determined by a given size constraint k. In other words a feasible solution is a
solution that contains a k − node arborescence [17].

During the iterations of the memetic algorithm it is sufficient to compute solutions that are known
to contain a k-node arborescence. Redundant edges (and vertices if k < n) are eliminated for the best
chromosome only after the memetic algorithm has finished.

If local improvement is not executed in every generation, redundant labels also have to be removed
in the postprocessing. A feasible solution contains many subgraphs. Xiong et al. [52] pointed out that
this structure has two important properties: 1. If we have a feasible solution with n labels and G′ is
a subgraph contained in this solution, every spanning tree of G′ has at most n labels. 2. If G′ is the
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subgraph of an optimal solution then any spanning tree of G′ is a minimum labeling spanning tree.
These properties also apply to a directed graph, as in our case.

Since the solution is derivable from the permutation of the labels, a chromosome only needs to
encode this permutation. Thus following the ideas presented in [52] we encode a candidate solution
as an ordered subset of labels. In our case the template arcs correspond to these labels and the chromo-
some of a candidate solution is therefore denoted by T , T [i] denotes the i-th template arc of candidate
solution T .

If these template arcs induce a k-node arborescence we have a feasible solution, otherwise further
template arcs need to be added to the candidate solution in order to make the solution feasible. Note
however, that a feasible solution may contain redundant template arcs, which are not necessarily part
of an optimal solution induced by the other template arcs of the ordered set.

For candidate solutions of the initial population we ensure that they are feasible. To create a
randomized candidate solution, all template arcs are shuffled and then added as long as the candidate
solution remains infeasible.

The MA then tries to minimize the number of template arcs required for a feasible solution by
iterative application of the genetic operators and local improvement. As many candidate solutions
have the same number of template arcs, the total number of induced arcs is also considered in the
fitness function f (T ), which is going to be minimized.

4.3.2 Fitness Function

The fitness function which is minimized evaluates the number of template arcs |T | which are required
for a feasible solution and is given by:

f (T ) = |T | +
(
1 −
|A′|
|A|

)
. (4.3.1)

Again, A′ denotes the set of induced tree arcs. This accounts for the fact that candidate solutions
whose template arcs cover many arcs are more likely to produce good offspring and result in successful
mutations.

4.3.3 Initialization

To get a randomized initial population the labels are shuffled with a simple shuffle algorithm, first
published by Fisher and Yates [29].

Algorithm 7: Shuffling

1. initialization j← n;1

2. Generate a random number U, uniformly distributed between zero and one;2

3. set k = b j · Uc + 1;3

Swap Xk ↔ X j;4

4. Decrease j by one.;5

If j > 1 return to step 2;6
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The initial population consists only of chromosomes which encode feasible solutions. To create
a feasible solution, labels from the shuffled permutation are added to the chromosome until the graph
(we call it permutation-graph) built from the edges represented by those labels contains a k-node
arborescence.

4.3.4 Crossover

Since the order of the template arcs does not need to be preserved, we use a crossover operator in-
troduced in [39], which takes the template arcs for the child candidate solution alternatingly from the
parents until a feasible solution is obtained.

Algorithm 8: crossover(T ′, T ′′)

T ← ∅ // new offspring initialized with empty set1

i← 0, j← 0 // counter variables2

while T contains no k-MLSA do3

if i mod 2 = 0 then4

t ← T ′[bi/2c]5

else6

t ← T ′′[bi/2c]7

end8

if t < T then9

T [ j]← t10

j← j + 111

end12

i← i + 113

end14

return T15

4.3.5 Mutation

In addition to recombination we use three different types of mutation:

1. A randomly selected template arc t < T is appended. This increases the likelihood for the ability
to remove some redundant template arc by a subsequent local improvement.

2. A randomly selected template arc t < T , replaces either a random or the worst t′ ∈ T . The worst
template arc is the one inducing the minimal number of arcs. If the solution is not feasible,
further randomly selected template arcs are added until a feasible solution is reached.

3. The permutation is sorted by the number of edges the labels represent. A label from outside
the permutation is randomly selected. Beginning with the worst label of the permutation an
attempt is made to replace each label with the new label. Once an attempt results in a feasible
solution, the substitution is performed and the mutation ends. If no replacement leads to a
feasible solution the mutation leaves the chromosome unchanged. A variation of this algorithm
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tries to remove a randomly selected label. In the tests mutation type 1 performed considerably
worse than type 2 and type 3.

Algorithm 9: Mutation

if mutation type 1 then1

add randomly selected label not in perm;2

end3

else if mutation type 2 then4

replace worst (random) label with randomly selected label not in perm;5

add labels until perm contains an k-node arborescence;6

else if mutation type 3 then7

if replace worst label then8

sort labels in descending order of edge frequency;9

l = perm.size;10

while l > 0 do11

replace l with randomly selected label not in perm;12

if G is k-node arborescence then13

l = 0;14

else15

undo replacement;16

l = l − 1;17

end18

end19

end20

else if replace random label then21

i = perm.size();22

while i > 0 do23

replace randomly selected label from perm with randomly selected label not in24

perm ;
if G is k-node arborescence then25

i = 0;26

else27

undo replacement;28

i = i − 1;29

end30

end31

4.3.6 Local Improvement

The subsequent local improvement method local-improvement(T) (Algorithm 10), following the
one presented in [39], uses the idea that a reordering of the template arcs could make some of them
redundant. In contrast to the local improvement method used in the GRASP algorithm this method
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can only remove template arcs from a current solution if some of them are actually redundant. As the
MA continuously modifies the candidate solutions from the population and also further template arcs
are added to a candidate solution by mutation, there is no need to use a more expensive neighborhood
search, which also considers currently unused template arcs.

Algorithm 10: local-improvement(T)

i← 0 // counter variable1

while i < |T | do2

remove all arcs only labeled by T [i]3

if T contains k-MLSA then4

T ← T \ T [i]5

else6

restore respective arcs7

i← i + 18

end9

end10

Postprocessing is performed on the best chromosome after the MA has finished. Redundant labels,
edges and nodes (in the case of k < number of nodes) are deleted from the solution and the root node
of the tree is set.

4.4 Check if the Tree Contains an Arborescence

Obviously, the algorithm frequently has to check if a partial solution already contains a feasible ar-
borescence. This task can be achieved by performing depth first search (DFS) using each node as
start node (time complexity O(k3)). To achieve a speedup of this method we try to avoid or reduce the
number of time consuming DFS calls. Let G′ denote the graph containing just the edges and nodes
induced by some template arc set T , i.e. if (i, j) ∈ A is represented by template arc t ∈ T we add the
nodes i, j and the arc (i, j) to G′ = (V ′, A′). Let further δ−(v) denote the in-degree of a node v, i.e. the
number of incoming arcs. Furthermore let δi

0(V ′) denote the subset of nodes from V ′ with δ−(V ′) = 0,
and let us assume that the current partial solution consists of the template arcs (labels) T . Following
the idea of Dietzel [22] we first check the degree of each node to see if a sufficient number of nodes v
with in-degree δ−(v) > 0 is available. If |V ′| − δi

0(V ′) + 1 < k then G′ cannot represent a valid solution,
and we do not have to perform the DFS. If a solution is possible we distinguish the following two
cases. In the first case, where k = |V |, there can be at most one node with in-degree zero. If there is
such a node it has to be the root node and we perform the DFS starting from this node. Otherwise, if
all nodes v ∈ V ′ have δ−(v) > 0 we have no choice but to perform DFS starting from all nodes. In the
more general second case k < |V |, if |V ′| − δi

0(V ′) + 1 = k, one of the nodes with in-degree zero has to
be the root of the tree, otherwise the tree would not contain the required k nodes. So it is sufficient to
perform the DFS starting at just these δi

0(V ′) nodes. Otherwise we again have to perform DFS starting
from all nodes.
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Table 9: Runtime comparison of unimproved and improved DFS elimination methods

inst |V | ~̃δ k m I t[s] II t[s] III t[s]

ft-01 31 (15, 15, 15)T 31 11 19.00 6.67 2.66
ft-01 31 (5, 5)T 31 9 17.18 7.07 2.31
ft-02 28 (5, 5)T 28 10 12.30 5.14 2.32
ft-03 35 (5, 5)T 35 10 29.65 9.43 3.30
ft-04 20 (5, 5)T 20 9 6.11 2.57 1.36
ft-05 39 (15, 15, 15)T 39 11 35.37 13.02 3.73
ft-05 39 (5, 5)T 39 11 33.12 11.76 3.68
ft-06 15 (5, 5)T 15 7 3.24 1.53 0.90
ft-07 28 (5, 5)T 28 9 16.31 5.92 2.52
ft-08 27 (5, 5)T 27 10 13.01 5.35 2.19
ft-09 27 (5, 5)T 27 10 13.56 4.98 2.27
ft-10 31 (5, 5)T 31 11 18.40 6.60 2.76
ft-11 38 (5, 5)T 38 11 32.50 10.07 3.57
ft-12 28 (5, 5)T 28 8 11.91 4.79 2.05
ft-13 25 (5, 5)T 25 9 10.99 4.50 2.05
ft-14 33 (5, 5)T 33 10 25.33 8.91 3.22
ft-15 29 (5, 5)T 29 9 15.31 4.73 1.96
ft-16 37 (5, 5)T 37 11 33.89 11.12 2.91
ft-17 31 (5, 5)T 31 11 18.81 6.24 2.64
ft-18 40 (5, 5)T 40 12 38.53 11.28 4.03
ft-18 40 (15, 15, 15)T 40 10 37.50 12.31 3.85
ft-19 35 (5, 5)T 35 12 29.32 10.26 3.21
ft-20 28 (5, 5)T 28 10 15.94 7.05 2.15
ft-01 31 (5, 5)T 25 7 6.91 4.31 3.66
ft-01 31 (5, 5)T 30 9 12.16 5.14 2.48
ft-01 31 (15, 15, 15)T 25 8 6.88 4.41 2.89
ft-01 31 (15, 15, 15)T 30 10 13.30 5.24 2.44
ft-05 39 (5, 5)T 30 8 13.07 7.69 5.32
ft-05 39 (15, 15, 15)T 30 8 14.14 5.61 4.08
ft-18 40 (5, 5)T 30 8 13.87 8.60 6.36
ft-18 40 (15, 15, 15)T 30 7 12.00 6.96 6.11
ft-18 40 (15, 15, 15)T 35 9 17.54 7.54 3.76

4.5 Results

All tests where performed on a Pentium 4 with 2GB memory under Linux kernel 2.4.21. The program-
ming language, libraries, framework and compiler version are the same as specified before in Section
3.4. For the memetic algorithm we used EAlib2, developed at the Institute for Computer Graphics
and Algorithms of the Vienna University of Technology. Table 9 shows the much lower runtime of
the MA if DFS calls are avoided (see Section 4.4). We differentiate the basis (I, II) and the improved
versions (III) of the algorithm. Version I performs all DFS without any improvement with regard to the
running time. Version II avoids some DFS calls (If there are not enough edges or to many nodes with
in-degree zero no DFS is performed). This version adapts Dietzels containsArborescence function
[22]. Version III implements all the improvements described before. The table also lists the instance
inst, the number of nodes |V |, the size of the domain ~̃δ, the size of the computed tree k and the number
of labels in the solution |m|. We can see that both improvements reduce the running time by half.

The results of the memetic algorithm are presented in Table 10. The first three columns show the
instance names and parameters k and ~δ. Then, in the first part of the table, we list the results from
the exact branch-and-cut method, the second part contains the objective value of the currently best
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Table 10: Results and running times of the memetic algorithm

inst k ~δ m t[s] mbest mavg σm #b.s. [%] tavg[s] mbest mavg σm #b.s. [%] tavg[s] ρb.s.[%]

B&C results MA (it = 10000, sizepop = 100) MA (it = 30000, sizepop = 100)

ft-01

20

30
30
30



3 79 3 3.70 0.47 30 1.84 3 3.23 0.42 77 5.58 6.10
ft-02 3 0 3 3.04 0.18 97 1.38 3 3.00 0.00 100 4.29 6.10
ft-03 3 85 3 3.00 0.00 100 2.45 3 3.00 0.00 100 7.51 6.10
ft-04 4 10 4 4.00 0.18 100 1.01 4 4.00 0.00 100 3.08 -0.87
ft-05 3 327 3 3.00 0.00 100 2.23 3 3.00 0.00 100 6.48 6.10
ft-07 4 14 4 4.00 0.00 100 1.49 4 4.00 0.00 100 4.62 -1.57
ft-08 4 13 4 4.00 0.00 100 1.50 4 4.00 0.00 100 4.08 -1.57
ft-09 4 24 4 4.00 0.00 100 1.35 4 4.00 0.00 100 4.54 -1.57
ft-10 3 36 3 3.43 0.50 57 1.53 3 3.17 0.38 84 5.79 6.10
ft-11 3 853 3 3.00 0.00 100 2.01 3 3.00 0.00 100 6.50 6.10
ft-12 3 52 3 3.00 0.00 100 2.26 3 3.00 0.00 100 4.86 6.10
ft-13 3 21 3 3.03 0.18 97 1.59 3 3.00 0.00 100 3.60 6.10
ft-14 3 275 3 3.16 0.37 83 1.15 3 3.00 0.00 100 7.04 6.10
ft-15 3 15 3 3.00 0.00 100 2.33 3 3.00 0.00 100 4.88 6.10
ft-16 3 282 3 3.00 0.00 100 1.69 3 3.00 0.00 100 7.50 6.10
ft-17 3 235 3 3.46 0.48 67 1.82 3 3.17 0.38 84 5.36 6.10
ft-18 3 823 3 3.00 0.00 100 2.75 3 3.00 0.00 100 8.50 6.10
ft-19 3 97 3 3.06 0.18 97 2.69 3 3.00 0.00 100 8.05 6.10
ft-20 3 0 3 3.00 0.00 100 1.58 3 3.00 0.00 100 4.79 6.10

best known solution MA (it = 10000, sizepop = 100) MA (it = 60000, sizepop = 200)

nist-b-01

40

80
80
80



4 n/a 5 5.10 0.31 0 24.66 5 5.00 0.00 0 98.90 13.75
nist-b-02 4 n/a 4 4.74 0.44 27 15.16 4 4.20 0.40 80 89.95 18.90
nist-b-03 4 n/a 4 4.60 0.50 40 17.94 4 4.10 0.31 90 104.43 18.90
nist-b-04 5 n/a 5 4.94 0.37 10 16.32 5 5.60 0.50 40 91.75 13.75
nist-b-05 4 n/a 5 5.94 0.51 0 16.86 4 5.00 0.26 3 93.73 18.90
nist-g-01 4 n/a 4 4.87 0.35 14 17.57 4 4.64 0.49 33 101.82 18.90
nist-g-02 5 n/a 6 6.17 0.38 0 21.03 5 5.97 0.18 3 117.78 13.38
nist-g-03 4 n/a 4 4.80 0.41 46 16.36 4 4.30 0.47 70 94.29 18.90
nist-g-04 4 n/a 5 5.38 0.49 0 21.38 5 5.00 0.00 0 115.99 13.38
nist-g-05 5 n/a 5 6.57 0.57 3 16.97 5 5.74 0.45 26 92.97 13.75
nist-u-01 5 n/a 6 6.90 0.31 0 21.17 6 6.10 0.31 0 117.19 11.03
nist-u-02 5 n/a 5 5.60 0.49 40 17.54 5 5.00 0.00 100 100.68 13.75
nist-u-03 4 n/a 5 5.04 0.18 0 17.41 4 4.50 0.50 50 98.18 18.90
nist-u-04 5 n/a 5 5.84 0.38 17 17.75 5 5.24 0.43 76 98.87 13.75
nist-u-05 5 n/a 6 6.37 0.49 0 15.30 6 6.04 0.18 0 83.56 11.47

known solution. The column mbest shows the best result of 30 runs of the algorithm, column mavg
shows the average value. By σx we denote the standard deviation of the entity x. The column #b.s.
shows the percentage of runs, where the solution listed in mbest has been found. Average running
times are listed in column tavg and ρb.s. shows the achieved compression ratio. We used a population
size sizepop ∈ {100, 200}, and a group size of four for the tournament selection. The crossover and
mutation probability is set to one, i.e. each offspring is created by crossover and subsequent mutation.
In each iteration a randomly selected candidate solution from the population was replaced by the
newly generated one. Local improvement is performed for each newly created candidate solution. As
mutation type 2 produced better overall results than mutation type 1, the former was used to create the
results listed in Table 10. Replacing a randomly selected t ∈ T turned out to be advantageous over
replacing the worst one. Table 10 shows the results of 30 runs with 10000 and 30000 iterations for
the Fraunhofer templates (population size 100); for the NIST templates we list the results for 10000
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and 60000 iterations with a population size of 100 and 200, respectively. Again, the presented results
are not essentially different to the ones for any other parameter settings of k and ~δ. The Fraunhofer
data can be compressed within 10000 iterations, which takes an average running time of roughly 2
seconds. Due to the larger number of points, the compression of the NIST data is computationally
more expensive. At least 60000 iterations must be used in order to be able to produce good results.
The respective running times are roughly 100 seconds.

