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Abstract

This thesis gives an introduction to basic concepts of lattice theory, a theory that deals

with periodic arrangements of discrete points. Furthermore, this concepts are applied

to the estimation of signal phase. A powerful concept within lattice theory is lattice

reduction, which is concerned with finding improved representations of a given lattice.

It has been shown that solutions to the frequently occurring closest lattice point problem

can be improved in terms of performance and complexity if they are preceded by lattice

reduction.

In this diploma thesis we consider an estimator for uniformly sampled polynomial

phase signals, the so-called angular least squares estimator. To estimate the signal

parameters, we use phase unwrapping in a least squares manner. This leads to an

integer least squares problem, which can be cast into a closest lattice point problem,

and therefore be solved by lattice concepts. Furthermore, we formulate the angular

least squares estimator for a case, where the polynomial phase signal is nonuniformly

sampled. The fact that in this case we do not experience aliasing comes at the cost

of poor performance in low-SNR scenarios. Subsequently, the angular least squares

estimator is used to estimate phase parameters of a signal that is modeled by a Fourier

basis. Numerically results show that the angular least squares estimator works well in

every mentioned scenario provided the SNR is above a certain threshold.
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Kurzfassung

Diese Diplomarbeit gibt eine Einführung in grundlegende Konzepte der Gittertheo-

rie, eine Theorie, die sich mit periodischen Anordnungen diskreter Punkte beschäftigt.

Weiters werden diese Konzepte für ein Phasenschätzproblem herangezogen. Ein leis-

tungsfähiges Konzept innerhalb der Gittertheorie ist die so genannte Gitterreduktion.

Ihr Ziel ist es, eine verbesserte Darstellung eines gegebenen Gitters zu finden. Es ist

bekannt, dass die Suche nach dem nächsten Gitterpunkt betreffend Ergebnis und Kom-

plexität verbessert werden kann, indem man zuvor eine Gitterreduktion anwendet.

In dieser Diplomarbeit betrachten wir einen Schätzer für Signale mit polynomialer

Phase basierend auf
”
phase unwrapping“. Um eine kontinuierliche Phase zu erhalten

wird hierbei der gemessene Hauptwert der Phase entsprechend verschoben aneinander

gefügt. Dieser Ansatz führt zu einem ganzzahligen Problem kleinster Quadrate, wel-

ches mit Hilfe einer Suche nach dem nächsten Gitterpunkt gelöst werden kann. Neben

gleichförmig abgetasteten Signalen betrachten wir auch zufällig abgetastete. In letzt-

genanntem Fall tritt bei niedrigem Signal-Rausch-Verhältnis ein größerer Schätzfehler

auf. Schließlich wird der Phasenschätzer verwendet, um eine Phase zu schätzen, die

durch eine Fourier-Basis modelliert wird.

Numerische Resultate zeigen, dass der Schätzer für alle oben genannten Szenarien

gut funktioniert, solange das Signal-Rausch-Verhältnis einen bestimmten Schwellwert

überschreitet.
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1
Introduction

A lattice is a periodic arrangement of discrete points. First work on lattice theory

has been done by Minkowski and Voronoi more than a century ago. Lattices found

widespread use in mathematics, for example for the sphere packing problem, the prob-

lem of packing as many non-intersecting, n-dimensional hyperspheres into the smallest

possible volume. Beside the use in pure mathematics, the theory of lattices has been

applied to several other fields, such as cryptography and cryptanalysis, the geometry of

numbers, diophantine approximations, crystalography and coding theory. More recently

lattices have found applications in communication systems with multiple antennas.

In lattice theory a fundamental problem is the closest lattice point problem (also

called the nearest lattice point problem). Given a lattice, it is the problem of finding

the lattice point with minimal Euclidian distance to an arbitrarily given input point.

To give an example in communication theory: assuming a lattice is used as a code

for a Gaussian channel, maximum-likelihood decoding (optimum decoding) equals the

closest lattice point search at the demodulator.

Efficient search algorithms exist to solve the closest point problem for many classical

lattices [1]. When assuming a general lattice, that means there is no exploitable struc-

ture of the lattice, finding the closest point is exhaustive. However, there are algorithms

1



Chapter 1. Introduction 2

to solve this problem. A good overview about the closest lattice point problem is given

in Agrell et al. [2].

There are fast algorithms approximating the closest lattice point. Babai [3] pre-

sented two such algorithms that are polynomial in time. One is based on a rounding-off

procedure and the other one is known as Babai’s nearest plane algorithm. The perfor-

mance or complexity of algorithms obtaining or approximating the closest point strongly

depends on the basis matrix of a lattice. A basis matrix is used to describe a lattice

and is not unique. In order to achieve good performance regarding the closest point

problem, the basis matrix should consist of fairly orthogonal and short basis vectors.

The method for obtaining such a reduced basis is called lattice reduction.

The lattice reduction aided approach is the following:

1. Find an improved basis by using lattice reduction. The original and the reduced

basis are related via a unimodular matrix.

2. Solve the closest point problem in the lattice described by the reduced basis

matrix.

3. Transform the result back to the original domain using the unimodular matrix.

In this thesis the aforementioned approach is applied to an application in signal pro-

cessing, the estimation of a polynomial phase signal and of a Fourier-based phase signal.

Following the work of McKilliam [4], we extend the estimator to the nonuniform sam-

pling case and furthermore to Fourier-based phase signals.
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The text is structured as follows:

• Chapter 1: This introduction.

• Chapter 2 introduces some basics of lattices theory. Furthermore lattice reduc-

tion and the closest point search are treated.

• Chapter 3 shows a technique for estimating uniformly sampled polynomial phase

signals. The parameters are estimated by performing phase unwrapping in a

least squares manner. The obtained integer least squares problem is formulated

as a closest lattice point problem, which we solve using Babai’s nearest plane

algorithm. Some numerical simulation results illustrating the performance of this

estimator will be shown.

• Chapter 4 extends the polynomial phase estimation approach from Chapter 3

to the more general case of nonuniform sampling. The chapter will be concluded

by simulation results.

• Chapter 5 tackles the phase estimation problem using a Fourier basis instead of

a polynomial basis. As in earlier chapters, the corresponding simulation results

are given.

• Chapter 6 gives a summary and discusses open problems for future research.



2
Lattice Theory

Lattices are periodic arrangements of discrete points. In mathematics they provide

solutions to several problems such as the sphere packing problem or the kissing number

problem. Beside their mathematical use, lattices have found numerous applications in

several fields such as coding theory, cryptography/cryptanalysis or diophantine approx-

imations. More recently they found applications in wireless communications featuring

multiple antennas, so called MIMO (multiple input multiple output) communications.

In this thesis, lattices are used for the signal processing problem of phase estimation.

We first provide some basics of lattice theory. We give some examples of lattices and

explain how they are described in terms of a basis (or generator) matrix. We will see

that this description is non-unique, a property we capitalize on when applying lattice

reduction. In Section 2.2, the principle of lattice reduction is given and we get to know

a commonly used algorithm, the Lenstra-Lenstra-Lovász (LLL) reduction algorithm.

The final section gives an overview about the closest lattice point problem and

provides Babai’s nearest plane algorithm, a fast algorithm to compute an approximation

for the closest lattice point in a lattice.

4
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B =

[
1 0
0 1

]
(a)

B = 1√
2

[
2 1
0 1

]
(b)

Figure 2.1: Two-dimensional example lattices: (a) square and (b) rhombic.

2.1 Lattice Description

A real-valued lattice L is a set of points in Rn. In order to describe a lattice we use

m ≤ n linearly independent basis (or generator) vectors {b1, . . . ,bm}, with b` ∈ Rn

such that

L ,
{

x
∣∣∣x =

m∑
`=1

z`b`, z` ∈ Z
}
,

where m denotes the rank of the lattice and Z is the set of integers. Every single

lattice point can be expressed by an integer linear combination of the basis vectors.

Equivalently, we can characterize a lattice in a matrix notation by rearranging the

basis vectors into a n×m matrix B=(b1 . . .bm) called the generator matrix, as

L ,
{

x
∣∣∣x = Bz, z ∈ Zm

}
.

We will abbreviate the definition of a lattice above as L=BZm. By assuming the basis

vectors to be linear independent, B has full column rank, i.e., rank(B)=m. Examples

for two-dimensional lattices can be seen in Figure 2.1. The square lattice, shown in

Figure 2.1(a), is obtained by choosing the generator matrix B as the two-dimensional

identity matrix I2. The lattice then is denoted by L=Z2.

The generator matrix need not necessarily be square. If the generator matrix B is
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a tall matrix (has more rows than columns), i.e., m < n, then the lattice points lie in

a m-dimensional subspace of Rn. In the case of a square generator matrix, i.e., m=n,

the lattice points span Rn and we say the lattice is of full rank.

A generator matrix for a lattice is not unique. The generators B and BT span

the same lattice L if the transformation matrix T is an m × m matrix with integer

elements such that | det(T)=1|. Matrices with these properties are called unimodular.

