
Performance Test Language
for Web Services

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering / Internet Computing

eingereicht von

Hermann Czedik-Eysenberg
Matrikelnummer 0526426

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Univ.-Prof. Dr. Uwe Zdun
Mitwirkung: Projektass. Dipl.-Ing. Ernst Oberortner

Wien, 15. März 2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Hermann Czedik-Eysenberg
Ketzergasse 471/1
1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe,
dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten
und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut
oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.

ii

Abstract

During the development of Web services and their deployment to a
specific target system, organizations need to evaluate if the Web service
implementation and the hardware can meet the Quality of Service at-
tributes specified in a Service Level Agreement. One important aspect
are performance-related attributes, such as response time, throughput
or scalability of the Web service. Typically tests which simulate client
behavior are used to evaluate these attributes.

In this thesis the domain-specific language QoSTIL (Quality of Ser-
vice Test Instrumentation Language) is introduced. It allows for the def-
inition of tests and the composition of these tests to create complex test
plans which can be used to simulate Web service client behavior and
evaluate performance-related quality of service attributes of Web ser-
vices. Language instances are automatically transformed to executable
Java code and result presentation views. These can be used to run the
defined tests and visually display the test results.

The implementation of the domain-specific language follows the
Model-Driven Development approach. Both the language model (ab-
stract syntax), which is based on the meta-model defined by the Frag
modeling framework, the concrete syntax, as well as the transformation
to executable code are explained in detail in the thesis. Also a review
of technologies and development tools is included. These technologies
and tools are used for the implementation of the domain-specific lan-
guage and generation and execution of the runtime system.

To evaluate the utility and usability of the language a number of
tests which are based on realistic business use cases for assessing cer-
tain performance-related quality of service attributes are defined and
implemented. After the automatic transformation to executable code,
the tests are run for specific Web services and the results are presented
and discussed. Furthermore the thesis includes a comparison to the re-
lated work in the problem domain.

1

Kurzfassung

Während der Entwicklung von Web Services und deren Bereitstel-
lung auf einem bestimmten Zielsystem sollte laufend überprüft wer-
den, ob Web Service-Implementierung und Hardware die Qualitätsat-
tribute, die in einem Service Level Agreement spezifiziert wurden, er-
füllen können. Ein wichtiger Aspekt sind Performance-bezogene At-
tribute, wie Antwortzeiten, Durchsatz und die Skalierbarkeit eines Web
Service. Typischerweise werden Tests verwendet, die ein bestimmtes
Clientverhalten simulieren, um diese Attribute zu evaluieren.

In dieser Diplomarbeit wird die domänen-spezifische Sprache QoS-
TIL (Quality of Service Test Instrumentation Language) vorgestellt. Sie
ermöglicht die Definition von Tests und deren Komposition zur Erstel-
lung von komplexen Testplänen. Diese Tests können verwendet wer-
den um Web Service-Clientverhalten zu simulieren und Performance-
bezogene Qualitätsattribute zu überprüfen. Sprachinstanzen werden au-
tomatisch zu ausführbarem Java-Code und Testreport-Ansichten trans-
formiert. Diese können dafür eingesetzt werden um die definierten
Tests auszuführen und die Testresultate graphisch anzuzeigen.

Die Implementierung dieser domänen-spezifischen Sprache folgt
dem Ansatz der modellgetriebenen Softwareentwicklung. Sowohl das
Sprachmodell (die abstrakte Syntax), das auf dem vom Frag Modeling
Framework definierten Metamodell basiert, als auch eine konkrete Syn-
tax, sowie die Transformation zu ausführbarem Code werden im Detail
erläutert. Außerdem beinhaltet die Arbeit einen Überblick der Tech-
nologien und Entwicklungswerkzeuge, die zur Implementierung der
domänen-spezifischen Sprache und zur Generierung und Ausführung
des Laufzeit-Systems eingesetzt wurden.

Um den Nutzen und die Bedienbarkeit der entwickelten Sprache zu
evaluieren, wurde eine Anzahl von Tests, die auf realistischen Business-
Anwendungsfällen basieren, für die Messung von bestimmten Perfor-
mance-bezogenen Qualitätsattributen definiert und implementiert. Nach
der automatischen Transformation zu ausführbarem Code, wurden die
Tests auf ein bestimmtes Web Service angewendet und die Ergebnisse
werden in der Arbeit präsentiert und diskutiert. Weiters enthält die
Diplomarbeit einen Vergleich mit ähnlichen Arbeiten innerhalb des For-
schungsgebiets.

3

Contents

Abstract 1

Kurzfassung 3

Contents 5

1 Introduction 7
1.1 Motivation . 8
1.2 Problem Definition . 10
1.3 Organization of the thesis . 13

2 State of the Art 15
2.1 Service-Oriented Architectures and Web services 15
2.2 Quality of Service and Service Level Agreements 18
2.3 Measuring performance-related QoS for Web services 20
2.4 Domain-Specific Languages and Model-Driven Development . 23
2.5 Applied Technologies . 25

3 Language Design and Implementation 29
3.1 Language Model and Semantics 30
3.2 Language Syntax . 37
3.3 Code Generation . 42
3.4 Report View Generation . 43

4 Using the Language 45
4.1 Language Instances . 46
4.2 Evaluation . 55
4.3 Possible future language extensions 61

5 Related Work 67
5.1 Performance measurement tools 68
5.2 Performance tests based on the TTCN-3 70

6 Summary and Conclusions 73

Bibliography 83

5

CHAPTER 1
Introduction

In recent years the use of service-oriented architecture – and its implementa-
tion using Web services – has become one of the most popular approaches for
developing distributed systems. It has been successfully applied to intra- and
inter-organizationally integrate business functionality and applications. Orga-
nizations can establish agile and flexible collaborations by using well-defined
services that are independent of the used computing platforms and software
frameworks.

Besides the functional specifications of Web services, non-functional re-
quirements are a major issue for all parties involved in a collaboration. Such
requirements are specified in contracts and agreements, such as Service Level
Agreements (see section 2.2). They are mainly expressed in terms of Qual-
ity of Service (QoS) guarantees that service providers and consumers have to
fulfill. One important aspect are performance-related QoS attributes, such as
response time, throughput or scalability of a Web service.

To validate such performance-related QoS attributes, they have to be eval-
uated using quantifiable measurements. The most common approach to ob-
tain performance results of a given Web service is to simulate a specific client

7

1. INTRODUCTION

behavior and workload and observe the performance of the system. This is
usually denoted as performance testing [16].

In this thesis a new domain-specific language (DSL) for defining and run-
ning Web service performance tests is introduced. A DSL is a small language
tailored to be particularly expressive in a certain problem domain, here Web
service performance testing. This DSL was developed following the Model-
Driven Development paradigm (see section 2.4) and can be used to describe
and compose performance tests using a textual syntax, which is tied to ele-
ments described in the language model.

1.1 Motivation

Today Web services are widely adopted in the industry and their providers
have to work hard to stay competitive. Often, there are similar services from
different providers available that can be easily interchanged by service con-
sumers. QoS is a significant factor in defining the success of Web services
and their providers. Since it directly influences the utility and usability of
the service for its consumers, it plays an important role in determining the
popularity of a Web service.

Both, service providers and service consumers have a strong interest in
performance testing of Web services. Web service providers have to make
sure, that their services can meet the QoS guarantees that are arranged in
agreements and contracts. Otherwise they will face serious financial penal-
ties and lose their credibility. Service consumers want to evaluate, if they
are getting the service quality they paid for, or, if they should switch service
providers. They might also want to find some arguments for possible legal
actions against a contractual partner, if they suspect a breach of agreement.

The performance testing methodology should be clearly specified, re-

8

1.1. Motivation

usable and easy to communicate. Therefore we want to provide a modern
DSL that supports the definition and execution of performance tests. It en-
ables developers to define such tests at an adequate level of abstraction. The
implementation of the tests is automatically generated by a transformation to
executable Java code. The language itself is independent of the system that is
tested and its implementation technologies.

The language is mainly targeted at Web service developers that want to
evaluate performance as early as possible. Usually, performance testing is
conducted at the end of the development, after system integration testing. It
can however also take place during the initial development of a system, which
is known as Early Performance Testing [2]. The performance test cases are
defined and developed together with the implementation of the system or even
before the real coding starts. This helps to ensure that QoS attributes are
always kept in mind. Thus, performance bottlenecks can be found early and
the cost involved in solving them is reduced to a great extent.

The tests developed in the language presented here should be quick to
define and easy to maintain and thereby support an early and transparent test-
ing process. All involved developers should be able to efficiently repeat tests
whenever needed. The performance results should be available as clearly
structured and effortlessly accessible test reports.

Of course, the language presented here is not only usable for early testing,
but can also be applied after development has finished as well as by service
consumers, that want to test an existing Web service. An important area of
application is also regression testing after changes have been made to an exist-
ing Web service, i.e. to try to uncover performance problems that are results
of the changes.

9

1. INTRODUCTION

1.2 Problem Definition

Performance testing is a way to evaluate performance-related quality attributes
of a system. For Web services this can serve different purposes: A service
provider might want to demonstrate that the system meets specific perfor-
mance goals. Service consumers may want to compare different system to
find out which one performs better. For Web service developers it is a way to
better understand the performance of a system. They may want to use perfor-
mance test results to determine what causes for performance degradation of
their system exist and where performance bottlenecks are.

Performance testing should be differentiated from performance monitor-
ing. Monitoring normally means to observe and measure the performance of
a deployed system while it is used in normal extent by its real users. Perfor-
mance testing, on the other hand, involves the generation of artificial load to
produce a pre-defined workload condition. The usage of the system (number
and types of requests and clients) is exactly defined in a test plan and sim-
ulated by test clients. The exact quality attributes and the way that they are
measured should also be accurately documented. The test implementation
should follow these exact rules and the test results should be reproducible.
Normally the tests are not performed on production systems, to make sure
that the performance for the real users is not affected by the test clients, and
vice versa. In any case, the statistical significance of the test results should be
considered.

Menascé [16] defines a performance testing methodology with seven main
steps:

1. Defining the Testing Objectives. The purpose is the definition of the
goals of the performance tests. A testing goal may be something very
concrete, such as finding out the maximum number of concurrent users
a Web service supports within the limits of the Service Level Agree-

10

1.2. Problem Definition

ments. Or something more general, such as identifying bottlenecks in
the Web service infrastructure.

2. Understanding the Environment. The tester has to learn everything
about infrastructure, software and relevant quality attributes of the sys-
tem under test.

3. Specifying the Test Plan. The test plan is a detailed description of the
whole testing process. It should include the information which Web
services and functions are tested, how they are requested and how per-
formance is measured. Also, it should contain a definition of the quality
attributes that the test evaluates and the Service Level Agreements that
will be verified.

4. Specifying the Test Workload. In this step, the user behavior that
should be simulated, has to be devised. Scripts that represent the user
behavior have to be created.

5. Setting Up the Test Environment. This is the process of installing
measurement and testing tools.

6. Running the Tests. The execution of the tests should follow the test-
ing plans. The test results should be documented, including a detailed
description of test parameters to allow reproduction of the test.

7. Analyzing the Results. Based on the data collected, the analysts should
be able to determine bottlenecks that cause performance problems. An
important issue when analyzing the results is to make sure that the re-
ported measurements are coherent, i.e. that there are no errors in the
measurement process.

The DSL and its runtime environment presented in this thesis were developed
to support the steps beginning with the specification of the test plan (step 3)

11

1. INTRODUCTION

and ending with running the tests (step 6). Automatically generated reports
additionally assist the last step, the analysis of the test results. The main focus
of the language model is on the specification of the test workload (step 4).

Performance tests are often characterized by the intensity of the generated
load [16]:

Load testing The goal is to understand the performance of the system under
a specific expected load.

Stress testing In stress testing, the load is raised beyond normal usage pat-
terns, in order to make sure that a Web service works (or at least grace-
fully fails) under worst-case conditions.

