
Validation Middleware for Mixed
Criticality Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Technische Informatik

eingereicht von

Thomas Mair
Matrikelnummer 0425444

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: O.Univ.Prof. Dr.phil. Hermann Kopetz
Mitwirkung: Univ.Ass. Dipl.-Ing. Armin Wasicek

Wien, March 22, 2011
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Thomas Mair
Friedhofweg 6
4800 Attnang-Puchheim

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

...

(Ort, Datum, Unterschrift)

ii

Abstract

This thesis investigates on the secure sharing of information in a mixed-criticality
system. Our approach to fulfil these safety and security requirements in such a system
is to establish a set of strict rules for the communication between the tasks of the dif-
ferent integrity levels. These rules implement an integrity model and have to guarantee
that the information flow between the criticality levels happens appropriately. In many
applications it also might be required to use a piece of unreliable information from a
low criticality level in a higher one. Communication in this direction is considered as
illegal in many integrity models. Therefore a special mechanism is needed to upgrade
the integrity of the data. This thesis introduces a mechanism called “Validation
Middleware” which upgrades the reliability of data from diverse redundant sources.
To achieve this goal, inexact voting techniques are realised which produce a trusted
output and define a criteria for determining correct and incorrect from data which is
not necessarily identical. These mechanisms were developed and studied in context
of the Time-Triggered System-On-Chip architecture. This architecture provides a
spatial and temporal firewall between each task by partitioning the system into single
autonomous subsystems called the micro components. These subsystems are con-
nected through a deterministic Network-on-Chip which uses so-called encapsulated
communication channels to prevent the messages from interfering with each other.
These encapsulated communication channels transport messages at a predefined point
in time from a single source to one or more destinations. We tested the fault tolerance
mechanisms inside the “Validation Middleware“ by creating an application from the
automotive context which compasses ABS and odometer subsystems.

Our results show that the deterministic behaviour of the Network-on-Chip and
the temporal and spatial partitioning of the encapsulated communication channels,
combined with the use of Totel’s integrity policies, provides a suitable environment
for the use in a mixed-criticality application. In addition, we point out the existence
of a middleware in the Time-Triggered System-on-Chip architecture which enables
upstream communication flows.

iii

Kurzfassung

Diese Arbeit behandelt die sichere Verteilung von Informationen in einem Sys-
tem mit verschiedenen Kritikalitätsstufen. Eine Möglichkeit, diese Security- und
Safetyanforderungen zu erfüllen, ist die Einführung von strengen Regeln für die Kom-
munikation zwischen den einzelnen Anwendungen in den verschiedenen Stufen. Diese
Regeln formen eine sogenannte “integrity policy”. In vielen Anwendungsfällen ist es
erforderlich unzuverlässige Daten einer niedrigen Stufe in einer höheren verwendet zu
können. Ein Informationsfluss in dieser Richtung ist bei Verwendung einiger bekan-
nter “integrity policies“ nicht zulässig. Um dies zu ermöglichen, wird ein spezieller
Mechanismus, genannt “Validation Middleware” benutzt, welcher die Zuverlässigkeit
von Daten aufwertet, indem diese von diversen redundanter Datenquellen bezogen
werden. Damit dies garantiert werden kann, wurden mehrere Voting-Algorithmen
realisiert, die ein Kriterium für die Gültigkeit der Daten erzeugen. Die Eingangsdaten
müssen nicht unbedingt gleich sein und können voneinander abweichen. Diese
Algorithmen wurden unter Verwendung der “Time-Triggered System-on-Chip”
Architektur entwickelt und evaluiert. Diese Architektur erzeugt eine räumliche und
zeitliche Firewall zwischen den einzelnen Teilsystemen des System-on-Chip, indem
sie das System in einzelne autonome Subsysteme, sogenannte “micro components”,
partitioniert. Diese Subsysteme sind über ein deterministisches Network-on-Chip
verbunden, welches sogenannte “encapsulated communication channels” benutzt, um
die Beeinträchtigung der Kanäle untereinander zu verhindern. Diese “encapsulated
communication channels” senden Nachrichten zu einem vordefinierten Zeitpunkt
von einem Sender an einen oder mehrere Empfänger. In dieser Arbeit werden
die fehlertoleranten Mechanismen der “Validation Middleware” anhand eines Fall-
beispiels getestet. Dieses Beispiel beschäftigt sich mit den Subsystemen ABS und
Kilometerzähler eines Automobils.

Unsere Resultate zeigen, dass das deterministische Verhalten des Network-on-Chip
und die räumliche und zeitliche Partitionierung der “encapsulated communication
channels”, kombiniert mit dem Benutzen von “Totel’s integrity policy”, eine geeignete
Umgebung für eine Anwendung mit verschiedenen Kritikalitätsstufen erzeugt. Zusät-
zlich zeigen wir die Existenz einer Middleware im Time-Triggered System-on-Chip,
welches einen aufwärts erfolgenden Informationsfluss ermöglicht.

iv

Acknowledgements

First of all a very big Thanks to the advisor of this thesis, Univ. Prof. Dr. Hermann
Kopetz, who has enabled this work. Many Thanks to Dipl.-Ing Armin Wasicek for his
patience, all the answered questions and the many useful hints. Thanks to Dipl.-Ing
Roland Kammerer for answering many questions about the hardware and also to Ing.
Leo Mayerhofer for his technical aid during my work.

Also I would like to thank my parents for giving me financial and personal sup-
port during my whole lifetime and especially during the time of my studying. Last but
not least a big thanks to many of my study colleagues whose discussions and group
works made a lot of course work easier and more fun.

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contribution . 3
1.4 Structure of this Thesis . 4

2 Basic Concepts 5
2.1 The Time-Triggered Architecture and the Time-Triggered System-on-Chip . . . 5
2.2 Integrity Policies . 9
2.3 The Multiple Independent Layers of Security Architecture 15
2.4 N-Version Programming . 16
2.5 Anomaly Detection – Fundamentals . 18
2.6 Fault Injection Techniques . 20

3 Related Work 23
3.1 Connecting Commercial Computers to Avionics Systems 23
3.2 N-version Programming – Experiments . 26
3.3 A Time-Triggered System-on-Chip – Prototype 27
3.4 The Time-Triggered System-On-Chip in Mixed-Criticality Applications 28

4 Validation Middleware 31
4.1 System Model . 31
4.2 Design of the Validation Middleware . 33
4.3 Anomaly Detection – Algorithms . 35

5 Automotive Case Study 43
5.1 Simulation Environment Structure . 45
5.2 Basic Layout of the TTSoC in the Simulation Environment 46

v

vi CONTENTS

5.3 Odometer Attack Model . 48
5.4 PC-Receiver . 49
5.5 Software Based – Fault Injector . 50
5.6 TORCS – Robot . 51

6 Analysis of the Algorithms 53
6.1 kth Nearest Neighbour with Delta-Value . 55
6.2 Probabilistic Boxplot Method . 58
6.3 Histogram Method . 61
6.4 Single-Linkage Clustering . 63

7 Conclusion 67
7.1 Outlook . 68

A Simulation Environment – Setup I
A.1 Hardware – Setup . I
A.2 Host PC – Setup . III

B Implementation Specific Details IX
B.1 FPGA User Interface . IX
B.2 Sending Floating-point values over the Network-on-Chip (NoC) X
B.3 Logging Messages . X

List of Acronyms XIII

Bibliography XV

Index XXI

List of Figures

2.1 The sparse timebase used in the TTA (Kopetz 1992) 6
2.2 Basic layout and exemplary configuration of a TTSoC 8
2.3 Time format of the TTSoC . 9
2.4 Illustration of a Bell-LaPadula writing operation 10
2.5 Illustration of a Biba writing operation . 11
2.6 Integrity architecture of Totel’s model sketched by an exemplary instantiation . . . 14
2.7 The MILS architecture [Rus81] . 16
2.8 The N-version programming model [AC77] . 17
2.9 A simple example of anomalies in a 2-dimensional data set 18

3.1 The new information flow for the take-off procedure [LDPA09] 24
3.2 The new information flow for the take-off procedure by using Totel’s integrity model

[LDPA09] . 25

4.1 An exemplary instantiation of the modified Totel’s model 32
4.2 The exemplary instantiation implemented on the TTSoC 33
4.3 The “Validation Middleware“ with redundant Inputs (I1−n) 34
4.4 Distance calculation of the kth nearest neighbour algorithm 36
4.5 An exemplary boxplot . 37
4.6 An exemplary histogram . 39

5.1 The complete simulation environment . 45
5.2 The layout of the TTSoC . 46
5.3 Attack model of the odometer subsystem . 48
5.4 The structure of the status word . 50
5.5 The car simulation TORCS with a car steared by the “flow” robot 52

6.1 All five speed values during one lap of a race . 54
6.2 Result of the kth Nearest Neighbour – Algorithm (no faults injected) 55
6.3 Result of the kth Nearest Neighbour – Algorithm (faults injected on W1, W2, W4

and Eng.) . 56
6.4 Resulting speed value of the kth Nearest Neighbour – Algorithm (faults injected on

W1, W2, W4 and Eng.) . 57
6.5 Samples valid for the corresponding threshold value 57

vii

viii List of Figures

6.6 Result of Boxplot – Method (no faults injected) 58
6.7 Resulting speed value of the Boxplot – Algorithm (no faults injected) 59
6.8 Result of the Boxplot – Method (faults injected on W1, W2, W4 and Eng.) 59
6.9 Resulting speed value of the Boxplot – Algorithm (faults injected on W1, W2, W4

and Eng.) . 60
6.10 Result of the Histogram – Method (no faults injected) 61
6.11 Result of the Histogram – Method (faults injected on W1, W2, W4 and Eng.) . . . 62
6.12 Resulting speed value of Histogram – Method (faults injected on W1, W2, W4 and

Eng.) . 63
6.13 Result of the Singe-Link Clustering (normal race) 64
6.14 Result of the Singe-Linkage Clustering (faults injected on W1, W2, W4 and Eng.) . 65
6.15 Resulting speed value of Singe-Linkage Clustering (faults injected on W1, W2, W4

and Eng.) . 66

A.1 Maxim MAX232CWE Chip with wiring . II
A.2 The FPGA board with the HSMC expansion board and the serial devices III
A.3 Possible wiring of the HSMC expansion board . IV

B.1 The user interface which is used on the FPGA . IX
B.2 Format of the messages sent from the wheels to the odometer and ABS X
B.3 The logging messages from the odometer core . XI
B.4 The structure of the VaM result status word . XI

List of Tables

4.1 VaM algorithm overview . 35
4.2 Init distance matrix of the Johnson’s algorithm . 40
4.3 The matrix after one merge . 41
4.4 The matrix after the second merge . 42

5.1 Scheduled messages in one round (TSx stands for Timeslot number x) 47

6.1 Result of the kth Nearest Neighbour – Algorithm (no faults injected) 55
6.2 Result of the kth Nearest Neighbour – Algorithm (faults injected on W1, W2, W4

and Eng.) . 56
6.3 Result of Boxplot – Method (no faults injected) 58
6.4 Result of Boxplot – Method (faults injected on W1, W2, W4 and Eng.) 60
6.5 Result of Histogram – Method (no faults injected) 62
6.6 Result of Histogram – Method (faults injected on W1, W2, W4 and Eng.) 62
6.7 Result of Singe-Linkage Clustering – Method (no faults injected) 64
6.8 Result of Singe-Linkage Clustering (faults injected on W1, W2, W4 and Eng.) . . . 65

A.1 Pin assignment internal FPGA pins to HSMC board pins IV

ix

CHAPTER 1
Introduction

1.1 Motivation

During the last years the complexity in the semiconductor industry has increased dramatically.
A modern x86 processor contains of billions of transistors and the number is still increasing.
The “end“ of Moore’s law has been predicted and in order to continue it, one solution is to build
multi-core processors. The resulting concurrency by using parallel computing increases com-
plexity. But this is not the only field where this increase of complexity starts to be a problem.
In embedded systems and especially in automotive and avionics equipment (leveraged by soft-
ware) a tremendous increase can be observed. For example, a modern luxury car has up to 80
embedded microcontrollers installed, which control most of the processes inside the car. Also
about 30% of the overall costs of a modern car are produced by electronics, a number which is
likely to increase with future applications like steer-by-wire. [BCWW07]

With more embedded microcontrollers the network degree rises and corresponding to it the need
in improving security and safety becomes particularly important. One key in achieving this, at
reasonable cost, is to keep the system as simple as possible. On the contrast to, the steady in-
crease of functions in modern products, this is exactly the opposite of what happens nowadays.
It is nearly impossible to understand or predict the behaviour of a System-on-Chip (SoC) which
contains of more than a billion transistors. [Kop08] A key principle to achieve simplicity in sys-
tem design is a higher level of abstraction and the partitioning of the system into single functions.
It is not the embedded system itself that has to be simple, but it’s model. In these models, irrele-
vant detail information needs to be omitted to produce an easy understandable description of the
system for a specific purpose. In the automotive area a modern approach to reduce complexity
is to put the different car functions on one single chip. Contrary to the traditional setup, where
these components are deployed separately on the car. Although they are on the same silicon
die the functions are still completely autonomous and concurrent. All these separate elements
communicate through a NoC. This way of designing such a system is already used by a number
of important SoC architectures. [BM06]

1

2 CHAPTER 1. INTRODUCTION

In this thesis we will use a special implementation of a SoC called the Time-Triggered System-
On-Chip (TTSoC) [Pau08] [ES07] which provides a component based design approach to reduce
complexity and to enable composability. The TTSoC realizes this by decoupling the commu-
nication infrastructure from the computational units. It also provides determinism with respect
to the communication interface, by using a sparse global timebase (see section 2.1) and a priori
defined communication schedule.

By putting all these functions on one single chip, it is needed in many situations of system
design, that these tasks can have different criticality levels. Consequently, it must be ensured
that a fault in a task with low criticality never influences one with a higher level. [TBDP00] For
example, a design fault in the audio system should never influence the brakes. One way of guar-
anteeing this, is to build critical parts of the software with the same confidence as the non critical
ones. But not only does this increase complexity, it also makes the system very expensive. An-
other way to fulfil these safety and security requirements, are strict rules for the communication
between the tasks on the SoC. Some models like Bell-LaPadula, Biba or Clark and Wilson im-
plement these communication rules and are the groundwork for systems with multiple layers
of security. [BL75] [Bib77] [CW87] These rules are also called integrity policies and have to
guarantee a proper way of communication in the security domain on the SoC.
By constantly following the guidelines of these rules and by using the properties of the TTSoC
with a deterministic communication interface and temporal and spatial partitioning, the concept
is suitable for the use with mixed criticality applications.
In addition to this it is possible to show, that the modular design of the TTSoC architecture im-
plements the requirements of the ”MILS Seperation Kernel” by design. [WESK10] The Multiple
Independent Layers of Security (MILS) architecture is an industry-ready approach to facilitate
temporal and spatial partitioning, which is based on concepts introduced by Rushby. [Rus81]

1.2 Problem Statement

This thesis investigates on the secure sharing of information in a mixed-criticality system. As
the communication in such a system has to follow strict rules, a communication model needs to
be chosen which checks the integrity in an one-way information flow.

In a paper published at the University of Toulouse in 2009 [LDPA09] (see section 3.1), this
is implemented by using Totel’s integrity model as a basic concept for communication in a
mixed-criticality application. There the take-off and maintenance procedures for new aircraft
generations are analysed, in which communication between the low secure off-board computer
and the high secure on-board computer is carried out. As this is considered to be illegal because
of the integrity rules of Totel’s model [TBDP00] (see section 2.2) the reliability of the data has
to be increased by using a so-called Validation Object (VaO). This VaO needs diverse redundant
input data which is produced by using untrusted Commercial off the Shelf (COTS) hardware
such as Windows or Linux for the execution of the safe user program. The resulting output of
both executed versions of the program is compared by using a decision algorithm inside the VaO.

1.3. CONTRIBUTION 3

One of the main problems of this work is that a determinism of both operating systems has
to be assumed. This is not provided in reality, because both operating systems use at least differ-
ent preempting scheduling algorithms. Because of this, it is likely to happen that the comparison
of the data may fail. This thesis investigates on how this determinism issue can be solved and
in addition focuses on the realisation of different decision algorithms to establish a consensus
between the redundant subsystems.

1.3 Contribution

Mixed criticality is the concept of allowing applications at different levels of criticality to inter-
act and co-exist on the same computational platform. In this thesis, Totel’s model [TBDP00] is
used as an integrity policy combined with the TTSoC as a basic architecture. Because of this, the
message exchange in the spatial and temporal domain can be guaranteed by the basic attributes
of the TTSoC. Therefore the security attributes of Totel’s model like the integrity kernel and
the operating system micro-kernel can be replaced. The TTSoC implementation provides pro-
cess isolation mechanisms by design and the realization in hardware hardens the system against
many kinds of security attacks. [Hub08] Additionally, the NoC used in this architecture estab-
lishes encapsulated communication channels, which transport messages at a predefined point
in time from a single source to one or more destinations. Because of the established global
time base and a stable initial state [Kop97] a deterministic behaviour of the components inside
the TTSoC is guaranteed. This determinism facilitates validation and enables voting, which is
needed in order to perform checks over the output of redundant sources.

The major contribution of this thesis is the design of a so-called Validation Middleware (VaM)
which allows information flows from a low- to a high security level. Communication in this
direction is considered as illegal, because of the integrity rules of Totel’s model (see section 2.2)
But this kind of upward information flow is in fact needed in many situations of system design.

To upgrade the integrity of the upstream information flow the data has to be based on redun-
dant and possibly diverse sources. [AC77] The most common and intuitive way of doing this is
a majority voting algorithm, but in some situations these inputs need to be compared and deter-
mined to be correct, even if the data deviates from each other. This raises the need for an inexact
voter, which defines a criteria for determining correct and incorrect inputs from data which is
not necessary identical. In order to do that, a method has to be found that can be used in as many
fields of interests as possible and is easily adjustable to different application scenarios.
This thesis analyses anomaly detection algorithms in order to detect system failures or possible
fraud in an application where dependability is important. All the different approaches are com-
pared in simplicity, runtime and efficiency by using a simulation environment, with context to
the automotive area.

This work combines the deterministic behaviour of the Time-Triggered Network-On-Chip (TTNoC)
with Totel’s integrity policy. It shows that this combination provides a suitable environment for
the use in a mixed criticality application. In addition the possible existence of a middleware

4 CHAPTER 1. INTRODUCTION

in the TTSoC architecture is pointed out, in order to enable upstream communication flows.
Therefore a flexible and reuseable approach has to be found which is applicable in different user
applications.

1.4 Structure of this Thesis

Chapter 2 gives the background that leads to the implementation of fault tolerant mechanisms of
the VaM, by using the TTSoC as a basic platform. First it explains in detail, how the fundamental
attributes of the TTSoC like strict partitioning into reusable subsystems and the communication
through deterministic encapsulated communication channels fit into the needed security con-
cepts. Then some basic integrity models are given like the Bell-LaPadula, Biba, Clark and Wil-
son or Totel’s model. These models establish rules for up- and downgrading information flows
in a system which is based on integrity levels. Next the basic concept of the MILS architecture
is mentioned which was developed to make the certification of high integrity systems easier.
Then the fundamentals of N-version programming are given, whose concept provides criteria
for the creation of redundant and diverse inputs. Finally the basics about anomaly detection are
discussed, which are used to provide fault tolerant mechanisms in order to update information
integrity.

Chapter 3 examines the related work that has been done in this field. First it mentions a work
of the University of Toulouse which tries to improve the take-off and maintenance procedure
of an aircraft, by connecting unsafe COTS hardware onto a secure airplane. Next some NVP
experiments of the University of California are given and finally a work of the Technical Univer-
sity of Vienna is mentioned where the TTSoC architecture is compared to the MILS architecture.

The following chapter 4 is dedicated to the VaM and specially to the system model that has
lead to it. The focus also lies on the integrity policy modifications needed for a correct informa-
tion flow. Finally the VaM is discussed and the anomaly detection algorithms which are used for
it’s implementation are explained.

The automotive case study, in order to test the different algorithms is covered in the follow-
ing chapter 5. It explains the basic structure of the system and the interaction of the different
components with each other. Also all stand alone programs like the TORCS car simulation or
the fault injection software are described. In order to investigate the security mechanisms of the
environment an attack model for the secure subsystems is created.

The results of these simulations are given in the following chapter 6 where the inexact vot-
ing algorithms inside the VaM are tested. These tests are carried out by using different fault
injection scenarios during runtime.

The last chapter 7 draws conclusions based on these insights. In this context it justifies de-
sign choices and outlines their optimality. It also gives an outlook of future work which can be
done in this field.