The fact that two generator matrices B and BT lead to the same lattice L can be

written as BZm =BTZm and thus Zm =TZm. The last equality can hold only if T is

invertible and T and T−1 have integer elements. The restriction on the determinant of

the integer-valued matrix T, i.e., | det(T) = 1|, guarantees the existence of the inverse

and the inverse matrix to be integer.

The fundamental parallelotope of a lattice basis is the parallelotope constructed from

the basis vectors of the lattice as

P(B) ,

{
x
∣∣∣x =

m∑
`=1

θ`b`, 0 ≤ θ` < 1

}
.

As the generator matrix is not unique, neither is the fundamental parallelotope. In

Figure 2.2 we see two examples of fundamental parallelotopes for a lattice which can

be described by the generator matrix

B =

 1 0.1

0.1 1

 . (2.1)

Furthermore we can see in this figure that the union of P(B) shifted to all lattice points

covers the complete space Rn and any two shifted parallelotopes don’t intersect, i.e.,

⋃
x∈L

P(B) + x = Rn and (2.2)

(P(B) + x) ∩ (P(B) + y) = ∅ ∀x,y ∈ L, x 6= y. (2.3)
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(a) (b)

Figure 2.2: Two examples of fundamental parallelotopes for a lattice given by the gen-
erator matrix in (2.1). In (a) the fundamental parallelotope corresponds to
the basis vectors [1, 0.1]T and [0.1, 1]T . In (b) the underlying basis vectors
are [1.1, 1.1]T and [1.2, 2.1]T .

Fulfilling (2.2) and (2.3), P(B) is a so-called fundamental region.

The Voronoi region V(L) is a subset of Rn containing all the points which are closer,

according to a given norm, to the lattice point at the origin than to any other lattice

point, i.e.,

V(L) ,
{

y
∣∣∣‖y‖ ≤ ‖y − z‖ for all z ∈ L

}
. (2.4)

The norm we will use throughout this thesis is the 2-norm, which means that the

Voronoi region is the set of points with Euclidian distance smaller to the origin than

to any other point. In Figure 2.3 we see an examples of a Voronoi region. By shifting

V(L) to another lattice point x ∈ L, V(L) + x describes the set of points closest to x.

From (2.4) we see that the faces of the Voronoi region are closed. In order to make the

Voronoi region satisfy (2.2) and (2.3) we have to define half of the faces to be closed

and the corresponding opposing faces to be open. With this modification the Voronoi

region is a fundamental region which tessellates the space Rn. The Voronoi region is

independent of the choice of the lattice basis.

Given a lattice L with lattice basis B, the so-called lattice determinant is defined
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Figure 2.3: The Voronoi region V(L) and a shifted version V(L) + x for a lattice with
generator matrix from (2.1).

as the square-root of the determinant of the Gram matrix BTB,

det(L) =
√

det(BTB). (2.5)

Assuming the lattice is of full rank, i.e., m = n, the lattice determinant simplifies to

det(L) = | det(B)| and is equal to the volume of the fundamental parallelotope, which

is the same for any basis for a given lattice. Generally, every fundamental region has

a volume equal to the lattice determinant, since every volume correspond to exactly

one lattice point and together they cover the whole space spanned by the lattice. The

Voronoi region V(L) is such a fundamental region, therefore its volume is equal to the

lattice determinant. If a lattice is not of full rank, i.e., m < n, the lattice determinant

equals the volume of the intersection of the m-dimensional subspace spanned by the

lattice with the fundamental region.

A measure for the orthogonality of a lattice is the so-called orthogonality defect,

defined as

δ(B) =

∏m
`=1 ‖b`‖
det(L)

. (2.6)
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In the numerator we have the product of the basis vector lengths. The Hadamard

inequality | det(B)| ≤
∏m

=̀1 ‖b`‖ states that an m-dimensional volume spanned by the

m vectors is upper bounded by the product of the corresponding vector lengths, with

equality if and only if the vectors b1, . . . ,bm are mutually orthogonal. By applying

this inequality to (2.6) we see that the orthogonality defect is lower bounded by 1, i.e.,

δ(B) ≥ 1, with equality if and only if the lattice basis vectors are orthogonal.

Another way to illustrate the orthogonality of the lattice basis is achieved by the

QR-decomposition. As mentioned earlier, we have an n ×m basis matrix B with full

column rank, i.e., rank(B)=m. The QR-decomposition

B = QR =

[
q1 . . . qm

]


r11 r12 r13 . . . r1m

r22 r23 . . . r2m

r33 . . . r3m

. . .
...

rmm


(2.7)

expresses the lattice basis in terms of an n×m orthonormal matrix Q and an m×m

upper triangular matrix R. The columns q1, . . . ,qm of Q are orthogonal and of unit

length (QTQ=Im). Since the lattice basis B is of full rank m and we require that the

diagonal elements of R are positive, the QR-decomposition is unique. From (2.7) we see

that each basis vector b` can be described by the sum
∑`

k=1 rk,`qk. The vector q` of unit

length is pointing into the direction of the basis vector b` perpendicular to the space

spanned by q1, . . . ,q`−1. The diagonal element r`,` = qT` b` characterizes the length of

b` into the direction of this orthonormal vector q`. The components of b` projected

onto each orthonormal vector qk with 1 ≤ k < ` are described by the regarding element

rk,` = qTkb`. If these off-diagonal elements of R are close to zero the lattice with the

basis B can be considered as roughly orthogonal. In case the upper triangular matrix

R is a diagonal matrix, every basis vector bl is a multiple of the orthogonal vector q`
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and therefore the basis matrix is orthogonal.

2.2 Lattice Reduction

Any lattice can be described by many different lattice bases. Given a lattice L, the

aim of lattice reduction is to find a lattice basis with “good” properties which usually

means it consists of short and roughly orthogonal vectors. What “good” exactly means

depends on the lattice reduction method, which is not unique. There are several lattice

reduction methods, such as Minkowski reduction [5], Hermite-Korkin-Zolotarev reduc-

tion [6] [7], Gauss reduction [8], Lenstra-Lenstra-Lovász reduction [9], and Seysen re-

duction [10], each with a more or less stringent reduction criterion. Minkowski reduction

and Hermite-Korkin-Zolotarev reduction have strict conditions but their computational

complexity is very high. Currently there is no polynomial-time algorithm known for

finding such a reduced basis. A reduction method where there exists a polynomial-time

algorithm is the Lenstra-Lenstra-Lovász (LLL) algorithm which will be described later

in this chapter.

As mentioned in Section 2.1, the basis BT and B span the same lattice as long

the transformation matrix T is an unimodular matrix. The goal of lattice reduction

algorithms is to find a matrix T transforming the old basis B into a new basis B̃=BT

which fulfills the underlying reduction criterion. In order to achieve such a reduced basis

B̃ the algorithms use several elementary column operations on the basis matrix B until

the requirements of the lattice reduction method are fulfilled [11]. These elementary

column operations are:

• Reflection: A specific basis matrix column is multiplied by −1. The corresponding

unimodular matrix is denoted as T
(`)
R =I−2e`e

T
` . Transforming the basis matrix B

according to B̃=BT
(`)
R yields a new basis with a reflected column vector b̃`=−b`

whereas the remaining column vectors are unchanged.
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• Swap: Two columns are interchanged. Written in terms of basis vectors k and `

this reads as b̃` = bk and b̃k = b`. The unimodular transformation matrix for a

swap of columns k and ` is T
(k,`)
S =I− eke

T
k − e`e

T
` + eke

T
` + e`e

T
k .

• Translation: The µth multiple of the kth column is added to the `th column of

the basis matrix. The resulting vector builds the `th column of the new lattice

basis, i.e., b̃` = b` + µbk, where µ ∈ Z. The unimodular matrix here is given by

[T
(k,`)
T ]µ=I + µeke

T
` .

A sequence of the above mentioned elementary column operations forms the unimodular

matrix T, which transforms the given basis B into the reduced basis B̃.

LLL Reduction

In 1982, Lenstra, Lenstra, and Lovász [9] presented their famous LLL reduction algo-

rithm, which produces from any given lattice basis the so-called LLL-reduced basis in

polynomial time. A lattice basis B̃ is called LLL-reduced with parameter δ ∈ (1
4
, 1] if

the two following conditions are fulfilled:

|r̃k,`| ≤ 1
2
|r̃k,k|, for 1≤k< `≤m, (2.8a)

δ |r̃`−1,`−1|2 ≤ |r̃`,`|2 + |r̃`−1,`|2, for ` = 2, . . . ,m. (2.8b)

Here, r̃k,` denotes the elements of the upper triangular matrix R̃, where B̃=Q̃R̃.