Table 11 shows the results of the GRASP algorithm developed by Dietzel [22] for the same param-
eter settings. The average running time to find good solutions w.r.t. our application background (i.e.
to find the optimal solution in most of the cases) is roughly less than ten seconds for the Fraunhofer
templates. Due to their larger size it is much more expensive to solve the NIST data. In this case the
running times range from less than one minute to slightly more than three minutes.

In the case of the Fraunhofer data the MA is clearly superior to the GRASP, as it produces better
solutions in less time. For the NIST data GRASP clearly outperforms the MA, if we allow higher
running times of up to five minutes.
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Table 11: Results and running times of the GRASP

instance k ~δ m t[s] mbest mavg σm #b.s. [%] tavg[s] mbest mavg σm #b.s. [%] tavg[s] ρb.s.[%]

B&C results GRASP GRASP
it = 10, itls = 5, rclmax = 5, impmax = 0 it = 10, itls = 20, rclmax = 10, impmax = 10

ft-01

20

30
30
30



3 79 4 4.00 0.00 100 1.57 3 3.87 0.34 13 7.97 6.10
ft-02 3 0 4 4.00 0.00 100 1.00 3 3.67 0.47 33 6.20 6.10
ft-03 3 85 3 3.00 0.00 100 2.03 3 3.00 0.00 100 10.03 6.10
ft-04 4 10 4 4.70 0.46 30 0.15 4 4.30 0.46 70 2.03 -0.87
ft-05 3 327 3 3.00 0.00 100 4.82 3 3.00 0.00 100 16.90 6.10
ft-07 4 14 4 4.00 0.00 100 0.33 4 4.00 0.00 100 4.00 -1.57
ft-08 4 13 4 4.00 0.00 100 0.93 4 4.00 0.00 100 3.93 -1.57
ft-09 4 24 4 4.00 0.00 100 0.33 4 4.00 0.00 100 4.00 -1.57
ft-10 3 36 3 3.13 0.34 87 1.00 3 3.00 0.00 100 6.30 6.10
ft-11 3 853 3 3.00 0.00 100 4.27 3 3.00 0.00 100 23.07 6.10
ft-12 3 52 3 3.00 0.00 100 1.00 3 3.00 0.00 100 5.93 6.62
ft-13 3 21 3 3.00 0.00 100 0.20 3 3.00 0.00 100 2.97 6.62
ft-14 3 275 3 3.00 0.00 100 2.00 3 3.00 0.00 100 8.73 6.10
ft-15 3 15 3 3.00 0.00 100 1.00 3 3.00 0.00 100 5.93 6.62
ft-16 3 282 3 3.00 0.00 100 2.97 3 3.00 0.00 100 16.53 6.10
ft-17 3 235 3 3.00 0.00 100 1.03 3 3.00 0.00 100 5.97 6.10
ft-18 3 823 3 3.00 0.00 100 5.57 3 3.00 0.00 100 21.93 6.10
ft-19 3 97 3 3.00 0.00 100 1.90 3 3.00 0.00 100 8.10 6.10
ft-20 3 0 3 3.00 0.00 100 0.30 3 3.00 0.00 100 3.00 6.10

best known solution it = 5, itls = 5, rclmax = 10, impmax = 0 it = 5, itls = 10, rclmax = 10, impmax = 5

nist-b-01

40

80
80
80



4 n/a 4 4.83 0.37 17 91.60 4 4.50 0.50 50 189.97 18.90
nist-b-02 4 n/a 4 4.37 0.48 63 78.47 4 4.00 0.00 100 180.17 18.90
nist-b-03 4 n/a 4 4.43 0.50 57 89.57 4 4.03 0.18 97 190.67 18.90
nist-b-04 5 n/a 5 5.27 0.44 73 24.70 5 5.00 0.00 100 53.97 13.75
nist-b-05 4 n/a 4 4.93 0.25 7 73.37 4 4.77 0.42 23 157.47 18.90
nist-g-01 4 n/a 4 4.83 0.37 17 71.23 4 4.37 0.48 63 159.57 18.90
nist-g-02 5 n/a 5 5.73 0.44 27 67.50 5 5.40 0.49 60 151.13 13.38
nist-g-03 4 n/a 4 4.17 0.37 83 94.50 4 4.00 0.00 100 189.57 18.90
nist-g-04 4 n/a 5 5.00 0.00 0 85.77 4 4.97 0.18 3 201.70 18.60
nist-g-05 5 n/a 5 5.13 0.34 87 40.13 5 5.03 0.18 97 64.57 13.75
nist-u-01 5 n/a 6 6.03 0.18 0 68.90 5 5.90 0.30 10 156.70 18.38
nist-u-02 5 n/a 5 5.00 0.00 100 69.87 5 5.00 0.00 100 152.37 13.75
nist-u-03 4 n/a 4 4.47 0.50 53 82.20 4 4.13 0.34 87 193.13 18.90
nist-u-04 5 n/a 5 5.17 0.37 86 44.53 5 5.00 0.00 100 74.83 13.75
nist-u-05 5 n/a 5 5.93 0.25 6 20.90 5 5.70 0.46 30 42.77 13.75

49



5. Branch-and-Cut-and-Price
This chapter presents an exact method to solve the k-MLSA problem. It gives a short general introduc-
tion to BCP and presents the ILP model as well as the cutting plane separation with cycle elimination
cuts and directed connection inequalities. The separation of the directed connection cuts utilizes the
max-flow min-cut theorem, which states that the maximum flow in a network equals the value of the
minimum cut. The separation of these cuts can be improved by back-cuts and creep flow. New vari-
ables are generated by solving the pricing-problem which is based on the values of the dual variables
of the current solution and added dynamically to the ILP model. After presenting the pricing model,
the different variants of branch-and-cut-and-price (BCP) algorithms are described. Furthermore, pre-
processing strategies with the emphMA as an initial heuristic and the computation of a lower bound
for a reduced version of the problem are discussed. Finally different BCP variants are compared based
on computational experiments.

5.1 Theoretical Background

The foundation of the mathematical discipline of linear programming dates back to 1947, when G.B.
Dantzig developed the simplex algorithm [13]. The term Linear Programming (LP) denotes the class
of optimization problems where the optimization criterion as well as the constraints are linear func-
tions [19]. Thus, in its standard form an LP problem is a linear function, that has to be maximized
(or minimized) and is subject to linear problem specific constraints, restricting the space of feasible
solutions. In matrix form an LP looks as follows:

maximize cT x (5.1.1)

s.t. Ax ≤ b, x ≥ 0, (5.1.2)

where A ∈ Rm×n , b ∈ Rm , and c ∈ Rn are given, and x ∈ Rm has to be found. If the domain of
the variables is restricted to integers the problem is called a Integer Linear Program (ILP). If only
some of the variables are integers, it is called a Mixed Integer Program (MIP). Wolsey [49] gives a
comprehensive introduction in integer programming.

5.1.1 Duality

Every LP called primal program has a corresponding dual program. The dual form of the LP given by
(5.1.1) and (5.1.2) is:

minimize bTy (5.1.3)

s.t. ATy ≤ c, y ≥ 0, (5.1.4)

where y ∈ Rm has to be found. Every feasible solution of the dual program provides an upper bound
for the optimal solution value of the primal program. The reverse is also true, i.e. every feasible
solution to the primal program gives a lower bound for the optimal solution of the dual program.
Thus, if feasible solutions for the primal and dual programs are found, and the solutions have the same
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objective value, we have found the optimal solution. This insight is the central theorem of Linear
Programming, the so called LP-Duality Theorem, which can be formalized as:

n∑
j=1

c jx∗j =

m∑
i=1

ciy
∗
i (5.1.5)

where x∗ = (x∗1, ..., x
∗
n) and y∗ = (y∗1, ..., y

∗
n) are optimal solutions for the primal and the dual pro-

gram [47].

5.1.2 Column Generation

The idea of column generation is to start with a small set of variables, the so-called Restricted Master
Problem (RMP), and add new variables (columns) on demand. The following description is mainly
based on the introduction to column generation by Desrosiers et al. [21]. Column generation has its
origin in the simplex algorithm. In the simplex algorithm, in each iteration a new variable that can
potentially improve the solution enters the basis.

Column generation follows the idea that only a small subset of the variables that can potentially
enter the basis has to be considered. If we have a minimization problem, the next variable to enter the
basis is the variable with the highest negative reduced costs. This variable can be found by solving
an optimization problem, the so called pricing problem. Let us call the following problem the master
problem MP:

minimize
∑
i∈I

ciλi (5.1.6)

s.t.
∑
i∈I

aiλi ≥ b, λ ≥ 0, i ∈ I. (5.1.7)

We are looking for a variable to enter the basis in each iteration of the simplex algorithm. As shown
before (5.1.3) each constraint of the primal program has a corresponding dual variable. Let u denote
the vector of non-negative variables of the dual problem. Then the reduced costs are given by

ci = ci − uT A (5.1.8)

and we want to find an i ∈ I that minimizes ci. If we have a large |I|, this so called explicit pricing
is costly. Thus we work only with a subset I′ ⊂ I of the columns. The reduced costs are evaluated
implicitly be enumeration. The subset I′ is called the restricted master problem (RMP). Let u be the
optimal dual solution of the RMP. Assume that the columns ai, i ∈ I are elements of a set A and the
cost coefficient is computed by applying function c to ai. Then the pricing problem is the following
subproblem: c∗ = min{c(a) − uT a | a ∈ A}. If the value of c∗ ≥ 0, the solution to the RMP also
solves the MP optional. Otherwise the column is added to the RMP and the RMP is resolved [21].
Since the pricing problem will always identify a column with negative reduced costs, if one exists,
the optimal solution to the linear program will be found [5]. A comprehensive survey of column
generation methods is given in [35]. An outstandingly clear introduction to column generation is
given in [13, 6].
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5.1.3 Branch-and-Cut-and-Price

Branch-and-cut-and-price has its origin in the class of branch-and-bound algorithms. Branch-and-
bound follows a divide and conquer strategy by partitioning a problem into smaller subproblems and
optimizing each subproblem individually. When the bounding is achieved by LP techniques, the
method is called LP-based branch-and-bound. In the usual case of LP-based branch-and-bound the
integrality constraints of an IP are omitted and the so called LP-relaxation of the problem is solved.
This solution provides a upper or lower bound to the objective function value of the considered prob-
lem [32].

This elementary idea was improved by branch-and-cut and branch-and-price, which are comple-
mentary techniques for solving linear integer programs. Both techniques are suitable for problems
with a large number of variables and constraints. The idea of branch-and-cut is to omit inequalities
from the LP-Relaxation in order to reduce the number of constraints, because most of them will not
influence the optimal solution anyway. If an optimal solution is found, a subproblem, called separa-
tion problem, is solved in order to find violated inequalities. If violated inequalities are found, they
are added to the relaxation in order to cut off infeasible solutions. The term cut has its origin in a
graphical interpretation of the LP. Each LP can be represented as polyhedron, where the corner points
or extreme points describe the optimal solution of the LP. Parts of this polyhedron are cut away when a
valid inequality is added. Thus, the inequalities are called cutting-planes or simply cuts. After adding
the inequalities the LP is resolved.

This operation takes place in each node of the branch-and-bound tree. If no more violated inequal-
ities are found, the branching operation takes place [5]. The idea of branch-and-price is to start with
a small set of variables and add new variables (columns) that can improve the solution on demand
in the pricing process. If we have a minimization problem the next variable to enter the basis is a
variable with negative reduced costs. To identify variables that can improve the solution and therefore
enter the basis the so called pricing problem is solved. Note that the pricing problem is the separation
problem for the dual LP. If new variables enter the basis the LP is resolved. When no further variables
are found, branching is performed. The idea of branch-and-cut-and-price is to generate variables and
constraints dynamically during a LP-based branch-and-bound process [32]. Since we deal with a large
number of labels, and only a few of them are contained in a feasible solution, it seemed promising
expand the branch-and-cut approach described in [18] to a branch-and-cut-and-price approach.

5.2 Related Work

The MLST problem is solved with mathematical programming techniques in [16, 14]. In [14] a branch-
and-cut framework is presented to solve the MLST instances exactly. A polyhedral and a computa-
tional comparison of an underlying flow-formulation and a formulation based on directed connectivity
cuts is given. Also odd-hole inequalities are applied to this problem for the first time. For the sepa-
ration of cutting planes with odd-hole inequalities a heuristic that is based on Miller-Tucker-Zemlin
inequalities is presented. The odd-hole inequalities improved the running time significantly for some
classes of instances. The presented framework can solve benchmark instances within a significantly
shorter running time than other approaches, and can solve new larger instances for the first time. A
branch-and-cut-and-price approach which different variants of connectivity cuts is also developed in
[14]. Other exact approaches based on mathematical programming are developed by Chen et al. [11]
and Captivo et al. [8]. Chen et al. [11] presented the first MIP formulation which is based on Miller-
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Tucker-Zemlin inequalities. Captivo et al. [8] proposed a mixed integer formulation for undirected
graphs which is based on a single commodity flows.

As part of this project, the k-MLSA problem was solved using the exact methods branch-and-cut
(BC) [18] and branch-and-price (BP) [46]. The BCP approach integrates the BC and the BP approach.
It uses a similiar ILP model and the same cuts as the BC method. The pricing problem is the same as
the one used in the BP algorithm.

The branch-and-price approach [46] presents a single-commodity flow as well as a multi-commodity
flow formulation. Furthermore a static and a dynamic k-d tree based segmentation algorithm for the
preprocessing is developed in [46]. The general idea of BC and BCP (referring to the work being
topic of [46] and this thesis is also discussed briefly in [14].

5.3 Branch-and-Cut-and-Price for Solving the k-MLSA Problem

For the separation of cuts we mainly use the branch-and-cut approach developed in [18, 17]. The next
part is mostly an repetition of the model described in [18]. The ILP model is the same, except for
Equation (5.3.11) and Equation (5.3.8).

5.3.1 ILP Formulation

The set of nodes V is extended to V+ by adding an artificial root node 0. Also, the set of arcs A is
extended to A+ by adding (0, i), ∀i ∈ V . The following variables are used in the ILP model of the
problem:

• Variables yt ∈ {0, 1} indicate for each candidate template arc t ∈ T c whether it is part of the
dictionary T .

• Variables xi j ∈ {0, 1}, ∀(i, j) ∈ A+ indicate which arcs belongs to the tree.

• Variables zi ∈ {0, 1}, ∀i ∈ V indicate whether a node is part of the tree.

