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Abstract
Moving phase boundaries have been researched for a long time by different fields of
science and many interesting processes exist that involve moving interfaces, like the
melting of ice, phase transformations in metals or tumor growth. To gain an overview
of the field, some important formulations of moving boundary problems are described
and analytic solutions presented, where possible. Three basic types of numerical
approaches are emphasized and several different methods, belonging to each type,
are reviewed. The model of moving interfaces is implemented in the microstructural
simulation-software MatCalc. A variable-spaced-grid approach, similar to the Murray
Landis method, is used to track the interface movement. In order to compute the
interface velocity, the local equilibrium hypothesis is applied. Reducing deviations
from the mass balance requires inclusion of the Murray Landis correction term into the
diffusion equation. Heat treatments are introduced to simulate phase transformations
of iron-carbon alloys and at the end, a solidification example and a peritectic reaction,
involving austenite and ferrite, are shown.

Zusammenfassung
Bewegte Phasengrenzen werden seit geraumer Zeit von unterschiedlichen Disziplinen
der Wissenschaft untersucht und viele interessante Prozesse beinhalten solche Grenz-
flächen, wie zum Beispiel das Schmelzen von Eis, Phasenumwandlungen in Metallen
oder Tumor Wachstum. Um einen Überblick über das Gebiet zu erhalten, werden
einige wichtige Formulierungen solcher Probleme vorgestellt und analytische Lösungen
präsentiert, wo diese möglich sind. Es werden drei grundlegende Typen von numerischen
Lösungsverfahren hervorgehoben und einige unterschiedliche Methoden besprochen,
die zu diesen Typen gehören. Die Mikrostruktur Simulations-Software MatCalc wird
um ein Modell zur Beschreibung von bewegten Phasengrenzen erweitert. Dieses Modell
mit variabler Gitter-Breite, ähnlich zur Murray Landis Methode, wird verwendet um
die Interface Bewegung zu beschreiben. Die Geschwindigkeit der Phasengrenze stammt
aus einem lokalen Gleichgewichts-Ansatz. Eine Reduktion der Abweichungen von der
Massenbilanz wird durch die Verwendung der Murray Landis Korrektur sichergestellt.
Um die Simulation von Phasentransformationen in Eisen-Kohlenstoff Legierungen zu
ermöglichen, werden Wärmebehandlungen verwendet. Den Abschluss stellt die Simula-
tion eines Erstarrungs-Beispiels und einer peritektischen Reaktion dar.
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1 Introduction
In several different fields of science, researchers have dealt with moving phase boundaries,
being it engineers, who want to address practical problems or mathematicians, who
develop models or numerical analysts, who find suitable algorithms where analytic
solutions are not possible. Some examples for practical problems are melting of ice,
oxygen diffusion, solid-liquid transitions in rewritable recording and also many biological
processes involve moving interfaces, like wound healing, tumor growth or transport
mechanisms in brain tissue. Although the practical part of the thesis is mainly focused
on diffusion problems, due to the similarity to heat conduction problems, some of the
theoretical models are explained using the heat equation.

The theoretical part of this thesis starts with a short introduction in diffusion theory,
where the microscopic and the macroscopic view are compared and a link between
diffusion coefficients and atomistic parameters is established.
Afterwards, the classical Stefan problem is presented, a case of heat conduction

with a moving phase boundary between a water and an ice phase. Besides some
enhancements of the model like convection, a mixed region of the two phases and the
extension to higher dimensions, some analytic solutions for simple problems, like oxygen
growth on wafers, are addressed. An important type of analytic solutions are the so
called ‘Similarity solutions’, with one of the first of this type, which is also presented
in this chapter, has been derived by Franz Neumann. The subsequent three sections
present efforts to numerically solve the moving boundary problem, distinguished by the
way of computing the moving boundary. Front tracking methods trace the interface
explicitly, either by using a fixed grid with approximations near the interface or by
deforming the grid to represent the exact position. Worth mentioning are also the
finite element methods, which are briefly described in this section. Approaches that
are mainly based on variable transformations are the so called front fixing methods.
They retain the interface at a constant position, but still require a closure condition
at this place. The aim of body fitted coordinates is to simplify the computations
after transformation to a rectangular grid. In fixed domain methods, the interface is
not calculated directly, instead a function that holds on the whole domain is utilized
to describe the problem. Especially for difficult-to-track interfaces, these are the
techniques of choice. The chapter ‘Simulation and Results’ introduces the diffusion
algorithms of MatCalc and describes the implementation of moving-boundary handling.
Several computed examples are also presented at the end.
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2 Objectives
The goal of this thesis is the development and implementation of an algorithm for
solving moving boundary problems into the simulation module of the software MatCalc.
Existing code for diffusion simulation should be advanced and numerical errors due
to approximations in the model must be kept in an acceptable range. Flexibility
should be given for further implementation of different models for interface-velocity
calculation and a simple model for two component interfaces is to be included. Proper
simulation of a basic interface-movement example applying this velocity model must be
carried out. To be able to simulate phase transformations in metals, the heat treatment
functionality should be used in conjunction with the interface calculation to solve a
solidification example. Additionally, an example of a peritectic reaction should be
demonstrated, to correctly represent the expected experimental behavior.
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3 State of the art
Relevant theories that describe diffusion processes and moving boundary problems are
presented in this chapter. The reader should get an overview of the interesting field
and learn basics that are needed to understand the following chapter, which contains
the details about the practical implementation of moving boundary problems in the
software MatCalc.

3.1 Diffusion Theory
This section gives a short introduction in diffusion theory, where the different views
of microscopic and macroscopic diffusion processes are explained. Although the laws
of the macroscopic processes have been observed phenomenologically, it is possible
to relate them to the atomistic behavior of a diffusing substance. Furthermore, a
multi-component version of the diffusion equation is derived.

3.1.1 Microscopic diffusion
On a microscopic scale, the predominant factors for diffusion in solids are either
the vacancy exchange mechanism or interstitial diffusion using lattice gaps. For
substitutional atoms of the size of matrix atoms, there is also a theoretical possibility
of direct exchange, but its probability is magnitudes lower. At high temperatures,
substitutional diffusion is the dominant factor, because the vacancy density in metals
rises with increasing temperature and more atoms get pulled out of their bulk lattice
positions to move to the surface. Since most interstitial lattice positions are usually
empty and the activation energy for interstitial diffusion is much lower than for
vacancy exchange, interstitial diffusion is much faster. Also, the density of interstitial
vacancies is not temperature dependent, whereas substitutional diffusion stalls at lower
temperatures. Since the simulation of atomistic systems with at least millions of
atoms interacting is computationally too expensive, the problem has to be viewed at a
macroscopic scale also.
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3.1.2 Macroscopic diffusion
The basis for macroscopic diffusion models was laid by the german physiologist Adolf
Fick, who investigated diffusive mixing of salt and water. According to the phenomeno-
logical law he observed, diffusion is driven by the composition gradient of the diffusing
particles. Through this gradient, a diffusive flux occurs from regions with high particle
density to regions with low particle density, which is formulated as

j = −D∂ c

∂ x
(3.1)

for one dimension, with x being the spacial coordinate, j the flux and c the concentration
gradient. The proportionality constant D is named diffusion coefficient. Combining
the flux with the continuity equation

∂ c

∂ t
+ ∂xj = 0, (3.2)

which represents the law of mass conservation in a closed system, results in Fick’s
second law of diffusion

∂ c

∂ t
−D∂ 2c

∂ x2 = 0. (3.3)

It is a second order partial differential equation for which analytic solutions of sim-
ple problems exist, but it must be solved numerically for more complex problems.
The diffusion coefficient is considered independent of space and composition in this
formulation.
Writing equations (3.1) to (3.3) in three dimensions using index notation leads to

∂ c(~x,t)
∂ t

+ ∂iji(~x,t) = 0 (3.4)

ji = −D ∂ c

∂ xi
(3.5)

∂ c

∂ t
−D∆c = 0. (3.6)

Again, in equation (3.6) the diffusion coefficient D is assumed to be constant, therefore,
it can be written in front of the differentials forming the Laplace operator ∆. This,
however, is only true for isotropic media. For anisotropic media, a symmetric diffusion
matrix is used instead of the constant coefficient.
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3.1.3 Joining both worlds
Linking both the macroscopic and the microscopic view, it is possible to relate the
previously phenomenological diffusion coefficient D with atomistic properties like the
jump frequency of atoms. This is done by comparing the atomistic root mean square
displacement, which is based on the jump frequency, with the same displacement being
derived from the phenomenological model, which includes the diffusion coefficient. As
a result, the Einstein equation

D = 1
2dΓDλ

2 (3.7)

is obtained, with the dimensionality d and the atomic distance λ. The jump frequency

ΓD = νZ exp
(
− QD

kBT

)
(3.8)

contains the ratio of the activation energy QD and the thermal energy kBT , the number
of nearest neighbors Z and the vibration frequency ν. The apparent contradiction of
the time reversibility at the microscopic scale and the irreversibility at the macroscopic
scale can be understood by looking at theories of statistical thermodynamics. Once a
many particle system evolves from a non-equilibrium state to an equilibrium state, it
gets very unlikely that the initial state is reached once again. This is expressed through
the second law of thermodynamics, according to which a closed system’s entropy can
not decrease with time. Rudolf Clausius regarded the entropy as the dissipative work
done by the atoms or molecules during such a transformation. Also it is important,
that at the initial stage, the different particles are thought to be uncorrelated, but
during the transformation they become correlated through their interaction, which is
another formulation for rising entropy.

3.1.4 Multi-component diffusion
In chemically inhomogeneous systems, the diffusive force

~F = −∇µ(~r) (3.9)

can be expressed in terms of the chemical potential µ, with the definition

µ = µ0 +RT ln a. (3.10)

R is the gas constant, T the temperature, a the thermodynamic activity and µ0 the
standard chemical potential (usually at a = 1).
The flux ~j = c~u is proportional to the drift velocity ~u with factor c, the local concen-
tration. ~u = B ~F relates the force and the velocity, with the mobility B being either a
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scalar or a tensor for non-isotropic systems. Combining these equations, a generalized
flux

~j = −cB∇µ(~r) (3.11)

is obtained, which is driven by the gradient of the chemical potential. This is important
for multi-component systems, where the potentials of the different substances may
differ.

In multi-component diffusion, the chemical potential of one substance is determined
by the compositions of the other substances, which in turn are location dependent. For
convenience, the flux can be expressed as gradient of the compositions, instead of the
chemical potential. The gradients of the chemical potentials then become part of the
diffusion matrix, which is especially useful for the kind of numerical calculations done
in the software MatCalc. Rewriting (3.11) in terms of the composition yields

jil = −clBl
∂ µ(Xk)
∂ ri

= −clBl

n∑
k=1

∂ µ

∂Xk

∂Xk

∂ ri
= −XlBl

n∑
k=1

∂ µ

∂Xk

∂ ck
∂ ri

. (3.12)

The indices l and k refer to the elements and i is the vector index and the composition
in mole fraction is denoted by X. This leads to diffusion coefficients

Dlk = XlBl
∂ µ

∂Xk

, (3.13)

which can be used to rewrite the flux ~jl = −Dlk∇ck, where the summation over the
element indices is carried out implicitly. Inserting the flux into the continuity equation

∂ cl
∂ t

+∇~jl = 0 (3.14)

yields the multi-component version of Fick’s second law

∂ cl
∂ t
−

n∑
k=1

Dlk∆ck = 0, (3.15)

where the summation is written explicitly for clarification. It shows, that for solving
one component’s diffusion equation, all other components concentrations must be taken
into account. For further details of diffusion models in metals see [JRK+07].

3.2 Moving boundary problems
Boundary problems have been studied for a long time from scientists, both to describe
processes in nature and technology. The distinction between free and moving boundary
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problems is the time dependence of the latter ones. Although in both cases the
exact position of an interface is not known a priori, for free boundary problems the
interface is stationary, whereas for moving boundary problems, it can migrate with
time. Examples of free boundary problems are seepage through dams and porous flow
between different interfaces. Having a sharp boundary implies, that one of the porous
media is saturated. Moving boundary problems, on the other hand, arise frequently
in phase transformations of different materials. Mathematically, both problems are
often described using differential equations, which have to satisfy certain conditions at
the domain boundary. There exist several analytic solutions for simplified problems,
but more sophisticated examples require numerical methods. John Crank gives a
very broad overview of both diffusion and heat conduction problems involving moving
interfaces. His book ‘Free and Moving Boundary Problems’ [Cra87] gives a review of the
complete field, being mostly focused on heat conduction problems. ‘The Mathematics
of Diffusion’ [Cra75], contains moving boundary problems in chapter 13.

3.2.1 Classical Stefan Problem
A simple case of a moving boundary problem was formulated by J. Stefan in 1889
[Ste89]. It deals with heat conduction and interface movement during formation of ice
in polar seas. The interface is considered to be infinitesimal thin for Stefan problems,
which requires that the real interface thickness is negligible. Although being a heat
conduction problem, its solvability is very similar to simple diffusion problems in solids.
The sheet of ice, initially at the melting temperature of zero, will produce a region of
water that moves into the sheet, and both phases are separated by a thin interface.
In the whole ice block, the temperature is fixed at the initial value, whereas in the
water region, it drops, from a boundary value of U0, to the ice temperature. The heat
conduction equation

c%
∂ u

∂ t
= K

∂ 2u

∂ x2 , 0 < x < s(t), t > 0, (3.16)

is used to calculate the thermal evolution in the water region, which is bounded by
the interface at position s(t). Variables c, %, u,K are the specific heat, the density, the
temperature and the thermal conductivity respectively. Using

u = U0, x = 0, t > 0, (3.17)

as boundary condition and

u = 0, x > 0, t = 0, (3.18)
s(0) = 0 (3.19)
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as initial conditions, still the two conditions

u = 0,

−K∂u

∂x
= L%

ds
dt ,

 x = s(t), t > 0, (3.20)

are needed at the position of the interface, with L being the latent heat which is
consumed during the phase transformation.

u

x

Water Ice

δx

1

2

u=0

Figure 3.1: Stefan condition for two phase problem

In an extended case, the heat flow can also occur in the ice phase, when it is not
at the melting temperature initially. A separate heat conduction problem has to be
solved for both parts. Again, equation (3.16) is used, but with different parameter
values for each phase. To connect both problems at the phase boundary, the modified
Stefan conditions are

u1 = u2 = 0,

K2
∂ u2

∂ x
−K1

∂ u1

∂ x
= L%

ds
dt ,

 x = s(t), (3.21)

with the assumptions, that ice and water have the same density and the volume change
during melting can be ignored. The problem can be generalized to multiple phases, by
adding one further diffusion equation for each phase and connecting the phases again
with the Stefan condition. Figure 3.1 shows the transformation process of a δx thick
layer of ice to water, which requires the heat L% δx to be supplied. The amount of
heat that enters the shaded region is labeled with index one, both in the figure and in
equation (3.21). Balance between that term, and the one that enters the ice region, is
assured by the latent heat term on the right side of the equation.

