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”Mathematical model building is now taking the ’center stage’ in biology,
and its use and importance is likely to grow.”

Covert et al., 2001.
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ABSTRACT

The WHO considers leishmaniasis as one of the six most important tropical diseases

worldwide. It is caused by parasites of genus Leishmania which are passed on to humans

or animals by sandflies of genus Phlebotomus. Although research is ongoing, there is still

a lack of understanding concerning both the parasite’s metabolism as well as progression

of the disease. However, detailed biological knowledge would be needed in order to find

effective therapy methods.

Based on experimental data of Leishmania amazonensis in BALB/c mice, in which clin-

ical symptoms, immunological response (innate and specific response) and parasite load

were studied, a mathematical model for the progression of the disease is developed. The

biologically most significant variables are chosen in order to elaborate a deterministic

differential equation model based on the GMA power-law formalism. Parameters that

minimize the error between model and experimental data are determined.

The model enables to detect qualitative relations between the selected variables, speci-

fied by kinetic orders and rate constants. We consider two models with the same model

structure, the first one without assuming a-priori-knowledge and using all 22 parameters,

and a second model which is a simplification of the first, containing 18 parameters.

Sensitivity analysis yields parasite growth rate and influx of parasites as most sensitive

parameters with respect to parasite load.

An optimization with the aim of minimal parasite load yields augmenting parasite growth

rate, augmenting the influence of lymphocytes on their own growth or increasing parasite

degradation as best therapeutic targets.

Optimization changing two parameters at a time confirms the feasibility of augmenting

parasite growth rate in order to minimize parasite load. Also, simultaneous increase in the

influence of IgG2a on parasite death and decrease of lymphocyte degradation is yielded

feasible.

Furthermore, drugs currently used against the disease and new therapeutic targets are

discussed.

Finally, two other mathematical models of the immune response to Leishmania are pre-

sented and the results are compared to the results of our analysis.
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ZUSAMMENFASSUNG

Leishmaniose ist eine der sechs bedeutendsten Tropenkrankheiten (Quelle: WHO). Sie

wird von Parasiten der Gattung Leishmania ausgelöst, die durch Sandfliegen der Gattung

Phlebotomus auf Menschen oder Tiere übertragen werden. Trotz des hohen Forschungsin-

teresses sind sowohl der Stoffwechsel des Parasiten als auch der Krankheitsverlauf noch

nicht vollständig erforscht. Biologisches Detailwissen wäre allerdings nötig, um effektive

Therapiemöglichkeiten zu finden.

Basierend auf experimentellen Daten eines Versuchs mit Leishmania amazonensis in

BALB/c Mäusen, bei dem klinische Symptome, die Immunantwort (zelluläre und spezi-

fische) und Parasitenbelastung untersucht wurden, wird ein mathematisches Modell für

den Krankheitsverlauf entwickelt. Die biologisch am meisten relevanten Variablen werden

ausgewählt, um mithilfe des GMA Power-law Formalismus ein deterministisches Differen-

tialgleichungssystem aufzustellen. Daraufhin werden die Modellparameter so bestimmt,

dass sich die Modelldaten bestmöglich an die experimentellen Daten anpassen.

Durch das Modell können qualitative Relationen zwischen den ausgewählten Variablen

bestimmt werden, die durch kinetische Ordnungen und Übertragungsraten charakter-

isiert sind. Wir betrachten zwei gleichstrukturierte Modelle, wobei das erste kein a-priori-

Wissen voraussetzt und alle 22 Parameter verwendet und das zweite eine Vereinfachung

des ersten mit 18 Parametern ist.

Die Sensitivitätsanalyse liefert die Parasiten-Wachstumsrate und die Zunahme an Para-

siten als Parameter höchster Sensibilität.

Optimierung mit dem Ziel minimaler Parasitenbelastung liefert eine Erhöhung der

Parasiten-Wachstumsrate, eine Erhöhung des Einflusses der Lymphozyten auf ihr eigenes

Wachstum und eine Erhöhung des Parasitenabbaus als beste Therapieansätze.

Die Optimierung unter gleichzeitiger Änderung zweier Parameter bestätigt, dass eine

erhöhte Parasiten-Wachstumsrate die Parasitenbelastung minimiert. Außerdem zeigt sich,

dass eine gleichzeitige Erhöhung des Einflusses von IgG2a auf die Zerstörung von Para-

siten und eine Dämpfung des Lymphozyten-Abbaus möglicherweise einen sinnvollen Ther-

apieansatz darstellt.

Weiters werden Pharmaka, die derzeit zur Leishmaniose-Bekämpfung eingesetzt werden,

vorgestellt und neue Therapiemethoden diskutiert.

Schließlich werden zwei andere Modelle für die Leishmania-Immunantwort vorgestellt und

die Ergebnisse mit denen dieser Arbeit verglichen.

RESUMEN

Leishmaniasis es una enfermedad producida por parásitos del género Leishmania que se

transmiten a humanos o animales a través de flebótomos. En este trabajo se ha desar-

rollado un modelo matemático del curso de la enfermedad, en el que se integran datos

experimentales obtenidos en ratones BALB/c infectados con Leishmania amazonenzis. Se

empleó para ello el formalismo power-law en su versión GMA. El modelo permite detectar

cualitativa y cuantitativamente las relaciones existentes entre las variables e identificar

aquellas que son cŕıticas en el desarrollo de la misma y se sientan las bases para el diseño

racional de estrategias terapéuticas.
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1 Introduction

The WHO ranks leishmaniasis (besides malaria, esquistosomiasis, filariasis, trypanosomi-

asis and tuberculosis) among the six tropical diseases of major importance for research

in the field of prevention, diagnosis and treatment [20]. About 12 million people world-

wide suffer from the disease, whereby this official number does not include not-declared

or asymptomatic cases. Out of 88 affected countries, 72 are developing countries, and

declaration is only obligatory in 32 countries. The annual incidence is 2 million people,

among those 1.5 million cases of cutaneous leishmaniasis, 0.5 million cases of visceral

leishmaniasis and an evanescent part of mucocutaneous leishmaniasis. 350 million people

worldwide are at risk [59]. The disease claims 50 000 deaths annually [60].

Leishmaniasis is mainly spreading in poor regions; 80% of the people suffering from vis-

ceral leishmaniasis, the most severe form of the disease, have less than USD 2 a day to

live on [17]. Besides clinical symptoms which may lead to death, exclusion from society

because of leprosy-like skin lesions and consequent inability to work causing economical

ruin are additional problems coming along with the disease. Moreover, many Leishmania

regions show an insufficient healthcare infrastructure.

There are three main forms of leishmaniasis:

• Cutaneous leishmaniasis,

• Mucocutaneous leishmaniasis and

• Visceral leishmaniasis.

Cutaneous leishmaniasis has an incubation time of two to six weeks [10]. It begins with a

growing papule that typically transforms into a non-hurting ulcer. Spontaneous healing

can occur within weeks or months, but lesions can also persist for years [3]. More lesions

in form of ulcers, papules or nodules can occur, above all on the extremities and in the

face. If skin lesions are widespread and resemble leprosy, this form of the disease is also

called diffuse cutaneous leishmaniasis. 90% of all cases of cutaneous leishmaniasis occur

in Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria [59].

Mucocutaneous leishmaniasis is characterized by partial or total destruction of the

mucous membranes of nose, mouth, throat cavities and the surrounding tissues. In

contrast to cutaneous leishmaniasis it is characterized by multiple non-ulcerative nodules

[45]. Disease starts usually with an infection of the nasal septum. If untreated, the

disease progresses and affects the pharynx, palate, larynx and lips, in this order [30].

Mucocutaneous leishmaniasis can lead to death caused by bacterial infection, starvation,

aspiration or occlusion of the respiratory system [3]. 90% of all infections with mucocu-

taneous leishmaniasis occur in Bolivia, Brazil and Peru [59].

Visceral leishmaniasis, also known as ”kala azar”, ”black fever” or ”Dumdum fever”,

is the most severe form of the disease. It especially affects hosts with a weak immune

system, like children or people suffering from malnutrition or HIV. After an incubation

time of three weeks to eighteen months [3, 20] typical symptoms are fever, diarrhea,

body weight loss, lymphadenopathy, hepatomegaly and splenomegaly. Mucosal ulcers,

fatigue and anemia are further symptoms. 90% of all visceral leishmaniasis cases occur

1



Figure 1: Countries affected by Cutaneous leishmaniasis [59]

Figure 2: Countries affected by Visceral leishmaniasis [59]

in Bangladesh, Brazil, India, Nepal and Sudan [59].

Fig. 1 and 2 show the spread of cutaneous and visceral leishmaniasis, respectively. A

complete table of countries affected by the different kinds of Leishmania can be found in

[3].

The type of leishmaniasis that follows infection also depends on the immunological condi-

tion of the host. In an immunologically weak person (e.g. a person suffering from AIDS)

or in children, a particular stem of leishmania can cause a different form of the disease

than in a healthy adult individuum. In Spain for example, Leishmania infantum causes

visceral leishmaniasis in children and cutaneous leishmaniasis in adults.
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1.1 Parasites and Vectors

Transmission of the disease in most cases happens through the vector, sandflies of genus

Phlebotomus in the ”old world” and genus Lutzomyia in America, respectively. These

sandflies have a size of about 2-3mm. Only 20 out of 500 sandfly species can transfer the

disease, and among them only the female subpopulation. The parasite lives within the

sandfly for 4 to 25 days until it goes to a mammal host stung by the sandfly.

Leishmania have two forms during their life cycle, a promastigote (flagellated) form in

sandfly and an amastigote (non-flagellated) form in mammals.

The life cycle proceeds as follows (Fig. 3):

Figure 3: Life cycle of Leishmania [58]

1. An infected sandfly takes a blood meal and thereby injects promastigotes into the

human skin.

2. Subsequently, promastigotes are phagocytized by human macrophages.

3. Inside the macrophages, promastigotes transform into amastigotes.

4. Amastigotes proliferate in cells, inhibiting immune defense mechanisms.

5. Another sandfly is taking a blood meal.
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6. Infected amastigotes are taken up by the sandfly.

7. In the sandfly’s body, amastigotes go to the midgut where they transform back into

promastigotes.

8. These divide in the midgut and move to the proboscis in order to be inserted into

the human skin (1) and thus we have come full circle.

1.2 Transmission, Diagnosis and Therapy

Transmission of the disease happens mainly through the vector. In some cases people are

infected by blood transfusions or contaminated needles. Less often the disease is spread

by infection of mother to fetus or from human to human.

Even more dangerous is a co-infection with Leishmania and HIV. If a HIV-positive person

is infected with Leishmania, AIDS can develop faster because leishmaniasis suppresses the

human immune system and stimulates replication of the virus. 34 countries worldwide

are affected by HIV-VL co-infection. [59]

Because sandfly eggs need an environment of organic matter, heat and humidity, risk

factors include dry wood stored inside the house, holes in windows or insufficient fencing

material in walls, stone houses (resting holes) or houses close to waterways (humidity).

Prevention from Leishmania is possible by use of long-lasting insecticide-treated nets.

Normal mosquito nets are not sufficient since this type of sandflies is so small that they

are able to penetrate the nets [22].

The standard method for diagnosis is a biopsy of the affected tissue, lymph nodes, splenic

or bone marrow aspirate (positive rates around 80%) [55]. Other methods include the

direct agglutination test (sensitivity 95%), the rK39 urinary antigen test (sensitivity 87%)

[42], the indirect fluorescent antibody test or PCR techniques [50].

Cutaneous leishmaniasis is usually self-healing and leads to lifelong immunity against re-

infection.

Currently, the not self-healing forms of the disease are treated by pharmaceuticals that

are usually injected over a period of 15-30 days under medical supervision. Unfortunately

this kind of treatment is expensive, time-consuming and inaccessible in poor regions. In

2002 the first oral drug against visceral leishmaniasis was developed. It is based on main-

taining the levels of miltefosine, an antiprotozoic agent in the body. A problem of all

pharmaceuticals are side-effects e.g. pancreatitis, cardiovascular toxicity and diabetes.

Second-line drugs (i.e. agents used when standard ”first line” therapy fails [56]) trigger

reactions that can even be lethal. Moreover, vectors can develop resistance to first-line

drugs (e.g. India: 60% resistance). However, in Syria providing insecticide-impregnated

bed nets achieved a 50% reduction in incidence of cutaneous leishmaniasis [59].

Dogs and monkeys can be vaccinated against leishmaniasis. For humans, until now two

vaccines (one inducing live, one killed parasites) were licensed [39].

There is an autonomous-living tribe in Peru, the so-called Machiñengas, who are resistant

to leishmaniasis. However, investigation on them is difficult since they live isolated from

civilization. Moreover the main leishmaniasis research centers are outside Peru, and it is

4



difficult to transport blood or cellular samples by plane since they need to be maintained

frozen.

There are also leishmaniasis-resistant mice stems and investigation has been performed

on their immune response to Leishmania. However, until now it has not been possible to

establish conditions yielding immunity in humans.

Hopefully, animal models of leishmaniasis will lead to a better understanding of the im-

mune response to Leishmania in the future in order to perform well-directed experiments

on human blood samples.

1.3 Control Strategies

There are several programs trying to control the leishmaniasis problem.

One of those is the Brazilian Leishmaniasis Control Program (BLCP) which tries to fight

the disease by

1. Diagnosis and early treatment,

2. Immunological screening and eliminating of seropositive dogs (alternate hosts) and

3. Insecticide spraying against sandflies.

However, the BLCP has not improved the situation since 1950 and better control strategies

are required.

The WHO has designated leishmaniasis as category 1 (emerging and uncontrolled) disease.

Its prevention focuses on objectives (1) and (3) of the BLCP; furthermore on the following

points [59]:

• Providing impregnated bed nets

• Health education and training materials

• Early diagnosis of HIV/leishmaniasis co-infections.

The WHO has built up a worldwide network of 28 institutions which use standardized

guidelines for diagnosis, as well as computerized case reports.

Doctors without Borders started initiatives for faster and cheaper drug treatment. How-

ever, according to a survey of drug resistance in India, only 26% of people are treated

accordant to WHO guidelines. Moreover, there are patients that stop treatment on their

own initiative [21].

Another approach is to improve the standard of living in areas of risk, since the disease

is mainly due to deficient water supply, malnutrition and poor living conditions [17].
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2 Hypotheses and Objectives

This section gives a motivation of the work, stating hypotheses and objectives.

2.1 Hypotheses

It is supposed that the essential part of leishmaniasis disease progression in BALB/c mice

can be represented by a model consisting of four variables, representing parasite load as

well as cellular (lymphocytes) and humoral (IgG1, IgG2a) immune response. Quantita-

tive interactions between variables (i.e. positive or negative influences) are derived from

biological knowledge. Based on these interrelationships between variables, a power-law

ansatz yields a system of differential equations. Since this is a deterministic modeling

approach, the model is expected to represent real behavior on average. It has to be taken

into account that this is a specific model for Leishmania amazonensis in BALB/c mice.

Since the far-end aim is to find new therapy methods for leishmaniasis in humans, the

hypothesis is that disease progression in humans is similar to that in BALB/c mice.

C. Pou states in [1]: ”El objetivo principal al establecer un modelo animal de leishmaniosis,

es poder reproducir hasta donde sea posible, las manifestaciones cĺınicas que se presentan

en el humano y de esta manera estudiar los componentes inmunes implicados en el de-

sarrollo de esta enfermedad, y aśı a partir de este conocimiento se pueda evaluar nuevas

terapias farmacológicas, vacunas, etc.” which means:

”The principal objective of establishing an animal model of leishmaniasis is to enable

reproduction of the clinical manifestations present in human as far as possible, in or-

der to study immune components involved in disease progression and to evaluate new

pharmaceutical therapies, vaccines, etc. based on this knowledge.”

Hamsters and dogs are considered the most appropriate models for human visceral leish-

maniasis. BALB/c mice are considered the best model for visceral leishmaniasis caused

by infection with L. major. Accordingly, BALB/c mice are feasible for preliminary exper-

iments on any Leishmania stem in order to formulate hypotheses which afterwards can

be verified in animals more similar to humans.

2.2 Objectives

The aims of this work can be summarized as follows:

1. To represent the immune response following injection of a certain amount of para-

sites by means of a system of differential equations. The model is derived from the

power-law; for parameter estimation a genetic algorithm is used which enables to

choose the set of parameters minimizing the error between experimental data and

model approximation.

2. To quantify biological interrelations between variables and to perform predictive

simulations.

3. To make a sensitivity analysis reflecting the importance of certain parameters and

reactions.
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4. To solve an optimization problem with the objective of minimizing parasite load.

This yields the conditions that are the most favorable for healing of the disease.

5. According to (3) and (4) crucial targets for the interaction of pharmaceuticals can

be identified and it is tried to find drug agents that yield these conditions which

suggest possible therapy methods for leishmaniasis.
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3 Antecedents and State-of-the-Art

In this Section statistics of research on leishmaniasis around the world are given and

similar studies are resumed.

3.1 Leishmaniasis Research Statistics

Figure 4: Publications (left axis) and relative research interest (right axis) concerning leishma-
niasis over time (1970-02.02.2011) [57].

Leishmaniasis research is done in 132 countries around the world, including all continents.

The country with the highest number of publications between 1970 and 2010 is Brazil

(1788), followed by the USA (1415), India (991), the United Kingdom (677), Spain (618)

and France (576). The rest of the countries show less than 500 publications. In Austria,

28 articles about Leishmania have been published yet. All these data refer to the state-

of-the-art at February 2nd, 2011.

Fig. 4 shows a diagram of the number of publications over time; in Fig. 5 the regions in

which research on leishmaniasis is performed are marked on a world map.