The first inequality is the condition for size-reduction. It states that the component

of any vector b̃` with ` > k into the direction of q̃k is not larger than half the length

of the component of b̃k into the same direction. To see the involved entries of R̃ for a

fixed k, for example k=2, we write



Chapter 2. Lattice Theory 12

[
b̃1 b̃2 b̃3 . . . b̃m

]
=

[
q̃1 q̃2 . . . q̃m

]


r̃11 r̃12 r̃13 . . . r̃1m

r̃22 r̃23 . . . r̃2m

r̃33 . . . r̃3m

. . .
...

r̃mm


.

The basis vectors b̃2, . . . , b̃m and their regarding components into the direction of q̃2

are highlighted here. The off-diagonal entries (shown in blue) have to be smaller than

the half of the corresponding diagonal element (shown in red).

If this condition is fulfilled for every row, i.e., for 1 ≤ k ≤ m, the lattice basis B̃ is

size-reduced. Whenever an off-diagonal element r̃k,` is not fulfilling the size-reduction

condition (2.8a), the translation b̃` ←− b̃` − µb̃k with µ = dr̃k,`/r̃k,kc is performed,

where d·c denotes rounding to the nearest integer.

The second inequality (2.8b) is the so-called Lovász condition. The inequality relates

the squared component of b̃`−1 orthogonal to the space spanned by the basis vectors

b̃1, . . . , b̃`−2, i.e., |r̃`−1,`−1|2, to the sum of the squared components of b̃` orthogonal to

the same space, |r̃`,`|2 + |r̃`−1,`|2. For an example let us assume `=3. According to

[
b̃1 b̃2 b̃3 . . . b̃m

]
=

[
q̃1 q̃2 . . . q̃m

]


r̃11 r̃12 r̃13 . . . r̃1m

r̃22 r̃23 . . . r̃2m

r̃33 . . . r̃3m

. . .
...

r̃mm


,

the Lovász condition compares the components of b̃3 orthogonal to span{b̃1} (shown in

blue) and the component of b̃2 orthogonal to span{b̃1} (shown in red). The parameter

δ provides a trade-off between the quality of the reduced basis and the computational
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complexity of the algorithm to achieve this reduced basis. A larger δ increases the

orthogonality of the obtained lattice basis. In [9] the parameter was originally chosen

as δ= 3/4. In case the Lovász condition is not fulfilled, the two involved vectors are

swapped, i.e., b̃`−1 ←→ b̃` which leads to a more orthogonal lattice basis.

After the swapping of basis vectors, the lattice basis may not be size-reduced any

more, so again size-reduction is applied. These two processes, namely finding a shorter

basis via size reduction for a given orthogonalization of the basis and finding a better

orthogonalization via swapping of basis vectors for a given basis, are iteratively used

by the LLL algorithm until both conditions, (2.8a) and (2.8b) are fulfilled.

Algorithm 1 shows the LLL algorithm provided by Wübben [12]. Given the QR-

decomposition of B we get the QR-decomposition of the LLL-reduced basis B̃ and the

corresponding transformation matrix T as an output. In this algorithm the column

swaps and translations are performed directly on the matrices R̃ and T. Therefore a

QR-decomposition is not necessary after each basis update.

2.3 Closest Lattice Point Search

Given a point y ∈ Rn and a lattice L lying in the same space, the goal of the closest

lattice point search is to find the lattice point x ∈ L that is closer to the point y than

any other lattice point, i.e.

‖y − x‖ ≤ ‖y − z‖, for all z ∈ L, (2.9)

where ‖ · ‖ denotes the Euclidian norm. We will use CPt{y,L} to denote closest point

search. With definition of the Voronoi region in (2.4) we can express the closest point

search alternatively as

x = CPt{y,L} ⇐⇒ y ∈ V(L) + x, (2.10)
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Algorithm 1 LLL algorithm

Input: Q,R
Output: Q̃, R̃,T
1: Initialization: Q̃ := Q, R̃ := R,T := Im
2: ` = 2
3: while ` ≤ m do
4: for k = `− 1 to 1 do
5: µ = dR̃(k, `)/R̃(k, k)c
6: if µ 6= 0 then
7: Translation:
8: R̃(1 : k, `) := R̃(1 : k, `)− µR̃(1 : k, k)
9: T(:, `) := T(:, `)− µT(:, k)
10: end if
11: end for
12: if δR̃(`− 1, `− 1)2 > R̃(`, `)2 + R̃(`− 1, `)2 then
13: Columnswap:
14: R̃(:, `− 1)←→ R̃(:, `)
15: T(:, `− 1)←→ T(:, `)
16: Calculate Givens rotation matrix θ such that element R̃(`, `−1) becomes zero:

17: Θ =

[
α β
−β α

]
with α = R̃(`−1,`−1)

||R̃(`−1:`,`−1)|| , β = R̃(`,`−1)

||R̃(`−1:`,`−1)||

18: R̃(`− 1 : `, `− 1 : m) := ΘR̃(`− 1 : `, `− 1 : m)
19: Q̃(:, `− 1 : `) := Q̃(:, `− 1 : `)ΘT

20: ` := max{`− 1, 2}
21: else
22: ` := `+ 1
23: end if
24: end while
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that is a search for the shifted Voronoi region the given point y is part of.

Solutions to the closest lattice point search have numerous applications. In the

context of MIMO (multiple input-multiple output) communications, where we consider

several transmit and receive antennas, the closest lattice point search provides a solution

for maximum-likelihood (ML) detection. Another example is vector perturbation [13]

where the closest point search is used for precoding in a wireless MIMO scenario. A field

where the closest lattice point search is often required is cryptography/cryptanalysis.

In signal processing, the closest lattice point search is potentially useful for integer

programming problems, where within an optimization problem some or all variables

are restricted to be integer. An example for solving an integer least squares problem in

the context of global positioning system (GPS) is given in [14].

The closest lattice point search is known to be NP-hard for randomized reductions

[15]. However, there are algorithms that compute the closest lattice point in reasonable

time. A good survey on algorithms for the closest point search in lattices without a

regular structure is given in [2]. The basic approach is to define a certain region in which

the optimal lattice point must lie and then find all the lattice points inside this region.

Many closest lattice point search algorithms are based on the Kannan or the Pohst

strategy. A variant of the latter is known as the sphere decoder in the communication

field [16].

There are fast approximate algorithms computing the closest point. Babai [3] pre-

sented two procedures computing an approximate closest lattice point. One is called the

rounding off-procedure and the other one is known as Babai’s nearest plane algorithm.

Both are not guaranteed to find the closest point.

The performance of algorithms obtaining or approximating the closest point strongly

depends on the basis matrix of a lattice. The best results to the closest point problem are

obtained by searching in a lattice using short and orthogonal basis vectors. Therefore,

it is advantageous to apply lattice reduction first. The approach is the following:
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U + v

y

y′

y′′

v

bm

b∗m

U

U + bm

Figure 2.4: Illustration of Babai’s nearest plane method. The x-axis represents the
m-1-dimensional subspace U and the y-axis is perpendicular to U.

1. Find an improved basis by using lattice reduction. The original and the reduced

basis are related via an unimodular matrix.

2. Solve the closest point problem in the lattice described by the reduced basis

matrix.

3. Transform the result back to the original domain using the unimodular matrix.

A common strategy is to reduce the lattice according to the LLL-reduction method,

because this method is only polynomial in time.

2.3.1 Babai’s Nearest Plane Algorithm

Let L be a lattice of full rank and given by the basis vectors b1, . . . ,bm. The nearest

plane algorithm finds a point w ∈ L that is close to a given point y ∈ Rn. The point

obtained is not guaranteed to be the closest point to y, but if the basis of the lattice L

is LLL-reduced, ‖y−w‖ is within an exponential factor of the minimum value. In the

following the principle of the nearest plane algorithm is described. Figure 2.4 illustrates

Babai’s nearest plane method [17].
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Let U be the linear subspace spanned by {b1, . . . ,bm−1}, i.e.,

U =
m−1∑
`=1

r`b`, r` ∈ R, (2.11)

and the corresponding sublattice L′=L ∩U given by

L′ =
m−1∑
`=1

z`b`, z` ∈ Z. (2.12)

The algorithm finds v ∈ L such that the distance between y and the plane U + v

is minimal. Let y′ be the orthogonal projection of y onto the plane U + v. Let

y′′ = y′ − v and therefore y′′ ∈ U. Recursively, solve the closest point problem of y′′

to obtain v′ ∈ L′. The result is given by w = v + v′. To find v and the projected

query point y′ we proceed as follows. Let us write y as a linear combination of the

orthogonalized basis, that is y=
∑m

=̀1 γ`b
∗
` . Let bγme denote the integer nearest to γm.

Then y′=
∑m−1

=̀1 γ`b
∗
` + bγmeb∗m, and v=bγmebm.