Let A(t) ⊂ A denote the set of tree arcs a template arc t ∈ T c can represent, and T (a) denote the set
of template arcs that can represent an arc a ∈ A, i.e. T (a) = {t ∈ T c | a ∈ A(t)}. The k-MLSA problem
is modeled as follows:

minimize m =
∑
t∈T c

yt (5.3.1)

s.t.
∑

t∈T (a)

yt ≥ xa, ∀a ∈ A (5.3.2)∑
i∈V

zi = k (5.3.3)∑
a∈A

xa = k − 1 (5.3.4)∑
i∈V

x(0,i) = 1 (5.3.5)∑
( j,i)∈A+

x ji = zi ∀i ∈ V (5.3.6)
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xi j ≤ zi ∀(i, j) ∈ A (5.3.7)

xi j + x ji ≤ zi ∀(i, j) ∈ A (5.3.8)∑
a∈C

xa ≤ |C| − 1 ∀ cycles C in G, |C| > 2 (5.3.9)∑
a∈δ−(S )

xa ≥ zi ∀i ∈ V, ∀S ⊆ V, i ∈ S , 0 < S (5.3.10)∑
t∈T (δ−(i))

yt ≥ zi − x0,i ∀i ∈ V (5.3.11)

Inequalities (5.3.2) enforce that each used tree arc a ∈ A is represented by at least one valid
template arc t. Equalities (5.3.3) and (5.3.4) enforce that the requested number of nodes and arcs are
selected. Equations (5.3.5) ensure that there is exactly one arc from the artificial root to one of the
tree nodes. Equations (5.3.6) enforce that the selected nodes have in-degree one. Inequalities (5.3.7)
enforce that an arc can only be selected if its source node is selected. Inequalities (5.3.8) forbid cycles
of length two. We improved the earlier version by using zi instead of 1 to make the inequalities tighter.
The value of zi can be less than 1 when only a subset of k nodes is selected. Thus, by using zi instead of
1 more cycles of length two are excluded. This is feasible because of Equations (5.3.6) and inequalities
(5.3.7), which enforce that xi, j as well x j,i have to be less than or equal to zi. Inequalities (5.3.9) forbid
all further cycles C with |C| > 2. Directed connectivity-constraints can be added to strengthen the ILP.
They lead to a tighter characterization of the spanning tree polyhedron, i.e. to better theoretical bounds
compared to the cycle elimination cuts, but their separation is computationally more expensive. The
directed connectivity-constraints are represented by inequalities (5.3.10), where δ−(S ) represents the
ingoing cut of node set S . These constraints ensure the existence of a path from the root 0 to any node
i ∈ V contained in the solution. Although Equations (5.3.10) make Equations (5.3.6), (5.3.7), (5.3.8)
and (5.3.9) redundant, using them together can be beneficial.

Optionally, we can add inequalities (5.3.11), which associate nodes with template arcs. They
ensure that for each node, except the root node, the sum over the template arc variables that correspond
to ingoing arcs of the node is equal or greater than one.

5.3.2 Cut Separation

Since the cut separation is described in [18], we give only a short recapitulation of this description
here. The number of the cycle elimination inequalities (5.3.9) and connectivity inequalities (5.3.10) is
exponential. Therefore, we use a branch-and-cut approach [49, 50], i.e. we only use the constraints
(5.3.2) to (5.3.8) at the beginning and add the cycle elimination and connectivity inequalities on de-
mand. The cycle elimination cuts are computed using Dijkstra’s shortest path algorithm: First, each
arc is assigned the weight 1 − xLP

i j , where xLP
i j is the arc value of the respective LP-relaxation. Then

each arc is iteratively selected as the start arc (i, j) ∈ A and the shortest path from j to i is computed.
If the value of all arcs contained in the path plus 1 − xLP

i j is smaller than one, the path is a cycle for
which inequalities (5.3.9) are violated. If a violated inequality is found, it is added to the LP, and the
LP is resolved. This procedure is repeated until no further violated inequalities are found. To separate
the directed connection cuts, we make use of the max-flow min-cut theorem [40, 3], which states that
the maximum flow in a network equals the value of the minimum cut. Thus, we can separate the cuts
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by computing the maximum flow from the root node to each node zi in the graph. If the maximum
flow is smaller than zLP

i , we know from the Max-Flow Min-Cut theorem that the minimum cut, and
therefore inequality (5.3.10) is violated. Again, the violated inequality is added to the LP, and the LP
is resolved again. This procedure is repeated until no further inequalities are found. In the following,
we describe two enhancements of the original cut generation described in [18].

With the original cut separation we get at most |V+| − 1 cuts, but in most cases many of these
cuts are the same. To generate a larger amount of different cuts in each separation step we also use
back-cuts [45]. The idea of back-cuts is to flip the graph G to G′. That means we reverse the direction
of each arc while preserving the arc capacity, i.e. ( j, i) is in A(G′) if and only if (i, j) is in A(G) and the
capacities of ( j, i) and (i, j) are the same. When the max-flow algorithm is performed on A(G′), a node
from |V+| − r is used as the new source node and r is used as the sink. This is repeated for all |V+| − r
nodes. If the capacity of the back-cut is less than the max-flow in G the corresponding cut in G is
obtained by reversing all arcs in G′ and added to the LP. For the separation of cuts we use Cherkassky
and Goldberg’s implementation of the push-relabel method for the maximum flow problem [12]. The
implementation of Cherkassky and Goldberg is advantageous if cuts and back-cuts are to be computed,
since the max-flow algorithm returns the minimum cut closest to the sink as well as the minimum cut
closest to the source [34, 38]. A speedup is also achieved through Creep-Flow, introduced in [30].
The idea of Creep-Flow is to add a tiny capacity ε to each arc, to get not only a weight minimal cut
but also an arc minimal cut. Although this increases the running time for computing a minimal cut,
since more arcs must be considered, the number of cutting plane iterations is reduced significantly
[30]. Using cycle elimination cuts and directed connection cuts together guarantees that the optimal
solution is always found.

5.3.3 The Pricing Problem

Our objective for the k-MLSA problem is to minimize the number of labels, i.e. we search for a
combination of labels that forms a feasible solution (i.e. the represented arcs can form a k−node
arborescence) and is minimal. We price over the labels, since we we have a large number of labels
and only a small number of labels is contained in every feasible solution.

We start with a near optimal, feasible solution generated by the MA, which consists of a small
set of labels (template arcs), and add new labels that can potentially improve the solution. Since we
deal with a minimization problem, every column with negative reduced costs can improve the solution
and is therefore a candidate to enter the basis. The pricing problem is to find a column with negative
reduced cost. We call the dual variables πi, j if they correspond to the arc-label constraints (5.3.2)
and µ j if they correspond to the node-label constraints (5.3.11). The reduced costs of a label (i.e. a
template arc) are given by the following formula:

ct = 1 −
( ∑
(i, j)∈A(t)

πi, j +
∑

j∈{v|(u,v)∈A(t)}

µ j) (5.3.12)

Consequently, we can define the pricing problem as:

Definition 8. (Pricing Problem)

t∗ = argmint∈T

{
ct} (5.3.13)
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Whenever we find a template arc t with negative value ct, it may improve the solution and is
therefore added to the model. We differentiate between a basic and an extended case of the pricing
problem. In the basic case, we only use the arc-label constraints. In this case, µ j is set to zero. The
drawback of using only the arc-label constraints is that they cause the preference of labels that can
represent many different arcs, even though the represented nodes may be the same. In the extended
case additional node-label constraints (5.3.11) associating nodes with template arcs are used. Due to
the node-label constraint, template arcs that represent poorly covered nodes are preferred.

5.3.4 Constructing all Candidate Template Arcs in Advance

For the construction of candidate template arcs (labels) we use two different approaches. The first
approach is to construct all candidate template arcs in advance with NIS (as described before in Section
3.2) and select the best candidate template arc from this set in every pricing step. The second approach
is to use DNIS (as described before in Section 3.3) to construct candidate template arcs just on demand.

The advantage of constructing all candidate template arcs in advance is that we can use a heuristic
method to improve the solution, which is described in the following. Let ci, j = πi, j + µ j (ca) denote
the costs of one arc, i.e the dual values assigned to it. Let c(t) denote the value of a template arc t, i.e.
the sum of the costs of the arcs represented by the template arc: c(t) =

∑
(i, j)∈A(t) ci, j. It is possible that

some of the arcs represented by a template arc cannot be used together in a k-node arborescence, so
the value c(t) assigned to it by summing up its arc costs may be too high. Consequently, we have to
decrease c(t) by counting only the costs of the arcs that can be used together in a valid solution. Let t∗s
denote the template arc with the greatest value where only arcs that are usable in a valid solution are
counted. Note, however, that we use this heuristics only for the selection of the best template arc from
the set of template arcs with negative reduced costs. If after decreasing the value c(t) of all template
arcs with c(t) > 1 and no template arc with c(t) > 1 is left, we return the adjusted template arc with
the greatest cts∗ anyway. Two or more arcs cannot be used together in a valid solution in the following
two cases:

1. The in-degree d−(v) of each node v, except for the root node, has to be exactly one. So, if a node
is the target of more than one arc, only one of these arcs is usable in the k-node arborescence.
Let A(t, v) denote the set of ingoing arcs of the node v represented by template arc t. From
this set, we count only the costs of one arc, namely the ingoing arc with the highest costs i.e.⋃
v∈V

argmaxa∈A(t,v){ca}. Figure 9 shows this situation. The arcs in the picture are represented by

a template arc. Node 1 has in-degree d−(1) > 1, so only one of its ingoing arcs is usable in a
feasible arborescence.

2. If n of the m arcs represented by a template arc form a cycle, we can only use n − 1 of these
arcs. Hence, from the n arcs contained in the cycle we do not count the costs of the arc with
the lowest costs. Since it is not important to obtain the exact value of a template arc, we only
consider cycles of length two, because they can be found very efficiently. Let A(t, c) denote the
set of two tree arcs that form a cycle and are represented by template arc t. From A(t, c) we
count only the arc with the higher costs i.e.

⋃
a∈A

argmaxa∈A(t,c){ca}.

We first apply the rule defined in case 1 and count only the ingoing arc with the highest costs if a node
has more ingoing arcs. If the reduced value c(t) of the template arc is still greater than one we search
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Figure 9: Arcs represented by a template arc t. Node 1 has in-degree d−(1) = 3. The blue arcs belong to an
arborescence.

for cycles. It is possible that the value of one or more of the arcs that form a cycle has already been
subtracted, because one of the nodes v in the cycle may have in-degree d−(v) > 1 . In this case, the
value c(t) of the template arc remains the same. Figure 10 shows this situation. Node 1 is contained
in a cycle and has also in-degree d−(1) > 1.

2

3

1

Figure 10: Arcs represented by a template arc t. The arcs form a cycle, and node 1 has in-degree d−(1) = 2.
The blue arcs belong to an arborescence.

If we find a cycle of length two, and there is a node with in-degree greater than one d−(v) > 1
in the cycle, the value of one arc has already been subtracted in step one. Otherwise we subtract the
value of the smaller arc. We must also consider the case where nodes with d−(v) > 1 are involved in
more than one cycle. Consider one node with d−(v) = 4 which is involved in three cycles. In this case
we would not have to subtract values for the cycles, because only the value of one of the incoming
arcs is counted. To process this case we use an in-degree counter for each node v and set it to d−(v).
Whenever the value of an arc has already been subtracted from c(t), because there is a node with
d−(v) > 1 in the cycle, we decrease the in-degree counter of v by one. Only if the in-degree counter is
greater than one, we do not have to subtract the value of one of the arcs in the cycle. This procedure
is described by the following two algorithms.

The method, getBestLabel (Algorithm 11), returns the adjusted template arc with the highest
value cts∗ in terms of the values of the arcs ci, j that can be used together in a feasible solution. The
algorithm selects from the set of unused template arcs, i.e. T u, the template arcs that can possibly have
a value c(t) greater than one.
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Table 12: Symbols used in getBestLabel (Algorithm 11) and checkCycleTwo (Algorithm 12)

Symbol Purpose

T u ⊂ T c set of template arcs (labels) not in the RMP
A(t) set of tree arcs a template arc can represent
Ac(t) set of tree arcs a template arc can represent that form a cycle of size two
T s multimap of selected template arcs (insert O(log n))
b array of target node values (initially all values are set to 0)

c(t) value of template arc t
cts∗ value of optimal adjusted template arc
t∗s optimal adjusted template arc

ci, j arc costs ci, j = πi, j + µ j

cmax greatest arc costs assigned in a pricing step

Algorithm 11: getBestLabel()

b[i]← 0, ∀1 ≤ i ≤ n1

forall t ∈ Tu do2

if (|A(t)| · cmax) > 1 then3

forall ai,j ∈ A(t) do4

if b[j] < ci,j then //count only greatest target node5

b[j]← ci,j6

end7

end8

c(t)←
∑n

j=1 b[j]9

set all elements from b to 010

if c(t) > 1 then11

Ts[c(t)]← t //template arcs are sorted in descending order12

end13

end14

end15

t∗s ← checkCycleTwo(Ts) //t∗s = best adjusted label16

if cts∗ > 1 then17

Tu ← Tu \ t∗s18

return t∗s19

end20

A template arc can have a value greater than one only if (|A(t)| · cmax) > 1 (line 2). From each of
these template arcs the sum of the values of the arcs (i, j) that have different target nodes j is computed
(line 3-6). If this sum is greater than one (line 9), a template arc qualifies as a candidate label (line 10)
and is checked for cycles of size two (line 14). Procedure checkCycle2 (Algorithm 12) reduces the
value of a template arc by the values of the arcs that form a cycle of size two and returns the template
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arc with the greatest value if this value is still greater 1 (line 15, 17). The returned template arc is
removed from the set of unused template arcs (line 16).

Algorithm 12: checkCycleTwo(T s)

cts∗ ← 01

t∗s ← NULL2

target[i]← 0, ∀1 ≤ i ≤ n3

forall t ∈ Ts do4

if cts∗ ≥ c(t) then //no greater value possible5

return t∗s6

end7

Ac(t)← ∅8

forall ai,j ∈ A(t) do9

if marked[aj,i] = true then10

Ac(t)← Ac(t) ∪ ai,j //collect arcs that form a cycle11

else12

marked[ai,j]← true13

end14

target[j]← target[j] + 1 //count how often node j is target15

end16

forall ai,j ∈ Ac(t) do17

minValue← 018

if target[j] > 1 then //c(t) already decreased19

target[j]← target[j] − 120

end21

else if target[i] > 1 then //c(t) already decreased22

target[i]← target[i] − 123

else24

minValue← min(ci,j, cj,i)25

c(t)← c(t) −minValue26

if c(t) ≤ cts∗ then27

break28

end29

end30

end31

if c(t) > cts∗ then32

cts∗ ← c(t)33

t∗s ← t34

end35

end36

return t∗s37

Procedure checkCycleTwo (Algorithm 12) gets the set of candidate labels T s, i.e. the labels with
a value greater than 1, as input. Its purpose is to reduce the value of a label if a cycle is found as
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described before. Note that the only purpose of this algorithm is to reduce the values of the labels
given as input parameter and to return the best adjusted label t∗s . The candidate labels are sorted by
their value in descending order. We loop over these labels until a label with a value smaller than the
greatest value of an adjusted label c(t∗s) known thus far is found. In this case, the algorithm returns the
best label t∗s it has found (lines 1 to 4) as no better label is possible. We know that no better label is
possible because the candidate labels are sorted by their values in descending order. If a label has a
value greater than the best found label, all arcs represented by the label are checked for cycles of size
two. To do that, we iterate over each arc (i, j) of a label (lines 5 to 10) and check if its reverse arc ( j, i)
(line 6) is marked. If this is the case, we have found a cycle and insert it in the set of cycles (line7).
Otherwise we mark the current arc (i, j) (line 9). We also count how often a node is a target node (line
11). Then we loop over all arcs that are members of the cycle set Ac(t) (lines 13 to 27). If one of
the nodes from the arcs that form a cycle of size two is also a target node more than once, we know
that we have only counted one of the arcs in the cycle anyway and therefore do not have to reduce the
value of the label. In this case, we only reduce the target node counter (lines 15-18). Otherwise we
reduce the value of the label by the value of the smaller arc (lines 21 to 22). If the value of the label
is not greater than the greatest value we stop (lines 23 to 25). If after the loop the adjusted label is
greater than the greatest value found so far, we have found a new best label and store this value as the
greatest value (lines 28 to 30).

5.3.4.1 Start Heuristic

At the beginning of the BCP process we have to determine a feasible start solution for the initial RMP.
Since it is desirable to begin with a near optimal feasible solution, we use the memetic algorithm
described in Chapter 4 to create the initial solution. The following Section 5.3.4.2 describes how a
lower bound (LB) can be constructed for the problem. If the gap between LB and MA is 0%, the MA
has found the optimal solution, and BCP algorithm does not have to be applied at all.

5.3.4.2 Determining a Tight Lower Bound

In a preprocessing step we try to construct a lower bound. What is the minimum number of template
arcs required to build a feasible solution? We can always determine whether the number of template
arcs has to be greater than or equal to three in the following way. First we reduce our problem, the
search for a k-node arborescence, to the following simpler problem.