Interest in visceral leishmaniasis is higher than interest in cutaneous leishmaniasis which

in turn is higher than that in mucocutaneous leishmaniasis. Mucocutaneous leishmaniasis

is the form of the disease affecting the least number of people. In contrast, it is surprising

that there is more investigation about visceral than about cutaneous leishmaniasis, since

the annual incidence of the cutaneous form is three times as high as that of the visceral

form of the disease (see Section 1). However, visceral leishmaniasis is the most severe

form of the disease.

3.2 Antecedents

The majority of existing mathematical models are either of epidemiological kind or

investigate the parasite Leishmania e.g. its genome or metabolism but not the disease

8



Figure 5: Locations where research on leishmaniasis is done [57].

Leishmaniasis. Concerning experimental models, there are works similar to that of Pou

[1].

The only mathematical models of leishmaniasis found which is not an epdemiological

study are the agent-based model of Leishmania major by Dancik et al. (2006, 2010)

[15, 16] and a theoretical model of the immune-response to Leishmania by Nelson and

Velasco-Hernández [36]. In the papers by Dancik et al. an agent-based stochastic model

of immune response to Leishmania major infection in the ear of mice is described. The

biggest difference to our model is that macrophages are taken into account and the model

is a compartment model. Activities (like parasite growth and maturation of T cells) and

movement of components (macrophages, chemokines, antigen-presenting cells, T cells)

are described in terms of probabilities. Sensitivity analysis using FANOVA is performed

yielding the six most important weights of the pathogen load which explain 99% of its

variance. Calibration of the model to field data is performed. The main conclusions

concern the influence of parameters on pathogen load and macrophage levels. The model

is discussed in further detail in Section 6.2.1.

The model of Nelson and Velasco-Hernández [36] considers the variables: resident

macrophages, activated macrophages and parasites; later the model is extended by the

additional variables IL-12 and T-helper cells. A differential equation system is set up

and a steady-state analysis yields a parasite-free unstable steady-state and a stable

steady-state where macrophages and parasites coexist. The model is discussed in more

detail in Section 6.2.2.

Concerning experimental models, a brief summary of similar models is given here which

does not claim completeness. Further references can be found in [1].

Probably the most similar experimental work is that of Courret et al. [13] who describe

lesion development, cellular response, expression of cytokines as well as parasite load
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in spleen and liver in BALB/c mice infected with Leishmania amazonensis. Another

model that investigates BALB/c mice is that of Arrais-Silva et al. [4] which concerns the

hypoxia-inducible factor-1α resulting from an infection with Leishmania amazonensis.

This factor is exclusively produced by macrophages infected with Leishmania and

therefore can serve as a marker of infection.

Lira et al. studied symptoms, parasite load and immune response in C57BL/6 mice

infected with Leishmania major [28].

Symptoms of leishmaniasis were further investigated in [19] which is a study on canine

visceral leishmaniasis. Rodŕıguez-Cortés et al. [44] present a long-term study on six dogs

infected with visceral leishmaniasis which identifies key parameters of leishmaniasis and

correlations among those.

[41] and [18] are two models on Leishmania infantum in golden hamsters. Both papers

show the feasibility of hamsters for in-vivo experiments on leishmaniasis whereby

Requena et al. [41] investigate clinical symptoms, parasite loads as well as antibody

levels in susceptible, oligosymptomatic and resistant hamsters. Dea-Ayuela et al. [18]

compare those parameters as well as lymphocyte population in two groups infected with

a different amount of parasites and a non-infected control group.

Porrozzi et al. conducted a study on rhesus monkeys infected with Leishmania infantum

in order to investigate symptoms that also occur in human infection [40].

Concerning epidemiological models, Chaves and Hernandez present one model of amer-

ican cutaneous leishmaniasis [12]. They developed a general model for the dynamics

of a vector-borne disease, considering a population of incidental hosts (humans) and

a population of reservoir hosts (mammals). Population dynamics are described by a

system of differential equations. The threshold for persistence of the disease is calculated.

Stability analysis yields one equilibrium solution apart from the trivial. If the disease is

endemic, this solution is globally stable otherwise it is unstable and the system converges

to disease extinction.

N. Bacaër and S. Guernaoui present a model of cutaneous leishmaniasis with respect to

seasonality [5]. The basic reproduction number i.e. the threshold to stop the disease is

calculated using data of the province of Chichaoua, Marocco.

In [9] Carneiro et al. classify regions in the province of Bahia, Brazil, according to their

risk of American visceral leishmaniasis. The aim is to use data from spatial-temporal

scanning to develop control strategies in endemic areas of the disease.

In [38] Palatnik-de-Sousa et al. show the effectiveness of a dog vaccination with

Leishmune in Brazil which reduces both canine and human incidence of leishmaniasis in

endemic regions.

Other mathematical models concerning Leishmania include a model of Leishmania major,

developed by Chavali et al. [11]. They present an 8-compartment model of Leishmania’s

stage-specific metabolism. Equations are derived from flux-balance analysis. By means

of gene-knock-outs, genes that are lethal for Leishmania major but not present in human

are identified. Moreover, they identify a ”minimal medium” i.e. the minimal set of

substrates that is necessary for Leishmania to express all genes. Furthermore, previously

uncharacterized genes are functionally annotated.

Leifso et al. developed a model which represents 94% of Leishmania genes in its two

different life stages, promastigote and amastigote stage [27]. They discovered that the
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majority of mRNAs is constitutively expressed i.e. their activity is constant and active.

98.5% of genes are similar in promastigotes and amastigotes.

Despite this similarity which was also yielded by Rochette et al. [43], this group showed

that 25% of the genes involved in metabolism are differentially expressed in promastigotes

and amastigotes. Whereas promastigotes yield their energy from glucose metabolism and

overexpress microtubules for locomotion, amastigotes use fatty acids as energy source

and overexpress membrane transporters.

McNicoll et al. investigated stage-specifity of genes in Leishmania infantum promastigotes

and amastigotes [31]. 2D-gel analysis with an amastigote-specific, a promastigote-specific

and a master gel showed that the majority of proteins is stage-specific. The level of a

protein corresponds to the expression of a determined gene. The authors divide proteins

in three classes: Proteins involved in stress response, metabolic enzymes and proteins

involved in proteolysis.
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4 Material and Methods

In this section the experiments which yielded data for analysis, and the mathematical

methods used are described.

4.1 Experimental Data

This work is based on experimental data from the doctoral thesis of C. Pou Barreto [1].

BALB/c mice were infected with Leishmania amazonensis, a species of Leishmania

affecting Brazil, Costa Rica, Panama, Columbia, French Guyana, Ecuador, Peru, Bolivia

and Venezuela. This species of parasites can cause all known forms of leishmaniasis (see

Section 1 and [3]). Leishmania amazonensis was chosen in order to investigate both

cutaneous as well as visceral leishmaniasis, as this parasite stem causes at first cutaneous

and later visceral leishmaniasis in BALB/c mice. In human Leishmania amazonensis

usually causes cutaneous and mucocutaneous leishmaniasis.

Animals were supervised over a period of 28 weeks. There were three groups of 20 mice

each; in one group 103 promastigotes were injected, in another group 106 promastigotes.

The third group was not infected and used as a control. The parasites in stationary

promastigote stage were inoculated in the tarsal bone of the mice’s hind paw.

Measurements of the following 15 variables were taken (see Appendix A for abbreviations):

1. Clinical variables:

• lesion type (classification from small changes up to metastatic lesions)

• lesion size (at inoculation site)

• body weight gain

• organ weight

– popliteus ganglion

– inguinal ganglion

– spleen

– liver

2. Parasite load:

• popliteus ganglion

• inguinal ganglion

• spleen

• liver

3. Immune response:

• humoral

– IgG (set of immunoglobulins)

– IgG1
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– IgG2a

• cellular: IE (population of lymphocytes)

Starting four weeks after infection, lesion type, size, body weight and immune response

were measured in a sample of eight mice every two weeks. The immune response was

additionally measured at week 2. The rest of the variables (organ weight and parasite

load) were measured every eight weeks by sacrificing four mice, respectively.

In natural infection, sandflies inject about 10-1000 promastigotes into the human skin,

thus the group injected with 1000 promastigotes is the closest to natural circumstances.

There were no signs of recovery in any of the mice - lesions were growing with time. In

the group infected with 103 promastigotes the disease was developing more slowly than

in the highly-infected group.

Since the 103 parasites group is the most representative for natural infection

the following analysis focuses on the group infected with 1000 parasites.

4.2 Variable Selection

In order to build a schematic model for disease progression, the biologically most impor-

tant variables are chosen. The essential mechanism in disease progression is the body

immune response. To model the latter with respect to parasite load, we choose the fol-

lowing variables:

1. Parasite load (mean of parasite load in popliteus ganglion, inguinal ganglion, spleen

and liver)

2. Number of lymphocytes (variable IE)

3. IgG1 and

4. IgG2a.

These variables were measured as follows (see [1] for details):

• Parasite load was measured via microtiter. Animals were dissected, and tissue

samples of popliteus ganglion, inguinal ganglion, liver and spleen were extracted.

The samples were weighed; subsequently dilutions from 1 to 1
3
·10−6 were performed.

After incubation the best dilution containing at least one living promastigote was

determined. Using
N◦parasites

g
=

1
D+

w
,

whereby D+ denotes the ”best” dilution and w the organ weight in grams, the

number of parasites per gram could be determined.

• The response of the specific antibodies IgG1 and IgG2a to recombinant proteins

(LbHSP83, LbL6R and LbL6R-HSP83, as well as LbAgS) was measured via indirect

ELISA. In this technique, antigen is added to wells of a microtiter plate. Subse-

quently, the unknown amount of primary antibody is added. A second antibody
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which is marked by a signaling enzyme is added. After addition of the respective

substrate, the enzyme emits a signal (e.g. fluorescence) which is measured in order

to determine the amount of primary antibody for which measurement is required.

• Population of lymphocytes was measured via the optical density which in turn was

measured by use of a colorimetric method using sulfonamide B. To set a cutoff-value,

at first infected or immunized mice cells were compared to normal mice cells. The

cutoff-value was determined as the arithmetic mean of treated minus untreated cells

divided by three times the standard deviation. Finally the IE was calculated as the

difference of the mean optical density of treated and untreated cells divided by the

cutoff value i.e.

IE =
mean(ODtreated −ODcontrol)

cutoff
.

Apart from the fact that the chosen variables are the most relevant ones from a biological

point of view, they are also the ones that are most relevant for immunotherapy i.e. killing

of parasites by the immune system whereas clinical variables e.g. lesion type, lesion size

or body weight gain (see Section 4.1) represent disease symptoms. Parasite load is the

variable representing the disease burden that shall be minimized in the end.

IgG (including various immunoglobulins) is the only measured immunological variable

that is not included in the model but instead IgG1 and IgG2a which correlate with IgG.

IgG1 and IgG2a are chosen because IgG2a is directly inhibiting parasite load and IgG1

is an important marker of infection in contrast to healing. The latter does not decrease

parasite load because, although trying to identify and destroy the parasite, it is not capable

to detect parasites inside macrophages. A cellular response (proliferation of lymphocytes)

is necessary to activate macrophages which leads to destruction of the parasite.

The mean value of all mice in which measurements are taken is considered for calculations.

This is crucial for parasite load and the number of lymphocytes since these variables

require sacrifice of mice and therefore cannot be measured in the same mouse at different

time points. Another strategy would be to consider the median. This would be the more

robust method, excluding outliers.

4.3 Power-law Model

With the variables chosen in the foregoing section, a mathematical model consisting of

an ordinary differential equation system is derived using the GMA power-law ansatz.

Power-law modeling is based on the formula

dXi

dt
=
∑
j

σijγj
∏
k

X
gjk

k , (1)

[53], whereby Xi are the system variables, σij are the coefficients of the stoichiometric

matrix, γj are rate constants and gjk kinetic orders.

The stoichiometric matrix contains σij = 1 if a particle goes from site j to site i and

σij = −1 if a particle goes from site i to site j. If there is no interaction between site i

and site j, σij = 0.

Rate constants are directly proportional to the variables’ influx and outflow.
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Kinetic orders γi refer to the influences among parameters: A kinetic order gjk of zero

means that there is no influence of variable k on variable j. A negative kinetic order means

that variable k has a negative influence on variable j, i.e. if xk decreases, xj augments and

vice versa. A positive kinetic order refers to positive influence of variable k on variable j,

i.e. if xk increases (decreases), xj increases (decreases).

4.4 Mathematical Model

Due to biological considerations based on the experiments of C. Pou [1], a mathematical

model for the progression of Leishmaniaisis is derived using the power-law approach.

Figure 6: Simplified model of leishmaniasis progression. Thick arrows: production / degradation
(flux of matter), dashed arrows: influence/signal. vi: generation/degradation velocities with γi
proportional to vi; gi: kinetic orders.

Fig. 6 shows the model scheme, consisting of the chosen variables x1, ..., x4 and the

influences among them which are denoted by arrows and parameters. g1, ..., g14 stand for

kinetic orders representing influences on the creation or degradation of the four variables.

Consider that we use ”signaling modeling” i.e. information transfer rather than mass

transfer [23]. I.e. a dashed arrow from variable A to variable B does not mean that one

molecule A transforms into a molecule B or that a particle is going from A to B, but

that A influences B.

Immune reaction starts when parasites are injected at the site of inoculation, which is

the hind paw in C. Pou’s experiments [1]. Parasites proliferate by division, which means

exponential growth i.e. parasites have a positive influence on their proper generation (g1).

Parasite injection causes an immune response which means proliferation of lymphocytes

(g5). On the other hand, increasing parasite load may also lead to degradation of

lymphocytes, because parasites are acting against the immune system (g7). However,
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it is not known if they increase degradation of lymphocytes or inhibit creation of

new lymphocytes. In our model, g5 is the parasite load’s influence on generation of

lymphocytes and g7 is the parasite’s load influence on their degradation. Thus, from a

mathematical point of view, increasing degradation of lymphocytes by the parasite load

would mean g7 > 0, whereas inhibition of the creation of new lymphocytes would mean

that g5 is possibly negative. In Section 4.8 we will see that g5 > g7 thus g5 is nonnegative

in our case.

Since lymphocytes also proliferate by cell division, they grow exponentially which means

that the number of lymphocytes has a positive influence on its proper generation (g6).

Moreover, lymphocytes kill parasites which reduces parasite load (g3). The host immune

system produces antibodies IgG1 and IgG2a to identify Leishmania antigens. For the

model this means a positive influence of the number of lymphocytes on the generation of

IgG1 (g9) and IgG2a (g12).

The two immunoglobulins are antagonists, so each of them has a negative influence on

the other’s generation (g10, g13). This is confirmed by a negative partial correlation

coefficient.

Finally, IgG2a helps lymphocytes to identify parasites and therefore contributes to a

decrease in parasite load (g4).

All the variables are assumed to be proportional to their own degradation - a higher

amount of the variable also increases its degradation rate (g2, g8, g11, g14).

IgG1 is also an antibody, but it does not inhibit parasite load. It does not act as a

parasite marker because it is not able to locate parasites hidden inside macrophages.

IgG2a and the cytokines produced by IgG2a are markers of cellular response, which

means activation of macrophages consequently causing parasite death. It is assumed

that there is a moment when the population of lymphocytes does not increase further.

In our case, every variable has an influx and an outflow, so the stoichiometric matrix is

S =


1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


In this matrix, rows refer to the four model variables x1, ..., x4 and columns refer to the

influx and outflow of each variable: γ1, ..., γ8.

The kinetic orders gm denote influences among variables. Without loss of generality, gm
are assumed to be non-negative. Negative kinetic orders are annotated by a minus.

According to the model structure (Fig. 6) we obtain the following flux matrix:
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x1 x2 x3 x4

parasite load lymphocytes IgG1 IgG2a

v1 g1 0 0 0

v2 g2 g3 0 g4

v3 g5 g6 0 0

v4 g7 g8 0 0

v5 0 g9 0 −g10

v6 0 0 g11 0

v7 0 g12 −g13 0

v8 0 0 0 g14

variable xi

parasite load x1

lymphocytes (IE) x2

IgG1 x3

IgG2a x4

Table 1: Variable identifiers

With the annotation given in Tab. 1 the equation system for the fluxes is:

v1 = γ1 · xg11
v2 = γ2 · xg21 · x

g3
2 · x

g4
4

v3 = γ3 · xg51 · x
g6
2

v4 = γ4 · xg71 · x
g8
2

v5 = γ5 · xg92 · x
−g10
4

v6 = γ6 · xg113

v7 = γ7 · xg122 · x
−g13
3

v8 = γ8 · xg144

The maximum ranges for γi and gm are:

0 ≤ γi ≤ ∞ and 0 ≤ gk ≤ 3 (2)

because kinetic constants gk rarely reach a value greater than two. However, since our

model considers influences rather than fluxes of matter, higher gk may be appropriate,

too. For our simulations we choose the ranges:

0 ≤ γi ≤ 10 and 0 ≤ gk ≤ 3. (3)

We could choose a higher value e.g. 100, as an upper bound for γi but expenditure of

computation time would increase exponentially, since the parameter space using a tenfold

range for γi is 10n times greater for a system in n parameters.
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Because the derivative of each variable can be calculated as the difference of influx and

outflow (xi = v2i−1 − v2i∀i ∈ {1, ..., 4}), we obtain the set of equations

dx1

dt
= γ1 · xg11 − γ2 · xg21 · x

g3
2 · x

g4
4

dx2

dt
= γ3 · xg51 · x

g6
2 − γ4 · xg71 · x

g8
2

dx3

dt
= γ5 · xg92 · x

−g10
4 − γ6 · xg113 (4)

dx4

dt
= γ7 · xg122 · x

−g13
3 − γ8 · xg144

This is a system of 4 ordinary differential equations in 4 variables, containing 22

parameters (γ1, ..., γ8, g1, ..., g14).

