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Abstract

New products and services in the wireless market require higher data rates, improved link reliability, and

the ability to cope with user interference. The use of multiple-input multiple-output (MIMO) communications

has led to increased data rates and improved link reliability, and new multiuser transmission schemes such as

interleave-division multiple access (IDMA) have been proposed. With IDMA, user separation is obtained via

user-specific interleavers combined with low-rate channel coding. These new technologies and transmission

schemes, however, require sophisticated and powerful receiver structures, which employ iterative algorithms.

In the first part of this thesis we use the factor graph framework to designiterative receiver algorithms for

an IDMA multiuser uplink system employing MIMO orthogonal frequency-division multiplexing (OFDM).

We derive the factor graph corresponding to the IDMA system, and use the sum-product algorithm to develop

an iterative multiuser IDMA receiver that performs joint detection and channel estimation. Simulation results

demonstrate large performance gains compared to classical receivers performing separate channel estimation

and data detection. Suitable approximations to the messages passed by the sum-product algorithm yield a

low complexity implementation that scales linearly with the number of users; furthersignificant complexity

reductions can be achieved by only updating a subset of messages in every iteration. We also perform an

information theoretic performance analysis of IDMA and show that the performance of IDMA comes close to

the information theoretic limit.

In the second part of the thesis we deal with quantization of messages in the factor graph. To this end we

consider a bit-interleaved coded modulation (BICM) system and investigate the problem of how to quantize

the log-likelihood ratios (LLRs) at the output of the demodulator. The optimal quantizer has previously been

derived only for the special case of BPSK modulation over an AWGN channel. Extending this approach to

other channels and modulations is difficult to implement in a practical system, andtherefore we consider a

different quantizer design which allows for simple implementation while only slightlydegrading performance.

We compare our quantizer design with the optimal quantizer in terms of maximum achievable rate and by

means of BER simulations. We also propose a method for designing the different LLR quantizers during data

transmission “on the fly”, i.e. without the need for lookup tables to store quantizer parameters. By designing

demodulators, which directly calculate quantized LLRs, complexity reductionsare possible. We demonstrate

this effect by deriving a low-complexity soft-MMSE demodulator which outputs quantized LLRs.

In practical BICM systems, the channel between transmitter and receiverhas to be estimated by means of pi-

lot symbols. Because the pilot power is constrained, estimation errors occur. Recently, improved demodulators

have been proposed, which take the channel uncertainty into account, thereby offering better performance. In
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the third part of this thesis, we provide a performance comparison of various demodulators for BICM with im-

perfect CSI in terms of the maximum achievable rate with a specific demodulator.In case of iterative decoded

BICM (BICM-ID), we use EXIT charts to characterize the convergence behaviour of the MIMO-BICM-ID

receivers. We also design LDPC codes that are matched to a specific demodulator in terms of their EXIT func-

tions and provide BER comparisons. Finally, we investigate the impact of power allocation for pilots and data

symbols on the maximum achievable rate and demonstrate the importance of correct power allocation.





Kurzfassung

Neue Produkte und Anwendungen in der drahtlosen Datenübertragung ben̈otigen ḧohere Datenraten,

Zuverl̈assigkeit und Robustheit gegenüber Interferenz von anderen Teilnehmern. Die Verwendung von

multiple-input multiple-output(MIMO) Übertragung f̈uhrte zur Steigerung der Datenrate und verbesserter Zu-

verlässigkeit, und neue MehrbenutzerÜbertragungsverfahren wieinterleave-division multiple access(IDMA)

wurden vorgeschlagen. Bei IDMA erfolgt die Separierung der Teilnehmer duch die Verwendung von user-

spezifischen Interleavern zusammen mit Kanalkodierung niederer Rate. Diese neuen Technologien und

Übertragungsverfahren benötigen anspruchsvolle und leistungsfähige Empf̈angerstrukturen, welche iterative

Algorithmen verwenden.

Im ersten Teil dieser Dissertation verwenden wir Faktorgraphen, um iterative Empfangsalgorithmen für

ein IDMA Mehrbenutzersystem zu entwerfen, welches auf MIMOorthogonal frequency-division multiplexing

(OFDM) basiert. Wir leiten den Faktorgraph des IDMA Systems her, und verwenden densum-productAl-

gorithmus, um einen iterativen IDMA Mehrbenutzerempfänger zu entwerfen, der gleichzeitig Detektion und

Kanalscḧatzung durchf̈uhrt. Simulationsergebnisse zeigen eine grosse Leistungsverbesserung gegen̈uber einem

Empf̈anger, der zuerst den Kanal schätzt und dann die Daten detektiert. Eine Implementierung, deren Kom-

plexität linear mit der Anzahl der Teilnehmer steigt, erhält man durch entsprechende Approximationen der

Nachrichten, die imsum-productAlgorithmus ausgetauscht werden. Eine weitere Reduktion der Komplexität

wird durch Berechnen lediglich einer Teilmenge aller Nachrichten in jeder Iteration erreicht. Eine informations-

theoretische Analyse des IDMA Systems zeigt, dass das System nahe des informationstheoretischen Limits

arbeitet.

Der zweite Teil dieser Dissertation behandelt die Quantisierung von Nachrichten im Faktorgraphen. Wir

betrachten ein BICM System und untersuchen das Problem der Quantisierung vonlog-likelihood ratios(LLRs)

am Ausgang des Demodulators. Bisher wurde der optimale Quantisierer lediglich für den Spezialfall von BPSK

Modulationüber einen AWGN Kanal untersucht. Da eine Erweiterung dieser Lösung auf andere Kanälen und

Modulationsformaten sehr kompliziert ist, schlagen wir eine alternative Quantisierungmethode vor. Diese lässt

sich viel einfacher implementieren und liefert lediglich etwas schlechtere Ergebnisse. Wir vergleichen unsere

Quantisierungsmethode mit dem optimalen Quantisierer bezüglich Transinformation und Bitfehlerrate. Weiters

stellen wir eine Methode vor, mit der sich die Quanisierer während der Daten̈ubertragung entwerfen lassen.

Dadurch werden keine Tabellen zum Speichern der Parameter des Quantisierers ben̈otigt. Die Verwendung

von Demodulatoren, die direkt quantisierte LLRs berechnen und ausgeben, erm̈oglicht eine Verringerung der

Komplexiẗat des Demodulators. Wir demonstrieren diesen Effekt an einemsoft-MMSEDemodulator, der direkt

quantisierte LLRs berechnet.
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In praktisch realisierten BICM Systemen wird der Kanal zwischen Senderund Empf̈anger mittels

Übertragung von Pilotsymbolen geschätzt. Da die Sendeenergie begrenzt ist, treten Schätzfehler auf. In

der Literatur wurden verbesserte Demodulatoren vorgestellt, die den Kanalscḧatzfehler ber̈ucksichtigen, und

dadurch leistungsfähiger sind. Im dritten Teil dieser Dissertation vergleichen wir verschiedene Demodulatoren

im Hinblick auf ihre maximal erreichbare Rate. Im Fall von iterativ demodulierter BICM Übertragung ver-

wenden wir EXITcharts, um das Konvergenzverhalten des MIMO-BICM-ID Empfängers zu charakterisieren

und entwerfen LDPCcodes, die an den EXITchart des entsprechenden Demodulators angepasst sind. Wir

präsentieren einen Vergleich der Bitfehlerraten der verschiedenen Demodulatoren. Weiters untersuchen wir

auch die Auswirkung der Leistungsaufteilung zwischen Pilot- und Datensymbolen auf die maximal erreichbare

Rate und demonstrieren die Wichtigkeit der korrekten Aufteilung.
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1
Introduction

WIRELESS communication has become ubiquitous in the last two decades. Initially,only high-end

notebooks were equipped with connectivitiy toWireless Local Area Networks(WLAN), which allowed

for wireless broadband access to the internet. Due to increasing demand,WLAN connectivity is now common

to all notebooks and many new consumer devices have been introduced to the market, which offer new services

like multimedia streaming and video-on-demand. Many access points for WLAN have been installed in homes

and offices, allowing for wireless internet access.

This development triggered customer demand for “wireless broadband access everywhere”. Existing ser-

vices, like surfing the internet or watching a video stream, are provided in amobile environment. This creates

new customers (e.g. people surfing the internet while commuting); extrapolating the success of wireless broad-

band by means of WLAN, this will be a huge market. In addition to providing existing services in a mobile

fashion, also many new services have become available, which explicitly require mobile broadband access.

One example for such a new service is “augmented reality”, which enables users to obtain interactive informa-

tion about sights near their current location by a clever combination of GPS enabled mobile devices, broadband

internet access and a (user-generated) database accessible over the internet. Many of these new services are cur-

rently evolving, and will offer attractive opportunities and revenue modelsfor service developers and network

operators.

Current WLAN standards work reliably only up to100 meters, making deployment in large areas, especially

outdoors, difficult and costly. Given the infrastructure cellular networkoperators already have, it is only natural

to extend current cellular communication technologies such that broadbandinternet access can be provided.

Current second-generation cellular communication technologies like theGlobal System for Mobile Communi-

cations(GSM) are mostly tailored for voice-centric network traffic and perform poorly for data-centric appli-

cations. The third-generation cellular technology,Universal Mobile Telecommunications System(UMTS) and

extensions, such asHigh Speed Downlink Packet Access(HSDPA) are better suited for data-centric network

traffic. However, these new standards are not expected to be able to provide the increasing data rates and in-

creased levels of quality of service (QoS) required in the future. Therefore new standards for the upcoming

1



Chapter 1. Introduction 2

fourth-generation (4G) cellular communication systems have been proposed, which provide higher data rates

and support QoS constraints. Most prominently,Worldwide Interoperability for Microwave Access(WiMAX)

andLong-Term Evolution(LTE) of the 3GPP are currently considered or being already deployed.

Increased data rates and QoS constraints over the wireless channel pose three main challenges to system

design and standard development:

(i) The spectrum usable for wireless communications is limited by various factors. Physical laws imply

certain propagation conditions, thereby allowing only a portion of the available spectrum to be used for wireless

communications. Also, process limitations in current semiconductor device technology limit the range of

available frequencies. Spectrum regulation puts constraints on spectrumuse, as frequency bands are sold to

operators in auctions, and given the high prices for UMTS licenses paid inEurope, allocating more bandwidth

poses a severe economical burden on operators.

(ii) The need for mobility poses a severe constraint on the energy consumption of wireless devices. Current

rechargable batteries are highly complex and optimised components, but offer only limited capacity; novel

energy sources like fuel cells are still being in the development phase.

(iii) Given the many mobile devices already deployed and the limited spectrum resources, interference

between users is becoming stronger, thereby reducing data rates and limitingQoS. This implies that cooperation

between different devices becomes more and more important.

Past strategies to overcome these challenges were increasing power levels or allocating more bandwidth

to wireless devices, but these are not feasible anymore. Therefore new transmission schemes and algorithms

are required, which allow for a much more efficient use of the limited resources available, promote coopera-

tion between different wireless devices, and increase data rates and power efficiency to cope with tomorrows’

communication requirements.

After the (re)discovery of low-density parity-check (LDPC) codes, transmission systems with iterative pro-

cessing at the receivers received a lot of attention, as they promise large performance gains. Furthermore, they

are reasonably simple to implement, because they consist of “standard” components, which are working to-

gether in an iterative manner. In the beginning, iterative systems were designed mainly based on intuition, but

soon graphical models emerged as a very useful design tool.

1.1 Factor Graphs and Iterative Receivers

Graphical models allow a unified approach to many topics in coding, speech and signal processing, machine

learning and statistical inference. Inference in graphical models is based on the actual graph, which describes

the used model in an intuitive and simple manner, and on a generic message passing algorithm, which operates

on the graph by exchanging messages between the graph’s nodes. Initially, graphical models were mainly

used in machine learning and statistical inference; [1] introduced Bayesian networks and the belief propagation

algorithm, which operates on these graphs. Over time the range of applications widened, and many algorithms

in seemingly different fields have been shown to be special cases of the generic message passing algorithm,

known as thesum-product algorithm.

One of the first applications of graphical models in communications was coding. A class of very powerful



Chapter 1. Introduction 3

codes are low-density parity-check (LDPC) codes, which were introduced by Gallager in [2]. LDPC codes,

as many other codes, can be described by a particular form of graphical models, called “Tanner graphs” [3].

Tanner graphs are bipartite graphs, representing the code- and information bits and their dependencies induced

by the code structure. It was also shown, that this graphical representation of LDPC codes allows to represent

the decoding operation as a sum-product algorithm on the Tanner graph [3].

Factor graphs were introduced by Loeliger in [4, 5] and are generalizations of the Tanner graphs. Factor

graphs are used to visualize a complicated “global” function (depending onmany variables), which can be

factored into a product of simpler “local” functions (depending on just a few variables). Factor graphs are

bipartite graphs that express which variables are arguments of which “local” functions. In [6] it was argued,

that problems dealing with such factorizable functions arise in many seemingly different fields, such as coding,

speech and signal processing. The problems in these fields essentially require algorithms to calculate (approx-

imate) marginal functions of the “global” function the factor graph is associated with. The factorization of

the global function allows a computationally efficient implementation by means of thesum-product algorithm.

The sum-product algorithm passes messages along the edges of the factor graph. At the nodes all the incoming

messages from the neighbouring nodes are collected, and new messagesare calculated by some message update

rules. The newly updated messages are then propagated back to the neighbouring nodes. After some stopping

criterion (which depends on the structure of the factor graph), the sum-product algorithm stops and the required

marginal functions associated with every node can be approximately calculated from the messages received.

The idea of iterative processing at the receiver goes back to coding: In [7] turbo codes were introduced,

which exhibit performance extremely close to the Shannon bound and wereoutperforming “classical codes”

by large margins. Turbo codes consist of several convolutionalcomponentcodes, each of which encodes the

uniquely interleaved information bits. While the component codes can be decoded with low-complexity [8],

large performance gains stem from the iterative decoding process, where the component decoders exchange

information about the code bits. The success of turbo codes spurred enormous interest, and soon the underlying

turbo principle[9] was applied to many other problems in communications, such as detection, channel estima-

tion, and synchronization. In the context of bit-interleaved coded modulation (BICM) [10], iterative receivers

were proposed in which demodulator and channel decoder work in an iterative fashion and exchange informa-

tion about the transmitted bits [11]. Ideally, after each iteration more and more bits are correctly detected and -

due to theturbo principle- help in correctly detecting the remaining unknown bits. These receiver algorithms

can also be extended to incorporate channel estimation into the iterative processing; they obtain additional

pilot symbols using already correctly detected bits [12], which can be usedto estimate the channel. Ideally,

these additional pilot symbols allow a more precise channel estimation, which helps in correctly detecting the

remaining unknown bits.

One big advantage of all these receiver structures is that they do not need the design of a new transmission

design; merely the receiver is redesigned and thereby gaining large improvements in performance. Due to the

repeated application of e.g. the demodulator and the channel decoder, thecomplexity of iterative receivers is

inherently higher than that of non iterative receivers. By designing the number of iterations performed at the

receiver, a performance-complexity tradeoff can be achieved.

In the beginning, theturbo principlewas used in an intuitive manner and many proposed algorithms were
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based on intuition. It soon became clear, however, that communication architectures can be expressed by means

of factor graphs and that detection amounts to calculation of marginal functions of a complicated “global” func-

tion associated with the factor graph [13,14]. The application of the factorgraph framework to receiver design

allows for a unified design and analysis. By approximating the messages to beexchanged between the nodes of

the factor graph, the calculations involved in the message updates at the nodes can be considerably simplified.

Furthermore, by updating and propagating only a subset of the messagesfurther complexity reductions are

possible. The factor graph framework allows a unified approach to theseissues.

From a factor graph point of view, application of the sum-product algorithm to iterative receivers yield only

an approximation of the marginal functions 8unless the factor graph is a tree), and considerable effort has been

made to understand why iterative receivers are still offering such exceptional performance. Starting points for

theoretical analysis were graph theory [15] and information geometry [16, 17] but a real breakthrough has not

yet occured, thus making understanding of iterative systems an open research issue.

1.2 Scope of Work and Contributions

This thesis consists of three parts: The first part applies the factor graph framework to the design of an iterative

receiver in multiuser systems. We consider an uplink scenario where several users transmit data to a base

station and the users are separated by means ofinterleave-division multiple access(IDMA) [18]. Using the

factor graph framework [4, 5], we can represent the IDMA system asa bipartite graph, consisting of nodes

and connecting edges. By formulating the detection problem as marginalization, the sum-product algorithm

can be used to develop an iterative multiuser MIMO-IDMA receiver that performs joint detection and channel

estimation. The proposed algorithm calculates messages which are exchanged between the nodes of the factor

graph.

The second part of this thesis discusses message quantization in the context of bit-interleaved coded mod-

ulation (BICM). We propose different quantization schemes and assesstheir impact on performance by infor-

mation theoretic quantities. This is relevant in the context of receiver designin cooperative communication

networks. Here, nodes can cooperate or use relays, in order to increase the total throughput of the network

or enhance reliability of the transmissions. Cooperation schemes work by updating received messages from

other nodes and transmitting the updated messages to other nodes or relays.Practical considerations require

the quantization of messages to be exchanged between the nodes.

In the third part of this thesis, we consider the effects of imperfect CSI in case of BICM systems. In

practical BICM systems, the channel between transmitter and receiver has to be estimated. Usually, this is done

by means of pilot symbols, which are used by the receiver to estimate the channel. Because the pilot power

is constrained, estimation errors occur, which result in the receiver having only imperfect CSI. We propose

improved demodulator algorithms for this scenario and study their performance and compare these algorithms

with conventional approaches.
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Our contributions are as follows.

Graphical Models in Wireless Communications

• Iterative MIMO-OFDM-IDMA receiver.We propose a receiver for a MIMO-OFDM-IDMA system that

can be viewed as an approximation to the maximuma posteriori(MAP) bit detector. The MAP bit de-

tector is optimal in the sense of minimum probability of a bit error; its output is chosen such that thea

posteriori probability of an information bit is maximized. This probability is obtained by a marginal-

ization which, using the factor graph framework, is carried out efficientlyby means of the sum-product

algorithm. The complexity of this marginalization is exponential in the number of users, thus making it

unrealizable even for moderate system sizes. We overcome this limitation by using approximations for

some of the messages propagated in the factor graph, thereby obtaining a complexity that is linear in the

number of users. Our receiver extends that of [18] to MIMO transmissions.

• Higher-order modulation.We furthermore extend the receiver of [18] to higher-order modulation for-

mats, which results in a further increase of spectral efficiency (in additionto the MIMO multiplexing

gain).

• Selective message updating.We propose a selective message update scheme where only certain messages

are updated in each iteration. This yields a reduction of computational complexity and makes it possible

to trade error performance against computational efficiency in a flexible manner.

• Integrated channel estimation.The iterative IDMA multiuser detector proposed in [18] assumes perfect

channel state information (CSI) at the receiver. In practice, pilot-aidedchannel estimation is usually

employed to obtain (imperfect) CSI, which is used by the multiuser detector instead of the true CSI. In

our factor graph based receiver, on the other hand, pilot-aided channel estimation is an integral part of

the iterative scheme. Thus, our receiver performs iterative joint multiuserdata detection and channel

estimation for pilot-assisted MIMO-IDMA (see [12, 19] for related work in the context of single-user

systems).

• Information-theoretic performance analysis.Following the idea of [20], we consider the maximum

achievable rate of IDMA as a fundamental performance limit and compare it with the information-

theoretic capacity of the corresponding multiple access channel (MAC). To obtain the maximum achiev-

able rate of IDMA we use the low-complexity IDMA receiver with an LDPC code as channel code and

determine the achievable rate by means of BER simulations. It is shown that in our scenario, IDMA can

perform within2 dB of the information theoretic limit.

• Numerical performance analysis.Finally, we use numerical simulations to demonstrate the performance

gains achieved with the proposed receiver relative to conventional IDMA receivers and the dependence

of performance on certain system parameters. In particular, it is observed, that inclusion of channel

estimation in the iterative detection/decoding scheme yields a dramatic improvement of reliability, and

selective message updating results in a significant reduction of complexity.
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Message Quantization in BICM Systems

• BICM systems with quantized LLRs.We consider a BICM system, where the LLRs calculated by the

demodulator are quantized. We investigate the problem of quantizer design interms of an equivalent

discrete channel. The optimal quantizer for the special case of BPSK modulation over an AWGN channel

has been proposed in [21], but extending this approach to other channels and modulations is very difficult

to implement in a practical system. Thus, we consider a different quantizer design which allows for

simple implementation while only slightly degrading information rate.

• Performance evaluation.To compare the optimum and proposed quantizer design in acode-independent

manner, we propose to use the mutual information of the equivalent modulation channel of the BICM

system [20]. In case of a fast-fading scenario, we use the ergodic rate, whereas for quasi-static fading

we characterize the quantizer by means of outage probability. In case of BPSK-modulated single-input

single-output (SISO) systems we use a semi-analytical approach, otherwise Monte-Carlo simulations.

• On-the-fly quantizer design.The quantizer parameters, namely quantizer intervals and quantizer outputs,

depend on the system configuration and the SNR, requiring large lookup tables for storing the required

parameters. We propose a method for designing the proposed LLR quantizer during data transmission,

“on the fly” i.e. without the need for lookup tables to store quantizer parameters.

• Numerical performance analysis.We provide bit error rate (BER) simulations for BICM systems with

LLR quantization usinglow-density parity-check (LDPC)codes, which compare different quantization

schemes and demonstrate the effectiveness of our “on the fly” quantizerdesign.

• Derivation of a low-complexity demodulator.By designing demodulators which directly calculate quan-

tized LLRs, complexity reductions are possible. We derive a low-complexity soft-MMSE demodualtor

which outputs quantized LLRs, demonstrate its complexity savings and performance losses due to quan-

tization.

Performance of BICM Systems with Imperfect CSI

• Demodulator design for imperfect CSI.We extend the results of the improved soft-MMSE demodulator

[22] to arbitrary linear estimators and show that the improved soft-MMSE demodulator is independent

of the actual linear estimator used. The improved BICM-ID demodulator of [23] is extended to MIMO

channels with arbitrary spatial correlation.

• Performance evaluation.We again use the maximum rate achievable with a specific demodulator as a

code-independent performance metric. These rates are measured by Monte-Carlo simulations of the

equivalent BICM modulation channel [20]. We compare these maximum achievable rates of mismatched

and improved low-complexity soft-MMSE receivers for correlated and uncorrelated MIMO channels. In

case of BICM-ID, we use EXIT charts [24] to characterize the convergence behaviour of the MIMO-

BICM-ID receivers employing the mismatched demodulator or the improved demodulator for different

symbol mappings and different channel correlation models.
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• Impact of power allocation.For BICM, we investigate the impact of power allocation between pilot and

data symbol power on the maximum achievable rate and demonstrate the importance of correct power

allocation.

• Numerical performance analysis.For BICM-ID, we design LDPC codes that are matched to a specific

demodulator in terms of their EXIT functions, by using the approach from [25]. We also provide BER

comparisons using the optimized LDPC codes and a “standard” (i.e., non-optimized) LDPC code.

1.3 Outline of the Thesis

• In Chapter 2 we give an introduction to basic communication principles and give an overview of the

state of the art. The chapter contains introductory material about MIMO, BICM, OFDM, and graphical

models. The presented material serves as basis for the subsequent chapters.

• Chapter 3 presents the design of iterative MIMO-OFDM-IDMA receivers using thefactor graph frame-

work. We construct the factor graph of the system and derive the messages to be propagated along

the edges of the factor graph, and develop a selective message updatingscheme. Finally, we provide

information-theoretic performance limits of the proposed system and demonstrate the performance of

the proposed receiver structures and algorithms by means of numerical simulations.

• Chapter 4 investigates LLR quantization in BICM receivers. We present the system model and propose

different quantizer designs. Next, we study the system capacity of SISO- and MIMO-BICM systems,

respectively and propose the on-the-fly design of the quantizer. Finally, we propose a low-complexity

soft-MMSE demodulator, which directly calculates quantized LLRs.

• In Chapter 5 we develop demodulators for BICM systems with imperfect CSI. By taking the channel

uncertainty into account, modified demodulator metrics are derived, which yield better performance. We

also obtain these modified demodulators by means of the factor graph approach. We present numerical

results, which demonstrate the performance difference between conventional and modified demodulators.

• Finally, Chapter 6 summarizes the main contributions of this thesis and provides an outlook on future

topics of interest.



2

Preliminaries

IN this chapter we introduce basic concepts of wireless communications and graphical models. We give an

overview of MIMO wireless communications, BICM, and multiuser systems, andwe introduce graphical

models, especially factor graphs and the sum-product algorithm. Finally, wepresent some exemplary applica-

tions of graphical models to problems in signal processing and communications.

2.1 Wireless Communications

Wireless devices have become ubiquitous in the last decades, providing many benefits to its users. From an

engineering point of view, the wireless channel introduces new challenges like fading and interference. These

challenges have to be dealt with properly and in the following subsections wewill explain some of the concepts

used to overcome these challenges.

8
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2.1.1 Wireless Propagation Channels

Wireless channels differ from wired channels bymultipath propagation, i.e. by several propagation paths from

the transmitter to the receiver, where the signal is reflected, diffracted, or scattered along the way. In addition,

the propagation conditions change over time because of mobility of the receiver or the transmitter (or both) and

because the environment undergoes changes as well. From a system-theoretic point of view, a wireless channel

is modeled as a linear time-variant (LTV) system [26]. The system output (the received signal)y(t) is given as

y(t) =

∫
h(t, τ)x(t − τ)dτ ,

wherex(t) denotes the system input (the transmitted signal). Thetime-variantimpulse response is denoted by

h(t, τ); τ represents the multipath delay andt represents time. We take the Fourier transform ofh(t, τ) with

respect tot, and obtain thedeterministic spreading function,

S(ν, τ) =

∫
h(t, τ)e−j2πνtdt ,

which characterizes the channel response in the Delay-Doppler-domain(ν denotes Doppler frequency). Given

the random nature of the wireless channel, the impulse responseh(t, τ) is characterized statistically by the

autocorrelation function

E{h⋆(t1, τ1)h(t2, τ2)} ,

where E{·} denotes the expectation operation. Most channels fulfill the wide-sense stationarity (WSS) assum-

pion, so that the joint statistics of a channel measured at two different timest1 and t2 depends only on the

difference∆t = t2 − t1. The autocorrelation function then becomes

Rh(∆t, τ1, τ2) = E{h⋆(t, τ1)h(t + ∆t, τ2)} .

In many wireless environments the different scatterers can be assumed to be uncorrelated. Therefore, the

channel impulse response associated with a multipath component at delayτ1 is uncorrelated with the impulse

response associated with a different multipath component at delayτ2 6= τ1. This assumption is called the

uncorrelated scaterers(US) assumption. Combining it with the WSS assumptions yields the WSSUS assump-

tion [27] which implies for the autocorrelation function

E{h⋆(t, τ)h(t + ∆t, τ ′)} = Ch(∆t, τ)δ(τ − τ ′) .

HereCh(∆t, τ) captures the autocorrelation of the channel as a function of the multipath delay τ and the

observation time difference∆t. Analogous to the definition of the deterministic scattering function, we define

thescattering functionSh(ν, τ) as the Fourier transform of the autocorrelation of the channel with respect to

the observation time difference∆t,

Sh(ν, τ) =

∫
Ch(∆t, τ)e−j2πν∆td∆t .
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Figure 2.1: MIMO system model.

2.1.2 Multiple Antenna Systems

Multiple input multiple output(MIMO) systems have been introduced in [28]. They provide large gainsin

terms of rate, reliability and flexbility and thus spurred enormous research interest.

An MT × MR MIMO system is shown in Fig. 2.1, where transmitter and receiver are equipped withMT

andMR antennas, respectively. Under ideal conditions, a MIMO system provides at leastMTMR independent

paths between transmitter and receiver, which can be exploited in various ways. The first strategy is focused on

increasing reliability, which is measured viaoutage probability. A wireless communication system is said to be

in outage, if the channel is in a deep fade, and therefore no data can be transmitted. GivenMTMR independent

paths in a MIMO system, the probability that all of them are in a deep fade (or inoutage), is much lower

than in a classical single-input single-output (SISO) system, leading to a much lower outage probability of the

MIMO system. If a transmission scheme is designed to take advantage of theseindependent paths, this so

calleddiversity gainof MTMR can be exploited. Contrary to the first strategy, the second strategy focusses on

increasing the throughput of the system. Here the transmitter sends a different data stream on every antenna,

and ifMR ≥ MT, the receiver can separate these streams with high probability. The gain offered by this stratey

is termedmultiplexing gain. Under ideal conditions (and ifMR ≥ MT) it equalsMT and corresponds to an

MT-fold increase in data rate as compared to a SISO system. Both gains can onlybe provided by independent

paths between transmitter and receiver. In rich scattering environments [29] this assumption is valid, but in

certain scenarios (such as environments with a strong line of sight component or pinhole channels) the paths

are no longer independent, thereby reducing the MIMO gains. Finally, weremark, that it is not possible to

design transmission systems with maximum multiplexing and diversity gain; merely a tradeoff between the two

gains can be achievd [30]. Space-time coded system [31–33] offer such a tradeoff.

System Model. At symbol timen the transmitter sends the vectorx[n] = (x1[n], . . . , xMT [n])T . Its elements

xk[n] are zero-mean, statistically independent, and uniformly drawn from the possibly complex symbol alpha-

betA of cardinality|A|. The mean transmit energy of the transmit vectorx[n] is given byE{‖x[n]‖2} = Ex.

The impulse response of the wireless channel between transmitter and receiver is modeled as a length-Lc

sequence ofMR ×MT channel matricesH[n]. In the complex base band, the receiver observes at symbol time

n the length-MR vectory[n] = (y1[n], . . . , yMR[n])T according to

y[n] =

Lc∑

k=0

H[k]x[n − k] + w[n] , (2.1)
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wherew[n] denotes zero-mean, white complex Gaussian noise,w[n] ∼ CN (0, σ2
wI). If the impulse response

of the wireless channel is very short compared to the symbol duration, wespeak of anarrow-band systemand

the input-output relation (2.1) simplifies to theflat-fadingmodel,

y[n] = H[n]x[n] + w[n] . (2.2)

In case of many scatterers which are randomly distributed, a common model for a non line-of-sight connection

between the transmitter and the receiver is the i.i.d. Rayleigh fading model. In thiscase the elementshi,j [n]

of the matrixH[n] are i.i.d. circularly symmetric complex Gaussian random variables of unit variance,h[n] =

vec{H[n]} ∼ CN (0, I). If the antenna spacing at the transmitter and/or at the receiver becomes smaller

than the wavelength1, the i.i.d. assumption of the channel coefficients is not valid anymore, and thechannel

coefficientshi,j [n] become correlated. A widely used model for this scenario is the Kroneckermodel [34],

whereh[n] ∼ CN (0,Ch) and the correlation matrixCh is given by

Ch = T1/2 ⊗ R1/2 ,

with the transmit and receive correlation matricesT andR, respectively.

