
Evaluation of Model-Driven
Security Approaches

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Kresimir Kasal
Matrikelnummer 0026127

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Univ.-Prof. Dipl.-Ing. Dr. A Min Tjoa
Mitwirkung: Dipl.-Ing. Mag. Dr. Thomas Neubauer

Wien, 03.09.2010
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschliesslich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem
Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.

Wien, am 03.09.2010

Abstract

Since our modern society is critically dependent on software systems, software security
is rapidly becoming an important issue. For example, companies depend on applications
to administer customer data, payment information and inventory tracking. Threats from
security breaches range from defeats of copy protection mechanisms to harassments like
malicious intrusions into systems that control crucial infrastructure. Software vulnerabili-
ties, arising from deficiencies in the software design or its implementation due to increasing
complexity, are one of the main reasons for security incidents. Although the object-oriented
paradigm is mostly employed nowadays, principles like encapsulation, polymorphism and
inheritance are insufficient and a paradigm change is necessary. Because of its good charac-
teristics in tackling software complexity, model-driven engineering was utilized to develop
secure information systems. Many proposals dealing with integrating security and modeling
languages followed and were summarized under the term Model-Driven Security. Due to
the large amount of available modeling and specification approaches for describing secure
information systems, the question arises which method to use for which problem. When
intending to apply model-driven security, or at least to analyze a model of a system, it is
fundamental to know which security mechanisms and which security requirements can be
modeled by a certain technique, and whether an appropriate tool-chain exists. Due to a mul-
titude of available modeling approaches, it can become tedious to identify the most suitable
method for solving the problem at hand. There is no common comparison framework to op-
pose the different methods to each other with regard to security and to indicate the promising
approach. This thesis contributes to the research area of software engineering by defining
a taxonomy for model-driven security. It evaluates eleven state-of-the-art approaches and
classifies them according to the provided taxonomy. Thereby it answers the question which
approaches are applicable for solving which development problems, and what specific char-
acteristics these techniques feature. Furthermore, two evaluated methods are applied and
security properties which are required for our case study system PIPE are evaluated. In
addition, after analysing and validating the system and its security requirements, a solution
is provided in case a required security property has been violated. The benefit of the work
is a framework for classifying model-driven security approaches and formal specification
methods, and an analysis of the PIPE system and its security requirements, including a fix
in case a security violation has been found.

Kurzfassung

In unserer modernen, inzwischen von Softwaresystemen abhängig gewordenen Gesell-
schaft, gewinnt die Sicherheit und Korrektheit der eingesetzten Informationssysteme im-
mer mehr an Bedeutung. Beispielsweise benötigen Unternehmen Applikationen um den
Lagerbestand, Kundendaten sowie Zahlungsinformation zu verwalten. Der Erfolg oder
Misserfolg eines ganzen Unternehmens kann vom adäquaten Schutz dieser Daten abhängen.
Softwaredefekte, welche durch einen fehlerhaften Entwurf oder eine fehlerhafte Implemen-
tierung verursacht werden, sind der Hauptgrund für Sicherheitsvorfälle. Entwurfsprinzipien
wie Kapselung, Polymorphismus und Vererbung reduzieren die Systemkomplexität, und
helfen dabei die Fehleranzahl zu minimieren, jedoch sind diese auf Grund des kontinuier-
lich wachsenden Funktionalitätsumfangs nicht mehr ausreichend. Aus diesem Grund wurde
modellgetriebene Entwicklung als ein vielversprechender, komplexitätsreduzierender und
für die Entwicklung sicherer Informationssysteme geeigneter Ansatz (Model-Driven Secu-
rity) vorgeschlagen. Mittlerweile ist eine Vielzahl an Modellierungs- und Spezifikation-
smethoden verfügbar, und es stellt sich die Frage welcher Ansatz bei welchem Problem
anzuwenden ist. Um sicherheitsrelevante Informationssysteme mittels modellgetriebener
Methoden zu entwickeln oder zu analysieren, ist es notwendig zu wissen welche Ansätze für
die Beschreibung welcher Sicherheitsmechanismen und Sicherheitsanforderungen geeignet
sind. In der Literatur wurde bisher keine Methode vorgestellt, welche zu einem solchen
Vergleich hätte herangezogen werden können. Die vorliegende Arbeit trägt diesem Um-
stand Rechnung, und stellt eine Taxonomie für Model-Driven Security vor. Des weiteren
werden elf dem gegenwärtigen Stand der Forschung entsprechende Methoden evaluiert,
und damit die Frage beantwortet, welche der untersuchten Methoden zur Analyse welcher
sicherheitsrelevanter Probleme herangezogen werden kann. Das Resultat ist ein Rahmen-
werk zur Klassifizierung von Ansätzen aus dem Bereich der Model-Driven Security. In
weiterer Folge werden zwei am besten geeignete Methoden (der insgesamt elf evaluierten),
auf die Fallstudie PIPE angewendet, um diese im Hinblick auf geforderte Sicherheitseigen-
schaften zu untersuchen. Wird eine Sicherheitslücke gefunden, so wird gezeigt wie diese
behoben werden kann. Das Resultat ist eine formale Analyse des PIPE Systems und dessen
Sicherheitseigenschaften.

Danksagung

Ich möchte mich an dieser Stelle bei all jenen bedanken, die mich während des Studi-
ums und der Anfertigung meiner Diplomarbeit unterstützt haben. Ganz besonderer Dank
gilt hierbei meinen Eltern, die immer für mich da waren und mir den Rücken gestärkt
haben. Zudem möchte ich Dr. Thomas Neubauer für die hilfreichen Anregungen und die
enorme Geduld danken, ohne die diese Arbeit nicht möglich gewesen wäre. Auch bei Mag.
Johannes Heurix möchte ich mich für die vielen Verbesserungsvorschläge herzlichst be-
danken.

Contents

Contents v

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Contributions . 3
1.3 Outline . 4

2 Background 5
2.1 Information Security . 5
2.2 Model-Driven Development . 8
2.3 Formal Methods . 12
2.4 Security Protocols . 16

3 A Taxonomy for Model-Driven Security 19
3.1 Modeling Paradigm . 20
3.2 Artifacts . 20
3.3 Formality . 20
3.4 Distribution . 20
3.5 Granularity . 21
3.6 Executability . 21
3.7 Verification . 21
3.8 Tool-Support . 22
3.9 Applicability . 22
3.10 Security-Mechanisms . 22

4 Comparison of Model-Driven Security Approaches 23
4.1 UMLsec . 23
4.2 SecureUML . 25
4.3 Using Aspects to Design a Secure system . 28
4.4 Secure Software Architectures by Using Aspects 29
4.5 Aspect-Oriented Modeling of Access Control in Web Applications 31
4.6 An aspect-based approach to modeling access control concerns 31
4.7 A model-based aspect-oriented framework for building intrusion-aware software

systems . 33

v

4.8 A security-aware metamodel for multi-agent systems (MAS) 34
4.9 Automated Validation of Internet Security Protocols and Applications 34
4.10 Symbolic Model Verifier . 36
4.11 Alloy . 37

5 Pseudonymization of Information for Privacy in e-Health 43
5.1 General description . 43
5.2 Workflows . 45
5.3 Problem analysis . 52

6 Selecting the Appropriate Method 59
6.1 Static Model Analysis . 59
6.2 Dynamic Model Analysis . 62

7 Results of the Evaluation 69
7.1 Authentication . 69
7.2 Get Pseudonyms . 78
7.3 Authorize Instance . 80
7.4 Data Insertion . 81
7.5 Data Retrieval . 82
7.6 Data Pseudonymization . 82
7.7 Summary . 83

8 Conclusion 85
8.1 Limitations . 86
8.2 Future Work . 86

Bibliography 89

List of Figures 95

List of Tables 97

CHAPTER 1
Introduction

Although our society is critically dependent on software systems, these systems are mainly se-
cured by protection mechanisms during operation instead of considering security issues during
software design. Deficiencies in the design of software are the main reason for security incidents
that result in severe economic consequences for organizations using the software and the devel-
opment companies. As formal methods have been used by computer scientists for specifying
and verifying correct behavior of computer programs in software engineering, formal meth-
ods have also been applied to the field of information security. Significant results have been
achieved in verifying security properties of cryptographic communication protocols [1]. How-
ever, formal methods are rarely used in industry because of its complexity and expensiveness
[2]. Thus, model-driven development (MDD) has been proposed in order to increase the quality
and thereby the security of software systems [3]. Model-driven development tries to increase the
abstraction level of the implementation, in order to make it suitable for formal analysis and to
extract the source code from the model after a successful verification. Recently, a combination
of model-driven engineering and security has been proposed [3]. In this thesis we present a
taxonomy for model-driven security, and thus provide a framework for classifying model-driven
security approaches and formal specification methods. Based upon the taxonomy, we evaluate
current efforts that position security as a fundamental element in Model-Driven Development,
highlight their deficiencies and identify current research challenges. By this way we answer
the question which modeling approaches are applicable for solving which problems, and we
select suitable methods for the analysis of our case study system PIPE (Pseudonymization of
Information for Privacy in e-Health). In a subsequent step, we apply the previously selected
analysis methods and validate whether the required security properties are fulfilled by the case
study system. Furthermore, we show how to ensure the security requirements in case they are
not fulfilled.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Since our modern society is critically dependent on a wide range of software systems, computer
systems security is rapidly becoming an important issue [4]. For example, companies depend
on applications to administer customer data, payment information and inventory tracking. Not
only companies feature a need for secure computer systems but also consumers use software
to communicate with friends or families, to check their banking accounts and to search for re-
sources available on the Internet. However, threats from security breaches range from defeats of
copy protection mechanisms to harassments like malicious intrusions into systems that control
crucial infrastructure. Software vulnerabilities, arising from deficiencies in the software design
or its implementation, are one of the main reasons for security incidents [5]. In order to tackle
the problem that software systems are getting more complex, general principles like abstraction,
modularization and separation of concerns are widely used [6]. Although the object-oriented
paradigm is mostly employed nowadays, principles like encapsulation, polymorphism and inher-
itance are insufficient to tackle the ever increasing complexity of modern information systems,
and a paradigm change is necessary [7].

For this reason, as a successor of the Computer-Aided Software Engineering (CASE) ap-
proach, Model-Driven Development (MDD) has been suggested to improve the quality of com-
plex software systems [7, 8]. MDD is used to design abstractions, i.e. platform independent
concepts which are then translated into more accurate ones which are adjusted to a particular
platform. In a further step, such platform specific models are transformed into production code.
In such a development process, models and mappings between them have to be maintained, not
the generated code. As a further approach to tackle complexity and increase quality, Aspect-
Oriented Software Development (AOSD) has been proposed. It is an emerging approach with
the goal of promoting advanced separation of concerns (cf. [9, 10]), and allows multiple concerns
(e.g., security, logging, persistance) to be expressed separately and unifies them into a complete
system in an automated way. Because of good characteristics in tackling software complexity,
model-driven engineering was utilised to develop secure information systems. Juerjens (cf. [11])
firstly proposed a combination of model-driven development and security using UMLsec. Sub-
sequently, many proposals dealing with integrating security and modeling languages followed
and were summarized under the term Model-Driven Security (cf. [12]). It represents an approach
where security is applied together with model-driven architecture [7], and it indicates building
secure software systems by specifying models together with their security requirements. In addi-
tion to Model-Driven Security, researchers have proposed formal languages, called specification
languages, to represent policies, models and system descriptions. Such languages are based on
mathematical logic systems, and have as well been applied to the field of information security,
for instance for specifying formal security policies and for analysing cryptographic security pro-
tocols [13].

A large amount of modeling and specification approaches for describing secure infromation
systems are available, and the question arises which method to use for which problem. When
intending to apply model-driven security, or at least to analyse a model of a system, it is fun-

2

1.2. GOALS AND CONTRIBUTIONS

damental to know which security mechanisms and which security requirements can be modeled
by a certain technique, and whether an appropriate tool-chain exists. As a multitude of available
modeling approaches exists, it can be rather tricky to find the most suitable method to solve
the problem. In addition, there is no common comparison framework to oppose the different
methods to each other with regard to security and to indicate the promising approach. Thus,
despite a multitude of available methods and tools, the developer is left alone with the problem
of selecting a suitable method.

1.2 Goals and Contributions

This thesis contributes to the research area of software engineering by defining a taxonomy
for model-driven security, which we have based upon the comparison framework developed by
Khwaja and Urban (cf. [14]). In particular, we have extended the existent framework by adding
supplementary aspects such as security mechanisms or verification methods. Furthermore, this
work evaluates eleven state-of-the-art approaches and classifies them according to the provided
taxonomy. Thereby we answer the question which approaches are applicable for solving which
development problems, and what specific characteristics these techniques feature. The benefit
of the work is a framework for classifying model-driven security approaches and formal specifi-
cation methods, applicable by interested researchers and practitioners.

Furthermore, we apply two evaluated methods and validate the identified security properties
which are required for our case study system PIPE. In order to identify the required security
properties, we apply the so-called ’Threat Modeling’ approach (cf. [15]), which is actually a
collection of identification patterns that are used to identify threats for information systems. In a
subsequent step we determine the required security properties which we derive from the threats.
Thereafter, we analyse and validate the system and its security requirements, and we provide a
solution in case a required security property has been violated. The benefit is an analysis of the
system and its security requirements, and a fix in case a security violation has been found.

Thereafter, the research questions of this work are:

• Which modeling approaches are applicable for solving which development problems? In
order to answer this question, we evaluate the selected model-driven security and formal-
methods techniques by applying a combination of a testing programs and objectives-based
evaluation approach (cf. [16]).

• Which methods can be used to analyse the PIPE system with regards to its security prop-
erties? To answer this question, we consider evaluation objectives which we take from
[14] and from security relevant literature [17].

• Which security requirements are fulfilled by the PIPE system, and which are not? Here we
apply the method which has been selected as the most appropriate one, provide the system
model and the corresponding formal security requirements, and let the tool compute the
result.

3

CHAPTER 1. INTRODUCTION

1.3 Outline

This thesis is structured as follows: Chapter 2 presents the background knowledge, necessary
for further presentation. In particular, we give a short overview of information security, model-
driven development, formal methods and security protocols. Chapter 3 introduces a taxonomy,
which we use in Chapter 4 to classify and evaluate model-based security approaches. In Chapter
5, we describe the problem and the system to be analysed. Furthermore, we identify the required
security properties which have to be validated. Chapter 6 selects an appropriate analysis method,
suitable to verify the identified requirements. In Chapter 7, our validation results are presented.
Chapter 8 concludes the work, discusses its outcome and opens questions and possibilities for
further work.

4

CHAPTER 2
Background

This chapter provides the necessary background information for the following presentation of
our work. At first, an introduction into information security is given, and some basic terms like
security properties, cryptographic algebra and security threats are defined. Afterwards, model-
driven engineering in general and its specializations in information security like model-driven
security, aspect-oriented modeling and model-based testing are examined. Finally, formal veri-
fication techniques and their application in verifying communication protocols are illustrated.

2.1 Information Security

According to [18], information security indicates preservation of confidentiality, integrity and
availability of information. As additional requirements, authenticity, accountability, non-repudiation
and reliability may as well be needed. However, the interpretations of these properties vary, as
do the contexts in which they arise.

Security Requirements

This section defines common security requirements. However, as interpretations of these re-
quirements can depend on the context in which they arise, we provide definitions which are
sufficient for our purposes.

Confidentiality

This security property represents the concealment of information or resources [17]. It is a re-
quirement that information is not made available or disclosed to unauthorized individuals, enti-
ties, or processes [18]. In our context, confidentiality of data means that the data should only be
read by legitimate parties.

5

CHAPTER 2. BACKGROUND

Integrity

Integrity demands that the accuracy and completeness of assets is protected [18]. It refers to the
trustworthiness of data and resources, and it requires a protection against improper or unautho-
rized changes [17]. In our context, integrity is the property of preventing unauthorized modifi-
cation.

Authenticity

This security requirement demands that in case some information claims to be from a certain
party, it was indeed originated by that party. Message authenticity means that a piece of data
can be traced back to its original source [3]. Entity authenticity, on the other hand, means that a
participant in a protocol can be identified. In our context, entity authenticity is the appropriate
interpretation of this property.

Non-repudiation

This property requires that a party in a dispute can not deny the validity of a statement or contract
successfully. That is, a proof for the action is given. We distinguish between the two properties
non-repudiation of origin (NRO), and non-repudiation of receipt (NRR). NRO demands for evi-
dence that the sender has sent the message. Analogous, the NRR property requires evidence that
the recepient has received the transmitted message.

Availability

This property represents the ability to use the designated resource or information [17]. It is the
requirement of being accessible and usable upon demand by an authorized entity [18]. The
aspect of availability that is relevant to security is the fact that an adversary could intentionally
enforce denial of access to desired resources by making them unavailable. This definition is
sufficient for our purposes.

Cryptography

Methods of information security heavily rely on cryptography, which can be seen as a science of
hiding information. If a person (called sender), wants to send a message containing sensitive in-
formation to another person (called receiver), then the sender wants to send the message in such
a way that an eavesdropper cannot read it. Thus, in order to make the information unreadable
for everyone except the receiver, the message has to be converted into unintelligible strings. A
message is plaintext if it can be read by anyone. The process of transforming a plaintext mes-
sage into unintelligible strings is called encryption. An encrypted message is called ciphertext,
and the process of transforming ciphertext back into plaintext is called decryption [19]. This is
shown in figure 2.1.

6

2.1. INFORMATION SECURITY

Encryption

plaintext ciphertext
original

plaintext
Decryption

Figure 2.1: Encryption and decryption [19].

In general, there are two associated mathematical operations, one for encrypting the plaintext
and the other for decrypting the ciphertext. In modern cryptography, both the encryption and
decryption functions require a key, see figure 2.2. This key might be any value, usually bitstrings
(e.g. 256 bit length in the case of AES). In modern cryptography, security is based on the key
(or several keys), and not on the specific details of the algorithm [20].

Encryption

ciphertext

Decryption

plaintext

original

plaintext

Key Key

Figure 2.2: Encryption and decryption with a symmetric key [19].

In general, two types of cryptographic algorithms are used, symmetric and asymmetric
key algorithms. Symmetric algorithms use keys where both of them, the encryption key and
the decryption key, can be derived from the other [19]. Asymmetric algorithms, in turn, are
designed in such a way that both keys cannot be calculated or derived from each other (at least in
a reasonable amount of time). Asymmetric algorithms are often called ’public key’ algorithms.
The reason is that the encryption key does not need to be protected and can be made public.
Only the person who is in possession of the decryption key will be able to read the message.
Therefore, the encryption key is called public key, and the decryption key is called private key
[19].

Encryption

ciphertext

Decryption

plaintext

original

plaintext

Public Key Private Key

Figure 2.3: Encryption and decryption with different keys [19].

7

CHAPTER 2. BACKGROUND

Threats to Security

Howard [15] defines a threat as the attacker’s objective. It is the action which the adversary might
undertake in order to do harm to a system. Microsoft uses a threat taxonomy called STRIDE
[15] to identify various threat types, which are considered from the attackers perspective. These
are grouped into six categories, described in [15]:

Spoofing Identity

Spoofing threats allow the attacker to pretend to be something or somebody else. In case an
adversary illegally accesses and uses authentication information of another user, username and
password for example, then identity spoofing occurs. Entity authenticity is required to prevent
from spoofing threats.

Tampering

These threats involve malicious modifications of data or code. An example of tampering is
unauthorized change of data, such as relational tables stored in a database. Mechanisms that
ensure the integrity property are required in order to prevent tampering.

Repudiation

In case an attacker denies having performed a certain action without other parties having evi-
dence to prove otherwise, a repudiation threat occurs. A system is resistant to repudiation threats
if it satisfies the non-repudiation requirement.

Information Disclosure

This threat occurs in case information is exposed to unauthorized persons or processes. Infor-
mation disclosure can be prevented by mechanisms that ensure the confidentiality requirement.

Denial of Service

Denial of service (DoS) attacks deny or degrade the availability of a service to authorized users.

Elevation of Privilege

Elevation of privilege threats occur when a user gains increased capabilities. For instance, this
threat occurs in case an unprivileged user gains superuser access and, in consequence, is able to
compromise or destroy the entire system.

2.2 Model-Driven Development

Progress in programming languages and development platforms has increased the level of ab-
straction available to developers [8]. Neverthless, although the level of abstraction was raised,
the complexity of developed systems grew faster. For this reason, methods were required that

8

2.2. MODEL-DRIVEN DEVELOPMENT

provide a higher level of abstraction than object-oriented methods do. In MDD, models are
considered as the most important elements for software development. Instead of applying too
expressive general-purpose notations, formulating domain concepts and design intent lies in the
focus of the MDD approach. On the one hand, Model-Driven Development is based on apply-
ing domain-specific modeling languages (DSMLs) which formalize the underlying data model,
the behavior and the requirements of a particular problem domain [8]. Examples for such do-
mains are embedded real-time systems, financial services and information systems. DSMLs are
described by using metamodels, which in fact are models of models, and define the concepts
in the problem domain, associations among these concepts and the corresponding constraints.
On the other hand, transformation engines and generators build the second branch that MDD
is based on [8]. These are needed to analyse the models and to transform them into various
artifacts such as source code, test cases or documentation. The ability to generate artifacts from
models is very helpful in practise since it assures that the generated artifacts and the models
remain consistent. In general, among the principle of abstraction, the main goal of model-driven
development is to generate implementations in a preferably automated way. In literature, this
software development process is often characterised as ’correct-by-construction’ [8].

Model-Driven Architecture

Model-Driven Architecture (MDA) is an approach for software development, in fact a variation
of MDD, which has been proposed by the Object Management Group (OMG) in [21]. MDA
defines three viewpoints of a system, the Computation Independent Model (CIM), the Platform
Independent Model (PIM) and the Platform Specific Model (PSM). The Computation Indepen-
dent Model (CIM) indicates an abstraction level which is focused on the system’s requirements
and its context, without considering how the information is processed [7]. On the next level, the
Platform Independent Model (PIM) abstracts from details concerning the programming language
and the corresponding environment. It models business functionality, but without including the
implementation specific details. The PIM is used by software architects and designers in order
to specify the operational capabilities of the system, and to split the application into a number
of cooperating components [7]. For instance, the PIM does not specify whether the system is
implemented for the .NET or the J2EE platform. This platform specific information is added
to the Platform Specific Model (PSM), which is used to generate the production code. Model
transformation is crucial for the MDA approach [7], since a CIM has to be transformed into a
PIM, and a PIM has to be tranlated into a PSM, which is then transformed into code. In order
to make the transformation possible, metamodels are needed which formally describe the struc-
ture and composition of models, and thus permit definitions of matchings and correspondencies
between the entities and concepts described in different metamodels. Simplified, metamodels
allow definitions of transformation rules between different levels of abstraction (e.g., transfor-
mation from PIM to PSM).

9

CHAPTER 2. BACKGROUND

Computation

Independent

Model (CIM)

Code

Platform

Specific Model

(PSM)

Platform

Independent

Model (PIM)

CIM-PIM Mapping

PIM-PSM Mapping

PSM-Code Mapping

Figure 2.4: The principle of MDA [7].

Model-Based Testing

Model-Based Testing [22] is software testing where test cases are derived from a model that
describes the functional aspects of the system under test (SUT). The model is usually an abstract
representation of the SUT’s desired behavior. The derived functional test suite resides on the
same level of abstraction as the model. In case the model is not executable, an executable test
suite must be generated, which can be achieved by deriving it from the abstract test suite. For
this purpose, a transformation ruleset is needed. Thus, models should be formal enough to allow
algorithms to derive test cases from them [22]. We do not consider testing non-functional prop-
erties.

Utting et al. describe the following process of model-based testing [23]. At first, the model
of the SUT is extracted from the requirement documentation. This model specifies the sys-
tem’s required behaviour, and the step is performed manually by a developer. Then the test
selection criteria are defined, which describe characteristics of a test suite. They can be associ-
ated with a system’s functionality (requirements-based test selection criteria), with the structure
of the model (state or transition coverage) or with stochastic characteristics (i.e., randomness)
[23]. Afterwards, test case specifications are derived from test selection criteria, since they state
the test selection criteria precisely and make them operational. For instance, if state coverage
has been chosen as test selection criteria, then a test suite can be generated automatically since
enough information has been provided to specify the particular test cases. However, the gener-

10

2.2. MODEL-DRIVEN DEVELOPMENT

SUT
Environment

Test Case Spec.

Formal Model

Test Cases

Requirements
Document

verification

Formal
Requirements

implementation

automated
generation

design

specification

Test Selection
Criteria

Figure 2.5: The principle of model based testing [23].

ated test suite may not be executable since the model and the SUT may not reside at the same
abstraction level. In such a case, the generated test cases have to be transformed and made exe-
cutable. Afterwards, the test suite is executed. This step involves two stages. At first, the SUT is
supplied with test data, and the output is recorded. Then, the actual result is compared with the
expected result. Depending on the outcome of the comparison, the test case either succeeded or
failed. The principle of model based testing is depicted in figure 2.5.

