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Abstract

New products and services in the wireless market require higher dasairafgoved link reliability, and
the ability to cope with user interference. The use of multiple-input multiple-o{iglMO) communications
has led to increased data rates and improved link reliability, and new multiusentission schemes such as
interleave-division multiple access (IDMA) have been proposed. WithADNser separation is obtained via
user-specific interleavers combined with low-rate channel coding. eThes technologies and transmission
schemes, however, require sophisticated and powerful receivetwses, which employ iterative algorithms.

In the first part of this thesis we use the factor graph framework to désigative receiver algorithms for
an IDMA multiuser uplink system employing MIMO orthogonal frequencyigion multiplexing (OFDM).
We derive the factor graph corresponding to the IDMA system, and essutim-product algorithm to develop
an iterative multiuser IDMA receiver that performs joint detection and shbhestimation. Simulation results
demonstrate large performance gains compared to classical recaiviEnsipng separate channel estimation
and data detection. Suitable approximations to the messages passed by theduch-algorithm yield a
low complexity implementation that scales linearly with the number of users; fustgeificant complexity
reductions can be achieved by only updating a subset of messagesyntevation. We also perform an
information theoretic performance analysis of IDMA and show that theopmdnce of IDMA comes close to
the information theoretic limit.

In the second part of the thesis we deal with quantization of messages axctbe draph. To this end we
consider a bit-interleaved coded modulation (BICM) system and investigatertiblem of how to quantize
the log-likelihood ratios (LLRs) at the output of the demodulator. The optimahtjzer has previously been
derived only for the special case of BPSK modulation over an AWGN reblarExtending this approach to
other channels and modulations is difficult to implement in a practical systemhanefore we consider a
different quantizer design which allows for simple implementation while only sligtetyrading performance.
We compare our quantizer design with the optimal quantizer in terms of maximuigvable rate and by
means of BER simulations. We also propose a method for designing the wiiffdri@ quantizers during data
transmission “on the fly”, i.e. without the need for lookup tables to storetmearparameters. By designing
demodulators, which directly calculate quantized LLRs, complexity reductiompossible. We demonstrate
this effect by deriving a low-complexity soft-MMSE demodulator which otgmuantized LLRs.

In practical BICM systems, the channel between transmitter and reteigsdo be estimated by means of pi-
lot symbols. Because the pilot power is constrained, estimation errors &ecently, improved demodulators
have been proposed, which take the channel uncertainty into accoenmgtpytoffering better performance. In
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the third part of this thesis, we provide a performance comparison ofusademodulators for BICM with im-
perfect CSl in terms of the maximum achievable rate with a specific demodulatm@se of iterative decoded
BICM (BICM-ID), we use EXIT charts to characterize the convergebehaviour of the MIMO-BICM-ID
receivers. We also design LDPC codes that are matched to a specifiddeatooin terms of their EXIT func-
tions and provide BER comparisons. Finally, we investigate the impact ofrmileeation for pilots and data
symbols on the maximum achievable rate and demonstrate the importance of power allocation.






Kurzfassung

Neue Produkte und Anwendungen in der drahtlosen Ddwemragung beitigen ohere Datenraten,
Zuverlassigkeit und Robustheit geddrer Interferenz von anderen Teilnehmern. Die Verwendung von
multiple-input multiple-outputMIMO) Ubertragungiihrte zur Steigerung der Datenrate und verbesserter Zu-
verlassigkeit, und neue Mehrbenutzdbertragungsverfahren wieterleave-division multiple acce$fDMA)
wurden vorgeschlagen. Bei IDMA erfolgt die Separierung der Thitmer duch die Verwendung von user-
spezifischen Interleavern zusammen mit Kanalkodierung niederer Ratese Deuen Technologien und
Ubertragungsverfahren bigiigen anspruchsvolle und leistungsige Emphngerstrukturen, welche iterative
Algorithmen verwenden.

Im ersten Teil dieser Dissertation verwenden wir Faktorgraphen, uetiiterEmpfangsalgorithmeruif
ein IDMA Mehrbenutzersystem zu entwerfen, welches auf MIbiogonal frequency-division multiplexing
(OFDM) basiert. Wir leiten den Faktorgraph des IDMA Systems her, um¢ierden dersum-productAl-
gorithmus, um einen iterativen IDMA Mehrbenutzeredmer zu entwerfen, der gleichzeitig Detektion und
Kanalsckitzung durchihrt. Simulationsergebnisse zeigen eine grosse Leistungsverbeggegatiber einem
Empfanger, der zuerst den Kanal &trt und dann die Daten detektiert. Eine Implementierung, deren Kom-
plexitat linear mit der Anzahl der Teilnehmer steigt, &thman durch entsprechende Approximationen der
Nachrichten, die imsum-productAlgorithmus ausgetauscht werden. Eine weitere Reduktion der Komgaiexit
wird durch Berechnen lediglich einer Teilmenge aller Nachrichten in jedettiom erreicht. Eine informations-
theoretische Analyse des IDMA Systems zeigt, dass das System nahdaiemtionstheoretischen Limits
arbeitet.

Der zweite Teil dieser Dissertation behandelt die Quantisierung von atdm im Faktorgraphen. Wir
betrachten ein BICM System und untersuchen das Problem der Quamigsiemlog-likelihood ratios(LLRS)
am Ausgang des Demodulators. Bisher wurde der optimale Quantisierdidlediiy den Spezialfall von BPSK
Modulationtiber einen AWGN Kanal untersucht. Da eine Erweiterung dieésuhg auf andere Katen und
Modulationsformaten sehr kompliziert ist, schlagen wir eine alternative {@iemingmethode vor. Diesadst
sich viel einfacher implementieren und liefert lediglich etwas schlechterebBirgse. Wir vergleichen unsere
Quantisierungsmethode mit dem optimalen QuantisierdidiEh Transinformation und Bitfehlerrate. Weiters
stellen wir eine Methode vor, mit der sich die Quanisieréhvend der Datdibertragung entwerfen lassen.
Dadurch werden keine Tabellen zum Speichern der Parameter detisiguars beitigt. Die Verwendung
von Demodulatoren, die direkt quantisierte LLRs berechnen und aeisgetndglicht eine Verringerung der
Komplexitat des Demodulators. Wir demonstrieren diesen Effekt an esodéinMMSEDemodulator, der direkt
guantisierte LLRs berechnet.

viii



In praktisch realisierten BICM Systemen wird der Kanal zwischen Sender Empénger mittels
Ubertragung von Pilotsymbolen gegtht. Da die Sendeenergie begrenzt ist, tretera@éhler auf. In
der Literatur wurden verbesserte Demodulatoren vorgestellt, die deals¢titzfehler beicksichtigen, und
dadurch leistungshiger sind. Im dritten Teil dieser Dissertation vergleichen wir verschie@@emodulatoren
im Hinblick auf ihre maximal erreichbare Rate. Im Fall von iterativ demoduliéBi€M Ubertragung ver-
wenden wir EXITcharts um das Konvergenzverhalten des MIMO-BICM-ID Erap§ers zu charakterisieren
und entwerfen LDP@odes die an den EXITchart des entsprechenden Demodulators angepasst sind. Wir
prasentieren einen Vergleich der Bitfehlerraten der verschiedenen Ddstmen. Weiters untersuchen wir
auch die Auswirkung der Leistungsaufteilung zwischen Pilot- und Datebslen auf die maximal erreichbare
Rate und demonstrieren die Wichtigkeit der korrekten Aufteilung.
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Introduction

“N TIRELESS communication has become ubiquitous in the last two decades. Inibialjyhigh-end

notebooks were equipped with connectivitijtbreless Local Area NetworKg/LAN), which allowed
for wireless broadband access to the internet. Due to increasing deWiaAdN connectivity is now common
to all notebooks and many new consumer devices have been introducedrartket, which offer new services
like multimedia streaming and video-on-demand. Many access points for Wia&sl een installed in homes
and offices, allowing for wireless internet access.

This development triggered customer demand for “wireless broadb@edseverywhere”. Existing ser-
vices, like surfing the internet or watching a video stream, are providednioldle environment. This creates
new customers (e.g. people surfing the internet while commuting); extragplaérsuccess of wireless broad-
band by means of WLAN, this will be a huge market. In addition to providingtigsservices in a mobile
fashion, also many new services have become available, which explicitijreéemobile broadband access.
One example for such a new service is “augmented reality”, which enabdes to obtain interactive informa-
tion about sights near their current location by a clever combination of G&3ex mobile devices, broadband
internet access and a (user-generated) database accessible aviertiet. Many of these new services are cur-
rently evolving, and will offer attractive opportunities and revenue moidelservice developers and network
operators.

Current WLAN standards work reliably only up160 meters, making deployment in large areas, especially
outdoors, difficult and costly. Given the infrastructure cellular netvogrrators already have, it is only natural
to extend current cellular communication technologies such that broadindet access can be provided.
Current second-generation cellular communication technologies lik8ltitgal System for Mobile Communi-
cations(GSM) are mostly tailored for voice-centric network traffic and perfowony for data-centric appli-
cations. The third-generation cellular technologpiversal Mobile Telecommunications Syst@sTS) and
extensions, such dsdigh Speed Downlink Packet Accg$$SDPA) are better suited for data-centric network
traffic. However, these new standards are not expected to be ablevidethe increasing data rates and in-
creased levels of quality of service (QoS) required in the future. Ttreremew standards for the upcoming
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fourth-generation (4G) cellular communication systems have been papsbi&h provide higher data rates
and support QoS constraints. Most prominenfifgridwide Interoperability for Microwave Accefa/iMAX)
andLong-Term EvolutioLTE) of the 3GPP are currently considered or being already deployed

Increased data rates and QoS constraints over the wireless chasadhpee main challenges to system
design and standard development:

(i) The spectrum usable for wireless communications is limited by various facrinysical laws imply
certain propagation conditions, thereby allowing only a portion of the avaitgd®ctrum to be used for wireless
communications. Also, process limitations in current semiconductor devicedegy limit the range of
available frequencies. Spectrum regulation puts constraints on spegcseinas frequency bands are sold to
operators in auctions, and given the high prices for UMTS licenses p&driope, allocating more bandwidth
poses a severe economical burden on operators.

(ii) The need for mobility poses a severe constraint on the energy comisumopwireless devices. Current
rechargable batteries are highly complex and optimised components, eubaff/ limited capacity; novel
energy sources like fuel cells are still being in the development phase.

(iii) Given the many mobile devices already deployed and the limited spectrumnroes, interference
between users is becoming stronger, thereby reducing data rates and l@und his implies that cooperation
between different devices becomes more and more important.

Past strategies to overcome these challenges were increasing povieoleatiocating more bandwidth
to wireless devices, but these are not feasible anymore. Therefargaresmission schemes and algorithms
are required, which allow for a much more efficient use of the limited resguaailable, promote coopera-
tion between different wireless devices, and increase data rates wed @ificiency to cope with tomorrows’
communication requirements.

After the (re)discovery of low-density parity-check (LDPC) codesnsmission systems with iterative pro-
cessing at the receivers received a lot of attention, as they promisegarfprmance gains. Furthermore, they
are reasonably simple to implement, because they consist of “standardboentp, which are working to-
gether in an iterative manner. In the beginning, iterative systems werenddsigainly based on intuition, but
soon graphical models emerged as a very useful design tool.

1.1 Factor Graphs and lIterative Receivers

Graphical models allow a unified approach to many topics in coding, speeckignal processing, machine
learning and statistical inference. Inference in graphical models isltmsthe actual graph, which describes
the used model in an intuitive and simple manner, and on a generic messsigg pdgorithm, which operates
on the graph by exchanging messages between the graph’s nodedly,lgitephical models were mainly
used in machine learning and statistical inference; [1] introduced Bayestavorks and the belief propagation
algorithm, which operates on these graphs. Over time the range of appl&cafidened, and many algorithms
in seemingly different fields have been shown to be special cases oétiggig message passing algorithm,
known as thesum-product algorithm
One of the first applications of graphical models in communications was codintass of very powerful
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codes are low-density parity-check (LDPC) codes, which were intedilby Gallager in [2]. LDPC codes,
as many other codes, can be described by a particular form of graptockls, called “Tanner graphs” [3].
Tanner graphs are bipartite graphs, representing the code- anthation bits and their dependencies induced
by the code structure. It was also shown, that this graphical repegienof LDPC codes allows to represent
the decoding operation as a sum-product algorithm on the Tanner @pph [

Factor graphs were introduced by Loeliger in [4, 5] and are genetialimaof the Tanner graphs. Factor
graphs are used to visualize a complicated “global” function (dependingamy variables), which can be
factored into a product of simpler “local” functions (depending on justva ¥ariables). Factor graphs are
bipartite graphs that express which variables are arguments of whicil™fooictions. In [6] it was argued,
that problems dealing with such factorizable functions arise in many seemiffghedt fields, such as coding,
speech and signal processing. The problems in these fields essentjalhe @gorithms to calculate (approx-
imate) marginal functions of the “global” function the factor graph is assediaith. The factorization of
the global function allows a computationally efficient implementation by means sitineproduct algorithm.
The sum-product algorithm passes messages along the edges of thgrfagto At the nodes all the incoming
messages from the neighbouring nodes are collected, and new memsacmsulated by some message update
rules. The newly updated messages are then propagated back to tHeoneiggp nodes. After some stopping
criterion (which depends on the structure of the factor graph), the sadupt algorithm stops and the required
marginal functions associated with every node can be approximately daltflam the messages received.

The idea of iterative processing at the receiver goes back to coding] turbo codes were introduced,
which exhibit performance extremely close to the Shannon bound andowgrerforming “classical codes”
by large margins. Turbo codes consist of several convolutiom@ponentodes, each of which encodes the
uniguely interleaved information bits. While the component codes can beldéaaith low-complexity [8],
large performance gains stem from the iterative decoding processe e component decoders exchange
information about the code bits. The success of turbo codes spuwedaus interest, and soon the underlying
turbo principle[9] was applied to many other problems in communications, such as detectiomeatlestima-
tion, and synchronization. In the context of bit-interleaved coded moduol&8tCM) [10], iterative receivers
were proposed in which demodulator and channel decoder work in ativeefashion and exchange informa-
tion about the transmitted bits [11]. Ideally, after each iteration more and nitsrarb correctly detected and -
due to theturbo principle- help in correctly detecting the remaining unknown bits. These receiveritiims
can also be extended to incorporate channel estimation into the iterativesping;, they obtain additional
pilot symbols using already correctly detected bits [12], which can be tasedtimate the channel. Ideally,
these additional pilot symbols allow a more precise channel estimation, wHghihecorrectly detecting the
remaining unknown bits.

One big advantage of all these receiver structures is that they do exbtime design of a new transmission
design; merely the receiver is redesigned and thereby gaining largeviempeats in performance. Due to the
repeated application of e.g. the demodulator and the channel decodeontipéexity of iterative receivers is
inherently higher than that of non iterative receivers. By designing tineter of iterations performed at the
receiver, a performance-complexity tradeoff can be achieved.

In the beginning, théurbo principlewas used in an intuitive manner and many proposed algorithms were



Chapter 1. Introduction 4

based on intuition. It soon became clear, however, that communicatiateatahes can be expressed by means
of factor graphs and that detection amounts to calculation of marginal fasaifa complicated “global” func-
tion associated with the factor graph [13, 14]. The application of the facsmh framework to receiver design
allows for a unified design and analysis. By approximating the messagegxcleenged between the nodes of
the factor graph, the calculations involved in the message updates at #® cadbe considerably simplified.
Furthermore, by updating and propagating only a subset of the medsaties complexity reductions are
possible. The factor graph framework allows a unified approach to ib&ses.

From a factor graph point of view, application of the sum-product algorithiterative receivers yield only
an approximation of the marginal functions 8unless the factor graph is)adrekconsiderable effort has been
made to understand why iterative receivers are still offering suctpéroal performance. Starting points for
theoretical analysis were graph theory [15] and information geometid Fl@ut a real breakthrough has not
yet occured, thus making understanding of iterative systems an opsreksssue.

1.2 Scope of Work and Contributions

This thesis consists of three parts: The first part applies the factdn fnapework to the design of an iterative
receiver in multiuser systems. We consider an uplink scenario whereabegers transmit data to a base
station and the users are separated by meanstafeave-division multiple accegtfDMA) [18]. Using the
factor graph framework [4, 5], we can represent the IDMA systera bipartite graph, consisting of nodes
and connecting edges. By formulating the detection problem as marginalizdigsaum-product algorithm
can be used to develop an iterative multiuser MIMO-IDMA receiver thdbpes joint detection and channel
estimation. The proposed algorithm calculates messages which are exdHmatgeen the nodes of the factor
graph.

The second part of this thesis discusses message quantization in the cbbitinterleaved coded mod-
ulation (BICM). We propose different quantization schemes and atfseis$mpact on performance by infor-
mation theoretic quantities. This is relevant in the context of receiver dé@sigmoperative communication
networks. Here, nodes can cooperate or use relays, in order t@sectiee total throughput of the network
or enhance reliability of the transmissions. Cooperation schemes workdating received messages from
other nodes and transmitting the updated messages to other nodes or Pekgtseal considerations require
the quantization of messages to be exchanged between the nodes.

In the third part of this thesis, we consider the effects of imperfect CShée of BICM systems. In
practical BICM systems, the channel between transmitter and recewé ba estimated. Usually, this is done
by means of pilot symbols, which are used by the receiver to estimate theath@ecause the pilot power
is constrained, estimation errors occur, which result in the receivendnanly imperfect CSI. We propose
improved demodulator algorithms for this scenario and study their perfoerartcompare these algorithms
with conventional approaches.
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Our contributions are as follows.

Graphical Models in Wireless Communications

* lterative MIMO-OFDM-IDMA receiverWe propose a receiver for a MIMO-OFDM-IDMA system that
can be viewed as an approximation to the maxinmauposteriori(MAP) bit detector. The MAP bit de-
tector is optimal in the sense of minimum probability of a bit error; its output isexmgsich that tha
posteriori probability of an information bit is maximized. This probability is obtained by a maigin
ization which, using the factor graph framework, is carried out efficidnflyneans of the sum-product
algorithm. The complexity of this marginalization is exponential in the number otpgais making it
unrealizable even for moderate system sizes. We overcome this limitation lgyamginoximations for
some of the messages propagated in the factor graph, thereby obtaioimgpkexity that is linear in the
number of users. Our receiver extends that of [18] to MIMO transnmissio

» Higher-order modulation.We furthermore extend the receiver of [18] to higher-order modulation f
mats, which results in a further increase of spectral efficiency (in additidghe MIMO multiplexing

gain).

» Selective message updatingye propose a selective message update scheme where only certainaeessag
are updated in each iteration. This yields a reduction of computational coity@ex makes it possible
to trade error performance against computational efficiency in a flexibhmena

* Integrated channel estimationhe iterative IDMA multiuser detector proposed in [18] assumes perfect
channel state information (CSI) at the receiver. In practice, pilot-agifeshnel estimation is usually
employed to obtain (imperfect) CSI, which is used by the multiuser detector éhefabe true CSI. In
our factor graph based receiver, on the other hand, pilot-aidechehastimation is an integral part of
the iterative scheme. Thus, our receiver performs iterative joint multiesr detection and channel
estimation for pilot-assisted MIMO-IDMA (see [12, 19] for related work ie ttontext of single-user
systems).

* Information-theoretic performance analysig-ollowing the idea of [20], we consider the maximum
achievable rate of IDMA as a fundamental performance limit and compardéhtthe information-
theoretic capacity of the corresponding multiple access channel (MA®btain the maximum achiev-
able rate of IDMA we use the low-complexity IDMA receiver with an LDPC ea$ channel code and
determine the achievable rate by means of BER simulations. It is shown thatsoenario, IDMA can
perform within2 dB of the information theoretic limit.

* Numerical performance analysi&inally, we use numerical simulations to demonstrate the performance
gains achieved with the proposed receiver relative to conventionallDddeivers and the dependence
of performance on certain system parameters. In particular, it is aabetivat inclusion of channel
estimation in the iterative detection/decoding scheme yields a dramatic improvefmelilaility, and
selective message updating results in a significant reduction of complexity.
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Message Quantization in BICM Systems

» BICM systems with quantized LLR¥e consider a BICM system, where the LLRs calculated by the
demodulator are quantized. We investigate the problem of quantizer dedignris of an equivalent
discrete channel. The optimal quantizer for the special case of BPSKlatiotover an AWGN channel
has been proposed in [21], but extending this approach to otherelsaand modulations is very difficult
to implement in a practical system. Thus, we consider a different quantzggrdwhich allows for
simple implementation while only slightly degrading information rate.

» Performance evaluatiofo compare the optimum and proposed quantizer desigrtaua-independent
manner, we propose to use the mutual information of the equivalent modulétiomel of the BICM
system [20]. In case of a fast-fading scenario, we use the ergddicwhereas for quasi-static fading
we characterize the quantizer by means of outage probability. In caseSKBnodulated single-input
single-output (SISO) systems we use a semi-analytical approach, @béiente-Carlo simulations.

» On-the-fly quantizer desigiihe quantizer parameters, namely quantizer intervals and quantizer gutputs
depend on the system configuration and the SNR, requiring large looklgs far storing the required
parameters. We propose a method for designing the proposed LLR gurathiizng data transmission,

“on the fly” i.e. without the need for lookup tables to store quantizer paramete

* Numerical performance analysMl/e provide bit error rate (BER) simulations for BICM systems with
LLR quantization usindow-density parity-check (LDPQ)odes, which compare different quantization
schemes and demonstrate the effectiveness of our “on the fly” quatkigign.

* Derivation of a low-complexity demodulatBy designing demodulators which directly calculate quan-
tized LLRs, complexity reductions are possible. We derive a low-complegityMMSE demodualtor
which outputs quantized LLRs, demonstrate its complexity savings and pexnfice losses due to quan-
tization.

Performance of BICM Systems with Imperfect CSI

» Demodulator design for imperfect C8Ve extend the results of the improved soft-MMSE demodulator
[22] to arbitrary linear estimators and show that the improved soft-MMSE detator is independent
of the actual linear estimator used. The improved BICM-ID demodulator3ifif2extended to MIMO
channels with arbitrary spatial correlation.

» Performance evaluatioM/e again use the maximum rate achievable with a specific demodulator as a
code-independent performance metric. These rates are measuredng-®harlo simulations of the
equivalent BICM modulation channel [20]. We compare these maximumadfieerates of mismatched
and improved low-complexity soft-MMSE receivers for correlated antbmelated MIMO channels. In
case of BICM-ID, we use EXIT charts [24] to characterize the caymece behaviour of the MIMO-
BICM-ID receivers employing the mismatched demodulator or the improved diglator for different
symbol mappings and different channel correlation models.
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1.3

Impact of power allocatiorf-or BICM, we investigate the impact of power allocation between pilot and
data symbol power on the maximum achievable rate and demonstrate the impartarocrect power
allocation.

Numerical performance analysisor BICM-ID, we design LDPC codes that are matched to a specific
demodulator in terms of their EXIT functions, by using the approach frdsh [@/e also provide BER
comparisons using the optimized LDPC codes and a “standard” (i.e., rtonizgd) LDPC code.

Outline of the Thesis

In Chapter 2 we give an introduction to basic communication principles and give an ovefie¢he
state of the art. The chapter contains introductory material about MIMOWVBIOFDM, and graphical
models. The presented material serves as basis for the subsequeatsha

Chapter 3 presents the design of iterative MIMO-OFDM-IDMA receivers usingftetor graph frame-
work. We construct the factor graph of the system and derive the gesda be propagated along
the edges of the factor graph, and develop a selective message upstdtange. Finally, we provide
information-theoretic performance limits of the proposed system and deratn#te performance of
the proposed receiver structures and algorithms by means of numéncédtons.

Chapter 4 investigates LLR quantization in BICM receivers. We present the systetieinaod propose
different quantizer designs. Next, we study the system capacity of-AS8OMIMO-BICM systems,

respectively and propose the on-the-fly design of the quantizer. Fimalypropose a low-complexity
soft-MMSE demodulator, which directly calculates quantized LLRs.

In Chapter 5 we develop demodulators for BICM systems with imperfect CSI. By taking tfaamel

uncertainty into account, modified demodulator metrics are derived, whitthbatter performance. We
also obtain these modified demodulators by means of the factor graph elppka present numerical
results, which demonstrate the performance difference between timmadiand modified demodulators.

Finally, Chapter 6 summarizes the main contributions of this thesis and provides an outlook oa futur
topics of interest.



Preliminaries

N this chapter we introduce basic concepts of wireless communications apllical models. We give an
Ioverview of MIMO wireless communications, BICM, and multiuser systems,vemdntroduce graphical
models, especially factor graphs and the sum-product algorithm. Finallgresent some exemplary applica-
tions of graphical models to problems in signal processing and communications

2.1 Wireless Communications

Wireless devices have become ubiquitous in the last decades, providiyghmaefits to its users. From an
engineering point of view, the wireless channel introduces new chaleliige fading and interference. These
challenges have to be dealt with properly and in the following subsectiomslivxplain some of the concepts

used to overcome these challenges.
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2.1.1 Wireless Propagation Channels

Wireless channels differ from wired channelsrhyltipath propagationi.e. by several propagation paths from
the transmitter to the receiver, where the signal is reflected, diffractestattered along the way. In addition,
the propagation conditions change over time because of mobility of the eeceithe transmitter (or both) and
because the environment undergoes changes as well. From a systeetithgoint of view, a wireless channel
is modeled as a linear time-variant (LTV) system [26]. The system outpaité¢iteived signal)(¢) is given as

y(t) = /h(t,T)J:(t —7)dT,

wherex(t) denotes the system input (the transmitted signal). tithe-variantimpulse response is denoted by
h(t,T); T represents the multipath delay ancepresents time. We take the Fourier transform @f 7) with
respect ta, and obtain theleterministic spreading function

S = [ (e, ar,

which characterizes the channel response in the Delay-Doppler-d¢maamotes Doppler frequency). Given
the random nature of the wireless channel, the impulse resggnse) is characterized statistically by the
autocorrelation function

E{h*(t1,71)h(t2,72)},

where -} denotes the expectation operation. Most channels fulfill the wide-seatganarity (WSS) assum-
pion, so that the joint statistics of a channel measured at two different timasd ¢ depends only on the
differenceAt = ¢5 — t1. The autocorrelation function then becomes

Rh<At, T, 7'2) = E{h*(t,’ﬁ)h(t + At, 7'2)} .

In many wireless environments the different scatterers can be assumedutacorrelated. Therefore, the
channel impulse response associated with a multipath component at-gdéayncorrelated with the impulse
response associated with a different multipath component at delgy . This assumption is called the
uncorrelated scaterer@JS) assumption. Combining it with the WSS assumptions yields the WSSUS assump-
tion [27] which implies for the autocorrelation function

E{h*(t,7)h(t + At,7")} = Cp(At, 7)6(T — 7).

Here C},(At, T) captures the autocorrelation of the channel as a function of the multipath delad the
observation time differencAt¢. Analogous to the definition of the deterministic scattering function, we define
the scattering functionS, (v, 7) as the Fourier transform of the autocorrelation of the channel with cespe
the observation time differena&t,

Sp(v, 1) = / Ch(At, T)e T2VAL AL .
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Figure 2.1: MIMO system model.

2.1.2 Multiple Antenna Systems

Multiple input multiple outpu{MIMO) systems have been introduced in [28]. They provide large gains
terms of rate, reliability and flexbility and thus spurred enormous reseaereft.

An My x Mgr MIMO system is shown in Fig. 2.1, where transmitter and receiver are pediwith Mt
and Mg antennas, respectively. Under ideal conditions, a MIMO system ps\atileasfi/T Mg independent
paths between transmitter and receiver, which can be exploited in varayss Whe first strategy is focused on
increasing reliability, which is measured watage probability A wireless communication system is said to be
in outage, if the channel is in a deep fade, and therefore no data canbmitted. Giverl/t Mg independent
paths in a MIMO system, the probability that all of them are in a deep fade (outage), is much lower
than in a classical single-input single-output (SISO) system, leading to b lmwer outage probability of the
MIMO system. If a transmission scheme is designed to take advantage ofitkdependent paths, this so
calleddiversity gainof Mt Mg can be exploited. Contrary to the first strategy, the second strategssiEson
increasing the throughput of the system. Here the transmitter sends enliffiata stream on every antenna,
and if Mr > M, the receiver can separate these streams with high probability. The ggiedoby this stratey
is termedmultiplexing gain Under ideal conditions (and #/r > Mfy) it equalsM+t and corresponds to an
M~-fold increase in data rate as compared to a SISO system. Both gains cdeagrlyvided by independent
paths between transmitter and receiver. In rich scattering environméjteh[ assumption is valid, but in
certain scenarios (such as environments with a strong line of sight comtpanginhole channels) the paths
are no longer independent, thereby reducing the MIMO gains. Finallyewmrk, that it is not possible to
design transmission systems with maximum multiplexing and diversity gain; merelyemffdetween the two
gains can be achievd [30]. Space-time coded system [31-33] offerastradeoff.