Algorithm 2 Babai nearest plane algorithm

Input: y ∈ Rn,B ∈ Rn×m

Output: x ∈ L(B)
1: [Q,R] = QR(B)
2: y∗ = QTy
3: c(m) = dy∗(m)/R(m,m)c
4: for k = m− 1 to 1 do
5: c(k) = d(y∗(k)−R(k, k + 1 : m)c(k + 1 : m))/R(k, k)c
6: end for
7: w = Bc

Algorithm 2 shows a version of Babai’s nearest plane algorithm that works with a

QR-decomposition of the lattice basis B. In line 3 we obtain the integer value for the

mth layer describing the nearest plane to the query point. For the next layers with

dimension m − 1 down to 1 we take into account previous decisions on higher layers

and substract their influence on the layer under investigation.

In the field of MIMO detection, Babai’s nearest plane algorithm is referred to as suc-



Chapter 2. Lattice Theory 18

cessive interference cancelation (SIC) or decision feedback detection. The data symbols

are detected successively by canceling the contribution of previously detected symbols.

For the detection of a data symbol, yet undetected symbols are suppressed (“nulled

out”). The fact that a decision on a specific layer will effect all subsequent decisions

leads to error propagation whenever a wrong decision is made. Therefore it is advanta-

geous to detect the most reliable layers first.



3
Uniformly Sampled

Polynomial Phase Estimation

This chapter deals with the estimation of a uniformly sampled polynomial phase sig-

nal, which has several applications in electrical engineering, such as radar, sonar and

telecommunications.

Considering the polynomial phase signal of order one, we have two coefficients to

estimate, namely the phase and the frequency. This special case is better known as

frequency estimation and well studied [18]. Polynomial phase signals of higher order

occur in radar and sonar applications where they describe the motion of a target. Fur-

thermore they are applicable to model sounds that are emitted by bats or dolphins for

echo location [4].

First we present the angular least squares phase estimator. We will see that the esti-

mation problem can be seen as a closest point search in a lattice. In Section 3.2 the

identifiability of polynomial phase parameters is treated. Whenever there is the pos-

sibility that several sets of phase coefficients are mapped to the same signal we can’t

obtain a unique solution. Therefore a so-called identifiable region is introduced, which

specifies a region in which the parameters have to lie in order to get a unique solution.

Furthermore we will discuss a procedure that resolves aliasing.

19
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In the concluding section, some results of Monte-Carlo simulations of the angular least

squares estimator for uniformly sampled polynomial phase samples are shown.

3.1 Angular Least Squares Phase Unwrapping

In this section we describe an estimator for the phase parameters of a polynomial

phase signal. The estimator is performing phase unwrapping in a least squares manner.

The least squares problem can be solved by using the closest lattice point search. A

polynomial phase signal of order m can be modeled in continuous time as

y(t) = A(t)ej2π(p0+p1t+···+pmtm) + w(t), (3.1)

where A(t) is the signal amplitude, w(t) describes the additive complex noise and

p0, . . . , pm denote the polynomial phase parameters. The estimation of the phase pa-

rameters is based on a set of samples of y(t). Within this chapter we consider uniform

sampling, where the sampling points {tn}Nn=1 are regularly spaced. The distance be-

tween two consecutive time instants is denoted as ∆= tn− tn−1. By uniformly sampling

the signal y(t) at time instants {tn}Nn=1 we get the discrete model

yn = Ane
j2π(p0+p1n∆+···+pm(n∆)m) + wn, (3.2)

where n=1, 2, . . . , N . Without loss of generality we will set ∆=1 here. The argument

of the signal yn, normalized by 2π, reads

θn =
∠yn
2π

=
m∑
k=0

pkn
k + vn, (3.3)

where vn is the phase noise caused by the additive noise wn and the signal amplitude

An. In case the additive noise wn is complex Gaussian and the signal amplitude An is

constant, the probability density function (pdf) of the phase noise vn is the projected
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normal distribution (see (3.41) below). Let us rewrite (3.3) in vector form, i.e.,

θ = Xp + v, (3.4)

where the phase vector with normalized phase entries is denoted by θ = (θ1 . . . θN)T ,

the phase noise vector by v = (v1 . . . vN)T , and the parameter vector of length m by

p=(p1 . . . pm)T . The matrix X is the N ×m Vandermonde matrix

X =
[
n0 . . .nm

]
=



1 1 · · · 1

1 2 · · · 2m

...
...

. . .
...

1 N · · · Nm


, (3.5)

with nk=(1k 2k . . . Nk)T .

If the phase θ is given, the parameter vector p could be directly estimated according

to a simple least squares approach, that is

p̂ = argmin
p∈Rm+1

‖θ −Xp‖2. (3.6)

Instead of the true phase θ, however, the measurements usually provide a wrapped

version of θ, denoted as θ̃=(θ̃1 . . . θ̃N)T . The entries of θ̃ are given by

θ̃n =
m∑
k=0

pkn
k + vn −

⌊
m∑
k=0

pkn
k + vn

⌉
, (3.7)

where b·e denotes rounding to the nearest integer. The range of the wrapped phase θ̃n

is [−1/2, 1/2). The wrapping of the phase corresponds to the subtraction of the nearest

integer in (3.7). It can be modeled by an integer variable un =−
⌊∑m

k=0 pkn
k + vn

⌉
.
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Therefore we can rewrite (3.7) as

θ̃n =
m∑
k=0

pkn
k + un + vn, (3.8)

or in terms of vectors

θ̃ = Xp + u + v, (3.9)

with u=(u1 . . . uN)T .

We see that the true phase of the signal θ and the wrapped phase θ̃ are related via

the integer vector u as

θ̃ = θ + u. (3.10)

An illustration of the phase wrapping is provided in Figure 3.1.

To estimate the phase parameters based on the wrapped phase, we use an extended

least squares approach. The parameter vector p and the unwrapping vector u are

jointly estimated according to

(p̂, û) = argmin
p∈Rm+1,u∈ZN

‖θ̃ −Xp− u‖2. (3.11)

Fixing the unwrapping vector u and using linear regression for minimizing with respect

to p we obtain

p̂ = X#(θ̃ − u), (3.12)

where X# =(XHX)−1XH is the left pseudoinverse of X. Inserting p̂ into (3.11) yields

û = argmin
u∈ZN

‖B(θ̃ − u)‖2. (3.13)

Here, B = I −XX# is an orthogonal projection matrix. Equation (3.13) describes an

integer least squares problem. In the case of uniform sampling, this integer least squares

problem can be solved by using a closest point search in a lattice. Let the matrix B



Chapter 3. Uniformly Sampled Polynomial Phase Estimation 23

−3

−4

0

−1

−2

−1
2

1
2

0

5
2

7
2

3
2

1
2

0

u[n]

θ̃[n]

θ[n]

n

n

n

Figure 3.1: Illustration of the phase wrapping. The unwrapped phase is shown in
blue, the wrapped phase in red, and the corresponding unwrapping vector
in green. The dots lie on the sampling points.
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be the generator of the lattice L. Then the estimate of the unwrapping vector û is

obtained by finding the closest lattice point Bû to the query point Bθ̃, i.e.,

Bû = CPt{Bθ̃,L}. (3.14)

In order to get the desired polynomial phase estimate we have to substitute the esti-

mated unwrapping vector û for u in (3.12). This yields

p̂ = X#(θ̃ − û). (3.15)

There are many parameter vectors that correctly describe the sampled signal, but only

one corresponds to the true signal. This effect is known as aliasing. The estimated

parameter p̂ is potentially aliased. In order to get an unambiguous result for the

polynomial phase we have to resolve aliasing. A procedure that resolves aliasing will

be introduced in 3.2.1.

3.2 Identifiability of Polynomial Phase Parameters

In this section we discuss the effect of aliasing of polynomial phase signal parameters.

In spite of the interest for estimation of polynomial phase parameters, aliasing has not

been fully clarified. Some results on polynomial phase aliasing have been derived by

Ängeby [19]. As a consequence of aliasing, several sets of parameters will be mapped

to the same sampled signal.

The aim of polynomial phase estimators is to get a unique result of the phase pa-

rameters. We have to restrict the parameters to lie in a specific region, where they are

uniquely identifiable and therefore aliasing doesn’t occur. According to McKilliam [20],

this region will be called identifiable region. With this restriction on the phase param-

eters we get to know a method how to resolve possibly aliased parameter estimates.
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Furthermore we describe how to correctly compute the square error between the true

parameters and the estimated parameters.

Let us consider a polynomial phase signal of order m,

s(t) = ej2πψ(t), with ψ(t) = p0 + p1t+ p2t
2 + · · ·+ pmt

m. (3.16)

Here, ψ(t) is a polynomial of order m. As throughout this chapter, we consider uniform

sampling, where the difference between two consecutive sampling points stays constant.

The sampled polynomial phase signal then can be written as

sn = ej2π(p0+p1n+···+pmnm), (3.17)

where n is an integer. Let s = (s1 . . . sN)T be the vector of signal samples and p =

(p0 . . . pm)T the parameter vector. We are interested in unique mappings between the

phase parameters and the signal samples. This means we have one and only one pa-

rameter vector p that generates the signal samples s.