All variables except for parasite load are normalized with respect to a control group of

mice (group without inoculation of parasites). Normalized values are calculated according

to

xnorm =
x(group)

x(control)
. (5)

Furthermore, to have all variables in the same range (mean 1), their values are divided

by their proper mean, i.e.

xi =
xi

mean(x1, ..., xn)
(6)

whereby 1,...,n denote the considered time points.

As a next step, estimation of parameters is performed using a genetic algorithm.

4.5 Parameter Estimation

Parameter estimation is performed using a genetic algorithm derived by J. Hormiga (see

[23] for details). In each step, a random set of parameters (”population”) is generated.

Parameters are optimized by minimizing the objective function

n∑
i=1

s∑
j=1

(Xi(tj)− soli(tj))2, (7)

whereby n is the number of variables, s the number of measurement points, Xi denote

variables, tj time points and soli the approximation of Xi by the model. In other words,

the least-squares solution is calculated i.e. the solution that minimizes the sum of squared

errors between data and approximation.

It is important to note that the objective function only takes into account the actual

measurement points, neglecting interpolated points in order not to falsify the result. The

fit of all four variables is weighted equally, i.e. for parasite load and number of lymphocytes
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each of the 4 measurement points has weight 1
4

and for IgG1 and IgG2a, each of the 13

measurement points has weight 1
13

. Thus, the weight matrix is given by:

1
4

1
4

1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

1
4

1
4

1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

1
4

1
4

1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

0 0 1
13

1
13

1
4

1
4

1
13

1
13



, (8)

whereby columns mean the 4 variables in the order: parasite load - number of lymphocytes

- IgG1 - IgG2a and rows denote different time points 0,2,...,24 weeks. Measurements were

taken over a period of 28 weeks, however, since of lymphocytes and parasite load the last

measurement was taken after 24 weeks, we only consider a period of 24 weeks to avoid

extrapolation because the latter would falsify the result.

The genetic algorithm used for parameter estimation has the data as well as the system

of equations (4) as inputs. The variables have to be vectors of the same length i.e.

all variables have to be measured at the same points in time. Furthermore, parameter

ranges have to be specified in advance (see (2), (10), (11)) and (12). The program’s

output includes the parameter values, the value of the objective function (7) as well as

plots of the data versus solution, sorted values of the objective function and the error

of estimated versus real data. The algorithm is iterated several times whereby the best

solution is chosen in each step. The number of iterations can be specified by the user.

Calculations are performed in Matlab 7.1 and Matlab R2007a.

The genetic algorithm requires vectors of equal size as inputs. Therefore missing values

in our data have to be compensated.

IgG1 and IgG2a were measured every two weeks, whereas the number of lymphocytes

and the parasite load were only measured every eight weeks. Moreover, we do not have

an initial value for parasite load - this would be zero, since parasites were injected into

the paw and not into one of the four organs considered in the model. However, if we

used the real value zero as an initial value, parasite load and number of lymphocytes

would remain constant the whole time due to the system of equations given in (4). This

is the case because without initial parasite load disease does not evolve. A more accurate

representation would be yielded considering the site of inoculation as additional variable

and building a compartment-model. However, parasite load was not measured at the

inoculation site so there are no data for this variable except the initial values: 103 and

106 parasites, respectively.

An initial value of parasite load in the four organs considered in the model cannot be

yielded by normalization with respect to the control group either, because the latter does

19



not show any parasite load, which would yield division by zero in (5). In contrast, for

the normalized value of x2 (number of lymphocytes) we can assume an initial value of

one, since before inoculation of parasites the number of lymphocytes is assumed to be the

same in all groups.

A way to handle initial parasite load zero is to use a small initial value for parasite load.

Although this does not correspond to the real situation because initially there are no

parasites in any of the four organs, it enables data fitting in the interval between week 0

and week 8, and therefore serves as a model for a surveillance period of 24 weeks.

A different strategy would be to represent only the period between week 8 and week

24. This is a better representation of reality and would probably also yield better fit,

however, the model would lack information about disease progression in the first eight

weeks after inoculation. Since a model for disease progression from the disease outset is

required, the first strategy is applied i.e. a small initial parasite load is used.

Parasite load is originally given logarithmically which does not matter though because

the variable is normalized with respect to its proper mean. Because of logarithmic

scaling its true absolute initial value is zero. Initial values between 10−10 and 0.01 are

implemented, comparing them in terms of the objective function (7). The smaller the

minimum of the objective function, the better the model with the respective initial value

fits experimental data.

4.6 Model Selection Strategies

The topology of the model is assumed to be like in Fig. 6. However, there are different

models concerning the number of parameters used. The most general model uses all 22

parameters (kinetic orders and rate constants). Other models are simplifications of this

general model, using between 15 and 21 parameters, according to the respective use of

more or less a-priori-knowledge which fixes the value of certain parameters to zero or one.

In Section 4.8 the different models will be presented.

Four strategies of model selection are proposed in order to find the one that yields the

”best” fit:

1. To specify a determined number of iterations and choose the model with the smallest

objective function value.

2. To iterate until convergence of the error i.e. until the error gradient falls below a

determined value.

3. To specify a fixed value of the objective function and designate models that fall

below this value as ”appropriate”. Out of these, choose the most significant (in our

case: smallest initial value) or most simple (e.g. the model with the least number

of parameters) model, respectively.

4. To perform (1) and subsequently iterate simpler models using the objective function

value of the best model according to (1) until they either reach a smaller value or a

determined number of iterations.
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Strategy 1 would probably yield the most complex model as best solution, because among

all models it has the most degrees of freedom and therefore yields the highest accuracy.

Moreover, the lower the number of iterations, the more likely random effects affect and

falsify the result.

Strategy 2 would not necessarily consider the most complex model as the best, however,

it may get stuck in a local minimum of the error.

Strategy 3 is a reliable alternative although the cut-off value for the objective function is

chosen arbitrarily.

Strategy 4 does not yield this problem, however, it has the disadvantage of random effects

in (1) and can be time-consuming using a high number of iterations.

After evaluation of the different alternatives it is concluded that strategy 3 is the

most appropriate one. The objective function is based on the sum of errors (differences

between real and modeled data); therefore its cut-off value represents a certain error level.

4.7 Initial Values

In this step of model selection, models for which the minimum of the objective function is

smaller than 0.2 are considered appropriate. In terms of the error between experimental

and model data, fobj = 0.2 occurs for example if the mean squared error in each of the

four variables is 0.05 due to

fobj =
4∑
i=1

errori,

whereby errori is the mean squared error of variable i, given by

errori =
n∑
j=1

λji · (exact(tj)−model(tj))2

with i being the variable number, n the number of data points of the respective variable

and λji the weight of variable i at time point j according to the weight matrix in (8).

Of the initial values for which simulations were performed, 10−4, 10−6 and 10−8 meet the

criterion fobj < 0.2 within 100 iterations. Objective function values together with their

computation times are given in Tab. 2. Out of them 10−8 is nearest to the real value

zero. However, using this initial value none of the remaining five models considered in

Section 4.8 (models with reduced number of parameters) achieves fobj < 0.2 whereas for

the initial value 10−6 two of the six models yield fobj < 0.2.

Therefore 10−6 is used as initial value for parasite load in the group infected with 103

parasites.

In this way a comparison between those two models that fulfill fobj < 0.2 is possible.

Using 100 as the maximal number of iterations, computation times are between 11 and 20

hours (Computer: Intel(R) Core(TM)2 CPU, T6400 @ 2.00GHz, 1.99GHz, 1.99GB RAM

with Matlab R2007a).

The following section describes simplifications of the model in order to reduce the number

of parameters.
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initial pload 10−4 10−6 10−8

fobj 0.1860 0.1408 0.1374

time (h) 11.19 15.71 16.29

Table 2: Best models with respect to initial values of parasite load using 100 iterations of the
genetic algorithm in the 103 parasites group. Computer: Intel(R) Core(TM)2 CPU, T6400
@ 2.00GHz, 1.99GHz, 1.99GB RAM with Matlab R2007a. Parameter ranges are [0,3] for g
and [0,10] for gamma. initial pload: initial parasite load, fobj: minimal value of the objective
function, time: overall execution time of parameter estimation algorithm.

4.8 Parameter Reduction

Annotation of fluxes refers to the model scheme Fig. 6, Section 4.4.

A first simplification is achieved if we consider the outflow of each variable to be directly

proportional to the variable value. This means that the exponent of the variable’s influence

on its proper degradation is 1, yielding

g2 = g8 = g11 = g14 = 1

for our set of parameters. In this way we have reduced the system from 22 to 18 param-

eters.

Furthermore, two of the variables, namely parasite load and number of lymphocytes,

have an influence on their proper influx. Like above, we can consider these variables to

be directly proportional to their proper generation, which yields

g1 = g6 = 1

and a reduction to 16 parameters.

In our model parasite load has a positive influence both on an increase as well as a decrease

of the number of lymphocytes. This is biologically supported since on the one hand,

parasites act contra lymphocytes, trying to avoid any defense mechanism of the body

against the illness but on the other hand, the higher parasite load, the more lymphocytes

are produced (immune-response). This is why both parameters are implemented. If

parasites only inhibit generation of lymphocytes or only promote lymphocyte death, we

expect the other parameter to be zero, respectively. Thus, knowing which of the two

compensative influences on the influx and outflow has a greater effect, we could leave out

the other one.

Fig. 7 shows that the more parasites there are, the greater the population of lymphocytes,

i.e. the influence of parasite load on the number of lymphocytes is positive. Because of

this, we can summarize the two arrows in the diagram to the one increasing the influx of

lymphocyte population (g5). In terms of parameters this means

g7 = 0.

So the model has been reduced to 15 parameters.

Combination of the just mentioned parameter reduction strategies results in the six models

given in Tab. 3.
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Figure 7: Number of lymphocytes in control group (white, left bar), 103 parasites group (green,
middle bar) and 106 parasites group (orange, right bar). Data from C. Pou [1].

n◦ parameters all parameters outflow prop. outflow + influx prop.

all parameters 22 18 16

g7 = 0 21 17 15

Table 3: Number of parameters for different models. all parameters: original model without
simplifications, outflow prop.: variables directly proportional to their proper outflow (g2 = g8 =
g11 = g14 = 1), outflow + influx prop.: variables directly proportional to their proper influx
and outflow (g1 = g2 = g6 = g8 = g11 = g14 = 1), g7 = 0 : leaving out parasites’ influence on
degradation of lymphocytes.
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4.9 Dynamic Sensitivity Definition

Sensitivity of a parameter is the extent to which variable values change if the respective

parameter is perturbed on a small scale. It can be seen as a measure for the influence of

a parameter on model behavior.

The far-end aim of this work is to find pharmaceutical agents decreasing parasite load. In

order to identify crucial points where these could interact, we have to study the influences

of our model parameters on parasite load. It is supposed that drugs are able to change

both kinetic orders gi and rate constants γi.

The size of parameter perturbation is specified by a factor between 0.9 and 1.1 which is

multiplied with the parameter (thus representing changes of +/- 10% of the parameter).

The concept of dynamic sensitivity is explained by means of the rate constant for parasite

load generation, γ1. The components of the vector

[0.9, 0.92, 0.94, 0.96, 0.98, 1.02, 1.04, 1.06, 1.08, 1.1] (9)

are used as parameter coefficients. Because the considered parameter γ1 is directly pro-

portional to parasite load (see (4) in Section 4.4), factors smaller than one refer to less

parasite load with respect to the original value whereas factors higher than one refer to

an augmentation in parasite load.

Fig. 8 shows a graphical interpretation of dynamic parameter sensitivity with respect

to a variable: For an infinitesimal change in the system parameter, the absolute value

of sensitivity is the area between the original variable curve and the new variable curve

(”new” denotes the curve calculated using the infinitesimally changed parameter). The

sign of the sensitivity is positive if the area below the new curve is greater than that below

the original curve and negative if it is smaller.

A plot of change factor versus size of the area below the parasite load curve represents

the dynamic sensitivity of a parameter with respect to the variable. Interpolation e.g.

by splines is performed to yield a continuous line. The sensitivity of this parameter is

the value of this curve at abscissa 1 because we are interested in the question if variable

behavior changes significantly with infinitesimal perturbations of the original parameter

which correspond to coefficients near one.

Since the aim is to reduce parasite load in an effective way, our interest focuses on

sensitivities with respect to x1. Sensitive parameters are possible therapeutic targets.

For sensitivity analysis of parameters, we use the following algorithm:

1. Parameter values from simulation of the ”best” model are loaded and the integration

step size is specified.

2. The solution (i.e. approximation of variables by the model) is calculated using the

specified integration step size.

3. For each of the model variables (a)-(g) is executed:

(a) The area A1 between the original curve and the abscissa (absolute value) is

calculated using the trapezoidal method.
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Figure 8: Graphical representation of dynamic sensitivity. The continuous line shows the original
system dynamics, while the dotted one corresponds to the time course after an infinitesimal
change of parameter pk. The gray area represents the absolute value of sensitivity.
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(b) One of the parameters is multiplied with a factor between 0.9 and 1.1, the rest

of the parameters do not change their values.

(c) The area A2 between the new curve and the abscissa (absolute value) is calcu-

lated using the trapezoidal method.

(d) The area D between the original and the new curve is calculated using the

trapezoidal method.

(e) The sign of sensitivity is determined according to

sign = signum
A2 − A1

p2 − p1

,

whereby p1 means the original parameter value and p2 the disturbed parameter.

(f) Parameter sensitivity is calculated according to

sensitivity = sign · D
|p2−p1|
p1

.

(g) Steps (a) to (f) are repeated for all coefficients in (9).

4. Data of factors versus sensitivities are interpolated using cubic spline interpolation.

5. The dynamic sensitivity of the parameter is the interpolated value at factor=1.

6. Maximal minus minimal sensitivity in the interval [0.9 · parameter, 1.1 · parameter]
yields a measure for the error.

7. Sensitivities and errors for all parameters and variables are represented in an image

scan.

As an alternative to (9) any vector containing values in [1 − ε, 1 + ε]\{1}, can be used

whereby x=1 is excluded because this would yield division by zero in (3e) and (3f).

The area between the two curves calculated in (3d) is used as a measure of change in

model behavior after infinitesimal change of a parameter value, thus indicating the influ-

ence of the respective parameter on the considered variable.

According to (3e) positive sensitivity means direct proportionality of parameter change

and change of the area below the curve. This means that if the parameter increases,

the area below the curve augments which means an increase in the sum of all values of

the respective variable. If the parameter decreases, the area below the curve is reduced

which means diminishment of the sum of all values of the respective variable. In the same

way negative sensitivity stands for indirect proportionality. A sensitivity of zero means a

change of the parameter does not have any influence on the sum of values of the respective

variable.

The denominator in (3f) expresses the relative change of the parameter value. The whole

fraction expresses the change in variable behavior with respect to a small change in the

parameter value. This is the definition of sensitivity.

An interpolation method has to be used since we are interested in sensitivity at the origi-

nal parameter value (factor=1) but formula (3f) would yield 0
0

at factor=1 (no change in

parameter, original curve).
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A high absolute value of sensitivity means that a small change in the respective parameter

is enough to change the variable curve significantly. In contrast, a sensitivity value near to

zero signifies that variable values almost stay the same despite small parameter changes.

Thus, the higher the sensitivity’s absolute value, the more influential a parameter is con-

sidered.

As alternative to the area between curves, the difference in terms of mean, median, max-

imum or final value could be used as a measure for the ”change” in model behavior.

4.10 Optimization Algorithm

Minimization of parasite load is tried changing the value of kinetic constants gi and rate

constants γi. Only one of the parameters is changed at a time whereas the others maintain

their values. The parameter is successively multiplied with factors 0.1 · n, whereby n ∈ N
is increased as long as the parameter is in its range [0,3] (gi) or [0,10] (γi), respectively.

For each factor, solutions are calculated according to equations (4). Mean, maximal and

final parasite load serve as measures of effectiveness of the parameter change. All three

values are used because the mean parasite load is reflecting the average severity of the

disease, the maximal value is supposed to have a certain limit according to the maximal

number of parasites the organism is able to bear and the final parasite load represents the

final outcome of the disease or treatment. The latter is considered the most important

reference value since it represents healing or non-healing. A possible optimization strategy

would be to set a limit for maximal parasite load, representing the highest parasite load

the organism is able to handle, and minimize final parasite load within a certain time

span.

Moreover the derivative of parasite load has to be born in mind. Treatment should lead

to a decrease in parasite load i.e. the gradient of parasite load should be negative in the

end.

Furthermore, optimization changing two parameters simultaneously is performed. For

this analysis, the parameters yielding the lowest final parasite load (i.e. a parasite load

lower than 2) in one-dimensional optimization are chosen and up- or downregulated by

division by 10 and multiplication with 10, respectively, depending on if they were up-

or downregulated in one-dimensional-optimization. In every case, kinetic constants are

maintained in the range [0, 3]. Final, maximum and mean parasite load are determined

whereby final parasite load and parasite load gradient are considered the crucial measures

for effectiveness of the respective parameter change. Finally, these results are compared to

results of a systematic 2D-optimization (i.e. optimization changing all pairs of parameters)

by B. Wimmer [54].
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5 Results

In this section the best models are presented together with the best sets of parameters.

Special focus is put on the identification of relevant parameters and their biological sig-

nificance and interpretation. Moreover, sensitive parameters are chosen and using them,

strategies for the minimization of parasite load are investigated. The latter yield new

ideas for the design of drugs against Leishmania.