Often, the equations are written in a dimensionless form, what leads, by introduction
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of the variable transformation

X = x

l
, T = K

c%

t

l2
, U = u

U0
, S = s

l
, (3.22)

with l being a arbitrarily chosen standard length, to a simplified form of the heat
equation

∂U

∂T
= ∂ 2U

∂X2 , 0 < X < S(t), T > 0, (3.23)

the modified boundary and initial conditions

U = 1, X = 0, T > 0,
U = 0, X > 0, T = 0,

S(0) = 0, (3.24)

and the closure at the interface

U = 0,
∂ U

∂X
= λ

dS
dT ,

 X = S(T ), T > 0. (3.25)

With equation (3.25), a dimensionless parameter λ = L

c u0
has been introduced, whose

inverse is called the Stefan number. If the units on both sides of an equation do not
seem to fit together, such a transformation was performed.

Convection and density differences

For the derivation of the Stefan condition, which implies energy conservation across
the interface, the assumption is made that both phases are incompressible and at rest.
In a more general case, also the mass and momentum have to be conserved, with the
mass conservation taken into account by the equation

%1
dS
dT = %2

(
dS
dT − v

)
, X = S(T ) (3.26)

for two phases, of different densities %1 and %2, where v denotes the velocity of the
liquid phase. To incorporate the convection, a term proportional to the temperature
gradient is added to the heat equation, resulting in

∂U

∂T
= ∂ 2U

∂X2 − v
∂U

∂X
. (3.27)
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Density variations are not the only reason that can cause the convection term in (3.27).
For higher dimensional cases, this term and the problem itself become much more
complicated.

‘Mushy’ region

Some scientists tried to describe a mixture between liquid and solid phases, called a
‘mushy’ region. Mathematically, the addition of a heating term h(T,x,t) to the right
side of equation (3.16), will cause a non-sharp interface, consisting of a finite region at
the melting temperature. A sophisticated semi-empirical description was developed
by Solomon et al. in 1982 [SWA82], based upon microscopic studies of Thomas and
Westwater [TW63]. They distinguish three zones divided by the interfaces X(t) and
Y (t), with the first being the solid/mushy interface, and the second the mushy/liquid
interface. Both the liquid and the mushy region are assumed to be at the melting
temperature Tm, only the solid region has a variable temperature. Solomon et al.
incorporate a fixed fraction of the latent heat θL into the mushy region and relate the
width of the region with the temperature gradient in the solid phase, at the interface,
by

[Y (t)−X(t)] ∂ u
∂ x

∣∣∣∣∣
X(t)

= constant. (3.28)

This leads to an extended version of the Stefan condition, namely

K
∂u

∂x

∣∣∣∣∣
X(t)

= %L

[
θ

dX
dt + (1− θ) dY

dt

]
. (3.29)

Coupled diffusion and heat conduction

A typical situation, where simultaneous diffusion and heat conduction processes occur,
is an alloy solidification problem. The reason for this is that, in alloys, the melting
temperature depends on the local composition of one or more secondary substances,
called the ‘impurities’, in a primary substance, which ensembles the majority of the
alloy. The simple eutectic diagram in figure 3.2 will be used to describe the situation
of one alloying element. Suppose the concentration of the impurity in the alloy is cA
at some arbitrary point in the sample. If this point is at the temperature U0, then
this corresponds to the point A in the figure. Increasing the concentration to the
value cB at the same temperature, leads to point B in the liquid region. Between the
solidus and the liquidus line, there is an unstable region where no equilibrium between
the pure substance and the alloying element is possible. However, both phases can
exist there, at the compositions cL and cS. Therefore, the melting temperature will
be defined by the impurity concentration and at a phase boundary, there will be a
concentration jump of cL − cS. Describing such a problem requires the coupling of the
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U

c

Solid

Liquid

U0

Unstable

cA cB

A X Y
cL

cS

Figure 3.2: Eutectic phase diagram of an alloy

diffusion and heat conduction equation and two further conditions which specify the
interface velocity. It will be presented in a non-dimensional form, what is the reason
why for more than one phase, the time transformation T = K0

c0%

t

l2
is applied. The

variables κi = Ki

K0

co
ci

and γi = Ki

λK0
are introduced as coefficients of the temperature

gradients, and each phase temperature is normalized to the arbitrary temperature u0.
Additionally, also the normalized diffusion coefficients Di = Di

D0
are, combined with

the equations

∂U1

∂ T
= κ1

∂ 2U1

∂X2 ,
∂ C1

∂ T
= D1

∂ 2C1

∂X2 , 0 < X < S(t), (3.30)

∂U2

∂ T
= κ2

∂ 2U2

∂X2 ,
∂ C2

∂ T
= D2

∂ 2C2

∂X2 , S(T ) < X < 1, (3.31)

γ2
∂U2

∂X
− γ1

∂U1

∂X
= dS

T
,

D2
∂C2

∂X
−D1

∂C1

∂X
= (C1 − C2)

dS
T
,

U1 = U2 = g, C1 = cS(g), C2 = cL(g),


X = S(T ), (3.32)

needed to describe the whole problem. Variables with the lower index zero denote
normalization values of the corresponding physical properties. The Stefan condition
for the diffusion part of the problem is quite similar to the heat conduction condition,
besides, that the composition at the interface is also included on the right side.
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Two space dimensions

To extend the heat equation to another space dimension, the second derivative will be
replaced by the Laplace operator ∆, but the heat conductivity K will still be considered
uniform for a whole phase. The modified equation reads

% ci
∂ ui
∂ t

= Ki∆ui, ~x ∈ Di, i = 1,2, 0 < t < E, (3.33)

the conditions for the sample boundaries change to

∂ ui
∂ n

= gi(~x,t), ~x ∈ Di, 0 < t < E, (3.34)

u1(~x,t) = u2(~x,t) = um, (3.35)

the modified Stefan condition is

K2
∂ u2

∂ n
−K1

∂ u1

∂n
= −%Lvn, (3.36)

and the conditions for the interface itself become

u(~x,0) = u0(~x),
f(~x,0) = f0(~x),

}
t = 0. (3.37)

The equations above contain major changes compared to one dimensional models. Di

denotes the domain, in which the equations are evaluated and i represents the phase
index. Some new variables like the end time E, the position vector ~x, the melting
temperature um and the temperature jump at the boundary gi are introduced. Primary,
the interface is now described by an implicit function of parameters ~x and t. Also, the
derivatives point into the normal direction n and the interface velocity vn is orthogonal
to the curve described by f(~x,t) = 0. This situation is illustrated in figure 3.3. By using,

D1

D2

f(x,t)=0

vnu1(x,t)

u2(x,t)

∂D1
∂D2

Figure 3.3: Moving boundary problem in two dimensions
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as shown below, the definition of the normal vector, the normal temperature-derivation,
the interface velocity

n = ∇f/|∇f | = ∇ui/|∇ui|, (3.38)
∂ ui
∂ n

= ∇ui · n = (∇ui · ∇f)/|∇f |, (3.39)

vn = v · n = (v · ∇f)/|∇f |, (3.40)

and the total differential of the implicit function df(x,y,t) = 0, it is possible to obtain

|∇f |vn = −∂ f
∂ t
, (3.41)

and insert it, combined with (3.39) into (3.36), resulting in a version of the Stefan
condition

K1∇u1 · ∇f −K2∇u2 · ∇f = −%L∂ f
∂ t
, (3.42)

which contains derivatives of the implicit function.

3.2.2 Analytic solutions
This chapter will discuss some approximate analytic solutions for boundary value
problems, which are mostly of the diffusion type. Although these solutions can not
reproduce complex problems with enough detail, they can be used to solve cases
where their assumptions hold, what often gives a great practical benefit. Steady state
solutions simplify the problem in a way, that the concentration profile is assumed to be
time independent, as it would be after enough time on a stationary interface. Based
on the calculated concentration field, the interface motion is derived from the fluxes of
atoms on the interface.

Oxygen growth on wafers

A nice example of oxygen-layer growth on silicon surface is described in Jackson’s
‘Kinetic Processes’ [Jac04, p. 97]. Such a process was used in the early days of silicon
manufacture, to conduct selective doping of wafers. Combined with a photomask
applied with photolithography and etching, it is possible to dope only the parts where
the photomask still exists, because it can not withstand the annealing temperatures
in contrast to the oxide. At room temperature, a thin atomic layer of SiO2 will form
quickly on the silicon surface. In air or an oxygen atmosphere, at higher temperatures
above 1000 ◦C, the growth process will be some micrometers per hour. The process is
still used to isolate active devices on integrated circuits. Also worth to mention is that
the growth of the oxide layer happens on the inside, between the silicon and the layer
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itself. This is caused by oxygen diffusion through the oxide layer, readily forming new
SiO2 on the interface, which will keep the interface clean and prevent the dirt from
entering the wafer material. The diffusion equation

∂ c

∂ t
= D

∂ 2c

∂ x2 (3.43)

reduces, when considering the time independence, to ∂
2c

∂ x2 = 0, with the simple solution

c = ax+ b. (3.44)

The constants a and b are determined by the boundary conditions c = cs at x = 0 and
c = ce at x = l, resulting in

c = cs −
cs − ce
l

x, (3.45)

for the concentration in the sample, with l being the width of the silica layer, cs being
the oxygen concentration on the surface and ce being the equilibrium concentration of
oxygen in silica. For the boundary condition at the interface, ce is taken, because the
interface composition is assumed to be equal to the equilibrium concentration at the
oxidizing temperature. According to Fick’s law, the concentration gradient produces
an oxygen flux of

j = −D dc
x

= D
cs − ce
l

, (3.46)

where cs and ce are excess concentrations of oxygen over the stoichiometric concentration
coxide. It is then possible to relate the flux from the oxide layer growth j = coxidev with
the flux from above and obtain a differential equation

coxide
dl
dt = D

cs − ce
l

, (3.47)

which is solved by

l =
[
2cs − ce
coxide

Dt+B
] 1

2
. (3.48)

The parameter B can be determined by the initial condition. In order to gain the
solution in equation (3.48), some simplifications like constant compositions cs, ce and
a fast oxidation reaction are needed. Also, the diffusion of excess oxygen in the silica
layer is ignored. Although the solution has been started on top of a steady state
approach to derive an interface movement, the solution is in good agreement with
experiments. A diagram of the oxygen diffusion example is shown in figure 3.4.
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Figure 3.4: Oxygen diffusion into silicon

Thin layers

In thin layers, the diffusion flux is very high, so instead, the combination of oxygen
and silicon limits the whole process. In the Deal-Grove model [DG65], a reaction
term proportional to the excess composition is introduced to the equations at the
interface. The assumption of an interface composition being identical to the equilibrium
concentration is not valid any more. Using a steady state approach, the reaction rate
kx(ci − ce) must be equal to the atom flux to the interface Dcs − ci

l
, leading to a self

regulated system
ks(ci − ce) = D

cs − ci
l

, (3.49)

where an overflow of diffusion flux will decrease the interface composition, leading to a
higher reaction rate, which in turn will decrease the diffusion flux. Rearranging (3.49)
and combining with the layer growth rate of (3.47), to eleminate ci, yields

dl
dt = ks(cs − ce)

coxide

(
1 + ksl

D

) , (3.50)

which is solved by
l2 + 2D

ks
l = 2D(cs − ce)

coxide
(t+ τ). (3.51)
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The constant τ can be used to define an initial layer thickness at t = 0 and the
coefficients of l and (t+ τ) are called A and B respectively. On long time scales, l will
grow large, and the linear term can be neglected compared to the quadratic one, what
gives the same result as in the previous model. At early times in the reaction limited
regime, with a small oxygen layer, the linear term is significant, and the growth rate
shows a proportionality to B/A. The temperature dependence of the constants B and
B/A is of a Boltzmann form

C exp
(−E
kBT

)
, (3.52)

where the constants C and E are to be determined experimentally.

Neumann type similarity solution

Similarity solutions are functions that solve rather simple moving boundary problems,
with the property of having one argument dependent on the square root of time, usually
in the form of x/

√
t or r/

√
t in spherical coordinates. Franz Neumann presented his

solution [RW12] to such a problem already in the 1860s. At the interface, there occurs
both a jump of concentration, where a finite value of ci is assumed, and of the diffusion
gradient. The medium, in which the diffusion occurs, is assumed to be semi-infinite.
On the surface at x = 0, a constant composition c1 is maintained. On the left side of
the interface, a diffusion coefficient of D1 is used whereas on the right side, it is called
D2. The same also applies for the concentrations ci. S(t) denotes the position of the
interface in the sample. Boundary conditions at the interface are

c1 = c2 = Ci,

D1
∂ c1

∂ x
= D2

∂ c2

∂ x
,

 x = S. (3.53)

At the beginning of the sample and at infinity, the fixed compositions C1 and C2 are
applied, as shown below:

c1 = C1, x = 0,
c2 = C2, x =∞. (3.54)

After combining equations (3.54) and the diffusion equations for both regions

∂ c1

∂ t
= D1

∂ 2c1

∂ x2 , 0 < x < S, (3.55)

∂ c2

∂ t
= D2

∂ 2c2

∂ x2 , x > S, (3.56)
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one can find particular solutions

c1 = C1 + A erf x

2
√
D1t

, (3.57)

c2 = C2 +B erfc x

2
√
D2t

, (3.58)

where erf is the error function, and erfc = 1−erf is the conjugated error function. Both
solutions must satisfy the first relation from (3.53) at the interface, which requires

A erf S

2
√
D1t

= Ci − C1, (3.59)

and
B erfc S

2
√
D2t

= Ci − C2. (3.60)

This can only be fulfilled, if the interface position is proportional to the square root of
time, like

S = k
√
t. (3.61)

Differentiating equations (3.57) and (3.58), rephrasing (3.59) and (3.60) to A and B, it
is possible, by inserting into the second part of (3.53), to obtain the relation

Ci − C1

g( k
2
√
D1

)
+ Ci − C2

f( k
2
√
D2

)
= 0, (3.62)

which can be solved numerically to gain k in dependence of the constants C1, C2, Ci, D1
and D2. The functions f and g are given by

g

(
k

2
√
D1

)
=
√
π

k

2
√
D1

exp
(
k2

4D1

)
erf k

2
√
D1

, (3.63)

f

(
k

2
√
D2

)
=
√
π

k

2
√
D2

exp
(
k2

4D2

)
erfc k

2
√
D2

. (3.64)

After k is determined, one can substitute k = S/
√
t into (3.59) and (3.60) to calculate

values for A and B. Using both constants, the composition distribution can be evaluated
from (3.57) and (3.58). The condition of a semi-infinite medium is only satisfied at
early stages of diffusion into a finite sample.