CHAPTER 2
Basic Concepts

This chapter explains the basic concepts that have been used in this thesis and also focuses on
technologies, which were used as groundwork for implementing the VaM. First it explains the
fundamental ideas about the Time-Triggered Architecture (TTA) and the resulting realization of
the Time-Triggered System-On-Chip (TTSoC), which is used as the basic architecture in this
thesis. In the following section it explains the concept of the traditional integrity policies like
Bell-LaPadula, Biba, Clark and Wilson and Totel’s model, which are needed as a groundwork in
this thesis. Then the chapter defers to the fundamentals and types of anomaly detect which are
needed for the implementation of the VaM. Finally, the basics of fault injection are explained
which are needed to test the behaviour of the used algorithms.

2.1 The Time-Triggered Architecture and the Time-Triggered
System-on-Chip

The Time-Triggered Architecture (TTA) provides an infrastructure for designing distributed em-
bedded real-time systems. [KB03] The main characteristic is the exact notion of time and the
decomposition of the system into clusters and nodes. The main problem in a distributed system
is the infinite precision of time, because this fact makes it impossible to order events and create
a deterministic behaviour. Kopetz introduced the sparse timebase [Kop92] in order to achieve
that. This model partitions time into an infinite sequence of durations of activity and silence, as
it is depicted in figure 2.1.

With this notion of time it is possible to order events and generate a deterministic behaviour,
which enables the creation of a global timebase, where all nodes have access. This timebase
is now divided into prior specified periodic rounds. This procedure is called the Time Division
Multiple Access (TDMA) schedule and creates a so called timeslot for every single message.
With this pre-defined TDMA schedule it is possible to guarantee a worst case delay and there-
fore a system with a hard real-time behaviour. With this model a collision free network commu-

5

6 CHAPTER 2. BASIC CONCEPTS

One tick in global time

a b a b a b a

a) Duration of Activity b) Duration of Silence

Figure 2.1: The sparse timebase used in the TTA (Kopetz 1992)

nication can be established. In the following section a few systems are described, which use this
kind of network communication.

TTA implementations like TTP/A, TTP/C and TTE

TTP/A and TTP/C are two implementations of protocols which have been created at the Insti-
tute of Computer Engineering at the Technical University of Vienna. [EI03] They are using the
scheme of the Time-Triggered Architecture (TTA) to establish a collision free bus communi-
cation. TTP/A aims on the sector of low cost microcontrollers, for integration of sensors and
actuators into a network. It is also standardized under the smart transducer interface specifica-
tion and offers a number of advantages in technology, cost and complexity management.
On the other instance, TTP/C focuses on highly dependable realtime systems, implements a
replicated bus system and a guardian for preventing bubbling idiot failures. It also consists of
a membership service to inform the application, if an error in the communication system has
occurred. Also a fault tolerant global time base, which is not relying on a central time server is
provided.

An other implementation of the Technical University of Vienna, which uses the TTA, is the
Time-Triggered Ethernet (TTE). [KAGS05] This communication system provides real-time and
non-real-time traffic on a single communication architecture by using the IEEE Ethernet stan-
dard. Two different traffic categories are provided:

• The standard Ethernet traffic which is event triggered and conform to the widely used
IEEE standard.

• The time-triggered traffic which is temporally guaranteed. It provides a deterministic
end- to end communication which is scalable and therefore facilitates certification. It
provides a global timebase and eliminates error propagation through strong fault isolation
mechanisms.

The Time-Triggered System-On-Chip

The TTSoC is a novel architecture for SoC which manages the high complexity of such a system
by partitioning it into single components. [Hub08] [ES07] Each component needs a strict inter-
face design which facilitates a pre-verification of each subsystem and makes it reusable. This is
very important, because in order to control the increasing complexity in system design a good

2.1. THE Time-Triggered Architecture AND THE TIME-TRIGGERED SYSTEM-ON-CHIP7

system model with clear defined interfaces is needed. In the TTSoC every component is com-
pletely autonomous and only connected over the trusted TTNoC with other components. This
means that there are no hidden channels, which interact with each other. Because of the Time-
Triggered (TT) implementation of the NoC it is possible to guarantee a deterministic behavior of
the communication system. Determinism is an important prerequisite, because it consequently
enables the prediction of future behaviour of the system. It is also much easier to abstract a
model from deterministic systems, than from non-deterministic and also the reproduction of test
cases is only possible with guaranteed deterministic behaviour. This determinism is one of the
main goals of the TTSoC architecture.

The TTSoC architecture is built around a deterministic NoC which interconnects multiple IP-
Cores called the micro components with each other [OPHES06] (see figure 2.2). Each micro
component is a self-contained computational unit, that interacts with the system through an
interface which is connected to the NoC. This interface is called the Trusted Interface Sub-
System (TISS) and is located with the user application inside the host. This TISS provides the
basic core functions for the application and acts as a guardian for the NoC to prevent an ap-
plication specific fault from distributing throughout the network. It always accesses the NoC
at a priory known point in time by using a TDMA scheme. The order of the messages sent
over the network is specified in a list called the Message Descriptor List (MEDL). Because of
the interface design of the TISS the host application cannot modify the order of the messages.
Additionally, a module called Trusted Network Authority (TNA), administers the routing of the
NoC and ensures that only safe configurations are used.
Together the TISS and the TNA form a so called Fault Containment Region (FCR) which is a set
of components, which are certified and prevent faults in the application layer from propagating
throughout the system. [LH94] Also each host is considered to be in each own FCR.
In addition there is also one micro component called the Resource Management Authority
(RMA), which allocates resources needed for the other micro components to access the NoC.
This resource management is checked by the TNA against predefined constraints, like mes-
sage conflicts or availability of resources. If the schedule is valid, the TNA routes the message
through the NoC. This NoC provides the connection between the micro components through
periodic or sporadic message passing. The basic concept behind this message passing are the
encapsulated communication channels. (see section 2.1) They transport the messages at a pre-
viously known point in time from the sender to at least one receiver. (Broadcast and multicast
is supported but limited as explained in [Pau08] chapter 6.2) The network itself is compound of
standalone fragment switches, the micro components and bidirectional channels which connect
all this components. Making this channels bidirectional gives an additional freedom in routing.
The switches themselves are completely unaware about the encapsulated communication chan-
nels and just locally know how to switch the messages. The complete routing information from
the sending TISS to the receiving is managed by the TNA.

The green components in figure 2.2 form the Trusted Sub-System (TSS). They have to be
implemented as simple as possible in order to facilitate certification. Their implementation is
also considered to be free of design faults and has to be certified, at the same level as the most

8 CHAPTER 2. BASIC CONCEPTS

critical micro component in the system.

TimeTriggered NetworkonChip

TISS

Resource
Management

Authority
(RMA)

Trusted
Network
Authority

(TNA)
TISS

CAN
Gateway

TISS

TTP
Gateway

TISS

Application
1

TISS

Application
2

TISS

Application
3

TISS

Application
4

µC µC µCµC

µC µC µCµC

....... Trusted Subsystem (TSS) Micro Components Host Applications

Figure 2.2: Basic layout and exemplary configuration of a TTSoC

Encapsulated Communication Channels

The encapsulated communication channels are unidirectional data channels, which transport
messages at a predefined point in time. They prevent the different micro components from in-
terfering with each other, with respect to the temporal and spacial domain. Modification in the
value domain is not covered by the encapsulation. For example, delaying or overwriting a mes-
sage is not possible throughout these communication channels.
The TISS, which is located between the host application and the TTNoC, establishes the en-
capsulated communication channel to the TISS of an other application. This channel is created
exclusively at a priori known point in time by using the TDMA scheme. As already mentioned
earlier, the TISS is part of the TSS and therefore considered to be free of faults. This ensures,
that the application in the user space is not able to interfere directly with the NoC. The end-
points inside the TISS are called ports. Every micro component can have multiple input and
output ports, but can only send once at a time.

2.2. INTEGRITY POLICIES 9

The Time Format

The NoC also establishes a global time base by implementing a clock synchronisation mecha-
nism in the TSS. [Pau08] The timebase is available for all components in the TSS and is based
on the physical second. This is similar to the implementation used in the Global Positioning
System (GPS) and provides a granularity of about 230 pico-seconds and a length of about 136
years. The binary time format is 64 bit long, where the upper 32 bit represent the full seconds
and the lower 32 bit the fractions of one second. (see figure 2.3)

........

31 03263

1 sec 231 sec232 sec

~136 years ~465 ps

Figure 2.3: Time format of the TTSoC

From this time format a periodic control system is derived, which defines periods and phases
of the pulses in the pulsed data stream. These pulses are sent through the encapsulated communi-
cation channels and are the actual messages which are are aligned according to the time format.
In order to define a period in the pulsed data stream, a special bit is chosen, called the period bit.
As previously mentioned the time format is organized in a power of two. This leads to periods of
1 second, 1

2 second, 1
4 second and so on. This restriction gives rise to a significant reduction of

complexity in the implementation of the time format, but has the drawback that a specific timing
is not possible. For example, later in the thesis a period of 20 milliseconds is required. This is
not possible due to the realization of the timebase and therefore a period of 15 milliseconds is
used.
As the alignment of pulses to periods are not exact, pulses can collide. As a consequence the
basic period is subdivided by pulse phases. A phase defines a temporal offset of a pulse with
respect to the start of a period.

2.2 Integrity Policies

This integrity policies provide dependability through a set of integrity levels I. The different
tasks of a safety or security critical application are vertically subdivided into their corresponding
integrity levels with a partial order relation (≤). The content of these integrity levels is not
generally definable and needs to have a different specification under each application.

Classic Integrity Models

The following integrity models are composed of tasks that consist of subjects S (the active ele-
ments like users or processes) and objects O (the passive elements like information containers).
Both security models contain of the following functions and relations [BL75]:

10 CHAPTER 2. BASIC CONCEPTS

• The function il: S ∪ O → I which associates the integrity level to each subject S or
object O

• obs: a relation on S × O where a subject s ∈ S is able to observe an object o ∈ O.
(reading)

• mod: a relation on S × O where a subject s ∈ S is able to modify an object o ∈ O.
(writing)

• inv: a relation on S × S where a subject s1 ∈ S is able to invoke an other subject s2 ∈ S
(executing)

Bell-LaPadula

The Bell-Lapadula model [BL75] arose because of the need for a mathematical framework and
model for a secure computer system. It is based on the work of Lampson [Lam69] who ini-
tially introduced a representation of security problems through a formal medium of expression.
Lampson first used the concept of object, subject and access matrix. A lot of other research,
mainly emerged out of the military sector, has been done in this field before the Bell-LaPadula
model was created at MITRE corporation in 1974. [Bel74] [Wei69] This model is a safety model
with hierarchical ordered structures, which protects the confidentiality of information by using
in-system rules and a dynamic access matrix model. It should not be possible to read informa-
tion from a higher security level or to write information into a lower one. This model basically
controls the information flow and consists of the following three rules:

• No-Read-Up: A subject should not read an object in a higher security level
or formal: ∀(s, o) ∈ S ×O, obs(s, o)⇒ il(o) ≤ il(s)

• No-Write-Down or *-property: A subject in a higher security level should not write into
an object from a lower level
or formal: ∀(s, o) ∈ S ×O,mod(s, o)⇒ il(s) ≤ il(o)

• Discretionary Security Property: It enables to control the access of a subject to an object,
by using a free definable access-control matrix

1

2

3

4

1

2
Appl. 1

Appl. 2

Figure 2.4: Illustration of a Bell-LaPadula writing operation

Inside the access control matrix, there are definable access rights. They consist of the fol-
lowing universal rights, like read-only, append, execute, edit and edit-read. The current access

2.2. INTEGRITY POLICIES 11

set is defined through the triple subject, object and access matrix. The subject owns access rights
(read, edit, ...) to the object. For example, the tuple (Person, Document, {read}) means, that the
subject “Person” is allowed to read the Object “Document”. One of the main problems of the
Bell-LaPadula model is the limited expressiveness. For example, a subject is writing into an
object with a higher security level, which is an allowed operation. Because of the in-system
rules, it is not possible for the subject to verify the operation by reading the written data.

The Bell-LaPadula Model was mainly developed for military use, because division into secu-
rity levels fits perfectly into this area. Since 1976 this model is standard in the TCSEC (Orange
Book) of the american military. [Gal87]

Biba

Improving the shortcomings of the Bell-LaPadula model, the Biba model [Bib77] was intro-
duced at the MITRE corporation in 1977. This model is a multi security level policy and is
mainly used in the field of data security. It is the inversion of the Bell-LaPadula rules and checks
the integrity of a one-way information flow by using the following rules:

• No-Read-Down: A subject should not read an object in the lower security level
or formal: ∀(s, o) ∈ S ×O, obs(s, o)⇒ il(s) ≤ il(o)

• No-Write-Up: A subject in a lower security level should not write into an object from a
higher level
or formal: ∀(s, o) ∈ S ×O,mod(s, o)⇒ il(o) ≤ il(s)

• Invocation: A subject should not invoke an other subject in a higher level
or formal: ∀(s1, s2) ∈ S × S, inv(s1, s2)⇒ il(s2) ≤ il(s1)

Because of this rules the information flow is limited and can just be carried out from a high
integrity object into a lower one. Therefore it is possible, that an object in a low level can have
data which is more trustable than it’s own integrity level. Even it this object never modifies
this data, the integrity level has to be decreased to the level of the receiving object. This is a
main disadvantage of the Biba model, because the level of integrity can only decrease but never
increase.
An other disadvantage in this model is that it is not providing confidentiality. To solve this
problem it should be combined with an other model or by using the Bell-LaPadula model.
The Biba model is used in computer file systems for managing read and write access to files.

1

2

3

4

1

2
Appl. 1

Appl. 2

Figure 2.5: Illustration of a Biba writing operation

12 CHAPTER 2. BASIC CONCEPTS

Clark and Wilson policy

This integrity model by Clark and Wilson, [CW87] [TBDP00] focuses on the conservation of
data integrity. The main idea behind this policy is, that each secure data item can only be mod-
ified by a certified application. This certification guarantees, that the integrity of the data is
kept intact. In generally the model distinguishes between Unconstrained Data Items (UDI) and
Constrained Data Items (CDI) which stands for data items which are certified or not.
The model also defines two additional notations. The well-formed transactions or so called
Transformation Procedures (TPs) for maintaining the integrity of the data and the separation of
duties or Integrity Verification Procedures (IVPs) for providing the ability to verify the data.

The Clark and Wilson policy focuses on the integrity of the data modifications and not on infor-
mation flow control like the Biba model. This model uses the following rules:

• Data of an integrity level can remain in this level when it is only modified by a procedure
of at least the same level.

• Information flow from a low to a high level only is possible, if the data itself has a high
integrity level.

Totel’s Integrity Model

Many of the traditional implementations of such models like the previously mentioned Biba or
Clark and Wilson models implement the required in-system rules in a mathematical framework
and prevent upstream communication.

A more looser integrity model is Totel’s model [TBDP00] [TBDB+01], which is closely re-
lated to the Biba model. Contrary to Biba, where active entities called subjects access passive
object entities, Totel’s model has only one kind of entities called objects. These objects provide
services that can be requested by a client. Each of them is classified within a particular integrity
level, which indicates how it can be trusted and corresponding to it how high the requirements
for dependability are. If an object creates a message, this message inherits the integrity level
from it’s creator. A reception of a message enables former defined integrity rules to check if this
message is valid or not.

The main aim of the integrity model is to prevent in system error propagation from a low secu-
rity level to a higher one, because this would automatically downgrade the security level of the
receiving object. Therefore Totel’s model introduces a special kind of object called the Valida-
tion Object. This object has to be seen as an exception for the integrity policy rules, which
are defined in the following section. The purpose of this object is to provide fault-tolerance
mechanisms to prevent the downgrade of the integrity of the received data. This provides reli-
able information from data which is possibly defective and adds an additional freedom in system
design, because it enables object upward communication.

2.2. INTEGRITY POLICIES 13

Totel’s model uses three different kinds of objects which are all assigned to one or more se-
curity levels. It distinguishes between Single Level Object (SLO)s, Multi Level Object (MLO)s
and the already mentioned Validation Objects. SLOs are assigned to a single integrity level cor-
responding to the confidence they are providing.
MLOs are objects which can be assigned to more than one integrity level and provide a solution,
if a service is needed in different integrity levels and is validated for the highest one. Therefore
in Totel’s model it is possible to use this kind of objects in all lower security levels, which allows
a reuse of services.

Integrity Rules

In order to define the rules used in Totel’s model, we need a set of objects O and a set in integrity
levels I , where the function il: O → I associates an integrity level il(o) to every object o ∈ O.
All elements in I have a partial order relation. (≤)

The only rule a SLO has to follow is, that it cannot access information from a lower integrity
level and it cannot accept information from a lower level. Consequently an object can be read
by a lower or an equal integrity level or can write to a lower or an equal integrity level. The rules
for SLO to SLO access are:

1. invoke reading
∀(o1, o2) ∈ O ×O, o1 read o2 ⇒ il(o1) ≤ il(o2)
o1 can read from o2 only if o1 has at most the same integrity level as o2

2. invoke writing
∀(o1, o2) ∈ O ×O, o1 write o2 ⇒ il(o1) ≥ il(o2)
o1 can provide information to an object o2 only if o1 has at least the same level as o2

3. invoke read-writing
∀(o1, o2) ∈ O ×O, o1 readwrite o2 ⇒ il(o1) = il(o2)
this is a logical and between the read and write rule and stands for an entire information
exchange

Like an SLO, the MLOs are also assigned to an integrity level, which in this case is called
it’s intrinsic level or highest level. To provide the same rules for MLOs like they are given for
SLOs, a few more rules are needed. It is required to define MLO to SLO, SLO to MLO and
MLO to MLO access. The exact definitions of these rules are not worked out in this thesis and
can be found in the literature. [TBDB+01] The basic structure of Totel’s model is sketched in
figure 2.6 by realizing an exemplary instantiation, which uses the above defined rules.

In this figure, SLO1 in security level 1, reads from the object SLO3 which is in level 3. This
is allowed by rule 1, because the integrity level of the reading object is less or equal to the read
object.
Rule number 2 is illustrated by SLO4 writing to SLO3, because therefore the integrity level of
the writing object has to be higher or at least the same level as the written object.
The third rule is shown in all read and write operations, which are conducted by not leaving the

14 CHAPTER 2. BASIC CONCEPTS

SLO 1a/b

MLO 1

SLO 2 Level 1

Level 2

Level 3

Level 4
SLO 4

SLO 3

Validation
object

MLO 2

Integrity
Kernel

Operating
System
microkernel

SLO 4 writes to SLO3

SLO 2
reads from
SLO 3

SLO 3 reads from MLO2

SLO 2 writes to MLO 1
SLO 1a/b reads from SLO 2

SLO 4 reads from VaO

VaO reads from SLO 1

SLO 5

SLO 5 writes to SLO 4

Figure 2.6: Integrity architecture of Totel’s model sketched by an exemplary instantiation

integrity level, like it is done by SLO1 reading from SLO2.
The already mentioned exception to the integrity rules, which the “Validation Object” is using
to provide upstream communication is given by SLO4 reading SLO1. This is a forbidden read
operation which violates rule 1. To enable this, the “Validation Object” is interconnected and
provides fault tolerant mechanisms to guarantee valid results in the value domain. Valid mes-
sage exchange in the spacial and temporal domain are guaranteed by using the integrity kernel
and the operating system micro-kernel. To be able to provide the fault tolerance mechanisms,
SLO1 needs to be implemented in at least two independent ways, which is given in figure 2.6 by
replicating SLO1 into SLO1a and SLO1b.

The illustration of the MLOs in figure 2.6, is given to provide completeness of the model and is
not closer specified in this thesis.

An example assignment of the integrity levels is FIPS 140-2, which is based on the U.S. gov-
ernment computer security standard. [EBB01] FIPS 140-2 defines four security levels, simply
named “Level 1” to “Level 4“ and are defined as following:

Level 1 This level provides the lowest level of security in our system and can be compared with
using a normal COTS hard- or software. For example, a PC with a Windows or Linux
operating system, which just provides standard security mechanisms.

2.3. THE Multiple Independent Layers of Security ARCHITECTURE 15

Level 2 Security level 2 adds the feature, that a possible break-in always needs to leave some
evidence behind.

Level 3 In addition to the evidence from level 2, which indicates a break-in, level 3 is attempting
to prevent the intruder from gaining sensitive data.

Level 4 This level provides the highest amount of security mechanisms in the system. A possi-
ble fraud or break-in into the system always needs to be detected and prevented. Therefore
corresponding security mechanisms have to be provided.

