
Deformation Based Manual
Segmentation in Three and Four

Dimensions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Tobias Fechter

Matrikelnummer 0325253

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Mitwirkung: Dipl.-Math. Dr.techn. Katja Bühler

Wien, TT.MM.JJJJ

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Deformation Based Manual
Segmentation in Three and Four

Dimensions

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Medical Informatics

by

Tobias Fechter

Registration Number 0325253

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

Assistance: Dipl.-Math. Dr.techn. Katja Bühler

Vienna, TT.MM.JJJJ

(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Tobias Fechter

Nappersdorf 7, 2023 Nappersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all I would like to thank Eduard Gröller for supervising and reviewing my work on this

master thesis.

I thank Katja Bühler for providing me with the topic and for supporting and advising me

during the entire work. Additionally I would like to thank the whole MedVis Group at the

VRVis for providing me with all necessary facilities and a lot of beneficial ideas.

Special thanks to my parents for enabling me my study. Furthermore I would like to convey

my deepest gratefulness to my parents and my sisters for supporting and encouraging me during

my studies and my thesis writing. Without you this work would not have been possible!

Finally, I would like to express my appreciation to all my friends who were always ready for

me and provided me with the sometimes necessary distraction.

iii

Abstract

Segmentation of medical image data has grown into one of the most important parts in medicine

during the past years. The main fields of segmentation in the area of medicine are surgical-

planning, diagnosis, therapy-planning and simulation. The focus was in the last years mainly

on automatic and semi-automatic segmentation methods for 3D and 4D datasets. Most of them

are highly specialized as they need a lot of prior knowledge and often the results, especially in

presence of pathologies or other abnormalities, have to be corrected manually. An alternative

to automatic and semi-automatic methods is to perform the segmentation manually. The main

drawbacks of this approach are that it is very tedious and time consuming, the user knowledge

has a very high impact on the results and it is very hard to reproduce specific results.

This work presents a tool that enables the user to enhance results of automatic and semi-

automatic algorithms and to do fast manual segmentation of shapes of arbitrary topology from

scratch. The tool can deal with three and four dimensional image datasets captured by different

modalities. The segmentation is mesh based and performed with a 2D cut approach. With the

use of this approach the user aligns a 2D cut through the mesh to the shape to segment but in the

background the 3D mesh gets deformed. To achieve a better alignment of the edges to a specific

shape the edge class based Sticky Edges algorithm is introduced. Furthermore, well known

mesh optimization algorithms like subdivision, smoothing and decimation were implemented

to accomplish better results. To achieve a faster segmentation of four dimensional datasets two

methods are presented. With the first one the user can record its interactions on one volume in

the 4D dataset and apply them automatically to the other volumes. The other one enables the

user set an already segmented mesh as start position for the segmentation of other volumes.

The approach presented in this work is up to 25 times faster than the Livewire approach [41]

that was used to evaluate this tool. Moreover, the mesh quality regarding smoothness, curvature

and triangle quality are at eye level with the evaluation meshes. The geometric distance to the

ground truth meshes is on average 2 mm and the normal deviation is between 0.3 and 0.4 degree.

To sum up, this master thesis introduces a tool for fast manual image segmentation that provides

proper mesh quality.

v

Kurzfassung

Die Segmentierung von medizinischen 3D und 4D Bilddaten etablierte sich in den letzten Jah-

ren zu einem der wichtigsten Teilgebiete der Medizin. Die Hauptaufgabengebiete der Segmentie-

rung im medizinischen Bereich liegen in der Diagnose, der Simulation und der Planung von The-

rapien und Operationen. Der Forschungsfokus lag in den letzten Jahren hauptsächlich in der Ent-

wicklung von automatischen und halb-automatischen Segmentierungsalgorithmen. Der Nachteil

dieser Algorithmen ist, dass sie auf bestimmte Problemstellungen spezialisiert sind, weil viel

Vorwissen für die automatische und halb-automatische Segmentierung notwendig ist und dass

die Segmentierungsergebnisse oft nachkorrigiert werden müssen, wenn Pathologien oder andere

Abnormalitäten existieren. Eine Alternative zu automatischen und halb-automatischen Metho-

den bietet die manuelle Segmentierung. Die Nachteile dieses Ansatzes liegen darin, dass er sehr

zeitaufwändig und ermüdend ist, dass das Ergebnis sehr stark vom Wissen des Arztes abhängt

und dass es sehr schwer ist, Ergebnisse zu reproduzieren.

Diese Arbeit präsentiert einen Ansatz, der es ermöglicht, die Ergebnisse von automatischen

und halb-automatischen Segmentierungsalgorithmen zu verbessern, sowie eine schnelle manu-

elle Segmentierung von Objekten willkürlicher Form von Grund auf durchzuführen. Mit Hilfe

des Programms, dass im Zuge dieser Arbeit entwickelt wurde, können 3D und 4D Bilddatensät-

ze aller gängigen Bildgebungsverfahren segmentiert werden. Die Segmentierung, basierend auf

Dreiecksnetzen, wird anhand eines zweidimensionalen Schnittes durch das Gitternetz durchge-

führt, der durch den Benutzer an die zu segmentierenden Form angepasst wird. Im Hintergrund

wird dabei allerdings das Gitternetz in allen drei Dimensionen verändert. Um das Gitternetz

besser an Kanten anzupassen, wird der Sticky Edges-Algorithmus vorgestellt, der den Anwen-

der in dieser Aufgabe unterstützt. Um eine schnellere Segmentierung von 4D Datensätzen zu

ermöglichen, stehen dem Benutzer zwei Methoden zur Verfügung. Mit Ersterer können die Seg-

mentierungsschritte, die an einem Datensatz durchgeführt werden, aufgezeichnet und danach

automatisch auf andere Datensätze übertragen werden. Die zweite Methode ermöglich es, ein

bereits segmentiertes Gitternetz eines Datensatzes als Ausgangspunkt für die Segmentierung ei-

nes anderen Datensatzes zu verwenden. Der Ansatz dieser Arbeit ist bis zu 25 mal schneller, als

die Segmentierung mit der Livewire-Methode [41], die zur Evaluierung herangezogen wurde.

Bezüglich Glätte, Krümmung und Dreiecks-Qualität der Gitternetze sind die generierten Ergeb-

nisse auf Augenhöhe mit denen der Evaluierungssoftware. Der durchschnittliche geometrische

Abstand zwischen den Gitternetzen der Evaluierungssoftware und dieses Ansatzes beträgt 2 mm.

Die Abweichung der Normalen beträgt zwischen 0.3 und 0.4 Grad. Zusammenfassend wird in

dieser Arbeit eine Methode präsentiert, die eine schnelle manuelle Segmentierung ermöglicht

und Gitternetze von guter Qualität liefert.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Imaging Methods . 2