Aspect-Oriented Modeling

Aspect-Oriented Modeling (AOM) [24] is a generalization of the idea of Aspect-Oriented Pro-
gramming (AOP). AOP was firstly proposed in [9] in order to clearly capture all important
aspects of system’s behaviour. As the authors based their work on the belief that a single ab-
straction framework (e.g., procedures, constraints) would be inadequate for expressing different
aspects of system’s behaviour (since each aspect has it’s own ’natural form’), they concluded that
each aspect should be programmed in its most natural domain-specific language. For example,
the way error handling, logging, or security is handled is often identical over multiple domains.
According to the AOP paradigm, these aspects should be contained in different modules. Sub-
sequently, after the aspects and the main system’s functionality have been programmed, these
separated programs would be woven together in order to produce executable code. In general,
the essence of AOP are modularization and separation of concerns. Separation of concerns is a

11

CHAPTER 2. BACKGROUND

design pattern which considers a problem from different perspectives, involving different views
on a system which should be separated in order to tackle the complexity. Actually, this princi-
ple states that each concern of a given design problem should be mapped to one module in the
system. Unfortunately, this can not be achieved with all system views. Concerns exist that can
not be easily separated and therefore have to be mapped to many modules. These concerns are
called crosscutting concerns. They are not a result of bad design, it is a characteristic of such
views that they cannot be cleanly decomposed from the rest of the system, in both the design and
implementation. Aspect orientation provides explicit abstractions for representing crosscutting
concerns, referred to as aspects. That is, a given problem is decomposed into concerns that can
be localized into separate modules and concerns that are crosscut over a set of different modules.
Afterwards, in a so called ’Pointcut-specification’ the points that the aspect crosscuts, are spec-
ified. During weaving, core functionality modules and aspects are composed in order to obtain
the complete system. Analogue to AOP, AOM consists of several aspects and a single primary
model. An aspect model describes the design of the aspect, while the primary model addresses
the core functionality of the system. Also here, weaving rules are used to compose the separated
aspect models and the primary model. The composition is done before the implementation or
code generation is started.

Domain specific model

Domain specific model with

security aspects added

Security model

Transformation /

model weaving

Figure 2.6: The principle of AOM [25].

2.3 Formal Methods

[26] describes formal methods as mathematically rigorous techniques and tools for the specifi-
cation, design and verification of software and hardware systems. The phrase ’mathematically
rigorous’ describes the fact that the used specifications have well-defined syntax and semantics
and are based on a mathematical logic system. Thus, formal verifications are deductions in that
logic system, which implies that each deduction is a consequence from an inference rule and can
automatically be checked by a computer. However, this is rarely done in practice because of the
huge complexity of real-world systems [26]. Several approaches are considered useful in order
to overcome the large state spaces associated with real-world systems. Butler [26] enumerates
the following:

• Apply formal methods to requirements and high-level designs where most of the details
are abstracted away

12

2.3. FORMAL METHODS

• Apply formal methods to only the most critical components

• Analyze models of software and hardware where variables are discretized and ranges
drastically reduced.

• Analyze system models in a hierarchical manner that enables ’divide and conquer’

• Automate as much of the verification as possible

In general, formal verification techniques comprise three parts (cf. [27]). The first part is
made up of a framework for modelling systems, typically a description language. The second
part is a specification language in which the properties to be verified are expressed. And third,
a method is required which allows to verify whether the given specification is satisfied by the
description of a system.

Although all formal methods rely on the underlying structure of some mathematical logic
system and the proof theory of that logic, there is no single best ’formal method’. Butler [26]
writes that each application domain requires different modeling methods and different proof
approaches. Current trends have divided these techniques into proof-based and model-based
techniques [17]. Proof-based approaches define two sets of formulas. The first set describes the
system (premises), while the second set represents the properties or requirements that have to be
proved (conclusion). Proof-based techniques rely on finding a set of intermediate formulas that
allow the verifier to reach the desired conclusion beginning from the premises [17]. In model-
based approaches, the system is represented by a model for an appropriate logic. The properties
are represented by formulas, and the verification method consists of validating whether the re-
quired properties are satisfied by the given model. Thus, model-based approaches are potentially
simpler than the proof-based ones, since only a single model is verified and not a potentially in-
finite class of them [27].

Proof-based Approaches

In theorem proving, both the model of the system and its requirements are expressed as formulas
in an underlying mathematical logic calculus. This calculus is defined by a formal system which
comprises axioms and inference rules. Clarke et al. [28] define theorem proving as the process
of finding a proof of a required property from the axioms of the system. In contrast to model
checking, theorem proving can be used on systems with infinite state spaces, since it relies on
techniques such as structural induction which are used to generate proofs over infinite domains
[28]. In general, theorem proving is an interactive procedure. This implies that, as interaction
with a human user is required, theorem proving can be a very slow and error prone process. On
the other hand, whilst searching for the proof, valuable insight into the system and its required
properties can be gained due to interaction [28].

Model-based Approaches

Model-based techniques do not prove a formula from a set of axioms, but check whether a model
satisfies a formula. Typically, model-based verification tools are automatic, with almost no user

13

CHAPTER 2. BACKGROUND

interaction. In this section, two model-based approaches are presented. The first of the methods
is called model checking. It is based on temporal logic, and intended to be used for concurrent,
reactive systems. The second of the two approaches is represented by languages like OCL (Ob-
ject Constraint Language), Z or Alloy and the appropriate tools required to analyse the specified
models. This set of languages and corresponding tools we will call model validation techniques.
We explicitly point out that in this context no theorem provers are meant, but model verifier
tools which are available for the aforementioned languages. The way models are used in the
latter approach is slightly different from model checking. Systems are modeled as collections of
variables, with invariants that the system has to satisfy and operations performed by the system,
which are declared by pre- and post-conditions. In addition, the approach allows for first-order
logic expressions, whereas model checking focuses on verifying temporal properties only.

Model Checking

The concept of model checking refers to a set of techniques for automatic analysis of finite-state
reactive systems. It is the process of verifying whether a specified logical formula is satisfied
by a given model. That is, the system is tested for conformance with a specified requirement
or property. In general, model checking can be applied to all kinds of logics and their models.
For instance, one could validate whether a given propositional logic model satisfies a required
propositional logic formula. However, great efforts have been undertaken in order to algorithmi-
cally verify finite-state concurrent systems. In this context, the system to be verified is presented
as a Labeled Transition System, which is also known as a Kripke Structure. A Kripke Structure
is basically a graph, representing the system’s states and the transitions between these states. For
each state, a certain set of logical formulas or properties hold true. Huth and Ryan [27] define a
labeled transition system as

a set of states S, endowed with a transition relation → (a binary relation on S),
such that every s ∈ S has some s′ ∈ S with s → s′, and a labeling function
L : S → P (Atoms)

Modern model checkers support higher level description and specification languages like
Promela or the SMV language. Such representations are comfortable for the engineer who uses
the system, but in fact the model checker transforms the high-level description into a transition
system, an example is depicted in figure 2.7.

First, system requirements are expressed as temporal logic formulas (LTL or CTL for ex-
ample, see [27]). Then, the Kripke structure corresponding to the system’s model is traversed
by efficient algorithms in order to perform the analysis and to verify whether the specification
holds or not. In [27], Huth and Ryan give a detailed description on both kinds of temporal logic
applied in model checking:

The idea of temporal logic is that a formula is not statically true or false in a model,
as it is in propositional and predicate logic. Instead, the models of temporal logic
contain several states and a formula can be true in some states and false in others.

14

2.3. FORMAL METHODS

VAR
request : boolean
status : {ready, busy}

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
1 : {ready, busy};

esac;

Listing 1: Example model in SMV.

Thus, the static notion of truth is replaced by a dynamic one, in which the formulas
may change their truth values as the system evolves from state to state. In model
checking, the models M are transition systems and the properties φ are formulas
in temporal logic. The model checker outputs the answer ’yes’ if M |= φ and ’no’
otherwise.

As already mentioned, a set of atomic propositions is associated with each node. Each node
represents a state, and each edge represents a transition between these states in the correspond-
ing system. Atomic propositions which are mapped to a certain state represent the properties
which hold in that state. According to [27], the problem can be stated formally as follows: given
a desired property, expressed as a temporal logic formula p, and a model M with initial state s,
decide if M, s |= p. Hardware verification by the means of model checking is already widely
used while the verification of software still has not expirienced a breakthrough, mainly because
of the state explosion problem. As in model checking the proof is made by an exhaustive ex-
ploration of the state space of the finite-state automaton, the technique is limited by the size of
the models. For the reason of large state spaces in non-trivial software systems, formal verifi-
cation of software by the means of model checking is still not widely used. However, model
checking has gained popularity because it generates a counterexample for a property that is not
satisifed. The counterexample pinpoints to the source of error, and thus answers the question
why the model does not satisfy the specification. Usually, the model is given as a source code
description in an automata description language. An example taken from [27] is given in listing
1.

The program stated above has two variables, request of type boolean and status
of enumeration type {ready, busy}, which are defined in the VAR part of the program.
State transitions, contrariwise, are described in the ASSIGN part of the program. In the ex-
ample code listed above, the initial and subsequent values of the variable request are not
determined, which models that these values are determined by an external environment. This
under-specification of request implies that the value of the variable status is partially de-
termined: initially it is ready, and it becomes busy whenever request is true. If request is
false, the next value of status is not determined. The phrase ’case 1’ signifies the default

15

CHAPTER 2. BACKGROUND

case. A finite automaton which is corresponding to the source code listed above is depicted in
figure 2.7.

req ˄

ready

req ˄

busy

¬req ˄

busy

¬req ˄

ready

Figure 2.7: Model corresponding to the SMV program.

Model Validation Techniques

Methods belonging to this category include declarative modeling languages based on first-order
logic, supported by appropriate analysis tools. Languages like OCL (Object Constraint Lan-
guage), Z and Alloy belong to this category. Although the methods seem to have similar targets,
they differ in terms of the syntax of the language and the analysis [29]. For instance, a combi-
nation of UML and OCL can be used to precisely describe the system’s static structure and its
dynamic behavior, whereas Z (which is a formal specification language based on set theory, first-
order predicate logic and lambda calculus) is used for modelling and reasoning about computing
systems. Alloy, on the other hand, which is based on first-order relational logic and similar to
OCL, is designed for expressing structural constraints and behavior of software systems. Fur-
thermore, Alloy models are amenable to a completely automated analysis, which is not the case
with OCL and Z.

2.4 Security Protocols

Security protocols (or cryptographic protocols) can be described as distributed algorithms which
ensure security properties in a hostile environment. They represent rules or conventions which
define the exchange of messages between communication participants. For example, security
protocols can be used for key agreement or entity authentication. They rely on cryptographic
primitives, such as symmetric and asymmetric encryption. However, designing correct security
protocols does not end with the correct implementation of cryptographic primitives. Given the
wide range of operations which an attacker can use in order to compose an attack, it is difficult
for the designer to reason intuitively about possible vulnerabilities. Probably the best known

16

2.4. SECURITY PROTOCOLS

example is the Needham-Schroeder public-key protocol [30], for which an attack was found
about 17 years after its publication [31]. Thus, both formal and informal approaches have been
proposed in order to support researchers and engineers during protocol design. In [32], the
authors presented prudent engineering principles for the design of cryptographic protocols. For
instance, here is one of the principles:

If the identity of a principal is essential to the meaning of a message, it is prudent
to mention the principal’s name in the message.

In the initial proposal of the public-key Needham-Schreoder protocol, this principle was ig-
nored, which has led to a security vulnerability allowing for a Man-In-the-Middle attack [31].
Even if they are very useful, the proposed principles are neither necessary nor sufficient for de-
signing correct protocols.

In [33], for first time formal methods have been suggested in order to validate and verify
security protocols before these are put to use. The authors contributed the so called Dolev-Yao
model, which comprises two main ideas:

1. The attacker has complete control over the network. This means that he can insert, delete
and intercept transmitted messages.

2. The cryptographic primitives are perfect.

Shortly later, researchers applied general-purpose formal methods and state exploration tech-
niques to tackle the problem. In addition to these ’conventional’ methods, Burrows et al. applied
a logic of knowledge and belief to the problem [34]. The so-called BAN logic comprises possi-
ble beliefs and inference rules which are used to derive new beliefs from the old ones [1]. The
authors showed in their work that it was possible to apply the logic in order to find vulnerabilities
in security protocols. However, in general, belief logics are weaker than state exploration tech-
niques, since they operate on a higher abstraction level [35]. As state exploration systems have
improved over the last years, researchers have focused their attention to applying both model
checking and theorem proving techniques to tackle the problem [1].

17

CHAPTER 3
A Taxonomy for Model-Driven

Security

This section identifies and describes several dimensions in model-based security. The identified
dimensions are orthogonal, but still can affect each other. For example, if the modeling paradigm
is aspect-oriented, one of the artifacts that the method requires is a set of transformation rules
that are needed for model weaving. The proposed taxonomy is influenced by the comparison
framework developed by Khwaja and Urban (cf. [14]). The framework was intended for the
evaluation of specification techniques and was already used by Villarroel et al. (cf. [36]) to eval-
uate development methods for secure information systems. Nevertheless, Khwaja’s and Urban’s
comparison framework did not cover aspects like security mechanisms that can be modeled by
a specific technique, it did not classify the distribution of modeled systems, the artifacts that
have to be provided by the modeler or the applied modeling paradigm. Furthermore, there was
no differentiation between several possible dimension instantiations that can occur in system
verification. Therefore, these issues are handled in the proposed taxonomy. The taxonomy will
provide a classification method that can easily be applied by a practitioner when comparing
model-driven security methods in order to choose the appropriate one. In particular, we differ-
entiate model-driven security by the means of modeling paradigm which tells us how the system
is modeled, by the means of artifacts which the modeler has to provide, the formality of the
modeling method, the verification method which is used to verify the modeled system, as well
as the executability of the provided models. Furthermore, we distinguish the capability to model
distribution, the granularity of the modeled system, and the security mechanisms which can be
described by using the method in question. As well, we consider the application domain as well
as the available tool support.

19

CHAPTER 3. A TAXONOMY FOR MODEL-DRIVEN SECURITY

3.1 Modeling Paradigm

This dimension is concerned about the modeling paradigm. In case of model-driven security, two
alternatives are possible. On the one hand, there are single, possibly hierarchical models (e.g., a
hierarchical model is composed of submodels that in turn are composed of sub-submodels and
so on). In this scenario, crosscutting concerns are modeled in each place where they are needed.
For example, in each module where access control is required, access control mechanisms have
to be modeled. For this reason, there is a significant amount of redundancy in the overall model.
On the other hand, there are models conforming to the aspect-oriented development paradigm. In
these models, there is almost no redundancy. Crosscutting concerns are described in a separate
model and are subsequently weaved (in other words, integrated) with the primary model. In
aspect-oriented modeling, weaving rules are needed that determine the manner in which models
are integrated together to build a complete system.

3.2 Artifacts

There are three forms of artifacts: (i) Static models describe the static structure of a system.
For instance, a class diagram consisting of classes, associations between those classes and con-
straints on them is an example of a system’s static structure. (ii) Dynamic models describe the be-
havior of a system. Examples for such models would be interaction diagrams, collaboration dia-
grams, state charts, or petri nets. (iii) Transformation rules are either required for transformating
models in the MDA approach, or for aspect-weaving when applying aspect-oriented modeling.
Transformation rules are an important artifact in model-driven development and model-driven
security. Possible instantiations in this dimension are subsets of the three mentioned forms of
artifacts, e.g., class diagrams modeled in the UML modeling language and transformation rules
specified in the ATL transformation language.

3.3 Formality

A formal system description is preferable, since a high level of formality allows for a definition
of accurate, unambiguous and verifiable models and specifications. Higher levels of formality
are more eligible, but also specifications of lower formality levels are of great practical value.
Design patterns, for instance, can be seen as a semi-formal approach to specify the system’s
functionality since they precisely describe how certain entities have to be assembled or how they
have to interact in order to form the required system. Metamodels, on the other hand, show
how system’s valid models are built. They can be seen as grammars that precisely describe
how a system is put together. Automata, state machines, several logics and calculus systems are
examples for highly formal modeling and specification techniques.

3.4 Distribution

Here we consider whether an application is distributed. If so, we distinguish how these com-
ponents are distributed and how they work together. The modeled system can be categorized

20

3.5. GRANULARITY

as a single process or a multiple process (thread) system. In case we deal with multiple pro-
cesses, these can be distributed over multiple machines, and can act as autonomous, possibly
mobile agents. Furthermore, we differentiate whether systems consist of distributed objects
and procedures (e.g., CORBA, RMI). Client and server architectures, peer-to-peer architectures,
space-based architectures or multiple agent systems are examples for possible instantiations in
this dimension.

3.5 Granularity

A system can be viewed from several levels of abstraction. When lowering the level of ab-
straction, the amount of details to cope with increases, and the complexity grows. Possible
instantiations for this dimension are, for example, components and classes. In this context, a
component is a part of the system from the architectural point of view. As the system can be
seen as a composition of interacting subsystems (where each subsystem consists of other parts,
for example classes, functions etc.), a component can be described as such a subsystem. In
general, a component can consist of other components, classes or functions. Nevertheless, the
system can also be described on a finer granularity level. For instance, the system can also be de-
fined as a set of classes, or even more detailed and more complex, as a set of interacting methods
and functions.

3.6 Executability

Here we differentiate whether the system’s model is executable or not. In case the model is
executable, there is no need for enriching the model with additional information. There is enough
information contained in the model, and the system can be verified without execution (in case
the state space of the provided model can be handled). If the model is not executable, additional
information has to be provided during the transformation process. In such a scenario, generating
test cases from the models and making them executable is a plausible technique for validating
the system.

3.7 Verification

In this dimension, we consider several methods for validating, verifying and testing the sys-
tem. Manual testing is one such method. As it is error prone and tedious, automated test case
generation is affordable. When dealing with models, model-based testing can be applied. We
differentiate two scenarios when generating test cases from the models [23]: The first of the two
scenarios considers a single model which is used to generate both, production code and the corre-
sponding test cases. The second scenario, on the other hand, comprises a testing-specific model
which is built upon the specification documents, while the system under test is built manually. A
further method for verifying the system is model checking. It is a process of verifying whether
the model satisfies a specific requirement. In model checking, a model is a finite automaton and
a requirement is a temporal logic formula. By applying efficient searching strategies, the model

21

CHAPTER 3. A TAXONOMY FOR MODEL-DRIVEN SECURITY

is checked in a brute-force manner. Therefore, the run-time depends on the size of the provided
automaton, which can be very large in real-world systems. A further method for verification is
theorem proving. In automated theorem proving a computer program verifies whether a theory
(system specification) entails a logic formula (requirement). In other words, the program verifies
whether a requirement (logic formula) is satisfied by a system specification (theory).

3.8 Tool-Support

Here, techniques for modeling secure systems are categorized in terms of tool-support. The user
can be supported in modeling the system, generating code, verifying whether the system specifi-
cation is syntactically correct and consistent etc. For example, the tool could check whether the
specified model is consistent with its metamodel. A developer could be assisted in validating and
verifying the system, e.g. a tool could check whether a subsystem is consistent with its specifica-
tion (verification), and also whether the whole system fulfills the user requirements (validation).
Instantiations in this dimension are combinations of mentioned tool-support possibilities.

3.9 Applicability

In this dimension we differentiate between several application domains for which systems can be
specified by applying a particular technique. Examples for application domains are information
systems, web-applications, e-commerce systems, embedded systems etc.

3.10 Security-Mechanisms

In this section, security modeling techniques are categorized according to security mechanisms
(and thus indirectly, the security requirements) that can be represented and modeled by a partic-
ular method. Possible instantiations for security aspects are access control, security protocols,
intrusion detection mechanisms etc.

22

CHAPTER 4
Comparison of Model-Driven Security

Approaches

This chapter presents an excerpt from several model-driven security and formal method ap-
proaches. In particular, we start with evolved approaches like UMLsec and SecureUML, which
we have selected because of their level of popularity within the model-driven security research
community. Then we present the interesting idea of specifying secure systems in an aspect-
oriented manner, which is in our opinion a very promising concept for modularizing crosscut-
ting concerns. Afterwards, some general and special-purpose techniques in formal methods are
presented. In particular, we have selected the Symbolic Model Verifier since it is a well-known
model checking tool, Alloy because it offers a simple but powerful modeling language, and
we have selected the AVISPA protocol analyser since it has gained huge popularity within the
security protocol verification community during recent years. Then we classify the presented
approaches according to the taxonomy which we have introduced in the last chapter. By provid-
ing the classification, on the one hand, we give an overview for the interested practitioner and
we pinpoint to what has to be considered when applying a particular method. On the other hand,
we intend to show advantages and disadvantages of the presented techniques and to show where
further work is needed.

4.1 UMLsec

UMLsec considers a UML extension in order to enhance the language with security relevant as-
pects. It is a very generic and powerful technique. Its specification and modeling capabilities are
based on UML. UMLsec enhances UML’s expressiveness by applying security related stereo-
types, tags and security constraints. According to the author, these (stereotypes, tags and con-
straints) are used to encapsulate knowledge on prudent security engineering and make it avail-
able to developers which may not be specialized in the security field [3]. UMLsec is a method-
ology that allows specifying requirements regarding confidentiality, integrity, non-repudiation,

23

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

secure information flow and access control. The majority of UML diagrams are used in order
to model the mentioned system’s security properties. In general, the approach conforms to the
single, hierarchical model paradigm. That is, a system is composed of subsystems, these are
composed of further subsystems or components that can be modeled by class diagrams, state
charts and so on. Nevertheless, the technique could also be applied in order to model aspects
and system’s crosscutting concerns separately. In such a case, the modeler would have to provide
transformation (weaving) rules that specify and determine how specific models have to be inte-
grated [37]. By applying UMLsec, the system can be described on several levels of granularity.
Even if there is no consensus whether UML is an Architecture Description Language (ADL) or
not [38], in general it can be used to model system architecture in most scenarios. Furthermore,
because a formal semantics was provided for UMLsec [3], behaviour of interacting components
can formally be analysed. Distributed systems can also be specified [39], and as an example
for analysing security properties of a distributed system the author analysed the TLS (Transport
Layer security) security protocol [3].

In general, use case diagrams show system functions and interactions between users and the
computer system. In UMLsec, they are as well used to express security requirements [3]. That
is, they can be annotated with stereotypes that represent certain security requirements. Activity
diagrams are usually used to model workflows and to describe use cases with a higher precision.
In UMLsec, they can as well be utilised to express the security requirements more accurate. For
instance, the control flow which is modeled by activity diagrams could be dependent on security
requirements, which a user could model by associating adequate constraints with the edges in
the diagram. Deployment diagrams, on the other hand, describe the system’s physical layer. In
UMLsec, deployment diagrams are also used to validate whether the logical level security re-
quirements are enforced and satisfied on the physical layer, or whether supplementary security
measures and mechanisms (i.e. encryption) are needed. Statechart diagrams, which describe
an object’s behavior and the state changes throughout its life, are used to specify security re-
quirements on the resultant state sequences. Sequence diagrams, on the one hand, can be used
to ensure the correctness of security-critical interactions between objects, like security protocols
for example (authenticity, confidentiality). Class diagrams, on the other hand, which describe
the static structure of the system, are used to ensure that exchange of data obeys certain security
levels (secure information flow). In summary, the modeler has to provide static and dynamic
models in order to describe the required system.

By applying mentioned diagrams, UMLsec can be used to express standard mechanisms
and concepts from multi-level secure systems and security protocols. In fact, the proposed lan-
guage is able to express many of security properties needed in real-world applications. Secrecy
(confidentiality), integrity, secure information flow, non-repudiation, data authenticity and entity
authenticity are security requirements that can be modeled by applying UMLsec [3]. In order
to be able to specify complete system specifications, Juerjens provided a formal foundation for
UML subsystems that incorporates a formal semantics of diagrams contained in the subsystem.
That is, the author provided message-passing between components specified in different dia-
grams, which enables the modeler to compose systems from sets of subsystems and allow them

24

4.2. SECUREUML

Figure 4.1: UML tool suite [40].

to interact. Furthermore, by providing a formal basis, the author layed a foundation for exe-
cutable UML modeling, allowing simulations of whole systems. In the meanwhile, a toolset is
available as well which makes it possible to verify the models formaly [41]. The main principle
is to model the system by using a freely-available open-source UML modeling tool, to export the
model in XML Metadata Interchange (XMI) format, and to analyze the model subsequently by
using state-of-the art model checkers or theorem provers, see figure 4.1. The author used both,
model checking and theorem proving, to verify security properties. Furthermore, Juerjens dis-
cussed generation of test-cases from the models as well as generating code from class diagrams
and state charts. Although UMLsec was initially proposed in order to tackle the problem of
designing secure information systems, the author recently addressed the development of secure
embedded systems in [42]. As the approach evolves, further application areas may come along.

4.2 SecureUML

In [43], the authors describe SecureUML as a modeling language which defines a vocabulary
for annotating UML-based models with information considering access control concerns. It is

25

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

based on a model for role based access control (RBAC), see figure 4.2, with additional support
for specifying authorization constraints. In general, the RBAC model consists of five data types
[44]: users (USERS), roles (ROLES), objects (OBS), operations (OPS) and permissions (PRMS).
A user is defined as a person or a process, while a role is defined as a position in an organization.
A role unifies all privileges required to fulfill the dedicated job or function. One or many roles
can be assigned to a user. This circumstance is described by the relation User Assignment. Priv-
ileges denote permissions assigned to a role, and the relation Permission Assignment describes
the assignments of privileges to roles [43]. As defined in [44], a permission is an authorization
of a role to execute an operation on one or more protected objects or resources. Thus, an object
in this context is a system resource that is protected by a security mechanism [44]. A system
entity can initiate actions on protected objects. Such actions are called operations.

SecureUML was designed for integrating specification of access control policies into appli-
cation models, and as such the language is used as a part of the problem domain language, the
host language. According to [44], by this way different models at different abstraction levels can
be annotated with access control information using the same syntax and a compatible semantics.

Figure 4.2: Role based access control [44].