Spike testing By spiking the workload (short periods of time where the load
is several times larger than average) it should be determined how the
system is able to handle dramatic changes in load.

The performance testing language aims to include constructs to configure all
of these types of workload in detail.

Another important goal of the introduced language is to make the def-
inition of measurements and evaluations of quality attributes as flexible as
possible. A service level agreement might for example contain the condition,
that the service provider needs to guarantee a given average throughput, if
the system is not over-utilized by more than 10 percent and that maximum
response time should never exceed a certain value. There is an infinite num-
ber of such quality attributes that might be important for a specific business
or application. Often different organizations require different definitions even
for crucial attributes such as availability, throughput or response time. The
language has to be especially flexible, when it comes to expressing them.

12

1.3. Organization of the thesis

1.3 Organization of the thesis

The following chapter 2 contains a state of the art overview of relevant topics,
such as Web services, Quality of Service and Model-Driven Development. It
also shortly introduces technologies that have been applied for the develop-
ment of the DSL presented in the thesis.

Chapter 3 describes in detail the design of the new language and its im-
plementation.

The practical application of the language is discussed in chapter 4. It
contains numerous examples, a usability and utility evaluation of the language
and also discusses possible future language extensions.

Related work on Web service performance testing is examined in chapter
5.

The last chapter 6 is a summary and concludes the thesis.

13

CHAPTER 2
State of the Art

2.1 Service-Oriented Architectures and Web
services

A service-oriented architecture (SOA) [3] is a way of organizing software ap-
plications and infrastructures into a set of interacting services. It provides an
architectural model for the service-oriented computing paradigm [24] which
utilizes services as fundamental elements for mastering the complexity of dis-
tributed applications.

A basic model is given by the classic SOA triangle shown in figure 2.1
[24]. It considers three main roles: The service registry is a directory where
service descriptions can be published and searched. The service provider im-
plements a service and publishes the service specification in a service registry.
The service requestor (client) queries the registry to find a certain service. If
found, it binds to the service endpoint and can finally use the service by in-
voking its operations.

There is a common set of service-level design principles for a SOA [14]:

15

2. STATE OF THE ART

Service

Registry

Service

Requestor

Service

Provider

1. Publish2. Find

3. Bind & Use

Service

Specification

Figure 2.1: Basic SOA model.

• Services are reusable and context independent. They are designed to
support potential reuse. They do not depend on the context in which
they are used.

• Services share a formal contract (service specification). It defines the
terms of information exchange and any supplemental service descrip-
tion information.

• Services are loosely coupled. In order for them to interact, they do not
share anything but the service specification. This implies that clients
are not restricted to one predetermined supplier.

• Services are self-contained and abstract underlying logic. The only
part that is visible to the outside world is what is exposed via the service
specification. The implementation details do not matter to the service
client.

• Services are composable. They may use and compose other services.
This allows logic to be represented at different levels of granularity and
promotes the creation of abstraction layers. Services that assemble ex-

16

2.1. Service-Oriented Architectures and Web services

isting services from possibly multiple service providers are referred to
as composite services [24].

• Services should be stateless. They should not be required to manage
state information, since that can interfere with their ability to remain
loosely coupled.

• Services are discoverable. They should publish their descriptions and
allow them to be discovered by potential clients.

• Services have a network-addressable interface. They must support
remote requests.

Of the principles described above, autonomy, loose coupling, abstraction
and the need for a formal contract can be considered the core principles that
form the baseline foundation for SOAs [20].

Since Services may be offered by different organizations and communi-
cate over the Internet, they provide a distributed computing infrastructure for
both intra- and cross-organization application integration and collaboration.
Consequently it is essential that services are technology-neutral and the invo-
cation mechanisms (protocols, descriptions and discovery mechanisms) com-
ply with widely accepted open standards.

An implementation technology and umbrella term for a lot of well-estab-
lished standards for SOAs are Web services [23]. Two of the most important
standards associated with Web services are, the Web Services Description
Language (WSDL) [37], which is used to describe Web services and their
service specification, and SOAP [38], a protocol used to exchange messages
between Web services and their clients.

SOAP defines the use of XML as an encoding scheme for request and
response parameters typically using HTTP as a means for transport. A SOAP
message consists of a mandatory body, which contains the message payload

17

2. STATE OF THE ART

or business information, and an optional header, which specifies additional
handling options and can be used by extension protocols.

2.2 Quality of Service and Service Level
Agreements

Quality of Service (QoS) [20] can be defined as a set of non-functional proper-
ties that determine the quality a service offers to its clients. The many aspects
of QoS important to SOAs and Web services can be organized into QoS cat-
egories, often called quality attributes. Each attribute needs to have a set of
quantifiable parameters or measurements. Some of the most important quality
attributes for SOA are [20, 26]:

Interoperability A measure of whether the service complies with standards.

Availability The percentage of time a service is operating.

Reliability The ability of a service to perform its required functions under
stated conditions for a specified period of time.

Security Includes the existence and type of authentication mechanisms the
service offers, confidentiality and data integrity of messages exchanged,
non-repudiation of requests or messages, and resilience to denial-of-
service attacks.

Performance A measure of the speed in completing service requests.

Scalability The ability of a SOA to function well (without degradation of
other quality attributes) when the system is changed in size or in volume
in order to meet users’ needs. One of the major issues in scalability is
how the performance of a system is affected by an increasing number
of service users.

18

2.2. Quality of Service and Service Level Agreements

Robustness It is the degree to which a service can function correctly in the
presence of invalid, incomplete or conflicting inputs.

Accuracy The error rate produced by a service.

Integrity To which degree a service can guarantee the consistency of the data
it operates on.

Maintainability The ease with which a system can be run and modified if
necessary. This is closely related to Deployability (the ease with which
the system can be installed and run), Extensibility (the ease with which
the capabilities can be extended without affecting other parts of the sys-
tem), and Adaptability (the ease with which as system may be changed
to fit changed requirements).

Cost A measure of cost involved in requesting the service.

Configuration Management related Some attributes are related to configu-
ration management: Completeness (measure of the difference between
the specified set of features and the implemented set of features), Stabil-
ity (measure of the frequency of change related to the service in terms
of its specification and/or implementation), Testability (the degree to
which a system facilitates the establishment of test criteria and the per-
formance of tests to determine whether those criteria have been met),
and Regulatory (how well the service is aligned with regulations).

A Service Level Agreement (SLA) [12] is a contract between service
providers and service consumers that specifies a set of QoS guarantees and
the obligations of the parties. Simplified example conditions that an SLA
may contain include:

• The Web service should be available at least 99.9 percent of time.

19

2. STATE OF THE ART

• The average response time for a particular service request should not
exceed 1 second.

• All traffic has to be encrypted using a highly secure industry standard
encryption algorithm.

SLAs for Web services are either plain natural language documents, or
instances of SLA templates that include several automatically processable
fields in an otherwise natural language document, or they can even be fully
expressed using flexible formal languages, such as in the WSLA framework
[13].

2.3 Measuring performance-related QoS for
Web services

Since this thesis focuses on performance-related QoS attributes of Web ser-
vices, a set of quantifiable parameters and measurements for these attributes
is defined in this section.

Peformance

The following distinguishable and relevant periods in time, a SOAP request
goes through before completing a full round trip, have been defined by Rosen-
berg et al. [27] based on the work by Wickramage and Weerawarana [39]:

Processing time The processing time tp defines the time needed by the ser-
vice provider implementation to actually carry out the operation for a
specific request. It does not include any communication overhead and
is therefore the parameter with the smallest granularity.

20

2.3. Measuring performance-related QoS for Web services

Consumer Provider

tw

tw

tw

tw

tp

tl

tl

te tr trt

Response

Request

Figure 2.2: A Web service operation invocation and involved time frames.

Wrapping time The wrapping time tw is a measure for the time that is needed
to unwrap the XML structure of a received request or wrap a request be-
fore sending it to the destination.

Execution time The execution time te represents the whole time the service
provider needs to finish processing a request. It starts with unwrapping
the XML structure, then processing the result and finally wrapping the
answer into a SOAP message that can be sent back to the requestor. It
is simply the sum of two wrapping times and the processing time:

te = tw + tp + tw.

Latency time The time a message needs to reach its destination over the net-
work is called latency time tl. It is influenced by the type of the network
connection, routing, network utilization and the message size.

21

2. STATE OF THE ART

Response time The response time tr is the time needed for sending a mes-
sage from a given client to a service provider until the response returns
back to the client. It is calculated by simply adding the network latency
for each direction to the execution time:

tr = tl + te + tl.

Round trip time The round trip time trt gives the overall time that is con-
sumed for invoking a Web service operation. It comprises all values on
both, requestor and provider side. It is calculated by adding to the re-
sponse time above also the wrapping time the client needs before send-
ing a message and after receiving the answer:

trt = tw + tr + tw = tw + tl + tw + tp + tw + tl + tw.

A sequence diagram showing a full Web service operation invocation with
a graphical representation of all involved time frames is depicted in figure 2.2.

Oberortner et al. [19] have described patterns for measuring performance-
related QoS properties in distributed systems. In this thesis their pattern of
automatically generated QoS interceptors is used for measuring time frames
involved in Web service requests at both the server- and client-side (see chap-
ter 4).

Throughput

Throughput tp is the number of service requests a service can successfully
complete over a time period. It can be calculated by the formula

tp =
#R

t
,

where #R is the number of successfully completed service requests and t is
the measured time period, e.g. in seconds.

22

2.4. Domain-Specific Languages and Model-Driven Development

Scalability

One important performance-related aspect of scalability is that a system that
is scalable has the ability to not get overloaded by a massive number of paral-
lel requests [27]. The scalability in this respect can be evaluated by observing
the time spans of single requests and the throughput of the system at increas-
ing levels of concurrently running service requests. While the request time
spans, such as processing time and round trip time, for single requests may
increase, the throughput should not break down, if a service is confronted
with unexpected high load. Additionally it is important how the request time
spans rise, if the number of concurrent requests increases. A service where,
e.g., the average round trip time increases linearly with the number of concur-
rent requests is considered to have better scalability than a service where the
average round trip time increases quadratically or even exponentially.

2.4 Domain-Specific Languages and
Model-Driven Development

Domain-specific languages (DSLs) [7] are small languages that are tailored to
be particularly expressive in a certain problem domain. DSLs enable domain
experts to work at higher levels of abstraction. The goal is to make modeling
complex problems in a domain easier and more convenient. Furthermore they
can remove the necessity to manually write schematic and recurring code by
supporting automatic code generation. It has been shown that carefully exe-
cuted and narrowly defined DSLs can reap an order of magnitude improve-
ment in productivity and quality [35].

A popular approach to implementing DSLs is Model-Driven Development
(MDD) [31]: The graphical or textual syntax of the DSL is tied to domain-
specific modeling elements through a precisely defined language model. It

23

2. STATE OF THE ART

has been shown that MDD-based DSLs for modeling business systems enable
technical and non-technical experts to work at higher levels of abstraction
[17].

Model Instance

DSL

Concrete Syntax

Model

(DSL Abstract Syntax)
Meta-Model

based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using*

*

Schematic

Recurring Code

produces

1..

1..* 1..*

Individual Code
uses

* *

Figure 2.3: Architecture of DSLs based on MDD [18].

The general infrastructure of MDD-based DSLs is depicted in figure 2.3.
The core of the DSL is the language model, which is also called the DSL

abstract syntax. It defines the elements of the domain and their relationships
without considering their notations. It is based on a meta-model which de-
fines how the domain elements and their relations can be described. DSL
users should be able to describe particular problems of their domain by defin-
ing model instances (based on the language model) using a familiar notation.
Therefore, the DSL concrete syntax defines either a textual or graphical lan-
guage for defining model instances in a form that is suitable for the stakehold-
ers using the DSL.