1.2 Segmentation . 3

1.3 Deformation . 3

1.4 Four Dimensional Datasets . 4

1.5 Problem Statement . 5

1.6 Aim of the Thesis . 5

1.7 Thesis Overview . 6

2 Related Work 7

2.1 Overview . 7

2.2 Related Work . 7

3 Approach of this Thesis 13

4 Implemented Methods 15

4.1 Overview . 15

4.2 Surface Representation . 15

4.3 Bounding Box Calculation . 17

4.4 Edge Detection . 17

4.5 Edge Classification . 21

4.6 2D Cut . 22

4.7 Manual Mesh Transformation and Deformation 23

4.8 Sticky Edges . 28

4.9 Interpolation between Slices . 29

4.10 Subdivision . 32

4.11 Decimation . 35

4.12 Smoothing Methods . 38

4.13 Curvature Measurement . 41

4.14 4D Deformation and Transformation Propagation 42

ix

4.15 Putting the Methods Together to an Segmentation Algorithm 45

5 Implementation 51

5.1 Overview . 51

5.2 GUI . 51

5.3 Data Structures . 55

5.4 Workflow and Program Description . 56

6 Results 65

6.1 Overview . 65

6.2 Use Cases . 66

6.3 Used Hardware . 71

6.4 Results . 72

7 Conclusion and Future Work 89

7.1 Conclusion . 89

7.2 Future Work . 90

A Appendices 91

A.1 ZVO File Format . 91

A.2 MeVisLab Module Framework . 91

A.3 Wavefront file format . 93

Bibliography 95

x

List of Figures

1.1 Two MRI brain scans. 4

4.1 Sobel operator masks . 19

4.2 Four possible edge directions. 19

4.3 LoG filter kernel. 20

4.4 Classified Edges . 22

4.5 Triangle - plane intersection possibilities. 23

4.6 Transformation matrices. 24

4.7 Deformation with and without angle constraint. 26

4.8 Concave and convex surface deformation. 26

4.9 Gaussian and cubic attenuation function. 28

4.10 Deformation with and without the use of the Sticky Edges algorithm. 29

4.11 Mesh before and after vertex position interpolation. 31

4.12 Mesh before and after
√
3-subdivision . 32

4.13
√
3-subdivision steps. 33

4.14 Adaptive
√
3-subdivision . 35

4.15 Triangles before and after vertex replacement. 38

4.16 Shrinkage effect of smoothing algorithms. 42

4.17 Deformation areas with same kernel size in systole and diastole dataset. 44

5.1 Navigation tab. 52

5.2 Clipped vertebra model. 53

5.3 How to open a volume. 53

5.4 open volume- dialogue. 54

5.5 How to load the Mesh Plugin. 54

5.6 Mesh Plugin GUI . 55

5.7 choose datasets- dialogue . 56

5.8 Topological information stored in the used mesh library. 57

5.9 2D cuts . 59

5.10 2D cut with deformation area. 60

5.11 4D deformation propagation. 62

5.12 Marked mesh triangles and vertices. 63

5.13 Interpolation of a vertex position. 64

xi

6.1 Test dataset 1 . 67

6.2 Test dataset 2 . 67

6.3 Test dataset 3 . 68

6.4 Test dataset 4 . 68

6.5 Box-plot explanation. 72

6.6 Time needed to segment the datasets. 74

6.7 Smoothness analysis of datasets 1, 2 and 4. 74

6.8 Smoothness analysis of dataset 3 part 1. 75

6.9 Smoothness analysis of dataset 3 part 2. 75

6.10 Gaussian curvature analysis of datasets 1, 2 and 4. 76

6.11 Gaussian curvature analysis of dataset 3 part 1. 77

6.12 Gaussian curvature analysis of dataset 3 part 2. 77

6.13 Gaussian curvature deviation analysis of datasets 1, 2 and 4. 78

6.14 Gaussian curvature deviation analysis of dataset 3. 78

6.15 Coloured Gaussian curvature analysis of the Mesh Plugin and the MeVisLab mesh

of dataset 3.10. 79

6.16 Mean curvature analysis of datasets 1, 2 and 4. 79

6.17 Mean curvature analysis of dataset 3 part 1. 80

6.18 Mean curvature analysis of dataset 3 part 2. 80

6.19 Mean curvature deviation analysis of datasets 1, 2 and 4. 81

6.20 Mean curvature deviation analysis of dataset 3. 81

6.21 Triangle quality analysis of datasets 1, 2 and 4. 82

6.22 Triangle quality analysis of dataset 3 part 1. 83

6.23 Triangle quality analysis of dataset 3 part 2. 83

6.24 Coloured triangle quality of the Mesh Plugin mesh and the MeVisLab mesh of

dataset 4.1. 84

6.25 Geometric distance analysis of datasets 1, 2 and 4. 85

6.26 Geometric distance analysis of dataset 3. 85

6.27 Normal deviation analysis of datasets 1, 2 and 4. 86

6.28 Normal deviation analysis of dataset 3. 86

6.29 Outlines of the mesh produced with the Mesh Plugin on dataset 1. 88

A.1 MeVisLab modules. 92

xii

List of Tables

4.1 Variables used in this work with their meaning. 16

6.1 Datasets used for testing. 69

6.2 Parameters used for the LoG algorithm to generate the Mesh Plugin results. 69

6.3 Parameters used for the mesh deformation and mesh optimization. 70

6.4 Hardware used for testing. 71

6.5 Number of vertices of the meshes. 73

xiii

CHAPTER 1
Introduction

According to Sherrow [48] more than a quarter billion imaging procedures were performed in

the USA in the year 2006. These image procedures create datasets with 2-, 3- or 4-dimensional

data. This vast amount of data has to be processed and interpreted to gain information that can be

used for patients’ treatment. As these procedures have to be done as fast as possible without the

loss of quality, technical routines were developed to assist radiologists in their work. Bankman

[4] classifies these routines into:

Enhancement: reduces image noise and improves contrast in regions of interest

Segmentation: delineates regions of interest from background

Quantification: extracts essential information from segmented shapes

Registration: finds correspondences between two or more images

Visualization: presents data in a convenient way

Compression, Storage, and Communication: deals with efficient and lossless compression

and storage, plus the communication of data

With the exception of some preprocessing steps that are related to the class of enhancement,

this thesis deals mainly with the field of segmentation 1.1 is concerned with imaging methods

relevant to the area of segmentation. Section 1.2 describes the basics of segmentation and gives

a short introduction to this field. The sections 1.3 and 1.4 will give an understanding of the terms

deformation and four dimensional data that are crucial for the further reading of this thesis. 1.5

and 1.6 explain the problem this master thesis tries to solve and summarize the aim of this work.

1.7 outlines shortly the remaining chapters of this thesis.

1

1.1 Imaging Methods

Note that this section gives only a brief overview over the imaging methods relevant for segmen-

tation. For a more detailed view please consult Yoo [57]. In the remainder of this section two

terms for resolution will occur. On the one hand “spatial resolution” is the area covered by a

voxel and on the other hand “sampling resolution” is the number of voxels in each dimension of

a slice.

1.1.1 Computed Tomography

With the help of X-rays, Computed Tomography (CT) generates a 3D volume out of a series of

transaxial taken 2D images. The sampling resolution of CT is either 256 x 256 or 512 x 512

voxels. The spatial resolution lies usually in the interval between 0.3 and 2 mm. The value

of each voxel represents the ionizing radiation attenuation characteristic of the tissue it depicts.

The unit of measure is called Hounsfield unit (HU). The zero point of the Hounsfield scale is the

attenuation coefficient of distilled water at standard temperature and pressure.

1.1.2 Nuclear Medicine

In nuclear-medicine imaging methods, a pharmaceutical tagged with a radioactive agent is in-

jected into the patient. The distribution of this pharmaceutical is measured by detecting the

emitted radiation. The detection of emitted radiation works similarly to CT. The main difference

of this method to CT is that the radiation source is inside the human body. Nuclear-medicine

methods are often used to depict physiological activities. The main drawbacks of this kind of

methods are the low resolution and the high amount of noise. This is due to the limited doses of

the radioactive agent. A higher dose would cause higher radiation which yields harmful conse-

quences. The most popular representatives are Single Photon Emission Computed Tomography

(SPECT) and Photon Emission Tomography (PET).

1.1.3 Magnetic resonance imaging

In contrast to CT and nuclear medicine, magnetic resonance imaging (MRI) uses magnetism

and radio waves to generate images. In this work T1 weighted and T2 weighted MR datasets are

used. In T1 weighted images fat tissue is depicted lighter than water. In T2 weighted images the

tissue behaviour is vice versa. A special MRI technique is the magnetic resonance angiography

(MRA)which is used to make pictures of blood vessels. For a more detailed view of the technical

features of MRI please refer to Faulkner and Seeram [21].

One advantage of MRI over CT is that it can produce slices oriented in any plane. CT is

only capable of producing transaxial slices. Another difference to the CT is that the output of

MRI is not calibrated on any scale. The sampling resolution of MRI is either 256 x 256 or 512

x 512 voxels. The spatial resolution lies between 1 and 2 mm. Although MRI has a worse

spatial resolution than CT it is more suitable to distinguish between very similar tissues. One

huge drawback, especially in the area of segmentation, is that a MRI scanner does not produce

constant values over space and time due to inhomogeneities in the magnetic fields.

2

1.1.4 Ultrasound

Ultrasonography makes use of the different reflections of high frequency sound waves by diverse

tissues of the human body. In contrast to CT and the methods of nuclear medicine it is a non-

invasive method. Ultrasound images are captured in real time. So it is easy to visualize the

movement of human parts. The big disadvantage of ultrasound images is that they typically

contain a lot of noise and therefore the identification of objects of interest is often quite hard.

1.2 Segmentation

Yoo [57] stated that segmentation can be simply defined as the partitioning of a dataset into con-

tiguous regions (or sub-volumes) whose member elements (e.g., pixels or voxels) have common

cohesive properties.

Segmentation has grown into one of the most important parts in medicine during the past years.