How many template arcs are required to cover the requested k nodes. To represent k nodes we
need at least k−1 different target nodes, i.e. nodes with d−(v) > 0, since only one node can be the root
of the tree and therefore have d−(v) = 0. Consequently considering only the target nodes gives a better
lower bound. Note that previously we looked at the arcs a template arc can represent. In contrast to
that, we now examine the target nodes a template arc can represent. Obviously, the lower bound has
to be at least one, since we need one template arc to represent any nodes at all.

The second step is to look at the maximal number of target nodes a template arc t can represent.
We denote this number as tmax. The number of required template arcs is at least d k−1

tmax
e. If d k−1

tmax
e is

greater than two we set the lower bound to the computed value and stop here, because any further
computation would be too expensive. Otherwise, in a third step, we examine all pairs of templates
arcs, which contain at least k − 1 target nodes. Since some of the nodes represented by a pair of
template arcs may be duplicates, the next step is to eliminate the duplicates and check if a pair still
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contains k− 1 different target nodes. If a pair of template arcs contains k− 1 different target nodes, we
check if the arcs represented by these template arcs form a k-node arborescence. If no pair of template
arcs contains a k-node arborescence the lower bound has to be at least three. Otherwise we have found
the best solution. Note that the number of comparisons is reduced significantly by comparing only
the pairs of template arcs that together cover at least k − 1 different target nodes. However, the third
step is only applicable if T c is not too large. With this lower bound we can verify whether our primal
heuristic, the memetic algorithm described before, has already found the optimal solution.

5.3.5 Constructing Candidate Template Arcs on Demand

In this approach we use DNIST to construct candidate template arcs on demand as described before
in Chapter 3.3. Since we must not price the same candidate template arc twice, we simply mark the
already used candidate template arcs tabu. Note that in this case we cannot use the improvement
described in the presentation of DNIST (see Chapter 3.3) to store the value of a dominated template
arc in the final recursion step as a new lower bound if the sum of its arc values is greater than lb∗, since
we do not know if the dominating candidate template arc is marked tabu.

As a feasible initial solution we simply construct the candidate template arcs that can represent
k − 1 outgoing arcs from node zero. This can be done by setting the value of each arc (0, j) where
j = 1, . . . , k to one, while the value of all other arcs is set to zero. We call this type of initialization
star initialization because of its star shape.

At the start of each pricing step we set lb∗ to 1 − ε so we do not have to traverse branches with
a value smaller than one, since only labels that have a value greater than one will be priced into the
model.

5.3.6 Branching

Branching is performed if the LP solution is fractional in order to enforce the integrality condition. In
the branching process two subproblems (child nodes) are created, by selecting one integral variable
x j with fractional value x j and creating the two branches with subproblems x j ≤ bx jc and x j ≥ dx je

respectively. For a detailed description see [1].

5.4 Results

The tests were performed on a Dual Core AMD Opteron 270, 1.9 GHz with 8GB RAM. Libraries,
programming language, framework and compiler version are the same as for the tests presented in
Chapter 3 and 4. We used SCIP 1.2.0 (Solving Constraint Integer Programs) as a Branch-and-Cut-
and-Price framework [2] with CPLEX version 11.2 [27] as the underlying LP-Solver.

We tested six variants of the branch-and-cut-and-price algorithm, which are listed in Table 13. The
variants where all template arcs T c are constructed in advance with NIS have the prefix BCP, while
the variant where the template arcs are constructed on demand with DNIS is called Dynamic BCP
(DBCP). In DBCP we always use the arc-label constraints and the node-label constraints.

The basic version, which uses only the arc-label constraints, is called BCP. The variant which
uses the additional node-label constraint is called BCP/NL. The basic version with the additional
improvement to count only arcs that are usable in a valid solution is labeled BCP/UA. If we use the
additional node-label constraint in this variant, it called BCP/NL/UA. The variant of BCP that does
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not use back-cuts is denoted as BCP/NB. Using directed connection cuts and cycle elimination cuts
lead to the best results. So we used this configuration for all tests. We also used creep-flow for all tests.
If a variant uses the MA as an initial heuristics, it has the postfix MA. If a lower bound is computed,
the version has the postfix LB.

Lower bound computation (LB): Section 5.3.4.2 describes how a lower bound for the k-MLSA
problem can be computed. For our particular data sets we can always decide if the lower bound has
to be at least three, since for the Fraunhofer Templates |T c| is small enough to compare all pairs of
template arcs, and for the NIST data, which have a larger |T c|, we always need at least three template
arcs to represent all requested target nodes. With this lower bound we can verify whether our primal
heuristic, the MA, has already found the optimal solution. For the Fraunhofer Templates, the gap
between the lower bound and the result of the MA is 0% wherever the number of required template
arcs does not exceed three, because for these instances the MA always found the optimal solution.

In the tables of this chapter that show the running time for single instances we use the following
column headers. The first four columns show the instance name inst, the number of nodes |V |, the
number of candidate template arcs |T c| and the running time for the candidate template arc construction
tt[s]. The column m shows the number of template arcs (labels) contained in the optimal solution. The
three columns col, cut and nod show the number of priced variables (col), the number of added cuts
(cuts) and the number of nodes (nod), generated in the branch-and-cut-and-price process. Column
t[s] shows the running time of the branch-and-cut-and-price algorithm. The column tp[s] shows the
running time of the preprocessing step, i.e. the running time of the MA and the time for computing the
lower bound (LB).

Table 14 shows the results of different BCP versions for the Fraunhofer Templates with ~̃δ =

(40, 40, 40)T and k = 30. Table 15 shows the results of the dynamic generation DBCP of template
arcs for the Fraunhofer Templates and the same parameter setting. Since the Fraunhofer Templates
are relatively small, the best solution is often found at the start as the lower bound equals the solution
found by the MA. If the gap between LB and MA is 0% we know that our MA has found the opti-
mal solution, and we do not need to run the BCP algorithm at all. For this reason only one column
(BCP/NL/UA + MA + LB) is shown where the instances are initialized by the MA and the lower
bound (LB) is computed. In the same way we can compare how the other variants of BCP work for
the Fraunhofer Templates. The sign ∅ means that the MA computed a solution equal to the lower
bound and no BCP is performed. The variant BCP/NL/UA + MA + LB clearly outperforms the other
variants since it can solve many instances immediately. The performance of the different BCP vari-
ants strongly depends on the particular instances. There is also the strong suspicion that for these
small datasets the performance depends heavily on the random initialization. Thus, the small single
instances from the Fraunhofer Templates do not support a conclusive judgment on the quality of the
different methods, except for the evident superiority of BCP/NL/UA + MA + LB. The computation of
average values over all instances and especially over the larger instances from the NIS T dataset, will
allow a better analysis of the different BCP variants. In all other test cases throughout this section we
always computed the lower bound and used the MA as an initial heuristic. An exception to this rule is
of course the construction of template arcs on demand in variant DBCP.

As seen before, the MA found the optimal solution for the Fraunhofer data in all all cases. Also, for
the NIST data the optimal or a near optimal solution is found in many cases. So it is obvious that for
most Fraunhofer Templates the MA in combination with the lower bound computation (LB) is the best
method. Furthermore for many combinations of ~̃δ and k values, the solution is found instantaneously
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Table 13: Different variants of BCP and BP.

Symbol Purpose

BCP basic version with arc-label constraint (see 5.3.11)
BCP/UA BCP and count only arcs that are usable (UA) in a valid solution (see 5.3.4)
BCP/NL BCP with additional node-label constraint (see 5.3.2)
BCP/NL/UA BCP + NL and count only arcs that are usable in a valid solution
BCP/NB BCP without back-cuts
DBCP dynamic BCP with both constraints
BP branch-and-price approach

by applying MA and LB. In all tables of this chapter that show average values of a set of instances,
the additional column tS D[s] shows the standard deviation of the running time. Unsolved instances
are indicated by ns.

Table 16 shows the average values of all BCP variants and the BP approach, developed by
Thöni [46], for all Fraunhofer Templates. The DBCP variant does not generate the template arcs
at the beginning, so the template arc generation time tt[s] as well as tp[s] (the running time of the MA
and the LB computation time) does not apply for this variant. Missing values are generally indicated
by a ’-’ character. As initialization for this variant the star initialization described before (see Section
5.3.5) was used, and a lower bound computation is not possible. The MA performed 10000 iterations
and the population size was 200. Column tbest[s] shows the time in which the best solution was found.
The best result for each configuration is marked bold. Again, we can see a significant reduction of

the running time, if the MA is the initial heuristics and a lower bound is computed. For a comparison
with the BP method, we use variant DBCP, since both variants generate template arcs on demand.
Both variants also use the same star initialization. In three of four cases DBCP has a significantly
lower running time than BP. The reason for this is that in variant DBCP, fewer variables are priced
in, due to the cuts. Here we can see that the dominant reason for high running times is a large number
of columns rather than a large number of cuts or nodes. This shows especially for the configurations
~̃δ = (40, 40, 40)T and k = 30, where the running time of BP is almost three times as high as the run-
ning time of DBCP, although the node number of DBCP is twice as high and cuts are used, but DBCP
has only half the number of columns. The only instance where BP performed better than DBCP was
~̃δ = (30, 30, 30)T and k = 30. For this configuration the number of columns is nearly the same for
both methods but the number of nodes is ten times higher for DBCP. The low average running time of
DNIS regarding ~̃δ = (45, 45, 45)T is due to its higher performance in solving instance ft-01 which is
an extreme outlier. We can see that ft-01 is an outlier for all methods except DNIS on the much lower
standard deviation of DNIS . We present instance ft-01 in Table 17. Note that although the running
time strongly depends on the number of nodes and template arcs, some instances are much more diffi-
cult to solve than others. E.g. instance ft-18 is more difficult to solve than instance ft-11, even though
it contains the same number of nodes and fewer template arcs. Table 18 presents a further comparison
of variant DBCP with the BP approach, developed by Thöni [46], for all Fraunhofer Templates. For
~̃δ values greater or equal than 40 only one template arc is requested if k = 10 or k = 20. For k = 30
never more than two template arcs are requested, so we do not represent these cases. Also for k = 10
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Table 14: Running times of different BCP variants for the Fraunhofer Templates with ~̃δ = (40, 40, 40)T and
k = 30.

BCP BCP/NL BCP/NL/UA
inst. |V | |T c| tt[s] m col cut nod t[s] col cut nod t[s] col cut nod t[s]
ft-01 30 3897 0.24 4 818 2248 788 81.11 792 293 840 88.61 165 169 162 10.83
ft-02 28 3353 0.21 4 1212 62 2116 133.95 1059 65 1579 104.58 230 27 209 10.7
ft-03 30 6464 0.56 3 614 1883 227 69.05 220 171 94 43.12 199 86 393 21.93
ft-04 20 1223 0.06 3 181 203 85 6.81 157 78 63 4.99 25 37 7 0.37
ft-05 30 8669 0.80 3 2648 8315 1717 435.64 649 250 297 140.13 412 832 670 54.12
ft-06 15 439 0.02 3 142 31 42 2.02 86 58 33 1.32 26 14 4 0.15
ft-07 28 2237 0.09 4 432 106 175 27.29 344 165 173 24.07 123 44 46 5.0
ft-08 27 2164 0.10 4 521 398 293 33.87 381 126 185 24.67 283 892 230 9.54
ft-09 27 2091 0.10 4 594 190 657 47.81 474 237 521 35.67 157 30 157 5.73
ft-10 30 2930 0.14 4 593 172 681 81.20 860 1085 738 87.97 207 29 139 13.41
ft-11 30 11497 0.94 3 3439 1673 10831 2141.04 3492 3937 14761 2808.65 1039 1760 5205 377.41
ft-12 28 4224 0.28 3 497 280 123 29.65 653 532 277 32.00 111 377 49 3.31
ft-13 25 2573 0.16 3 1355 249 2715 97.14 1346 512 1729 90.82 653 228 1652 30.17
ft-14 30 5150 0.30 3 1408 1835 1434 175.34 1121 1601 891 131.48 1262 1154 5243 193.59
ft-15 29 3980 0.26 3 1081 604 662 71.82 642 285 293 42.08 89 244 28 5.14
ft-16 30 6095 0.36 3 884 263 1590 270.17 930 1158 1947 329.68 282 692 599 51.27
ft-17 30 3847 0.19 3 849 1082 566 84.03 610 461 159 62.38 400 96 187 18.86
ft-18 30 8889 0.53 3 4584 129460 33717 5205.28 3420 3781 20756 4065.17 1645 265 16240 1452.02
ft-19 30 4538 0.21 3 1306 6998 1093 141.02 838 2610 1059 127.41 360 754 250 23.87
ft-20 28 2021 0.09 4 629 268 539 48.49 466 134 396 33.44 88 436 119 8.07

BCP/NB BCP/UA BCP/NL/UA + LB + MA
inst. |V | |T c| tt[s] m col cut nod t[s] col cut nod t[s] col cut nod t[s] tp[s]
ft-01 30 3897 0.17 4 728 439 725 47.67 183 112 113 12.23 108 0 51 5.43 1.26
ft-02 28 3353 0.14 4 1261 280 2653 96.21 224 27 145 11.92 168 27 109 7.46 1.03
ft-03 30 6464 0.37 3 1289 615 1446 105.36 334 563 208 20.52 ∅ ∅ ∅ ∅ 1.96
ft-04 20 1223 0.03 3 184 103 85 3.30 31 75 19 0.7 ∅ ∅ ∅ ∅ 0.80
ft-05 30 8669 0.53 3 1339 2046 707 107.47 1387 3656 2329 231.73 ∅ ∅ ∅ ∅ 2.38
ft-06 15 439 0.01 3 66 41 13 0.56 32 0 3 0.19 ∅ ∅ ∅ ∅ 0.41
ft-07 28 2237 0.07 4 367 97 125 14.61 154 11 61 6.41 105 0 37 2.31 0.96
ft-08 27 2164 0.07 4 486 250 273 20.31 189 169 88 7.23 157 26 71 3.98 0.87
ft-09 27 2091 0.06 4 635 49 676 29.77 158 198 135 8.71 145 0 121 5.46 0.95
ft-10 30 2930 0.11 4 629 230 544 39.97 360 306 314 24.06 215 57 137 12.03 1.01
ft-11 30 11497 0.65 3 3283 224 10349 1101.99 1187 222 9073 634.72 ∅ ∅ ∅ ∅ 2.02
ft-12 28 4224 0.19 3 136 34 19 4.82 90 76 26 3.48 ∅ ∅ ∅ ∅ 0.93
ft-13 25 2573 0.11 3 993 1397 1167 34.55 188 79 122 7.75 ∅ ∅ ∅ ∅ 0.89
ft-14 30 5150 0.22 3 315 43 117 26.67 390 162 645 36.27 ∅ ∅ ∅ ∅ 1.35
ft-15 29 3980 0.16 3 137 71 27 8.94 46 168 54 9.75 557 2055 2624 42.3 0.9
ft-16 30 6095 0.23 3 1028 582 1674 185.55 543 1371 1652 121.6 ∅ ∅ ∅ ∅ 2.06
ft-17 30 3847 0.12 3 904 55 605 51.20 173 58 46 8.01 173 58 46 8.01 1.04
ft-18 30 8889 0.38 3 3522 1272 20695 2367.16 1948 4619 15767 1591.69 ∅ ∅ ∅ ∅ 2.47
ft-19 30 4538 0.14 3 166 219 47 18.09 1273 11728 2174 124.68 ∅ ∅ ∅ ∅ 1.74
ft-20 28 2021 0.07 4 572 144 433 29.32 206 157 83 10.16 114 66 31 3.32 0.92

Table 15: Running times of DBCP for the Fraunhofer Templates with ~̃δ = (40, 40, 40)T and k = 30.