2.3 The Multiple Independent Layers of Security Architecture

The Multiple Independent Layers of Security (MILS) architecture [AFOTH06] was developed to
make the certification of high integrity systems easier. It is based on the concepts of separation
by Rushby [Rus81] and it is a requirement for the ARING 653 [Pri07] standard. Mainly it
focuses on partitioning of the system, in a way that the single components can’t interfere with
each other. Through this partitioning a hierarchy of security services is produced, where each
level uses the security service of a lower level to provide new security functionality that can be
used by higher levels. The basic structure of this architecture is given in figure 2.7. It compounds
of a shared single processor and the following three layers:

a) Partitioner Layer: This layer contains the separation kernel, which is a small piece of cer-
tified code. It acts as a partial and temporal firewall and provides the four fundamental
security functions which are needed for a robust partitioning of an application:

1) Data Isolation: The memory address spaces of a component has to be completely au-
tonomous from other partitions. Changing the state of a component should never
influence the execution of an other component and also all others should not influ-
ence the current executing component.

2) Information Flow: This requirement modifies the Data Isolation requirement, because
the components are allowed to communicate with each other. This communication
has to happen in form of authorized communication channels. The architecture has
to ensure that these channels are the only way how the partitions communicate with
each other. (no hidden channels)

3) Sanitization: It has to be ensured that the processor never leaks classified data to un-
classified processes while executing. This can be realized by cleaning all shared
resources before an other component uses them.

4) Damage Limitation: If a fault happens at an unclassified component it should never
distribute throughout the network. As address spaces are separate and the commu-
nication is managed through authorized communication channels, this attribute is
provided through the other security functions.

b) Middleware Layer: This layer provides application specific dependent functions, like drivers,
real-time data distribution services, resource allocation or object oriented inter-partition

16 CHAPTER 2. BASIC CONCEPTS

communication. It is also responsible to ensure end-to-end communication through la-
beling, filtering and maintaining information flow controls. The middleware layer can
facilitate a communication channel between two applications with different security lev-
els by using filter techniques.

c) Application Layer: This layer contains of the main application and has to be assigned to the
desired security level.

Application 1 Application 4Application 3Application 2

Middleware Middleware Middleware Middleware

MILS Seperation Kernel

Processor

a: Partition Layer

b: Middleware Layer

c: Application Layer

Figure 2.7: The MILS architecture [Rus81]

The MILS architecture is a design approach for high dependable systems that manages the
high complexity through modular design and layer enforcement through integrity policies. It is
a similar approach like the one used in this thesis but in contrast to the TTSoC which is a multi
processor system, the MILS architecture uses a single processor. Details about the comparison
of the two architecture is given in the work from Wasicek in section 3.4.

2.4 N-Version Programming

There are two main groups of software fault tolerance approaches, which are called single ver-
sion software and multi version software. [Avi95] The single version approach consist of a
single implementation of a system which includes the fault tolerant mechanisms inside the de-
sign. In contrast, multi version software stands for the autonomous development of two or more
versions of a system. The idea behind this approach is that single versions of a program which
are developed under strict independent circumstances will also fail independent from the other
versions. This effect is called design diversity.
The two main approaches for multi version software are called Recovery Blocks (RB) and N-
version programming (NVP) and are defined as following.

2.4. N-VERSION PROGRAMMING 17

Recovery Block – Model

This technique was established by Brian Randell in 1975, as a first approach for multi version
software. [Ran75] It uses two or more versions of a program, where one version is operating
as a primary version and all others are in standby. If the output of this primary version fails at
the acceptance test, the system falls back to a recovery state and the operation is recalculated
by the alternate version of the program. The system recovery is considered completed, if the
acceptance test succeeds. In order to provide the already mentioned recovery point, a memory
is needed which provides a starting point for the alternate versions.

N-Version Programming – Model

The concept of NVP, which was started at the University of California by A. Avizienis in 1977 is
based on the independent creation of N ≥ 2 redundant software programs called versions.
[AC77] [Avi95] The “Independent generation of programs“ which was stated by Avizienis
means that the N -versions of the program need to be created by N -groups or single persons
which do not interact with each other during the software development process. Whenever it
is possible, different algorithms, programming languages or even operating systems should be
used. All N-versions of the program are running in parallel and simultaneously produce output
data which needs to be compared by using a selection- or voting algorithm. This so called ac-
ceptance test is the main difference to the RB model. Details about the process of the N-version
software (NVS) is depicted in figure 2.8. As N different versions of a software are needed, the
development effort is N times higher than in a single version approach. However, because of
the division of the system into subsystems the complexity is not increasing.

Version 1

Version 2

Version n

Decision
Algorithm

.

.

.

.

.

.

I
1

I
2

I
n

.

.

.

Confident
output

Execution Environment (EE)NVersion – SW UnitsEE

Figure 2.8: The N-version programming model [AC77]

As providing N different versions of a software is not a fully fault tolerance system, an
Execution Environment (EE) is needed. Therefore every version of the software needs a so-
called fault tolerance feature which allows each version to be a member of the NVS. Also

18 CHAPTER 2. BASIC CONCEPTS

the EE needs to provide an environment for executing these versions. It needs to minimise the
probability that an undetected fault inside one version is influencing all other versions. In the
EE the selection algorithm is also implemented, which guarantees a decision between the output
values of the versions. For systems with N = 2 versions, the word comparison is used and
for systems with N > 2 it is called voting. The different voting techniques and especially the
inexact voters are discussed in section 4.

2.5 Anomaly Detection – Fundamentals

Anomaly detection tries to find patterns in data that do not conform to the expected behaviour of
the whole data set. It can be used in a wide range of fields. For example, in fraud detection for
credit cards, intrusion detection in computer systems, fault detection in safety critical systems
and a lot of other areas. [BK09]

Figure 2.9 illustrates a brief example in a two dimensional data set, where the data has two
normal regions N1 and N2. Most observations are situated in this area. Points which are suffi-
ciently far away from this region, like points O1, O2 and O3 are considered to be anomalous.

x

y

N1

N2

O3

O2

O1

Figure 2.9: A simple example of anomalies in a 2-dimensional data set

At an abstract point of view an anomaly is a defined pattern that does not conform to normal
behaviour. The easiest approach to detect such an anomaly is to find all objects which have
a normal behaviour and mark all objects which are not in this normal region as anomalies.
This sounds like an easy solution but there are several factors which make this approach very
challenging:

2.5. ANOMALY DETECTION – FUNDAMENTALS 19

• The definition of a normal behaviour which includes every possible occurrence is not
always easy to find. It can happen that the boundary between normal and abnormal is
very tight.

• In many situations even the normal behaviour is evolving over time and therefore also the
definition of an anomaly has to change.

• Many procedures to find anomalies need training data as an input to determine if a data
set is anomalous. Getting this training data often is a major issue.

• It can be difficult to distinguish between noise and the anomalies themselves. [TCL90]

The main aspect of an anomaly detection algorithm is the nature of the data, which can be
described by using a set of attributes. For example, uses the data always the same dimension, are
the characteristics always the same and in what field is it used? The data can also be discrete,
continuous or categorical. An other important aspect of the different types of anomaly detection
is the nature of the desired anomaly. They can be classified into the following three categories:

Point Anomalies: If a single data instance can be detected as an anomaly by analysing the
attributes of all the data other data instances. Then this anomaly can be classified as a
point anomaly, which is the easiest form of anomaly detection.

Contextual Anomalies: If data is declared as an anomaly, with respect to the specific context
in which it occurs, than this data is declared to be a contextual anomaly. The notion of
context is defined by the surroundings and environment in which the data is used and has
to has to be defined application specific. It can be part of the problem statement itself.
[SWJR07]

Collective Anomalies: This happens if a collection of data is declared to be anomalous in re-
spect to the entire data set. All the single data instances of an anomaly are not declared as
anomalies by themself, but there occurrence in the collection is anomalous.

Point anomalies can occur in many data sets, but collective anomalies can only occur in data
instances where the data is related to each other. A point anomaly and a collective anomaly, can
also be a contextual anomaly, when they are considered in respect to the context. Thus also a
point or collective anomaly can be transformed to a contextual anomaly by adding the applica-
tion specific context.

An other important aspect of the different types of anomaly detection is the nature of the de-
sired anomaly. In this thesis we will focus on the most popular and also easiest form of anomaly,
called the point anomaly. This anomaly can be a single data instance and can be classified as an
anomaly by looking at all the other data instances in the set.

To indicate if a sample is in the set of normal or anomalous, exact labelling of the data is im-
portant. Covering all occurrences of anomalies is generally a difficult approach and is often
not realisable. It is sometimes easier to label all normal occurrences in the data set. Therefore

20 CHAPTER 2. BASIC CONCEPTS

defining exact rules for labelling the data is often done manually by a human expert. Based on
the labels available, anomaly detection techniques can work with one of this three modes:

Supervised Anomaly Detection: This technique assumes the availability of training data, where
the provided data has labeled instances for anomalous and normal data. In operation, ev-
ery new data instance is compared to the training data set to determine, which class it
belongs to.

Semi-Supervised Anomaly Detection: Compared to the supervised technique, the training data
of this approach just has labels for the normal data. Since this technique does not require
labels for the anomaly class, it is usable in a wider range of applications.

Unsupervised Anomaly Detection: Techniques that work in unsupervised mode, do not re-
quire training data at all and therefore are most widely applicable. This technique is based
on the assumption that normal data is much more frequent than anomalous data. If this is
not given, they produce a hight false suspect rate.

There are a lot of different approaches to conduct anomaly detection. In this thesis the focus
lies on three techniques, which are called Nearest Neighbour Bases, Statistical and Clustering
Based anomaly detection. (see section 4.3) Others, which are not covered in this thesis are
Classification Bases, Information Theoretic or Spectral Based anomaly detection.

2.6 Fault Injection Techniques

This techniques are important to analyse the reliability of computer systems and there are many
different approaches in this area. [HTI97] In order to understand and identify potential failures,
fault injection techniques are used for studying the dependability of a system. This is not only
done during the design phase of the system, also already working prototypes are tested with this
methods. Most important thing is to firstly understand the basic structure and behaviour of the
system, it’s criticality level and the in built fault tolerant functions. Then the tools for injecting
a fault into the system can be chosen.

For every phase of a project, the ways for injecting a fault into the system are different. For
example, in an early state of system design, simulation-based fault injection is used as a cheap
evaluation for the dependability of a system. This mechanisms are useful to evaluate the effec-
tiveness of a fault-tolerant mechanism, but it needs the availability of accurate input parameters
which is difficult to provide.
On the other hand, prototype-based fault injection allows to evaluate the system without any
assumptions about it’s design. This faults can either be injected at the hardware- or the software
level. The injection of a fault can provide information about the origin of the failure, but it is
suitable for studying emulated faults only. It never can provide dependability measurements like
availability or reliability.
Instead of injection faults, it is also possible to directly measure data by using measurement-
based analysis. [IT96] This data often provides information about error and failure character-

2.6. FAULT INJECTION TECHNIQUES 21

istics but is limited to detected errors. Additionally the data needs to be collected over a long
time, because failures and errors tend to occur infrequently.

Injection Methods

Choosing the method of fault injections depends on the nature of fault, which should be detected
and the effort required to create them. The two main methods are hard- and software based
fault injections. On the one hand, if a data corruption fault should be produced, a software fault
injector [VM97] is better suited. In the recent years this kind of techniques became more attrac-
tive, because they can be used at target applications and operating systems and are compared
to expensive hardware relatively cheap. If the target is an application, the fault injector can be
inserted in the application itself or as a layer between the operating system. This makes this
approach very flexible, but limited by not be able to access the hardware level. Software fault
injectors can be categorised on when the actual fault is injected: during compile time or runtime.
The easiest runtime faults are timeouts, which inject a fault after a pre- defined duration. Other
faults are traps, which are triggered by certain events inside of the application or code-insertion
faults, which are inserted before a specified instruction. Some projects located in the software
based fault injection are:

Ferrari: The Fault and Error Automatic Real-Time Injection (Ferrari) project, uses software
traps to inject CPU, memory and bus faults. [KKA92] When the trap is triggered, it
injects faults at the desired location, by manipulating a memory location or changing a
register. The fault can be either transient or permanent.

Doctor: Integrated Software Fault Injection Environment (Doctor) allows the injection of CPU
faults, memory faults and network communication faults. [HSR95] Doctor uses timeout,
traps and code-modification to trigger the fault injection.

On the other hand, if a stuck at fault needs to be produced, a hardware fault injection
[ELOGV+11] is preferable. This kind of fault injection, uses addition hardware to introduce
faults into the target system. The injector can either have contact to the actual target system or
without contact. Generally this methods are suited for low level faults. Some tools which have
been developed in this area are:

MARS: The Maintainable Real-Time System (MARS) architecture is a distributed fault tolerant
architecture. [KFG+92] It uses electromagnetic fields to induct contactless fault injection:
Two charged plates are mounted around a circuit board, which causes a fault injection.
Small wires that act as antennas are used to inject the fault at the desired pin.

Messaline: This tool is developed in Toulouse, France, and can inject stuck-at, complex logic
faults and others. [ACL89] It uses active probes and sockets to conduct pin-level fault
injection.

FIST: The Fault Injection System for Study of Transient Fault Effect (FIST) project realises
both contact and contactless fault injection methods, to inject transient faults into a circuit.

22 CHAPTER 2. BASIC CONCEPTS

[GKT89] FIST can inject faults directly into a chip, which can’t be done with pin-level
fault injection. It can produce random faults inside the chip by using heavy-ion radiation,
which causes single- or multiple bit flips.

In this thesis we focus on simulation-based fault injection, where we inject faults into a
simulation environment which is explained in detail in section 5.5. The faults injected into this
system are software based.

CHAPTER 3
Related Work

This chapter outlines some related work which has been done in this field. It starts by looking
at a work which comes out of the avionics area, in which an airplane maintenance procedure is
optimised by using COTS hard- and software. In order to upgrade the dependability of the output
from these systems, fault tolerance mechanisms are used similar as it is done in this thesis. Next
some NVP approaches are given which where carried out at the University of California where
also the groundwork for this fault tolerance approach was done. Finally a work of the Technical
University Vienna is mentioned, where the TTSoC architecture is compared with the well known
MILS architecture and because of this it is concluded, that the TTSoC can be used in a mixed
criticality application.

3.1 Connecting Commercial Computers to Avionics Systems

This work, published at the University of Toulouse, analyses the take-off and maintenance pro-
cedures for new aircraft generations, in which communication between on- and off-board com-
puters is carried out. [LDPA09]

Take-off Procedure

First the take-off procedure of a modern airplane is optimised. In the original process, a set of
flight parameters from the airport and the plane need to be processed by the pilot. With this
data the pilot can calculate the take-off profile and then has to enter the data manually into the
aircraft management system. In order to speed this procedure up, this approach uses a laptop,
which is directly connected to the aircraft management system. This laptop calculates the profile
and enters the data. Basically this approach considers, that a save application which is running
on an unsafe operating system, sends information to a critical on board computer. For this an
information flow from a low criticality level to a higher one is needed. This approach uses four
criticality levels, which have been identified as: Flight Management (FM), Aircraft Operation
and Maintenance (A/C OM), Aircraft Information System (A/C IS) and Open World (OW). The

23

24 CHAPTER 3. RELATED WORK

updated information flow in this procedure can be organised as depicted in figure 3.1.
Task 1 is the take-off profile calculation task, which is considered to be unsafe, due to the low
integrity level of the operating system. Task 2 stands for the information directly provided by
the airline, which is considered to be OW too and exchanges information with task 1. Task 3
represents the airport data, which is sending information to the laptop in task 1 and is considered
to underlie a stricter policy, because this is a standard procedure for airports. Task 4 stands
for the application, which directly exchanges information with the aircraft management system.
The communication from task 1 to task 4 is a critical upstream communication, which is strictly
forbidden in classic integrity models like mentioned in section 2.2. Therefore a mechanism is
needed to upgrade the reliability of the data, which is explained in the following section.

FM

A/C OM

A/C IS

OW

Criticality levels

Task 1Task 2

Task 4

Task 3

Figure 3.1: The new information flow for the take-off procedure [LDPA09]

Maintenance Procedure

Secondly a similar strategy is used to optimise the maintenance procedure, which is very cost
causative and therefore needs a fast handling. In the traditional procedure the maintenance op-
erator gets faulty behaviour of the plane from the on-board log. With this information he tries to
fix the problem by using electronic- or paper manuals and by interacting with the maintenance
terminal. This procedure can be optimised in a way, that the maintenance operator directly ac-
cesses the plane by using his maintenance laptop, where he is able to see the on-board logs and
is guided by the electronic manuals. This optimised procedure also induces upward information
flows from the maintenance laptop in the OW domain to the domains with the higher criticality
levels.

In both case studies an information flow from a low integrity level to a higher one is needed,
because the maintenance or calculation laptop uses untrusted COTS hardware such as Windows

3.1. CONNECTING COMMERCIAL COMPUTERS TO AVIONICS SYSTEMS 25

or Linux. This kind of operating systems are not offering sufficient protection for the application
and therefore special mechanisms are needed, which are discussed in the following section.

Providing Upstream Communication

In multi-level security systems, mechanisms are needed to control the information flow and
check the integrity of the data that is sent from one level to the other. Therefore an integrity
model is used, which provides rules for up- and downgrading information flows. In order to
resolve these security issues, this work uses the model called Totel’s multilevel integrity policy,
which is already described in detail in section 2.2. [TBDP00] [TBDB+01] Combining now the
information flow of figure 3.1 with the security attributes of Totel’s model, the message exchange
has to be reorganised as depicted in figure 3.2.

FM

A/C OM

A/C IS

OW

Criticality levels

Task 2Task 1a

Task 4

Task 3

Task 1b

Validation
Object

Operating
system

microkernel

Integrity
kernel

Figure 3.2: The new information flow for the take-off procedure by using Totel’s integrity model
[LDPA09]

The main change in this figure is the communication from Task 1 to Task 4, because a
bidirectional information flow from a higher security level to a lower one is needed. Task 4 is
allowed to write Task 1 and also Task 1 is allowed to read Task 4 but all other communication
activities between these two tasks are forbidden. As this is needed by the take-off procedure,
a “Validation Object” has to be interconnected, which upgrades the reliability of the data in
the value domain. This upgrading is done by implementing a voter in the VaO and therefore
redundant input data is needed. To create this, task 1 is split up into at least two autonomous
tasks called task 1a and task 1b. These newly created tasks use different execution platforms
for the take-off calculations. One is using Windows as an operating system and the other one
is using Linux. To be able to execute both operating systems on one laptop simultaneously, a
virtualization is needed which has to be considered to be free of faults. The redundant output of

26 CHAPTER 3. RELATED WORK

both tasks is compared inside the VaO and because of this redundancy check it can be used in
the higher integrity level.

Determinism Issues

One of the main problems with this approach is that a determinism of both operating systems
has to be assumed. As this is not provided in reality, because both operating systems use at least
different pre-empting scheduling algorithms, it is likely to happen, that the comparison of the
data may fail because of a deviation in the temporal domain.
This determinism problem is the major difference to the approach used in this thesis. Because
of the use of the TTSoC and it’s deterministic communication service, it is guaranteed that two
redundant values are not permuted or have a deviation between each other.

3.2 N-version Programming – Experiments

This section covers a few carried out examples of the NVP approach which are described in
detail in section 2.4 and were introduced by Avizienis in 1979. [AC77] This work is mainly
focused on software problem statements, but it is not limited to it. For example, in the avionics
project from the Boeing 737-300 [WYF83] and also the Airbus airliners, the NVP approach is
used. [Tra88] The following approaches were carried out to test the characteristics and properties
of N-version programming.

The 3-version RATE Program Experiment

The Region Approximation and Temperature Estimation (RATE) experiment was carried out
at a graduation seminar course at the University of California Los Angeles in 1977. There the
experiment was done in form of a programming assignment, were the students where asked to
form teams of two people. Totally there were 16 teams which created 16 programs where the
best seven were chosen for further investigation. These seven programs got grouped into 12
combinations and tested by using 32 test cases. This gave them a combination of 384 test cases,
where 290 contained no bad version, 71 one bad version, 18 two bad versions and 5 three bad
versions.
The 290 test cases generated acceptable results, the 71 cases with one bad version produced 59
acceptable results and the other experiments all produced unacceptable results. Based on this
data, two main difficulties in NVP were observed:

• Sometimes a version of the program produced an error that caused the operating system
to continue the execution and thus also the other two may correct versions failed. Because
of this the 3-version program was not able to continue beyond this point.

• In some cases the output of a program was incorrect or even missing. If two versions of
the program had a missing output at the same time, it could happen, that this wrong output
was the same and therefore the whole result was considered to be wrongly valid.