2.1.3 Bit-interleaved Coded Modulation

Traditional coding schemes for error correction, such as block or convolutional codes, provide coding gain

at the expense of increased bandwidth or reduced data rate. Trellis coded modulation, introduced in [35],

jointly optimizes both channel coding and modulation. This joint optimization yields significant coding gains

without bandwidth expansion, thereby enabling spectrally efficient transmission. However, the extension of

trellis coded modulation to fading channels proved to be difficult [36].

Bit-interleaved coded modulation [10], however, follows a different approach: By interleaving the coded

bits before symbol mapping, the coded bits become de-facto independent, and channel code and modulation

can be designed and optimized separately. This breaks the coded modulationparadigm of joint design of coding

and modulation, but it provides better performance. This separate designfurthermore allows an easy extension

of BICM to MIMO, as only the modulator and demodulator parts of the system have to be adapted. BICM

also opens up the possibility of iterative processing at the receiver, thereby offering even better performance

[37]. Furthermore, analytical tools for evaluating the performance of BICM and design guidelines for good

performance are known [10,11].

System Model. A block diagram of a MIMO-BICM system is shown in Fig. 2.2. A sequence of N ′ infor-

mation bitsb[n′] (n′ = 1, . . . , N ′) is encoded using an error-correcting code with rateR, passed through a

bitwise interleaverΠ and then scrambled by a pseudo-random sequencep[n′]. The interleaved and scrambled

code bitsc[n′] are uniformly distributed and demultiplexed intoMT antenna streams (“layers”), denoted by

cl[n], l = 1, . . . , MT. In each layer, groups ofm code bits are mapped to (complex) data symbolsxl[n]∈A,

l = 1, . . . , MT. The transmit vector at symbol timen is given byx[n] = (x1[n] . . . xMT [n])T and carries

1This might happen, for example, when small mobile devices are equipped with multiple antennas
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Figure 2.2: Block diagram of a MIMO-BICM system.

R0 = mMT interleaved code bitscl[n]. The bitscl[n] corresponding to the symbol vectorx[n] will also be

denoted byc[n], and by using the symbol mapping functionχ, we can writex[n] = χ(c[n]). Finally, we have

N ′/R coded bits, and therefore a total number ofN , N ′/(mRMT) transmit symbolsx[n].

Receiver. The receiver consists of a demodulator, a de-interleaver, and a channel decoder. The receive vector

y[n] is given by (cf. (2.2))

y[n] = H[n]x[n] + w[n] .

The demodulator calculates (possibly approximate) log-likelihood ratios (LLRs) Λl for the code bitscl[n] ac-

cording to [38]

Λl[n] = log
Pr(cl[n]=1|y[n],H[n])

Pr(cl[n]=0|y[n],H[n])
, (2.3)

wherePr(cl[n]= c|y,H) denotes the posterior probability of the bitcl = c given the received vectory[n] and

the channel matrixH[n]. We can obtain this posterior probability as (we omit the time indexn for notational

convenience)

Pr(cl = u|y,H) =
∑

c:cl=u

Pr(c|y,H) ∝
∑

x∈χu
l

f(y|x,H)f(x) , (2.4)

wheref(y|c,H) is the likelihood function of the channel,χu
l denotes the set of transmit vectors for which

cl = u, andf(x) denotes thea priori probability of the symbolx. In case of equally likely symbols, we further

obtain

Pr(cl = u|y,H) ∝
∑

x∈χu
l

f(y|x,H) . (2.5)

From the MIMO system model (2.2), we obtain for the likelihood function of thechannel

y|x,H ∼ CN (Hx, σ2
wI) ,

and the LLR expression (2.3) becomes

Λl = log

∑
x∈χ1

l

exp
(
− 1

σ2
w
‖y−Hx‖2

)

∑
x∈χ0

l

exp
(
− 1

σ2
w
‖y−Hx‖2

) . (2.6)
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Figure 2.3: Block diagram of an iterative MIMO-BICM receiver.

Using themax-log approximation2 we can simplify (2.6) to

Λl ≈
1

σ2
w

[
min
x∈χ0

l

‖y−Hx‖2 − min
x∈χ1

l

‖y−Hx‖2

]
. (2.7)

In passing, we note that the sign of the LLRΛ holds information about which bit value (0 or 1) of cl is more

likely, while the magnitude|Λ| measures the confidence the demodulator has about this decision. Therefore the

LLRs can attain any value in the range(−∞,∞).

Finally, the LLRs provided by the demodulator are de-scrambled by the sequencep̄l[n] = 1−2pl[n], de-

interleaved and fed into the channel decoder. Based on the code structure, the channel decoder calculates LLRs

for the information and code bits. The LLRs for the information bits are sliced and yield the bit estimateŝb[n′].

Iteratively decoded BICM. Expression (2.4) holds the key to the design of iterative BICM receivers: Infor-

mation from already decoded bits is reused as a priori information in the demodulator. After decoding, the so

calledextrinsicLLRs are obtained by subtracting the (interleaved) LLRs at the input of thechannel decoder

from the decoder LLRsΛdec[n′]. These extrinsic LLRs are interleaved, scrambled and fed back to the demod-

ulator as thea priori LLRs Λa[n′] which are used to approximate the probabilityf(x). Of course, these fed

back LLRs are not “independent” new information, but in case of large block lengths and a random interleaver,

their independence is a good approximation. Starting from (2.4), we have

Pr(cl = u|y,H) ∝
∑

x∈χu
l

f(y|x,H)f(x) ≈
∑

x∈χu
l

f(y|x,H)

mMT∏

k=1

p(ck(x)) , (2.8)

whereck(x) denotes thekth bit label of the symbol vectorx and we assumed that the interleaved code bitsc[n′]

are independent. The probabilityp(ck(x)) of a code bit is approximated from thea priori LLR Λa
k fed back by

the decoder,

p(ck(x)) ≈ exp(ck(x)Λa
k)

1 + exp(Λa
k)

. (2.9)

2That islog(a + b) ≈ log(max(a, b)) for a ≪ b or b ≪ a
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The demodulator calculates LLRs in a similar manner as in (2.3), yielding

ΛID
l = log

∑
x∈χ1

l

f(y|x,H)
∏mMT

k=1 exp(ck(x)Λa
k)

∑
x∈χ0

l

f(y|x,H)
∏mMT

k=1 exp(ck(x)Λa
k)

. (2.10)

We caution the reader that this LLR is not a fraction of two probabilities as arethe LLRs defined in (2.3), be-

cause of the approximation forp(cl(x) = u) in (2.9). In a similar manner as before, the max-log approximation

can be used to obtain the following LLR expression of the demodulator

ΛID
l ≈ min

x∈χ0
l

(
1

σ2
w

‖y−Hx‖2 +
1

2

∑

l′

(2cl′(x) − 1)Λa
l′

)
− min

x∈χ1
l

(
1

σ2
w

‖y−Hx‖2 +
1

2

∑

l′

(2cl′(x) − 1)Λa
l′

)
.

Closer inspection of above expression reveals, thatΛID
l can be expressed as

ΛID
l = Λa

l + min
x∈χ0

l

(
1

σ2
w

‖y−Hx‖2 +
1

2

∑

l′ 6=l

(2cl′(x) − 1)Λa
l′

)

− min
x∈χ1

l

(
1

σ2
w

‖y−Hx‖2 +
1

2

∑

l′ 6=l

(2cl′(x) − 1)Λa
l′

)

, Λa
l + Λdemod

l .

This shows that the demodulator outputs the sum of thea priori LLR Λa
l and theextrinsicLLR Λdemod

l . To

avoid a positive feedback loop, only theextrinsicLLRs Λdemod
l of the demodulator are fed into the deinterleaver,

which are then decoded by the channel decoder [11]. This leads to the structure of the iterative BICM receiver

as shown in Fig. 2.3: Thea priori LLR Λa
l are subtracted from the LLRs calculated by the demodulatorΛID

l

to yield theextrinsicLLRs Λdemod
l . These LLRs are descrambled, deinterleaved, and decoded by the channel

decoder, which outputs posterior LLRsΛdec[n′]. By subtracting the input LLRs of the channel decoder, the

extrinsic LLRs from the channel decoder are obtained. These are interleaved, scrambled and become thea

priori LLRs Λa
l for the demodulator. The channel decoder outputs also bit decisionsb̂[n′] for the information

bits, which are only used in the last iteration as final decisions of the iterativeBICM receiver.

To demonstrate the performance improvement of iteratively decoded MIMO-BICM, we simulated the BER

versus SNR performance of a2×2 MIMO-BICM system, using a 16QAM symbol alphabet with Gray mapping.

The channel code was a convolutional code with octal generator polynom [13 15]8. Fig. 2.4 shows the BER

results for a non-iterative BICM receiver and an iterative receiver performing10 iterations between demapping

and decoding. It can be seen that the iterative receiver outperforms the non-iterative receiver by several dB: the

SNR gap between the two receivers is about5 dB at a BER of10−4 and increases to about7 dB at a BER of

10−5. We also show the MIMO-BICM system capacity [10] as an absolute performance limit. At a BER of

10−4, the iterative receiver operates about2 dB away from this limit, whereas we observe a gap of almost8 dB

for the non-iterative BICM receiver. Employing more powerful codes can further reduce the gap of the iterative

receiver to system capacity. In Chapter 5 we will demonstrate the performance gains of LDPC codes which

have been matched to the demodulator characteristics.
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Figure 2.4: Performance of2 × 2 MIMO-BICM receiver with different receiver architectures.

Capacity Measures. The performance of MIMO-BICM systems is often illustrated by means of BERversus

SNR plots as was done in Fig. 2.4. However, these results can depend strongly on the characteristics of the outer

channel code and on system parameters (number of antennas, symbol alphabet, etc.), thus making comparison

of different demodulators very difficult.

We thus seek acode-independentperformance measure, which is independent of the system parameters

and the actual code used. To this end, [20] proposed to use the mutual information of the equivalent BICM

modulation channel. The equivalent BICM modulation [10] channel has binary inputcl, and continuous output

Λl and is characterized by the pdff(Λl|cl). We caution the reader that this conditional density depends on the

bit positionl, whereas in most cases this information is not available to the channel decoder, i.e. the channel

decoder is ”‘blind”’ to the bit position in the symol label. We therefore randomly pick a bit position according

to a uniform distribution to obtain the input bitc and the output LLRΛ. The mutual information betweenc and

Λ is given by [39]

R , I(c; Λ) = R0 −
1

2

BMT∑

l=1

1∑

b=0

∫
f(Λl|cl = b) log2

2f(Λl)

f(Λl|cl = b)
dΛl ,

wheref(Λl) = 1
2

(
f(Λl|cl = 0) + f(Λl|cl = 1)

)
. In case of a fast fading transission scenario,R is the maxi-

mum achievable rate achievable with the BICM system (cf. [40]). In case of quasi-static fading the maximum

achievable rateR changes with every realization of the channelH. Here, the probability

pout(r) = Pr{R ≤ r} , 0 ≤ r ≤ R0

characterizes the rate versus outage trade-off [40].

EXIT Charts. Exitrinsic information transfer (EXIT) charts [24] are a tool to analyze iterative systems.

While BER simulations only assess the performance of the compound receiver, EXIT chart allow an indepen-

dent analysis of the components (e.g. demoduator, channel decoder) of the iterative system and provide insights
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Figure 2.5: Setup for obtaining EXIT charts for the channel decoder and the demodulator.

into the performance and convergence properties of the receiver. EXIT charts can be obtained quite easily and

with less simulation effort, than BER simulations of the complete system would require. The underlying idea

of the analysis of iterative systems is to measure LLR distributions, track their changes over the course of iter-

ations and thereby deduce performance and convergence propertiesof the system; this process is called density

evolution [41]. However, LLR distributions are not easy to track due to their complicated form and therefore

it is desirable to consider parameters of the LLR distribution instead. These parameters can be obtained from

the LLR distribution quite easily and can be tracked with less effort. Different parameters of LLR distributions

were considered and compared with respect to the ability to predict the iterative system’s performance and

in [24,42] mutual information was chosen as the most robust and reliable measure.

EXIT charts measure the mutual information between bits at the input and the LLRs at the output of the

component of an iterative receiver. The corresponding chart is thenobtained by plotting the mutual information

between the bits and the LLRs at the component’s output versus the mutual information between the bits and

the LLRs at the component’s input. Intuitively, the component (e.g. the channel decoder) increases the mutual

information about the bits by processing the LLRs at its input, and this increase in mutual information is plotted.

To measure the mutual information, the LLR densitiesf(Λ|c) are obtained (usually by means of Monte-Carlo

simulations), and then the mutual informationI(c; Λ) is calculated according to [39]

I(c; Λ) =
1

2

∑

c

∫
f(Λ|c) log2

2f(Λ|c)
f(Λ|c = 0) + f(Λ|c = 1)

dΛ . (2.11)

In the following we will describe how the EXIT charts of the channel decoder and the demapper are obtained

in more detail. The corresponding measurement setups are shown in Fig. 2.5.

EXIT chart of the channel decoder:A random, uniform bit streamb is encoded by a channel encoder and

the coded bitsc are transmitted over an AWGN channel with noise varianceσ2
w. At the output of the AWGN

channel, the LLRsΛi corresponding to the code bits are calculated according to

Λi =
2yi

σ2
w

,

whereyi denotes the observed output value from the channel at discrete timei. The LLRsΛi are fed into the

channel decoder, which calculates LLRs of the information bits. The mutualinformation between the code bits

c and the LLRsΛi at the input of the channel decoder is measured (cf. (2.11) withf(Λ|c) = f(Λi|c)) and will
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Figure 2.6: EXIT charts of the demodulator and the channel decoder of a2 × 2 MIMO-BICM system with

16QAM Gray mapped alphabet.

be denoted asI(c; Λi). Similarly, the mutual information between the information bitsb and the LLRsΛdec at

the output of the channel decoder is measured (cf. (2.11) withf(Λ|c) = f(Λdec|c)) and denoted byI(b; Λdec).

By using different values for the noise varianceσ2
w of the AWGN channel, different values for the mutual

informationI(c; Λi) are obtained, and the mutual informationΛdecwill also change. The EXIT chart of the de-

coder is then the plot ofI(b; Λdec) versusI(c; Λi). Intuitively, the EXIT chart describes how much information

about the information bits is contained inΛdec for different values of information about the code bitsc at the

input of the channel decoder. The actual form of the EXIT chart depends on the code used and its rate.

EXIT chart of the demodulator:A random, uniform bit streamc is mapped to symbols and transmitted via

the communication channel with noise varianceσ2
w, which outputs observed valuesy. The same bit streamc is

also transmitted over a so-calleda priori channel (this is either an erasure channel with crossover probabilityǫ

or an AWGN channel with noise varianceσ2
a). At the output of thea priori channel, the LLRsΛa are calculated.

From the observation of the channel outputy and the a priori LLRsΛa, the demodulator calculates extrinsic

LLRs Λdemod according to (2.10). The mutual information between the bitsc and thea priori LLRs Λa is

measured (cf. (2.11) withf(Λ|c) = f(Λa|c)) and denoted byI(c; Λa). Analogously, the mutual information

between the bitsc and the extrinsic LLRsΛdemod is measured (cf. (2.11) withf(Λ|c) = f(Λdemod|c)) and

denoted byI(c; Λdemod). By varying the parameter of thea priori channel (crossover probabiityǫ or noise

varianceσ2
a), different values for the mutual informationI(c; Λa) are obtained, resulting in different values

for the mutual informationI(c; Λdemod). The EXIT chart of the demodulator is the plot ofI(c; Λdemod) versus

I(c; Λa). Intuitively, it describes how much information about the bits is contained inI(c; Λdemod) for different

values of information about the code bits at the input of the demodulator. Theform of the EXIT chart depends

on the noise varianceσ2
w of the communication channel, the symbol mapping and demodulator.

Fig. 2.6 shows EXIT charts corresponding to the BICM-ID system considered before. The EXIT charts of

the demodulator are shown for two different SNR values, SNR=4 dB and SNR=10 dB. The almost linear form

with a small slope is typical for a Gray symbol mapping. The EXIT chart of thechannel decoder is plotted
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Figure 2.7: Block diagram of an OFDM system with a cyclic prefix of lengthNcp=3.

with exchanged axes; it showsI(c; Λi) versusI(c; Λdec). The EXIT chart exhibits a thresholding behaviour:

Below an input mutual information ofI(c; Λi) = 0.4, the output mutual informationI(c; Λdec) has only low

values, forI(c; Λi) > 0.6 the output mutual information comes close to one. For more powerful codes (like

LDPC codes), this threshold behaviour becomes even stronger. The iterative decoding process at an SNR of

10 dB is indicated by the green line, called a decoding trajectory. Initially, the demodulator calculates LLRs

without anya priori information, therefore the decoding trajectory starts at the point labeled “(1)”. The output

LLRs of the demodulator are fed into the channel decoder (therefore theaxis of the channel decoder EXIT

chart is exchanged in Fig. 2.6), which yields an output mutual information ofI(c; Λdec) ≈ 0.7, corresponding

to the point labelled “(2)”. The output LLRs of the channel decoder arefed into the demodulator, which yields

an output mutual information as inidicated by “(3)” in the EXIT chart. After several iterations, the decoding

trajectory ends in point “(4)”, which is the intersection of the two EXIT charts. Here,I(c; Λdec) ≈ 0.95. This

indicates a very good performance in terms of BER [43]. Comparing the EXIT chart of the demodulator at an

SNR of 10 dB with the demodulator at an SNR of 6 dB, we see that in the latter case the decoding trajectory

ends in “5”, exhibiting a much lower value ofI(c; Λdec), thereby indicating a much worse BER performance.

Comparing these results with the actual BER in Fig. 2.4, we see that the EXIT chart analysis predicts the BER

performance quite well: At SNR=6dB, the BER of the BICM-ID system is about 1/2, whereas at SNR=10 dB,

the BER is5 · 10−3.

2.1.4 Orthogonal Frequency Division Multiplexing

Historically, OFDM was introduced in the1970′s [44], but gained popularity in the last decade, because only

current technologies make satisfactory implementation feasible. OFDM is a multi-carrier technique with spe-

cific orthogonality constraints between the subcarriers. It is robust to fading, and equalization of wireless chan-

nels is very simple. By appropriately choosing the subcarrier frequencyspacing OFDM can be flexibly used in

different mobile environments. This led to the adaptation of OFDM in many standards, such as WLAN (IEEE

standards 802.11a and 802.11n), digital video broadcasing (DVB), and digital audio broadcasting (DAB).

A simplified model of an OFDM system is shown in Fig. 2.7. A block of data symbolsx[l], l = 1, . . . , K, is

converted to a parallel vector. Being in the frequency domain, the indexl is called subcarrier index. An inverse

discrete Fourer transformation (IDFT) is applied to the vector, which can be efficiently implemented by means

of an IFFT of lengthK. Next thecyclic prefixis added: The lastNcp elements of the vector are appended at its
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beginning. Therefore, the resulting vector has lengthK +Ncp, which is converted into a serial data streamx̃[n]

and transmitted over the wireless channel which has a channel impulse responseh̃[n] , n = h̃[0], . . . , h̃[Lc] of

length-Lc.

The transmission introduces inter-symbol interference (ISI), and at thereceiver, the signal̃y[n] is observed,

ỹ[n] =

Lc∑

n′=0

h̃[n′]x̃[n − n′] + w̃[n] .

Herew̃[n] denotes white Gaussian noise. The cyclic prefix (that is, the firstNcp samples) is discarded, and a

discrete Fourier transform (implemented efficiently by means of a length-K FFT) followed by a parallel-serial

conversion yields the sequencey[l], k = 1, . . . , K.

If the length of the cyclic prefix is larger than the channel impulse responselength (that isNcp > Lc), the

cyclic prefix converts the (linear) convolution of the channel impulse response into a cyclic convolution [45].

After the demodulation at the receiver, this cyclic convolution corresponds to the multiplicative OFDM input-

output relation

y[l] = h[l]x[l] + w[l] . (2.12)

Hereh[l] andw[l] denote the length-K DFT of the channel impulse responseh̃[n] and the noise sequencẽw[n],

respectively. From (2.12) follows that OFDM converts the frequency-selective wireless channel into a simple

flat fading model.

The principle of OFDM transmission can be easily extended to a MIMO system as well, thereby making

OFDM a very attractive choice for transmission. Such a MIMO-OFDM system is shown in Fig. 2.8. The

symbolsxi[l], i = 1, . . . , MT, l = 1, . . . , K are transmitted over theith antenna using OFDM modulation, i.e.

the lth symbolxi[l] modulates a corresponding subcarrier. At symbol timen, the MIMO-OFDM transmitter

sends the time-domain symbolx̃[n] =
(
x̃1[n] · · · x̃MT [n]

)T
over the wireless channel, modeled as length-Lc

sequence ofMR × MT matricesH̃[n′], n′ = 1, . . . , Lc.

After transmission over the frequency-selective wireless channel, the receiver observes the sequence

ỹ[n] =

Lc∑

n′=0

H̃[n′]x̃[n − n′] + w̃[n] ,

where w̃[n] denotes white Gaussian noise. On every receive antenna an OFDM demodulator processes

the received sequence, and combining the symbols from all antennas at subcarrierl into a vectory[l] =
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(
y1[l] · · · yMR[l]

)T
, the MIMO-OFDM input-output relation becomes

y[l] = H[l]x[l] + w[l] .

Analogously to the SISO case,H[l] andw[l] denote the length-K DFT of the channel impulse responseH̃[n]

and the noise sequencẽw[n], respectively.

2.1.5 Multiuser Systems

A multiuser system consists ofU user terminals communicating with a common base station. Fig. 2.9 shows

such a system. Every user terminal and the base station can be equipped withmultiple antennas, in this case we

speak of a multiuser MIMO system. Depending on the transmission direction, wespeak of adownlinkscenario,

when we consider the transmission of data from the base station to the user terminals, and of anuplinkscenario,

when we consider the detection of the users data streams at the base station.In this thesis we will focus on

uplink scenarios, in particular on the design of receiver algorithms for thiscase.

User Detection Strategies. The most intuitive way of dealing with multiuser uplink scenarios would be

to separate the users as much as possible. By assigning users disjoint time slots (time division multiple ac-

cess, TDMA), disjoint frequency band (frequency division multiple access, FDMA) or special spreading se-

quences (code-division multiple access, CDMA), interference betweenthe users can be minimized or even

totally avoided. This reduces the problem of multiuser detection to single-userdetection. for which numerous

schemes and algorithms exist. However, theorthogonaluser separation strategies are suboptimal in terms of

throughput, which will be shown by information theoretic arguments in the nextparagraphs. In this thesis, we

will therefore consider non-orthogonal schemes, with interference between users.

System Model. For simplicity we assume that every user terminal is equipped with the same number of

transmit antennas,MT. Theuth terminal transmits the symbol vectorxu and the MIMO channel from this

terminal to the base station is denoted byHu. At the receiver the symboly is observed,

y =
U∑

u=1

Huxu + w , (2.13)
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whereU denotes the total number of users andw denotes zero-mean, white complex Gaussian noise,w ∼
CN (0, σ2

wI).

Information-Theoretic Performance Limits. The multiple-access (MAC) channel (2.13) is a well studied

model in information theory and can be characterized by therate region[39]. For the special case ofU = 2

users, the rate region becomes

R1 < I(x1;y|x2) ,

R2 < I(x2;y|x1) ,

R1 + R2 < I(x1,x2;y) , (2.14)

and is depicted in Fig. 2.10 (Ri denotes the rates achievable by useri). The corner points of the rate region

can be interpreted as follows: In point (1) only terminal 2 transmits and terminal 1 is idle (we haveR1 = 0),

which is basically a single-user scenario. The maximum achievable rate of terminal 2 is given byI(x2;y|x1).

Point (2) corresponds to the maximum rate at which terminal 1 can send as long as terminal 2 sends at its

corresponding maximum rateI(x2;y|x1). For the channel from terminal 1 to the base station, the signalx2 is

treated as noise. Using the results for single-user channels, terminal 1 can send at a rate ofI(x1;y), therefore

the receiver can recover the signalx1 and performinterference cancellationto detectx2 from the received

signaly. The rateR2 achievable in this case is then the rateI(x2;y|x1 = x), averaged over all symbolsx1,

namely ∑

x

I(x2;y|x1 = x) p(x1 = x) = I(x2;y|x1) .

The same arguments hold for the points (3) and (4), only with the role of terminal 1 and terminal 2 exchanged.

The rate-pairs on the connection between points (1) and (2), (2) and (3), and (3) and (4) can be reached by time

sharing. The red dotted line in Fig. 2.10 shows the achievable rate of orthogonal transmission schemes like

TDMA and FDMA. Rate points (1) and (4) are trivially achievable, and by means of time sharing all rate-pairs

on the red dotted line.
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We next show simulation results for a SISO system withU = 2 users using BPSK modulation over an

AWGN channel. The system model (2.13) simplifies to

y = x1 + x2 + w ,

with the noise distributed according tow ∼ N (0, σ2
w), andxu ∈ {−1, +1}. Fig. 2.11 shows the capacity

regions for an SNR between−12 dB and6 dB (the SNR is increased in6 dB steps). It can be seen that for

σ2
w → 0, the single-user rates (that isI(xu;y|x3−u), u = 1, 2) converge to1 bpcu, and the sum rate rate

I(x1,x2;y) converges to3/2 bpcu. In case of very small SNR, the ratesI(xu;y) converge toI(xu;y|x3−u)

(u = 1, 2) and the points (2) and (3) in the rate region of Fig. 2.10 become one point.

As before the dotted red line shows the maximum achievable rate at an SNR of0 dB of an orthogonal trans-

mission schemes like TDMA and FDMA and the red circle represents the operation point where both terminals

are assigned the same rate. In contrast, the black circle represents the operation point of an (non-orthogonal)

information-theoretic optimal scheme at the same SNR, with the same rate assignedto both terminals. It can be

seen, that there is a gap of about0.15 bpcu in achievable rate per user. Stated in terms of SNR, an orthogonal

scheme would require about4 dB more SNR to achieve the same rate as an information-theoretic optimal trans-

mission scheme. This demonstrates the poor performance of orthogonal transmission schemes quite clearly.

Because the rate constraintR1 + R2 < I(x1,x2;y) becomes inactive in the limit of low SNR (that is, the rate

regions become rectangles), the relative performance loss of orthogonal transmission schemes increases with

lower SNR.

2.2 Graphical Models

Graphical models provide a unifying framework for capturing dependencies among random variables, and

building statistical models. In many applied fields, including signal processingfor communications, image

and speech processing, statistical models have been formulated by means of graphs, which provide a simple,
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yet intuitive representation of the underlying constraints. Algorithms for computing statistical quantities such

as likelihoods and marginals have often been formulated as recursions operating on these graphs. Using the

concept ofmessage passing, these recursions can be obtained by a simple “turn-the-crank procedure” [4, 5].

In this way, specific algorithms, for example the Kalman filter, the BCJR algorithm,and iterative decoding of

low-density parity-check (LDPC) codes can be derived, understood, and unified with the concept of graphical

models.

2.3 Factor Graphs and the Sum-Product Algorithm

Factor graphs [4, 5] are one particular family of graphical models and have found widespread use in signal

processing and communications. Factor graphs represent functions ofseveral variables which can be split into

several factors. For example, consider the function

f(x1, x2, x3, x4, x5) = f(x) = f1(x1, x2)f2(x2, x3, x4)f3(x2, x5) , (2.15)

with x = (x1 · · ·x5)
T . The factorsfi(·), i = 1, . . . , 3 are termed local functions, whereas their product is

refered to as global function.

In Fig. 2.12 the factor graph corresponding to (2.15) is shown, which consists ofvariable nodes(depicted

as circles) for the variablesx1, . . . , x5, and function nodes(depicted as rectangles) for the local functions

f1(·), f2(·), f3(·). If a local function depends on a variable node, the two correspondinggraph vertices are

connected with each other by an edge. For example, the functionf1(·) depends on the variablesx1 andx2,

and therefore these two variable nodes are connected with the function nodef1(·). A particular assignment of

values to the variables nodes is termed aconfigurationof a factor graph. Theconfiguration spaceis the set of

all possible configurations, and therefore the domain of the global function f(·). If we assume that all variables

of our example factor graph are binary, the configuration space is{0, 1}5.

As stated before, a main area of application of factor graphs are statisticalmodels. In this case the variables
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represent the random variables of the model, and the global function represents the probability density function,

which can be factorized according to the statistical model.

Cut-Set Independence Theorem. This theorem [5] connects properties of the graph to the probability density

function the graph represents.

Assume that some edges corresponding to variable nodesY1, . . . , Yn form a cut-set of the graph (that is,

removing these edges cuts the graph into two unconnected components with variables from the setsX1 andX2,

respectively). It can be shown [4] that conditioned onY1, . . . , Yn, variables from the setsX1 andX2 become

indepedent, i.e.

f(X1,X2|Y1, . . . , Yn) = f(X1|Y1, . . . , Yn)f(X2|Y1, . . . , Yn) .

In our example of Fig. 2.12, the edges connectingx2 with f1(·) andf2(·) form a cut-set of the graph.

Therefore, givenx2, the random variablesx1 andx3 are independent, as are the random variablex1 and the set

{x3, x4, x5}.

Marginalization. Statistical models are used for estimation and/or detection of some underlying parameters

or random variables given observations. The process of estimation anddetection often involves the calculation

of marginals of the joint pdff(x), that is the functions

gk(xk) =
∑

∼xk

f(x), k = 1, . . . ,X . (2.16)

In the whole thesis, the notation
∑
∼xk

denotes summation over all variables ofx exceptxk, andX denotes the

length of the vectorx.