The structure of SecureUML conforms to the reference model for model-driven systems,
which means that the structure of a model is defined by a metamodel. In figure 4.3, the meta-
model of SecureUML is depicted. It is defined as an extension of the UML metamodel [45].
In general, the metamodel is based on RBAC, but it extends RBAC in several directions. On
the left side of the diagram, RBAC is formalized, where Users are extended by Groups and as-
signed to roles by using their common supertype Subject [45]. On the other side of the diagram,
permissions are represented as the ability to execute actions on resources. Furthermore, sup-
plementary constraints can be added to permissions such that these hold only in certain system
states (e.g. time). In addition to role hierarchies (which are common for RBAC), hierarchies on
actions are introduced. In [45], the authors write that the types Resource and Action formalize
a generic resource model that serves as a foundation for combining SecureUML with different
system modeling languages. Thus, SecureUML is intended to be embedded into a host language.
Therefore, the purpose of integrating two languages is to create a language that can express both,
access control policies and the required system. In order to combine the languages, their meta-
models are merged. By this way, the resulting language is made security aware. Furthermore, in
addition to syntax-merging, protected resources have to be identified and resource actions have

26

4.2. SECUREUML

to be defined. That is, model elements of the system modeling language have to be represented
as resources that have to be protected. Such resources can be processes, files, methods, objects
and so on. Also, actions that can be executed on these resources have to be defined, for example
read, write, execute, call etc.

Figure 4.3: SecureUML Metamodel [45].

In order to generate the application code, the authors provided transformation rules to map
SecureUML constructs to the vocabulary used by the target security platform of the host lan-
guage (e.g. EJB). As the system is specified by combining SecureUML with a host language,
the modeling paradigm is that of single, hierarchical models. Furthermore, the method does
not focus on modeling security of distributed systems nor on modeling the system on different
granularity levels. As the method is focused only on modeling role based access control (RBAC)
and as the language is intended to be plugged into a host language, there is no point on covering
granularity and distribution aspects. Becasue the RBAC models have to comply to a certain
metamodel, the level of formality is high. Nevertheless, SecureUML models are not executable.
A reason for this is the fact that SecureUML handles static security aspects only. There are no
parts that cover dynamic aspects, like interaction diagrams or state charts for example. There-
fore, there is not enough information for a model to be executable. Thus, static artifacts are the
only ones that have to be provided by the modeler.

Recently, the authors showed how to automate the analysis of SecureUML models [46].
They formalized the models together with scenarios that represent possible run-time instances.
Security properties, that is security policies, were expressed as Object Constraint Language
(OCL) formulas. Basin et al. showed how the approach can been implemented in the Secure-
MOVA tool, which allows for evaluation of security policies in an autmated manner. Consid-
ering the applicability of the approach, it is not limited since the language was designed to be
pluggable and embeddable into arbitrary design modeling languages.

27

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

4.3 Using Aspects to Design a Secure system

A big advantage of applying aspect-oriented modeling is its ability to separate crosscutting con-
cerns. Therefore, Georg et al. proposed aspect-oriented modeling as a reasonable approach for
designing secure systems [47]. The basic idea of their proposal is to treat aspects as security
patterns, to reuse these proved designs and to integrate them into systems where such security
mechanisms are required. In other words, additionaly to the primary model that is describing
the system’s core functionality, design patterns are used to describe the required security mech-
anisms (e.g. RBAC). As the approach is very general, it is not limited to a single application
domain. Furthermore, the method is also not limited to model one single security mechanism.
Rather, the proposed technique is applicable to a very broad range of security concerns.

The used design patterns are called Role Models, and they define properties that have to be
satisfied by the concrete realizations of these design patterns. The authors focused on two aspect
views: the static view and the interaction view. The Role Model type that describes the static
view is called the Static Role Model (SRM) and it defines the aspect’s structural properties. In
fact, such a static model consists of entities (classes) and relationships (associations) between
these entities. Furthermore, associations between entities can be described by multiplicity con-
straints. The interaction view, on the other side, describes the interactions between system parts.
The Role Model type that describes this kind of view is called the Interaction Role Model (IRM).
An IRM consists of collaboration entities and messages sent between these entities. Instantiating
such a template results in an Interaction diagram.

Usually, an aspect definition comprises a single SRM and one or more IRMs. After the as-
pects are modeled, they have to be integrated with the primary model in order to obtain the whole
system. This indicates that the approach conforms to the aspect-oriented modeling paradigm.
Therefore, in addition to static and dynamic artifacts that the modeler has to provide (e.g. SRMs
and IRMs), weaving rules are also required and have to be developed. These weaving rules, the
authors call them weaving strategies, determine the way in which aspects are integrated with the
primary model. In [47], the authors write that ’weaving strategies need to be developed from the
kinds of threats that can be expected in a system’. The presented approach differs from work
decribed in previous sections (e.g. UMLsec, SecureUML) in that there is no focus on a new
notation but on how to describe the different concerns and how to integrate them into the whole
system. Nevertheless, the problem of weaving the aspects into the primary model is completely
left to the developer. The authors write that ’the weaving strategies are intended to be reusable
forms of experiences that can be used to assess the threats to a particular system’. This means
that weaving strategies were intended to be a sort of proved merging, that is, weaving patterns.
However, the authors did not propose a way how to obtain adequate weaving strategies.

In general, the proposed method offers a high level of formality, since defined templates for
static and dynamic views of security aspects are provided. Because only class and collaboration
diagrams are used for modeling, regarding the granularity of design, it seems likely that the
approach will suffer from same criticism as UML. The reason is that the approach does not

28

4.4. SECURE SOFTWARE ARCHITECTURES BY USING ASPECTS

provide any notation for interfaces. Therefore, surely there are systems whose architecture can
be described by applying static and interaction diagrams, but for complex and large systems this
may be not enough. The same applies for modeling distributed systems. Some can be modeled,
but not all, since processes and threads can not be illustrated properly (e.g. race conditions). The
modeled system is not executable since there is not enough behavioral information provided in
the IRMs (e.g. algorithms can not be expressed). Furthermore, the problem of validating the
system’s functionality and the correctness of its security properties is completely left to the
developer. In fact, Georg et al. write that ’the security provided by mechanisms in the model is
only as good as the weaving strategy’. Because there is no formal way to derive an appropriate
weaving strategy, the big issue of validating the developed system remains untackled. Also, no
tool-support is provided.

4.4 Secure Software Architectures by Using Aspects

In [48], the authors apply Software Architecture Models (SAM) [49] to define the system’s soft-
ware architecture and the required security aspects. The approach is general and not limited to
a specific domain. SAM is a software architecture development framework based on two com-
plementary formalisms: predicate transition nets (also referred to as High-Level Petri Nets) and
temporal logic. On the one hand, High-Level Petri nets are used to visualize and describe the
static structure of the system. On the other hand, they are used to model the architecture’s be-
havior, while temporal logic formulas (LTL) are used to specify the required security properties.
A consequence of expressing security properties in temporal logic is that policies are expressed
on a very low abstraction level. Expressible policies include safety and liveness properties, and
variations of them [50]. In SAM, a hierarchical set of compositions is used to describe the sys-
tem. In [48], the authors write that ’each composition consists of a set of components, of a set of
connectors and of a set of constraints that have to be satisfied by the interacting components’.
The approach is also well suited for modeling distributed architectures. The authors describe
the contribution of their work as a formal notion for aspect-oriented modeling at an architec-
tural level, and an aspect-oriented approach to design secure software architectures. Figure 4.4
provides an overview of the approach.

Separation of

Concerns

Aspect

Weaving

Problem

Domain

Model

Secure

Architecture

Model

Base

Architecture

Model

Security

Aspect

Model

Figure 4.4: Framework for secure software architectures [48].

29

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

In the problem domain model, a precise description of the system’s functionality is given.
The base architecture model defines the software architecture of the targeted application. In this
model, the system’s basic functional modules and their connections are provided. In this model,
modules are grouped into blocks whereas each block represents an autonomous process. In the
security aspect model, security requirements are described. Furthermore, vulnerabilities, threats
and provided mechanisms that enforce security policies are defined in such a model. That is, the
security relevant features of the system are precisely described in this model. A secure architec-
ture model, as a resulting artifact after merging, is the model where security policies have been
enforced.

At first, after the problem domain model has been established, security requirements have
to be specified on the base software architecture in order to construct security mechanisms that
can be used for protection and which can be separated as security concerns. Obviously, the
according activity is named Separation of Concerns, see figure 4.4. After the concerns have
been characterized, all the models have to be integrated. Likewise, as depicted in figure 4.4, this
second step is called Aspect Weaving. In general, in AOSD join points and pointcuts are used
to merge the primary model with the aspects. The authors define join points as connectors that
satisfy a certain condition, and a pointcut is described as a ’set of join points which have the
same security vulnerability and share the common security enforcement mechanism’. Advices
are patterns which prescribe mechanisms enforcing the security for the pointcuts. The authors
define the aspect weaving step (that is, merging the aspect models with the base architecture
model) as a sequence of following steps:

1. Locating the join point. In this step, the location is appointed where the base architecture
model and the security aspect models interact.

2. Constructing advices. Here, the behaviour that will enforce security policies is defined.

3. Weaving aspects. In this last step, the aspect models and the base architecture model are
integrated.

Obviously, the presented approach conforms to the aspect-oriented modeling paradigm. The
modeler has to provide static and dynamic models (High-Level Petri nets cover both, static and
dynamic views of the system), and weaving rules as well (these are represented by pointcuts and
advices). The presented method is highly formal, nevertheless the models are not executable
since they represent the system’s software architecture. The authors show on an example how
one can reason about the correctness of aspect weaving. Furthermore, as Petri nets are the basis
for the modeling formalism, model checking could also be applied in order to verify security
properties (which are represented by LTL formulas). However, the approach lacks any tool
support and to our best knowledge, no significant further work has been done in order to enhance
the proposed method.

30

4.5. ASPECT-ORIENTED MODELING OF ACCESS CONTROL IN WEB APPLICATIONS

4.5 Aspect-Oriented Modeling of Access Control in Web
Applications

In [51], the authors propose an aspect-oriented technique for modeling access control in Web
applications. In order to do so, they apply UML state machines to specify navigation rules.
The approach is utilised in the context of the UML-based Web engineering method (UWE). In
UWE, the Web application is separated in following concerns: the content that is modeled in the
conceptual model, the navigation structure that is modeled in the navigation model, the business
process that is modeled in the process model and the presentation that is modeled in the presen-
tation model. The authors describe the conceptual model as comprising entities used in the Web
application, which are represented by instances of the conceptual class, that again is a
subclass of the UML metaclass Class and relationships between these contents which again are
modeled by UML associations. Business processes, such as searching and ordering a product for
example, are modeled by activity diagrams based on the UML 2.0 specification [52]. The navi-
gation model, on the other hand, models how the content of the Web application can be accessed.

In the presented approach, UWE is extended by associating a state machine to each navi-
gation node. By this way, a detailed behaviour of each navigation node is specifed. That is,
when a Web page resource has to be shown, its corresponding state is executed first. As in real
applications usually there is more than only a single web page that has to be protected, the ac-
cess control state-machine has to be replicated. In order to avoid such redundancy, the authors
organized the model elements as aspects. For this reason, they extended the UWE metamodel
by a package annotated with the aspect stereotype. An aspect can contain one or more nav-
igation nodes, and its characterisitic is that access control rules are not defined in single nodes,
but in the corresponding aspects. In addition, the authors provided ArgoUWE, a CASE tool to
support the design phase of the UWE development process. ArgoUWE is implemented as a plu-
gin module for the open source ArgoUML modeling tool (UML 1.4). Furthermore, the authors
provided support for the aspect-oriented modeling extension described above and integrated it in
the ArgoUWE modeling tool. In a subsequent work [53], Knapp and Zhang focused on model
integration by applying graph transformation rules. By merging the navigation and the business
process models, they obtained a UML state machine which included both, a static navigation
structure as well as the dynamic behaviour of the Web application. Afterwards, the authors ver-
ified the resulted model formally by applying the state-of-the-art model checker SPIN [54]. The
modeled system is not distributed and also not executable, since the business process model is
containing subtasks that have to be refined in order to be executable (e.g. searching or sorting
algorithms).

4.6 An aspect-based approach to modeling access control concerns

In [55], Georg et al. propose the usage of AOM techniques in order to systematically address
access control concerns in information system design. The presented work is a consequent ap-
plication of ideas the authors already proposed in [47]. They model access control from two
different perspectives. On the one hand, the structural view of the system is modeled by iden-

31

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

tifying domain entities which are constrained by access control policies, and the corresponding
associations between these entities. Class diagrams are used to represent this perspective. On
the other hand, the dynamic view defines the constraints which are imposed on the system’s
behaviour. This perspective is represented by interaction and collaboration diagrams. In fact, as
already proposed in [47], aspects are templates or patterns that provide static and dynamic views
of the system’s crosscutting concerns. The method is not intended for modeling distributed sys-
tems, and it is also not suitable for modeling architectures (e.g. race conditions). Since the
provided models do not contain enough information to express algorithms, the resulting models
are not executable. In the proposed approach, the authors compose an aspect with the primary
model by doing following steps:

• At first, they instantiate the aspect in order to obtain a so-called context-specific aspect.
That is, values are bound to aspect’s parameters, and a design pattern is concretized to an
implementation blueprint.

• Second, context-specific aspects have to be composed with the primary model. That is, the
views which are described by context-specific aspects are merged with aspects described
by the primary model in order to obtain a model which describes the complete system (the
so-called woven model). One possibility to merge the models is to weave them in case
they are of same syntactic type. In case both models do not have a matching element,
which means that they do not have a single element which can be used for merging, a new
model element has to be added to the woven model. In case of conflicts, for instance when
multiple matches occur, the modeler has to indicate, by using certain rules, which view
should dominate.

Merging interaction patterns involves three steps:

• First, aspect participants have to be matched with participants in the primary model.

• Second, aspect participants without a corresponding match have to be included in the
woven model.

• Messages specified in the dynamic view have to be merged based on composition direc-
tives provided by the modeler.

Nevertheless, even if the proposed methodology leads to composed models that are con-
taining required security aspects, one can not be sure whether the resulting model fullfills the
required security properties. In [56], the same authors continue the work and try to handle the
problem of assuring security properties when composing aspects and primary models. They
present an approach in which verifiable compositions of behaviours are supported. In the men-
tioned work, the authors use a model of a banking application as the primary model, an RBAC
aspect model, and they specify security properties by expressing them in OCL. They illustrate
how models can be composed such that compositions are verifiable. That is, they show how one
can combine models and reason manually about their security properties. To our best knowledge,
until now no tool-support for model composition or verification was provided by the authors.

32

4.7. A MODEL-BASED ASPECT-ORIENTED FRAMEWORK FOR BUILDING
INTRUSION-AWARE SOFTWARE SYSTEMS

4.7 A model-based aspect-oriented framework for building
intrusion-aware software systems

In [57], the authors propose a model-based, aspect-oriented framework for building intrusion-
aware software systems. In the framework, intrusion detection aspects (IDAs) are included
which automatically detect intrusions. The authors developed a UML profile with aspect-
oriented extensions in order to model attacks, and by this way intrusion detection aspects (IDAs)
which are responsible for detecting these attacks. Analogous to work done by G. Georg et al.
in [47], static and dynamic views of the system’s aspects have to be provided by the modeler.
Class diagrams are used to represent the system’s static attributes, and state machine diagrams
are used to represent the dynamic views of intrusions. That is, by applying state machine di-
agrams it is represented how the attacker intrudes into the system. After modeling, the attack
scenario models are transformed into programs (that is, code is generated for the IDAs) and are
woven into the primary program subsequently. After weaving, the aspects work as intrusion
detection components and identify attacks automatically. In figure 4.5, the principle of the pro-
posed approach is depicted. The method is not limited to a specific application domain and the
framework can also be used to make distributed systems intrusion-aware. Several open source
tools, like ArgoUML, AspectJ and Novasoft Metadata Framework are used to build the frame-
work. The level of formality, when modeling intrusions, is high since state machines are used
to describe the attack. Nevertheless, when considering the remainig application which is written
in an ordinary programming language and for which no model is available, the system is too
complex to be verified formally. Therefore, the resulted intrusion-aware application was tested
manually by applying a set of attacks from the web security threat classification released by the
Web Application Security Consortium (WASC) [58].

Figure 4.5: AOSD framework for developing intrusion-aware software systems [57].

33

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

4.8 A security-aware metamodel for multi-agent systems (MAS)

In [59], Beydoun et al. provided a model based-security approach for development of distributed
multi-agent information systems. The proposed method complies to the single model paradigm,
since the authors extended the already existent FAME Modeling Language [60] and introduced
a novel metamodel that considers security concerns. FAME (in fact a metamodel) defines con-
cepts from which modeling elements can be instantiated in order to construct models or designs
of a mult-agent system, but it does not consider security. The resulting artifacts in FAME are
models which then can be manually implemented or used as inputs to further model-driven de-
velopment process. In general, these models are not executable. Beydoun et al. argued that
a first step in developing an agent-modelling language, which also takes security issues into
account, is the definition of metamodels that define security concepts together with associated
agent development concepts [7]. Thus, the authors proposed model-based security to ensure
considering security requirements throughout the overall development process. The proposed
language is not expressive enough to model different security requirements and security mecha-
nisms. The language distinguishes, on a very abstract level, between system specific and agent
specific security requirements, between security actions, security tasks and protected resources.
The authors provided a case study to illustrate the applicability of the approach and they claimed
that an initial verification of the proposed metamodel was started. As the approach was proposed
recently, no tool-support is available.

4.9 Automated Validation of Internet Security Protocols and
Applications

In [61], the authors propose a tool, called AVISPA, intended to speed up the development of
security protocols and to improve their security. The approach provides a language called the
High Level Protocol Specification Language (HLPSL), which is used to describe the protocols
and their intended security requirements, and a bunch of analysis tools to formally validate
them [62]. The authors write that the approach provides a modular and expressive formal lan-
guage for specifying security protocols and properties, and integrates several different back-ends
that implement a variety of automatic analysis techniques ranging from protocol falsification to
abstraction-based verification methods for both finite and infinite numbers of sessions [61]. The
archietcture of the Avispa tool is depicted in figure 4.6. In the HLPSL user manual [62], the
authors write that a valid HLPSL specification

is translated into the Intermediate Format (IF), using a translator called hlpsl2if.
IF is a lower-level language than HLPSL and is read directly by the back-ends to
the AVISPA Tool. This intermediate translation step is transparent to the user, as the
translator is called automatically. The IF specification of a protocol is then input
to the back-ends of the AVISPA Tool in order to analyse whether the security goals
are satisfied or violated.

The language offers an expressive formalism which allows for specifying roles, control
flows, data structures as well as security requirements [61]. After providing the specification

34

4.9. AUTOMATED VALIDATION OF INTERNET SECURITY PROTOCOLS AND
APPLICATIONS

Figure 4.6: Avispa architecture [62].

to the tool which comprises four back-ends, the problem is tackled from different positions with
different techniqes. In [13], these are described as follows:

The On-the-fly Model-Checker (OFMC) performs protocol falsification and bounded
verification by applying symbolic model-checking techniques. It supports the spec-
ification of algebraic properties of cryptographic operators, and typed and untyped
protocol models. The Constraint-Logic-based Attack Searcher (CL-AtSe) applies
constraint solving. CL-AtSe is built in a modular way and is open to extensions
for handling algebraic properties of cryptographic operators. It supports type-
flaw detection and handles associativity of message concatenation. The SAT-based
Model-Checker (SATMC) builds a propositional formula encoding all the possible
attacks (of bounded length) on the protocol and feeds the result to a SAT solver.
The TA4SP (Tree Automata based on Automatic Approximations for the Analysis of
Security Protocols) back-end approximates the intruder knowledge by using regular
tree languages and rewriting. For secrecy properties, TA4SP can show whether a
protocol is flawed (by under-approximation) or whether it is safe for any number of
sessions (by over-approximation).

In summary, the protocol designer specifies a security problem in the High-Level Protocol
Specification Language, and provides the resulting specification to the tool [61]. Then the tool

35

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

performs the analysis by utilising four different back-ends. Upon termination, the analysis result
is provided by stating whether the problem could be solved, whether the problem could not be
solved due to exhausted resources (e.g. memory), or some other reason which prevented the tool
from solving the problem.

In general, the method offers a high level of formality, since HLPSL is based on Lamport’s
Temporal Logic of Actions [63]. The user has to provide a dynamic model of the system’s
behaviour, which is representsed by a distributed system consisting of interacting processes
sending to and receiving messages from each other. The model is not executable, since it is
an abstraction of the protocol, and not its implementation. Authenticity, integrity, confidential-
ity and non-repudiation requirements can be analysed by the approach. However, as with all
methods based on state exploration, the size and the complexity of analyzed systems are severly
limited by the state explosion problem (cf. [64]).

4.10 Symbolic Model Verifier

The Symbolic Model Verifier (SMV) is a model-checking system applicable for analyzing de-
signs of synchronous and asynchronous process systems. It provides a language for describing
finite automata, and it can directly check the validity of temporal logic formulas (that is, LTL
and CTL). The tool takes a textual description of the system’s dynamic model and the corre-
sponding specification, which is expressed by LTL and CTL terms. On termination, it produces
either ’true’ if the specification holds, or a trace showing why the required property is violated.
SMV programs consist of one or more modules, which can declare variables and assign values
to them. Usually, assignments give the initial value of a variable (e.g. init(var) := 0),
whereas the variable’s next value is specified in terms of expressions comprising the current
value (e.g. next(var) := ((var + 1) mod 3)) [27]. Thus, state transitions are mod-
eled this way. Values can also be non-deterministic, in case the environment is influencing
the system. In SMV, processes can be represented by modules which can be composed syn-
chronously or asynchronously. In the asynchronous case, the modules run at different speeds,
and they are interleaving arbitrarily. Such asynchronous compositions can be used for descrip-
tion of communication protocols, asynchronous circuits and other systems whose actions are
not synchronized to a global clock [27]. In section 2.3, an example was introduced to illus-
trate the principle of model checking. The sample code illustrated there is written in the SMV
modeling language. Below, sample code for a modulo-3 counter is illustrated. The specifica-
tion (LTL) requires for each state that whenever y = 3 holds, then in the next state y = 0 is valid.

In general, the proposed method offers a high level of formality, since it is based on temporal
logic. It is well suited for modeling distributed systems, and the user has to provide a model of
the system’s dynamic behavior. The granularity of modeled systems can vary. On the one
hand, communicating processes can be modeled, which can describe a view of the system’s
architecture. On the other hand, the method is applicable for modeling finite state machines, such
as Mealy automata. Executable software systems cannot be modeled, but security protocols can.
Properties like authenticity, integrity, confidentiality and non-repudiation can be verified. Of

36

4.11. ALLOY

MODULE main
VAR
y : 0..3;

ASSIGN

/* initial value of y */
init(y) := 0;

/* state transition */
next(y) := ((y + 1) mod 3);

LTLSPEC G((y = 3) -> (X y = 0));

Listing 2: Sample code for the Symbolic Model Verifier.

course, these have to be transformed into temporal logic formula first in order to be analysable.
Lastly, as with all model checking methods, the size and the complexity of analyzed systems are
severly limited by the state explosion problem (cf. [64]).

y = 0

y = 3

y = 2

y = 1

init

next

next next

next

Figure 4.7: Corresponding automaton.

4.11 Alloy

Alloy is a declarative modeling language based on first-order logic, extended with relational
logic operators [65]. The language was primarily designed for modeling software designs. Mod-
els written in the Alloy language can be analyzed using the so-called Alloy Analyzer, which is a
model-finder built on a SAT solver to simulate models and check their properties. Hereafter, we

37

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

sig Name, Addr{}
sig Book{

addr: Name -> lone Addr
}

Listing 3: Defining sets of objects [65].

use the term Alloy to refer to both the language and the tool. The key elements of the approach
are a logic, a language and an analysis, which are introduced below [65].

• In [65], the authors describe Alloy as a first-order relational logic, which provides the
building blocks of the language. All logical structures are represented as relations, and
all structural properties are expressed with relational operators. States and executions are
both described using constraints.

• The language adds a syntax to the underlying first-order relational logic. To support classi-
fication, the Alloy language supports typing, sub-typing and compile-time type-checking.
Furthermore, the language’s module system allows a reuse of generic declarations and
constraints [65].

• Literally, the analysis of Alloy models is a form of constraint solving, either by finding an
instance of a model or by finding a counterexample for a given property. An instance is an
example of the specified model, in which both the facts and the predicate hold. To make
instance finding practically feasible, a user-specified scope is defined that limits the size
of the analysed instances. Within this bound, the analyzer translates the constraint into
a boolean formula and solves it using a commercial SAT (satisfiability problem) solver
[65]. The found solution is then presented to the user.

In order to give a better understanding of the language, we will introduce a simple address
book example. It is an address book for an email client which maintains a mapping from names
to addresses, and it is illustrated in listing 3. In the model, three sets of objects are introduced:
Name, Addr and Book. In the Alloy language terminology, these sets are called signatures.
The Book signature has a field addr, which maps names to addresses. In other words, addr
is a three-way mapping associating books, names and addresses. The keyword lone indicates
the multiplicity - in this case each name is mapped to at most one address. Thus, by using sig-
natures, static objects are modeled, similar to classes in object-oriented programming languages.

Restrictions or constraints that are required to hold can be added by the pred keyword. Facts,
which are constraints that always hold, can be declared by the keyword fact. In listing 4, the
predicate show defines a model which specifes that the book b contains more than two name-to-
address associations. The defined fact, on the other hand, requires that in all models each book
contains at least one name-to-address association.

38

4.11. ALLOY

pred show(b:Book){
#b.addr > 2

}
fact{

all b: Book | b.addr >= 1
}

Listing 4: Defining facts and constraints [65].

pred add(b, b’:Book, n:Name, a:Addr){
b’.addr = b.addr + (n -> a)

}

Listing 5: Defining dynamic behaviour [65].