Let us consider the opposite: p and p̃=p + d are two distinct parameter vectors which

both yield the same signal samples s, that is

sn = exp

(
j2π

m∑
k=0

pkn
k

)

= exp

(
j2π

m∑
k=0

(pk + dk)n
k

)

= exp

(
j2π

m∑
k=0

pkn
k

)
exp

(
j2π

m∑
k=0

dkn
k

)
. (3.18)

This ambiguity of the parameters p and p̃ occurs if and only if

exp

(
j2π

m∑
k=0

dkn
k

)
= 1, (3.19)
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which in turn is equivalent to
m∑
k=0

dkn
k ∈ Z. (3.20)

The set of all additive parameter vectors d which lead to aliasing is written as

D =

{
d ∈ Rm+1

∣∣∣∣∣
m∑
k=0

dkn
k ∈ Z, n ∈ Z

}
. (3.21)

Let Z be the set of polynomials of order m that take on integer values when they are

evaluated at integer values. Then we can rewrite the set D as

D =
{

d ∈ coef(z)
∣∣∣ z ∈ Z}, (3.22)

where coef(z) denotes the length m + 1 vector containing the coefficients of z. An

integer basis of Z is given by the integer-valued polynomials Pk(n) [20] defined as

Pk(n) =
n(n− 1)(n− 2) . . . (n− k + 1)

k!
, (3.23)

with P0(n)=1. That is, every element of Z can be uniquely written as

c0P0(n) + c1P1(n) + · · ·+ cmPm(n) with ci ∈ Z. (3.24)

Inserting (3.24) into (3.22) yields

D =
{

coef
(
c0P0(n) + c1P1(n) + · · ·+ cmPm(n)

) ∣∣∣ ci ∈ Z
}

=
{
c0 coef

(
P0(n)

)
+ c1 coef

(
P1(n)

)
+ · · ·+ cm coef

(
Pm(n)

) ∣∣∣ ci ∈ Z
}
. (3.25)

By defining the m+ 1 square basis B̄ according to

B̄ =
[
coef

(
P0(n)

)
coef

(
P1(n)

)
. . . coef

(
Pm(n)

)]
(3.26)



Chapter 3. Uniformly Sampled Polynomial Phase Estimation 27

we can represent the set of all additive parameter vectors d where aliasing occurs in a

terms of a lattice, i.e.,

D =
{

d = B̄c
∣∣∣ c ∈ Zm+1

}
. (3.27)

An identifiable region, i.e., a region where a parameter can be uniquely described, is

built by any tessellation region of the aforementioned lattice D. In the following the

Voronoi region V(D) will be taken as a tessellation region. Considering a polynomial

phase signal of order m=3, the integer valued polynomials are

P0(n) = 1

P1(n) = n

P2(n) =
n2

2
− n

2

P3(n) =
n3

6
− n2

2
+
n

3
. (3.28)

The identifiable region is given by the Voronoi region V(D) of a lattice generated by

the basis

B̄ =



1 0 0 0

0 1 −1/2 1/3

0 0 1/2 −1/2

0 0 0 1/6


. (3.29)

3.2.1 Resolve Aliasing

Resolving aliasing means that given any polynomial coefficient vector p̃, we find the

equivalent coefficient vector within the identifiable region, denoted p. This is done by

p = p̃− CPt{p̃, D}, (3.30)

where the CPt{p̃, D} denotes the closest point search in the lattice D. Since the order

of the polynomial phase usually is not too large, the closest point can be computed by
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a sphere decoder [2].

3.2.2 Computing Square Error

In the simulations, the performance of the estimator is measured in terms of the mean

square error between true and estimated parameters. As McKilliam [20] suggested, the

square error of the kth parameter should correctly be computed as ε2
k, where εk is the

kth entry of the vector

ε = p− p̂− CPt{p− p̂, D}. (3.31)

Here, the vector of the true coefficients is denoted by p=(p0 . . . pm)T and the estimated

coefficients are written as p̂=(p̂0 . . . p̂m)T .

3.3 Performance Bounds

3.3.1 Cramér-Rao Lower Bound

In estimation theory, the Cramér-Rao lower bound (CRB) is a lower bound on the

variance of any unbiased estimator. This is useful, because any unbiased estimator can

be compared against the CRB. An estimator achieving the CRB is called efficient.

Let us consider a uniformly sampled polynomial phase signal with amplitude 1 and an

additive noise term wn, i.e.,

yn = ej2π(p0+p1n+···+pmnm) + wn. (3.32)

The noise is assumed complex Gaussian with independent real and imaginary part each

with variance σ2
c . The CRB for this scenario has been derived by Peleg and Porat [21].

An approximation for large N is given by

cov

[
N 1/2(p0 − p̂0) . . . N (2m + 1)/2(pm − p̂m)

]
≥ σ2

c

4π2
H−1, (3.33)
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where cov[·] denotes the covariance matrix and H is the (m + 1)-dimensional square

Hilbert matrix. The elements of the inverse H−1 are given analytically by

[H−1]ij = (−1)i+j(i+ j − 1)

(
n+ i− 1

n− j

)(
n+ j − 1

n− i

)(
i+ j − 2

i− 1

)2

. (3.34)

For sampling periods ∆ different from 1, the CRB has to be adapted. The polynomial

phase signal uniformly sampled with a sampling interval ∆ is given by

yn = ej2π(p0+p1n∆+···+pm(n∆)m) + wn. (3.35)

The sampling rate ν equals 1/∆ and therefore we can write the last equation as

yn = ej2π(p0+p1n/ν+···+pm(n/ν)m) + wn. (3.36)

With respect to the given sampling rate ν the CRB is derived as

cov
[
N

1/2(p0 − p̂0) . . . N
(2m + 1)/2(pm − p̂m)

]
≥ σ2

c

4π2
SH−1, (3.37)

where

S =



1 0 · · · 0

0 ν2 · · · 0

...
...

. . .
...

0 0 · · · ν2m


. (3.38)

The CRB determines a lower bound for the variance of the kth order parameter esti-

mate. We see that a higher sampling rate ν leads to a higher lower bound for the kth

order parameter due to weighting with ν2k.
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3.3.2 Asymptotic Variance of the Angular Least Squares Phase Unwrapping

The angular least squares unwrapping estimator has been derived in Section 3.1. Here,

the asymptotic properties of this estimator are dealt with. McKilliam [4] stated a proof

that the angular least squares estimator is strongly consistent and derived its central

limit theorem.

As mentioned in Subsection 3.2.2, the dealiased difference between the true and the

estimated parameters is given by ε=p− p̂−CPt{p− p̂, D}. The central limit theorem

states that as N goes to infinity, the distribution of

[
N 1/2ε0 . . . N (2m + 1)/2εm

]
(3.39)

converges to normal distribution with zero mean and covariance matrix

σ2(
1− f(−1

2
)
)2 H−1, (3.40)

where σ2 is the unwrapped variance of the projected circular random variables just

explained. In Section 3.1 we have considered the additive noise term wn to be complex

Gaussian. The distribution of the complex argument of a complex Gaussian random

variable is called the projected normal distribution.

Let us consider the special case of uncorrelated real and imaginary part with variance

σ2
N each and the mean of the complex random noise equals 1. The corresponding pdf

is given by Quinn [22] as

f(v) = e
− 1

2σ2
N + cos(2πv)e

− sin2(2πv)

2σ2
N

√
π

2σ2
N

(
1 + erf

(√
1

2σ2
N

cos(2πv)

))
. (3.41)

The unwrapped variance σ2, which is used in (3.40), needs to be computed numerically
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according to

σ2 =

+ 1
2∫

− 1
2

v2f(v) dv. (3.42)

3.4 Numerical Simulations

In this section we evaluate the statistical performance of the angular least squares

estimator using Monte Carlo simulations. The angular least squares estimator has

been presented in Section 3.1. It has been shown that the estimation boils down to an

integer least squares problem, which in turn is cast into the closest lattice point problem

Bû = CPt{Bθ̃,L}. In our simulations the closest point problem is approached in the

following way:

• The last m + 1 columns of the lattice generated by B = I − XX# are dropped.

The new basis matrix is denoted by BN−m−1.

• The LLL algorithm (Algorithm 1) with parameter δ= 3/4 is applied to the basis

BN−m−1 resulting in the reduced basis B̃red.

• The closest lattice point problem in the lattice with generator B̃red reads

B̃redûred = CPt{Bθ̃, B̃redZm}. (3.43)

We use Babai’s nearest plane algorithm (Algorithm 2) to obtain an approximate

solution for this problem.

• The result is transformed back to the original domain according to ûN−m−1 =

Tûred, where T is the unimodular transformation matrix derived by the LLL

algorithm. We get the unwrapping vector û by appending m+1 zeros to ûN−m−1.
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The parameter estimates are then calculated as

p̂ = X#(θ̃ − û).