The main fields of segmentation in the area of medicine are surgical-planning, diagnosis, therapy-

planning and simulation. There are three possibilities how to utilize segmentation:

• automatic segmentation

• semi-automatic segmentation

• manual segmentation

Automatic segmentation methods have to accomplish the segmentation task without user in-

teraction. Semi-automatic segmentation allows only a minimal input by the user. For example,

at the MICCAI-Challenge [14] one seed point per vessel was allowed as user input. All segmen-

tation methods that require more user interaction belong to the area of manual segmentation.

According to Bankman [4] typical segmentation algorithms either identify all pixels or voxels

that belong to an object or detect all pixels or voxels that form the boundary of an object. As both

techniques are classification problems many methods of this area are applicable to segmentation.

A lot of techniques are available to segment medical images and they can be combined in many

ways. Which techniques are used, depends on many factors like image modality, image qual-

ity, segmentation task, high or low user interaction. For example, to segment the cranial bone

in Figure 1.1a a threshold that divides the image intensities into a class “bone” and a class “no

bone” would provide an acceptable solution. On the other hand to delineate the tumour in Figure

1.1b more sophisticated methods or the combination of multiple methods would be necessary to

acquire a proper result.

1.3 Deformation

The deformation approach used in this thesis tries to enable the user to deform objects without

any constraints as far as it is technically feasible. One approach to deform objects is by deform-

ing the space in which the objects are embedded. This approach was presented by Sederberg

3

(a) Brain without special characteristics. (b) Brain with a big tumour (marked by the yellow cir-

cle)

Figure 1.1: Two MRI brain scans.

and Parry [46]. This method, based on Bernstein polynomials, enables object deformation by

deforming the space the objects are embedded in by changing the position of control points in

the coordinate system and then calculating the object shape according to these changes. Space

deformation is independent from the object representation and failures in the object’s topology

(e.g., missing vertices), so it can be used for all kind of objects. The downside is after Botsch

et al. [9] that for fine or detailed deformations a large number of control points is necessary

which leads to high computational costs.

Another approach is surface deformation which corresponds more to what people expect a

deformation to look like. In this case the object deformation is done by directly moving parts

of the object (i.e., vertices, triangles, squares . . .) within a constant space. Taking Botsch et al.

[8] into account a disadvantage of this approach is that the computational effort and numerical

robustness increase with the complexity and quality of the surface tessellation. This is because

for every deformation a deformation field has to be calculated and the higher the tessellation

is the higher is the computational effort to calculate this field. Another disadvantage is that

artefacts in the tessellation lead to several problems in the calculation of the deformation. The

advantages of surface based deformation compared to space based deformation are that it is

easier to do fine and detailed deformations and that it is possible to use topological information

in the deformation process. On the ground of these advantages a surface deformation driven

approach was chosen for the mesh deformation operations in this thesis.

1.4 Four Dimensional Datasets

In this thesis four dimensional datasets will be mentioned frequently. In the particular case of this

paper these datasets consist of at least two three dimensional datasets. These three dimensional

4

datasets, also called volumes, can be either records of the same shape with the same image

modality at different moments or records of the same shape with different image modalities at

different moments. In the first case the depicted shape mostly changes its form from a 3D dataset

to a 3D dataset. In the second case the form most often shows only small variations but depth,

colour and reflectance values change due to the different modalities. In the remainder of this

thesis the shortcut 3D+T stands for the first case and 3D+M stands for the second one. If four

dimensional data are mentioned without further specification, this means that it is not crucial to

know which particular type of dataset is used. For both kinds of four dimensional datasets their

particular three dimensional datasets need to be registered as no special registration tool was

implemented. Registration is the spatial alignment of the volumes.

1.5 Problem Statement

Most automatic and semi-automatic segmentation methods are highly specialized in one seg-

mentation task and need a lot of prior-knowledge on the data. The segmentation results often

have to be corrected manually as the algorithms either over- or under-segment the data. Espe-

cially in the presence of pathologies a correction of the results has to be done retroactively. The

main drawbacks of manual segmentation are that it is very tedious and time consuming, that user

knowledge has a very high impact on the results and that it is very hard to reproduce specific

results.

Through the increasing usage of 4D Ultrasound Scanners and 4D CT- or MR-scans of the

human heart the demand for segmentation tools that are capable of segmenting 4D datasets is

growing. A lot of related work segmenting 4D human heart datasets is available but in the area

of 4D ultrasound data or when segmenting other organs than the heart, not much research has

been done up to now.

Most medical image segmentation programs run on special machines or are hardware accel-

erated to process the vast amount of data in appropriate time. As radiologists usually work on

customary computers they are not able to use these programs at their workstations. An enhance-

ment or solution of this points would save a lot of time in the clinical everyday life and would

increase the quality of treatment.

1.6 Aim of the Thesis

The aim of this thesis is to develop a segmentation tool that runs on every customary computer

with no hardware acceleration. The tool should fulfil the following requirements:

• Fast manual segmentation of different shapes (organs, tumours etc.) captured by diverse

modalities from scratch.

• Manual improvement of 3D and 4D models, that are the output of an automatic or semi-

automatic segmentation algorithm and do not fulfil the clinical requirements.

5

This requires:

• Simple and easy placement and deformation of a mesh.

• Fast parameter adaptation to enable segmentation of new modalities.

• Intuitive user interface of the application.

• User support in the segmentation task with a number of algorithms that run in the back-

ground.

1.7 Thesis Overview

Chapter 2 gives an overview of related work. In Chapter 3 the approach of this thesis is ex-

plained. Chapter 4 illustrates the methods used to develop a segmentation framework that can

deal with multi- and mono-modal three and four dimensional data. The Graphical User Interface

is described in chapter 5. Furthermore, chapter 5 describes how the methods of chapter 4 were

combined to a complete program and states which values were assigned to the different method

variables. The results of some selected segmentation tasks can be seen in chapter 6. Finally

chapter 7 provides a conclusion of the work and presents possible future work.

6

CHAPTER 2
Related Work

2.1 Overview

Section 2.2 gives an overview of state of the art manual segmentation in three and four dimen-

sions and the deformation methods used. As manual segmentation is a comprehensive field of

study, from very basic methods to really sophisticated approaches, which interacts with many

other areas, it is not possible to cover the whole field within the scope of this section. There-

fore only the works that are closely related to this thesis are mentioned and shortly explained in

section 2.2.

2.2 Related Work

Not much research has been done on manual segmentation of medical images over the last

years. The focus of research is in the area of fully automatic and semi-automatic segmentation.

Therefore only a few approaches exist that present complete systems for manually segmenting

shapes from scratch. The trend is towards systems for refinement and correction of automatic

segmentation results. This section tries to give an overview of state of the art methods and

systems in the area of medical image segmentation closely related to this work.

Bornik et al. [7] present a Virtual Reality system for interactive segmentation refinement of

the outcome of fully automatic liver segmentation algorithms in 2D and 3D. The system enables

the user to deform models with either a free-handed 6 degrees of freedom input device (called

the Eye of Ra) in combination with a steroscopic display or a tablet PC. The work flow of the

program is as follows:

Inspection: The user employs the Eye of Ra to locate errors in the outcome of the automatic

segmentation.

Error marking: If errors are found, the user marks them with a specific color. The color indi-

cates how well the model fits the shape of the liver.

7

Error correction: The marked regions are fixed by the use of special correction tools.

The real time deformation of the model can be done with the use of four correction tools:

Sphere tool: The user can place a sphere inside the dataset and then deform the model with the

sphere. This is done in a way that every part of the model that lies inside the sphere is

moved out on the shortest possible path.

Plane tool: Works similar to the sphere deformation tool. It can be used to flatten the surface.

Point tool: Single surface points can be moved directly to a desired position. The movement of

one vertex exerts a force on the vicinity of the vertex to simulate a natural behaviour.

Template shape tool: This tool can be used to deform larger surface regions. The user marks a

region to be deformed. Then a number of contour polylines are drawn by the user. These

polylines are used to generate a template shape. Afterwards the tool approximates the

model to the template shape.

For the model Bornik et al. [7] use simplex meshes. The tool offers different model rendering

modes to simplify the segmentation. The model can be rendered as coloured or textured surface,

as wire frame or as outline on a cutting plane. The rendering process makes use of the GPU to

achieve real time interactivity.