5.1 Model Selection

parameters 22 18 16 21 17 15

iterations 38 95 100 100 100 100

objective function 0.1412 0.1962 0.4701 0.3963 0.4652 0.7557

execution time (h) 3.06 8.18 9.85 1.38 22.68 19.52

computer 1 1 1 2 2 2

Table 4: Comparison of the six models given in Tab. 3 (Section 4.8) in terms of the number
of iterations, objective function value, maximal error between interpolated and model data as
well as execution time. The stopping criterion is fobj < 0.2. Computer 1: Intel(R) Core(TM)2
Duo CPU, E7400 @ 280GHz, 2.80GHz, 1.96GB de RAM with Matlab 7.1, computer 2: Intel(R)
Core(TM)2 CPU, T6400 @ 2.00GHz, 1.99GHz, 1.99GB RAM with Matlab R2007a. Parameter
ranges are [0,3] for gi (kinetic orders) and [0,10] for γi (rate constants).

Out of the models proposed in Tab. 3 (Section 4.8), we choose the one that reflects

best experimental data. In order to do this, we make use of model selection strategy 3

introduced in Section 4.6 (i.e. performing 100 iterations and selecting the simplest model

with fobj < 0.2).

Tab. 4 shows results obtained for the six models.

Models that meet fobj < 0.2 are the model with outflow proportional to variable value (18

parameters) and the model with 22 parameters. Since the aim is to choose the simplest

model that reflects data sufficiently well, the 18-parameter-model is considered as the

best one in the first place. However, in order to study the influences of all parameters,

the 22-parameter-model is further investigated, too, and a comparison between the two

models is done.

As a next step, we use the model’s parameters and their standard deviation to construct

individual parameter ranges. The latter consist in the parameters of the best model +/-

their standard deviation. Simulations are done on the 18- and the 22-parameter-model. In

order to provide generality of the model, the unit subset of the parameter ranges of both

models, restricted to their maximal parameter ranges, [0,2] and [0,3] for kinetic orders

and [0,10] for rate constants, respectively, is used:

([g18 − σg18 , g18 + σg18 ] ∪ [g22 − σg22 , g22 + σg22 ]) ∩ [0, 2] (10)

or
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([g18 − σg18 , g18 + σg18 ] ∪ [g22 − σg22 , g22 + σg22 ]) ∩ [0, 3], (11)

and

([γ18 − σγ18 , γ18 + σγ18 ] ∪ [γ22 − σγ22 , γ22 + σγ22 ]) ∩ [0, 10] (12)

whereby g18 and g22, respectively γ18 and γ22 denote the best parameters from the 18- and

22-parameter-model, respectively, and the respective σ their standard deviations within

all iterations.

Simulation is iterated until fobj < 0.2.

The following two models yield the best results:

• 18-parameter-model using the unit subset of parameter ranges restricted to g ∈ [0, 2]

(10), (12) and

• 22-parameter-model using the unit subset of parameter ranges restricted to g ∈ [0, 2]

(11), (12).

In conclusion, the 18-parameter-model using the subset of individual parameter ranges

of the 18- and 22-parameter-model restricted to g ∈ [0, 2] i.e. (10), is considered the

best model (fobj = 0.0704), whereas the most general model i.e. the model using the

least a-priori-knowledge, is the 22-parameter-model with g ∈ [0, 3]. These two models

are investigated in the following. They are simulated with 1000 iterations, whereby pa-

rameter ranges are (10) and (12) for the 18-parameter-model and (11) and (12) for the

22-parameter-model.

5.2 18-Parameter Model: Degradation Directly Proportional to

Variable

This section provides an analysis of the 18-parameter-model including identification of

key parameters, sensitivity analysis and optimization with the aim of minimizing parasite

load.

After 1000 iterations and an execution time of 96.42 hours the genetic algorithm yields

an objective function value of 0.0517 for this model. The maximal absolute error between

interpolated data and model data is 0.5828.

Fig. 9 and Fig. 10 represent the size of rate constants and kinetic coefficients, respectively,

by means of bar plots.

Plots of data and model prediction of the four model variables are given in Fig. 11.

To check feasibility of the model we apply the model with the same parameters to data

of the 106 parasites group. This yields an objective function value of 0.1973 (in contrast

to 0.0517 for the 103 parasites group). Plots are given in Fig. 12.
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Figure 9: Size of rate constants resulting from parameter estimation with parameter ranges (10)
and (12) in the 18-parameter-model (outflow proportional to variable), 1000 iterations.

Figure 10: Size of kinetic constants resulting from parameter estimation with parameter ranges
(10) and (12) in the 18-parameter-model (outflow proportional to variable), 1000 iterations.
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Figure 11: Experimental data of the 103 parasites group (points) and model approximation (line)
in 18-parameter-model (outflow proportional to variable), parameter ranges (10) and (12), 1000
iterations. I represents the standard deviation of experimental data.

parameter value parameter value

γ1 0.16884464 g4 0.08101011

γ2 0.04320366 g5 1.45712004

γ3 7.73529493 g6 0.02273563

γ4 6.77372398 g7 1.00487798

γ5 6.74165524 g8 1

γ6 8.31217464 g9 1.84130268

γ7 4.36878533 g10 0.04564140

γ8 5.75473286 g11 1

g1 0.53341135 g12 1.94380751

g2 1 g13 0.18999831

g3 0.04628653 g14 1

Table 5: Parameter values for outflow-proportional-to-variable-model (18-parameter-model),
considered as most appropriate model, using the genetic parameter estimation algorithm with
1000 iterations and individual parameter ranges for each gi and γi i.e. (10) and (12). Data
correspond to an objective function value of fobj = 0.0517.
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Figure 12: Experimental data of the 106 parasites group (points) and model approximation
(line) in 18-parameter-model (outflow proportional to variable), parameters estimated using
data of the 103 parasites group, parameter ranges (10) and (12), 1000 iterations. I represents
the standard deviation of experimental data.
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Figure 13: Parameter sizes in the 18-parameter-model. Yellow: gi = 1 (g2, g8, g11, g14); dark
green: gi > 1 (g5, g7, g9, g12, g13); gray: 0.1 < gi < 1 (g1); dashed: gi < 0.1; red: γi > 4
(γ3, ..., γ8); black: γi < 1 (γ1, γ2).

5.2.1 Significant Parameters

Fig. 13 shows the model, indicating parameter influence with different arrow line types

and colors.

Interestingly, γ1 and γ2 which correspond to parasite proliferation and degradation, respec-

tively, are the smallest rate constants, equating 0.1688 and 0.0432 respectively, whereas

for all the other rate constants 4.36 < γi < 8.32 holds, which means that they have a

much higher influence.

g3 and g4 which are directly related to degradation of parasites, are not of significant size

(i.e. < 0.1). Moreover, the number of lymphocytes is rather dependent on parasite load

(g5, g7) than on its proper value (g6): g5 > g6, g7 > g6.

IgG2a does not seem to have an influence on the rest of the variables: Its influences on

the other variables (g4, g10) have an absolute value smaller than 0.1. Interestingly, g5 and

g7 i.e. the parasite load’s influence on production and degradation of lymphocytes are

both significant (i.e. > 1), whereby g7 i.e. the influence of parasite load on degradation

of lymphocytes nearly equals one (1.0049) indicating that degradation of lymphocytes

is directly proportional to parasite load. Setting g7 = 1 would yield a model with 17

parameters.

The highest kinetic orders correspond to the lymphocyte population’s influence on pro-

duction of IgG1 and IgG2a. This result stresses the high importance of immunoglobulins

in disease progression.
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Figure 14: Parameter sensitivities in the 103 parasites group, 18-parameter-model.

5.2.2 Sensitivity Analysis

The algorithm introduced in Section 4.9 is now applied to the parameters of the

18-parameter-model with 1000 iterations (see Tab. 5 for parameter values) in order to

identify the parameters having the highest influence on parasite load.

In the model scheme (Fig. 6, 13) we can see that the parameters γ1, γ2, g1, g2, g3 and g4

have a direct influence on parasite load.

Sensitivities are denoted as follows: S(gi, xj) is the sensitivity of parameter gi with

respect to the variable xj.

A graphical representation of the sensitivities of all parameters with respect to all

variables is provided in Fig. 14 (see Fig. 6, 13 for the meaning of parameters). The

deviation of parameter sensitivities in the interval [0.9 1.1] is used as a measure for the

error of parameter sensitivity values. Errors of sensitivities with respect to parasite load

are between 0.0002 (S(g4, x1)) and 0.2457 (S(g1, x1)) with a median of 0.01225. For the

other three variables sensitivity error medians are 0.00895 (x2), 0.02865 (x3) and 0.0199

(x4), respectively.

All obtained sensitivities have absolute values between 0.00004 (S(g10, x2) = sensitivity
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of g10 with respect to the number of lymphocytes) and 1.8358 (S(g1, x1) = sensitivity

of g1 with respect to parasite load). The median of absolute values of sensitivities is

0.0671 which signifies high robustness of the model. The mean of absolute sensitivities

is 0.3541. The difference between median and mean favors the existence of outliers i.e.

few parameters have high sensitivities (sensitivity> 1 for γ1, γ3, γ4, g1, g5) whereas most

parameters yield small sensitivities.

For each variable, the sensitivity with greatest absolute value, indicating the parameter

with highest influence on this variable corresponds to the variable at which the cor-

responding arrow is pointing in the model scheme except for the parameters directly

influencing the number of lymphocytes (γ3, γ4, g5, g6, g7 and g8). The latter show higher

sensibilities for IgG1 than for the number of lymphocytes. This indicates that a change

in the mentioned parameters is more likely to produce a change in immunoglobulin levels

than in the number of lymphocytes i.e. that the amount of lymphocytes is more stable

than immunoglobulin levels. This is reasonable because the IE includes all types of

lymphocytes, which is supposed to be more general and thus more stable than expression

of specific immunoglobulins.

Whereas rate constants γi are proportional to variable values i.e. a change in γi is directly

related to a change in the variable it is influencing, kinetic parameters gi represent

influences among variables but do not implicate changes in variable values. An increase

in g9 for example does not necessarily cause an increase in IgG1 because it could be the

case that IgG1 outflow is greater than IgG1 influx due to other parameters, or that IgG1

is decreased by greater g9 because its value is less than one. An increase in g9 just means

that the influence of lymphocytes on IgG1 production increases. A positive/negative

sensitivity is therefore not directly related to direct/indirect proportionality of two vari-

ables, but to proportionality of one parameter (representing an influence) and one variable.

Our interest focuses on sensitivities with respect to parasite load, since this is the variable

desired to be reduced by drugs. Fig. 15 shows the model, using different colors for

parameters according to their sensitivities.

Sensitivities with respect to parasite load: S(gi, x1), S(γi, x1)

Using a cutoff-value of one for significance, significant parameters for parasite load are γ1

(positive sensitivity) and g1 (negative sensitivity). This result signifies that generation of

parasites is directly proportional to parasite load and the higher the influence of parasites

on their own degradation, the lower parasite load.

The sensitivity of γ2 (corresponding to parasite degradation) on parasite load is much

lower than that of γ1, namely -0.2958 in contrast to S(g1, x1) = 1.8358. The influence of

parasite load on its proper degradation (g2) yields a sensitivity of S(g2, x1) = 0.1186. All

the other parameters yield sensitivities with absolute values of less than 0.1 for parasite

load.

Other sensitivities

On average, sensitivities of parameters with respect to the other three model variables
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Figure 15: Parameter sensitivities with respect to parasite load in the 18-parameter-model: Dark
green: S(γi, x1) > 1 (γ1); light green: 0.1 < S(gi, x1) < 1 (g2); orange: −1 < S(γi, x1) < −0.1
(γ2); red: S(gi, x1) < −1 (g1); dashed, black: |S(., x1)| < 0.1.

are higher than sensitivities on parasite load: The mean absolute value of sensitivity

with respect to parasite load is 0.1840, whereas the mean absolute value of sensitivity

with respect to lymphocytes is 0.2503, to IgG1 0.5153 and to IgG2a 0.4668. This means

that facing an infinitesimal change in one of the model parameters, on average parasite

load is more robust than the population of lymphocytes which in turn is more robust

than the amount of immunoglobulins.

With respect to the other three variables, significant parameters are above all those that

have a direct influence on the respective variable. However, sensitivity analysis (Fig. 14)

yields some interesting results:

The parameter with the highest sensitivity is γ1 which yields sensitivities between 0.9030

(with respect to lymphocytes) and 1.8358 (with respect to parasite load) for all variables.

Since the fundamental model variable (representing severity of the disease) is parasite

load, and its input is directly related to γ1, this result is obvious. An augmentation of γ1

corresponds to an augmented parasite load which yields a higher immune response, thus

augmenting the value of all variables. A lower value of γ1 i.e. a decrease in parasite load

provokes a lower immune response thus decreasing the values of all variables.

g1, the influence of parasite load on its own generation, has a negative sensitivity with

respect to all parameters. This means that the more parasite load is stimulating its

proper influx, the lower the immune response, but also the lower parasite load.

Sensitivities with respect to the number of lymphocytes: S(gi, x2) and S(γi, x2)

There are no sensitivities with absolute value greater than one with respect to the number
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of lymphocytes (x2). This suggests that the variable is stable facing small changes of

parameters.

Sensitivities with respect to IgG1: S(gi, x3) and S(γi, x3)

For all of the sensitivities with respect to IgG1 |S(gi, x3)| > |S(gi, x2)| and

|S(γi, x3)| > |S(γi, x2)| hold and 17 of 22 parameters yield the same sign in sensi-

tivity corresponding to lymphocytes and IgG1. Only γ8, g9, g10, g11 and g12 yield different

signs. These are parameters directly influencing either IgG1 or IgG2a. This kind

of similarity between sensitivities of lymphocytes and immunoglobulins is reasonable

because immunoglobulins are produced by lymphocytes.

γ1, γ3, γ4, g1 and g5 yield sensitivities with absolute values greater than 1. Positive

sensitivity S(γ1, x3) means that the higher γ1, thus the more parasites are produced,

the higher the IgG1 level. γ3 and γ4 are proportional to lymphocyte proliferation and

degradation, respectively. It is interesting that these are more sensitive to IgG1 than γ5

and γ6, corresponding to influx and outflow of IgG1. Also none of the kinetic parameters

gi directly influencing IgG1 yields a significant (> 1) sensitivity with respect to x3 which

indicates that influence of parasite load- and lymphocyte-related parameters is higher

than influences directly related to IgG1 like its inhibition by IgG2a.

Sensitivities with respect to IgG2a: S(gi, x4) and S(γi, x4)

IgG2a yields the same significant (> 1) sensitivities as IgG1. Like IgG1 it is produced

by lymphocytes but in contrast to IgG1, IgG2a is able to detect the parasite and act as

a marker (see Section 4.4). The fact that significant sensitivities with respect to IgG1

and IgG2a have the same sign suggests that their expression is up- and downregulated

accordingly.

5.2.3 Optimization

For optimization, the algorithm presented in Section 4.10 is used. Whereas sensitivity

analysis investigates reaction of the model to infinitesimal changes, optimization refers

to changes on a larger scale.

The aim is to find the most effective parameters for minimization of parasite load.

These parameters shall be changed by pharmaceuticals in order to heal the disease.

Pharmaceuticals are supposed to be able to change kinetic parameters gi and rate

constants γi.

Section 5.2.2 yields γ1 and g1 as the most influential parameters on parasite load.

These parameters are supposed to be the most feasible for optimization. However, since

sensitivity analysis refers to factors around one whereas optimization refers to factors of

up to 100, the latter could consider different parameters to be feasible. In the following,

parameters will be changed one by one and the most effective ones to minimize parasite

load will be chosen. Subsequently, it is tried to find pharmaceutical agents that change

these parameters.
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Kinetic Orders

g1 is negatively sensitive to parasite load which means that augmentation of g1 causes a

decrease in the number of parasites. In order to maintain it in the range [0,3] its value is

augmented until it reaches the upper limit 3.

parasite load 0.1 · nfinal final 0.1 · nmax maximal 0.1 · nmean mean

g1 5.6 4.48256E-07 2.1 0.000001000 5.6 6.87165E-07

g2 3 1.667032487 3 1.667032487 0.5 0.692322337

g3 64.8 1.578499851 64.8 1.578499851 64.8 0.785303725

g4 37 1.663950171 37 1.663950171 37 0.845514882

g5 2 2.312166691 2 2.312166691 0.1 0.825555051

g6 45.1 0.004074094 43 1.486163502 44.6 0.611352966

g7 0.1 2.351514887 0.1 2.351514887 2.9 0.85072119

g8 0.2 2.226298661 0.2 2.226298661 2.1 0.866837037

g9 0.2 2.373430506 0.2 2.373430506 1.6 0.867753344

g10 9.5 2.374781935 9.5 2.374781935 6.5 0.868539562

g11 1.9 2.37421382 1.9 2.37421382 0.2 0.860540859

g12 1.5 2.360407849 1.5 2.360407849 0.1 0.864744016

g13 15.7 2.363380862 15.7 2.363380862 15.7 0.827862499

g14 0.4 2.373807119 0.4 2.373807119 2.4 0.862851656

Table 6: Lowest values for final, maximal and mean parasite load, using parameters gi · 0.1 · n
in the range [0,3], 18-parameter-model.

Tab. 6 and Fig. 16 show the best (i.e. lowest) values for mean, maximal and final value

of parasite load, multiplying kinetic constants gi with a factor ≥ 0.1, while maintaining

them in the range [0,3]. After the change all parameters yield a lower final parasite load

than the original one.

Among all the coefficients 0.1 · n for gi, the one yielding the lowest value for mean,

maximal and final parasite load, respectively, is chosen. n does not have to be the same

for mean, maximum and final value with respect to one parameter. Some variables

show e.g. a decrease in final parasite load and maximum with increasing coefficients,

whereas the mean parasite load increases with increasing coefficients. In this case the

highest coefficient is chosen for final and maximal parasite load, whereas the smallest

one is chosen for mean parasite load. For g2, g6, g8, g11 and g14 smaller ranges ([0.5,3],

[0,1.03], [0.2,3], [0.2,3], [0.2,3]) are used because parameter values outside these ranges

yield complex solutions of the system of equations.