As a consequence of the zero padding we might get an aliased version of the true

estimate. Here, we resolve aliasing according to (3.30). In the simulations a polynomial

phase signals of order m=3 is assumed. The noise term wn is complex Gaussian with

independent real and imaginary parts having variance σ2
c . In this case the Cramér-Rao

bound (see Subsection 3.3.1) is approximated by

σ2
c

4π2
SH−1, (3.44)

where S takes into account the sampling rate. Also plotted next to the CRB is the

asymptotic variance of the angular least squares estimator (ALS), derived in Subsection

3.3.2. In the simulations, the MSE of the estimator after 2500 trials is computed for

each value of SNR = 1/2σ2
c in the range [0dB, 20dB]. The MSE is calculated according

to (3.31). In the following figures the MSE for each parameter is plotted in comparison

to the CRB and the ALS.

For Figure 3.2 the true parameters are given by p=(0.1, 0.5, 0.01, 0.005)′. We vary

the number of sampling points N on a constant observation interval of the polynomial

phase signal (T =50). It can bee seen that the estimator performs close to optimum if

the signal-to-noise ratio is sufficiently high. The SNR threshold appears around 10dB

and moves just slightly as N increases. Furthermore, the threshold is more pronounced

for largem. In Figure 3.3 we see how the estimator performs without the LLL algorithm.

A rather significant penalty of about 3dB is paid in this case.

For Figure 3.4 the true parameters are uniformly distributed in the identifiable

region. The parameters are generated via p=CPt{u, D}, where D (cf. (3.27)) is gen-

erated by the basis matrix in (3.29), and u is a vector whose elements are independent
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and uniformly distributed on [0, 1). Note that Figure 3.4 also shows a curve for N=20

and T =50; in this “undersampled” case the estimator fails.
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Figure 3.2: Mean square error for each of the four parameters with T =50 and
p=(0.1, 0.5, 0.01, 0.005)′.
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Figure 3.3: Mean square error for each of the four parameters with T =50 and
p=(0.1, 0.5, 0.01, 0.005)′. No LLL algorithm is applied in this case.
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Figure 3.4: Mean square error for each of the four parameters with T =50 and
p uniformly distributed in the identifiable region.
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Nonuniformly Sampled

Polynomial Phase Estimation

In this chapter we consider nonuniformly sampled phase estimation. Again we introduce

the angular least squares estimator to get an estimate of a polynomial phase signal, but

unlike in Chapter 3 the estimation is based on nonuniform samples of a signal.

The treatment of nonuniformly sampled signal phase estimation is motivated by Ängeby

[19]. He suggests that aliasing can be avoided by nonuniform sampling, specifically,

when the signal samples are irrationally spaced. This is the case when the sampling

instants are randomly generated.

In Section 4.2 the identifiability of polynomial phase parameters in the nonuniform

sampling scenario is considered. In Section 4.3 we present some simulation results

for the nonuniformly sampled phase estimation based on the angular least squares

approach.

37
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4.1 Angular Least Squares Phase Unwrapping

Like in Chapter 3 we assume a polynomial phase signal of order m which is modeled in

continuous time as

y(t) = A(t)ej2π(p0+p1t+···+pmtm) + w(t). (4.1)

Here, A(t) is the signal amplitude, w(t) describes the additive complex noise, and

p0, . . . , pm denote the polynomial phase parameters. Again the estimation of the phase

parameters is based on a set of samples of y(t), but unlike in Chapter 3, the sampling

points {tn}Nn=1 are irregularly spaced. The sampled polynomial phase signal is written

as

y(tn) = A(tn)ej2π(p0+p1tn+···+pmtmn ) + w(tn). (4.2)

The sampled argument of the signal y(t) is given by

θ[n] =
∠y(tn)

2π
=

m∑
k=0

pkt
k
n + v[n], (4.3)

where v[n] is the phase noise caused by the additive noise w(tn) and the signal am-

plitude A(tn). By assuming the additive noise to be complex Gaussian and the signal

amplitude to be constant, the phase noise is distributed according to the projected

normal distribution (3.41).

Let v = (v[1] . . . v[N ])T denote the phase noise vector, θ = (θ[1] . . . θ[N ])T be the

phase vector with normalized entries, and p = (p1 . . . pm)T be the parameter vector of

length m. We express (4.3) in vector notation as

θ = Lp + v, (4.4)
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where L is the N ×m matrix given by

L =
[
l0 . . . lm

]
=



1 t1 · · · tm1

1 t2 · · · tm2
...

...
. . .

...

1 tN · · · tmN


. (4.5)

The length N vector l = (t1 . . . tN)T denotes the vector of the nonuniform sampling

points.

With the knowledge of the unwrapped phase θ, the parameter vector p could be

directly estimated in a least squares manner, according to

p̂ = argmin
p∈Rm+1

‖θ − Lp‖2. (4.6)

Instead of the true phase θ, the measurements correspond to a wrapped version of the

phase, where the phase values are given by

θ̃[n] =
m∑
k=0

pkt
k
n + v[n]−

⌊
m∑
k=0

pkt
k
n + v[n]

⌉
, (4.7)

and therefore lie in the interval [−1/2, 1/2). The wrapped phases are stacked into the vec-

tor θ̃=(θ̃[1] . . . θ̃[N ])T . As done in the uniform sampling case, we model the wrapping by

an integer vector u=(u1 . . . uN)T whose entries are given by un=−
⌊∑m

k=0 pkt
k
n + v[n]

⌉
.

The true phase θ of the signal and the wrapped phase θ̃ are related via the integer

vector u as

θ̃ = θ + u. (4.8)

An illustration of the unwrapped phase θ, the wrapped phase θ̃ and the corresponding

unwrapping vector u is given in Figure 4.1. Inserting (4.4) into (4.8) yields

θ̃ = Lp + u + v. (4.9)
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Figure 4.1: Illustration of the phase wrapping. The unwrapped phase is shown in
blue, the wrapped phase in red, and the corresponding unwrapping vector
in green. The dots lie on the sampling points.
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For the estimation we use an extended least squares approach where the estimation of

the parameter vector p and the unwrapping vector u is done jointly, written as

(p̂, û) = argmin
p∈Rm+1,u∈ZN

‖θ̃ − Lp− u‖2 (4.10)

By fixing the unwrapping vector u and using linear regression for minimizing with

respect to p we get

p̂ = L#(θ̃ − u), (4.11)

where L# = (LHL)−1LH is the left pseudoinverse of L. By substituting p in (4.10) by

the estimated vector p̂, we obtain

û = argmin
u∈ZN

‖B(θ̃ − u)‖2, (4.12)

where B=I−LL# is an orthogonal projection matrix into the space orthogonal to the

column span of L.

Aforementioned Equation (4.12) describes an integer least squares problem which po-

tentially can be solved by using the closest point search in the lattice generated by B.

The approach is the same as in the uniform sampled case. First, the estimate of the

unwrapping vector û is determined by finding the closest lattice point Bû to the query

point Bθ̃, i.e., Bû = CPt{Bθ̃,L}. Inserting the achieved unwrapping vector û into

(4.11), we get an estimated parameter vector according to

p̂ = L#(θ̃ − û). (4.13)

Since there is no aliasing1 occurring whenever the sampling points are irrationaly spaced,

we don’t have to resolve aliasing like we have done in the uniformly sampled case.

1In fact aliasing w.r.t.p0 can occur. This corresponds to a constant phase shift of the signal samples
by a multiple of 2π. However, it does not need to be resolved because the wrapping operation always
restricts the initial phase to lie in [−1/2, 1/2).
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4.2 Identifiability of Polynomial Phase Parameters

In Section 3.2 we faced the problem of aliasing in the uniform sampling scenario. Ängeby

[19] suggests that aliasing can be avoided by nonuniform sampling if the time interval

between some samples is irrational. McKilliam [20] observes that this is true in the

noiseless case but leads to a large estimation error when noise is present.

Let y(t) be a polynomial phase signal in continuous time, i.e.,

y(t) = A(t)ej2π(p0+p1t+···+pmtm) + w(t). (4.14)

The nonuniformly sampled version of the signal y(t) with given parameter vector p

reads as

yp(tn) = A(tn)ej2π(p0+p1tn+···+pmtmn ) + w(tn). (4.15)

We assume the noiseless case, i.e., w(t) = 0 and furthermore the amplitude A(t) = 1.

The noiseless signal is then given by

sp(tn) = exp

(
j2π

m∑
k=0

pkt
k
n

)
. (4.16)

Using Kronecker’s approximation theorem [23] it can be shown that for ε > 0 there

exists a p̃ 6= p such that ‖p̃− p‖ > δ for any δ > 0 and

|sp(tn)− sp̃(tn)|2 < ε, (4.17)

for all n = 1, 2, . . . , N . There are an infinite number of such p̃ for arbitrary large δ.