So far, we have defined a state space by declaring sets of objects and restrictions on them,
and by defining facts which hold for each model. Thus, we have shown how to describe static
structures. In the next code sample, we introduce dynamic behavior. Both predicates, add and
show, are constraints. However, the predicate add represents an operation and thus describes dy-
namic behavior. The difference lies in the additional parameter b’, which is denoting the future
state of the book b. That is, a restriction is set on the future state b’ which is determined by the
actual state b and the newly created mapping from the name n to the address a.

As the Alloy’s relational logic is undecidable, the underlying analysis is based on instance
finding. The key idea is the specification of a scope, which bounds the sizes of the signatures,
and an exhaustive search within the scope for examples or counterexamples. However, as with
other formal methods, the size and complexity of analysable systems are strongly limited. The
authors write that with a model containing up to 20 signatures and 20 or 30 fields, an analysis
in a scope of 5 to 10 is usually possible.

In general, the proposed method is suitable for modeling static and dynamic aspects of soft-
ware systems. Furthermore, it offers a high level of formality, since the language is based on
a first-order relational logic. The Alloy language is abstract enough to model the problem do-
main’s specific entities, as well as to model distributed systems since message transmissions can
be represented as dynamic operations. The modeled systems are not executable, but are also not
bound to a specific application area, since Alloy is expressive enough to capture several problem
domains. As the approach is based on first-order logic, security requirements such as authentic-
ity, integrity, non-repudiation and confidentiality can be expressed. These have to be specified
by the user as first-order formulas.

39

CHAPTER 4. COMPARISON OF MODEL-DRIVEN SECURITY APPROACHES

Ta
bl

e
4.

1:
E

va
lu

at
io

n
re

su
lts

.
D

im
en

si
on

Ju
er

je
ns

(2
00

2)
B

as
in

et
al

.(2
00

2)
G

eo
rg

et
al

.(2
00

2)
H

.Y
u

et
al

.(2
00

5)
Z

ha
ng

et
al

.(2
00

5)
Pa

ra
di

gm
hi

er
ar

ch
ic

al
hi

er
ar

ch
ic

al
as

pe
ct

-o
ri

en
te

d
as

pe
ct

-o
ri

en
te

d
as

pe
ct

-o
ri

en
te

d

A
rt

ifa
ct

s
st

at
ic

an
d

dy
na

m
ic

st
at

ic
m

od
el

s
st

at
ic

an
d

dy
na

m
ic

st
at

ic
an

d
dy

na
m

ic
st

at
ic

an
d

dy
na

m
ic

m
od

el
s

m
od

el
s

m
od

el
s

m
od

el
s

w
ea

vi
ng

ru
le

s
w

ea
vi

ng
ru

le
s

w
ea

vi
ng

ru
le

s
Fo

rm
al

ity
m

et
am

od
el

s
m

et
am

od
el

s
de

si
gn

pa
tte

rn
s

hi
gh

-l
ev

el
Pe

tr
in

et
s

m
et

am
od

el
s

co
ns

tr
ai

nt
s

co
ns

tr
ai

nt
s

te
m

po
ra

ll
og

ic
st

at
e

m
ac

hi
ne

s
D

is
tr

ib
ut

io
n

ye
s

no
ye

s
ye

s
no

G
ra

nu
la

ri
ty

pa
ck

ag
es

,c
la

ss
es

cl
as

se
s

cl
as

se
s

co
m

po
ne

nt
s

an
d

cl
as

se
s

co
nn

ec
to

r
E

xe
cu

ta
bi

lit
y

no
no

no
no

no

Ve
ri

fic
at

io
n

m
od

el
ch

ec
ki

ng
th

eo
re

m
pr

ov
in

g
no

m
od

el
ch

ec
ki

ng
m

od
el

ch
ec

ki
ng

th
eo

re
m

pr
ov

in
g

To
ol

-S
up

po
rt

ye
s

ye
s

no
no

ye
s

A
pp

lic
ab

ili
ty

in
fo

rm
at

io
n

sy
st

em
s

w
id

el
y

ap
pl

ic
ab

le
w

id
el

y
ap

pl
ic

ab
le

w
id

el
y

ap
pl

ic
ab

le
w

eb
ap

pl
ic

at
io

ns
em

be
dd

ed
sy

st
em

s
Se

cu
ri

ty
co

nfi
de

nt
ia

lit
y

R
B

A
C

no
sp

ec
ifi

c
sa

fe
ty

R
B

A
C

m
ec

ha
ni

sm
s

in
te

gr
ity

po
lic

ie
s

m
ec

ha
ni

sm
s

or
liv

en
es

s
an

d
no

n-
re

pu
di

at
io

n
re

qu
ir

em
en

ts
re

qu
ir

em
en

ts
no

n-
in

te
rf

er
en

ce
au

th
en

tic
ity

ac
ce

ss
co

nt
ro

l

40

4.11. ALLOY
Ta

bl
e

4.
2:

E
va

lu
at

io
n

re
su

lts
.

D
im

en
si

on
Z

hu
et

al
.(2

00
8)

G
eo

rg
et

al
.(

20
04

)
Av

is
pa

Sy
m

bo
lic

M
od

el
Ve

ri
fie

r
A

llo
y

Pa
ra

di
gm

as
pe

ct
-o

ri
en

te
d

as
pe

ct
-o

ri
en

te
d

hi
er

ar
ch

ic
al

hi
er

ar
ch

ic
al

hi
er

ar
ch

ic
al

A
rt

ifa
ct

s
st

at
ic

an
d

dy
na

m
ic

st
at

ic
an

d
dy

na
m

ic
dy

na
m

ic
dy

na
m

ic
st

at
ic

an
d

dy
na

m
ic

m
od

el
s

m
od

el
s

m
od

el
s

m
od

el
s

m
od

el
s

w
ea

vi
ng

ru
le

s
w

ea
vi

ng
ru

le
s

Fo
rm

al
ity

m
et

am
od

el
s

m
et

am
od

el
s

te
m

po
ra

l
te

m
po

ra
l

fir
st

or
de

r
st

at
e

m
ac

hi
ne

s
lo

gi
c

of
lo

gi
c

lo
gi

c
ac

tio
ns

D
is

tr
ib

ut
io

n
no

no
ye

s
ye

s
ye

s

G
ra

nu
la

ri
ty

cl
as

se
s

cl
as

se
s

pr
oc

es
se

s
pr

oc
es

se
s

cl
as

se
s

E
xe

cu
ta

bi
lit

y
no

no
no

no
no

Ve
ri

fic
at

io
n

no
th

eo
re

m
pr

ov
in

g
m

od
el

ch
ec

ki
ng

m
od

el
ch

ec
ki

ng
m

od
el

fin
di

ng
th

eo
re

m
pr

ov
in

g
To

ol
-S

up
po

rt
no

no
ye

s
ye

s
ye

s
A

pp
lic

ab
ili

ty
w

id
el

y
ap

pl
ic

ab
le

in
fo

rm
at

io
n

sy
st

em
s

se
cu

ri
ty

pr
ot

oc
ol

s
sy

nc
hr

on
ou

s
an

d
w

id
el

y
ap

pl
ic

ab
le

as
yn

ch
ro

no
us

sy
st

em
s

Se
cu

ri
ty

in
tr

us
io

n
R

B
A

C
co

nfi
de

nt
ia

lit
y

sa
fe

ty
co

nfi
de

nt
ia

lit
y

m
ec

ha
ni

sm
s

de
te

ct
io

n
in

te
gr

ity
liv

en
es

s
in

te
gr

ity
an

d
au

th
en

tic
ity

au
th

en
tic

ity
re

qu
ir

em
en

ts
no

n-
re

pu
di

at
io

n

41

CHAPTER 5
Pseudonymization of Information for

Privacy in e-Health

This chapter describes the system to be analysed, PIPE. At first, we give a general introduction
into the system and its principles. Afterwards, we provide a more detailed view on the system
and the offered workflows. Then we describe the problem to be solved in detail.

5.1 General description

Pseudonymization refers to a method where identification data is transformed into a specifier,
and afterwards replaced by it. The mentioned specifier, also called a pseudonym, cannot be
linked to the corresponding identification data without knowing a certain secret [66]. In order to
overcome the drawbacks of existing approaches, Neubauer et al. proposed a new system, PIPE,
for the pseudonymization of health data records which comprises methods for data sharing,
authorization, and recovery. In [20], Neubauer and Riedl write that

the system is based on a hull-architecture, where each hull consists of one or more
secrets (encrypted keys), which are only accessible with the unveiled secrets from
the next outer hull. For instance, patients’ inner private key (e’) in the inner hull
is encrypted with the outer public key (d) on their smartcards, which represents the
outer hull or authentication layer.

Thus, the authorization mechanism of the system is represented by a layered hull-model,
which comprises of at least three secruity-hulls, as depicted in figure 5.1. In [20], Neubauer and
Riedl describe the authentication mechanism of the system such that a key KN of a certain hull
HN is encrypted with a key KN + 1 of the hull HN + 1 envelopinh hull HN . Hence, the PIPE
system does not depend on a list where the patient’s identity is associated with medical data, or
a list where all patient’s psedonyms are kept. Instead, the pseudonyms are encrypted and stored
in a database, and only the patient him/herself and persons authorized by the patient are able to

43

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

decrypt the pseudonyms and retrieve the medical data. In order to be able to retrieve the medical
data, each user has to be authenticated. In case a successful authentication has been established,
a symmetric session key is generated which is used to secure the subsequent communication
between the client and the server. Furthermore, all encrypted keys which are owned by the user
and stored in the database are transmitted to the client for further use. The security of the system
is mainly based on public-key cryptography, which assures security properties like confidential-
ity, authenticity, integrity and non-repudiation.

Figure 5.1: Layered securty-hull model [20].

The architecture of the system is depicted in figure 5.2. As illustrated, the system can be
divided into client and server components.

In [67], Heurix and Neubauer describe the client as consisting of an application part (which
is executed on the host), and a security token. The user-owned security token stores authenti-
cation credentials and performs cryptographic operations such as encryption and decryption by
applying the user’s public and private keys. The remaining PIPE toolbox represents a library
that provides functionality for authentication and authorization, backup, emergency, data re-
trieval and storage [67]. The keys and the operations located at the security token are, according
to the concept of two-factor-authentication, only accessible by providing a secret PIN. During
the authentication process, cryptographic user keys are transferred to the token, decrypted there
within a secured environment, and are then available for further operations. The client appli-
cation contains functionality which cannot be stored or executed within the security token, due
to performance or storage space reasons. As the toolbox logic is located on the client side, the
server contains only a minimal logic, and its tasks are limited for providing database opera-
tions (searching, retrieving and returning data back to the client) and handling the server-side
authentication part [67].

44

5.2. WORKFLOWS

Client Components Server Components

PIPE PSY Data

Identification and

Health Data

PIPE Database

Web Service

Provider
Crypto Module

Server Interface

Security Token

PIPE Toolbox

Client Application

PIPE Toolbox

Figure 5.2: Architecture [67].

5.2 Workflows

In this section we describe the system’s static data model, the workflows operating on that data
and the system users, which can be classified in two categories. At the one hand, there are the
data owners. This user class represents patients which are in possession of their medical data
records. On the other hand, there are the authorized users. This user class represents health
professionals which need access to the patient’s health data records and thus can be authorized
by the data owners in order to grant the required access. Data owners can

• authenticate against the system,

• insert medical data into the system,

• retrive added health data records,

• authorize other users to hava access to these data records,

• and pseudonymize medical data.

Authorized users as well can perform all these operations, except pseudonymizing data. As
a first step, all users have to authenticate against the system. That is, they have to provide a
correct PIN in order to access the key pair stored on the smart card. This key pair represents
the outer key pair from the layered securtiy hull-model described in the previous section. User

45

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

authentication is a precondition for all further workflows. After a successful authentication,
the user can add new health records to the system or retrive already stored ones. Use cases
’Add Data’ and ’Retrieve Data’ describe these two alternatives. The ’Authorize Instance’ use
case refers to granting access to specific data records to a trusted user. For example, a patient
could grant access to his or her health data to a medical doctor. ’Pseudonymize Data’ refers to
the procedure of pseudonymizing health data records already stored on the server and can be
performed by the data owner only [67].

Data model

In order to illustrate and clarify the underlying principles of the PIPE system, we will base our
description upon the simplified static data model depicted in figure 5.3, which is an excerpt
from the original PIPE data model described in [67]. The model exhibits a conventional re-
lational data structure, where the UserInstance table stores data regarding the users, including
their identifier as well as the users’ cryptographic symmetric key. The inner private and public
keys are not modeled, since all the workflows except the ’Authentication’ workflow do not rely
on public key cryptography. User instances include both user categories, that is patients and
health care providers. Pseudonyms can as well be split in two categories. On the one hand,
root pseudonyms denote pseudonyms which are not shared and are known to the data owner
only. On the other hand, shared pseudonyms represent pseudonyms which are known by autho-
rized users, e.g., health care providers. Both categories can further be split into identification
and health pseudonyms. Identification pseudonyms denote pseudonyms which associate a user
(data owner or health care provider) with an identification record, whereas health pseudonyms
associate users with health records. Figure 5.4 depicts the aforementioned classification. Thus,
the RootIdPseudonyms table associates the data owner’s identification record with his/her iden-
tifier, whereas the RootHealthPseudonyms table associates the data owner’s non-shared health
records with his/her identifier. The SharedIdPseudonyms table relates the data owner’s identi-
fication record and the authorized health care provider, whereas the SharedHealthPseudonyms
table denotes the relation of shared health records and the authorized health care provider. The
PseudonymRecordsMapping stores a cleartext mapping of pseudonyms and record identifiers,
which identify the medical data records [67].

User instances comprise an internal user identifier (IUID) and an internal symmetric key
(ISK). Shared pseudonyms comprise encrypted internal user identifiers of the data owner
and of the authorized user. More precisely, ISKow(IUIDow) represents the internal user
identifier of the data owner, encrypted with the data owner’s inner symmetric key. Analo-
gous, ISKau(IUIDow) represents the internal user identifier of the data owner, encrypted
with the authorized user’s inner symmetric key. Furthermore, the pseudonym itself (that is, the
plaintext value of the pseudonym) is encrypted with the authorized user’s and the data owner’s
inner symmetric key (ISKow(PSN) and ISKau(PSN)). Root pseudonyms, on the other
hand, comprise the encrypted data owner’s internal identifier and the encrypted pseudonym only
(ISKow(IUIDow) and ISKow(PSN)). Records contain a medical description and a record
identifier (RID).

46

5.2. WORKFLOWS

UserInstance

PK IUID

 ISK

SharedIdPseudonym

PK aPID

 ISKow(IUIDow)

 ISKau(IUIDau)

 ISKow(IUIDau)

 ISKau(IUIDow)

 ISKow(PSN)

 ISKau(PSN)

RootIdPseudonym

PK oPID

 ISKow(IUIDow)

 ISKow(PSN)

PseudonymRecordsMapping

PK Pseudonym

PK RID

Records

PK RID

 Description

RootHealthPseudonym

PK oPID

 ISKow(IUIDow)

 ISKow(PSN)

SharedHealthPseudonym

PK aPID

 ISKow(IUIDow)

 ISKau(IUIDau)

 ISKow(IUIDau)

 ISKau(IUIDow)

 ISKow(PSN)

 ISKau(PSN)

Figure 5.3: An excerpt from the static data model [67].

Figure 5.4: An excerpt from the logical data model [67].

47

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

Authentication

Authentication is required as a precondition for each session and is based on the challenge-
response prionciple [67]. During the authentication process, the user keys stored in the database
(that is, the inner private key and the inner symmetric key) are transferred to the security token,
where they can be used for further operations. In addition, a symmetric session key is generated
which is used for encryption and decryption of each message transmitted between the client and
the server. The precondition for this workflow is a created user instance available in the database
and the fact that the user is in possession of a personal security token. The workflow comprises
five steps, which are depicted in figure 5.5 and described more extensively in [67]:

1. First, the user generates a random value as a challenge and encrypts his internal identifier
and the challenge with the server’s outer public key. Then, the user sends these items to
the server.

2. The server decrypts the received message with its outer private key and uses the retrieved
user identifier in order to query the database. If such an identifier exists in the database,
the server retrieves the user’s outer public key, it generates a random value as the server
challenge, and sends these items encrypted with the user’s outer public key to the user.

3. Then the user decrypts both random values with his outer private key. In case the user
challenge is correct (that is, the original value and the server-returned value are identical),
he returns the server challenge back to the server encrypted with the server’s outer public
key.

4. The server decrypts the received message and checks whether the server challenge has
been answered correctly. If so, both the user and the server are successfully authenticated,
and the server retrieves and forwards the user’s encrypted inner private key and the inner
symmetric key which are both encrypted with the newly generated session key, as well as
the session key itself encrypted with the user’s outer public key, to the user.

5. Then the user decrypts the session key with his outer private key and the remaining items
with the retrieved session key. Subsequently, he decrypts the inner private key with his
outer private key and the inner symmetric key with his inner private key. From now on,
each message exchanged between client and server is encrypted with the session key.

Get Pseudonyms

This ’Get Pseudonyms’ workflow describes how to retrieve the pseudonyms associated with a
user. Depending on the user’s role, these include all root or shared pseudonyms. The workflow
consists of the following steps [67], which are also depicted in 5.7:

1. The user encrypts his user identifier with his inner symmetric key and queries the database
for all associated pseudonyms.

2. The database engine returns the list of pseudonyms and identifiers.

48

5.2. WORKFLOWS

Figure 5.5: The authentication workflow [67].

3. The user decrypts the pseudonyms (with his inner symmetric key) which are then dis-
played by the client application.

Figure 5.6: Get Pseudonyms workflow [67].

Authorize Instance

The ’Authorize Instance’ workflow refers to granting access to specific health data records to
a trusted user instance [67]. That is, the data owner allows access to his or her health data
records to a health care provider, which we will call the authorized for short. This workflow
describes the synchronous authorization scenario where both the data owner and the authorized
are present and provide the client application with their identifiers. The workflow requires that
both data owner and the authorized are present and authenticated, and that the health data record
to be shared is stored in the database. The workflow consists of the following steps [67], which
are also depicted in 5.7:

49

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

1. The data owner retrieves his or her root pseudonyms and selects the one referenced with
the data record he or she intends to share with the authorized.

2. With the selected root pseudonym, the owner retrieves the corresponding record identifier.

3. The client application generates the shared pseudonym and references it with the record
identifier if the shared pseudonym is confirmed unique.

4. The owner encrypts the pseudonym and both user identifiers (owner and authorized) with
his inner symmetric key.

5. Analogously, the authorized encrypts the pseudonym and identifiers with his inner sym-
metric key.

6. The encrypted pseudonym and identifiers are stored in the SharedPseudonyms table
in the database.

Figure 5.7: The authorization workflow [67].

Data Insertion

The workflow describes how the data owner can add new (health) data into the system. The
precondition is that the user (data owner) has to be authenticated. Below we enumerate the steps
comprised in the workflow:

1. The data owner retrieves the record identifier of his identification record.

50

5.2. WORKFLOWS

2. The data owner enters the health data to be added (either the medical document itself or a
reference to the record’s physical location).

3. The client application generates new root identification and health pseudonyms which are
referenced with the identification record identifier and the health record identifier provided
by the database engine after storing the new health data if confirmed unique.

4. The pseudonyms and the use identifier are encrypted and stored in the database.

Figure 5.8: The data insertion workflow [67].

Data Retrieval

Data Retrieval involves selecting the respective pseudonym and retrieving the referenced health
data record. This workflow is applicable for both data owner and authorized. The only difference
is that the owner uses primarily the root pseudonyms for data retrieval, while the authorized relies
on the shared pseudonyms. The precondition for this workflow is that the user is authenticatd and
that at least one health data record is stored in the database. The workflow comprises following
steps, as described in [67], which are also depicted in figure 5.9:

1. The data requestor retrieves legally accessible pseudonyms from the database and selects
the pseudonym referenced with the desired health data record.

2. The data requestor then transfers the health pseudonym to the database engine (and the
identification pseudonym to the database engine if required) which returns the requested
data.

Data Pseudonymization

This workflow describes the procedure of pseudonymizing (health) data which already exist in
the database. The workflow assumes that the data records are already depersonalized and that
data records are separated into one identification record and multiple health data records. The
workflow comprises following steps:

51

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

Figure 5.9: Data retrieval [67].

1. As a first step, record identifiers are retrieved from the database.

2. Then, for each health record an identification and a health pseudonym are created. Fur-
thermore, the data owner encrypts his or her user identifier.

3. For each health record, the identification pseudonym is referenced with the identification
record and the health pseudonym with the health record.

4. For each helth record, the owner encrypts both pseuondyms with his inner symmetric key
and stores them along with his user identifier as a relation in the database.

Figure 5.10: Data pseudonymization [67].

5.3 Problem analysis

In this section we apply the so called ’Threat Modeling’ approach (described in [15]) in order to
identify the system’s security requirements. First, we create a data flow diagram (DFD) of the
system. In this diagram the system’s components, communication links between these compo-
nents and external entities which interact with the system are represented. Then, based upon the
data-flow diagram, we identify potential threats that could menace the system’s security. Finally,
on the basis of determined threats, we elicitate the required security properties. These properties,
also called security requirements, are enforced by mechanisms utilized by the system, such as
digital signatures or personal identification numbers (PIN).

52

5.3. PROBLEM ANALYSIS

Creating the data-flow diagram

In general, when using data flow diagrams, circles represent processes which perform discrete
tasks. Processes can be located on a single or on distributed machines. Rectangles represent
external entities which interact with the system and which drive the application. The system
or the application itself cannot control the external entities. Parallel lines represent persistent
data storage such as files and databases. In our case, the data storage is realized by a database.
The data flow, or communication in other words, is represented by arrowed lines, while dotted
lines stand for trust boundaries. There is a trust boundary between the security token and the
remaining components of the system, and there is also a trust boundary between the users of the
system and the system itself. The data flow diagram, which is depicted in figure 5.11, represents
the basis for further analysis.

Security

Token

Owner

Client Server

Authorized

Admin

Database

Figure 5.11: Context diagram for PIPE.

Table 5.1: Mapping threats to DFD elemenes. [15]

DFD Element Type S T R I D E

External Entity x x
Data Flow x x x
Data Store x x x x x x
Process x x x x x x

53

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

Identifying threats to system’s security

Within the PIPE system, valuable assets such as health data records, corresponding pseudonyms
and encrypted keys are stored in a database and need protection. Furthermore, all communica-
tion channels, processes and external entities need protection as well. That is, each element of
the system can be subject to an attack. However, not all attacks can be applied to all elements in
the data-flow diagram. The nature of the attack is determined by the type of the DFD element.
For instance, data flow elements can be subject to tampering, information disclosure and denial
of service attacks [15]. Thus, in order to identify all threats that could menace the system’s secu-
rity, we applied the mapping depicted in table 5.1 which is based upon a threat mapping pattern
proposed and described by the authors in [15]. We slightly modified the original pattern in a
way such that data stores are treated in the same way as processes, as databases are in general
realized by processes and not by simple files. The difference to the original mapping pattern is
that the data store can as well be subject to spoofing and elevation of privileges threats. For the
resulting security threats, see table 5.3 and figure 5.12.

Table 5.2: Mapping threats to security properties

Threat Type Security Property

Spoofing Authentication
Tampering Integrity
Repudiation Non-Repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Escalation of Privilege Authorization

Identifying security requirements

In order to mitigate a certain threat, an appropriate security property has to be enforced. In table
5.2, a mitigating security property is given for each threat. Thus, we have to map each threat
from table 5.3 and figure 5.12 to the corresponding security property. The result is depicted in ta-
ble 5.4 and illustrates the security requirements needed to secure the PIPE system. For instance,
each external entity has to fulfill the authentication (AEN) and the non-repudiation (NON) se-
curity property. Thus, users interacting with the PIPE system have to be authenticated first, and
the claims they make during the interaction with the system must not be deniable. As well, each
data flow has to be secured by complying to the confidentiality (CON), integrity (INT) and the
availability (AVA) security requirements. In security related literature, these properties are also
renowned as the CIA properties for short. A further component that has to be protected is the
data store, which is implemented as a database in our case. The database has to be protected by
the aforementioned CIA security requirements as well as by the non-repudiation (NON) security
property. Clearly, as sensitive information is stored and retrieved from the database, the access
to it has to be non-deniable. Lastly, processes have to be protected as well. According to table

54

5.3. PROBLEM ANALYSIS

Security

Token

Owner

Client Server

Authorized

Admin

Database

SR SR

SR

STRIDE

STRIDE

STRIDE

TID TID TID

TID TID

TID TID

STRIDE

Figure 5.12: Security threats for the PIPE system.

5.1, each process in a data flow diagram has to be protected from all threats. This results in the
requirement that for each process all security properties have to be fulfilled.

Selecting relevant security requirements

Even if all security requirements depicted in table 5.4 are needed to prevent the system from
security threats, we do not intend to check and to verify them all. The reason is that the PIPE
system relies on trusted components, such as the security token or the underlying operating sys-
tem, and the security properties enforced by these trusted components are assumed to be assured.
For instance, the interface between the security token and the end user is considered to be secure,
since both the design and implementation of the security token are not part of the PIPE system.
Furthermore, as external entities do not participate in the described workflows (only processes
do), they require no protection. In turn, communication links between the client and the server
components are part of the PIPE system. Hence, security threats resulting from these commu-
nication links have to be mitigated by enforcing adequate security properties. This implies that
confidentiality and integrity of transported medical data are not assured and need to be verified.