In our example we will consider calculation of the marginal functiong5(x5), defined as

g5(x5) =
∑

∼x5

f(x) . (2.17)

Naively, this function can be evaluated by calculating the values off(x) for all 25 =32 configurations, and then

summing up these terms to obtaing5(x5). A different strategy, which requires much less computations, is the

application of the distributive law to (2.17), which yields

g5(x5) =
∑

x2

f3(x2, x5)
∑

x1

f1(x1, x2)
∑

x3,x4

f2(x2, x3, x4) . (2.18)

Using the factorization in the calculation of marginal functions yields a considerable complexity reduction: The

first and second sum consist of two terms, while the third term consists of three terms. This is a much smaller

number than directly calculating all32 terms in (2.17).

Comparison of the factor graph in Fig. 2.12 and the expression in (2.18) reveals that calculating the sums in

(2.18) is equivalent to “closing boxes” in the factor graph: The small dashed boxes correspond to the sums in

brackets, and the “closing of the boxes” can be interpreted as summation over all variables inside the box. For

example, the box enclosing the variable nodex1 and the local functionf1(x1, x2) corresponds to the second

sum in (2.18),
∑

x1
f1(x1, x2). The resulting expression of the “box-closing” operation is function depending

solely on variablex2 (the variable the box is connected with). It is denoted byµ1(x2) and is termed amessage.
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In a similar manner, the expression
∑

x3,x4
f2(x2, x3, x4) is identified with the small dashed box in the

right upper part of Fig. 2.12, and the output of the box is given by the messageµ2(x2). Replacing the sums

with messages in (2.18), we can rewrite the marginal functiong5(x5) according to

g5(x5) =
∑

x2

f3(x2, x5)µ1(x2)µ2(x2) . (2.19)

The product of the two messagesµ1(x2) andµ2(x2) can be interpreted as a new message,

µ3(x2) = µ1(x2)µ2(x2) . (2.20)

This message is emitted by the variable nodex2, and we obtain

g5(x5) =
∑

x2

f3(x2, x5)µ3(x2) . (2.21)

Similarly, we can interpretg5(x5) as a message obtained by the “box-closing” operation of the large dotted box

in Fig. 2.12, and we haveµ5(x5) = g5(x5).

The example demonstrates the important concept ofmessage updates: Starting from the leave nodes of the

factor graph, messages are passed along the edges of the factor graph. At function nodes, the local function

associated with the function node and the incoming messages are involved in themessage update process

(cf. (2.21)). The updated messages are propagated to other nodes ofthe factor graph. At variable nodes, the

outgoing messages depend on the incoming ones (cf. (2.20)). This concept of message updates makes the

application of factor graphs popular: After formulation of the statistical model (and obtaining a graphical and

intuitive representation of the model), the process of calculating the marginalfunctions becomes the task of

updating and propagating messages.

When dealing with statistical models, often all marginal functions are of interest. Instead of running an

instance of the sum-product algorithm for every marginal function, messages can be reused and thereby save

computations. As an example, consider the calculation of another marginal function,

g2(x2) =
∑

∼x2

f(x) .

Using a factorization similar to (2.18), we obtain

g2(x2) =
∑

x1

f1(x1, x2)
∑

x3,x4

f2(x2, x3, x4)
∑

x5

f3(x2, x5) .

Note that here some of the summation variables are different as in (2.18). Using the previously calculated

messages, we have

g2(x2) = µ1(x2)µ2(x2)µ4(x2) ,

where we introduced the new messageµ4(x2) =
∑

x5
f3(x2, x5).
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Figure 2.13: Message updates of the sum-product algorithm.

Message Updates. The message updates of the above example can be generalized to generalgraphical models

and lead to two basic generic message update rules for (i) messages which leave a function node (and are

directed towards a variable node), and (ii), messages which leave a variable node (and are directed towards a

function node). It is important to note, that these updates yield exact results only forcycle-freefactor graphs.

The first case is depicted in the left part Fig. 2.13: Messagesµk(xk), , k = 1, . . . , N arrive at the function

nodef(x1, . . . , xN ), and the outgoing messageµout(xk) leaves the function nodef(x). It is given by

µout(xk) =
∑

∼xk

f(x1, . . . , xN )
∏

n6=k

µn(xn) . (2.22)

The local functionf(·) is multiplied with all incoming messagesµn(xn) exceptµk(xk), and the resulting

product is summed over all variables, exceptxk. Obviously, the messageµout(xk) is a function only of the

variablexk and does not depend on the messageµk(xk). In the foregoing example, calculation of the message

µ5(x5) in (2.21) was obtained this way. The second case deals with the arrival ofmessages from different factor

nodes at a variable node and is depicted in the right part of Fig. 2.13. Theincoming messages are denoted by

µl(xk), , l = 1, . . . , N ; because they are all connected with the variable nodexk they can only depend on this

variable. The messageµout(xk) leaving the variable nodexk is given by

µout(xk) =
∏

n6=k

µn(xk) . (2.23)

In this case the outgoing message is the product of all incoming messages, except the messageµk(xk); i.e. it is

independent of the messageµk(xk). In the foregoing example, the messageµ3(x3) in (2.20) was obtained in

this manner.

Sum-Product Algorithm. The calculation of all marginal functions (in our example ofg1(x1), . . . , g7(x7)

can be performed concurrently, and the resulting algorithm is termedsum-product algorithm. Assuming that the

factor graph is a tree, the algorithm starts at the leaves of the factor graphs. Leaves, which are variable nodes,

send an initial message of value ’1’ to their respective neighbours, whereas leaves, which are function nodes,

send the corresponding function value as initial value to their respective neighbours. When a neighbouring

function node has received all required messages to calculate an outgoing message according to the update rule
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Figure 2.14: Factor graph example with cycles.

(2.22), it derives the updated message and propagates it along the corresponding edge of the factor graph. In

an analgous manner, neighbouring variable nodes derive outgoing updated messages according to (2.23) and

propagate these along the corresponding edges of the graph. In caseof a cycle-free factor graph, this process is

finished after a finite number of message updates. The marginal functionsgk(xk) at the corresponding variable

nodesxk can then be obtained as the product of all incoming messages. In case of Fig. 2.13, we would have

gk(xk) =
∏

n

µn(xk) .

Factor Graphs with Cycles. Depending on the graphical model, the factor graph can have cycles. Yet, we

can still apply the message updates (2.22) and (2.23) of the sum-product algorithm. Consider an example

obtained by slightly modifying (2.15),

f(x) = f1(x1, x2)f2(x2, x3, x4)f3(x2, x5)f4(x1, x3) , (2.24)

the corresponding factor graph is shown in Fig. 2.14. Compared to (2.15), an additional functionf4(·) has been

added; also note that by the cut-set independence theorem,x1 andx3 are no longer independent givenx2.

Let us consider application of the sum-product algorithm to this modified model:Assume (somewhat ar-

bitrarily) that the variable nodex1 emits the initial message ’1’, and the function nodef1(·) calculates the

messageµ1(x2). Together with the messageµ4(x2), a new message is formed, which is received by the func-

tion nodef2(·). The message is updated and the new messageµ7(x3) is sent to variable nodex3. This message

is again updated at the function nodef4(·), yielding the messageµ8(x1). This message would be updated at

the function nodef1(·), giving an updated messageµ1(x2). It can be seen that the sum-product algorithm

does not terminate in finite time anymore, and that messages are sent in cirlces.Depending on the messages

used, it is possible that some kind of positive feedback lets the messages grow without bound. Even in case

of convergence of the messages, the final values do not represent the true marginalsgk(xk) anymore. Further-

more, initialization of the sum-product algorithm can influence the convergence properties of the sum-product

algorithm.
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Figure 2.15: Factor graph example with cycles removed.

In practical systems, the cycles in the factor graph can be much longer, and in many cases the sum-product

algorithm has been observed to give good results. For example, the factor graphs of LDPC codes and turbo

codes have many cycles, giving rise to iterative algorithms for decoding. Although no theoretical results exist on

the validity of the application of the sum-product algorithm to these factor graphs, the numerical performance

of the algorithm in terms of bit error rates (BER) has been astonishing.

As a way to avoid cycles, we consider a different representation of (2.24),

f(x) = f̃(x1, x2, x3, x4)f3(x2, x5) ,

with f̃(x1, x2, x3, x4) = f1(x1, x2)f2(x2, x3, x4)f4(x1, x3). The corresponding factor graph is shown in Fig.

2.15. It is seen to be cycle-free and thereby all marginals can be calculated exactely by means of the sum-

product algorithm. The drawback of this method is the increased computational complexity: The global func-

tionf(x) is factorized into fewer local functionsfi(·), each of which depends on more variablesxi and therefore

the sums for calculating messages consist of more terms. For example, the messageµ3(x2) is given by

µ3(x2) =
∑

x1,x3,x4

f̃(x1, x2, x3, x4)

and consists of8 terms. Furthermore, an alternative factorization is often difficult to find forfactor graphs in

practical systems, therefore this method is not widely used in signal processing and communication applica-

tions.

Extension to other Semirings. The key step to an efficient calculation of marginals (2.16) is the application

of the distributive law. The sum-product algorithm can be extended, if we consider semiringsD, on which two

operations+ and· are defined and furthermore, the distributive law holds,

x · (y + z) = x · y + x · z , ∀x, y, z ∈ D .

If the domain of the global function (and therefore also the domains of the local functions) isD, then we can re-

peat all the steps in deriving the message update rules for the sum-product algorithm and obtain a sum-product
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algorithm suitable for the semiringD [4]. An important example for such a semiring is the “max-product”

semiring, where real addition is replaced by the “max” operation. For nonnegative real-valued quantities

x, y, z > 0, we have

xmax(y, z) = max(xy, xz) .

By using this “distributive” law, all steps of this Subsection can be adapted and the resulting “max-product”

algorithm could be used to efficiently find solutions for

g(xk) = arg max
∼x

f(x) .

2.4 Codes on Graphs

We will next describe how decoding algorithms for convolutional codes and LDPC codes can be (re)derived

by means of factor graphs and the application of the sum-product algorithm.The structure of the code can be

visualized by factor graphs and it can be exploited to obtain efficient decoding algorithms.

2.4.1 Convolutional Codes

Basics. A simple block diagram of a convolutional encoder with rateR = 1/2 and memory lengthLM is

shown in Fig. 2.16. It consists of a shift-register withLM stages, several modulo-2 adders and a multiplexer.

The shift-register provides delayed versionsbk, . . . , bk−LM
of the information bits, some of which are modulo-

2 added, yielding (in this example) two output sequencesc1
k andc2

k. The multiplexer serializes the sequences

c1
k andc2

k, yielding the bit sequenceck. A length-N sequence of information bits is encoded, thus yielding

a lengthN/R sequence of coded bitsck. The past values of the information bits stored in the shift-register

represent the stateSk ∈ [0, 2LM − 1 of the convolutional encoder at timek, which is defined as

Sk =

LM∑

n=1

bk−n2n−1 .

Note that the number of states grows exponentially with the memory length,|Sk| = 2LM . At time k the

information bitbk induces a state transition from stateSk to stateSk+1 and the generation of1/R code bits,

c1
k, · · · , c

1/R
k . We collect these code bits in a vectorck = (c1

k, · · · , c
1/R
k ).

A standard form [46] to denote a convolutional code is by1/R code polynomials, which describe which

delayed information bits are modulo-2 added. Alternatively, the code can bedescribed by two functions, a state

transition functionSk = T (Sk−1, bk) and an output functionck = O(Sk, bk). The state transition function

gives the next state of the encoder, when it is currently in stateSk with the information bitbk at the input, while

the output function gives the output sequenceck the encoder emits in stateSk with information bitbk at the

input.

Decoding. The sequence of coded bitsck is sent over a channel and the valuesyi
k = (y1

k . . . y
1/R
k ) are

observed. We assume the channel to be i.i.d. and described by the conditional pdf f(yi
k|ci

k). Decoding of the



Chapter 2. Preliminaries 30

bk bk−1 bk−2 bk−LM

c1
k

c2
k

ckTTT

Figure 2.16: Convolutional encoder for rate-1/2 code; plus signs represent modulo-2 additions.

convolutional code can be based on the bitwise MAP criterion, that is bit-wisedetection of the information bits

b̂k based on the received sequenceyk, k = 1, . . . , N , according to

b̂k = arg max
bk

p(bk|y1, · · ·,yN ) , (2.25)

wherep(bk|y1, · · ·,yN ) denotes the posterior pmf of the information bitbk given the observationsy1, · · ·,yN .

We can express this posterior density as a marginal [4]

P (bk = b|y1, · · · ,yN ) =
∑

∼bk

p(b1, . . . , bN , c1, . . . , cN , S0, . . . , SN |y1, . . . ,yN ) . (2.26)

This marginalization can be efficiently calculated by applying the sum-productalgorithm to the factor graph of

the convolutional code and results in the well-known BCJR algorithm [8].

Factor Graph. We will consider the factor graph corresponding to the density that needsto be marginal-

ized according to (2.26). Using the Markov property of the convolutionalcode, we can rewrite

p(b1, . . . , bN , c1, . . . , cN , S0, . . . , SN |y1, . . . ,yN ) according to

p(b1, . . . , bN , c1, . . . , cN , S0, . . . , SN |y1, . . . ,yN ) = p(S0)
N∏

k=1

p(Sk, ck|Sk−1, bk)p(ck|yk) , (2.27)

wherep(S0) is the prior density of the decoder stateS0. The conditional densityp(Sk, ck|Sk−1, bk) can be

obtained from the state transition functionSk = T (Sk−1, bk) and the output functionO(Sk, bk) according to

p(Sk, ck|Sk−1, bk) =





1 if Sk = T (Sk−1, bk) andck = O(Sk, bk)

0 otherwise.

The densityp(ck|yk) of the channel can be obtained by application of Bayes theorem and usingthe indepen-

dence of the channel,

p(ck|yk) ∝ p(yk|ck) =

1/R∏

n=1

p(yn
k |cn

k) .

The factor graph corresponding to the factorization (2.27) is shown in Fig. 2.17. The state variablesSk, the in-

formation bitsbk and the code bitsck correspond to variable nodes, whereas the conditional densitiesf(ck|yk)
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Figure 2.17: Factor graph of a convolutional code corresponding to the factorization in (2.27).

andp(Sk, ck|Sk−1, bk) correspond to function nodes. The Markov structure of the density in (2.27) can be seen

intuitively. Also note that the factor graph has no cycles, i.e. the sum-product algorithm will calculate exactly

the marginals ofp(b1, . . . , bN , c1, . . . , cN , S0, . . . , SN |y1, . . . ,yN ).

Sum-Product Algorithm. We define two message types: the messagesαk(Sk) are passed from the left to

the right, while the messagesβk(Sk) are passed from the right to the left of the factor graph. Initialization of

the sum-product algorithm starts at the leaves, in our case these are the variable nodesS0 andSN . The variable

nodeS0 sends out an initial messageα0(S0), furthermore we assume that the convolutional encoding starts

in stateS0 = 0, and therefore the inital message becomesα0(S0) = δ[S0]. The variable nodeSN sends out

an initial messageβN (SN ). By means of zero-padding the information bit-sequence one can ensure, that the

convolutional encoder stops in stateSN = 0; we therefore haveβN (SN ) = δ[SN ].

We now consider an arbitrary function nodep(Sk, ck|Sk−1, bk), 1 ≤ k ≤ N − 1 and derive the message

updates at this node. The messageαk−1(Sk−1) is entering the node from the left. The variable nodeyk emits

the initial message ’1’, which causes the function nodef(ck|yk) to send out the messagef(ck|yk). Since this is

the only message entering the variable nodeck, it is simply forwarded to the function nodep(Sk, ck|Sk−1, bk).

Using the update rules (2.22) of the sum-product algorithm, we therefore obtain for the outgoing message

αk(Sk)

αk(Sk) ∝
∑

bk,Sk−1,ck

p(Sk, ck|Sk−1, bk)p(ck|yk)αk−1(Sk−1), k = 1, . . . , N . (2.28)

Using the interpretation of the “closing boxes” of [5] (here, the left box inFig. 2.17 is closed), we can interpret

the messageαk(Sk) asαk(Sk) = p(Sk|y1, . . . ,yk).

To show the validity of this interpretation, we derive the probabilityp(Sk|y1, . . . ,yk) from the system

model (2.27). We have

p(Sk|y1, . . . ,yk) =
∑

{b}k1 ,{S}k−1
1 ,{c}k1

p(b1, . . . , bk, c1, . . . , ck, S0, . . . , Sk|y1, . . . ,yk) , (2.29)

where the summation includesb1, . . . , bk, S0, . . . , Sk, andc1, . . . , ck. Inserting (2.27), we obtain

p(Sk|y1, . . . ,yk) =
∑

{b}k1 ,{S}k−1
1 ,{c}k1

p(S0)
N∏

l=1

p(Sl, cl|Sl−1, bl) ,
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and by the distributive law we have

p(Sk|y1, . . . ,yk) =
∑

bk,Sk−1,ck

p(Sk, ck|Sk−1, bk)p(ck|yk)
∑

{b}k−1
1 ,{S}k−2

1 ,{c}k−1
1

l−1∏

l=1

p(Sl, cl|Sl−1, bl) .

We recognize the second sum asαk−1(Sk−1), and finally obtain

p(Sk|y1, . . . ,yk) =
∑

bk,Sk−1,ck

p(Sk, ck|Sk−1, bk)p(ck|yk)αk−1(Sk−1) ,

which is exactly the expression in (2.28), which we obtained by using the sum-product algorithm. In a similar

manner, the messageβk−1(Sk−1) can be obtained as

βk−1(Sk−1) =
∑

bk,Sk,ck

p(Sk, ck|Sk−1, bk)p(ck|yk)βk(Sk), k = 1, . . . , N .

This update can be interpreted as closing the right box in Fig. 2.17, and from the “closing boxes” interpretation

again follows thatβk−1(Sk−1) = p(Sk−1|yk, . . . ,yN ).

As mentioned before, the sum-product algorithm starts at the variable nodes S1 andSN , and propagates

the messagesα andβ concurrently from left to right and from right to left, respectively. After N such steps,

all messagesα andβ have been obtained. To obtain the actual posterior density (2.26) required for the MAP

decision in (2.25), we finally calculate messagesγk according to

γk(bk) =
∑

Sk−1,Sk,ck

p(Sk, ck|Sk−1, bk)p(ck|yk)αk−1(Sk−1)βk(Sk) .

This update can be interpretated as “box closing” around all parts of the factor graph except the variable node

bk. Therefore we haveγk(bk) = p(bk = b|y1, · · · ,yN ), and the MAP decision rule (2.25) then becomes

b̂k = arg max
bk

γk(bk) . (2.30)

2.4.2 LDPC Codes

Low-density parity-check codes are linear binary block codes originallyproposed by [47] and then rediscovered

in [48]. LDPC codes offer extremely good performance; e.g. [49] presents LDPC code designs with a threshold

less than0.2 dB away from the Shannon limit, when a suitably large block length (> 100000 bits) is used.

LDPC codes can be described by means of factor graphs and the decoding (and the encoding) is performed in

an iterative manner by means of the sum-product algorithm.

In the following, the length-K information bit vector will be denoted byu = (u1, . . . , uK)T and it is

mappedlinearly to a length-N code bit-vectorc = (c1, . . . , cN )T . The code is described by the parity check

matrixP, and a bit vectorc is a valid codeword if3 Pc = 0. Every row of the parity check matrixP describes

a so called parity check equation, which any valid codewordc has to fullfill. The structure of the code can be

intuitively described by means of a factor graph or a Tanner graph [3].The factor graphs consists of variable

3Dealing with binary values, modulo-2 addition is used.
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nodes and check nodes. The variable nodes represent the coded bits, and the function nodes represent the parity

check equations as described by the rows of the parity check matrixP [50].

Fig. 2.18 shows a simple example of a factor graph with the parity check matrixP given by

P =




1 1 1 0 1 0 0

0 1 1 1 0 0 1

0 0 1 1 1 0 1


 .

For example, the first row ofP corresponds to the first parity check given byc1 ⊕ c2 ⊕ c3 ⊕ c5 = 0, where

⊕ denotes modulo-2 addition. In the factor graph graph every “1” represents an edge between a code bit and

a check equation; the first row ofP therefore represents the four connections between the first check equation

andc1, c2, c3, andc5, respectively.

The term “low-density” in the name of the codes refers to the fact that the number of ones inP is small and

grows only linearly with the block lengthN of the code.

Characterisation of LDPC Codes. LDPC codes can be characterized by the degrees of their variable and

function nodes.Regular codesare those for which all nodes of the same type have the same degree. For

example, a(3, 6)-regular LDPC code is a code in wich all variable nodes have degree3 and all check nodes have

degree6. In case ofirregular codes the degree of each sets of nodes is chosen according to some distribution.

For example, an irregular LDPC code might have40% variable nodes of degree3 and60% variable nodes of

degree5, whereas half the check nodes have degree6 and8, respectively. In case of irregular codes, these

distributions are given by node degree distributions. The variable node degree distribution is denoted as

λ(x) =

dv∑

i=2

λix
i−1

and represents a code whereλi is the fraction of variable nodes of degreei. Analogously, a check node degree

distribution

ρ(x) =

dc∑

i=2

ρix
i−1

represents a code, whereρi is the fraction of check nodes of degreei. All specific LDPC codes with the same

variable and check node distributionλ(x) andρ(x) form a code ensemble. It can be shown [41], that in the

limit of large blocklengthN → ∞, almost all codes of an ensemble behave alike. It therefore suffices to only

consider the average behavior of the ensemble; the individual behaviour of almost all individual codes will be

the same.

Decoding. In decoding, we seek a decision which minimizes the probability of a bit error.This leads to the

MAP decision rule of the bitck and is given by

ĉk = arg max
ck

f(ck|y1, . . . , yN ) , (2.31)



Chapter 2. Preliminaries 34

c1 c2 c3
c4 c5 c6 c7

f(y1|c1)

y1 y2 y3 y4 y5 y6 y7

I1(cS1
) I2(cS2

) I3(cS3
)

µf (c1)

µc→v(c1)

µv→c(c1)

Figure 2.18: Factor graph of an LDPC code corresponding to the factorization (2.33).

wheref(ck|y1, . . . , yN ) is the conditional probability of the bitck given the observationy1, . . . , yN . We can

obtain this probability by marginalization of the posterior probability

p(ck|y1, . . . , yN ) =
∑

∼ck

p(c1, . . . , cN |y1, . . . , yN ) .

Using Bayes’ theorem, the conditional probabilityf(c1, . . . , cN |y1, . . . , yN ) can be expressed as

p(c1, . . . , cN |y1, . . . , yN ) ∝ f(y1, . . . , yN |c1, . . . , cN )p(c1, . . . , cN ) =
N∏

n=1

f(yn|cn)I(c), (2.32)

where we have assumed i.i.d. fading of the channel. The conditional densityf(yn|cn) describes the channel

model, andI(c) is an indicator function of the code, which is one, when the code bitsc are a valid codeword,

and zero otherwise, that is

I(c) =





1 if Pc = 0

0 otherwise.

For a codewordc to fullfill the conditionPc = 0, the codewordc must satisfyall check-equations described

by the rows of the parity check matrixP. Therefore we can factorize the indicator function into a product of

local indicator functions, each of which is associated with one row ofP. We define the setcSm as the set of

code bits involved in themth parity check and the indicator functionIm(cSm) denotes the correspondingmth

parity check node function. The indicator functionI(c) can then be rewritten as

I(c) =
M∏

m=1

Im(cSm) .

Inserting this expression into (2.32), we obtain for the posterior density

f(c1, . . . , cN |y1, . . . , yN ) =
N∏

n=1

f(yn|cn)
M∏

m=1

Im(cSm) . (2.33)
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Figure 2.19: Variable- and check-node update.

In our example the setcS1 is cS1 = {c1, c2, c3, c5} and the corresponding first parity check function is

I1(cS1) = I(c1 ⊕ c2 ⊕ c3 ⊕ c5 = 0) =





1 if c1 ⊕ c2 ⊕ c3 ⊕ c5 = 0

0 otherwise.

Using this factorization, the sum-product algorithm can be used to calculate the marginal probabilites required

for the MAP decision (2.31). Since the factor graph has cycles, the resulting decoding algorithm will become

iterative and yields only approximations of the marginals. Numerical results, however, indicate very good

performance. Next, we describe the messages and their updates in more detail.

Messages. We distinguish between two different types of messages: (i) messages from the variable nodes

to the check nodes; the message on theith edge from the variable nodesck to the check node is denoted

by µi
→(ck), (ii) messages from the check nodes to the variable nodesck, which will be denoted byµ←(ck).

Initially, the variable nodes send out a ’1’, and the messageµf (ck) becomesµf (ck) = f(y1|c1). In the first

iteration, these messages are propagated to all check nodes.

In further iterations, the message updates are depicted in Fig. 2.19. At a variable node, the outgoing message

µn
→(ck) is obtained as (cf. (2.22))

µn
→(ck) =

∏

n′ 6=n

µn′

←(ck) , (2.34)

where the incoming messagesµn
←(ck) will be defined below. Becauseck ∈ {0, 1}, it sufficies to use LLRs as

representatives for the messages. We define

µ̃n
→(ck) , log

µn
→(ck = 1)

µn→(ck = 0)
,

and then (2.34) is replaced with

µ̃n
→(ck) =

∑

n′ 6=n

µ̃n′

←(ck) .

Here, µ̃n′

←(ck) denotes the incoming LLR messages, which will be defined below. A check function node

Ik(cSk
) receives messages from all variable nodes in the setSk, and thenth variable node of this set will

be denoted as[cSk
]n. On the edge connecting to this variable node, the function node outputs the message

µ←([cSk
]n) according to the message update (2.23)

µ←([cSk
]n) =

∑

∼[cSk
]n

Ik(cSk
)
∏

n′ 6=n

µ→([cSk
]n′) . (2.35)
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Figure 2.20: Factor graph with Gaussian messages corresponding to the model in (2.36).

We express this message by means of an LLR according to

µ̃←([cSk
]n) , log

µ←([cSk
]n = 1)

µ←([cSk
]n = 0)

,

and after some manipulations [50], the message update (2.35) can be shownto be equivalent to

µ̃←([cSk
]n) = −2 tanh−1

( ∏

n′ 6=n

tanh
(1
2
µ̃→([cSk

]n′)
))

.

Different scheduling strategies for decoding of LDPC codes have been investigated, but the most common

scheme is a flooding schedule: All variable nodes emit messages, which areprocessed concurrently at the

check nodes. This allows for an easy parallelization. Typically,50 to 100 iterations are performed at the

decoder.

2.5 Factor Graphs with Gaussian Messages

In this Section we will consider statistical models where the exchanged messages are Gaussian functions [5]. In

this case, the message update equations (2.22) and (2.23) take a particularsimple form as the updated messages

are again Gaussian functions. Therefore, the message update procedure reduces to calculate the updated mean

and variance (or mean vector and covariance matrix in case of vector messages), and message passing amounts

to exchanging mean and variance between nodes. This significantly reduces computational complexity and

memory requirements for the storage of messages.

Factor graph example. To demonstrate the use of Gaussian messsages, we will consider a simple estimation

problem. Of course, it is possible to solve the problem by standard techniques, but we will demonstrate the use

of factor graphs and the sum-product algorithm. The system model is given by

y = Hu + w . (2.36)
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Here,u = (u1 · · ·uN )T denotes a Gaussian vector to be estimated witha priori densityu ∼ CN (0, I), H is a

knownM×N observation matrix, andw denotes the Gaussian noise vector of lengthN (w ∼ CN (0, σ2
wI)).

The vectory = (y1 · · · yM )T denotes the observation. Based on this observation the MMSE estimateuMMSE

of u shall be found. It is given by the posterior mean [51]

uMMSE = E{u|y} =

∫
u f(u|y)du . (2.37)

The posterior densityf(u|y) can be expressed as [4]

f(u|y) =
f(y|u)f(u)

f(y)
,

where f(y|u) denotes the likelihood function, which can be obtained from the system model(2.36) as

f(y|u) = CN (Hu, σ2
wI), andf(u) denotes the a priori density ofu. In the following we will calculate

the mean vector and the covariance matrix of the Gaussian density

f(y|u)f(u) , gu(u)

by means of the factor graph framework using Gaussian message functions. The division ofgu(u) by f(y) to

obtainf(u|y) is fairly standard, and can be found in e.g. [51]. The factor graph representingf(y|u)f(u) is

shown in Fig. 2.20 with variable nodesu andy and function nodesf(y|u) andf(u).

Gaussian messages will be denoted asCN (u, µ, σ2) = 1√
2πσ2

exp
(
− 1

2σ2 (u−µ)2
)
, following the notation

of [4] (extension to multivariate Gaussian messages follows analogously).The sum-product algorithm starts

with the variable nodey emitting the initial message ’1’. The messageµy(u) then becomes [5]

µy(u) = f(y|u) × 1 = CN (y,Hu, σ2
wI) .

For the next steps we need to reformulate this messages as Gaussian function in u. Some simple manipulations

yield

µy(u) = CN
(
u,
(
HHH

)−1
HHy,

(
1

σ2
w

HHH

)−1)
.

The messageµu(u) from the variable nodeu is given by

µu(u) = CN
(
u,0, I

)
.

The functiongu(u) is then given by the product of the two messagesµy(u) andµu(u). Using results from [5],

it can be shown to be

gu(u) = µy(u)µu(u) ∝ CN
(
u,

1

σ2
w

(
1

σ2
w

HHH + I

)−1

HHy,

(
1

σ2
w

HHH + I

)−1)
.

Dividing gu(u) by f(u), we finally obtain the posterior densityf(u|y). The posterior mean (wich equals the

MMSE estimator)E{u|y} = uMMSE is then given by

uMMSE = E{u|y} = (HHH + σ2
wI)−1HHy .

This result could have been easily obtained by standard methods (e.g. [51]), but extending the model demon-
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Figure 2.21: Factor Graphs with Gaussian messages corresponding to multiple observationsy1, . . . ,yL.

strates the powerfulness of the factor graph framework. Consider a system, whereL independent observations

are made, that is

yn = Hu + wn , n = 1, . . . , L .

Here,yn denotes the observation at time instantn andwn the noise at this time. Assuming independence of

the noise over timen, the joint distribution ofu and observationsy1, . . . ,yL can be written as

f(y1, . . . ,yL,u) = f(u)
L∏

n=1

f(yn|u) .