The smallest values of parasite load are reached controlling g1. Out of the rest of the

parameters g6 yields the least parasite load.

Changing g1

Among all kinetic constants gi, g1 is the one with the highest absolute value of sensitivity
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Figure 16: Lowest maximal (white, left axis), final (black, left axis) and mean (gray, right axis)
parasite load for kinetic parameters gi and rate constants γi after multiplication with a factor
∈ [0.1, 3

gbest
] (for gi) or a factor ∈ [0.1, 10

γbest
] (for γi), respectively, whereby gbest and γbest denote

parameter values estimated in the 18-parameter-model with 1000 iterations.
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Figure 17: 18-parameter-model: left: Augmentation factor of g1 versus maximal = final value
of parasite load, right: augmentation factor of g1 versus mean parasite load.

(see Fig. 14). Due to the model scheme (Fig. 6, 13), g1 is the influence of parasites on

their proper proliferation. Tab. 6 shows that g1 is capable to reduce parasite load to a

final value of 4.48 · 10−7, a maximal value of 10−6 and a mean value of 6.87 · 10−7 in a

period of 24 weeks after infection. This result is obtained by multiplication of g1 with

5.6, thus if its value is elevated to a value of 2.9871. (Its original value from parameter

estimation is 0.5334.)

Fig. 17 shows a plot of the coefficient of g1 (0.1 until 5.6) versus mean, maximal and final

parasite load. Sensitivity S(g1, x1) of g1 with respect to parasite load is negative (Fig.

14), so an increase in g1 should lead to a decrease in parasite load. For the mean parasite

load (considering a time period of 24 weeks) this is true. In sensitivity analysis we

basically investigate the sum of all variable values, which is equivalent to considering the

mean. Therefore negative sensitivity corresponds to a decrease in mean with increasing

coefficients. In contrast, maximum and final value of parasite load are monotonic only in

a certain range for g1, namely [0.7, 3]. For g1 ∈ [0, 0.6] the maximum and final value of

parasite load are increasing for increasing g1, whereas mean parasite load is decreasing.

This means given that g1 ∈ [0, 0.6] parasite load reaches a higher maximum, but on

average values are lower.

As stated above, minimal values for final parasite load are reached at a g1 of 2.9871.

Fig. 18 shows the progression of parasite load during a time period of 24 weeks for this

parameter value. Decrease in parasite load corresponds to healing which means feasi-

bility of g1 as therapeutic target. Parasite load decreases nearly linearly with respect to g1.
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Figure 18: Parasite load over time for g1 = 2.9871 (minimal final parasite load) and remaining
parameters like in Tab. 5.

Changing g6

g6 stands for the influence of lymphocytes on their proper production. It seems surprising

that g6 yields good results in optimization despite its sensitivity with respect to parasite

load of 0.0004. However, g6 has a small original value (resulting from the 18-parameter-

model with 1000 iterations) of 0.0227. Therefore it can be multiplied by factors of up to

131.9, remaining in the range of [0,3]. This high variability of the parameter is probably

the reason for its high potential to reduce parasite load. Using a multiplication factor

of 45.1, thus a g6 of 1.0254, yields a final parasite load of 0.0041. The lowest maximal

parasite load (1.4862) is reached using g6 = 0.9776 (43 times the original g6); the lowest

mean parasite load is yielded by g6 = 1.0140 which corresponds to multiplication of the

original g6 with 44.6.

Fig. 19 shows a plot of the augmentation coefficient of g6 versus parasite load. Whereas

the final parasite load is monotonically decreasing with increasing g6, maximal parasite

load is decreasing only until a g6 multiplication factor of 43, whereas greater factors yield

a higher final parasite load. The mean parasite load is not monotonic either with respect

to g6.

Fig. 20 shows progression of parasite load over time using values for g6 which minimize

final, maximal and mean parasite load, respectively. In all three cases, parasite load

augments at the beginning, reaches its maximum after 18 to 20 weeks, and decreases

afterwards. Parasite load that is decreasing towards the end corresponds to healing.

The g6 optimizing mean parasite load yields a final parasite load of 1 (which because

of normalization corresponds to the mean) and therefore is not considered feasible for a

treatment period of 24 weeks. However, it may yield lower parasite load over a larger

time period.

The small sensitivity of g6 results from the fact that the gradient of coefficient versus

mean parasite load is nearly zero at x=1. This shows the different significance of sensi-
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Figure 19: 18-parameter-model: left: Augmentation factor of g6 versus maximal respectively
final value of parasite load, right: augmentation factor of g6 versus mean value of parasite load.

Figure 20: Parasite load over time for g6 = 0.0254 (minimizing final parasite load, factor=45.1,
blue), g6 = 0.9776 (minimizing maximal parasite load, factor=43, green) and g6 = 1.0140 (min-
imizing mean parasite load, factor=44.6, magenta), respectively, as well as real data (points).
Remaining parameters like in Tab. 5.
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parasite load 0.1 · n final maximal mean end gradient

γ1 0.1 0.019493325 0.019493325 0.006844242 1.73E-05

γ2 100 0.00170651 0.00170651 0.001579836 -1.36E-07

γ3 1.2 2.34206245 2.34206245 0.859497942 1.84E-03

γ4 0.1 1.93189199 1.93189199 0.760880972 0.001276251

γ5 0.1 2.338070643 2.338070643 0.858133141 0.001835432

γ6 1.2 2.372377656 2.372377656 0.867377879 0.001885131

γ7 2.2 2.303201305 2.303201305 0.849222174 0.001792951

γ8 0.1 2.175910702 2.175910702 0.815925481 0.001619941

Table 7: Lowest values for final, maximal and mean parasite load and difference between the
last two estimations for parasite load (”end gradient”), using parameters γi · 0.1 · n in the range
[0,10], 18-parameter-model.

tivity analysis compared to optimization: Since the range is much wider in optimization,

a parameter can have a high influence if augmented sufficiently, despite a sensitivity of

nearly zero.

S(g6, x1) has an error of 0.0004 which is 100% of the parameter value and due to the

small derivative at factor=1.

Optimization yields two extreme cases:

• Augmentation of g1 decreases parasite load constantly right from the beginning (see

Fig. 18). This behavior is similar to the body’s innate immune response which

is non-specific and fast: Lymphocytes check macrophages randomly in order to

identify parasites inside them.

• On the contrary, augmentation of g6 could refer to the specific immune response

which is slower but more effective. In this process, lymphocytes identify specific

pathogens with the help of antibodies. There is a time lag between the start of

immune response and the identification of parasites, but once identified, the parasite

is eliminated rapidly. Thus parasite load is augmenting in the beginning until it

reaches a certain point where it is suddenly decreased (see Fig. 20).

Rate Constants

Concerning rate constants γi, γ1 is considered sensitive to parasite load. This section

investigates changes in all rate constants, one at a time, varying them within the range

[0,10] by multiplying them with factors 0.1 · n, whereby n ∈ N and n ≤ 10
γbest

.

Tab. 7 and Fig. 16 show final, maximal and mean parasite load for the respective n

where their minimum is reached. After change, all parameters yield a lower final parasite

load than the original one.

The variable yielding the minimum for final, maximal and mean parasite load is γ2 i.e.

the rate constant for parasite degradation.

Due to the model it would be expected that γ1 and γ2 are the most feasible variables for
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Figure 21: 18-parameter-model: Parasite load over time for original γ2 (continuous line), 10
times augmented γ2 (alternating dots and dashes) and 100 times augmented γ2 (thick line,
almost zero) and experimental data (dots) with interpolation (dotted line). I represents the
standard deviation of experimental data within the group of mice.

optimizing parasite load, since they represent generation and degradation of parasites,

respectively.

Our analysis shows that γ2 is the most feasible parameter to decrease and clear parasite

load, which implies that influencing γ2 is more feasible than influencing γ1. Mathemati-

cally, this is probably due to the fact that γ2 can be multiplied by a wide range of factors

while still remaining in the range [0,10]. Sensitivity analysis yielded γ1 as the most

influential parameter, but sensitivity analysis considers changes around a coefficient of

one whereas in optimization coefficients of up to 100 were used for γ2.

Fig. 21 shows a plot of γ2, augmented by a coefficient of 1, 10 and 100, respectively,

with respect to the original value. Fig. 22 shows that diminished γ1 yields a far lower

parasite load than originally obtained, which is logical since γ1 represents parasite

influx. However, also with diminished γ1 parasite load is increasing over the whole

time interval, but its final value is 0.0195 instead of 2.4359 which was originally obtained.

Summing up, g1, g6, γ1 and γ2 are considered the most feasible anti-Leishmania therapeutic

targets. Other parameters that diminish final parasite load significanltly (to a value < 2)

are g2, g3, g4 and γ4.
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Figure 22: 18-parameter-model. Upper: Parasite load over time for γ1 multiplied by a factor
of 0.1 with respect to the original value (line) and experimental data (points). Lower: Parasite
load over time for γ1 multiplied by a factor of 0.1 with respect to the original value.
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5.3 22-Parameter Model

In addition to the 18-parameter-model selected in Section 5.1 and analyzed in Sections

5.2.1 to 5.2.3, the 22-parameter-model with parameter ranges (11) and (12) is analyzed.

This model represents the most general case, using all parameters without assuming a-

priori-knowledge.

parameter value parameter value

γ1 0.127106222 g4 0.715699797

γ2 0.003132907 g5 0.891210814

γ3 8.422517763 g6 0.032316599

γ4 7.08422542 g7 0.060918958

γ5 4.954271405 g8 1.717637746

γ6 6.657315678 g9 2.759989786

γ7 7.323158228 g10 0.133600746

γ8 9.677579918 g11 1.480741078

g1 0.456662477 g12 2.876439055

g2 0.307580207 g13 0.150938502

g3 0.354307548 g14 1.836502565

Table 8: Parameters of the 22-parameter-model, 1500 iterations, parameter ranges (11) and
(12).

Parameter estimation is executed using the mentioned parameter ranges and 1500

iterations. After a computation time of 105.74 hours, the minimal value of the objective

function is 0.0444. As expected, this value is lower than that obtained from the

18-parameter-model with 1000 iterations (0.0517).

Tab. 8 shows the parameters obtained from 1500 iterations of the genetic algorithm.

Fig. 23 shows the model scheme whereby influences are marked with different colors

corresponding to the size of respective parameters. Plots of data and model prediction of

the four model variables are given in Fig. 24. Fig. 25 represents adjust for data from the

106 parasites group to the model with parameters obtained from data of the 103 parasites

group.

Model quality is checked applying the model using the parameters obtained from fitting to

experimental data of the 103 parasites group, on the initial conditions of the 106 parasites

group. The resulting value of the objective function is 0.2167 (in contrast to 0.0444 for

the 103 parasites group, 22-parameter-model). Thus the 18-parameter-model yields an

even better fit for experimental data of the 106 parasites group (fobj = 0.1973).

5.3.1 Significant Parameters

As in the 18-parameter-model, we now study parameter values in detail in order to find

out which influences are important in our model.
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Figure 23: Size of parameters in the 22-parameter-model. Dark green: g > 1 (g8, g9, g11, g12, g14),
gray: 0.1 < g < 1 (g1, g2, g3, g4, g5, g10, g13); dashed: g < 0.1, red: γ > 4 (γ3, ..., γ8), black: γ < 1
(γ1, γ2).

Concerning kinetic parameters the 22-parameter-model yields the following:

All parameters gi directly related to parasite load are smaller than 1 which means that

they have a minor influence on disease progression. This is an interesting result because

we assumed parasite load to be the crucial variable for disease progression. The model

yields that the latter depends to a greater extent on the immune response than on the

number of parasites injected. On the contrary, the 18-parameter-model (see Fig. 13)

considered influence of parasite load on both proliferation (g5) and degradation (g7) of

lymphocytes as significant. Since g5 and g7 are opponents, this could be a defect of the

model yielding two different solutions with similar fit. In this case it would be interesting

to investigate the model with g7 = 0 in order to see if both models yield a similar value

for g5. However, both the 18- and the 22-parameter-model assume that g5 has a higher

influence than g7 which corresponds to the fact that a higher parasite load leads to an

elevated number of lymphocytes (see Fig. 7). This fact is stressed by the small value of

g7 = 0.0609 in the model with 22 parameters.

In both models, influence of lymphocytes on their own production (g6) yields a value

smaller than 0.1 (0.0227 and 0.0323 in the 18- and 22-parameter-model, respectively).

Lymphocyte number is therefore rather controlled by parasite load than by itself.

Parameters g9 and g12 which represent the influence of lymphocyte number on generation

of the antibodies IgG1 and IgG2a have a value > 1 in both models, signifying that these

influences are important for disease progression.

All parameters except for parasite load have a significant influence on their proper degra-

dation. Influence of parasites on their own degradation is minor - degradation of parasites

is also influenced by the population of lymphocytes and IgG2a.

Inhibition of IgG1 by IgG2a (g10) and vice versa (g13) is minor than stimulation of an-
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Figure 24: Experimental data of the 103 parasites group (points) and model approximation
(line) in 22-parameter-model, parameter ranges (11) and (12), 1500 iterations. I represents the
standard deviation of experimental data.
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Figure 25: Experimental data of the 106 parasites group (points) and model approximation (line)
in 22-parameter-model, parameters estimated using data of the 103 parasites group, parameter
ranges (11) and (12), 1500 iterations. I represents the standard deviation of experimental data.
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x1(18) x1(22) x2(18) x2(22) x3(18) x3(22) x4(18) x4(22)

γ1 1.8358 1.5952 0.9030 0.8196 1.4794 1.2932 1.2475 1.0634

γ2 -0.2958 -0.0255 -0.1284 -0.0118 -0.2285 -0.0201 -0.1894 -0.0161

γ3 -0.0507 -0.0213 0.8822 0.5256 1.4619 0.8288 1.2300 0.682

γ4 0.0491 0.0195 -0.8674 -0.5224 -1.4454 -0.8233 -1.2149 -0.6767

γ5 0.0077 0.0009 0.0063 0.0004 0.8579 0.5583 -0.1463 -0.0456

γ6 -0.0069 -0.0011 -0.0053 -0.0005 -0.8471 -0.5492 0.1452 0.0446

γ7 -0.0268 -0.011 -0.0138 -0.0048 -0.0612 -0.0492 0.7739 0.4441

γ8 0.0017 0.0129 -0.0034 0.0054 0.0404 0.0487 -0.7796 -0.441

g1 -1.4777 -1.1333 -0.8704 -0.699 -1.2613 -0.9636 -1.0911 -0.8327

g2 0.1186 0.0058 0.0729 0.0037 0.1043 0.005 0.0907 0.0043

g3 0.0023 0.0019 0.0013 0.0012 0.0019 0.0016 0.0016 0.0014

g4 0.0087 0.007 0.0051 0.0043 0.0076 0.0061 0.0065 0.0052

g5 0.0254 0.0146 0.8356 -0.3254 1.2157 0.4402 1.0341 0.3793

g6 0.0004 0.0001 0.0068 0.0064 0.0110 0.0093 0.0093 0.0078

g7 -0.0171 -0.0008 -0.5443 0.0231 -0.8212 -0.03 -0.6975 -0.0259

g8 0.0172 0.0054 -0.3006 -0.3385 -0.4854 -0.4868 -0.4072 -0.408

g9 -0.0351 0.027 -0.0108 0.0111 0.5232 0.5393 -0.1185 0.0158

g10 0.0001 0.0001 0.0000 0 -0.0170 -0.031 0.0031 0.0028

g11 0.0441 0.0059 0.0224 0.0027 -0.3988 -0.4011 0.1020 0.0714

g12 0.0089 0.0268 0.0062 0.0125 -0.0248 0.0104 0.5440 0.4571

g13 -0.0016 -0.0006 -0.0063 -0.0004 -0.0066 0.0032 -0.0792 -0.036

g14 -0.0173 0.0032 -0.0134 -0.0041 -0.0356 0.0308 -0.3579 -0.3619

Table 9: Sensitivities with respect to indicated model variable in the 18- and 22-parameter-
model.

tibody production by lymphocytes (g9, g12) in both models by a factor of more than 9.

This means that expression levels of the two antibodies depend to a much larger extent

on the number of lymphocytes than on each other.

5.3.2 Sensitivity Analysis

As for the 18-parameter-model, sensitivity of all 22 parameters will be studied using the

algorithm introduced in Section 4.9. Results for sensitivity analysis are compared to those

obtained from the 18-parameter-model.

Tab. 9 provides sensitivity values for all parameters with respect to all variables in the 18-

and 22-parameter-model. Fig. 26 graphically represents sensitivities in the 22-parameter-

model.

Parameter sensitivities are similar to those in the 18-parameter-model. Maximum, mini-

mum, mean and median of the absolute difference in sensitivities between the two models

are shown in Tab. 10. For parasite load, the mean deviation between the two models is

only 0.0567 and the median even 0.0161. This shows high robustness of the model: If

a parameter is changed infinitesimally, model behavior changes slightly (small absolute
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Figure 26: Parameter sensitivities in the 22-parameter-model.

sensitivities parasite load lymphocytes IgG1 IgG2a

min. 0 0 0.0003 0.0002

max. 0.3444 1.161 0.7912 0.6716

mean 0.0567 0.1364 0.1991 0.1949

median 0.0161 0.0145 0.0508 0.1007

Table 10: Minimum, maximum, mean and median of absolute difference in sensitivities between
the 18- and 22-parameter-model.
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Figure 27: Parameter sensitivities with respect to parasite load in the 22-parameter-model: Dark
green: S(γi, x1) > 1 (γ1); red: S(gi, x1) < −1 (g1); dashed, black: |S(., x1)| < 1.

sensitivity), whereby this change in model behavior is fairly independent of parameter

reduction in the model (similar sensitivities in 18- and 22-parameter-model).