System Model. At symbol timen the transmitter sends the vectdn] = (z1[n], ...,z [n])7. Its elements
x[n] are zero-mean, statistically independent, and uniformly drawn from trstjpsomplex symbol alpha-
betA of cardinality|.4|. The mean transmit energy of the transmit vestpr] is given by E{||x[n]||?} = E,.

The impulse response of the wireless channel between transmitter aierésenodeled as a length;
sequence olMg x M7 channel matrice®l[n]. In the complex base band, the receiver observes at symbol time
n the lengthd/g vectory([n] = (y1[n], .. ., ymg[n])’ according to

Lc
y[n] = Z H[k]x[n — k] + w[n], (2.1)
k=0
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wherew|[n] denotes zero-mean, white complex Gaussian nei$e} ~ CA'(0, 02 1). If the impulse response
of the wireless channel is very short compared to the symbol duratiospeak of anarrow-band systerand
the input-output relation (2.1) simplifies to tHat-fadingmodel,

y[n] = H[n]x[n] + w[n]. (2.2)

In case of many scatterers which are randomly distributed, a common modahém line-of-sight connection
between the transmitter and the receiver is the i.i.d. Rayleigh fading model. loathgsthe elements; ;[n|
of the matrixH|[n] are i.i.d. circularly symmetric complex Gaussian random variables of unitnaajh[n] =
vec{H[n]} ~ CN(0,I). If the antenna spacing at the transmitter and/or at the receiver becomadiers
than the wavelength the i.i.d. assumption of the channel coefficients is not valid anymore, anchtrel
coefficientsh; ;[n] become correlated. A widely used model for this scenario is the Kroneckdel [34],
whereh|[n] ~ CN (0, C},) and the correlation matri;, is given by

Ch _ T1/2 ® R1/2,

with the transmit and receive correlation matri@@andR, respectively.

2.1.3 Bit-interleaved Coded Modulation

Traditional coding schemes for error correction, such as block oratational codes, provide coding gain
at the expense of increased bandwidth or reduced data rate. Treliésl coddulation, introduced in [35],
jointly optimizes both channel coding and modulation. This joint optimization yieldsfgignt coding gains

without bandwidth expansion, thereby enabling spectrally efficientimessson. However, the extension of
trellis coded modulation to fading channels proved to be difficult [36].

Bit-interleaved coded modulation [10], however, follows a differentrapph: By interleaving the coded
bits before symbol mapping, the coded bits become de-facto independdnthannel code and modulation
can be designed and optimized separately. This breaks the coded modueatidigm of joint design of coding
and modulation, but it provides better performance. This separate dasiiggrmore allows an easy extension
of BICM to MIMO, as only the modulator and demodulator parts of the systera tmbe adapted. BICM
also opens up the possibility of iterative processing at the receiveebtheffering even better performance
[37]. Furthermore, analytical tools for evaluating the performance @MBhand design guidelines for good
performance are known [10, 11].

System Model. A block diagram of a MIMO-BICM system is shown in Fig. 2.2. A sequentév6infor-
mation bitsb[n'] (n’ = 1,..., N’) is encoded using an error-correcting code with r&tegpassed through a
bitwise interleavedl and then scrambled by a pseudo-random sequginte The interleaved and scrambled
code bitsc[n’] are uniformly distributed and demultiplexed inddr antenna streams (“layers”), denoted by
¢ln], 1 =1,..., M. In each layer, groups of. code bits are mapped to (complex) data symbg|s| € A,

| = 1,...,Mt. The transmit vector at symbol timeis given byx[n] = (z1[n] ... zps[n])T and carries

1This might happen, for example, when small mobile devices are eqlipite multiple antennas
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equivalent discrete channel
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Figure 2.2 Block diagram of a MIMO-BICM system.

Ry = mMry interleaved code bitg;[n]. The bits¢;[n] corresponding to the symbol vectafn] will also be
denoted byc[n], and by using the symbol mapping functignwe can writex[n| = x(c[n]). Finally, we have
N'’/R coded bits, and therefore a total numbend N’/(mRM7) transmit symbols[n].

Receiver. The receiver consists of a demodulator, a de-interleaver, and aaltteuoder. The receive vector
y[n] is given by (cf. (2.2))
y[n| = H[n]x[n] + w(n] .

The demodulator calculates (possibly approximate) log-likelihood ratios g} ARfor the code bits;[n]| ac-
cording to [38]
Pr(ci[n] = l]y[n], H[n])
An] =1o ,
=108 5 e fn =l [n], H[n))
wherePr(¢[n] =c|y, H) denotes the posterior probability of the bit= ¢ given the received vectgr[n] and
the channel matri[n]. We can obtain this posterior probability as (we omit the time indéar notational

(2.3)

convenience)

Pr(c = uly,H) = 3 Priely,H) x 3 f(ylx, H)/(x). (2.4)

cic;=u XGXF
where f(y|c, H) is the likelihood function of the channe};* denotes the set of transmit vectors for which
¢; = u, andf(x) denotes the priori probability of the symbaok. In case of equally likely symbols, we further
obtain

Pr(c; = uly,H) o« > f(y|x,H). (2.5)

xex;

From the MIMO system model (2.2), we obtain for the likelihood function ofdahennel
ylx, H ~ CN(Hx, 021),

and the LLR expression (2.3) becomes

S exp (— lly—Hx]?2)

xex}

S exp(— S [ly—Hx|?2)
xEx? h

A, =log (2.6)
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Figure 2.3 Block diagram of an iterative MIMO-BICM receiver.
Using themax-log approximatichwe can simplify (2.6) to

2
w

A~ 1 min ||y —Hx||* — min ||y —Hx|?| . (2.7)
Tw Lxex) xEx;
In passing, we note that the sign of the LIARholds information about which bit valu@ 6r 1) of ¢; is more
likely, while the magnitudéA | measures the confidence the demodulator has about this decision.oféénef
LLRs can attain any value in the ran@feco, ).
Finally, the LLRs provided by the demodulator are de-scrambled by theeseeap;[n] = 1—2p;[n], de-
interleaved and fed into the channel decoder. Based on the code s#rticichannel decoder calculates LLRs

for the information and code bits. The LLRs for the information bits are sliogdyéeld the bit estimatelsjn’].

Iteratively decoded BICM. Expression (2.4) holds the key to the design of iterative BICM receivefsr-
mation from already decoded bits is reused as a priori information in the démadwAfter decoding, the so
calledextrinsicLLRs are obtained by subtracting the (interleaved) LLRs at the input oftth@nel decoder
from the decoder LLR4%9r’]. These extrinsic LLRs are interleaved, scrambled and fed back to theddemo
ulator as thea priori LLRs A%[n/] which are used to approximate the probabilityx). Of course, these fed
back LLRs are not “independent” new information, but in case of lalgekldengths and a random interleaver,
their independence is a good approximation. Starting from (2.4), we have

mMy
Pr(c; =uly,H) < > flyP H)f(x)~ > flylH) [] pler(x)), (2.8)

xEX; xEX} k=1
wherecy (x) denotes théth bit label of the symbol vector and we assumed that the interleaved codedhit$
are independent. The probabilityc;, (x)) of a code bit is approximated from tlaepriori LLR A{ fed back by

the decoder, ( )
exp ck(x)Ag

R —— L R 2.9

p(Ck(X)) 1+ exp(Az) ( )

2That islog(a + b) ~ log(max(a,b)) fora < borb < a
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The demodulator calculates LLRs in a similar manner as in (2.3), yielding

> Fly b H) T exp(er(x)AG)

XGX}

TSy H) T exp(er()AL)

XEX?

AP =1

(2.10)

We caution the reader that this LLR is not a fraction of two probabilities athareLRs defined in (2.3), be-
cause of the approximation fpfc;(x) = u) in (2.9). In a similar manner as before, the max-log approximation
can be used to obtain the following LLR expression of the demodulator

1 1 1 1
AP ~ min | = |ly—Hx|]? + = 2ep(x) — DAL | — min | —|ly—Hx|> + = 2ep(x) — 1)A% ).
;- ~ min (Ua\ly x|| +QZ( cr(x) — 1)A] )I{Iélxr} UaHy x|| +QZ( cr(x) — 1)A]

X1 4 l 14

Closer inspection of above expression reveals, Atfaican be expressed as

1 1
AID:A“+min< —Hx|]?>+ = 2cp(x) —1 a,>
l l xex? 0121}||y I 2;( (%) ) l
- i (= Hx? 4 5 (e - 1)
éA?—i—A?emOd.

This shows that the demodulator outputs the sum ofatipgiori LLR A¢ and theextrinsicLLR Afemod To
avoid a positive feedback loop, only thetrinsicLLRs Af'em"dof the demodulator are fed into the deinterleaver,
which are then decoded by the channel decoder [11]. This leads ttrtlctuse of the iterative BICM receiver
as shown in Fig. 2.3: Tha priori LLR A¢ are subtracted from the LLRs calculated by the demodul&fdr

to yield theextrinsicLLRs A?emoq These LLRs are descrambled, deinterleaved, and decoded by tiveetha
decoder, which outputs posterior LLR$®9n/]. By subtracting the input LLRs of the channel decoder, the
extrinsic LLRs from the channel decoder are obtained. These aréemted, scrambled and become the
priori LLRs Aj for the demodulator. The channel decoder outputs also bit decisfiotigor the information
bits, which are only used in the last iteration as final decisions of the itelBli#! receiver.

To demonstrate the performance improvement of iteratively decoded MBMEDA, we simulated the BER
versus SNR performance o2& 2 MIMO-BICM system, using a 16QAM symbol alphabet with Gray mapping.
The channel code was a convolutional code with octal generator palyt®15]g. Fig. 2.4 shows the BER
results for a non-iterative BICM receiver and an iterative receieefopming10 iterations between demapping
and decoding. It can be seen that the iterative receiver outperfoemthiterative receiver by several dB: the
SNR gap between the two receivers is abodB at a BER ofl0~* and increases to aboutiB at a BER of
10~°. We also show the MIMO-BICM system capacity [10] as an absolute pagoce limit. At a BER of
10~4, the iterative receiver operates ab@wB away from this limit, whereas we observe a gap of alrsai
for the non-iterative BICM receiver. Employing more powerful codas frther reduce the gap of the iterative
receiver to system capacity. In Chapter 5 we will demonstrate the penfioargains of LDPC codes which
have been matched to the demodulator characteristics.
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Figure 2.4 Performance o2 x 2 MIMO-BICM receiver with different receiver architectures.

Capacity Measures. The performance of MIMO-BICM systems is often illustrated by means of B&Rus
SNR plots as was done in Fig. 2.4. However, these results can depemglystin the characteristics of the outer
channel code and on system parameters (number of antennas, syphlabled, etc.), thus making comparison
of different demodulators very difficult.

We thus seek aode-independerierformance measure, which is independent of the system parameters
and the actual code used. To this end, [20] proposed to use the mutuahation of the equivalent BICM
modulation channel. The equivalent BICM modulation [10] channel hasinputc;, and continuous output
A; and is characterized by the pfifA;|c;). We caution the reader that this conditional density depends on the
bit positioni, whereas in most cases this information is not available to the channelatecedthe channel
™ to the bit position in the symol label. We therefore ramfiopick a bit position according
to a uniform distribution to obtain the input kitand the output LLR\. The mutual information betweerand
A is given by [39]

decoder is "*blind

BMy 1

R=1I(c;A RO_ZZ/f Ajlc; = b) log,y (i“ﬁ(Al) dAy,

=1 b=0 )

wheref(A;) = £(f(Ailey = 0) + f(Aile, = 1)). In case of a fast fading transission scenaRds the maxi-
mum achievable rate achievable with the BICM system (cf. [40]). In chgeasi-static fading the maximum
achievable raté& changes with every realization of the chanRelHere, the probability

pout(r) =Pr{R<r}, 0<r <R
characterizes the rate versus outage trade-off [40].
EXIT Charts. Exitrinsic information transfer (EXIT) charts [24] are a tool to analyzeatige systems.

While BER simulations only assess the performance of the compound ne¢eid@ chart allow an indepen-
dent analysis of the components (e.g. demoduator, channel decbtiher)terative system and provide insights
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Figure 2.5 Setup for obtaining EXIT charts for the channel decoder and the delatod

into the performance and convergence properties of the receivér. &bérts can be obtained quite easily and
with less simulation effort, than BER simulations of the complete system would eedtlie underlying idea
of the analysis of iterative systems is to measure LLR distributions, track thegiiges over the course of iter-
ations and thereby deduce performance and convergence propétliesystem; this process is called density
evolution [41]. However, LLR distributions are not easy to track due to templicated form and therefore
it is desirable to consider parameters of the LLR distribution instead. Tlagaenpters can be obtained from
the LLR distribution quite easily and can be tracked with less effort. Diffigparameters of LLR distributions
were considered and compared with respect to the ability to predict thevieesytstem’s performance and
in [24,42] mutual information was chosen as the most robust and reliabungea

EXIT charts measure the mutual information between bits at the input and tRe at the output of the
component of an iterative receiver. The corresponding chart isab&mned by plotting the mutual information
between the bits and the LLRs at the component’s output versus the mutwah&tion between the bits and
the LLRs at the component’s input. Intuitively, the component (e.g. thengalecoder) increases the mutual
information about the bits by processing the LLRs at its input, and this irefeasutual information is plotted.
To measure the mutual information, the LLR densitf¢d |c) are obtained (usually by means of Monte-Carlo
simulations), and then the mutual informatibfx; A) is calculated according to [39]

ay L 2f(Alc)
I(e;A) = 2;/f(A|c)log2 TR0 7 JAR =T dA . (2.11)

In the following we will describe how the EXIT charts of the channel decaihd the demapper are obtained
in more detail. The corresponding measurement setups are shown in Fig. 2.5

EXIT chart of the channel decode& random, uniform bit strearh is encoded by a channel encoder and
the coded bitg are transmitted over an AWGN channel with noise variasge At the output of the AWGN
channel, the LLR$\; corresponding to the code bits are calculated according to

2y;
Ai = g ;
wherey; denotes the observed output value from the channel at discreté.tifie LLRsA; are fed into the
channel decoder, which calculates LLRs of the information bits. The mimfgaination between the code bits
c and the LLRsA; at the input of the channel decoder is measured (cf. (2.11) fyithic) = f(A;|c)) and will
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Figure 2.6. EXIT charts of the demodulator and the channel decoderka2 MIMO-BICM system with
16QAM Gray mapped alphabet.

be denoted as(c; A;). Similarly, the mutual information between the information bitsnd the LLRsA%C at
the output of the channel decoder is measured (cf. (2.11) ftithc) = f(A%9¢)) and denoted by (b; A9€9).

By using different values for the noise variangg of the AWGN channel, different values for the mutual
informationI(c; A;) are obtained, and the mutual informati®#fCwill also change. The EXIT chart of the de-
coder is then the plot af(b; A%C) versusl (c; A;). Intuitively, the EXIT chart describes how much information
about the information bits is contained Af€¢ for different values of information about the code hitat the
input of the channel decoder. The actual form of the EXIT chareddp on the code used and its rate.

EXIT chart of the demodulatoA random, uniform bit streamis mapped to symbols and transmitted via
the communication channel with noise varian@g which outputs observed valugs The same bit streamis
also transmitted over a so-callagriori channel (this is either an erasure channel with crossover probability
or an AWGN channel with noise varianeg). At the output of the priori channel, the LLR4.* are calculated.
From the observation of the channel outguand the a priori LLRsA?%, the demodulator calculates extrinsic
LLRs AYemod 5ccording to (2.10). The mutual information between the bigd thea priori LLRs A“ is
measured (cf. (2.11) witli(Alc) = f(A%|c)) and denoted by (c; A%). Analogously, the mutual information
between the bits and the extrinsic LLRs\%M°djs measured (cf. (2.11) withi(A|c) = f(A%M9¢)) and
denoted byl (c; A%™M9 . By varying the parameter of the priori channel (crossover probabiityor noise
variances?), different values for the mutual informatiaf{c; A%) are obtained, resulting in different values
for the mutual informatiord (c; A%™°9. The EXIT chart of the demodulator is the plot E; A%€M% versus
I(c; A%). Intuitively, it describes how much information about the bits is containdddnA%e™°9 for different
values of information about the code bits at the input of the demodulatorfofimeof the EXIT chart depends
on the noise variance?, of the communication channel, the symbol mapping and demodulator.

Fig. 2.6 shows EXIT charts corresponding to the BICM-ID system cemsitibefore. The EXIT charts of
the demodulator are shown for two different SNR values, SNR=4 dB &30 dB. The almost linear form
with a small slope is typical for a Gray symbol mapping. The EXIT chart ofctennel decoder is plotted
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Figure 2.7. Block diagram of an OFDM system with a cyclic prefix of lengtl,=3.

with exchanged axes; it showéc; A;) versusI(c; A%9). The EXIT chart exhibits a thresholding behaviour:
Below an input mutual information af(c; A;) = 0.4, the output mutual informatiofi(c; A% has only low
values, forl(c; A;) > 0.6 the output mutual information comes close to one. For more powerful ctikes (
LDPC codes), this threshold behaviour becomes even stronger. Tagvieedlecoding process at an SNR of
10dB is indicated by the green line, called a decoding trajectory. Initially, émeodiulator calculates LLRs
without anya priori information, therefore the decoding trajectory starts at the point labelgd The output
LLRs of the demodulator are fed into the channel decoder (thereforaxibeof the channel decoder EXIT
chart is exchanged in Fig. 2.6), which yields an output mutual informatidif@f\ %) ~ 0.7, corresponding
to the point labelled “(2)". The output LLRs of the channel decoderedento the demodulator, which yields
an output mutual information as inidicated by “(3)” in the EXIT chart. Aftevesal iterations, the decoding
trajectory ends in point “(4)”, which is the intersection of the two EXIT ¢eaHere,I(c; A% ~ 0.95. This
indicates a very good performance in terms of BER [43]. Comparing thd EXart of the demodulator at an
SNR of 10 dB with the demodulator at an SNR of 6 dB, we see that in the lattertitaslecoding trajectory
ends in “5”, exhibiting a much lower value dfc; A9°), thereby indicating a much worse BER performance.
Comparing these results with the actual BER in Fig. 2.4, we see that the EXiTaralysis predicts the BER
performance quite well: At SNR=6dB, the BER of the BICM-ID system isualig2, whereas at SNR=10 dB,
the BER is5 - 1073.

2.1.4 Orthogonal Frequency Division Multiplexing

Historically, OFDM was introduced in the970’s [44], but gained popularity in the last decade, because only
current technologies make satisfactory implementation feasible. OFDM is a rauitictechnique with spe-
cific orthogonality constraints between the subcarriers. It is robustlingaand equalization of wireless chan-
nels is very simple. By appropriately choosing the subcarrier frequgraging OFDM can be flexibly used in
different mobile environments. This led to the adaptation of OFDM in many stdagdsuch as WLAN (IEEE
standards 802.11a and 802.11n), digital video broadcasing (DVBYigital audio broadcasting (DAB).

A simplified model of an OFDM system is shown in Fig. 2.7. A block of data symbglsl = 1,..., K, is
converted to a parallel vector. Being in the frequency domain, the ihidesalled subcarrier index. An inverse
discrete Fourer transformation (IDFT) is applied to the vector, which eaafficiently implemented by means
of an IFFT of length. Next thecyclic prefixis added: The las¥c, elements of the vector are appended at its
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Figure 2.8 MIMO-OFDM system model.

beginning. Therefore, the resulting vector has lerfgth N¢p, which is converted into a serial data stream|
and transmitted over the wireless channel which has a channel impulsesesp:], n = h[0],. .., h[L.] of
length-...

The transmission introduces inter-symbol interference (1Sl), and aeteéver, the signaj[n] is observed,

Zh Z[n —n'] + w[n].

Herew[n] denotes white Gaussian noise. The cyclic prefix (that is, theNigssamples) is discarded, and a
discrete Fourier transform (implemented efficiently by means of a leRgE#~T) followed by a parallel-serial
conversion yields the sequengé|, k = 1,..., K.

If the length of the cyclic prefix is larger than the channel impulse resplensggh (that isN¢, > L), the
cyclic prefix converts the (linear) convolution of the channel impulseaesp into a cyclic convolution [45].
After the demodulation at the receiver, this cyclic convolution correspémthe multiplicative OFDM input-
output relation

y[l] = h[l)x[l] + w[l] . (2.12)

Hereh/[l] andw|l] denote the lengtlis DFT of the channel impulse resporisie] and the noise sequenagn),
respectively. From (2.12) follows that OFDM converts the frequesalgctive wireless channel into a simple
flat fading model.

The principle of OFDM transmission can be easily extended to a MIMO syssenwel, thereby making
OFDM a very attractive choice for transmission. Such a MIMO-OFDM sysite shown in Fig. 2.8. The
symbolsz;[l],i = 1,..., Mt,l = 1,..., K are transmitted over th#h antenna using OFDM modulation, i.e.
the /th symbolz;[l] modulates a corresponding subcarrier. At symbol timéhe MIMO-OFDM transmitter
sends the time-domain symboln] = (Z1[n] - - - Z s [n])T over the wireless channel, modeled as lenbth-
sequence oMg x Mt matricesﬁ[n’],n’ =1,..., L.

After transmission over the frequency-selective wireless channeletiaéver observes the sequence

yin) = > AWIxIn — ') + Wlnl,

n/=0

where w(n] denotes white Gaussian noise. On every receive antenna an OFDM weatnogrocesses
the received sequence, and combining the symbols from all antennabaariser! into a vectory[l] =
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Figure 2.9 MIMO multiuser system.

(valll - ynsm [l])T, the MIMO-OFDM input-output relation becomes
y[l] = H[IJx[l] + wli].

Analogously to the SISO casH]|[/] andw]/] denote the lengttic DFT of the channel impulse resporigén]
and the noise sequenégn|, respectively.

2.1.5 Multiuser Systems

A multiuser system consists éf user terminals communicating with a common base station. Fig. 2.9 shows
such a system. Every user terminal and the base station can be equippeditithe antennas, in this case we
speak of a multiuser MIMO system. Depending on the transmission directicspee of alownlinkscenario,
when we consider the transmission of data from the base station to the nsiealsr and of amplink scenario,
when we consider the detection of the users data streams at the base s$tatioa.thesis we will focus on
uplink scenarios, in particular on the design of receiver algorithms foctss.

User Detection Strategies. The most intuitive way of dealing with multiuser uplink scenarios would be
to separate the users as much as possible. By assigning users disjoint ten@ral® division multiple ac-
cess, TDMA), disjoint frequency band (frequency division multipleeasg FDMA) or special spreading se-
guences (code-division multiple access, CDMA), interference betweenisers can be minimized or even
totally avoided. This reduces the problem of multiuser detection to singledesection. for which numerous
schemes and algorithms exist. However, ¢ilhogonaluser separation strategies are suboptimal in terms of
throughput, which will be shown by information theoretic arguments in the peregraphs. In this thesis, we
will therefore consider non-orthogonal schemes, with interferentvedes users.

System Model. For simplicity we assume that every user terminal is equipped with the same nufmber o
transmit antennasy/r. Thewuth terminal transmits the symbol vectgt and the MIMO channel from this
terminal to the base station is denotedHy. At the receiver the symbagt is observed,

U
y=> H'x"+w, (2.13)

u=1
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Figure 2.1Q0 Achievable rate region of the multiple-access channel Witk 2 users.

whereU denotes the total number of users amddenotes zero-mean, white complex Gaussian neisey
CN(0,021).

Information-Theoretic Performance Limits. The multiple-access (MAC) channel (2.13) is a well studied
model in information theory and can be characterized byrale region[39]. For the special case &f = 2
users, the rate region becomes

Ry < I(x';ylx?),
Ry < I(x*ylx'),
Rl + R2 < I(X17X2;y) ’ (214)

and is depicted in Fig. 2.10R; denotes the rates achievable by u§erThe corner points of the rate region
can be interpreted as follows: In point (1) only terminal 2 transmits and telriisadle (we haveR; = 0),
which is basically a single-user scenario. The maximum achievable ratevohg2 is given byl (x?; y|x!).
Point (2) corresponds to the maximum rate at which terminal 1 can send gadoterminal 2 sends at its
corresponding maximum raféx?; y|x!). For the channel from terminal 1 to the base station, the sigh
treated as noise. Using the results for single-user channels, terminalséred at a rate df(x!;y), therefore
the receiver can recover the signdl and performinterference cancellatioto detectx? from the received
signaly. The rateR, achievable in this case is then the rafe?; y|x' = x), averaged over all symbois',
namely

DIy =x)p(x! = x) = I(x%y[x').

The same arguments hold for the points (3) and (4), only with the role of telrfnarad terminal 2 exchanged.
The rate-pairs on the connection between points (1) and (2), (2) »rah(3) and (4) can be reached by time
sharing. The red dotted line in Fig. 2.10 shows the achievable rate of ortabgansmission schemes like
TDMA and FDMA. Rate points (1) and (4) are trivially achievable, and banseof time sharing all rate-pairs
on the red dotted line.
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Figure 2.11 Achievable rate region of the Gaussian MAC with BPSK symbols.

We next show simulation results for a SISO system with= 2 users using BPSK modulation over an
AWGN channel. The system model (2.13) simplifies to

y=a'+2*+w,

with the noise distributed according to ~ N(0,02), andz* € {—1,+1}. Fig. 2.11 shows the capacity
regions for an SNR between12dB and6 dB (the SNR is increased i6idB steps). It can be seen that for
o2 — 0, the single-user rates (that I$x"; y|x>~*), v = 1,2) converge tol bpcu, and the sum rate rate
I(x!,x2;y) converges t&/2 bpcu. In case of very small SNR, the ratés®;y) converge tal (x*; y|x>~%)
(v = 1, 2) and the points (2) and (3) in the rate region of Fig. 2.10 become one point.

As before the dotted red line shows the maximum achievable rate at an SNBaff an orthogonal trans-
mission schemes like TDMA and FDMA and the red circle represents thetapepaint where both terminals
are assigned the same rate. In contrast, the black circle representethgarppoint of an (non-orthogonal)
information-theoretic optimal scheme at the same SNR, with the same rate agsigo#iuterminals. It can be
seen, that there is a gap of ab@ut5 bpcu in achievable rate per user. Stated in terms of SNR, an orthogonal
scheme would require abotitiB more SNR to achieve the same rate as an information-theoretic optimal trans-
mission scheme. This demonstrates the poor performance of orthogarsthisaion schemes quite clearly.
Because the rate constraiRf + Ry < I(x!,x%;y) becomes inactive in the limit of low SNR (that is, the rate
regions become rectangles), the relative performance loss of orthlogansmission schemes increases with
lower SNR.

2.2 Graphical Models

Graphical models provide a unifying framework for capturing depecigsnamong random variables, and
building statistical models. In many applied fields, including signal procegsingommunications, image
and speech processing, statistical models have been formulated by meaaghs, which provide a simple,
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Figure 2.12 Factor graph for the functiofi(x) in (2.15).

yet intuitive representation of the underlying constraints. Algorithms fanmating statistical quantities such
as likelihoods and marginals have often been formulated as recursiorsingen these graphs. Using the
concept ofmessage passinghese recursions can be obtained by a simple “turn-the-crank pracddus].

In this way, specific algorithms, for example the Kalman filter, the BCJR algoritimah iterative decoding of
low-density parity-check (LDPC) codes can be derived, understudl unified with the concept of graphical
models.