The corresponding factor graph is shown in Fig. 2.21. Using the results from the example before, the marginal

functiongu(u) can be obtained from

gu(u) = µu(u)
L∏

n=1

µy,n(u) ,

whereµy,n(u) denotes the message from thenth function nodef(yn|u) to the variable nodeu. From this

marginal function the MMSE estimate

uMMSE = E{u|y1, . . .yL}

can be obtained by dividinggu(u) by f(y1, · · · ,yL). It is also possible to calculate the MMSE estimate given

only a subset ofL′ observationsy1, . . . ,yL′ . In this case, only the messagesµy,n(u), n = 1, . . . , L′ are used

in calculating the (partial) marginal function

gL′

u = µu(u)
L′∏

n=1

µy,n(u) ,

yielding the MMSE estimateuMMSE = E{u|y1, . . .yL′}. Here, the factor graph approach can help with

designing algorithms by providing intuitive insights into the considered problem.
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Figure 2.22: Factor graph representation of a BICM system.

2.6 Derivation of the BICM Receiver by Means of Factor Graphs

In this section we will demonstrate how the BICM receiver from Subsection 2.1.3 can be (re)obtained by means

of the factor graph framework.

Derivation of factor graph. We consider a MAP detector, i.e. the receiver decides on theith information bit

b[n′] according to

b̂[n′] = arg max
b[n′]∈{0,1}

p(b[n′]|r) , (2.38)

wherer =
(
rT [1] · · · rT [N ]

)T
is the received vector sequence andp(b[n′]|r) denotes the conditional probability

of b[n′] givenr. To computep(b[n′]|r) in (2.38), we first write it as a marginal ofp(b|r) and apply Bayes’ rule

(assuminga priori equally likely information bit sequencesb):

p(b[n′]|r) =
∑

∼b[n′]

p(b|r) ∝
∑

∼b[n′]

f(r|b) (2.39)

where
∑
∼b[n′] denotes summation with respect to all components ofb exceptb[n′], f(r|b) is the condi-

tional probability density function ofr given b, and∝ denotes equality up to factors irrelevant to the max-

imization in (2.38). We can further express the densityf(r|b) according tof(r|b) =
∑

X,c f(r,X, c|b) =
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∑
X,c f(r|X)p(X|c)p(c|b), and can write (2.39) as

p(b[n′]|r) ∝
∑

∼b[n′]

f(r|X)p(X|c)p(c|b) . (2.40)

Note thatf(r|X) corresponds to the channel (cf. (2.2)),p(X|c) describes the modulator (symbol mappings

x[n] = χ
(
c[n]

)
), andp(c|b) represents the channel encoder and interleaver (one-to-one correspondencesc =

C(b)). There isp(c|b)=1 if c= C(b) andp(c|b) = 0 otherwise. We can rewrite this constraint by means of

the indicator function I{·}, which equals 1 if its argument is true and 0 otherwise, according to

p(c|b) = I
{
c= C(b)

}
. (2.41)

We note that the code constraint I
{
c= C(b)

}
can be expressed in a more refined manner as was discussed in

Subsection 2.4. Similar reasoning yields for the conditional densityp(X|c) describing the mapping

p(X|c) =
N∏

n=1

I
{
x[n] = χ(c[n])

}
. (2.42)

Finally, because the receive vectorsr[n] are conditionally independent (cf. (2.2)) given the transmit vectors

x[n] we have

f(r|X) =
N∏

n=1

f(r[n]|x[n]) . (2.43)

Inserting the expressions (2.41)–(2.43) into (2.40), we obtain the overall factorization

p(b[n′]|r) ∝
∑

∼b[n′]

N∏

n=1

I
{
x[n] = χ(c[n])

} N∏

n′=1

f(r[n′]|x[n′])I
{
c= C(b)

}
(2.44)

which can be represented by the factor graph shown in Fig. 2.22. Thereare factor nodes for the channel,

symbol mapper constraints, and code constraints, and variable nodes for the transmit symbols, code bits, and

information bits.

Messages and sum-product algorithm. The factor graph in Fig. 2.22 has cycles, therefore the sum-product

algorithm becomes iterative, yields only approximate marginal functions and requires appropriate scheduling

of message updates. Depending on this scheduling different receiveralgorithms can be obtained. The message

µy(x[k]) is given as

µy(x[k]) = CN (y[k],H[k]x[k], σ2
wI) .

Using the update rule (2.22) of the sum-product algorithm, we obtain for the message

µ↓(cl[k] = c) =
∑

x

I
{
x[k] = χ(c[k])

}
µy(x[k])

∏

l′ 6=l

µ↑(cl′ [k]) .

In case of an non-iterative receiver and an iterative receiver in the first iteration, we have for the messages

µ↑(cl′ [k]) = const.. This simplifies the messageµc(cl[k]) to

µ↓(cl[k] = c) =
∑

x:cl[k]=c

µy(x[k]) . (2.45)
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Converting this message into an LLR, we obtain the expression (2.5) for the soft-out BICM demodulator. In

case of an iterative receiver (where the messages come from applying the sum-product algorithm to the code

part I{c= C(b)} of the factor graph), we have

µ↓(cl[k] = c) =
∑

x:cl[k]=c

µy(x[k])
∏

l′ 6=l

µ↑(cl′ [k]) , (2.46)

which is the same as (2.8). The messagesµ↓(cl[k] = c) are now used to decode the channel code as described

in Subsection 2.4. Applying the sum-product algorithm to the factor graph part of the channel code (that is, the

function node I{c= C(b)})), yields the messagesµ(b[n′]) for the information bitsb[n′], n′ = 1, . . . , N ′. Using

these messages, the MAP decision (or an approximate decision in case of aniterative receiver) (2.38) can be

made. If an iterative receiver is to be used, then the sum-product algorithm of the channel code also calculates

the messagesµ↑(cl[k]), which are then used in (2.46) in the next iteration.

These derivations demonstrate the powerfulness of the factor graph framework. By deriving an expression

for the joint density describing the system model (2.44) and representing the detection problem as operating on

the marginals of this joint density (2.38), different algorithms for the receiver design can be obtained. Some

extensions are also possible: By approximating the message updates (2.45)and (2.46), several low-complexity

algorithms for BICM demodulators can be obtained. It is also possible to consider a system with pilot-based

estimation of the channel. By properly incorporating this extension in the expression for the joint density

and applying the sum-product algorithm to the resulting factor graph, receivers which perform joint channel

estimation and data detection can be obtained. These concepts will be explained in Chapter 3.



3

Interleave-Division Multiple

Access Transmission Schemes

IN multiuser communications, large performance gains can be achieved by using a turbo-style interaction

between multiuser detector and channel decoder [52]. Here, we consider an uplink scenario whereU users

transmit data to a common base station via multiple-input multiple-output (MIMO) channels. User separation

is achieved by means of a recently introduced multiple-access technique known asinterleave-division multiple

access(IDMA) [18]. Using a factor graph framework [4, 5], we develop an iterative multiuser MIMO-IDMA

receiver that performs joint multiuser data detection, channel decoding,and pilot-aided channel estimation. An

orthogonal frequency-division multiplex (OFDM) modulation format is adopted to accommodate frequency-

selective (time-dispersive) channels. The proposed receiver is suited to higher-order symbol alphabets for

increased spectral efficiency, and it uses a selective message updatescheme for reduced complexity.

42
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3.1 Background and State of the Art

In a multiuser system employing code-division multiple access (CDMA), user separation is achieved by means

of user-specific pseudorandom spreading sequences [53]. Recently, IDMA has been proposed as an alternative

to CDMA [18]. With IDMA, user separation is obtained via user-specific interleavers combined with low-

rate channel coding. Similarly to CDMA, IDMA offers diversity against fading and mitigation of inter-cell

interference [18]. However, IDMA has some important advantages over CDMA: it enables the use of multiuser

detectors that are significantly less complex than those required for CDMA,and it can outperform coded CDMA

when iterative (turbo) receivers are used [18]. Furthermore, IDMAcan be easily used in MIMO systems [54].

Just as for CDMA, frequency-selective channels can be accommodated by combining IDMA with an OFDM

modulation format [55,56].

An iterative receiver for IDMA based on a minimum mean square error (MMSE) equalization approach was

described in [18] for single-antenna systems using binary (BPSK) modulation. OFDM-IDMA was introduced

in [56]. An extension of IDMA to MIMO and to higher-order symbol alphabets, as well as receivers based on

factor graphs and performing joint detection and channel estimation were proposed in [54,57–59].

Factor graphs were introduced in Chapter 1 as a tool for dealing with functions of many variables that can be

factored into “local” functions, each of which depends only on a subsetof these variables. Such a factorization

can be graphically represented by a factor graph. Marginals of the global function can be efficiently calculated

(either exactly or approximately) by means of a message-passing algorithm known as the sum-product algo-

rithm. The factor graph framework and the sum-product algorithm have been used in many different areas such

as signal processing [4,5], receiver design [13], and decoding of LDPC codes [49].

This chapter is organized as follows. The system model and IDMA transmitterare presented in Section

3.2. In Section 3.3, we construct the factor graph of our system and derive the messages to be propagated along

the edges of the factor graph. Section 3.4 develops message approximations and a selective message updating

scheme resulting in a complexity that is linear in the number of users. Information-theoretic performance limits

of IDMA are determined in Section 3.5. Finally, Section 3.6 demonstrates the performance of the proposed

receiver structures and algorithms by means of numerical simulations.

3.2 MIMO-OFDM-IDMA System Model

We consider a MIMO-OFDM-IDMA system for an uplink multiple-access scenario withU users. Each user

employsMT transmit antennas for spatial multiplexing [40], and the base station is equipped with MR receive

antennas. Frequency-selective Rayleigh fading channels are assumed, and the equivalent discrete-time complex

baseband domain (with symbol-rate sampling) is considered throughout.

3.2.1 Transmitter

The MIMO-OFDM-IDMA transmitter for theuth user is shown in Fig. 3.1. This transmitter extends the BPSK-

based MIMO-IDMA transmitter of [54] to OFDM modulation and higher-ordersymbol alphabets.
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Figure 3.1: MIMO-OFDM-IDMA transmitter for theuth user.

Coding, interleaving, mapping. First, a length-J sequence of information bits of theuth user, denoted as

b(u) ,
(
b
(u)
1 · · · b(u)

J

)T
, is encoded into a length-L sequence of code bits, withL > J . The code rate is thus

R = J/L < 1. The code is a serial concatenation of a terminated convolutional code anda low-rate repetition

code. The code bit sequence is then passed through a user-specific interleaverπ(u), which yields the interleaved

bit sequencec(u) ,
(
c
(u)
1 · · · c(u)

L

)T
. We can expressc(u) as

c(u) = C(u)(b(u)) , (3.1)

where the one-to-one functionC(u)(·) denotes the combined effect of channel coding and interleaving. Different

users employ identical codes but different interleavers. The low-rate repetition code together with the user-

specific interleaver replaces the spreading employed in CDMA systems.

Next, the coded and interleaved bit sequencec(u) is mapped to a sequence ofLx complex symbol vectors

x(u)[l] ,
(
x

(u)
1 [l] · · · x

(u)
MT

[l]
)T

, l = 1, . . . , Lx as follows. We use a complex symbol alphabetS of size|S|=2B.

Note thatLx is related to the numberL of code bits as

Lx = L/(MTB) . (3.2)

The transmit symbolx(u)
i [l]∈ S at theith antenna of theuth user at symbol timel is obtained by mapping a

group ofB successive coded/interleaved bitsc
(u)
λ(l,i)+1, . . . , c

(u)
λ(l,i)+B, with λ(l, i) ,

[
(l−1)MT + i−1

]
B, to a

symbol fromS. This mapping operation will be denoted as

x
(u)
i [l] = χ

(
c
(u)
i [l]

)
,

with the one-to-one symbol mappingχ and the bit vectorc(u)
i [l] ,

(
c
(u)
λ(l,i)+1 · · · c

(u)
λ(l,i)+B

)T
. We will refer to

the bit vectorc(u)
i [l] as thesymbol labelassociated with the symbolx

(u)
i [l]. With a slight abuse of notation, the

transmit symbol vector (across the antennas) of theuth user will be similarly written as

x(u)[l] = χ
(
c(u)[l]

)
, (3.3)

wherec(u)[l] ,
(
c
(u)T
1 [l] · · · c

(u)T
MT

[l]
)T

.

OFDM modulation and pilot insertion. The symbolsx(u)
i [l], l = 1, . . . , Lx are transmitted at theith antenna

of theuth user using OFDM modulation, i.e., thel th symbolx(u)
i [l] modulates a corresponding subcarrier. In

addition, to enable channel estimation,KpMT pilot symbols are inserted for each user. The total number of

subcarriers is thus

K , Lx + KpUMT, (3.4)
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∆
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Figure 3.2: Arrangement of data subcarriers (white) and pilot subcarriers (grey). Two pilot blocks of length

UMT spaced∆ subcarriers apart are shown.

whereKpUMT is the total number of pilot symbols (for allU users and allMT transmit antennas). In

what follows, k ∈ {0, . . . , K − 1} will denote the subcarrier index. A symbol (data or pilot) of the

uth user that is transmitted at theith antenna and modulates thek th subcarrier is generically denoted as

s
(u)
i [k]. The set{s(u)

i [k]}K−1
k=0 is composed of data symbols{x(u)

i [l]}Lx

l=1 and pilot symbols. Furthermore,

the symbol vector (either data or pilot) across the antennas associated with subcarrierk will be denoted as

s(u)[k] ,
(
s
(u)
1 [k] · · · s(u)

MT
[k]
)T

.

Finally, the time-domain signal of theuth user transmitted at theith antenna is obtained by applying an

inverse discrete Fourier transform (IDFT) of lengthK to the symbol sequence{s(u)
i [k]}K−1

k=0 and inserting a

cyclic prefix of lengthNcp. This results in a time-domain sequence (or block) of lengthN , K + Ncp, which

will be denoted as{s̃(u)
i [n]}N

n=1 (the tildẽ indicates the time domain). The corresponding time-domain vector

sequence will then be denoted as{s̃(u)[n]}N
n=1, wheres̃(u)[n] ,

(
s̃
(u)
1 [n] · · · s̃

(u)
MT

[n]
)T

.

Pilot arrangement. We use the arrangement of data and pilot subcarriers shown in Fig. 3.2. TheKpUMT pilot

subcarriers are arranged inKp blocks, each containingUMT pilot subcarriers (one for each user and transmit

antenna). Successive pilot subcarriers for a given user and transmit antenna are located in successive blocks

and spaced∆ subcarriers apart (see Fig. 3.2). Note that whereas each data subcarrier is used jointly by all users

and all transmit antennas, each pilot subcarrier is only used by one userfor one transmit antenna; this amounts

to an orthogonal pilot structure. The set of pilot subcarrier indicesk employed by theuth user for theith

antenna is given byP(u)
i , {(u − 1)MT + i + ν ∆ − 1 | ν = 0, . . . , Kp − 1}; note thatP(u)

i ⊂ {0, . . . , K−1}
and|P(u)

i | = Kp. The pilot symbols are chosen equal for all users and antennas, therefore s(u)[k] = p ei for

k ∈ P(u)
i , wherep is the common pilot symbol andei denotes theith unit vector of lengthMT. Note that

for k ∈ P(u)
i , the symbols at all other antennas,s

(u)
i′ [k] for i′ 6= i, are zero. We have bothK = Kp∆ and

K = Lx + KpUMT, whenceKp (∆−UMT) = Lx or equivalently

Kp =
Lx

∆ − UMT
. (3.5)

Finally, the union of all the (disjoint) setsP(u)
i will be denoted asP. Note that|P| = KpUMT, which is the

total number of pilot subcarriers.
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Spectral efficiency. As a measure of spectral efficiency for one user, we calculate the ratio of the number of

information bitsJ to the total number of subcarriersK. Using the definitions and relations provided previously,

we obtain

ǫ ,
J

K
=

MTBR (∆−UMT)

1 + UMT
∆−UMT

=
MTBR (∆−UMT)2

∆
.

Most importantly, the spectral efficiency depends on the difference between the pilot block spacing∆ and the

product of the number of users and transmit antennasUMT. Assuming a fixed∆, the spectral efficiency can

become very small (even zero), if either the number of users or transmit antennas becomes large, because then

the number of pilot subcarriers increases (we haveUMT pilot subcarriers in one block), which reduces spectral

efficiency.

3.2.2 Channel

Considering the equivalent complex baseband after symbol-rate sampling,the received signal vector̃r[n] ,(
r̃1[n] · · · r̃MR[n]

)T
at symbol timen is given by

r̃[n] =
U∑

u=1

Lch−1∑

n′=0

H̃(u)[n′] s̃(u)[n−n′] + w̃[n] , n = 1, . . . , N . (3.6)

Here,Lch ≤ Ncp is the channel length, theMR×MT matrix sequencẽH(u)[n′], ν = 0, . . . , Lch − 1 is the

MIMO channel impulse response from theuth user to the base station, the elements of the noise vectorw̃[n]

are i.i.d. complex Gaussian with noise varianceσ2
w, andN = K + Ncp is the number of symbols per temporal

block.

The channels of all users are frequency-selective. Leth̃
(u)
j,i [n′] denote the(j, i)th element ofH̃(u)[n′], and

let us collect the impulse responseh̃
(u)
j,i [n′] of lengthLch in the length-K vectorh̃(u)

j,i ,
(
h̃

(u)
j,i [0] · · · h̃(u)

j,i [Lch−
1] 0 · · · 0

)T
. TheLch potentially nonzero channel taps are assumed uncorrelated and zero-mean complex Gaus-

sian, i.e.,̃h(u)
j,i ∼ CN (0,Ch̃p

), whereCh̃p
(subscriptp stands for “prior”) is a diagonalK×K matrix in which

only the firstLch diagonal elements are nonzero. The corresponding frequency-domain channel coefficient

vector is given by

h
(u)
j,i ,

(
h

(u)
j,i [0] · · · h(u)

j,i [K−1]
)T

= Fh̃
(u)
j,i , (3.7)

whereF is the unitaryK×K DFT matrix with elements(F)kl = 1√
K

exp
(
− j 2πkl

K

)
.

3.2.3 Receiver

The receiver processes the channel output sequencer̃[n], n = 1, . . . , N in (3.6). First the cyclic prefix is

removed, resulting in a sequence of lengthK. Subsequently, a DFT with respect ton yields the frequency-

domain sequence of receive vectorsr[k], k = 0, . . . , K − 1. TheseK vectors of lengthMR are stacked

in the (total) received vectorr =
(
rT [0] · · · rT [K−1]

)T
of lengthKMR. The further processing steps (joint

iterative data detection, channel decoding, and channel estimation) that ultimately result in the detected/decoded

user bits will be discussed in Sections 3.3 and 3.4. This discussion will use thecompact system channel

representation described next.
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3.2.4 System Channel

The frequency-domain sequence of receive vectorsr[k] consists ofLx vectors at the data subcarriersk /∈P and

KpUMT vectors at the pilot subcarriersk ∈P or, more specifically,k ∈P(u)
i , i.e.,

r[k] =





∑U
u=1 H(u)[k] s(u)[k] + w[k] , k /∈P,

H(u)[k] s(u)[k] + w[k] , k ∈P(u)
i (u = 1, . . . , U ; i = 1, . . . , MT) .

(3.8)

Here,H(u)[k], k = 0, . . . , K−1 is the DFT of the time-domain channel impulse response matrix sequence

H̃(u)[n′], n′ = 0, . . . , Lch−1 (zero-padded to a length-K sequence), andw[k] denotes white Gaussian noise of

varianceσ2
w. For our later derivation and discussion of the iterative receiver, it willbe convenient to represent

the received vectorsr[k] at data subcarriersk /∈ P in terms of the transmitted data symbol vectorsx(u)[l],

l = 1, . . . , Lx, i.e.,

rd[l] =
U∑

u=1

H
(u)
d [l]x(u)[l] + w[l] , l = 1, . . . , Lx , (3.9)

where the subscriptd indicates that the received symbolrd[l] belongs to a data subcarrier,H
(u)
d [l] is the cor-

responding chanel matrix on this data subcarrier, andl ∈ {1, . . . , Lx} is a re-mapped subcarrier indexk. The

received vectorsr[k] atpilot subcarriersk ∈P(u)
i are given by

rp[k] = H(u)[k] s(u)[k] + w[k] = ph
(u)
i [k] + w[k] , k ∈P(u)

i , (3.10)

whereh
(u)
i [k] is theith column of the channel matrixH(u)[k] and the subscriptp indicates that the received

symbolrp[k] belongs to a pilot subcarrier.

3.3 Factor Graph Framework for MIMO-OFDM-IDMA

In this section, we analyze the statistical structure of the MIMO-OFDM-IDMAsystem. We construct the

corresponding factor graph and derive the messages to be propagated along its edges according to the sum-

product algorithm. This leads quite naturally to an iterative technique for jointdata detection, channel decoding,

and pilot-based channel estimation.

3.3.1 Derivation of the Factor Graph

After the receiver frontend described in Section 3.2.3, the channel output is represented by the total received

vectorr. The MIMO-OFDM-IDMA receiver operates onr and produces detected information bitsb̂
(u)
m , m =

1, . . . , J for all users (u = 1, . . . , U ). The receiver we propose is an approximation to the optimal (MAP) bit

detector given by (cf. Subsection 2.6, [13,60])

b̂(u)
m = arg max

b
(u)
m ∈{0,1}

p(b(u)
m |r) , m = 1, . . . , J ; u = 1, . . . , U . (3.11)

Here,p(b
(u)
m |r) denotes the conditional probability mass function (pmf) of the information bitb

(u)
m given r.

In what follows, letb =
(
b(1)T · · · b(U)T

)T
andc =

(
c(1)T · · · c(U)T

)T
denote the vectors containing all
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information bits and code bits, respectively, of all users; furthermore, let X = (X[1] · · · X[Lx]) with X[l] =(
x(1)[l] · · · x(U)[l]

)
be theMT × ULx matrix of all data vectorsx(u)[l], l = 1, . . . , Lx, u = 1, . . . , U . Note

that there is a one-to-one correspondence betweenb, c, andX, due to the coding-interleaving mappingsc(u) =

C(u)(b(u)) in (3.1) and the modulation mappingx(u)[l] = χ
(
c(u)[l]

)
in (3.3). Thus, the quantitiesb, c, andX

are probabilistically equivalent. In what follows, we assume that all information bit sequencesb ∈ {0, 1}JU

are a priori equally likely.

To computep(b
(u)
m |r) in (3.11), we first write it as a marginal ofp(b|r) and apply Bayes’ rule:

p(b(u)
m |r) =

∑

∼b
(u)
m

p(b|r) ∝
∑

∼b
(u)
m

f(r|b) . (3.12)

Here,
∑
∼b

(u)
m

denotes summation with respect to all components ofb exceptb(u)
m , f(r|b) is the conditional prob-

ability density function (pdf) ofr givenb, and∝ denotes equality up to factors irrelevant to the maximization

in (3.11). Sinceb − c − X for a Markov chain, we have

f(r|b) =
∑

X,c

f(r,X, c|b) =
∑

X,c

f(r|X, c,b) p(X|c,b) p(c|b) =
∑

X,c

f(r|X) p(X|c) p(c|b) ,

and therefore we can write (3.12) as

p(b(u)
m |r) ∝

∑

∼b
(u)
m

f(r|X) p(X|c) p(c|b) . (3.13)

Here and subsequently,
∑
∼b

(u)
m

denotes summation with respect toall unknown variables appearing in the

summand exceptb(u)
m (in the present case, these variables areX, c, and all components ofb exceptb(u)

m ).

We will now provide expressions for the conditional probability distributionsappearing in (3.13). First,

p(c|b) corresponds to the channel encoder and interleaver subsumed by the mappingsc(u) = C(u)(b(u)),

u = 1, . . . , U ; we thus have

p(c|b) =





1, if c(u) = C(u)(b(u)) for u = 1, . . . , U

0, otherwise.
(3.14)

Using the indicator function I{·}, which equals 1 if its argument is true and 0 otherwise, we can rewrite (3.14)

as

p(c|b) =
U∏

u=1

I
{
c(u) = C(u)(b(u))

}
. (3.15)

We note that the code constraint I
{
c(u) = C(u)(b(u))

}
can be expressed in a more detailed manner by using the

code structure as was presented in Chapter 2.

Next, the conditional pmfp(X|c) corresponds to the modulator defined by the mappingx(u)[l] =

χ
(
c(u)[l]

)
, u = 1, . . . , U , i.e.,

p(X|c) =





1, if x
(u)
i [l] = χ(c

(u)
i [l]) for u = 1, . . . , U, i = 1, . . . , MT, l = 1, . . . , Lx

0, otherwise,
(3.16)
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or equivalently

p(X|c) =
U∏

u=1

Lx∏

l=1

I
{
x(u)[l] = χ(c(u)[l])

}
=

U∏

u=1

MT∏

i=1

Lx∏

l=1

I
{
x

(u)
i [l] = χ(c

(u)
i [l])

}
. (3.17)

Finally, p(r|X) corresponds to the system channel given by (3.8)–(3.10). We will consider two cases.

1) Perfect channel state information at the receiver. For comparison purposes, it will be useful to consider

a genie system with perfect CSI at the receiver, i.e., the receiver knows all channel matricesH(u)
d [l]. In this

case, transmission of pilot symbols is not necessary; thusKp = 0 and all setsP(u)
i are empty. We then have

f(r|X) =

Lx∏

l=1

f(rd[l]|X[l]) . (3.18)

From the system channel expression (3.9),

rd[l]|X[l] ∼ CN
(

U∑

u=1

H
(u)
d [l]x(u)[l], σ2

wI

)
.

Inserting (3.18), (3.15), and (3.17) into (3.13), we obtain the following expression of the posterior pmf ofb(u)
m :

p(b(u)
m |r) ∝

∑

∼b
(u)
m

Lx∏

l=1

f(rd[l]|X[l])

U∏

u′=1

I
{
c(u′) = C(u′)(b(u′))

} MT∏

i=1

I
{
x

(u′)
i [l] = χ(c

(u′)
i [l])

}
. (3.19)

2) Pilot-based channel estimation. Next, we consider the practically relevant case where the channel hasto

be estimated and, thus, pilot subcarriers are transmitted. We can write

f(r|X) =

∫
f(r|X,H) f(H)dH , (3.20)

whereH is a matrix combining the channels of all users. We will now find expressions forf(H) andf(r|X,H).

Assuming that the channels of different users and MIMO streams are independent, we have

f(H) =
U∏

u=1

MT∏

i=1

MR∏

j=1

f(h
(u)
j,i ) , (3.21)

where

f(h
(u)
j,i ) =

∫
δ(h

(u)
j,i − Fh̃

(u)
j,i ) f(h̃

(u)
j,i ) dh̃

(u)
j,i (3.22)

according to (3.7). Forf(r|X,H), we obtain

f(r|X,H) =

Lx∏

l=1

f(rd[l]|Hd[l],X[l])
U∏

u=1

MT∏

i=1

∏

k∈P(u)
i

f(rp[k]|h(u)
i [k]) , (3.23)

with Hd[l] ,
(
H

(1)T
d [l] · · · H(U)T

d [l]
)T

. Expressions forf(rd[l]|Hd[l],X[l]) andf(rp[k]|h(u)
i [k]) are obtained

from (3.9) and (3.10), respectively:

rd[l]|Hd[l],X[l] ∼ CN
(

U∑

u=1

H
(u)
d [l]x(u)[l], σ2

wI

)
,
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µC→c

(
c
(1)
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(u)
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(u)
j,i [∆])

f
(
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)

δ(h
(u)
j,i − Fh̃

(u)
j,i )

f(h̃
(u)
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h
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Figure 3.3: Factor graph for a pilot-aided MIMO-OFDM-IDMA system with channel coding and higher-order

modulation.

rp[k]|h(u)
i [k] ∼ CN

(
ph

(u)
i [k], σ2

wI
)
, k ∈ P(u)

i .

Inserting (3.20)–(3.23) into (3.13), the posterior pmf ofb
(u)
m is finally obtained as

p(b(u)
m |r) ∝

∑

∼b
(u)
m

∫
f(X,H, r|b) dH (3.24)

with

f(X,H, r|b) =

Lx∏

l=1

f(rd[l]|Hd[l],X[l])
U∏

u=1

MT∏

i=1

∏

k∈P(u)
i

f(rp[k]|h(u)
i [k])

MR∏

j=1

∫
δ(h

(u)
j,i −Fh̃

(u)
j,i )p(h̃

(u)
j,i )dh̃

(u)
j,i

×
U∏

u′=1

I
{
c(u′) = Cu′(b(u′))

} MT∏

i′=1

I
{
x

(u′)
i′ [k] = χ(c

(u′)
i′ [k])

}
.

The factorizations in (3.19) and (3.24) can be represented by means of the factor graph [4, 13, 61] shown

in Fig. 3.3. The part in the dotted box corresponds to (3.19) (receiver with perfect CSI), whereas the complete
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factor graph corresponds to (3.24) (receiver with pilot-based channel estimation). The probability distributions

f(rd[l]|Hd[l],X[l]), f(rp[k]|h(u)
i [k]), andf(h̃

(u)
j,i ), the functionδ(h(u)

j,k −Fh̃
(u)
j,k ) expressing a DFT, and the con-

straint functions of the mapper, I
{
x

(u)
i [k] = χ(c

(u)
i [k])

}
, and of the encoder/interleaver, I

{
c(u) = Cu(b(u))

}
,

correspond tofunction nodes, which are represented by boxes. The information bits, code bits, transmitsym-

bols, and channel coefficients correspond tovariable nodes, which are represented by ellipses. It should be

noted that the factor graph contains cycles.

3.3.2 Messages

For a factor graph without cycles, marginals like (3.13) can be determined exactly and efficiently by means of

the sum-product algorithm [4]. Using these marginals, the MAP bit decisionsin (3.11) can be easily determined.

For a factor graph with cycles as in Fig. 3.3, the sum-product algorithm canstill be used but it generally becomes

iterative, yields only approximate results, and requires appropriate message scheduling.

We will next calculate the messages to be propagated along the edges of ourfactor graph according to the

update rules of the sum-product algorithm [4]. The following discussion constantly refers to Fig. 3.3 regarding

the notation used for the various messages and the position of the messages inthe factor graph.