inst. |V | m col cut nod t[s] inst. |V | m col cut nod t[s]
ft-01 30 4 634 196 612 32.83 ft-11 30 3 2998 822 9837 1050.35
ft-02 28 4 1112 273 1703 57.62 ft-12 28 3 296 217 54 14.16
ft-03 30 3 1233 1471 933 60.23 ft-13 25 3 1446 1022 2937 63.38
ft-04 20 3 151 186 103 3.03 ft-14 30 3 80 67 9 5.87
ft-05 30 3 411 111 148 51.07 ft-15 29 3 1283 361 1269 45.49
ft-06 15 3 104 50 48 0.80 ft-16 30 3 1147 393 1807 179.03
ft-07 28 4 354 3 176 11.00 ft-17 30 3 887 60 548 42.43
ft-08 27 4 363 35 185 13.60 ft-18 30 3 2953 545 15481 1706.89
ft-09 27 4 475 145 490 19.69 ft-19 30 3 965 2459 819 55.99
ft-10 30 4 536 40 623 25.38 ft-20 28 4 456 167 341 17.46
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Table 16: Average runtimes of BCP variant 1 − 6 and BP for the Fraunhofer Templates. Missing values are
indicated by a ’-’.

k 20 30

method ~̃δ col cut nod tbest[s] t[s] tS D[s] tp[s] col cut nod tbest[s] t[s] tS D[s] tp[s]

BCP
30
30
30

 118.90 35.85 202.60 6.65 9.20 17.37 1.78 408.05 297.95 2558.15 34.59 89.61 141.36 1.43
BCP/NL 105.90 57.70 424.70 10.18 12.64 38.61 1.77 395.65 356.20 2500.85 20.98 71.74 122.13 1.42
BCP/UA 57.15 12.80 152.95 4.77 6.15 14.31 1.76 318.94 335.11 2396.00 44.85 86.98 156.20 1.50
BCP/NL/UA 31.25 15.40 25.95 0.98 2.53 4.35 1.76 250.56 156.06 1558.00 26.37 57.51 101.64 1.51
DBCP 557.35 443.55 1630.95 34.56 146.60 259.56 - 470.45 537.10 2752.45 63.70 115.39 226.11 -
BCP/NB 136.85 39.05 528.50 18.66 21.39 57.95 1.80 400.10 370.90 2411.60 34.14 94.40 153.36 1.44
BP 772.00 - 540.00 - 288.40 - - 477.00 - 219.00 - 98.90 - -

BCP
40
40
40

 9.00 0.00 0.50 0.00 0.11 0.13 0.63 333.15 98.80 544.90 8.98 21.22 33.62 1.35
BCP/NL 9.80 0.00 0.50 0.00 0.10 0.14 0.63 293.95 28.85 379.85 3.73 13.23 16.34 1.35
BCP/UA 0.00 0.00 0.00 0.00 0.00 0.00 0.63 148.22 75.33 201.39 6.35 10.01 14.51 1.42
BCP/NL/UA 0.00 0.00 0.00 0.00 0.00 0.00 0.63 87.10 114.45 161.35 2.52 4.52 9.32 1.33
DBCP 773.75 310.80 4143.80 37.18 168.33 250.00 - 894.20 431.15 1906.15 22.35 172.82 416.83 -
BCP/NB 9.00 0.00 0.50 0.00 0.12 0.14 0.64 374.00 167.55 908.70 23.42 37.34 90.75 1.38
BP 982.00 - 444.00 - 278.70 - - 1855.00 - 927.00 - 431.70 - -

BCP
45
45
45

 1.75 0.00 0.10 0.00 0.01 0.02 0.07 476.90 1596.10 15397.65 12.62 384.98 1618.75 1.04
BCP/NL 2.05 0.00 0.10 0.00 0.00 0.01 0.07 506.40 1587.65 15504.45 29.98 357.44 1422.68 1.05
BCP/UA 0.00 0.00 0.00 0.00 0.00 0.00 0.07 292.94 1345.11 15772.06 2.00 371.48 1522.92 1.08
BCP/NL/UA 0.00 0.00 0.00 0.00 0.00 0.00 0.07 264.78 1796.83 14330.50 0.95 324.04 1331.92 1.09
DBCP 596.50 202.85 467.75 25.20 58.84 82.69 - 1424.10 702.20 3549.65 87.44 255.58 492.41 -
BCP/NB 1.75 0.00 0.10 0.00 0.01 0.02 0.07 478.25 1686.40 14603.65 14.85 450.54 1894.15 1.07

Table 17: Solution time of instance ft-01 for BCP variant 1 − 6 with ~̃δ = (45, 45, 45)T and k = 30

inst method col cut nod tbest[s] t[s] tp[s]
ft-01 BCP 5382 30647 295967 0.00 7439.47 1.36
ft-01 BCP/NL 5173 24355 270641 0.00 6544.30 1.36
ft-01 BCP/UA 4468 22583 282981 0.00 6650.60 1.67
ft-01 BCP/NL/UA 4384 30992 257519 0.00 5815.69 1.66
ft-01 DBCP 3923 5233 42483 8.89 1471.19 -
ft-01 BCP/NB 5409 32453 280087 0.00 8705.08 1.41

and ~̃δ = (30, 30)T only one template arc is needed, we indicate this trivial solution by a ’t’ character.
The branch-and-cut-and-price algorithm performs better in almost all cases, but its main quality is that
it can solve the larger nist instances.

For the tests of the NIST data we have combined two groups of data, mainly for computing the
averages. In the first group, called nist, each instance contains between 70 and 120 minutiae and
comprises 15 instances, five from each of the categories good, bad and ugly (see Section 2.2). This
group was used for the tests in the previous chapters. In the second group nistsmall, each instance
contains between 53 and 93 minutiae. This group comprises 9 instances from each category: nist-
u-04-t to nist-u-12-t, nist-b-04-t to nist-b-12-t and nist-g-05-t to nist-g-13-t (see Section 2.2). The
following tables show the average values of the different BCP variants over instances from nistsmall

and nist as well as values for individual instances. With regard to the test instances, the determining
factors for the running time were the number of nodes V and the number of template arcs T c, but
also the structure of the individual instances. With regard to the parameter settings, the determining
factors for the running time were the size of the correction vector ~̃δ and the size of k. Note that those
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Table 18: Comparison of DBCP and BP. If the solution is trivial i.e. consists of only one template arc this is
indicated by a ’t’ character.

k 10 20 30

method ~̃δ col cut nod t[s] col cut nod t[s] col cut nod t[s]

DBCP
(
10
10

)
391 16 1221 129.3 217 81 517 49.1 167 64 230 17.7

BP 508 - 1240 407.6 235 - 384 115.3 143 - 83 38.0

DBCP
(
20
20

)
560 1 1634 183.4 281 33 1476 92.8 308 49 376 31.4

BP 989 - 1669 487.5 368 - 401 90.6 296.0 - 94 42.0

DBCP
(
30
30

)
t t t t 634 23 1268 109.9 547 31 571 39.2

BP t t t t 767 - 142 183.0 177 - 170 15.9

DBCP
10
10
10

 111 17 120 12.4 92 23 85 7.82 62 42 50 3.2
BP 114 - 88 31.5 107 - 84 31.3 45 - 66 10.5

two are related, since a greater size of the correction vector ~̃δ leads to a higher number of template
arcs. The two groups were tested with different combinations of parameter settings for ~̃δ and k. The
instances from group nistsmall were tested with different three- and two-dimensional correction vectors
~̃δ combined with different k values. The instances from group nist were more difficult to solve, and
were therefore only tested with different three-dimensional correction vectors combined with different
k values. The time limit for the computation of the average values is always four hours. The average
values are computed only over the instances that were solved by all BCP variants within the time limit.
The instances that could not be solved by one of the BCP variants, and are therefore not included in
the computation of the average values, nn separate tables. Since the number of instances a particular
method could not solve is probably the most important information, all tables that list average values
have an additional column ns where the number of instances that could not be solved by that particular
BCP variant is listed. The results of BCP variant 1 − 6 for the instances that could be solved within 4
hours are presented in Table 19 and Table 20. The correction vector domain is ~̃δ = (50, 50, 50)T and
k = |V |. We see that different methods solve different instances within the time limit. The performance
of the methods differs greatly between the various instances. Instances with more than 7000 template
arcs (nist-b-05 and nist-g-12) can no longer be solved by all methods. The overall best methods are
BCP/NL/UA and BCP/NL. Method DBCP also performed good for this instances.

The average values over instances from nistsmall that where solved within a time limit of 4 hours,
using BCP variant 1 − 6 and 3 dimensional ~̃δ values, are presented in Table 22. The best solution
for each configuration is highlighted with a bold typeface. Since no preprocessing step (i.e. MA and
LB computation) is required for DNIS the column tp[s] is set to ’-’. Note that due to the exclusion
of instances that could not be solved by any of the methods, the average values are not sufficient for
the evaluation of a particular method. The number of solved instances and the performance regarding
a particular instance have to be considered as well. The variant BCP/NL/UA solved most instances
and performed best in terms of solution time. Using back-cuts was mostly beneficial. A parameter
configuration with k = 40 is much more difficult to solve. This can be seen by comparing k = 40
and k = |V | with ~̃δ = (50, 50, 50)T . The number of unsolved instances at least doubles if k = 40. For
the parameter configuration δ̃ = (50, 50, 50)T , around 1000 variables were priced into the model. The
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Table 19: Running times of BCP variant 1 − 4 for the NIST data from group nistsmall with ~̃δ = (50, 50, 50)T

and k = |V |. Unsolved instances are indicated by ns.

BCP BCP/NL
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s] tp[s]

nist-b-04-t 81 5743 0.11 17 1289 352 1630 1292.08 1292.08 8.42 1322 7289 2250 1157.67 1157.67 8.54
nist-b-06-t 77 5366 0.08 16 1242 3174 1124 361.22 757.64 6.96 1069 2464 1505 574.43 857.69 6.88
nist-b-07-t 82 6232 0.10 16 2221 2249 12613 8066.70 8066.71 7.88 1606 2942 6839 3360.03 3360.03 7.88
nist-b-08-t 76 5852 0.10 14 1866 2329 3328 1815.47 1874.76 7.23 1649 1590 5153 1935.19 1954.88 7.17
nist-b-09-t 76 6303 0.12 13 1325 3360 937 597.50 713.64 6.39 2394 22092 19407 6153.10 6153.11 6.37
nist-b-10-t 63 3271 0.06 15 856 3783 1711 165.87 487.30 5.47 608 627 1394 77.16 278.67 5.52
nist-b-11-t 80 5912 0.10 15 1300 13907 1202 845.05 928.18 7.72 2226 4826 30310 13372.00 13372.98 7.78
nist-g-05-t 80 5526 0.09 17 2223 10996 27479 1346.61 12317.08 9.23 1663 3814 28801 252.73 10199.48 9.37
nist-g-07-t 74 5038 0.10 14 1250 9887 4341 308.91 2021.95 6.85 1258 5034 5540 530.87 1707.15 6.81
nist-g-08-t 82 6815 0.11 16 1821 4707 5317 257.46 3567.00 7.53 1705 5293 6675 878.11 3332.21 7.39
nist-g-09-t 53 2315 0.05 11 379 647 179 45.2 51.97 3.65 430 1431 375 51.73 55.08 3.42
nist-g-10-t 76 5333 0.09 16 1776 17382 5581 736.14 2684.14 7.32 1391 4822 5816 719.87 2341.21 7.65
nist-g-11-t 67 3966 0.07 14 841 252 902 219.05 387.98 5.80 738 2889 1138 91.86 332.72 5.77
nist-g-12-t 84 7474 0.14 15 ns ns ns ns ns ns 2017 1800 22789 402.00 12257.31 7.41
nist-g-13-t 55 2207 0.03 15 387 1733 569 48.09 102.38 4.35 332 924 496 28.08 61.51 4.30
nist-u-04-t 84 6114 0.10 17 1133 941 2003 256.24 1838.54 8.98 1148 4564 2206 295.06 1373.64 8.85
nist-u-05-t 73 4460 0.06 16 1691 4729 17835 908.48 5479.13 6.58 1184 3318 16642 282.01 4837.68 6.70
nist-u-06-t 70 4086 0.06 15 818 858 323 236.71 259.41 6.02 720 2709 524 152.40 168.84 6.23
nist-u-07-t 63 3342 0.05 14 656 1266 310 140.47 140.48 5.26 384 204 121 72.29 72.30 5.30
nist-u-08-t 74 4694 0.08 16 1448 3622 1704 710.43 748.09 6.55 1256 19613 2446 690.39 700.08 6.57
nist-u-09-t 69 3822 0.06 15 903 1871 907 340.54 340.54 5.88 706 1136 796 216.67 216.67 5.85
nist-u-10-t 76 5390 0.10 14 1012 677 698 566.91 578.33 7.45 857 3724 641 364.90 377.48 7.47
nist-u-11-t 63 3265 0.06 14 1008 2172 902 309.33 319.19 4.83 650 1377 731 148.77 173.02 4.87
nist-u-12-t 80 6702 0.14 15 2156 3395 13875 416.35 8349.83 6.68 1592 79 16994 116.71 8078.58 6.65

BCP/UA BCP/NL/UA
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s] tp[s]

nist-b-04-t 81 5743 0.1 17 1611 2565 2603 1718.02 1718.02 8.09 795 1518 421 296.6 299.05 8.26
nist-b-05-t 93 9355 0.15 16 ns ns ns ns ns ns 2440 3529 11867 5611.09 8575.54 9.41
nist-b-06-t 77 5366 0.09 16 1385 7672 1342 268.39 711.21 6.58 801 730 984 110.17 539.34 6.73
nist-b-07-t 82 6232 0.1 16 2480 6587 27589 12906.7 12906.68 7.51 1800 1411 20174 7198.73 7198.73 7.62
nist-b-08-t 76 5852 0.08 14 1718 2164 3707 1769.6 1842.25 6.85 1132 2536 1566 607.54 697.61 6.93
nist-b-09-t 76 6303 0.11 13 2580 5804 15476 6656.97 6656.98 6.09 1925 9426 7347 3148.72 3148.73 6.23
nist-b-10-t 63 3271 0.06 15 704 501 1228 72.54 357.94 5.29 639 1129 1562 98.28 343.37 5.40
nist-b-11-t 80 5912 0.11 15 1682 3472 2324 1681.08 1730.5 7.35 1398 4765 2883 1636.22 1683.06 7.48
nist-g-05-t 80 5526 0.09 17 2099 2776 26524 234.31 12545.29 8.9 1713 2180 32789 148.06 11041.25 9.16
nist-g-07-t 74 5038 0.07 14 1412 2113 3519 724.37 1808.15 6.57 1082 917 3840 169.82 1339.38 6.62
nist-g-08-t 82 6815 0.12 16 1999 1705 6375 903.86 3920.13 7.24 1530 798 7889 388.41 4011.42 7.26
nist-g-09-t 53 2315 0.03 11 194 56 47 6.27 36.85 3.61 233 456 89 22.47 28.68 3.58
nist-g-10-t 76 5333 0.1 16 1265 1033 4416 229.56 2181.62 6.88 1037 2622 4621 146.69 1848.35 7.11
nist-g-11-t 67 3966 0.06 14 1192 5420 1708 307.68 527.67 5.36 746 1005 1259 151.75 324.05 5.44
nist-g-13-t 55 2207 0.04 15 295 175 232 24.42 73.33 4.33 282 298 252 17.49 47.75 4.20
nist-u-04-t 84 6114 0.11 17 1744 27783 2955 863.32 2015.4 8.52 1574 24077 3607 907.7 1805.58 8.58
nist-u-05-t 73 4460 0.07 16 1362 699 9832 186.39 3717.19 6.24 1039 204 11148 84.6 3173.91 6.33
nist-u-06-t 70 4086 0.06 15 698 2524 289 176.19 204.28 5.92 725 2975 458 149.16 164.51 5.81
nist-u-07-t 63 3342 0.04 14 559 376 259 138.68 138.68 5.10 590 3116 629 141.61 141.61 5.08
nist-u-08-t 74 4694 0.08 16 1474 9263 1793 976.82 993.93 6.16 898 4004 918 331.27 374.08 6.26
nist-u-09-t 69 3822 0.05 15 620 5217 333 126.24 126.4 5.37 765 4639 754 177.27 177.27 5.53
nist-u-10-t 76 5390 0.1 14 1073 2291 371 379.58 392.29 7.17 459 343 95 149.5 164.63 7.06
nist-u-11-t 63 3265 0.03 14 712 3464 353 139.0 163.05 4.42 740 5359 582 125.75 134.59 4.63
nist-u-12-t 80 6702 0.11 15 2164 819 12909 367.54 7819.09 6.42 1961 20078 15375 549.83 6280.11 6.39
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Table 20: Running times of BCP variant 5 and 6 for the NIST data from group nistsmall with ~̃δ = (50, 50, 50)T

and k = |V |.