2.3 Factor Graphs and the Sum-Product Algorithm

Factor graphs [4, 5] are one particular family of graphical models amd faund widespread use in signal
processing and communications. Factor graphs represent functisegesél variables which can be split into
several factors. For example, consider the function

f((L‘l,(L'Q,(L'g, x4, $5) = f(X) = f1((L‘1,(L‘2)f2((L‘2,(£3, x4)f3(x2, $5) y (215)

with x = (21 ---25)T. The factorsfi(-), i = 1,...,3 are termed local functions, whereas their product is
refered to as global function.

In Fig. 2.12 the factor graph corresponding to (2.15) is shown, whiokists ofvariable nodegdepicted
as circles) for the variables,, ..., x5, andfunction nodeqdepicted as rectangles) for the local functions
f1(), f2(+), f3(-). If a local function depends on a variable node, the two corresporgteqgh vertices are
connected with each other by an edge. For example, the fung¢tiehdepends on the variables andx,,
and therefore these two variable nodes are connected with the functierfi{e). A particular assignment of
values to the variables nodes is termezbafigurationof a factor graph. Theonfiguration spacés the set of
all possible configurations, and therefore the domain of the global fun£tig. If we assume that all variables
of our example factor graph are binary, the configuration spaf@ is®.

As stated before, a main area of application of factor graphs are statistic&ls. In this case the variables
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represent the random variables of the model, and the global functicesexys the probability density function,
which can be factorized according to the statistical model.

Cut-Set Independence Theorem. This theorem [5] connects properties of the graph to the probability density
function the graph represents.

Assume that some edges corresponding to variable nddes. , Y,, form a cut-set of the graph (that is,
removing these edges cuts the graph into two unconnected componentsnigitihegafrom the setd’; and X5,
respectively). It can be shown [4] that conditioned¥an. . ., Y,,, variables from the set¥1 and X2 become
indepedent, i.e.

F(X, XYy, Y,) = f(AYr, . Vo) f(A|Y, . Vs

In our example of Fig. 2.12, the edges connectingwith f;(-) and f»(-) form a cut-set of the graph.
Therefore, giverro, the random variables, andzs are independent, as are the random variablend the set

{z3, 24,25}

Marginalization. Statistical models are used for estimation and/or detection of some underlyargqiars
or random variables given observations. The process of estimatiotiedection often involves the calculation
of marginals of the joint pdf (x), that is the functions

geloe) =) f(x), k=1,.. X (2.16)

~Tf

In the whole thesis, the notati@ka denotes summation over all variablesxaéxceptr;, andX denotes the
length of the vectox.
In our example we will consider calculation of the marginal funcgefxs), defined as

gs5(r5) = > f(x). (2.17)
Naively, this function can be evaluated by calculating the valuggof for all 2° = 32 configurations, and then
summing up these terms to obtajig(x5). A different strategy, which requires much less computations, is the
application of the distributive law to (2.17), which yields

g5(x5) = > fa(wa,w5) Y fr(wr, wa) Y folwa, w3, 24). (2.18)

z3,T4

Using the factorization in the calculation of marginal functions yields a coredifiecomplexity reduction: The
first and second sum consist of two terms, while the third term consistses ttrms. This is a much smaller
number than directly calculating &P terms in (2.17).

Comparison of the factor graph in Fig. 2.12 and the expression in (2 é3lsthat calculating the sums in
(2.18) is equivalent to “closing boxes” in the factor graph: The smahéeddoxes correspond to the sums in
brackets, and the “closing of the boxes” can be interpreted as summastioalbvariables inside the box. For
example, the box enclosing the variable nadeand the local functiorf; (z1, z2) corresponds to the second
sumin (2.18) . fi(z1,72). The resulting expression of the “box-closing” operation is functioredelpng
solely on variabler;, (the variable the box is connected with). It is denoted:pfr2) and is termed anessage
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In a similar manner, the expressicirjgcw4 fa(xa, x3,24) is identified with the small dashed box in the
right upper part of Fig. 2.12, and the output of the box is given by thesawgEs:»(x2). Replacing the sums
with messages in (2.18), we can rewrite the marginal fungfidms) according to

g5(x5) = Z f3(x2, x5) 1 (22) 2 (22) - (2.19)

2

The product of the two messages(x2) anduq(x2) can be interpreted as a new message,

p3(x2) = pi(ze)p(w2) - (2.20)

This message is emitted by the variable negeand we obtain
g5(x5) = > _ fa(wa, w5)z(w2) . (2.21)

Similarly, we can interprej;(x5) as a message obtained by the “box-closing” operation of the large dotted bo
in Fig. 2.12, and we haves(z5) = g5(z5).

The example demonstrates the important conceptedsage updateStarting from the leave nodes of the
factor graph, messages are passed along the edges of the factar Atdpnction nodes, the local function
associated with the function node and the incoming messages are involvedritesisage update process
(cf. (2.21)). The updated messages are propagated to other notihesfattor graph. At variable nodes, the
outgoing messages depend on the incoming ones (cf. (2.20)). Thisptarfcmessage updates makes the
application of factor graphs popular: After formulation of the statistical rh¢ated obtaining a graphical and
intuitive representation of the maodel), the process of calculating the mafgimations becomes the task of
updating and propagating messages.

When dealing with statistical models, often all marginal functions are of intetestead of running an
instance of the sum-product algorithm for every marginal function, ngessean be reused and thereby save
computations. As an example, consider the calculation of another margnuibio,

g2(w2) = D f(x).
2
Using a factorization similar to (2.18), we obtain
92(r2) = > filwr,wa) > falwa,w3,24) Y a2, 25) .-
x1 x3,T4 x5

Note that here some of the summation variables are different as in (2.1&)g the previously calculated
messages, we have

92(x2) = pa(z2)pa(w2)pa(2),

where we introduced the new messagérs) = >, f3(22,75).
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Figure 2.13 Message updates of the sum-product algorithm.

Message Updates. The message updates of the above example can be generalized to gepdriabl models
and lead to two basic generic message update rules for (i) messages vavielaléunction node (and are
directed towards a variable node), and (ii), messages which leave hlgar@de (and are directed towards a
function node). It is important to note, that these updates yield exadtgesily for cycle-freefactor graphs.
The first case is depicted in the left part Fig. 2.13: Messagésy), ,k = 1,..., N arrive at the function

nodef(z1,...,zyN), and the outgoing messageui(zy) leaves the function nodg(x). It is given by
poul(er) = Y f(@r,. . zn) [ snlza). (2.22)
~T n#k

The local functionf(-) is multiplied with all incoming messages,(x,,) exceptus(xr), and the resulting
product is summed over all variables, except Obviously, the message,i(zx) is a function only of the
variablex; and does not depend on the messager,). In the foregoing example, calculation of the message
us(xs5) in (2.21) was obtained this way. The second case deals with the arrivedssfages from different factor
nodes at a variable node and is depicted in the right part of Fig. 2.13in€bming messages are denoted by
w(zg), ,I =1,..., N, because they are all connected with the variable ngd#ey can only depend on this
variable. The messagegui(x) leaving the variable node is given by

,U«out(JUk) = H ,un(xk) . (2.23)
n#k
In this case the outgoing message is the product of all incoming messagegst #ve message, (xy); i.e. itis
independent of the messagg(z). In the foregoing example, the messagézs) in (2.20) was obtained in
this manner.

Sum-Product Algorithm. The calculation of all marginal functions (in our examplegefzy), .. ., g7(x7)
can be performed concurrently, and the resulting algorithm is tesmedproduct algorithmAssuming that the
factor graph is a tree, the algorithm starts at the leaves of the factorggraphves, which are variable nodes,
send an initial message of value '1’ to their respective neighbours,eakdeaves, which are function nodes,
send the corresponding function value as initial value to their respeatighlvours. When a neighbouring
function node has received all required messages to calculate an @uigessage according to the update rule
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Figure 2.14 Factor graph example with cycles.

(2.22), it derives the updated message and propagates it along thepmrding edge of the factor graph. In
an analgous manner, neighbouring variable nodes derive outgoiragegpohessages according to (2.23) and
propagate these along the corresponding edges of the graph. lof easgcle-free factor graph, this process is
finished after a finite number of message updates. The marginal fungtiong at the corresponding variable
nodesz; can then be obtained as the product of all incoming messages. In cage 2f1B, we would have

gi(wr) = ] s () -

Factor Graphs with Cycles. Depending on the graphical model, the factor graph can have cyclesw&e
can still apply the message updates (2.22) and (2.23) of the sum-prddadthen. Consider an example
obtained by slightly modifying (2.15),

f(x) = fi(z1, 22) fo(x2, x3, 74) f3(w2, 5) fa(21, 23) , (2.24)

the corresponding factor graph is shown in Fig. 2.14. Compared to (24 8gditional functiorf,(-) has been
added; also note that by the cut-set independence theaieamdxzs are no longer independent given.

Let us consider application of the sum-product algorithm to this modified médsiume (somewhat ar-
bitrarily) that the variable node; emits the initial message '1’, and the function nofl¢-) calculates the
message:; (x2). Together with the messagg(z2), a new message is formed, which is received by the func-
tion nodefz(-). The message is updated and the new messggg) is sent to variable nodes. This message
is again updated at the function nodlg ), yielding the messages(x1). This message would be updated at
the function nodef;(-), giving an updated messagg(x3). It can be seen that the sum-product algorithm
does not terminate in finite time anymore, and that messages are sent in dxéEnding on the messages
used, it is possible that some kind of positive feedback lets the messagesvighout bound. Even in case
of convergence of the messages, the final values do not represenig¢imarginalgy () anymore. Further-
more, initialization of the sum-product algorithm can influence the conveggproperties of the sum-product
algorithm.
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In practical systems, the cycles in the factor graph can be much longein arany cases the sum-product
algorithm has been observed to give good results. For example, the daaphs of LDPC codes and turbo
codes have many cycles, giving rise to iterative algorithms for decodittigodgh no theoretical results exist on
the validity of the application of the sum-product algorithm to these factorhgrape numerical performance
of the algorithm in terms of bit error rates (BER) has been astonishing.

As a way to avoid cycles, we consider a different representation cf)2.2

f(x) = (@1, 22, 23, 24) f3 (22, 75) ,

with f($1,$2,$3,$4) = f1(z1, z2) fo(x2, x3,24) fa(x1, 23). The corresponding factor graph is shown in Fig.
2.15. It is seen to be cycle-free and thereby all marginals can be catt@eéetely by means of the sum-
product algorithm. The drawback of this method is the increased computiatmmnalexity: The global func-
tion f(x) is factorized into fewer local function(-), each of which depends on more variabteand therefore
the sums for calculating messages consist of more terms. For example, tlhgerg$s.) is given by

pa(x2) = Y flwr, w9, 73,24)

X1,23,T4

and consists of terms. Furthermore, an alternative factorization is often difficult to finddotor graphs in
practical systems, therefore this method is not widely used in signal @ingesnd communication applica-
tions.

Extension to other Semirings. The key step to an efficient calculation of marginals (2.16) is the application
of the distributive law. The sum-product algorithm can be extended, ifomsider semiring®, on which two
operationst and- are defined and furthermore, the distributive law holds,

x-(y+z)=xz-y+x-z, Vr,y,z€D.

If the domain of the global function (and therefore also the domains of tla¢fimections) isD, then we can re-
peat all the steps in deriving the message update rules for the sum-patgluithm and obtain a sum-product
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algorithm suitable for the semirin® [4]. An important example for such a semiring is the “max-product
semiring, where real addition is replaced by the “max” operation. For emative real-valued quantities
x,y,z > 0, we have

xmax(y, z) = max(zy, rz).

By using this “distributive” law, all steps of this Subsection can be adaptddtze resulting “max-product”
algorithm could be used to efficiently find solutions for

g(xx) = argmax f(x).

2.4 Codes on Graphs

We will next describe how decoding algorithms for convolutional codesldpPC codes can be (re)derived
by means of factor graphs and the application of the sum-product algorithenstructure of the code can be
visualized by factor graphs and it can be exploited to obtain efficientdileg@algorithms.

2.4.1 Convolutional Codes

Basics. A simple block diagram of a convolutional encoder with r&te= 1/2 and memory lengttL,, is
shown in Fig. 2.16. It consists of a shift-register with; stages, several modulo-2 adders and a multiplexer.
The shift-register provides delayed versiogs. . ., b,_r,,, of the information bits, some of which are modulo-
2 added, yielding (in this example) two output sequermémdci. The multiplexer serializes the sequences
¢} andc?, yielding the bit sequence,. A length-N sequence of information bits is encoded, thus yielding
a lengthN/R sequence of coded bitg. The past values of the information bits stored in the shift-register
represent the statg, < [0,2%M — 1 of the convolutional encoder at tinke which is defined as

Ly

Sy = Z bk_n2n_1 .
n=1

Note that the number of states grows exponentially with the memory lepgith,= 27, At time k the
information bitd, induces a state transition from steffg to stateSy; and the generation df/ R code bits,
c}g, e ,c,lc/R. We collect these code bits in a vectgr= (¢}, - - - ,c,lc/R).

A standard form [46] to denote a convolutional code islpyz code polynomials, which describe which
delayed information bits are modulo-2 added. Alternatively, the code cdadmibed by two functions, a state
transition functionS,, = T'(Sk_1,br) and an output functior;, = O(Sk,br). The state transition function
gives the next state of the encoder, when it is currently in Statgith the information bit,, at the input, while
the output function gives the output sequergehe encoder emits in statg. with information bitd, at the

input.

Decoding. The sequence of coded bitg is sent over a channel and the valugs = (y; . ..y,i/R) are
observed. We assume the channel to be i.i.d. and described by the caiditibif(y: | ). Decoding of the
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Figure 2.16 Convolutional encoder for rate-1/2 code; plus signs representlim@dadditions.

convolutional code can be based on the bitwise MAP criterion, that is bitde®stion of the information bits
Bk based on the received sequegge k = 1, ..., N, according to

by = arg max p(bely1,+++ YN) (2.25)
k

wherep(bi|y1, - - -, yn) denotes the posterior pmf of the information iitgiven the observationg, , - - -, y .
We can express this posterior density as a marginal [4]

P(by, =bly1, - ,yN) = Zp(bl, ..., bn,C1, .o eNy S0, SNV, - YN - (2.26)
~by,
This marginalization can be efficiently calculated by applying the sum-pradgetithm to the factor graph of
the convolutional code and results in the well-known BCJR algorithm [8].

Factor Graph. We will consider the factor graph corresponding to the density that nieelds marginal-
ized according to (2.26). Using the Markov property of the convolutiooadle, we can rewrite
p(bi,...,bn,c1,...,¢N,S0,...,SN]|y1,-..,yn) according to

N
p(bla ce 7bNa C1,...,CN, Sﬂv cee 7SN’yl) .. ayN) = p(SU) Hp(Skv Ck|Sk:—17 bk)P(Ck|Yk) P (227)
k=1
wherep(Sy) is the prior density of the decoder steffg. The conditional density(Sy, cx|Sk—1,bx) can be
obtained from the state transition functiSp = 7'(Sk_1, bx) and the output functio (S, by, ) according to

1 if Sg =T(Sk_1,br)andcy = O(Sk, by)
P(Sks k| Sk—1,br) = _
0 otherwise
The densityp(ci|yx) of the channel can be obtained by application of Bayes theorem andthsimepen-

dence of the channel,
1/R

plerlyr) o< plyrler) = [ ] puilch) -
n=1

The factor graph corresponding to the factorization (2.27) is shown irRFig. The state variables;, the in-
formation bitsh;, and the code bite;, correspond to variable nodes, whereas the conditional dengfiigsy 1)
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Figure 2.17 Factor graph of a convolutional code corresponding to the factonzati(?.27).

andp(Sk, cx|Sk—1, bx) correspond to function nodes. The Markov structure of the density27)2an be seen
intuitively. Also note that the factor graph has no cycles, i.e. the sum-ptadigorithm will calculate exactly
the marginals Of)(bl, ...,bn,C1,...,eN, S0, ..., SN‘y17 - ,yN).

Sum-Product Algorithm. We define two message types: the messagés;,) are passed from the left to
the right, while the messagék (Sy,) are passed from the right to the left of the factor graph. Initialization of
the sum-product algorithm starts at the leaves, in our case these areifiideviaodess, and.Sy. The variable
node Sy sends out an initial messagg(Sy), furthermore we assume that the convolutional encoding starts
in stateSy = 0, and therefore the inital message becomgsS,) = §[Sp]. The variable nod&y sends out
an initial messag@y (Sy). By means of zero-padding the information bit-sequence one can etisair¢éhe
convolutional encoder stops in stafg = 0; we therefore havgy (Sy) = d[Sn].

We now consider an arbitrary function nogéeSy, ci|Sk—1,bx), 1 < k < N — 1 and derive the message
updates at this node. The message(Sy_1) is entering the node from the left. The variable nggeemits
the initial message '1’, which causes the function néde, |y ) to send out the messagiécy |yx). Since thisis
the only message entering the variable noglét is simply forwarded to the function nogésSy, ci|Sk—1, bk)-
Using the update rules (2.22) of the sum-product algorithm, we therefieenofor the outgoing message
o (Sk)

ar(Sk) o< > p(Sk. ekl Sk-1,br)p(cklyr)ar-1(Sk-1), k=1,...,N. (2.28)

bk, Sk—1,Ck
Using the interpretation of the “closing boxes” of [5] (here, the left bokim 2.17 is closed), we can interpret
the messagey (Si) asay(Sk) = p(Skly1,- -, Yk)-
To show the validity of this interpretation, we derive the probability|y1,...,yx) from the system
model (2.27). We have

p(Sklyt,.--,yk) = Z p(b1,...,bk,c1,..., ¢k, S0, -, SklY1, -, VE), (2.29)
IR CH AR O
where the summation includeés, . . ., bs, Sg, ..., Sk, andcq, ..., c. Inserting (2.27), we obtain
N
p(Skly1,- - yk) = > p(So) [ [ p(St. il Si=1, br)

(b3 {SH ! {e}h =1
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and by the distributive law we have

=
P(Sklyr--yr) = D p(Sk,cklSk-1,br)p(cklys) > TIPS cilSi1,b1) .
e, Se—1.¢% DR CHEN O

We recognize the second sumas 1 (Sk—1), and finally obtain

p(Sly1, - ye) = > p(SkscklSe—1, br)p(crlyr)an—1(Se—1),
bk, Sk—1,Ck
which is exactly the expression in (2.28), which we obtained by using thepsaduct algorithm. In a similar
manner, the messagk_ (S;—1) can be obtained as

Bre1(Sk=1) = D p(Sk, cklSk—1,br)p(cklyr)Be(Sk), k=1,...,N.
br, Sk Ch
This update can be interpreted as closing the right box in Fig. 2.17, amdfi®“closing boxes” interpretation
again follows thap; 1 (Sk—1) = p(Sk—1|¥k; - - -, YN)-

As mentioned before, the sum-product algorithm starts at the variables Spdend S, and propagates
the messages and s concurrently from left to right and from right to left, respectively. Aftf¥ such steps,
all messages and have been obtained. To obtain the actual posterior density (2.26) rédairthe MAP
decision in (2.25), we finally calculate messaggsccording to

wbe) = D D(Sk: k| Sk—1, bi)p(cklyr)an-1(Sk-1) Bk (Sk) -
Sk—1,5k:Ck
This update can be interpretated as “box closing” around all parts o&therfgraph except the variable node
bi.. Therefore we havey (br) = p(bx = bly1,--- ,yn~), and the MAP decision rule (2.25) then becomes

b, = arg max Vi (bg) - (2.30)
k

2.4.2 LDPC Codes

Low-density parity-check codes are linear binary block codes origipatigosed by [47] and then rediscovered
in [48]. LDPC codes offer extremely good performance; e.g. [4%emés LDPC code designs with a threshold
less tharn).2 dB away from the Shannon limit, when a suitably large block length1(0000 bits) is used.
LDPC codes can be described by means of factor graphs and thargéaad the encoding) is performed in
an iterative manner by means of the sum-product algorithm.

In the following, the lengthk information bit vector will be denoted by = (u1,...,ux)’ and it is
mappedinearly to a length/V code bit-vectoke = (cy,...,cny)?. The code is described by the parity check
matrix P, and a bit vectoe is a valid codeword if Pc = 0. Every row of the parity check matriR describes
a so called parity check equation, which any valid codewohas to fullfill. The structure of the code can be
intuitively described by means of a factor graph or a Tanner graphT}#. factor graphs consists of variable

3Dealing with binary values, modulo-2 addition is used.
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nodes and check nodes. The variable nodes represent the codeddbitise function nodes represent the parity
check equations as described by the rows of the parity check nka{Bg].
Fig. 2.18 shows a simple example of a factor graph with the parity check nkagixen by

1110100
P=]0111001
0011101

For example, the first row dP corresponds to the first parity check giveny®d co @ c3 & ¢5 = 0, where
@ denotes modulo-2 addition. In the factor graph graph every “1” reptesan edge between a code bit and
a check equation; the first row &f therefore represents the four connections between the first cheakay
andcy, ¢, c3, andcs, respectively.

The term “low-density” in the name of the codes refers to the fact that timbaciof ones irP? is small and
grows only linearly with the block lengtlv of the code.

Characterisation of LDPC Codes. LDPC codes can be characterized by the degrees of their variable and
function nodes.Regular codesre those for which all nodes of the same type have the same degree. For
example, 43, 6)-regular LDPC code is a code in wich all variable nodes have d8gaed all check nodes have
degrees. In case ofrregular codes the degree of each sets of nodes is chosen according to soihatatistr

For example, an irregular LDPC code might had&; variable nodes of degreland60% variable nodes of
degreeb, whereas half the check nodes have degremd8, respectively. In case of irregular codes, these
distributions are given by node degree distributions. The variable neglee distribution is denoted as

dy
AMz) = Z Azt
=2

and represents a code whevgs the fraction of variable nodes of degreéAnalogously, a check node degree
distribution

de
o) =)
=2

represents a code, whepgis the fraction of check nodes of degreAll specific LDPC codes with the same
variable and check node distributioniz) and p(x) form acode ensemblelt can be shown [41], that in the
limit of large blocklengthV. — oo, almost all codes of an ensemble behave alike. It therefore sufficedyto o
consider the average behavior of the ensemble; the individual behafialmost all individual codes will be
the same.

Decoding. In decoding, we seek a decision which minimizes the probability of a bit efius leads to the
MAP decision rule of the bit; and is given by

Cp = argrring(cklyl,---,yN% (2.31)



Chapter 2. Preliminaries 34

II(CS|) IQ(CSQ) 13(c33)

NN

/"L’UHC(CI)

He—v (cl )

Figure 2.18 Factor graph of an LDPC code corresponding to the factorization)2.33

where f(cx|y1, - . ., yn) is the conditional probability of the bi, given the observatiop, ...,yy. We can
obtain this probability by marginalization of the posterior probability

pleklyr, - yun) =Y _pler, . enlys, - yn) -

~ClL

Using Bayes’ theorem, the conditional probabilftyes, . . ., cx|y1, - .., yn) can be expressed as
N
ples, - enlyn, - un) o f(yn, - ynlen - en)plen, - en) = T fynlen)I(e), (2.32)
n=1

where we have assumed i.i.d. fading of the channel. The conditional déftsity,,) describes the channel
model, and/(c) is an indicator function of the code, which is one, when the codechire a valid codeword,
and zero otherwise, that is
{1 if Pc = 0
I(c) =

0 otherwise

For a codeword: to fullfill the conditionPc = 0, the codeword: must satisfyall check-equations described
by the rows of the parity check matrRR. Therefore we can factorize the indicator function into a product of
local indicator functions, each of which is associated with one rol.0ofWe define the sats,, as the set of
code bits involved in thenth parity check and the indicator functidp,(cs,, ) denotes the correspondingth
parity check node function. The indicator functidfc) can then be rewritten as

M
I(c) = H I (cs,,) -
m=1

Inserting this expression into (2.32), we obtain for the posterior density

N M
flev,-wvenly, o un) = [ f@alen) [T Ines.) - (2.33)
m=1

n=1
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Figure 2.19 Variable- and check-node update.

In our example the seds, iscs, = {c1, 2, c3, ¢5} and the corresponding first parity check function is

1 fei®ea®esPes=0

Li(cs,)=1(ci®ca®es®es =0) =
0 otherwise

Using this factorization, the sum-product algorithm can be used to calcuéatedrginal probabilites required
for the MAP decision (2.31). Since the factor graph has cycles, théiresdecoding algorithm will become
iterative and yields only approximations of the marginals. Numerical reswdtgever, indicate very good
performance. Next, we describe the messages and their updates in tadlre de

Messages. We distinguish between two different types of messages: (i) messagasHteovariable nodes
to the check nodes; the message onitheedge from the variable nodeg to the check node is denoted
by u?, (cx), (i) messages from the check nodes to the variable negeshich will be denoted by:. (cy).
Initially, the variable nodes send out a '1’, and the mesgage;,) becomesgis(cy) = f(yi]c1). In the first
iteration, these messages are propagated to all check nodes.

In further iterations, the message updates are depicted in Fig. 2.19. Aablganode, the outgoing message
u™, (cx) is obtained as (cf. (2.22))

ph(ee) = [T w2 (ew), (2.34)
n'#n

where the incoming messages (cx) will be defined below. Becausg € {0, 1}, it sufficies to use LLRs as
representatives for the messages. We define

~7l) c élo /"L—>(Ck ,
Az (cx) 8 (o =0)

and then (2.34) is replaced with
i (ck) = Y i (ck)
n'#n
Here,[ﬂi(ck) denotes the incoming LLR messages, which will be defined below. A chewkifm node
I (cs,) receives messages from all variable nodes in theSgetind thenth variable node of this set will
be denoted aks,],. On the edge connecting to this variable node, the function node outputs Hsagee
p—([cs, ]n) according to the message update (2.23)

n(esda) = 3 Iules) T ne(les ). (2.35)
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Figure 2.20 Factor graph with Gaussian messages corresponding to the model in (2.36

We express this message by means of an LLR according to

& 1o e =1

fi—([es,]n) p—([cs,]n = 0)

)

and after some manipulations [50], the message update (2.35) can betsHmwaquivalent to

- _ 1.
fi([cs,]n) = —2tanh™! ( H tanh (zu_,([csk]n/))> :
n'#n
Different scheduling strategies for decoding of LDPC codes hava mestigated, but the most common
scheme is a flooding schedule: All variable nodes emit messages, whighoaessed concurrently at the
check nodes. This allows for an easy parallelization. Typicallyto 100 iterations are performed at the
decoder.

2.5 Factor Graphs with Gaussian Messages

In this Section we will consider statistical models where the exchanged nessmagGaussian functions [5]. In
this case, the message update equations (2.22) and (2.23) take a pagiticplaiform as the updated messages
are again Gaussian functions. Therefore, the message updateysmpstlices to calculate the updated mean
and variance (or mean vector and covariance matrix in case of vectoages$sand message passing amounts
to exchanging mean and variance between nodes. This significantlyeseedamputational complexity and
memory requirements for the storage of messages.

Factor graph example. To demonstrate the use of Gaussian messsages, we will consider a simplé@stima
problem. Of course, it is possible to solve the problem by standard te@wmilgut we will demonstrate the use
of factor graphs and the sum-product algorithm. The system model is give

y=Hu-+w. (2.36)
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Here,u = (u1 ---uy)” denotes a Gaussian vector to be estimated avjthiori densityu ~ CA(0,1), His a
known M x N observation matrix, and- denotes the Gaussian noise vector of lengtiw ~ CA(0, 02 1)).
The vectory = (y1 ---yar)” denotes the observation. Based on this observation the MMSE estiM¥&&
of u shall be found. It is given by the posterior mean [51]

uMMSE — Eluly} = /uf(u|y)du. (2.37)
The posterior density (u]y) can be expressed as [4]
f(y[a)f(u)
fy) 7

where f(y|u) denotes the likelihood function, which can be obtained from the system n{ag8) as
f(ylu) = CN(Hu,021), and f(u) denotes the a priori density of. In the following we will calculate
the mean vector and the covariance matrix of the Gaussian density

fluly) =

fyl)f(u) £ gu(u)

by means of the factor graph framework using Gaussian message fnclioa division ofg, (u) by f(y) to
obtain f(uly) is fairly standard, and can be found in e.g. [51]. The factor graptesemtingf(y|u)f(u) is
shown in Fig. 2.20 with variable nodesandy and function nodeg (y|u) and f (u).