On average absolute values of sensitivities are smaller than in the 18-parameter-model.

In the latter, the median of absolute values of sensitivities is 0.0671 in contrast to 0.0198

in the 22-parameter-model. Also the mean of 0.2204 is lower in the 22-parameter-model

than in the 18-parameter-model (0.3541). This shows a higher robustness of the model

with 22 parameters.

Fig. 27 shows the model scheme indicating sensitivity values with respect to parasite load

with different colors.

Like in the 18-parameter-model, considering sensitivities with absolute value greater than

1 as significant, γ1 and g1 are sensitive with respect to parasite load. In fact, these are

even the only parameters yielding an absolute sensitivity value greater than 0.1. None of

the parameters is sensitive (sensitivity > 1) with respect to the population of lymphocytes

and γ1 is also sensitive with respect to IgG1 and IgG2a. In contrast to the 18-parameter-

model, only this parameter is sensitive to the immunoglobulins, whereas g1, g5, γ3 and γ4

show sensitivities with absolute value smaller than 1. This underlines the great influence

on parasite load on all variables.

Many of the conclusions and interpretations drawn in Section 5.2.2 also hold for the 22-

parameter-model: γ1 is sensitive with respect to parasite load, IgG1 and IgG2a, g1 is

sensitive to parasite load.
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parasite load 0.1 · nfinal final 0.1 · nmax maximal 0.1 · nmean mean

g1 1.5 0.823220094 1.5 0.823220094 1.5 0.196931962

g2 9.7 2.260472244 9.7 2.260472244 0.3 0.855886647

g3 8.4 2.35733146 8.4 2.35733146 8.4 0.863228068

g4 4.1 2.375840171 4.1 2.375840171 0.1 0.854309497

g5 3.3 2.369765491 3.3 2.369765491 0.1 0.841196092

g6 52.8 0.050877436 48.5 1.349347111 50.6 0.68461982

g7 49.2 2.14967675 49.2 2.14967675 49.2 0.723710725

g8 0.3 2.325644574 0.3 2.325644574 0.3 0.861389146

g9 0.1 2.435977772 0.1 2.435977772 0.7 0.866898536

g10 3.3 2.436420086 3.3 2.436420086 0.1 0.866687313

g11 0.2 2.435568104 0.2 2.435568104 0.2 0.864381325

g12 0.1 2.429892129 0.1 2.429892129 0.1 0.856256502

g13 19.8 2.207853739 19.8 2.207853739 19.8 0.742245947

g14 0.2 2.360144596 0.2 2.360144596 1.6 0.864152135

Table 11: Lowest values for final, maximal and mean parasite load, using parameters gi · 0.1 · n
in the range [0,3] for the 22-parameter-model.

5.3.3 Optimization

Like in Section 5.2.3, kinetic parameters are now varied in the range [0,3] in order to

minimize parasite load. One parameter is changed at a time i.e. multiplied with a

coefficient between 0.1 and 3
gi

, whereby gi is the model parameter received from the

parameter estimation algorithm. Effects of parameter changes on final, maximal and

mean parasite load are investigated.

Sensitivity analysis (Section 5.3.2) yielded g1 and γ1 as the most sensitive parameters.

These are expected to have the highest influence on parasite load; however, since

sensitivity analysis investigates infinitesimal changes whereas optimization changes the

parameters on larger scales, this does not have to be the case.

Kinetic orders

For minimization of parasite load we use the optimization algorithm introduced in

Section 4.10. It yields the following results:

Tab. 11 and Fig. 28 show the best (=minimal) values of maximal, final and mean parasite

load. Among all the coefficients 0.1 · n for gi, the one yielding the lowest value for mean,

maximal and final parasite load, respectively, is chosen. n does not have to be the same for

mean, maximum and final value with respect to one parameter. For g1, g6, g8, g11 and g14

smaller ranges ([0,0.6850], [0,1.7095], [0.5153,3], [0.2961,3], [0.3673,3]) are used because

parameters outside these ranges yield complex solutions.

All parameters except g9 (positive influence of the population of lymphocytes on IgG1) and

g10 (negative influence of IgG2a on IgG1) yield a lower final parasite load than originally

obtained (2.435938257).
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Figure 28: Lowest maximal (white, left axis), final (black, left axis) and mean (gray, right axis)
parasite load for kinetic parameters gi after multiplication with a factor ∈ [0.1, 3

gbest
], whereby

gbest denotes the value of gi estimated in the 22-parameter-model with 1500 iterations.
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parameter factor gradient

g1 1.5 0.001302191

g2 9.7 0.001440797

g3 8.4 0.001897879

g4 4.1 0.001907839

g5 3.3 0.001875946

g6 52.9 -0,004974328

g7 49.2 0.002149254

g8 0.3 0.001761745

g9 0.1 0.002191625

g10 22.4 0.002189017

g11 1.8 0.002194415

g12 1 0.002196997

g13 19.8 0.002152858

g14 0.2 0.001820466

Table 12: Minimal gradient of parasite load at 24 weeks (derived from the last two data points) in
the 22-parameter-model and respective change factors 0.1 ·n (”minimal” refers to the minimum
within iterations of genetic algorithm).

Out of all kinetic constants gi, g6 yields the smallest final parasite load (0.0509) and g1

yields the lowest maximal (0.8232) and mean parasite load (0.1969). g6 yields a maximal

parasite load of 1.3493; variation in all the other kinetic constants does not yield values

smaller than 2.14 for both final and maximal parasite load. The lowest values for mean

parasite load vary between 0.1969 (g1) and 0.8669 (g9), whereby g1, g6, g7 and g13 yield

values of less than 0.8.

It has to be taken into account that the aim of a drug is to eventually clear parasite load;

therefore parasite load must diminish towards the end of the time period considered i.e.

the gradient of parasite load has to be negative.

Tab. 12 shows the minimal gradient for all kinetic parameters. Since g6 is the only one

yielding negative gradients, it is the only possible drug target due to the 22-parameter-

model. Here simply the difference between the two last values of parasite load is taken

into account. A different strategy would be to evaluate the difference between parasite

load at the end and an earlier point in time.

g6 yields negative final parasite load gradients i.e. healing when multiplied by coefficients

between 48.5 and 49.7 as well as for coefficients between 50.2 and 50.8, 51.5, 51.6, 52.9,

53, 53.1, 53.2, 53.3, 53.5, 53.6. These discrete values suggest that the final gradient of

parasite load has alternating signs, which means that it is almost zero. Therefore dosage

of a pharmaceutical would have to be very accurate to meet a point where the gradient

is negative and disease is cleared. The largest stable period for parasite load is the one

between 48.5 and 49.7. However, it is assumed that in practice dosage cannot be that

accurate; nevertheless an augmentation of the lymphocytes’ influence on their proper

production by a factor of about 50 could be tried.

Within the coefficients where the parasite load’s gradient is negative (which corresponds

to healing), the lowest maximal parasite load of 1.3493 appears for the coefficient of 48.5
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Figure 29: 22-parameter-model: Parasite load over time for original g6 multiplied with fac-
tor=52.8 (optimal final parasite load), factor=48.5 (optimal maximal parasite load) and fac-
tor=50.6 (optimal mean parasite load).

i.e. for g6 = 48.5 · (g6)best = 1.5674, whereby (g6)best is the value obtained from the

parameter estimation algorithm in the 22-parameter-model.

The lowest final parasite load of 0.0509 is achieved for g6 = 52.8 · (g6)best = 1.7063. The

lowest mean parasite load of 0.6846 is yielded using g6 = 50.6 · (g6)best = 1.6352. Fig. 29

shows plots of parasite load over time for these three values of g6.

In case of g6 = 1.5674 (optimal maximal parasite load), there is a stagnation of parasite

load suggesting a point of equilibrium after 17 weeks. g6 = 1.6352 (lowest mean parasite

load) yields a sudden decrease in parasite load at week 19 which continues in stagnation

at a parasite load of 1 (which corresponds to the mean over the whole time span) after 19

weeks. For g6 = 1.7063 (minimal final parasite load) parasite number decreases aprubtly

at week 22 after infection. This seems to be erroneous, however, the result was checked

and there appeared to be an aprubt depression in parasite load for different values of g6,

the higher g6, the closer the aprubt step is to disease outset (week 0). Based on this

observation it is assumed that for small values of g6 there is also such an aprubt decrease

which does not appear in our supervision period of 24 weeks, but later.

g6 seems to be the best pharmaceutical target since it is the only parameter yielding

decreasing parasite load in the end.

g6 has a positive sensitivity so it is supposed to be directly proportional to parasite load.

Thus it would have to be increased in order to minimize parasite load which seems to

be a contradiction to our results in optimization. However, sensitivity corresponds to a
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parasite load 0.1 · n final maximal mean end gradient

γ1 0.1 0.034752979 0.034752979 0.012281210 0.000031502

γ2 20 1.213633096 1.213633096 0.512262134 0.000719311

γ3 1.1 2.430292748 2.430292748 0.865087334 0.002186224

γ4 0.1 1.99411838 1.99411838 0.750846799 0.00158965

γ5 0.1 2.429110468 2.429110468 0.864812805 0.002184278

γ6 1 2.437046299 2.437046299 0.866898822 0.002195031

γ7 1.3 2.426504041 2.426504041 0.864087386 0.00218213

γ8 0.1 2.308340393 2.308340393 0.833362024 0.002015109

Table 13: Coefficients of original parameter (0.1 · n), lowest values for final, maximal and mean
parasite load and difference between the last two estimations for parasite load (”gradient”),
using parameters γi · 0.1 · n in the range [0,10] (factors in the range [0,20] for γ2).

coefficient of the original g6 of one, whereas the range for optimization is much wider.

Rate Constants

Concerning rate constants in the 22-parameter-model all except γ6 lead to a lower final

parasite load than that originally obtained (2.435938257).

γ1, γ2 and γ4 yield a final parasite load of less than two (see Tab. 13). None of the rate

constants reaches a negative final parasite load gradient which means that parasite load

is increasing in the end in every case, so healing does not occur. Thus none of the rate

constants is feasible as unique therapeutic target. However, like it can be seen in Fig. 30,

all three parameters slow down disease progression whereby γ1 is the most effective. This

result was also obtained in the 18-parameter-model. Optimized γ4 yields a lower parasite

load along the whole interval of 24 weeks. Augmented γ2 decelerates parasite progression

at the beginning, but accelerates it afterwards: After 16 weeks, original parasite load and

parasite load yielded by optimized γ2 are equal. Between week 16 and week 24 augmented

γ2 yields lower parasite load than is obtained using the original value for γ2.

Downregulation of γ1 is considered the most feasible pharmaceutical interaction concern-

ing rate constants because although it does not provoke decreasing parasite load, it slows

down disease progression significantly. This is the same result as obtained from the 18-

parameter-model (Section 5.2.3). In practice an increase of γ2 means inhibiting parasite

influx which pharmacologically speaking refers to prevention methods.

5.4 Optimization changing two parameters

In Sections 5.2.3 and 5.3.3 only one parameter was changed whereas the others maintained

their values. Now we change two parameters at the same time and explore which pair of

parameters yields minimal parasite load. With a combination of pharmaceutical agents

acting on the two respective parameters we hope to erase infection. Whereas in one-

dimensional optimization only change of g6 to high values (about 50 times the original

value) yielded a decrease in parasite load at 24 weeks after infection, we hope to find more

therapeutic strategies yielding this behavior by two-parameter-optimization.
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Figure 30: Parasite load over time for γ1 = 0.1 · γ1,original (continuous line), γ2 = 20 · γ2,original

(dotted line) and γ4 = 0.1 · γ4,original (discontinuous line) and experimental data from the 103

parasites group (dots), 22-parameter-model.

5.4.1 Optimization Strategy

Two-dimensional optimization is performed as explained in Section 4.10.

For minimization of parasite load by change of two parameters at a time, we used the

results from one-dimensional optimization (Sections 5.2.3 and 5.3.3). Parameters that

yielded a final parasite load of less than 2 in at least one of the models (18-parameter-

model or 22-parameter-model) are: γ1 (both models), γ2 (both models), γ4 (both models),

g1 (both models), g2 (18-parameter-model), g3 (18-parameter-model), g4 (18-parameter-

model) and g6 (both models). It is assumed that if minimal parasite load is yielded by up-

regulation of the respective parameter in one-dimensional optimization, it is also yielded

by up-regulation in the two-dimensional case. The same is assumed for down-regulation.

Parameters yielding a final parasite load greater than two in one-dimensional-optimization

are not considered feasible therapeutic targets.

Further it is assumed that drugs can change parameters by factors of 0.1 or 10 i.e. multiply

their value with 10 or divide their value by 10. However, it is assumed that kinetic orders

gi stay in the range [0,3].

Optimization was performed changing two of the parameters mentioned above at a time

for their new value (multiplication with / division by 10 within range [0,3], see Tab. 14),

while maintaining the values of the rest of the parameters. There are

(
8

2

)
= 28 pos-

sibilities to choose a pair of parameters. If we also take into account one-dimensional

optimization with these parameters we have 36 combinations in total.

Like in one-dimensional optimization, maximal, mean and final parasite load is deter-

mined. Further the end gradient of parasite load (difference between the last two esti-

mated points) is calculated. A decrease in parasite load in the end i.e. a negative final
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parameter orig. value 18 opt. value (18) orig. value 22 opt. value (22)

γ1 0.168844637 0.016884464 0.127106222 1.271062222

γ2 0.043203664 0.432036641 0.003132907 0.031329074

γ4 6.773723979 0.677372398 7.08422542 0.708422542

g1 0.533411348 3 0.456662477 3

g2 1 3 0.307580207 3

g3 0.046286528 0.462865279 0.354307548 3

g4 0.081010111 0.810101106 0.715699797 3

g6 0.022735632 0.227356324 0.032316599 0.323165991

Table 14: Optimization changing two parameters at a time: Original parameter values and
values used for optimization

parasite load gradient, is assumed to represent healing.

5.4.2 Results for the 18-Parameter Model

Fig. 31 is a graphical representation of the results of two-dimensional optimization for

the 18-parameter-model. Grey scaled squares represent final parasite load, changing the

two respective parameters (row, column) in the 18-parameter-model.

Combination of g1 with any other parameter yields the best results (considering final

parasite load). Combination of γ1 with any other parameter yields a final parasite load

of less than 0.1 (i.e. 10% of the mean parasite load) in any case. Further, combined

regulation of γ2 and γ4 yields a parasite load of less than 0.1. All the other pairs of

parameters yield final parasite loads greater than 0.1. The minimal final parasite load is

achieved for the pair (g1, γ2): (x1)final = 2.75 ·10−10. Practically this means to upregulate

parasite growth rate and at the same time enhanced parasite killing.

Of further interest is the final parasite load gradient (i.e. the difference between the last

two values of parasite load). A negative gradient is associated with healing. In our case,

the combinations of parameters yielding a negative gradient are:

• g1 alone or combined with γ1, γ4, g3, g4 or g6

• γ2 and γ4, as well as

• g4 and γ4.

Simultaneous change in g1 and g2 yields a final parasite load gradient of zero.

Combining these criteria, parameter pairs yielding both a final parasite load of less than

0.1 and a negative final parasite load gradient are:

• g1 alone or combined with γ1, γ4, g3, g4 or g6 or

• γ2 and γ4.
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Figure 31: Optimization changing two parameters simultaneously, 18-parameter-model. The
gray scale value represents final parasite load yielded by regulation of the respective pair of
parameters.

These are considered the most feasible strategies when changing two parameters at a

time. Practically they mean upregulating parasite growth rate, possibly combined with

prevention of parasite influx as far as possible, inhibition of lymphocyte death, stimula-

tion of the lymphocytes’ or IgG2a’s influence on parasite degradation or enhancement of

lymphocyte reproduction rate. Change in the pair (γ2, γ4) corresponds to simultaneous

enhancement of parasite degradation and inhibition of lymphocyte death.

5.4.3 Results for the 22-Parameter Model

Final parasite load for two-dimensional optimization in the 22-parameter-model is repre-

sented in Fig. 32. In this model a final parasite load of less than 0.1 is obtained from

combination of γ1 with any other model parameter as well as for the pairs (g1, g2), (g1, g3)

and (g1, g4). The absolute minimum of final parasite load is achieved by optimization

upregulating g1 and g4 (final parasite load = 8.8 · 10−7.

Considering the difference between the last two values of parasite load, only the pairs

(γ1, γ2) and (g4, γ4) yield a negative gradient.

Summing up, the pair (γ1, γ2) is considered the most feasible therapeutic targets i.e. di-

rectly influencing generation and degradation of parasites is considered the most effective

pharmaceutical strategy.
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Figure 32: Optimization changing two parameters simultaneously, 22-parameter-model. The
gray scale value represents final parasite load yielded by regulation of the respective pair of
parameters.

5.4.4 Conclusion

The only strategy yielding a decrease of parasite load in the end (i.e. after 24 weeks) in

both the 18- and the 22-parameter-model is upregulation of g4 (augmenting the influence

of IgG2a on parasite degradation) combined with downregulation of γ4 (inhibiting degra-

dation of lymphocytes).

Parameter pairs yielding a low final parasite load but possibly increasing or stagnating

parasite load after 24 weeks which corresponds to no healing in this period of time are:

• a decrease in γ1 (parasite influx) only, or combined with regulation of any other

parameter and

• augmentation of g1 (influence of parasite number on parasite production) combined

with upregulation of g2 (influence of parasite load on parasite degradation), g3 (in-

fluence of the population of lymphocytes on parasite degradation) or g4 (influence

of immune globuline IgG2a on the degradation of parasites).

Though counterintuitive, the feasibility of upregulation of g1 as a pharmaceutical target

already obtained from one-dimensional optimization is further stressed by 2-dimensional-

optimization.