Dornheim et al. [18] present a semi-automatic method to segment the thyroid cartilage based

on stable mass-spring models (MSM). The idea of stable mass-spring models is presented by

Dornheim et al. [19]. Based on a manual segmentation of an average larynx a volumetric MSM

is built. The user places the initial model in the dataset to be segmented by specifying the posi-

tion of some distinctive model landmarks in the dataset. Positions and numbers of the landmarks

can be specified by the user. After the landmark positioning the rest of the model is adapted au-

tomatically by the internal spring and torsion forces of the model. As soon as the user is satisfied

with the position of the model the adaptation step can be stopped manually. Subsequently the

rest lengths and rest directions of all springs are set to their current value. After this initialisation

step the segmentation step is started. In this step the mass points are moved towards gradients

and specific intensity values. If the user is content with the segmentation result before the algo-

rithm stops automatically the process can be aborted with a click. During the segmentation step

the user can always drag mass points to other positions if they do not coincide with the shape to

be segmented.

A user guided segmentation approach for arbitrary organs is proposed by Erdt et al. [20].

The initial mesh is built by using the Marching Cube Algorithm on a binary segmentation mask

(for a detailed view of the Marching Cube Algorithm please study the work of Lorensen and

Cline [35]). This mask can be either the output of a manual segmentation or taken from an

organ atlas. The initial mesh is then smoothed and decimated. The user assigns a stiffness

constraint to every vertex connection. The stiffness constraint indicates the flexibility of a vertex

connection and ranges from 0 (soft connection) to 100 (stiff connection). Placing the mesh in

the dataset to be segmented is done by rotating, scaling and translating the mesh until it roughly

approximates the shape to be segmented. In the next step the mesh is deformed by aligning the

8

boundaries of the mesh towards the real boundaries. This is done by manually dragging mesh

vertices in a 2D view. The 2D view shows the outline of the mesh on the currently viewed image

slice. The force applied on a vertex is propagated to its neighbourhood attenuated by a Gaussian

function. During the deformation performed by the user the mesh gets permanently optimized

by minimizing an energy function.

A model adaptation method with the use of Markov Random Fields (MRF) is presented by

Kainmueller et al. [28]. More information about MRF is available in the work of Kindermann

and Laurie [31]. The algorithm starts by placing a sphere around every mesh vertex. The sphere,

with the centre at the current vertex position, contains a discrete set of uniformly distributed

points that represent possible positions where the vertex can be moved to. Then for every pos-

sible position the likelihood whether this position lies on a real boundary or not is calculated.

Furthermore the distance between all possible deformations is calculated. This distance should

serve as a penalty for deformations that may cause intersections. By minimizing a function that

rests on the likelihood and the distance mentioned above a displacement field is calculated that

is then applied to the mesh vertices.

A hybrid method based on region growing and deformable models is proposed by del Fresno

et al. [16]. In this approach the user places some seed points in the area to be segmented. Em-

anating from every seed point the region growing algorithm examines all adjacent voxels. If a

voxel complies with a similarity criterion based on voxel intensities it is added to the region. The

algorithm continues with all neighbours of the added voxel that are not already part of the region

until no more voxels directly adjacent to the region fulfil the similarity criterion. In the second

step the region growing algorithm is used once again but this time it starts from the frontier

voxels of the region generated in the first step and uses a gradient based similarity criterion to

better fit the real borders of the image. In the third step a triangle mesh is generated based on the

frontier voxels of the region produced by the second region growing step. The last step moves

every mesh point in the direction of high gradients and intensities similar to the intensity of the

region generated in the first region growing step but with respect to the mesh shape to avoid a

distortion of the mesh.

Jackowski and Goshtasby [26] introduce a system for the correction of segmentation errors.

Compared with the previous methods this approach uses a Rational Gaussian (RaG) surface
instead of a mesh to present the shape to be segmented. Further information about RaG can be

found in the work of Goshtasby [24]. The RaG surface has a set of control points. If an error in

the shape is found a click close to the error initializes a sphere with a specified radius and the

centre at the clicked position. All control points within this sphere are selected. By changing the

radius of the sphere the user can select more or fewer control points. After all desired control

points have been selected the user is able to drag the centre of the sphere. Every control point

inside the sphere is moved towards the centre of the sphere scaled by the cosine of the angle

between the control point-centre direction and the direction of the mouse motion. Only control

points with positive cosines are moved.

Poon et al. [42] present a 3D Livewire approach to semi-automatically segment objects of

arbitrary shape. As the explanation of the Livewire functionality would go beyond the scope

of this section the interested reader can find further information in the paper of Mortensen and

Barrett [41]. To segment an image the user first performs 2D Livewire segmentations in a couple

9

of slices in two orthogonal directions. This is done by defining some seed points along the shape

to be delineated in the slices to be segmented. This first step produces 2D contour lines. These

contours are used to find seed points for the Livewire segmentation in the third direction. The

new seed points are sorted according to an order which simulates a sequence that a user would

choose to set the seed points. After ordering, these new seed points are used to segment the

image automatically in the third orthogonal direction. The result of this algorithm is a set of

contour lines in all three orthogonal directions outlining the shape to be segmented. If the user

is not satisfied with the result, the procedure that determines the contours in the third direction

can be run again with additional manually set contours to refine the result. Three tools for the

interactive correction of segmentation results are presented by Kang et al. [29]. The tools are:

Hole filling: This tool allows the user to close holes due to erroneous segmentation by marking

the region with the hole with a sphere and then applying either amathematical morphology
operator or a volume growing method. The morphological operator closes the hole by

using morphological closing (explained by Fisher et al. [22]) with different structuring

elements. The volume growing method marks every voxel in the sphere either as inside

the hole or outside the hole. This is done by sending rays from every voxel into different

directions. If more than 65 % are “reflected” the point is considered to be inside the hole

and therefore to be part of the segmentation region.

Point bridging: If some voxels are falsely classified as not to belong to the segmented shape,

the user is able to manually classify the voxels and then connect them to the segmentation

region with the use of morphological closing.

Surface dragging: The user can drag the surface of an already segmented region by placing

a sphere on the surface in such a way that the sphere contains the surface region to be

deformed. The centre of the sphere is the control point. By changing the position of the

control point the user deforms the surface inside the sphere. This can be done in two ways.

One option is to move every surface point parallel to the direction of the control point

motion. The strength of the movement depends on an attenuation function. The second

option is to use cubic B-splines. During the movement of the control point the B-spline is

deformed. The deformed surface then takes on the shape of the deformed B-spline. For

more information about B-splines please refer to the work of Salomon [44].

Most of the research in the area of 4Dmedical image segmentation has been done to measure

the motion of the human heart, especially the left ventricle. Most approaches make use of a priori

knowledge of the motion of the human heart. As examples serve the papers of Gerard et al.

[23] and Chandrashekara et al. [13] among many others. A more generic way for segmenting

3D+T images is presented by Montagnat and Delingette [40]. This simplex mesh model based

approach looks along every vertex normal of the mesh for edges within a specific distance. If an

edge is found, a force tries to pull the vertex towards this edge. To avoid distortions of the mesh

shape and to keep a natural motion over time this force is attenuated by spatial and temporal

regularization constraints.

A simple approach to segment 4D datasets is to segment the shape in one sub-dataset and

to use the point positions as an approximation for the segmentation in the other sub-datasets.

10

A short overview on this method is given by McInerney and Terzopoulos [37]. A software for

manual 3D multi modality image segmentation is presented by Yang et al. [56]. The name of

the Software is “MIASYS” (Multi Modality Image Analysis System). After having imported the

images to be segmented, they need to be registered in the first step. This can be done manually

by the user or by an automatic rigid registration algorithm. Before the segmentation the user can

optimize the images using different preprocessing tools. Amongst others, MIASYS offers the

following preprocessing functionalities: cropping, smoothing and image intensity correction. In

using the MIASYS tool, which offers manual and semi-automatic segmentation methods, every

image has to be segmented separately. The manual segmentation can be done by delineating

the contour or the area of the shape to be segmented with a painting tool. If the user marks

the contours only on a few slices, the contours for the slices between can be calculated by

interpolation of the existing outlines. Furthermore the tool can display two to three images

simultaneously in different color channels to help the user distinguish different structures. The

following semi-automatic algorithms are supported by MIASYS: an image intensity threshold

method, C-means clustering by Bezdek [6], K-means clustering by Anderberg [3], geodesic

active contours by Caselles et al. [11], level sets by Sethian [47] and active contours without

edges presented by Chan and Vese [12]. If the user is not satisfied with the segmentation result

segmented regions can be smoothed, deleted or combined.