3.3. A TIME-TRIGGERED SYSTEM-ON-CHIP – PROTOTYPE 27

The main result of this study was, that the environment where the experiment was executed
was poorly suited for the use as an NVP platform. A solution to this problem is the DEDIX 87
project which is explained in the following:

DEDIX 87 – A Supervisory System for Design Diversity Experiments

This project was started in 1985 at the University of California and was created to provide a
research platform for the investigation of design diversity in order to create fault tolerant systems
[AGK+85] [ALS+87]. The purpose of DEDUS 87 is to supervise the execution of N diverse
versions of a software as a fault tolerant unit. It also provides a transparent interface for each
version, the user and the surrounding system so that each component doesn’t need to be aware
of the other components and can run completely autonomous. A few attributes of the DEDIX
system are:

• DEDIX is a distributed system which can be executed at different sites in order to benefit
from parallel execution and to survive a crash of the minority of instances.

• It is guaranteed that an application can run with any number of different versions and also
special requirements for the software are not needed.

• A reliable decision algorithm is available that creates consensus from all available ver-
sions. The algorithms are able to deal with different formats and the user is able to switch
the used algorithm.

• It also provides recovery mechanisms for disagreed wrong versions and also removes
failed versions where the recovery attempt failed or is not available.

• The DEDIX system runs on the distributed Locus environment and is portable for all
UNIX systems.

DEDIX combined with the N -user programs can be seen as a fault tolerant multi-version
system. For this, the DEDIX platform is the supervisor which guards the execution of the soft-
ware versions. The environment itself can be executed on a single computer and also in a net-
work which protects against most hardware faults. In a network the communication is realised
over standard ethernet, where every single host has it’s own instance of the DEDIX software and
a diverse version of the application.

3.3 A Time-Triggered System-on-Chip – Prototype

A working prototype of the Time-Triggered System-On-Chip (see section 2.1) was created at the
Vienna University of Technology by Christian Paukovits in 2008. [Pau08] This prototype was
originally realised on an Altera1 Field Programmable Gate Array (FPGA) and was successfully
ported to the following models:

1Altera Corporation, http://www.altera.com

http://www.altera.com

28 CHAPTER 3. RELATED WORK

• Altera Cyclon IITM Series (Device: EP2C35)

• Altera Stratix IITM Series (Device: EP2S60)

• Altera Stratix IIITM Series (Device: EP3SL150)

The implementation on FPGAs was chosen because they are far more inexpensive than using
ASIC technology and do not demand for infrastructure like a vacuum-clean environment. The
main drawback of FPGAs is the 3-5 times slower execution time and the 35 times more size
needed on the chip. [KR07]

The current implementation is dimensioned in such a way, that it is unlikely that a target ap-
plication will ever exhaust the available number of ports or the size of the memory inside the
TISS. Therefore this implementation is usable in various dimensions of target applications.

In this approach a special prototype hardware was used for each FPGA family. The MPSoC
Development Kit manufactured by TTTech2 was taken as a primary platform for the prototype.
By using this development kit, the whole design was split up on several FPGAs. The reason for
this was that at this time no FPGA with enough size was available. Therefore this development
kit emulates a SoC.

In order to implement the system on a single FPGA, it was recreated by using the NIOS IITM

Development Kit. This hardware is a COTS product which enables designing and prototyping
of a wide range of embedded applications. In order to use the system on more advanced FPGAs,
it was also implemented by using the Altera Stratix IIITM Development Kit. With this large
scale FPGAs, this implementation came close to the scale of the multi FPGA implementation of
the MPSoC Development Kit.

The Altera Stratix IIITM Development Kit was used in this thesis to create the simulation
environment described in detail in chapter 5.

3.4 The Time-Triggered System-On-Chip in Mixed-Criticality
Applications

This work was created at the Vienna University of Technology, where also the SoC implementa-
tion called the Time-Triggered System-On-Chip (TTSoC) was created. [WESK10] In this work
it is shown, that the TTSoC architecture provides a set of key features, that act as a spatial and
temporal firewall between the micro components, which is closely related to the well known
MILS architecture. [TBDP00] The MILS architecture is based on the concept of separating the
system into single autonomous subsystems, which access to a single shared processor is man-
aged by a trusted partitioner layer. (see section 2.3) This layer provides the four fundamental
security functions which are needed for the partial and temporal separation of the applications.

2TTTech Computer AG, http://www.tttech.com

http://www.tttech.com

3.4. THE TIME-TRIGGERED SYSTEM-ON-CHIP IN MIXED-CRITICALITY
APPLICATIONS 29

The TTSoC provides these four functions by design and goes even further, by also separating the
processor through implementing each component as an autonomous IP-Core. These IP-Cores
are connected through a NoC which uses the concept of the TTA. (see section 2.1) By using this
approach, a deterministic behaviour of the communication channels can be guaranteed which
facilitates verification and certification. The TTSoC implements the core requirements of the
separation kernel from the MILS architecture by design. The statements of these properties are
listed as following:

1) Data Isolation: This means that every application needs to have an own memory address
space, which is exclusively accessed by the application. This attribute is provided in the
TTSoC through the separation of the system in subsystems called the micro components.
There is no hidden channel between every single micro component and the only inter-
action with the NoC is guarded through the TISS. As the amount of on-chip memory
is limited, there can be a lack of memory in huge applications. Therefore an off-chip
memory is needed which has to be managed by an Memory Management Unit (MMU).
This MMU again has to guarantee that there are no shared resources between the micro
components.

2) Information Flow: This attribute is provided by the encapsulated communication channels
of the TTSoC. These channels provide strict rules for communication which are super-
vised by a trusted component called TNA. The TNA acts as an operator and connects the
port of the sending micro component with the receiving port, by driving network switches.
It is guaranteed by design, that the application running on the micro component is not able
to interfere with the route controlled by the TNA. To transmit a message, the application
layer simply writes the information into a memory location and maps this memory to the
corresponding output port. The interface of the application layer is that restricted, that it
cannot influence when or how often a message is transmitted through the network. There-
fore the application layer cannot interfere with the TTNoC and the information flow is
guaranteed by design.

3) Sanitization: Because of the fact that every micro component is completely autonomous,
sanitization is not a problem. Every micro component is realized as a single IP-Core and
therefore no resource is shared with each other.

4) Damage Limitation: This is one of the main features of the TTSoC architecture. Due to the
partitioning of the system into FCRs, faults cannot distribute throughout the network and
are therefore self-contained.

The TTSoC architecture establishes a spatial and temporal firewall between each micro com-
ponent and as a consequence it guarantees, that a fault in one component cannot distribute
throughout the NoC. In addition it facilitates certification, by using a deterministic commu-
nication channel on the NoC and by partitioning the system into single FCRs. [PK09]

30 CHAPTER 3. RELATED WORK

Middleware Layer

In the TTSoC architecture it is possible to extend the security mechanisms by adding additional
security functions into the middleware layer. Distinguishing from the MILS architecture, this
middleware layer is located inside the application section of the micro component. As the micro
components are single FCRs and guarded by the TISS, a fault cannot distribute throughout the
middleware into other micro components. The middleware needs to be verified at the same
integrity level as the application, which is running on the component. As it is probable, that this
application is running on a high integrity level, the fault tolerant mechanism in this middleware
needs to be easy to verify. In this thesis we focus on the implementation of such a middleware
on a multi-processor system. Therefore we realize different mechanisms which implementation
is discussed in chapter 4.

CHAPTER 4
Validation Middleware

This chapter explains how the previously discussed security policies can be used in combination
with the TTSoC architecture by implementing a Validation Middleware (VaM) to upgrade the
reliability of upstream information flows. First the system model is mentioned, which generally
describes the kind of systems the solution is applicable. Next some possible realisations for
the mechanisms inside the VaM are provided. All approaches used in this thesis implement
the basic concept of anomaly detection, whose fundamentals are given in section 2.5. These
algorithms are implemented in a simulation environment created in chapter 5 and the results of
these simulations are evaluated in chapter 6.

4.1 System Model

In this thesis we implement a multi integrity level system by using the TTSoC architecture as a
basic platform. (see section 2.1) In order to establish a secure environment, a segmentation into
single autonomous subsystems is needed. Between these subsystems a spatial and temporal sep-
aration has to be created in order to reduce complexity of the whole system. In the TTSoC this is
guaranteed by the notion of micro components, which can be seen as a basic unit of abstraction
in order to create autonomous reusable subsystems. Each micro component is interconnected
through a deterministic and predictable TTNoC, which uses the communication technique called
the pulsed data streams that is based on the TDMA scheme. This SoC architecture prevents any
unintended interference between the micro components, which enables the integration of mixed-
criticality subsystems.

Each micro component on the SoC gets assigned to it’s desired integrity level and as every sub-
system exclusively holds one partition, each component is completely autonomous. With these
different integrity levels the communication between them has to be supervised by an additional
integrity policy. Otherwise it would be possible for a component in a low level to interact with
a higher one and maybe induce a fault or a fraud into the secure component. Therefore Totel’s

31

32 CHAPTER 4. VALIDATION MIDDLEWARE

multilevel integrity model is used as a basic concept for message exchange between the differ-
ent integrity levels. This model creates the following three rules which are described in detail in
section 2.2. As this integrity policy is thought to be used in a single processor system, it has to
be slightly modified for the use combined with the TTSoC architecture.

One major change are the integrity checks at reception, which check the whole information
flow produced between the components and are carried out by the integrity kernel. Because of
the use of the TTSoC architecture, these integrity checks are not needed, as messages can only be
received at a-priori known points in time. These reception instants are defined statically and are
performed through messages in encapsulated communication channels. Therefore the integrity
rules have to be applied at design time and the strict obedience of these rules is guaranteed by
the TNA.

In the adjusted model it is also necessary to neglect the definition of MLOs, because they are not
fitting in the system design. Because of the encapsulation property, which is guaranteed in the
TTSoC architecture, one object just can be in one integrity level. Therefore the distinction from
SLO and MLO is not necessary and all entities are simply called objects “OBJ”. In Totel’s
model the Validation Object is a special kind of object, which is able to upgrade the informa-
tion integrity by using fault tolerance mechanisms. In our adjusted model this object is simply
dragged into the secure object itself in form of a middleware. The most important property of
the VaM is that it has to be validated at the same integrity level as the application in the micro
component itself. Therefore it is desirable to keep this middleware simple and reusable.

OBJ 1a/b Level 1

Level 2

Level 3

Level 4Validation
Middleware

TNA

Encapsulated
Communication

Channels
OBJ 4 writes to OBJ 3

OBJ 2
reads from
OBJ 3

OBJ 1 reads from OBJ 2

OBJ 4 reads from VaM

VaM reads from OBJ 1a/b

OBJ 5 writes to OBJ 4

OBJ 2

OBJ 3

OBJ 4 OBJ 5

… Micro Components

Figure 4.1: An exemplary instantiation of the modified Totel’s model

Figure 4.1 illustrates the changes made to Totel’s model by using it with the TTSoC archi-
tecture as a spatial and temporal firewall between the objects.

4.2. DESIGN OF THE VALIDATION MIDDLEWARE 33

The figure shows the execution of rule one of Totel’s model by OBJ1 reading OBJ3, rule two
by OBJ4 writing OBJ3 and rule three by every communication process which is not changing
the integrity level. The upstream information flow is given by OBJ4 reading OBJ1, which is not
conform to the rules of Totel’s model and therefore needs an upgrade of the dependability of the
information flow. In order to create this dependability upgrade, OBJ1 needs to be replicated in at
least two independent objects called OBJ1a and OBJ1b. The objects introduced in Totel’s model
are already grouped in micro components, which indicates how this exemplary instantiation can
be implemented on the SoC. Figure 4.2 shows the example from figure 4.1 implemented by
using the TTSoC architecture.

SLO 4 SLO 5

SLO 2SLO 1a/b SLO 3

TimeTriggered NetworkonChip

TNA

1

4

31

4

VaM

n … Integrity Level (n) Trusted Subsystem (TSS) Micro Components

Figure 4.2: The exemplary instantiation implemented on the TTSoC

4.2 Design of the Validation Middleware

The VaM is used to upgrade the dependability of the data in an upstream information flow. To
be able to do that, the unclassified input data needs to provide the information from redundant
sources. The basic information flow is given in figure 4.3, which provides N different and
potentially diverse inputs.

34 CHAPTER 4. VALIDATION MIDDLEWARE

Validation Middleware Secure Objectconfident
value

.

.

.

.

I
1

I
2

I
n

micro component

Figure 4.3: The “Validation Middleware“ with redundant Inputs (I1−n)

These redundant input channels are provided by diverse replicas and need to fulfil a set of
key requirements in order to be completely independent from each other. This approach is called
NVP and was introduced by Avizienis in 1977. [AC77] [Avi95] There he defines the notion of
N-version programming, which creates the needed fault tolerance requirements by using two
or more versions of a piece of soft- or hardware. (see section 2.4) The main goal of NVP is
to eliminate similar errors, which can be introduced by having relations between the different
programs called versions. This independence of each version is called design diversity. The
main purpose of such required diversity is to eliminate the commonalities between the different
efforts because they have the potential to cause related faults. Therefore the probability for sig-
nificantly diverse approaches has to be increased. This is realised by using different algorithms,
programming languages, tools and environments in order to archive complete independence be-
tween each version. The output of each version needs to be compared by a output selection
algorithm or a voting algorithm. This is exactly the problem which arises by realising the VaM
and is discussed in the following sections.

The most common and intuitive way of comparing the multiple inputs of the VaM is a ma-
jority voting algorithm, but this brings some difficulties. [LCE89] In some situations, the inputs
need to be compared and determined to be correct, even if the data deviates from each other.
This raises the need for an inexact voter, which defines a criteria for determining correct and
incorrect inputs from data which is not necessary identical. The needed requirements these
algorithms need to fulfil are given in the following section.

Algorithm Requirements

The comparison of the outputs and the finding of a final result is carried out by selection- or
voting algorithms. These algorithms should be able to detect errors and prevent bad values
from propagating throughout the system into the secure area of the application. In addition they
should be able to define an error condition or a prepared sequence of valid outputs, when they
are not able to find an output which provides the needed high confidence. Therefore the used
approach always needs to find the result which has the highest probability for correctness.

The algorithms are realised in the application layer of the micro component as a middleware.

4.3. ANOMALY DETECTION – ALGORITHMS 35

If this application is at the highest security level (Level 4), the middleware layer also has to
be verified at this high level. In order to keep the effort for this verification as low as possible
the used technique should be simple but still effective. Therefore all algorithms should run in
an online approach, possibly without knowing anything from the previous run. These kinds of
algorithms without a memory facilitate verification because the number of possible outcomes of
a set of input data is always the same.

The focus lies on approaches which are feasible to use in many different problem statements
and are able to detect faults, intrusions or even both. The needed sources of data (e.g. sensors)
often induce noise or even miss a whole value, and therefore should provide filter mechanisms
by preprocessing the input data. As memory often is limited, resource constrains should be
considered which is why, a light-weight approach has to be found. As the data is collected in
a distributed fashion, communication channels are needed which facilitate a deterministic be-
haviour and prevent from flooding or overwriting of messages.

One possible approach to realise such an algorithm is the use of anomaly detection which is
discussed in the following section.

4.3 Anomaly Detection – Algorithms

Anomaly detection can be used as a fault tolerant approach to upgrade the information integrity.
In this paper three different techniques of anomaly detection algorithms are discussed and com-
pared to each other. These three techniques are Nearest Neighbour Bases, Statistical and Cluster-
ing Based anomaly detection. [BK09] As there are many different approaches in each category,
the best suited has to be found.

Most approaches described in this section, try to find possible outlier values and establish a
set of valid values, which have to form a majority. If a majority of valid values is found, an
average value is calculated, which is trustable and can be used in a secure environment.
The main goal of the algorithms is to define the criteria how such a majority can be created. In
this thesis a majority is formed of values, which are close to each other in the value domain. This
sounds like an easy achievable problem, but it is quite hard to define where the border between
valid and invalid is set. The algorithms in the following sections try to define such a border in
different ways and are summarized in table 4.1.

Time Complexity Space Complexity
kth Nearest Neighbour with Delta-Value O(n2) O(n)
Probabilistic Boxplot Method O(n log(n)) O(n)
Histogram Method O(n) O(n)
Single-Linkage Clustering O(n2) O(n2)

Table 4.1: VaM algorithm overview

36 CHAPTER 4. VALIDATION MIDDLEWARE

The format of the input data is a one dimensional data set of point data instances from the
same data type. The way how an anomaly value is calculated in data sets with more dimensions
and different data types is discussed by Tan P.-N in 2005 [PNMV05]. As already mentioned,
anomalies can be of different types and it has to be decided in advance, which kind of anomalies
should be possible to detect. In this case we focus on point anomalies, because also single
data instances can be considered as anomalous. This is the simplest and also most used kind of
anomaly.

kth Nearest Neighbour with Delta-Value

This algorithm calculates an anomaly score of each data instance, by counting the number of
nearest neighbours (k) that are not more than a distance d apart from the given data instance.
[SPP+06] [KNT00] This method is like calculating the global density of every data instance.
The basic calculation algorithm of the anomaly score is given in figure 4.4, where d(i, j) stands
for the distance d from data sample i to sample j.

0 1 2 n

d(0,n)

d(0,2)

d(0,1)

0 1 2 n

d(1,n)

d(1,0) d(1,2)

.

.

.

0 1 2 n

d(n,1)

d(n,0)

d(n,2)

.

.

.

Figure 4.4: Distance calculation of the kth nearest neighbour algorithm

With an anomaly score for every data instance, it needs to be defined from which score the
data is anomalous or not. In this thesis the algorithm is used with a small data set and therefore
the majority of all values is used. So if the anomaly score is higher or equal to the majority of
data instances, the value is clearly of normal behaviour. If enough data samples with a dense
neighbourhood are found, the whole round of samples is declared to be valid. Otherwise the
data of the whole round is discarded. An unresolved round is the main problem of this algorithm
because it can happen that this is not an option in some applications. One possible solution for
this problem would be to just use the largest set of valid values even this set is not a majority of
values. Unfortunately an other problem arises with this way of calculation because when there
are two largest sets with the same size, one of them has to be chosen without knowing which set

4.3. ANOMALY DETECTION – ALGORITHMS 37

is the one with the real result.

Defining the distance d is the main challenge of this algorithm and is application dependet. The
only way to find an effective value is to use test data, where all possible occurrences of anoma-
lies are marked. Then the distance d needs to be adjusted, until most occurrences of anomalies
are properly detected.

Time Complexity

As every single value needs to find a majority and therefore needs a distance value to all other
data instances, a runtime of O(n2) is needed to get a full distance matrix. With this matrix a
majority can be built and an end result can be found.

Probabilistic Boxplot Method

This algorithm produces a boxplot diagram by using the input data samples. [MTL78] [BK09]
This kind of diagram is normally used for the graphical illustration of statistical data but it can
also used as one of the easiest statistical techniques to detect anomalies. An exemplary boxplot
diagram is given in figure 4.5. The blue box in the middle of the picture consists of 50% of the
data samples and is delimited by the lower and upper quantiles. The lines to the left and the
right of the box are called the lower and upper whiskers. All data samples, which are outside of
these whiskers are depicted as anomalous. The ∗-anomaly is called a mild outsider, because it
is located between the 1.5 and 3 ∗ IQR boarder. The o-anomaly is called an extreme outsider
because it is outside the 3 ∗ IQR range.

xm

Q.25 Q.75

x̄

IQR

1.5 ∗ IQR

3 ∗ IQR

1.5 ∗ IQR

3 ∗ IQR

∗o

Figure 4.5: An exemplary boxplot

A boxplot is fully defined by five values. The mean, median, 25th percentile, 75th percentile and
the interquartile range. The input data is a set of values, which need to be sorted from the lowest
to the highest value. The progression is labelled x1, x2, , xn where n is the highest value. If
the number of data samples is odd, the median (xm) is calculated as following:

xm = xn+1
2

(4.1)

If the number of samples is even:

xm =
xn

2
+ xn+2

2

2
(4.2)

38 CHAPTER 4. VALIDATION MIDDLEWARE

If 1
4(n+ 1) is integer, quantile Q.25 is calculated as following:

Q.25 = x 1
4
(n+1) (4.3)

If it is not integer:

Q.25 = (xinteger(1
4
(n+1)) + xinteger(1

4
(n+1))+1) ∗ decimal(

1

4
(n+ 1)) (4.4)

If 3
4(n+ 1) is integer, quantile Q.75 is calculated as following:

Q.75 = x 3
4
(n+1) (4.5)

If it is not integer:

Q.75 = (xinteger(3
4
(n+1)) + xinteger(3

4
(n+1))+1) ∗ decimal(

3

4
(n+ 1)) (4.6)

Finally the interquartile range can be calculated by IQR = Q.75 − Q.25. This is the most
significant factor for marking a data sample as an anomaly, because if a data sample is outside
the range of xm ± (IQR ∗ 1.5) this sample is marked as an anomaly. The factor of 1.5 is not
a fixed quantity and was originally defined by John W. Tukey. [Tuk77] If an application needs
higher or lower accuracy this value can be changed.