A transformation maps model concepts to code or other output and can
therefore be defined when model instances should be transformed into in-
stances of some other model and, ultimately, to an executable language. Typ-
ically DSLs are used to automatically generate schematic and recurring code

24

2.5. Applied Technologies

of an application that is developed for a particular problem domain. A tool
that uses a transformation to generate executable code from a model instance
is called a generator. If necessary, the automatically generated code can be
extended with manually written individual code (or maybe also code that was
generated by using some other DSL).

Tolvanen [35] divides the process of implementing DSLs into four phases:

1. Identifying abstractions and how they work together. It is important
to describe things in problem domain terms instead of implementation
concepts.

2. Working out the language model. Generally major domain concepts
should be mapped to modeling language objects, while other concepts
are captured as object properties, connections, sub-models, or links to
models in other languages.

3. Creating the visual representation for the language. Defining a domain-
specific notation makes models much easier to create, read an maintain.

4. Defining the generators. They transform model instances into code for
interpretation or compilation into an executable.

The implementation of the DSL described in this thesis can also be divided
in these four phases, as presented in the following chapter 3.

2.5 Applied Technologies

This section briefly describes the tools, languages and software frameworks
that were used for the implementation of the system presented in this thesis.

25

2. STATE OF THE ART

Frag Modeling Framework

Frag [41, 40] is a dynamic programming language, specifically designed for
enabling MDD and building DSLs. It supports both embedded DSLs (also
called internal DSLs) and external DSLs [6]. An embedded DSL is an ex-
tension to an existing programming language and uses the syntactic elements
of the underlying language, hosting the DSL. An external DSL is defined in
a different format than the intended host language and can use all kinds of
syntactical elements.

The Frag Modeling Framework (FMF) is a package that is included with
Frag and can be used to build a language model for a DSL. It is similar to
the modeling frameworks found in other model-driven language workbenches
(e.g. Eclipse Modeling Framework, Microsoft DSL Tools) and the represen-
tation of the language model can easily be mapped to existing modeling lan-
guages, e.g. a UML class diagram. The meta-model defined by the FMF
allows to specify language models in Frag using well-known concepts, such
as classes, which can have typed and untyped attributes, relationships between
classes (associations, compositions, aggregations, and inheritance), as well as
extensions using stereotypes and enumerations.

Apache CXF

Apache CXF [33] can be used to build and develop services using frontend
programming APIs, such as JAX-WS [9]. One of its primary focuses is the
support of Web services standards.

The CXF framework will be used in this thesis for implementing an ex-
ample Web service infrastructure that will be subject to performance-related
quality of service tests.

26

2.5. Applied Technologies

Apache Ant

Apache Ant [32] is a Java library and command-line tool for building applica-
tions. It uses an XML file (typically named build.xml) for the description
of the build process of a project in terms of targets and tasks.

It is used for building the whole implementation of the system presented
in this thesis.

JavaCC

Java Compiler Compiler (JavaCC) [1] is, according to its authors, the most
popular parser generator for Java-based applications. A parser generator is a
tool that reads a grammar specification and converts it to a Java program that
can recognize matches to the grammar.

In this thesis a JavaCC-based parser is used for the implementation of the
external DSL syntax.

JBoss Seam

JBoss Seam [11] is a powerful open source development platform for building
rich Internet applications in Java. It is used in this thesis for building a Web
user interface for displaying test result reports.

27

CHAPTER 3
Language Design and

Implementation

This chapter describes the design and implementation of the QoSTIL (Qual-
ity of Service Test Instrumentation Language). The purpose of this new
DSL is to enable its users to define and compose tests to create complex test
plans which can be used to simulate Web service client behavior and eval-
uate performance-related quality of service attributes of Web services. The
core concept of the language are tests which can be transformed to executable
code, run against a particular Web service or service infrastructure. After the
execution the tests return test reports, which include the test results, i.e. mea-
surements of numeric QoS attributes and possibly also evaluations of Boolean
assertions about such attributes, in a human readable form. Complex test be-
havior can be described by composed tests which execute other tests using
loops or in parallel. The results of such test execution sequences can easily
be merged using aggregators which implement statistical measures such as
average, variance, and median.

29

3. LANGUAGE DESIGN AND IMPLEMENTATION

3.1 Language Model and Semantics

Figure 3.1 depicts the core language model which contains the main language
element Test and related classes.

name : String

Test

calculation : Expression

ResultCalculation

type : String

FieldDefinition

Execution

InternalTestExternalTest

Parameter

Result

name : String

Field ViewAnnotation

Figure 3.1: QoSTIL model: Core.

Each Test has a string attribute name which is used to identify it. Tests
can have parameters (Parameter) and results (Result). Both parameters and
results are subtypes of FieldDefinition and indirect subtypes of Field and
therefore have a type (e.g. integer number) and a name. All fields can be seen
as variable slots that are used to store and access values by name. Parameters
are used for input values that a test needs when it is executed and have to
be filled by a test caller. Results have to be filled by the test implementation
during the test execution. The test report that is returned after the execution
of a test contains all parameters and results.

Test is an abstract class which has two concrete subclasses: ExternalTest
and InternalTest. An external test does not have its implementation speci-
fied using this language, it is only a declaration of a test interface. The test
behavior and calculations have to be implemented in the hosting language
(Java). Internal tests on the other hand are completely specified using ele-

30

3.1. Language Model and Semantics

ments from the language model, i.e. executions (Execution) and result calcu-
lations (ResultCalculation).

Executions specify which other tests should be called and run during the
execution of some test. As subtypes of Field they also have a name which can
later on be used to access their values. The value of an execution is its result,
i.e. a test report (or a sequence of test reports) of the test that was executed.
The subtypes of the abstract class Execution are explained in detail later (see
figure 3.2).

Result calculations associate each test result with an expression which
specifies how the result value is calculated after all executions have com-
pleted. In an internal test each Result is associated with exactly one Result-
Calculation. Expressions are further explained later using figure 3.3.

Field definitions (parameters and results) can be associated with an op-
tional set of view annotations (ViewAnnotation). They specify how these
fields will be displayed in the test report that is generated after a test was run.
For the set of available concrete view annotations see figure 3.5 later in this
section.

The translation from a language model given by a class diagram to a FMF
language model using Frag syntax is straightforward. Code listing 3.1 shows
how some concepts from the core language model (figure 3.1) can be ex-
pressed in the FMF.

By using the Frag language more complex constraints can be expressed,
such as that the number of result calculations always needs to be the same as
the number of results for an internal test. These constraints are not contained
in the example above. The following parts of the language model are depicted
using class diagrams only.

All executions (see figure 3.2) are associated to a TestRun. It specifies
which other test should be executed (using the attribute test) and it has a set of

31

3. LANGUAGE DESIGN AND IMPLEMENTATION

FMF::Class create Test -attributes {
name String

}
FMF::Class create InternalTest -superclasses Test
FMF::Class create ExternalTest -superclasses Test

FMF::Class create Parameter -superclasses FieldDefinition
FMF::Class create Result -superclasses FieldDefinition

FMF::Composition create Test-Parameter -ends {
{Test -roleName test -multiplicity 0
-navigable true -aggregatingEnd true}

{Parameter -roleName parameters -multiplicity * -navigable true}
}
FMF::Composition create Test-Result -ends {

{Test -roleName test -multiplicity 0
-navigable true -aggregatingEnd true}

{Result -roleName results -multiplicity * -navigable true}
}

FMF::Class create ResultCalculation -attributes {
result Result
calculation Expression

}
FMF::Composition create InternalTest-ResultCalculation -ends {

{InternalTest -roleName test -multiplicity 0
-navigable true -aggregatingEnd true}

{ResultCalculation -roleName resultCalculations
-multiplicity * -navigable true}

}

FMF::Class create Execution -superclasses Field -attributes {
run TestRun

}
FMF::Composition create InternalTest-Execution -ends {

{InternalTest -roleName test -multiplicity 0
-navigable true -aggregatingEnd true}

{Execution -roleName executions -multiplicity *
-navigable true}

}

Code Listing 3.1: QoSTIL core language model described in the syntax of
the FMF (some concepts).

parameter setters, which specify using expressions to what values the param-
eters of the other test are set before it is called. Exactly one ParameterSetter
is needed for each parameter of the other test.

There are two types of executions: A SingleExecution will execute the
other test only once. Repeated executions (RepeatedExecution) will execute

32

3.1. Language Model and Semantics

Execution

test : Test

TestRun

parameter : Parameter

setTo : Expression

ParameterSetter

SingleExecution

count : Expression

RepeatedExecution

LoopExecution

ParallelExecution

Figure 3.2: QoSTIL model: Executions.

the test a fixed number of times (given by the attribute count). Again there
are two variants: LoopExecution specifies to execute the other test in a serial
fashion, one run after the other. The next iteration only begins after the first
one is completed. ParallelExecution on the other hand specifies that the
same test should be executed for the given number of times in parallel, all
runs starting at the same time.

The value of an execution is the result of the test that was executed. For
single executions, this is a test report, which contains all parameter and result
values of the test. For repeated executions it is a sequence (or array) of test
reports.

Expressions (see figure 3.3) can be used to calculate some value. The
subtypes of Value are language elements that have an obvious value. They
are fields (parameters, executions and results) and literals (e.g. the number 0).
Furthermore there a field selectors (FieldSelector) which can be used to only
select the value of a particular field of a test report given by an expression
(typically this expression will contain an execution, because its value is a test
report).

Operators can be used to build arbitrary complex expressions. There are

33

3. LANGUAGE DESIGN AND IMPLEMENTATION

Expression

Value

Operator

Aggregator

operand1 : Expression

operand2 : Expression

BinaryOperator

operand : Expression

UnaryOperator

value : String

Literal

name : String

Field

testReport : Expression

FieldSelector

Figure 3.3: QoSTIL model: Expressions.

both binary and unary operators. Their concrete subtypes (which are not listed
in the figure) are all Boolean (and, or, not ...), numeric (addition, multiplica-
tion ...) and relational (equals, greater than ...) operators which are supported
by the hosting language Java.

Aggregators are functions which take a sequence (or array) of test reports
(typically the result of a repeated execution) as an argument and associate it
with some new value. The available aggregators are given in figure 3.4.

The argument of an aggregator is given by the expression-typed attribute
testReportArray. Field aggregators (FieldAggregator) have an additional at-
tribute aggregationField which associates the aggregator with a particular test
report field which is selected in all test reports that it aggregates over. The
concrete aggregators and their functions are:

ArrayConcatAggregator Selects the given aggregation field (which needs
to be array typed) for each test report in the given test report array and
concatenates all values building a new large array.

34

3.1. Language Model and Semantics

testReportArray : Expression

Aggregator

ArrayLengthAggregator

aggregationField : Field

FieldAggregator

ArrayConcatAggregator

AverageAggregator

MedianAggregator

MinimumAggregator

MaximumAggregator

SumAggregator

filterCondition : Relator

ArrayFilterAggregator

VarianceAggregator

Figure 3.4: QoSTIL model: Aggregators.

AverageAggregator Calculates the average value over all values of the given
aggregation field (which needs to be numerically typed) for all test re-
ports in the given test report array.

VarianceAggregator Calculates the variance (mean squared deviation).

MedianAggregator Calculates the median value.

MinimumAggregator Calculates the minimum value.

MaximumAggregator Calculates the maximum value.

SumAggregator Calculates the sum of all selected (numerically typed) fields.

ArrayFilterAggregator Builds a new test report array by selecting only those
reports where the value of the given aggregation field matches some
condition given by the filterCondition attribute. The available rela-
tors are all relational operators supported by the hosting language Java
(equals, greater than ...).

ArrayLengthAggregator Calculates the length of the given test report array.

35

3. LANGUAGE DESIGN AND IMPLEMENTATION

There are of course more possible aggregator functions. The aggregators
described here were identified as the most important ones for the language
use cases discussed in the following chapter 4.

ViewAnnotation

HideAnnotation

text : String

DescriptionAnnotation

xAxisField[1] : Field

yAxisFields[1..*] : Field

PlotAnnotation

fields[1..*] : Field

ExpandFieldsAnnotation

Figure 3.5: QoSTIL model: View annotations.