Summary

All these methods and approaches presented above are not capable to solve the problem stated

in section 1.5. The approach of Bornik et al. [7] is only able to deal with three dimensional data

and needs special hardware that is rarely available. The MSM driven method of Dornheim et al.

[18] is very computation intensive and highly specialized as MSM have to be generated for every

shape to be segmented. The segmentation approaches proposed by Erdt et al. [20], Kainmueller

et al. [28], del Fresno et al. [16], Jackowski and Goshtasby [26], Poon et al. [42] and Kang et al.

[29] can be applied only to two and three dimensional datasets. The four dimensional approach

presented by Montagnat and Delingette [40] needs a generic model of the shape to be segmented

and is not able to segment multi modal datasets. The way McInerney and Terzopoulos [37] tries

to segment 4D datasets is too time consuming. This is because no algorithms were implemented

that try to align the propagated mesh to the shape to be segmented automatically and so the user

still has to align every mesh manually. With the use of the MIASYS tool presented by Yang et al.

[56] it is only possible to segment 3D+T datasets. Furthermore most of the segmentation algo-

rithms used in the MIASYS tool need a lot of input parameters that are very hard to understand

if the user is not familiar with the specific algorithm. Due to all these reasons, mentioned in the

last paragraph, it was necessary to develop the approach presented in this thesis.

11

CHAPTER 3
Approach of this Thesis

This work presents a tool that enables the user to enhance results of automatic and semi-automatic

algorithms and to do fast manual segmentation of shapes of arbitrary topology from scratch. The

tool can deal with three and four dimensional image datasets captured by different modalities.

The fourth dimension can be either time or result from images of the same shape captured with

a different imaging technique. The main emphasis of this thesis is on generality in a way that

the methods mentioned below can be used for shapes of arbitrary topology and for all kinds of

image modalities. Moreover, the implementation of the program is designed in a way that it

can be easily integrated into other applications. The work flow of the program developed in this

thesis is as follows: The user loads a dataset that contains the shape to be segmented. Then an

arbitrary triangle mesh is placed in this dataset and with simple deformation operations roughly

approximated to the desired form. After this initialization the mesh can be fitted to the desired

shape with two deformation tools which are similar to the one presented by Erdt et al. [20]. The

deformation is done in a 2D view to give the user a better view of the outlines of the mesh. The

user clicks on or near to the outlined part that has to be deformed. The point on the outlined

part that is the closest to the click is marked as deformation centre. Around the deformation

centre a deformation area is highlighted that contains all points that are going to be affected

by the deformation. The size of the deformation area can be interactively changed by the user.

With the mouse the user drags the deformation centre to a desired position. The other points

in the deformation area follow this motion weakened by an attenuated function. After the user

has dropped the deformation centre, an algorithm searches for an edge within an area around

the deformation centre. If an edge is found, the algorithm looks in 3D for edges in the vicinity

of every moved mesh point and moves these points to this edge if it is within a specific region

and fulfils some similarity criteria. This algorithm is called Sticky Edges algorithm. After every

deformation step the mesh is smoothed to warrant a good mesh quality. If a 4D dataset has

been loaded in the first step the deformations performed in one sub-dataset can be propagated

to the other sub-datasets as a starting point for their segmentation. These propagation can be

done in two ways. One approach records the user interactions and propagates these interactions.

The second approach sets an already deformed mesh into other sub-datasets as starting point for

13

their segmentation. These 3D and 4D deformation steps can be repeated until the user thinks

that the mesh fits the underlying shape well. The program is designed in a way that it runs on a

common workstation without the need of hardware acceleration. Except for the propagation of

the deformation to the fourth dimension all working steps are performed in real time so that the

user has no interruption of his work flow.

14

CHAPTER 4
Implemented Methods

4.1 Overview

This section describes all basic methods implemented in this thesis. This embraces the methods

that are used in the final implementation as well as the methods that were tried out but later on

discarded because it turned out that they were not suitable to solve the problem stated in section

1.5. Finally section 4.15 shows how the methods were put together to the algorithm used in

the chapters 5 and 6. For this purpose, a pseudo code snippet is given after every method that

illustrates shortly the functionality of the method. These snippets are called modules and are put
together in section 4.15 to give a good overview over the program flow. A typical module looks

as follows:

methodName[inputParameters x]1

1: ...code
2: return returnValue

Before going into detail a few variable definitions have to be given. Table 4.1 gives an

overview of the variables used in this section and their meaning.

4.2 Surface Representation

Surface representation methods can be roughly divided into parametric and implicit surface rep-

resentations. Implicit surfaces are described by a function F . For every point x on the surface

F (x) = 0 is true. Implicit surfaces are well suited for querying if a point lies on, inside or out-

side a surface, ray tracing applications and the detection respectively avoidance of self intersec-

tions. Parametric surfaces can be expressed by a function F that maps two dimensional param-

eters to a three dimensional surface. A point x on the surface can be expressed by x = F (u, v)
where u and v are surface parameters. They have the advantage that several problems on the

15

Variable Meaning

θ: an angle

u, x, y: three auxiliary variables; their meaning can be seen from the content or is

explained separately

u, x, y: three auxiliary vectors; their meaning can be seen from the content or is ex-

plained separately

Rθu: rotation matrix for angle θ around a given axis u

∇: a gradient

σ: standard deviation

‖u‖: Euclidean norm of an arbitrary vector u

ω: a scalar weight to scale a tuple

v: an arbitrary vertex

vi: a vertex with index i

V : a set of vertex indices

vi: position of a vertex with index i

val(vi): valence of a vertex with index i

nvi : normal of a vertex with index i

d(vi, vi): Euclidean distance between the vertex with index i and the vertex with index j

Ki: set of the indices of the vertices adjacent to the vertex with index i (one ring
neighbourhood)

eij : an edge from a vertex with index i to a vertex with index j

E: a set of edges

ti: a triangle with index i

a(ti): area of a triangle with index i

nti : normal of a triangle with index i

Tvi : a set of triangles incident on vi
Teij : a set of triangles incident on eij
c: deformation centre

nc: normal of the deformation centre

di: deformation vector for a vertex with index i

k: kernel size

size(S): number of entries in a set S

Table 4.1: Variables used in this work with their meaning.

surface can be reduced to the lower dimensional parameter space Botsch et al. [8]. A discrete

representation of parametric surfaces are triangle meshes. A triangle mesh is a set of triangles

where each triangle defines a part of the whole surface. The advantage of triangle meshes is that

shapes of arbitrary form and detail can be modelled. The shorter the edges of the triangles are the

more details can be expressed. The disadvantage is that the more triangles a mesh has, the more

memory is needed and the longer is the computation time for algorithms. Another advantage is

that algorithms are very convenient to implement and geometric mesh properties like normals

16

can be computed easily. Due to this advantages the triangle mesh structure was chosen to be the

proper surface representation for the subject-matter of this thesis.

4.3 Bounding Box Calculation

If algorithms with very high memory consumption have to be executed or too little memory is

available, it is necessary to run the algorithm in a bounding box. The bounding box includes only

relevant parts of a dataset which saves computation time. In the program that was developed

in the course of this work the bounding box method is applied in combination with the edge

detection algorithm as only the detection of edges in a dataset in the vicinity of the mesh is

relevant. The bounding box serves the purpose of saving computation time because it would

be too time consuming to calculate the edges for the whole dataset. The length of the box is

defined as 1.5 times the maximal extent of the mesh in x-direction, the height is 1.5 times the

maximal mesh extent in y-direction, the depth is 1.5 times the maximal extent in z-direction and

its centre is at the centre of the mesh. The maximal extent in a particular direction is calculated

by using the difference between the direction coordinate of the vertex with the lowest value and

the vertex with the highest value in that direction. The factor 1.5 was chosen as it turned out

during implementation and testing that a deformation of the mesh more than 1.5 times its own

size is barely necessary and so the recalculation of the edges due to a resizing of the bounding

box is only rarely required.