For the security token, spoofing, elevation of privileges and repudiation threats are those
which have to be mitigated by security mechanisms provided by the PIPE system. Tampering
(i.e. reprogramming the token), denial of service (i.e. overloading the token) and information
disclosure (i.e. reading out cryptographic keys, personal identification numbers etc.) should be

55

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

Table 5.3: Security threats for the PIPE system

DFD Elements in PIPE S T R I D E

External Entity Owner x x
External Entity Authorized x x
External Entity Administrator x x
Data Flow Owner↔ Security Token x x x
Data Flow Authorized↔ Security Token x x x
Data Flow Authorized↔ Client x x x
Data Flow Server↔ Administrator x x x
Data Flow Security Token↔ Client x x x
Data Flow Client↔ Server x x x
Data Flow Server↔ Database x x x
Data Store x x x x x x
Process Security Token x x x x x x
Process Client x x x x x x
Process Server x x x x x x

Table 5.4: Security requirements for the PIPE system

DFD Elements in PIPE AEN INT NON CON AVA AOR

External Entity Owner x x
External Entity Authorized x x
External Entity Administrator x x
Data Flow Owner↔ Security Token x x x
Data Flow Authorized↔ Security Token x x x
Data Flow Authorized↔ Client x x x
Data Flow Server↔ Administrator x x x
Data Flow Security Token↔ Client x x x
Data Flow Client↔ Server x x x
Data Flow Server↔ Database x x x
Data Store x x x x x x
Process Security Token x x x x x x
Process Client x x x x x x
Process Server x x x x x x

56

5.3. PROBLEM ANALYSIS

Table 5.5: Selected security requirements for the PIPE system

DFD Elements in PIPE AEN INT NON CON AVA AOR

Data Flow Security Token↔ Client x x
Data Flow Client↔ Server x x
Data Flow Server↔ Database x x
Process Security Token x x x
Process Client x x x
Process Server x x x

Security

Token

Owner

Client Server

Authorized

Admin

Database

SR SR

SR

STRIDE

STRIDE

STRIDE

TID TID TID

TID TID

TID TID

STRIDE

Figure 5.13: Selected security requirements for the PIPE system.

57

CHAPTER 5. PSEUDONYMIZATION OF INFORMATION FOR PRIVACY IN E-HEALTH

mitigated by the manufacturer, since the token is a trusted security device. The PIPE system
has to ensure that the security token is authenticated, that actions performed by the user who
possesses the token cannot be denied, and it has to ensure that authenticated users are indeed
authorized to perform these actions. Thus, authentication, authorisation and non-repudiation se-
curity properties are required.

Authenticity and non-repudiation security properties of the client application are required,
since it participates in the session which is established by the security token and the server. Au-
thorisation, availability, confidentiality and integrity, on the other hand, should be provided by
the utilized operating system, since only medical practitioners and system administrators should
be allowed to use the client workstation (e.g. by providing a valid password). Furthermore, or-
ganisational policies should enforce correct usage of the original, unaltered version of the client
application, and not a malicious copy provided by an adversary (e.g. by enforcing the usage
of signed executables). The same reasoning which has been provided for the client application
applies to the server and the database as well. Lastly, communication channels between the in-
volved parties should be secured i.e. by using a secured transmission protocol.

In summary, the security analysis of the PIPE system is strongly focused on workflows and
communication links between the processes participating in and realizing these workflows. In
table 5.5 security properties handled by the PIPE system are depicted. In figure 5.13, entities
and data flows that need protection as well as security requirements which have to be verified,
are highlighted.

58

CHAPTER 6
Selecting the Appropriate Method

In order to analyze the PIPE system regarding its security properties, both kinds of models,
dynamic and static models, have to be analyzed. Static models describe domain entities and re-
lations between these entities, and are usually represented as class or EER diagrams. Within such
models, security requirements are specified as object constraints, i.e., expressed in OCL. With
dynamic models, which describe the worklflows presented in chapter 5, protocols are described
which have to preserve secrecy and integrity of exchanged information. In order to analyze both
kinds of models, appropriate methods have to be selected. For instance, dynamic models can be
seen as interacting automata, and thus can be analyzed by applying model checking techniques.
In turn, static models can be analyzed by applying first order logic analysis methods. Below,
appropriate approaches are selected and justifications are provided.

6.1 Static Model Analysis

The static PIPE model illustrated in section 5.2 describes the system’s database schema which
contains domain entities such as users, keys, pseudonyms and data records. This analysis an-
swers the question whether unauthorised users are able to connect patient identities to corre-
sponding pseudonyms without knowing the required secret, i.e., without knowing the patient’s
private key. In other words, in this section we intend to find out whether users who have access to
the database, such as system administrators for example, are able to connect separated pieces of
information (such as a patient’s identity and the corresponding patient’s pseudonyms) in order to
reconstruct the patient’s anamnesis without being authorised (i.e. without knowing the patient’s
private key). According to comparison results given in chapter 4, the following methods are
suitable for static model analysis and, at the same time, offer an appropriate tool support:

• SecureUML

• UMLsec

• Alloy

59

CHAPTER 6. SELECTING THE APPROPRIATE METHOD

However, even if all quoted methods can be applied to static models analysis, the expressiv-
ity of the methods and the context in which they can be applied are different. In UMLsec, for
instance, classes are annotated with stereotypes which represent security requirements such as
secrecy and integrity. These annotated security requirements are verified when the correspond-
ing activity diagrams are analysed. For instance, let the class SecretData be annotated with
the «secrecy» stereotype. Furthermore, in the corresponding activity diagram, let a message
containing an instance of SecretData be sent unencrypted. The obvious result of this simple
example is a detected security violation. However, in case the message would not be sent over
the unsecured channel, no security breach would emerge. Thus, in UMLsec, static models are
analysed together with the respective dynamic models. This implies that for our particular case
there is no benefit in applying UMLsec, simply because of our different application context.
SecureUML, on the other hand, was designed to model and express RBAC (role-based access
control) policies. Thus, this method as well is not suitable to analyse our particular model.

On the contrary, Alloy offers a powerful and an an expressive language suitable for mod-
eling software designs. Furthermore, it provides a first-order relational logic which allows for
specification of constraints which restrict the model and facts which define rules valid for the
model. However, even if the method is appropriate for modelling domains and the correspond-
ing properties, the approach is not necessarily adequate for analysing our particular problem.
Below, we will present our model specified in the Alloy specification language, which problems
arised during the analysis and what needs to be done in order to obtain more information from
the model and thus make the analysis more valuable.

In its basic form, the verification of the PIPE system’s data model can be reduced to simple
type checking, since no dynamic behavior is described and no inference rules are specified in the
data model. Type checking in this particular context can be described as verifying whether the
information of interest is available in plaintext or ciphertext. Thus, if the information is available
in ciphertext, the confidentiality remains preserved. Allowedly, this is trivial and no tool support
is needed to check this property. Hence, the data model has to be improved and made more re-
alistic. For this reason, in the first instance we have modeled entities from the problem domain,
depicted in figure 6.1, in the Alloy specification language (see appendix I). The corresponding
domain facts are modeled in the code snippet illustrated in appendix J. An example for such a
fact is that for each shared pseudonym (SharedPseudonym), the encrypted data owner identities
(IUIDow) are identical, when decrypted. In figure 6.2, the resulting domain’s metamodel is de-
picted.

Subsequently, we have added cryptographic concepts to the model, such as symmetric and
asymmetric cryptographic keys, and the corresponding operations like the encryption and de-
cryption functions. The snippet of code depicted in appendix H illustrates how we modeled
cryptography. In particular, we modeled concrete values as either readable (PlainText) or non-
readable (CipherText, that is encrypted plaintext). Keys are readable, and can either be public,
private or symmetric. Each key is associated with a decrypting and an encrypting function,
whereas the first maps ciphertext to plaintext and the second vice versa.

60

6.1. STATIC MODEL ANALYSIS

UserInstance

PK IUID

 ISK

SharedIdPseudonym

PK aPID

 ISKow(IUIDow)

 ISKau(IUIDau)

 ISKow(IUIDau)

 ISKau(IUIDow)

 ISKow(PSN)

 ISKau(PSN)

RootIdPseudonym

PK oPID

 ISKow(IUIDow)

 ISKow(PSN)

PseudonymRecordsMapping

PK Pseudonym

PK RID

Records

PK RID

 Description

RootHealthPseudonym

PK oPID

 ISKow(IUIDow)

 ISKow(PSN)

SharedHealthPseudonym

PK aPID

 ISKow(IUIDow)

 ISKau(IUIDau)

 ISKow(IUIDau)

 ISKau(IUIDow)

 ISKow(PSN)

 ISKau(PSN)

Figure 6.1: An excerpt from the PIPE static data model [67].

In oder to verify whether the modeled system’s security can be violated, we formulated
a constraint which describes an unsecure state. In particular, we characterised such a state
as a situation which occurs when a user obtains an encrypted pseudonym of some other user
by encrypting a plaintext pseudonym which he or she has obtained by retrieving it from the
PseudonymRecordsMapping table with a key that the attacker has access to. In other words,
this situation occurs when an attacker tries to brute force the plaintext pseudonyms (contained
in the PseudonymRecordsMapping table) by encrypting them with the available keys (e.g. all
public keys which stored in the database), and comparing them subsequently with the encrypted
pseudonyms contained in the Pseudonyms table. This constraint is violated in case the keys are
not unique and a public key available to the attacker can decrypt a pseudonym or a symmetric
key which then can be used to decrypt the patient’s pseudonyms. A constraint which formulates
the described situation is given below in the Alloy specification language.

pred securityViolation()
{

some p : PlainText, c : CipherText, u1, u2 : User, psn :
RootPseudonym | (c == psn.enc_ISKow_PSNid) and

(p==getISK[u1].dec[psn.enc_ISKow_PSNid]) and
(c == u2.OPuK.enc[p])

}

61

CHAPTER 6. SELECTING THE APPROPRIATE METHOD

The constraint states that, if there is a ciphertext c which is used as a pseudonym, and it can
be reconstructed by encrypting a plaintext pseudonym p by applying the attackers public key
u2.OPuK (or any other key which is available to the attacker), then the security of the system
is violated. Unfortunately, although we have modeled only an excerpt of the existing static data
model, the size of the model exceeded the analyser’s capabilities, which resulted in a crash after
10 minutes of computation. We could have simplified the model further, but this would lead to
trivial models, in which the problem would be reduced to simple type checking.

Another form of analysis would be to formulate axioms and inference rules, something like
a program written in a logic programming language like Prolog, which would allow the attacker
to make implicit knowledge explicit. It would be possible to write such specifications in Alloy,
since Alloy is capable of expressing first-order logic formulas. However, within this thesis we
do not focus on expressing data mining rules as deduction formulas. Nevertheless, the question
is interesting and we may try to answer it in our future work.

6.2 Dynamic Model Analysis

According to comparison results illustrated in chapter 4, following methods are suitable for
verification of dynamic behavior and, at the same time, offer an appropriate tool support:

• UMLsec

• Avispa

• Symbolic Model Verifier

• Alloy

All enumerated methods are expressive enough to describe dynamic behavior of software
systems. Thus, all these methods are capable of fulfilling our needs. However, there are dif-
ferences concerning tool usage and the level of abstraction between the different methods. For
instance, even if UMLsec has been designed to deal especially with security, the method and the
toolchain are, in our opinion, too complex and too less intuitive to use. Furthermore, no solid
tutorial is provided which would be a great help to learn to use the tool chain. Therefore, we
decided not to use the UMLsec methodoogy.

In contrast, other methods provide very usable and well documented tools. Amongst the
other methods, the main difference lies in the abstraction level. For instance, the Avispa tool
takes a high-level description of a protocol as input, whilst when using the Symbolic Model
Verifier all states and transitions between them have to be modeled explicitly, and on a lower
level of abstraction, which is more error prone. We will take the original Needham-Schreoder
public-key authentication protocol [30] as an example.

1. A→ B: {NA , A}KB

62

6.2. DYNAMIC MODEL ANALYSIS

Figure 6.2: Domain metamodel.

63

CHAPTER 6. SELECTING THE APPROPRIATE METHOD

2. B → A: {NA , NB}KA

3. A→ B: {NB}KB

The protocol assumes the use of a public-key encryption algorithm. We use key labels such
as KA to denote the A’s public key, and nonce labels such as NA to denote a nonce generated by
participant A. The exchange begins with A transmitting a nonce and his identity, encrypted with
B’s public key. Then, B answers by transmitting the received nonce NA and a newly created
one, NB . By this way, B confirms his identity since only B is able to read the message. At the
same time, he forces A to authenticate. In the last step, A authenticates himself, since only A
knows the nonce NB .

The protocol is rather simple, and it seems to be correct. However, despite its simplicity,
the protocol is flawed. In [31], the flaw and the corresponding attack are described. Though,
we will not try to prove the protocol wrong here, but to show what needs to be done in order to
transform a protocol as simple as this into a state machine which subsequently can be verified.
In order to model the protocol as a set of states and transitions among them, a global view of the
system based on a suitable abstraction is needed. A common approach is to model the global
system state, which is based on communicated messages. In our case, the global state depends
on the agents’ and the intruder’s knowledge. Initially, communication participants A and B both
know their corresponding public keys and their nonces, while the intruder doesn’t know any-
thing. After step 1, A’s knowledge remains the same. Participant B, in turn, now knows A’s
identity and A’s nonce. And the network, which can be seen as the intruder, knows {NA , A}KB

.
Thus, after each protocol step, the global state changes because the participants and the intruder
consequently gain new knowledge. Figure 6.3 illustrates this correlation.

In order to represent all possible scenarios, all possible states of knowledge and the transi-
tions between them need to be modeled. Modeling security protocols by this way is hard and
error prone. Thus, tools and techniques were proposed in order to make designing security proto-
cols accessible to a broader audience. Amongst the techniques examined in chapter 4, the Avispa
tool is a promising candidate for verifying security protocols. It provides a high level protocol
specification language (HLSPL), which allows for high-level protocol descriptions without hav-
ing to think about all the possible knowledge states and the transitions amongst them. Example
code for the Needham-Schreoeder protocol is illustrated in listing 7.

Similarly, the Alloy language allows as well to describe security protocols on a higher level
of abstraction, since the method is based on first-order logic. In [68], the authors present an
approach which they call knowledge flow analysis, and use the Alloy methodology in order to
model and analyse security protocols. They write that

the key idea behind knowledge flow analysis is the observation that, at the most
basic level, the purpose of a security protocol is to distribute knowledge among
its legitimate participants. A protocol is flawed if it allows an intruder to learn a
value that is intended to remain strictly within the legitimate principals’ pool of
knowledge.

64

6.2. DYNAMIC MODEL ANALYSIS

A ╞ Na

B ╞ Nb

C ╞ ┴

A ╞ Na

B ╞ Na,Nb,A

C╞ {Na, A}KB

A ╞ Na

B ╞ Nb

C ╞ Na,A

A ╞ Na,Nb

B ╞ Na,Nb,A

C ╞ {Na,A}KB,

{Na,Nb}KA

A ╞ Na

B ╞ Nb

C╞ {Na, A}KB

A → B: {Na, A}KB

B → A: {Na, Nb}KA

The intruder receives and

destroys the message

A → C: {Na, A}Kc

C → B: {Na, A}KB

A ╞ Na

B ╞ Na,Nb,A

C ╞ Na,A

Figure 6.3: State diagram.

They provide a uniform framework suitable for expressing the actions of principals and
assumptions on intruders. In listing 6, an excerpt from the model describing the Needham-
Schroeder protocol, based upon the mentioned framework, is given. A description of the same
protocol, but in contrast written in a low-level automata description language intended for a gen-
eral purpose model-checker, is much less intuitive. Furthermore, it is more complex, it requires
more lines of code and is more error prone. For an examplified description of the Needham-
Schreoder protocol written in the SMV modeling language, see appendix A. Because of the
enumerated disadvantages, we have rejected the general purpose model-checker approach and
have chosen the Avispa method. Furthermore, we decided against Alloy since the language used
for protocol description in Avispa, HLPSL, is much closer to the intuitive protocol description
(also known as the ’Alice-Bob’ notation) and thus makes the modeling task easier and less error
prone for the developer. A detailed descriptioin of the HLPSL syntax and semantics is given in
[69].

65

CHAPTER 6. SELECTING THE APPROPRIATE METHOD

sig Identity extends AtomicValue {}
pred IdentitiesAreKeys(){

all p : Principal | some p.owns & Identity &&
Ciphertext.key in Identity

}

pred PrimitiveRules(x : set Value, v : Value){
Encryptor(x,v) || Decryptor(x,v) ||
NonceGenerator(x,v)

}

pred ProtocolRules(x : set Value, v : Value){
v in Ciphertext && {
(x : some Oscar.draws &&

let text = v.plaintext, n = text & Nonce |
#text = 2 && one n && n.seed in AtomicValue &&
n.id = text & Identity) ||
(x : one Ciphertext && (some n : seed.x |

#x.plaintext = 2 && v.key in x.plaintext &&
n.id = x.key &&
v.plaintext = (x.plaintext - v.key) + n)) ||

(x : one Ciphertext &&
(some n : id.(x.key) & Nonce |
#x.plaintext = 2 && n in x.plaintext &&
v.plaintext = x.plaintext - n)

)
}

}

pred ApplyRules(){
all v : Value | let x = Oscar.learns.v |
some x <=> PrimitiveRules(x, v) ||
ProtocolRules(x, v)

}

Listing 6: Excerpt from the model for the Needham-Schreoder protocol in Alloy [68].

66

6.2. DYNAMIC MODEL ANALYSIS

role Alice(A,B:agent, Ka,Kb:public_key, SND,RCV:channel(dy))
played_by A def =
local State : nat, Na: text (fresh), Nb: text
init State = 0
transition

0. State = 0 /\ RCV(start) =|>
State’= 2 /\ SND({Na’.A}_Kb)

/\ witness(A,B,na,Na’)
2. State = 2 /\ RCV({Na.Nb’}_Ka) =|>

State’= 4 /\ SND({Nb’}_Kb)
/\ request(A,B,nb,Nb’)

end role

role Bob(A,B: agent, Ka,Kb: public_key, SND,RCV: channel(dy))
played_by B def =
local State : nat, Na: text, Nb: text (fresh)
init State = 1
transition

1. State = 1 /\ RCV({Na’.A}_Kb) =|>
State’= 3 /\ SND({Na’.Nb’}_Ka)

/\ witness(B,A,nb,Nb’)
3. State = 3 /\ RCV({Nb}_Kb) =|>

State’= 5 /\ request(B,A,na,Na)
end role

role Session(A, B: agent, Ka, Kb: public_key) def =
local SA, RA, SB, RB: channel (dy)
composition
Alice(A,B,Ka,Kb,SA,RA) /\ Bob (A,B,Ka,Kb,SB,RB)

end role

role Environment() def =
const a, b: agent, ka, kb, ki: public_key
knowledge(i) = {a, b, ka, kb, ki, inv(ki)}
composition
Session(a,b,ka,kb) /\
Session(a,i,ka,ki) /\
Session(i,b,ki,kb)

end role

goal
Alice authenticates Bob on nb
Bob authenticates Alice on na

end goal

Environment()

Listing 7: Example code for the Needham-Schreoder protocol in HLSPL [70].

67

CHAPTER 7
Results of the Evaluation

Simplified, PIPE consists of two phases. During the first phase, users are authenticated and a
symmetric session key is generated for further communication. Thus, after successful authenti-
cation, in the second phase, all communication is secured by the previously generated symmetric
session key. Within the second phase, authenticated users can modify or retrieve data, and au-
thorize other users to access their medical records. Data retrieval and modification is performed
by the client application, which implicates that the client application as well has to participate
in the session, and that it has to know the session key. Thus, our approach to verify the PIPE
system comprises analysing the authentication phase, analysing how the client application gets
the session key, and whether mechanisms utilized by workflows belonging to the second phase
provide security even in case the attacker knows the session key. In order to verify all the work-
flows, we use the AVISPA validation tool, which analyses specifications of security protocol.
We have already described it in section 4.

As a first step, we verify whether the authentication phase is performed correctly. That is,
we check whether the involved parties are authenticated against each other, as well whether the
generated session key remains undisclosed. Then, we validate the workflows belonging to the
second phase. We check how the client application has obtained the session key, and we validate
whether the workflow is still secure in case an adversary can observe the communication (e.g.
the session key has been broken). At the end of the chapter, we summarize the results.

7.1 Authentication

Based upon the recognised security threats which we have described in chapter 5.3, we have
identified several security requirements the system has to provide. Thus, for each required secu-
rity property, we will state a reason why the system satisfies the property or why it doesn’t. In
this workflow, the server and the user have to authenticate against each other in order to establish
a secure channel. Thus, after the authentication, both parties are in possession of a symmetric
session key which is then used to secure the subsequent communication. The session key is

69

CHAPTER 7. RESULTS OF THE EVALUATION

a shared secret between the server and the user, and it should be made available to the client
application for subsequent workflows (i.e. workflows which belong to the second phase).

In the PIPE design specification [67], it is not stated explicitly that the database is installed
on the server machine. Thus, it would not be contrary to the specification to run the database
system on a dedicated machine. Therefore, in order to be able to analyse the workflow properly,
we decided to model and to verify both scenarios.

Single Machine

The communication protocol used in the ’single machine’ scenario is given below in the so-
called Alice-Bob notation. The expression U represents the user and S the server. Expressions
NU and NS represent nonces, IUIDU represents the system’s internal user identifier, and the
expression Ksession represents the generated session key. The protocol of the workflow is given
below:

1. U → S: {NU , IUIDU }KS

2. S → U : {NU , NS}KU

3. U → S: {NS}KS

4. S → U : {Ksession}KU

A detailed description of the workflow is given in section 5.2. The corresponding HLPSL
source code, which is needed for the tool to perform the verification, is provided in appendix B.
First, we will verify the authenticity of both communication participants. Then we will validate
confidentiality and integrity of the established session key and the transmitted nonces. Lastly,
we will check the non-repudiation of origin and non-repudiation of receipt security properties
which are required to prove that a session indeeed has been established. In the following table
7.1, the security requirements that we have to verify are outlined.

Table 7.1: Selected security requirements for the Authentication workflow

DFD Elements in PIPE AEN INT NON CON AVA AOR

Data Flow Security Token↔ Client x x
Data Flow Client↔ Server x x
Process Security Token x x x
Process Server x x x

Furthermore, both communication parties have to be authorised (in our particular case, au-
thenticated users are authorised users) to perform actions on medical data records. First, we

70

7.1. AUTHENTICATION

will model the authenticity and confidentiality security properties. The requirement that the user
authenticates the server is modeled by the expressions witness(U,S,auth_nu,Nu’) and
request(S,U,auth_nu,Nu). The witness term means that agent U is a witness of the
message Nu’. Supplementary, the request term means that agent S expects that agent U ex-
ists and that both agree on Nu. Thus, the server’s authenticity is given when both predicates
hold true. Likewise, the requirement that the server authenticates the user is modeled by expres-
sions request(S,U,auth_ns,Ns’) and witness(S,U,auth_ns,Ns’). Authentic-
ity and thus integrity of the session key Ksession is modeled by expressions request(U,S,
auth_symkey,K’) and witness(S,U,auth_symkey, K’). The confidentiality (or se-
crecy) of the session key K is modeled by the expression secret(K’,sec_symkey,{U,S}).

In fact, the protocol is a variation of the original public-key Needham-Schroeder protocol
[30]. Unfortunately, the protocol adaptation was not carried out carefully since message 2 does
not include the sender’s identity [31]. This marginal difference allows for man-in-the-middle
attacks which occur when an honest user initiates a session with an intruder. In our system,
however, the client knows the server’s public key, and thus he would not start a session with an
adversary, since he would have to encrypt the initial message with the adversary’s public key.
Thus, even if the protocol is not correct, the fact that the user knows the server’s public key pre-
vents from exploiting the vulnerability. Nevertheless, the error shall be corrected. The attack in
figure 7.1 shows how the secrecy of a nonce can be circumvented in case an honest user initiates
a session with an intruder. Figure 7.2, on the other hand, shows how an intruder i can pretend
to be an honest agent. Both attack traces are caused by the missing sender’s identity in message
2 of the protocol. The corrected protocol is given below. Now, message 2 contains the sender’s
identity, and attacks depicted in figures 7.1 and 7.2 are prevented.

1. U → S: {NU , IUIDU }KS

2. S → U : {NU , NS , S}KU

3. U → S: {NS}KS

4. S → U : {Ksession}KU

Unfortunately, even if secrecy of all transmitted messages has been achieved and both com-
munication partners have been successfully authenticated, the protocol is still vulnerable to re-
play attacks. The reason for the vulnerability is that the last message of the protocol, namely
message 4, does not have to be authentic. That is, there is no guarantee that it was the server
that has sent the session key, since anybody else could have sent it. Anyone could take the user’s
public key, encrypt an old and broken session key with it, and send it as the last message of the
protocol. In figure 7.3, the attack trace for the replay attack is depicted.

In order to achieve the required authenticity, and thus the integrity of the session key, the last
message has to contain, in addition to the session key Ksession, a fresh secret known only to two

71

CHAPTER 7. RESULTS OF THE EVALUATION

Agent

i

Agent

(user,9)

Agent

(server,3)

Agent

(i,17)

start

{Nu(1).user} ki

{Nu(1).user} ks

{Nu(1).Ns(2)} ku

{Nu(1).Ns(2)} ku

{Ns(2)} ki

Ns(2)

Ns(2)

msc ATTACK TRACE

Figure 7.1: Attack trace compromising the secrecy of a nonce.

Agent

i

Agent

(user,9)

Agent

(server,3)

start

{Nu(1).user} ki

{Nu(1).user} ks

{Nu(1).Ns(2)} ku

{Nu(1).Ns(2)} ku

{Ns(2)} ki

{Ns(2)} ks

{K(4)} ku

msc ATTACK TRACE

Figure 7.2: Attack trace compromising server’s authenticity.