The available concrete view annotation subtypes that can be used to con-
figure how test fields (parameters and results) are displayed in the test report,
are depicted in figure 3.5. Using DescriptionAnnotation a descriptive text
can be added to parameters and results. It will be displayed in the test report
next to the name of the field and can be used to make a test report easier un-
derstandable. If a field is annotated using an instance of HideAnnotation it
will not be displayed in the test report. This can be used for test implementa-
tion related fields that are not relevant for the interpretation of the test results
by users.

PlotAnnotation can be used for presenting the data obtained from re-
peated executions in the test report using a plot in the form of curves on a
Cartesian plane. The annotated field needs to be test report array typed, in
other words its value needs to be an array of test reports. The attribute xAxis-

Field defines which field from each of the test reports in the test report array
will be used for selecting the set of X values. The Y values are given by yAx-

isFields. It is possible to give more than one Y-axis field, if multiple curves
should be displayed in the same plot.

36

3.2. Language Syntax

ExpandFieldsAnnotation can be used to display some of the fields of
some other test report (the value of the field that this annotation is used on)
directly in the test report of the current test. Normally only a link to the other
test report is displayed, but using this annotation the fields selected using
the attribute fields (and their values) are presented on the same page. This
annotation is only allowed for fields that are test report or test report array
typed. In the latter case the selected fields of each test report from the array
will be displayed in a table.

3.2 Language Syntax

By defining the language model in the FMF we have the possibility to also
create language instances using the Frag syntax. The language is then used as
an embedded (or internal) DSL. Such language instances are directly linked
to the language model which brings a lot of benefits, e.g. constraints such
as association multiplicities or attribute types can be checked automatically.
But language instances specified using the Frag syntax are quite long and
not easily readable. For example, this is how a simple QoSTIL-expression
containing a subtraction of two literals could be expressed in the FMF syntax:

[SubtractionOperation create

-operand1 [Literal create -value "10"]

-operand2 [Literal create -value "5"]]

Therefore an external, shorter syntax was defined and implemented as a
notation for the language based on the language model. The syntax is de-
signed to look familiar to programmers knowing Java (or other C-like lan-
guages). Together with this syntax, QoSTIL can be used as an external DSL,
because it is not any more directly embedded in a host language.

Code listing 3.2 is a grammar in an extended Backus-Naur Form that de-
scribes the QoSTIL syntax.

37

3. LANGUAGE DESIGN AND IMPLEMENTATION

File = (InternalTest | ExternalTest)*

InternalTest = ’test’ ID ’{’ IntlTestBody ’}’
ExternalTest = ’external’ ’test’ ID ’{’ ExtlTestBody ’}’

IntlTestBody = (ParameterDecl ’;’)*
(ExecutionDef ’;’)*
(ResultDef ’;’)*

ExtlTestBody = (ParameterDecl ’;’)*
(ResultDecl ’;’)*

ParameterDecl = [Annots] ’parameter’ Typename ID
ResultDecl = [Annots] ’result’ Typename ID
ResultDef = [Annots] ’result’ Typename ID ’=’ Expression

ExecutionDef = [Repeated] ’execution’ ID ’:’ TestRun
Repeated = (’loop’ | ’parallel’) ’(’ Expression ’)’
TestRun = ID ’(’ [ParamSetter (’,’ ParamSetter)*] ’)’
ParamSetter = ID ’=’ Expression

Annots = (DescAnnot | HideAnnot | ExpandAnnot | PlotAnnot)*
DescAnnot = ’@Description’ ’(’ STRING ’)’
HideAnnot = ’@Hide’
ExpandAnnot = ’@ExpandFields’ ’(’ ID (’,’ ID)* ’)’
PlotAnnot = ’@Plot’ ’(’ ID ’|’ ID (’,’ ID)* ’)’

Code Listing 3.2: Grammar of the QoSTIL syntax.

In this grammar all capitalized words are non-terminals, characters be-
tween single quotes (’) are terminals, (... | ...) indicates a choice, the
asterisk (...)* specifies a repetition for zero or more times and [...]
is an option. ID is a special non-terminal for identifiers which is used for all
alphanumeric names. STRING stands for all string literals between double
quotes (").

The top-level non-terminal File is used for compilation units and can
include multiple internal and external test definitions. All tests start with the
keyword test followed by their name and the test body inside curly brack-
ets. External tests are distinguished from internal tests using the modifier
external. Test bodys can include parameter declarations
(ParameterDecl) and result definitions for internal tests (ResultDef)
or result declarations for external tests (ResultDecl). Internal tests also
allow execution definitions (ExecutionDef).

38

3.2. Language Syntax

Parameter declarations begin with the keyword parameter (after op-
tional view annotations), are typed using a Typename and have a name. The
non-terminal Typename is not explicitly given in the grammar above. It in-
cludes all primitive Java types (bool, int, double ...), strings (String) and the
(array) test report types of tests defined in this language. Test report names are
always composed of the name of a test and the character sequence "Report"
(e.g. "MyTestReport"). Test report array types can be defined by append-
ing square brackets (e.g. "MyTestReport[]").

Result declarations are equivalent to parameter declarations. Result defi-
nitions additionally include an expression after an equality sign, which speci-
fies how the result value is calculated.

Due to space constraints the expression syntax is left out in the above
grammar. It is generally very similar to the Java expression syntax: Variables
(fields) such as parameter, result and execution names are simply accessed us-
ing their name. The syntax for numeric and string literals, as well as for all op-
erations is equivalent to the Java syntax. Field selectors for test reports can be
expressed using a dot-notation (e.g. testReport.field1). The notation
of aggregators is very similar to the method call syntax of Java. E.g. the length
of a test report array typed variable testReportArray can be calculated
by the expression testReportArray.length(). An example for a field
aggregator looks like this: testReportArray.average(field1). Fil-
ter aggregators additionally include the relation expression, e.g.
testReportArray.filter(field1 > 10).

Execution definitions are introduced by the keyword execution and
also have a name. They can be modified by the keywords loop and paral-
lel if the execution is supposed to be repeated multiple times. The number of
repetitions is given by an expression in brackets following the modifier. After
a colon, execution definitions have to contain a TestRun which specifies the
name of the other test that should be executed followed by a pair of brackets

39

3. LANGUAGE DESIGN AND IMPLEMENTATION

which can optionally contain a list of parameter setters (ParamSetter).
Parameter setters begin with the name of the other test’s parameter that should
be set, followed by an expression specifying the value, after an equality sign.

Optionally view annotations (Annots) can be added to parameter and re-
sult declarations/definitions. The view annotation syntax is heavily influenced
by the Java annotation syntax.

An example of a full test definition to get a better idea of the syntax (with-
out view annotations) is contained as code listing 3.3.

test MyTest {

parameter double myParam1;
parameter int myParam2;

loop(10) execution otherTestExecutions:
OtherTest(otherTestParam1 = myParam1 * 100);

result int myResult1 = 5 * (myParam2 + 10);
result OtherTestReport[] myResult2 = otherTestExecutions;
result double myResult3 =

otherTestExecutions.average(otherTestResult1);
}

Code Listing 3.3: Example QoSTIL test definition.

The example defines a test named MyTest which declares two typed pa-
rameters (myParam1 and myParam2) and an execution named
otherTestExecutions of OtherTest that will be executed in a loop
for 10 times with a value for the parameter otherTestParam1 given by an
expression. Furthermore there are three results (myResult1, myResult2
and myResult3) including expressions that specify how their values are
calculated. The value of myResult2 is simply the result of the repeated
execution, i.e. an array of test reports, and therefore needs to have the type
OtherTestReport[]. The result of myResult3 is the average value of
the field named otherTestResult1 from each of the test reports in the
array. This assumes of course that the test definition of OtherTest does
include this field.

40

3.2. Language Syntax

Code listing 3.4 is the same example which has been extended with some
view annotations.

test MyTest {

@Hide
parameter double myParam1;

@Description("The second parameter of the test")
parameter int myParam2;

loop(10) execution otherTestExecutions:
OtherTest(otherTestParam1 = myParam1 * 100);

@Hide
result int myResult1 = 5 * (myParam2 + 10);

@Plot(otherTestResult1 | otherTestResult2)
@ExpandFields(otherTestResult1, otherTestResult2)
result OtherTestReport[] myResult2 = otherTestExecutions;

result double myResult3 =
otherTestExecutions.average(otherTestResult1);

}

Code Listing 3.4: Example QoSTIL test definition (with view annotations).

The view annotations are used to control how the visual representation
of the test report that is generated when this test is executed should look
like. Here it is stated that myParam1 and myResult1 should be hidden,
i.e. not be included in the test report. A description for humans is added to
myParam2. For the test reports in myResult2 a plot will be generated. The
values from the otherTestResult1 fields are plotted on the X-axis and
the values from otherTestResult2 on the Y-axis. Furthermore the same
fields and their values will also be included in the test report using a textual
representation, as stated by the @ExpandFields annotation.

The implementation of a parser for the syntax defined above has been
developed using JavaCC (see section 2.5). The parser generates a parse tree
which is then mapped to the elements from the language model and results in
a language instance. The mapping component is implemented in Frag using
the FMF and therefore generates language instances that are directly linked to

41

3. LANGUAGE DESIGN AND IMPLEMENTATION

the language model (which was also specified using the FMF). This has the
advantage that language constraints are checked automatically and all features
of the FMF can easily be used, such as code generation (see the following
sections).

3.3 Code Generation

To make tests executable, the language instances are automatically trans-
formed to Java code. This code generation component was also implemented
using the FMF: It reads all tests from a language instance and produces ex-
ecutable Java classes that often contain schematic and recurring code that is
tedious and error-prone to write manually.

QoSTIL

test instance

MyTest

Generated

implementation class

MyTest.java

Code Generation

Generated

report data class

MyTestReport.java

Manual

implementation class

MyTestImpl.java

references

Only for

external tests

references

Figure 3.6: QoSTIL code generation and involved documents.

Each test is automatically transformed to two Java classes (see figure 3.6).
The first class (implementation class) which implements the behavior of the
test, simply uses the test name specified in the model instance as its name
(e.g. MyTest). It always has a method named run which can be used to

42

3.4. Report View Generation

execute the test. For external tests an additional class with the same interface
is expected and has to be implemented manually. It has to be named alike plus
“Impl” (e.g. MyTestImpl). It is referenced in the generated run method and
it leads to a compilation error if it does not exist.

The second class (report data class) is used to store both the parameter
and result values of the test. It is called just like the first class with the string
“Report” appended (e.g. MyTestReport). Parameter and result values are
saved using instance fields and can be accessed using setter and getter meth-
ods. An instance of this class (already containing all test parameter values)
has to be passed as an argument to the run method of the implementation class
and will be returned by the same method, then also containing the test result
values. The report data class is additionally extended using JAXB annotations
which make it possible to serialize test reports to XML data. This is used to
save test reports to present them to the language users after the test executions.

3.4 Report View Generation

In this section we present the report view generation component of the im-
plemented system. The goal of the this component is to generate a report
template for each test that will be used to visually present the test output to
the language user after the test execution.

Normally the test report should include all parameter and result field val-
ues of the executed test. Using view annotations the test report display can be
configured, by adding descriptions, hiding certain fields, defining plots and
expanding some fields of sub test reports.

In the implemented system, after a test was executed, the test report data
(containing all parameter and result values of this particular test run) is se-
rialized to XML and stored in a database associated with a unique identifier

43

3. LANGUAGE DESIGN AND IMPLEMENTATION

HTML test

report view

ID 123

HTML test

report view

ID 123

XML test

report data

ID 123

XML test

report data

ID 123

QoSTIL

test instance

MyTest

Report view template

(JSF)

MyTestReport.xhtml
Report View Generation

Executions

XML test

report data

ID 123
Database

stored in

Web application

(JBoss Seam)

uses

accesses

HTML test

report view

ID 123

Figure 3.7: QoSTIL report view generation and involved documents.