The module for the bounding box calculation is defined in algorithm 4.1.

calculateBoundingBox[mesh m]1

1: setBoundingBoxCentre(m.getCentre())
2: setBoundingBoxXLenght(m.getExtentX())
3: setBoundingBoxY Lenght(m.getExtentY ())
4: setBoundingBoxZLenght(m.getExtentZ())
5: return boundingBox

Algorithm 4.1: Bounding box calculation module

4.4 Edge Detection

Edges are one of the most important properties in an image, as they determine where one area

ends and another begins. This makes edge detection one of the most crucial fields in relation to

image segmentation. Edge detection algorithms find edges by searching for sharp changes in the

image brightness. According to Barrow and Tenenbaum [5] these changes in brightness are due

to depth-, colour-, orientation- or reflectance changes in the real world. The perfect outcome of

an edge detection algorithm would be an image with closed lines that indicate all relevant edges.

In medical image processing this is not possible for several reasons. Some of these reasons are:

Noise: Small artefacts in the image lead to small edges that do not exist in the real world. These

edges are called false edges. Especially in ultrasound images noise is a big problem.

17

Low resolution: A low image resolution contributes to poor edge perceptibility.

Bad contrast: Also bad contrast (i.e., due to poor illumination) makes it harder to differentiate

between edges and areas.

As this thesis does not specialize on one particular image type, two basic edge detection

algorithms for grey scale images were implemented. These are the Canny and theMarr-Hildreth
operator.

4.4.1 Canny Edge Detection

The Canny edge detection operator was developed by Canny [10] in the year 1986. According

to Canny an edge detection algorithm has to fulfil the following points:

• Detect as many real edges as possible.

• The distance between the real edge and the pixels marked as edge should be minimal.

• The algorithm should only respond to an edge once.

The Canny operator consists of five successively performed steps. The first step tries to filter

out any noise by convolving the image with a Gaussian filter kernel. The higher the standard

deviation of the kernel is chosen the lower is the sensitivity of the filter to image noise. A deeper

look into convolution is given by Fisher et al. [22].

In the second step the gradients of the image are measured with the use of the sobel operator.
The sobel operator convolves the image with two 3x3 convolution masks. One mask (figure

4.1a) estimates the first derivative in the vertical direction and the other mask (figure 4.1b) esti-

mates the first derivative in horizontal direction. The total gradient is the summation of the first

derivatives in horizontal and vertical direction. Step three calculates the edge direction with the

formula:

θ = arctan(
∇h

∇v

) (4.1)

where θ is the direction of the edge, ∇h the first derivative in horizontal direction and ∇v

the first derivative in vertical direction. If one of the two derivatives is zero, the value of the zero

derivative is set to 1 in the above equation. The Canny operator uses only four edge directions in

an image (see figure 4.2). Therefore θ is assigned to one of these directions (either 0, 45, 90 or

135 degrees). Step four is called nonmaximum suppression. In this step every pixel value, where
the value is lower than the value of one of its directly adjacent neighbours in gradient direction

is set to zero. For the fifth and last step the Canny operator needs two thresholds defined by the

user. A higher one T1 and a lower one T2. Every pixel in an image that has a value greater

than T1 is marked as edge point. Then, every directly adjacent neighbour of an edge point that

has a value greater than T2 is marked as edge. This is repeated until there are no edge points

left with neighbours with a value greater than T2. The purpose of the second threshold T2 is to
overcome noise caused by lower edge intensities in particular areas. The Canny edge detection

operator needs four input parameters:

18

• the size of the Gaussian kernel,

• the standard deviation of the Gaussian kernel,

• threshold T1,

• and threshold T2.

The module for the Canny edge detection can be seen in algorithm 4.2.

calculateEdgesForImgWithCanny[kernelSize k, standardDeviation σ, threshold T1 and1

T2]

1: arrayWithEdgeIndices = canny(k, σ, T1, T2)
2: return arrayWithEdgeIndices

Algorithm 4.2: Canny edge detection module

-1 -2 -1

0 0 0

1 2 1

(a) vertical operator

-1 0 1

-2 0 2

-1 0 1

(b) horizontal op-

erator

Figure 4.1: Sobel operator masks.

Figure 4.2: The green dots mark the pixels that surround the pixel marked with a red dot. The

blue lines determine the four possible directions an edge can have originating at the centre pixel.

19

0 1 1 2 2 2 1 1 0

1 2 4 5 5 5 4 2 1

1 4 5 3 0 3 5 4 1

2 5 3 -12 -24 -12 3 5 2

2 5 0 -24 -40 -24 0 5 2

2 5 3 -12 -24 -12 3 5 2

1 4 5 3 0 3 5 4 1

1 2 4 5 5 5 4 2 1

0 1 1 2 2 2 1 1 0

Figure 4.3: LoG filter kernel with a standard deviation of 1.4.

4.4.2 Marr-Hildreth Edge Detection

TheMarr-Hildreth operator, also know as LoG (Laplacian of Gaussian) was presented in 1980 by

Marr and Hildreth [36] and makes use of the second spatial derivation of the image intensities

to localize edges. The second spatial derivation is calculated by convolving the image with a

Laplacian filter kernel. Calculating the edges only by convolution of the image with this kernel

is very noise sensitive. Therefore the image is smoothed with a Gaussian filter kernel before.

To save computation time first the Gaussian kernel is convolved with the Laplacian kernel and

then the resulting kernel is convolved with the image. This can be done because convolution is

associative. The continuous 2D version of the LoG is

LoG(x,y) = −
1

πσ4
e
−
x2 + y2

2σ2

(

1− x2 + y2

2σ2

)

(4.2)

with the Cartesian coordinates x and y. A discrete approximation with kernel size 9 and

standard deviation 1.4 can be seen in figure 4.3.

Zero values in an image that was convolved with a LoG filter kernel correspond to constant

intensity regions in the original image. A positive value with an adjacent negative value corre-

sponds to an intensity change from bright to dark and a negative value followed by a positive

matches with an intensity change from dark to bright. A zero crossing detector finds all zero

crossings in an image that correspond to an edge. Zero crossings that belong to an edge in the

real image need a short distance between the positive and the negative peak as long distances

indicate a smooth transition from dark to bright or vice versa and the magnitude of the peak and

the valley must be over respectively under a given threshold because small fluctuations around

zero can be due to noise. The LoG edge detection operator needs three input parameters:

• the size of the Gaussian kernel,

• the standard deviation of the Gaussian kernel,

• and a zero crossing threshold.

The module for the LoG edge detection can be seen in algorithm 4.3.

20

calculateEdgesForImgWithLoG[kernelSize k, standardDeviation σ, threshold zc]1

1: arrayWithEdgeIndices = log(k, σ, zc)
2: return arrayWithEdgeIndices

Algorithm 4.3: LoG edge detection module

4.4.3 Conclusion

The Canny edge detector has the advantages that it produces edges with very few gaps because

of the two thresholds, it does not create many isolated line segments and it is very noise resistant.

The disadvantage of the Canny edge detector is that it needs more computation time and a higher

memory consumption than the LoG operator. The benefit of the LoG edge detector is that it is

fast to compute and that it finds more edges than the Canny edge detector. Unfortunately the

detection of more edges yields also more false edges and isolated edge segments. Another

disadvantage of the LoG filter is that it is more noise sensitive than the Canny operator. The

output of both operators depends extremely on parameter tuning.

As the Canny edge detector performs better on noisy images a noise estimation method,

proposed by Zambal [59], was implemented to decide, depending on its outcome, whether the

Canny edge detector or the LoG edge detector should be used. The noise estimator measures the

absolute grey value difference of a pixel to its next neighbours in vertical respectively horizon-

tal direction. The difference is measured 10 times in horizontal and vertical direction in every

image slice. Subsequently, the measured differences are summed and normalized. Although the

noise estimator provides good results, the LoG edge detector was chosen to be the standard edge

detection method. This was done because the LoG algorithm needs less computation time, con-

sumes much less memory and performs good on images without a high noise level. Additionally

the computation time of the noise estimator is saved. If the LoG algorithm does not produce a

satisfying result the user still can either tune the algorithm parameters or choose the Canny edge

detector manually.

4.5 Edge Classification

The edge classification algorithm is based on the gradient direction of the edges and how well

the edges are connected. For every pixel of the image it determines whether the pixel belongs to

an edge or not. If the pixel is an edge pixel a 3D structure element is centred at the pixel position.

The structure element is a cube with 5x5x5 pixels with a hole at its centre. The specific element

size was chosen because it is a good trade off between computation time and the bridging of

edge gaps. If an already classified pixel with a gradient direction difference lower than or equal

to an angle of 45◦ lies within the structure element, the edge pixel is assigned to the same class,

otherwise the edge pixel is assigned to a new class. If there are two or more pixels with a

similar gradient but different classes, these classes are merged. Figure 4.4 shows an image with

classified edges. The module for the edge classification is defined in algorithm 4.4.