Solution for phase change

In this example discussed by Jackson [TJRC53], a crystallization process is described,
where the convective mixing in the liquid phase is omitted. The distribution of the
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diffusing substance in the liquid phase is assumed to be diffusive only, but on the other
hand, diffusion in the solid is neglected. The solid-liquid interface moves with the
velocity v towards the liquid phase. This moving boundary problem is solved through
a variable transformation into a coordinate system, which moves with the interface.
After a new transformation variable z = x− v t is defined, the partial derivatives of
the diffusion equation (3.43) are replaced through

∂ 2c

∂ x2 = ∂ 2c

∂ z2 ,
∂ c

∂ t
= −v ∂ c

∂ z
, (3.65)

which in turn changes the diffusion equation to an ordinary differential equation

D
d2c

dz2 + v
dc
dz = 0, (3.66)

being only dependent on the variable z, with the exact solution

c = A exp
(
−v z
D

)
+B. (3.67)

The starting composition far from the interface fixes the constant B to a composition
value of c∞. A conservation condition at the interface

v(cl − cs)I = −D
(

dc
dz

)
I

, (3.68)

where cl and cs are the compositions of the solid and liquid phase, respectively, is used
to determine the constant A, by calculating dc/ dz from equation (3.67), to A = cl− cs.
Using the definition k ≡ cs/cl, it is possible to rephrase the solution for the composition
to

c = c∞

(1
k
− 1

)
exp

(
−v z
D

)
+ c∞. (3.69)

An overview of the situation given in this example can be found in figure 3.5.

3.2.3 Front tracking methods
Front tracking methods have the characteristic that, at each time step, the position of
the boundary is calculated. The spacial discretisation can either be done using finite
difference methods, which are relatively simple to implement, or finite element methods,
which are more suitable for non-rectangular bodies in multi-dimensional problems.
When a fixed grid is used, the interface will generally be located between two grid
points, as shown in figure 3.6. For this reason, derivatives in the neighborhood of the
boundary have to be adapted to deal with unequal space intervals and approximate
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Figure 3.5: Moving boundary problem with diffusion in liquid phase only

the values at the interface. The other method is, to use a deformed grid or transform
the variables in such a way that the interface resides always on a grid line or it stays
fixed in the transformation domain.

Fixed finite difference grid

To incorporate a moving boundary model on a fixed grid into the diffusion equation, a
three-point, finite difference formula, of Lagrangian type, can be used in the vicinity of
the interface [Cra57]. A function f(x) can be approximated, by using known values of
f at the fixed points a0, a1 and a2 through the sum

f(x) =
2∑
j=0

lj(x)f(aj), (3.70)

with the Lagrange polynomials

lj(x) = p2(x)
(x− aj)p′2(aj)

, p2(x) = (x− a0)(x− a1)(x− a2), (3.71)
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where p′2(aj) is the spacial derivative. The first and second derivatives of the function
change to

df
dx = l′0(x)f(a0) + l′1(x)f(a1) + l′2(x)f(a2), (3.72)

1
2

d2f

dx2 = f(a0)
(a0 − a1)(a0 − a2)

+ f(a1)
(a1 − a2)(a1 − a0)

+ f(a2)
(a2 − a0)(a2 − a1)

, (3.73)

with the first derivative of a Lagrange polynomial being

l′0(x) = (x− a1)(x− a2)
(a0 − a1)(a0 − a2)

. (3.74)

The fixed points a0 to a2 correspond to the grid lines i − 1, i and the position of

i-2 i-1 i i+1 i+2

a0 a1 a2

δx pδx

x
=
s(
t)

Figure 3.6: Approximation of values on a fixed grid

the boundary, whereas for a heat conduction problem, the function f is replaced by
the temperature distribution. Inserting the interpolation into the derivatives, one can
obtain

∂ 2u

∂ x2 = 2
(δx)2

(
ui−1

p+ 1 −
ui
p

+ uB
p(p+ 1)

)
, x = iδx (3.75)

∂ u

∂ x
= 1
δx

(
p ui−1

p+ 1 −
(p+ 1)ui

p
+ (2p+ 1)uB

p(p+ 1)

)
, x = s(t), (3.76)

for positions between a0 and a1 and

∂ 2u

∂ x2 = 2
(δx)2

(
uB

(1− p)(2− p) −
ui+1

1− p + ui+2

2− p

)
, x = (i+ 1)δx (3.77)

∂ u

∂ x
= 1
δx

(
(2p− 3)uB

(1− p)(2− p) + (2− p)ui+1

1− p − (1− p)ui+2

2− p

)
, x = s(t), (3.78)
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for positions between a1 and a2, where uB is the temperature at the interface, δx is
the spacing of the fixed grid and p is a fraction in the interval zero to one, denoting
the position of the interface between the grid points i and i+ 1. Derivatives on other
points than i and i+ 1 are calculated using the standard finite difference formula, thus,
the temperature at the next time step can be expressed as

un,j+1 = un,j + δt

(δx)2 (un−1,j − 2un,j + un+1,j), n = 1,2, . . . ,i− 1. (3.79)

Using the boundary conditions u0j = 1 and uB = 0, a similar equation can be derived
for the grid point i, with the result

ui,j+1 = ui,j + 2δt
(δx)2

(
ui−1,j

pj + 1 −
uij
pj

)
. (3.80)

The new fraction p is formulated, using equation (3.25), as

pj+1 = pj −
δt

λ(δx)2

(
pjui−1,j

pj + 1 −
(pj + 1)ui,j

pj

)
. (3.81)

To simulate a moving boundary problem with this method, the calculation steps are
performed in the following order:

1. Calculate new temperatures for all grid points except for the interface point i.

2. Calculate new temperature for the grid point, next to the interface, i.

3. Calculate new position fraction p.

4. Repeat previous steps using the resulting values of the previous round to gather
further values and adapt the interface grid point if p exceeds unity.

Variable time step

In 1955, Douglas and Gallie [DG55] suggested, to use variable time steps in such a way,
that the interface position matches a grid line at each step. Their system of equations
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is

∂ u

∂ t
= ∂ 2u

∂ x2 , 0 < x < s(t), t > 0, (3.82)
∂ u

∂ x
(0,t) = −1, t > 0, (3.83)

∂ x

∂ t
(s(t),t) = −∂ u

∂ x
, u(s(t),t) = 0, (3.84)

s(0) = 0. (3.85)

They integrate the left part of equation (3.84) and apply the boundary conditions to
gain

s(t) = t−
s(t)∫
0

u(x,t)dx. (3.86)

Using the differential notation

xi = i∆x, tn =
n−1∑
k=0

∆tk, fi,n = f(xi,tn), (3.87)

and the known values ∆tk and ui,k, for selected ∆t(0)
n , a temperature u(0)

i,n+1 is chosen
as solution for the difference representation of the diffusion equation

u
(r)
i−1,n+1 − 2u(r)

i,n+1 + u
(r)
i+1,n+1

(∆x)2 =
u

(r)
i,n+1 − u

(r)
i,n

∆t
(r)
n

, i = 1, . . . ,n, t ≥ 0. (3.88)

Combined with the boundary condition (3.83) in differential form

u
(r)
0,n+1 − u

(r)
1,n+1 = ∆x, (3.89)

the time steps can be improved iteratively as

∆t(r+1)
n =

(
n+ 1 +

n∑
i=1

u
(r)
i,n+1

)
∆x− tn. (3.90)

Convergence and stability were established by this implicit scheme of Douglas and
Gallie.

Variable space grid

Murray and Landis [ML59] introduced a variable spaced grid, to keep the interface at
the same grid line for all times. With advancing time, the grid intervals are stretched
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on one side of the boundary and pinched on the other side. Through the total time
derivative of the temperature

du
dt = ∂ u

∂ x

dx
dt + ∂ u

∂ t
, (3.91)

they are able to include a relation for the grid movement into the heat equation (3.23),
which, by inserting the total derivative, can be written as

∂ u

∂ t
= ∂ u

∂ x

dx
dt + ∂ 2u

∂ x2 . (3.92)

The grid movement can be related to the interface position using

dxi
dt = xi

s(t)
ds
dt , (3.93)

and the diffusion equation becomes

∂ u

∂ t
= x

s(t)
ds
dt
∂ u

∂ x
+ ∂ 2u

∂ x2 . (3.94)

At each time step, the interface position s(t) must be updated in the computation of
the diffusion equation, for example being updated from the boundary condition (3.25)
at the interface. A picture of a Murray-Landis grid deformation caused by a moving
interface is shown in figure 3.7.

x=
s(
t)

iδx x

t

δt

Figure 3.7: Deformation of a one dimensional grid according to Murray Landis
method

Crank and Gupta [CG72] moved the whole system with the velocity of the moving
boundary, which was located at the rightmost side of the sample, being x = 1. When
the interface moves a distance of ε to the left, all grid lines are also displaced by the
same distance. The result is only one unequal interval at the beginning of the sample
at x = 0. In the first step, an approximation of the temperature next to the interface
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is calculated explicitly. Using this value, the new interface position is calculated (1− ε)
and the grid is displaced accordingly. At the new grid points, new temperature values
are interpolated, either by using cubic splines or polynomials. Since all grid points
move with the interface velocity, the enhanced diffusion equation becomes

∂ u

∂ t
= ds

dt
∂ u

∂ x
+ ∂ 2u

∂ x2 . (3.95)

The deformation of a one dimensional grid using the method presented by Crank and
Gupta is shown in figure 3.8.

t=0

t=Δt

x1 x2 xn-2 xn-1 xn

x=1x=0

ε ε ε ε ε
ξ

Figure 3.8: Deformation of a one dimensional grid according to Crank Gupta
method

Finite element methods

Finite element methods are most suitable for more dimensional systems and complex
geometries, where the elements can be fitted to the moving interface smoothly. In the
regions near the interface, the mesh will usually be denser than on other parts of the
sample. Formulating a problem in form of a finite element model requires the following
steps:

1. Rephrase the differential equation in a variational form as an integral equation.

2. Discretize the sample in a way, that the borders are well fitted by the elements.
Such elements can, for example, be triangles (two dimensions) or boxes (three
dimensions).

3. Choose an appropriate basis, so that many of the coefficients in the equation
vanish.

4. A sparse coefficient matrix is established, which can be solved with LU decom-
position for matrices of standard problems, but complex systems need more
sophisticated algorithms.
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To improve the efficiency of FE methods, there is either the possibility of decreasing the
diameter of the elements in the mesh (h-methods), or of using higher order polynomials
for the basis functions (p-methods).
A one dimensional heat conduction problem was solved by Bonnerot and Jamet in

1979 [BJ79]. The problem was formulated as

∂ u

∂ t
= ∂ 2u

∂ x2 , (3.96)

u(x,0) = u0(x), 0 ≤ x ≤ s0, (3.97)
u(0,t) = g(t), 0 < t ≤ T, (3.98)
u(s(t),t) = 0, 0 < t ≤ T, (3.99)

ds
dt = −c∂ u

∂ x
, x = s(t), 0 < t ≤ T, (3.100)

s(0) = s0, (3.101)

where s(t) denotes the position of the interface, with the initial value s0 and the initial
temperature distribution u0. Writing the differential equation in variational form leads
to

−
tn+1∫
tn

s(t)∫
0

u
∂φ

∂ t
dx dt+

tn+1∫
tn

s(t)∫
0

∂ u

∂ x

∂φ

∂ x
dx dt

+
s(tn+1)∫

0

u(x,tn+1)φ(x,tn+1) dx−
s(tn)∫
0

u(x,tn)φ(x,tn) dx = 0, (3.102)

with the test function φ being introduced during the integration. The first two terms
occur during derivation through a partial integration and the whole equation relates
to a time strip between tn and tn+1. In the integration process the boundary terms
are omitted, because the test function vanishes at the boundaries. Unknown values of
the temperature (at time step tn+1) appear in the first three parts of (3.102), whereas
the known values appear in the last term. The time strips are split into biquadratic
elements with the defining points P n+ν

i+µ , where i and n are integers and µ, ν can take
the values 0, 1/2 and 1. Such a point P n+ν

i+µ is located at position xn+ν
i+µ and time tn+ν ,

as shown in figure 3.9. All points located at the interface have the subindex I. Two
additional restrictions for spacial discretization are

xn+ν
I = s(tn+ν), xn+ν

i+1/2 = 1
2(xn+ν

i + xn+ν
i+1 ). (3.103)

It is possible to vary the position of points and also the number of elements indepen-
dently for each strip. Bonnerot and James used Simpson quadrature for evaluating
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the integrals on each element and obtained a square matrix. They also approximated
the spacial gradient of the temperature by using a quadratic interpolation of the three
values at the positions µ = 0,1/2,1. This led them to a discretization of the integral
form of (3.100), namely

sn+ν = sn − c
tn+ν∫
tn

(Du)h(t) dt, (3.104)

where D denotes the differential operator and h shows that the derivative is discretized.
Since the values of the integral term depend on the temperature in the sample, an
iterative procedure is needed. The biquadratic finite element strip with a visualization
of all variables is shown in figure 3.9.
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Figure 3.9: Finite element discretization of a one dimensional grid according to
Bonnerot and James

3.2.4 Front fixing methods
In these methods, the interface is kept at a constant position, by applying a coordinate
transformation like

ξ = x/s(t), (3.105)
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which fixes the boundary at ξ = 1 throughout the calculation. Using the relations

∂ u

∂ x
= 1
s(t)

∂ u

∂ ξ
,

∂ 2u

∂ x2 = 1
[s(t)]2

∂ 2u

∂ ξ2 , (3.106)(
∂ u(x,t)
∂ t

)
x

=
(
∂ u(ξ,t)
∂ t

)
x

= ∂ u

∂ ξ

∂ ξ

∂ t
+
(
∂ u(ξ,t)
∂ t

)
ξ

= − x

[s(t)]2
ds
dt
∂ u

∂ ξ
+
(
∂ u(ξ,t)
∂ t

)
ξ

,

(3.107)

the heat equation can be transformed to

∂ 2u

∂ ξ2 = s2∂ u

∂ t
− sξ ds

dt
∂ u

∂ ξ
, 0 < ξ < 1, t > 0. (3.108)

Taking the closure condition at the interface, similar to equation (3.25), a new condition

− 1
s

∂ u

∂ ξ
= ds

dt , ξ = 1, t > 0 (3.109)

in transformed variables can be obtained, in which the Stefan number is set to one.
Landau proposed this method in 1950 [Lan50] and Crank applied a finite difference
scheme to it in 1957 [Cra57]. Lotkin improved the accuracy by using variable intervals
in ξ and t and a divided differences method for evaluation [Lot60].