BCP/NB DBCP
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s]

nist-b-04-t 81 5743 0.11 17 1543 1916 2716 2075.22 2075.23 8.56 1861 6729 20558 7991.03 7991.03
nist-b-06-t 77 5366 0.10 16 1276 4835 1056 340.46 673.59 6.84 1218 3575 1768 565.58 876.04
nist-b-07-t 82 6232 0.09 16 2146 1866 9757 6079.25 6079.25 7.71 1873 2488 9582 4814.69 4814.69
nist-b-08-t 76 5852 0.10 14 2245 9194 7364 3214.83 3229.49 7.02 1562 7106 3210 1252.32 1331.22
nist-b-09-t 76 6303 0.11 13 2479 27143 7008 2790.82 2832.24 6.29 2442 59866 12183 3360.08 3360.08
nist-b-10-t 63 3271 0.05 15 1101 6962 2376 321.63 576.43 5.53 791 4332 2396 79.48 461.86
nist-b-11-t 80 5912 0.11 15 1700 8632 2217 1744.26 1769.06 7.72 1701 25063 3302 1585.57 1615.42
nist-g-05-t 80 5526 0.09 17 2126 1671 27239 434.24 12871.36 9.29 1766 6867 32248 219.36 12537.63
nist-g-07-t 74 5038 0.08 14 1345 9916 4411 384.49 1963.73 6.73 1187 12659 3382 248.94 1166.82
nist-g-08-t 82 6815 0.10 16 1896 4935 6120 362.84 3992.23 7.38 1710 6613 5917 477.85 3749.41
nist-g-09-t 53 2315 0.02 11 379 639 179 45.31 52.10 3.63 598 13682 908 87.58 90.63
nist-g-10-t 76 5333 0.07 16 1637 13174 5671 516.00 2536.25 7.29 1303 6981 4687 433.47 1843.29
nist-g-11-t 67 3966 0.06 14 841 252 902 213.27 378.38 5.71 643 243 989 93.79 297.91
nist-g-12-t 84 7474 0.14 15 ns ns ns ns ns ns 2398 8059 22574 1213.87 13546.30
nist-g-13-t 55 2207 0.03 15 379 835 669 32.65 110.29 4.43 401 976 560 24.52 74.25
nist-u-04-t 84 6114 0.12 17 1164 920 1917 245.85 1699.12 8.85 1493 8900 4148 1079.95 2680.98
nist-u-05-t 73 4460 0.09 16 1794 7171 21975 1159.07 6216.73 6.64 1410 9040 19404 656.50 5894.67
nist-u-06-t 70 4086 0.07 15 936 2969 532 274.26 303.27 6.04 427 328 115 64.77 104.87
nist-u-07-t 63 3342 0.04 14 565 417 153 120.04 120.04 5.26 398 220 168 92.04 92.04
nist-u-08-t 74 4694 0.07 16 1632 5377 3227 1269.49 1286.78 6.56 1180 2917 1371 459.02 489.72
nist-u-09-t 69 3822 0.06 15 676 890 409 175.00 176.31 5.87 748 484 693 226.54 226.54
nist-u-10-t 76 5390 0.08 14 1012 670 698 542.62 553.57 7.37 1099 1515 682 556.59 561.54
nist-u-11-t 63 3265 0.05 14 790 1439 460 178.61 194.96 4.79 781 12994 751 145.10 162.03
nist-u-12-t 80 6702 0.10 15 2434 11676 16519 1043.42 10102.57 6.58 1996 11595 14537 304.60 6233.43

Table 21: Unsolved instances of nistsmall for 3 dimensional ~̃δ. These instances could not be solved by at least
one variant of BCP and are therefore not included in the average computation.

~̃δ k not solved

(20, 20, 20)T 40 nist-b-05-t
(30, 30, 30)T 60 nist-b-05-t
(30, 30, 30)T 40 nist-b-05-t, nist-b-12-t
(40, 40, 40)T |V | nist-b-05-t
(40, 40, 40)T 60 nist-b-05-t, nist-b-08-t, nist-b-07-t
(40, 40, 40)T 40 nist-b-05-t, nist-b-07-t, nist-b-12-t, nist-g-12-t
(50, 50, 50)T |V | nist-b-05-t, nist-b-12-t, nist-g-06-t, nist-g-12-t
(50, 50, 50)T 60 nist-b-05-t, nist-b-09-t, nist-b-12-t, nist-g-12-t, nist-g-06-t, nist-g-12-t, nist-u-10-t, nist-u-12-t
(50, 50, 50)T 40 nist-b-05-t, nist-b-07-t, nist-b-08-t, nist-b-11-t, nist-b-12-t, nist-g-05-t, nist-g-06-t

nist-g-08-t, nist-g-12-t, nist-u-04-t, nist-u-12-t

instances from nistsmall that could not be solved within the time limit of four hours by at least one
method and are therefore excluded from the computation of the average values are listed in Table 21.

The charts in Figure 11 visualize the average running time of the different BCP variants. Note that
the excluded instances have an impact on the overall performance. Therefore, the different ~̃δ values
are not comparable to each other. Only the methods within one particular ~̃δ can be compared.

The proportion of cycle elimination cuts (CEC)and directed connection cuts (DEC) for the best
variant, BCP/NL/UA, is shown in Table 24. The average values over the solved instances from
nistsmall for all variants of BCP with two-dimensional ~̃δ are presented in Table 23. Again, the time
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Table 22: Average runtimes of BCP variant 1 − 6 for the NIST data from group nistsmall for 3 dimensional ~̃δ.

~̃δ (20, 20, 20)T (30, 30, 30)T

method k col cut nod tbest[s] t[s] tS D[s] tp[s] ns col cut nod tbest[s] t[s] tS D[s] tp[s] ns

BCP |V | 186 1034 58 47.83 48.05 45.71 10.89 0 518 4758 1073 269.21 455.82 582.38 9.47 0
BCP/NL 164 1004 45 37.99 38.54 28.37 11.05 0 494 8655 1260 303.57 472.27 670.45 9.53 0
BCP/UA 174 760 37 44.90 46.69 41.49 10.72 0 447 3214 1010 311.60 489.94 872.97 9.26 0
BCP/NL/UA 169 1272 59 42.10 42.79 40.69 10.93 0 439 4432 903 193.91 354.89 430.67 9.51 0
DBCP 205 2320 69 54.40 54.71 74.44 0.00 0 498 7754 1120 277.42 429.06 558.42 0.00 0
BCP/NB 185 1069 54 49.45 49.63 44.90 10.99 0 485 3114 989 249.99 442.83 640.44 9.50 0

BCP 60 233 3046 322 130.82 185.47 313.82 38.79 0 493 3664 772 821.00 859.21 1462.96 32.90 0
BCP/NL 227 815 100 138.59 144.89 195.68 38.93 0 407 2879 561 538.48 578.49 1008.84 32.94 1
BCP/UA 209 5508 429 126.06 191.57 357.58 39.50 0 445 1681 540 531.73 574.34 781.46 33.97 0
BCP/NL/UA 260 3447 319 218.18 256.07 419.76 40.46 0 418 2003 840 885.68 926.53 2042.42 34.09 0
DBCP 230 851 107 144.64 147.77 232.36 0.00 0 447 2663 777 814.99 854.54 2129.73 0.00 1
BCP/NB 254 5655 403 139.92 218.69 408.44 39.03 0 514 2909 831 929.88 966.27 2373.64 33.14 0

BCP 40 463 683 478 380.52 498.77 546.85 28.31 0 682 2437 1301 1218.92 1648.03 2293.06 25.01 1
BCP/NL 442 1243 539 487.68 591.71 680.41 29.35 0 643 3667 1172 984.36 1427.28 2232.51 25.05 1
BCP/UA 488 720 492 421.34 531.62 615.30 29.52 0 666 2760 1369 1641.64 2044.12 3454.82 26.19 2
BCP/NL/UA 475 1493 741 580.73 688.10 1034.30 29.69 0 609 2354 974 920.24 1357.47 2163.28 26.12 1
DBCP 498 2728 854 624.38 724.40 873.11 0.00 1 683 3384 1433 1386.27 1839.48 2971.81 0.00 1
BCP/NB 467 922 549 446.14 552.57 674.35 29.02 0 655 1397 1012 1023.25 1389.43 1981.50 25.59 1

~̃δ (40, 40, 40)T (50, 50, 50)T

method k col cut nod tbest[s] t[s] tS D[s] tp[s] ns col cut nod tbest[s] t[s] tS D[s] tp[s] ns

BCP |V | 1045 9663 2677 747.13 1292.36 1483.13 7.62 1 1287 4100 4586 869.17 2317.67 3156.10 6.65 4
BCP/NL 843 6877 2415 486.17 927.73 898.01 7.74 1 1169 4468 6817 1370.52 2659.20 3527.76 6.67 3
BCP/UA 986 5108 2296 677.33 1185.37 1443.47 7.79 1 1349 4108 5486 1341.63 2721.17 3682.45 6.35 4
BCP/NL/UA 778 4935 2494 519.53 1015.61 1264.22 7.76 1 1038 4112 5184 728.59 1955.09 2750.46 6.42 3
DBCP 919 7561 2740 572.15 1091.55 1170.37 0.00 1 1243 8921 6242 1079.10 2463.31 3104.58 0.00 3
BCP/NB 1045 13249 3100 902.21 1431.58 2002.34 7.61 1 1395 5370 5373 1024.51 2599.69 3270.28 6.61 4

BCP 60 844 5276 1758 1282.71 2081.47 2173.21 27.31 1 1002 6990 2004 1305.83 2128.10 2088.75 22.47 7
BCP/NL 736 6550 1765 1047.47 1985.19 2493.17 27.73 1 807 3250 1746 1060.15 1754.25 1589.46 22.06 6
BCP/UA 774 3058 1564 1247.94 2045.06 2410.25 28.48 1 951 6511 2179 1734.74 2473.32 2773.96 22.72 7
BCP/NL/UA 684 4590 1689 954.26 1924.07 2682.55 28.47 1 867 6827 2510 1745.47 2454.85 3138.23 22.14 6
DBCP 815 6325 1919 1339.80 2267.32 3089.63 0.00 2 892 8634 2285 1200.90 2048.13 2035.49 0.00 7
BCP/NB 814 4520 1542 1212.23 2009.21 2512.46 27.84 2 962 4493 2002 1268.86 2072.27 2166.19 22.89 7

BCP 40 744 792 1462 826.41 2014.83 2047.65 21.31 3 985 3089 1334 1169.60 1441.06 1119.42 17.22 9
BCP/NL 759 1746 1593 996.13 2187.14 2268.18 21.81 4 1033 3747 1824 1736.24 1955.35 1739.28 17.55 11
BCP/UA 846 2587 1806 1350.37 2489.34 2792.57 21.96 4 1010 2257 1699 1859.37 2050.74 1932.81 17.80 6
BCP/NL/UA 871 1938 2122 1499.02 2873.88 3251.85 22.10 3 1189 10178 2654 2503.51 2724.96 3115.72 17.44 7
DBCP 710 1643 1504 740.58 2076.92 2162.41 0.00 4 1167 9631 2769 2481.44 2680.10 2833.68 0.00 8
BCP/NB 952 9295 2049 1490.55 2669.82 3361.66 21.84 4 1240 6960 2312 2024.12 2346.31 1870.87 17.53 9
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Figure 11: Average runtime of BCP variant 1 − 6 for nistsmall.

limit was four hours. The best solution for each configuration is marked bold. The instances that
could not be solved by one of the variants and are therefore not included in the computation of the
averages are listed in Table 25. As we can see, the problem becomes much more difficult to solve if we
use a 2-dimensional ~̃δ. Fewer instances could be solved with the parameter configuration k = 40 and
~̃δ = (40, 40)T than with the three-dimensional configuration of ~̃δ = (50, 50, 50)T and k = 40. Again,
variant BCP/NL/UA was able solve most instances within the time limit and BCP/NL performed best
regarding the solution time. Table 26 shows the results of different BCP variants for instances of group
nist that could be solved within 4 hours. The correction vector domain is ~̃δ = (40, 40, 40)T and k = |V |.
For this instances the MA performed 500000 iterations and the population size was 10000. Generally
we can say that instances with a greater number of nodes are much more difficult to solve. We can
see that the instance nist-g-01-t, which contains 99 nodes, the instance nist-g-03-t, which contains 101
nodes, the instance nist-g-04-t, which contains 120 nodes, the instance nist-b-01-t, which contains 106
nodes and the instance nist-b-05-t, which contains 93 nodes could not be solved by any of the methods.
It is not possible to determine an exact number of nodes and template arcs for which instances can no
longer be solved, because the structure of the instance influences the solution time as well. Especially,
the instance nist-b-05-t shows the relevance of the instance structure, since it contains fewer nodes and
fewer template arcs than instances that could be solved within the time limit, like the instance nist-b-
03-t with 107 nodes and 10142 template arcs. The greatest number of variables priced into the model
was 3081 for the instance nist-u-03-t and the method BCP/UA. The greatest number of instances
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Table 23: Average runtimes of BCP variant 1 − 6 for the NIST data from group nistsmall for 2 dimensional ~̃δ.

~̃δ (20, 20)T (30, 30)T

method k col cut nod tbest[s] t[s] tS D[s] tp[s] ns col cut nod tbest[s] t[s] tS D[s] tp[s] ns
BCP |V | 840 3369 3054 682.33 1310.34 2208.95 7.94 0 1140 2719 4205 696.07 1962.02 2383.33 5.73 6
BCP/NL 710 6298 2489 374.87 812.18 1341.92 7.88 0 994 7406 4308 426.13 1504.17 1809.27 5.69 5
BCP/UA 819 3401 3063 732.82 1392.31 2536.95 7.79 0 1069 1857 3334 430.25 1691.98 2308.84 5.73 8
BCP/NL/UA 655 2421 2490 444.60 968.55 2056.08 7.83 0 911 1539 4004 548.42 1648.88 2331.27 5.71 3
DBCP 722 6023 2506 326.47 888.47 1837.77 0.00 0 1043 3228 4459 635.92 1732.00 2131.04 0.00 5
BCP/NB 811 3795 2647 516.92 1192.42 1984.68 8.12 0 1197 2442 4561 946.45 2250.82 2901.79 5.80 6

BCP 60 655 4707 1794 1008.94 1966.16 2217.85 30.07 1 922 3799 2133 1532.38 2203.02 1960.88 21.46 8
BCP/NL 665 3728 2168 1386.18 2300.91 2244.84 30.03 1 748 6182 1603 849.42 1558.25 1828.17 21.46 8
BCP/UA 657 6951 2143 1254.03 2201.59 2471.39 30.06 1 819 1825 1859 1359.34 2010.71 2666.49 22.00 8
BCP/NL/UA 621 5759 1951 1141.09 1987.78 2075.75 30.06 1 773 3770 2103 1496.93 2196.82 2700.63 21.92 6
DBCP 691 3828 2126 1087.58 2208.98 2420.22 0.00 1 766 3648 1639 1002.67 1692.29 2091.33 0.00 6
BCP/NB 636 3470 1919 1016.09 2034.18 2192.22 31.20 1 888 5410 1957 1527.17 2148.64 2168.96 22.30 8

BCP 40 817 1986 2199 1504.44 2543.32 2224.15 21.93 3 883 1359 3724 1695.88 4184.07 4306.55 17.91 10
BCP/NL 732 3090 2198 1465.81 2562.72 2169.92 21.92 4 833 1590 3595 1178.06 3834.75 3640.34 17.87 11
BCP/UA 870 4205 2871 2093.29 3123.96 2988.07 21.97 3 975 2536 3437 1094.12 3817.76 4108.09 17.51 11
BCP/NL/UA 795 5215 3138 2128.86 3337.46 3196.23 22.13 4 723 1371 3167 998.26 3598.62 4109.07 17.39 10
DBCP 824 2472 2621 1752.33 3080.79 2961.06 0.00 3 848 1395 3615 1105.98 3795.85 3997.14 0.00 11
BCP/NB 716 705 1821 1427.25 2447.25 2373.94 22.86 4 794 610 3610 1094.31 3986.35 4391.52 17.45 11

~̃δ = (40, 40)T

method k col cut nod tbest[s] t[s] tS D[s] tp[s] ns
BCP |V | 1625 3718 7583 1613.96 3781.41 3884.83 4.70 13
BCP/NL 1379 2037 7082 952.43 2539.11 2752.30 4.61 9
BCP/UA 1405 2603 5360 870.50 2488.28 3171.14 4.44 10
BCP/NL/UA 1206 1657 5231 493.46 2159.60 3130.94 4.46 9
DBCP 1388 4586 5762 794.02 2374.83 3302.58 0.00 13
BCP/NB 1508 3179 5680 780.92 2620.26 3087.99 4.53 10

BCP 60 879 798 1746 869.38 2018.78 1954.94 16.38 9
BCP/NL 929 2654 3186 1321.52 2525.20 2512.41 15.42 11
BCP/UA 1086 2476 3539 1862.43 3009.89 2943.89 15.87 9
BCP/NL/UA 1028 3244 2687 1277.60 2285.69 1874.81 16.36 7
DBCP 825 1724 1900 668.78 1959.96 2150.35 0.00 7
BCP/NB 966 1729 1963 1044.72 2071.92 1912.48 15.90 7

BCP 40 905 917 3833 929.94 3399.71 3898.54 12.70 15
BCP/NL 905 724 3858 1197.45 3408.48 3623.22 12.97 13
BCP/UA 835 683 3498 669.59 3039.99 3488.43 12.67 16
BCP/NL/UA 1031 2221 3853 1264.15 3489.05 3972.65 13.10 13
DBCP 768 504 3560 360.83 3221.77 4157.38 0.00 15
BCP/NB 883 459 4103 1556.38 3959.41 5088.31 13.05 16
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Table 24: Number of directed connection cuts (DCC) and cycle elimination cuts (CEC) for the NIST data
from group nistsmall and variant BCP/NL/UA.