(see figure 3.7). Later on the data can be accessed by the language users
through a Web interface which presents it as an HTML page according to the
configuration by view annotations. Therefore, besides the Java classes that
are needed to execute a test and store the test data, a report view template
for each test is automatically generated (also depicted in figure 3.7), that is
used to present the reports of particular test executions to the language users.
The generated view templates are based on the JavaServer Faces (JSF) [10]
technology, which is supported by popular Java web application frameworks,
such as JBoss Seam which was used here.

Plots are automatically rendered client-side by the Javascript plotting li-
brary flot [21].

44

CHAPTER 4
Using the Language

To show the utility and usability of the QoSTIL a set of prototypical per-
formance tests have been implemented as example language instances. The
definition of these tests is based on existing methods for assessing relevant
performance-related quality of service attributes and uses the metrics as de-
scribed in chapter 2, section 2.3. There are tests for measuring both low-level
attributes such as (average) response times for single and repeated Web ser-
vice requests and more complex ones such as throughput and scalability of a
Web service.

The implementation of the most basic test case described below that sim-
ply performs a single Web service request, interprets the response and uses
both client- and server-side interceptors to measure the involved time frames,
is not generated from the DSL presented here, but is based on the low-level
QuaLa defined by Oberortner et al. [18, 36]. All the other more complex
tests described here and their implementations are completely defined using
the QoSTIL, without the need to use other programming languages.

To prove the practical applicability of QoSTIL tests and show the high
value of performance tests, the results of the most complex test given here (a

45

4. USING THE LANGUAGE

scalability test) will be discussed and interpreted in detail in section 4.2.

At the end of this chapter (section 4.3) there is some discussion of possible
future extensions of the QoSTIL that could make the language more powerful
and simpler to use.

4.1 Language Instances

There are four main performance tests for Web services listed in this section
(and also some intermediate helper tests). They all have been defined using
the QoSTIL in a very generic and parameterizable way. The simplest test
case is the Basic Request Test. Each one of the more complex tests is always
based on the previous simpler test, leading to a test hierarchy. The Generic

Parallel Load Test (indirectly) reuses the Basic Request Test, the Throughput

Test executes the Generic Parallel Load Test, and finally the most advanced
test defined here, the Scalability Test, is based on the Throughput Test.

Basic Request Test

The purpose of the Basic Request Test is to perform a single Web service
request and return whether the request was successful and how much time
was needed to execute it. In particular the time here should be measured as
both the complete roundtrip time and the more fine-grained processing time
(see section 2.3).

external test WSRequestTest {
result double processingTime;
result double roundtripTime;
result boolean successful;

}

Code Listing 4.1: QoSTIL test instance: WSRequestTest.

46

4.1. Language Instances

Such a simple test can be defined in the QoSTIL as in code listing 4.1. This
test definition only specifies the three test results. It is an external test, which
means that the actual implementation of the test behavior is not specified using
the QoSTIL.

QoSTIL

(external) test instance

WSRequestTest

Low-level QuaLa

Web service interface

description

Low-level QuaLa

Web service

implementation-

technology description

Client- & Server-side

request interceptors
Client- & Server-side

request interceptors
Request interceptors

(Java)

Web service client

implementation (Java)

Test implementation

(Java)

references

used to generate

used to generate

used to generate

Description of system under test

installs

deployed using

Figure 4.1: Interaction of the QoSTIL with the low-level QuaLa.

As explained above, the implementation is supposed to be added using
another DSL, the low-level QuaLa [18, 36]. The connection of the QoSTIL
presented in this work and the previously defined low-level QuaLa is depicted
in figure 4.1. The low-level QuaLa is used for specifying the system under
test, i.e. the Web service that should be tested.

The first part of this specification is a description of the Web service in-

terface including how the Web service can be accessed, what operations it
supports and what parameters these operations have.

The second part is a description of the Web service implementation tech-

nology. It has to include all information that is needed to model the implemen-

47

4. USING THE LANGUAGE

tation-specific concerns, e.g. how to measure the roundtrip time in a particular
Web service engine. In the developed prototype a description of the open-
source Apache CXF Web service framework (see section 2.5) is included.
Using the model provided by the low-level QuaLa the requirements can be
modeled as follows [18]: The communication between service client and ser-
vice provider is based on message-flows. Each message-flow consists of a
number of phases, where each phase can contain handlers (or interceptors) for
measuring QoS values. For instance, the handler for measuring the roundtrip
time is associated to two certain phases of the message flow on the client side.

The low-level QuaLa specification of the system under test can be used
to automatically create an executable Java Web service client implementation

and the request interceptors for the described Web service technology, which
are needed to measure the (low-level) QoS attributes of interest. The Web ser-
vice client implementation makes sure that the necessary request interceptors
are installed on both the client- and server-side.

The Java test implementation that is generated from the QoSTIL WS-

RequestTest defined above, references the Web service client implemen-
tation and uses it for performing a single Web service request. Through a
defined interface it accesses the measured QoS values (here processing time,
roundtrip time and successful) and stores them in the specified result fields.

The WSRequestTest defined above measures the performance of a
Web service request only in terms of processing and roundtrip time, as op-
posed to all the time frames described in section 2.3. But a measurement of
the involved network and protocol overhead (the sum of all latency and wrap-
ping times) can easily be obtained by subtracting the processing time from
the roundtrip time.

This can be implemented in the QoSTIL using a simple wrapper for WS-
RequestTest, here called SingleRequestTest (code listing 4.2). This
internal test simply executes the WSRequestTest once, copies all results

48

4.1. Language Instances

test SingleRequestTest {

execution request: WSRequestTest();

result double processingTime = request.processingTime;
result double roundtripTime = request.roundtripTime;
result boolean successful = request.successful;
result double latencyAndWrappingTime =
roundtripTime - processingTime;

}

Code Listing 4.2: QoSTIL test instance: SingleRequestTest.

(processingTime, roundtripTime, successful) unchanged and
calculates a new result latencyAndWrappingTime by subtracting the
processing time from the roundtrip time.

Generic Parallel Load Test

The Basic Request Test described above can be used to measure basic QoS
attributes for single Web service requests. But to determine significant per-
formance statements about Web services, realistic client behavior has to be
simulated, especially multiple clients that access a Web service in parallel.

The goal is to develop a Generic Parallel Load Test that can be used to
simulate a fixed number of parallel clients, where each of the clients repeat-
edly performs Web service requests. The results and basic measurements of
each executed request should be returned for further processing (e.g. statisti-
cal analysis).

To develop this performance test, first an intermediate test was imple-
mented using the QoSTIL. The RepeatedRequestTest definition (code
listing 4.3) simply runs the SingleRequestTest described above in a
loop.

The purpose of this test is to run a Web service request repeatedly for a
fixed number of times. This number is specified by the parameter repeats.

49

4. USING THE LANGUAGE

test RepeatedRequestTest {

parameter int repeats;

loop(repeats) execution requests: SingleRequestTest();

result SingleRequestTestReport[] singleRequestTestReports =
requests;

}

Code Listing 4.3: QoSTIL test instance: RepeatedRequestTest.

The test definition uses a loop execution to repeatedly run the previously de-
fined SingleRequestTest in a serial fashion. The reports of these execu-
tions are returned as the test result singleRequestTestReports. Con-
sequently this result is SingleRequestTestReport[]-typed, which re-
stricts its value to be an array of SingleRequestTest reports.

test ParallelRequestTest {

parameter int parallelUsers;
parameter int requestsPerUser;

parallel(parallelUsers) execution requests:
RepeatedRequestTest(repeats = requestsPerUser);

result SingleRequestTestReport[] singleRequestTestReports =
requests.concat(singleRequestTestReports).

filter(successful == true);

}

Code Listing 4.4: QoSTIL test instance: ParallelRequestTest.

The RepeatedRequestTest is used to simulate a single client that re-
peatedly accesses a Web service. Using another test this test is parallelized to
simulate multiple equivalent clients (see code listing 4.4). This Parallel-
RequestTest has a parameter parallelUsers for specifying how many
parallel clients should be simulated. This parameter gives the number of
times the parallel execution should run the RepeatedRequestTest. The
value of the parameter requestsPerUser is used as an input value for the
repeats parameter of each execution.

50

4.1. Language Instances

The only result (singleRequestTestReports) of this test is again
just an array of SingleRequestTest reports. The value of this result
is calculated by simply concatenating all result arrays of the Repeated-

RequestTest executions (using an ArrayConcatAggregator). Addition-
ally in this example the results are filtered to only contain the reports of suc-
cessful requests (using an ArrayFilterAggregator).

Throughput Test

The ParallelRequestTest explained above is a general test that can
be used to simulate parallel users that repeatedly invoke a Web service. The
results of this test can be used for evaluating all kinds of performance-related
QoS attributes of Web services.

One example for a test that directly uses the ParallelRequestTest
for calculating important QoS attributes is the ThroughputTest, which
was developed as the next example for the usage of the QoSTIL and is con-
tained as code listing 4.5.

This test has two defined parameters (parallelUsers and requests-
PerUser) which are directly used for input values for the Parallel-

RequestTest, that is executed by this test. The result of this execution is
stored in a field named requests. The result calculation definitions show-
case how QoSTIL aggregators can be used to calculate statistical properties
of datasets. The average, variance, minimum and maximum of the process-
ing times of all Web service request that were performed during the execution
of the ParallelRequestTest are calculated and stored in test results.
Equivalently these statistical measures are also calculated for the roundtrip
times and the latency and wrapping times (but left out in the definition above
due to space constraints).

The test also returns the total number of requests that were performed

51

4. USING THE LANGUAGE

test ThroughputTest {

parameter int parallelUsers;
parameter int requestsPerUser;

execution requests:
ParallelRequestTest(parallelUsers = parallelUsers,

requestsPerUser = requestsPerUser);

result double processingTimeAvg =
requests.singleRequestTestReports.average(processingTime);

result double processingTimeVar =
requests.singleRequestTestReports.variance(processingTime);

result double processingTimeMedian =
requests.singleRequestTestReports.median(processingTime);

result double processingTimeMin =
requests.singleRequestTestReports.min(processingTime);

result double processingTimeMax =
requests.singleRequestTestReports.max(processingTime);

// equivalent average, variance, median, minium and maximum
// calculations for roundtripTime and latencyAndWrappingTime

result int totalRequestsCount =
parallelUsers * requestsPerUser;

result int successfulRequestsCount =
requests.singleRequestTestReports.length();

result double requestsPerMinute =
(successfulRequestsCount * 60000.0) / testTime;

result double requestsPerMinutePerUser =
requestsPerMinute / parallelUsers;

result double testTime = testTime;
}

Code Listing 4.5: QoSTIL test instance: ThroughputTest.

(totalRequestsCount) and how many of them were successful (suc-
cessfulRequestsCount).

The value of the result requestsPerMinute is the average number
of request per minute that could be successfully completed by the Web ser-
vice with the given number of parallel users. This is of course a measure-
ment for the throughput of the Web service and the reason for the name
of this test. By dividing this value by the number of parallelUsers (result
requestsPerMinutePerUser) an estimate for the throughput from the
viewpoint of a single client is also obtained.

52

4.1. Language Instances

Please note the usage of the special field testTime that is available in
the generated runtime code of every QoSTIL test and contains the time the
test needed for running (only execution time, without the calculation of result
values).

Scalability Test

The Scalability Test is the most advanced test presented here as an example
for the usage of the QoSTIL.

It can be used to determine the scalability of a Web service by observ-
ing its throughput at increasing levels of concurrently running users. This
can be achieved by repeatedly running the Throughput Test from the previous
section, with increasing values for the parameter parallelUsers.

A flexible Scalability Test can is defined in code listing 4.6. Unlike the
previous tests, this test definition also demonstrates the usage of QoSTIL view

annotations for parameters and results.

The @Description annotations add a descriptive text to all parameters
and results. Therefore they do not need to be further explained here.