Because the code bit variable nodesc
(u)
λ(l,i)+j and the transmit symbol variable nodesx

(u)
i [l] are connected

to only two neighboring function nodes, they are just transfer nodes passing the messages from one neighboring

function node to the other. Thus, we only have to consider the message updates for the function nodes.

For the code function nodes I
{
c(u) = C(u)(b(u))

}
, the sum-product algorithm amounts to the BCJR algo-

rithm for soft-decoding the convolutional code [4, 8], and to a summation ofthea priori log-likelihood ratios

(LLRs) of successive bits (after interleaving) for soft-decoding the repetition code. The LLRs produced by the

overall soft channel decoder are the sum of extrinsic LLRs and priorLLRs [52]. The extrinsic LLRs, denoted

asξ
(u)
p , correspond to messages (beliefs) [4,13,61]

µC→c(c
(u)
q ) =

exp(ξ
(u)
q c

(u)
q )

1 + exp(ξ
(u)
q )

, c(u)
q ∈ {0, 1} . (3.25)

These messages leave the code function node I
{
c(u) = C(u)(b(u))

}
and are propagated to the code variable

nodesc(u)
i [n] and further to the modulator function nodesχ.

Again invoking the sum-product algorithm, the messageµx→p(x
(u)
i [n]) passed from the modulator function

nodeχ to the variable nodex(u)
i [n] and further to the channel function nodep(rd[l]|Hd[l],X[l]) is obtained from

the messagesµC→c(c
(u)
λ(l,i)+ν) as

µx→p(x
(u)
i [l]) =

∑

c
(u)
i [l]

I
{
x

(u)
i [l] = χ(c

(u)
i [l])

} B∏

ν=1

µC→c(c
(u)
λ(l,i)+ν) = µ̄C→c(c

(u)
i [l])

∣∣
c
(u)
i [l] = χ−1(x

(u)
i [l])

,

(3.26)

where
∑

c
(u)
i [l]

denotes summation over all the2B symbol labels and̄µC→c(c
(u)
i [l]) ,

∏B
ν=1 µC→c(c

(u)
λ(l,i)+ν).

The messageµp→x

(
x

(u)
i [l]

)
passed from the channel function nodef(rd[l]|Hd[l],X[l]) to the variable node
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x
(u)
i [l] and further to the modulator function nodeχ is obtained as follows. For a receiver with perfect CSI,

µp→x

(
x

(u)
i [l]

)
=
∑

∼x
(u)
i [l]

f(rd[l]|Hd[l],X[l])
∏

(i′,u′) 6=(i,u)

µx→p

(
x

(u′)
i′ [l]

)
, (3.27)

and for a receiver with pilot-based channel estimation,

µp→x

(
x

(u)
i [l]

)
=
∑

∼x
(u)
i [l]

∫
f(rd[l]|Hd[l],X[l])

∏

i′,u′

µh→p(h
(u′)
d,i′ [l])

∏

(i′′,u′′) 6=(i,u)

µx→p

(
x

(u′′)
i′′ [l]

)
dHd[l] . (3.28)

In (3.27) and (3.28),
∑
∼x

(u)
i [l]

denotes summation with respect to all elements ofX[l] exceptx(u)
i [l]. The

messageµh→p(h
(u)
d,i ) involved in (3.28) will be determined in Section 3.4.

The messageµc→C
(
c
(u)
λ(l,i)+ν

)
passed from the modulator function nodeχ to the code variable nodec(u)

i [l]

and further to the code function node I
{
c(u) = C(u)(b(u))

}
is obtained as

µc→C
(
c
(u)
λ(l,i)+ν

)
=

∑

∼c
(u)
λ(l,i)+ν

I
{
x

(u)
i [l] = χ(c

(u)
i [l])

}
µp→x

(
x

(u)
i [l]

) ∏

ν′6=ν

µC→c

(
c
(m)
λ(l,i)+ν′

)

=
∑

∼c
(u)
λ(l,i)+ν

µp→x

(
χ(c

(u)
i [l])

) ∏

ν′6=ν

µC→c

(
c
(u)
λ(l,i)+ν′

)
. (3.29)

From the messageµc→C
(
c
(u)
q ) the corresponding (extrinsic) LLR̄ξ(u)

q can be obtained by [4]

ξ̄(u)
q = log

µc→C
(
c
(u)
q = 1

)

µc→C
(
c
(u)
q = 0

) (3.30)

Combining (3.26) and (3.28) and inserting the result into (3.29) yields a message update that takes the code

bit beliefsµC→c(c
(u)
q ) from the channel decoder and yields refined code bit beliefsµc→C(c

(u)
q ). Hence, these

message updates taken together constitute asoft-in/soft-out MIMO multiuser detector.

Since (3.26) and (3.29) involve only one antenna of one user, the overall complexity of the sum-product

algorithm is dominated by (3.28). Indeed, the sum in (3.28) involves|S|MTU−1 terms, so the complexity of

calculatingµp→x

(
x

(u)
i [l]

)
is exponential in the number of transmit antennasMT and in the number of usersU .

For example,|S|MTU−1 ≈ 2.7 · 108 for four users with two transmit antennas and 16-QAM modulation.

For the receiver with pilot-based channel estimation, the messageµp→h(h
(u)
d,i [l]) is obtained by means of

the sum-product algorithm as

µp→h(h
(u)
d,i [l]) =

∑

X[l]

∫
f(rd[l]|Hd[l],X[l])

∏

(i′,u′) 6=(i,u)

µh→p(h
(u′)
d,i′ [l])

∏

i′′,u′′

µx→p(x
(u′′)
i′′ ) d∼h

(u)
d,i . (3.31)

Here,h(u)
d,i [l] denotes theith column ofH(u)

d [l], and
∫

. . . d ∼ h
(u)
d,i denotes integration with respect to all

elements ofHd[l] except those contained inh(u)
d,i .

The messageµrp(h
(u)
j,i [k]), k∈P(u)

i from the pilot symbols is given by

µrp(h
(u)
j,i [k]) ∝ exp

(
− 1

σ2
w

∣∣rp,j [k] − h
(u)
j,i [k]p

∣∣2
)

, k∈P(u)
i .
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This can be rewritten as a Gaussian inh
(u)
j,i [k]:

µrp(h
(u)
j,i [k]) ∝ exp

(
−
|h(u)

j,i [k] − rp,j [k]/p|2
σ2

w/|p|2
)

. (3.32)

Using the messages (3.31), (3.32), and the DFT relation (3.7), the messages µh→p(h
(u)
d,i [l]) involved in

(3.28) can be obtained. This derivation is deferred to Section 3.4.

3.4 Low-Complexity Receiver

In this section, we discuss two modifications of our iterative receiver that yield a significant reduction of com-

putational complexity. First, we use Gaussian approximations for certain messages, so that closed-form inte-

gration becomes possible. As a result, the complexity of the multiuser detector is linear in the number of users,

instead of exponential. An additional complexity reduction is achieved by a selective message update scheme

where only certain messages are updated in each iteration.

3.4.1 Gaussian Approximations

To simplify the calculation ofµp→x

(
x

(u)
i [l]

)
in (3.27) or (3.28), we approximate the beliefsµx→p

(
x

(u)
i [l]

)
in

(3.26) by Gaussian distributions. That is, we set1

µx→p

(
x

(u)
i [l]

)
∝ exp

(
− |x(u)

i [l] − m
(u)
i [l]|2

σ
(u)2
i [l]

)
, (3.33)

where the meansm(u)
i [l] and variancesσ(u)2

i [l] are chosen equal to those of the trueµC→c

(
x

(u)
i [l]

)
. Using

(3.26), we obtain

m
(u)
i [l] =

∑

x
(u)
i [l]

x
(u)
i [l] µ̄C→c

(
χ−1(x

(u)
i [l])

)
,

σ
(m)2
i [l] =

∑

x
(u)
i [l]

∣∣x(u)
i [l] − m

(u)
i [l]

∣∣2 µ̄C→c

(
χ−1(x

(u)
i [l])

)
.

For BPSK symbols with|x(u)
i [l]| = 1, we have|m(u)

i [l]|2 + σ
(m)2
i [l] = 1. We will now use (3.33) for an

approximate calculation ofµp→x

(
x

(u)
i [l]

)
.

Perfect CSI. For the genie-aided case with perfect CSI at the receiver, we obtain from (3.27)

µp→x(x
(u)
i [l]) ∝ exp

(
−
(
rd[l]−h

(u)
d,i [l]x

(u)
i [l]−m

(u)
i [l]

)H
C

(u)−1
i [l]

(
rd[l]−h

(u)
d,i [l]x

(u)
i [l]−m

(u)
i [l]

))
, (3.34)

with mean interference vector

m
(u)
i [l] =

∑

(i′,u′) 6=(i,u)

m
(u′)
i′ [l]h

(u′)
d,i′ [l]

and interference plus noise covariance matrix

1To keep the notation simple, we use the symbolsµC→c

(
x

(u)
i [l]

)
etc. also for the approximate quantities.
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C
(u)
i [l] = σ2I +

∑

(i′,u′) 6=(i,u)

σ
(u′)2
i′ [l]h

(u′)
d,i′ [l]h

(u′)H
d,i′ [l] .

Hence, the (exponentially complex) computation of (3.27) is replaced with the computation of (3.34). The

overall complexity of computingµp→x(x
(u)
i [l]) can be shown to scale linearly with the number of users and

cubically with the number of transmit antennas.

Pilot-based channel estimation. For the receiver performing pilot-based channel estimation, we will use a

Gaussian model also for the beliefsµh→p(h
(u)
d,i [l]) i.e.,

µh→p(h
(u)
d,i [l]) ∝ exp

(
−
(
h

(u)
d,i [l] − m

h
(u)
d,i

[l]
)H

C−1

h
(u)
d,i

[l]
(
h

(u)
d,i [l] − m

h
(u)
d,i

[l]
))

, (3.35)

where the mean vectorm
h
(u)
d,i

[l] and the covariance matrixC
h
(u)
d,i

[l] will be determined at the end of this subsec-

tion.

Assuming thatx(u)
i [l] andh

(u)
d,i [l] are mutually independent and distributed according to (3.33) and (3.35),

respectively, the messageµp→x(x
(u)
i [l]) in (3.28) equals the conditional pdff(rd[l]|x(u)

i [l]). This fact and

the use of a Gaussian approximation allow for an approximation of the messageµp→x(x
(u)
i [l]). We use the

Gaussian approximation

µp→x(x
(u)
i [l]) = fG(rd[l]|x(u)

i [l]) ∝ exp
(
−
(
rd[l] − m

r
(u)
d,i [l]

)H
C−1

r
(u)
d,i

[l]
(
rd[l] − m

r
(u)
d,i [l]

))
, (3.36)

with mean

m
r
(u)
d,i

[l] = x
(u)
i [l]m

h
(u)
d,i

[l] +
∑

(i′,u′) 6=(i,u)

m
(u′)
i′ [l]m

h
(u′)

d,i′
[l]

and covariance matrix

C
r
(u)
d,i

[l] = |x(u)
i [l]|2C

h
(u)
d,i

[l] +
∑

(i′,u′) 6=(i,u)

[
σ

(u′)2
i′ [l]m

h
(u′)

d,i′
[l]mH

h
(u′)

d,i′

[l] +
(
|m(u′)

i′ [l]|2 + σ
(u′)2
i′ [l]

)
C

h
(u′)

d,i′
[l]
]

+ σ2
wI .

As in (3.34), the overall complexity of calculatingµp→x(x
(u)
i [l]) scales linearly with the number of users and

cubically with the number of transmit antennas.

In a similar manner, the messageµp→h(h
(u)
d,i [l]) in (3.31) can be approximated as

µp→h(h
(u)
d,i [l]) ∝ exp

(
−
(
hd,i[l] − m

h
(u)
d,i

[l]
)H |m(u)

i |2C−1

h
(u)
d,i

[l]
(
hd,i[l] − m

h
(u)
d,i

[l]
))

,

with

m
h
(u)
d,i

[l] =
1

m
(u)
i [l]

[
r[l] +

∑

(i′,u′) 6=(i,u)

m
(u′)
i′ [l]m

h
(u′)

d,i′
[l]

]

and

C
h
(u)
d,i

[l] = σ
(u)2
i [l]h

(u)
d,i [l]h

(u)H
d,i [l] +

∑

(i′,u′) 6=(i,u)

[
σ

(u′)2
i′ [l]m

h
(u′)

d,i′
[l]mH

h
(u′)

d,i′

[l]

+
(
|m(u′)

i′ [l]|2 + σ
(u′)2
i′ [l]

)
C

h
(u′)

d,i′
[l]
]

+ σ2
wI . (3.37)
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To obtain a message that is Gaussian inh
(u)
d,i [l], we approximateC

h
(u)
d,i

[l] by neglecting the first term in (3.37).

This is motivated by the fact that, typically,σ
(u)2
i [l] → 0 in the course of the iterations. In particular, for the

special case of BPSK modulation, this approximation yields

C
h
(u)
d,i

[l] =
∑

(i′,u′) 6=(i,u)

[
σ

(u′)2
i′ [l]m

h
(u′)

d,i′
[l]mH

h
(u′)

d,i′

[l] + C
h
(u′)

d,i′
[l]
]

+ σ2
wI .

Refinement of channel estimation.We next explain the calculation of the messagesµh→p(h
(u)
d,i [l]) from the

messagesµp→h(h
(u)
d,i [l]). In the following, we consider all subcarriers (i.e., both data and pilot subcarriers)

and definēµp→h(h
(u)
j,i [k]) asµp→h(h

(u)
j,i [l]) indexed with the true subcarrier positionk. Similarly, we define

[m̄
h
(u)
j,i

]k and[C̄
h
(u)
j,i

]k,k as the mean[m
h
(u)
i

[l]]j and variance[C
h
(u)
i

[l]]j,j indexed with the true subcarrier posi-

tion, respectively.

Consider the vectorh(u)
j,i for given u, i, andj. From the factor graph in Fig. 3.3, it can be seen that the

edges associated with the messagesµ̄p→h(h
(u)
j,i [k]) andµrp(h

(u)
j,i [k]) are connected to the variable nodeh

(u)
j,i .

Let us collect the messagesµ̄p→h(h
(u)
j,i [k]), k /∈P andµrp(h

(u)
j,i [k]), k∈P(u)

i into a “vector message”µh(h
(u)
j,i ).

This message is Gaussian with some mean vectormh and covariance matrixCh (here and in the following, we

omit the indicesu, j, i for notational convenience). In the first several iterations, we use only the pilot symbols

for channel estimation. We thus have

µh(h) =
∏

k∈P(u)
i

µrp(h[k]) ,

whence

[mh]k =





[rp[k]]i/p , k∈P(u)
i

0 , otherwise,
[Ch]k,k =





σ2
w/|p|2 , k∈P(u)

i

0 , otherwise.

In later iterations, we also use the messagesµ̄p→h(h[k]) for channel estimation, so

µh(h) =
∏

k∈P(u)
i

µrp(h[k])
∏

k/∈P
µ̄p→h(h[k]) ,

whence

[mh]k =





[rp[k]]i/p , k∈P(u)
i

[m̄
h
(u)
j,i

]k , k /∈P
0 , otherwise,

[Ch]k,k =





σ2
w/|p|2 , k∈P(u)

i

[C̄
h
(u)
j,i

]k,k , k /∈P
0 , otherwise.

Becausẽh = FHh, the messageµh̃(h̃) is Gaussian with meanmh̃ = FHmh and covarianceCh̃ =

FHChF. The messageµh̃(h̃) is multiplied by thea priori messageµf
h̃
(h̃), which is Gaussian with meanmh̃p

and covarianceCh̃p
(cf. Section 3.2). The product messageµ

up
h̃

(h̃) = µh̃(h̃)µf
h̃
(h̃) is then again Gaussian [5],

with mean and covariance to be denoted asm
up
h̃

andC
up
h̃

, respectively. Because the time-domain channelh̃ is

assumed to have finite lengthLch, only the firstLch elements ofmup
h̃

(denoted by the vectornup
h̃

) are nonzero.

Similarly, only the top-leftLch×Lch submatrix ofCup
h̃

(denoted asDup
h̃

) has nonzero elements. Letnh̃ andnh̃p
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denote the vector of the firstLch elements ofmh̃ andmh̃p
, respectively, and letDh̃ andDh̃p

denote the top-left

Lch × Lch submatrix ofCh̃ andCh̃p
, respectively. Then we have [5]

D
up
h̃

=
(
D−1

h̃
+ D−1

h̃p

)−1
, n

up
h̃

= D
up
h̃

(
D−1

h̃
nh̃ + D−1

h̃p
nh̃p

)
.

Becauseh = Fh̃, the messagēµh→p(h) is Gaussian with mean̄mup
h = Fm

up
h̃

and covariancēCup
h =

FC
up
h̃

FH (cf. [5]). The mean[m
h
(u)
d,i

[l]]j and variance[C
h
(u)
d,i

[l]]j,j in (3.35) equal the element ofmup
h and the

diagonal element ofCup
h at the corresponding data subcarrier position, respectively.

3.4.2 Selective Message Update

Since for higher-order symbol alphabets the calculation (update) of the messagesµc→C(c
(u)
q ) in (3.29) is rather

costly, we propose a scheme that yields a reduction of the number of updates performed. This reduction is

achieved by calculating updated beliefs only for code bits with poor reliability.The reliability of a code bitc(u)
q

is measured by its posterior LLR, which is given by

ξ̃(u)
q = log

µC→c(c
(u)
q = 0)µc→C(c

(u)
q = 0)

µC→c(c
(u)
q =1)µc→C(c

(u)
q =1)

. (3.38)

If |ξ̃(u)
q | exceeds a prescribed threshold, the corresponding messageµc→C(c

(u)
q ) is not updated, i.e., the value

from the previous iteration is reused. In the course of the iterations of the sum-product algorithm, the code

bit reliabilities improve and hence fewer and fewer message updates have tobe performed. We note that

this selective message updatecan be viewed as a specific scheduling [61] of the sum-product algorithmthat

dynamically adapts to the current bit reliabilities: Messagesµc→C corresponding to unreliable decisions are

updated earlier (and more often) than messages corresponding to reliabledecisions.

The choice of the threshold affects both the number of message updates that have to be carried out and

the performance of the sum-product algorithm (convergence behaviorand final bit error rate). Since the LLRs

generally increase with the signal-to-noise ratio (SNR), the threshold has tobe adapted to the SNR. The impact

of the LLR threshold on the performance and complexity of the receiver willbe studied experimentally in

Section 3.6. Generally, our experimental results show that the increase ofBER caused by the selective message

update scheme is rather small, thereby supporting the use of (3.38) as reliability measure.

3.4.3 Overall Receiver Structure

The message-passing algorithm developed above, together with appropriate scheduling, can be interpreted as

the iterative turbo receiver structure shown in Fig. 3.4. The “OFDM receiver” block removes the cyclic prefix

and calculates the frequency-domain sequencer by means of a DFT. The dotted box labeled “soft multiuser

detector” in Fig. 3.3 corresponds to the soft-in/soft-out MIMO multiuser detector in Fig. 3.4, which exchanges

messages with theU function nodes of the code constraints I
{
c(u) = C(u)(b(u))

}
located in the upper part of

Fig. 3.3). The code constraint function nodes correspond to theU parallel single-user soft-in/soft-out channel

decoders shown in Fig. 3.4. The dotted box “soft multiuser detector” in Fig.3.3 also exchanges messages with

the dotted box denoted “channel estimation”, which corresponds to the channel estimation block in Fig. 3.4.



Chapter 3. Interleave-Division Multiple Access Transmission Schemes 57

OFDM
receiver

µp→h

µh→p

soft

multiuser

detectorr

channel
estimation

π(1)−1

π(U)−1 soft channel

soft channel

decoder

decoder

π(1)

π(U)

ξ̃
(1)
q

ξ̃
(U)
q

ξ
(1)
q

ξ
(U)
q

Figure 3.4: Structure of the MIMO-OFDM-IDMA receiver performing joint detectionand channel estimation.

More specifically, the MIMO multiuser detector takes the code bit beliefsµc→C(c
(u)
q ) (they are obtained

from the extrinsic LLRsξ(u)
q by (3.25)) produced by the channel decoders as input and passes refined code bit

beliefsµc→C(c
(u)
q ) (which are converted to LLRs̄ξ(u)

q by means of (3.30)) back to the channel decoders. We

distinguish between parallel and serial schedudling [61]: In case of parallel message scheduling the extrinsic

LLRs ξ
(u)
q for all users at the input of the multiuser detector are simultaneously updatedby the channel decoders,

and then used by the multiuser detector to calculate refined messagesµc→C(c
(u)
q ) for all users concurrently. In

a similar manner, the messagesµp→h obtained from the MIMO multiuser detector are used to calculate refined

estimatesµh→p of the channel coefficients, which are used in the next iteration. One iteration consists ofU

decoding steps (i.e. calculating LLRsξ
(u)
q ), one multiuser detection step (i.e. calculating messagesµc→C(c

(u)
q )),

and one update of the messagesµh→p(h
(u)
j,i [l]).

In case of serial message scheduling the user data is decoded sequentially. After decoding one user (yield-

ing updated extrinsic LLRsξ(u)
q of this user), the multiuser detector calculates refined messagesµc→C(c

(u)
q ).

These messages are then used by the channel deocder to decode the next user. After allU users have been

decoded (and, correspondingly,U updates of the messagesµc→C(c
(u)
q ) by the multiuser detector), one iteration

is finished. Therefore one iteration consists ofU decoding steps andU multiuser detection steps; it is therefore

much more computationally complex than parallel scheduling.

When the message-passing algorithm is terminated after a predefined numberof iterations, the signs of the

a posterioriLLRs of the information bits calculated by the channel decoder (this calculation is not discussed

here) provide the final bit decisionsb̂(u)
m approximating (3.11).

3.5 Performance Limits of IDMA

In Section 3.6 we will demonstrate the performance of the proposed low-complexity receiver derived in Section

3.4 by means of BER simulations. Being important from a system point of view, itwas argued in [20] that this

might be misleading as BER performance also depends on the channel code.

Therefore, we seek a code-independent performance assessmentof the low-complexity receiver. To this end
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Figure 3.5: Information theoretic sum-rate of SISO-IDMA withU = 4 users and BPSK modulation compared

with the area under the EXIT chart of the IDMA low-complexity multiuser detector and3 operation points of

an LDPC-coded IDMA system.

we compare the achievable rate of the IDMA receiver with the information theoretic capacity of the Gaussian

multiple-access (MAC) channel given by (3.8) (or equivalently by (2.13)) restricted to finite symbol alphabet at

its input. We consider only IDMA systems with perfect CSI at the receivers, as only in this case the information

theoretic sum-rate is known.

The sum rateRs of the MAC channel (3.8) is given by (2.14) (cf. [39])

Rs =
U∑

u=1

Ru = I(X; r) , (3.39)

whereRu denotes the individual rate of theuth user and the mutual information [39] is given by

I(X; r) =
1

2UMTB
EH

{
∑

X

log
2UMTBf(r|H,X)∑

X′ f(r|H,X′)

}
.

We assume independent user channel with i.i.d. Rayleigh fading; the expectationEH has to be taken accord-

ingly. For a symmetric MAC, the IDMA system considered here provides the same rate to every user, i.e. there

is Ru = 1
U Rs.

To obtain an approximation for the achievable rate of the low-complexity IDMA receiver presented in

Section 3.4, we performed BER simulations, but used an LDPC code [49] for channel coding. Due to the

strong performance of these codes, the waterfall region is close to the rate achievable with IDMA.

We first considered a SISO-IDMA system withU =4 users and BPSK modulation and obtained sum-rate

(normalized by the number of users)1
U I(X; r) by means of Monte Carlo simulations. The results are shown in

Fig. 3.5. We exchanged the serial concatenation of the convolutional code and the repetition code with a regular

LDPC code2 and performed BER simulations for code ratesR=0.1, 0.125, 0.2. The SNR values above which

the BER dropped below10−4 are also shown as operation points.

2The LDPC code was designed using the EPFL web-tool athttp://lthcwww.epfl.ch/research/ldpcopt



Chapter 3. Interleave-Division Multiple Access Transmission Schemes 59

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
A

I E

 

 

multiuser detector; SNR=4dB
LDPC code w. R=0.2
multiuser detector; SNR=−5dB
LDPC code w. R=0.1

Figure 3.6: IDMA system with U = 4 users and BPSK modulation: EXIT charts of the low-complexity

multiuser detector and of LDPC codes with different rates.

It can be seen that for code rates ofR = 0.1 andR = 0.125 the IDMA system performs about2 dB away

from the information theoretic limit. For a code rate ofR = 0.2 we observe a much larger gap of about6 dB.

This gap can partly be explained by the fact that the LDPC codes we used were optimized for AWGN channels

and at higher SNR (which is equivalent to higher rates) there is a mismatch between the LDPC codes and the

IDMA system [62].

We further investigated this mismatch by means of EXIT charts (see Chapter 2) of the low-complexity

IDMA multiuser detector. The EXIT chart [42] is a plot of the mutual information IE(IA) =

I(c
(u)
q ; µc→C(c

(u)
q )) versusIA = I(c

(u)
q ; µC→c(c

(u)
q )). Fig. 3.6 shows EXIT charts of the low-complexity IDMA

multiuser detector for2 different SNR values, and of two LDPC codes with ratesR=0.1 andR=0.2, respec-

tively. At an SNR of−4 dB the EXIT chart of the multiuser detector matches the EXIT chart of the rateR=0.1

LDPC code very well, and this explains the closeness of the corresponding operating point in Fig. 3.5 to the

theoretical limit. At an SNR of4 dB there is a significant mismatch of the multiuser EXIT chart and the EXIT

chart of the rateR=0.2 LDPC code, causing the large gap to the theoretical limit of this operating point.

A lot of experiments indicate that the area under the EXIT chart is approximately equal to the achievable

rate. By perfectly matching the code to the EXIT chart of the multiuser detector[25, 63], the areas under the

respective EXIT charts can be made equal, and therefore the area under the EXIT chart of the multiuser detector

becomes an approximation of the achievable rate of the IDMA system. In Fig. 3.5 we additionally show the area

under the EXIT chart of the multiuser detector. For an SNR below0 dB the area is almost equal the information

theoretic sum-rate, for higher SNR there is a small gap.

Finally, Fig. 3.7 shows the results for a2×2 MIMO-IDMA system withU =2 users and BPSK modulation.

The used code rates for the BER simulations wereR=0.125, 0.2, 0.25 and all three operating points lie within

2 dB from the theoretical capacity limit. As in the SISO case, the area under the multiuser detector EXIT chart

is very close to the information-theoretic limit for an SNR below0 dB.

We observe that the low-complexity multiuser detector comes close to the absoluteperformance limit.

This demonstrates the validity of the various assumptions and approximations involved in the derivation of
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Figure 3.7: Sum-rate of2× 2 MIMO-IDMA with U = 2 users and BPSK modulation compared with the area

under the EXIT chart of the IDMA low-complexity multiuser detector and3 operation points of an LDPC-coded

IDMA system.

the low-complexity multiuser detector. At higher SNR, the EXIT chart of the standard channel code (serial

concatenation of the convolutional codes and a repetition code) is mismatchedto the EXIT chart of the low-

complexity multiuser detector. It is therefore important to employ optimized LDPC codes to achieve good

performance.

3.6 Simulation Results

In this section, we present simulation results for the proposed MIMO-OFDM-IDMA receivers. We first con-

sider receivers with perfect CSI and study the selective message update scheme. Then, we will investigate

pilot-assisted receivers performing joint multiuser data detection and channel estimation. In all simulations, the

channel code is a serial concatenation of a terminated rate-1/2 convolutional code with code polynomial given

in octal notation by[23 35]8 and a rate-1/U repetition code, whereU is the number of users. Thus, the overall

code rate isR=1/(2U). The interleavers were generated randomly for each user.

3.6.1 Receivers with Perfect CSI

We first consider various versions of the genie-aided receiver with perfect CSI. We simulated a2×2 MIMO-

OFDM-IDMA system withU =2 users, each transmittingJ =512 information bits, and 16-QAM modulation.

The time-domain channel hadLch=40 independent taps, each with variance1.

Basic low-complexity receiver. For the low-complexity receiver using the Gaussian message approximation

(3.34), Fig. 3.8 shows the bit-error rate (BER) after10 message-passing iterations, versus the SNREb/N0. We

can observe the typical turbo behavior, with an SNR of more than8 dB required for convergence and a waterfall

region above that SNR. For an SNR ofEb/N0 > 10 dB, our receiver performs close to the single-user bound

(i.e., onlyU = 1 user). We also show the BER of the receiver that calculates the exact message (3.29), i.e.,
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Figure 3.8: BER of different receivers versus SNREb/N0 for a2×2 MIMO system with 16-QAM modulation

andU = 2 users.
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Figure 3.9: Conditional bit-error probability given that the posterior LLR lies in a small interval, versus the

interval center, for a2×2 MIMO system with 16-QAM modulation andU = 2 users at an SNR of9 dB.

without the Gaussian approximation, forU =1 user. It is seen that the proposed low-complexity receiver using

(3.34) performs almost as well, which justifies the Gaussian approximation thatled to (3.34).

Low-complexity receiver with selective message updates.Next, we present simulation results illustrating the

selective message update scheme of Subsection 3.4.2. Based on the sign ofthe posterior LLR̃ξ
(u)
q in (3.38), we

can make a decision on the code bitsc
(u)
q and thereby compute the empirical probability of errorP{E} for the

code bits. In Fig. 3.9, we plot the conditional bit-error probability given that the LLR ξ̃
(u)
q lies in an intervalIk

of width 0.1, P{Eq|ξ̃(u)
q ∈ Ik}, versus the center ofIk. It can be seen that LLRs with a large absolute value yield

a low probability of error. This experimental result provides a motivation for not updating the corresponding

messageµc→C(c
(u)
q ) when|ξ̃(u)

q | exceeds a certain threshold.