Elliott [Ell80] wrote about a possibility of discretizing only the spacial variables and
integrating the ordinary differential equation over constant ξ lines, which approximates
equation (3.108) by

duj
dt = 1

s2
uj−1 − 2uj + uj+1

(∆ξ)2 + ξj
ṡ

s

(uj+1 − uj−1)
2∆ξ ,

j = 0, 1, . . . , N − 1, 0 < ξ < 1, t > 0. (3.110)

Body fitted coordinates

A generalization of the one-dimensional example above is the transformation of a
curved-shaped region into a rectangular region, hence the name of the method. Curved
lines of the source region are mapped to straight lines of the image region. The same
applies to a moving boundary problem, where a time variable region corresponds to
a static region in the fixed coordinates. The advantage of having a fixed rectangular
working region comes at the price of higher complexity of the transformed equations and
the additional work of meshing between the time steps is also not negligible. For the
purpose of modeling moving boundary problems, often non-orthogonal transformations
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are used, which are easily shown using the example of the Laplace equation

∂ 2φ

∂x2 + ∂ 2φ

∂ y2 = 0, (3.111)

with the general variable φ = φ(x,y) = φ(ξ,η). The differential relations between the
coordinate systems are

ξx = yη/J, ξy = −xη/J, (3.112)
ηx = −yξ/J, ηy = xξ/J, (3.113)

with the subindices denoting the derivatives with respect to the corresponding variable
and J being the Jacobian determinant xξyη − xηyξ 6= 0. The differential relations can
be obtained by rewriting the differentials

dx = xξ dξ + xη dη, dy = xξ dξ + yη dη, (3.114)

in terms of dξ and dη, which yields, for example,

dξ = yη dx− xη dy
xξyη − xηyξ

= yη dx− xη dy
J

. (3.115)

After transforming the first derivative

∂ φ

∂ x
= φξξx + φηηx = (φξyη − φηyξ)/J (3.116)

and the second derivative

∂ 2φ

∂ x2 = ∂

∂ x

(
∂ φ

∂ x

)
= 1
J2

(
∂

∂ ξ
yη −

∂

∂ η
yξ

)2

φ

= (φξξy2
η + φηηy

2
ξ − 2φξηyηyξ)/J2,

(3.117)

the Laplace equation can be written as

Aφξξ +Bφξη + Cφηξ +Dφξ + Eφη = 0, (3.118)
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with the variables

A = ξ2
x + ξ2

y = (x2
η + y2

η)/J2, (3.119)
B = 2(ξxηx + ξyηy) = −2(xξxη + yξyη)/J2, (3.120)

C = η2
x + η2

y = (x2
ξ + y2

ξ )/J2, (3.121)
D = ξxx + ξyy, E = ηxx + ηyy. (3.122)

Additionally, there exists a transformation of the normal derivative of φ on a boundary
y = s(x),

φn = s′φx − φy
[1 + (s′)2]

1
2

= 1
J [1 + (s′)2]

1
2
× [φξ(s′yη + xη)− φη(s′yξ + xξ)] , (3.123)

and a similar relation of the time derivative

(φt)x,y = (φt)ξ,η −
1
J

(yηφξ − yξφη)(xt)ξ,η −
1
J

(xξφη − xηφξ)(xt)ξ,η, (3.124)

which maps the time derivative at a fixed point in the x/y-plane to a fixed point in
the ξ/η-plane. In 1976, Oberkampf [Obe76] suggested the simple transformation

ξ = x− xl(y)
xu(y)− xl(y) , η = y − yl(x)

yu(x)− yl(x) , (3.125)

for moving interface problems, where the four variables xl,xu,yl,yu correspond to the
four boundaries of the deformed region, as shown in figure 3.10.

yu(x)

xu(y)

yl(x)

xl(y)

P3P4

P1 P2

x

y

ξ

η

P'3P'4

P'1 P'2

η=η(x,y)

ξ=ξ(x,y)

x=x(ξ,η)

y=y(ξ,η)

Figure 3.10: Example of a grid transformation using body fitted coordinates

Furzeland [Fur77] applied the transformation to a two dimensional problem with
one phase, and by using the transformations ξ = x, η = η(x,y) in conjunction with
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equations (3.118) and (3.124), he obtained a form of the two dimensional heat equation

ut = Auξξ +Buξη + Cuηη +D′uξ + E ′uη, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, t > 0, (3.126)

where the variables A to C are defined as before and the new definitions

D′ = D + (xηyt − yηxt)/J, E ′ = E + (yξxt − xξyt)/J (3.127)

are introduced. After the application of the proper Oberkampf transformations

ξ = x, η = y/s(x,t), (3.128)

the heat equation is rephrased as

ut = auξξ + buξη + cuηη + duξ + euη, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, t > 0 (3.129)

and the coefficients change to

a = 1, b = −2ysξ/s2, c = (1/s)2 + (b/2)2, (3.130)
d = 0, e = (y/s)ξξ + yt/s, (3.131)

where the relations yη = x, yξ = ysξ/s, which follow from the transformation, were
used. On the left and right sample boundary, the following derivative condition holds:

suξ − (ysξuη/s) = 0, ξ = 0,1, (3.132)

whereas on the moving interface,

u = 0, yt = −(1 + s2
ξ)uη/s, η = 1 (3.133)

must be considered. The following steps are essential for the computation:

1. At the beginning with given u and s, calculate the values of x,y for each mesh
point of ξ,η (equation (3.128)).

2. Compute the new boundary position using a discretized form of equation (3.133).

3. With the second Oberkampf equation, determine the changes of mesh points
caused by the movement.

4. Discretize time and space variables of the heat equation (3.129) and, after
calculating a solution, continue with the second step at the next time level.

Figure 3.11 shows the deformed and the static grid for the Furzeland problem.
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x

y

ξ

η

B'C'

0

A'

η=η(x,y)

ξ=x

x=ξ

y=y(ξ,η)

B

C
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y=s(t)

u=1

u=0

u=0

u=1

(1,1)

(1,0)

Figure 3.11: Grid transformation with body fitted coordinates as used in the Furze-
land example

Isotherm migration method

The isotherm migration method [DC70] is a case of transformation, where the dependent
variable, for example the temperature, is exchanged with one space variable. For a one
dimensional heat-transfer problem, this would thus mean a transformation from u(x,t)
to x(u,t). Using this method, the movement of a fixed-temperature line can be traced.
If the phase boundary is such an isotherm, then this method is suitable, because it
tracks their variation. A one-phase problem is described by the following equations:

∂ u

∂ t
= ∂ 2u

∂ x2 ; ds
dt = −λ∂u

∂ x
, u = 0, x = s(t); (3.134)

u = 1, x = 0, t > 0; u = 0, x > 0, t = 0. (3.135)

The partial derivatives change, after applying the transformation u(x,t)→ x(u,t) to

∂ u

∂ x
=
(
∂ x

∂ u

)−1

,

(
∂ x

∂ t

)
u

= −
(
∂ u

∂ t

)(
∂ x

∂ u

)
, (3.136)

∂ 2u

∂ x2 = ∂

∂ x

(
∂ x

∂ u

)−1

= −
(
∂ 2x

∂ u2

)(
∂ x

∂ u

)−3

, (3.137)
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where
(
∂ x
∂ t

)
u
describes the movement of the isotherm. Inserting the derivatives into

the heat equation and into the boundary condition at the interface results in

∂ x

∂ t
=
(
∂ x

∂ u

)−2
∂ 2x

∂ u2 , 0 < u < 1, t > 0, (3.138)

ds
dt = −λ

(
∂ x

∂ u

)−1

, u = 0, t > 0, (3.139)

x = 0, u = 1, t > 0. (3.140)

If the temperature change is too small at x = 0, t = 0, a starting solution is needed
to overcome a possible singularity. Converting equations (3.138) and (3.139) to an
explicit finite difference form leads to

xn+1
i = xni + 4δt(x

n
i+1 − 2xni + xni−1)
(xni−1 − xni+1)2 , (3.141)

sn+1 = sn − λ δt δu

xn0 − xn1
, (3.142)

where i, despite the standard notation of being an index for the spacial discretization,
now denotes a point in the isothermal grid that is shown in figure 3.12.

u

t

0

δu

δt

Figure 3.12: IMM transformed grid

3.2.5 Fixed domain methods
All methods in the previous chapters were front tracking methods and although the
front fixing methods transform the boundary to a fixed position in the grid, the closure
condition must still be satisfied there. There are cases, where it is impossible to track
the interface motion directly, because it may not behave smoothly, especially in two
and more space dimensions. Therefore, these methods use the concept of rephrasing
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the equations to bind the interface condition to the whole sample. The position of the
boundary then follows directly from the solution of the problem. A popular approach
to achieve this, is to introduce an enthalpy function (see figure 3.13) that is valid on
all areas of the specimen.
Already in 1946, Eyres et al. [EHI+46] proposed the use of such a function, which

represents the whole heat content including specific and latent heat, for describing this
type of problems. To integrate the interface condition in the system, the equations are
formulated as follows:

H

uumu0

ρL

Figure 3.13: Enthalpy function in the sample with a jump at the boundary

H(u) =
u∫

u0

ρ(θ)c(θ) dθ, u < um,

H(u) =
u∫

u0

ρ(θ)c(θ) dθ + ρL, u > um,

u∫
u0

ρ(θ)c(θ) dθ ≤ H(u) ≤
u∫

u0

ρ(θ)c(θ) dθ + ρL, u = um,

(3.143)

which can be written as a single equation

H(u) =
u∫

u0

[ρ(θ)c(θ) + Lρ(θ)δ(θ − um)] dθ, (3.144)

where u and θ denote the temperature, ρ the density, c the specific heat, um the
melting temperature and L the latent heat constant. The Dirac delta functional has
the purpose, to limit the effect of the latent heat term only to the melting temperature.
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As example, the multi dimensional problem

ρici
∂ ui
∂ t

= ∇(Ki∇ui), i = 1,2, (3.145)

u1 = u2 = um,

[
K
∂u

∂n

]2

1
= −ρLvn, x = s(t), (3.146)

with the phase index i and the interface velocity towards the normal direction vn, can
be related to the enthalpy by

∂H

∂ t
= ρ(u)c(u)∂ u

∂ t
, u ≷ um, (3.147)

which is a consequence of the first and second part of (3.143). Please note, that c, ρ
and K can be functions of u, ~x and t. Combining the temperature derivative of the
enthalpy (3.147) and the heat equation (3.145) leads to the new description

∂H(u)
∂ t

= ∇(K∇u). (3.148)

The reason why this equation is ill-posed at the melting temperature is the jump
discontinuity of the enthalpy at this point.
A modification, which is valid on the whole region, was proposed by Shamsundar

and Sparrow [SS75], where they formulated the energy balance of a finite volume V
and a surface area A. This led to the integral equation

d
dt

∫
V

HdV +
∫
A

H~v · d ~A =
∫
A

K∇u · d ~A, (3.149)

which, in its second term denoted by the velocity ~v, incorporates also the resulting
fluid motion caused by density changes or convection. By subtracting the equation

d
dt

∫
V

H1 dV +
∫
A

H1~v · d ~A = 0, (3.150)

for a one-phase problem being initially at the melting temperature, from the integral
equation (3.149), the fluid velocity v can be eliminated through the following steps:

d
dt

∫
V

(H −H1)dV +
∫
A

(H −H1)~v · d ~A =
∫
A

K∇u · d ~A, (3.151)

d
dt

∫
V

(H −H1)dV =
∫
A

K∇u · d ~A, (3.152)
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where from equation (3.151) to (3.152), a vanishing velocity of ~v = 0 is considered in
the solid phase, which is possible, because after substraction of the liquid-enthalpy,
only the solid part is left. To summarize, (3.152) describes the enthalpy in a one phase
system with variable density, but omits the usage of the fluid velocity. If the heat
conductivity K depends only on the temperature, equation (3.148) can be simplified
by a Kirchhoff transformation

v =
u∫
K(ξ) dξ, (3.153)

to become
∂H(v)
∂ t

= ∆v. (3.154)

The equations for the enthalpy can either be solved by using an explicit or implicit
method, after applying a space and time discretization. To determine the interface
position, one has to inspect the variation of enthalpy and temperature over the whole
domain.



4 Simulation and Results
For complex diffusion systems, there exist seldom analytic solutions, therefore, numerical
algorithms are applied to solve such problems. Since digital computers can not cope
with continuous, analog problems, the problem and solution have to be approximated
at discrete points. The values of the solution at these points are stored using floating
point variables, which are an approximation for real values. To improve the accuracy
of the result, a denser set of data points can be used, which will in turn increase the
processor and memory demands. A natural border for increasing the number of data
points is the number of bits a floating point variable consumes, since not all decimal
places of the real value is stored.

4.1 Diffusion calculation in MatCalc
MatCalc is able to calculate numerical problems of diffusion problems, but more
generally, it is a software package for computer simulation of microstructural processes.
MatCalc consists of three modules, which each are suitable for calculation of problems
from different fields. The ‘core’ module can perform equilibrium calculations, handle
different material properties and compute phase diagrams. The ‘monte’ module is able
to simulate precipitation in multi-component, multi-phase environments by using a
Monte-Carlo approach. In order to simulate diffusion in solids or heat conduction, the
simulation module is appropriate. MatCalc is currently developed at the institute of
materials science and technology and available for the most-used operating systems
Windows, Linux and MacOS.

The main practical work of the thesis consisted of extending the MatCalc simulation
module with an algorithm for simulating moving phase boundaries. Additionally, the
explicit and trapezoidal discretization of the diffusion equation were implemented.
Parts of the phase boundary algorithm were a modified version of the Murray Landis
method, different time step-width limitations, two methods of describing the interface
composition and heat treatment handling for phase transformations. Several examples
were simulated to either demonstrate the behavior of moving interface in MatCalc, or
verify the expected experimental results.

Prior to elaborating on the implementation of moving phase boundaries in MatCalc,
the basics of the simulation module are introduced. In this module, a sample is
separated into a grid consisting of a finite number of cells. Each of these cells has

36
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its own physical properties like compositions, temperature and size. For the current
implementation of MatCalc, a cell property applies to the whole cell. That means,
there is no temperature or composition distribution in a cell, the whole property is
uniform and can not change until a neighbor cell is reached. In order to solve diffusion
problems numerically, the diffusion equation is discretized, both in spacial and time
dimensions. The Laplace operator in fick’s second law is replaced by a second-order,
finite difference representation and also the time derivation is approximated. Details
about numerical derivatives can be found in ‘Numerical Recipes: The Art of Scientific
Computing’ [PTVP07].