Using a loop execution the Throughput Test is repeatedly executed (seri-
ally and not in parallel of course) for a fixed number of times (given by the
parameter repeats). The values for the parameters of the Throughput Test

are automatically calculated for each iteration. Please note the usage of the
special variable iteration that can be used in all definitions of repeated
executions. It can be used to access the current iteration count, beginning with
1.

The reports of the executed Throughput Tests are stored unmodified in the
result throughputTestReports for further processing or interpretation
by the language user. By using @Plot annotations a visual presentation of

53

4. USING THE LANGUAGE

test ScalabilityTest {

@Description("Number of executed throughput tests")
parameter int repeats;

@Description("Number of parallel users in the first iteration")
parameter int startParallelUsers;

@Description("Increase of parallel users per iteration")
parameter int parallelUsersIncrease;

@Description("Number of requests per executed throughput test")
parameter int requestsPerTest;

loop(repeats) execution reports:
ThroughputTest(parallelUsers = startParallelUsers * iteration,

requestsPerUser =
requestsPerTest / (startParallelUsers * iteration));

@Plot(parallelUsers |
processingTimeAvg, processingTimeMedian,
processingTimeMin, processingTimeMax,
roundtripTimeAvg, roundtripTimeMedian,
roundtripTimeMin, roundtripTimeMax,
latencyAndWrappingTimeAvg, latencyAndWrappingTimeMedian,
latencyAndWrappingTimeMin, latencyAndWrappingTimeMax)

@Plot(parallelUsers | requestsPerMinute, requestsPerMinutePerUser)
@ExpandFields(parallelUsers, totalRequestsCount,
successfulRequestsCount, requestsPerMinute,
requestsPerMinutePerUser)

@Description("Reports of the executed throughput tests")
result ThroughputTestReport[] throughputTestReports = reports;

@Description("Total execution time")
result double testTime = testTime;

}

Code Listing 4.6: QoSTIL test instance: ScalabilityTest.

the most important test results will be generated in the test report. The first
plot shows the number of parallel users on the X-axis and the average (median
/ minimum / maximum) processing (roundtrip / latency and wrapping) time on
the Y-axis. The second plot has the same X-axis but visualizes the throughput
(request per minute / request per minute per user) on the Y-axis.

Additionally the most important results of each Throughput Test are also
directly displayed textually in the report of a Scalability Test because of the

54

4.2. Evaluation

@ExpandFields annotation.

An example for a report that is generated by running the Scalability Test

is included in the following section.

4.2 Evaluation

To illustrate the usage and functionality of the tests described in the previous
section, a test demonstration setup was developed. All tests were executed
for a particular example Web service. In this section the test environment and
some test results are presented and discussed.

Test Environment

Figure 4.2 depicts the setup of the simple demonstration test environment.
The test client is a standard laptop with a 2.20-GHz dual-core CPU and 4
gigabytes of RAM. It executes the test runtime environment that was auto-
matically generated from the QoSTIL tests described previously. It also hosts
the database that is used for storing the test reports. The system under test is a
standard PC too, equipped with a 2.0-GHz dual-core CPU and 1 gigabyte of
RAM. It hosts the example Web service that should be tested. The computers
are connected via a 1gbit/s Ethernet switch.

Switch

Test client System under test

Figure 4.2: Test environment setup.

55

4. USING THE LANGUAGE

The example Web service used for the demonstration described here, is
called PiApproximator and supports a single operation that returns the num-
ber pi approximated to a fixed number of decimal places. To simulate some
processing time and CPU load, the implementation of the operation uses an
approximation function with 600,000 iterations and never caches the result.

Test Execution Results

Using the given test environment all previously defined tests were executed
with multiple sets of values for the input parameters. Since the Scalability

Test is the most complex test, a particular execution of this test should be
discussed in detail here.

repeats 50
startParallelUsers 1
parallelUsersIncrease 1
requestsPerTest 5000

Table 4.1: Parameter values for the executed Scalability Test.

Table 4.1 contains the parameter values that were used for this particu-
lar execution. The test should be repeated for 50 times, beginning with one
parallel user and increasing the number of parallel users by one in each itera-
tion. For every test iteration 5000 Web service request should be performed.
Hence, in the last iteration there are 50 parallel users and each user invokes
the Web service a hundred times.

Running the Scalability Test using the given parameter values generates a
test report. The test report is automatically stored in a database and can later
on be retrieved using the Web user interface. Figure 4.3 is a screenshot of a
part of the generated HTML test report. It can be seen that the report lists the

56

4.2. Evaluation

Figure 4.3: Report of the executed Scalability Test in the Web user interface
(screenshot).

test parameter and result values. Furthermore plots for particular result value
sets are generated, as specified by the annotations in the definition of the test.

For further discussion of the test results, the generated plots have been
extracted from the report and are contained in this work as figures 4.4, 4.5
and 4.6.

Figure 4.4 depicts the average roundtrip, average processing and average
latency & wrapping time for the PiApproximator Web service while the num-
ber of users accessing the service simultaneously is steadily increased.

57

4. USING THE LANGUAGE

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
in

 m
s

Number of parallel users

Avg. processing time Avg. latency & wrapping time Avg. roundtrip time

Figure 4.4: Scalability Test report: Average processing, latency & wrapping
and roundtrip time at increasing levels of parallel users.

Up to the maximum number of 50 parallel users, all averaged request
times seem to increase very linearly. E.g., the average latency & wrapping
time starts at about 15 milliseconds if there are no parallel requests (only
one parallel user), rises up to about 90 milliseconds for 25 parallel users and
reaches about 200 milliseconds for the maximum number of 50 users. This
corresponds to an average latency & wrapping time increment of about 3.7
milliseconds for each added virtual user.

The processing time on the other hand exhibits a slower growth (only
about 1.7 milliseconds for each added virtual user). A possible conclusion
is that the performance of the Web service is more heavily influenced by the
network and protocol overhead and not so much by the actual implementation
of the pi approximation function. This is already a very interesting result of
the Scalability Test for this Web service system. Using this new knowledge
the QoSTIL user can draw consequences what needs to be optimized to make

58

4.2. Evaluation

the Web service more scalable.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 5 10 15 20 25 30 35 40 45 50

R
eq

u
es

t
p

er
 m

in
u

te

Number of parallel users

Figure 4.5: Scalability Test report: Average number of request per minute
(throughput) at increasing levels of parallel users.

The second plot (figure 4.5) visualizes the number of requests that can
be completed by the Web service in one minute. In other words, it shows
the throughput of the system at increasing levels of parallel users. Of course
at first the throughput can be improved by parallelizing the requests. But
already beginning at a small number of 5 parallel users the throughput does
not significantly grow any more in this example. The system is already used to
its capacity. This test was also repeated with higher numbers of parallel users
and the results show that the throughput levels off at about 10,000 successfully
completed requests per minute.

Another interesting result of the Scalability Test is the maximum number
of parallel users the system can probably serve. Using a similarly configured
Scalability Test with more iterations it was shown that, if the number of par-
allel users excesses about 200, not all requests can be competed successfully.

59

4. USING THE LANGUAGE

The HTTP connections time out before responses are received and therefore
some requests fail more or less randomly. Again the QoSTIL user can draw
consequences from such results. E.g., if such a high number of parallel users
has to be supported and if very high response times are acceptable, a simple
solution would be to increase the connection timeouts on the client and server
side. Of course this would only postpone the problem. Normally it is unavoid-
able to add extra hardware and/or optimize the Web service implementation
to support even more concurrent users.

It should be noted that the throughput in this test scenario is not only
determined by the system running the Web service but also heavily depends
on the clients’ ability to send many requests in parallel. After all, parallel
users are here simulated by using threads all running on a single machine.
An extension of the QoSTIL language for supporting distributed test clients
is discussed in the following section 4.3.

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50

R
eq

u
es

t
p

er
 m

in
u

te
 p

er
 u

se
r

Number of parallel users

Figure 4.6: Scalability Test report: Average number of request per minute
per user at increasing levels of parallel users.

60

4.3. Possible future language extensions

Figure 4.6 is the last plot that was automatically generated from the data
obtained by executing the Scalability Test for the PiApproximator Web ser-
vice. It also depicts the throughput of the system at increasing levels of paral-
lel users, but now from the viewpoint of a single user/client. It is a measure-
ment of the performance (throughput) a user can expect if the system is under
a given load. As described in section 4.1 the values are simply obtained by
dividing the total throughput by the number of parallel users.

Since the total throughput in the previous plot (figure 4.5) was nearly con-
stant for more than 5 parallel users, the curve in this plot closely resembles a
simple rational function (f(x) = a

x
where a is a constant and x is the number

of parallel users) for this Web service.

Nevertheless the plot can be used to read off relevant QoS attributes. For
example, assume that the SLA for this service contains the condition that a
single client should be able to have at least 100 requests per minute processed
by the service, if there are no more than 20 clients using the service at the
same time. By looking at the curve we can see that this condition is very
likely to be met (assuming that the service handles all client requests in a fair
way).

4.3 Possible future language extensions

As demonstrated in the previous sections, the QoSTIL in its current state can
already be used to define different performance-related QoS tests for Web
services and the test results can be all kind of important QoS attributes that
are relevant to Web service providers and consumers. There are of course
test types and QoS attribute calculations that cannot be implemented (or are
difficult to implement) using the current specification of the language.

This section contains some ideas for future language extensions that are

61

4. USING THE LANGUAGE

not yet specified in detail or implemented.

Distributed performance tests

The generated runtime environment for QoSTIL tests simulates multiple users
accessing Web services simultaneously using threads on a single machine.
Hence, the performance test results are limited by the resources of the single
machine the test is executed on. For example, if the computer running the
test is not able to send the desired number of parallel requests to the service
under test in a timely manner, the test results will be useless. It may quite
be possible that a single machine is just not able to generate enough load to
stress a service to a level defined in a test specification.

Therefore in a lot of test scenarios it is desirable to run distributed perfor-
mance tests. Here we define a distributed performance test as a test where the
behavior of multiple Web service clients is not only simulated by threads, but
by actual independent systems (machines). In addition each machine could of
course still execute multiple threads. Using such a setup it becomes possible
to perform real stress testing and ensure that the test results are not influenced
by the way multiple clients are simulated.

Such distributed performance tests are not supported in the current imple-
mentation of the QoSTIL. There two possible ways how this feature could be
added.

First, transparent distribution of parallel executions to multiple physical
machines could be added to the runtime system that is generated for QoSTIL
tests. The test definition and QoSTIL model does not need to be changed.
When a test should be executed, the runtime system would need to be con-
figured with the number of available test client machines. The system would
then automatically distribute parallel executions to the available machines,
instead of just running threads on a single machine.

62

4.3. Possible future language extensions

Second, support for distributed executions could be added as real language
elements to the QoSTIL model. The language elements could give the QoS-
TIL user full control how executions are to be distributed to particular test
client machines. A proper syntax for this feature would of course have to be
designed too. The advantage of this approach is that the test author has full
control how the test should be executed. On the other hand this would mean
that the test author needs to know in advance what or at least how many test
client machines will be used when the test is executed. This would make a
test specification less flexible and portable.

Test coordinator System under test

Test client 1

Test client N

...

1. Distribute

test code

1. Distribute

test code

2. Run test

2. Run test

3. Collect

results

3. Collect

results

Figure 4.7: Distributed performance test architecture with test coordinator.

Either way a component that handles the distribution of the parallel exe-
cutions to multiple test client machines and collects the (partial) test results
from them would need to be added to the overall system. A possible design
for such a system is depicted in figure 4.7. Here a test coordinator distributes
the executable test code to multiple test clients. The test clients run the code
to test the target system. When all clients have finished, the test coordinator
can collect the test results and generate the final test report data by combining
(aggregating) the results according to the QoSTIL specification.