Gaussian messages will be denoted A5 u, i1, 0%) = \/ﬁ exp (— 522 (u—p)?), following the notation

of [4] (extension to multivariate Gaussian messages follows analogoudhg).sum-product algorithm starts
with the variable nodg emitting the initial message '1’. The messaggu) then becomes [5]

py(u) = f(ylu) x 1 = CN(y,Hu,0,1).

For the next steps we need to reformulate this messages as GaussiamfumatiS8ome simple manipulations
yield

-1
11 (1) = CN(u, (HTH) 'Hy, (12HHH> ) .
Uw
The messagg, (u) from the variable node is given by
pu(1) = CN (u,0,1).

The functiong, (u) is then given by the product of the two messagg@i) andy,, (u). Using results from [5],
it can be shown to be

w w w

1 /1 - 1 -
gu(u) = py(a)py(u) C/\/(u, = <U2HHH + I) Hy, (UQHHH + I) ) .

Dividing g, (u) by f(u), we finally obtain the posterior densif{{u|y). The posterior mean (wich equals the
MMSE estimator)Z{uly} = uMMSE is then given by

uMMSE _ E{uly} = (HHH + Uil)*lHHy.

This result could have been easily obtained by standard methods (d)gbilextending the model demon-
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Figure 2.21 Factor Graphs with Gaussian messages corresponding to multiple dlsesya, ..., y;.

strates the powerfulness of the factor graph framework. Considetansywherd. independent observations
are made, that is
yo,=Hu+w,, n=1...,L.

Here,y,, denotes the observation at time instarandw,, the noise at this time. Assuming independence of

the noise over time, the joint distribution ofu and observationg, ...,y can be written as
L
f(YIa"'7YLau) = f(u) H f(yn|u)
n=1

The corresponding factor graph is shown in Fig. 2.21. Using the resoitsthe example before, the marginal
function g, (u) can be obtained from

L
gu(u) = pu(u) H fy,n(u)
n=1

where, ,(u) denotes the message from thth function nodef(y,|u) to the variable node. From this
marginal function the MMSE estimate

uVMSE _ E{ulyi,...yr}

can be obtained by dividing,(u) by f(y1,--- ,yr). Itis also possible to calculate the MMSE estimate given
only a subset of’ observationg, ...,y . In this case, only the messageg, (u),n = 1,...,L" are used
in calculating the (partial) marginal function

L/
gt = pu(a) [ pym(w),
n=1

yielding the MMSE estimatea™MSE = E{u|y,,...y/}. Here, the factor graph approach can help with
designing algorithms by providing intuitive insights into the considered problem.
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Figure 2.22 Factor graph representation of a BICM system.

2.6 Derivation of the BICM Receiver by Means of Factor Graphs

In this section we will demonstrate how the BICM receiver from Subsectibi3 2an be (re)obtained by means
of the factor graph framework.

Derivation of factor graph. We consider a MAP detector, i.e. the receiver decides ottithieformation bit
b[n'] according to

bin'] = bin’ 2.38
('] argb[n%a{ﬁl}p( [n]lr), (2.38)

wherer = (r[1]---r” [N])Tis the received vector sequence aiib{n’]|r) denotes the conditional probability
of b[n'] givenr. To computep(b[n']|r) in (2.38), we first write it as a marginal pfb|r) and apply Bayes’ rule
(assuminga priori equally likely information bit sequencés:

p(b[nllr) =Y p(blr) o Y f(r|b) (2.39)
~b[n'] ~b[n’]
where}__,, denotes summation with respect to all componentb @ixceptd[n'], f(r|b) is the condi-
tional probability density function of givenb, and denotes equality up to factors irrelevant to the max-
imization in (2.38). We can further express the dengity|b) according tof (r|b) = > x . f(r, X,c[b) =
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Y x.c /(£ X)p(X]c)p(c|b), and can write (2.39) as
pOIr) o Y fr[X)p(X[e)p(clb) . (2.40)
~bln]

Note thatf(r|X) corresponds to the channel (cf. (2.2)}X|c) describes the modulator (symbol mappings
x[n] = x(c[n])), andp(c|b) represents the channel encoder and interleaver (one-to-onsmantences =
C(b)). Thereisp(c|b)=1if c= C(b) andp(c|b) = 0 otherwise. We can rewrite this constraint by means of
the indicator function{-}, which equals 1 if its argument is true and 0 otherwise, according to

p(c/b) =1{c=C(b)}. (2.41)

We note that the code constraificl= C(b) } can be expressed in a more refined manner as was discussed in
Subsection 2.4. Similar reasoning yields for the conditional depéXyic) describing the mapping

p(Xlc) = H I{x[n] = x(c[n])} . (2.42)

Finally, because the receive vectatfa| are conditionally independent (cf. (2.2)) given the transmit vectors
x[n] we have

N
=[] rxlnlix[n)) - (2.43)
=1

Inserting the expressions (2.41)—(2.43) into (2.40), we obtain the lbfaartorization

N N
o Y J]HxIn] = x(elnD} [T fel]Ixn]){e=C(b)} (2.44)

Nb[n’] n=1
which can be represented by the factor graph shown in Fig. 2.22. Hnertactor nodes for the channel,

symbol mapper constraints, and code constraints, and variable nadhe foansmit symbols, code bits, and
information bits.

Messages and sum-product algorithm. The factor graph in Fig. 2.22 has cycles, therefore the sum-product
algorithm becomes iterative, yields only approximate marginal functionsemdres appropriate scheduling
of message updates. Depending on this scheduling different reedtegithms can be obtained. The message
Ly (x[k]) is given as

py(x[k]) = CN (y[k], H[k]x[K], o3 1)

Using the update rule (2.22) of the sum-product algorithm, we obtain for tiseage
py (alk] = Z'{X = x(c[k])} py (x[k]) T T et (cur[R1)
U+l
In case of an non-iterative receiver and an iterative receiver in tbeitiération, we have for the messages
wt(cr[k]) = const.. This simplifies the messaggc; [k]) to

prlalkl =)= Y my(x[k]). (2.45)

x:ci[k]=¢c
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Converting this message into an LLR, we obtain the expression (2.5) foothewg BICM demodulator. In
case of an iterative receiver (where the messages come from applgisgriiproduct algorithm to the code
part {c= C(b)} of the factor graph), we have

plakl =)= > myk) ] urevlk), (2.46)
x:c;[k]=c U#l

which is the same as (2.8). The messaggs;[k| = c) are now used to decode the channel code as described
in Subsection 2.4. Applying the sum-product algorithm to the factor grapitopthe channel code (that is, the
function node {c= C(b)})), yields the messagegb[n’]) for the information bitd[n'],n’ = 1,..., N’. Using
these messages, the MAP decision (or an approximate decision in caséearhitive receiver) (2.38) can be
made. If an iterative receiver is to be used, then the sum-product algasitthe channel code also calculates
the messages; (¢;[k]), which are then used in (2.46) in the next iteration.

These derivations demonstrate the powerfulness of the factor gi@plevirork. By deriving an expression
for the joint density describing the system model (2.44) and represengrugthction problem as operating on
the marginals of this joint density (2.38), different algorithms for the rexreailesign can be obtained. Some
extensions are also possible: By approximating the message updatesa(®i42)46), several low-complexity
algorithms for BICM demodulators can be obtained. It is also possible tadsome system with pilot-based
estimation of the channel. By properly incorporating this extension in theeegjun for the joint density
and applying the sum-product algorithm to the resulting factor graphivessewhich perform joint channel
estimation and data detection can be obtained. These concepts will be exjhe@teapter 3.



Interleave-Division Multiple

Access Transmission Schemes

N multiuser communications, large performance gains can be achieved lgyautimbo-style interaction

between multiuser detector and channel decoder [52]. Here, we eomsidiplink scenario wheté users
transmit data to a common base station via multiple-input multiple-output (MIMO)reHanUser separation
is achieved by means of a recently introduced multiple-access techniquwe kasmterleave-division multiple
accesqIDMA) [18]. Using a factor graph framework [4, 5], we develop arratieve multiuser MIMO-IDMA
receiver that performs joint multiuser data detection, channel decaghidgpilot-aided channel estimation. An
orthogonal frequency-division multiplex (OFDM) modulation format is addpo accommodate frequency-
selective (time-dispersive) channels. The proposed receiver igl doitbigher-order symbol alphabets for
increased spectral efficiency, and it uses a selective message spldaee for reduced complexity.

42
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3.1 Background and State of the Art

In a multiuser system employing code-division multiple access (CDMA), egmration is achieved by means
of user-specific pseudorandom spreading sequences [53]nfRet®MA has been proposed as an alternative
to CDMA [18]. With IDMA, user separation is obtained via user-specificrierers combined with low-
rate channel coding. Similarly to CDMA, IDMA offers diversity againstlifey and mitigation of inter-cell
interference [18]. However, IDMA has some important advantagaes@D&A: it enables the use of multiuser
detectors that are significantly less complex than those required for CRMit can outperform coded CDMA
when iterative (turbo) receivers are used [18]. Furthermore, IDidA be easily used in MIMO systems [54].
Just as for CDMA, frequency-selective channels can be accomntbiateombining IDMA with an OFDM
modulation format [55, 56].

An iterative receiver for IDMA based on a minimum mean square error @&)Mequalization approach was
described in [18] for single-antenna systems using binary (BPSK) miolul2DFDM-IDMA was introduced
in [56]. An extension of IDMA to MIMO and to higher-order symbol alpleddy as well as receivers based on
factor graphs and performing joint detection and channel estimation wepeged in [54,57-59].

Factor graphs were introduced in Chapter 1 as a tool for dealing withidumscof many variables that can be
factored into “local” functions, each of which depends only on a sulifsese variables. Such a factorization
can be graphically represented by a factor graph. Marginals of thaldlofiction can be efficiently calculated
(either exactly or approximately) by means of a message-passing algornithmmlas the sum-product algo-
rithm. The factor graph framework and the sum-product algorithm hame bsed in many different areas such
as signal processing [4, 5], receiver design [13], and decodihBC codes [49].

This chapter is organized as follows. The system model and IDMA transraiteepresented in Section
3.2. In Section 3.3, we construct the factor graph of our system anegdee messages to be propagated along
the edges of the factor graph. Section 3.4 develops message approxinsatiba selective message updating
scheme resulting in a complexity that is linear in the number of users. Inforrgametic performance limits
of IDMA are determined in Section 3.5. Finally, Section 3.6 demonstrates tfiermance of the proposed
receiver structures and algorithms by means of numerical simulations.

3.2 MIMO-OFDM-IDMA System Model

We consider a MIMO-OFDM-IDMA system for an uplink multiple-accessnsge with U users. Each user
employsM+t transmit antennas for spatial multiplexing [40], and the base station is eguiitieMRr receive
antennas. Frequency-selective Rayleigh fading channels are assamdéhe equivalent discrete-time complex
baseband domain (with symbol-rate sampling) is considered throughout.

3.2.1 Transmitter

The MIMO-OFDM-IDMA transmitter for thesth user is shown in Fig. 3.1. This transmitter extends the BPSK-
based MIMO-IDMA transmitter of [54] to OFDM modulation and higher-ordgmbol alphabets.
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Figure 3.1 MIMO-OFDM-IDMA transmitter for theuth user.

Coding, interleaving, mapping. First, a lengthJ sequence of information bits of theth user, denoted as
b® 2 (p{"...50)7 is encoded into a length-sequence of code bits, with > .J. The code rate is thus
R = J/L < 1. The code is a serial concatenation of a terminated convolutional codelandrate repetition

code. The code bit sequence is then passed through a user-spesifirerr (), which yields the interleaved
bit sequence™ 2 (c{"). .. )", we can express® as

c® = cW(pW)y, (3.1)

where the one-to-one functigh* (-) denotes the combined effect of channel coding and interleaving. Biffer
users employ identical codes but different interleavers. The low-egtetition code together with the user-
specific interleaver replaces the spreading employed in CDMA systems.

Next, the coded and interleaved bit sequeei¢é is mapped to a sequence bf complex symbol vectors
xW[] & (agﬁ“) [l - 955\1/2 [l])T,l =1,..., L, asfollows. We use a complex symbol alphafef size|S| =27.
Note thatL,, is related to the numbdr of code bits as

Ly = L/(MtB). (3.2)

The transmit symbmgu) [[] € S at theith antenna of thesth user at symbol timéis obtained by mapping a
group of B successive coded/interleaved bji%) INTI ,c% i+ With A(1,7) £ [(l-1)Mt+i—1]B,toa
symbol fromS. This mapping operation will be denoted as

with the one-to-one symbol mappingand the bit vectocgu) (1] = (c(;(g R c(;g ¢)+B)T- We will refer to
the bit vectorcz(“) [l] as thesymbol labehssociated with the symbmfu) [l]. With a slight abuse of notation, the

transmit symbol vector (across the antennas) ofitmeuser will be similarly written as
x[I] = x(c™[1]), (3.3)

wherec® (1] £ (c{""11] - ¢\ T0))".

OFDM modulation and pilot insertion. The symbols:§“) [l,l=1,..., L, are transmitted at thih antenna
(u)
7
addition, to enable channel estimatidii, M7 pilot symbols are inserted for each user. The total number of
subcarriers is thus

of the uth user using OFDM modulation, i.e., tth#h symbolz; ’[/] modulates a corresponding subcarrier. In

K £ L, + K,UMr, (3.4)
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UM~

(u—l)MT‘-lx /

Two pilot subcarriers for theth user and théth antenna

Figure 3.2 Arrangement of data subcarriers (white) and pilot subcarriery)gfevo pilot blocks of length
U M~ spacedA subcarriers apart are shown.

where K,,U M7 is the total number of pilot symbols (for all users and all\M/7 transmit antennas). In
what follows, & € {0,...,K — 1} will denote the subcarrier index. A symbol (data or pilot) of the
uth user that is transmitted at thi¢h antenna and modulates théh subcarrier is generically denoted as
s§“> [k]. The set{sgu) (K]}, is composed of data symbo{&z(“) ]}, and pilot symbols. Furthermore,
the symbol vector (either data or pilot) across the antennas associatecubitrgerk will be denoted as
SO[k] £ (s [K] - S5 lk])

Finally, the time-domain signal of theth user transmitted at thi¢h antenna is obtained by applying an
inverse discrete Fourier transform (IDFT) of lendgthto the symbol sequeneﬁsgu) (k] kK:j)l and inserting a
cyclic prefix of lengthNgp. This results in a time-domain sequence (or block) of length K + N¢p, which
will be denoted as{él(“) [n]}N_, (the tilde™ indicates the time domain). The corresponding time-domain vector
sequence will then be denoted @) [n]}_,, wheres®)[n] £ (5“[n] . .- 55\1/2 )"

n=1"

Pilot arrangement. We use the arrangement of data and pilot subcarriers shown in Fig.l182<,lU M+ pilot
subcarriers are arranged Iy, blocks, each containing M7 pilot subcarriers (one for each user and transmit
antenna). Successive pilot subcarriers for a given user andritazustenna are located in successive blocks
and spaced\ subcarriers apart (see Fig. 3.2). Note that whereas each datargertisaised jointly by all users
and all transmit antennas, each pilot subcarrier is only used by onéousgre transmit antenna; this amounts
to an orthogonal pilot structure. The set of pilot subcarrier indicesnployed by the:th user for theith
antenna is given bgi?i(“) 2{(u—1)Mr+i+vA—-1|v=0,...,K,—1}; note thaﬂDZ.(“) c{0,...,K—-1}
and|7?i(“)| = K. The pilot symbols are chosen equal for all users and antennagdotiees®) (k] = pe; for

ke Pi("), wherep is the common pilot symbol and; denotes the&th unit vector of length\/t. Note that
for k € Pi(“), the symbols at all other antenna%?) [k] for i’ # 4, are zero. We have botR = K, A and

K = L, + K,UM~, whenceK, (A —UMt) = L, or equivalently

Ly

Ky=——F"¢7—-.
POA - UM

(3.5)

Finally, the union of all the (disjoint) setBi(“) will be denoted ag>. Note that|/P| = K,U M7, which is the
total number of pilot subcarriers.
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Spectral efficiency. As a measure of spectral efficiency for one user, we calculate the fatie aumber of
information bitsJ to the total number of subcarrieks. Using the definitions and relations provided previously,
we obtain

» J _ MyBR(A-UMy)  MtBR(A-UMrt)?

I O U/ A '

Most importantly, the spectral efficiency depends on the differencedeetthe pilot block spacing and the
product of the number of users and transmit antefihds. Assuming a fixed\, the spectral efficiency can
become very small (even zero), if either the number of users or transteitreas becomes large, because then
the number of pilot subcarriers increases (we Hawér pilot subcarriers in one block), which reduces spectral

efficiency.

€

3.2.2 Channel

Considering the equivalent complex baseband after symbol-rate santpkinggceived signal vectatin] =

(F1[n] -+ Farg [n])T at symbol timen is given by

U Len—1
in] = > > HYWR§Wn-n] + Wh], n=1...N. (3.6)
u=1 n’=0
Here, Leh < Ngp is the channel length, th&/g x M7 matrix sequencéﬁ(“) '], v =0,...,Lcn — 1is the

MIMO channel impulse response from théh user to the base station, the elements of the noise védigr
are i.i.d. complex Gaussian with noise varianée andN = K + N, is the number of symbols per temporal
block.

The channels of all users are frequency—selectivefz%l{n’] denote thej, i)th element ofI(*)[n/], and
let us collect the impulse respon%%) [n'] of length Ly, in the lengthK vectorﬁ%? = (Bg“l) [0] -- - iz&? [Leh —
1]0--- O)T. The Ly, potentially nonzero channel taps are assumed uncorrelated and zancomeplex Gaus-
sian, i.e.,ﬁﬁ) ~ CN(0, C;}p)’ WhereC;lp (subscriptp stands for “prior”) is a diagonak x K matrix in which
only the first Ly, diagonal elements are nonzero. The corresponding frequencyidamennel coefficient
vector is given by

n\ 2 (r{p0] - hlW K -1])" = FR'Y (3.7)

whereF is the unitaryK x K DFT matrix with element§F)y; = — exp ( — j23).

3.2.3 Receiver

The receiver processes the channel output sequEinten = 1,..., N in (3.6). First the cyclic prefix is
removed, resulting in a sequence of length Subsequently, a DFT with respectsioyields the frequency-
domain sequence of receive vectaifg], ¥ = 0,..., K —1. TheseK vectors of length)Mg are stacked
in the (total) received vector = (r”[0] - -- rT[K—l])T of length K Mg. The further processing steps (joint
iterative data detection, channel decoding, and channel estimationititmattaly result in the detected/decoded
user bits will be discussed in Sections 3.3 and 3.4. This discussion will useothpact system channel
representation described next.
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3.2.4 System Channel

The frequency-domain sequence of receive veatfdfisconsists of_,, vectors at the data subcarriérg P and
K,U M~ vectors at the pilot subcarriekss P or, more specificallyk € Pi(“), i.e.,

i - {251H<u>[k1 sk + wik], k¢ P,

(3.8)
H® k] s [k] + wlk], keP™ (u=1,...,U;i=1,..., My).

Here, HW[k], k = 0,..., K —1 is the DFT of the time-domain channel impulse response matrix sequence
H® [n'],n' =0,..., Lcn—1 (zero-padded to a length-sequence), and k] denotes white Gaussian noise of
varianceo?,. For our later derivation and discussion of the iterative receiver, itogilconvenient to represent
the received vectors[k] at data subcarriersk ¢ P in terms of the transmitted data symbol vectaf8) /],
l=1,..., L, le.,
U
rgl] = Y BP0+ wll),  1=1,..., L, (3.9)
u=1
where the subscript indicates that the received symhgj[/] belongs to a data subcarriéﬂ;ﬁl”) [l] is the cor-
responding chanel matrix on this data subcarrier,laad(1, ..., L,} is a re-mapped subcarrier indéx The
received vectors[k| atpilot subcarriers: € Pi(“) are given by

rok] = HOK] sk + wlk] = ph[k] + wlk],  keP™, (3.10)

wherehz(“) [k] is theith column of the channel matri(“)[k] and the subscrigt indicates that the received
symbolr,[k] belongs to a pilot subcarrier.

3.3 Factor Graph Framework for MIMO-OFDM-IDMA

In this section, we analyze the statistical structure of the MIMO-OFDM-IDBi&tem. We construct the
corresponding factor graph and derive the messages to be prapadmtg its edges according to the sum-
product algorithm. This leads quite naturally to an iterative technique forgaitat detection, channel decoding,
and pilot-based channel estimation.

3.3.1 Derivation of the Factor Graph

After the receiver frontend described in Section 3.2.3, the channelitigtpepresented by the total received
vectorr. The MIMO-OFDM-IDMA receiver operates anand produces detected information mi%) m =
1,...,Jforallusers ¢ = 1,...,U). The receiver we propose is an approximation to the optimal (MAP) bit
detector given by (cf. Subsection 2.6, [13,60])

lA)Sj):arg max p(bﬁfﬂr), m=1,....,.J; u=1,...,U. (3.11)
bWefo,1}

Here, p( Sf)|r) denotes the conditional probability mass function (pmf) of the informatiorb,(b]tgiven r.

In what follows, letb = (b7 ... bWT)" ande = (cWT... cT) denote the vectors containing all
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information bits and code bits, respectively, of all users; furthermor& le- (X[1] - -- X[L,]) with X[I] =
(xM[1] -+ x[1]) be theMr x UL, matrix of all data vectors™[l],1 = 1,...,L,, u = 1,...,U. Note
that there is a one-to-one correspondence betlieenandX, due to the coding-interleaving mappingé) =
¢ (b™) in (3.1) and the modulation mapping® [I] = x(c™[1]) in (3.3). Thus, the quantitids, ¢, andX
are probabilistically equivalent. In what follows, we assume that all inftionéit sequenceb ¢ {0,1}/Y
are a priori equally likely.

To computq;(bfn}f) Ir) in (3.11), we first write it as a marginal ofb|r) and apply Bayes' rule:

=Y p(blr) < Y f(xb). (3.12)

b ()

Here,>" ) denotes summation with respect to all componentse)fceptbﬁn , f(r|b) is the conditional prob-
ability density function (pdf) of givenb, andx denotes equality up to factors irrelevant to the maximization
in (3.11). Sincéb — ¢ — X for a Markov chain, we have

=) f(r,X.clb) = Zf r|X, c,b) p(X|c,b) p(c|b) = Zf r|X) p(X|c) p(c|b),
X,c
and therefore we can write (3.12) as

p(bWIr) o< Y F(x[X) p(X]e) p(c/b). (3.13)

~bw

Here and subsequentl}, , ., denotes summation with respectath unknown variables appearing in the

summand excenﬁ‘) (in the present case, these variablesXre, and all components & exceptbgﬁf)).

We will now provide expressions for the conditional probability distributiappearing in (3.13). First,
p(c|b) corresponds to the channel encoder and interleaver subsumed by ppingsz(™) = C®) (b®),
u=1,...,U; we thus have

(3.14)

1, if ¢® = Cc(b®) foru=1,...,U
(c[b) = .
0, otherwise

Using the indicator function{}}, which equals 1 if its argument is true and 0 otherwise, we can rewrite (3.14)
as

plclb) = H 1{c® b))} . (3.15)

We note that the code constrair{d“ = ) (bl “))} can be expressed in a more detailed manner by using the
code structure as was presented in Chapter 2.

Next, the conditional pmfy(X|c) corresponds to the modulator defined by the mappifig[l] =
X(c(”)[l]), u=1,...,U,ie.,

(3.16)

X[o) 1, it 2™ =x(&[) foru=1,...,U,i=1,..., My, 1=1,...,L,
C =
0, otherwise
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or equivalently

U L, U Mt L,
p(X|c) = H T i1 = x(c™p H TTTT = = x(e )y - (3.17)
u=11[1=1 u=1 =1

=1

Finally, p(r|X) corresponds to the system channel given by (3.8)—(3.10). We wiidentwo cases.

1) Perfect channel state information at the receivieor comparison purposes, it will be useful to consider
a genie system with perfect CSI at the receiver, i.e., the receivergkatwhannel matrlceH(“) [l]. In this
case, transmission of pilot symbols is not necessary; Mus- 0 and all setSPi( “) are empty. We then have

L.

FX) =[] fall1X[). (3.18)

=1

From the system channel expression (3.9),

U
ra[l]| X[1] ~ czv(Z HY [1)x™]1), 03,1> .

u=1

Inserting (3.18), (3.15), and (3.17) into (3.13), we obtain the followingession of the posterior pmf bf}f):

M+

Ly U
o S [T a1 Xy TT He® = e m@) T Hel 1 = x(c 1} (3.19)
u'=1 =1

p) =1

2) Pilot-based channel estimatioNext, we consider the practically relevant case where the channtd has
be estimated and, thus, pilot subcarriers are transmitted. We can write

(r|X) = /f(r|X,H)f(H)dH, (3.20)

whereH is a matrix combining the channels of all users. We will now find expressan&H) andf (r| X, H).
Assuming that the channels of different users and MIMO streams arpendent, we have

U Mt Mg

= TITIII @), (3.21)
u=1i=1j=1
where
(b)) = / (") — Fh{Y) f(m\%) anl (3.22)
according to (3.7). Fof (r|X, H), we obtain
La U My
FriX, H) = [ Frall ), H H [T 7y lk) g k). (3.23)
=1 =1 7;1( )

with B[] 2 (HDT[) - BT (1)) Expressions foff (r4[l]Hyll], X[1]) and f (r,[k]h{")[k]) are obtained
from (3.9) and (3.10), respectively:

U
[l | EL[1], X[1] ~ w(z H 1] 1), 05,1> ,

u=1
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Figure 3.3 Factor graph for a pilot-aided MIMO-OFDM-IDMA system with channetlang and higher-order
modulation.

rp [k ~ CN (ph[K], 021), ke P

()

Inserting (3.20)—(3.23) into (3.13), the posterior pmbﬁﬁf> is finally obtained as

p(BW|r) oc /f(X,H,r|b) dH (3.24)
~bLH)

with

U M
f(X,H,r|b) Hf (rq[l]|Hqll] Hﬁ H frplk |h H/5 h(U) (f‘gz))dﬁﬁ)

u=11i= lkepi(u)
U !
<« [ ™) =c }H )] = x(el[K])} -
u/'=1

The factorizations in (3.19) and (3.24) can be represented by means fafctior graph [4, 13, 61] shown
in Fig. 3.3. The part in the dotted box corresponds to (3.19) (receitbrmperfect CSl), whereas the complete
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factor graph corresponds to (3.24) (receiver with pilot-based eiastimation). The probability distributions
Fleg[[Hg[l], X 1)), f(xp[k] 0 [k), andf(ﬁgz)), the functiorﬁ(h% —FB&Q) expressing a DFT, and the con-
straint functions of the mapper{+\*'[k] = x(c{"/[k])}, and of the encoder/interleavefd® = C, (b))},
correspond tdunction nodeswhich are represented by boxes. The information bits, code bits, trasygmmit
bols, and channel coefficients correspondiaoiable nodeswhich are represented by ellipses. It should be
noted that the factor graph contains cycles.

3.3.2 Messages

For a factor graph without cycles, marginals like (3.13) can be determiteadly and efficiently by means of
the sum-product algorithm [4]. Using these marginals, the MAP bit decigid8s11) can be easily determined.
For a factor graph with cycles as in Fig. 3.3, the sum-product algorithratdbme used but it generally becomes
iterative, yields only approximate results, and requires appropriate geessheduling.

We will next calculate the messages to be propagated along the edgedadtougraph according to the
update rules of the sum-product algorithm [4]. The following discussimstantly refers to Fig. 3.3 regarding
the notation used for the various messages and the position of the messihgefaator graph.

Because the code bit variable nodéqgi)ﬂ and the transmit symbol variable nodég) [l] are connected
to only two neighboring function nodes, they are just transfer nodessrupthe messages from one neighboring
function node to the other. Thus, we only have to consider the messagtesbdr the function nodes.