In other words, the true signal described by p is close to an infinite number of signals

each described by p̃. The least squares estimator of p considering the noisy signal
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sp(tn) + w(tn) is given by

argmin
p̃∈Rm+1

N∑
n=1

|sp(tn) + w(tn)− sp̃(tn)|2. (4.18)

As a consequence of (4.17) we can not be sure to obtain the true parameter p because

of the infinite number of close signals.

In the uniform sampling case we have seen that several parameter lead to the same

signal (this effect was called aliasing). We have solved this problem by restricting the

parameters to lie in an identifiable region and have resolved the aliasing effect. When the

signal is nonuniformly sampled with irrational sampling instants we avoid the ambiguity

of parameters. The parameters are therefore uniquely identifiable.2 However, there

remains the drawback of having an infinite amount of almost ambiguous parameters.

This is crucial when we consider a noisy signal.

4.3 Simulations

In this section we present Monte Carlo simulations of the angular least squares esti-

mator, which we have introduced in Section 4.1. The occurring closest lattice point

problem Bû = CPt{Bθ̃,L} can’t be exactly solved by the approach from Section 3.4.

Therefore we use the following suboptimal ad hoc approach:

• The first m + 1 columns of the lattice generated by B = I − LL# are dropped.

The new basis matrix is denoted by BN−m−1.

• The LLL algorithm (Algorithm 1) with parameter δ= 3/4 is applied to the basis

BN−m−1; the reduced basis is denoted by B̃red.

2This excludes the parameter p0 which describes the constant phase component.
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• The closest lattice point problem in the lattice with the generator B̃red reads as

B̃redûred = CPt{BN−m−1θ̃N−m−1, B̃redZm}. (4.19)

We use Babai’s nearest plane algorithm (Algorithm 2) to obtain an approximate

solution to the problem (4.19). Note that the “observed” point is determined by

θ̃N−m−1, which is obtained by dropping the first m+ 1 entries of θ̃.

• The result is transformed back to the original domain according to ûN−m−1 =

Tûred, where T is the unimodular transformation matrix derived by the LLL

algorithm.

The parameter estimates are calculated according to

p̂ = L#
N−m−1(θ̃N−m−1 − ûN−m−1), (4.20)

where LN−m−1 is obtained by dropping the first m+ 1 rows of L. Since there is no zero

padding of the unwrapping vector, we don’t get an aliased version as in Chapter 3.4.

In the simulations a polynomial phase signals of order m= 3 is used. The noise term

w(tn) is complex Gaussian with independent real and imaginary parts having variance

σ2
c . In this case the Cramér-Rao bound (see Subsection 3.3.1) is approximated by

σ2
c

4π2
SH−1, (4.21)

where S takes into account the average sampling rate ν (see definition of S in (3.38)).

Also plotted next to the CRB is the asymptotic variance of the angular least squares

estimator (ALS), derived in Subsection 3.3.2. The MSE of the estimator is computed

for each value of SNR = 1/2σ2
c in the range [0dB, 20dB]. For the simulations we took

25 sets of randomly generated sampling points, and ran 100 trials for each set. The

MSE for each parameter pk (calculated via (pk − p̂k)2) is plotted against the CRB and
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the ALS in the following figures. The true parameters are uniformly distributed over a

region obtained from the identifiable region (see Section 3.4) by scaling with a factor

1/2.

In Figure 4.2 the number of sampling points N is varied, while the observation

interval of the polynomial phase signal (T =10) is constant. It can bee seen that except

for N=20, the estimator performs well when the SNR is above 15dB. Furthermore we

can see gap between the MSE of the estimator and the corresponding CRB in the high

SNR scenarios. This gap gets smaller as the number of sampling points N increases.

The gap could be due to the fact that the estimation is based on a reduced data vector

θ̃N−m−1. Since we are always dropping m+1 columns, this effect is negligible for a high

number of sampling points. In Figure 4.2, a curve for N = 20 and T = 50 is plotted.

In this “undersampled” case the estimator fails. In Figure 4.3 the observation interval

of the polynomial phase signal is set to (T = 20). For N ≤ 100 the estimator doesn’t

work properly, this suggests that one has to satisfy a minimum average sampling rate

ν = N/T . From the simulation results it seems that a minimum average sampling rate

ν = 10 is sufficient. Figure 4.4 displays curves for a fixed number of sampling points

T =500. For observation time intervals T ≤50 the estimation of the phase parameters

works. This supports the assumption of a required average sampling rate ν = 10.

In the simulations the calculation of the MSE is a crucial point. If Babai’s algorithm

is not delivering the closest lattice point, the unwrapping vector can get large due to

the transformation with the unimodular matrix T. This can lead to large differences

between the parameter estimates and the true parameters. In the case of uniformly

sampled polynomial phase estimation we have faced large differences between true and

estimated parameters as well but there it has been caused by the aliasing effect.
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Figure 4.2: Mean square error for each of the four parameters with T =10 and
p uniformly distributed in a downscaled identifiable region.
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Figure 4.3: Mean square error for each of the four parameters with T =20 and
p uniformly distributed in a downscaled identifiable region.
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Figure 4.4: Mean square error for each of the four parameters with N=500 and
p uniformly distributed in a downscaled identifiable region.
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Fourier-Based Phase

Estimation

In the previous Chapters 3 and 4 we used an angular least squares approach to estimate

a polynomial phase signal. The polynomial phase description offers the possibility to

model signals with high dynamics. If a bandlimited phase signal needs to be estimated,

it might be of advantage to express the phase in terms of a Fourier basis. In this chapter

we estimate a Fourier-based signal. Like in Chapter 3 the estimation relies on uniformly

taken samples of the signal.

In Section 5.1 the angular least squares approach is formulated. Section 5.2 deals

with the identifiability of Fourier-based phase signals. In the concluding section some

simulation results for Fourier-based phase estimation are given.

49
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5.1 Angular Least Squares Phase Unwrapping

We assume a continuous-time signal which is modeled as

y(t) = A(t)ej2πψ(t) + w(t), with 0 ≤ t < T. (5.1)

Here, A(t) being the signal amplitude, and w(t) denoting the additive complex noise.

The phase function ψ(t) is modeled using a Fourier basis expansion, i.e.,

ψ(t) =
m∑
k=0

fk(t)pk, (5.2)

where the linearly independent Fourier basis functions fk(t) are given by

f0(t) = 1

f1(t) = cos
(

2π
t

T

)
f2(t) = sin

(
2π

t

T

)
f3(t) = cos

(
4π

t

T

)
f4(t) = sin

(
4π

t

T

)
... (5.3)

Within this chapter we consider uniform sampling. This means, the sampling points

are regularly spaced, i.e., {tn}Nn=1 =1, 2, . . . , N . The sampled signal y[n] is written as

y[n] = A[n]ej2πψ[n] + w[n], with ψ[n] =
m∑
k=0

fk[n]pk. (5.4)
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Here, ψ[n] is the sampled phase function which is expressed by the basis expansion

using the sampled Fourier basis

f0[n] = 1

f1[n] = cos
(

2π
n

N

)
f2[n] = sin

(
2π

n

N

)
f3[n] = cos

(
4π

n

N

)
f4[n] = sin

(
4π

n

N

)
... (5.5)

The sampled argument of the signal y(t) is given by

θ[n] =
∠y[n]

2π
=

m∑
k=0

fk[n]pk + v[n], (5.6)

where v[n] is the phase noise caused by the additive noise w[n] and the signal amplitude

A[n]. By assuming the additive noise to be complex Gaussian and the signal ampli-

tude to be constant, the phase noise is distributed according to the projected normal

distribution (3.41).

Let v = (v[1] . . . v[N ])T be the phase noise vector, θ = (θ[1] . . . θ[N ])T the phase

vector with normalized phase entries, and p = (p1 . . . pm)T the parameter vector of

length m. We rewrite (5.6) in a vector notation, that is

θ = Fp + v, (5.7)
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where F is the N ×m Fourier matrix

F =
[
f0 . . . fm

]
=



1 cos
(
2π 1

N

)
· · · fm[1]

1 cos
(
2π 2

N

)
· · · fm[2]

...
...

. . .
...

1 cos
(
2πN

N

)
· · · fm[N ]


. (5.8)

Here, fk = (fk[1] . . . fk[N ])T is the column vector of the Fourier basis function fk[n]

evaluated at the sampling points.

If the phase θ is given, the parameter vector p could be directly estimated according

to a simple least squares approach, that is

p̂ = argmin
p∈Rm+1

‖θ − Fp‖2. (5.9)

Instead of the true phase θ, a wrapped version of the phase is measured, where the

phase values are given by

θ̃[n] =
m∑
k=0

fk[n]pk + v[n]−

⌊
m∑
k=0

fk[n]pk + v[n]

⌉
. (5.10)

The range of the wrapped phase θ̃[n] is [−1/2, 1/2). We again model the wrapping by an

integer vector u=(u1 . . . uN)T whose entries are given by un=−
⌊∑m

k=0 fk[n]pk + v[n]
⌉
.