In any case, a better result may be achieved by longer treatment (>24 weeks).
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5.4.5 Comparison to Systematic Two-Dimensional Optimization

B. Wimmer [54] performed a systematic minimization of parasite load changing two

parameters at a time, without using the results from one-dimensional optimization, both

in the 18- and the 22-parameter-model. Here, a brief summary of her results is given.

In systematic optimization, both up- and downregulation of all parameters is tried. If

we consider the majority of cases (e.g. a parameter upregulated in combination with

three parameters and downregulated in combination with the remaining 19 parameters

is considered to be downregulated), all the parameters upregulated in one-dimensional

optimization were also upregulated in two-dimensional optimization and the same is

true for downregulation. Only g13 (negative influence of IgG1 on IgG2a production)

was downregulated in combination with 14 out of 22 parameters though upregulated in

one-dimensional optimization.

Wimmer used smaller factors for optimization. They range from 0.67 to 1.8 in the

18-parameter-model; for the 22-parameter-model their range is [0.8, 1.5].

In Wimmer’s analysis none of the parameter pairs changed yielded a negative final

parasite load gradient. However, in the 18-parameter-model parasite burden could be

reduced by 99.9% resulting in a final value of 6 ·10−4. In the 22-parameter-model parasite

load could be reduced by up to 82%.

Fig. 33 is a graphical representation of final parasite values for optimization changing

two parameters at a time in the 18-parameter-model. The gray scale value of a square

indicates final parasite load changing the parameters corresponding to the row and column

(compare to Fig. 31). The lowest final parasite load was achieved for upregulation of g1 in

combination with downregulation of g2. (Applying our analysis, the lowest parasite load

was yielded for combined regulation of g1 and γ2.) Further, combination of g1 with any of

the other parameters yields a final parasite load of less than 0.1, indeed even of less than

1.77 · 10−3. Feasibility of g1-upregulation corresponds to our results. Downregulation

of γ1 combined with upregulation of γ2 yields a final parasite load of 0.9870. All the

other parameter pairs yield final parasite loads greater than 1. In non-systematic 2D-

optimization (Section 5.4.2), γ1 yielded significantly lower parasite load combined with

any of the other parameters considered, not only with γ2.

Furthermore, Wimmer states changes in γ6, g3 and g14 as feasible therapeutic strategies

since these parameters already yield a significant reduction in parasite load when changed

less than 10% of their value.

Excluding the parameters directly influencing parasite load (g1, γ1, g2, γ2), Wimmer states

that all remaining pairs of parameters yield similar results. This does not correspond to

the results in Section 5.4.2 where γ4 combined with g3, g4 or g6 yields significantly lower

parasite load than the other combinations.

Fig. 34 shows Wimmer’s results for optimization in the 22-parameter-model (compare to

Fig. 32). Interestingly, in the 22-parameter-model minimal final parasite values are much

higher: The minimum parasite load of 0.5683 is achieved by simultaneous upregulation

of g1 and downregulation of γ1. The higher parasite load (compared to the 18-parameter-

model) is possibly due to the smaller range of [0.8, 1.5] instead of [0.67, 1.8] for regulation

factors. Simultaneous regulation of g1 in combination with any of the other factors yields

a final parasite load of less than 1. Regulation of all other pairs of parameters yields a final
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Figure 33: Results from B. Wimmer ([54], Fig. 4): Systematic optimization changing two
parameters simultaneously, 18-parameter-model. The gray scale value represents final parasite
load gradient yielded by regulation of the respective pair of parameters.
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Figure 34: Results from B. Wimmer ([54], Fig. 5): Systematic optimization changing two
parameters simultaneously, 22-parameter-model. The gray scale value represents final parasite
load gradient yielded by regulation of the respective pair of parameters.
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parasite load of between 2.3 and 2.5. Again, Wimmer’s analysis does not yield feasibility

of γ4 as a therapeutic target as it is obtained in Section 5.4.3. However, it stresses the

feasibility of an upregulation of g1 (parasite growth rate) which corresponds to the results

in this work. According to Wimmer, γ1 only is effective when combined with g1 whereas

our results yield effectiveness of γ1 regulation combined with other parameter changes as

well.

Parameters that are considered possible therapeutic targets as well since they already

yield significantly lower parasite load when changed less than 5% are g5, g12 and γ4. In

the 22-parameter-model, no significant change in parasite load was obtained for the pair

(γ1, γ2) by Wimmer although in our analysis regulation of this pair yielded the least final

parasite load.

All in all, B. Wimmer’s results from 2-dimensional optimization stress the feasibility of g1

as a pharmaceutical target. Counterintuitively, the influence of parasite load on parasite

production should be augmented in order to reduce final parasite load. Furthermore,

prevention i.e. inhibition of parasite influx (γ1) is considered an effective strategy but

only in combination with augmenting parasite degradation (γ2) or parasite growth rate

(g1). According to Wimmer, inhibition of lymphocyte degradation (γ4) is not an effective

strategy.
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6 Discussion

This Section compares the results of our model to a previous leishmania model derived

by Dancik et al. [15, 16]. Moreover, it gives an overview about anti-Leishmania agents

and discusses pharmaceutical strategies using the results from our model.

Quantification of the effectiveness of drugs is difficult. It can be determined to what extent

a drug is able to reduce parasite load in the body (Nakayama et al. report a reduction of

up to 98% in [35]), but experimentally quantifying generation velocities, potentials and

influences, which correspond to our model parameters, is practically impossible.

6.1 Anti-Leishmaniasis Drugs

This Section overviews existing anti-Leishmania drugs as well as possible therapeutic tar-

gets, without claiming completeness.

Standard treatment uses chemotherapy whereas recent investigation is focused on im-

munotherapy and immunochemotherapy. The term ”immunotherapy” means the treat-

ment of a disease by inducing, enhancing or suppressing an immune response [56]. Im-

munochemotherapy is a combination of immunotherapy and chemotherapy.

In case of leishmaniasis, immunotherapy aims at accelerating the specific immune re-

sponse. In terms of our model (Fig. 6), immunotherapy means changing parameters

γ3, ..., γ8, g3, g4, g6, g8, g9, ..., g14; whereas most chemotherapeutic agents directly target

parasite destruction (γ2) or inhibition of its proliferation (g1).

6.1.1 Standard Treatment

The first drugs against leishmaniasis, pentavalent antimonials, were discovered in the

1940s. There are two types: sodium stibogluconate and meglumine antimoniate. Sodium

stibogluconate is known as Pentostam and is slowly injected intravenously. Meglumine

antimoniate, known as Glucantim, is injected intramuscularly or intravenously. Conven-

tional monotherapies need continuous treatment during 21-30 days [21].

Another important drug is amphotericin B. It is given by intravenous injection, too. Paro-

momycin is injected intramuscularly. In the late 1980s a study proved lower mortality

and fewer complications using combined therapy with sodium stibogluconate and paro-

momycin.

Miltefosine represents an oral drug. Combination of paromomycin and miltefosine yields

the most economic result [21]. This combination therapy reduces duration of infection as

well as cost and burden on the health system [21]. Economic considerations may seem

secondary, however, the total cost of visceral leishmaniasis treatment was 1.2 times the

annual per-head income in Bangladesh, 1.3 times in India and 1.1 times in Nepal [21].

Drug resistance mainly depends on the parasite burden, the probability of spontaneous

resistance mutations and the fitness cost due to these mutations [21].

Combination therapy has not yet been tested on a large timescale; it is promising, but

possible side effects have to be taken into account.

Tab. 15 provides a list of standard anti-Leishmaniasis drugs including their effects and

lists a possible significance of the respective drug in terms of our model parameters. As
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name effect interpretation

amphotericin B inhibits completeness of parasite membrane γ2 ↑
leads to parasite death

aminoglycosides alter parasite’s messenger RNA g1 ↓, γ2 ↑
antimonials inhibit glycolysis and oxidation of fatty acids, g1 ↓

induce decrease of energy biosynthesis of the γ2 ↑
amastigote

imidazole and itraconazole inhibit desmethylation of membrane, g1 ↓
inhibit parasite biosynthesis γ2 ↑

interferon augments macrophages’ capacity to reduce γ2 ↑
parasite load

pentamidine inhibits polyamine and DNA synthesis in the g1 ↓
parasite γ2 ↑

pyrazolopyrimidines block protein synthesis and destroy parasite RNA g1 ↓
γ2 ↑

Table 15: Anti-leishmanial drugs and their effects (source: Dr. Cristina Pou, Universidad de La
Laguna) and possible interpretation in terms of our model

can be seen in Tab. 15, most drugs are toxic i.e. directly targeted on the destruction of

parasites. In our model this means increasing γ2 (parasite destruction). This is effective

due to the results obtained from optimization in Sections 5.2.3 and 5.3.3.

Moreover, many drugs inhibit parasite proliferation which means downregulation of g1 in

our model. According to our results which suggest increase of g1 in order to inhibit para-

site load this may be counterproductive. Although our result may seem counterintuitive,

it could be due to the fact that if parasites replicate fast, the immune system can recognize

them more easily [16]. Parasites use mechanisms like inhibition of antigen presentation

to escape immune response, however, a high growth rate induces massive macrophage re-

cruitment [16]. An explication could also be that the parasites produce a certain molecule

that stimulates an immune response of the body. Investigating a model of tuberculosis

infection, Segovia-Juarez et al. [47] also found that the partial rank correlation between

growth rate and extracellular bacteria is negative in a certain time interval.

Dancik et al., 2010, received the same result analyzing a model of Leishmania major in-

fection: Depending on the stage of the disease, a decrease or an increase in parasite load

leads to minimal parasite load [16].

Roberts, 2006 [42] further mentions flucanzole and imiquimod as important drugs against

cutaneous leishmaniasis, immunotherapy as effective against mucocutaneous leishmania-

sis, paromomycine against visceral leishmaniasis and miltefosine against both cutaneous

and visceral leishmaniasis.

6.1.2 Other Anti-Leishmanial Drugs

Besides the well-proved leishmaniasis drugs mentioned in Section 6.1.1 there are many

other substances under investigation. The problem is that on the one hand, our model is

an enormous simplification and does not include all the factors necessary to describe the
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name effect interpretation

bednets reduce biting rates γ1 ↓
betle leaves extract reduce viability of promastigotes γ2 ↑
deltamethrin impregnated dog collars protect dogs γ1 ↓
dendritic cells activate T, B and NK cells g3 ↑

capture antigens, transfer them to lymph nodes,

activate specific Th1-response

gp63 specific CD8+ and CD4+ T cell immune g3 ↑
response

IL-12 stimulates Th1 γ2 ↑
IL-10R blockade less antimony required to kill liver amastigotes γ2 ↑
imidazol and itraconazol inhibit desmethylation of membrane, g1 ↓

inhibit parasite biosynthesis γ2 ↑
insecticides e.g. DDT inhibit biting γ1 ↓
interferon augments macrophages’ capacity to reduce γ2 ↑

parasite load

KY62 interaction with membrane sterols resulting in γ2 ↑
disruption of the cell membrane with leakage of

intracellular components (→ parasite death)

rLmSTI1 elevates specific IgG activity with a g4 ↑
predominant IgG2a titer

saponin adjuvant (leishmune) dog vaccine g3, g4 ↑ γ2 ↑
vaccines complete parasite killing by induction of live, γ2 ↑

attenuated or killed vaccines g3, g4 ↑

Table 16: Other therapeutic agents against leishmaniasis, their effects and possible interpretation
in terms of our model parameters

interaction mechanism of the drug in the body, on the other hand, often this interaction

mechanism is not even known thus it is not exactly known which of our model parame-

ters are influenced by this drug. In pharmacological studies, the main interest is put on

effectiveness of the drug i.e. the percentage of people healed by the drug. Tab. 16 shows

some anti-leishmanian agents of which the mechanism of interaction is known, together

with their effects and possible significance in our model scheme.

Prevention against sandfly bites or infection (bednets: reduction up to 64%-100% of sand-

fly bites [49], deltamethrin-impregnated dog collars: 86% protection [29], insecticides as

well as human or dog vaccination) inhibit the influx of parasites into the body represented

by γ1 in the model. Most of the mentioned drugs are toxic which means they aim to kill

parasites and thus augment γ2. Vaccination can be done by induction of live, attenuated

or killed parasites, or injected DNA yielding protein expression [42].

However, dog therapies are not recommended by the WHO since usage of the same vac-

cines for human and canine treatment increases resistance of parasites [51].

Identification of the genome of Leishmania major yielded 8500 identified genes as potential

vaccine candidates [24].

Another group of anti-Leishmania drugs are those interacting with the immune system

(immunotherapy). After infection with Leishmania there are three reaction mechanisms
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Figure 35: Immune response mechanisms after Leishmania infection (Fig. 3 in [1]). Infection
or cure depends on the type of innate response as well as on the type of secondary immune
response.

of the body:

• innate immune response (at the inoculation point)

• Th1 response (related with cure) and

• Th2 response (related with infection).

The last two points refer to the body’s specific immune response.

Fig. 35 shows a scheme of the body’s immune response to Leishmania infection. Par-

asites enter via the skin and produce an innate immune response: Leucocytes are re-

cruted at the inoculation site, migrate to tissues and initiate their functions by release

of substances, phagocytosis or destruction of microorganisms (leishmanicide activity) or

modifying neighbor cells by production of cytokines or antigen presentation. The in-

nate immune response is non-specific and results in local tissue inflammation [1]. The

non-specific immune response can influence the later appearing specific immune response

which determines if cure (Th1-response) or disease (Th2-response) is established [2].
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Cells involved in the innate immune response are macrophages, neutrophils, eosinophils,

natural killer cells and mastocytes, among others [1]. Regarding specific immune response,

granulocytes are the first population that migrates to the infection site [34]. A few days

later, natural killer cells and macrophages come into action [37]. After one or two weeks

specific T lymphocytes migrate to infected tissue [6, 46].

Most drugs augment parasite degradation γ2. Some of them, like CD4+ and CD8+ lym-

phocytes, can have adverse effects - different experiments showed that they are able to

augment [38] or diminish [45] γ2.

Dendritic cells and gp63 activate lymphocytes and other immune cells for specific response.

Activation of T cells leads to production of IFN-γ which is related to Th1 response that

yields healing. In our model they are assumed to augment the parameter g3 which is the

potential of lymphocytes to destruct parasites.

Leishmania major stress-inducible protein 1 (rLmSTI1) which is encapsulated in lipo-

somes activates IgG2a. Since the action of IgG2a to diminish parasite load is represented

by the parameter g4 in our model, this parameter is assumed to be elevated by rLmSTI1.

According to the results from optimization in both models, the most feasible therapeutic

strategies are to increase g1, g6 or γ2 or to decrease γ1 or γ4. From Tab. 16 the following

agents may provide changes in the mentioned parameters:

• prophylactic agents like bednets, impregnated dog collars and insecticides (diminish

γ1)

• betle leaves extract, IL-12, interferon, KY62 and vaccines (increase γ2)

None of the considered drugs is assumed to have an effect on g6 or γ4 or to yield augmen-

tation of g1.

6.1.3 New Targets

The main target of this work is to provide new ideas that may enable a more effective

search of effective anti-leishmaniasis drugs. This chapter provides a list of components

involved in the body’s immune response which could be used as future therapeutic strate-

gies.

Tab. 17 and 18 show agents involved in immune response against leishmaniasis as well

as their mechanisms of interaction and the model parameters that are influenced. It has

to be mentioned that if therapeutic agents have an influence that is not represented by

any of our model parameters but has to do with the in- or outflux of a model variable,

we resume this by change in the respective rate constant γi which resumes all influences

that are not caused by gi.

Of special interest are the factors increasing the influence of parasites on their proper

proliferation (g1), because this factor is considered to be crucial according to our model

results, and until now no pharmaceuticals increasing g1 have been tested against Leish-

mania. Insuline-like growth factor 1, interferon-γ and possibly TNF-α are considered to

stimulate parasite replication inside macrophages, and it would be interesting to test their
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anti-leishmanial effectiveness experimentally. However, insuline-like growth factor also in-

creases the number of parasites and reduces parasite-toxic production of nitric oxide.

There are a lot of immune response components in charge of parasite killing, namely

chemokines, the complement system, granulocytes, interferon-γ, leukotrienes, activated

macrophages, natural killer lymphocytes, the platelet-activation factor, prostaglandin

E2, TNF-α and toll-like receptors. TNF-α can augment γ2 (parasite degradation) and

γ7 (generation of IgG2a), two targets of which γ2 is considered a feasible therapeutic

target according to our optimization analysis (Sections 5.2.3 and 5.3.3). Toll-like recep-

tors interact via augmentation of γ2 and decreasing IgG1 production (γ5) or enhancing

IgG1 degradation (g11). CD4+ and CD8+ lymphocytes are able to cause parasite death,

however, in other stages of the disease they increase parasite load. Dendritic cells and

immunoglobulins kill parasites on the one hand, but they also elevate the level of IgG1,

although this should be decreased according to our model.

Hipoxy-induced factor 1, interleukin-4 and interleukin-10 inhibit γ2 among other parasite-

favorable regulations (downregulation of γ7 and g3), so blocking of these agents could also

be a feasible therapeutic strategy. Effectiveness of IL-10R blockade, showing enhanced

parasite killing and accelerated resolution of infection in IL-10 knockout mice is proved

experimentally in [33, 32, 8, 25]. Combination of anti-IL-10R with antimony increases

parasite killing [33].

Tab. 17 contains no immune response-related agents for regulation of g6 and γ4 which are

considered to possibly be effective pharmaceutical targets by our analysis.

6.2 Existing Models

This section presents a short summary of the model developed by Dancik et al., 2006 [15],

further analyzed 2010 [16], and compares their model and findings to our results.