For the code function node§d™ = ¢(*) (b))}, the sum-product algorithm amounts to the BCJR algo-
rithm for soft-decoding the convolutional code [4, 8], and to a summatidheod priori log-likelihood ratios
(LLRs) of successive bits (after interleaving) for soft-decoding #petition code. The LLRs produced by the
overall soft channel decoder are the sum of extrinsic LLRs and ptiBis [52]. The extrinsic LLRs, denoted
as.gg(;“), correspond to messages (beliefs) [4,13,61]

exp (&5 el

ZEPASe tq ) (u)
== e €40,1}. (3.25)
L+ep(”)

/LC—m(C((JU)) =

These messages leave the code function néde)l = C(*)(b(%))} and are propagated to the code variable
(u)

nodesc; ’[n] and further to the modulator function nodes

Again invoking the sum-product algorithm, the messggep(:z(“) [n]) passed from the modulator function

nodey to the variable nodei”) [n] and further to the channel function nade ;[!]|H4[!], X[{]) is obtained from

the messagasc%(c(;g i4v) @S

B
pampla ) = D7 a1 =x(el W)} T el 1) = Femelef™ TN oy — 1oy
(u) v=1
c; [l]
(3.26)
B

wherezcgu)[l denotes summation over all tB€ symbol labels anqicac(cf.“) IR MC—m(C(;ai)Jru)-

]
The messagg,_.. (:v(“) [1]) passed from the channel function notie (/]| H,[!], X[{]) to the variable node

)
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(“)[ [] and further to the modulator function noglés obtained as follows. For a receiver with perfect CSl,

,up—w u Z f I'd |Hd H /~L:E—>p )7 (327)
gu) 1 (z ! )#(i,u)
and for a receiver with pilot-based channel estimation,

e (r00) = 3 / F(rall] EL[1] Huhep W) T pep(a 1) dHL. (3.28)
(u) (#" ") #(i,u)

In (3.27) and (3.28)p _ o denotes summation with respect to all elementXdf exceptxﬁ“) [[]. The

messageLth(h( .)) mvolved in (3.28) will be determined in Section 3.4.
The messagﬁcﬂc( (;8 o ) passed from the modulator function nogéo the code variable nodcé“)

and further to the code function nodfef*) = () (b))} is obtained as
pee (i) = 0 Wil =x(e” 1)} e (2 1) T] eme(iiy o)

vy

(u)
~ex(1,i)+v

= > e () T e 00) - (3.29)

(U vi#y

)\(l i)+v

From the messageﬁc( (u )) the corresponding (extrinsic) LLE%“) can be obtained by [4]

g He—c (€ (CgU) =1)

E(“) =lo u
! He—C (C((] ) = 0)

(3.30)

Combining (3.26) and (3.28) and inserting the result into (3.29) yields a ms@ate that takes the code
bit beliefs pc—..(c (“)) from the channel decoder and yields refined code bit be;dlgtsc( ) Hence, these
message updates taken together constitsteftain/soft-out MIMO multiuser detector

Since (3.26) and (3.29) involve only one antenna of one user, thellbvenaplexity of the sum-product
algorithm is dominated by (3.28). Indeed, the sum in (3.28) invoj$e¥™U~! terms, so the complexity of
calculatingu,—, (g;§“> [l]) is exponential in the number of transmit antenMasand in the number of usets.
For example|S|MU—1 ~ 2.7 . 108 for four users with two transmit antennas and 16-QAM modulation.

For the receiver with pilot-based channel estimation, the mea@ag@(hgfi) [[]) is obtained by means of
the sum-product algorithm as

pp—n (S = / Pl B0, X[0) [T np(0y) Huwx,, d~h) . (331)
X[1] (z )7 (i,u) i"u

Here, h{")[1] denotes theth column of H”[1], and [ ... d ~ h" denotes integration with respect to all
elements oH [!] except those contained hf;fi).
The messagﬂrp(hg.,“i) (k]), k 6731.(") from the pilot symbols is given by

u 1 u 2 u
iy (2D ¢ exp (= i) = 12007 - P,

w

52
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This can be rewritten as a Gaussiamgﬁ) [k]:

(R [k] — 1, [k]/pF) | (3.32)

a2 /Ipl?

Using the messages (3.31), (3.32), and the DFT relation (3.7), the megsag}g(hg? [l]) involved in
(3.28) can be obtained. This derivation is deferred to Section 3.4.

iy (RVH]) o exp (—

3.4 Low-Complexity Receiver

In this section, we discuss two modifications of our iterative receiver flelt g significant reduction of com-
putational complexity. First, we use Gaussian approximations for certairagessso that closed-form inte-
gration becomes possible. As a result, the complexity of the multiuser detect@asilinthe number of users,
instead of exponential. An additional complexity reduction is achieved bieatae® message update scheme
where only certain messages are updated in each iteration.

3.4.1 Gaussian Approximations

To simplify the calculation ofi,_., (a:E“) [1]) in (3.27) or (3.28), we approximate the beligfs .,, (x§“> [1]) in
(3.26) by Gaussian distributions. That is, we'set

0,

(u) ( 2
2 x exp| — | (1] —m, " [1]]

where the meanmgu) [1] and variancesrz(“m[l] are chosen equal to those of the tue...(z; () [1]). Using
(3.26), we obtain

= 3" e fie—e (1)

[

= 3" e - m{ 0] e (@) -

2]

For BPSK symbols withz\"[1]| = 1, we have|m " []|> + ¢™?]I] = 1. We will now use (3.33) for an
approximate calculation ¢f,_., (:nf“) [1).
Perfect CSI. For the genie-aided case with perfect CSI at the receiver, we obteim(.27)

N2

fip—a () [1]) o exp (_(rd[z]_hg“? 2 [ —m{”[0)" 7 1] (rall] b [t ] - m [z])), (3.34)

with mean interference vector

m1 = S mi e
(") #(i,u)

and interference plus noise covariance matrix

To keep the notation simple, we use the symtp@is,c(xgu) [l]) etc. also for the approximate quantities.
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e =1+ Y otmm) s .
(i) #(iyu)
Hence, the (exponentially complex) computation of (3.27) is replaced withdimpuatation of (3.34). The
overall complexity of computingtp_,x(xl(“) [[]) can be shown to scale linearly with the number of users and
cubically with the number of transmit antennas.
Pilot-based channel estimation. For the receiver performing pilot-based channel estimation, we will use a

Gaussian model also for the belief§ﬂp(hgfi) [l])ie.,

pnp (0 1) ox exp (= (0271 =m0 1) € 2 1] (0G0 =m0 1)) (3.35)

where the mean vecten, ., [!] and the covariance matri, .., [{] will be determined at the end of this subsec-
d,i d,i

tion.

Assuming thamgu) [] andhé”l.) [l] are mutually independent and distributed according to (3.33) and (3.35),
respectively, the messag@)_,m(mg“) [1]) in (3.28) equals the conditional pdf(rd[lﬂxl(“) [1]). This fact and
the use of a Gaussian approximation allow for an approximation of the meﬁ§agém§“) []). We use the

Gaussian approximation

u U H

pp—a (el 1) = folralllerl ) ox exp (= (rall] —m, )" OB (rall] = m, o)) (3:36)

with mean
m o[l = " fm,wl] + Y mim
d,i d,i . . d,i!
(") #(i,u) ’
and covariance matrix
C,wll] = 2" 1PC, w1 + (o2 Wm0, g [ 1]+ (IR + 08 0) €, 1]
d,i d,i hd,i/ hd,i’ hd,i/

(#u)#(iu)
+ 021,

As in (3.34), the overall complexity of calculatir)g,_,x(azgu) [[]) scales linearly with the number of users and

cubically with the number of transmit antennas.
In a similar manner, the messm&h(hg“) []) in (3.31) can be approximated as

u H u _
o (82 [1) ¢ exp (= (Baalt) = m, 00 1) ™ 2C; L 1] (Balt) =m0 1) )
) d,i )

with .
m, o [] @ [r[l] + Z mz(,u )[l] m, [l]]
’ m; 1] (i) £ (i) dé
and
u)2 u u)H !
Cyoolll = o InGI G + (o2 m, o [ 1
“ (i) (i) o o'
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To obtain a message that is Gaussiahg@ (1], we approximateC, (., [{] by neglecting the first term in (3.37).
’ d,i

This is motivated by the fact that, typicalle_sji“p[l] — 0 in the course of the iterations. In particular, for the
special case of BPSK modulation, this approximation yields

u')2
Cuull = > o0 m, ) mlun ]+ C,on ] + 03T
(i'u")#(iu) "’ ’ "

Refinement of channel estimation.We next explain the calculation of the messa,ges,p(hg’? [l]) from the
messageg, ., (h, h'Y J11])- In the following, we consider all subcarriers (i.e., both data and pilotauiers)
and definei, ., (h; (“) 7 1k]) asupﬂh(h( )[ I]) indexed with the true subcarrier positién Similarly, we define
[m h<u>]k and[ChM]k 1 asthe mealfmh(u)[ ]]; and Val’lanC¢Ch£u)[ 115, indexed with the true subcarrier posi-
tion, respectlvely
Consider the vectoh
edges associated with the messagpsh( )[k:]) and urp(h%) [k]) are connected to the variable noliS%“
Let us collect the messagges..(h; ( J1k]), E géP andurp(hgf? (k]), k ePi(“) into a “vector messageiy, (h(“)).
This message is Gaussian with some mean venipand covariance matri&;, (here and in the following, we

(u ) for givenu, i, and] From the factor graph in Fig. 3.3, it can be seen that the

omit the indices., j, ¢ for notational convenience). In the first several iterations, we ubetioa pilot symbols
for channel estimation. We thus have

H Msz(h[k]) )

kePi(")
whence

(u) 2 2 (u)
rplklli/p, keP; on/lpl®, keP;
(], = rplilli/ . [Chlpp = i ,
0, otherwise 0, otherwise

In later iterations, we also use the messagges, (h[k]) for channel estimation, so

1T #e, (hED T fp—n (i)

kep™ k¢P
whence
lkli/p. kEP o2 /pP,  kep”
(my], = [ﬁ'lh;z)]k, k¢P [Chrlpr = [Ch§f?)]k’k’ k¢ P
0, otherwise 0, otherwise

Becauseh = F'’h, the message; (h) is Gaussian with meam;, = Ffm,, and covarianceC; =
FHAC,LF. The messageh( ) is multiplied by thea priori messagetf (h), which is Gaussian with mean;,
and covarlancéjhp (cf. Section 3.2). The product messai@ = (h) uf}.l(h) is then again Gaussian [5],
with mean and covariance to be denotednaig’ and C;‘Lp, respectively. Because the time-domain chatnisl
assumed to have finite lengfhy, only the firstL¢, elements oin%p (denoted by the vectm]gp) are nonzero.
Similarly, only the top-leftLen X Lcn Submatrix ofC%p (denoted aDgp) has nonzero elements. Lef andn;, |
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denote the vector of the firét., elements oinj;, andm;lp, respectively, and ldD;, andD;lp denote the top-left
Leh X Len submatrix ofC;, andC;Lp, respectively. Then we have [5]
up _ -1 —-1\—1 up _ Up =1, 1,
D¥ = (D' + Dﬁp) : n.* = D*(D;'nj + D; n; ).
Becauséh = Fh, the messag@.,(h) is Gaussian with meam,” = Fm;” and covarianceC,” =
FC}‘ff’FH (cf. [5]). The mear{mhﬁ [1]]; and variancéchgj [1]];,; in (3.35) equal the element afi,” and the

diagonal element oc;’f’ at the corresponding data subcarrier position, respectively.

3.4.2 Selective Message Update

Since for higher-order symbol alphabets the calculation (update) of tbeage&c_)c(céu)) in (3.29) is rather
costly, we propose a scheme that yields a reduction of the number of agmEafermed. This reduction is
achieved by calculating updated beliefs only for code bits with poor reliabTlfig. reliability of a code bit:é“)

is measured by its posterior LLR, which is given by

£ _ 1o Hemeleh” = 0pteclc)=0) (3.38)
! UC—»C(Cl(Iu) = 1) He—C (Ct(ZU) = 1)

If |§~[§“)| exceeds a prescribed threshold, the corresponding mepgag(acf]")) is not updated, i.e., the value
from the previous iteration is reused. In the course of the iterations ofuimepsoduct algorithm, the code
bit reliabilities improve and hence fewer and fewer message updates haeeperformed. We note that
this selective message updatan be viewed as a specific scheduling [61] of the sum-product algotitatn
dynamically adapts to the current bit reliabilities: Messaggsc corresponding to unreliable decisions are
updated earlier (and more often) than messages corresponding to rdéalsens.

The choice of the threshold affects both the number of message updatésvibao be carried out and
the performance of the sum-product algorithm (convergence betawibiinal bit error rate). Since the LLRs
generally increase with the signal-to-noise ratio (SNR), the threshold hesadapted to the SNR. The impact
of the LLR threshold on the performance and complexity of the receiverbgilstudied experimentally in
Section 3.6. Generally, our experimental results show that the increB&Ro€aused by the selective message
update scheme is rather small, thereby supporting the use of (3.38) a#itglabasure.

3.4.3 Overall Receiver Structure

The message-passing algorithm developed above, together with dp@@mheduling, can be interpreted as
the iterative turbo receiver structure shown in Fig. 3.4. The “OFDMivecéblock removes the cyclic prefix
and calculates the frequency-domain sequanbg means of a DFT. The dotted box labeled “soft multiuser
detector” in Fig. 3.3 corresponds to the soft-in/soft-out MIMO multiuserateten Fig. 3.4, which exchanges
messages with the function nodes of the code constrainfe(*) = ¢(*)(b(*))} located in the upper part of
Fig. 3.3). The code constraint function nodes correspond t&/tharallel single-user soft-in/soft-out channel
decoders shown in Fig. 3.4. The dotted box “soft multiuser detector” in3=8galso exchanges messages with
the dotted box denoted “channel estimation”, which corresponds to timehestimation block in Fig. 3.4.
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Figure 3.4 Structure of the MIMO-OFDM-IDMA receiver performing joint detectiand channel estimation.

More specifically, the MIMO multiuser detector takes the code bit beugtsc(cg“)) (they are obtained
from the extrinsic LLRS;‘&“) by (3.25)) produced by the channel decoders as input and passesircode bit
beIiefsMHC(cé“)) (which are converted to LLRéé”) by means of (3.30)) back to the channel decoders. We
distinguish between parallel and serial schedudling [61]: In caseraflpbmessage scheduling the extrinsic
LLRs 5(5") for all users at the input of the multiuser detector are simultaneously updiatbd channel decoders,
and then used by the multiuser detector to calculate refined meg&ag@(&é“)) for all users concurrently. In
a similar manner, the messaggs..;, obtained from the MIMO multiuser detector are used to calculate refined
estimatesg;,_.,, of the channel coefficients, which are used in the next iteration. Onéidtergonsists of/
decoding steps (i.e. calculating LLI&%)), one multiuser detection step (i.e. calculating mess,ageg(cfzu))),
and one update of the messamgp(hﬁf;) ).

In case of serial message scheduling the user data is decoded sdlyuéitea decoding one user (yield-
ing updated extrinsic LLRSé“) of this user), the multiuser detector calculates refined mesmggf(cgu)).
These messages are then used by the channel deocder to decode tieeneAfter allU users have been
decoded (and, correspondingly,updates of the message@c(cgu)) by the multiuser detector), one iteration
is finished. Therefore one iteration consisté/oflecoding steps and multiuser detection steps; it is therefore
much more computationally complex than parallel scheduling.

When the message-passing algorithm is terminated after a predefined rafritbeations, the signs of the
a posterioriLLRs of the information bits calculated by the channel decoder (this calcaletinot discussed
here) provide the final bit decisions” approximating (3.11).

3.5 Performance Limits of IDMA

In Section 3.6 we will demonstrate the performance of the proposed lowleritypreceiver derived in Section
3.4 by means of BER simulations. Being important from a system point of vievgstargued in [20] that this
might be misleading as BER performance also depends on the channel code

Therefore, we seek a code-independent performance assesétheribw-complexity receiver. To this end
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Figure 3.5 Information theoretic sum-rate of SISO-IDMA wifli = 4 users and BPSK modulation compared

with the area under the EXIT chart of the IDMA low-complexity multiuser deteatal3 operation points of
an LDPC-coded IDMA system.

we compare the achievable rate of the IDMA receiver with the informatiorrétiecapacity of the Gaussian
multiple-access (MAC) channel given by (3.8) (or equivalently by (p.festricted to finite symbol alphabet at
its input. We consider only IDMA systems with perfect CSI at the recejarnly in this case the information
theoretic sum-rate is known.

The sum rateR, of the MAC channel (3.8) is given by (2.14) (cf. [39])

U
Ry=) R,=I(X;r), (3.39)
u=1

whereR,, denotes the individual rate of theh user and the mutual information [39] is given by

1 2UMTE f (r[HL, X)
[(X;r) = QUMBEH{ ;k’g >ox f(r[H, X) }

We assume independent user channel with i.i.d. Rayleigh fading; thetakpady has to be taken accord-
ingly. For a symmetric MAC, the IDMA system considered here providesaheegate to every user, i.e. there
is Ry = - Rs.

To obtain an approximation for the achievable rate of the low-complexity IDMeéever presented in
Section 3.4, we performed BER simulations, but used an LDPC code [#2hBnnel coding. Due to the
strong performance of these codes, the waterfall region is close totéhadatzievable with IDMA.

We first considered a SISO-IDMA system with=4 users and BPSK modulation and obtained sum-rate
(normalized by the number of userés)l(X; r) by means of Monte Carlo simulations. The results are shown in
Fig. 3.5. We exchanged the serial concatenation of the convolutionalesatithe repetition code with a regular
LDPC codé and performed BER simulations for code raies 0.1, 0.125, 0.2. The SNR values above which
the BER dropped below0—* are also shown as operation points.

2The LDPC code was designed using the EPFL web-tobt &fp: / / | t hcwww. epf | . ch/ resear ch/ | dpcopt
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Figure 3.6. IDMA system withU = 4 users and BPSK modulation: EXIT charts of the low-complexity
multiuser detector and of LDPC codes with different rates.

It can be seen that for code ratesRf 0.1 and R = 0.125 the IDMA system performs abo@tdB away
from the information theoretic limit. For a code rate @& 0.2 we observe a much larger gap of ab6ulB.
This gap can partly be explained by the fact that the LDPC codes we wesedptimized for AWGN channels
and at higher SNR (which is equivalent to higher rates) there is a mismatiwkdrethe LDPC codes and the
IDMA system [62].

We further investigated this mismatch by means of EXIT charts (see Chaptértt® tow-complexity
IDMA multiuser detector. The EXIT chart [42] is a plot of the mutual informatidg(l4) =
TS premc (e5)) versusT 4 = T(cS"); pe—e(ci™)). Fig. 3.6 shows EXIT charts of the low-complexity IDMA
multiuser detector fo different SNR values, and of two LDPC codes with rates 0.1 and R =0.2, respec-
tively. At an SNR of—4 dB the EXIT chart of the multiuser detector matches the EXIT chart of theitaté.1
LDPC code very well, and this explains the closeness of the corresgpogarating point in Fig. 3.5 to the
theoretical limit. At an SNR of dB there is a significant mismatch of the multiuser EXIT chart and the EXIT
chart of the ratdr =0.2 LDPC code, causing the large gap to the theoretical limit of this operating point.

A lot of experiments indicate that the area under the EXIT chart is appréedynagual to the achievable
rate. By perfectly matching the code to the EXIT chart of the multiuser detft5063], the areas under the
respective EXIT charts can be made equal, and therefore the areathaed®XIT chart of the multiuser detector
becomes an approximation of the achievable rate of the IDMA system. In.BigiSadditionally show the area
under the EXIT chart of the multiuser detector. For an SNR bé&ldB the area is almost equal the information
theoretic sum-rate, for higher SNR there is a small gap.

Finally, Fig. 3.7 shows the results foRa 2 MIMO-IDMA system with U =2 users and BPSK modulation.
The used code rates for the BER simulations wiere0.125, 0.2, 0.25 and all three operating points lie within
2 dB from the theoretical capacity limit. As in the SISO case, the area under thieseudetector EXIT chart
is very close to the information-theoretic limit for an SNR belodB.

We observe that the low-complexity multiuser detector comes close to the abpelfidemance limit.
This demonstrates the validity of the various assumptions and approximatiatgenhvn the derivation of
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Figure 3.7: Sum-rate o2 x 2 MIMO-IDMA with U = 2 users and BPSK modulation compared with the area
under the EXIT chart of the IDMA low-complexity multiuser detector &raperation points of an LDPC-coded
IDMA system.

the low-complexity multiuser detector. At higher SNR, the EXIT chart of thadded channel code (serial
concatenation of the convolutional codes and a repetition code) is mismatctreel EXIT chart of the low-
complexity multiuser detector. It is therefore important to employ optimized LDRi{gsd®o achieve good
performance.

3.6 Simulation Results

In this section, we present simulation results for the proposed MIMO-OFDMA receivers. We first con-
sider receivers with perfect CSI and study the selective messagéeugateeme. Then, we will investigate
pilot-assisted receivers performing joint multiuser data detection and ehestimation. In all simulations, the
channel code is a serial concatenation of a terminatedly@&eonvolutional code with code polynomial given
in octal notation byj23 35]g and a ratet/U repetition code, wher& is the number of users. Thus, the overall
code rate iSR=1/(2U). The interleavers were generated randomly for each user.

3.6.1 Receivers with Perfect CSI

We first consider various versions of the genie-aided receiver wile@eCSI. We simulated 2 x 2 MIMO-
OFDM-IDMA system withU =2 users, each transmitting= 512 information bits, and 16-QAM modulation.
The time-domain channel hddy, =40 independent taps, each with variarice

Basic low-complexity receiver. For the low-complexity receiver using the Gaussian message approximation
(3.34), Fig. 3.8 shows the bit-error rate (BER) aftermessage-passing iterations, versus the $HRV,. We

can observe the typical turbo behavior, with an SNR of more &@Birequired for convergence and a waterfall
region above that SNR. For an SNRBf/Ny > 10dB, our receiver performs close to the single-user bound
(i.e., onlyU =1 user). We also show the BER of the receiver that calculates the exasagee3.29), i.e.,
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Figure 3.8 BER of different receivers versus SNR, /N, for a2 x 2 MIMO system with 16-QAM modulation
andU = 2 users.
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Figure 3.9 Conditional bit-error probability given that the posterior LLR lies in a smatiival, versus the
interval center, for & x 2 MIMO system with 16-QAM modulation anfi = 2 users at an SNR ¢fdB.

without the Gaussian approximation, #Gr=1 user. It is seen that the proposed low-complexity receiver using
(3.34) performs almost as well, which justifies the Gaussian approximatiotethiat (3.34).
Low-complexity receiver with selective message update®Next, we present simulation results illustrating the
selective message update scheme of Subsection 3.4.2. Based on thetsigmosterior LLF&“) in (3.38), we
can make a decision on the code tmﬁfé) and thereby compute the empirical probability of etFJi€} for the
code bits. In Fig. 3.9, we plot the conditional bit-error probability given tha LLR 55“) lies in an intervalZy,
of width 0.1, P{Eq\ég“) € Ii }, versus the center @f;. It can be seen that LLRs with a large absolute value yield
a low probability of error. This experimental result provides a motivatiomfit updating the corresponding
messageLC_)c(cg”)) When\ég“)] exceeds a certain threshold.

In Fig. 3.10, we study the BER versus complexity of the receiver using&au message approximations,
both with and without selective message updates, at an SNR 0¥, = 11 dB. The complexity measure
considered is the cumulative number of message updates divided by thedrigth, which can be interpreted



Chapter 3. Interleave-Division Multiple Access Transmission Schemes 62

—*-no selective updates
—»*—selective update (scheme A)
¥ -% -selective update (scheme B)
i -x- selective update (scheme C)
_2 |- ' N . N -
10 x %
! \
[a ! !
[T x|
m (S
i ‘\
107 x i
-6
10 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

cumulative number of message updates/block length

Figure 3.10 BER versus normalized cumulative number of message updates fovaescesing different
selective message update schemes and for the receiver without seteetigage updates, foRa 2 MIMO
system with 16-QAM modulation arld = 2 users at an SNR dfl dB.

as the average number of message updates per code bit. We compadiffirert selective update schemes:
schemes A and C use a constant LLR threshold of 30 and 5, respeotitédin means that scheme C tends to
perform fewer updates than scheme A. Scheme B uses an LLR threshbttetiteases linearly from 30 (first
iteration) to 5 (10th iteration); this is motivated by the fact that the LLRs tend tease in the course of the
iterations. From Fig. 3.10, we can draw the general conclusion thatldaige message update strategy offers
a very favorable performance—complexity tradeoff. Scheme A exhibitpuicgest BER decrease with growing
number of updates, but saturates at a BER slightly anévé and a complexity of abouit.2 updates/block
length; no updates are performed after that point. The last iterationsa&uRIBER only slightly but at the same
time require only very few updates since most posterior LLR magnitude$reselg larger than 5. The behavior
of scheme C initially equals that observed without selective updates. Elgnhowever, LLR thresholding
sets in and the further BER decrease (down to bdlow’) is achieved with significantly less complexity than
without selective updates. The results of scheme B are intermediate behwserof schemes A and C, with a
quick initial BER decrease and saturation at a reasonably low BER. Tevachtarget BER of0~*(or better),
the method without selective updates requires six iterations with almost sixegfidlack length. Scheme B
also requires only three updates/block length during six iterations, pomdsig to computational savings of
about 50%.
Low-complexity receiver with selective message updates and fixe&omplexity. In the selective message
update scheme presented above, the actual number of updated melessagets on the LLR threshold and
on system parameters like the SNR and the number of users. In practice, itenrmaore desirable to update
a fixed number of messages in each iteration, so that a fixed complexity @ioiteis obtained. This can
be easily achieved by updating the messa@esc(cf]“)) corresponding to the N posterior LLRséé“) with
smallest absolute value, wher€0 < p < 1) controls the complexity (To obtain a high degree of flexibility, we
allow the fixed number of message updates to change over the iterations gtishinges over the iterations).
We consider three different schemes A, B, and C corresponding toraad#ng number dbtal message
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Figure 3.11 BER versus normalized cumulative number of message updates fovaescesing different
selective message update schemes with fixed complexity and for the recighaut selective message updates,
for a2 x 2 MIMO system with 16-QAM modulation antl = 2 users at an SNR dfl dB.

updates, i.e., scheme A tends to update more messages than scheme B, 8t&1Eigows the average BER
versus complexity (cumulative number of updates/block length) for the gukemes and for the receiver
without selective updates. The conclusions are essentially the sameees Ifefr a target BER df0o—*, com-
putational savings of about 50% are possible (when scheme B is appliee)mnore aggressive thresholding
scheme C attains a BER slightly abavis#. Schemes A and B as well as the receiver without selective updates
attain smaller BERs with larger numbers of updates; however, after a gaoliainadditional updates no longer
decrease the BER.

Next, we consider the fixed-complexity selective message update schemeystem in which the two
users have different channel gains. More specifically, the charfile¢ first user is stronger B/dB than that
of the second user. We compare three different update schemes A¢ B,.dn scheme A, the same number
of updates per iteration is assigned to both users; in scheme B, the stumsgas assigned more updates
than the weaker user, and in scheme C, the stronger user is assigmeedifelates than the weaker user. In
schemes B and C, the total number of updates per iteration (summed ovesbmhis chosen to be the same
as in scheme A. Fig. 3.12 shows the BER-versus-complexity curves ftibe schemes and for the receiver
without selective updates.

It can be seen that reducing the number of updates for the weakefasssrdone in scheme B) degrades
performance, whereas schemes A and C yield almost the same perforr@angeared to the receiver without
selective updates, complexity savings on the ordé0t§ are possible.

We next compare the performance of different scheduling strategges3.E3 shows the BER performance
versus number of iterations of2ax 2 MIMO-IDMA system with 16QAM andU = 2 users, employing serial
and parallel scheduling. It can be seen that the receiver employiiad selmeduling converges faster (within
5 iterations), while the receiver employing parallel scheduling requibeigerations to reach the same BER
performance. Considering the much higher complexity of the serial sthgdicheme in every iteration, it
might still be favourable to use a receiver which employs parallel schegdulin
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Figure 3.12 BER versus normalized cumulative number of message updates fovaescesing different
selective message update schemes with fixed user-dependent comfiexty,x 2 MIMO system with 16-

QAM modulation and’ = 2 users at an SNR dfl dB. The channel of usdris 3 dB stronger than the channel
of user2.
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Figure 3.13 Performance comparison of scheduling strategies: BER versus curaulatinber of message
updates using parallel and serial scheduling2fer 2 MIMO-IDMA with 16QAM and U = 2 users at an SNR
of 11dB.