21

Figure 4.4: The classified edges within a bounding box of two vertebral bodies. The colours

indicate the edge class. The pink lines that can be seen through the white ones belong to an edge

class inside the vertebral body.

classifyEdges[image img, edgeIndexArray eIdx]1

1: gradients = calculateGradients(img, eIdx)
2: edgeIndexToEdgeClassMap = classify(eIdx, gradients)
3: return edgeIndexToEdgeClassMap

Algorithm 4.4: Edge classifier module

4.6 2D Cut

To depict the outline of a mesh in a specific image slice a “cut” of that image slice through the

mesh is calculated. The points where the mesh intersects the image slice, are connected with

lines to approximate the outline. This is done by checking for every triangle of the mesh if its

edges intersect the mesh. Figure 4.5 shows five ways a triangle could intersect a plane. The case

shown in figure 4.5a is not considered by this algorithm because neighbouring triangles share the

same intersection point but have an additional second intersection point. Also 4.5e is discarded

because it is easier to work with the neighbouring triangles that conform to the case depicted in

figure 4.5d. So only the cases pictured in the figures 4.5b, 4.5c and 4.5d have to be considered.

If two edges of a triangle intersect the image slice the intersection point coordinates and the

edge indices are stored in a doubly linked list. In the case shown in figure 4.5d the end points

of the line that lies exactly on the plane are stored as intersection points. The corresponding

edge indices depend on the iteration order (first come, first serve) but one edge index can only

be stored with exactly one intersection point.

A doubly linked list is a special list type that stores the successor and ancestor for every list

entry. In this case one edge is the successor respectively the ancestor of another edge and vice

versa. To find the ancestor respectively the successor is very easy because one intersection point

is at least part of two triangles that intersect the slice, as every edge has two adjacent triangles.

22

(a) triangle and plane intersecting in

only one point represents a special

case

(b) the most frequent case is that a

triangle and a plane intersect in two

points on an edge

(c) one triangle point lies exactly on

the plane, one above and one below

the plane

(d) two triangle points lie exactly on

the plane

(e) all triangle points lie exactly on

the plane.

Figure 4.5: The green points respectively the green lines mark the intersection points at which

the black triangle crosses the red plane.

Furthermore the edge indices and the intersection point coordinates are indexed in the list, so an

element can be accessed by the use of an edge index or an intersection point coordinate. This

type of linked list can be traversed extremely fast and single entries can be found very easily.

Currently the algorithm handles only closed surfaces, but it is no problem to extend it to be able

to handle also open surfaces. The module for the calculation of the 2D Cut can be seen in 4.5.

calculate2DCut[mesh m, cuttingPlane plane]1

1: intersectionPoints = getAllEdgeIntersectionPoints(m, plane)
2: doublyLinkedList = connectIntersectionPoints(intersectionPoints)
3: return doublyLinkedList

Algorithm 4.5: 2D cut calculation module.

4.7 Manual Mesh Transformation and Deformation

To adjust a mesh in a way that it approximates the shape to be segmented as good as possible the

user can utilize three transformation methods and two deformation methods. The transformation

methods are translation, scaling and rotation. These operations affect the whole mesh. It is not

possible to translate, deform or scale only single parts of the mesh. To transform a mesh every

mesh vertex position tuple is multiplied with a transformation matrix or a combination of them.

All used transformation matrices are depicted in figure 4.6. The module for the transformation

of a mesh is defined in algorithm 4.6.

As the transformation methods are only used to align the mesh to the shape to be segmented,

the module is kept very simple. To deform a mesh a deformation vector d is applied to a defor-

mation centre c. The deformation vector points in the direction where the deformation centre

23

transform[]1

1: alignedMesh = alignMeshRoughlyToShapeToSegment()
2: return alignedMesh

Algorithm 4.6: Transformation module

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

(a) translation matrix

s 0 0 0

0 s 0 0

0 0 s 0

0 0 0 1

(b) scaling matrix

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

(c) rotation matrix for rotation

around x-axis

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

(d) rotation matrix for rotation

around y-axis

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

(e) rotation matrix for rotation

around z-axis

Figure 4.6: Transformation matrices for translation, scaling and rotation. tx, ty and tz give the
translation of the mesh in x-, y- and z-direction. s is the scale factor. θ is the rotation angle.

is pulled and the length of the deformation vector indicates how far the centre is moved. The

deformation centre can be any arbitrary point on the surface of the mesh. With the use of a given

kernel size a deformation area is calculated. The deformation area contains all mesh vertices

that have a distance value lower than the kernel size to the deformation centre.

When the deformation centre is moved to its new position with the use of the deformation

vector all vertices within the deformation area also change their positions. How the vertices

change their positions depends on which deformation method and which attenuation function is

chosen. The two selectable deformation methods are described subsequently.

4.7.1 Simple Deformation

The first deformation method is a very simple one. If the angle between the normal of the

deformation centre and a the normal of a vertex within the deformation area in their initial

position is below 90◦ the direction vector is scaled by an attenuation function and applied to the

vertex, otherwise the vertex stays unchanged. Checking of the angle is necessary to avoid that,

if a part of a mesh with a very low inner diameter is deformed, the whole part is moved in the

direction of the deformation centre because the kernel size is big enough to include the vertices

of the whole part. For an illustration see figure 4.7. As can be seen, an enlargement of the process

diameter is only possible with the angle constraint. In contrast to the method presented in the

next subsection this method does not check for possible self-intersections during the deformation.

Self-intersections occur very rarely and are, except of some extreme cases, caused by the user.

The module for the simple deformation is shown in algorithm 4.7.

24

deformSimple[deformationVector dv, deformationCentre dc, kernelSize k]1

1: deformationArea = calculateDeformationArea(dc, k)
2: deformDeformationCentre(dv, dc)
3: for j = 0→ deformationArea.size() do
4: vertex = getV ertx(j)
5: weight = getGaussWeight(dc, vertex, k)
6: if normalAngle(dc, vertex) < 90◦ then
7: deformV ertex(vertex, dv,weight)
8: end if

9: end for

10: return deformedMeshVertices
Algorithm 4.7: Simple deformation module

4.7.2 Deformation Using the Normals

The second deformation method calculates the angle θ between the normal of the deformation

centre and the deformation vector of the undeformed mesh. The new position v′i of vertex with

the index i is calculated by:

v′i = vi + ‖d‖ωidωinRθunvi (4.3)

where

ωin = nvi · nc. (4.4)

and ωid denotes the weight of an attenuation function which will be discussed below. Rθu

is the rotation matrix for axis u for angle θ. In the program implemented in the course of

this thesis u is the axis orthogonal to the slice with that the 2D Cut has been calculated. This

deformation method moves vertices along their normal, which keeps the shape of a region during

the deformation.

Note that equation 4.3 can only be applied to a convex surface region. In the case of a con-

cave surface this deformation would cause self-intersections. For an illustration see figure 4.8.

Therefore the algorithm checks the shape of the surface before the deformation starts. This is

done by checking the normal of the deformation centre and the normals of all vertices in the

deformation area. If the normal of the deformation centre and the normal of a vertex in the

deformation area point into directions that cross each other the vertex would be moved with the

first deformation method otherwise equation 4.3 would be applied. The movement of vertices

with a normal that points in a direction that differs from the deformation centre normal by more

than 90◦ is also suppressed in this method.

The second deformation method has the advantage that the shape of the region to be de-

formed is approximately kept as all vertices in the region move along their normals. The defor-

mation of the mesh with the first method on the other hand correlates more with a deformation

that is expected by the user when a point is moved and is also much faster to computate. The

final module for the deformation using normals is shown in algorithm 4.8.

25

(a) outline of a vertebra unchanged (b) outline changed without angle

constraint

(c) outline changed with angle con-

straint

Figure 4.7: (a) the unchanged outline part of the vertebra can bee seen. (b) shows the outline

after a deformation without constraint. (c) shows the outline after a deformation of the right

process with the constraint that the normals of a vertex and the deformation centre must not

differ by more than 90◦. The yellow part of the outline marks the deformation area. The red

arrows indicate the direction of the movement of the yellow outline parts.