4.1.1 Implementation
There are two different ways of parametrizing this operator’s time dependence, that
lead to either an implicit or explicit solution method, but also a combination of both
is possible. A single component, one dimensional system will be used, to show the
process of discretization, first in the explicit, then in the implicit form. Applying the
implicit method to equation (3.6) leads to

ct+i − cti
∆t

= D
ct+i+1 − 2ct+i + ct+i−1

(∆x)2 . (4.1)

The upper indices describe the position in time (t+ is an abbreviation for t+∆t) and
the lower indices describe the cell index (i+ 1 and i− 1 are the neighbor cells of the
current cell), since in this process, space and time are both separated into discrete
sections. Another simplification in this notation is that the time and space distances
in the denominators are assumed to be equidistant, which is not necessarily the case,
but must be taken into account when extending the right side of (4.1).
Regrouping all terms with index t+ on the left side and multiplication with the

denominator yields

[(∆x)2 + 2D∆t]ct+i −D∆t(ct+i+1 + ct+i−1) = (∆x)2cti. (4.2)

In contrast to the explicit method, the unknown neighbor compositions of the next
time step are used on the right side of (4.1). Through division of equation (4.2) by
(∆x)2, the formulation[

1 + 2D∆t
(∆x)2

]
ct+i −

D∆t

(∆x)2

(
ct+i+1 + ct+i−1

)
= cti (4.3)

is obtained. Using the abbreviation α = D∆t
(∆x)2 and as simplification a one dimensional

problem of only three cells, equation (4.3) can be written in the form of the matrix
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equation 1 + 2α −α 0
−α 1 + 2α −α
0 −α 1 + 2α


c

t+
0
ct+1
ct+2

 =

c
t
0
ct1
ct2

 . (4.4)

Extension of this problem to N cells enlargens the matrix to size N ×N and also the
solution vector and the vector on the right side scale up to N elements. To show what
happens in multi dimensional cases, the following grid will be used:

c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11

Inserting the abbreviation γ = 1 +∑
N
αN into equation (4.4), the matrix extends to:



γ −α 0 0 −α 0 0 0 0 0 0 0
−α γ −α 0 0 −α 0 0 0 0 0 0
0 −α γ −α 0 0 −α 0 0 0 0 0
0 0 −α γ 0 0 0 −α 0 0 0 0
−α 0 0 0 γ −α 0 0 −α 0 0 0
0 −α 0 0 −α γ −α 0 0 −α 0 0
0 0 −α 0 0 −α γ −α 0 0 −α 0
0 0 0 −α 0 0 −α γ 0 0 0 −α
0 0 0 0 −α 0 0 0 γ −α 0 0
0 0 0 0 0 −α 0 0 −α γ −α 0
0 0 0 0 0 0 −α 0 0 −α γ −α
0 0 0 0 0 0 0 −α 0 0 −α γ



(4.5)

The 2α terms in equation (4.4) transform to the sum in γ over all neighbor cells N ,
because the values of α can be different for each cell, for example in case of a variable
diffusion coefficient or cell size. For each possible neighbor in the two dimensional grid,
one secondary diagonal is added. The multidimensional form of equation (4.3) is[

1 +
∑
N

D∆t

(∆xN)2

]
ct+i −

∑
N

D∆t

(∆xN)2 c
t+
N = cti. (4.6)

What happens to the matrix (4.4) is, that it now contains N secondary diagonals and
the α and γ coefficients can have different values for each cell. The reasons for this are
the different number of neighbors per cell, possible different cell spacings caused by a
non equidistant grid and also a diffusion coefficient that can vary for each cell. The
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extension of equation (4.6) to the multi-component diffusion case is written as1 +
∑
k,N

Djk∆t

(∆xN)2

 ct+ij −∑
k,N

Djk∆t

(∆xN)2 c
t+
Nk = ctij. (4.7)

4.1.2 Explicit and trapezoidal methods
In the explicit version of the equation

ct+i − cti
∆t

= D
cti+1 − 2cti + cti−1

(∆x)2 , (4.8)

the terms of the Laplace operator are dependent on the current time step. If all
compositions at time t are known, then a straight forward calculation of the composition
at t+ is possible. Solving the equation for ct+i yields

ct+i = D∆t

(∆x)2 (cti+1 − 2cti + cti−1) + cti. (4.9)

The extension of (4.9) to the multi dimensional case is formulated as

ct+i = D∆t
∑
N

ctN − cti
(∆xN)2 + cti, (4.10)

where the sum is over all next neighbors of the current cell, and ∆xN denotes the
distance to the neighbor. Further generalization to the multi-component case leads to

ct+ij =
∑
k,N

Djk∆t

(∆xN)2 (ctNk − ctik) + ctij, (4.11)

where the composition of the current component j is determined by all other components
k. Although the explicit solution is easier to calculate than the implicit solution, a
major drawback is the inherent instability at larger time steps. To obtain valid results,
the Courant-Friedrichs-Levy condition must be obeyed, which sets a limit for the
maximum size of time steps (see [CFL67]).

A mix of the explicit and implicit method is called trapezoidal, with a special case,
the Crank-Nicolson method (see [CN96]). The equations (4.8) and (4.1) are merged
together and form

ct+i − cti
∆t

= γtiD
ct+i+1 − 2ct+i + ct+i−1

(∆x)2 + (1− γti)D
cti+1 − 2cti + cti−1

(∆x)2 . (4.12)

When the time integration constant γti is one, then (4.12) turns into the implicit case
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whereas for the value zero, the explicit case is obtained. Further transformations lead
to a relation similar to (4.3):[

1 + γti
2D∆t
(∆x)2

]
ct+i − γti

D∆t

(∆x)2

(
ct+i+1 + ct+i−1

)
=[

1− (1− γti)
2D∆t
(∆x)2

]
cti + (1− γti)

D∆t

(∆x)2

(
cti+1 + cti−1

)
.

(4.13)

Now the right side contains also a matrix instead of a vector. The elements of this
matrix can easily be calculated, since all ct values are known. Below, the extension to
the multidimensional and multi-component case is shown, in one single step:1 + γti

∑
k,N

Djk∆t

(∆xN)2

ct+ij − γti∑
k,N

Djk∆t

(∆xN)2 c
t+
Nk =

1− (1− γti)
∑
k,N

Djk∆t

(∆xN)2

ct+ij + (1− γti)
∑
k,N

Djk∆t

(∆xN)2 c
t+
Nk.

(4.14)

4.1.3 Boundary conditions
Boundary conditions can be applied to the cells, either through fixing the cell composi-
tion or the surface composition of a cell. An implicit form representing a four-cell grid,
where the second cell has a fixed surface composition, is shown in

1 + 2α −α 0 0
−α 1 + 2α + αfs −α 0
0 −α 1 + 2α −α
0 0 −α 1 + 2α



ct+0
ct+1
ct+2
ct+3

 =


ct0

ct1 + αfs cfs
ct2
ct3

 . (4.15)

During creation of the boundary condition, the user has to specify both the fixed
surface composition cfs and the direction which indicates the intended surface. The
variable αfs is similarly defined as α in equation (4.4), but for the distance ∆x, the
half neighbor-distance, which equates to the surface distance, is inserted.
The situation changes when using a fixed cell composition as boundary condition.

Cells with fixed composition have no corresponding entries in the solution vector and
the start vector of an implicit representation. In the computation of the cell matrix
elements, the neighbor terms of fixed composition cells are omitted. Instead, these
terms, multiplied by the fixed composition, are added to the right side vector. An
example of a six cell grid, having the cells 2 and 3 fixed, is shown in (4.16).
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1 + 2α −α 0 0
−α 1 + 2α 0 0
0 0 1 + 2α −α
0 0 −α 1 + 2α



ct+0
ct+1
ct+4
ct+5

 =


ct0

ct1 + α c2
ct4 + α c3

ct5

 . (4.16)

The explicit, one-dimensional case, representing a cell with a fixed surface composi-
tion, is written as

ct+i = α(cti+1 − 2cti + cti−1) + cti − αfs cti + αfs cfs, (4.17)

where the terms −αfs cti and αfs cfs are added to equation (4.9). Also in the explicit
formulation, cells that have a fixed-composition boundary condition attached are
completely omitted, both in computation of composition and in the neighbor summation
of other cells.

4.1.4 Comparison with analytic solutions
A simulation of a simple diffusion couple is compared with the analytic solution of the
problem, an error function. For this purpose a function

erf
(

x

2
√
D t︸ ︷︷ ︸
z

)
= 2√

π

z∫
0

exp−k2 dk (4.18)

was defined in MatCalc. The sample is an austenitic iron bar of 1 cm length, separated
into a carbon rich and a carbon depleted side.

Figure 4.1: Comparison of calculated solution and error function
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In figure 4.1, the results of the simulation are shown at different time steps measured
in seconds. During the most of the time, the line-pairs are in perfect agreement, but
after a time of two seconds, they do not match any more, because in the analytic
solution an infinite sample is assumed. The simulation parameters are shown in table
4.1.

In order to understand the composition notations in this thesis, a short introduction
of corresponding units will be given [AA92]. The composition variable cl in Fick’s
laws (see equation (3.15)) denotes the amount of moles of a component l per unit
volume. In literature, the variable x often represents the non-normalized version of
the composition. Other possible units are weight percent or u-fraction, where for the
first, the contribution of the component to the total weight is considered. For the
unit u-fraction, the mole fraction of one component is normalized to the sum of all
substitutional components S like

ul = xl∑
j∈S

xj
. (4.19)

Abbreviations of the units are wp for weight percent and uf for u-fraction.
Sample size: 1 cm
Number of cells: 100
Temperature: 1000K
Carbon composition

left side: 1wp
right side: 10−4 wp

Diffusion coefficient: 10−6 m2/s
Elements: Fe,C
Phases: fcc
Geometry: planar

Table 4.1: Simulation parameters of diffusion couple example

The second example is a carburization treatment of a metal bar combined with
a comparison of having either the cell composition or the surface composition fixed.
Carburization is typically used in the steel hardening process.

When looking at figures 4.2 and 4.3, it is obvious that with a fixed cell composition,
the composition value in the first cell is fixed right when the simulation starts, whereas
in the other case, the composition still has to rise to this level, which takes some time.
This is the reason why the carburization in figure 4.2 is slower, and it also seems to be
more realistic to set a fixed surface composition, assuming that the cells are not very
small. Please check table 4.2 for details on simulation parameters.
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Figure 4.2: Composition in the sample at different time steps using a fixed surface
composition boundary condition

Figure 4.3: Composition in the sample at different time steps using a fixed cell com-
position boundary condition
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Sample size: 1 cm
Number of cells: 50
Temperature: 1000K
Carbon composition

left side: 0.8wp
right side: 10−4 wp

Diffusion coefficient: 10−12 m2/s
Elements: Fe,C
Phases: fcc
Geometry: planar

Table 4.2: Simulation parameters of carburization example

4.1.5 Darken experiment
In his famous paper [Dar49], Darken proved experimentally that in a system of more
than two components, it is possible that diffusion can occur against the concentration
gradient. Although similar experiments have been observed by Hartley for an acetone-
water solution in 1931, Darken was the first to conduct such experiments for metals.
He conducted a series of weld-diffusion experiments, where two specimen of nearly
the same carbon content, but different element content were welded together and
afterwards heat treated in a furnace. The diffusion welding process was performed in a
helium atmosphere using a current of 4500A until a temperature of 1125 ◦C, measured
by an optical pyrometer, was reached. To ensure accurate heat treatment conditions,
the furnace had a long zone of temperature uniformity with variations less than 1 ◦C
maximum and a control circuit to prevent fluctuations was used. The atmosphere
in the furnace consisted of purified helium gas, to prevent any interference with the
carbon content of the samples. Each one of the specimen was kept at 1050 ◦C for two
weeks, cooled down in the furnace to 800 ◦C and then analyzed after removal. Because
of the different chemical potential of carbon in both sides, a carbon redistribution
was produced during the treatment. The main reasons for the carbon diffusion in the
samples, were the different silicon content in each of the weld parts, for two samples,
and also the different manganese content, in one sample. Darken writes that: ‘Silicon
decreases and manganese increases the affinity of austenite for carbon’ [Dar49, p. 433].
Also, he found that Molybdenum has a similar, but somewhat greater effect than
manganese. The simulation will also prove, what he supposed for samples that are
kept in the furnace for a very long time, namely the return of the composition to
equilibrium.
The numerical simulation of the darken experiment was performed, using similar

parameters as Darken, as listed in table 4.3. Figure 4.4 shows the initial element
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distribution and figure 4.5 the carbon content of the sample at different time steps. The
red triangles mark the experimental values observed by Darken, inserted with a table
in MatCalc. To separate the process of uphill diffusion from the return to equilibrium,
the simulation was halted after 10 days of heating and after analyzing the results, it
was started to continue till the end time. The second stage of the simulation process is
shown in figure 4.6 and figure 4.7, respectively. All results are in good agreement with
both the experimental results of Darken and his predictions.

Figure 4.4: Manganese and silicon content in the sample prior to simulation start

Figure 4.5: Carbon content in the sample from simulation start to end of uphill
stage
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Figure 4.6: Manganese and silicon content beyond 10 days of heat treatment

Figure 4.7: Carbon content beyond 10 days of heat treatment
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Sample size: 4.9 cm
Number of cells: 40
Temperature: 1050 ◦C
Carbon composition

left side: 0.5wp
right side: 0.56wp

Silicon composition
left side: 3.8wp
right side: 0.14wp

Manganese composition
left side: 0.25wp
right side: 6.45wp

Diffusion coefficient: from MatCalc database
mc_sample_fe

Elements: Fe,C,Mn,Si
Phases: fcc
Geometry: planar
Time until first stop: 864 000 s (ten days)
Total simulation time: 1015 s

Table 4.3: Simulation parameters of Darken example
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4.2 Moving interfaces
The mathematical description of interface movement during a phase transformation
and the modification of the equations describing the heat conduction or diffusion
process is usually called Stefan problem. Since the partial differential equations are not
valid at an infinitesimally thin interface, the Stefan condition is used to close the gap
between the two phases. For diffusional processes, this condition expresses the relation
between the interface velocity and the particle-fluxes/compositions, on both sides of
the interface.
To be able to simulate moving boundary problems with MatCalc, its simulation

module had to be enhanced to support interface objects and their behavior. Several
approaches, on how to deal with a moving interface and extend the grid to support
such problems, were discussed to be implemented into MatCalc. For simplification
and since more dimensional interface problems have not been implemented, only the
one-dimensional case will be shown.
When doing the spacial discretization, it is either possible to use a static grid or a

dynamic grid. Using the former, it is difficult to model the position of the interface
precisely. A distinction can also be drawn between front tracking and implicit methods,
where the first calculate the explicit position of the interface and the second try to
estimate the interface position. Front tracking methods include the interface closure
condition as part of the problem and some of them, like the Murray Landis method, use
a variable spaced grid. One example of a fixed grid approach is to have the interface
located on a specific location inside a cell (see figure 4.8), which is then separated into
two phases. Each phase’s fraction of the cell depends on the position of the interface.