72

7.1. AUTHENTICATION

Agent

i

Agent

(user,3)

Agent

(server,3)

start

{Nu(1).user} ks

{Nu(1).user} ks

{Nu(1).Ns(2).server} ku

{Nu(1).Ns(2).server} ku

{Ns(2)} ks

{x261} ku

msc ATTACK TRACE

Figure 7.3: Replay attack enforcing an old session key.

communicating parties. The nonce NU fulfills these requirements. Actually, after inserting NU

into the last protocol message, no further attacks are found by the AVISPA tool. Below is the
corrected version of the protocol:

1. U → S: {NU , IUIDU }KS

2. S → U : {NU , NS , S}KU

3. U → S: {NS}KS

4. S → U : {Ksession, NU }KU

So far, we have verified the confidentiality of exchanged nonces and the established session
key, the authenticity and the integrity of the session key, as well as the authenticity of both com-
munication participants. Thus, the non-repudiation security properties still have to be validated.
In our particular case, non-repudiation of origin and non-repudiation of receipt properties are
required to provide evidence such that no participant is able to deny having established a ses-
sion. Thus, the non-repudiation of origin property (NRO for short) requires a guarantee that
the server has sent the session key, and non-repudiation of receipt (NRR), on the other hand,
requires a guarantee that the user has received the session key. The threat scenario for non-
repudiation usually comes in the form of an honest agent communicating with a dishonest agent
[71], who denies actions or events. For instance, a dishonest user could deny having estab-
lished a session and thus deny that medical data has been inserted or changed. Certainly, a
medical system should not allow such fraud. Thus, in non-repudiation protocols, participants

73

CHAPTER 7. RESULTS OF THE EVALUATION

usually need protection from each other, rather than from an external adversary [71]. In [71],
the authors map non-repudiation properties to authentication requirements, which works well
for the Fair Zhou Gollmann Non-repudiation Protocol [72], which the authors took as example.
They approximated a dishonest agent by an intruder model where the intruder is able to imper-
sonate a dishonest agent, since a trusted third party (TTP) is used for authentication. In such
a scenario, modeling a dishonest agent by the Dolev-Yao intruder model is possible, since an
intruder can impersonate the dishonest agent. In our particular case, however, things are differ-
ent, since a dishonest user who knows the secret nonces and has been correctly authenticated
could act dishonestly, which does not conform to the Dolev-Yao intruder model. Thus, even
if non-repudiation properties can be expressed as authentication problems, as shown in [73],
other intruder models would be helpful in order to express scenarios in which agents behave
dishonestly. Unfortunately, the AVISPA tool supports the Dolev-Yao intruder model only, and
therefore our subsequent reasoning is performed manually and without tool support.

The last message in our protocol solves the problem of NRO, since no adversary could replay
or create the message, as nonce NU is known only to both protocol participants, the server and
the user. Thus, in case of a dispute, the server could not deny that he has sent the message, since
no other party except the user knows the nonce NU . Unfortunately, even if the NRO security
property is fulfilled (the server cannot deny that he has sent the message), the protocol does not
protect against creation of false evidence. In other words, a dishonest user could claim that a
session was established, even if it was not, since he as well knows the secret nonce NU and the
encryption keyKU , and is thus able to create the message and falsify evidence without receiving
it from the server. In order to solve the problem, we need a message that could have been created
by the server only. For this reason, the last message has to be encrypted with the server’s private
key, which we will denote with inv(KS). Similar reasoning applies for the non-repudiation of
receipt (NRR) security property, which is assured by an additional message that acknowledges
the reception of Ksession. The corrected protocol is given below.

1. U → S: {NU , IUIDU }KS

2. S → U : {NU , NS , S}KU

3. U → S: {NS}KS

4. S → U : {{Ksession, NU }KU
}inv(KS)

5. U → S: {{Ksession, NS}KS
}inv(KU)

Thus, we have shown how to enforce the authenticity, confidentiality, integrity and non-
repudiation security requirements for the Authentication workflow in its ’single machine’ vari-
nat.

74

7.1. AUTHENTICATION

Separated Machines

The communication protocol used in the ’dedicated machine’ scenario is given below. The
expression U represents the user, S the server, and D the database. Expressions NU and NS

represent nonces, IUIDU represents the system’s internal user identifier, and the expression
Ksession represents the generated session key. A detailed description of the workflow is given in
section 5.2. The corresponding HLPSL source code, which is needed for the tool to perform the
verification, is provided in appendix C. Security requirements such as authenticity of protocol
participants, as well as confidentiality and integrity of the session key are modeled as already
shown in the previous section. The protocol of the workflow is given below.

1. U → S: {NU , IUIDU }KS

2. S → D: IUIDU

3. D→ S: KU

4. S → U : {NU , NS}KU

5. U → S: {NS}KS

6. S → U : {Ksession}KU

Unfortunately, both authenticity and confidentiality security properties are violated. In fig-
ure 7.4, an attack found by the AVISPA tool is demonstrated and shows how the intruder i can
gain access to the session key Ksession. The essence of the problem is that the database is not
authenticated. That is, even if the database does not provide confidential knowledge (since the
only information released in plaintext is the user’s public key), a security violation occurs. The
reason is that there is no integrity or authenticity provided such that one can be sure that the
information released by the database has not been tampered with, replayed or even completely
created by someone else.

Initially, an honest user wishes to establish a communication with the server and initiates
the authentication workflow by sending the message {NU , IUIDU }KS

. The server receives the
message, and requests the user’s public key from the database. The intruder, who listens on the
wire, responds instead the database, and provides the server with a wrong public key, KI . Thus,
the original answer is overwritten. Then, as a next step in the protocol conversation, the server
responds and transmits the message {NU , NS}KI

, because he believes that KI is the user’s cor-
rect public key. The intruder intercepts the message, decrypts it, encrypts it again with the user’s
public key, and then forwards the message to the user. The user thinks the message comes from
the server, as only the server should know the secret nonce NU , upon which the server should
be authenticated. The user decrypts the received message, and encrypts the server’s nonce NS

in order to authenticate against the server. The encrypted nonce is then sent to the server, and
the server believes both parties have been correctly authenticated. Then, the server encrypts the
newly generated session key with the intruder’s public key, and sends it to the intruder. From

75

CHAPTER 7. RESULTS OF THE EVALUATION

Agent

i

Agent

(user,15)

Agent

(user,11)

Agent

(user,3)

Agent

(server,4)

start

{n31(Nu).user} ks

start

{n23(Nu).user} ki

start

{n1(Nu).user} ks

{n31(Nu).user} ks

user

ki

{n31(Nu).n8(Ns)} ki

{n8(Ns)} ks

{k} ki

msc ATTACK TRACE

Figure 7.4: Attack trace for the authentication workflow.

that point, the intruder is able to observe the communication between the user and the server, and
he is able to reconstruct the connection between user identities and their corresponding medical
records.

In order to fix the protocol, we have to assure the integrity of the message sent by the
database. For this purpose, the database as well has to hold an individual public and a cor-
responding private key. Thus, when the user’s public key is sent back to the server, it has to be
encrypted with the database’s private key. By this way, the server can be sure that the received
message has indeed been sent by the database. However, even if integrity is assured, an adequate
protection against replay attacks is still missing. The reason is that there is no link between the
intended user and the received public key, which would ensure that the received public key is
indeed the users’s public key, and not someone else’s. For instance, an intruder could replay
an old message, recorded in a previous session, and by this way force the server to encrypt the
further messages with a wrong public key. In order to prevent such an attack, the user identifier
has to be contained in the returned message. Thus, the user identifier and the user’s public key
have to be encrypted with the database’s private key and sent back to the server. The corrected
protocol is given below:

76

7.1. AUTHENTICATION

1. U → S: {NU , IUIDU }KS

2. S → D: IUIDU

3. D→ S: {U , KU }SKD

4. S → U : {NU , NS}KU

5. U → S: {NS}KS

6. S → U : {Ksession}KU

However, the verification still fails since the Needham-Schreoder protocol has been applied
in its original version, which is vulnerable to a man-in-the-middle attack, as already described in
previos section. The attack trace generated by the AVISPA tool is depicted in figure 7.5. In the
protocol’s original version, the vulnerability allows an intruder I to impersonate an agent A and
to set up a fake session with another agent B, which requires two simultaneous protocol runs
[31]. During the first run, participant A establishes a valid session with the intruder I . In the
second run, I impersonates an honest agent A and establishes a falsified session with another
honest agent B, who believes to communicate with agent A. In our particular case, agent A
corresponds to the security token (user), while the agent B corresponds to the server. In order
to fix the protocol, we have to apply the Lowe’s patch [31]. That is, instead of sending {NU ,
NS}KU

to the user, {NU , NS , S}KU
has to be sent. Now, the receipient is able to compare the

sender’s identity to the one stated in the encrypted message, which prevents from authentication
falsification.

So far, we have verified the confidentiality and the authenticity security requirements. In
order to tackle the non-repudiation problem, measures described in the previos section have to
be applied here as well. That is, in order to fulfill the non-repudiation security properties (NRO
and NRR), the protocol has to be enhanced in an analogous manner as already done and de-
scribed in the previos section. For this reason, the message 6 of the protocol has to be widened
in order to contain the nonceNU , and it has to be encrypted with the server’s private key in order
to prevent creation of false evidence. Similar reasoning applies for the NRR security property,
which is assured by an additional message that acknowledges the reception of the key Ksession.
The protocol is given below.

1. U → S: {NU , U}KS

2. S → D: U

3. D→ S: {U , KU }inv(KD)

4. S → U : {NU , NS , S}KU

5. U → S: {NS}KS

77

CHAPTER 7. RESULTS OF THE EVALUATION

Agent

i

Agent

(user,11)

Agent

(server,3)

Agent

(dbase,13)

start

{Nu(1).user} ki

{Nu(1).user} ks

user

user

{user.ku} inv(kd)

{user.ku} inv(kd)

{Nu(1).Ns(4)} ku

{Nu(1).Ns(4)} ku

{Ns(4)} ki

{Ns(4)} ks

{K(6)} ku

msc ATTACK TRACE

Figure 7.5: Attack trace for the authentication workflow without Lowe’s fix.

6. S → U : {{Ksession, NU }KU
}inv(KS)

7. U → S: {{Ksession, NS}KS
}inv(KU)

7.2 Get Pseudonyms

This workflow describes how the pseudonyms associated with a user are retrieved. The expres-
sion U represents the user and the expression C represents the client application. The precondi-
tion for this workflow is an authenticated user. A detailed description of the workflow is given in
section 5.2. Unfortunately, the PIPE specification [67] does not define how the client application
obtains the session key which has been established between the user and the server during the
authentication phase, albeit the session key is required for the client application to participate in
the second phase workflows. For our analysis, we will assume that the client application has ob-
tained the session key, and we will assume that the session key has been broken by the attacker.
The communication protocol is given below:

1. U → C: {IUIDU }ISKU

2. C → D: {IUIDU }ISKU

78

7.2. GET PSEUDONYMS

3. D→ C: {PSN}ISKU

4. C → U : {PSN}ISKU

5. U → C: PSN

The user transmits his identifier IUIDU , which is encrypted with his inner symmetric key
ISKU , to the client. The client then forwards the message to the database. The database, in turn,
retrieves the encrypted pseudonyms and transmits these to the client, who is then forwarding
these to the user. After reception, the user can decrypt the pseudonyms and select the appropri-
ate one. For the HLPSL implementation of the workflow, see appendix D. In case the session key
Ksession has been broken, the wokflow cannot protect the confidentiality of the user’s medical
data, since the internal user identifier IUIDU and the corresponding pseudonyms can be linked.
The error in the protocol is subtle, but devastating. As the user is waiting to receive the encrypted
pseudonym(s), and to decrypt it (them), an attacker who possesses the session key could exploit
this circumstance by sending the encrypted user identifier IUIDU to the user (which the user
would confuse with a pseudonym), and the user then would decrypt it and send it back to the
attacker. Actually, as not only one but all user’s encrypted pseudonym are sent from the database
to the user, the attcker could add the encrypted IUIDU to the encrypted pseudonyms list. Then,
the user would decrypt the whole list and send it to the client for subsequent selection. Thus,
the attacker would obtain the user’s internal identifier and all his pseudonyms. In other words,
the described attack allows an insight into the whole patient’s medical history. The message
sequence corresponding to the attack is given below in figure 7.6, which is an attack trace gen-
erated by the AVISPA tool.

Agent

i

Agent

(user,5)

start

{{iuidu} innersymkey} sessionkey

{{iuidu} innersymkey} sessionkey

iuidu

msc ATTACK TRACE

Figure 7.6: Attack trace for the get pseudonyms workflow.

In order to prevent such attacks, the PIPE system provides a mechanism in which the mes-
sage digest is encrypted with the sender’s private key. This as well protects the confidentiality of
user’s medical data, since otherwise the user would notice that message 4 has either been mod-
ified or created by the attacker. In consequence, the user would abort the communication. In

79

CHAPTER 7. RESULTS OF THE EVALUATION

addition to confidentiality, all messages are authentic, unaltered and non-deniable. Nevertheless,
despite these advantages, the extended protocol version is computationally more expensive. It is
given below.

1. U → C: {IUIDU }ISKU

2. C → D: {IUIDU }ISKU

3. D→ C: {{PSN}ISK}.{hash({PSN}ISK)}inv(KD)

4. C → U : {{PSN}ISK}.{hash({PSN}ISK)}inv(KD)

5. U → C: PSN

In chapter 5.2, we have shown how to secure the authentication phase and how to provide
the required security properties. Therefore, in our opinion, applying additional protection mech-
anisms as shown above is not necessary. We argue that in case the authentication phase has been
performed correctly, no other security mechanisms are necessary for the subsequent workflows,
since either they are useless (i.e. the user has lost his private key, the used cryptography is not
up to date etc.) or they do not improve the security of the system (i.e. the authentication phase
provides all the required security properties), but demand more computational power without
providing a benefit.

7.3 Authorize Instance

Instance authorization refers to granting a trusted user access to specific health data records.
Both users, the data owner and the authorised user, have to authenticate against the system,
and they provide the application with their identifiers. The record to be shared is selected by
the data owner, and then new pseudonyms are created. The application references the newly
generated pseudonyms with the selected data records and makes them available to the autho-
rized user. Both users, the authorized user and the data owner, encrypt the pseudonyms and the
identifiers with their inner symmetric keys and send these to the database for storage. This is
required due to the PIPE’s static data model, in which the pseudonyms and the identifiers are
stored encrypted. Preconditions for this workflow are a successful completion of the authenti-
cation phase on the one hand, and the assumption that no security vulnerabilities are introduced
by workflows referenced by this one (i.e. ’Get Pseudonyms’). Furthermore, we again assume
that the client application has obtained the session key, and we assume that the session key has
been broken by the attacker. A detailed description of the workflow is given in section 5.2. For
the HLPSL implementation of the workflow, see appendix G. The communication protocol for
the workflow is given below. The data owner is denoted by O, the authorized user by A, and the
’Get Pseudonyms’ workflow is denoted by GetPSNs. Terms auPSN and owPSN denote the
authorised user’s and data owner’s pseudonyms. Analogously, terms IUIDau and IUIDow

80

7.4. DATA INSERTION

denote the authorised user’s and the data owner’s identifiers.

1. O↔ C ↔ D: GetPSNs

2. C → D: owPSN

3. D→ C: RID

4. C → O: auPSN , IUIDau

5. C → D: auPSN , RID

6. O→ C: {IUIDow, IUIDau, auPSN}ISKow

7. C → A: owPSN , IUIDow

8. A→ C: {IUIDow, IUIDau, owPSN}ISKau

Assuming that the attacker posseses the session key Ksession, then the confidentiality, in-
tegrity, authenticity and non-repudiation security requirements for this workflow are not fulfilled.
The attacker can read and modify the internal identifiers of the data owner and the authorized
user, as well as pseudonyms and data records, since all these are readable and modifiable for
the intruder. In case the digest mechanism is used, the attacker cannot modify the transmitted
messages, but he can still read them. However, despite these weaknesses, we are convinced that,
based on the security provided by the authentication workflow, no further measures are neces-
sary for this workflow.

We argue that in case the authentication phase has been performed correctly and all secu-
rity requirements are fulfilled, no other security mechanisms are necessary for the subsequent
workflows, since either they are useless (i.e. the user has lost his private key) or they do not im-
prove the security of the system (i.e. the authentication phase provides all the required security
properties) but demand more computational power without providing a benefit.

7.4 Data Insertion

In this workflow, the data owner adds new data records. After the data has been entered and
a new medical record created, a new pseudonym is created by the client application and sent
to the data owner. Then, both the pseudonym and the user identifier are encrypted and sent to
the database, where they are stored. For a detailed description of the workflow, see section 5.2.
In appendix E, the model of the workflow, implemented in the HLPSL modeling language, is
illustrated. Again, we assume that the client application has obtained the session key, and we
assume that the session key has been broken by the attacker.

81

CHAPTER 7. RESULTS OF THE EVALUATION

Although the attacker posseses the session key Ksession, confidentiality is still given, since
it is the combination of the user identifier and the pseudonym which reveals confidential in-
formation concerning the patient’s medical history. In this workflow, only the pseudonym, but
not the user identifier, can be gathered by the attacker. However, the integrity, authenticity and
non-repudiation security requirements are not fulfilled in case the session key is known to the
adversary. In case the digest mechanism is used, the attacker cannot modify the transmitted
messages, and he also cannot read them. Thus, by applying the message digest mechanism, we
would establish all the required security properties. In chapter 5.2, we have shown how to secure
the authentication phase and how to provide the required security properties. Thus, we argue that
in case the authentication phase has been performed correctly and all security requirements are
fulfilled, no other security mechanisms are necessary for the subsequent workflows.

7.5 Data Retrieval

This workflow involves selecting the respective pseudonym and retrieving the referenced health
data record. The workflow is very simple, since the favored pseudonym is selected by the user
and sent to the database. Then, the database queries the corresponding health data record and
transmits it to the user. Again, we assume that the client application has obtained the session key,
and we assume that the session key has been broken by the attacker. However, an attacker who
can read the traffic on the wire cannot make the connection between the user identifier and the
pseudonym (or the medical data record), since no user identifier is transmitted in this workflow,
either in plaintext nor encrypted. Nevertheless, the integrity, authenticity and non-repudiation
security requirements are not fulfilled in case the session key is known to the adversary. In
case the digest mechanism is used, the attacker cannot modify the transmitted messages, and he
also cannot read them. Thus, by applying the message digest mechanism, we would establish
all the required security properties. However, in chapter 5.2 we have shown how to secure the
authentication phase and how to provide the required security properties. Thus, in our opinion,
additional security measures are not necessary. Our arguments for the security of this workflow
are the same as already described in previous sections.

7.6 Data Pseudonymization

This workflow describes the procedure of pseudonymizing (health) data which already exist in
the database. The workflow assumes that the data records are already depersonalized and that
data records are separated into one identification record and multiple health data records. For
a detailed description of the workflow, see section 5.2. The workflow model implemented in
the HLPSL language is illustrated in appendix F. Again, we assume that the client application
has obtained the session key, and we assume that the session key has been broken by the attacker.

Confidentiality of the user identifier IUIDU in the workflow has been verified and proven
to be secure, since it is the combination of the user identifier and the pseudonym which reveals
confidential information concerning the patient’s medical history. In this workflow, only the
pseudonym, but not the user identifier, can be gathered by the attacker. However, the integrity,

82

7.7. SUMMARY

authenticity and non-repudiation security requirements are not fulfilled in case the session key
is known to the adversary. For instance, the attacker could modify the retrieved data, which
the user would not notice. In case the digest mechanism is used, the attacker cannot modify
the transmitted messages, and he also cannot read them. Thus, by applying the message digest
mechanism, we would establish all the required security properties. However, in chapter 5.2
we have shown how to secure the authentication phase and how to provide the required security
properties. Thus, in our opinion, additional security measures are not necessary. Our arguments
for the security of this workflow are the same as already described in previos sections.

7.7 Summary

In this chapter, we have shown how the authentication phase can be corrected in order to provide
the authenticity of involved participants (i.e., user, server, database), confidentiality and integrity
of the established session key, as well as non-repudiation for both communication participants
such that evidence for having established a session is provided for both, the user and the server.
Furthermore, we have argued that, in case the authentication phase fulfills all the enumerated
requirements, there is no need for additional cryptographic operations (i.e., encryption, signa-
tures) within workflows which belong to the second phase, as no additional security is provided.
In table 7.2, the summary of our validation results is given when workflows in their corrected
versions are considered. As we have argued in previous sections, a correct authentication phase
provides enough security such that subsequent workflows do not have to fulfill all security re-
quirements.

Table 7.2: Result summary

Workflow AEN INT NRO NRR CON

Authentication x x x x x
Get Pseudonyms x
Authorize Instance
Data Insertion x
Data Retrieval x
Data Pseudonymization x

In this work we have strongly focused on attackers corresponding to the Dolev-Yao intruder
model, which have complete control over the network and can modify, replace and delete mes-
sages. We did not consider internal attackers (i.e., corrupt system administrators and medical
practitioners) which completely or partially control the server, the database, and the client ap-
plication. In case an attacker controls the client application (e.g., a backdoor is installed), then
he or she would be able to modify the content displayed on the screen and thus show falsified
information to the medical practitioner who is using the application. In addition, the attacker
would be able to gain insight into the patient’s medical history, since during the ’Authorize In-
stance’ workflow pseudonyms and record identifiers are received and decrypted by the client

83

CHAPTER 7. RESULTS OF THE EVALUATION

application. Thus, in such a case the attacker would be able to recover the patient’s medical
history. In case the attacker has compromised the server or the database, or in case he is able to
read the communication between the server and the database (i.e., when both processes run on
the same machine and inter-process communication is used), the same reasoning applies since
pseudonyms and record identifiers can be associated, and in consequence confidentiality can no
longer be assured.

84

CHAPTER 8
Conclusion

A large amount of modeling and specification approaches for describing secure infromation
systems are available, and the question arises which method to use for which problem. In order
to answer this question, it is fundamental to know which security mechanisms and which secu-
rity requirements can be modeled by a certain technique. However, as a multitude of available
modeling approaches exists, it can be rather tricky to find the most suitable method to solve a
particular problem. In addition, there is no common comparison framework to oppose the differ-
ent methods to each other with regard to security and to indicate the promising approach. Thus,
despite a multitude of available methods and tools, the developer is left alone with the problem
of selecting a suitable method.

In this thesis we have provided a taxonomy for model-driven security, we have evaluated
several state-of-the-art approaches, and we have classified them according to the proposed tax-
onomy. Thus, we have answered the question which approaches are applicable for solving
which development problems, and we have showed which specific characteristics these methods
feature. The benefit of the work is a comparison framework for classifying model-driven secu-
rity approaches and formal specification methods. In addition, we have applied two evaluated
methods and have validated the identified security properties which were required for PIPE, our
case study system. Thereby we have answered the question which methods can be used to anal-
yse the PIPE system with regards to its security properties. We have identified AVISPA as the
most appropriate tool for the analysis of protocols and workflows, and we have applied it to val-
idate PIPE. Thereby we have answered the research questions which security requirements are
fulfilled by the PIPE system, and which are not. We have found vulnerabilities to replay and re-
pudiation attacks, and we have illustrated how the workflows have to be fixed in order to mitigate
the identified threats. That is, we have shown how the authentication phase can be corrected in
order to provide authenticity of involved participants (i.e. user, server, database), confidentiality
and integrity of the established session key, as well as non-repudiation for both communicating
parties, such that evidence for having established a session is provided for both, the user and the
server. We have experienced that no proper intruder model for the verification of non-repudiation

85

CHAPTER 8. CONCLUSION

security properties is suported by the AVISPA tool. Therefore, we have performed some parts
of the analysis manually. Furthermore, we have discovered that all the workflows which belong
to the second phase are dependent on an authenticated client application which possesses the
session key, although the authentication phase does not ensure the authenticity of the client ap-
plication. As consequence, the problem of incorporating the client application into the session
which has been established by the server and the user has not been tackled and remains unsolved.

The conducted classification revealed that UMLsec is the most generally applicable ap-
proach focused on security, since all the other methods are either limited to modeling single
security mechanisms (e.g. role based access control), or they are generic enough to model se-
curity as well, but offer no security-specific language elements. Alloy is an example of such
a language, which is indeed very expressive but does not provide established rules of prudent
security engineering to make them available for users who may not be experts in security. In
such a case, the user has to model all the security aspects of the problem domain, which often re-
quires a deep understanding of security (e.g. cryptographic protocols). Likewise, the Symbolic
Model Verifier (SMV) model-checking system is applicable for analysing dynamic behaviour of
parallel executing processes, and can be used as well for the analysis of cryptographic security
protocols. Though, the level of abstraction which is offered by the SMV modeling language is
far lower than the level adequate for describing security protocols. That is, modeling security
protocols in the SMV language is more complex than in AVISPA, since there are much more
details to care about. Thus, even if generally applicable methods (e.g. UMLsec, Alloy) can be
applied to a broader range of security problems than special purpose methods can, this does not
imply that they are more adequate. First, it depends on the particular problem which method
fits best. And second, we have made the experience that picking the adequate special purpose
method and applying it to the particular problem is more efficient and leads to better results,
since (i) the problem can be represented on the proper abstraction level, (ii) the user can build
on the knowledge of experts, and (iii) the available tools are more efficient and capable.

8.1 Limitations

We have not been able to analyse the system’s static data model properly. One reason was
that the model which we have provided was too complex for the tool that we have used. Even
after simplifying the model, the tool still crashed. However, we are convinced that we have
simplified the model sufficiently, since any further reduction would lead to trivial models which
would not represent the system which we intended to analyse. Furthermore, we have not been
able to analyse non-repudiation properties automatically, since the AVISPA tool supports the
Dolev-Yao intruder model only. As well, we did not analyse the resistivity of the system against
denial-of-service (DoS) attacks.