63

4. USING THE LANGUAGE

Test termination criteria

A performance test will run as configured until it reaches some termination
criterion. In the current QoSTIL model there is explicit support only for ter-
minating after a fixed preconfigured number of iterations has been reached
(given by the count attribute of repeated executions in a test specification).

For some test types it would be helpful to have more termination criteria:
A test might be supposed to run for a defined time frame (e.g. one minute)
or until some other configured limit has been reached (e.g. the maximum
number of allowed errors for an assertion has been reached). An example for
such a test might be a Scalability Test where the number of parallel clients is
increased until a configured maximum acceptable response time of the Web
service is exceeded. That way the maximum operating capacity of the service
can be evaluated.

Aggregator plug-ins

The QoSTIL has built-in support for a basic set of aggregators (average, vari-
ance, median, minimum, maximum, sum ...) for simple processing and eval-
uation of sequences of test results. Of course there are many more possi-
ble aggregator functions which might be useful for particular test instances.
Since the available aggregators are simply implemented by Java functions,
the QoSTIL runtime system could easily be extended with aggregator plug-
ins (developed as Java classes) that provide additional aggregator functions to
test authors. A simple way to register such new aggregators in the language
model and the syntax would need to be added to the system.

64

4.3. Possible future language extensions

More plotting options

The current test report generation component allows visualizing performance
datasets as charts. Annotated datasets will be fully automatically displayed in
well-arranged colored XY line plots, without the need for any configuration.
But sometimes it might be necessary to have more control over this output.

The test author might want to configure all kind of aspects of the chart
output, such as legends, grids, axis titles, number formatting and units. Ad-
vanced options to control the plotting of datasets might include smoothing
and interpolation.

Also different chart types should be supported in future versions. Exam-
ples are bar charts, pie charts or nets.

All these options can easily be added as parameters to the plot annotation
of the QoSTIL model. Adding support in the generated runtime system is
also rather effortless since the used plotting library already supports the most
important options.

Automatically inferred types

When creating a test instance using the QoSTIL, a test author needs to explic-
itly type all field definitions (test parameters and results). During the usabil-
ity evaluation it was shown, that types in the QoSTIL can at first be a little
confusing. Especially report types that are automatically generated for user
defined tests (and also their array variants), can interfere with the otherwise
good readability of test instances for new QoSTIL users.

As an example, the user has to know that the return value of an execu-
tion of some other test, say OtherTest, has the type OtherTestReport
(resp. OtherTestReport[] if it is a repeated execution). If the test au-
thor wants to reuse such a value directly in a test result, the test result has to

65

4. USING THE LANGUAGE

be explicitly typed using this type name. It is obvious that if for the execu-
tion return value the type is already (statically) known, the type of such a test
result could be inferred automatically.

Making types optional where possible would probably enhance the test
instance readability for new QoSTIL users. It should be possible to infer all
test result types automatically based on the (known) types of executions and
test parameters.

Removing all types from the QoSTIL is not planned. We believe that
explicit types at least for parameters make their semantics more obvious and
the test usage less error-prone.

66

CHAPTER 5
Related Work

This chapter contains an overview of related work in the problem domain of
performance testing of Web services. The advantages and disadvantages of
other approaches are discussed in detail.

There is a lot research about performance evaluation of Web applications
and Web servers in general (see e.g. [30] and [15]). Performance testing of
Web services is just a specialization and most of the tools for Web server
testing can also be used for simple Web service testing.

Saddik [28] wrote about performance measurements of Web services-
based applications. He developed performance and scalability test cases us-
ing the TestMaker framework, provided by PushToTest [25], to evaluate the
performance of an e-Learning application. The general approach to use an
existing software solution for Web service performance testing is discussed in
the following section 5.1.

The IBM WSLA (Web service level agreement) framework [13] can be
used to specify SLAs for Web services in a formal language and automatically
monitor the specified QoS guarantees. It does not focus on testing but is

67

5. RELATED WORK

nevertheless interesting for the QoSTIL development since it contains a very
advanced XML-based language for specifying metrics for QoS attributes.

The further discussion in this chapter will focus on two other general ap-
proaches for performance testing of Web services compared to tests developed
using the QoSTIL. The first approach is the use of existing open source or pro-
prietary performance measurement tools, and the second is the development
of performance tests based on the TTCN-3.

5.1 Performance measurement tools

A popular approach for automatic performance testing of Web services is us-
ing some software testing solution. There is a multitude of testing tools avail-
able that support performance measurements for Web services. Both open
source tools (e.g. Apache JMeter [34], soapUI [5]) and proprietary tools (e.g.
IBM Rational Performance Tester [8], PushToTest Testmaker [25], Paessler
Webserver Stress Tool [22]) allow for quick evaluation of performance-related
QoS attributes using different test types, such as load tests, stress tests and
scalability tests.

Figure 5.1: Screenshots of performance measurement tools: soapUI (left)
and Apache JMeter (right).

68

5.1. Performance measurement tools

These tools offer numerous features that faciliate to quickly assemble
complex and advanced performance tests by to use configurable components.
For instance, soapUI is able to simulate different predefined types of load just
by selecting one in a list. This is referred to as load strategies by its authors.
Thus, a load test can be performed using a fixed load strategy, or using a vari-
ance load strategy that varies the number of threads (simulating Web service
clients) by a defined maximum value during the test, or by using another one
of the other seven currently existing strategies.

A problem with these tools is that the tester is always bound to the specific
features and capabilities they offer. Creating complex tests using the QoSTIL
presented here might need more initial learning but offers more flexibility.
For example by using the expression language offered by the QoSTIL exactly
those QoS attributes that are relevant for an organization (e.g. because they are
mentioned in a SLA) can be evaluated. Tests can be more complex and much
more specific for a particular system that should be analyzed. On the other
hand existing QoSTIL test instances can also be easily reused and extended.
Hence, it is also possible to have for instance a set of prepared load strategies
that can be exchanged, as with soapUI.

We believe that performance tests that are based on a clear specification
rather than some process dictated by a (possibly proprietary) test tool are more
valuable. Tests defined using the QoSTIL presented here are always explicitly
specified as instances of the QoSTIL language model. Such a clear specifi-
cation makes the test process more transparent and can ensure that the test
results are objective and comparable.

Performance testing of Web services should not be done irregularly by ex-
ecuting some external tool, but it should be integrated with the overall devel-
opment process. Also the implementation and review of the test specifications
should happen early and openly. Since QoSTIL test instances are just plain
text files using a defined syntax, they are self-documenting and easy to com-

69

5. RELATED WORK

municate. QoSTIL test instances can and should be managed together with
all other software development artifacts in a revision control system. Also
the test reports that are generated when a QoSTIL test is executed are openly
available in the Web user interface. This advocates a constant discussion of
possible performance bottlenecks of the tested system. Such an open testing
process will directly and indirectly save valuable development time, because
it removes the necessity for different persons to execute the same test repeat-
edly and it helps to identify performance problems as early as possible.

Another advantage of QoSTIL tests over performance measurement tools
is the interaction of the QoSTIL with the low-level QuaLa (see section 4.1).
QoSTIL tests are abstract specifications that are independent of the system
that is tested and its implementation technologies. But by adding a low-
level description of the system under test (using the low-level QuaLa) also
implementation-specific QoS attributes can be measured. For example, the
round trip time of a request can be broken up into more fine-grained intervals,
such as processing and wrapping time. Performance measurement tools can
normally only perform black-box testing. Since they are not aware of any
Web service implementation details they can only measure outside-visible at-
tributes (such as the complete round trip time for a request, but not the pro-
cessing time on the server-side).

5.2 Performance tests based on the TTCN-3

The Testing and Test Control Notation TTCN-3 [4] is a scripting language
standardized by the European Telecommunication Standards Institute (ETSI).
It has been specifically designed for testing and certification of modern tele-
communication and IT technologies. The TTCN-3 can be used for various
kinds of tests including functional, interoperability, robustness, regression,
load, and scalability testing. Complex distributed test behavior can be de-

70

5.2. Performance tests based on the TTCN-3

scribed in terms of sequences, alternatives, and loops of stimuli and responses.
The test system can use a number of test components to perform test proce-
dures in parallel.

Schieferdecker et al. [29] have developed a test framework for Web ser-
vices based on the TTCN-3. They apply the TTCN-3 for system-level tests
that check how a system performs for single service requests and scales as
the number of service requests using it increases. Similar to the approach de-
scribed in this thesis, they have also developed a hierarchy of tests for Web
services. Complex load and scalability tests are defined by reusing basic func-
tional tests for the system under test. These predefined test scenarios and test
setups can be adapted to different systems under test by exchanging the mod-
ules for the basic functional tests only.

A major advantage of applying TTCN-3 for implementing Web service
performance tests is its support for fully distributed tests. For instance, Schie-
ferdecker et al. have deployed their load test for Web services on three test
containers (standard PCs) and equally distributed the test components on each
of them. Distributed tests are currently not supported in the QoSTIL, but
support is planned for future versions (see section 4.3).

Our decision to define our own new performance test language for Web
services and not just apply the existing TTCN-3 is based on the belief that a
Web service performance test language should be simple and domain-specific.
The TTCN-3 is applicable to a wide range of tests for various technologies. It
was originally developed for testing the conformance and interoperability of
communication protocols. This has resulted in a complex syntax with many
different concepts that have to be learned before they can be applied. Actually
TTCN-3 could be described as a general purpose programming language (it
supports all typical constructs, such as conditions and loops) with a lot of ad-
ditional concepts that ease the definition of all kinds of tests. The QoSTIL on
the other hand has a clear language model that focuses on the instrumentation

71

5. RELATED WORK

and evaluation of performance tests. By integrating the low-level QuaLa sup-
port for Web services is added. The QoSTIL was developed to be a helpful
tool for a very particular purpose (Web service performance testing).

An advantage of the test system presented in this thesis is the generation
of test reports in the Web user interface. To our knowledge the TTCN-3 based
framework by Schieferdecker et al. does not consider the automatic visual-
ization of test results.

Moreover, the existing work on performance tests based on TTCN-3 fo-
cuses only on black-box tests for Web services. Contrary to QoSTIL tests, it
is not possible to evaluate implementation-specific QoS attributes, such as the
wrapping or processing time on the server-side.

72

CHAPTER 6
Summary and Conclusions

In this thesis a new domain-specific language, named QoSTIL, for Web ser-
vice performance testing is introduced. It is designed to describe Web service
client workload and the measurement and evaluation of performance-related
quality attributes of Web services, such as response times, throughput and
scalability. Test instances can be automatically transformed to executable
Java code, which is ready to run the defined tests for a specific target sys-
tem. The developed test runtime system also includes a database for storing
test results, and a Web user interface for visually presenting test reports.

The provided language and performance tests written using it are generic
as they can be used for arbitrary Web services and do not depend on spe-
cific implementation technologies (e.g. Web services frameworks). Only by
combining test instances with a low-Level QuaLa [18, 36] description of the
system under test, the specifics of concrete Web services and the relevant
implementation-specific measurements become available.

The QoSTIL is developed by following the MDD paradigm. The defined
textual DSL syntax is just a notation for a precisely specified language model.
The central element of the language model is a Test, which consists out of

73

6. SUMMARY AND CONCLUSIONS

Parameters, Executions (describing the behavior of the test), and Results (to-
gether with an expression specifying the result value). The external syntax
for notating such tests has been designed to look familiar and intuitive for
developers knowing Java (or other C-like languages).

Tests can be composed to create more complex tests and complete test
plans. This is achieved by language constructs to (repeatedly) execute tests
inside tests. Multiple tests can also be executed in parallel, which is necessary
to simulate the behavior of several concurrent Web service clients.

In the language, Aggregators can be used to summarize the results of re-
peatedly executed tests and perform statistical data analysis. This allows the
flexible measurement and evaluation of business-specific quality attributes.

The practical applicability of the QoSTIL is demonstrated by a hierarchy
of Web service performance tests that was developed using it. At the bot-
tom there is the simplest test that requests a service once and evaluates basic
performance attributes, such as processing, latency, wrapping and roundtrip
time. The most complex sample test is a Scalability Test, that evaluates the
scalability of a Web service by observing its throughput at increasing levels
of concurrently running clients.