Figure 4.8: Interface is located inside a cell

This way of dealing with the problem has the disadvantage that many modifications
would have been necessary for implementation into the existing MatCalc diffusion
model. To improve calculation in such cases, the interface cell could be separated into
further cells (figure 4.9).

The chosen method, which has been implemented in this work and which is a dynamic
grid front tracking method similar to the Murray Landis method, keeps the interface
between two cells at each time step (figure 4.10). To make this possible, the size of the
grid cells is adjusted accordingly, to follow the interface position (figure 4.11). If the
interface always stays between the same two cells, the cell size decreases on the side
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Figure 4.9: Region of interface is using smaller cell spacing

the interface moves to and it increases on the other side. This has the drawback that
the cell size on one side can get very large and on the other very small. Therefore, it is
favorable to swap the interface cell during interface movement.

Figure 4.10: Interface is exactly between two cells, no cells displaced

Referring to the definition of MatCalc nomenclature, a node is a point in the grid
where two cell edges touch each other. One reason, why the variable spaced grid was
introduced is that a parameter to displace grid nodes was already implemented in the
software from a previous version. In the current version, an interface is defined as an
infinitesimally thin boundary between two cells of the grid and a mushy region is not
considered. An example of cell displacement coming from interface movement is shown
in figure 4.11.

Figure 4.11: Interface is now on an intermediate point, cells are displaced

A mandatory condition for a MatCalc interface is further that the two neighbor
cells are assigned different materials. When the user sets two different materials to
neighboring cells, an interface is automatically created, its adjacent cells are set and
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the x-position, to match the node between these two, is determined. Since it is possible
to set the material property of a continuous selection of cells, it can also happen that
two interfaces are created after one step. The whole process that is performed, after
the material property has been modified, is shown in figure 4.12.

A

Check all interfaces
for different material
and deletion-marker

Check for interface
on left side of selection
and add one if required

Check for interface
on right side of selection

and add one if required

A

Figure 4.12: Flowchart of the "Check interface" process

4.2.1 Variable grid distribution
When doing a diffusion simulation without moving interfaces, all cells are equally
distributed and the displacement of each node is zero. If an interface exists and it
has a non-zero velocity, then most probably the nodes will have to be displaced to fit
the interface position accordingly. Murray and Landis already proposed in their 1959
paper [ML59], that the variable grid method is the preferred method if the movement
of the interface has to be tracked. Their example however, only featured one migrating
interface, being always located between the same neighbor cells. In case of the interface
moving over a longer distance, the cells on one side grow rather big, and on the
other become relatively small, as shown in figure 4.13. The two materials are colored
differently to mark the interface. Also, with such a distribution technique, it is hard to
simulate the case of an interface escaping the sample. Numerical problems, caused by
the tiny cell size, will arise, as soon as the interface reaches one sample-border. To
solve this problem, an algorithm was implemented in MatCalc, to support neighbor
cell exchange during interface migration. Figure 4.14 shows this process, with the
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Figure 4.13: Grid displaced in a sub-optimal way

grey cells denoting the non-displaced grid and the black lines the displaced ones.
In case of a right-moving interface, the lower cell distribution occurs first. For the

Figure 4.14: Cell distribution before and after a neighbor change

purpose of meshing, at each time step, the new position of the interface in the original,
non-displaced grid is evaluated and the neighbor cells are adjusted. This also happens,
when the user modifies the position of the interface manually, by issuing a MatCalc
command.

On the basis of figure 4.15, the basic interface nomenclature of this thesis is introduced.
The displaced grid is outlined in black and the grey lines represent the original,

Figure 4.15: Important definitions of interface nomenclature

stationary grid. The blue arrow and the line below highlight the interface. Whenever
the terms ‘left’, ‘smaller’, ‘right’ or ‘greater’ are used in conjunction with an interface
position, they refer to the position arrow below the grid, which points to the right.
Smaller positions have a lower x value. Positive interface velocities cause movements
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to the right, whereas negative velocities do the opposite. The left interface neighbor is
colored in red, the right neighbor has a yellow coloring and the interface cell is shaded
with black bars. The term ‘interface cell’ denotes the cell of the original grid, in which
the interface position is located. Figure 4.16 shows the process that finds the interface
cell and ensures, that the new interface position lies inside the sample. It also selects
the correct interface-neighbors and handles special cases for the sample borders. The
term ‘Increasing the right neighbor’ in the diagram means, that the neighbor cell will
be the one with index i+ 1, instead of i. This happens, for example, if the interface
is already close to the left boundary, and the calculated neighbor cell index is out of
bounds. Please note, that cell indices are also counted from left to right.
Equation

itfCell = itfPos

sampleSize/nrCells
(4.20)

is used to calculate the interface cell, whereby the sample size and the interface position
are treated as real values, the others as integer. The position of the interface in this
cell, determines the interface neighbors. If the interface is located closer to the right
boundary, the interface cell will be chosen as left neighbor (again figure 4.14).

4.2.2 Interface checks and cell spacing
Apart from the standard neighbor cell detection for one interface, there are several
special cases considering other existing interfaces, which are treated as shown in figure
4.17. Two phase boundaries that reside in the same interface cell, must have different
neighbor cells while still being separated. In figure 4.17, the case of a right-moving
interface is described. If two interfaces share the same neighbor cell, but move towards
each other, the neighbor cells of the right moving interface are increased. Its neighbor
cells are decreased, if the interfaces move away from each other. If an interface is
overtaken, it is marked for deletion, which implies that the consistency-check will fail
on that interface. Nearly the same approach is used for left-moving interfaces, but
increasing and decreasing is swapped, the starting-node of figure 4.17 is B instead of
A, the condition below the start point is changed and instead of node B an error is
returned. After the neighbor cells are determined, some material checks are performed.
On the one hand, the interface is only allowed to migrate inside a neighboring phase and
on the other hand, the cell materials have to be adapted (see figure 4.18). Additionally,
in case of the interface moving beyond the sample borders, the cell composition of the
first or last cell is adapted. The interface consistency check automatically removes the
interface, when it has either been marked for deletion or the interface resides between
two cells consisting of the same material. The next step is to displace the cells on both
sides of the interface independently. A displacement region reaches from one neighbor
cell to the last cell of a row that shares the same material. In this region, the cell size
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A

determine cell
which comprises interface

in original grid

new position

inside sample
invalid position

interface closer
to right cell

boundary

interface cell will
be left neighbor

interface cell will
be right neighbor

increase left and
right neighbor

left neighbor index

is already outside

decrease left and
right neighbor

right neighbor index

is already outside

A

A

No

Yes

YesNo

Yes

Yes

No

No

Figure 4.16: Flowchart of interface cell and neighbor determination
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A

new position

greater than

current position

interface already

exists between
calculated cells

interfaces will
not collide

interfaces will collide,

are still seperated

interfaces already collided

increase neighbor cells

decrease neighbor cells

mark interface for deletion

C

C

B

Yes

Yes

No

No

Yes

Yes

Yes

No

No

Figure 4.17: Flowchart of existing-interface checks

is calculated as follows:

cellSize = regionSize

nrCellsInRegion
. (4.21)

Each cell is displaced, fulfilling this requirement and afterwards, the interface-node is set
to the exact interface-position (check figure 4.19). As already mentioned, the neighbor
cells change during interface migration. When this happens, also the compositions
have to be corrected. In case of a right-moving interface,
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C

interface only

moves in corresponding

material

change material for

involved cells

invalid position

interface moves out

Check interface consistency

and adapt composition

of outer cell

D

D

Yes

No

Yes

No

Figure 4.18: Flowchart of material correction

1.

2.

the new right neighbor will receive the composition and gradient of the previous, right
neighbor and the new, left neighbor will receive the composition of the previous, left
neighbor. For a left-moving interface, the process is inverted.

1.

2.

The blue line indicates the current interface position and the dashed line the previous
one, both in the non-displaced grid. Figure 4.20 gives an overview of the function
containing both processes and the details are shown in the pictures above. After
the cells are displaced and, if the interface was not deleted, the consistency-check is
performed again.
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D

count cells requiring

displacement on both sides

by comparing material

calculate sizes of
displacement areas

calculate cell size
in displacement areas

adjust cell size

in left area
by displacing nodes

set interface node
to exact position

adjust cell size

in right area

E

Figure 4.19: Flowchart of cell displacement

Merging long-range diffusion and interface movement

To familiarize with the behavior of moving boundaries during a simulation, a simple
example is studied. The user already defined a grid in MatCalc, set one material to
the left half of the sample, another one to the right half and chose a constant interface
velocity. After the simulation is started, several procedures are performed during each
time step. Figure 4.21 shows a simplified version of this process and additional steps are
required to model phase transformations involving moving interfaces. At the beginning,
the time-step width is very small with 10−12 s, but it increases through multiplication
with a factor of ten in every round. The first step is to calculate the diffusion gradients,
either using an explicit or implicit method of solving the diffusion equation. Afterwards,
the maximum allowed time step is calculated. Diffusion, interface movement and the
heat treatments impose limits on the time stepping procedure. If the composition
gradient changes too much for one time step, or the current step is greater than the
maximum, the interval must be adjusted and the gradients are recalculated. A diffusion



4.2 Moving interfaces 57

E

neighbor cells

changed through

interface movement

interface moves
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F
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No
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Figure 4.20: Flowchart of composition correction

step is carried out using
c+
ij = cij + ċij∆t, (4.22)

where c denotes the composition, ċ the time gradient of composition, i the cell-,j the
element-indices and ∆t the time step. In this example, the part of figure 4.21 involving
the local equilibrium velocity is skipped, since a constant velocity is chosen. In the
interface step (see figure 4.22), the new position

px+
i = pxi + vxi∆t (4.23)

of each interface is calculated, with pxi, px+
i being the old, respectively the new position

and vxi representing the velocity of interface i. Additionally, this step ensures, that the
interface is placed at the outermost position if it approaches the sample border and the
cell size becomes too small. Performing this task is only needed when using the local
equilibrium (LEQ) method for velocity calculation. Omitting this would constantly
decrease the cell size and the interface could never leave the sample. Further discussion
of this case follows in section 4.2.3. The last step, which again invokes the process
described by figures 4.17 to 4.20, moves the interface to the desired position.
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A

Calculate diffusion gradients

Calculate maximum time step

Gradient too high

or time step

bigger than max

Adjust time step

and recalculate gradient

Perform diffusion step

Local equilibrium method selected

Calculate LEQ velocity

Perform interface step

A

Yes

No

Yes

No

Figure 4.21: Flowchart of cell simulation

4.2.3 Time step limit
To guarantee numerical stability and integration accuracy during simulation, the size
of the time steps must adhere to several limits. The limit check is carried out after
the initial calculation of diffusion gradients, as shown in figure 4.21. For diffusion
simulation, three different factors are considered during limit calculation. The limit
imposed by diffusion is

∆tDiff = cij cfact
|ċij|

, (4.24)

with the composition cij of cell i, element j, the maximum composition change factor
cfact, which is 10% by default (changeable by the user) and the time gradient of com-



4.2 Moving interfaces 59

A

Interface
velocity is zero
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negative

Set position to zero

Set position to sample size
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using current velocity

Move Interface

A

A

No

Yes

Yes

No

No

Yes

Figure 4.22: Flowchart of perform interface step

position ċij. Furthermore, the smaller the composition gets, the higher the maximum
time steps will be chosen, to avoid small steps for low composition. This was already
integrated in MatCalc, but an addition for the explicit method was implemented in
this work, the Courant-Friedrichs-Levy condition (see [CFL67]) of the form

∆tCFL = 1
2

(∆xmin)2

|Dkl|
. (4.25)

∆tCFL is the maximum time step that should be made, ∆xmin the smallest next-
neighbor distance and Dij the diffusion coefficient between element k and l. Equation
(4.25) is evaluated for each cell and the smallest result is chosen. The CFL condition is
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not needed for the implicit version, which is stable regardless of the step size. Figure
4.23 shows the process of calculating the diffusion time limit.

A

Last cell

Last element
of cell

Calc max. diff.
time step

Increase step

for small comp.

Time step

is smaller
than previous

Store max. diff.
time step

Explicit

scheme is
used

Calc max. CFL
time step

time step

is smaller
than previous

Store max. diff.
time step

A

No

No

Yes
No

Yes

Yes

Yes

Yes

No

No

Figure 4.23: Flowchart of diffusion limited step size determination

The time steps are also limited by interface movement, to prevent interfaces hopping
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over cells. As explained in the previous section, if the interface comes close to the
sample boundary and the cell size falls below a value of 10−8 (measured in the same
units as stated in the grid definition), then the time step will be adjusted, to move
the interface correctly on the border. This will cause the removal of the interface. For
all phase boundaries, the cell size of the neighbor, corresponding to the direction of
movement is evaluated. If the size is below the mentioned threshold, which happens
only in the vicinity of the border, the step width is set to

∆tItf = sampleSize− positf
|vItf |

(4.26)

for a right moving interface or to

∆tItf = positf
|vItf |

(4.27)

for a left moving one. The general limit for movement

∆tItf = cellSize/10
|vItf |

, (4.28)

ensures that interfaces move at most a tenth of the cell size per time step. This
smoothes their track and improves numerical results. Limits are evaluated for all
interfaces and the smallest computed limit is obeyed. Check figure 4.24 for an overview
of the interface-limit process.
A further limit for time steps is imposed by the heat treatments. The maximum

time step is
∆tHT = 1

|Ṫ |
, (4.29)

with Ṫ being the time gradient of temperature of the heat treatment. This condition
will decrease the time step as required to force the temperature change to a value less
than 1K, otherwise phase changes would not be detected accurately. More details
about heat treatments are presented in section 4.2.7.

4.2.4 Composition treatment
An important property of an interface is the composition assigned to the two sides of
the interface. These represent the coupling conditions in the diffusion Stefan problem.
In one dimensions, an interface owns two compositions per element, one for the left and
another for the right side, however, also intermediate points improving the description
would be possible. The examples presented in this diploma thesis contain interfaces
with one fixed element, such as a fixed-carbon interface in an iron sample. Two
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Figure 4.24: Flowchart of interface limited step size determination
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possible ways to achieve a fixed interface composition were implemented in MatCalc
and compared. The first method uses fixed boundary conditions for the two sides of
an interface, the other method uses virtual interface cells.