Time Complexity

The calculation of the five needed values for a boxplot, can be carried out in O(n). However, be-
fore this can be done the values need to be sorted, which needs at least a runtime of O(n log(n))
if the fast quicksort, heapsort or mergesort algorithms are used. Therefore the runtime of the
boxplot method is O(n log(n)).

Histogram Method

The histogram based anomaly detection algorithm is one of the simplest non-parametric statisti-
cal technique used in this area. A histogram is a graphical illustration of a frequency distribution.
It is based on the classification of data into bins, which width can be fixed or variable. The size
of the bins represents the relative frequency of the data inside the box. An exemplary histogram
is pictured in figure 4.6.

4.3. ANOMALY DETECTION – ALGORITHMS 39

0
–
1

1
–
2

2
–
3

3
–
4

4
–
5

5
–
6

6
–
7

0

0.2

0.4

0.6

Figure 4.6: An exemplary histogram

The algorithm basically consists of two steps. The first step involves building a histogram
based on the input data. In the second step, each data sample gets assigned to a bin of the
histogram. After this is done, the bin with a majority of the values forms the end result of the
algorithm.

Time Complexity

This algorithm is relatively simple, because every data sample just needs to get assigned to it’s
box. The size and number of boxes can be created in advance and therefore the runtime of this
algorithm is denoted to O(n).

Single-Linkage Clustering

As every other algorithm of this kind, clustering tries to find a structure in a collection of un-
labelled data. A cluster is a set of objects, which are similar to each other. This technique is
generally an unsupervised approach and can be grouped into three different categories as written
by A. Banerjee in 2009: [BK09]

1. ”Normal data instances belong to a cluster in the data, while anomalies do not belong to
a clustering“

2. ”Normal data instances lie close to their closest cluster centroid, while anomalies are far
away from their closest cluster centroid“

3. “Normal data instances belong to large and dense clusters, while anomalies either belong
to small or sparse clusters”

40 CHAPTER 4. VALIDATION MIDDLEWARE

Single-Linkage clustering is part of the third category and declares instances belonging to
clusters whose size is below a certain threshold value as anomalous. It belongs to a method of
cluster analysing called hierarchical clustering, which tries to build a hierarchy of clusters. It
generally works as a bottom up approach, where all data instances start in its own cluster and
pairs of clusters are merged and moved up the hierarchy. To be able to decide which cluster
should be merged, the distances between the data instances are calculated. Mathematically the
distance between the data instances is described by the expression: [Mat00]

D(R,S) = min
r∈R,s∈S

d(r, s) (4.7)

In Equation 4.7, R and S are sets, which consist of elements (r and s) called clusters and
d(r, s) denotes the distance between the two elements r and s. Given a set of N elements, all
of these elements are at first located in an own cluster. The calculated distances between all of
the elements are written into a N ∗N matrix, which is the basic process of hierarchical cluster-
ing. [Joh67] The clusterings get sequence numbers assigned where L(k) is the level of the kth

clustering. The following algorithm shows the single steps of Johnson’s Single-Link clustering
algorithm.

The algorithm merges the clusters until a specified limit (MERGE_MAXIMUM) is reached
or the majority of values are in one cluster. This limit is a key factor, because the algorithm has
to stop merging the clusters at some point. If the algorithm stops at a point where a majority of
values is always in one cluster than it produces always an output. For example if there are five
different values available and the algorithm always stops when there are two clusters remaining,
there is always a cluster with three elements. As three is always a majority of five, a result is
always found, even if the values have a huge deviation from each other.

Algorithm Example

To illustrate Johnson’s algorithm, an example distance matrix is used to go through the first
merge process. At the beginning L = 0 for all clusters. At first the lowest distance value needs
to be found in the matrix. This value is marked red in table 4.2. Then cluster C and F get
merged into a new cluster, whose distance values are always the lowest distances from the old
clusters.

A B C D E F
A 0 662 877 255 412 996
B 662 0 295 468 268 400
C 877 295 0 754 564 138
D 255 468 754 0 219 869
E 412 268 564 219 0 669
F 996 400 138 869 669 0

Table 4.2: Init distance matrix of the Johnson’s algorithm

4.3. ANOMALY DETECTION – ALGORITHMS 41

Algorithm 1 Johnson’s Single-Linkage Clustering Algorithm
1: upon 〈singlelinkINIT 〉 do
2: L(0) = 0
3: m = 0
4: for all i, j such that 0 ≤ i, j ≤ N do
5: add d[(i), (j)] to D
6: end for
7: end upon
8:

9: upon 〈singlelinkMERGE, [D]〉 do
10: for all i, j such that 0 ≤ i, j ≤ N do
11: d[(r), (s)] = min d[(i), (j)] ∈ D //Find least dissimilar pair of clusters
12: end for
13: m = m+ 1
14: L(m) = d[(r), (s)]
15: delete r, s from D //Delete rows and cols from clusters r,s
16: add k to D with d[(k), (r, s)] = min d[(r), (s)], d[(s), (r)]
17: end upon
18:

19: upon 〈singlelinkCLUSTER, [D]〉 do
20: repeat
21: singlelinkMERGE(D)
22: until (m ≥MERGE_MAXIMUM)
23: end upon

After this is done, value m gets incremented and the level of L(C,F) = 138. The new
distance matrix looks like in table 4.3. Then the second merge round of the algorithm can begin
and again the lowest element is searched.

A B C,F D E
A 0 662 877 255 412
B 662 0 295 468 268
C,F 877 295 0 754 564
D 255 468 754 0 219
E 412 268 564 219 0

Table 4.3: The matrix after one merge

Then the algorithm continues, by merging cluster D and E into a new cluster and by setting
the level of the cluster to L(D,E) = 219.

42 CHAPTER 4. VALIDATION MIDDLEWARE

A B C,F D,E
A 0 662 877 255
B 662 0 295 468
C,F 877 295 0 564
D,E 255 468 564 0

Table 4.4: The matrix after the second merge

The merging of the matrix continues until all data samples are in one cluster or the merge
limit is reached.

Time Complexity

The time complexity of Single-Linkage clustering is O(n2). This is because the calculation of
the distance matrix already takes O(n2) calculation steps and therefore is very time consuming.
The smallest element in the matrix can be found during the creation of the matrix. Merging
and deleting clusters can be done in O(n) and updating the next best merge in each step also in
O(n). [JMF99]

CHAPTER 5
Automotive Case Study

This section discusses a case study used to test the different algorithms explained in section
4.3, by implementing an exemplary application with context to the automotive area. For this
application we took two inner car functions, which have mixed criticality requirements for safety
and security.

Odometer Subsystem

The first subsystem is an odometer layer which computes and stores the current mileage. In
order to get the distance covered by the car, the snapshot of the current speed needs to be taken
and multiplied with the elapsed time of the last snapshot. In order to get this elapsed time, the
global timebase of the TTSoC can be used. This time is multiplied it with the speed of the car
and added to the final result of the odometer. This resulting speed value needs to be stored during
the whole lifetime of the car because the resale value depends on it.

ABS Subsystem

The second subsystem is an Anti-lock Braking System (ABS), which simple purpose is to pre-
vent wheel lock-up during heavy braking. [BDN+04] This system is introduced to provide a
safer driveability of the car and to prevent the abrasion of the wheels. In practice a module
called Electronic Control Unit (ECU) detects the wheel lock-up as a sharp increase in wheel
deceleration. There are several different implementations of ABS. In our case a four channel,
four sensor system is used, which has a sensor on each wheel and separate valves for brak-
ing pressure to each wheel. In this ABS implementation, the wheel deceleration is not used to
get the brake force value. Therefore a reference speed value is measured at the engine, which
makes it possible to calculate a slip value for each wheel. If this value is below a fixed ABS slip
limit, the subsystem computes the appropriate brake force, for the desired wheel. The detailed
implementation of this ABS subsystem is given in the following algorithm.

43

44 CHAPTER 5. AUTOMOTIVE CASE STUDY

Algorithm 2 The implementation of the ABS subsystem
1: upon 〈calcABS, [speed_w1, speed_w2, speed_w3, speed_w4, speed_eng, brkfc]〉 do
2: if speed_eng ≤ ABS_MINSPEED then
3: return brkfc
4: end if
5: slip[0] = speed_w1/speed_eng
6: slip[1] = speed_w2/speed_eng
7: slip[2] = speed_w3/speed_eng
8: slip[3] = speed_w4/speed_eng
9: for all i such that 0 ≤ i ≤ 4 do

10: if slip[i] ≤ ABS_SLIP then
11: abs_brkfc[i] = brkfc ∗ slip[i]
12: end if
13: end for
14: return abs_brkfc
15: end upon

Subsystem Requirements

The traditional setup of a car is to deploy the ABS and odometer tasks separately on it. This
means that the low secure subsystems are physically separated from the high secure subsystems
and therefore the setup is straightforward.
In order to reduce complexity and to establish a reusable environment, modern realisations tend
to an integrated setup. For this, the ABS and the odometer are implemented on a SoC as a
mixed-criticality application. In this integrated setup, it is often required that data needs to be
sent from the low secure tasks to the high secure applications. Therefore integrated setup re-
quires a mechanism to upgrade the reliability of the data before it is used in the high secure
subsystem. In order to do that a Validation Middleware (VaM) is used to upgrade the reliability
of the data.

In this application each subsystem has its own safety and security requirements. For exam-
ple, a failure of the ABS system might have severe consequences on the safety side, whereas
the information processed within this subsystem does not constitute an important asset, there-
fore the security requirements are low. (If someone wants to crash a car maliciously, there are
easier ways like tampering the brakes to achieve this.) Contrarily, the odometer represents a
major asset, because a cars resale value depends on the mileage shown by this device. No car
has crashed because of an erroneous odometer. Therefore its safety requirements are low. In
order to provide the high requirements for security in the odometer, it is located in the highest
security level (Level 4). As this subsystem needs untrusted speed data from a sensor as an input,
arrangements need to be made in order to upgrade the reliability of the input data. To achieve
this, the odometer receives five redundant speed values from the four wheels and the engine. By
using these five untrusted values, the VaM inside the micro component of the odometer upgrades
the dependability of the data and calculates a trusted speed value. This speed value is now used

5.1. SIMULATION ENVIRONMENT STRUCTURE 45

in the odometer layer to compute and store the current mileage.

5.1 Simulation Environment Structure

In order to establish a simulation environment as realistic as possible, a state of the art imple-
mentation of the TTSoC is used. As already described in section 3.4 the TTSoC provides a well
suited environment for implementing a mixed-criticality application. The basic structure of the
previously mentioned exemplary application is given in figure 5.1.

Receiver

Torcs (car simulation)

Shared
Memory

Fault
Injector

Host Pc

Odo (6)

Engine (4)

Wheel4 (3)

Blank

Wheel1 (0)

Wheel2 (1) Wheel3 (2)

ABS (5)

S0

S3S2

S1

FPGA

Serial 0 Serial 4

Serial 3Serial 2

Serial 1

Figure 5.1: The complete simulation environment

Basically this system is divided into two parts. The car simulation which is running on a
normal host PC and the ABS and odometer subsystems, which are implemented on the external
hardware. To establish a relatively simple connection from the host PC to the hardware, these
two parts are connected through five autonomous serial-interfaces.

46 CHAPTER 5. AUTOMOTIVE CASE STUDY

On the host PC a repeater program is running which reads from the serial devices, checks the
data integrity and stores the data into a shared memory. This memory is read by a car simulation
named The Open Racing Car Simulator (TORCS), which provides a realistic physics environ-
ment and a very good interface to program robots. A robot is a small plugin which makes it
possible to steer the car by a user program.

5.2 Basic Layout of the TTSoC in the Simulation Environment

As already described in detail in chapter 2.1 a TT implementation of a SoC is used to provide
the required security mechanisms needed in the simulation environment. As a basic platform,
the Altera Stratix IIITM Development Kit was used, which provides enough resources for
implementing all cores on one single FPGA. (see section 3.3) There are seven autonomous IP-
Cores, which are connected through the TTNoC. The fundamental layout of this SoC is shown
in figure 5.2.

TimeTriggered NetworkonChip

OdometerTNA
ABS

Controller

ABS
Wheel2

ABS
Wheel1

ABS
Wheel3

1

4

1

Validity Middleware

Engine
Control

ABS
Wheel4

1 1

1 1

M

n Integrity Level (n) Trusted Subsystem (TSS) Micro Components

Figure 5.2: The layout of the TTSoC

Basically there are four wheel components which receive speed and brake force values from
the sensors on their corresponding wheels. In the simulation environment these sensors are rep-
resented by the car simulation running on the host PC. Additionally there is also an engine node

5.2. BASIC LAYOUT OF THE TTSOC IN THE SIMULATION ENVIRONMENT 47

which also receives a speed value from the car simulation. The last two cores at the TTSoC con-
tain the secure odometer task and the safe ABS task. The communication between these tasks
has to be organised by obeying the integrity policy described in detail in section 2.2.

The NoC itself is realised through standalone fragment switches (see section 2.1) where every
switch has four bidirectional lanes. In this simulation environment four switches are connected
in a way that enough possibilities for routing are enabled. In figure 5.1 these four switches are
named S[0−3].