The true phase of the signal θ and the wrapped phase θ̃ are related via the integer

vector u, such that

θ̃ = θ + u. (5.11)

An illustration of the unwrapped phase θ, the wrapped phase θ̃, and the corresponding

unwrapping vector u is given in Figure 5.1. Inserting (5.7) into (5.11) yields

θ̃ = Fp + u + v. (5.12)
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Figure 5.1: Illustration of the phase wrapping. The unwrapped phase is shown in
blue, the wrapped phase in red, and the corresponding unwrapping vector
in green. The dots lie on the sampling points.
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We use an extended least squares approach, where the parameter vector p and the

unwrapping vector u are jointly estimated, that is

(p̂, û) = argmin
p∈Rm+1,u∈ZN

‖θ̃ − Fp− u‖2. (5.13)

Fixing the unwrapping vector u and using linear regression for minimizing with respect

to p we obtain

p̂ = F#(θ̃ − u), (5.14)

where F# =(FHF)−1FH is the left pseudoinverse of F. Inserting p̂ into (5.13) yields

û = argmin
u∈ZN

‖B(θ̃ − u)‖2, (5.15)

where B = I − FF# is the orthogonal projection matrix into the space orthogonal to

the column span of F.

Equation (5.15) describes an integer least squares problem. We use an approach

where the integer least squares problem is viewed as a closest point search in the lattice

generated by B. First, the estimate of the unwrapping vector û is determined by

finding the closest lattice point Bû to the query point Bθ̃, i.e., Bû=CPt{Bθ̃,L}. By

inserting the unwrapping vector û back into (5.14), we obtain an estimated parameter

vector according to

p̂ = F#(θ̃ − û). (5.16)

5.2 Identifiability of Fourier Based Phase Parameters

The effect of aliasing, i.e., distinct parameter sets lead to the same signal samples,

occurs when uniformly samples of a polynomial phase signal are taken. This has been

treated in Section 3.2. In this section we investigate the identifiability of uniformly

sampled Fourier-based signals.
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Let s[n] denote a noiseless, uniformly sampled Fourier-based phase signal, that is

s[n] = ej2πψ[n], with ψ[n] =
m∑
k=0

fk[n]pk. (5.17)

In vector notation, s=(s[1] . . . s[N ])T is the vector of signal samples and p=(p0 . . . pm)T

the parameter vector. Aliasing means that several parameter vectors p are mapped to

the same signal sample values s.

We assume the following: p and p̃ = p + d are distinct parameter vectors which both

have the same signal samples s, that is

s[n] = exp

(
j2π

m∑
k=0

fk[n]pk

)

= exp

(
j2π

m∑
k=0

fk[n](pk + dk)

)

= exp

(
j2π

m∑
k=0

fk[n]pk

)
exp

(
j2π

m∑
k=0

fk[n]dk

)
, (5.18)

and therefore

exp

(
j2π

m∑
k=0

fk[n]dk

)
= 1. (5.19)

As a consequence, the ambiguity between p and p̃ occurs if and only if

m∑
k=0

fk[n]dk ∈ Z. (5.20)

In (5.8) we see that the first column f0 is the only one consisting exclusively of integer

elements. Therefore, solely the parameter vector

d =



d0

0

...

0


, with d0 ∈ Z, (5.21)
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leads to an ambiguity between p and p̃. The additive parameter vector d of (5.21)

corresponds to a shift of all signal samples by a multiple of 2π. Therefore, the aliasing

only appears in the constant phase component. However, this does not need to be

resolved because the wrapping operation always restricts the initial phase to lie in

[−1/2, 1/2).

5.3 Simulations

In this section we present Monte Carlo simulations of the angular least squares estimator

introduced in Section 5.1. Due to the structure of B the closest point problem Bû =

CPt{Bθ̃,L} can’t be exactly solved using the approach from Section 3.4. As in the

nonuniform case we use a suboptimal ad hoc approach:

• The first m + 1 columns of the lattice generated by B = I − FF# are dropped.

The new basis matrix is denoted by BN−m−1.

• The LLL algorithm (Algorithm 1) with parameter δ= 3/4 is applied to the lattice

with basis BN−m−1; the reduced basis is denoted by B̃red.

• The closest lattice point problem in the lattice with the generator B̃red reads as

B̃redûred = CPt{BN−m−1θ̃N−m−1, B̃redZm}. (5.22)

We use Babai’s nearest plane algorithm (Algorithm 2) to obtain an approximate

solution to the closest point problem (5.22). Note that the “observation” is de-

termined by θ̃N−m−1, which is obtained by dropping the first m + 1 entries of

θ̃.

• The result is transformed back to the original domain according to ûN−m−1 =

Tûred, where T is the unimodular transformation matrix derived by the LLL

algorithm.
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The parameter estimates are calculated according to

p̂ = F#
N−m−1(θ̃N−m−1 − ûN−m−1), (5.23)

where FN−m−1 is obtained by dropping the first m + 1 rows of F. There is no zero

padding of the unwrapping vector. In the simulations a Fourier-based phase signal of

order m=3 is assumed. The noise term wn is complex Gaussian with independent real

and imaginary parts having variance σ2
c . The MSE of the estimator is computed after

2500 trials for each value of SNR = 1/2σ2
c in the range [0dB, 20dB]. The MSE for each

parameter pk is calculated by averaging (pk − p̂k)2.

In Figure 5.2 the true parameters pk are randomly chosen from [0, 0.5). We can see

that the estimator works quite good above an SNR of 15dB with N = 50 and N = 60.

Somewhat surprising is that for N = 55 our estimator doesn’t work properly. Figure

5.3 shows the same behavior. Here, the true parameters pk are randomly chosen from

[0, 0.8). In the simulations the calculation of the MSE is a crucial point. If Babai’s

algorithm is not delivering the closest lattice point, the unwrapping vector can get

large due to the transformation with the unimodular matrix T. This can lead to large

differences between the parameter estimates and the true parameters. In the case of

uniformly sampled polynomial phase estimation we have faced large differences between

true and estimated parameters as well but there it has been caused by the aliasing effect.
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Figure 5.2: Mean square error for each of the four parameters with pk randomly taken
from [0, 0.5).
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Figure 5.3: Mean square error for each of the four parameters with pk randomly taken
from [0, 0.8).



6
Summary and Outlook

In this thesis, we have presented a method to estimate phase signals by using concepts

of lattice theory. First we have introduced some basics about lattices including the

description in terms of a nonunique basis matrix, the Voronoi region, the fundamental

parallelotope, and the orthogonality defect. In lattice theory a fundamental problem is

to find the closest lattice point to a given point. We have presented Babai’s nearest plane

algorithm, which is a fast algorithm that gives an approximate solution to the closest

point problem. In order for Babai’s nearest plane algorithm to perform well, the lattice

needs to be described by a basis matrix with short and fairly orthogonal vectors. Lattice

reduction algorithms obtain a reduced basis matrix with aforementioned properties. As

an example, we have discussed the LLL algorithm, which is of polynomial average

complexity and therefore often used.

Then we have presented an estimator for uniformly sampled polynomial phase sig-

nals. This estimator performs phase unwrapping in a least squares manner. The so

obtained integer least squares problem has been cast into a closest lattice point problem

which has been solved by aforementioned techniques. The effect of aliasing has been

described and furthermore resolved by concepts of lattice theory. Some simulation re-

sults have been presented wherein it could be seen that the estimator performs well

60
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in high SNR (signal to noise ratio) scenarios. Furthermore it could be seen that the

estimator performs uniformly well over the entire aliasing-free region.

We have applied the angular least squares estimator to a nonuniformly sampled

polynomial phase signal. This had been motivated by the fact that we avoid aliasing

by nonuniformly sampling with irrational spaced sampling instants. Again this has led

to an integer least squares problem. For solving this problem, we have used the closest

lattice point search as an ad hoc approach. It has yet to be shown theoretically that

the closest lattice point search solves the pertinent integer least squares problem. The

simulation results suggests that this could be possible.

Finally we have estimated a uniformly sampled Fourier-based phase signal with

the above-mentioned approach. As in the previous scenario, we have used the closest

point search without proof that this solves the integer least squares problem. We have

seen in the simulation results that for some parameter sets the estimator works well at

sufficiently high SNR values.

Several problems are left for future research:

The central remaining question is: under what conditions can the integer least squares

problem be viewed as a closest lattice point problem? One condition could be that the

entries of the basis describing the phase (here we have denoted them X,L, and F) need

to be integer. This also allows for rational entries of the basis vector by an appropriate

rescaling of the parameters. For basis with irrational elements such as the Fourier basis

F, the closest lattice point search would fail to provide a meaningful solution. It is

probably possible to approximate irrational values by rational ones with little loss in

practical performance. Furthermore, it could be useful to set a rational grid where the

sampling points can lie on and change the sampling pattern time dependent.

The LLL algorithm could be preceded by a sorted QR-decomposition [24]. This

should dramatically decrease the computational complexity of the LLL algorithm.
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