In Fig. 3.10, we study the BER versus complexity of the receiver using Gaussian message approximations,

both with and without selective message updates, at an SNR ofEb/N0 = 11 dB. The complexity measure

considered is the cumulative number of message updates divided by the block length, which can be interpreted
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Figure 3.10: BER versus normalized cumulative number of message updates for receivers using different

selective message update schemes and for the receiver without selective message updates, for a2× 2 MIMO

system with 16-QAM modulation andU = 2 users at an SNR of11 dB.

as the average number of message updates per code bit. We compare threedifferent selective update schemes:

schemes A and C use a constant LLR threshold of 30 and 5, respectively, which means that scheme C tends to

perform fewer updates than scheme A. Scheme B uses an LLR threshold that decreases linearly from 30 (first

iteration) to 5 (10th iteration); this is motivated by the fact that the LLRs tend to increase in the course of the

iterations. From Fig. 3.10, we can draw the general conclusion that the selective message update strategy offers

a very favorable performance–complexity tradeoff. Scheme A exhibits thequickest BER decrease with growing

number of updates, but saturates at a BER slightly above10−4 and a complexity of about2.2 updates/block

length; no updates are performed after that point. The last iterations reduce the BER only slightly but at the same

time require only very few updates since most posterior LLR magnitudes are already larger than 5. The behavior

of scheme C initially equals that observed without selective updates. Eventually, however, LLR thresholding

sets in and the further BER decrease (down to below10−5) is achieved with significantly less complexity than

without selective updates. The results of scheme B are intermediate betweenthose of schemes A and C, with a

quick initial BER decrease and saturation at a reasonably low BER. To achieve a target BER of10−4 (or better),

the method without selective updates requires six iterations with almost six updates/block length. Scheme B

also requires only three updates/block length during six iterations, corresponding to computational savings of

about 50%.

Low-complexity receiver with selective message updates and fixed complexity. In the selective message

update scheme presented above, the actual number of updated messagesdepends on the LLR threshold and

on system parameters like the SNR and the number of users. In practice, it may be more desirable to update

a fixed number of messages in each iteration, so that a fixed complexity per iteration is obtained. This can

be easily achieved by updating the messagesµc→C(c
(u)
q ) corresponding to thepN posterior LLRsξ̃(u)

q with

smallest absolute value, wherep (0≤p≤1) controls the complexity (To obtain a high degree of flexibility, we

allow the fixed number of message updates to change over the iterations, thatis p changes over the iterations).

We consider three different schemes A, B, and C corresponding to a decreasing number oftotal message
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Figure 3.11: BER versus normalized cumulative number of message updates for receivers using different

selective message update schemes with fixed complexity and for the receiver without selective message updates,

for a2×2 MIMO system with 16-QAM modulation andU = 2 users at an SNR of11 dB.

updates, i.e., scheme A tends to update more messages than scheme B, etc. Fig.3.11 shows the average BER

versus complexity (cumulative number of updates/block length) for the threeschemes and for the receiver

without selective updates. The conclusions are essentially the same as before. For a target BER of10−4, com-

putational savings of about 50% are possible (when scheme B is applied).The more aggressive thresholding

scheme C attains a BER slightly above10−4. Schemes A and B as well as the receiver without selective updates

attain smaller BERs with larger numbers of updates; however, after a certainpoint, additional updates no longer

decrease the BER.

Next, we consider the fixed-complexity selective message update scheme for a system in which the two

users have different channel gains. More specifically, the channelof the first user is stronger by3 dB than that

of the second user. We compare three different update schemes A, B, and C. In scheme A, the same number

of updates per iteration is assigned to both users; in scheme B, the strongeruser is assigned more updates

than the weaker user, and in scheme C, the stronger user is assigned fewer updates than the weaker user. In

schemes B and C, the total number of updates per iteration (summed over both users) is chosen to be the same

as in scheme A. Fig. 3.12 shows the BER-versus-complexity curves for thethree schemes and for the receiver

without selective updates.

It can be seen that reducing the number of updates for the weaker user(as is done in scheme B) degrades

performance, whereas schemes A and C yield almost the same performance. Compared to the receiver without

selective updates, complexity savings on the order of50% are possible.

We next compare the performance of different scheduling strategies. Fig. 3.13 shows the BER performance

versus number of iterations of a2 × 2 MIMO-IDMA system with 16QAM andU = 2 users, employing serial

and parallel scheduling. It can be seen that the receiver employing serial scheduling converges faster (within

5 iterations), while the receiver employing parallel scheduling requires10 iterations to reach the same BER

performance. Considering the much higher complexity of the serial scheduling scheme in every iteration, it

might still be favourable to use a receiver which employs parallel scheduling.
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Figure 3.12: BER versus normalized cumulative number of message updates for receivers using different

selective message update schemes with fixed user-dependent complexity,for a 2× 2 MIMO system with 16-

QAM modulation andU = 2 users at an SNR of11 dB. The channel of user1 is 3 dB stronger than the channel

of user2.
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Figure 3.13: Performance comparison of scheduling strategies: BER versus cumulative number of message

updates using parallel and serial scheduling for2 × 2 MIMO-IDMA with 16QAM and U = 2 users at an SNR

of 11 dB.

3.6.2 Receivers Performing Joint Channel Estimation and Data Detection

We now present simulation results for receivers performing joint data detection and pilot-aided channel estima-

tion.

SISO system.First, we consider the single-input single-output (SISO) case, i.e.,MT = MR = 1. We simulated

a pilot-assisted SISO-OFDM-IDMA system withU =4 users, each transmittingJ =256 information bits. The

channel length wasLch=40 taps. The distance between the pilot blocks was chosen as∆=40 subcarriers, and

from (3.5) the number of pilot blocks isKp = 57 and from (3.4) a total number ofK = 2276 subcarriers was

used. The modulation format was BPSK unless noted otherwise. The messagesµp→h were used for refining

the channel estimate messagesµh→p only after the second iteration. Fig. 3.14 shows the average BER versus

the SNREb/N0 for the following receivers: (i) the proposed receiver using Gaussian message approximations;

(ii) the genie-aided receiver with perfect CSI; (iii) a conventional receiver that separately estimates the channel
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Figure 3.14: BER versus SNREb/N0 for different iterative receivers, for a SISO system with BPSK modula-

tion andU = 4 users.

coefficients by means of a pilot-based least-squares estimator and then uses the channel estimates for iterative

data detection. The conventional receiver then uses the Gaussian approximations of (3.34). In all cases, 10

iterations were performed. It is seen that the receiver with integrated channel estimation gains about5 dB of

SNR compared to the conventional receiver and approaches the performance of the genie-aided receiver for

SNRs larger than10 dB.

For the proposed receiver using Gaussian message approximations, Fig. 3.15 depicts the mean square error

(MSE) of the channel estimate versus the number of iterations, at an SNR ofEb/N0 = 13 dB. As a reference,

the channel estimation MSE of the conventional receiver with separate channel estimation is also shown (this

is a horizontal line, as the MSE of the conventional receiver does not depend on the number of iterations).

It is seen that the MSE of the proposed receiver starts decreasing significantly when the messagesµh→p are

used (i.e., after the second iteration). After the seventh iteration, it is about6 dB lower than the MSE of the

conventional receiver. This decrease in MSE results in a better BER performance. This is demonstrated by Fig.

3.16, which shows the BER for the proposed and conventional receivers versus the number of iterations, again

at Eb/N0 = 13 dB. The BER of the conventional receiver saturates after four iterations, whereas the BER of

the proposed receiver saturates after seven iterations to a value aboutthree orders of magnitude smaller.

Next, we show results for a SISO-OFDM-IDMA system withU = 2 users and 16-QAM modulation. To

avoid many short cycles in the factor graph (which would lead to poor performance), each user transmitted

J = 2048 information bits. The pilot distance was∆ = 40 subcarriers, resulting inKp = 54 pilot blocks (cf.

(3.5)) and a total number ofK =2156 subcarriers (c.f. (3.4)). The channel length wasLch =20. The receiver

performed15 iterations, and the messagesµp→h were used for refining the channel estimate messagesµh→p

after the8th iteration. Fig. 3.17 shows the average BER obtained with the proposed receiver, the conventional

receiver, and the genie-aided receiver versus the SNREb/N0. It is seen that the proposed receiver outperforms

the conventional receiver forEb/N0 larger than about22 dB, and it comes close to the genie-aided receiver for

Eb/N0 larger than about25 dB.

We also considered the fixed-complexity selective message update scheme for this system. In every itera-
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Figure 3.15: Channel estimation MSE versus number of iterations for different iterative receivers, for a SISO

system with BPSK modulation andU = 4 users at an SNR of13 dB.
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Figure 3.16: BER versus number of iterations for different iterative receivers, for a SISO system with BPSK

modulation andU = 4 users at an SNR of13 dB.

tion, the messagesµc→C(c
(u)
q ) corresponding to thepN posterior LLRsξ̃(u)

q with smallest absolute value are

updated, whereas all messagesµp→h andµh→p were updated.

Fig. 3.18 shows the average BER versus complexity (cumulative number of message updates/block length)

for three different schemes and the receiver without selective message updates. The three different schemes

A, B, and C correspond to decreasing number of message updates, i.e. scheme A updates more messages than

scheme B, etc. Interestingly, the schemes A and B attain a lower BER than the receiver with full message

updates, with about half the complexity. Scheme C performs slightly worse thanthe full complexity receiver

but requires only about1/3 of the message updates. It seems that due to the system parameters, the manycycles

of the factor graph decrease performance of the full complexity receiver, whereas the receivers with selective

message updates (and therefore message updates) perform better.

In Fig. 3.17 we also plotted the BER performance of the selective message update scheme B, and it can be

seen that it performs better than the full complexity receiver in spite of its lower complexity. Only in case of
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Figure 3.17: BER of different receivers versus SNREb/N0 for a SISO system with 16-QAM modulation and

U = 2 users.
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Figure 3.18: BER of different receivers versus SNREb/N0 for a SISO system with 16-QAM modulation and

U = 2 users.

high SNR (and convergence to the receiver with genie-aided CSI) both receivers perform the same.

MIMO system. Finally, we demonstrate the application of the proposed iterative receiver with integrated

channel estimation to MIMO-OFDM-IDMA transmissions. We considered a2×2 MIMO system withU = 4

users, each transmittingJ = 512 information bits. The modulation format was BPSK. The distance between

the pilot blocks was∆ = 30 subcarriers. The number of pilot blocks wasKp = 94 and the total number of

subcarriersK = 2800. The length of the time-domain channel wasLch = 30 taps. Fig. 3.19 shows the BER

versus the SNR. For an SNR larger than about13 dB, the conventional receiver has an SNR gap of about6 dB

to the genie-aided receiver, and the proposed receiver comes within0.5 dB of the genie-aided receiver.
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andU = 4 users.



4

MIMO-BICM with quantized

LLRs

THE performance of bit-interleaved coded modulation (BICM) can be vastly improved by using soft de-

tection, where the demodulator not only provides bit decisions, but also provides a reliability measure,

usually a log-likelihood ratio (LLR), on these decisions. By appropriately using this reliability information in

the channel decoder, significant performance gains can be achieved. In a variety of scenarios it is necessary or

advantageous to quantize the LLRs before saving and/or further processing. This chapter studies how to best

quantize LLRs, and which effects on performance LLR quantization has.

69
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4.1 Introduction and Background

In a BICM system, a sequence of real-valued LLRs is calculated by the demodulator and needs to be stored, till a

block of them can be deinterleaved and decoded by the channel decoder. Current error correcting channel codes

are mostly block codes of large block length (LDPC codes operate with blocklength in the order of thousands

to ten thousands of information bits). Therefore saving these real-valuedLLRs for further processing requires

a lot of memory. These memories require large chip sizes, which are unfavourable for reasons of cost, power

consumption and reduced yields. Therefore, guidelines on how many bits are needed to efficiently store LLRs

are required.

Quantization of soft information is also relevant in wireless (relay) networks [64]. Here, nodes can coop-

erate for transmission purposes or perform distributed turbo and network coding. This cooperation sometimes

involves exchanging soft information between the nodes, which is usually represented by means of LLRs. It

is undesirable to exchange LLRs by means of analog transmission, therefore the LLRs need to be quantized

before they can be transmitted to cooperating nodes.

The system capacity of the equivalent BICM (modulation) channel between a code bit (at the input of the

mapper) and its corresponding LLR (at the demodulator output) was studiedin [10]. This work was extended

and used for code-independent performance comparison of varioussub-optimum soft-out demodulators for

BICM in a multiple-input multiple-output (MIMO)context in [20]. Here we use the framework of the equivalent

BICM modulation channel to propose different quantizer designs and compare their performance.

Optimal LLR quantization maximizing information rate for the special case of BPSKmodulation over an

AWGN channel was considered in [21], and in [65] we proposed a different quantizer design which allowed for

simple implementation while only slightly degrading information rate. In this chapter weextend our proposed

quantizer design to other modulation alphabets and system sizes and compareour approach with optimal LLR

quantization.

This chapter is organized as follows: Section 4.2 presents the system modeland Section 4.3 discusses LLR

quantization based on an equivalent discrete channel. In Sections 4.3.1 and 4.4, we study the system capacity

of SISO- and MIMO-BICM systems, respectively. The estimation of the quantizer parameters is addressed in

Section 4.5 and BER results are provided in Section 4.6.

4.2 System Model

We consider a MIMO-BICM system withMT transmit antennas andMR receive antennas as was already

described in Section 2.1.3. The system model is shown in Fig. 4.1; the only difference to the system model of

Section 2.1.3 is the quantizer, whose operation will be explained below.
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Figure 4.1: Block diagram of a MIMO-BICM system with LLR quantization.

4.2.1 Soft Demodulation

The MIMO-BICM system shown in Fig. 4.1 employs a max-log demodulator [38]. based on the received vector

y it calculates LLRsΛl according to (2.7) (cf. Subsection 2.1.3)

Λl ≈
1

σ2

[
min
x∈X 0

l

‖y − Hx‖2 − min
x∈X 1

l

‖y − Hx‖2

]
. (4.1)

These LLRs (or approximate/quantized versions thereof) are de-scrambled by the sequencēpl[n] = 1−2pl[n],

de-interleaved and used by the channel decoder to obtain bit estimatesb̂[n].

4.3 LLR Quantization

The LLRs in (4.1) can attain any real value, and we will next study how to quantize these LLRs. In practice the

demodulator should directly deliver quantized LLRs (as an example of sucha setup, we will study a soft-MMSE

demodulator in Section 4.7).

The symmetric noise distribution and the use of the scrambler yield the symmetriesfΛ(ξ) = fΛ(−ξ) and

fΛ|c(ξ|c=1) = fΛ|c(−ξ|c=0) for the (un)conditional LLR distribution. Hence, knowledge offΛ|c(ξ|c=1) is

sufficient for characterizingΛ.

We consider aq-bit quantizer characterized byK = 2q binsIk = [ik−1, ik], k = 1, . . . , K. We use the

conventioni0 = −∞, iK = ∞ and assume symmetric bins (this is motivated by the symmetry of the LLR

distributions), with boundariesik sorted in ascending order. The quantizerQ(·) maps the LLRΛl to a discrete

LLR dl according to

dl = Q(Λl) = λk if Λl ∈ Ik .

Here,λk ∈ Ik is thekth quantization level.

In the following, we consider the equivalent discrete channel with binaryinput c ∈ {0, 1} and K-ary

outputd ∈ {λ1, . . . , λK} as shown in Fig. 4.2. Here,c andd are obtained by randomly picking a bit position

l = 1, . . . , R0 according to a uniform distribution. This models a situation where the outer channel code is

“blind” to the bit positions within the symbol labels. The crossover probabilitiespbk = Pr{d = λk|c = b} =

Pr{Λ ∈ Ik|c = b} of this channel are given by

pbk =

∫

Ik

fΛ|c(ξ|b) dξ, (4.2)
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wherefΛ|c(ξ|b) is the conditional probability density function (pdf) of the LLRΛ given thatc = b (averaged

with respect to bit positionl). Note thatPr{d = λk} = Pr{Λ ∈ Ik} = 1
2(p0k + p1k). The mutual information

(capacity)I = I(c ; d) of this discrete channel is given by [39]

I =
1

2

1∑

b=0

K∑

k=1

pbk log2

2pbk

p0k + p1k
. (4.3)

If the LLR distributionfΛ|c(ξ|b) and hence the transition probabilitiespbk are averaged with respect to the

statistics of the physical channelH (reflecting fast fading), the quantityI describes the ergodic rate achievable

over the equivalent channel (cf. [40]). Otherwise (quasi-static fading), the transition probabilitiespbk, and thus

the rateI, change with every realization of the channel matrixH. Here, the probability

pout(r) = Pr{I ≤ R} , 0 ≤ R ≤ R0 (4.4)

characterizes the rate (denotedR) versus outage trade-off [40].

The optimal quantizer maximizes the mutual information of the equivalent channel between the code bitsc

and the quantized LLRsd [21]. Let {iopt
k }K−1

k=1 denote the set of quantization bins of the optimal quantizer, we

have

{iopt
k }K−1

k=1 = arg max
{ik}K−1

k=1

I(c; d) . (4.5)

This optimization problem is infeasible to solve in practice, because the mutual informationI(c; d) depends on

the crossover probabilitiespbk by (4.3), which by themselves depend on the quantization intervals (cf. (4.2)).

Furthermore, the conditional probabilitiesfΛ|c(ξ|b) need to be known, so that the crossover probabilitiespbk

can be calculated. In [21] the optimization was performed numerically for BPSK transmission over an AWGN

channel, and in this work we will present results for more general channels, based on numerical optimization.

A much simpler (though suboptimal) approach to the quantizer design is the following: sincec − Λ − d is

a Markov chain, the data processing inequality impliesI(c ; d) ≤ I(c ; Λ). In order forI(c ; d) to be as close as

possible toI(c ; Λ) (for fixedK), our proposed quantizer maximizes the mutual informationI(Λ; d), that is

{i⋆k}K−1
k=1 = arg max

{ik}K−1
k=1

I(Λ; d) .
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With H(·) denoting entropy, it follows thatI(Λ; d) = H(d) − H(d|Λ) and H(d|Λ) = 0 becaused is a

deterministic function ofΛ. H(d) is maximized by a uniform distribution ofd and therefore, the quantizer

boundariesi⋆k, k = 1, . . . , K−1, have to ensure that

Pr{d=λk} =
p0k + p1k

2
=

1

K
, k = 1, . . . , K . (4.6)

Using the unconditional cumulative LLR distributionFΛ(λ) = Pr{Λ ≤ λ} = 1
2

∫ λ
−∞

[
fΛ|c(ξ|c = 0) +

fΛ|c(ξ|c=1)
]
dξ, the optimal boundaries can be obtained by finding the arguments for whichFΛ(λ) = k/K,

i.e.,

i⋆k = F−1
Λ

( k

K

)
k = 1, . . . , K−1 . (4.7)

We note that for this approach the capacity of an equivalent modulation channel is notmaximized, only the

quantizer intervals are chosen such that the quantizer outputd representΛ in an (information-theoretic) optimal

manner.

For the capacity in (4.3) only the bins (boundaries) are relevant, i.e., the actual quantization levelsλk do

not influence the achievable rate. However, these values are important inorder to provide the channel decoder

(e.g., a belief propagation decoder) with correct reliability information [66]. In view of the equivalent discrete

channel, we hence propose to choose the quantization levels as corresponding LLRs

λ⋆
k = log

Pr{c = 1|d = λk}
Pr{c = 0|d = λk}

= log
p1k

p0k
. (4.8)

It can be shown thatλ⋆
k ∈ Ik.

4.3.1 SISO-BPSK over Rayleigh fading

We next study in more detail the case of a SISO system (MT = MR = 1) with BPSK modulation (R0 = 1 bpcu)

in Rayleigh fading1. Here, the system model (2.1) becomes real-valued and simplifies toy = hx + w, with

h ∼ N (0, 1), w ∼ N (0, σ2/2), andx = 2c − 1 ∈ {−1, 1}. Then, the LLRΛ can be calculated according to

Λ =
hy

σ2
=

1

σ2
h(hx + w). (4.9)

4.3.2 Ergodic Capacity

Conditioned onc=x=1, the LLR can be rewritten asΛ = 1
σ2 zTAz , wherez =

(
h
√

2w
σ

)T ∼ N (0, I) and

A =

(
1 σ/2

σ/2 0

)
.

Using the eigenvalue decompositionA = UΣUT , with U orthogonal andΣ = diag{σ1, σ2}, whereσ1,2 =
1±
√

1+σ2

2 , we further obtain

Λ =
1

σ2
z̃TΣ z̃ =

1

σ2

[
σ1z̃

2
1 + σ2z̃

2
2

]
.

1The results in this section also apply to the inphase and quadrature phase ofSISO systems with Gray-labeled QPSK and to the two

layers of BPSK-modulated2×2 MIMO systems.
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Figure 4.3: Numerical capacity results for a SISO system with BPSK for various quantizer designs using (a)

2-bit quantization, and (b)3-bit quantization (both with Gray labeling).

Here,z̃ = UTz ∼ N (0, I) due to the orthogonality ofU. Thus,Λ is a linear combination of two independent

chi-square random variables with one degree of freedom. The distribution fΛ|c(ξ|c = 1) can thus be shown to

be given by (cf. [67])

fΛ|c(ξ|c=1) =
σ

π
exp
(
− ξ
√

1 + σ2
)
K0(|ξ|), (4.10)

whereK0(·) denotes the modified Bessel function of the second kind and order0.

Using (4.10), one can determine the LLR distribution, the LLR quantization (cf. (4.5) and (4.7)), and the

ergodic capacity of the equivalent channel given by (4.3).

Fig. 4.3(a),(b) show the ergodic capacity versus SNR for various quantizer designs with2-bit and3-bit

quantization, respectively. We compare our proposed quantizer design(4.6) and the optimum quantizer (c.f.

(4.5)). As a reference the ergodic capacity without quantization is also plotted (labeled ‘no quant’). Further-

more, we include a very simple quantizer design which uniformly quantizes the interval containing70% of all

LLRs (labeled ‘uniform’). Finally, the curve1-bit is obtained by taking the sign of the LLRs (i.e. making a

hard-decision).

It can be seen in Fig. 4.3(a) that for2-bit quantization the optimum and the proposed quantizer perform

almost the same up to rates of0.5 bpcu. Compared to the non-quantized case the SNR loss at0.5 bpcu is at

most1 dB, however, the performance advantage over1 bit quantization is4.4 dB. For higher rates, our proposed

quantizer suffers from a significant performance degradation; at0.75 bpcu, an SNR penalty of more than3.5 dB

can be observed compared to the optimum quantizer. Note that our proposed quantizer design performs signifi-

cantly better than an uniform quantizer for low-to-medium rates, e.g., showing an SNR gap of2 dB at0.5 bpcu.

Only at high rates (larger than0.7 bpcu) uniform quantization starts to slightly outperform our proposed design.

When spending an additional bit for quantization (i.e.,3 bits), both the optimum and the proposed quantizer

closely approach the non-quantized performance curve for rates up to0.75 bpcu. We can thus conclude that

in this rate regime quantization with3 bits is sufficient when using our proposed design. At higher rates our

quantizer again suffers from a performance degradation; surprisingly, in this case3-bit uniform quantization

seems to be optimal in terms of performance.
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Figure 4.4: Quantizer performance for2-bit and3-bit quantization in quasi-static fading: outage probability

versus SNR forR = 0.25 bpcu andR = 0.75 bpcu with (SISO, BPSK, Gray labeling).

4.3.3 Outage Probability

Additionally conditioning on the channel coefficienth, it follows straightforwardly thatΛ|c ∼ N (x γ, 2γ) with

γ = h2/σ2. This allows to calculate the transition probabilities of the equivalent channelas

pbk = Q

(
ik−1 − (2b−1)γ√

2γ

)
− Q

(
ik − (2b−1)γ√

2γ

)
.

The outage probability can thus be evaluated according to (4.4).

Numerical results ofpout(r) versus SNR for quasi-static fading with rateR = 0.25 bpcu and withR =

0.75 bpcu are shown in Fig. 4.4. The difference between the proposed and the optimum quantizer is barely

visible for both quantizer word-lengths and both target rates. Furthermore, the two quantizer designs closely

approach the non-quantized case. Moreover, note that the asymptotic slopes of these curves show a diversity

order of1 and are thus independent of the quantizer word-lengths.

4.4 MIMO Systems and Higher-Order Modulation

In the following, we investigate LLR quantization for MIMO systems and higher-order constellations. Since in

this case analytical expressions for the LLR distribution are hard to obtain ingeneral, the remaining discussion

is based exclusively on numerical results. For the capacity results in this section, we used empirical LLR

distributions obtained from Monte-Carlo simulations (obtained with105 fading realizations).

4.4.1 Ergodic Capacity

Fig. 4.5(a) shows the ergodic capacity (in bpcu) of a2 × 2 MIMO system with a16-QAM Gray mapped

modulation alphabet (here,R0 = 8) for the same quantizers as described in Subsection 4.3.2. As a reference

we also plotted the capacity of the unquantized demodulator (labeled ’no quant’). In the following, in some of

the plots we show insets that provide zooms of the capacity curves around arate ofR0/2 bpcu.
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Figure 4.5: Numerical capacity results for2 × 2 MIMO system with16-QAM with (a) 2-bit quantization, and

(b) 3-bit quantization (both with Gray labeling,R0 = 8).

Up to code rates ofR = 1/2 (this amounts to4 bpcu), the2-bit optimal and2-bit equiprobable quantizer

perform the same. Both exhibit an SNR of about1 dB loss to the unquantized case at a rate ofR = 1/2. At

R=3/4 (6 bpcu), the optimal2-bit quantizer performs by more than1 dB better than the equiprobable design.

Up to rates ofR = 3/4, there is almost no gap between the3 bit optimal quantizer and the3-bit equiprobable

quantizer, both perform about0.25 dB away from the unquantized demodulator. The2-bit uniform quantizer

performs as good as the optimal2-bit quantizer only at low rates up toR = 1/4, at higher rates it performs

worse, its performance comes close to the1-bit (hard) demodulator. Finally, at a rate ofR = 1/2, the1-bit

(hard) demodulator performs about3 dB away from the unquantized demodulator.

In Fig. 4.6 we present our findings for the4 × 4 MIMO case with4QAM symbol alphabet. The results are

very similar to the2 × 2 16QAM case discussed before: For ratesR>1/2 there is a performance gap between

the optimal and equiprobable2 bit quantizers, which is about1 dB atR = 3/4. At R = 1/2 the gap between

2 bit quantization (both optimal and equiprobable design) and the unquantizeddemodulator is about0.75 dB.

In case of3 bit quantization, both designs perform identically, even in case of very high rates. The1 bit (hard)

demodulator has an SNR loss of about3 dB compared to the unquantized case at a rate ofR=1/2.

4.4.2 Outage Capacity

We next provide numerical results for the outage probability in (4.4) for both the2 × 2 MIMO system with

16QAM symbol alphabet and the4 × 4 MIMO system with 4QAM symbol alphabet. The outage probability

Pout was obtained over105 fading realizations and for each channel realizationR in (4.3) was measured by

transmitting a block of104 symbol vectors. The quantization intervals were taken from a precomputedlook-up

table and have been computed for an i.i.d. fast Rayleigh fading channel using 105 fading realizations.

Fig. 4.7(a) shows our results for the2 × 2 MIMO system with 16QAM symbol alphabet for target rates

R = 0.25 and R = 0.75 (this amounts to2bpcu and6bpcu, respectively) for both the optimum and the

proposed quantizer using a bit-width of2 and3 bits. At a target rate ofR = 0.25, and for outage probabilities

above2 · 10−1 no difference between the proposed and the optimal quantizer design canbe seen; below this
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Figure 4.6: Numerical capacity results for4 × 4 MIMO system with4-QAM with (a) 2-bit quantization, and

(b) 3-bit quantization (both with Gray labeling,R0 = 8).
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Figure 4.7: Quantizer performance in quasi-static fading: outage probability versusSNR forR = 2 bpcu and

R = 6 bpcu for (a) a2 × 2 MIMO system with16-QAM, and (b) a4 × 4 MIMO system with4-QAM (both

with Gray labeling andR0 = 8).
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probability, there is a gap between the two quantizer designs (at an outage probability of10−3, this gap is about

2 dB for both2 and3-bit quantization). The optimal2- and3-bit quantizers respectively perform about1 dB

and2 dB away from the unquantized case. At a target rate ofR = 0.75, the gap between the optimal and the

proposed quantizer appears at a much higher outage probability of2 · 10−1, and the gap between2- and3-bit

quantization is much smaller.

Fig. 4.7(b) shows our results for the4 × 4 MIMO system with 4QAM symbol alphabet for target rates

R = 0.25 andR = 0.75 for the same quantizers as above. Here, the results are different: For the low target

rate (corresponding to2bpcu), there is no SNR gap between the3-bit optimal and the3-bit proposed quantizer

(the gap to the unquantized case is about1/2 dB), whereas for very low outage probabilities, the proposed

quantizer with2-bit performans worse than the optimal quantizer with2-bit. For the high target rate (R = 0.75,

corresponding to6bpcu), there is no gap between the optimal quantizers with2 and3-bit, and also the2- and

3-bit proposed quantizers perform the same. The optimum quantizers perform very close to the unquantized

case, but there is a gap of about1 dB between the proposed quantizers and the unquantized case.

4.5 Estimation of Quantization Parameters

The proposed quantizers have been designed and optimized by means of extensive Monte Carlo simulations.

The quantizer parameters (quantization intervals and quantizer outputs) depend on the system configuration

and SNR. Storing these parameters for different system configurationsand SNR values would require large

lookup tables at the receiver and is therefore impractical. A solution to this problem is to design the quantizer

on-the-fly, that is, during the data transmission and thereby without the need for lookup tables or Monte-Carlo

simulations.

4.5.1 On-the-fly Design of Quantizer Intervals

The results of Section 4.4 for fast fading show that in case of3 bit quantization, the equiprobable quantizer and

the optimal quantizer exhibit the same performance, whereas in case of2 bit quantization, this only holds true

for ratesR < 3/4. In general, the on-the-fly design of the equiprobable quantizer is much easier, therefore

on-the-fly design of the equiprobable quantizer is sufficient for3-bit quantization for all rates and for2-bit

quantization whenR < 3/4. The boundaries of the equiprobable quantizer can be estimated by using an

empirical estimate of the unconditional LLR distributionFΛ(ξ) and choosing the quantizer intervals such that

(4.6) is fulfilled. The LLR distributionFΛ(ξ) can be obtained from the observation of a reasonable number of

non-quantized LLRs.