3.6.2 Receivers Performing Joint Channel Estimation and Data Detection

We now present simulation results for receivers performing joint dat&fiieand pilot-aided channel estima-
tion.

SISO system.First, we consider the single-input single-output (SISO) caseMe +~ Mr = 1. We simulated

a pilot-assisted SISO-OFDM-IDMA system with=4 users, each transmitting= 256 information bits. The
channel length was,=40 taps. The distance between the pilot blocks was chosén-a40 subcarriers, and
from (3.5) the number of pilot blocks i&, = 57 and from (3.4) a total number df = 2276 subcarriers was
used. The modulation format was BPSK unless noted otherwise. The resggag were used for refining

the channel estimate messaggs., only after the second iteration. Fig. 3.14 shows the average BER versus
the SNRE), /N, for the following receivers: (i) the proposed receiver using Ganssiassage approximations;

(i) the genie-aided receiver with perfect CSI; (iii) a conventional remethat separately estimates the channel
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Figure 3.14 BER versus SNRE;, /N, for different iterative receivers, for a SISO system with BPSK modula-
tion andU = 4 users.

coefficients by means of a pilot-based least-squares estimator and tisgh@isbannel estimates for iterative
data detection. The conventional receiver then uses the Gaussiaxiamdions of (3.34). In all cases, 10
iterations were performed. It is seen that the receiver with integratethehastimation gains aboadB of
SNR compared to the conventional receiver and approaches themanice of the genie-aided receiver for
SNRs larger tham0 dB.

For the proposed receiver using Gaussian message approximatiarg 1bigepicts the mean square error
(MSE) of the channel estimate versus the number of iterations, at an SN df = 13 dB. As a reference,
the channel estimation MSE of the conventional receiver with separatmehastimation is also shown (this
is a horizontal line, as the MSE of the conventional receiver does rpandieon the number of iterations).
It is seen that the MSE of the proposed receiver starts decreasinficsigtty when the messages,.,, are
used (i.e., after the second iteration). After the seventh iteration, it is @mRilower than the MSE of the
conventional receiver. This decrease in MSE results in a better BE&p@mce. This is demonstrated by Fig.
3.16, which shows the BER for the proposed and conventional reseigesus the number of iterations, again
at E,/No = 13dB. The BER of the conventional receiver saturates after four itegtishereas the BER of
the proposed receiver saturates after seven iterations to a valudtateaudbrders of magnitude smaller.

Next, we show results for a SISO-OFDM-IDMA system with= 2 users and 16-QAM modulation. To
avoid many short cycles in the factor graph (which would lead to pooopegnce), each user transmitted
J = 2048 information bits. The pilot distance was = 40 subcarriers, resulting i, = 54 pilot blocks (cf.
(3.5)) and a total number df = 2156 subcarriers (c.f. (3.4)). The channel length wiag = 20. The receiver
performedl5 iterations, and the messages ., were used for refining the channel estimate messages
after the8th iteration. Fig. 3.17 shows the average BER obtained with the proposaideethe conventional
receiver, and the genie-aided receiver versus the E\NR/j. It is seen that the proposed receiver outperforms
the conventional receiver fdt, /N, larger than abow?2 dB, and it comes close to the genie-aided receiver for
Ey/Ny larger than about5 dB.

We also considered the fixed-complexity selective message update sabretis ystem. In every itera-
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Figure 3.15 Channel estimation MSE versus number of iterations for different iteragigeivers, for a SISO
system with BPSK modulation arid = 4 users at an SNR df3 dB.
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Figure 3.16 BER versus number of iterations for different iterative receiveysafSISO system with BPSK
modulation and/ = 4 users at an SNR df3 dB.

tion, the messagqsc_)c(cg“)) corresponding to the N posterior LLR ~((]“) with smallest absolute value are
updated, whereas all messaggs.;, and;_.,, were updated.

Fig. 3.18 shows the average BER versus complexity (cumulative numbersstuge updates/block length)
for three different schemes and the receiver without selective mesgatates. The three different schemes
A, B, and C correspond to decreasing number of message updateshémesA updates more messages than
scheme B, etc. Interestingly, the schemes A and B attain a lower BER thanctieerewith full message
updates, with about half the complexity. Scheme C performs slightly worsethieamll complexity receiver
but requires only about/3 of the message updates. It seems that due to the system parameters, thgaiesny
of the factor graph decrease performance of the full complexity receithereas the receivers with selective
message updates (and therefore message updates) perform better.

In Fig. 3.17 we also plotted the BER performance of the selective messdgeelgcheme B, and it can be
seen that it performs better than the full complexity receiver in spite of itsrlioamplexity. Only in case of
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Figure 3.17 BER of different receivers versus SNR, /N, for a SISO system with 16-QAM modulation and
U =2 users.
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Figure 3.18 BER of different receivers versus SNR, /N, for a SISO system with 16-QAM modulation and
U =2 users.

high SNR (and convergence to the receiver with genie-aided CSI) bog#ivers perform the same.

MIMO system. Finally, we demonstrate the application of the proposed iterative receitlerintegrated
channel estimation to MIMO-OFDM-IDMA transmissions. We consider@ka MIMO system withU =4
users, each transmitting= 512 information bits. The modulation format was BPSK. The distance between
the pilot blocks wasA = 30 subcarriers. The number of pilot blocks wAS = 94 and the total number of
subcarriersK = 2800. The length of the time-domain channel wag, = 30 taps. Fig. 3.19 shows the BER
versus the SNR. For an SNR larger than ab@udB, the conventional receiver has an SNR gap of abal

to the genie-aided receiver, and the proposed receiver comes WwistdB of the genie-aided receiver.
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MIMO-BICM with quantized
LLRs

HE performance of bit-interleaved coded modulation (BICM) can be vastlyawsgl by using soft de-
Ttection, where the demodulator not only provides bit decisions, but atsadgs a reliability measure,
usually a log-likelihood ratio (LLR), on these decisions. By appropriatsiggithis reliability information in
the channel decoder, significant performance gains can be achlevedariety of scenarios it is necessary or
advantageous to quantize the LLRs before saving and/or furthergsinge This chapter studies how to best
guantize LLRs, and which effects on performance LLR gquantization has.

69
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4.1 Introduction and Background

In a BICM system, a sequence of real-valued LLRs is calculated by thedidator and needs to be stored, till a
block of them can be deinterleaved and decoded by the channel deCodent error correcting channel codes
are mostly block codes of large block length (LDPC codes operate with lbagkh in the order of thousands
to ten thousands of information bits). Therefore saving these real-vhlurs for further processing requires
a lot of memory. These memories require large chip sizes, which are wmédole for reasons of cost, power
consumption and reduced yields. Therefore, guidelines on how manyiteaded to efficiently store LLRs
are required.

Quantization of soft information is also relevant in wireless (relay) nets{@k]. Here, nodes can coop-
erate for transmission purposes or perform distributed turbo and retedimg. This cooperation sometimes
involves exchanging soft information between the nodes, which is usuglhgsented by means of LLRs. It
is undesirable to exchange LLRs by means of analog transmission, tieetieéoLLRs need to be quantized
before they can be transmitted to cooperating nodes.

The system capacity of the equivalent BICM (modulation) channel betaemde bit (at the input of the
mapper) and its corresponding LLR (at the demodulator output) was stindigd]. This work was extended
and used for code-independent performance comparison of vasidueptimum soft-out demodulators for
BICM in a multiple-input multiple-output (MIMQOgontext in [20]. Here we use the framework of the equivalent
BICM modulation channel to propose different quantizer designs amgare their performance.

Optimal LLR quantization maximizing information rate for the special case of BR®BHKulation over an
AWGN channel was considered in [21], and in [65] we proposed ardifft quantizer design which allowed for
simple implementation while only slightly degrading information rate. In this chaptem#end our proposed
guantizer design to other modulation alphabets and system sizes and counpap@roach with optimal LLR
guantization.

This chapter is organized as follows: Section 4.2 presents the system amaldgéction 4.3 discusses LLR
guantization based on an equivalent discrete channel. In Sections Ad3414a we study the system capacity
of SISO- and MIMO-BICM systems, respectively. The estimation of thentiper parameters is addressed in
Section 4.5 and BER results are provided in Section 4.6.

4.2 System Model

We consider a MIMO-BICM system witd/7 transmit antennas andi/gr receive antennas as was already
described in Section 2.1.3. The system model is shown in Fig. 4.1; the ordyatiffe to the system model of
Section 2.1.3 is the quantizer, whose operation will be explained below.



Chapter 4. MIMO-BICM with Quantized LLRs 71

equivalent discrete channel

map.

“xn]l MO )

. channel \/,
map.j i

"~ -|encoder—| 11 idl "] II-' . decoder —°

DEMUX
MUX
I
S

Figure 4.1 Block diagram of a MIMO-BICM system with LLR quantization.

421 Soft Demodulation

The MIMO-BICM system shown in Fig. 4.1 employs a max-log demodulator. [88%ed on the received vector
y it calculates LLRs\; according to (2.7) (cf. Subsection 2.1.3)
1 . .
Ay~ —| min [y — Hx|* — min [y — Hx]|]?|. (4.1)
0°|xexy xex}!
These LLRs (or approximate/quantized versions thereof) are deBlzd by the sequengg[n] = 1—2p;[n],
de-interleaved and used by the channel decoder to obtain bit estibpates

4.3 LLR Quantization

The LLRs in (4.1) can attain any real value, and we will next study how &mtige these LLRs. In practice the
demodulator should directly deliver quantized LLRs (as an example ofsssetup, we will study a soft-MMSE
demodulator in Section 4.7).

The symmetric noise distribution and the use of the scrambler yield the symmgt(©es= fx(—¢) and
Iaje€le=1) = fa).(=€|c=0) for the (un)conditional LLR distribution. Hence, knowledgefaf.(¢|c=1) is
sufficient for characterizing.

We consider a-bit quantizer characterized by = 29 binsZy, = [ix—1,], k = 1,..., K. We use the
conventionip = —oo, ixg = oo and assume symmetric bins (this is motivated by the symmetry of the LLR
distributions), with boundaries, sorted in ascending order. The quantigkr) maps the LLRA; to a discrete
LLR d; according to

dy=Q(N) =X If Ay €Ty

Here, A\, € 7} is thekth quantization level.

In the following, we consider the equivalent discrete channel with biiguyt ¢ € {0,1} and K-ary
outputd € {\1,...,A\x} as shown in Fig. 4.2. Here,andd are obtained by randomly picking a bit position
Il =1,..., Ry according to a uniform distribution. This models a situation where the outemehaode is
“blind” to the bit positions within the symbol labels. The crossover probabiliiigs= Pr{d = A\;|c = b} =
Pr{A € Zy|c = b} of this channel are given by

Dot = /I Fael€lb) de, 4.2)
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Figure 4.2 Block diagram and transition diagram of the equivalent discrete channe

where fy.(&[b) is the conditional probability density function (pdf) of the LLRgiven thatc = b (averaged
with respect to bit positiof). Note thatPr{d = A\r} = Pr{A € T} = 3(pox + p1x). The mutual information
(capacity)! = I(c;d) of this discrete channel is given by [39]

L& 2ppk;
I=2-3" perlogy——— (4.3)

0 b1 Pok + D1k

N | =

If the LLR distribution f,.(£|b) and hence the transition probabilitips, are averaged with respect to the
statistics of the physical chanrHl (reflecting fast fading), the quantifydescribes the ergodic rate achievable
over the equivalent channel (cf. [40]). Otherwise (quasi-statimégdthe transition probabilities,., and thus
the ratel, change with every realization of the channel makixHere, the probability

pout(r) =Pr{I <R}, 0<R<Ry (4.4)

characterizes the rate (denot8jlversus outage trade-off [40].

The optimal quantizer maximizes the mutual information of the equivalent chibetveeen the code bits
and the quantized LLRg[21]. Let {izpt}f:‘ll denote the set of quantization bins of the optimal quantizer, we
have

.opty K—1 __ .
{iy }ooy = arg {iﬁ%zl I(¢;d) . (4.5)
This optimization problem is infeasible to solve in practice, because the mutaahiation! (c; d) depends on
the crossover probabilities,, by (4.3), which by themselves depend on the quantization intervals (c}).(4.2
Furthermore, the conditional probabilitigg.(£|b) need to be known, so that the crossover probabiljigs
can be calculated. In [21] the optimization was performed numerically fokBRgismission over an AWGN
channel, and in this work we will present results for more general éigjipased on numerical optimization.

A much simpler (though suboptimal) approach to the quantizer design is the ifajlosincec — A — d is

a Markov chain, the data processing inequality impligs, d) < I(c; A). In order forI(c; d) to be as close as

possible tal (¢; A) (for fixed K), our proposed quantizer maximizes the mutual informafigh d), that is

(i35 = arg max I(Asd).
i }pa
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With H(-) denoting entropy, it follows thaf(A;d) = H(d) — H(d|A) and H(d|A) = 0 becausel is a
deterministic function ofA. H(d) is maximized by a uniform distribution af and therefore, the quantizer
boundariesy, k = 1,..., K—1, have to ensure that

_ _ Pok+pi 1 _
Pr{d_Ak}_72 =7 k=1,...,K. (4.6)
Using the unconditional cumulative LLR distributiafiy (A) = Pr{A < A} = %f_Aoo [fA‘c(§|c =0) +
Taje(€le= 1)] dé¢, the optimal boundaries can be obtained by finding the arguments for Wwhich) = &/ K,
i.e.,
k

izngl(§> k=1, K—1. (4.7)

We note that for this approach the capacity of an equivalent modulatiameh#& notmaximized, only the
guantizer intervals are chosen such that the quantizer odifppresent\ in an (information-theoretic) optimal
manner.

For the capacity in (4.3) only the bins (boundaries) are relevant, i.e., thalapiantization level$; do
not influence the achievable rate. However, these values are importanieinto provide the channel decoder
(e.g., a belief propagation decoder) with correct reliability information.[6®}iew of the equivalent discrete
channel, we hence propose to choose the quantization levels as codiegpLLRs

Pr{ic=1|ld= X
A = log e =1 3, —log@

= = . 4.8
Pr{c = O‘d = )\k} Pok ( )

It can be shown that} € 7.

4.3.1 SISO-BPSK over Rayleigh fading

We next study in more detail the case of a SISO systen £ Mg = 1) with BPSK modulation Ry = 1 bpcu)
in Rayleigh fading. Here, the system model (2.1) becomes real-valued and simplifigs=tchz + w, with
h ~N(0,1),w ~ N(0,02/2), andx = 2c — 1 € {—1,1}. Then, the LLRA can be calculated according to

A= L ). (4.9)

o2 o2
4.3.2 Ergodic Capacity

Conditioned on:=x=1, the LLR can be rewritten as =  z7A z, wherez = (h ¥2¢)" ~ N/(0,1) and

A ( 1 0/2>‘
a/2 0

Using the eigenvalue decompositidgn= UX U7, with U orthogonal an& = diag{c1, 02}, wheres; 2 =

1£4/1402

3 , we further obtain
1 1 . -
A= S22z = p[olz% Jragz%} .

The results in this section also apply to the inphase and quadrature pl&iS€o$ystems with Gray-labeled QPSK and to the two
layers of BPSK-modulate?2lx 2 MIMO systems.
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Figure 4.3 Numerical capacity results for a SISO system with BPSK for various tigeardesigns using (a)
2-bit quantization, and (b)-bit quantization (both with Gray labeling).

Here,z = UTz ~ N(0,1) due to the orthogonality dfJ. Thus,A is a linear combination of two independent
chi-square random variables with one degree of freedom. The distribfitja{|c = 1) can thus be shown to
be given by (cf. [67])

Ine(€le=1) = Z exp(— V1 + %) Ko(g), (4.10)

whereK(-) denotes the modified Bessel function of the second kind and order

Using (4.10), one can determine the LLR distribution, the LLR quantizatian(4c$) and (4.7)), and the
ergodic capacity of the equivalent channel given by (4.3).

Fig. 4.3(a),(b) show the ergodic capacity versus SNR for varioustigeardesigns witt2-bit and 3-bit
guantization, respectively. We compare our proposed quantizer dgs)rand the optimum quantizer (c.f.
(4.5)). As a reference the ergodic capacity without quantization is al$te@l@abeled ‘no quant’). Further-
more, we include a very simple quantizer design which uniformly quantizes téeah containingr0% of all
LLRs (labeled ‘uniform’). Finally, the curvé-bit is obtained by taking the sign of the LLRs (i.e. making a
hard-decision).

It can be seen in Fig. 4.3(a) that f@bit quantization the optimum and the proposed quantizer perform
almost the same up to rates @b bpcu. Compared to the non-quantized case the SNR l0&$ hpcu is at
most1 dB, however, the performance advantage dvat quantization ist.4 dB. For higher rates, our proposed
guantizer suffers from a significant performance degradatiahyabpcu, an SNR penalty of more thars dB
can be observed compared to the optimum quantizer. Note that our pdogueesetizer design performs signifi-
cantly better than an uniform quantizer for low-to-medium rates, e.g., shamisNR gap o2 dB at0.5 bpcu.
Only at high rates (larger than7 bpcu) uniform quantization starts to slightly outperform our proposeigjdes
When spending an additional bit for quantization (i3hjts), both the optimum and the proposed quantizer
closely approach the non-quantized performance curve for rates wpstbpcu. We can thus conclude that
in this rate regime quantization withbits is sufficient when using our proposed design. At higher rates our
guantizer again suffers from a performance degradation; surgsisinghis case3-bit uniform quantization
seems to be optimal in terms of performance.
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Figure 4.4 Quantizer performance f@-bit and3-bit quantization in quasi-static fading: outage probability
versus SNR foR = 0.25 bpcu andR = 0.75 bpcu with (SISO, BPSK, Gray labeling).

4.3.3 Outage Probability

Additionally conditioning on the channel coefficigntit follows straightforwardly that\|c ~ N (z 7, 27) with
v = h?/a?. This allows to calculate the transition probabilities of the equivalent chasnel

k-1 —\/(%7—1)7> B Q<ik —\(/22%—1)’0_

The outage probability can thus be evaluated according to (4.4).

Dok =Q<

Numerical results opout(r) versus SNR for quasi-static fading with rale= 0.25 bpcu and withR =
0.75 bpcu are shown in Fig. 4.4. The difference between the proposed argpttmum quantizer is barely
visible for both quantizer word-lengths and both target rates. Furtherrtoe two quantizer designs closely
approach the non-quantized case. Moreover, note that the asymptptis sibthese curves show a diversity
order of1 and are thus independent of the quantizer word-lengths.

4.4 MIMO Systems and Higher-Order Modulation

In the following, we investigate LLR quantization for MIMO systems and higbreler constellations. Since in
this case analytical expressions for the LLR distribution are hard to obtgenaral, the remaining discussion
is based exclusively on numerical results. For the capacity results in ttisrgewe used empirical LLR
distributions obtained from Monte-Carlo simulations (obtained withfading realizations).

4.4.1 Ergodic Capacity

Fig. 4.5(a) shows the ergodic capacity (in bpcu) d a 2 MIMO system with al6-QAM Gray mapped
modulation alphabet (her&, = 8) for the same quantizers as described in Subsection 4.3.2. As a reference
we also plotted the capacity of the unquantized demodulator (labeled 'nd¢)quarhe following, in some of

the plots we show insets that provide zooms of the capacity curves aroatelGt R, /2 bpcu.
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Figure 4.5. Numerical capacity results f@ x 2 MIMO system with16-QAM with (a) 2-bit quantization, and
(b) 3-bit quantization (both with Gray labeling, = 8).

Up to code rates of: = 1/2 (this amounts tal bpcu), the2-bit optimal and2-bit equiprobable quantizer
perform the same. Both exhibit an SNR of abadB loss to the unquantized case at a ratdief 1/2. At
R=3/4 (6 bpcu), the optima2-bit quantizer performs by more thardB better than the equiprobable design.
Up to rates ofR = 3/4, there is almost no gap between thieit optimal quantizer and th&bit equiprobable
guantizer, both perform aboQt25 dB away from the unquantized demodulator. Phkit uniform quantizer
performs as good as the optiniabit quantizer only at low rates up tB = 1/4, at higher rates it performs
worse, its performance comes close to thieit (hard) demodulator. Finally, at a rate Bf= 1/2, the 1-bit
(hard) demodulator performs abduiB away from the unquantized demodulator.

In Fig. 4.6 we present our findings for thex 4 MIMO case with4QAM symbol alphabet. The results are
very similar to the2 x 2 16QAM case discussed before: For rakes 1/2 there is a performance gap between
the optimal and equiprobabfebit quantizers, which is aboutdB at R = 3/4. At R =1/2 the gap between
2 bit quantization (both optimal and equiprobable design) and the unquaxiézeddulator is abou.75 dB.

In case oB3 bit quantization, both designs perform identically, even in case of vetydaigs. Thd bit (hard)
demodulator has an SNR loss of ab8alB compared to the unquantized case at a rafe-efl /2.

4.4.2 Qutage Capacity

We next provide numerical results for the outage probability in (4.4) foh lwe2 x 2 MIMO system with
16QAM symbol alphabet and thex 4 MIMO system with 4QAM symbol alphabet. The outage probability
Pout Was obtained over(® fading realizations and for each channel realizatidin (4.3) was measured by
transmitting a block o10* symbol vectors. The quantization intervals were taken from a precom{aateadip
table and have been computed for an i.i.d. fast Rayleigh fading charinglg8 fading realizations.

Fig. 4.7(a) shows our results for tRex 2 MIMO system with 16QAM symbol alphabet for target rates
R = 0.25 and R = 0.75 (this amounts t®bpcu and6bpcu, respectively) for both the optimum and the
proposed quantizer using a bit-width&nd3 bits. At a target rate o = 0.25, and for outage probabilities
above2 - 10~! no difference between the proposed and the optimal quantizer desidres@en; below this



Chapter 4.

MIMO-BICM with Quantized LLRs

77

©

——no quant

Il -©-2-bit optimum
—% 2-bit proposed
|| -A- 2-bit uniform

- - 1-bit (hard)

~

o

ol
T

©

——no quant

l| -©- 3-bit optimum
——3-bit proposed
Il -4~ 3-bit uniform

- - 1-bit (hard)

~

(o))

(42

Max. Achievable Rate [bpcu]
N

Max. Achievable Rate [bpcu]
S

3 1 3
2 B 2
1 B 1
g -
—%.O -6 - 2 10 14 —010 -6 -
SNR [dB]
@

Figure 4.6: Numerical capacity results far x 4 MIMO system with4-QAM with (a) 2-bit quantization,

(b) 3-bit quantization (both with Gray labeling, = 8).

2
SNR [dB]

(b)

10

14

and

10 10 =
- 6 bpéu
\\ -
-1 ®] S 4
2 >10 N\
= 10 = 2 bpeu NS
8 i S
o o - \
o a 10 & & 3
) ) w0 \
=) o) oS v\
Q-2 ] W \
510 5 N R
o) ——no quant O ,n-3|| o quant W
—©— 3-bit optimum 10 "H —o-3-bit optimum ‘\‘\‘ 1
—%—3-bit proposed —%—3-bit proposed X, '
-9- 2—b?t optimum -9- 2—b?t optimum \Q A ; o ’
_s| |~ %~ 2-bit proposed _4| |~ %~ 2-bit proposed NN .
10 : 0= : : ‘ ‘ ‘
0 5 10 15 20 -4 -2 4 6 10 12 14
SNR [dB] SNR [dB]
CY (b)
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Chapter 4. MIMO-BICM with Quantized LLRs 78

probability, there is a gap between the two quantizer designs (at an outdupbjity of 10~3, this gap is about
2dB for both2 and3-bit quantization). The optimal- and3-bit quantizers respectively perform abduiB
and2 dB away from the unquantized case. At a target rat& ef 0.75, the gap between the optimal and the
proposed quantizer appears at a much higher outage probabiiitylof-*, and the gap betweeh and3-bit
guantization is much smaller.

Fig. 4.7(b) shows our results for thex 4 MIMO system with 4QAM symbol alphabet for target rates
R = 0.25 and R = 0.75 for the same quantizers as above. Here, the results are different: Homtharget
rate (corresponding t2bpcu), there is no SNR gap between 8abit optimal and the3-bit proposed quantizer
(the gap to the unquantized case is abb(tdB), whereas for very low outage probabilities, the proposed
guantizer withe-bit performans worse than the optimal quantizer \ibit. For the high target rate( = 0.75,
corresponding t@bpcu), there is no gap between the optimal quantizers véthd 3-bit, and also the- and
3-bit proposed quantizers perform the same. The optimum quantizersperéry close to the unquantized
case, but there is a gap of abdutB between the proposed quantizers and the unquantized case.

4.5 Estimation of Quantization Parameters

The proposed quantizers have been designed and optimized by meatsnsive Monte Carlo simulations.
The quantizer parameters (quantization intervals and quantizer outppen)dden the system configuration
and SNR. Storing these parameters for different system configuraimh§&NR values would require large
lookup tables at the receiver and is therefore impractical. A solution to tbidgm is to design the quantizer
on-the-fly, that is, during the data transmission and thereby without tltefoeokup tables or Monte-Carlo
simulations.

4.5.1 On-the-fly Design of Quantizer Intervals

The results of Section 4.4 for fast fading show that in caselif quantization, the equiprobable quantizer and
the optimal quantizer exhibit the same performance, whereas in cadatajuantization, this only holds true

for ratesR < 3/4. In general, the on-the-fly design of the equiprobable quantizer is magibretherefore
on-the-fly design of the equiprobable quantizer is sufficient3ttit quantization for all rates and f@-bit
quantization whem? < 3/4. The boundaries of the equiprobable quantizer can be estimated by wsing a
empirical estimate of the unconditional LLR distributiéi (£) and choosing the quantizer intervals such that
(4.6) is fulfilled. The LLR distributionF}, (£) can be obtained from the observation of a reasonable number of
non-quantized LLRs.

In case ofR > 3/4 and2-bit quantization, the optimal quantizer performs significantly better,and thus its
on-the-fly design needs to be addressed. For the design of the optiamdizgu, the conditional LLR distribu-
tions f,|.(&[b) have to be known, which strongly depend on the system parametersfdigerdepending on
the system parameters, different estimation procedures have to be flltnvehe following we demonstrate
this for the case of 2 x 2 MIMO-system with 16QAM symbol alphabet and & 4 MIMO system with 4QAM
symbol alphabet.



Chapter 4. MIMO-BICM with Quantized LLRs 79

@

06- ‘ ‘ ‘ —x—Er d= A1) —no quant D
-=Pr(d =\ = 7H-©-2-hit optimum 7
-6-Pr(d = X2 8 || £ 2-bit model
0.5 - - Pr(d = X\2)] 9, gll =2-hit proposed
N © |-~ 1-bit (hard)
]
/EOA hd 5r-
~ [N
Il Q4
30.3 g
% £3
0.2 <
P
0.1 g N=
0 ‘ ‘ 0 ‘ ‘
-5 0 5 10 15 20 0 5 10 15 20
SNR [dB] SNR [dB]

(@) (b)

Figure 4.8 2 x 2 MIMO system with16-QAM (a) Plot of P(d = \;) of the optimal quantizer versus SNR.
(b) Numerical capacity results obtained with the model (4.11).

2 x 2 MIMO-system with 16QAM symbol alphabet. Fig. 4.8(a) shows the probabilitida(d = Aj) of
the optimal quantizer output versus the SNR. It can be observed, tisetphebabilities can be modeled quite
accurately as linear functions of the SNR, that is we propose to desiguémtizer such thabr(d = \;) =
pz‘Od with

mod

PR = ak + bip. (4.11)

The parameters;, andb, can be obtained e.g. using a least-squares approach. Using this modbtaivethe
ergodic capacity of this quantizer design which is shown in Fig. 4.8(b) asutive labeled '2-bit model'. It can
be seen that this quantizer design performs as well as the numerically optizdeguantizer design (which
is shown by the curve labeled '2-bit optimium’).