~̃δ (20, 20, 20)T (30, 30, 30)T (40, 40, 40)T (50, 50, 50)T

inst. |V | |T c| tt[s] m DCC CEC DCC CEC DCC CEC DCC CEC
nist-b-04-t 81 5954 0.07 37 316 0 906 112 3955 383 1278 240
nist-b-06-t 77 5306 0.05 33 2711 320 9611 1151 2140 301 680 50
nist-b-07-t 82 5988 0.04 35 992 73 2117 365 6472 1061 1279 132
nist-b-08-t 76 5068 0.05 32 729 51 3854 431 756 87 2220 316
nist-b-09-t 76 4978 0.05 30 742 67 1010 142 12195 1750 8725 701
nist-b-10-t 63 3664 0.04 31 62 0 1076 144 5707 878 955 174
nist-b-11-t 80 5598 0.06 33 238 1 6573 834 4735 732 4005 760
nist-g-05-t 80 5772 0.05 34 362 29 8260 1563 2244 347 1881 299
nist-g-07-t 74 4706 0.06 29 289 17 475 42 2683 354 810 107
nist-g-08-t 82 5846 0.05 33 162 0 14535 2346 790 118 728 70
nist-g-09-t 53 2500 0.02 22 358 12 61 1 733 95 356 100
nist-g-10-t 76 5112 0.06 32 393 32 733 64 440 27 2306 316
nist-g-11-t 67 4026 0.04 31 137 1 1894 255 1933 396 898 107
nist-g-13-t 55 2842 0.04 30 1951 290 581 62 218 4 272 26
nist-u-04-t 84 6250 0.07 34 3355 437 964 73 2851 599 20629 3448
nist-u-05-t 73 4829 0.05 32 395 42 852 75 435 38 199 5
nist-u-06-t 70 4414 0.05 32 2823 421 149 18 2128 375 2583 392
nist-u-07-t 63 3654 0.04 30 288 2 1132 197 396 75 2635 481
nist-u-08-t 74 4952 0.04 35 89 0 445 42 1935 223 3471 533
nist-u-09-t 69 4340 0.05 32 341 74 2155 272 399 55 3919 720
nist-u-10-t 76 5056 0.05 31 462 64 8851 1544 22397 3885 322 21
nist-u-11-t 63 3574 0.04 30 373 1 1504 285 1602 333 4615 744
nist-u-12-t 80 5544 0.06 33 373 31 6188 761 3925 586 17490 2588

Table 25: Unsolved instances of nistsmall for 2 dimensional ~̃δ. These instances could not be solved by at least
one variant of BCP and are therefore not included in the computation of the average values.

~̃δ k not solved

(20, 20)T 60 nist-b-05-t
(20, 20)T 40 nist-b-05-t, nist-b-12-t, nist-g-06-t, nist-g-12-t, nist-u-04-t, nist-u-10-t, nist-u-12-t
(30, 30)T |V | nist-b-05-t, nist-b-07-t, nist-b-11-t, nist-b-12-t, nist-g-06-t, nist-g-07-t, nist-g-08-t, nist-g-12-t
(30, 30)T 60 nist-b-05-t, nist-b-07-t, nist-b-09-t, nist-g-06-t

nist-g-05-t, nist-g-12-t, nist-u-04-t, nist-u-10-t
(30, 30)T 40 nist-b-04-t, nist-b-05-t, nist-b-06-t, nist-b-07-t, nist-b-09-t, nist-b-11-t, nist-b-12-t, nist-g-06-t

nist-g-08-t, nist-g-10-t, nist-g-12-t, nist-u-04-t, nist-u-06-t
(40, 40)T |V | nist-b-05-t, nist-b-06-t, nist-b-07-t, nist-b-08-t, nist-b-11-t, nist-b-12-t, nist-g-05-t, nist-g-06-t

nist-g-07-t, nist-g-08-t, nist-g-10-t, nist-g-12-t, nist-u-04-t, nist-u-11-t, nist-u-12-t
(40, 40)T 60 nist-b-05-t, nist-b-06-t, nist-b-08-t, nist-b-07-t, nist-b-11-t, nist-b-12-t, nist-g-06-t, nist-g-10-t, nist-g-12-t,

nist-u-04-t, nist-u-06-t, nist-u-10-t, nist-u-12-t
(40, 40)T 40 nist-b-04-t, nist-b-05-t, nist-b-06-t, nist-b-07-t, nist-b-08-t, nist-b-09-t, nist-b-11-t, nist-b-12-t, nist-g-05-t, nist-g-06-t

nist-g-07-t, nist-g-08-t, nist-g-12-t, nist-u-04-t, nist-u-05-t, nist-u-06-t, nist-u-08-t, nist-u-11-t, nist-u-12-t

could once again be solved by BCP/NL and BCP/NL/UA. Table 27 shows the average values for
solved instances from group nist for all BCP variants within a time limit of 4 hours. Again, the
number of instances that a specific method could not solve within the time limit is denoted by ns and
the best result is printed bold. Compared to the results of group nistsmall, we can see that much fewer
instances could be solved. For the parameter setting ~̃δ = (40, 40, 40)T and k = |V | all but one instance
from group nistsmall could be solved within the time limit by all methods. From group nist about half
of the instances could not be solved with the same parameter configuration. The variant BCP/NL
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Table 26: Running times of BCP variant 1 − 6 for the NIST data from group nist with ~̃δ = (40, 40, 40)T and
k = |V |. If tbest[s] = 0.0 the MA found the best solution.

BCP BCP/NL
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s] tp[s]

nist-b-02-t 94 8278 0.13 17 2451 1507 6034 5468.9 5617.38 553.48 2367 2096 13722 8849.26 8885.05 530.78
nist-b-03-t 107 10142 0.15 22 ns ns ns ns ns ns 1942 8551 5723 2910.77 5819.95 767.84
nist-b-04-t 81 4986 0.05 22 889 1088 3446 102.61 1378.44 504.86 745 1983 2786 58.42 897.91 504.45
nist-g-02-t 101 7820 0.10 24 1812 10289 3721 3541.09 4339.43 750.58 1524 25069 3524 2165.19 3109.88 748.98
nist-g-05-t 80 4764 0.07 21 834 469 1983 0.00 878.66 485.02 715 390 1875 0.00 553.41 477.93
nist-u-01-t 99 7339 0.12 24 ns ns ns ns ns ns 1874 12559 18250 1838.54 11998.04 674.90
nist-u-02-t 93 6924 0.11 20 1062 1253 1054 404.65 1439.17 641.79 1533 4237 3540 2044.86 2447.48 637.15
nist-u-04-t 84 5238 0.06 21 834 757 2008 180.79 1296.16 569.97 895 2042 2317 628.02 1255.4 578.33
nist-u-05-t 73 4002 0.06 19 668 717 881 270.05 328.19 478.32 457 898 349 96.14 156.55 469.18

BCP/UA BCP/NL/UA
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s] tp[s]

nist-b-03-t 107 10142 0.18 22 ns ns ns ns ns ns 2375 13434 8179 5062.64 7455.26 757.29
nist-b-04-t 81 4986 0.07 22 1133 9851 3739 386.85 1478.27 491.34 722 1207 2796 92.30 1285.75 508.71
nist-g-02-t 101 7820 0.12 24 1775 3683 4475 3626.92 4629.27 724.8 1176 758 2534 1586.45 2407.27 746.00
nist-g-05-t 80 4764 0.06 21 821 449 2025 0.00 1017.04 488.38 742 551 2413 0.00 709.98 476.18
nist-u-01-t 99 7339 0.11 24 ns ns ns ns ns ns 1835 5254 18314 2101.19 12369.19 699.87
nist-u-02-t 93 6924 0.12 20 1121 1101 1213 543.9 1361.54 619.51 1179 3470 1963 1167.96 1643.86 645.62
nist-u-03-t 100 9260 0.18 19 3081 1117 9755 9574.46 11277.34 584.47 2580 2937 11765 9394.14 10697.54 610.48
nist-u-04-t 84 5238 0.06 21 1050 4836 2899 756.24 1634.46 554.51 743 1082 2746 206.61 1401.51 579.58
nist-u-05-t 73 4002 0.06 19 442 298 230 101.46 183.17 441.15 567 873 672 260.61 296.02 462.34

BCP/NB DBCP
inst. |V | |T c| tt[s] m col cut nod tbest[s] t[s] tp[s] col cut nod tbest[s] t[s]

nist-b-02-t 94 8278 0.15 17 2489 785 6873 7698.98 7835.0 690.51 2071 537 6779 5105.36 5172.37
nist-b-04-t 81 4986 0.07 22 923 1054 3252 126.25 1724.4 633.89 1145 18587 6074 299.61 2085.72
nist-g-02-t 101 7820 0.14 24 1449 18443 1920 2454.63 3686.64 902.73 1656 12906 5398 3807.41 4815.42
nist-g-05-t 80 4764 0.09 21 834 469 1983 0.00 1067.96 622.67 776 469 2013 19.13 830.70
nist-u-02-t 93 6924 0.12 20 1048 1340 1049 559.08 1733.91 738.89 907 1652 880 287.58 841.51
nist-u-03-t 100 9260 0.16 19 ns ns ns ns ns ns 3063 23221 11171 6996.61 8701.43
nist-u-04-t 84 5238 0.09 21 862 1817 2161 277.32 1598.9 713.69 1051 5495 2944 423.19 1620.72
nist-u-05-t 73 4002 0.05 19 668 717 881 305.35 369.25 591.24 814 13411 1417 378.67 445.50

performed best in terms of solved instances, while variant BCP/NL/UA has the lowest running time.
Note, however, that for this comparison the long preprocessing time is not considered. If we consider
it, DBCP is the fastest method. Table 28 shows some instances with |V | > 100 and a difficult to solve
instance structure.

We see that the time required to process instances that where previously excluded due to the
time limit is often much longer than the time limit. The running time ist mostly determined by the
number of template arcs and the number of nodes, but it also depends on the structure of the respective
instance. Method BCP/NL/UA for larger ~̃δ values is presented in Table 29. We chose a high time limit
of 2000 minutes to see how much we can enlarge the correction vector. Recall that larger correction
vectors lead to more template arcs, and thus to a greater repertory of variables that can be priced
into the equation. Larger correction vectors ~̃δ generally lead to better compression ratios. The best
compression rate (18.9%) is achieved with δ̃ = (80, 80, 80)T and k = 40. This combination cannot
be solved by the BCP approach. But even if we set the parameter k to |V |, which makes the instance
much easier to solve, the limitation of our method is a correction vector size around ~̃δ = (70, 70, 70)T .
Except, of course, if we use instances with a very small number of nodes. Instances with a very large
~̃δ value do not become easier to solve. Either all instances are solved immediately by the MA and the
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Table 27: Average runtimes of BCP variant 1 − 5 for the NIST data from group nist.

k 80 |V |

method ~̃δ col cut nod tbest[s] t[s] tS D[s] tp[s] ns col cut nod tbest[s] t[s] tS D[s] tp[s] ns
BCP

20
20
20

 318 1052 241 632.88 641.35 900.52 3023.13 1 305 5252 160 270.71 271.77 323.71 887.72 0
BCP/NL 249 1348 189 468.43 482.39 864.97 2987.77 0 369 6750 191 199.68 202.06 187.44 884.37 0
BCP/UA 320 814 311 788.90 797.49 1256.02 2973.00 0 221 927 36 159.47 160.07 150.32 884.09 0
BCP/NL/UA 256 946 391 809.79 826.52 1897.23 3104.36 0 273 2139 102 137.37 138.35 126.95 908.24 0
DBCP 416 3396 366 828.76 830.82 1146.33 - 0 364 3940 139 181 182.01 134.97 - 0

BCP
30
30
30

 410 3244 383 195.36 195.44 68.47 573.64 2 940 6480 3523 1707.07 2444.14 1983.18 723.88 1
BCP/NL 409 5417 313 141.23 141.76 54.44 606.61 1 876 12521 3207 1424.98 2148.68 1661.85 762.99 1
BCP/UA 426 4596 648 256.03 258.56 185.25 557.26 2 957 8217 3107 1588.30 2350.91 2051.90 709.75 1
BCP/NL/UA 347 1536 333 113.45 114.53 63.54 585.12 2 849 6854 2996 1507.58 2346.05 2110.38 740.20 1
DBCP 515 10228 484 188.14 190.85 121.73 - 2 1002 12750 3006 1484.97 2181.63 1612.64 - 1

BCP
40
40
40

 941 9177 1193 1583.16 1883.95 1667.22 1533.80 8 1017 2429 2182 749.87 1610.01 1278.60 571.76 6
BCP/NL 840 8086 1426 2092.38 2311.15 2515.08 1554.92 6 978 5770 2399 832.11 1403.44 1045.36 569.34 6
BCP/UA 978 5154 2057 2897.36 3225.33 3106.47 1507.38 7 1057 3370 2430 902.56 1717.29 1385.28 553.28 6
BCP/NL/UA 814 5826 1460 1667.39 1980.31 2151.84 1568.64 6 855 1324 2187 552.32 1290.73 672.11 569.74 7
DBCP 1238 35851 2756 3442.15 3690.90 4327.02 - 7 1058 753 3121 869.27 1773.26 1466.01 - 7

Table 28: Running times for instances with |V | > 100 and k = |V |.

inst. method ~̃δ V |T c| tt[s] m col cut nod t[s] tp[s]
nist-b-01-t BCP/NL (40, 40, 40)T 106 9559 0.17 22 2839 12287 78026 71863.76 13.59
nist-g-03-t 102 9618 0.28 19 3296 11971 47239 96387.83 18.13

lower bound computation, because only one, two or three template arcs are contained in a feasible
solution, or the solution time increased sharply in comparison to ~̃δ = (70, 70, 70)T . All instances from
the nist group were solved immediately for ~̃δ = (300, 300)T and ~̃δ = (200, 200)T with k = 80, k = 40,
k = 20 and k = 10. For ~̃δ = (150, 150)T with k = 80, k = 40, k = 20 and k = 10 the instances from the
nist group were solved immediately for all k values except k = 80. For k = 80 a few instances could
not be solved immediately. None of the instances that were not solved immediately could be solved
within the time limit of four hours. Some runs that were performed with a higher time limit allow
the conclusion that the solution time increases a lot for very large correction vectors, so the instances
can no longer be solved within a reasonable amount of time. E.g. the instance nist-u-05 was solved
in 402.25 seconds for k = |V | and ~̃δ = (70, 70, 70)T and could not be solved within 1100 minutes for
k = 73 and ~̃δ = (150, 150)T .