Fixed neighbor cells

Two diffusion boundary conditions are implemented in MatCalc, both a fixed-surface
composition and a fixed-cell composition. Furthermore, geometry boundary conditions
exist, which define how the outermost cells should be treated in the calculation. Possible
transition conditions are: Periodic, symmetric and open to ambient. To implement
moving interfaces, the fixed-cell boundary condition was used.
When performing the diffusion gradient calculation, a fixed cell is treated in such

a way, that its entry in the start and solution vector of equation (4.4) is skipped.
The fixed composition is only considered in the entries of the right side vector of the
neighbor cells. Instead of the −α terms in the matrix, a term α ci is added to the right
side of each neighbor cell, where i denotes the index of the fixed-composition cell.

1 + 2α −α 0 0
−α 1 + 2α 0 0
0 0 1 + 2α −α
0 0 −α 1 + 2α



ct+0
ct+1
ct+4
ct+5

 =


ct0

ct1 + α c2
ct4 + α c3

ct5

 . (4.30)

Equation (4.30) shows a one dimensional example with a six cell grid. Fixing the
composition of cells 2 and 3, decreases the rank of the matrix from six to four, whereby
the right neighbor term of cell 2 and the left-neighbor term of cell 4 are moved to the
right-side vector, multiplied with the fixed composition of cell 2 and 3, respectively.
This represents the default case when one interface exists in a sample. The drawback
of this method is, that an interface always consists of two cells. Considering the case,
where two interfaces with different compositions collide, it has to be assured, that
always two thin cells separate them. If the interfaces have the same composition in
the shared material, only one cell in between is also possible. Regardless of that, an
interface is not infinitesimal small when using the fixed neighbor cells method, since
the interface always consists of these two cells, and they can not be used for calculation
any more. In the fixed neighbor cells method, a link must be stored between the
boundary conditions and the interface. During simulation, when a neighbor cell change
happens, the boundary conditions have to be detached from the old and attached to
the new neighbor cells. Additionally, if an interface leaves the sample or two interfaces
collide, the corresponding boundary conditions must be deleted. This is done in the
interface consistency check shown in figure 4.18. If during heat treatment simulation
an interface is created, the boundary conditions have to be generated. Further details
are discussed in section 4.2.7.
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Although this method converges to the virtual interface cells method for a small
cell size, the mentioned drawbacks are the reason why the second method was finally
implemented in this work. On the other hand, the FNC method required no modification
of the graph-plotting routines of MatCalc.

Virtual interface cells

The virtual interface cells method is a modification of the FNC method. Instead of
boundary conditions being managed for each existing interface, two virtual interface
cells are used during simulation. These virtual cells behave like fixed cells, placed
between the neighbor cells and the interface. To incorporate this feature into the
existing diffusion model, the calculation of cell gradients was extended. If a cell is
located adjacent to an interface, an interface term is added to the right side of the
implicit solution equation, similar to the neighbor terms in the start vector of equation
(4.30). The same six-cell system as in the FNC method is now represented by the
system of equations as

1 + 2α −α 0 0 0 0
−α 1 + 2α −α 0 0 0
0 −α 1 + 2α 0 0 0
0 0 0 1 + 2α −α 0
0 0 0 −α 1 + 2α −α
0 0 0 0 −α 1 + 2α





ct+0
ct+1
ct+2
ct+3
ct+4
ct+5


=



ct0
ct1

ct2 + αit citL
ct3 + αit citR

ct4
ct5


,

(4.31)
to describe the differences to the VIC model. The rank of the matrix is not reduced this

(a) Fixed neighbor cells (b) Virtual interface cells

Figure 4.25: Comparison of interface composition handling

time, and the neighbor cells can have a variable composition. Instead of the constant
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cell composition, a term αit citL or αit citR is added to the neighbor cells. αit = D∆t
(∆xitf )2

is the modified α of equation (4.4), where instead of taking the distance to the neighbor
cell ∆x, the distance to the interface ∆xitf is used. As simplification, also the half
distance to the neighbor cell can be used, however, for a non equidistant grid, this can
be incorrect, instead the half cell size should be taken. Figure 4.26 shows the difference
between the half distance and the half cell size approach. Two interface neighbor-cells
are shown, which have very different spatial extension. If the half cell size is used, the
neighbor’s ∆xitf differ, whereas with the half distance, they are equal. The distance
to the interface is correctly represented by the first approach. Distances are always
measured from the cell center. Arrows 2 and 4 (counted from the top) belong to the
half distance method. The boundary-condition management was omitted with the VIC

Figure 4.26: Half distance compared to half cell size

method, but modifications of the graph-plotting routines in MatCalc were required.
Previously, when evaluating a profile plot, only the values of each cell were painted.
Now, a special case for interfaces is included, where both interface compositions are
painted at the interface position. This is also shown in the right picture of figure 4.25.

4.2.5 Interface velocity
In order to determine the interface velocity, two possible methods have been imple-
mented. The easier of the two is, to set a fixed velocity, which is then used in equation
(4.23). The local equilibrium method, on the other hand, calculates the velocity using
the neighbor cell compositions. An equivalent formula has already been used by Murray
and Landis [ML59], although they considered a case of heat conduction instead of
diffusion. It supports only one element that affects the interface motion and, in the
present implementation, is not suitable for multi-component interfaces. A local mass
balance equation leads to

vi = Ja − J b

ca − cb
(4.32)

where vi is the interface velocity and ca and cb are the concentrations on each side of
the interface. Ja and J b are the diffusional fluxes pointing in or out of the interface,
corresponding to the phases a or b, which confine the interface. The fluxes are obtained
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from (3.1), resulting in the full expression for the velocity

vi =
−Da∂ c

a

∂ x
+Db∂ c

b

∂ x
ca − cb

. (4.33)

Justified by the differences of the FNC and the VIC method, two possibilities of flux
discretization are arise.

Ja = −DcitL − cnL
∆xV IC

J b = −DcnR − citR
∆xV IC

(4.34)

Equation (4.34) shows the first order discretization for the virtual interface cell method,
with omitted phase indices, but one must keep in mind that diffusion coefficients
of both fluxes are different at least for different materials. The indices nL and nR
stand for the left and right neighbor cell of the interface, whereas citL and citR are the
left and right compositions of the interface. The difference to the fixed neighbor cell
approach comes from the fact, that the interface composition is expressed through a
fixed neighbor composition. Therefore, the fluxes change to

Ja = −DcnL − cnL−1

∆xFNC
J b = −DcnR+1 − cnR,

∆xFNC
(4.35)

where the compositions of the neighbor cells are replaced by the compositions of the
next neighbor cells cnL−1 and cnR+1. The interface compositions are substituted by the
neighbor compositions. In figure 4.21, the local equilibrium calculation is shown after
the diffusion step. It is carried out for each interface, which has this type of velocity
calculation enabled. Another important difference is, that the distances ∆xFNC and
∆xV IC are not equal. The first ∆x is the distance from the center of one neighbor
cell to the next and the second is the distance from the interface to the center of the
neighbor cell. Both cases are shown in figure 4.27, with the interface colored in blue.
If the distances are used improperly, huge errors in calculation are created.

(a) Virtual
interface cells

(b) Fixed neighbor
cells

Figure 4.27: Comparison of distance handling for LEQ method
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4.2.6 Murray Landis correction
Since the cells in this moving interface model are not stationary, the diffusion equation
must be adapted to this case. A simple addition has been introduced by Murray and
Landis in [ML59] and similar derivation for diffusion will be presented. The total time
derivative of the composition variables on a moving grid is

dc
dt = ∂ c

∂ x

dx
dt + ∂ c

∂ t
, (4.36)

combined with the diffusion equation (3.3) leading to

dc
dt = ∂ c

∂ x

dx
dt +D

∂ 2c

∂ x2 . (4.37)

After a time and space discretization, equation (4.37) becomes

ct+i − cti
∆t

= vi
ct+i+1 − ct+i−1

2∆x +D
ct+i+1 − 2ct+i + ct+i−1

(∆x)2 , (4.38)

where an implicit time parametrization is used. In contrast to equation (4.32), where vi
stands for the velocity of the interface, here vi denotes the velocity of cell i introduced
by the displacement procedure described in section 4.2.2. Murray and Landis used the
simple formula

vi = v
n− j
n− 1 (4.39)

for calculation of the cell velocity from the interface velocity. Since in MatCalc, multiple
interfaces are supported, all cell positions of the previous and current time step (xti
and xt+i ) are stored and used to calculate the cell velocity, together with the time step
width ∆t as

vi = xt+i − xti
∆t

. (4.40)

The obtained velocities are then used for calculation in (4.38). The additional term of
equation (4.38) was incorporated into the calculation of diffusion gradients, which is
shown in figure 4.21. The diffusion matrix of the implicit solution changes to 1 + 2α −α + δml 0

−α + δml 1 + 2α −α + δml
0 −α + δml 1 + 2α


c

t+
0
ct+1
ct+2

 =

c
t
0
ct1
ct2

 , (4.41)

where δml = vi∆t
2∆x is the Murray Landis correction term. Applying this correction is

required for reducing the deviations from mass conservation, but still it is not the
perfect solution. An improved model has been suggested by Crusius et al. in [CIK+92],
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with the drawback of higher computational costs.
Since the Murray Landis model uses a displaced grid, the composition values of

the cells have to be interpolated, to represent the values at the adjusted positions.
The interpolation mechanism is shown in figures 4.28 and 4.29, where the composition
profile moves to the right. A translation of the composition profile in one direction is
equivalent to a grid translation of the same size in the opposite direction. The new
composition values are determined by projecting the slope back from the new position
to the old position. For a curved line, this calculated value does not match the exact
composition value, only for a straight line, it is precise. The interpolation lines with
the same slope are equally colored. In figure 4.28, the top circle shows an example of
the resulting deviation.
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Figure 4.28: Interpolation of composition values for the Murray Landis correction -
curved-shaped composition

4.2.7 Heat treatments
Usage of heat treatments was already possible in the precipitation kinetics module of
MatCalc, although it was not implemented in conjunction with diffusion simulation. A
heat treatment consists of an arbitrary number of linear time-temperature segments,
which each can have one of three heating modes. Three variable parameters are
available, the end temperature, the heat/cooling rate and the duration of the segment.
Each heating mode fixes one of these parameters through calculation of the other two,
user defined parameters. During the simulation, a heat treatment imposes time limits
on the calculation, which is discussed in section 4.2.3. The simulation temperature is
changed to the current heat treatment temperature, which, for simplification, is assumed
to be uniform in the whole sample. Otherwise, the diffusion and heat conduction
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Figure 4.29: Interpolation of composition values for the Murray Landis correction -
straight composition

equation would have to be solved in parallel. The user can specify a heat treatment
and afterwards define, if it should be used in the diffusion simulation. Further details
on usage of heat treatments for phase transformations are described in section 4.3. The
aim of combining heat treatments with diffusion calculation, is to be able to simulate
phase transformations during arbitrary heating or cooling processes.

4.2.8 Examples
Three examples were developed to show the implementation of moving interfaces. They
do not represent real cases of phase transformations because they will not conserve
mass. They only demonstrate the handling of interfaces in the code. The first shows
two interfaces colliding with fixed velocities, the second two interfaces leaving the
sample and the second an interface movement calculated with the LEQ method.

Interface merge

Three regions exist in this artificial system setup, where austenite represents the outer
part of the sample and ferrite the core. Two interfaces form and are equipped with
different-signed, constant velocities and compositions. Upon simulation start, they
move against each other and collide after approximately seven seconds. Afterwards,
the sample is uniformly austenitic and the composition returns to equilibrium. The
simulation and interface parameters are shown in table 4.4 and table 4.5.

Figure 4.30 shows the two interfaces prior to starting the simulation, at t = 0 s and
right before the collision, at t = 7.4 s. In figure 4.31, the composition is shown at four
different time steps, to visualize the interface migration. The grid distribution at the
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Sample size: 1 cm
Number of cells: 20
Temperature: 1000 ◦C
Carbon composition

whole sample: 0.003 uf
Diffusion coefficient: 10−6 m2 s−1

Elements: Fe,C
Phases: fcc, bcc
Cell Material:

fcc: 0..4,14..19
bcc: 5..13

Geometry: planar
Total simulation time: 108 s

Table 4.4: Simulation parameters of interface collision example

Interface 0:
Carbon composition
left: 0.001 uf
right: 0.006 uf

Velocity: 2× 10−4 ms−1

Interface 1:
Carbon composition
left: 0.006 uf
right: 0.002 uf

Velocity: −4× 10−4 ms−1

Table 4.5: Interface parameters of collision example

same time steps is shown in figure 4.32, whereby the two additional steps are the first
and the last and the time increases from top to bottom. It is important to emphasize
that these examples do not conserve mass, and, therefore, the initial and final total
composition differ.

Interface escaping the sample

Simulation parameters for this example are the the same as in the interface collision
example, only the interface parameters differ (see table 4.6). Two interfaces are moving
in the opposite direction at different velocities and one after the other leaves the sample.
As the cell size becomes smaller at the boundaries, the time steps are delimited by
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Figure 4.30: Interface merge example: Composition at start and merge

Figure 4.31: Interface merge example: Composition during simulation
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Figure 4.32: Cell distribution for interface merge example

the interface movement. Like in the previous example, figures 4.33 and 4.34 show the
composition at different time steps. Figure 4.35 shows the position of the interfaces
during simulation. After an interface has left the sample, the reported position will be
zero, which is the reason why the green line is dropping to zero at approximately 15 s.

Interface 0:
Carbon composition
left: 0.001 uf
right: 0.006 uf

Velocity: −4× 10−4 ms−1

Interface 1:
Carbon composition
left: 0.006 uf
right: 0.002 uf

Velocity: 2× 10−4 ms−1

Table 4.6: Parameters of interface escaping example

The behavior of time step width is shown in figure 4.36. Although the diffusion
limit plays a role in the very beginning, the faster interface slows down the calculation
progress the most, during its existence. After it disappears, the second interface is the
limiting factor. The two big drops mark the regions, where one interface leaves the
sample and the cell size gets very small on one side. Intermediate drops are caused
by the increasing and decreasing of cell sizes between the neighbor cell changes. The
slower interface has fewer intermediate drops, because it influences the time step limit
for a shorter time.