In case ofR ≥ 3/4 and2-bit quantization, the optimal quantizer performs significantly better,and thus its

on-the-fly design needs to be addressed. For the design of the optimal quantizer, the conditional LLR distribu-

tionsfΛ|c(ξ|b) have to be known, which strongly depend on the system parameters. Therefore, depending on

the system parameters, different estimation procedures have to be followed. In the following we demonstrate

this for the case of a2×2 MIMO-system with 16QAM symbol alphabet and a4×4 MIMO system with 4QAM

symbol alphabet.
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Figure 4.8: 2 × 2 MIMO system with16-QAM (a) Plot ofP (d = λk) of the optimal quantizer versus SNR.

(b) Numerical capacity results obtained with the model (4.11).

2 × 2 MIMO-system with 16QAM symbol alphabet. Fig. 4.8(a) shows the probabilitiesPr(d = λk) of

the optimal quantizer output versus the SNR. It can be observed, that these probabilities can be modeled quite

accurately as linear functions of the SNR, that is we propose to design the quantizer such thatPr(d = λk) =

pmod
k with

pmod
k = ak + bkρ . (4.11)

The parametersak andbk can be obtained e.g. using a least-squares approach. Using this model, weobtain the

ergodic capacity of this quantizer design which is shown in Fig. 4.8(b) as thecurve labeled ’2-bit model’. It can

be seen that this quantizer design performs as well as the numerically optimized2-bit quantizer design (which

is shown by the curve labeled ’2-bit optimium’).

4×4 MIMO system with 4QAM symbol alphabet. In this case the probabilitiesPr(d = λk) of the optimal

quantizer versus SNR are not easy to approximate as a linear function, nor a polynomial. A more successful

approach is to directly model the quantizer boundary values versus SNR as a second-order polynomial,

imod
3 = c + dρ + eρ2 , (4.12)

The parametersc, d, ande can be obtained from a least-squares match of the optimal quantizer boundaries

(obtained by numerical optimization) for different SNR. The ergodic capacity of this quantizer design is plotted

in Fig. 4.9 as the curve labeled ’2-bit model’. Again, this quantizer design performs as well as the optimal2-bit

quantizer design (which is shown by the curve labeled ’2-bit optimium’).

4.5.2 Estimation of Quantization Levels

The quantization levelsλ⋆
k are calculated according to (cf. (4.8))

λ⋆
k = log

Pr{c = 1|d = λk}
Pr{c = 0|d = λk}

= log
p1k

p0k
.
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Figure 4.9: 4 × 4 MIMO system with4-QAM: Performance of quantizer obtained with the model (4.12).

This requires the transition probabilities of the equivalent discrete channel and thus in turn the LLR distributions

fΛ|c(ξ|c), which in general are unknown. Again, the quantization levelsλ⋆
k could be precalculated and stored in

a lookup table, but this solution appears infeasible in practice, as the quantization levels depend on the system

configuration and on the SNR. We thus address on-the-fly estimation of the quantization levels. Determining the

quantization levelsλ⋆
k by estimatingfΛ|c(ξ|c) is more difficult since the code bits are unknown at the receiver.

Hence, we propose a method for estimating theλ⋆
k from observations of the un-quantized LLRsΛ by use of a

parametric model. We demonstrate this method for the case of a2 × 2 MIMO-system with 16QAM symbol

alphabet and a4 × 4 MIMO system with 4QAM symbol alphabet. We note that other system parameters may

require a different model.

2 × 2 MIMO-system with 16QAM symbol alphabet. In this case we use the following asymmetric-sided

exponential model for the LLR distributionsfΛ|c(ξ|c),

fΛ|c(ξ|c=1) =





αβ
α+β exp(αξ) ξ < 0 ,

αβ
α+β exp(−βξ) ξ ≥ 0 .

(4.13)

To estimate the two parametersα > 0 andβ > 0, we choose two bins̄I1 andĪ2 and use the non-quantized

LLRs Λ to obtain empirical estimateŝPi, i = 1, 2, of the probabilities

Pi(α, β) = Pr{Λ ∈ Īi} =

∫

Īi

fΛ(ξ) dξ ,

with fΛ(ξ) =
[
fΛ|c(ξ|c = 0) + fΛ|c(ξ|c = 1)

]
/2. The system of equationsPi(α, β) = P̂i can then be solved

numerically to obtain estimates ofα andβ. The transition probabilities of the equivalent channel and the

quantization levels are then computed based on (4.13) using the estimates ofα andβ.

4 × 4 MIMO system with 4QAM symbol alphabet. In this case, a simple Gaussian parametric model for

the LLR distributionsfΛ|c(ξ|c) is used,

fΛ|c(ξ|c=1) =
1√
4πµ2

exp
(
− 1

4µ2
|Λ − µ|2

)
, (4.14)
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Figure 4.10: BER performance for a rate-1/2 LDPC coded SISO-BICM system with BPSK modulation and

different LLR quantization word-lengths.

with σ2 = 2µ2. The parameterµ can be obtained similar as before: We choose one binĪ and obtain the

empirical estimatêP from the non-quantized LLRsΛ. We then need to numerically solve

P (µ) = Pr{Λ ∈ Ī} =

∫

Ī
fΛ(ξ) dξ

to obtain the parameterµ. The transition probabilities of the equivalent channel and the quantizationlevels are

then computed based on (4.14) using the estimate ofµ.

4.6 Numerical BER Results

We finally provide BER simulations to verify the foregoing capacity results andto demonstrate the applicability

of the proposed on-the-fly quantizer designs. For the simulations, we used a fast fading Rayleigh channel and

the channel code was a regular LDPC code2 with block length64000.

4.6.1 SISO-BICM

We first consider the SISO-BICM system of Section 4.3.1. Fig. 4.10(a) shows the BER results for a SISO-

BICM system with an LDPC of code rateR = 1/2 for proposed equiprobable LLR quantizers with different

word-lengths together with the theoretical SNR thresholds (obtained from Fig. 4.3). At this rate, the optimal and

proposed quantizers are effectively the same, so only the latter is shown.As a reference we also show the SNR

thresholds (obtained from Fig. 4.3 and the BER achieved with the unquantized demodulator. All BER curves

are reasonably close to the respective SNR thresholds. The gaps of1-bit, 2-bit, and3-bit LLR quantization to

the non-quantized case respectively equal6.2 dB, 1.1 dB, and0.4 dB.

Fig. 4.10(b) shows the BER of the same system but with an LDPC of code rateR=3/4 for the proposed and

optimal quantizer design with different word-lengths. At this rate, there is aperformance difference between

optimal and proposed quantizer (compare with Fig. 4.3): With3-bit quantization, the SNR gap between the

2The LDPC code was designed using the EPFL web-tool athttp://lthcwww.epfl.ch/research/ldpcopt.
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Figure 4.11: BER performance for a rate-1/2 LDPC coded2×2 MIMO system with Gray-labeled 16-QAM

and different LLR quantization word-lengths.

optimal and proposed quantizer is about0.4 dB, this gap increases to3. dB of 2-bit quantization. In general, the

BER curves are quite close to the respective SNR thresholds, the only exception is that the SNR threshold of

the3-bit proposed quantizer is below the threshold of the2-bit optimal quantizer, whereas the BER curves are

reversed.

4.6.2 MIMO-BICM

2×2 MIMO case with 16QAM modulation. Fig. 4.11 shows two (strongly overlapping) sets of BER curves

for different LLR quantization word-lengths. One set of curves (labeled ‘proposed’) pertains to an offline

design of the proposed LLR quantizer, whereas the other set (labeled ‘on-the-fly’) estimates the quantization

parameters on-the-fly according to Section 4.5. The binsĪ1 andĪ2 were chosen heuristically. As reference the

BER obtained with no quantization is also shown. Interestingly, there is a gap of 0.2 dB to the3-bit quantized

case which is not expected from the ergodic capacity curves in Fig. 4.5(b). The gap to the theoretical SNR

thresholds (obtained from Fig. 4.5 and indicated by vertical lines) equals0.6 dB for 3-bit and2-bit quantization

and1 dB for 1-bit quantization (hard demodulation). Furthermore, the proposed on-the-fly estimator for the

LLR quantizer parameters performs extremely well in this setup (virtually indistinguishable from the offline

design). In case of1−bit quantization, the gap to the corresponding SNR limit is quite large. This is the case

since an LDPC code optimized for an AWGN channel was used whereas theactual BICM modulation channel

becomes a BSC.

To illustrate the importance of the correct choice of the LLR quantization levels, Fig. 4.12 shows BER

versus quantizer outputλ2 = −λ1 for the same MIMO system as before with 1-bit LLR quantization at an

SNR of12.8 dB. Here, the optimal quantizer levelλ⋆
2 = 2.26 (indicated in Fig. 4.12 by a dashed vertical line)

achieves a BER of4.5 · 10−4. It is seen that the BER achieved by the belief propagation decoder is quite

sensitive to the choice of the quantizer levelλ2: If the quantizer level isλ2 ≤ 1.5 or if λ2 ≥ 4.3, the BER of

the overall system has deteriorated to about10−1 (i.e., by more than 2 orders of magnitude).
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Figure 4.12: BER versus quantization level for1-bit quantization at an SNR of12.8 dB using a rate-1/2 LDPC

code (2×2 MIMO, 16-QAM, Gray labeling).

6 8 10 12 14 16 18 20 22
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Li
m

it=
9.

08
dB

Li
m

it=
9.

65
dB

Li
m

it=
11

.9
3d

B

SNR [dB]

B
E

R

 

 

no quant.
3−bit proposed
2−bit proposed
1−bit (hard)

Figure 4.13: BER performance for a rate-1/2 convolutional coded2× 2 MIMO system with Gray-labeled

16-QAM and different LLR quantization word-lengths.

Convolutional Codes. Fig. 4.13 shows the same2×2 MIMO system with16QAM modulation employing

a rate-1/ convolutional code. In this setup, the used channel decoder is a BCJR algorithm [8] delivering

information bit LLRs. The code polynomial in octal notation is[13, 15], and the block length was chosen to

be1024. It can be observed that there is a large gap to the theoretical SNR limits (in theorder of several dB

at a BER of10−4) and that the BER does not exhibit a threshold behavour as in the LDPC coded case; instead

the BER curves exhibit a slope of about6. The3-bit case exhibits a slight performance loss of about0.5 dB

compared to the unquantized case. The gap between the2-bit and the3-bit quantized case is about0.5 dB as is

to be expected from the corresponding SNR limits. The1-bit (hard) quantized case performs much worse.

We also show a plot of BER versus quantizer outputλ2 = −λ1 with 1-bit LLR quantization at an SNR

of 20 dB in Fig. 4.14. For valuesλ2 < 1, the overall performance is about one order of magnitude worse

than with the optimal quantizer output value ofλ⋆
2 = 2.26. On the other hand, for quantizer output values

λ2 > λ⋆
2 = 2.26 no performance loss (as in the case of LDPC codes) is observed. This indicates that in case of
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Figure 4.15: BER performance for a rate-3/4 LDPC coded4×4 MIMO system with Gray labeled 4-QAM and

different2-bit quantizer designs.

convolutionally coded systems, the on-the-fly estimation of the quantizer output is not important as long as it is

large enough. Choosing an SNR independent value ofλ2 = 10 should be sufficient for all relevant cases.

4×4 MIMO system with 4QAM modulation. Fig. 4.15 shows results for this system with4QAM modulation

and2 bit quantization. As can be seen in Fig. 4.6, at a rate ofR = 1/2 almost no performance difference

between the proposed and the optimal quantizer exists, therefore we chose the rateR=3/4. We show the BER

of the system with three different quantizers: (i) the optimal quantizer, (ii) the proposed equiprobable quantizer,

and (iii) the on-the-fly design of the optimal quantizer (denoted by ’2-bit on-the-fly optimum’). As a reference

we also plot the respective SNR thresholds. The proposed on-the-fly design of the optimal quantizer performs as

good as the quantizer design using precomputed lookup tables. The SNR gaps between the proposed quantizer

and the optimal quantizer and between the unquantized demodulator and the optimum quantizer are both about

0.5 dB; this results is consistent with the observations in Fig. 4.6.
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Figure 4.16: 16QAM constellation with Gray labeling; setsA1
0 andA2

1 are shown for illustration.

4.7 Low-Complexity Quantized Soft-MMSE Demodulator

4.7.1 Introduction

In [68], an efficient approach to compute LLRs by means of an MMSE filterwas presented. The received vector

is multiplied with an MMSE filterW, yielding

x̂MMSE = W(HHH)−1HHy ,

with the MMSE filter matrixW =
[
I + σ2(HHH)−1

]−1
. The LLRsΛq

k corresponding to the bitcq
k are then

obtained by means of aper-layermax-log LLR calculation according to

Λq
k =

1

σ2
k

[
min
x∈Aq

0

|x̂k−x|2 − min
x∈Aq

1

|x̂k−x|2
]
. (4.15)

Here,x̂k = (x̂MMSE)k

(W)k,k
, σ2

k =
1−(W)k,k

(W)k,k
, andAq

b denotes the set of symbolsxk for which cq
k = b.

4.7.2 Efficient Calculation of Quantized LLRs

We next modify the MMSE detector in such a way that it directly delivers quantized LLRs. In Fig. 4.16 a

16QAM symbol alphabet with Gray mapping is shown together with two exemplarysetsA1
0 andA2

1. It can be

seen that each symbolxk can be expressed as the sum of independently modulated real and imaginary parts.

Furthermore, it can be observed that the first two bits of the bit label (thatis c1
k andc2

k) determine the real part of

the symbolxk, whereas the last two (that isc3
k andc4

k) determine the imaginary part. Reversing the argument,

the LLRsΛ1
k andΛ2

k depend on the real part of̂xk only, whereas the other two LLRsΛ3
k andΛ4

k depend only

on the imaginary part of̂xk.

In [69] it was shown that the LLRsΛq
k calculated by the soft-MMSE demodulator of (4.15) are piecewise

linear functions of either the real or imaginary part ofx̂k and closed-form expressions were given. In the special

case of16QAM modulation and Gray mapping as in Fig. 4.16 we haveΛ1
k = 1

σ2
k

α(ℜ(x̂k)), Λ2
k = 1

σ2
k

β(ℜ(x̂k)),
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Figure 4.17: LLR functions for each of the 4 bits of a 16-QAM symbol in a SISO-BICM system.

Λ3
k = 1

σ2
k

α(ℑ(x̂k)), andΛ4
k = 1

σ2
k

β(ℑ(x̂k)). The functionsα(x) andβ(x) are defined as

α(x) =





4x , |x| ≤ 2

−8 + 8x , x > 2

8 + 8x , x < −2 ,

β(x) =





8 + 4x , x ≤ 0

8 − 4x , x > 0 ,
(4.16)

and shown in Fig. 4.17. We note thatα(·) is odd symmetric, whereasβ(·) is even symmetric. Using (4.16), the

maximization in (4.15) can be avoided, and the LLRsΛq
k can be directly calculated from̂xk via simple additions

and multiplications. Furthermore, calculating continuous-valued LLRs which are quantized afterwards can be

avoided; instead the quantized LLRs can be directly obtained by quantizingx̂k. This will be explained in the

following.

We consider anL-bit quantizer characterized byM = 2L binsIm = [im−1, im], m = 1, . . . , M . We use

the conventioni0 = −∞, iM = ∞ and assume symmetric bins (this is motivated by the symmetry of the LLR

distributions), with boundariesim sorted in ascending order. The quantizerQ(·) maps the continuous-valued

LLR Λq
k to discrete LLRsdq

k according to

dq
k = Q(Λq

k) = λm if Λq
k ∈ Im ,

where,λm ∈ Im denotes themth quantization level. Using (4.16), we can express the intervalsIm also in

terms of the real or imaginary part ofx̂k. In the following we restrict ourselves to obtaining the two LLRsΛ1
k

andΛ2
k fromℜ(x̂k); the imaginary part follows analogously. In this case, the quantizer becomes

dq
k = Qq

(
ℜ(x̂k)

)
= λm if ℜ(x̂k) ∈ Īq

m ,

with the transformed interval̄Iq
m = [̄iqm−1, ī

q
m]. Note that the quantizer interval̄Iq

m depends on the bit po-

sition q. Using (4.16) and Fig. 4.17 we can transform an interval boundaryim from the intervalIm into the
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Figure 4.18: Ergodic capacity of a2×2 MIMO-BICM system with Gray-labeled16-QAM using a max-log

demodulator and soft-MMSE demodulators for different LLR quantization word-lengths.

corresponding boundary

ī1m = α−1(im) =





im
4 , |im| ≤ 8

im+8
8 , im > 8

im−8
8 , im < −8

,

and

ī2m = β−1(im) =





im−8
4 , im ≥ 0

8−im
4 , im < 0

,

respectively. Note that due to the even symmetry ofβ(x), the intervalIm = [im−1, im] becomes the union of

two intervalsĪm = [−īm−1,−īm] ∪ [̄im−1, īm].

Complexity. The complexity of the proposed soft-MMSE demodulator calculating quantizedLLRs is given

by calculation of the MMSE filter matrixW =
[
I + σ2(HHH)−1

]−1
(which has to be calculated anew for

every channel realization) and the matrix-vector multiplicationx̂MMSE = W(HHH)−1HHy. The quantization

intervalsIm = [im−1, im] can be calculated offline (and stored in a lookup table) or designed on-the-fly as was

presented in Section 4.5. Quantizing the real and imaginary parts ofx̂MMSE yields the corresponding quantized

LLRs, which can be implemented with minimal complexity.

4.7.3 Ergodic Capacity

We next provide numerical results for the ergodic capacity of a MIMO-BICM system with soft-MMSE demod-

ulators and the optimal quantizer. We consider the equivalent discrete channel with binary inputc ∈ {0, 1}
andM -ary outputd ∈ {λ1, . . . , λM}, and calculate the mutual information according to (4.3). In general the

conditional densitiesfΛ|c(ξ|b) are unknown, so they have to be estimated by means of Monte Carlo simulations.

Based on these estimates, the maximization ofI(c; d) is then performed numerically.
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Figure 4.19: Impact of interval boundary on ergodic capacity of a2×2 MIMO-BICM system with Gray-labeled

16-QAM at an SNR of10 dB for 2-bit and3-level quantization.

Uncorrelated MIMO-channel. Numerical results for the rate in bits per channel use (bpcu) versus SNR

achievable with the quantized MMSE demodulator of different word-length are shown in Fig. 4.18 for a2 × 2

uncorrelated MIMO system (that is,Ch = I) with 16QAM Gray-mapped modulation. As a reference, we

show the capacity of non-quantized max-log demodulation (labeled ’max-log demod.’) from (4.1), and the

non-quantized soft-MMSE demodulator (labeled ’soft-MMSE demod.’). As stated in [20], the gap between

max-log demodulation and soft-MMSE demodulation is very small forR ≤ 0.5, the soft-MMSE demodulator

even outperforms the max-log demodulator for small rates. The gaps of3-bit, 2-bit, and3-level quantization

to the non-quantized MMSE demodulator equal0.3 dB, 0.75 dB, 1.5 dB, respectively, at a rate ofR = 1/2.

Finally, the SNR loss with a hard-MMSE demodulator (which can be interpretedas1-bit quantization) is about

3.5 dB, again at a rate ofR = 1/2. This shows that increasing the number of quantization levels from2 to 3

yields an SNR gain of2 dB in this case.

In Fig. 4.19 we show the impact of the interval boundary on the ergodic capacity of the soft-out MMSE

demodulator quantized with3 levels and2 bits, respectively. The system is the same considered before at an

SNR of10 dB. In both cases, one interval boundary is sufficient to index all quantizers in these cases. In case of

quantization with2 bits, the ergodic capacity changes only weakly with the interval boundary.In case of either

very large or very small boundary values, the ergodic capacity approaches the capacity of1-bit quantization.

The ergodic capacity for the3-level quantization depends much stronger on the interval boundary. Inthe limit

of small boundary values, the center intervalI2 = [i1, i2] vanishes, and the ergodic capacity approaches the

1-bit case. In case of large interval boundaries, almost all LLRs fall intothe middle interval and therefore the

capacity quickly deteriorates.

Comparison with quantized max-log demodulator. Using results from the previous section and [20], we

can compare the required SNR of quantized max-log demodulators and quantized soft-MMSE demodulators.

At a rate ofR=6 bpcu there is an SNR gap of about1 dB between the unquantized max-log demodulator and
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Figure 4.20: Ergodic capacity of a2×2 MIMO-BICM system with correlated channel and a Gray-labeled16-

QAM symbol alphabet. Max-log demodulator and soft-MMSE demodulators using different LLR quantization

word-lengths are shown.

the unquantized soft-MMSE demodulator. The max-log demodulator with3 level quantization performs almost

the same as the unquantized soft-MMSE demodulator, and the MMSE demodulator with 3-level quantization

requires the same SNR as the1-bit (hard) max-log demodulator. At a rate ofR=4 bpcu the SNR gap between

the unquantized max-log demodulator and the unquantized soft-MMSE demodulator is about0.2 dB, and the3-

level quantized max-log demodulator performs only about0.3 dB better than the3-level quantized soft-MMSE

demodulator. For ratesR = 4 bpcu, there is only a very small gap in performance between the max-log

demodulator and the soft-MMSE demodulator, with the latter being of significantlylower complexity. This gap

between soft-MMSE demodulator and max-log demodulator increases for higher rates.

Correlated MIMO-channel. Fig. 4.20 shows similar results for the case of a channel with spatial correlation.

We used a Kronecker model [34] for the correlation matrix of the channel,i.e.,Ch = S1/2 ⊗ R1/2, with the

transmit and receive correlation matrices respectively chosen as

S = R =

(
1 0.7

0.7 1

)
.

It is seen that all rates are lower than in the uncorrelated case, otherwisethe results are quite similar:3-bit

quantization is sufficient for all rates, whereas2-bit quantization leads to an SNR loss of about0.7 dB, and

quantization with3 levels incurs an SNR loss of about1.5 dB, at a rate ofR = 4 bpcu, respectively. The

hard-MMSE demodulator incurs an SNR loss of4 dB, which is slightly higher than in the uncorrelated case.

Comparing these results with results for the unquantized case shown in Fig. 4.18 reveals that correlation

decreases ergodic capacity significantly: At a rate ofR=4 bpcu the SNR loss due to correlation is about4 dB.
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Figure 4.21: BER versus SNR of a2×2 MIMO-BICM system with Gray-labeled16-QAM using soft-MMSE

demodulators with different quantization bit-width.

4.7.4 Numerical BER Results

To verify the capacity results, we performed BER simulations for the uncorrelated MIMO-BICM system in

ergodic Rayleigh fast fading. The channel code was a regular LDPC code3 with rate1/2 and block length

64000. Fig. 4.21 shows the BER for the various considered demodulators and theSNR thresholds obtained

from Fig. 4.18 forR = 4 bpcu. All BER curves are reasonably close to the respective SNR thresholds. The

gaps of 2-bit, 3-level, and 1-bit LLR quantization to the non-quantized MMSE demodulator respectively equal

0.8 dB, 1.4 dB, and 3.6 dB. Finally, the gap between the unquantized MMSE demodulator and the max-log

demodulator of (4.1) is about 0.2 dB.

3The LDPC code was designed using the EPFL web-tool athttp://lthcwww.epfl.ch/research/ldpcopt.



5

MIMO-BICM with imperfect CSI

THE receivers considered in the previous chapters either jointly estimate the channel and detect the data

(Chapter 3) or assumed perfect CSI at the receiver (Chapter 4). Receivers performing joint channel

estimation and data detection exhibit very good performance (almost as goodas receivers with perfect CSI) at

the cost of increased complexity. One approach to reduce complexity is to use receivers which estimate the

channel by means of pilot symbols inserted at the transmitter but do not update their initial channel estimate.

Demodulators for systems using pilot-based channel estimation are usually designed assuming perfect channel

state information (CSI) and therefore such conventional designs yield only good results if this assumption is

well fulfilled. Due to limited power budgets at the transmitters, the power availablefor the transmission of pilot

symbols is limited, and this will result in imperfect CSI at the receiver. The resulting difference between the

true and the estimated channel causes conventional demodulator designs tobe mismatched, which results in

performance degradation. In this chapter we investigate the effects of imperfect CSI on conventional receivers.

We also propose optimal receiver designs, which take the uncertainty of the channel estimate into account and

thereby provide better performance.

91
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Figure 5.1: Block diagram of a MIMO-BICM receiver with channel estimation. Additional parts required for

an iterative receiver structure are shown in gray.

5.1 Background and State of the Art

Soft-out demodulators provide the channel decoder not only with bit-decision, but also with reliability infor-

mation regarding this bit decision. Usually, this reliability information is conveyedby means of LLRs (see

Subsection 2.1.3). To reduce the complexity of the demodulator, in [68] a soft-MMSE demodulator has been

proposed, and [20] demonstrated that performance of this soft-MMSE demodulator is very close to theoptimal

demodulator for most applications. BICM systems with iterative decoding (BICM-ID) have been observed to

yield excellent performance (see Subsection 2.1.3 or [11]) and BICM-ID can be employed in MIMO systems

as well. The convergence properties of BICM-ID receivers has been studied in [70,71] using EXIT charts [24].

BICM-ID systems that utilize LDPC codes [41] have been shown to be able tooperate close to capacity limits.

In addition, the EXIT charts of LDPC codes can be optimized by appropriately adjusting their variable and

check node degree distributions. Demodulation in MIMO system with imperfectCSI has been first adressed

in [72]. Taking into account the statistics of the channel estimate, an optimal version of the max-log demod-

ulator has been proposed in [23]. Its performance in the context of iteratively decoded MIMO-BICM was

investigated in [73] by means of EXIT charts. In a similar spirit, a modified softMMSE demodulator using CSI

statistics has been presented [22]; its optimal performance was verified in terms of bit error rate (BER) using

an off-the-shelf LDPC code.

The chapter is organized as follows: In Section 5.2 we present the systemmodel, and in Section 5.3 the

mismatched and optimal receivers are derived. We also provide a derivation of the receiver algorithms by means

of the factor graph framework in Section 5.4. Finally, Section 5.5 illustrates our numerical results.

5.2 System Model

We consider a MIMO-BICM system withMT transmit antennas andMR receive antennas; the system model is

shown in Fig. 2.2 and has been described in Section 2.1.3. Assuming block flat fading, the length-MR receive
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vector at symbol timen is given by (for notational convenience, we omit the time indexn)

y = Hx + w . (5.1)

Here,H denotes theMR × MT MIMO channel matrix,w ∼ CN (0, σ2
wI) denotes i.i.d. complex Gaussian

noise. By stacking the columns of the channel matrixH into a vectorh = vec{H} and definingX = xT ⊗ I,

(5.1) can be rewritten as

y = Xh + w , n = 1, . . . , N. (5.2)

The channel vectorh is assumed zero-mean complex Gaussian with covariance matrixCh, h ∼ CN (0,Ch).

For channel estimation, a length-Np pilot sequence with correspondingNpMR × MTMR matrix X̃p =

(X T
p [1] · · · X T

p [Np])
T is transmitted during a training phase. Each training symbolXp[n] is assumed to be

orthogonalXH
p [n]Xp[n] = P I; the total training power is denoted asEp , NpP . The received pilot sequence

vectorỹp[n] = (yT
p,1 · · ·yT

p,Np
)T (associated with the channel matrix at timen) has lengthNpMR and is given

by (cf. (5.2))

ỹp[n] = X̃ph[n] + w̃[n], (5.3)

with the stacked noise vector̃w[n] = (wT
1 · · ·wT

Np
)T .

5.3 MIMO-BICM-ID Receivers with Imperfect CSI

The (possibly iterative) receiver structure employed is shown in Fig. 5.1.It is very similar to the BICM receiver

shown in Fig. 2.2 and the BICM-ID receiver in Fig. 2.3. Basically, the receiver consists of three blocks: a

channel estimator, a demodulator and a channel decoder. Initially, the channel estimator provides an estimate

ĥ of the channel based on the known pilot symbols.

The channel decoder is connected to the demodulator by means of an interleaver; in case of perfect CSI the

optimal demodulator calculates LLRs according to

Λl[n] = log
Pr(cl[n]=1|y[n],H[n])

Pr(cl[n]=0|y[n],H[n])
, (5.4)

(cf. (2.3)). Using the MIMO-BICM system model (5.1), this expression becomes

Λl[n] = log

∑
x∈χ1

l
exp

{
− 1

σ2
w
||y − Hx||2

}
∑

x∈χ0
l
exp

{
− 1

σ2
w
||y − Hx||2

} (5.5)

In case of BICM-ID, the demodulator delivers LLRs according to

ΛID
l [n] = log

∑
x∈χ1

l
exp

{
− 1

σ2
w
||y − Hx||2

}∏mMT
l=1 exp(cl(x)Λa

l )∑
x∈χ0

l
exp

{
− 1

σ2
w
||y − Hx||2

}∏mMT
l=1 exp(cl(x)Λa

l )
, (5.6)

(cf. (2.10)), whereΛa
l denotes thea priori information provided to the demodulator by the channel decoder.
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5.3.1 Channel Estimation

The channel matrixH is estimated by means of the received pilot sequenceỹp. The general linear estimator is

given by

ĥ = Aỹp = A(X̃ph + w̃). (5.7)

The channel estimation matrixA is anMTMR × NpMR full-rank matrix.

Least-Squares (LS) Estimator. The LS channel estimator [51]̂hLS is obtained by settingA = X̃#
p , and

yields

ĥLS = X̃#
p yp = h + e.

Assuming orthogonal training sequences, the elements of the error vectore are distributed according toe ∼
CN (0, σ2

e), with varianceσ2
e = σ2

w

NpP .

Minimum Mean Square Error (MMSE) Estimator. The MMSE estimator [51]̂hMMSE is obtained by

choosing the estimator matrix according to

A =
1

σ2
w

ΣX̃H
p ,

with the matrixΣ =
(
C−1

h +
NpP
σ2

w
I
)−1

.

The posterior densityf(h|ĥ) can be obtained from

f(h|ĥ) =
f(ĥ|h)f(h)

f(ĥ)
,

with f(ĥ) =
∫

f(ĥ|h)f(h)dh. From (5.7) followsĥ|h ∼ CN (AS̃ph, σ2
wAAH), and using the channel

model of Section 5.2, the orthogonality of the training sequencesS̃p and the fact thatA has full rank,f(h|ĥ)

is complex Gaussian

h|ĥ ∼ CN
(
ĥMMSE,Σ

)
. (5.8)

Note that this density is independent of the actual linear estimator used, as long as the estimator matrixA is

full rank.