5.4.1 Conclusions

The BCP approach could solve NIST data up to a correction vector size of ~̃δ = (50, 50, 50)T for
instances with up to 80 nodes within a reasonable amount of time and was therefore an improvement
over the BC approach, which could not solve NIST data at all, and over the BP approach, which
was also developed in this project. If only a subset k = 40 of all nodes is selected the instances
become much more difficult to solve. Moreover, problems with a 2-dimensional correction vector
require much more time and can solve a much smaller number of instances within the time limit. The
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Table 29: Running times of BCP/NL/UA for large ~̃δ and a time limit of 2000 minutes.

k = |V |, BCP/NL/UA

inst. ~̃δ V |T c| tt[s] m col cut nod tbest[s] t[s] tp[s]
nist-b-04-t

60
60
60

 81 7331 0.13 14 878 1106 786 186.59 509.28 6.96
nist-b-05-t 93 13010 0.29 ns ns ns ns ns ns ns
nist-b-06-t 77 7632 0.14 13 2424 5133 7274 2733.40 2733.40 6.19
nist-b-07-t 82 8459 0.17 14 2609 4069 79605 301.11 33203.89 6.80
nist-b-08-t 76 7716 0.16 12 2259 33446 31669 879.26 13420.56 6.23
nist-b-09-t 76 8612 0.17 11 2295 1091 18746 742.21 7627.27 5.33
nist-b-10-t 63 4106 0.08 12 602 542 467 142.61 151.50 4.45
nist-b-11-t 80 8117 0.13 13 2389 3858 18767 2337.86 8868.76 6.73
nist-b-12-t 85 11660 0.25 12 3291 1213 41450 4131.32 29401.65 7.36
nist-g-05-t 80 7293 0.13 14 1638 5858 2913 1089.89 1551.36 6.64
nist-g-06-t 87 10480 0.21 14 3955 982 196026 2417.59 101773.77 7.49
nist-g-07-t 74 6578 0.11 12 2721 10026 113515 218.90 39918.70 5.68
nist-g-08-t 82 9420 0.17 13 4063 5182 32687 12962.30 12992.34 6.42
nist-g-09-t 53 3007 0.05 9 443 679 245 68.75 68.76 3.21
nist-g-10-t 76 7319 0.15 13 1623 434 11316 113.91 4277.32 6.13
nist-g-11-t 67 5201 0.11 12 1264 3005 7700 99.95 1805.54 4.92
nist-g-12-t 84 9974 0.2 12 1737 171 5542 216.21 3767.10 7.10
nist-g-13-t 55 2528 0.04 13 300 667 104 37.28 45.89 3.78
nist-u-04-t 84 7992 0.15 14 1416 4728 3235 597.42 2119.70 7.08
nist-u-05-t 73 5775 0.11 13 1384 1717 2546 647.53 822.38 6.02
nist-u-06-t 70 5200 0.08 13 1268 30 9725 61.20 2323.65 5.59
nist-u-07-t 63 4192 0.07 13 1696 9397 89725 143.18 12657.94 4.64
nist-u-08-t 74 5977 0.12 14 1644 363 18663 222.50 5291.75 6.13
nist-u-09-t 69 4686 0.07 13 1426 1523 31825 75.62 7677.18 5.19
nist-u-10-t 76 7002 0.14 12 1425 969 5832 120.95 2712.12 6.05
nist-u-11-t 63 4173 0.08 12 902 1996 1405 106.19 328.42 4.08
nist-u-12-t 80 9520 0.21 12 1578 3637 3341 918.76 2279.28 6.08

nist-b-04-t
70
70
70

 81 10110 0.21 12 3990 2304 50170 20077.20 20077.21 6.36
nist-b-05-t 93 18417 0.48 ns ns ns ns ns ns ns
nist-b-06-t 77 10429 0.24 11 4017 3020 23515 8975.49 8975.49 5.0
nist-b-07-t 82 11296 0.27 ns ns ns ns ns ns ns
nist-b-08-t 76 11177 0.2 9 1827 1585 8528 102.49 3939.55 5.22
nist-b-09-t 76 11783 0.29 9 2283 622 8610 1488.91 4525.65 4.82
nist-b-10-t 63 5358 0.09 11 1846 193 42181 52.46 7147.75 3.99
nist-b-11-t 80 10848 0.23 11 2080 2443 8046 220.42 4495.57 5.52
nist-b-12-t 85 16747 0.41 10 7714 6541 95576 32518.70 56471.05 6.21
nist-g-05-t 80 9553 0.21 12 3430 15619 16758 3711.54 7673.07 6.69
nist-g-06-t 87 14873 0.37 ns ns ns ns ns ns ns
nist-g-07-t 74 8886 0.18 9 2340 738 20453 127.22 8419.46 4.83
nist-g-08-t 82 12614 0.31 11 3300 596 13576 3110.64 8919.61 5.65
nist-g-09-t 53 3994 0.08 8 383 325 182 31.78 52.63 3.21
nist-g-10-t 76 10036 0.21 11 3012 3626 35960 1774.31 13960.82 5.65
nist-g-11-t 67 6995 0.14 10 1234 753 2139 346.83 831.51 4.23
nist-g-12-t 84 13896 0.32 ns ns ns ns ns ns ns
nist-g-13-t 55 3079 0.06 11 591 396 471 77.61 99.40 3.23
nist-u-04-t 84 10594 0.21 12 2850 1739 27054 2492.28 15576.72 6.45
nist-u-05-t 73 7563 0.15 11 948 1158 880 342.03 402.25 5.11
nist-u-06-t 70 6787 0.14 11 1281 2100 2191 247.85 829.05 4.59
nist-u-07-t 63 5334 0.12 11 1650 755 24730 37.04 4081.77 4.16
nist-u-08-t 74 7937 0.16 12 2085 1322 18578 265.45 5979.78 5.17
nist-u-09-t 69 5950 0.11 12 2016 4012 28780 154.05 6937.01 4.81
nist-u-10-t 76 9352 0.2 10 2445 10388 7377 1852.13 2954.88 5.00
nist-u-11-t 63 5435 0.08 10 842 203 1172 83.54 381.70 3.78
nist-u-12-t 80 13660 0.32 9 5610 1286 55303 24829.70 24829.69 4.84
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reason for this is that more template arcs are generated for 2-dimensional correction vectors up to a
correction vector size of δ̃ = (120, 120, 120)T (δ̃ = (80, 80)T ). The opposite effect can be observed
at the correction vector size of δ̃ = (120, 120, 120)T (δ̃ = (120, 120)T ), where many more template
arcs are generated for 3-dimensional correction vectors. Overall we can conclude that instances with
many nodes V and template arcs t, where only a small subset of nodes k is selected are more difficult
to solve. The number of columns has the greatest impact on the running time. Regarding the different
variants of BCP, we we can say in summary that using back-cuts is an improvement in many cases,
especially if k = 40. From all methods, BCP/NL/UA performed best in terms of solved instances and
solution time. Generally, the BCP variants show good performance for different instances.
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6. Implementation
All algorithms have been implemented in C++ using the Standard Template Library (STL) and the
Boost Library (http://www.boost.org/) and are embedded in a framework developed by Dietzel [22].
The code was compiled with g++-4.1. For graph algorithms as well as set and graph data structures
we used version 5.1 of LEDA (Library of Efficient Data Types and Algorithms) [33]. In Chapter
4 we used EAlib2, developed at the Institute for Computer Graphics and Algorithms of the Vienna
University of Technology for the memetic algorithm. As a Branch-and-Cut-and-Price framework we
used SCIP 1.2.0 (Solving Constraint Integer Programs)[2] with version 11.2 of CPLEX [27] as the
underlying LP-Solver.

6.1 Module Structure

CutPoint

ConshdlrDCC

TemplateArcs

ConshdlrCECut

 * children

LeafCutPoint NodeCutPoint

TA

PricerMLSA

Coordinator

GMLSTChrom

ealib:Chrom

BTC
main()

BCP

MLST
TemplateArcGenerator

            root

Arc

  *

  * 

scip::ObjPricer

scip::ObjConshdlr

GmlstEA

ealib::steadyStateEA

Figure 12: Overview of the main classes.

The Coordinator class is the connection to the existing framework. It fetches the arcs, which are
generated from the input data, from the class MLST and is responsible for the encoding of the solution.
It also configures and runs the MA.
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Table 30: Symbols used in getBestLabel (Algorithm 11) and checkCycleTwo (Algorithm 12)

a the algorithm: the MA (gen mlst), BCP (BCP) or if we only want to create all template arcs (dFirt).
e path to a file containing settings specific to the MA
s the numbers of starts of the MA.
b the BCP initialization method: initialization using the MA (0),

initialization with all TAs (1), random initialization (2), initialization using DNIS (3).
Note that (1) is only there for testing purposes.

z the variant of pricing as shwon in table 30 :
BCP (0), BCP/NL (1), BCP/UA (4), BCP/NL/UA (5), DBCP (7).

u back-cuts: activate back-cuts (1) - this is the default setting, deactivate back-cuts BCP/NB (0).
w lower bound: compute lower bound (1), do not compute lower bound (0).

The class TemplateArcGenerator is responsible for managing the template arcs. It initializes the
generation of all template arcs if all template arcs are generated in advance and computes a lower
bound if requested (see Chapter 5.3.4.2). Whenever the pricer requests a template arc, it returns the
template arc with the highest value. This template arc is either selected from the set of pre-existing
template arcs or generated from scratch DNIS.

The class TemplateArcs is responsible for creating the template arcs either using the NIS algorithm,
if all template arcs are created in advance, or using DNIST if one template arc per call is created on
demand. The classes CutPoint, NodeCutPoint and LeafCutpoint contain the implementation of NIS
and DNIST. The class TA represents a single template arc.

The class BCP solves the MIP by calling the appropriate functions of SCIP. Besides the linear
constraints included in SCIP, users can configure their own constraint handlers. The constraint han-
dler ConshdlrCECut generates the cycle elimination cuts, and the constraint handler ConshdlrDCCut
generates the directed connection cuts. For the invocation of the main() function the algorithms MA
and BCP require the following command line parameters:

The parameters that are not specific to our problem are already described in [22].

6.2 SCIP

In the following, we describe how some of the features of SCIP were used. SCIP uses a plugin based
architecture that can be extended and customized via user-defined callback objects. The function
SCIPcreateVar is used to generate the variables and the function SCIPaddVar adds the variables. The
most important SCIP plugins are constraint handlers. Each class of constraints is represented by
a constraint handler. The constraint handler checks the feasibility of a solution with respect to its
associated constraints. The constraint handlers for the linerar constraints included in SCIP are created
with SCIPcreateConsLinear and added with SCIPaddCons. They were implemented according to our
ILP model and used the recommended default values for the parameters, except for the parameters
enforce and check, which are set to true, since there are no redundant constraints. Since we use a
pricing approach, the parameter modifiable, which determines whether a variable is subject to column
generation, must be true for the arc-label and node-label constraints. Custom contraint handlers are
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added using SCIPincludeObjConshdlr, which makes the constraint handler available to the model.
Individual constraints are created by the callback function SCIPcreateConsX.

We added two custom constraint handlers, ConshdlrDCC for the directed connection cuts and
ConshdlrCECut for the cycle elimination cuts. These constraint handlers can also be seen in Figure 12.
The two constraint handler classes inherit from scip::ObjConshdlr. The following constraint handler
properties were configured: The separation priority CONSHDLR SEPAPRIORITY, i.e. the priority of
the separation methods of the respective constraint is set to 1000000 for both constraints. This has to be
seen in relation to the linear constraint handlers, which are much easier to separate, and whose priority
is set to 100000. The enforcement priorities CONSHDLR ENFOPRIORITY, i.e. the priority of the
enforcement methods, as well as the priority of constraint checking CONSHDLR CHECKPRIORITY
is set to −201000 for ConshdlrDCC and to −200000 for ConshdlrCECut. The separation frequency
CONSHDLR SEPAFREQ defines the frequency of the cut separation, i.e. at which depth level of the
tree the separation methods are called. For both constraint handlers the separation frequency is set to
40. The pricer class inherits from scip::ObjPricer. It must implement the virtual callback function
scip redcosts, which searches for new variables and adds them to the equation. We also implemented
the optional virtual function scip farkas, which generates additional variables that make an infeasible
variable feasible again [2].

6.3 Test Setups

For our tests, we use two different datasets. The first dataset containing 20 templates was provided
by the Fraunhofer Institute Berlin Fraunhofer Templates. The second test set comes from the U.S.
National Institute of Standards and Technology [24]. All tests where performed on a Dual Core AMD
Opteron 270, 1.9 GHz with 8GB RAM under Linux kernel 2.6.62, or on a Pentium 4 with 2GB
memory under Linux kernel 2.4.21. The time limit for the tests was usually four hours. The specific
test enviorments and time limits are given in the results section of the respective chapters.
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7. Conclusion and Further Work
In this thesis, exact and heuristic methods for the compression of fingerprint templates as well as a
new algorithm NIS for the construction of template arcs have been proposed. Since the number of
variables (labels) in our problem is huge we decided not to use all variables but add them on demand
in the pricing approach of a Branch-an-Cut-and-Price framework. This strategy was effective since
the BCP approach can deal with much larger datasets than the BC approach (see [18]) as the pricing
approach only deals with a subset of all variables. Combining row and column generation in BCP
was also more efficient than the BP approach [46] in terms of running time and the size of the exactly
solvable instances.

For cut separation, cycle elimination cuts and directed connection cuts were used. Not separating
cuts in every node yields better results. The developed BCP method is able to successfully solve
instances from the NIST dataset containing up to 9000 template arcs and 90 nodes with a correction
vector size of ~̃δ = (50, 50, 50)T in a reasonable amount of time. Larger correction vectors ~̃δ generally
lead to better compression ratios. However, larger correction vectors also cause the generation of a
much greater number of candidate template arcs, so that the problem can no longer be solved using the
BCP approach. If we use lossy compression and select only a subset k of all nodes, the performance
of the BCP algorithm decreases dramatically.

The developed heuristic method is a memetic algorithm (MA). As part of the MA, feasible arbores-
cences are searched for very frequently using depth first search (DFS). We have developed a technique
to significantly reduce the number of these searches. The MA can deal with a large number of cor-
rection vectors in combination with a subset k of the nodes. The best compression rate (18.9%) is
achieved with δ̃ = (80, 80, 80)T and k = 40. This combination cannot be solved by the BCP because
of the high running time. Therefore, even though the BCP method is able to deal with a greater number
of variables than existing exact approaches, it is outperformed by the MA in terms of the compression
rate.

To improve the efficiency of the BCP process, we construct a near optimal, feasible start solu-
tion with a memetic algorithm, and compute a lower bound using a reduced version of the k-MLSA
problem. The lower bound computation significantly improves the solution time, because with the
BCP approach, verifying whether a particular solution is indeed the best solution is often more time
consuming than generating the solution. Preprocessing the data can now be done in a very short time
with NIS. Thus, the entire compression procedure can be completed within a few minutes using the
MA.

The procedure NIS constructs the set of all non-dominated template arcs, i.e. all different non-
dominated sets of arcs that can be represented together by a common template arc t. It is a two phase
algorithm, which uses a divide and conquer approach. In phase one, sets are built that contain at
least one element representable with all other elements. In phase two, these sets are divided further,
so that all elements contained in one set are representable together. The main of the algorithm is
that dominated sets are never built, since the algorithm can determine if an arc set is dominated by
considering the geometric position of the arcs. The procedure NIS takes only a few seconds to generate
up to 100000 candidate template arcs. It generates half a million candidate template arcs in just a few
minutes and can be used to generate up to 1.7 million candidate template arcs. A variant of NIS, called
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DNIST, can find the solution to the pricing-problem efficiently.
Developing other objective functions could be the subject of further research. For instance, the

size of the correction vector domain could be optimized while the number of candidate template arcs
remains the same. Also, a multi-objective optimization approach could be considered to minimize the
size of the correction vector, the number of selected nodes and the number of template arcs (i.e. the
size of the codebook) all at the same time. It may also be beneficial to hybridize the BCP algorithm
with meta-heuristics to cope with a larger number of variables. However, these approaches are beyond
the scope of this thesis.
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