8.2 Future Work

In order to simplify the analysis of static data models, it would be possible to formulate axioms
and inference rules for particular models to obtain logic programs which would allow us to make

86

8.2. FUTURE WORK

implicit knowledge explicit (that is, to deduce information which is implicitly represented in the
model). That is, by formulating rules for obtaining additional information from combinations of
information pieces included in the system’s static data model, one would be able to analyse the
data model during the design phase, which would help to protect the system from data mining
attacks during operation.

Availability, which we have identified as a desireable property in section 5.3 but which we
did not analyse, could not be verified since it cannot be expressed in the HLPSL language, in
which we have implemented and analysed the workflows. In [74], the authors proposed a formal
framework for analysis of denial of service attacks. They showed how principles to make proto-
cols more resistant against DoS attacks can be formalized, and they indicated a way how present
protocol analysis tools could be modified to support the proposed analysis framework. It is an
interesting question how the PIPE workflows behave regarding sensitivity to denial-of-service
attacks, and we intend to cover the issue in our future work.

A further insight was that all the aspect-oriented approaches modeled only a single security
aspect. It would have been interesting to see how complex the weaving rules might become and
how difficult it might be to verify a system consisting of several security aspects. That is, even
if the presented techniques worked well for modeling a single security mechanism, it was not
shown by anyone how adequate the AOSD principle is for developing secure real-world applica-
tions. Therefore, modeling several security aspects and combining them with the primary model
is one of the next steps that the modeling community has to pace. Successfully modeling and
thus generating a secure system including several security mechanisms, like a security protocol
(e.g. Needham-Schroeder) and access control (e.g. RBAC) for example, would provide the nec-
essary confidence that the AOSD paradigm is suitable for development of complex and secure
real-world applications. Furthermore, our evaluation revealed that approaches which analyse
implementations of modeled systems are still missing. Due to the fact that implementations are
not generated automatically from formal specifications, verification of running code is reason-
able. However, beside Juerjens who suggested to apply model-based testing in order to test the
implementations [3], attention was not paid to automated test case generation.

87

Bibliography

[1] Catherine Meadows. Formal methods for cryptographic protocol analysis: Emerging issues
and trends, 2003.

[2] Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. A survey of industrial applica-
tions of formal methods. Technical report, Engineering College of Aarhus, 2008.

[3] Jan Juerjens. Secure Systems Development with UML. Springer, 2005.

[4] Premkumar T. Devanabu and Stuart Stubblebine. Software engineering for security: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future of Software Engi-
neering, pages 227–239. ACM, 2000.

[5] Gary McGraw. Software Security: Building Security In. Addison-Wesley, 2006.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Ele-
ments of Reusable Object-Oriented Software. Addison wesley, 1995.

[7] Eduardo Fernandez-Medina, Jan Juerjens, Juan Trujillo, and Sushil Jajodia. Model-driven
development for secure information systems. Information and Software Technology, 2008.

[8] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2), 2006.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. pages 220–242, 1997.

[10] Josh Dehlinger and Nalin Subramanian. Architecting secure software systems using an
aspect-oriented approach: A survey of current research. Technical report, Iowa State Uni-
versity, 2006.

[11] Jan Juerjens. Umlsec: Extending uml for secure systems development. In UML ’02:
Proceedings of the 5th International Conference on The Unified Modeling Language, 2002.

[12] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security for process-
oriented systems. In SACMAT ’03: Proceedings of the eighth ACM symposium on Access
control models and technologies, pages 100–109. ACM, 2003.

[13] Luca Vigano. Automated security protocol analysis with the avispa tool. Electronic Notes
in Theoretical Computer Science, 155:61–86, 2006.

89

BIBLIOGRAPHY

[14] A. Khwaja and J. Urban. A synthesis of evaluation criteria for software specifications and
specification techniques. International Journal of Software Engineering and Knowledge
Engineering, 2002.

[15] Michael Howard and Steve Lipner. The Security Development Lifecycle. Microsoft Press,
2006.

[16] House E. R. Assumptions underlying evaluation models. Educational Researcher, 1978.

[17] Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

[18] International Standardization Organization ISO. Iso/iec 27000 information security man-
agement systems: Overview and vocabulary, 2009.

[19] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C. John
Wiley & Sons, Inc., 1996.

[20] Bernhard Riedl, Thomas Neubauer, Gernot Goluch, Oswald Boehm, Gert Reinauer, and
Alexander Krumboeck. A secure architecture for the pseudonymization of medical data.
In ARES ’07: Proceedings of the The Second International Conference on Availability,
Reliability and Security, 2007.

[21] OMG. Model driven architecture guide version 1.0.1, 2003.

[22] Alexander Pretschner. Model-based testing. 2005.

[23] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing. Technical report, 2006.

[24] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Gosh. An aspect-oriented approach
to early design modeling. IEEE Proceedings, 151:173–185, 2004.

[25] A. Kleppe and J. Warmer. Explore model-driven architecture and aspect-oriented pro-
gramming. Web, April 2005. http://www.devx.com/enterprise/Article/27703/0/page/1,
Retrieved on 2010-04-17.

[26] R. W. Butler. What is formal methods?, retrieved on 2010-04-15 from
http://shemesh.larc.nasa.gov/fm/index.html, 2001.

[27] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge University Press,
2004.

[28] Edmund M. Clarke, Jeannette M. Wing, and Et Al. Formal methods: State of the art and
future directions. ACM Computing Surveys, 28:626–643, 1996.

[29] Emine G. Aydal, Mark Utting, and Jim Woodcock. Objects, Components, Models and
Patterns 46th International Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June
30 - July 4, 2008. Proceedings, chapter A Comparison of State-Based Modelling Tools for
Model Validation, pages 278–296. Springer Berlin Heidelberg, 2008.

90

[30] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Commun. ACM, 21:993–999, 1978.

[31] Gavin Lowe. An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters, 56:131–133, 1995.

[32] Martin Abadi and Roger Needham. Prudent engineering practice for cryptographic proto-
cols. IEEE Trans. Softw. Eng., 22:6–15, 1996.

[33] D. Dolev and A. Yao. On the security of public key protocols. Information Theory, IEEE
Transactions, 29:198–208, 1983.

[34] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8:19–36, 1990.

[35] Catherine Meadows. Open issues in formal methods for cryptographic protocol analysis.
In In Proceedings of DISCEX 2000, 2000.

[36] Rodolfo Villarroel, Eduardo Fernandez-Medina, and Mario Piattini. Secure information
systems development - a survey and comparison. Computers & Security, 2005.

[37] Jorge Fox and Jan Jurjens. Introducing security aspects with model transformations. In
ECBS ’05: Proceedings of the 12th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems. IEEE Computer Society, 2005.

[38] Derek Coleman, Grady Booch, David Garlan, Sridhar Iyengar, Cris Kobryn, and Victoria
Stavridou. Is uml an architectural description language?, retrieved on 2010-04-14 from
http://www.sigplan.org/oopsla/oopsla99/2_ap/tech/2d1a_uml.html, 1999.

[39] Bastian Best, Jan Jurjens, and Bashar Nuseibeh. Model-based security engineering of
distributed information systems using umlsec. In ICSE ’07: Proceedings of the 29th inter-
national conference on Software Engineering, 2007.

[40] Jan Juerjens. Sound methods and effective tools for model-based security engineering
with uml. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 322–331, New York, NY, USA, 2005. ACM.

[41] Jan Juerjens. Uml analysis tools, retrieved on 2010-04-13 from http://ls14-www.cs.tu-
dortmund.de/main2/jj/umlsectool/index.html, 2008.

[42] Jan Juerjens. Developing secure embedded systems: Pitfalls and how to avoid them, 2007.

[43] A. Bruckner, J. Doser, and B. Wolff. A Model Transformation Semantics and Analysis
Methodology for SecureUML. Springer, 2006.

[44] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Secureuml: A uml-based mod-
eling language for model-driven security. In UML ’02: Proceedings of the 5th Interna-
tional Conference on The Unified Modeling Language, pages 426–441, London, UK, 2002.
Springer-Verlag.

91

BIBLIOGRAPHY

[45] David Basin, Juergen Doser, and Torsten Lodderstedt. Model driven security: from uml
models to access control infrastructures, 2005.

[46] David Basin, Manuel Clavel, Juergen Doser, and Marina Egea. Automated analysis of
security-design models. Information and Software Technology, 2008.

[47] Geri Georg, Indrakshi Ray, and Robert France. Using aspects to design a secure system.
ICECCS02, 2002.

[48] Huiqun Yu, Dongmei Liu, Xudong He, Li Yang, and Shu Gao. Secure software architec-
tures design by aspect orientation. In ICECCS ’05: Proceedings of the 10th IEEE Inter-
national Conference on Engineering of Complex Computer Systems, pages 47–55. IEEE
Computer Society, 2005.

[49] Xudong He, Huiqun Yu, Tianjun Shi, Junhua Ding, and Yi Deng. Formally analyzing
software architectural specifications using sam, 2002.

[50] Bowen Alpern, Bowen Alpera, Fred B. Schneider, and Fred B. Schneider. Recognizing
safety and liveness. Distributed Computing, 2:117–126, 1987.

[51] Gefei Zhang, Hubert Baumeister, Nora Koch, and Alexander Knapp. Aspect-oriented mod-
eling of access control in web applications. 2005.

[52] OMG. Unified modeling language: Superstructure, version 2.0, specification, 2005.

[53] Alexander Knapp and Gefei Zhang. Model transformations for integrating and validating
web application models. In Modellierung 2006, 2006.

[54] Gerard J. Holzmann. The SPIN model checker. Primer and Reference Manual. Addison-
Wesley, 2003.

[55] Indrakshi Ray, Robert France, Na Li, and Geri Georg. An aspect-based approach to mod-
eling access control concerns. Information and Software Technology, 46:575–587, 2004.

[56] Eunjee Song, Raghu Reddy, Robert France, Indrakshi Ray, Geri Georg, and Roger Alexan-
der. Verifiable composition of access control and application features. In SACMAT ’05:
Proceedings of the tenth ACM symposium on Access control models and technologies,
2005.

[57] Zhi Jian Zhu and Mohammad Zulkernine. A model-based aspect-oriented framework for
building intrusion-aware software systems. Information and Software Technology, 2008.

[58] WASC. Threat classification. Technical report, Web Application Security Consortium,
2008.

[59] G. Beydoun, G. Low, H. Mouratidis, and B. Henderson-Sellers. A security-aware meta-
model for multi-agent systems (mas). Information and Software Technology, 2008.

92

[60] Ghassan Beydoun, , Cesar Gonzalez-Perez, Brian Henderson-Sellers, and G. Low. Devel-
oping and evaluating a generic metamodel for mas work products. In Software Engineering
for Multi-Agent Systems IV, 2006.

[61] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes
Drielsma, P.C. Heam, O. Kouchnarenko, J. Mantovani, S. Moedersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Vigano, and L. Vigneron. The avispa tool for
the automated validation of internet security protocols and applications. In Lecture Notes
in Computer Science 3576, 2005.

[62] D. Basin et al. HLPSL Tutorial - A Beginner’s Guide to Modelling and Analysing Internet
Security Protocols.

[63] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16:872–923, 1994.

[64] Antti Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, pages
429–528, London, UK, 1998. Springer-Verlag.

[65] Daniel Jackson. Software abstractions: Logic, Lamguage, and Analysis. The MIT Press,
2006.

[66] Bernhard Riedl, Veronika Grascher, Stefan Fenz, and Thomas Neubauer. Pseudonymiza-
tion for improving the privacy in e-health applications. In HICSS ’08: Proceedings of
the Proceedings of the 41st Annual Hawaii International Conference on System Sciences,
2008.

[67] Johannes Heurix and Thomas Neubauer. Pseudonymization of information for privacy
in e-health: Design specification. Technical report, TU Vienna - Institute of Software
Technology and Interactive Systems, 2009.

[68] Emina Torlak, Marten van Dijk, Blaise Gassend, Daniel Jackson, and Srinivas Devadas.
Knowledge flow analysis for security protocols. Technical report, Computer Science and
Artificial Intelligence Laboratory, Massachussets Institute of Technology, 2005.

[69] D. Basin et al. AVISPA v1.1 User Manual, 2006.

[70] The avispa library: Needham schroeder public-key protocol, 2005.

[71] Judson Santiago and Laurent Vigneron. Study for automatically analysing non-repudiation.
In Colloque sur les Risques et la Securite d’Internet et des Systemes - CRiSIS 2005, 2005.

[72] Jianying Zhou and Dieter Gollmann. A fair non-repudiation protocol. 1996.

[73] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. Modelling
and Analysis of Security Protocols. Addison Wesley, 2000.

93

BIBLIOGRAPHY

[74] Catherine Meadows. A formal framework and evaluation method for network denial of
service. In In Proceedings of the 1999 IEEE Computer Security Foundations Workshop,
1999.

94

List of Figures

2.1 Encryption and decryption [19]. 7
2.2 Encryption and decryption with a symmetric key [19]. 7
2.3 Encryption and decryption with different keys [19]. 7
2.4 The principle of MDA [7]. 10
2.5 The principle of model based testing [23]. 11
2.6 The principle of AOM [25]. 12
2.7 Model corresponding to the SMV program. 16

4.1 UML tool suite [40]. 25
4.2 Role based access control [44]. 26
4.3 SecureUML Metamodel [45]. 27
4.4 Framework for secure software architectures [48]. 29
4.5 AOSD framework for developing intrusion-aware software systems [57]. 33
4.6 Avispa architecture [62]. 35
4.7 Corresponding automaton. 37

5.1 Layered securty-hull model [20]. 44
5.2 Architecture [67]. 45
5.3 An excerpt from the static data model [67]. 47
5.4 An excerpt from the logical data model [67]. 47
5.5 The authentication workflow [67]. 49
5.6 Get Pseudonyms workflow [67]. 49
5.7 The authorization workflow [67]. 50
5.8 The data insertion workflow [67]. 51
5.9 Data retrieval [67]. 52
5.10 Data pseudonymization [67]. 52
5.11 Context diagram for PIPE. 53
5.12 Security threats for the PIPE system. 55
5.13 Selected security requirements for the PIPE system. 57

6.1 An excerpt from the PIPE static data model [67]. 61
6.2 Domain metamodel. 63
6.3 State diagram. 65

95

List of Figures

7.1 Attack trace compromising the secrecy of a nonce. 72
7.2 Attack trace compromising server’s authenticity. 72
7.3 Replay attack enforcing an old session key. 73
7.4 Attack trace for the authentication workflow. 76
7.5 Attack trace for the authentication workflow without Lowe’s fix. 78
7.6 Attack trace for the get pseudonyms workflow. 79

96

List of Tables

4.1 Evaluation results. 40
4.2 Evaluation results. 41

5.1 Mapping threats to DFD elemenes. [15] . 53
5.2 Mapping threats to security properties . 54
5.3 Security threats for the PIPE system . 56
5.4 Security requirements for the PIPE system . 56
5.5 Selected security requirements for the PIPE system 57

7.1 Selected security requirements for the Authentication workflow 70
7.2 Result summary . 83

97

Appendix A

/***

Needham-Schroeder public-key protocol model
and intruder model for the SMV formal verification tool
taken from http://www.ics.uci.edu/~isse/proj268/index.html

SMV home page: http://www-cad.eecs.berkeley.edu/~kenmcmil/

***/

/* Number of protocol instances */
#define n 1

/* Maximum number of messages the intruder remembers */
#define max_messages 4

/* Lowe’s protocol fix: 0 - off, 1 - on */
#define FIX 0

#define offs (n+1)
#define max_node_name (n*2+1)
#define intruder_name (n+1)
#define intruder_nonce 0
#define max_nonce (n*4+3)

typedef node_name 1..max_node_name;
typedef node_local_name 1..n;
typedef node_local_dest_name 1..n+1;
typedef mes_state {idle, mes1, mes2, mes3_idle, mes3, finished};
typedef nonces 0..max_nonce;

typedef message struct
{
/* Type of the message: mes1, mes2 or mes3 */

99

List of Tables

type: mes_state;

/* Nonce 1 */
nonce1: nonces;

/* Nonce 2 (for mes2) */
nonce2: nonces;

/* Key (node name of the destination) */
key: node_name;

/* Initiator of the message (for mes1 and for fixed mes2) */
initiator: node_name;

/* Index # of the initiator of the message (for mes1) */
source: node_name;

/* Destination node name */
dest: node_name;
}

/* -------------- Protocol description: -------------------

mes1: A -> B: {Na, A}Pk(B)
mes2: B -> A: {Na, Nb}Pk(A)
mes2 fixed: B -> A: {Na, Nb, B}Pk(A)
mes3: A -> B: {Nb}PK(B)

---*/

/*--------------- Intruder Model ------------------------*/
module intruder(inp_prev, outp_prev, outp_next, inp_next)
{
input inp_prev, inp_next: message;
output outp_prev, outp_next: message;

mess_null: message;

/* connections left-to-right and right-to-left */
l_r_connect, r_l_connect: boolean;

my_name: intruder_name..intruder_name;

100

List of Tables

my_nonce: intruder_nonce..intruder_nonce;

/* non-deterministically synthesized message */
my_mes: message;

/* memory for the messages the intruder has snooped */
known_messages: array 0..max_messages-1 of message;

/* which nonces the intruder has decoded and remembered so far */
known_nonces: array nonces of boolean;

/* pointer to the first empty entry in array of snoopped messages */
curr_mess: 0..max_messages-1;

/* the message that is being snooped */
snooping_mes: message;

init(known_messages) := [mess_null : i = 0..max_messages-1];
init(known_nonces) := [(i = my_nonce) : i = 0..max_nonce];
init(curr_mess) := 1;

mess_null.type := idle;
mess_null.nonce1 := 0;
mess_null.nonce2 := 0;
mess_null.key := 1;
mess_null.initiator := 1;
mess_null.dest := 1;
mess_null.source := 1;

/* ---- Connect inputs with outputs or discard the message ---- */
if (l_r_connect)
{

outp_next := inp_prev;
}
else
{

outp_next := my_mes;
}

if (r_l_connect)
{

outp_prev := inp_next;
}

101

List of Tables

else
{

outp_prev := my_mes;
}

/* ---- Snooping the messages/nonces from incoming packets ----*/
default

snooping_mes := mess_null;
in
{

if (inp_prev.type ~= idle)
{
snooping_mes := inp_prev;

}
else if (inp_next.type ~= idle)
{
snooping_mes := inp_next;

}
}

default
next(known_messages) := known_messages;

in default
next(known_nonces) := known_nonces;

in default
next(curr_mess) := curr_mess;

in
{

if (snooping_mes.type ~= idle)
{
next(known_messages[curr_mess]) := snooping_mes.type;
next(curr_mess) := (curr_mess + 1) mod max_messages;
if (snooping_mes.key = my_name)
{

for (i = 1; i <= max_nonce; i=i+1)
{

if (((snooping_mes.type = mes2) &
(snooping_mes.nonce2 = i))

| (snooping_mes.nonce1 = i))
next(known_nonces[i]) := 1;

}
}

}

102

List of Tables

}

/* ---- Generating fake messages ----*/

/* non-determenistic value */
ch: boolean;

default
/* take any of snooped messages */
my_mes := known_messages[0..max_messages-1];

in
if (ch)
{

/* change the desination and send snooped message or */
my_mes.dest := 1..max_node_name;

}
else
{

/* generate new message from known nonces and random keys */
my_mes.type := {mes1, mes2, mes3};
my_mes.nonce1 := {i : i = 0..max_nonce, known_nonces[i]};
my_mes.nonce2 := {i : i = 0..max_nonce, known_nonces[i]};
my_mes.key := {1..max_node_name};
my_mes.dest := {1..max_node_name};
my_mes.source := my_name;
my_mes.initiator := {1..max_node_name};

}
}

/*---- Node Model (initiator and receiver) ----*/
module node(index, my_name, offs1,

dest_name, offs2, my_nonce_init,
my_nonce_rec, inp_prev, outp_prev,
outp_next, inp_next)

{
input my_name: node_local_name;
dest_name: node_local_dest_name;

/* constant parameters; these are used

* to reduce the size of node_local_name

* type to reduce the size of the BDDs

**/
input offs1, offs2: 0..50;

103

List of Tables

/* initiator and receiver nonces */
input my_nonce_init, my_nonce_rec: nonces;

input inp_prev, inp_next: message;

output outp_prev, outp_next: message;

state_initiator: mes_state;
state_receiver: mes_state;
initiator_opposite_node: node_local_dest_name;
receiver_opposite_node: node_name;
receiver_opposite_node_index: node_name;
initiator_opposite_nonce: nonces;
receiver_opposite_nonce: nonces;
init_message, rec_message, rec_m_message, mess_null, rec_inp:
message;

/* if the message is consumed by initiator or passed further */
get_inp: boolean;

/* if the message is consumed by receiver or passed further */
get_rec_inp: boolean;

mess_null.type := idle;
mess_null.nonce1 := 0;
mess_null.nonce2 := 0;
mess_null.key := 1;
mess_null.initiator := 1;
mess_null.dest := 1;
mess_null.source := 1;

if (index = intruder_name)
{

/* instantiate intruder or usual node */
my_node: node_name;
intr: intruder(inp_prev, outp_prev, outp_next, inp_next);
my_node := intr.my_name;
state_initiator := idle;
state_receiver := idle;
initiator_opposite_node := my_node;
receiver_opposite_node := my_node;
receiver_opposite_node_index := index;

104

List of Tables

initiator_opposite_nonce := 0;
receiver_opposite_nonce := 0;

}
else
{

my_node: node_local_name;
init(state_initiator) := {idle, mes1};
init(state_receiver) := idle;
init(my_node) := my_name;
next(my_node) := my_node;
init(initiator_opposite_node) := dest_name;
next(initiator_opposite_node) := initiator_opposite_node;
init(receiver_opposite_node) := 1;
init(receiver_opposite_node_index) := 1;
init(initiator_opposite_nonce) := 1;
init(receiver_opposite_nonce) := 1;

/* ------------ Initiator ------------ */
default

get_inp := 0;
in default

init_message := mess_null;
in default

next(initiator_opposite_nonce) := initiator_opposite_nonce;
in default

next(state_initiator) := state_initiator;
in switch(state_initiator)
{

idle:
{

/* non-determenistic next state selection */
next(state_initiator) := {idle, mes1};

}
mes1:
{

init_message.type := mes1;
init_message.nonce1 := my_nonce_init;
init_message.key := initiator_opposite_node + offs2;
init_message.initiator := my_node + offs1;
init_message.source := index;
init_message.dest := initiator_opposite_node + offs2;
if (rec_m_message.type = idle)
next(state_initiator) := mes2;

105

List of Tables

else
next(state_initiator) := mes1;

}
mes2:
{

if ((inp_next.type = mes2) &
(inp_next.nonce1 = my_nonce_init) &
(inp_next.key = my_node + offs1) &
((inp_next.initiator = initiator_opposite_node + offs2)

| ~FIX) &
/* protocol fix */
(inp_next.dest = my_node + offs1)) {

next(state_initiator) := {mes3_idle, mes3};
next(initiator_opposite_nonce) := inp_next.nonce2;
get_inp := 1;

}
else
{

next(state_initiator) := mes2;
}

}
mes3_idle:

next(state_initiator) := {mes3_idle, mes3};
mes3:
{

init_message.type := mes3;
init_message.nonce1 := initiator_opposite_nonce;
init_message.key := initiator_opposite_node + offs2;
init_message.source := index;
init_message.dest := initiator_opposite_node + offs2;
if (rec_m_message.type = idle)

next(state_initiator) := finished;
else

next(state_initiator) := mes3;
}
finished:

next(state_initiator) := finished;
}

if ((rec_m_message.type = idle)
& ((state_initiator = mes1) | (state_initiator = mes3)))

outp_next := init_message;
else

106

List of Tables

outp_next := rec_m_message;

if (get_inp)
rec_inp := mess_null;

else
rec_inp := inp_next;

/* ------------ Receiver ------------ */

default
get_rec_inp := 0;

in default
rec_message := mess_null;

in default
next(receiver_opposite_node) := receiver_opposite_node;

in default
next(receiver_opposite_node_index) := receiver_opposite_node_index;

in default
next(receiver_opposite_nonce) := receiver_opposite_nonce;

in default
next(state_receiver) := state_receiver;

in switch(state_receiver)
{

idle:
{

if ((rec_inp.type = mes1) &
(rec_inp.key = my_node + offs1) &
(rec_inp.dest = my_node + offs1)) {

next(state_receiver) := {mes1, mes2};
next(receiver_opposite_node) := rec_inp.initiator;
next(receiver_opposite_node_index) := rec_inp.source;
next(receiver_opposite_nonce) := rec_inp.nonce1;
get_rec_inp := 1;

}
else
{
next(state_receiver) := idle;

}
}
mes1:
{

next(state_receiver) := {mes1, mes2};
}

107

List of Tables

mes2:
{
rec_message.type := mes2;
rec_message.nonce1 := receiver_opposite_nonce;
rec_message.nonce2 := my_nonce_rec;
rec_message.initiator := my_node + offs1;
rec_message.key := receiver_opposite_node;
rec_message.source := index;
rec_message.dest := receiver_opposite_node;
if (inp_prev.type = idle)

next(state_receiver) := mes3;
else

next(state_receiver) := mes2;
}
mes3:
{

if ((rec_inp.type = mes3) &
(rec_inp.nonce1 = my_nonce_rec) &
(rec_inp.key = my_node + offs1) &
(rec_inp.dest = my_node + offs1)) {

next(state_receiver) := finished;
get_rec_inp := 1;