4 x 4 MIMO system with 4QAM symbol alphabet. In this case the probabilitiddr(d = \x) of the optimal
guantizer versus SNR are not easy to approximate as a linear functioa,padynomial. A more successful
approach is to directly model the quantizer boundary values versus SERecond-order polynomial,

i = ¢+ dp +ep?, (4.12)

The parameters, d, ande can be obtained from a least-squares match of the optimal quantizer biesnda
(obtained by numerical optimization) for different SNR. The ergodic cpaf this quantizer design is plotted
in Fig. 4.9 as the curve labeled '2-bit model’. Again, this quantizer desigioimas as well as the optimatbit
guantizer design (which is shown by the curve labeled '2-bit optimium’).

4.5.2 Estimation of Quantization Levels

The quantization levels; are calculated according to (cf. (4.8))

Pr{c = Hd = /\k} . log@

2. =lo = )
k & Pr{c = 0’d = /\k} Pok
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Figure 4.9 4 x 4 MIMO system with4-QAM: Performance of quantizer obtained with the model (4.12).

This requires the transition probabilities of the equivalent discrete chand¢hus in turn the LLR distributions
faje(§le), which in general are unknown. Again, the quantization lexglsould be precalculated and stored in
a lookup table, but this solution appears infeasible in practice, as the cataontilevels depend on the system
configuration and on the SNR. We thus address on-the-fly estimation aiéimization levels. Determining the
quantization levels\; by estimatingfy.(¢|c) is more difficult since the code bits are unknown at the receiver.
Hence, we propose a method for estimating xfydrom observations of the un-quantized LLR<y use of a
parametric model. We demonstrate this method for the caseof @ MIMO-system with 16QAM symbol
alphabet and 4 x 4 MIMO system with 4QAM symbol alphabet. We note that other system parasnetzy
require a different model.

2 x 2 MIMO-system with 16QAM symbol alphabet. In this case we use the following asymmetric-sided
exponential model for the LLR distributionf§.({|c),

25 exp(ad)  £<0,
2B exp(—B8) >0,

To estimate the two parameters> 0 and/3 > 0, we choose two bing; andZ, and use the non-quantized
LLRs A to obtain empirical estimate, i = 1, 2, of the probabilities

faje(€le=1) = (4.13)

Pia) = Pr{h €T} = [ fa)de,

with fA(€) = [fae(€le=0) + fa.(&lc=1)] /2. The system of equation(a, 3) = P; can then be solved
numerically to obtain estimates of and 3. The transition probabilities of the equivalent channel and the
quantization levels are then computed based on (4.13) using the estimataaa®.

4 x 4 MIMO system with 4QAM symbol alphabet. In this case, a simple Gaussian parametric model for
the LLR distributionsf, .({|c) is used,

exp (= —5[A — uf?), (4.12)

fA|c(€‘C:1) = 442

1
\Aru?
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Figure 4.10 BER performance for a rate-1/2 LDPC coded SISO-BICM system witBBBRmodulation and
different LLR quantization word-lengths.

with 02 = 2u%. The parametey can be obtained similar as before: We choose oneZbamd obtain the
empirical estimate” from the non-quantized LLR&. We then need to numerically solve

P(i) = Pr{A € T} = /I fa6) de

to obtain the parameter. The transition probabilities of the equivalent channel and the quantizatiels are
then computed based on (4.14) using the estimate of

4.6 Numerical BER Results

We finally provide BER simulations to verify the foregoing capacity resultsani@monstrate the applicability
of the proposed on-the-fly quantizer designs. For the simulations, wieaufset fading Rayleigh channel and
the channel code was a regular LDPC codéh block length64000.

46.1 SISO-BICM

We first consider the SISO-BICM system of Section 4.3.1. Fig. 4.10@yshhe BER results for a SISO-
BICM system with an LDPC of code rate = 1/2 for proposed equiprobable LLR quantizers with different
word-lengths together with the theoretical SNR thresholds (obtained figrd B). At this rate, the optimal and
proposed quantizers are effectively the same, so only the latter is shavaneference we also show the SNR
thresholds (obtained from Fig. 4.3 and the BER achieved with the unquéwtizeodulator. All BER curves
are reasonably close to the respective SNR thresholds. The gagstp®-bit, and3-bit LLR quantization to
the non-quantized case respectively equatiB, 1.1 dB, and0.4 dB.

Fig. 4.10(b) shows the BER of the same system but with an LDPC of cod®& ka8 4 for the proposed and
optimal quantizer design with different word-lengths. At this rate, therepisreormance difference between
optimal and proposed quantizer (compare with Fig. 4.3): WBithit quantization, the SNR gap between the

2The LDPC code was designed using the EPFL web-tobt &fp: / / | t hcwww. epf | . ch/ resear ch/ | dpcopt
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Figure 4.1 BER performance for a rate-1/2 LDPC codzd 2 MIMO system with Gray-labeled 16-QAM
and different LLR quantization word-lengths.

optimal and proposed quantizer is aboutdB, this gap increases 8odB of 2-bit quantization. In general, the
BER curves are quite close to the respective SNR thresholds, the omgtexcis that the SNR threshold of

the 3-bit proposed quantizer is below the threshold of2Hat optimal quantizer, whereas the BER curves are
reversed.

4.6.2 MIMO-BICM

2x2 MIMO case with 16QAM modulation.  Fig. 4.11 shows two (strongly overlapping) sets of BER curves
for different LLR quantization word-lengths. One set of curves (ldbéproposed’) pertains to an offline
design of the proposed LLR quantizer, whereas the other set (lalmletie-fly’) estimates the quantization
parameters on-the-fly according to Section 4.5. The BjrendZ, were chosen heuristically. As reference the
BER obtained with no quantization is also shown. Interestingly, there is afgap @B to the3-bit quantized
case which is not expected from the ergodic capacity curves in Fig.)4.5{®e gap to the theoretical SNR
thresholds (obtained from Fig. 4.5 and indicated by vertical lines) equadiB for 3-bit and2-bit quantization
and1dB for 1-bit quantization (hard demodulation). Furthermore, the proposed eftytlestimator for the
LLR quantizer parameters performs extremely well in this setup (virtually indisiéimable from the offline
design). In case of—bit quantization, the gap to the corresponding SNR limit is quite large. This isahe ¢
since an LDPC code optimized for an AWGN channel was used whereastinsd BICM modulation channel
becomes a BSC.

To illustrate the importance of the correct choice of the LLR quantization lef#ds 4.12 shows BER
versus quantizer outpl, = —\; for the same MIMO system as before with 1-bit LLR quantization at an
SNR of12.8 dB. Here, the optimal quantizer levef = 2.26 (indicated in Fig. 4.12 by a dashed vertical line)
achieves a BER of.5 - 107%. It is seen that the BER achieved by the belief propagation decoder is quite
sensitive to the choice of the quantizer lexel! If the quantizer level is\s < 1.5 orif Ay > 4.3, the BER of
the overall system has deteriorated to atd@ut! (i.e., by more than 2 orders of magnitude).
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Figure 4.13 BER performance for a rate-1/2 convolutional coded 2 MIMO system with Gray-labeled
16-QAM and different LLR quantization word-lengths.

Convolutional Codes. Fig. 4.13 shows the santex 2 MIMO system with16QAM modulation employing
a ratel/ convolutional code. In this setup, the used channel decoder is a BigdRttan [8] delivering
information bit LLRs. The code polynomial in octal notationi8, 15], and the block length was chosen to
be 1024. It can be observed that there is a large gap to the theoretical SNR limits (@ndbeof several dB
at a BER ofl0~*) and that the BER does not exhibit a threshold behavour as in the LD aase; instead
the BER curves exhibit a slope of abdut The 3-bit case exhibits a slight performance loss of abdauB
compared to the unquantized case. The gap betweenliteand the3-bit quantized case is abolits dB as is
to be expected from the corresponding SNR limits. TH#t (hard) quantized case performs much worse.
We also show a plot of BER versus quantizer output= —X; with 1-bit LLR quantization at an SNR
of 20dB in Fig. 4.14. For values, < 1, the overall performance is about one order of magnitude worse
than with the optimal quantizer output value ©f = 2.26. On the other hand, for quantizer output values
A2 > A5 = 2.26 no performance loss (as in the case of LDPC codes) is observed. @luates that in case of
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convolutional codeXx 2 MIMO, 16-QAM, Gray labeling).

10°

—no quant.

-6~ 2-bit optimum
2-bit on—the—fly
optimum

== 2-bit proposed

=]
{¥o}
N
i 10° L
@ g
107 2 4
o
Kﬁ" H
-5 = =
o B E D :
- -
10_6 I I I I I
5 55 6 6.5 7 7.5 8

Figure 4.15 BER performance for a rate-3/4 LDPC coded 4 MIMO system with Gray labeled 4-QAM and
different2-bit quantizer designs.

convolutionally coded systems, the on-the-fly estimation of the quantizertasitpot important as long as it is
large enough. Choosing an SNR independent value ef 10 should be sufficient for all relevant cases.

4x4 MIMO system with 4QAM modulation.  Fig. 4.15 shows results for this system witRAM modulation
and?2 bit quantization. As can be seen in Fig. 4.6, at a rat&of 1/2 almost no performance difference
between the proposed and the optimal quantizer exists, therefore wetbleasite? =3 /4. We show the BER
of the system with three different quantizers: (i) the optimal quantizer, @iptbposed equiprobable quantizer,
and (iii) the on-the-fly design of the optimal quantizer (denoted by '2-bithenfly optimum’). As a reference
we also plot the respective SNR thresholds. The proposed on-thesityrdof the optimal quantizer performs as
good as the quantizer design using precomputed lookup tables. The PRafaween the proposed quantizer
and the optimal quantizer and between the unquantized demodulator andinmemguantizer are both about
0.5 dB; this results is consistent with the observations in Fig. 4.6.
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Figure 4.16 16QAM constellation with Gray labeling; set; and.A? are shown for illustration.

4.7 Low-Complexity Quantized Soft-MMSE Demodulator

4.7.1 Introduction

In [68], an efficient approach to compute LLRs by means of an MMSE fileex presented. The received vector
is multiplied with an MMSE filterW, yielding

*vmse = W(HPH) 'Hy |

with the MMSE filter matrixW = [I+ o2(H”H)~!] . The LLRsA? corresponding to the bif are then
obtained by means ofger-layermax-log LLR calculation according to

1
A? = = | min |#;—2z|?> — min |2, —2z|?]. 4,15
k UzmeAg‘k | ({!k \ (4.15)
Here, i) = (?W)S;@Eik’ ol = lz‘(,vv;’:’z’“ and.A{ denotes the set of symbalg for which ¢} = b.

4.7.2 Efficient Calculation of Quantized LLRs

We next modify the MMSE detector in such a way that it directly delivers pedh LLRs. In Fig. 4.16 a
16QAM symbol alphabet with Gray mapping is shown together with two exempksA} and.A?. It can be
seen that each symbe}, can be expressed as the sum of independently modulated real and imauzirtar
Furthermore, it can be observed that the first two bits of the bit Iabeliéthbandcz) determine the real part of
the symbolz;, whereas the last two (thatd:% andci) determine the imaginary part. Reversing the argument,
the LLRsA} andA? depend on the real part 6, only, whereas the other two LLRS; andA} depend only
on the imaginary part af.

In [69] it was shown that the LLR4{ calculated by the soft-MMSE demodulator of (4.15) are piecewise
linear functions of either the real or imaginary partigfand closed-form expressions were given. In the special
case ofl6QAM modulation and Gray mapping as in Fig. 4.16 we hAye= Uiza(éR(ik)), A7 = Ui%ﬁ(%(fck)),
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Figure 4.17 LLR functions for each of the 4 bits of a 16-QAM symbol in a SISO-BICjtem.

A3 = La(S(8g)), andAf = Jiiﬂ(%(ik)). The functionsy(z) and3(x) are defined as

Ok
4z, x| <2
a(zr) = —84+8x, x>2
8+ 8z, <=2,
8+4x, =<0
Blz) = (4.16)
8—4dx, x>0,
and shown in Fig. 4.17. We note that-) is odd symmetric, wherea-) is even symmetric. Using (4.16), the
maximization in (4.15) can be avoided, and the LL/§scan be directly calculated frot), via simple additions
and multiplications. Furthermore, calculating continuous-valued LLRs whielg@antized afterwards can be
avoided; instead the quantized LLRs can be directly obtained by quaniizinghis will be explained in the
following.

We consider ar-bit quantizer characterized by = 2% binsZ,,, = [im—1,%m], m =1,..., M. We use
the conventioriy = —oo, i)y = oo and assume symmetric bins (this is motivated by the symmetry of the LLR
distributions), with boundaries,, sorted in ascending order. The quantiz¥r) maps the continuous-valued
LLR A{ to discrete LLRs/] according to

Al = Q(AY) =\, if Al €T,

where, \,, € Z,, denotes thenth quantization level. Using (4.16), we can express the intef®alglso in
terms of the real or imaginary part 6f. In the following we restrict ourselves to obtaining the two LLRs
andA% from R(zy); the imaginary part follows analogously. In this case, the quantizer become

A = QU(R(&x)) = A if R(iy) € I,

with the transformed intervaly, = [i! _,,i%]. Note that the quantizer intervaf, depends on the bit po-

m—1?

sition ¢g. Using (4.16) and Fig. 4.17 we can transform an interval boundarfrom the intervalZ,,, into the
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Figure 4.18 Ergodic capacity of & x 2 MIMO-BICM system with Gray-labeled6-QAM using a max-log
demodulator and soft-MMSE demodulators for different LLR quantizatiorowengths.

corresponding boundary

=1 —1y; ; .
b = (i) = (=8 4, >8

e
m =S g, < —8

and
im—8 .
_ m iy > 0
) 1/ 4 > m Z
Zm:ﬁ (Zm): 8—; ) )
—sz’ im < 0

respectively. Note that due to the even symmetrg@f), the intervalZ,,, = [is,—1, i) becomes the union of
two intervalsZ,,, = [~im—1, —im] U [im—1,%m).

Complexity. The complexity of the proposed soft-MMSE demodulator calculating quantizBg is given
by calculation of the MMSE filter matri®W = [I + o2(H#H)~!] " (which has to be calculated anew for
every channel realization) and the matrix-vector multiplicatigiyse = W (H”H)~'Hy. The quantization
intervalsZ,, = [i,—1, im] can be calculated offline (and stored in a lookup table) or designed ey thewas
presented in Section 4.5. Quantizing the real and imaginary pakig@de yields the corresponding quantized
LLRs, which can be implemented with minimal complexity.

4.7.3 Ergodic Capacity

We next provide numerical results for the ergodic capacity of a MIMGMIsystem with soft-MMSE demod-
ulators and the optimal quantizer. We consider the equivalent discretaahaith binary inputc € {0,1}

and M-ary outputd € {\y,..., Ay}, and calculate the mutual information according to (4.3). In general the
conditional densitieg, .(£|b) are unknown, so they have to be estimated by means of Monte Carlo simulations.
Based on these estimates, the maximizatioh(efd) is then performed numerically.
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Figure 4.19 Impact of interval boundary on ergodic capacity @ MIMO-BICM system with Gray-labeled
16-QAM at an SNR ofl0 dB for 2-bit and3-level quantization.

Uncorrelated MIMO-channel. Numerical results for the rate in bits per channel use (bpcu) versus SNR
achievable with the quantized MMSE demodulator of different word-lenggttslaown in Fig. 4.18 for @ x 2
uncorrelated MIMO system (that i€}, = I) with 16QAM Gray-mapped modulation. As a reference, we
show the capacity of non-quantized max-log demodulation (labeled 'maxdowd.’) from (4.1), and the
non-quantized soft-MMSE demodulator (labeled 'soft-MMSE demod.’$. sfated in [20], the gap between
max-log demodulation and soft-MMSE demodulation is very smalKox 0.5, the soft-MMSE demodulator
even outperforms the max-log demodulator for small rates. The gapbibf2-bit, and3-level quantization

to the non-quantized MMSE demodulator eq0a&dB, 0.75dB, 1.5dB, respectively, at a rate d? = 1/2.
Finally, the SNR loss with a hard-MMSE demodulator (which can be interpestédbit quantization) is about
3.5dB, again at a rate ak = 1/2. This shows that increasing the number of quantization levels fréon3
yields an SNR gain o2 dB in this case.

In Fig. 4.19 we show the impact of the interval boundary on the ergodiaciigpof the soft-out MMSE
demodulator quantized with levels and2 bits, respectively. The system is the same considered before at an
SNR of10dB. In both cases, one interval boundary is sufficient to index all tigens in these cases. In case of
guantization witl2 bits, the ergodic capacity changes only weakly with the interval bountiacase of either
very large or very small boundary values, the ergodic capacity appesahe capacity df-bit quantization.

The ergodic capacity for th&level quantization depends much stronger on the interval boundattye limit

of small boundary values, the center inter¥al= [i1, i2] vanishes, and the ergodic capacity approaches the
1-bit case. In case of large interval boundaries, almost all LLRs falltiiéamiddle interval and therefore the
capacity quickly deteriorates.

Comparison with quantized max-log demodulator. Using results from the previous section and [20], we
can compare the required SNR of quantized max-log demodulators antizgdasoft-MMSE demodulators.
At a rate of R =6 bpcu there is an SNR gap of abduiB between the unquantized max-log demodulator and
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Figure 4.2Q Ergodic capacity of & x 2 MIMO-BICM system with correlated channel and a Gray-labeléd
QAM symbol alphabet. Max-log demodulator and soft-MMSE demodulatongaifferent LLR quantization
word-lengths are shown.

the unquantized soft-MMSE demodulator. The max-log demodulator3dgbel quantization performs almost
the same as the unquantized soft-MMSE demodulator, and the MMSE demoditht8-level quantization
requires the same SNR as théit (hard) max-log demodulator. At a rate Bi=4 bpcu the SNR gap between
the unquantized max-log demodulator and the unquantized soft- MMSE dé&atards abou®.2 dB, and the3-

level quantized max-log demodulator performs only atio8itiB better than th8-level quantized soft- MMSE
demodulator. For rate® = 4bpcu, there is only a very small gap in performance between the max-log
demodulator and the soft-MMSE demodulator, with the latter being of significkmtlsr complexity. This gap
between soft-MMSE demodulator and max-log demodulator increases farhigtes.

Correlated MIMO-channel.  Fig. 4.20 shows similar results for the case of a channel with spatial cioorela
We used a Kronecker model [34] for the correlation matrix of the chaneelC;, = S!/2 ® R!/2, with the
transmit and receive correlation matrices respectively chosen as

1 .
S=R= 07 .
0.7 1

It is seen that all rates are lower than in the uncorrelated case, otheéhisesults are quite similaB-bit
guantization is sufficient for all rates, whereadit quantization leads to an SNR loss of aboutdB, and
guantization with3 levels incurs an SNR loss of about; dB, at a rate ofR = 4 bpcu, respectively. The
hard-MMSE demodulator incurs an SNR loss4afB, which is slightly higher than in the uncorrelated case.
Comparing these results with results for the unquantized case shown in Rif.redeals that correlation
decreases ergodic capacity significantly: At a rat&ef4 bpcu the SNR loss due to correlation is abodB.
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Figure 4.21 BER versus SNR of 2 x 2 MIMO-BICM system with Gray-labeled6-QAM using soft-MMSE
demodulators with different quantization bit-width.

4.7.4 Numerical BER Results

To verify the capacity results, we performed BER simulations for the ualated MIMO-BICM system in
ergodic Rayleigh fast fading. The channel code was a regular LOf€ evith rate 1/2 and block length
64000. Fig. 4.21 shows the BER for the various considered demodulators arf@NRethresholds obtained
from Fig. 4.18 forR = 4 bpcu. All BER curves are reasonably close to the respective SNRhtlidss The
gaps of 2-bit, 3-level, and 1-bit LLR quantization to the non-quantized EMM&modulator respectively equal
0.8dB, 1.4dB, and 3.6dB. Finally, the gap between the unquantized MM8Bdidator and the max-log
demodulator of (4.1) is about 0.2 dB.

3The LDPC code was designed using the EPFL web-tobt atp: / / | t hcwww. epfl . ch/ r esear ch/ | dpcopt .



MIMO-BICM with imperfect CSI

HE receivers considered in the previous chapters either jointly estimatddnae and detect the data

(Chapter 3) or assumed perfect CSI at the receiver (Chapter 4¢eivRes performing joint channel
estimation and data detection exhibit very good performance (almost asagoedeivers with perfect CSI) at
the cost of increased complexity. One approach to reduce complexity i teecsivers which estimate the
channel by means of pilot symbols inserted at the transmitter but do noteutegr initial channel estimate.
Demodulators for systems using pilot-based channel estimation are ususadjpel assuming perfect channel
state information (CSI) and therefore such conventional designs yi&idgood results if this assumption is
well fulfilled. Due to limited power budgets at the transmitters, the power availabtle transmission of pilot
symbols is limited, and this will result in imperfect CSI at the receiver. Theltieg difference between the
true and the estimated channel causes conventional demodulator dedignsiematched, which results in
performance degradation. In this chapter we investigate the effects offeap€SI on conventional receivers.
We also propose optimal receiver designs, which take the uncertaintg ohtinnel estimate into account and
thereby provide better performance.

91
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Figure 5.1 Block diagram of a MIMO-BICM receiver with channel estimation. Addisbparts required for
an iterative receiver structure are shown in gray.

5.1 Background and State of the Art

Soft-out demodulators provide the channel decoder not only with biside¢ but also with reliability infor-
mation regarding this bit decision. Usually, this reliability information is conveygdneans of LLRs (see
Subsection 2.1.3). To reduce the complexity of the demodulator, in [68td/BdEE demodulator has been
proposed, and [20] demonstrated that performance of this soft-MM®todulator is very close to thaptimal
demodulator for most applications. BICM systems with iterative decodingNBIQ) have been observed to
yield excellent performance (see Subsection 2.1.3 or [11]) and BIQMah be employed in MIMO systems
as well. The convergence properties of BICM-ID receivers has bealied in [70,71] using EXIT charts [24].
BICM-ID systems that utilize LDPC codes [41] have been shown to be aloledrate close to capacity limits.
In addition, the EXIT charts of LDPC codes can be optimized by appropriatjusting their variable and
check node degree distributions. Demodulation in MIMO system with impe@&tthas been first adressed
in [72]. Taking into account the statistics of the channel estimate, an optimrsibmeof the max-log demod-
ulator has been proposed in [23]. Its performance in the context ofiuelsadecoded MIMO-BICM was
investigated in [73] by means of EXIT charts. In a similar spirit, a modified d&SE demodulator using CSI
statistics has been presented [22]; its optimal performance was verifieois ¢é bit error rate (BER) using
an off-the-shelf LDPC code.

The chapter is organized as follows: In Section 5.2 we present the systel@l, and in Section 5.3 the
mismatched and optimal receivers are derived. We also provide atitamighthe receiver algorithms by means
of the factor graph framework in Section 5.4. Finally, Section 5.5 illustrateswmerical results.

5.2 System Model

We consider a MIMO-BICM system with/t transmit antennas andg receive antennas; the system model is
shown in Fig. 2.2 and has been described in Section 2.1.3. Assuming blofadfteg, the lengthd/r receive
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vector at symbol time: is given by (for notational convenience, we omit the time indgx
y=Hx+w. (5.1)

Here, H denotes theél/g x Mt MIMO channel matrix,w ~ CN(0,021) denotes i.i.d. complex Gaussian
noise. By stacking the columns of the channel makfiinto a vectorh = vec{H} and definingt = x* @1,
(5.1) can be rewritten as

y=Xh+w, n=1,...,N. (5.2)

The channel vectda is assumed zero-mean complex Gaussian with covariance miafrik ~ CN (0, Cy,).

For channel estimation, a lengf¥; pilot sequence with corresponding, Mg x MtMg matrix fp =
(XT1]--- XTINy)T is transmitted during a training phase. Each training synitigh] is assumed to be
orthogonale [n]X,[n] = PI; the total training power is denoted & = N, P. The received pilot sequence
vectory,[n] = (v, ¥, ,)" (associated with the channel matrix at timghas lengthV,, Mg and is given
by (cf. (5.2))

Fpln] = Fyhln] + wlnl, (5.3)

with the stacked noise vectét[n] = (w] ---wk )7T.
1 Ny

5.3 MIMO-BICM-ID Receivers with Imperfect CSI

The (possibly iterative) receiver structure employed is shown in FigltGslvery similar to the BICM receiver
shown in Fig. 2.2 and the BICM-ID receiver in Fig. 2.3. Basically, the iregeconsists of three blocks: a
channel estimator, a demodulator and a channel decoder. Initially, thealrestimator provides an estimate
h of the channel based on the known pilot symbols.

The channel decoder is connected to the demodulator by means of areiveerla case of perfect CSl the
optimal demodulator calculates LLRs according to

Aj[n] = log (5.4)

(cf. (2.3)). Using the MIMO-BICM system model (5.1), this expressiendmes
ZXEX} exp { - %Hy - HXH2}

erx? GXp{ - é”y - HXH2}

In case of BICM-ID, the demodulator delivers LLRs according to

Yxext P { — = [ly — Hx|[2} T2 exp(a(x)A7)
> xexy @b { = S lly — Hx|[2} T2 exp(ei(x) A7)

(cf. (2.10)), where\} denotes tha priori information provided to the demodulator by the channel decoder.

Ay[n] =log

(5.5)

AP[n] = log ; (5.6)
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5.3.1 Channel Estimation

The channel matri¥] is estimated by means of the received pilot sequgncdhe general linear estimator is
given by
h= Ay, = A(X,h + w). (5.7)

The channel estimation matri is anMt Mg x N, Mg full-rank matrix.

Least-Squares (LS) Estimator. The LS channel estimator [5H.s is obtained by settings = X7, and
yields
}AILS:.)EZ#yp:h—I—e.

Assuming orthogonal training sequences, the elements of the error eeaterdistributed according t® ~

CN(0,02), with variances? = 135}3

Minimum Mean Square Error (MMSE) Estimator. The MMSE estimator [51][1MMSE is obtained by
choosing the estimator matrix according to

1 -
A= 5 3AT
’LU

with the matrix® = (C, ' + ]\;”QPI)A.
The posterior density (h|h) can be obtained from

(h\h)f( )
f(h)

with f(h) = [ f(h|h)f(h)dh. From (5.7) followsh/h ~ CN(AS,h,c2AA*), and using the channel
model of Section 5.2, the orthogonality of the training sequeSgemd the fact thatA has full rank,f(hyﬁ)

f(h|h) =

Y

is complex Gaussian
h|h ~ CN (humse, 2). (5.8)

Note that this density is independent of the actual linear estimator used,gpaddhe estimator matriA is
full rank.

5.3.2 Genie and Mismatched Demodulator

We fist consider a genie demodulator which is in possession of perféc@8e max-log demodulation tends
to be computationally expensive, [68] proposed a soft demodulatod lmes@inear) MMSE equalization and
per-layermax-log LLR calculation. The MMSE equalizer output is given by

*MMSE — ¢ ey [H (E{yy"H}) 'y = Wy (5.9)
with the Wiener filter
W — 1 (HHY 1 Zoy) (5.10)
- ( * . ) ‘ '
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Assuming that the residual interference at the equalizer output is Gaugsapproximate LLR for théh bit
in layer! is subsequently computed according to

1 s A
—5 | min |ZMMSE _ a2 — min [#MMSE — 22
zeAl

MMSE __
Al,i - 0
Ul mEA,L-

Herep;, = [WH];,, Uz2 =y — M?, andAf denotes the set of transmit symbols whose bit label at position
1 equalsh. Thegenie MMSEdemodulator just described assumes perfect CSI. Practical implementagi®ns
a mismatched MMSHEemodulator in which the true chanridlin (5.10) is replaced with a channel estimate
H. We note that the performance of mismatched max-log and MMSE demodulapendtecritically on the
actual channel estimate.

In case of the BICM demodulator (5.5) we obtain the mismatched BICM demodutatase of the BICM-
ID demodulator (5.6) we obtain the mismatched BICM-ID demodulator.

5.3.3 Optimal Demodulators

The mismatched demodulators do not exploit the statistical information &boomveyed by the channel es-
timateh according to (5.8). Rather than replaciEjwith H in the final results (5.5), (5.6) and (5.10), this
replacement should be made right in the beginning, i.e., the conditioning ingb#}5.9) should be with
respect tdH instead offL.