Local equilibrium velocity

A simple calculation, containing the velocity calculation according to the local equilib-
rium (LEQ) method, is carried out. The interface starts at the left border of the sample
with a predefined carbon composition, and moves through the sample conforming to
the composition gradients on each side of the interface (see equation (4.33)). At the
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Figure 4.33: Interfaces escape the sample: At the beginning and right before each
interface leaves

Figure 4.34: Interfaces leave the sample: Intermediate time steps
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Figure 4.35: Interface positions during simulation
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Figure 4.36: Time steps during simulation

beginning of the simulation, the composition gradients on each side of the interface
are very high, thus the interface velocity will decrease with advancing time, when the
average phase composition approaches the interface values. The flux on the left side of
the interface only plays a role until this side’s composition is flattened out, which is
already the case at t = 3 s. Afterwards, only the right composition gradient influences
the interface velocity. Start and end state of the composition are shown in figure 4.37,
the intermediate states in figure 4.38. Both the velocity and the interface position
have been plotted over the simulation time (figures 4.40 and 4.39). Their shape is very
typical for this kind of example and agrees with the results found in literature.
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Figure 4.37: LEQ example: Composition at start and end

Figure 4.38: LEQ example: Composition at intermediate steps
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Figure 4.39: LEQ example: Interface position

Figure 4.40: LEQ example: Interface velocity
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Sample size: 1 cm
Number of cells: 50
Temperature: 800 ◦C
Carbon composition

whole sample: 0.003 uf
Diffusion coefficient: 10−6 m2 s−1

Elements: Fe,C
Phases: fcc, bcc
Cell Material:

fcc: 1..49
bcc: 0..1

Geometry: planar
Total simulation time: 80 s

Table 4.7: Simulation parameters of LEQ example

Interface 0:
Carbon composition
left: 0.001 uf
right: 0.006 uf

Velocity: LEQ

Table 4.8: Interface parameters of LEQ example

4.3 Phase transformations involving moving interfaces
Phase transformations are investigated from scientists over decades. Like the classical
phase transformation of water between a solid and a liquid phase, phase transformations
in metals are a very interesting field for both researchers and industry, too. Unlike in
[ML59], where the temperature of ice or water was the independent variable, in these
simulations, the composition of elements in the phases is determined. In contrast to
the moving boundary examples in the previous sections, where only artificial interface
examples were simulated, now new phases can form and also existing phases can
disappear. The basis for this behavior is the phase diagram. MatCalc performs an
equilibrium calculation to determine the stable phases at the specific point in the
diagram, which represents the current simulation properties. To simulate this type
of phase transformation, heat treatments are utilized and the interface and diffusion
algorithms are modified. In a simple example, a linear heat treatment is used to
simulate a phase transformation in an iron carbon alloy system.
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Prior to every diffusion step, the current temperature of the heat treatment is
evaluated. At this temperature, an equilibrium calculation is carried out, to check if
new phases become stable or existing phases disappear. Since the temperature also
influences the equilibrium composition of the phases, the interface composition must
be adjusted. The time step limit for heat treatments ensures that no phase formation
is skipped. The flowchart in figure 4.21 is extended to describe the simulation of phase
transformations, as shown in figure 4.41.

A

Check phase change

Adjust interface composition

Calculate diffusion gradients

Calculate maximum time step

Figure 4.41: Extended flowchart of cell simulation

The ‘Check phase change’ process determines the matrix phases in all materials,
retrieves the system composition and performs an equilibrium calculation. As parameter
for the calculation, the temperature of the heat treatment is used. By comparing
the phase status of the current and the previous step, changes in phase activity are
recognized. In case of a phase becoming active, an interface has to be created at a
predefined position. Before starting the simulation, the user has to specify the position,
where a new phase should be created, upon its activation. Possible selections are the
left/right sample boundary and the gap between two phases. If a phase becomes active,
an interface is created according to the user preferences either on one of the sample
boundaries or between two phases.
In the process ‘Create interface with material as specified’, the material related to

the activated phase is set to the cell that comprises the new phase. To assure the
validity of the interfaces, the process again invokes the ‘Check interface’ function of
figure 4.12. In this case, the function creates a new interface object in MatCalc. Apart
from temporarily setting the interface composition to the system composition, the
interface position is shifted either half of a cell size from the boundary, or half of a cell
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Figure 4.42: Flowchart of the ‘Check phase change’ process
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size from the previously existing interface to avoid numerical problems arising from a
tiny cell size. The process described above, is shown in more detail by figure 4.43.

A

Assign material

to desired cell

Check interfaces

Assign system composition

to interface

Create left
selected

Create right

selected

Create between
selected

Shift interface
half a cell width
from left border

Shift interface
half a cell width
from right border

Shift interface
half a cell width

from other interface

A

No

No

Yes

Yes

Yes

Figure 4.43: Flowchart of the "Create interface with material as specified" process

In these phase transformation simulations, the interface compositions have to be
adjusted at each step of the temperature evolution. This is performed by the next step,
the ‘Adjust cell composition’ process. The composition values are adapted to represent
the corresponding equilibrium compositions in the phase diagram. This means that
the interface compositions always follow the boundary lines in the phase diagram. In
the algorithm implemented in this work, the appropriate compositions are determined
from an equilibrium calculation. For each interface, only the neighboring phases are
considered in this calculation. By default, the system composition is assumed as
starting condition, but in the special case of the peritectic reaction, an alternative
composition is used to be able to correctly reproduce the expected behavior. The
alternative composition is not used for every equilibrium calculation, it is only needed
when a phase becomes inactive, for example at the peritectic horizontal. If required, the
value of the alternative composition must be specified, prior to starting the calculation,
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for the desired interface. As soon as a phase gets inactive, the alternate composition
will be used, instead of the system composition, in the equilibrium calculations for
this specific interface. Furthermore, it is important for this process to know if a phase
becomes inactive. As soon as the number of total active phases reduces, it stops the
simulation. This behavior is implemented, because the adjustment of equilibrium
compositions at the interface requires a two-phase region in the phase diagram. For
this reason, the simulation is stopped in the ferritic solidification example, where the
process advances from a two phase region to a one phase region.
After the composition of the interface was adjusted, it may be required to correct

the neighbor composition, in order to obtain a valid interface velocity. Such a case
occurs if an interface has just been created in the previous "Check phase change" step.
As example, if an interface is created at the left boundary, the composition of the
left neighbor cell must be adapted to the left interface composition value. This will
ensure a valid gradient on the left side of the interface, for the velocity calculation.
Afterwards, the interface velocity is calculated the first time for the new interface.

4.3.1 Ferritic solidification in iron-carbon alloys
The ferritic solidification of an iron-carbon alloy has been simulated with a linear heat
treatment, where the sample cools down from 1550 ◦C to 1500 ◦C in fifty seconds. Ini-
tially, a low carbon composition of 9× 10−4 uf (approximately 0.019 35wp) is assigned
to the whole sample, which consists of a homogenous liquid phase. Additionally it is
specified that the bcc/liquid interface should form on the left side of the specimen.
The system composition and the temperature set the origin for the transformation in
the phase diagram (see figure 4.45). After starting the simulation, the temperature
drops at 1 ◦C/s and an equilibrium calculation is performed at each time step to recog-
nize the formation of new phases. At approximately 1536 ◦C, the bcc phase becomes
thermodynamically stable and active and an interface is created. The composition
at the interface is determined by the equilibrium calculation and can be extracted
from the phase diagram by using the lever rule. Compared to the example of the
local equilibrium velocity, in this case, the interface is not slowing down with time.
Instead, its velocity increases due to the fact that the interface composition gradients
rise during the heat treatment. At 1529 ◦C, the liquid phase becomes inactive and the
simulation is stopped, as intended, when the total number of active phases decreases,
which means that the simulation leaves the two-phase equilibrium region. Figure 4.48
shows the histogram for both interface compositions and the interface velocity, whereas
figure 4.46 contains the composition distribution in the sample at some characteristic
time steps. A comparison of the interface position and the temperature over time can
be found in figure 4.47. The parameters of simulation, heat treatments and phase
creation are listed in tables 4.9 and 4.10.
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Figure 4.44: Flowchart of the "Adjust interface composition" process
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Figure 4.45: Iron carbon phase diagram for solidification

Figure 4.46: Composition for ferritic solidification example
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Figure 4.47: Temperature and interface position for ferritic solidification example
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Figure 4.48: Interface composition for ferritic solidification example
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Sample size: 1 cm
Number of cells: 50
Temperature: Heat treatment
Carbon composition

whole sample: 0.0009 uf
Diffusion coefficient: 10−6 m2 s−1

Elements: Fe,C
Phases: bcc, liquid
Cell Material:

liquid: 0..49
Geometry: planar
Total simulation time: 103 s

Table 4.9: Simulation parameters of ferritic solidification example

Heat treatment:
1550 ◦C - 1500 ◦C: 50 s
Interface creation:
bcc: left

Table 4.10: Heat treatment and phase-creation parameters of solidification example

4.3.2 Peritectic reaction involving ferrite and austenite
The peritectic reaction is simulated in a similar way as the previous example, except
that a different system composition and heat treatment are used. A composition
of 0.015 uf or 0.3216wp is already in the range of the peritectic region. Simulation
parameters are available in table 4.11 and heat treatment/phase-creation parameters
in table 4.12.
Starting from 1530 ◦C, the bcc phase becomes active at a temperature of 1511 ◦C,

which is reached after approximately seven seconds. While the temperature constantly
drops, the composition of the bcc/liquid interface, on both sides, increases until the
fcc phase is activated, at 1494 ◦C. Concurrently, bcc becomes inactive and therefore,
MatCalc begins to use the alternate composition. The phase specification defines the
creation between the existing phases, which is considered when the second interface
forms, at 13.66 s.

Examining the system composition and temperature, the process is now in a region
of austenite and liquid. For obvious reasons, this composition can not be utilized to
calculate the interface compositions for the bcc/fcc interface. In this example, the
alternate composition specifies the value that is used for the equilibrium calculation
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of the second interface. Taking the alternate composition of 0.007 uf or 0.1503wp,
it is possible to gain an interface movement that fits to the behavior of a phase
getting inactive. The new interface leaves the sample at approximately 17.63 s. With
decreasing temperature, also the liquid phase becomes inactive and the simulation
stops at 1467 ◦C. Figures 4.49 and 4.50 show the composition in the sample, prior and
after the formation of the second interface, at different characteristic time steps.
An interesting comparison of the interface positions and the temperature can be

found in figure 4.51. The time evolution of the interface compositions, which increase
for the first interface and decrease for the second, is shown in figure 4.52. Please
note, that the numbers in brackets next to the variable names are used, to specify the
interface. In the solidification example this was omitted, because the first interface is
used by default. Interface velocities are in the region of some hundreds of micro meters
(see figure 4.53).

Sample size: 1 cm
Number of cells: 50
Temperature: Heat treatment
Carbon composition

whole sample: 0.015 uf
Diffusion coefficient: 10−6 m2 s−1

Elements: Fe,C
Phases: bcc, fcc, liquid
Cell Material:

liquid: 0..49
Geometry: planar
Total simulation time: 103 s

Table 4.11: Simulation parameters of peritectic example

Heat treatment:
1530 ◦C - 1400 ◦C: 50 s
Interface creation:
bcc: left
fcc: between
Alternate composition:
Interface 1: 0.007 uf

Table 4.12: Heat treatment and phase-creation parameters of peritectic example
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Figure 4.49: Peritectic example: Composition in sample prior to second interface
formation

Figure 4.50: Peritectic example: Composition after second interface formation



4.3 Phase transformations involving moving interfaces 88

 1460

 1470

 1480

 1490

 1500

 1510

 1520

 1530

 0  5  10  15  20
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009
te

m
pe

ra
tu

re

po
si

tio
n

time

temperature
interface1 pos.
interface2 pos.

Figure 4.51: Peritectic example: Development of interface positions and temperature

Figure 4.52: Peritectic example: Development of interface compositions
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Figure 4.53: Peritectic example: Histogram of interface velocities



5 Discussion
The diffusion model of MatCalc was verified by solving a diffusion-couple example and
comparing the numeric results to the analytic solution, which were in good agreement.
Compared to the Murray Landis method, the model implemented in MatCalc supports
multiple interfaces through deriving the cell velocity from the previous and current
cell positions instead of the interface velocity. An additional improvement is the cell
exchange, required to simulate the movement of interfaces over longer distances and to
avoid difficulties that arise when an interface approaches the sample border.

In order to improve the accuracy of the cell exchange, a simple interpolation mecha-
nism could be implemented. In the solidification examples, the initial velocity of an
interface could be improved by determining the required cell composition, which causes
a vanishing velocity. Instead of using a constant value for the alternate composition, it
is advisable to use values along a path running parallel to the boundary line in the
phase diagram.

In order to simulate problems of higher complexity, an additional velocity-calculation
algorithm is required, which supports multi component systems. However, this is not
a trivial task and such models often require approximations to simplify this task. If
an extension to multiple space dimension is needed, the finite element method is for
sure worth a consideration, although the implementation efforts would be higher. This
would make modeling of curved interfaces possible and therefore enhance the scope of
the simulation module.
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6 Summary
In the theoretical part of the present thesis, the macroscopic and the microscopic
view of diffusion are explained and a link between them is established through the
Einstein equation. Afterwards, several descriptions of moving boundary problems are
introduced and analytic problems presented. Numerical solution-methods are needed,
because the analytic problems only exist for simple problems. Three major types of
numerical methods are shown to get an overview of the scientific research that has
been performed in the past.
In the practical part, the diffusion model of the microstructural process simulation

software MatCalc is described and the example of a diffusion couple is used to verify
its results. Further presented diffusion examples are a carburization process and
the famous Darken experiment, where the simulated values are compared to values
measured by Darken. In order to model moving phase boundaries, an advanced Murray
Landis algorithm of a variable spaced grid, is implemented. A neighbor-cell-exchange
mechanism is utilized, to circumvent numerical problems that arise when an interface
leaves the sample.

Since the time step width is variable, several limits are obeyed to improve accuracy of
calculation. The limits are dependent on composition gradients, interface velocity and
the external heat treatment parameters. Two different models of composition treatment
are compared, where one uses fixed composition neighbor cells, and the other uses
virtual interface cells. The local equilibrium approach calculates the interface velocity
using the composition gradients on both interface sides. Some examples showing general
interface behavior and the local equilibrium model are demonstrated. A modification
of the diffusion equation, for describing moving phase boundaries, is the Murray Landis
correction, which is generalized to support multiple interfaces. After the correction is
applied, heat treatments are introduced to be able to simulate phase transformations
in metals. Additional steps required by the phase transformations are described, which
include phase-states observation and interface composition adjustment during heat
treatment. In the end, an example of iron-carbon solidification and a peritectic reaction
involving ferrite and austenite are presented.
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