5.3.2 Genie and Mismatched Demodulator

We fist consider a genie demodulator which is in possession of perfect CSI. Since max-log demodulation tends

to be computationally expensive, [68] proposed a soft demodulator based on (linear) MMSE equalization and

per-layermax-log LLR calculation. The MMSE equalizer output is given by

x̂MMSE = E{xyH |H}
(
E{yyH |H}

)−1
y = Wy (5.9)

with the Wiener filter

W = HH
(
HHH +

σ2
w

Es
I
)−1

. (5.10)
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Assuming that the residual interference at the equalizer output is Gaussian, the approximate LLR for theith bit

in layerl is subsequently computed according to

ΛMMSE
l,i =

1

σ2
l

[
min
x∈A0

i

|x̂MMSE
l − µlx|2 − min

x∈A1
i

|x̂MMSE
l − µlx|2

]
.

Hereµl = [WH]l,l, σ2
l = µl − µ2

l , andAb
i denotes the set of transmit symbols whose bit label at position

i equalsb. Thegenie MMSEdemodulator just described assumes perfect CSI. Practical implementationsuse

a mismatched MMSEdemodulator in which the true channelH in (5.10) is replaced with a channel estimate

Ĥ. We note that the performance of mismatched max-log and MMSE demodulation depends critically on the

actual channel estimate.

In case of the BICM demodulator (5.5) we obtain the mismatched BICM demodulator, in case of the BICM-

ID demodulator (5.6) we obtain the mismatched BICM-ID demodulator.

5.3.3 Optimal Demodulators

The mismatched demodulators do not exploit the statistical information abouth conveyed by the channel es-

timate ĥ according to (5.8). Rather than replacingH with Ĥ in the final results (5.5), (5.6) and (5.10), this

replacement should be made right in the beginning, i.e., the conditioning in (5.4)and (5.9) should be with

respect toĤ instead ofH.

Optimal max-log demodulators. Using the relation

f(y|x, Ĥ) =

∫
f(y|x,H)f(H|Ĥ) dH ,

and the Gaussianity of the densities involved, we obtain

y|X , Ĥ ∼ CN
(
ĤMMSEx,XΣXH + σ2

wI
)
, (5.11)

with ĤMMSE = unvec{ĤMMSE} (see Section 5.3.1). This distribution is again independent of the the actual

channel estimator used and leads to theoptimal BICMmax-log demodulator, and theoptimal BICM-IDmax-log

demodulator, both of which replace1
σ2

w
‖y − Hs‖2 in (5.5) and (5.6), respectively, with the metric

(y−ĤMMSEs)
H
(
Σs+σ2

wI
)−1

(y−ĤMMSEs) − log det
(
Σs+σ2

wI
)
.

Here,Σs = (sT ⊗ I)Σ(s ⊗ I). This differs from the mismatched max-log demodulator in that the appropriate

covariance matrixΣs+σ2
wI is used instead ofI/σ2

w and in that there is the additional log-det term that depends

on the symbols.

Optimal soft-MMSE demodulator. In a similar spirit, [22] proposed anoptimal soft MMSEdemodulator

given by

s̃MMSE = E{xyH |Ĥ}
(
E{yyH |Ĥ}

)−1
y = W̃y . (5.12)
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Using (5.1) and (5.8), it is straightforward to show that the modified Wiener filter W̃ equals

W̃ = ĤH
MMSE

(
ĤMMSEĤ

H
MMSE + Σ̃ +

σ2
w

Es
I
)−1

.

The matrixΣ̃ equals the sum ofMR×MR diagonal blocks ofΣ, i.e., Σ̃ =
∑MT

l=1 Σl,l with Σl,l = (eT
l ⊗

I)Σ(el ⊗ I) (here,el is thelth unit vector of lengthMT). It is seen that the mismatched and optimal Wiener

filter differ by Σ̃ which accounts for the additional “noise” caused by the channel estimationerrors. Thelth

element of̃xMMSE equals

x̃MMSE
l = µ̃lxl + zl ,

whereµ̃l = [W̃ĤMMSE]l,l andzl captures the residual interference whose power equalsσ̃2
l = µ̃l−µ̃2

l . Assuming

that the interferencezl is Gaussian, theoptimal MMSEdemodulator computes the per-layer LLRs

Λ̃MMSE
l,i =

1

σ̃2
l

[
min
x∈A0

i

|x̃MMSE
l − µ̃lx|2 − min

x∈A1
i

|x̃MMSE
l − µ̃lx|2

]
.

5.4 Factor Graph Interpretation of BICM Receivers

We can also derive the optimal max-log demodulators by means of the factor graph framework.

5.4.1 Derivation of Factor Graph

Our treatment builds on Section 2.6. We consider a MAP detector for then′th information bit,

b̂[n′] = arg max
b[n′]∈{0,1}

p(b[n′]|y) ,

wherey denotes the sequence of received data symbols (cf. (5.2)) and the received pilot symbol sequences

(cf. (5.3)). We consider the factorization (2.40),

p(b[n′]|y) ∝
∑

∼b[n′]

p(y|X)p(X|c)p(c|b) . (5.13)

We can further develop the conditional densityp(y|X) as

p(y|X) =

∫
p(y|H,X)p(H)dH ,

whereH = (H[1] · · ·H[N ]) denotes the sequence of channel matrices, andp(H) denotes the prior density of

the channel (h = vec{H} ∼ CN (0,Ch)). Assuming statistical independence, we have

p(y|H,X) ∝
N∏

n=1

p
(
y[n]|X [n],h[n]

)
p
(
ỹp[n]|h[n]

)
.

From the system model (5.2) we havey[n]|X [n],h[n] ∼ CN (X [n]h[n], σ2
wI) and from (5.3) we obtain

ỹp[n]|h[n] ∼ CN (X̃ph[n], σ2
wI). A segment of the factor graph representing the density in (5.13) is shown

in Fig. 5.2.



Chapter 5. MIMO-BICM with Imperfect CSI 97

y

f(y|X , h) f(ỹp|h)
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Figure 5.2: Factor graph representation of a BICM system with pilot based channelestimation.

5.4.2 Sum-Product Algorithm and Messages

In the following, we will omit the time indexn for notational convenience. The messageµa(h) from thea

priori function block is Gaussian and is given by (cf. [5])

µha
(h) = CN (h,0,Ch) ,

and similarly we obtain for the message from the pilot blocks,

µỹ(h) = CN
(
h,

1

NpP
X̃H

p ỹp,
σ2

w

NpP
I

)
.

The messageµh(h) is then given by the product of the two messagesµha
(h) andµỹ(h[k]). It is Gaussian [5]

and is given by

µh(h) = CN
(
h,

1

σ2
w

ΣX̃H
p ỹ,Σ

)
.

This is exactely the densityf(h|ĥ) of (5.8). Using the rules for message updates in the factor graph, we have

µy(x) =

∫
f(y|X ,h)µh(h) dh = CN (y,X ĥMMSE,XChXH + σ2

wI) ,

which equals the density (5.11) derived for the modified demodulator. Now the messagesµc(cl[k]) can be

calculated according to (2.45) and (2.46) for the non-iterative and the iterative receiver, respectively. By calcu-

lating messages from the function nodef(y[k]|X [k],h[k]) to the variable node representing the channel, the

channel estimate can be updated using information from other symbols by means of the messageµa(cl[k]) as

was done in Chapter 3. This leads to receivers with excellent performance but higher complexity and will not

be considered here.
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Figure 5.3: Demodulator comparison for (a)2 × 2 and (b)2 × 4 uncorrelated MIMO channel.

5.5 Numerical Results

In this section we present numerical results comparing the mismatched and the optimal demodulators. We first

present results for BICM demodulators and then for BICM-ID.

5.5.1 Numerical Results for the BICM Demodulator

We consider an equivalent “modulation” channel (see Fig. 2.2) that comprises the space-time modulation,

the actual fading channel, and the soft demodulator. The input of this equivalent channel is given by the

interleaved code bits and its output is constituted by the (approximate) LLRs, generically denotedΛ (these

LLRs are provided by the genie/mismatched/optimal max-log or MMSE demodulator). We adopt the approach

from [20] which proposed to use the mutual informationR of the equivalent modulation channel as acode-

independentperformance measure for MIMO soft demodulators. This mutual informationcan be interpreted as

maximum rate that can be achieved with a given demodulator (in the sense of allowing asymptotically error-free

communication). A mathematically precise justification of this interpretation was recently provided in [74].

For our setup, it can be shown that (recall thatR0 = BMT)

R = R0 −
1

2

BMT∑

k=1

1∑

dk=0

∫
f(Λ̂k|dk) log2

2f(Λ̂)

f(Λ̂|dk)
dΛ̂k, (5.14)

wheref(Λ̂) = 1
2

∑1
dk=0 f(Λ̂k|dk). Analytical expressions for the conditional distributionsf(Λk|dk) required

for calculating the maximum achievable rate are unknown but for rare special cases. Hence, these distributions

(and the capacityR) are generally determined numerically via Monte-Carlo simulations.

Capacity Results

Capacity for uncorrelated channel. Fig. 5.3 shows the capacity versus SNR for an i.i.d. MIMO channel,

i.e.,Ch = I. For both the2 × 2 and2 × 4 system it is seen that both max-log and MMSE demodulation with
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Figure 5.4: Demodulator comparison for2 × 2 correlated MIMO channel.

imperfect CSI result in significant capacity losses compared to genie max-log and soft MMSE demodulation:

at a rate ofR = 4 bpcu, the SNR gap between the demodulators with perfect CSI and the demodulators with

imperfect CSI equals6 dB (with max-log) and8 dB (with soft MMSE). However, optimal max-log and MMSE

demodulation perform noticeably better than their mismatched counterparts. Specifically, for the2×2 system

shown in Fig. 5.3(a) the SNR gain of the optimal soft MMSE demodulator over mismatched MMSE ranges

from 1 dB atR=2 bpcu to about1.5 dB atR=6 bpcu. The SNR gain of the optimal max-log demodulator over

mismatched max-log is about1 dB for rates betweenR = 2 andR = 6 bpcu. For rates belowR ≤ 4 bpcu soft

MMSE demodulation performs identically to or even better than max-log demodulation; at high rates, however,

max-log is superior to MMSE demodulation.

Fig. 5.3(b) shows the results for the2×4 system. Compared to the2 × 2 case, all capacity curves are

shifted to lower SNRs (by about5 dB at R = 4 bpcu), despite the larger number of channel coefficients that

have to be estimated (8 complex coefficients instead of4). Apparently the larger number of receive antennas

allows better spatial separation of the two data streams and outweighs the more difficult channel estimation.

Max-log and MMSE demodulation (mismatched and optimal) perform almost identically in this scenario, with

MMSE having a slight advantage a rates below 4 bpcu. The SNR gain of the optimal demodulators over their

mismatched counterparts is about 1.5 dB at medium rates.

Capacity for correlated channel. We next consider the2×2 system with a correlated MIMO channel that

obeys the Kronecker model [34], i.e.,Ch = T1/2 ⊗ R1/2. The transmit and receive correlation matrices were

chosen as

T = R =

(
1 ρ

ρ 1

)

with ρ=0.7. Fig. 5.4 shows the capacity of the various demodulators versus SNR for this scenario. Compared

to the uncorrelated case, all curves are shifted to the right by about4 dB. Furthermore, max-log now outper-

forms soft MMSE for all rates above 0.5 bpcu: atR=4 bpcu, the gap between optimal max-log and optimal soft

MMSE is about1.5 dB, and in case of the mismatched demodulators the gap is close to2 dB. Furthermore, op-
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Figure 5.5: Required SNR for a target rate ofR = 4 bpcu versus pilot powerEp of mismatched soft-MMSE

and optimal soft-MMSE demodulator with2 × 2 uncorrelated MIMO channel.

timal max-log and optimal soft MMSE gain1 dB and1.5 dB, respectively, over their mismatched counterparts.

Apparently, the MMSE equalizer (5.12) performs worse in case of correlated channels.

Impact of Pilot Power

We next investigate the impact of the pilot powerEp on the performance of the mismatched and improved

soft-MMSE demodulators. To this end we plot the required SNR to achieve a target rate ofR = 4 bpcu versus

the pilot powerEp in Fig. 5.5 for an uncorrelated2×2 MIMO system. As a reference we also plot the required

SNR for the same target rate in case of a demodulator having perfect CSI (which is of course independent of the

pilot power). It can be observed that for very low pilot power, the gapbetween the mismatched and the optimal

soft-MMSE demodulator can be up to5 dB. In these scenarios the SNR gap to demodulators with perfect CSI

is more than20 dB. For larger pilot powers, the gap between mismatched and optimal demodulators decreases,

as does the gap to the demodulator with perfect CSI.

Allocation of Pilot/Data Power

We next fix thetotal transmit powerEtot = Ep + Es and study how the allocation of power to pilots (i.e.,Ep)

and data symbols (i.e.,Es) impacts capacity. We reconsider the2×2 system with uncorrelated MIMO channel.

Fig. 5.6 shows the results obtained with mismatched (part (a)) and optimal (part (b)) soft MMSE demodulation

for total power budgets ofEtot = 8 (dash-dotted line),Etot = 15 (solid),Etot = 25 (dashed), and for the three

noise levelsσ2
w = 0.08 (black ‘+’), σ2

w = 0.5 (red ‘×’), and σ2
w = 2 (blue ‘◦’). It is seen that the power

allocation has a strong impact on capacity: The capacity is very small for low pilot power (due to poor channel

estimates) and for high pilot power (due to lack of resources for data transmissions). In between, there is an

optimal choice of pilot power, roughly aroundEtot/2. These results illustrate that improper power allocation

can significantly deteriorate the overall performance.
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Figure 5.6: Tradeoff between data andpilot symbol power. Demodulator comparisonfor (a) mismatched soft-

MMSE, and (b) optimal soft-MMSE demodulator with2 × 2 uncorrelated MIMO channel.

5.6 Numerical Results for the BICM-ID demodulator

In the following, we present numerical results for a2×2 BICM system with16QAM symbol alphabet (nor-

malized to unit power) andNpP = 0.4. The number of coded bits per channel use isL = 8. We considered

two different mappings: layer-wise Gray mapping and layer-wise m16a mapping [75], which is a mapping

specifically optimized for BICM-ID with convolutional codes.

Demodulator EXIT Charts

The EXIT charts [24] of the demodulators were obtained by Monte Carlo simulations, using an AWGN channel

for the a priori information. Fig. 5.6 shows the EXIT charts for the mismatched(with an LS channel estimator)

and improved demodulator, both using Gray or m16a mapping. The SNRs havebeen chosen such that the area

under the EXIT functions, which quantifies the maximum rate achievable with therespective demodulator [76],

approximately equals1/2. With Gray mapping, the EXIT function of the mismatched demodulator at10 dB

SNR is almost identical to that of the improved detector at9 dB. With m16a mapping, the EXIT functions of

the two demodulators look quite different and the SNR required by mismatched and improved demodulation

equals11.75 dB and9 dB, respectively. We conclude that the SNR threshold for the improved demodulator

is identical under both mappings, even though different codes (matched tothe respective EXIT function) are

required to achieve this threshold. Furthermore, the SNR gain of the improved demodulator is about1 dB for

Gray mapping and2.75 dB for m16a mapping.

Furthermore, codes designed for the mismatched demodulator with Gray mapping will also perform well

for the improved detector with Gray mapping; however, with the improved demodulator the turbo cliff will

occur at lower SNR. In contrast, with m16a mapping the pronounced difference between the EXIT functions

of the mismatched and improved demodulator indicates that here the channel code should be matched to the

respective demodulator used in order to avoid a large performance loss.
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Figure 5.7: EXIT charts of mismatched and improved demodulator for Gray and m16a mapping.

Achievable Rates

A code-independent measure for the performance of the various demodulators with different mappings is the

maximum rate they allow to achieve with vanishing error probability. This rate canbe measured via the area

under the demodulator’s EXIT chart when thea priori channel is a binary erasure channel [76]. For reasons

of numerical stability, we used an AWGN channel asa priori channel for obtaining the EXIT charts, in which

case the area yields a good approximation for the achievable rates.

The resulting maximum rates achievable with the genie, mismatched, and improved demodulator are plotted

versus SNR for a spatially uncorrelated Rayleigh fading channel in Fig. 5.8(a). It is seen that the improved

demodulator is indeed superior to mismatched demodulation, even though there isstill a significant gap to

genie demodulation. For the genie and improved demodulator, the maximum rates are seen to be virtually the

same for the two mappings used. Nevertheless, the corresponding EXIT charts (not shown) are different and

achieving the maximum rates in an actual system thus requires matched code designs.

In contrast, for the mismatched demodulator the rate with m16a is lower than with Gray mapping. For a

rate ofR=1/2, there is an SNR gap of about2 dB between the mismatched demodulator with Gray and m16a.

This indicates that the optimized m16a mapping is more sensitive to CSI inaccuracythan Gray mapping.

Fig. 5.8(b) shows similar results for the case of a channel with spatial correlation. We used a Kronecker

model [34] for the correlation matrix of the channel, i.e.,Ch = S1/2 ⊗ R1/2, with the transmit and receive

correlation matrices respectively chosen as

S = R =

(
1 0.7

0.7 1

)
.

It is seen that the maximum achievable rates of the genie demodulator and modifieddemodulator are again

almost independent of the mapping, albeit generaly smaller than in the uncorrelated case. The maximum

rates achievable with the mismatched demodulator are shown for LS and MMSE channel estimation, both in

conjunction with Gray and m16a mapping. Gray mapping is again preferable over m16a and in addition MMSE

estimation is preferable over LS estimation due to its smaller channel estimation error. We conclude that m16a

does not offer any advantage over Gray mapping in terms of maximum rates since the latter apparently is less

sensitive to CSI inaccuracy.
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Figure 5.8: Rates achievable with genie, mismatched, and improved demodulator versus SNR for (a) uncorre-

lated Rayleigh fading and (b) correlated Rayleigh fading.

BER Performance

We next present bit error rate (BER) results for LDPC codes with5 · 104 code bits and code rateR=1/2. With

the same system parameters as before this amounts to6250 transmit vectors. The MIMO channel was i.i.d.

block fading, where the channel stays constant for12 symbol periods (2 of which where used for training) and

then a new, independent channel realization was drawn. The number ofouter iterations (between demodulator

and channel decoder) was10, while the number of inner iterations (in the LDPC decoder) was200. The

mismatched demodulator was used with a LS channel estimator.

In Fig. 5.9(a), BER versus SNR for a non-optimized LDPC code with degree distribution(3, 6) is shown

together with the theoretical SNR thresholds. It is seen that there are significant gaps to the theoretical SNR

thresholds, particularly for the genie and improved demodulator with m16a mapping. These gaps are caused

by the mismatch between the EXIT functions of demodulator and code, which is significant when the m16a

mapping is used. The EXIT charts of demodulators with Gray mapping are better matched to the code EXIT

chart, therefore the gaps are smaller in this case. These BER results further confirm the superiority of the

improved demodulator which outperforms the mismatched demodulator by about2.4 dB (Gray) and1.7 dB

(m16a).

We further designed specifically optimized LDPC codes for each demodulator by matching the EXIT charts

of the LDPC codes and of the demodulator according to [25]. The BER obtained with these optimized codes

is plotted versus SNR in Fig. 5.9(b). All schemes are now much closer to the respective theoretical SNR

thresholds. Furthermore, for genie and improved demodulation, Gray andm16a mapping now indeed feature

approximately equal BER performance as predicted by Fig. 5.8(a) (m16a still performs slightly worse since

here the code design does not achieve the theoretical optimum). The gain ofimproved demodulation over

mismatched demodulation is about1.5 dB (Gray mapping) and about 2 dB (m16a mapping).
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Figure 5.9: BER versus SNR for MIMO-BICM-ID employing genie, mismatched, or improved demodulator

and Gray or m16a mapping for (a) a non-optimized LDPC code and (b) optimized LDPC codes.
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Conclusions and Outlook

FINALLY , we summarize the most important aspects and results of our work, present some conclusions,

and provide suggestions for further research. In this thesis, we usedthe factor graph framework to design

(possibly iterative) receiver algorithms. We first considered an IDMA system, derived a factor graph representa-

tion for it and used the factor graph to design a receiver performing jointdata detection and channel estimation.

Numerical results show that the proposed receiver operates close to theinformation theoretic limit and that joint

data detection and channel estimation yields a dramatic performance gain.

We next considered BICM systems, where the demodulator calculates quantized LLRs. Using the informa-

tion theoretic concept of the equivalent BICM modulation channel, we designed an optimal quantizer and also

proposed a new quantization scheme, which is easier to design. We presented semi-analytical and numerical

results, which show that only a few bits for LLR representation are needed. We also proposed an on-the-fly

design of the quantizer parameters, thereby avoiding large lookup tables for storing the quantization parameters.

Finally, we focused on BICM systems with imperfect CSI at the receiver. We proposed optimal demodulator

algorithms which take channel estimation errors into account, thereby offering improved performance. The

improved demodulators can also be obtained by implementing the sum-product algorithm on the system’s

factor graph, thereby demonstrating the wide applicability of the factor graph approach. We demonstrated the

performance gains possible with the proposed demodulators and also investigated the impact of allocation of

pilot and data symbol power.

105



Chapter 6. Conclusions and Outlook 106

6.1 Conclusions

In the following we draw our conclusions based on the results presented inthe previous chapters.

Graphical Models in Wireless Communications

• We proposed a receiver for a MIMO-OFDM-IDMA system that can beviewed as an approximation to

the maximuma posteriori(MAP) bit detector. The MAP bit detector is optimal in the sense of minimum

probability of a bit error; its output is chosen such that thea posterioriprobability of an information bit

is maximized. We obtained this probability by marginalization, which is carried out efficiently by means

of the sum-product algorithm using the system’s factor graph.

• The complexity of this marginalization is exponential in the number of users, thus making it unrealizable

even for moderate system sizes. We overcame this limitation by using approximations for some of the

messages propagated in the factor graph, thereby obtaining a complexity that is linear in the number of

users. Our receiver extends that of [18] to MIMO transmissions.

• We extended the receiver of [18] to higher-order modulation formats, which results in a further increase

of spectral efficiency (in addition to the MIMO multiplexing gain).

• We proposed a selective message update scheme where only certain messages are updated in each itera-

tion. This yields a reduction of computational complexity and allows to trade error performance against

computational efficiency in a flexible manner.

• Practical systems use pilot-aided channel estimation to obtain (imperfect) CSI. By using a factor graph

based receiver, pilot-aided channel estimation becomes an integral partof the iterative scheme. Thus,

the receiver performs iterative joint multiuser data detection and channel estimation for pilot-assisted

MIMO-IDMA.

• Following the idea of [20], we considered the maximum achievable rate of IDMA as a fundamental

performance limit and compared it with the information-theoretic capacity of the corresponding multiple

access channel (MAC). To obtain the maximum achievable rate of IDMA we used the low-complexity

IDMA receiver with an LDPC code as channel code and determined the achievable rate by means of BER

simulations. It was shown that IDMA comes within2 dB of the information theoretic limit.

• We used numerical simulations to demonstrate the performance gains achieved with the proposed receiver

relative to conventional IDMA receivers and the dependence of performance on certain system parame-

ters. It was observed, in particular, that inclusion of channel estimation inthe iterative detection/decoding

scheme yields a dramatic improvement of reliability, and selective message updating results in a signifi-

cant reduction of complexity.
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Message Quantization in BICM Systems

• We considered BICM systems with quantized LLRs and chose the quantization intervals by solving an

optimization problem. Depending on the choice of the objective function we obtained an (information-

theoretic) optimal quantizer or the proposed quantizer of [65].

• To compare the optimum and proposed quantizer design in acode-independentmanner, we used the

mutual information of the equivalent modulation channel of the BICM system [20]. In case of a fast-

fading scenario, we used the ergodic rate, whereas for quasi-static fading we characterized the equivalent

modulation channel by means of outage probability. In case of BPSK-modulated single-input single-

output (SISO) systems a semi-analytical approach was employed, otherwise Monte-Carlo simulations.

• We provided a large number of numerical results for different system configuations and modulation

alphabets. Our results demontrated, that only3 bits are sufficient for quantizing LLRs with negligible

loss in mutual information or outage probability. In case of low to medium rates,2 bit quantization is

sufficient.

• The quantizer parameters, namely quantizer intervals and quantizer outputs, depend on the system con-

figuration and the SNR, requiring large lookup tables for storing the required parameters. We proposed a

method for designing the proposed LLR quantizer during data transmission, “on the fly” i.e. without the

need for precomputed lookup tables to store quantizer parameters.

• We provided bit error rate (BER) simulations for BICM systems with LLR quantization usinglow-

density parity-check (LDPC)codes, which compare different quantization schemes. Our numerical re-

sults showed that the “on the fly” design of the quantizer intervals cause noloss in mutual information.

The on-the-fly design of the quantizer outputs was demonstrated by BER simulations and performs as

well as an offline design using precomputed lookup tables.

• By designing demodulators which directly calculate quantized LLRs, further complexity reductions are

possible. We demonstrated these complexity savings for a low-complexity soft-MMSE demodulator. We

also investigated the performance loss due to the use of a suboptimal demodulator and LLR quantization.

For a wide range of scenarios, (quantized) soft-MMSE demodulators perform alsmost as well as the

max-log demodulators, but with significantly lower complexity.

Performance of BICM Systems with Imperfect CSI

• We considered low-complexity soft-MMSE demodulators for BICM systems and the max-log demodu-

lators for BICM-ID systems.

• The optimal BICM-ID demodulator of [23] was extended to MIMO channelswith arbitrary spatial cor-

relation. Furthermore, it was shown that the optimal demodulator is independent of the actual linear

estimator used.
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• We extended the results of the optimum soft-MMSE demodulator [22] to arbitrary linear estimators.

Thereby we could demonstrate that the optimum soft-MMSE demodulator is independent of the actual

linear channel estimator used.

• We proposed to use the maximum achievable rate with a specific demodulator as acode-independent

performance metric. These rates were measured by Monte-Carlo simulationsof the equivalent BICM

modulation channel [20]. We compared these maximum achievable rates of mismatched and optimal low-

complexity soft-MMSE receivers for correlated and uncorrelated MIMOchannels. In case of BICM-ID,

we used EXIT charts [24] to characterize the convergence behaviourof the MIMO-BICM-ID receivers

employing the mismatched demodulator or the optimal demodulator for different symbol mappings and

different channel correlation models.

• For BICM, we investigated the impact of power allocation between pilot and data symbol power on the

maximum achievable rate and demonstrated the importance of correct power allocation. It turned out that

this allocation is crucial for good performance.

• For BICM-ID, we used the approach from [25] to design LDPC codesthat are matched to a specific

demodulator in terms of their EXIT functions. We also provided BER comparisons using the optimized

LDPC codes and a “standard” (i.e., non-optimized) LDPC code, thus showing the importance of matching

LDPC codes to a specific demodulator.

6.2 Outlook

Several directions for future research seem to be interesting:

Graphical Models

• So far, we have only used Gaussian approximations in the proposed algorithms (especially in Chapter

3). While the Gaussian message approximations yield very good performance, a unified framework for

message approximations would be desireable. Investigations of differentmessage approximations, or

whether performance can be improved by not approximating certain messages are interesting topics for

further research.

• In almost all of the considered cases in this thesis, the factor graph has many cycles. In this case only

very limited results on convergence properties for the sum-product algorithm are available and there are

neither results about what the sum-product algorithm calculates (if it converges), either. Furthermore,

many different schedulding schemes for the message updates are possible, and scheduling seems to have

an impact on performance. Theoretical results on these issues would certainly help in designing efficient

receivers using the factor graph approach.

• Other design approaches for iterative receivers have been proposed such as [77]. Also information geom-

etry [16,17,78] has been used to gain insights into why and how iterative receivers obtain their impressive
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performance. Using these theoretical methods, different strategies foriterative receiver design could be

compared and further insights could be obtained.

Message Quantization

• At the end of Chapter 4 we presented a low-complexity soft-MMSE demodulator calculating quantized

LLRs. Its performance is very close to the optimal demodulator in the low-rate regime, but in the high-

rate regime, the max-log demodulator performs better. In practice, the max-logdemodulator is imple-

mented by means of the sphere-decoding algorithm [79]. Modifying the sphere-decoder such that it

directly outputs quantized LLRs and investigating the tradeoff between quantizer bit-width and mean

number of visited nodes in the sphere-decoding algorithm is a very interesting research topic.

• The channel decoder (either a belief propagation decoder for the LDPC code or the BCJR algorithm for

a convolutional code) uses floating point variables for the decoding algorithm. In a practical communica-

tion system, however, an implementation with finite bit-width will be used, leading to a channel decoder

working with quantized LLRs. It is an open research question, whether the quantization used for the

LLRs can also be used in the channel decoder or whether a different number representation proves to be

more advantageous. Further investigations into these issues seem to be promising.

• Message quantization can not only be used in BICM receivers, but can also be applied in distributed

systems, like architectures using network coding or relaying schemes. In these systems, nodes exchange

information which, for efficient and simple transmission, needs to be quantized. In the BICM systems

considered in this thesis, the concept of the equivalent BICM modulation channel was used to design

the optimal quantizer, but currently there are not many information theoretic results regarding distributed

systems, thus making it impossible to design an optimal quantizer. Nevertheless,this is an interesting

direction for future research.

BICM Receivers with Imperfect CSI

• While information theoretic bounds for systems with limited CSI exist [80, 81], no results are available

on the capacity of coded modulation with imperfect CSI. Furthermore it is not clear how to measure

the achievable rate of iterative demodulators. The EXIT chart approachprovides some insights into

the convergence process of iterative receivers and some approximations for achievable rates with low-

complexity demodulators can be made, but exact results are still missing.

• In this thesis we used uncorrelated channel models and simple models for correlated channels. Using

more realistic models for wireless channels or even testing the proposed demodulators with real chan-

nel data would allow a performance assessment under more realistic conditions. Furthermore, for the

proposed demodulators, the channel statistics are required, which needbe estimated by the receiver in

a pracitcal system. Designing estimators for the channel statistics and assessing the performance these

systems is an interesting research direction.
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