Message Scheduling

To exchange messages between the processors, the communication is organized in rounds. One
round is divided into different Timeslot (TS) in which one communication or calculation task
can be carried out. In the VaM application the structure of the communication between the tasks
is mainly a send, calculate, send back for the unclassified ABS and a send, calculate for the
secure odometer. Therefore the odometer node is just receiving data. A detailed description of
the message scheduling is given in table 5.1. TS6 and TS11 are empty to reserve enough time
for odometer, ABS calculation and PC to serial communication.

````````````Sending
Receiving Wheel1 Wheel2 Wheel3 Wheel4 Engine Odom. ABS

Wheel1 TS1 TS2

Wheel2 TS2 TS1

Wheel3 TS3 TS4

Wheel4 TS4 TS3

Engine TS5

Odom. TS7 TS8 TS9 TS10

ABS

Table 5.1: Scheduled messages in one round (TSx stands for Timeslot number x)

PC to Hardware Connection

The host PC is connected with the hardware through five stand alone serial-interfaces. Four
of them are directly connected to the IP-Cores of the wheels and the last one is connected to
the engine core. These interfaces for communication are used as an easy and fast way of PC
to hardware communication and are good enough for the use in this simulation environment.
This is, because every computation has a dedicated line and communication is unidirectional.
Normally these data connections are provided by a CAN bus, like it is used in nearly all modern
cars. For a detailed description of the exact layout of these serial interfaces see appendix A.1.



48 CHAPTER 5. AUTOMOTIVE CASE STUDY

5.3 Odometer Attack Model

As the odometer subsystem is located in the highest level of the integrity model, the security re-
quirements for this subsystem are high. In order to analyse possible attacks, an attack tree model
is created. This model was introduced by Amenaza Technologies Limited1 in 2003 [IM03] and
is a graphical representation of different ways how an attack on a secure system can look like. It
consists of nodes which are connected to each other. Generally there are three kinds of nodes:
The AND nodes, OR nodes and the sub-tasks. The first one is called the root node and is at the
top of the tree. It represents the overall target of the attacker. All nodes under a particular node
are called children and conversely the node above is called the parent node.

On the one hand, if all children sub-tasks need to be fulfilled in order to realise the goal of
the parent task, the parent is called an AND node. On the other hand, if the attack is successful
because one or more of the children tasks are fulfilled, then the parent task is called an OR node.

The segmentation of the different tasks into small sub-tasks can be continued until the desired
level of detail is reached. The tasks which are considered to be at this limit are called atomic.
An attack tree model for the high secure odometer subsystem is given in figure 5.3.

Manipulate
odometer

Manipulate
input data

Cut
cables

Manipulate
message bus

Overwrite
message

Flood
bus

Destroy
bus

Tamper
registers

Manipulate
ABSCores

Modify
sensors

Change
program code

..... logical OR node..... Subtasks

..... logical AND node

Figure 5.3: Attack model of the odometer subsystem

This figure points out that there are three main parts of the system where attacks at the
odometer subsystem can be carried out:

1. The first possible attack is the direct manipulation of the IP-Cores on the TTSoC. There-
fore the easiest way to do this is to overwrite the registers where the speed values of the
sensors are stored. A second more costlier attempt is to manipulate the whole program
running on the ABS cores of the wheels by simply downloading a modified version or just
parts of it. The prevention of both varieties of attacks are not covered in this thesis. As the
odometer core receives data from five different sources, at least three subsystems need to
be manipulated in order to produce a wrong result.

2. The second possible target is to attack the communication interface between the subsys-
tems of the TTSoC. This can be carried out by flooding the communication system with

1Amenaza Technologies Limited, http://www.amenaza.com

http://www.amenaza.com


5.4. PC-RECEIVER 49

messages in order to block the whole communication or to periodically overwrite mes-
sages to induce wrong speed information.
As the communication channels between the single IP-Cores on the TTSoC are carried
out by using encapsulated communication channels, both possible attacks are prevented
by design. This is given because these encapsulated channels act as a spatial and temporal
firewall between the single subsystems. Damaging the complete NoC in order to prevent
a message exchange between the subsystems would cause a malfunction on the odometer
subsystem and is also not covered in this thesis.

3. The third scenario is the manipulation of the input data itself. This data is provided by
measuring the current speed of the car from five redundant sources by using sensors.
The easiest way to manipulate these sensors is to simply cut the cables which connect
the sensors with the communication system. An other possible attack is to modify the
measurement of the installed sensor. This modification depends on the kind of sensor
which is used for the conversion. In the optimal situation there are different kind of sensors
on each data source which increases diversity between the speed value and also aggravates
manipulation.
This kind of scenario is not completely preventable, but because of the fact that the input
data of the odometer is dependent on five redundant sources at least three sources need to
be modified.

5.4 PC-Receiver

The repeater is a simple program, which has to be started as the first application of the simulation
environment. It simply opens the five serial-interfaces and waits for incoming data. After a so
called welcome byte has been received, the program excesses a shared memory and reads the
current speed values of the four wheels and the engine. It reads the speed values out of the
memory and sends them back over the serial interfaces. The data structure of the shared memory
is organized as following:

• Five speed values, four of them come from the sensors of the wheels and the remaining
one comes from a sensor directly from the engine.

• One brake force value which contains the current brake force from the brake pedal. This
value is either one or zero, for braking on or off.

• Four brake force values received from the hardware. These values come directly from the
ABS subsystem and are conducted into each wheel.

• The status word of the simulation environment. It contains important status information
for the ABS and odometer cores. The complete structure of this word is pictured in figure
5.4.

RS Bit When this bit is set zero, there currently is no race in progress and therefore the odometer
and ABS tasks are not running.



50 CHAPTER 5. AUTOMOTIVE CASE STUDY

Race NumberVaM unused

0 1 23 4 5 6 7 8 915 1631

E
ng

in
e

 W
he

e l
 1

 W
he

e l
 2

 W
he

e l
 3

 W
he

e l
 4

A
B

S

R
S

Figure 5.4: The structure of the status word

ABS Bit When this bit is written one, the ABS task is enabled. Otherwise the car is braking
normally and the wheels can block during heavy braking.

VaM Bits These two bits are for selecting the different algorithms used in the VaM. If both bits
are written zero, the kth Nearest Neighbour with Delta-Value is used. If the first bit is one,
the Probabilistic Boxplot method is used. If the second bit is one, Histogram Method is
used and finally if both bits are written one, Single-Linkage Clustering is enabled.

Wheel Bits The following four bits are to enable and disable the wheels. These bits are for the
fault injector to simulate wheel damage.

Engine Bit This bit is to enable and disable the engine.

Race Number The remaining bits are for the current race number. With these remaining 16
bits, this field provides race numbers in the range from zero to 65535.

5.5 Software Based – Fault Injector

As described in section 2.6 software fault injectors are widely used, because they do not require
additional hardware and can be inserted directly into the application. Software based fault in-
jection is normally used in an application, where a working prototype is already existant. In this
thesis a car simulation is used to produce the required input data, which is thought of being close
to reality. To produce completely trustable data, the sensors of a real car need to be taken.
The fault injector used in this simulation environment injects faults during runtime by indicating
a fault by a trap or an exception. This trap can be specified by the user and has to be injected
during an ongoing race. The program itself is standalone and explicitly owns the rights to mod-
ify the shared memory at runtime. The user interface of the program is completely text based
and provides a few features which are listed as following:

• To simulate a fault at the wheels, the wheel sensor can be disabled, which simply freezes
the value at the last value. By rerunning this option the wheel sensor is enabled again.

• It also provides a feature to switch through the VaM algorithms while a race is in progress.

• In order to simulate a possible security attack, the current speed of a sensor can be set at a
fixed level. By rerunning this option the sensor is enabled again.

• The ABS can be enabled and disabled.



5.6. TORCS – ROBOT 51

• In order to reproduce a fault injection scenario with different algorithms, it is possible to
define a fault injection schedule. This schedule has to be defined before the race is started
by entering the name of the faulty sensor, the start- and end time and the modified speed
value. If a race is started, the previously defined faults get injected automatically and the
scenario can be reproduced as often as desired. The number of fault injection slots is set
to four and can be changed by modifying an in-program variable.

5.6 TORCS – Robot

The Open Racing Car Simulator (TORCS)2 is a highly portable multi platform car simulation.
It provides a realistic physics environment and therefore is well suited to be used as a research
platform. In addition it includes an easy to use interface for programming robots. A robot is
a program, that drives the car independent from user input. It gets executed from TORCS and
receives information about the current position on the track and the status of the car from a
structure provided by the car simulation. By using this information, the robot can compute how
fast the car can go, in order to stay on track. The robot returns the data to TORCS and the next
simulation step can be performed.

In this thesis the main focus is not on programming the best robot, it is more on providing a
well enough driving robot, that stays on the track and drives fast enough for the ABS to kick in.
To facilitate this, one of many available robot tutorials were used to program the basic steering
and braking functions of the robot. In this thesis the "berniw" robot3 is used. This basic robot
is simply extended by a function which accesses the shared memory and reads and writes the
speed and brake force values. This enables an easy communication between the car simulation
and the external hardware.

The update frequency of the car simulation is appointed at 22 milliseconds. Therefore it pro-
duces new speed and brake force values in each period, which has to be read with the same
frequency on the TTSoC. As the time format on the TTSoC is realized as it is described in sec-
tion 2.1, it is not possible to adjust the timebase to exactly 20 milliseconds. Therefore the time
in the TSS of the TTSoC is set to 15 milliseconds. This is the next slowest possible value avail-
able in the global timebase of the TTSoC. It provides enough accuracy for the car simulation to
produce smooth braking at the wheels. The driving car steared by the “flow” robot is given in
figure 5.5.

2Available at: http://torcs.sourceforge.net/
3Manual at: http://www.berniw.org/

http://torcs.sourceforge.net/
http://www.berniw.org/


52 CHAPTER 5. AUTOMOTIVE CASE STUDY

Figure 5.5: The car simulation TORCS with a car steared by the “flow” robot



CHAPTER 6
Analysis of the Algorithms

This section compares the different implementations of the VaM, by using the simulation en-
vironment introduced in section 5. This simulation provides four different ways how the fault
tolerance mechanisms in the VaM can look like. The realisation of the algorithms are explained
in detail in section 4.3 and are called:

• kth Nearest Neighbour with Delta-Value

• Probabilistic Boxplot Method

• Histogram Method

• Single-Linkage Clustering

In order to test the efficiency of the algorithms, they are used during races carried out by a
car simulation called TORCS, which is explained in section 5.6. The VaM implemented on the
odometer core gets four speed values from sensors on the wheels and one value from the en-
gine sensor. These speed values are sampled with a frequency of 15 milliseconds by the wheel
and engine nodes of the TTSoC. This is because the TORCS car simulation is producing speed
values with a frequency of 22 milliseconds and as no value can be neglected the TTSoC needs
to run faster. Depending on the track, the car that is driving on, and the acceleration speed it is
possible that the wheels can spin or lock-up. This is also measured by the sensor on the wheel
and therefore these values can deviate from each other. This variance is particularly huge if the
car is driving at full speed and then hits the brakes with maximum force. The speed value of all
five sensors during a race is given in figure 6.1. As the car has a rear wheel drive, it stands out
that especially the front wheels start to lock-up during heavy braking. (Wheel one and two in
the figure) This locking is reduced by the ABS but due to the high speed of the car it can’t be
prevented. As the wheel sensors tend to produce wrong information, the engine sensor produces
a speed value which is more trustable. Therefore the value from the engine is more diverse to
the the wheel sensors than the wheel sensors to each other. In order to take this into account, the

53



54 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

engine value can be weighted more than the wheel sensors by introducing an emphasis of the
values.

The deviation of the sensor values is the main testing criteria of the anomaly detection algo-
rithms used in the VaM. The algorithms need to find a majority of speed values with a small
variance and eliminate possibly wrong or inaccurate values. The optimal behaviour of an algo-
rithm in this exemplary application is that it always finds a manipulated speed value, which tries
to increase or decrease the current value of a sensor and therefore changes the current mileage.
Secondly it should neglect values from wheels which are currently locked up or spinning, be-
cause the speed values from these wheels are of course not the true speed of the entire car.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

time (s)

Sp
ee

d
(m

/s
)

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine

Figure 6.1: All five speed values during one lap of a race

All algorithms produce a set of boolean values as an output. These values illustrate, if the
corresponding speed data sample is in the majority and therefore is used in the calculation. For
all five speed values one corresponding valid value is created. The last boolean value shows, if
the result as a whole forms a majority and is valid to be used in the ongoing calculation.

In the following sections a closer look at the behaviour of the different algorithms is taken.
Therefore they are tested with different parameters and under different circumstances. The most
important criteria is, that the algorithms are as application-independent as possible, to make this
approach reusable in many different fields and that an injected fault is always detected.



6.1. KTH NEAREST NEIGHBOUR WITH DELTA-VALUE 55

6.1 kth Nearest Neighbour with Delta-Value

This algorithm calculates a distance matrix between all values of the data set and includes all
values which are inside a given threshold into the majority. A detailed description of this al-
gorithm is given in section 4.3. If this algorithm is used in the same race as depicted before in
figure 6.1 a valid value for all five speed values is generated. This value is either true or false
depending on, if the value is used in the calculation or not. The result of a normal run without
any faults injected is given in figure 6.2 and depicts the boolean valid values over time.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.2: Result of the kth Nearest Neighbour – Algorithm (no faults injected)

The blue line on the bottom is representing the complete result of the algorithm during one
race. It is easy to see that in some cases the algorithm is not able to produce a valid output
because a majority of valid speed values can’t be found. This happens mainly during a heavy
breaking maneuver and as it is depicted in table 6.1, it happens in 7.5% of all test cases. When
this happens, the old speed value is reused what is the best and safest approximation for this
situation.

Percent Matched Samples All Samples
Wheel1 samples valid 90.70% 4448 4904
Wheel2 samples valid 90.95% 4460 4904
Wheel3 samples valid 87.34% 4283 4904
Wheel4 samples valid 90.48% 4437 4904
Engine samples valid 93.27% 4574 4904

Result valid 93.58% 4589 4904

Table 6.1: Result of the kth Nearest Neighbour – Algorithm (no faults injected)

If the engine sensor is considered to be valid, the information provided by it is much more
predictive because this sensor is not influenced by blocking like the wheel sensors are. Therefore
it is three times more weighted than the other sensors and the result gets very dependant on it. If
a fault now is injected at a sensor which leads to a deviation outside the threshold, the kth nearest
neighbour algorithm marks this value as invalid and neglects it. A race with four injected faults



56 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

on wheel1 (time: 10s to 20s), wheel2 (time: 25s to 40s), wheel4 (time: 30s to 40s) and the engine
(time: 50s to 65s) is carried out. The injected faulty speed values have been chosen significantly
different from the original value. If the faulty speed would be chosen as an average value, it
would be possible, that the car coincidentally drives in the range of the fault, and therefore an
invalid speed value is considered to be valid.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.3: Result of the kth Nearest Neighbour – Algorithm (faults injected on W1, W2, W4
and Eng.)

As it is depicted in figure 6.8 and also in table 6.4, all injected faults got properly detected
in every sample. In order to refine and approve the overall sensitivity of the algorithm, it needs
to be adjusted to the occurring situation which is done in the following refinement section.

Percent Matched Samples All Samples
Wheel1 samples valid 79.09% 3854 4873
Wheel2 samples valid 68.68% 3347 4873
Wheel3 samples valid 84.40% 4113 4873
Wheel4 samples valid 76.67% 3736 4873
Engine samples valid 70.82% 3451 4873

Result valid 88.49% 4312 4873
Wheel1 fault wrong det. 0.00% 0 603
Wheel2 fault wrong det. 0.00% 0 897
Wheel3 fault wrong det. 0.00% 0 0
Wheel4 fault wrong det. 0.00% 0 598
Engine fault wrong det. 0.00% 0 908

Table 6.2: Result of the kth Nearest Neighbour – Algorithm (faults injected on W1, W2, W4
and Eng.)

Figure 6.4 shows the resulting speed value (blue line) of this race with the five old speed
values transparent in background. It is obvious that the found result value is quite close to the
real speed of the car and a definite improvement of reliability of the data is produced. The
threshold value of these two experiments was set to 3m/s. Changing this value is discussed in
the following section. From second 18 to second 20 of the race a duration is pictured where



6.1. KTH NEAREST NEIGHBOUR WITH DELTA-VALUE 57

no majority was found. In this case the value of the last conversion is reused which is the best
solution for this situation.

10 20 30 40 50 60 70 80
0

20

40

60

80

time (s)

Sp
ee

d
(m

/
s)

Result

Figure 6.4: Resulting speed value of the kth Nearest Neighbour – Algorithm (faults injected on
W1, W2, W4 and Eng.)

Algorithm Refinement

This algorithm is mainly dependent on the threshold value which has to be adjusted correspond-
ing to the car’s highest speed, the condition of the wheels and most of it the speeding and braking
behaviour of the driving person.

0 2 4 6 8 10
0

20

40

60

80

100

Threshold value (m/s)

Sa
m

pl
es

va
lid

(%
)

Figure 6.5: Samples valid for the corresponding threshold value

Figure 6.5 shows a number of experiments carried out with different threshold values. In this
race no fault was injected and so all disturbances come from normal car behaviour. This figure
points out, that a threshold value of 2m/s would still be feasible to use in an ongoing race.



58 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

The algorithm limits in detecting a fault scenario are when three injected faults form a majority.
This can happen if three or more values deviate from the normal behaviour and are erroneously
the same. Otherwise all injected faults are at least detected and marked as not usable.

6.2 Probabilistic Boxplot Method

This algorithm prints a boxplot diagram for each set of data samples and declares all values
which are outside of the whiskers as anomalous. Details about this algorithm are given in section
4.3. At the first experiments of this algorithm all values even the injected faults were detected
as valid. The main problem of this was the big range of the IQR and the huge multiplication
factor of 1.5. If these parameters are used as it is explained in detail in section 4.3 the system is
very inaccurate. By doing some experiments, a suiteable multiplication factor of 0.9 was found.
The results are given in figure 6.8 and table 6.3.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.6: Result of Boxplot – Method (no faults injected)

As it is depicted in table 6.3 nearly no speed values found no majority and therefore no data
was neglected. As a small amount of data loss is tolerable, it would have been possible to reduce
the multiplication factor even more. This would produce the good effect, that the algorithm
gets more sensitive for injected faults. The result of this race is pictured in figure 6.7 where the
resulting speed value is very close to the five input speeds. Also a lot of faulty speed values got
neglected.

Percent Matched Samples All Samples
Wheel1 samples valid 92.71% 4565 4924
Wheel2 samples valid 96.71% 4762 4924
Wheel3 samples valid 68.89% 3392 4924
Wheel4 samples valid 70.82% 3487 4924
Engine samples valid 99.37% 4893 4924

Result valid 99.96% 4922 4924

Table 6.3: Result of Boxplot – Method (no faults injected)



6.2. PROBABILISTIC BOXPLOT METHOD 59

10 20 30 40 50 60 70 80
0

20

40

60

time (s)

Sp
ee

d
(m

/
s)

Result

Figure 6.7: Resulting speed value of the Boxplot – Algorithm (no faults injected)

The second experiment is carried out during a fault injection scenario with faults on wheel1,
wheel2, wheel4 and the engine. This is the same scenario as it was used with the first algorithm.
Again around 4900 data samples are generated and used as an input for testing the algorithm.
The following figure 6.8 and table 6.4 show the result of this scenario. Most of the injected
faults and even the injection of two faults at the same time is detected very efficiently. The small
amount of wrong detection happens during a braking manoeuvre while two faults got injected
at the same time. As the engine sensor is weighted three times more, even this faulty behaviour
reduces the impact of this wrong detection.

A possible improvement of this result is described in the algorithm refinement section but as
this algorithm is very application dependent it needs a lot of parameter tuning to get perfect
results.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.8: Result of the Boxplot – Method (faults injected on W1, W2, W4 and Eng.)



60 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

Percent Matched Samples All Samples
Wheel1 samples valid 84.39% 4092 4849
Wheel2 samples valid 80.55% 3906 4849
Wheel3 samples valid 81.09% 3932 4849
Wheel4 samples valid 72.74% 3527 4849
Engine samples valid 81.07% 3931 4849

Result valid 99.98% 4848 4849
Wheel1 fault wrong det. 0.00% 0 597
Wheel2 fault wrong det. 8.96% 81 904
Wheel3 fault wrong det. 0.00% 0 0
Wheel4 fault wrong det. 13.48% 81 601
Engine fault wrong det. 0.00% 0 900

Table 6.4: Result of Boxplot – Method (faults injected on W1, W2, W4 and Eng.)

The resulting speed value of this fault injection scenario is given in figure 6.9. There the
resulting speed of the algorithm is pictured by the blue line and the five input speed values are
printed transparent in the background. Single injected faults get detected without a problem and
also produce adequate speed results. Also because of the high detection rate of the majority of
values, nearly all the time a valid result is found. An interesting attribute of this result is that
in a breaking event of the car the IQR increases and as a consequence the algorithm gets more
tolerant for faulty values. This is visible in a fast change of speed in second 31 to second 33.

10 20 30 40 50 60 70 80
0

20

40

60

80

time (s)

Sp
ee

d
(m

/s
)

Result

Figure 6.9: Resulting speed value of the Boxplot – Algorithm (faults injected on W1, W2, W4
and Eng.)

Algorithm Refinement

The main problem by using this kind of technique to find outliers is, that an average value is built
which includes all available values in the calculation. If now two values get modified at the same