6.2.1 The Agent-Based Model of Dancik et al. [15, 16]

G. M. Dancik, D. E. Jones and K. S. Dorman from the Iowa State University developed

an agent-based model representing the immune response to an infection with Leishmania

major [15, 16]. Agent-based models describe the dynamics of a complex system whose

properties depend on the behavior of interaction components.

Like we do, Dancik et al. model the immune response to Leishmania. However, their

experimental settings are different. [15] is based on experiments of Vanloubbeeck et al.,

2004 [52] who investigate Leishmania major promastigotes in C3HeB/FeJ mice. The in-

oculation site is the footpad. The simulation period is 2-71 days after infection. The

delayed starting point of simulations 2 days after infection avoids problems with missing

initial values.

[16] uses the same model structure, but experimental data from Belkaid et al., 2000 [7]

who investigated Leishmania major in C57BL/C mice. The simulation period is 3.5 to 8

weeks after infection, since after eight weeks the infection was healed.

In contrast to [15] and [16] our model investigates Leishmania amazonensis promastigotes

in BALB/C mice with a simulation period of 0-24 weeks after infection. The inoculation

site is the hind paw.

The model of Dancik et al. is of stochastic type i.e. simulation with the same data can
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produce different results. The authors model a footpad cross-section of 2mm x 2mm as

100 x 100 grid of squared micro-compartments. The compartments are toroidal which

means that an element leaving them on the one side re-enters at the other side. The

models contain 25 parameters of which 11 [15], respectively 6 [16], are varied whereas the

rest are constants taken from literature.

Initially, 105 macrophages and 50 parasites are placed randomly on the lattice. The lifes-

pan of macrophages is considered as well as their maximal carrying capacity. When

the number of intracellular parasites reaches a threshold (”transfer threshold”), the

macrophage enters a dying state, in which it distributes the contained parasites to neigh-

bor macrophages within a certain range of neighborhood. Thereby, activated macrophages

kill the parasites they receive. After distribution of all its parasites, the dying macrophage

is removed from the system. Cell movement is described by a probability based on the

amount of one generic chemokine. Further, the model considers T cell recruitment us-

ing different compartments representing blood vessels. T cell movement is also described

by probabilities. When T cell recruitment begins, all uninfected resident (i.e. not acti-

vated) macrophages are turned into inflammatory macrophages which move to the drain-

ing lymph node and have a reduced lifespan. T cells, more accurately speaking: Th1 CD4

cells, activate macrophages with a specified probability.

Dancik et al. use a technique called Gaussian process. Gaussian process approxima-

tion means fitting a multivariate normal distribution to data based on a given parameter

vector. Computer model output at a new parameter vector is predicted using standard

multivariate normal distribution theory.

The Gaussian process enables sensitivity analysis i.e. to determine how the model pa-

rameter vector θ = (θ1, ..., θp) which consists of parameters taken from literature and

parameters fitted to field data, influences computer model output. The main effect of

parameter θk is the expected computer model output E[z(θ)|zknown, θk]. Importance of

that effect can be measured by the percentage of total variance it represents. The latter

can be determined by a FANOVA decomposition.

Comparison of Results

Out of the 26 parameters considered in the model of Dancik et al., 2006 and 2010 [15, 16],

only the following were found to also appear in our model: initial number of parasites

X1(0), intracellular parasite growth rate (γ1 or g1) and the probability a T cell will activate

a macrophage which corresponds to the influence of lymphocytes on parasite degradation

(g3) in our model, since the lymphocytes fighting Leishmaniosis are T cells and an ac-

tivated macrophage destroys the parasite. Furthermore, the amount of necrotic tissue

released following macrophage activation is represented by γ2 in our model, and T cell

recruitment rate can be considered to correspond to γ3 (lymphocyte influx).

The rest of the parameters used by Dancik et al. refer to chemokines, macrophages, T

cells as well as recruitment, threshold and time scale parameters. All of these factors are

not considered in our model and therefore do not have corresponding parameters.

Dancik et al. perform sensitivity analysis resulting in ”main effect graphs” which plot

the expected computer model output (y) depending on the value of the parameter (x),

illustrating the effect of one parameter on model output. They also consider two-way

interaction effects, however, the results provided in [16] only consider pairs of parameters
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of which at least one does not appear in our model; thus these results are not comparable.

A comparison of the results of Dancik et al. [15, 16] is daring, since the experimen-

tal data they use originate from experimental settings which are different to ours: The

mouse species, the site of infection, the inoculation amount and the parasite type differ

from those of C. Pou’s experiments [1]. So the result is expected to differ from ours, too.

A big difference between ours and their model is that infection is healed in their model,

especially because C3HeB/FeJ mice used in [15] are resistant to Leishmania major due

to a Th1 immune response which yields activation of macrophages resulting in parasite

death. Thereby, healing means the persistence of a low level of parasite load in the body

which causes immunity to re-infection. T cells are included in the model in order to model

this parasite persistence. Pathogens survive in a number of 1 to 30 macrophages at the

site of infection [16].

The results of Dancik et al. yield the strength of the Th1 response, the speed of resting

macrophages and the parasite carrying capacity of macrophages as crucial for the time

until the infection is healed.

Results from [15] indicate that the most sensitive parameters with respect to final par-

asite load (i.e. parasite load after 10 weeks in their case because at that time infection

was healed) are parameters not considered in our model, namely the speed of resting

macrophages, the threshold at which macrophages enter dying state and the lifespan of

infected macrophages. The forth-most important parameter is the probability of T cell

recruitment corresponding to γ3 in our model. Thus, due to different experimental set-

tings, Dancik et al. receive results which are different from ours.

Dancik et al., 2010 [16] consider the intracellular pathogen growth rate (γ1, g1), the trans-

fer threshold of infected macrophages, the macrophage recruitment hyperparameter, the

probability of T cell recruitment (γ3) as well as the amount of total pathogen that triggers

the T cell response (corresponds to the level of X1 that leads to a sudden increase in g3)

as most important parameters. These six parameters explain over 99% of the variation in

output (FANOVA). Out of these, the parasite growth rate is assumed to yield the highest

effect on final parasite load, whereas the effect of the probability of T cell recruitment

(corresponding to γ3) yields an effect 22 times lower than that of the parasite growth rate.

Corresponding to our results, the pathogen growth rate which corresponds to γ1 or g1 in

our model was also found to be the most influential according to Dancik et al. despite

the different model conditions. The authors report that a higher parasite growth rate

yields a higher increase in pathogen load in the beginning but also a higher decrease

afterwards, so that, all in all, parasites are erased earlier if the growth rate is higher.

The counterintuitive result that a higher growth rate decreases the amount of parasites

was also achieved by our analysis. However, in the model of Dancik et al. infection was

cleared after eight weeks in any case which does not correspond to our results where

parasite number is constantly increasing (maximal = final parasite load, both in the 18-

and in the 22-parameter-model). Thus the main analysis done by Dancik et al., namely

finding a relation between parasite growth rate and the peak (i.e. maximum) parasite

load is not reflected in our model due to different experimental settings and thus cannot

be compared.

As a reason for the counterintuitive behavior Dancik et al. state that a pathogen that pro-
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Figure 36: Square-root of parasite load in the model of Dancik et al. ([16], Fig. 8B)

liferates fast is more likely to be detected by the immune system. Therefore pathogen load

decreases as growth rate increases, and slowly replicating pathogens persist longer than

fast growing pathogens. They state: ”A fast-growing pathogen peaks early and quickly

disappears, while a slow-growing pathogen peaks late and typically lower.” [16].

Tab. 19 tries to represent a comparison of parameter values between our 18- and 22-

parameter-model and the model of Dancik et al. It has to be taken into account that

our model is normalized which can cause major difference in model parameters. The rest

of the parameters used by Dancik et al. refers to interactions of other components that

do not appear in our model like chemokines, macrophages, the amount of total pathogen

that triggers T cell response or T cell speed. Since our model does not take into account

these components, these parameter values are not comparable.

It is interesting that Dancik et al. come to the same principal conclusion as we do,

despite the different experimental conditions. Fig. 36 shows parasite load field data

and model approximation in their model. Compared to Figures 11 and 24 parasite load

shows a different behavior: After a sharp increase it decreases, already within the first

seven weeks, whereas in our model parasite load steadily increases. Here the different

experimental conditions lead to different results in Dancik’s versus our model.
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6.2.2 An immune response model of Nelson and Velasco-Hernández [36]

P. Nelson (University of Michigan) and J. X. Velasco-Hernández (UAM Iztapalapa)

present a model of the innate immune response to an infection with Leishmania [36],

showing that this primary response has a high effect on the secondary or specific immune

response.

The model consists of three compartments (variables): resident macrophages, activated

macrophages and a parasite. Furthermore, they consider nine parameters, seven of them

refer to macrophages, the remaining two are the parasite growth rate and the kinetic rate

constant for parasite death.

Out of the three variables, our model only takes into account parasite load (X1); out of

the parameters, the parasite growth rate (γ1, g1) and the parasite death rate (γ2) appear

in our model. In contrast to our model, Nelson and Velasco-Hernández developed a gen-

eral model without using field data, considering A initial macrophages and B parasites.

Subsequently, they perform a steady-state analysis resulting in two steady-states, namely:

• an unstable parasite-free steady-state corresponding to healing and

• a stable state of chronic disease corresponding to the capability of macrophages to

control the disease.

Keeping growth rate and initial concentration constant, the authors perform simulations

yielding a more severe disease reaction if the effectiveness of the immune system in killing

the parasite is low, and a low parasite load which corresponds to control of the disease if

the immune response is sufficient.

In the same paper, they present a second model, extending the first by two further com-

partments: one for IL-12 production and another for T-helper cells. For this model, they

only give the model equations in [36], without an analysis of results.
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name effect interpretation

adenosine downregulates inflammatory process

B lymphocytes infection by priming CD4+ cells γ3 ↑
→ cell migration to infection site g3 ↑

CD4+ lymphocytes may produce Th1 related cytokines, γ3 ↑
may produce Th2 related cytokines change g3

CD8+ lymphocytes IFN-γ, perforin; may produce Th1-related cytokines γ3 ↑
absence of IL-12 → Th2-related cytokines change g3

chemokines CXCL10 induces macrophages to kill parasites and γ2 ↑
delay lesion development, DCs stimulate production of g3 ↑
IL-12, CD4+ lymphocytes stimulate production of IFN-γ;

induction of NO production

complement system kills parasites γ2 ↑
dendritic cells in resistant mice strains: produce IL-12 g3 ↑

→ Th1-response (cure), in susceptible mice

strains: produce IL-4 → Th2-response (disease)

gluthatione maybe: reduction of parasite load in lesion and

drainin lymph node

granulocytes increases number of eosinophils → better control over γ2 ↑
infection (parasite killing by hydrogen peroxide)

hipoxy induced may aid in survival of parasites (induce parasite γ2 ↓
factor I survival)

immunoglobulins immunoglobulin-opsonized parasites can activate DCs γ2 ↑, γ5 ↑
insulin-like growth increases parasites numbers and intensity of γ1 ↑,
factor-I inflammatory infiltrate; induces parasite prolife- g1 ↑

ration inside macrophages; reduces NO production γ2 ↓
interferon-γ stimulates amastigote replication; Th1-response g1 ↑, γ2 ↑, g3 ↑
interleukin-4 inhibits IFN-γ and IgG2a production g1 ↓, g2 ↓, γ7 ↓
interleukin-10 limits Th1, immunosupression γ2 ↓, g3 ↓

g3, γ3

interleukin-12 stimulates IFN-γ production in CD4+ T cells g3 ↑, g1 ↓, γ2 ↓
interleukin-5, 6, 13 promote IgE production, regulates hypersensitivity g3 ↑

reaction

leukotrienes LTB4 increases synthesis of NO by macrophages γ2 ↑
→ enhances parasite killing

macrophages kill parasites by NO and superoxide when stimulated γ2 ↑
by cytokines or other factors

MHC class II activation of CD4+ T cells, presence of g3 ↑
molecules COOH-terminal fragment of L. amazonensis cysteine

proteinase B in cytoplasm of macrophages

natural killer maturate and activate when phagocytose γ2 ↑
lymphocytes antibodies-opsonized parasites; resistant g3 ↑

mice strains: produce IL-12 → Th1, lyse L. amaz.

Table 17: Immune-related components and possible mechanism of interaction [45] as well as
interpretation in terms of our model parameters
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name effect model

platelet activaton enhances NO production by macrophages γ2 ↑
factor (PAF)

prostaglandin E2 augments platelet response to their agonists γ2 ↑
(PGE2)

TNF-α (cytokine) activates macrophages to kill parasites, stimulates γ2 ↑, γ7 ↑
B lymphocytes to produce IgG2a and IFN-γ g1 ↑, g11 ↑
→ infection cure, BUT also activates infected

Langerhan cells to migrate from skin to draining

lymph node

toll-like receptors stimulate IFN-γ, suppress IL-4 γ2 ↑ γ5 ↓

Table 18: Immune-related components, possible mechanism of interaction [45] as well as inter-
pretation in terms of our model parameters (continued)

parameter Dancik meaning value Dancik 18-par-model 22-par-model

X1(0) P0 initial number of parasites 50 1E-06 1E-06

g1 α1 parasite growth rate (2.41,9.63)*1E-4 0.533411348 0.456662477

g3 Tactm probability a T cell will 1 0.046286528 0.354307548

activate a macrophage
1

γ3−γ4 Tls T cell lifespan 3 1.039964861 0.747220893

γ3 pTrecr probability of T cell (0.0150,0.025) 0.046286528 0.354307548

recruitment

γ2 Anecr amount of necrotic tissue (0,6) 0.043203664 0.003132907

released following

macrophage activation

Table 19: Comparison of model parameters between the model of Dancik et al. [15] and our
two models (18- and 22-parameter-model).
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7 Conclusions

The foregoing sections yield the following conclusions:

1. Out of the models presented, the 22-parameter-model which is using all parameters

neglecting a-priory-knowledge, has the following properties:

• It yields the smallest error between original data and model approximation

(fobj = 0.1412).

• Its parameters are less sensitive to infinitesimal changes than those of the 18-

parameter-model i.e. the model is more robust (median of absolute sensitivities

m = 0.0198).

• It is the most general model avoiding errors resulting from wrong a-priori-

assumptions and enabling variability due to its high number of parameters.

2. The 18-parameter-model is considered preferable due to the following reasons:

• Due to its lower number of parameters it is simpler than the 22-parameter-

model, however, the median of its absolute sensitivities is not much higher

(0.0671 instead of 0.0198).

• The use a-priori-knowledge is justifiable because it is reasonable to assume

variable degradation proportional to the variable value.

• It yields a better fit applied to different experimental data (data of the 106

parasites group: fobj = 0.1973 instead of fobj = 0.2167 for the 22-parameter

model).

3. Influence of parasites on their proper proliferation (g1) as well as influx of parasites

(γ1) are the most sensitive parameters with respect to parasite load in both models.

4. Possible pharmaceutical strategies could be:

• Augmenting influence of parasites on their proper proliferation (g1) as much

as possible.

• Augmenting influence of lymphocytes on their proper proliferation (g6) by a

certain factor, not higher than a threshold.

• Decreasing parasites influx (γ1) as much as possible.

• Augmenting degradation of parasites (γ2) as much as possible.

5. Optimization changing two parameters at a time yields regulation of the following

parameter pairs as most feasible therapeutic targets:

• g1 combined with any of g2, g3, g4

• γ1 combined with any of γ2, γ4, g1, g2, g3, g4, g6 as well as

• (g4, γ4),
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whereby γ2, g1, g2, g3, g4 and g6 have to be augmented and γ1 as well as γ4 have to

be decreased in each case.

These conclusions give new ideas for the design of drugs against Leishmania. It always has

to be born in mind, that a simplified mathematical model of a biological system cannot

give detailed solution concepts, but can serve to elucidate conceptual relationships [48].

According to this analysis, the most effective drugs may be:

• prophylactic arrangements like vaccination (active immunization), bednets or insec-

ticides

• betle leaves extract, IL-12, interferon and KY62 and vaccines killing parasites

There are still no vaccines augmenting the parasites’ or lymphocytes’ reproduction rate.

Future research could investigate drugs influencing these factors since they are assumed

to possibly be feasible drug targets according to our analysis.
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A Appendix: Abbreviations

AIDS Acquired Immune Deficiency Syndrome

BALB Bagg Albino

BLCP Brazilian Leishmaniasis Control Program

CD Cluster of differentiation

CXCL C-X-C motif chemokine

dev. Deviation

DC Dendritic cell

DDT Dichlorodiphenyltrichloroethane

DNA Desoxyribonucleic acid

ELISA Enzyme-linked immunosorbent assay

FANOVA Functional analysis of variance

GMA Generalized Mass Action

gp63 a Leishmania surface protease

HIV Human Immunodeficiency Virus

IE Índice de Estimulación (Stimulation Index)

IFN interferon

Ig Immunoglobulin

IL Interleukin

KY62 a water-soluble analog of amphotericin B

LbAgS Soluble extract of Leishmania braziliensis proteins

LbHSP Leishmania braziliensis heat shock protein

LbL6R Leishmania braziliensis L6R protein

LbL6R-HSP83 Fusioned LbL6R and HSP83 (chimera)

NK cells Natural killer cells

NO nitric oxide

PCR Polymerase chain reaction

pload Parasite load

rLmSTI1 Leishmania major stress-inducible protein 1

LT Leukotriene

PAF Platelet activation factor

PG Prostaglandin

RNA Ribonucleic acid

Th cell T helper cell

TNF Tumor-necrose-factor

TU Technische Universität (University of Technology)

USD US-Dollar

WHO World Health Organization

VL Visceral Leishmaniasis
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in: Memórias do Instituto Oswaldo Cruz, Vol. 98, No. 7, pages 861-870, 2003.

[3] J. Alvar, “Alvar J. Las Leishmaniasis: de la bioloǵıa al control. 2a ed.“, in:
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