Optimal max-log demodulators. Using the relation

£y ) = [y, D) £ (R aH.
and the Gaussianity of the densities involved, we obtain
y|&, H ~ CN (Hwmsex, XY2X 7 +021) (5.11)

with Hywse = unved Hywse} (see Section 5.3.1). This distribution is again independent of the the actual
channel estimator used and leads todptmal BICMmax-log demodulator, and tteptimal BICM-IDmax-log
demodulator, both of which repla%é\ly — Hsl|? in (5.5) and (5.6), respectively, with the metric

(y—ﬁMMSEs)H(Es—i—afuI)*l(y—ﬁMMgEs) — log det (Zs—i—agjl) )

Here,Xs = (s ® I)X(s ® I). This differs from the mismatched max-log demodulator in that the appropriate
covariance matrix;s+o2 1 is used instead df/o2 and in that there is the additional log-det term that depends
on the symbols.

Optimal soft-MMSE demodulator. In a similar spirit, [22] proposed aoptimal soft MMSEdemodulator
given by

~ =~ Sy 1 s

sYMSE — e{xy"|H} (E{yy"H}) 'y = Wy. (5.12)
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Using (5.1) and (5.8), it is straightforward to show that the modified Wietter W equals

—~ A ~ ~ ~ g2 \-1
W = H{lyse (HMMSEHﬁMSE +3+ fwl) :
S
The matrixX equals the sum ollr x Mg diagonal blocks o, i.e., > = le‘fl X with 35, = (elT ®
I)X(e; ® I) (here,e; is thelth unit vector of length\/7). It is seen that the mismatched and optimal Wiener
filter differ by 3 which accounts for the additional “noise” caused by the channel estimatiors. Thelth
element ofkMMSE equals

HMSE — i 12,

whereji; = [WIA{MMSE]“ andz; captures the residual interference whose power ediatsi; —ji?. Assuming
that the interference is Gaussian, theptimal MMSEdemodulator computes the per-layer LLRs

1 .
—5 | min |1:EV'MSE —
Ul QEE.A?

fyz|? — min [EMMSE _ 52|
zeA}

(3

YMMSE _
A=

5.4 Factor Graph Interpretation of BICM Receivers

We can also derive the optimal max-log demodulators by means of the faafr ffemework.

5.4.1 Derivation of Factor Graph

Our treatment builds on Section 2.6. We consider a MAP detector fot'thénformation bit,

bln'] = b[n/
[n] arg max 1}p( [n'lly)

wherey denotes the sequence of received data symbols (cf. (5.2)) and @ieekpilot symbol sequences
(cf. (5.3)). We consider the factorization (2.40),

p]ly) < Y p(y|X)p(Xle)p(cb). (5.13)
~b[n']

We can further develop the conditional dengity |X) as

p(y|X) = / p(y|H., X)p(H)dH,

whereH = (H[1] - - - H[N]) denotes the sequence of channel matricespéHd denotes the prior density of
the channellf = vec{H} ~ CN/(0, C;)). Assuming statistical independence, we have

N
p(y|H,X) o [T p(y[nl|X[n], hin]) ([0l b)) -
n=1
From the system model (5.2) we hayén]|X[n],h[n] ~ CN(X[n]h[n],c2I) and from (5.3) we obtain
Vo[n]|h[n] ~ CN(X,h[n], 02T). A segment of the factor graph representing the density in (5.13) is shown
in Fig. 5.2.
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Figure 5.2 Factor graph representation of a BICM system with pilot based chastiglation.

5.4.2 Sum-Product Algorithm and Messages

In the following, we will omit the time index. for notational convenience. The messagé¢h) from thea
priori function block is Gaussian and is given by (cf. [5])

ph, (h) = CN(h,0,Cy),

and similarly we obtain for the message from the pilot blocks,
_ 1 Sy. o2
pg(h) = CN<ha ﬁxp Yp; NpPI> .
The messaggy, (h) is then given by the product of the two messaggs(h) andy;(h[k]). It is Gaussian [5]
and is given by .
pn(h) =CN'(h, 53Xy 3).

Ow

This is exactely the densigp(hyfl) of (5.8). Using the rules for message updates in the factor graph, vee hav
py() = [ F(51€.10) 0, () d = CAV(y, s, X C "+ 021),

which equals the density (5.11) derived for the modified demodulator. Newnssageg.(c;[k]) can be
calculated according to (2.45) and (2.46) for the non-iterative and tteiviereceiver, respectively. By calcu-
lating messages from the function nofiey[k]| X [k], h[k]) to the variable node representing the channel, the
channel estimate can be updated using information from other symbols by wicére message, (¢ [k]) as
was done in Chapter 3. This leads to receivers with excellent perfoeraridigher complexity and will not
be considered here.
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Figure 5.3 Demodulator comparison for (2)x 2 and (b)2 x 4 uncorrelated MIMO channel.

5.5 Numerical Results

In this section we present numerical results comparing the mismatched amtithel@lemodulators. We first
present results for BICM demodulators and then for BICM-ID.

5.5.1 Numerical Results for the BICM Demodulator

We consider an equivalent “modulation” channel (see Fig. 2.2) that usespthe space-time modulation,
the actual fading channel, and the soft demodulator. The input of thisadgpt channel is given by the
interleaved code bits and its output is constituted by the (approximate) LldrRgrigally denoted\ (these
LLRs are provided by the genie/mismatched/optimal max-log or MMSE demodulsiteradopt the approach
from [20] which proposed to use the mutual informati8rof the equivalent modulation channel asade-
independenperformance measure for MIMO soft demodulators. This mutual informatarbe interpreted as
maximum rate that can be achieved with a given demodulator (in the sensendhglesymptotically error-free
communication). A mathematically precise justification of this interpretation wastiggeovided in [74].

For our setup, it can be shown that (recall tkagt= B Mq)

1BMT 1 . Qf([\) .
R=Ry-53. S Apldy) Togy —22)_ 4R, 5.14
0 2k:1dk:0/f( kldy) ngf(/\ldk) k (5.14)

wheref(A) = § 34 _o f(Ax|dy). Analytical expressions for the conditional distributiofs\x|d),) required
for calculating the maximum achievable rate are unknown but for rarespases. Hence, these distributions
(and the capacityr) are generally determined numerically via Monte-Carlo simulations.

Capacity Results

Capacity for uncorrelated channel. Fig. 5.3 shows the capacity versus SNR for an i.i.d. MIMO channel,
i.e.,Cy = I. For both the2 x 2 and2 x 4 system it is seen that both max-log and MMSE demodulation with



Chapter 5. MIMO-BICM with Imperfect CSI 99

e}

~
T

(o)
T

()]
T

w
T

- - -max-log, perfect CSI
- - soft-MMSE, perfect CSI
—+—improved max-log I
-A-mismatched max-log
-©-improved soft-MMSE
—>mismatched soft-MMSE

25 30 35

Max. Achievable Rate [bpcu]
{\‘J »

[y
DT

EL) lb 1‘5 20
SNR [dB]

Figure 5.4 Demodulator comparison f@ x 2 correlated MIMO channel.

imperfect CSI result in significant capacity losses compared to genie rgeaalb soft MMSE demodulation:
at a rate ofR = 4 bpcu, the SNR gap between the demodulators with perfect CSI and the dietoos! with
imperfect CSl equal6 dB (with max-log) and dB (with soft MMSE). However, optimal max-log and MMSE
demodulation perform noticeably better than their mismatched counterpaetsifiSly, for the2 x 2 system
shown in Fig. 5.3(a) the SNR gain of the optimal soft MMSE demodulator ovamaiched MMSE ranges
from1dB atR=2bpcu to aboul.5dB atR=6 bpcu. The SNR gain of the optimal max-log demodulator over
mismatched max-log is abouidB for rates betwee® =2 and R =6 bpcu. For rates below < 4 bpcu soft
MMSE demodulation performs identically to or even better than max-log demoduylatibigh rates, however,
max-log is superior to MMSE demodulation.

Fig. 5.3(b) shows the results for ti2ex 4 system. Compared to thex 2 case, all capacity curves are
shifted to lower SNRs (by aboutdB at R = 4 bpcu), despite the larger number of channel coefficients that
have to be estimate® complex coefficients instead dj. Apparently the larger number of receive antennas
allows better spatial separation of the two data streams and outweighs theiffiout dhannel estimation.
Max-log and MMSE demodulation (mismatched and optimal) perform almost idéyiicshis scenario, with
MMSE having a slight advantage a rates below 4 bpcu. The SNR gain opthmead demodulators over their
mismatched counterparts is about 1.5 dB at medium rates.

Capacity for correlated channel. We next consider the x 2 system with a correlated MIMO channel that
obeys the Kronecker model [34], i.€; = T/2 @ RY/2. The transmit and receive correlation matrices were

1
(P 1)

with p=0.7. Fig. 5.4 shows the capacity of the various demodulators versus SNRS@ct#mario. Compared
to the uncorrelated case, all curves are shifted to the right by alaiit Furthermore, max-log now outper-
forms soft MMSE for all rates above 0.5 bpcu:fat 4 bpcu, the gap between optimal max-log and optimal soft
MMSE is aboutl.5 dB, and in case of the mismatched demodulators the gap is cl@siBta~urthermore, op-

chosen as
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Figure 5.5 Required SNR for a target rate & = 4 bpcu versus pilot poweE, of mismatched soft-MMSE
and optimal soft-MMSE demodulator withx 2 uncorrelated MIMO channel.

timal max-log and optimal soft MMSE gaihdB and1.5 dB, respectively, over their mismatched counterparts.
Apparently, the MMSE equalizer (5.12) performs worse in case of lewec channels.

Impact of Pilot Power

We next investigate the impact of the pilot powey on the performance of the mismatched and improved
soft-MMSE demodulators. To this end we plot the required SNR to achievget tate ofR = 4 bpcu versus

the pilot powerE), in Fig. 5.5 for an uncorrelatezix 2 MIMO system. As a reference we also plot the required
SNR for the same target rate in case of a demodulator having perfectvBiBh(is of course independent of the
pilot power). It can be observed that for very low pilot power, the lgajwveen the mismatched and the optimal
soft-MMSE demodulator can be up faB. In these scenarios the SNR gap to demodulators with perfect CSI
is more thar20 dB. For larger pilot powers, the gap between mismatched and optimal denaydulacreases,

as does the gap to the demodulator with perfect CSI.

Allocation of Pilot/Data Power

We next fix thetotal transmit powetEo = E, + E, and study how the allocation of power to pilots (i.E),)
and data symbols (i.eE,) impacts capacity. We reconsider the2 system with uncorrelated MIMO channel.
Fig. 5.6 shows the results obtained with mismatched (part (a)) and optima(lfjjesoft MMSE demodulation
for total power budgets af; = 8 (dash-dotted line)Ei, = 15 (solid), Fiot = 25 (dashed), and for the three
noise levelss? = 0.08 (black ‘+’), 02, = 0.5 (red ‘x’), and o2, = 2 (blue ‘o). It is seen that the power
allocation has a strong impact on capacity: The capacity is very small forilotppwer (due to poor channel
estimates) and for high pilot power (due to lack of resources for datartrigeions). In between, there is an
optimal choice of pilot power, roughly arourftl,/2. These results illustrate that improper power allocation
can significantly deteriorate the overall performance.
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5.6 Numerical Results for the BICM-ID demodulator

In the following, we present numerical results fo2 & 2 BICM system with16QAM symbol alphabet (nor-
malized to unit power) andvV,, P = 0.4. The number of coded bits per channel usé is 8. We considered
two different mappings: layer-wise Gray mapping and layer-wise m16a imapp5], which is a mapping
specifically optimized for BICM-ID with convolutional codes.

Demodulator EXIT Charts

The EXIT charts [24] of the demodulators were obtained by Monte Carlolations, using an AWGN channel
for the a priori information. Fig. 5.6 shows the EXIT charts for the mismat¢h&ti an LS channel estimator)
and improved demodulator, both using Gray or m16a mapping. The SNRébamehosen such that the area
under the EXIT functions, which quantifies the maximum rate achievable witlegpective demodulator [76],
approximately equal$/2. With Gray mapping, the EXIT function of the mismatched demodulatddaiB
SNR is almost identical to that of the improved detecta® dB. With m16a mapping, the EXIT functions of
the two demodulators look quite different and the SNR required by mismateiteoigproved demodulation
equalsl11.75dB and9 dB, respectively. We conclude that the SNR threshold for the improvetbdelator
is identical under both mappings, even though different codes (matchbd tespective EXIT function) are
required to achieve this threshold. Furthermore, the SNR gain of the imbd®modulator is aboutdB for
Gray mapping and.75 dB for m16a mapping.

Furthermore, codes designed for the mismatched demodulator with Gray maypialso perform well
for the improved detector with Gray mapping; however, with the improved datatmt the turbo cliff will
occur at lower SNR. In contrast, with m16a mapping the pronounced dfiiferbetween the EXIT functions
of the mismatched and improved demodulator indicates that here the chadedlmmuld be matched to the
respective demodulator used in order to avoid a large performance loss.
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Figure 5.7: EXIT charts of mismatched and improved demodulator for Gray and m16aingapp

Achievable Rates

A code-independent measure for the performance of the various dégihard with different mappings is the
maximum rate they allow to achieve with vanishing error probability. This rateheameasured via the area
under the demodulator's EXIT chart when tagriori channel is a binary erasure channel [76]. For reasons
of numerical stability, we used an AWGN channelaagriori channel for obtaining the EXIT charts, in which
case the area yields a good approximation for the achievable rates.

The resulting maximum rates achievable with the genie, mismatched, and impeweddator are plotted
versus SNR for a spatially uncorrelated Rayleigh fading channel in Rgalp It is seen that the improved
demodulator is indeed superior to mismatched demodulation, even though tistiteassignificant gap to
genie demodulation. For the genie and improved demodulator, the maximumnatesea to be virtually the
same for the two mappings used. Nevertheless, the corresponding BXIE ¢not shown) are different and
achieving the maximum rates in an actual system thus requires matched satesde

In contrast, for the mismatched demodulator the rate with m16a is lower than withn@aping. For a
rate of R=1/2, there is an SNR gap of aboitiB between the mismatched demodulator with Gray and m16a.
This indicates that the optimized m16a mapping is more sensitive to CSI inacthascgray mapping.

Fig. 5.8(b) shows similar results for the case of a channel with spatialation. We used a Kronecker
model [34] for the correlation matrix of the channel, i€, = S/2 @ R!/2, with the transmit and receive
correlation matrices respectively chosen as

1 .
S=R= 07 .
0.7 1

It is seen that the maximum achievable rates of the genie demodulator and mddifiediulator are again

almost independent of the mapping, albeit generaly smaller than in the elated case. The maximum
rates achievable with the mismatched demodulator are shown for LS and MN&Bel estimation, both in

conjunction with Gray and m16a mapping. Gray mapping is again preferated6a and in addition MMSE

estimation is preferable over LS estimation due to its smaller channel estimatiorvéeroonclude that m16a

does not offer any advantage over Gray mapping in terms of maximum matestke latter apparently is less
sensitive to CSl inaccuracy.



Chapter 5. MIMO-BICM with Imperfect CSI 103

...... 1 T T ®_ @
- H - 8‘- -
,;0“®' =
0.8 0.8 ,‘,‘8 o o
D7 “
0.6 0.6 @ 5 ?"9’
R L. - . HRSRIPS A d
o 06 x O = 3
o ® ® “’,@ 2R
g g @ Le? @ - genie Gray
04l i i : 0.4f ;;,§~ : 2 |43 genie m16a
-X% genie Gray _‘Q‘ i ; : - X- optimal Gray
|0 genie m16a &R -0 optimal m16a
0. - X~ optimal Gray i 0287 b g X mism. MMSE Gray ||
-©- optimal m16a —>—mism. LS Gray
.| =¢mismatched Gray o O mism. MMSE ml6a
0 : -S-mismatched m16a 0 -S-mism. LS m16a
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
SNR SNR

(a) (b)

Figure 5.8 Rates achievable with genie, mismatched, and improved demodulator v&iRU®IS(a) uncorre-
lated Rayleigh fading and (b) correlated Rayleigh fading.

BER Performance

We next present bit error rate (BER) results for LDPC codes Wwith)* code bits and code rafe=1/2. With
the same system parameters as before this amou6&S@otransmit vectors. The MIMO channel was i.i.d.
block fading, where the channel stays constant fosymbol periods® of which where used for training) and
then a new, independent channel realization was drawn. The numbetesfiterations (between demodulator
and channel decoder) wa$, while the number of inner iterations (in the LDPC decoder) @& The
mismatched demodulator was used with a LS channel estimator.

In Fig. 5.9(a), BER versus SNR for a non-optimized LDPC code with dedigribution(3, 6) is shown
together with the theoretical SNR thresholds. It is seen that there are cagiifjaps to the theoretical SNR
thresholds, particularly for the genie and improved demodulator with m16aintapphese gaps are caused
by the mismatch between the EXIT functions of demodulator and code, whiafnisicant when the ml16a
mapping is used. The EXIT charts of demodulators with Gray mapping are bedtehed to the code EXIT
chart, therefore the gaps are smaller in this case. These BER resuler foothfirm the superiority of the
improved demodulator which outperforms the mismatched demodulator by 2daB (Gray) andl.7dB
(ml6a).

We further designed specifically optimized LDPC codes for each demodblatoatching the EXIT charts
of the LDPC codes and of the demodulator according to [25]. The BERnalgtavith these optimized codes
is plotted versus SNR in Fig. 5.9(b). All schemes are now much closer to $peatve theoretical SNR
thresholds. Furthermore, for genie and improved demodulation, Graynafd mapping now indeed feature
approximately equal BER performance as predicted by Fig. 5.8(a) (millaesforms slightly worse since
here the code design does not achieve the theoretical optimum). The gamprofzed demodulation over
mismatched demodulation is abdu’ dB (Gray mapping) and about 2 dB (m16a mapping).
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Conclusions and Outlook

INALLY , we summarize the most important aspects and results of our woelsept some conclusions,
F and provide suggestions for further research. In this thesis, wetlhisdactor graph framework to design
(possibly iterative) receiver algorithms. We first considered an IDlygtem, derived a factor graph representa-
tion for it and used the factor graph to design a receiver performingdaiiat detection and channel estimation.
Numerical results show that the proposed receiver operates closdrnfatmeation theoretic limit and that joint
data detection and channel estimation yields a dramatic performance gain.

We next considered BICM systems, where the demodulator calculateszgabinl Rs. Using the informa-
tion theoretic concept of the equivalent BICM modulation channel, we dedign optimal quantizer and also
proposed a new quantization scheme, which is easier to design. Wetptesemi-analytical and numerical
results, which show that only a few bits for LLR representation are nkeWdée also proposed an on-the-fly
design of the quantizer parameters, thereby avoiding large lookup tabktefing the quantization parameters.

Finally, we focused on BICM systems with imperfect CSl at the receiverpkposed optimal demodulator
algorithms which take channel estimation errors into account, therebyngffenproved performance. The
improved demodulators can also be obtained by implementing the sum-prodaithatgon the system'’s
factor graph, thereby demonstrating the wide applicability of the factothgagproach. We demonstrated the
performance gains possible with the proposed demodulators and alstigatezs the impact of allocation of
pilot and data symbol power.
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6.1

Conclusions

In the following we draw our conclusions based on the results presentied previous chapters.

Graphical Models in Wireless Communications

We proposed a receiver for a MIMO-OFDM-IDMA system that carvlmved as an approximation to
the maximurra posteriori(MAP) bit detector. The MAP bit detector is optimal in the sense of minimum
probability of a bit error; its output is chosen such thatahgosterioriprobability of an information bit

is maximized. We obtained this probability by marginalization, which is carriedféotemtly by means

of the sum-product algorithm using the system’s factor graph.

The complexity of this marginalization is exponential in the number of users faking it unrealizable
even for moderate system sizes. We overcame this limitation by using approximfdiosome of the
messages propagated in the factor graph, thereby obtaining a complekitylthaar in the number of
users. Our receiver extends that of [18] to MIMO transmissions.

We extended the receiver of [18] to higher-order modulation formatgwesults in a further increase
of spectral efficiency (in addition to the MIMO multiplexing gain).

We proposed a selective message update scheme where only certageses® updated in each itera-
tion. This yields a reduction of computational complexity and allows to trade perdormance against
computational efficiency in a flexible manner.

Practical systems use pilot-aided channel estimation to obtain (imperfectB¢8king a factor graph
based receiver, pilot-aided channel estimation becomes an integralf ihet iterative scheme. Thus,
the receiver performs iterative joint multiuser data detection and chastiglation for pilot-assisted
MIMO-IDMA.

Following the idea of [20], we considered the maximum achievable rate MAIRs a fundamental
performance limit and compared it with the information-theoretic capacity ofahresponding multiple
access channel (MAC). To obtain the maximum achievable rate of IDMAsee the low-complexity
IDMA receiver with an LDPC code as channel code and determined thevable rate by means of BER
simulations. It was shown that IDMA comes withiB of the information theoretic limit.

We used numerical simulations to demonstrate the performance gains dohittvthe proposed receiver
relative to conventional IDMA receivers and the dependence obpeegnce on certain system parame-
ters. It was observed, in particular, that inclusion of channel estimatihiiterative detection/decoding
scheme yields a dramatic improvement of reliability, and selective messaggngp@sults in a signifi-
cant reduction of complexity.
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Message Quantization in BICM Systems

» We considered BICM systems with quantized LLRs and chose the quantizatévals by solving an
optimization problem. Depending on the choice of the objective function wénalatan (information-
theoretic) optimal quantizer or the proposed quantizer of [65].

» To compare the optimum and proposed quantizer designcoda-independennanner, we used the
mutual information of the equivalent modulation channel of the BICM sys@bh [In case of a fast-
fading scenario, we used the ergodic rate, whereas for quasi-stiitig fae characterized the equivalent
modulation channel by means of outage probability. In case of BPSK-nmedusingle-input single-
output (SISO) systems a semi-analytical approach was employed, othdftaige-Carlo simulations.

* We provided a large number of numerical results for different systeniiguations and modulation
alphabets. Our results demontrated, that anhhjts are sufficient for quantizing LLRs with negligible
loss in mutual information or outage probability. In case of low to medium ratéd, quantization is
sufficient.

» The quantizer parameters, hamely quantizer intervals and quantizetutppend on the system con-
figuration and the SNR, requiring large lookup tables for storing the reqparameters. We proposed a
method for designing the proposed LLR quantizer during data transmissiothé fly” i.e. without the
need for precomputed lookup tables to store quantizer parameters.

» We provided bit error rate (BER) simulations for BICM systems with LLR rjization usinglow-
density parity-check (LDPQjodes, which compare different quantization schemes. Our numerical re
sults showed that the “on the fly” design of the quantizer intervals caut@sadn mutual information.
The on-the-fly design of the quantizer outputs was demonstrated by BERasons and performs as
well as an offline design using precomputed lookup tables.

» By designing demodulators which directly calculate quantized LLRs, futtplexity reductions are
possible. We demonstrated these complexity savings for a low-complexiti8¢®E demodulator. We
also investigated the performance loss due to the use of a suboptimal demoaldbtd R quantization.
For a wide range of scenarios, (quantized) soft-MMSE demodulateferpealsmost as well as the
max-log demodulators, but with significantly lower complexity.

Performance of BICM Systems with Imperfect CSI

» We considered low-complexity soft-MMSE demodulators for BICM systenasthe max-log demodu-
lators for BICM-ID systems.

» The optimal BICM-ID demodulator of [23] was extended to MIMO chanmeth arbitrary spatial cor-
relation. Furthermore, it was shown that the optimal demodulator is indepentithe actual linear
estimator used.
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* We extended the results of the optimum soft-MMSE demodulator [22] to ampilirsear estimators.
Thereby we could demonstrate that the optimum soft-MMSE demodulator isandept of the actual
linear channel estimator used.

* We proposed to use the maximum achievable rate with a specific demodulat@ode-andependent
performance metric. These rates were measured by Monte-Carlo simulatitres equivalent BICM
modulation channel [20]. We compared these maximum achievable rates oftofisghand optimal low-
complexity soft-MMSE receivers for correlated and uncorrelated Midh@nnels. In case of BICM-ID,
we used EXIT charts [24] to characterize the convergence behavidhe MIMO-BICM-ID receivers
employing the mismatched demodulator or the optimal demodulator for differariadymappings and
different channel correlation models.

» For BICM, we investigated the impact of power allocation between pilot ata siymbol power on the
maximum achievable rate and demonstrated the importance of correct plmeatian. It turned out that
this allocation is crucial for good performance.

» For BICM-ID, we used the approach from [25] to design LDPC cadithes are matched to a specific
demodulator in terms of their EXIT functions. We also provided BER compasisging the optimized
LDPC codes and a “standard” (i.e., non-optimized) LDPC code, thusisfdie importance of matching
LDPC codes to a specific demodulator.

6.2 Outlook

Several directions for future research seem to be interesting:

Graphical Models

» So far, we have only used Gaussian approximations in the proposatttatgo (especially in Chapter
3). While the Gaussian message approximations yield very good perfoemranaified framework for
message approximations would be desireable. Investigations of difiexesgage approximations, or
whether performance can be improved by not approximating certain nessaeginteresting topics for
further research.

 In almost all of the considered cases in this thesis, the factor graph hsayees. In this case only
very limited results on convergence properties for the sum-productithigoare available and there are
neither results about what the sum-product algorithm calculates (if itecgas), either. Furthermore,
many different schedulding schemes for the message updates ardg@sgibscheduling seems to have
an impact on performance. Theoretical results on these issues wotdithlyenelp in designing efficient
receivers using the factor graph approach.

» Other design approaches for iterative receivers have beenggdpoch as [77]. Also information geom-
etry [16,17,78] has been used to gain insights into why and how iterathegvers obtain their impressive
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performance. Using these theoretical methods, different strategidgerfative receiver design could be
compared and further insights could be obtained.

Message Quantization

» At the end of Chapter 4 we presented a low-complexity soft-MMSE demtmiwtalculating quantized
LLRs. Its performance is very close to the optimal demodulator in the low-egiene, but in the high-
rate regime, the max-log demodulator performs better. In practice, the maletogdulator is imple-
mented by means of the sphere-decoding algorithm [79]. Modifying thersgitecoder such that it
directly outputs quantized LLRs and investigating the tradeoff betweentigaabit-width and mean
number of visited nodes in the sphere-decoding algorithm is a very integestgarch topic.

» The channel decoder (either a belief propagation decoder for tiRCLEDde or the BCJIR algorithm for
a convolutional code) uses floating point variables for the decodingi@dgo In a practical communica-
tion system, however, an implementation with finite bit-width will be used, leading aare! decoder
working with quantized LLRs. It is an open research question, whetlgequlantization used for the
LLRs can also be used in the channel decoder or whether a diffexentier representation proves to be
more advantageous. Further investigations into these issues seem tonEmyo

» Message quantization can not only be used in BICM receivers, loualsa be applied in distributed
systems, like architectures using network coding or relaying schemesda siystems, nodes exchange
information which, for efficient and simple transmission, needs to be qudntinethe BICM systems
considered in this thesis, the concept of the equivalent BICM modulatianneth was used to design
the optimal quantizer, but currently there are not many information theoestidts regarding distributed
systems, thus making it impossible to design an optimal quantizer. Neverthéigss, an interesting
direction for future research.

BICM Receivers with Imperfect CSI

» While information theoretic bounds for systems with limited CSI exist [80, 8d]asults are available
on the capacity of coded modulation with imperfect CSI. Furthermore it is lear ©ilow to measure
the achievable rate of iterative demodulators. The EXIT chart apprpamhides some insights into
the convergence process of iterative receivers and some approximfdioachievable rates with low-
complexity demodulators can be made, but exact results are still missing.

* In this thesis we used uncorrelated channel models and simple modelsrelatad channels. Using
more realistic models for wireless channels or even testing the proposedidlatoos with real chan-
nel data would allow a performance assessment under more realistic cosdikarthermore, for the
proposed demodulators, the channel statistics are required, whictbeesdimated by the receiver in
a pracitcal system. Designing estimators for the channel statistics andiagdbge performance these
systems is an interesting research direction.
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