time these average value also changes what can have significant effects. This impact particularly
is very huge when the number of data samples is limited as it is the case in this application. The
results would have been significantly better when double or even more sources are available.
Then also a lower value of the IQR multiplication factor would have been possible because the



6.3. HISTOGRAM METHOD 61

result would have been more obvious.

An interesting aspect of this algorithm is the always variable threshold value to detect the out-
liers. For example, during braking the values of the front and back wheels deviate from each
other. In this case this algorithm also produces a bigger IQR and therefore gets more tolerant
for faults. On the other hand if all speed values are close to each other, as it is during accel-
eration of the car, the algorithm gets more sensitive when a fault is injected. This is a very
interesting behaviour and can achieve even better results in applications with a large number of
data samples.

6.3 Histogram Method

This algorithm is the simplest but also fastest implementation of the problem statement. It cre-
ates a set of bins and assigns the speed values to it. The main advantage of it is the runtime
which is depicted to be O(n). (details see section 4.3) The first run of this algorithm is given in
figure 6.10 and table 6.5.

It produces similar results as the first kth nearest neighbour method. But there is a slight differ-
ence to it. As the buckets are created statically in the init procedure of the algorithm they have
a fixed size. This size should not be too small because otherwise a majority can’t be found in
most of the cases. Therefore the main aspect for such a short runtime is also a major drawback
because it is not as accurate as others. The size and range of the bins is also application depen-
dent and has to be chosen individually.

The scenarios where no majority was found were about 4% which is a very good result. As
less valid rounds would also produce a good speed value, a change in the size of the bins would
have been still possible.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.10: Result of the Histogram – Method (no faults injected)



62 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

Percent Matched Samples All Samples
Wheel1 samples valid 88.12% 4404 4998
Wheel2 samples valid 89.68% 4482 4998
Wheel3 samples valid 84.75% 4236 4998
Wheel4 samples valid 85.51% 4274 4998
Engine samples valid 94.74% 4735 4998

Result valid 96.04% 4800 4998

Table 6.5: Result of Histogram – Method (no faults injected)

The second experiment is carried out by again inducing three faults at the wheel sensors
and one at the engine. As all of these faults are far away from the real speed of the car they
get properly detected and the faulty values are neglected. The result of this simulation is given
in figure 6.11 and table 6.6. It is easy to see that a small fault injection scenario immediately
decreases the number of valid samples. In this case about 7% less results were found. This is
still enough for a very good result but it clearly indicates that this algorithm is not as stable as
the previously mentioned approaches.

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.11: Result of the Histogram – Method (faults injected on W1, W2, W4 and Eng.)

Percent Matched Samples All Samples
Wheel1 samples valid 75.03% 3719 4957
Wheel2 samples valid 69.64% 3452 4957
Wheel3 samples valid 83.20% 4124 4957
Wheel4 samples valid 74.90% 3713 4957
Engine samples valid 71.47% 3543 4957

Result valid 89.19% 4421 4957
Wheel1 fault wrong det. 0.00% 0 609
Wheel2 fault wrong det. 0.85% 8 939
Wheel3 fault wrong det. 0.00% 0 0
Wheel4 fault wrong det. 1.28% 8 624
Engine fault wrong det. 0.00% 0 939

Table 6.6: Result of Histogram – Method (faults injected on W1, W2, W4 and Eng.)



6.4. SINGLE-LINKAGE CLUSTERING 63

The following figure 6.12 shows the resulting speed value of the fault injection experiment
drawn by the blue line. As these faults deviate quite much from the original speed of the car, all
faults got properly detected and a valid speed value was found in most cases. The results pro-
duced with this easy approach is still quite effective because even with a lack of accuracy with
faults that are very close to the real value, they are not influencing the result value that much.
Therefore all values with the biggest impact on the end result are detected.

As there are still some scenarios where no majority is found, (see second 18 − 20) the result
has some inaccuracies which are not that influential on the odometer value.

10 20 30 40 50 60 70 80
0

20

40

60

80

time (s)

Sp
ee

d
(m

/
s)

Result

Figure 6.12: Resulting speed value of Histogram – Method (faults injected on W1, W2, W4 and
Eng.)

6.4 Single-Linkage Clustering

This algorithm produces a consensus by putting all available data sets into a cluster and merges
the closest clusters with each other until a majority is found or the limit is reached. The details
about the algorithm are given in section 4.3 where also a small example of Johnson’s algorithm
is carried out [Joh67]. A normal run of the algorithm without any injected faults is pictured in the
following figure 6.13 and table 6.7. As the merge limit is chosen to be two remaining clusters and
the algorithm stops after a majority has been found, there are always neglected values. These
neglected values are the speeds with the largest distance to each other and therefore the most
inexact ones.



64 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.13: Result of the Singe-Link Clustering (normal race)

As this algorithm merges the clusters until a majority is found and as there are no faults
injected in this simulation, the algorithm produces a valid result in each case. Changing this is
discussed in the algorithm refinement section. It also stops merging when a majority is reached
and therefore neglects also values which are close to the real speed but not needed in the majority.
This is visible in 6.7 by the percent values of the wheel sensors. The values of the back-wheels
get neglected in about 80% of all test cases.

Percent Matched Samples All Samples
Wheel1 samples valid 83.35% 4144 4972
Wheel2 samples valid 84.67% 4210 4972
Wheel3 samples valid 20.76% 1032 4972
Wheel4 samples valid 19.73% 981 4972
Engine samples valid 96.58% 4802 4972

Result valid 100.00% 4972 4972

Table 6.7: Result of Singe-Linkage Clustering – Method (no faults injected)

The next discussed simulation is a race where again four faults got injected. One on wheel1,
the second one on wheel2 and wheel4 at the same time and the last one on the engine sensor.
The result of this race is depicted in figure 6.14 and table 6.8.



6.4. SINGLE-LINKAGE CLUSTERING 65

10 20 30 40 50 60 70 80

false

true

false

true

false

true

false

true

false

true

false

true

time (s)

Sa
m

pl
es

va
lid

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine
Result

Figure 6.14: Result of the Singe-Linkage Clustering (faults injected on W1, W2, W4 and Eng.)

During all test cases a valid result is found and also all injections got properly detected. As
the engine is still weighted three times more than all the other values, the result is very dependant
on it. The algorithm again tolerates up to two faults at a time and is able to detect more faults
if they are not the same. The small amount of wrong detections is produced during a breaking
manoeuvre in which the front wheels locked-up and produced a very small speed value. As the
injected faults are also small values they formed a majority and produced a wrong result. As the
lock-up of the wheels normally happens for a short time this is not really influential on the result
value.

Percent Matched Samples All Samples
Wheel1 samples valid 76.86% 3756 4887
Wheel2 samples valid 71.91% 3514 4887
Wheel3 samples valid 58.07% 2838 4887
Wheel4 samples valid 46.57% 2276 4887
Engine samples valid 78.27% 3825 4887

Result valid 100.00% 4887 4887
Wheel1 fault wrong det. 0.00% 0 592
Wheel2 fault wrong det. 2.63% 24 913
Wheel3 fault wrong det. 0.00% 0 0
Wheel4 fault wrong det. 3.75% 23 613
Engine fault wrong det. 0.00% 0 927

Table 6.8: Result of Singe-Linkage Clustering (faults injected on W1, W2, W4 and Eng.)

In figure 6.15 the resulting speed value is depicted by the blue line. The five sensor values
with the injected faults are pictured transparent in the background.



66 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

10 20 30 40 50 60 70 80
0

20

40

60

80

time (s)

Sp
ee

d
(m

/s
)

Result

Figure 6.15: Resulting speed value of Singe-Linkage Clustering (faults injected on W1, W2, W4
and Eng.)

Algorithm Refinement

As the result of this algorithm is still quite good and there are no definable scaling factors an
other way to improve it has to be found. An interesting way to do that would be the introduction
of an additional threshold value which defines a merge limit of two clusters. As the previous
version merges clusters as long as a majority is found or the limit is reached, this would make
the algorithm more sensitive for manipulation. It would produce more unresolved conversions,
but also would never detect an invalid value as valid.



CHAPTER 7
Conclusion

In this last chapter the conclusions and insights are presented which were gained by the imple-
mentation of the Validation Middleware (VaM) as a fault tolerant approach for the upgrade of
information integrity in an upstream information flow.

By using the deterministic communication channels of the TTNoC it is guaranteed that all mes-
sages belong to their corresponding data set and have a consistent delivery order with respect
to multiple encapsulated communication channels. [Pau08, Page 83] It also prevents erroneous
data sources from flooding the communication channels which would block the whole commu-
nication on the NoC. Spatial protection of each component is usually achieved by using memory
management units. Because of the spatial separation of every micro component in the TTSoC
this is provided by design. These properties make the TTSoC well applicable for the use in a
mixed criticality system which is shown in section 3.4 where this architecture is compared to the
MILS architecture. [Rus81]

By the use of Totel’s model as a integrity policy for guarding the information flow between
principals with different security clearances, upstream communication is prevented. This im-
pedes data from a low integrity level to interfere with higher ones and therefore the induction
of faults in a secure component is prevented. For the scenarios where upstream communica-
tion is still needed, the Validation Middleware (VaM) is used to upgrade the integrity of this
information flow. For this, the VaM needs diverse redundant inputs to upgrade the information
integrity with the fault tolerant mechanism inside the VaM. This integrity upgrade can be done
by realising inexact voting algorithms and the use of the basic concepts of anomaly detection.
(see section 4.3) As it is depicted in section 6, the online detection of possible faults with this
kind of algorithms works quite well, but there are limits:

Fallout or manipulation of wheel sensors is tolerable as long as a majority of sensors is still
correct. If a majority of values is incorrect and not the same, the behaviour of each algorithm
is different. The kth nearest neighbour method, the probabilistic boxplot method and the his-

67



68 CHAPTER 7. CONCLUSION

togram method find no result and reuse the last valid value. The single-linkage clustering algo-
rithm merges the values until a majority is found, even if other algorithms would have marked
some values as wrong. (see section 4.3 for a detailed description of the algorithms) Because of
this, the clustering algorithm always produces an output. The optimal solution for dealing with
a missing majority is different and depends on the application. On the one hand, the time where
no majority is found can be very long and therefore the last valid value has to be reused for a
long period. This would cause a huge deviation to the original value and can produce a wrong
result.
On the other hand, if an algorithm always finds a solution it maybe has to use values whose
deviation from the real data is so huge that the end result is changed by it. As the average of all
values in the majority is built and as there are also some correct values in it, the deviation of the
end result is reduced by the correct values in the majority.

The worst case of the whole fault scenario happens when wrong values accidentally are the
same and form a majority. Then the valid values are a minority and the faulty values fully deter-
mine the result.

Looking at the exemplary automotive application with the five speed sensors, two faulty sen-
sors can be detected. The main problem in this application is the breaking scenario, where a
huge deviation between the different speed values can arise. This can happen because of the
locked-up or spinning wheels during braking. If there are two ongoing fault injections, both
with a low value and if also the wheels are blocking and produce a low value, the result speed
of the car can get nearly zero even if it is still driving with a high speed. This kind of scenario
is pictured in figure 6.15 in second 32 and points out a possible problem which exists with all
realisations of the inexact voters in this thesis. How this kind of scenario can be detected is
discussed in the following section 7.1.

7.1 Outlook

All of the selection techniques used in this thesis look at the data instances of each round sep-
arately. Therefore each algorithm is not aware of the behaviour of the system in the previous
round and consists of no memory. This is done on purpose because the equipment of an algo-
rithm with this kind of memory makes the prediction of each decision very difficult. As all of
these approaches need to be certified to a high integrity level, a memory inside the algorithms
would be hard to certify.

Because of this, the main outlook for this approach is to find a solution for the voting prob-
lem which is easy to certify and able to detect a fault scenario like pointed out in the previous
example. Some possible solutions for this kind of problem are neural networks and genetic al-
gorithm techniques. [CSB+95] An interesting approach was created at the University of Illinois
in 2006 where Hidden Markov Models (HMMs) where used to capture the error and attack free
scenarios of the environment. [BGKI06]
Also the approach of Subramaniam et al. in 2006 [SPP+06] is very interesting, where the un-



7.1. OUTLOOK 69

derlying distribution function of the sensor values in a sliding window is estimated. This data
distribution allows to combine the sensor data and to find possible outlier values.

Most of this approaches learn the normal behaviour of the system and continuously compare
the ongoing behaviour with the past. If the ongoing data deviates from the saved manner, an
error is detected and arrangements can be made to select out the faulty data. As this kind of
algorithms can learn each behaviour in every situation, they are well applicable for the use as
a reusable fault tolerant approach inside the VaM, with a limit. As this kind of algorithm also
needs to be certified and consists of an inner memory, an approach has to be found which is able
to certify. Because of the large-scale of these approaches this is a very hard challenge.



APPENDIX A
Simulation Environment – Setup

This guide should provide a full instruction, how the Validation Middleware (VaM) simulation
environment has to be built up in order to work properly. The chapter starts by activating the
FPGA development board and by establishing the serial connection to the host PC. It also pro-
vides a detailed guide for setting up the software on the host PC and explains how to download
the program onto the hardware.

A.1 Hardware – Setup

In order to build up the hardware a few components are needed, which are listed as following:

• An Altera Stratix III FPGA Development Board1 (FPGA number EP3SL150F1152). In-
cluding a standard USB-Cable for downloading the user software and for debugging.

• A Terasic HSMC to GPIO Daughter Board2

• An EXSYS (EX-1334) USB 1.1 to 4S Serial Ports Converter.

• Four standard Serial Cables.

• 20 x Measuring Leads3 with two insulated sockets for 0.64 mm round pillar and 0.64 mm
rectangular pillar.

• A x86 or x64 host PC with Linux or Windows operating system. This thesis just covers
the setup by using a Linux operating system. (Ubuntu 8.04 LTS is used)

1Manual at: http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
2Manual at: http://www.terasic.com.tw/en/
3Manual at: http://at.rs-online.com/web/0775732.html

I

http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.terasic.com.tw/en/
http://at.rs-online.com/web/0775732.html


II APPENDIX A. SIMULATION ENVIRONMENT – SETUP

• A Maxim MAX232CWE Chip4 to transform the low voltage VCC from the HSMC Daugh-
ter Board, to the needed 12 Volts of the serial device. The Maxim Chip and the needed
circuit is used in form of a pre-made device, pictured in figure A.1.

TX

GND

RX

VCC

MAX232CWE

Figure A.1: Maxim MAX232CWE Chip with wiring

The heart of the hardware setup is the Altera Stratix IIITM Development Kit. It is connected
with the host PC over a standard USB-Cable and five serial devices. The setup of the serial
devices is covered in appendix A.1. The FPGA Board provides two extension slots called High-
Speed Mezzanine Card (HSMC) ports. The Terasic Daughter Board has to be connected at the
HSMC Port A of the FPGA Board. To power up both boards a 12 Volts / 4.3 Ampere power
adapter is needed.

Serial Devices

As already mentioned, five serial-interfaces are needed, in order to connect the four wheel nodes
and the engine node to the host PC. These interfaces are not provided by the FPGA development
board and have to be created manually. Therefore each processor, which needs a serial interface,
gets an additional module, called Avalon Jtag UART. This module needs a RX-Pin as an input
and a TX-Pin as an output. All RX and TX pins are mapped to their corresponding PINs on the
HSMC extension board as listed in table A.1.

These ten pins get connected with the five Maxim devices, by using the black Measuring
Leads. To create a fully functional serial device, also VCC and GND need to be connected
with the other ten Measuring Leads. After this is done, it is possible to connect the Maxim
devices with the host PC, by using standard serial cables and the USB 1.1 to 4S Serial Ports
Converter. As the host PC provides one serial port, the engine serial is directly connected to
the host PC without using the USB to serial converter. As the output connectors of the Maxim
devices are old obsolete parallel ports, five parallel to serial converters have to be interconnected.
After establishing the serial connection, it is recommended to test the interface by interposing
an oscilloscope. If sending and receiving data is working, it is possible to continue with setting
up the host PC, which is described in section A.2.

4Manual at: http://datasheet.octopart.com/MAX232CWE-Maxim-datasheet-3759.pdf

http://datasheet.octopart.com/MAX232CWE-Maxim-datasheet-3759.pdf


A.2. HOST PC – SETUP III

HSMC Board

Serial  Devices

User  LEDs

Figure A.2: The FPGA board with the HSMC expansion board and the serial devices

A.2 Host PC – Setup

The operating system, which is running on the host PC can be chosen autonomous, as Altera
provides either a Windows or a Linux Version of the Quartus Development Suite. However this
guide just covers the set-up of the environment by using a Linux operating system. In our case
it is the distribution Ubuntu 8.04 LTS. If you are planning to use Windows, a few things like the
software installation are different, but the basic idea should be the same.

The first thing, that has to be done after installing the operating system, is to prepare everything
for the installation of the Quartus Development Suite. The main steps have to be performed as
following:

• Install the package tcsh.

• Find out which shell currently is used, by typing: "ls -la /bin/sh"

• Change the shell to bash by typing: "sudo rm /bin/sh" and "sudo ln -s bash /bin/sh"

After successfully switching the shell, the current running shell window has to be restarted,
to make the changes effective. Then the installation process of the Quartus Development Suite



IV APPENDIX A. SIMULATION ENVIRONMENT – SETUP

Signal Name FPGA Pin Name HSMC Pin Name
rxd_to_uart_0 PIN_AC11 HSMC_TX_P0
txd_from_uart_0 PIN_AC9 HSMC_TX_P1
rxd_to_uart_1 PIN_AB10 HSMC_TX_N0
txd_from_uart_1 PIN_AC8 HSMC_TX_N1
rxd_to_uart_2 PIN_AJ4 HSMC_RX_P0
txd_from_uart_2 PIN_AH5 HSMC_TX_P2
rxd_to_uart_3 PIN_AJ3 HSMC_RX_N0
txd_from_uart_3 PIN_AH4 HSMC_TX_N2
rxd_to_uart_4 PIN_AG4 HSMC_RX_P1
txd_from_uart_4 PIN_AE8 HSMC_TX_P3

Table A.1: Pin assignment internal FPGA pins to HSMC board pins

… RX/TX Pins … Used VCC Pins … Used Ground Pins

Figure A.3: Possible wiring of the HSMC expansion board

9.0 Sp2 can begin. It is very important to use exactly this version of the environment. When the
setup program is asking for the installation path of the program, a path with no spaces is needed.
Otherwise the installation will not work properly.

After the installation process is completed, the permissions of the USB-Devices still need an
adjustment. This can be done by inserting the following line at the end of /etc/fstab:

procbususb /proc/bus/usb usbfs auto 0 0

Finally some global system wide variables need to be set. There is a file included in the
project folder called .bash_profile. Copy this file into the home directory and insert the following
lines into your .bashrc file. Modifying the .bashrc file is not necessary, if another distribution



A.2. HOST PC – SETUP V

than Ubuntu is used.

if [ -f $HOME/.bash_profile ]; then
. $HOME/.bash_profile

fi

A look inside of .bash_profile is recommended, because this is the place where all system
variables are set. The three most important paths are the TTSOC_DESIGN, SOPC_KIT_NIOS2
and the QUARTUS_ROOTDIR. They have to be adjusted as it is needed in the operating system.
In order to download a program to the FPGA, the jtagd daemon needs to run. With this daemon
running, it is possible to check if the connected hardware is detected properly, by using the
command jtagconfig -n. If this program is returning: Unable to lock chain, insufficient rights for
the USB devices are granted. This can be solved by using the following command:

$ sudo chmod -R a+rw /proc/bus/usb/

Now all requirements are fulfilled to compile and download the TTSoC design. This is done
by using the Makefile and can take an hour or more, depending on the CPU speed. As al-
ready mentioned in section 5.2 the TTSoC design consists of seven IP-Cores, which are realized
through a CPU called the Nios II processor. This processor is automatically generated during
compile time and because of it’s modular design, it can be easily extended by using a program
called the SOPC Builder.

The actual tasks are executed on this processors. They are ready to be downloaded, after the
TTSoC design is on the hardware. To do so an editor called nios2-ide should be used. When this
editor starts up the workplace has to be switched into the directory called: $TTSOC_DESIGN/usr/software.
This directory is the home of the software, that is executed on the processors. After switching
the workplace, the projects for each of the seven processors need to be imported. Each processor
software consists of two projects, the main program and the library. While importing the library,
it is required to add the properties of the processor by selecting the file "userland.ptf" which is
located in the folder called "usr/sopc". In addition, the compile flag "MY_CPU_ID=$ID" needs
to be added as a preprocessor in the project properties. To compile the processor software, sim-
ply run the "build all" command in the editor. This compilation takes a few minutes. After it
is finished the result can be downloaded to the processors by using the Makefile. As mentioned
in section 5.4 a program called repeater is needed on the host PC to read data from the serial.
This program is located inside the "pcsim/repeater" folder and has to be compiled and executed
before the processor software is downloaded. Otherwise the processors start to infinity listen on
the serial and freeze. If the permission to the serial devices is denied, the file inside the folder
"udev/" has to be copied into the folder /etc/udev/rules.d/. In order to make the changes effec-
tive, the udev daemon has to be restarted and the devices have to be reconnected. Restart udev
with the command:

$ sudo /etc/init.d/udev restart

Now the whole system is running in idle mode, because no race currently is in progress. To
start a new race a car simulation called TORCS is used, which has to be configured as described
in the following chapter.



VI APPENDIX A. SIMULATION ENVIRONMENT – SETUP

Compiling The Open Racing Car Simulator

The functionality of this car simulator is described in detail in section 5.6. The source code of
the program is located inside the "pcsim/torcs-1.3.1" folder. In order to compile TORCS, a few
dependencies need to be fulfilled by the used operating system:

• Hardware accelerated OpenGL (usually provided by your distribution)

• GLUT 3.7

• PLIB version ≥ 1.8.5

• OpenAL

• libpng and zlib (usually provided by your distribution)

Ubuntu 8.04 satisfies all dependencies, by simply installing the libraries from the package
manager, with one exception. The version of the PLIB library is too old. To install this library in
the correct version, the source code for compiling it is added to the project in the "lib/torcs/plib-
1.8.5" directory. If the compilation of this library fails and a x64 processor is used, the following
compile flags are needed:

$ export CFLAGS="-fPIC"
$ export CPPFLAGS="-fPIC"
$ export CXXFLAGS="-fPIC"

After the required dependencies are fulfilled, TORCS can be compiled by using the follow-
ing commands:

$ cd torcs-1.3.1
$ ./configure # --prefix="target dir", --enable-debug or --disable-

xrandr might be of interest
$ make
$ make install

The version of TORCS, which is used in the project, includes a robot called “flow” in the
"torcs-1.3.1/src/drivers/flow" directory. To drive with this robot, “Practice” has to be chosen in
the main menu of the game. In the following configuration menu, the robot and the tracks can
be selected. Finally everything is adjusted to start the first race.

The output of the simulation is logged by the repeater program, by writing the data into a file
inside the "race_results" directory. As already described in section 5.5, there also is a program
called the fault injector. It is located inside the "pcsim/faultinjector" directory and can be easily
compiled by using the corresponding Makefile. While using this program, it is possible to switch
the VaM algorithm and inject faults into the sensors.



A.2. HOST PC – SETUP VII

Debugging the Simulation Environment

The debug output of the program can be activated by executing a shell script called "readal-
luarts.sh" in the project folder. This script opens seven windows, one for each processor and
displays the debug output from the TTSoC design. If this windows print no output, the compile
flag ALT_RELEASE has to be changed to ALT_DEBUG. This has to be done in the project
options of the "nios2-ide" and also in the first line of the Makefile. As printing the debug out-
put is a very resource consuming activity, running the TTSoC with a period of 32 milliseconds
is too fast. To slow down this period, the parameter called MSB_PERIODBIT inside the file
"etc/vam_CONFIG" has to be set to 30 or higher. In order to make these changes effective, the
following command has to be executed before recompiling the whole TTSoC design:

$ make writecfg

This command executes a python script, which imports some configuration files from the
original TTSoC project. This only can be done when the "ttsoc-ng" repository is checked out in
the same folder as the "flow" repository.

Debugging with Modelsim

It is also possible to debug the TTSoC design without using the FPGA at all. Therefore the
simulation environment called Modelsim SE provided by Mentor is needed. The version 6.3j
of the simulation environment is recommended and tested. After installing this software, the
path to the program has to be adjusted inside the already mentioned configuration file called
".bash_profile". Once this is done correctly, the simulation can be started by using the makefile
with the command "make sim". This command regenerates the processors and starts Modelsim
SE afterwards. If the generation of the processors is already completed and the simulation just
needs to be started, this can be done by using the following command:

$ vsim usr/sopc/userland_sim/setup_sim.do

The simulation environment provides the following options:

• s – Load all design (HDL) files

• c – Re-compile memory contents

• w – Sets-up waveforms for this design

• l – Sets-up list waveforms for this design





APPENDIX B
Implementation Specific Details

This chapter covers additional information, needed to work with the simulation environment of
the Validation Middleware (VaM). First the user interface on the FPGA is explained and second
the format of the messages sent over the NoC is illustrated.

B.1 FPGA User Interface

As mentioned in the previous chapter, printing debug messages over the Avalon Jtag UART is
too slow for normal operations. To provide status output on the development board in realtime,
some user programmable interfaces are used. The used peripheries are four Seven Segment
Displays and eight user LEDs, which are marked red in figure B.1.

07

Figure B.1: The user interface which is used on the FPGA

Seven Segment Display: This display is used to print the current odometer value. As there are
just four digits available, the accuracy is limited to two decimal places. To make it possible

IX



X APPENDIX B. IMPLEMENTATION SPECIFIC DETAILS

to write all four displays at once, they have to be multiplexed. Responsible for this is an
extra hardware module called "sevensegmux.vhd", which is interconnected between four
eight-bit PIO-Modules in the odometer processor and the seven segment pins on the board.

User LEDs: This eight LEDs are used to indicate status information of the current ongoing
race. The function of each LED maps exactly to the first eight bits of the status word
pictured in figure 5.4. Therefore LED zero indicates if a race is started, LED one shows
the ABS status, LED 2-3 which VaM algorithm is currently activated and the last four
LEDs show if a wheel sensor is on or off.

B.2 Sending Floating-point values over the NoC

As described in section 5.2, the five speed values from the wheels and the engine are sent over
the Network-on-Chip. At first it has to be mentioned that the On-Chip Memory (OCM) is very
limited on the IP-Cores of the TTSoC. A simple call of floating point library functions, often is
not possible because of the high amount of static memory needed. So the use of library functions
is avoided as much as possible.

The speed values from the serial devices are sent as ASCII characters and saved as a string
at the receiving side. In order to get the speed values out of the string, integer functions are
used to extract the pre-decimal position and the decimal places separately. This is done because
integer library functions use much less static memory then floating point functions. Both integer
values get separately transmitted over the NoC and assembled at the ABS and odometer tasks.
Therefore floating point values are only needed at the main processors, where more memory is
available. Figure B.2 shows the exact format of the messages, sent from the wheel IP-Cores to
the odometer and ABS cores.

Speed value
Predecimal value

Speed value
Decimal value

unused

Speed value
Predecimal value

Speed value
Decimal value

Brakeforce value

0 32

0 32

Message to the odometer

Message to the ABS

Figure B.2: Format of the messages sent from the wheels to the odometer and ABS

B.3 Logging Messages

This section focuses on how the results from the VaM are transmitted to the host PC, in order
to evaluate and compare them. As it is easy to see in figure 5.2, the IP-Core of the odometer
has no direct connection to the host PC and also no backloop to the wheel nodes is available.
Therefore two additional logging messages are defined, which need to be sent over the NoC to



B.3. LOGGING MESSAGES XI

the engine core. From there it is possible to send the values to the host PC, by using the local
serial-interfaces. The structure of the logging messages is given in figure B.3. The first message
simply consists of the speed values of the four wheel sensors. In this 32 bit word the upper
half is used for the pre-decimal position and the lower half for the decimal places. The second
message consists of the speed value from the engine, the result word of the VaM and the status
word which has already been described in figure 5.4.

Wheel 1 speed value Wheel 2 speed value Wheel 3 speed value

0 32

Wheel 4 speed value

Engine speed value VaM result Status word

0 32

unused

Logging message one:

Logging message two:

Figure B.3: The logging messages from the odometer core

The VaM result word in the second message provides the information, which values are
used to form the majority and if the set of speed value has a majority at all. Details about the bit
structure are given in figure B.4.

unused

0 1 2 3 4 5 631

E
ng

in
e

 W
he

e l
 1

 W
he

e l
 2

 W
he

e l
 3

 W
he

e l
 4

R
V

Figure B.4: The structure of the VaM result status word

Bit zero indicates if the result is valid in a whole and bit one to five show which speed
value is used in the evaluation. The information from the status messages are used to create the
statistics, stored in the directory called the "race_results/". The format of three data samples in
the race result file is given as following:

6.103980 28.465300 1 1 27.994508 1 1 27.668401 1 1 27.774242 1 1 28.127008 1
1 1

6.127411 28.109314 1 1 28.934540 1 1 29.999817 1 1 29.999817 1 1 28.127008 1
1 1

6.140967 28.146800 1 1 28.135593 1 1 27.989921 1 1 28.294250 1 1 28.127008 1
1 1

The first value is the time in nanoseconds, when this measurement sample is taken with
respect to when the race is started. Then there are the five speed values with two boolean values
added after each speed value. The first boolean value indicates if this speed value is actually used
in the calculation and is therefore the output of the VaM algorithm. The second boolean value is
one if the wheel sensor was enabled and zero it if was disabled. A wheel sensor is disabled if a
fault is currently injected at this sensor. The last boolean value in the result is one if the result is
valid in a whole or zero when the round is discarded.



XII APPENDIX B. IMPLEMENTATION SPECIFIC DETAILS

As this format is not use-able with the pgfplots1 latex libraries, a python script called splitter.py
helps with preparing this result file for plotting in latex. It simply creates a data file for every
speed and result value, with an added timestamp. Additionally a latex table is created with a
small evaluation of all data samples.

1Manual at: http://www.iro.umontreal.ca/~simardr/pgfplots.pdf

http://www.iro.umontreal.ca/~simardr/pgfplots.pdf


List of Acronyms

A/C IS Aircraft Information System
A/C OM Aircraft Operation and Maintenance
ABS Anti-lock Braking System
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
CDI Constrained Data Items
COTS Commercial off the Shelf
Doctor Integrated Software Fault Injection Environment
ECU Electronic Control Unit
EE Execution Environment
FCR Fault Containment Region
Ferrari Fault and Error Automatic Real-Time Injection
FIST Fault Injection System for Study of Transient Fault Effect
FM Flight Management
FPGA Field Programmable Gate Array
GPS Global Positioning System
HMMs Hidden Markov Models
HSMC High-Speed Mezzanine Card
IVPs Integrity Verification Procedures
MARS Maintainable Real-Time System
MEDL Message Descriptor List
MILS Multiple Independent Layers of Security
MLO Multi Level Object
MMU Memory Management Unit
NoC Network-on-Chip
NVP N-version programming
NVS N-version software
OCM On-Chip Memory
OW Open World
RATE Region Approximation and Temperature Estimation
RB Recovery Blocks
RMA Resource Management Authority
SLO Single Level Object
SoC System-on-Chip

XIII



XIV List of Acronyms

TDMA Time Division Multiple Access
TISS Trusted Interface Sub-System
TNA Trusted Network Authority
TORCS The Open Racing Car Simulator
TPs Transformation Procedures
TS Timeslot
TSS Trusted Sub-System
TT Time-Triggered
TTA Time-Triggered Architecture
TTE Time-Triggered Ethernet
TTNoC Time-Triggered Network-On-Chip
TTSoC Time-Triggered System-On-Chip
UART Universal Asynchronous Receiver Transmitter
UDI Unconstrained Data Items
VaM Validation Middleware
VaO Validation Object



Bibliography

[AC77] Algirdas A. Avizienis and L. Chen. On the Implementation of N-Version Pro-
gramming for Software Fault Tolerance During Execution. In Proc. IEEE
COMPSAC 77 , pages 149–155, November 1977.

[ACL89] Jean Arlat, Yves Crouzet, and Jean-Claude Lapire. Fault Injection for Depend-
ability Validation of Fault-Tolerant Computing Systems. Proc. 19th Ann. Int’l
Symp. Fault-Tolerant Computing, pages 348–355, 1989.

[AFOTH06] J. Alves-Foss, P. W. Oman, C. Taylor, and W. S. Harrison. The MILS Architec-
ture for High-Assurance Embedded Systems. International Journal of Embed-
ded Systems, 2:239–247, 2006.

[AGK+85] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Stirigini, P. J. Traverse, K. S.
Tso, and U. Voges. The ucla dedix system: A distributed testbed for multiple-
version software. Digest of FTCS-15, the 15th International Symposium on
Fault-Tolerant Computing, pages 126–134, 1985.

[ALS+87] Algirdas A. Avizienis, M. R. T. Lyu, W. Schütz, K.-S. Tso, and U. Voges. Soft-
ware Diversity in Computerized Control Systems, volume 2, chapter DEDIX 87
- A Supervisory System for Design Diversity Experiments at UCLA, pages 129–
182. Springer-Verlag Wien, October 1987.

[Avi95] Algirdas A. Avizienis. The Methodology of N-Version Programming. Software
Fault Tolerance edited by M. Lyu, John Wiley & Sons, pages 23–46, 1995.

[BCWW07] A. Bogdanov, D. Carluccio, A. Weimerskirch, and T. Wollinger. Embedded
Security Solutions for Automotive Applications. Advanced Microsystems for
Automotive Applications, pages 1–10, 2007.

[BDN+04] David Burton, Amanda Delaney, Stuart Newstead, David Logan, and Brian
Fields. Effectiveness of ABS and Vehicle Stability Control Systems. Techni-
cal report, Royal Automobile Club of Victoria (RACV) Ltd, April 2004.

[Bel74] D. E. Bell. Secure Computer Systems: A Refinement of the Mathematical
Model. Electronic Systems Division, Air Force Systems Command, III, April
1974.

XV



XVI BIBLIOGRAPHY

[BGKI06] Claudio Basile, Meeta Gupta, Zbigniew Kalbarczyk, and Ravi K. Iyer. An ap-
proach for detecting and distinguishing errors versus attacks in sensor networks.
Proceeding of the 2006 International Conference on Dependable Systems and
Networks, 2006.

[Bib77] K. J. Biba. Integrity Considerations For Secure Computer Systems. Technical
report, Mitre Corporation, April 1977.

[BK09] Arindam Banerjee and Vipin Kumar. Anomaly Detection: A Survey. Technical
report, ACM Computing Survey, September 2009.

[BL75] D. E. Bell and L. J. LaPadula. Computer Security Model: Unified Exposition
And Multics Interpretation. Technical report, MITRE Corp., Bedford, June 1975.

[BM06] Tobias Bjerregaard and Shankar Mahadevan. A Survey of Research and Practices
of Network-on-chip. ACM Computing Surveys (CSUR), (1), March 2006.

[CSB+95] P.R. Croll, A.J.C. Sharkey, J.M. Bass, N.E. Sharkey, and P.J. Fleming. Engineer-
ing Applications of Artificial Intelligence, volume 8, research article Dependable,
Intelligent Voting for Real-time Control Software, pages 615–623. Elsevier, De-
cember 1995.

[CW87] David D. Clark and David R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. IEEE Symposium on Security and Privacy, pages
184–194, May 1987.

[EBB01] Donald L. Evans, Phillip J. Bond, and Arden L. Bement. Security Requireents for
Cryptographic Modules. Federal Information Processing Stabdards Publication
(Supercedes FIPS PUB 140-1), 2001.

[EI03] Wilfried Elmenreich and Richard Ipp. Introduction to TTP/C and TTP/A. Pro-
ceedings of the Workshop on Time-Triggered and Real-Time Communication
Systems, pages 1–9, 2003.

[ELOGV+11] Luis Entrena, Celia López-Ongil, Mario García-Valderas, Marta Portela-García,
and Michael Nicolaidis. Soft Errors in Modern Electronic Systems, volume 41,
chapter Hardware Fault Injection, pages 141–166. 2011.

[ES07] Christian El-Salloum. Interface Design in the Time-Triggered System-on-Chip
Architecture. PhD thesis, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, December 2007.

[Gal87] Patrick R. Gallagher. A Guide to Understanding Discretionary Access Control
in Trusted Systems. National Computer Security Center, 1987.

[GKT89] O. Gunnetlo, J. Karlsson, and J. Tonn. Evaluation of Error Detection Schemes
Using Fault Injection by Heavy-Ion Radiation. Proc. 19th Ann. Int’1 Symp.
Fault-Tolerant Computing, pages 340–347, 1989.



BIBLIOGRAPHY XVII

[HSR95] S. Han, K.G. Shin, and H.A. Rosenberg. Doctor: An Integrated Software Fault-
Injection Environment for Distributed Real-Time Systems. Proc. Second Annual
IEEE Int’1 Computer Performance and Dependability Symp., pages 204–213,
1995.

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault Injection
Techniques and Tools. Coordinated Sci. Lab., Illinois Univ., Urbana, IL , 30
Issue:4:75 – 82, April 1997.

[Hub08] Bernhard Huber. Resource Management in an Integrated Time-Triggered Archi-
tecture. PhD thesis, Technische Universität Wien, Institut für Technische Infor-
matik, January 2008.

[IM03] Terrance R. Ingoldsby and Christine McLellan. Creating secure systems through
attack tree modeling. Technical report, Amenaza Technologies Limited, 550,
1000, 8th Ave SW, Calgary, AB, Canada, June 2003.

[IT96] Ravishankar K. Iyer and Dong Tang. Experimental Analysis of Computer Sys-
tem Dependability. Fault-Tolerant Computer System Design , pages 282–392,
1996.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM
Computing Surveys (CSUR), 31, Issue 3:264–323, 1999.

[Joh67] Stephen C. Johnson. Psychometrika, volume 32, chapter Hierarchical Clustering
Schemes, pages 241–254. Springer, 1967.

[KAGS05] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. The
Time-Triggered Ethernet (TTE) Design. Proceedings of the Eighth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’05), pages 1–12, 2005.

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture. Pro-
ceeding of the IEEE, 91:112–124, January 2003.

[KFG+92] Hermann Kopetz, Gerhard Fohler, Günter Grünsteidl, Heinz Kantz, Gustav
Pospischil, Peter Puschner, Johannes Reisinger, Ralf Schlatterbeck, Werner
Schütz, Alexander Vrchoticky, and Ralph Zainlinger. The Distributed, Fault-
Tolerant Real-Time Operating System MARS. IEEE Operating Systems
Newsletter, 6(1), 1992.

[KKA92] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: A Tool for the
Validation of System Dependability Properties. Proc. 22nd Ann. Int’1 Symp.
Fault-Tolerant Computing, pages 336–344, 1992.

[KNT00] E. M. Knorr, R. T. Ng, and Tukakov. Distance-based Outliers: Algorithms and
Applications. The VLDB Journal 8, pages 237–253, 2000.



XVIII BIBLIOGRAPHY

[Kop92] Hermann Kopetz. Sparse Time versus Dense Time in Distributed Real-Time
Systems. In 12th Int. Conf. on Distributed Computing Systems, pages 460–468,
1992.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Number 978-0792398943. Springer, April 1997.

[Kop08] Hermann Kopetz. The Complexity Challenge in Embedded System Design.
11th IEEE Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), May 2008.

[KR07] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, pages 203–215, February 2007.

[Lam69] B.W. Lampson. Dynamic Protection Structures. AFIPS Conf. Proc., 35:27–38,
1969.

[LCE89] Paul R. Lorczak, Alper K. Caglayan, and Dave E. Eckhardt. A Theoretical
Investigation of Generalized Voters for Redundant Systems. Digest of Papers
FTCS-19:The Nineteenth International Symposium on Fault-Tolerant Comput-
ing, pages 444–450, 1989.

[LDPA09] Youssef Laarouchi, Yves Deswarte, David Powell, and Jean Arlat. Connecting
Commercial Computers to Avionics Systems. 28th Digital Avionics Systems
Conference, pages 6.D.1–(1–9), December 2009.

[LH94] J.H. Lala and R.E. Harper. Architectural Principles for Safty-Critical Real-Time
Applications. In Proceedings of the IEEE, 82:25–40, January 1994.

[Mat00] Matteo Matteucci. Hierarchical clustering algorithms, 2000. Avail-
able at: http://home.dei.polimi.it/matteucc/Clustering/
tutorial_html/hierarchical.html.

[MTL78] Robert Mcgill, John W. Tukey, and Wayne A. Larsen. Variations of Box Plots.
The American Statistician, 32:12–16, 1978.

[OPHES06] Roman Obermaisser, Philipp Peti, Bernhard Huber, and Christian El-Salloum.
DECOS: An Integrated Time-Triggered Architecture. Journal of the Austrian
professional Institution for Electronic and Information Engineering, 3:83–95,
March 2006.

[Pau08] Christian Paukovits. The Time-Triggered System-on-Chip Architecture. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria, December 2008.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html


BIBLIOGRAPHY XIX

[PK09] Christian Paukovits and Hermann Kopetz. Building Encapsulated Communica-
tion Channels in the Time-Triggered System-on-Chip Architecture. Research
Report 8/2009, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2009.

[PNMV05] Tan P.-N., Steinbach M., and Kumar V. Introduction to Data Mining. Addison-
Wesley, 2005. Chapter 2.

[Pri07] Paul J . Prisaznuk. ARIC Specification 653, Avionics Application Software Stan-
dard Interface. Number 978-0-8493-8438-7. Cary R . Spitzer, 2007.

[Ran75] Brian Randell. System Structure for Software Fault Tolerance. IEEE-Software
Eng., SE-1:220–232, 1975.

[Rus81] J. Rushby. Design and Verification of Secure Systems. Proceedings of the 8th
ACM Sympsium on Operating System Principles, 15(5):12–21, December 1981.

[SPP+06] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunop-
ulos. Online Outlier Detection in Sensor Data Using Non-Parametric Models.
pages 187–197, 2006.

[SWJR07] X. Song, M. Wu, C. Jermaine, and S. Ranka. Conditional Anomaly Detection.
IEEE Transactions on Knowledge and Data Engineering, 19:631–645, 2007.

[TBDB+01] Eric Totel, Ljerka Beus-Dukic, Jean-Paul Blanquart, Yves Deswarte, and David
Powell. A Generic Fault-Tolerant Architecture for Real-Time Dependable Sys-
tems. Number 0-7923-7295-6. Kluwer Academic Publishers, 2001.

[TBDP00] Eric Totel, Jean-Paul Blanquart, Yves Deswarte, and David Powell. Supporting
Multiple Levels of Criticality. ESPRIT project 20716: GUARDS, 2000.

[TCL90] H. Teng, K. Chen, and S. Lu. Adaptive Real-Time Anomaly Detection Using
Inductively Generated Sequentianl Patterns. In Proceedings of IEEE Computer
Society Symposium on Research in Security and Privacy, pages 278–284, 1990.

[Tra88] P. Traverse. Use of Diversity in Experimental Reactor Safety Systems, chap-
ter AIRBUS and ATR System Architecture and Specification, pages 95–104.
Springer Wien, New York, 1988.

[Tuk77] John Wilder Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[VM97] Jeffrey Voas and Gary McGraw. Software Fault Injection: Innoculating Pro-
grams Against Errors. Number ISBN 0-471-18381-4. John Wiley & Sons, 1997.

[Wei69] Clark Weissman. Security Controls in the ADEPT-50 Time-Sharing System.
AFIPS Conf. Proc. 35, pages 119–133, 1969.



XX BIBLIOGRAPHY

[WESK10] Armin Wasicek, Christian El-Salloum, and Hermann Kopetz. A System-on-a-
Chip Platform for Mixed-Criticality Applications. 13th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 210–216, May 2010.

[WYF83] J. F. Williams, L. J. Yount, and J. B. Flannigan. Advanced autopilot flight director
system computer architecture for boeing 737-300 aircraft. In AIAA/IEEE 5th
Digital Avionics Systems Conference, November 1983.



Index

25th percentile, 37
75th percentile, 37
kth Nearest Neighbour with Delta-Value, 35,

48
ABS, X, 43–49
TORCS, 45, 49

access-control matrix, 10
Anomaly Detection, 18
anomaly detection, 3
ARING 653, 15
Avalon Jtag UART, II, IX

Bell-LaPadula, 2, 3, 5, 10, 11
Biba, 2, 3, 5, 11, 12
bubbling idiot, 6

CAN bus, 47
Clark and Wilson, 2, 3, 5, 12
Collective Anomalies, 19
Contextual Anomalies, 19
criticality levels, 2

design diversity, 16
Doctor, 21

encapsulated communication channel, 3, 7–
9, 28, 32

fault injection, 20
fault injector, VI, 48
fault tolerance feature, 17
fault-tolerance mechanisms, 12
Ferrari, 21
FIST, 21

fragment switches, 7, 46

genetic algorithm, 66

hardware fault injection, 21
heapsort, 38
Histogram Method, 38, 48

IEEE Ethernet standard, 6
integrity kernel, 2, 14, 32
integrity model, 3, 9, 12, 32
integrity policies, 2, 9
interquartile range, 37
IP-Core, X, 7, 28, 46, 47

Johnson’s Single-Linkage Clustering Algo-
rithm, 40

Lampson, 10
LEDs, IX, X

MARS, 21
measurement-based analysis, 20
median, 37
mergesort, 38
Messaline, 21
micro component, 7, 8, 27–29, 31, 32
micro-kernel, 2, 14
mixed criticality application, 44
Modelsim SE, VII
Moore’s law, 1
multi version software, 16

N-version programming, 3, 34
network switches, 28

XXI



XXII INDEX

neural network, 66
Nios II, V
nios2-ide, V, VII

odometer, IX, X, 43–48
output selection algorithm, 34

package manager, VI
periodic control system, 9
PIO-Modules, X
PLIB library, VI
Point Anomalies, 19
Probabilistic Boxplot, 37, 48
prototype-based fault injection, 20
pulsed data stream, 9, 31

Quartus Development Suite, III
quicksort, 38

repeater, V, VI, 45, 47
robot, VI, 45, 49
Rushby, 2, 15

security policies, 31
Semi-Supervised Anomaly Detection, 20
separation kernel, 15
serial-interfaces, II, XI, 45, 47
Seven Segment Display, IX
shared memory, 45, 47, 49
simulation-based fault injection, 20, 22
single version software, 16
Single-Linkage Clustering, 39, 48
smart transducer, 6
software fault injector, 21, 48
SOPC Builder, V
sparse timebase, 5
standard ethernet, 27
Stratix III Development Board, II
Supervised Anomaly Detection, 20

Totel’s model, 3, 5, 12, 13, 25, 32, 65
trusted partitioner layer, 27
TTP/A, 6
TTP/C, 6
ttsoc-ng, VII

Ubuntu, I, III, V, VI
udev, V
Unsupervised Anomaly Detection, 20

Validation Middleware, 33
Validation Object, 12, 13, 32
voting algorithm, 3, 4, 17, 34


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Contribution
	Structure of this Thesis

	Basic Concepts
	The Time-Triggered Architecture and the Time-Triggered System-on-Chip
	Integrity Policies
	The Multiple Independent Layers of Security Architecture
	N-Version Programming
	Anomaly Detection – Fundamentals
	Fault Injection Techniques

	Related Work
	Connecting Commercial Computers to Avionics Systems
	N-version Programming – Experiments
	A Time-Triggered System-on-Chip – Prototype
	The Time-Triggered System-On-Chip in Mixed-Criticality Applications

	Validation Middleware
	System Model
	Design of the Validation Middleware
	Anomaly Detection – Algorithms

	Automotive Case Study
	Simulation Environment Structure
	Basic Layout of the TTSoC in the Simulation Environment
	Odometer Attack Model
	PC-Receiver
	Software Based – Fault Injector
	TORCS – Robot

	Analysis of the Algorithms
	Kth Nearest Neighbour with Delta-Value
	Probabilistic Boxplot Method
	Histogram Method
	Single-Linkage Clustering

	Conclusion
	Outlook

	Simulation Environment – Setup
	Hardware – Setup
	Host PC – Setup

	Implementation Specific Details
	FPGA User Interface
	Sending Floating-point values over the NoC
	Logging Messages

	List of Acronyms
	Bibliography
	Index