}
else
{

next(state_receiver) := mes3;
}

}
finished:

next(state_receiver) := finished;
}

if ((inp_prev.type = idle) & (state_receiver = mes2))
rec_m_message := rec_message;

else
rec_m_message := inp_prev;

if (get_rec_inp)
outp_prev := mess_null;

else
outp_prev := rec_inp;

}
}

108

List of Tables

module main()
{

mess_null: message;
node_ref: array 1..2*n+1;
temp_left: array 0..(n*2+3) of message;
temp_right: array 0..(n*2+1) of message;
name_set: node_local_name;
name_dest_set: node_local_dest_name;

temp_left[0] := mess_null;
temp_left[n*2+3] := temp_right[n*2];

for (i = 1; i <= n+1; i=i+1)
{ /* first set of nodes plus intruder */

node_ref[i]: node(i, name_set, 0,
name_dest_set, offs, i*2,
i*2+1, temp_left[(i-1)*2], temp_left[(i-1)*2+1],
temp_left[i*2], temp_left[i*2+1]);

}

temp_right[0] := mess_null;
temp_right[n*2+1] := temp_left[n*2+2];

for (i = 1; i <= n; i=i+1)
{ /* second set of nodes */

node_ref[offs+i]: node(offs+i, name_set, offs,
name_dest_set, 0, offs*2+i*2,
offs*2+i*2+1, temp_right[(i-1)*2],
temp_right[(i-1)*2+1],
temp_right[i*2],
temp_right[i*2+1]);

}

mess_null.type := idle;
mess_null.nonce1 := 0;
mess_null.nonce2 := 0;
mess_null.key := 1;
mess_null.initiator := 1;
mess_null.dest := 1;
mess_null.source := 1;

109

List of Tables

/* Assertions to check: */

ass: array 0..n of boolean;
ass[0] := 0;
for (i = 1; i <= n; i=i+1)
{

ass[i] := ass[i-1] | ((node_ref[i].state_receiver = finished) &
(node_ref[i].receiver_opposite_node ~= intruder_name) &
/* don’t check connections with intruder */
((node_ref[node_ref[i].receiver_opposite_node_index].
state_initiator ~= finished) |
((node_ref[node_ref[i].receiver_opposite_node_index].my_node +

node_ref[node_ref[i].receiver_opposite_node_index].offs1)
/* index and name do match */
~= node_ref[i].receiver_opposite_node) |

((node_ref[node_ref[i].receiver_opposite_node_index].
initiator_opposite_node +
node_ref[node_ref[i].receiver_opposite_node_index].offs2)

~= (node_ref[i].my_node + node_ref[i].offs1))));
}

/* should return TRUE */
check_if_everything_fine: assert G (~ass[n]);

ass1: array 0..n of boolean;
ass1[0] := 0;
for (i = 1; i <= n; i=i+1)
{

ass1[i] := ass1[i-1] | ((node_ref[i].state_receiver = finished) &
(node_ref[node_ref[i].receiver_opposite_node_index].

state_initiator = finished)&
((node_ref[node_ref[i].receiver_opposite_node_index].

initiator_opposite_node +
node_ref[node_ref[i].receiver_opposite_node_index].offs2)

= (node_ref[i].my_node + node_ref[i].offs1)));
}

/* should return FALSE and the trace */
show_successful_trace: assert G (~ass1[n]);

}

110

Appendix B

%%
%%
%% Description of the Authentication workflow for the PIPE model
%% (single machine variant)
%%
%%

role user(U:agent,S:agent,Ku:public_key,Ks:public_key,
SND,RCV:channel(dy))

played_by U
def=
local

State:nat,Nu:text,Ns:text,K:symmetric_key

init
State := 1

transition
1. State=1 /\ RCV(start) =|> State’:=3 /\

Nu’:=new() /\
SND({Nu’.U}_Ks) /\
witness(U,S,auth_nu,Nu’) /\
secret(Nu’,sec_nu,{U,S})

%% user receives nonces Nu, Ns from the server
%% and requests authentication on Nu (= check of value Nu),
%% and at same time sees Ns (is witness) for which
%% the server will demand a check (request for auth.)

3. State=3 /\ RCV({Nu.Ns’.S}_Ku) =|> State’:=5 /\
SND({Ns’}_Ks) /\
request(U,S,auth_ns,Ns’)

111

List of Tables

5. State=5 /\ RCV({K’.Nu}_Ku) =|> State’:=7 /\
request(U,S,auth_symkey,K’)

end role

role server(U:agent,S:agent,Ku:public_key,Ks:public_key,
SND,RCV:channel(dy))

played_by S
def=

local
State:nat,Nu:text,Ns:text,K:symmetric_key

init
State := 0

transition
%% the server receives Nu (is witness),
%% for which the user demands authentication (request for auth.)
0. State=0 /\ RCV({Nu’.U}_Ks) =|> State’:=2 /\

Ns’:=new() /\
SND({Nu’.Ns’.S}_Ku) /\
witness(S,U,auth_ns,Ns’) /\
secret(Ns’,sec_ns,{U,S})

%% server requests the user to authenticate on Ns
%% furthermore, the session key K shall not be known
%% by anyone else
2. State=2 /\ RCV({Ns}_Ks) =|> State’:=4 /\

K’:=new() /\
SND({K’.Nu}_Ku) /\
request(S,U,auth_nu,Nu) /\
secret(K’,sec_symkey,{U,S}) /\
witness(S,U,auth_symkey,K’)

end role

role session(U:agent,S:agent,Ku:public_key,Ks:public_key)
def=

local SND_U,RCV_U,SND_S,RCV_S:channel(dy)

composition
user(U,S,Ku,Ks,SND_U,RCV_U) /\
server(U,S,Ku,Ks,SND_S,RCV_S)

end role

112

List of Tables

role environment()
def=

const ku,ks,ki:public_key,user,server:agent,
auth_nu,auth_ns,sec_nu,sec_ns,auth_symkey,sec_symkey:protocol_id

intruder_knowledge = {user, server, ku, ks, ki, inv(ki)}

composition
session(user,server,ku,ks) /\
session(i,server,ki,ks) /\
session(user,i,ku,ki)

end role

goal
authentication_on auth_nu
authentication_on auth_ns
secrecy_of sec_ns
secrecy_of sec_nu
authentication_on auth_symkey
secrecy_of sec_symkey

end goal

environment()

113

Appendix C

%%
%%
%% Description of the Authentication workflow for the PIPE model
%% (dedicated machine variant)
%%
%%

role user(U:agent,S:agent,D:agent,Ku:public_key,Ks:public_key,
SND,RCV:channel(dy))

played_by U
def=
local

State:nat,Nu:text,Ns:text,K:symmetric_key
init

State := 1
transition

1. State=1 /\ RCV(start) =|> State’:=3 /\
Nu’:=new() /\
SND({Nu’.U}_Ks)

%% user receives nonces Nu, Ns from the server
%% and requests authentication on Nu (= check of value Nu),
%% and at same time sees Ns (is witness) for which the server
%% will demand a check (request for auth.)
2. State=3 /\ RCV({Nu.Ns’.S}_Ku) =|> State’:=5 /\

SND({Ns’}_Ks) /\
request(U,S,nu,Nu) /\
witness(U,S,ns,Ns’)

3. State=5 /\ RCV({K’}_Ku) =|> State’:=7
end role

role server(U:agent,S:agent,D:agent,Ks:public_key,Kd:public_key,
SND,RCV:channel(dy))

115

List of Tables

played_by S
def=

local
State:nat,Nu:text,Ns:text,Ku:public_key,K:symmetric_key

init
State := 0

transition
%% the server receives Nu (is witness),
%% for which the user demands authentication
%% (request for authentication)
1. State=0 /\ RCV({Nu’.U}_Ks) =|> State’:=2 /\

SND(U) /\
witness(S,U,nu,Nu’)

2. State=2 /\ RCV({U.Ku’}_inv(Kd)) =|> State’:=4 /\
Ns’:=new() /\
SND({Nu.Ns’.S}_Ku’)

%% server requests the user to authenticate on Ns
%% furthermore, the session key K shall not be known by
%% anyone else
3. State=4 /\ RCV({Ns}_Ks) =|> State’:=6 /\

K’:=new() /\
SND({K’}_Ku) /\
request(S,U,ns,Ns) /\
secret(K’,symkey,{U,S})

end role

role dbase(U:agent,S:agent,D:agent,Ku:public_key,
Ks:public_key,Kd:public_key,
SND,RCV:channel(dy),KeyMap:(agent.public_key) set)

played_by D
def=

local
State:nat

init
State := 0

transition
1. State=0 /\

RCV(U’) /\
in(U’.Ku’, KeyMap) =|> State’:=1 /\ SND({U’.Ku’}_inv(Kd))

end role

116

List of Tables

role session(U:agent,S:agent,D:agent,
Ku:public_key,Ks:public_key,Kd:public_key,
KeyMap:(agent.public_key) set)

def=
local

SND_U,RCV_U,SND_S,RCV_S,SND_D,RCV_D:channel(dy)
composition

user(U,S,D,Ku,Ks,SND_U,RCV_U) /\
server(U,S,D,Ks,Kd,SND_S,RCV_S) /\
dbase(U,S,D,Ku,Ks,Kd,SND_D,RCV_D,KeyMap)

end role

role environment()
def=
local KeyMap: (agent.public_key) set

const ku,ks,ki,kd:public_key,user:agent,server:agent,dbase:agent,
nu:protocol_id,ns:protocol_id,symkey:protocol_id

init KeyMap := {user.ku, server.ks, i.ki}

intruder_knowledge = {user, server, dbase, ku, ks, kd, ki, inv(ki)}

composition
session(user,server,dbase,ku,ks,kd,KeyMap) /\
session(i,server,dbase,ki,ks,kd,KeyMap) /\
session(user,i,dbase,ku,ki,kd,KeyMap) /\
session(user,server,i,ku,ks,kd,KeyMap)

end role

goal
authentication_on nu
authentication_on ns
secrecy_of symkey

end goal

environment()

117

Appendix D

%%
%%
%% Description of the Get Pseudonyms workflow for the PIPE model
%%
%%

role user(U:agent,C:agent,D:agent,K:symmetric_key,
ISKu:symmetric_key,IUIDu:text)

played_by U
def=

local
State:nat,PSN:text

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ SND({{IUIDu}_ISKu}_K)
/\ secret(IUIDu,sec_1,{U})

4. State=1 /\ RCV({{PSN’}_ISKu}_K) =|>
State’:=2 /\ SND(PSN’)

end role

role client(U:agent,C:agent,D:agent,K:symmetric_key)
played_by C
def=

local
State:nat,IUIDu:text,ISKu:symmetric_key,PSN:text

init
State := 0

transition
1. State=0 /\ RCV({{IUIDu’}_ISKu’}_K) =|>

State’:=1 /\ SND({{IUIDu’}_ISKu’}_K)
/\ secret(IUIDu’,sec_1,{U})

3. State=1 /\ RCV({{PSN’}_ISKu}_K) =|>

119

List of Tables

State’:=2 /\ SND({{PSN’}_ISKu}_K)
5. State=2 /\ RCV(PSN) =|> State’:=3

end role

role dbase(U:agent,C:agent,D:agent,K:symmetric_key)
played_by D
def=

local
State:nat,IUIDu:text,PSN:text,ISKu:symmetric_key

init
State := 0

transition
2. State=0 /\ RCV({{IUIDu’}_ISKu’}_K) =|>

State’:=1 /\ PSN’:=new()
/\ SND({{PSN’}_ISKu’}_K)
/\ secret(IUIDu’,sec_1,{U})

end role

role session(ISKu:symmetric_key,IUIDu:text,
U:agent,C:agent,D:agent,K:symmetric_key)

def=
local
SND_D,RCV_D,SND_C,RCV_C,SND_U,RCV_U:channel(dy)
composition
dbase(U,C,D,K,SND_D,RCV_D) /\
client(U,C,D,K,SND_C,RCV_C) /\
user(U,C,D,K,ISKu,IUIDu,SND_U,RCV_U)
end role

role environment()
def=
const
user:agent,client:agent,dbase:agent,
innersymkey:symmetric_key,iuidu:text,
sessionkey:symmetric_key,sec_1:protocol_id
intruder_knowledge = {sessionkey}
composition
session(innersymkey,iuidu,user,client,dbase,sessionkey)
end role

goal
secrecy_of sec_1

end goal

120

Appendix E

%%
%%
%% Description of the Data Insertion workflow for the PIPE model
%%
%%

role user(U:agent,C:agent,D:agent,ISKu:symmetric_key,
IUIDu:text,SND,RCV:channel(dy))

played_by U
def=
local

State:nat,PSN:text
init

State := 0
transition

1. State=0 /\ RCV(PSN’) =|>
State’:=1 /\ SND({IUIDu}_ISKu.{PSN}_ISKu)

/\ secret(IUIDu,sec1,{U})
end role

role client(U:agent,C:agent,D:agent,SND,RCV:channel(dy))
played_by C
def=

local
State:nat,IUIDu:text,ISKu:symmetric_key,PSN:text,RID:text

init
State := 0

transition
1. State=0 /\ RCV(RID’) =|>

State’:=1 /\ PSN’:=new()
/\ SND(PSN’)

2. State=1 /\ RCV({IUIDu’}_ISKu.{PSN’}_ISKu) =|>
State’:=2 /\ SND(PSN.RID.{IUIDu’}_ISKu.{PSN’}_ISKu)

end role

121

List of Tables

role dbase(U:agent,C:agent,D:agent,SND,RCV:channel(dy))
played_by D
def=

local
State:nat,RID:text,PSN:text,ISKu:symmetric_key,IUIDu:text

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ RID’:=new()
/\ SND(RID’)

2. State=1 /\ RCV({IUIDu’}_ISKu.{PSN’}_ISKu) =|>
State’:=2

end role

role session(ISKu:symmetric_key,IUIDu:text,U:agent,C:agent,D:agent)
def=
local
SND_D,RCV_D,SND_C,RCV_C,SND_U,RCV_U:channel(dy)
composition
dbase(U,C,D,SND_D,RCV_D) /\
client(U,C,D,SND_C,RCV_C) /\
user(U,C,D,ISKu,IUIDu,SND_U,RCV_U)
end role

role environment()
def=
const
user:agent,client:agent,dbase:agent,innersymkey:symmetric_key,
iuidu:text,sec_1:protocol_id
intruder_knowledge = {user,client,dbase}
composition
session(innersymkey,iuidu,user,client,dbase)
end role

goal
secrecy_of sec_1

end goal
environment()

122

Appendix F

%%
%%
%% Description of the Data Pseudonymization workflow for the PIPE model
%%
%%

role user(U:agent,C:agent,D:agent,ISKu:symmetric_key,IUIDu:text,
SND,RCV:channel(dy))

played_by U
def=
local

State:nat,PSN:text
init

State := 0
transition

1. State=0 /\ RCV(PSN’) =|>
State’:=1 /\ SND({IUIDu}_ISKu.{PSN}_ISKu)

/\ secret(IUIDu,sec1,{U})
end role

role client(U:agent,C:agent,D:agent,SND,RCV:channel(dy))
played_by C
def=

local
State:nat,IUIDu:text,ISKu:symmetric_key,PSN:text,RID:text

init
State := 0

transition
1. State=0 /\ RCV(RID’) =|>

State’:=1 /\ PSN’:=new()
/\ SND(PSN’)

2. State=1 /\ RCV({IUIDu’}_ISKu.{PSN’}_ISKu) =|>
State’:=2 /\ SND({IUIDu’}_ISKu.{PSN’}_ISKu)

end role

123

List of Tables

role dbase(U:agent,C:agent,D:agent,SND,RCV:channel(dy))
played_by D
def=

local
State:nat,RID:text,PSN:text,ISKu:symmetric_key,
IUIDu:text

init
State := 0

transition
1. State=0 /\ RCV(start) =|>

State’:=1 /\ RID’:=new()
/\ SND(RID’)

2. State=1 /\ RCV({IUIDu’}_ISKu.{PSN’}_ISKu) =|>
State’:=2

end role

role session(ISKu:symmetric_key,IUIDu:text,U:agent,C:agent,D:agent)
def=
local
SND_D,RCV_D,SND_C,RCV_C,SND_U,RCV_U:channel(dy)
composition
dbase(U,C,D,SND_D,RCV_D) /\
client(U,C,D,SND_C,RCV_C) /\
user(U,C,D,ISKu,IUIDu,SND_U,RCV_U)
end role

role environment()
def=
const
user:agent,client:agent,dbase:agent,innersymkey:symmetric_key,
iuidu:text,sec_1:protocol_id
intruder_knowledge = {user,client,dbase}
composition
session(innersymkey,iuidu,user,client,dbase)
end role

goal
secrecy_of sec_1

end goal
environment()

124

Appendix G

%%
%%
%% Description of the Authorize-Instance workflow for the PIPE model
%%
%%

role owner(O:agent,A:agent,C:agent,D:agent,IUIDow:text,ISKow:symmetric_key,
SND,RCV:channel(dy))

played_by O
def=

local
State:nat,IUIDau:text,PSNau:text

init
State := 0

transition
1. State=0 /\ RCV(PSNau’.IUIDau’) =|> State’:=1
3. State=1 /\ SND({IUIDow.IUIDau.PSNau}_ISKow) =|> State’:=2

end role

role authorized(O:agent,A:agent,C:agent,D:agent,IUIDau:text,
ISKau:symmetric_key,SND,RCV:channel(dy))

played_by A
def=

local
State:nat,PSNow:text,IUIDow:text

init
State := 0

transition
1. State=0 /\ RCV(PSNow’.IUIDow’) =|> State’:=1 /\

secret(PSNow’,sec_1,{O,A,C,D})
3. State=1 /\ SND({IUIDow.IUIDau.PSNow}_ISKau) =|> State’:=2

end role

role client(O:agent,A:agent,C:agent,D:agent,IUIDow:text,IUIDau:text,

125

List of Tables

PSNow:text,ISKow:symmetric_key,ISKau:symmetric_key,
SND,RCV:channel(dy))

played_by C
def=

local
State:nat,RID:text,PSNau:text

init
State := 0

transition
1. State=0 /\ RCV(start) =|> State’:=1 /\ SND(PSNow)
3. State=1 /\ RCV(RID’) =|> PSNau’:=new() /\

SND(PSNau’.IUIDau) /\
SND(PSNau’.RID) /\
State’:=3

7. State=3 /\ RCV({IUIDow.IUIDau.PSNau}_ISKow) =|> State’:=4
9. State=4 /\ SND(PSNow.IUIDow) =|> State’:=5
11. State=5 /\ RCV({IUIDow.IUIDau.PSNow}_ISKau) =|> State’:=6

end role

role dbase(O:agent,A:agent,C:agent,D:agent,SND,RCV:channel(dy))
played_by D
def=

local
State:nat,PSNow:text,RID:text,PSNau:text

init
State := 0

transition
2. State=0 /\ RCV(PSNow’) =|> RID’ := new() /\

SND(RID’) /\
State’:=2

6. State=2 /\ RCV(PSNau’.RID) =|> State’:=3
end role

role session(O:agent,A:agent,C:agent,D:agent,IUIDow:text,IUIDau:text,
PSNow:text,ISKau:symmetric_key,ISKow:symmetric_key)

def=
local SND_O,RCV_O,SND_A,RCV_A,SND_C,RCV_C,SND_D,RCV_D:channel(dy)

composition
owner(O,A,C,D,IUIDow,ISKow,SND_O,RCV_O) /\
authorized(O,A,C,D,IUIDau,ISKau,SND_A,RCV_A) /\
client(O,A,C,D,IUIDow,IUIDau,PSNow,ISKow,ISKau,SND_C,RCV_C) /\
dbase(O,A,C,D,SND_D,RCV_D)

126

List of Tables

end role

role environment()
def=

const
owner,authorized,client,dbase:agent,iuidow,iuidau,psnow:text,
iskau,iskow:symmetric_key,sec_1:protocol_id

intruder_knowledge = {owner,authorized,client,dbase}

composition
session(owner,authorized,client,dbase,iuidow,iuidau,psnow,iskau,iskow) /\
session(i,authorized,client,dbase,iuidow,iuidau,psnow,iskau,iskow) /\
session(owner,i,client,dbase,iuidow,iuidau,psnow,iskau,iskow) /\
session(owner,authorized,i,dbase,iuidow,iuidau,psnow,iskau,iskow) /\
session(owner,authorized,client,i,iuidow,iuidau,psnow,iskau,iskow)

end role

goal
secrecy_of sec_1

end goal

environment()

127

Appendix H

/*
*
* Alloy code for modeling cryptography

*
*/

abstract sig Value {}
sig PlainText extends Value {}
sig CipherText extends Value {}

sig SymKey extends PlainText {
enc: PlainText one -> one CipherText,
dec: CipherText one -> one PlainText

}
{

// (decode(encode(p)) == p) and (encode(decode(c)) == c)
all p : PlainText, c : CipherText |

(enc[p] == c implies dec[c] == p) and
(dec[c] == p implies enc[p] == c)

}
sig PubKey extends PlainText {

sec: one SecKey,
enc: PlainText one -> one CipherText,
dec: CipherText one -> one PlainText

}
{

// (decode(encode(p)) == p) and (encode(decode(c)) == c)
all s : SecKey, v : PlainText |
(sec == s) implies (dec[s.enc[v]] == v and s.dec[enc[v]] == v)

}
sig SecKey extends PlainText {

pub: one PubKey,
enc: PlainText one -> one CipherText,
dec: CipherText one -> one PlainText

129

List of Tables

}
{

// (decode(encode(p)) == p) and (encode(decode(c)) == c)
all p : PubKey, v : PlainText |
(pub == p) implies (dec[p.enc[v]] == v and p.dec[enc[v]] == v)

}
fact EncodingFacts {

// different keys cause different encryptions and decryptions
all disj k, k’ : SymKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
all disj k, k’ : PubKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
all disj k, k’ : SecKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
all k : PubKey, k’ : SecKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
all k : PubKey, k’ : SymKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
all k : SecKey, k’ : SymKey, p : PlainText, c : CipherText |

k.enc[p] != k’.enc[p] and k.dec[c] != k’.dec[c]
}

130

Appendix I

/*
*
* Alloy code for modeling the PIPE domain

*
*/

abstract sig Record {}
sig Pseudonym extends PlainText {}
sig SharedPseudonym {

aPID: one CipherText,
// pseudonyms
enc_ISKow_PSNid: one CipherText,
enc_ISKow_PSNhe: one CipherText,
enc_ISKau_PSNid: one CipherText,
enc_ISKau_PSNhe: one CipherText,
// user ids
enc_ISKow_IUIDow: one CipherText,
enc_ISKow_IUIDau: one CipherText,
enc_ISKau_IUIDow: one CipherText,
enc_ISKau_IUIDau: one CipherText

}

sig RootPseudonym {
// user id
enc_ISKow_IUIDow: one CipherText,
// pseudonyms
enc_ISKow_PSNid: one CipherText,
enc_ISKow_PSNhe: one CipherText,

}

sig IdRecord extends Record {
idInfo: some PlainText

}

131

List of Tables

sig HealthRecord extends Record {
healthInfo: some PlainText

}

sig PseudonymRecordsMapping {
psn: one Pseudonym,
rec: one Record

}

sig User {
IUID: one PlainText,
OPuK: one PubKey,
IPuK: one PubKey,
encryptedIPK: one CipherText,
encryptedISK: one CipherText,
LastName: one PlainText,
FirstName: some PlainText,
UserType: one PlainText

}

132

Appendix J

/*
*
* Alloy code for modeling the PIPE domain facts

*
*/

fact PseudonymFacts {
// PSNid und PSNhe are, when decrypted, pseudonyms
all psn : SharedPseudonym | one u : User |

getIUID[u, psn] == u.IUID
all psn : RootPseudonym | one u : User |

getIUID[u, psn] == u.IUID

// PSNid und PSNhe are, when decrypted, pseudonyms
all psn : SharedPseudonym | one ow : User |

getPSNid[ow, psn] in Pseudonym and getPSNhe[ow, psn]
in Pseudonym

all psn : RootPseudonym | one au : User |
getPSNid[au, psn] in Pseudonym and getPSNhe[au, psn]

in Pseudonym

// decrypt(ISKau, IUIDow) == decrypt(ISKow, IUIDow)
// decrypt(ISKau, PSNid) == decrypt(ISKow, PSNid) etc.
all psn : SharedPseudonym | one ow, au : User |

((getISK[ow].dec[psn.enc_ISKow_IUIDow] == ow.IUID)
and

(getISK[au].dec[psn.enc_ISKau_IUIDau] == au.IUID)
)
implies
((getISK[ow].dec[psn.enc_ISKow_IUIDow] ==

getISK[au].dec[psn.enc_ISKau_IUIDow]) and
(getISK[ow].dec[psn.enc_ISKow_IUIDau] ==

getISK[au].dec[psn.enc_ISKau_IUIDau]) and
(getISK[ow].dec[psn.enc_ISKow_PSNid] ==

133

List of Tables

getISK[au].dec[psn.enc_ISKau_PSNid]) and
(getISK[ow].dec[psn.enc_ISKow_PSNhe] ==

getISK[au].dec[psn.enc_ISKau_PSNhe])
)

}
fact UserFacts {

all u : User | getIPK[u] in SecKey and getISK[u] in SymKey
}

// helper functions
fun getIUID[u : User, s : SharedPseudonym] : one PlainText {

getISK[u].dec[s.enc_ISKow_IUIDow]
}
fun getPSNid[u : User, s : SharedPseudonym] : one Pseudonym {

getISK[u].dec[s.enc_ISKow_PSNid]
}
fun getISK[u : User] : one SymKey {

u.OPuK.sec.dec[u.encryptedISK]
}

134