All developed tests are executed in a demonstration environment for a
representative Web service. By discussing the report of an execution of the
Scalability Test in detail, it was shown that the results are valuable and signif-
icant, and that the language is ready for the task it was developed for.

While the defined language can already be practically used to compre-
hensively test Web service performance, possible future language extensions
were also discussed in the work, which could make it even more expressive or
simpler to use. These include extensions for distributed tests, more test result
plotting options and automatic type inference.

In conclusion, it can be said that the developed QoSTIL has some con-

74

siderable advantages over existing approaches for Web service performance
testing: It is a rather simple language based on a precisely specified language
model that was specifically tailored for the task of Web service performance
testing. Test instances are plain text files and are therefore easy to communi-
cate and maintain. They are reusable, self-documented and advocate a trans-
parent and early testing process. After executing the tests, reports are stored in
a central place and are openly accessible through a Web user interface. Those
reports are well-structured, the results are clearly visualized and they con-
tain all the information that is necessary to reproduce a performed test. Last
but not least, the language is not only capable of black-box testing: By inte-
grating a low-level description of the system under test, it does also support
implementation-specific measurements at the client and server-side.

75

Acknowledgement

I would like to thank my advisors Uwe Zdun and Ernst Oberortner for sharing
their expertise and helping me during the realization of this work.

I heartily thank my parents, Jutta and Georg, who always supported me
during my whole studies. Special thanks go to my sisters, Angelika and Isa-
bella, for taking the time to proofread this thesis.

Finally, I kiss my girlfriend for always encouraging me to question things
and her creative advice for the thesis presentation poster.

77

List of Figures

2.1 Basic SOA model. 16
2.2 A Web service operation invocation and involved time frames. . . 21
2.3 Architecture of DSLs based on MDD [18]. 24

3.1 QoSTIL model: Core. 30
3.2 QoSTIL model: Executions. 33
3.3 QoSTIL model: Expressions. 34
3.4 QoSTIL model: Aggregators. 35
3.5 QoSTIL model: View annotations. 36
3.6 QoSTIL code generation and involved documents. 42
3.7 QoSTIL report view generation and involved documents. 44

4.1 Interaction of the QoSTIL with the low-level QuaLa. 47
4.2 Test environment setup. 55
4.3 Report of the executed Scalability Test in the Web user interface

(screenshot). 57
4.4 Scalability Test report: Average processing, latency & wrapping

and roundtrip time at increasing levels of parallel users. 58
4.5 Scalability Test report: Average number of request per minute

(throughput) at increasing levels of parallel users. 59
4.6 Scalability Test report: Average number of request per minute per

user at increasing levels of parallel users. 60
4.7 Distributed performance test architecture with test coordinator. . . 63

79

5.1 Screenshots of performance measurement tools: soapUI (left) and
Apache JMeter (right). 68

List of Tables

4.1 Parameter values for the executed Scalability Test. 56

80

Code Listings

3.1 QoSTIL core language model described in the syntax of the
FMF (some concepts). 32

3.2 Grammar of the QoSTIL syntax. 38
3.3 Example QoSTIL test definition. 40
3.4 Example QoSTIL test definition (with view annotations). . . . 41
4.1 QoSTIL test instance: WSRequestTest. 46
4.2 QoSTIL test instance: SingleRequestTest. 49
4.3 QoSTIL test instance: RepeatedRequestTest. 50
4.4 QoSTIL test instance: ParallelRequestTest. 50
4.5 QoSTIL test instance: ThroughputTest. 52
4.6 QoSTIL test instance: ScalabilityTest. 54

81

Bibliography

[1] Java Compiler Compiler (JavaCC). https://javacc.dev.java.
net/. Last accessed: Oct 8, 2010.

[2] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early per-
formance testing of distributed software applications. In Proceedings
of the 4th international workshop on Software and performance, WOSP
’04, pages 94–103, New York, NY, USA, 2004. ACM.

[3] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[4] ETSI Methods for Testing and Specification (MTS). The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language, 2010.
ES 201 873-1, Latest Version: 4.2.1.

[5] eviware. soapUI. http://www.soapui.org/. Last accessed: Feb
2, 2011.

[6] Martin Fowler. Language Workbenches: The Killer-App for Do-
main Specific Languages? http://www.martinfowler.com/
articles/languageWorkbench.html, May 2005. Last ac-
cessed: Jan 4, 2011.

[7] Martin Fowler. Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010.

[8] IBM. Rational Performance Tester. http://www.ibm.com/
software/awdtools/tester/performance/. Last accessed:
Feb 2, 2011.

83

https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://www.soapui.org/
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.ibm.com/software/awdtools/tester/performance/
http://www.ibm.com/software/awdtools/tester/performance/

BIBLIOGRAPHY

[9] Java Community Process. JSR 224: Java API for XML-Based Web Ser-
vices (JAX-WS) 2.0. http://jcp.org/en/jsr/detail?id=
224. Last accessed: Oct 8, 2010.

[10] Java Community Process. JSR 314: JavaServer Faces Tech-
nology. http://www.oracle.com/technetwork/java/
javaee/javaserverfaces-139869.html. Last accessed: Oct
8, 2010.

[11] JBoss Inc. The Seam Framework. http://seamframework.
org/. Last accessed: Oct 8, 2010.

[12] Li jie Jin, Vijay Machiraju, and Akhil Sahai. Analysis on Service Level
Agreement of Web Services. Technical report, HP Laboratories, 2002.

[13] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specify-
ing and Monitoring Service Level Agreements for Web Services. Jour-
nal of Network and Systems Management, 11(1):57–81, 2003.

[14] J. McGovern, S. Tyagi, M. Stevens, and S. Matthew. Java Web Services
Architecture. Morgan Kaufmann Publishers, San Francisco, CA, USA,
2003.

[15] Daniel A. Menascé. Load Testing of Web Sites. IEEE Internet Comput-
ing, 6:70–74, 2002.

[16] Daniel A. Menascé and Virgilio Almeida. Capacity Planning for Web
Services: metrics, models, and methods. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 1st edition, 2001.

[17] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar. Domain-specific
languages for service-oriented architectures: An explorative study. In
Towards a Service-Based Internet, First European Conference, Service-
Wave 2008, Proceedings, pages 159–170, Vienna, Austria, December
2008. LNCS 5377, Springer-Verlag.

[18] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar. Tailoring a model-
driven quality-of-service dsl for various stakeholders. In Proceedings of
the 2009 ICSE Workshop on Modeling in Software Engineering, MISE
’09, pages 20–25, Washington, DC, USA, 2009. IEEE Computer Soci-
ety.

84

http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://seamframework.org/
http://seamframework.org/

Bibliography

[19] Ernst Oberortner, Uwe Zdun, and Schahram Dustdar. Patterns for mea-
suring performance-related qos properties in distributed systems. In 17th
Conference on Pattern Languages of Programs, October 2010.

[20] Liam O’Brien, Paulo Merson, and Len Bass. Quality attributes for
service-oriented architectures. In SDSOA ’07: Proceedings of the In-
ternational Workshop on Systems Development in SOA Environments,
page 3, Washington, DC, USA, 2007. IEEE Computer Society.

[21] Ole Laursen. flot - Attractive Javascript plotting for jQuery. http:
//code.google.com/p/flot/. Last accessed: Oct 8, 2010.

[22] Paessler AG. Webserver Stress Tool. http://www.paessler.
com/webstress. Last accessed: Feb 2, 2011.

[23] Michael P. Papazoglou. Web Services: Principles and Technology. Pren-
tice Hall, 2007.

[24] Mike P. Papazoglou. Service-Oriented Computing: Concepts, Charac-
teristics and Directions. In WISE ’03: Proceedings of the Fourth Inter-
national Conference on Web Information Systems Engineering, page 3,
Washington, DC, USA, 2003. IEEE Computer Society.

[25] PushToTest. TestMaker. http://www.pushtotest.com/. Last
accessed: Feb 4, 2011.

[26] Shuping Ran. A Model for Web Services Discovery with QoS. SIGecom
Exch., 4(1):1–10, 2003.

[27] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrap-
ping Performance and Dependability Attributes of Web Services. In
ICWS ’06: Proceedings of the IEEE International Conference on Web
Services, pages 205–212, Washington, DC, USA, 2006. IEEE Computer
Society.

[28] Abdulmotaleb El Saddik. Performance Measurements of Web Services-
Based Applications. IEEE Transactions on Instrumentation and Mea-
surement, 55:1599 – 1605, 10 2006.

[29] Ina Schieferdecker, George Din, and Dimitrios Apostolidis. Distributed
functional and load tests for Web services. International Journal

85

http://code.google.com/p/flot/
http://code.google.com/p/flot/
http://www.paessler.com/webstress
http://www.paessler.com/webstress
http://www.pushtotest.com/

BIBLIOGRAPHY

on Software Tools for Technology Transfer (STTT), 7:351–360, 2005.
10.1007/s10009-004-0165-6.

[30] J. Shaw. Web Application Performance Testing - a Case Study of an
On-line Learning Application. BT Technology Journal, 18:79–86, April
2000.

[31] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley & Sons, 2006.

[32] The Apache Software Foundation. Apache Ant. http://ant.
apache.org/. Last accessed: Oct 8, 2010.

[33] The Apache Software Foundation. Apache CXF: An Open Source Ser-
vice Framework. http://cxf.apache.org/. Last accessed: Oct
8, 2010.

[34] The Apache Software Foundation. Apache JMeter. http://
jakarta.apache.org/jmeter/. Last accessed: Feb 2, 2011.

[35] Juha-Pekka Tolvanen. Domain-Specific Modeling: How to
Start Defining Your Own Language. http://www.devx.com/
enterprise/Article/30550, 2008. Last accessed: Oct 8, 2010.

[36] Huy Tran, Ta’id Holmes, Ernst Oberortner, Emmanuel Mulo, Ag-
nieszka Betkowska Cavalcante, Jacek Serafinski, Marek Tluczek, Ali-
aksandr Birukou, Florian Daniel, Patricia Silveira, Uwe Zdun, and
Schahram Dustdar. An end-to-end framework for business compliance
in process-driven soas. Symbolic and Numeric Algorithms for Scientific
Computing, International Symposium on, 0:407–414, 2010.

[37] W3C. Web Services Description Language (WSDL) 1.1. http://
www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[38] W3C. SOAP Version 1.2. http://www.w3.org/TR/2007/
REC-soap12-part0-20070427/, 2007.

[39] Narada Wickramage and Sanjiva Weerawarana. A Benchmark for Web
Service Frameworks. In SCC ’05: Proceedings of the 2005 IEEE Inter-
national Conference on Services Computing, pages 233–242, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

86

http://ant.apache.org/
http://ant.apache.org/
http://cxf.apache.org/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://www.devx.com/enterprise/Article/30550
http://www.devx.com/enterprise/Article/30550
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

Bibliography

[40] Uwe Zdun. The Frag Language. http://frag.sourceforge.
net/. Last accessed: Oct 8, 2010.

[41] Uwe Zdun. A DSL toolkit for deferring architectural decisions in DSL-
based software design. Inf. Softw. Technol., 52:733–748, July 2010.

87

http://frag.sourceforge.net/
http://frag.sourceforge.net/

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem Definition
	Organization of the thesis

	State of the Art
	Service-Oriented Architectures and Web services
	Quality of Service and Service Level Agreements
	Measuring performance-related QoS for Web services
	Domain-Specific Languages and Model-Driven Development
	Applied Technologies

	Language Design and Implementation
	Language Model and Semantics
	Language Syntax
	Code Generation
	Report View Generation

	Using the Language
	Language Instances
	Evaluation
	Possible future language extensions

	Related Work
	Performance measurement tools
	Performance tests based on the TTCN-3

	Summary and Conclusions
	Bibliography