(a) in the case of a concave shape this deformation

method causes self-intersections

(b) as all points move in the direction of their normals

the shape is preserved over deformation

Figure 4.8: The red point marks the deformation centre. The green points are the vertices in

the deformation area. The red arrows indicate the movement of the points. This illustrates the

direction of the movement of the points. The attenuation is not depicted.

26

deformWithNormals[deformationVector dv, deformationCentre dc, kernelSize k]1

1: deformationArea = calculateDeformationArea(dc, k)
2: deformDeformationCentre(dv, dc)
3: for j = 0→ deformationArea.size() do
4: vertex = getV ertx(j)
5: weight = getGaussWeight(dc, vertex, k)
6: if normalAngle(dc, vertex) < 90◦ then
7: if isConvex(dc, vertex) then
8: rotateDV (dv)
9: deformV ertex(vertex, dv,weight)
10: else

11: deformSimple(dv, dc, k)
12: end if

13: end if

14: end for

15: return deformedMeshVertices
Algorithm 4.8: Deformation using the normals module

Attenuation Functions

Two attenuation functions were implemented and tested in the course of this work. Both of them

are distance dependent. The first one uses a Gaussian function with kernel size k. The weight
by which the deformation vector is scaled for a vertex i is defined as:

ωid =
gauss (‖c− vi‖)

gauss (0)
(4.5)

where

gauss (x) =
1

k

3

√
2π

e

−x2

2

(

k

3

)2

. (4.6)

With this parametrization the deformation vectors applied to the vertices at the border of the

region to be deformed is downscaled to nearly zero. The second attenuation function is a cubic

one. The weight is calculated by:

ωid = cubic

(‖c− vi‖
k

)

(4.7)

where

cubic(x) = 2x3 − 3x2 + 1 (4.8)

27

Figure 4.9: The green line describes the Gaussian function in equation 4.5 with a kernel size 1.

The red line depicts the cubic attenuation function in equation 4.8. Only the parts of the attenu-

ation functions that are equal to or lie between 0 and 1 on the x-axis are used for attenuation, so

strange behaviour due to negative values is excluded.

Both attenuation functions are depicted in Figure 4.9. Only the parts of the attenuation

functions that are equal to or lie between 0 and 1 on the x-axis are used for attenuation. As can

be seen, the used part of the cubic function is similar to a linear attenuation and barely dampens

the point movement in the outer regions of the deformation area compared to the Gaussian

function. During the development and evaluation of this work it turned out that the Gaussian

attenuation function corresponds more to the expectations of the user how the surface is going

to be deformed. Therefore the Gaussian function was chosen to be the standard attenuation

function.

4.8 Sticky Edges

Often the deformation centre is repositioned precisely on an edge or in the immediate neighbour-

hood of an edge by the deformation vector but the mesh vertices in the vicinity of the deforma-

tion centre are not deformed in such a way that they also lie on that edge. This is because the

shape of the attenuation function does not fit the edge shape. The Sticky Edges algorithm was

implemented to avoid that every vertex has to be moved on the edge separately. A prerequisite

for this algorithm is that the edges have been classified with the method explained in section 4.5.

The Sticky Edges algorithm is called after the deformation centre has been placed at a specific

position and the vertices in the deformation region have been moved to their new positions. If

the deformation centre was placed directly on an edge, the class of this edge is memorized. Oth-

erwise the path from the new position of the deformation centre to its old position is examined.

For the first edge found at a position e a distance variable δ is calculated with the use of equation
4.9. If δ is bigger than the length of the vector from e to the new deformation centre, the edge

class of the edge is memorized and the algorithm proceeds with the following step. If no edge is

found the algorithm terminates.

After the edge class of the deformation centre has been determined the algorithm calculates,

starting from the new vertex positions of the deformation area, whether there is an edge along

the direction of the deformation vector of a vertex or its opposite direction or not. If an edge is

28

(a) deformation with the Sticky Edges algorithm de-

activated

(b) deformation with the Sticky Edges algorithm ac-

tivated

Figure 4.10: (a) result of a deformation without the use of the Sticky Edges algorithm. (b) result

of the same deformation with the use of the Sticky Edges algorithm. The yellow dots indicate

the edge of the shape to be segmented. The red line is a part of the outline of the mesh at the

currently viewed slice. As can be seen the line in (b) fits the edge much better than the line in

(a).

found within the length of the deformation vector of a vertex that has the same edge class as the

edge the deformation centre lies on, the simple deformation method explained in 4.7.1 is used to

move the vertex to the position of the edge. A kernel size appropriate for this small movement

is double the distance between the edge position and the vertex position. The distance variable

δ is calculated with the following formula:

δ =
l(Mx)

d(cx, ex)

dsum
+ l(My)

d(cy, ey)

dsum
+ l(Mz)

d(cz, ez)

dsum
u

(4.9)

where

dsum = d(cx, ex) + d(cy, ey) + d(cz, ez). (4.10)

l(Mx), l(My) and l(Mz) are the extent of the mesh in x-, y- and z-direction. d(cx, ex),
d(cy, ey) and d(cz, ez) are the differences between the x-, y- and z-coordinates of the new defor-

mation centre position and the position e. With the use of u the maximal feasible distance of an

edge to the deformation centre can be controlled. The higher the value of u is chosen the lower

δ is. During the implementation, experience has shown that a value of 5 for u produces good

results. Figure 4.10 shows the outcome of a deformation with and without the use of the Sticky

Edges algorithm. The module for the Sticky Edges algorithm is outlined in algorithm 4.9.

4.9 Interpolation between Slices

In some datasets the distance between different image slices is very big and the kernel size

chosen for a deformation is often not large enough to reach from one slice to the next one. These

29

stickyEdges[deformationArea da, deformationCentre dc]1

1: if dc.isOnEdge then
2: edgeClass = dc.getEdgeClass
3: else

4: edgeClass = dc.searchForEdgeClass()
5: if edgClass.isNotWithinRange() then
6: break
7: end if

8: end if

9: for vertexv : da do

10: edge = v.searchForEdge()
11: if edge.isWithinRange()ANDedge.edgeClass = edgeClass then
12: k = 2 ∗ (edge.position − v.position)
13: dv = edge.position − v.position
14: deformSimple(dv, v.positon, k)
15: end if

16: end for

17: return deformedMesh
Algorithm 4.9: Sticky Edges module

extreme cases, with slice distances of more than 1 centimetre, can cause “valleys” between

adjacent slices. This phenomenon can be seen in figure 4.11a. In this particular case the user

tried to segment the shape in two adjacent slices but the kernel size was not big enough to reach

the next slice.

To eliminate these “valleys” by raising the bottom them, an interpolation method was im-

plemented. The method needs at least three vertices as input. One vertex whose position needs

to be interpolated, and at least two points as sampling vertices. The sampling vertices are used

to determine the new position of the vertex to be interpolated. The deformation vector for the

vertex to interpolate with index i is calculated by:

di =

∑

∀j∈V

vj ∗ ωj

− vi (4.11)

where

ωj =

(

∑

∀s∈V d(vs, vi)
2
)

− d(vj , vi)
2

(

∑

∀s∈V d(vs, vi)
2
)

(n− 1)
. (4.12)

V contains the indices of all sampling vertices and n is the number of sampling vertices. The

weights ωj are normalized. The benefit of the weight function in equation 4.12 is, that points

with shorter distance to the vertex to be interpolated have a higher impact on the deformation

vector. If the distance of all sampling vertices to the vertex, whose position needs to be interpo-

lated, is equal, the position of the vertex whose position needs to be interpolated is the average

30

(a) a sphere with a “valley” between two adjacent

slices

(b) the “valley” nearly vanished after interpolation

Figure 4.11: The slice distance in z-direction of the dataset depicted is 1.12 centimetre. There-

fore a “valley” in the mesh occurred during the segmentation process. (a) shows the mesh before,

(b) shows the mesh after the vertex position interpolation.

of all sampling vertices positions. After the deformation vector has been calculated it is applied

to the vertex to be interpolated with the use of the deformation method mentioned in subsection

4.7.1. The kernel size for the deformation is calculated by:

k = max (d (vi − vy)) (4.13)

with y ∈ V . The maximum of the absolute distances between the vertex to be interpolated

and the sampling vertices is taken as kernel size. The module for the interpolation can be seen

in algorithm 4.10.

interpolate[vertexToInterpolate v, samplingVerticesArray sv]1

1: for j = 0→ sv.size() do
2: vertex = getV ertx(j)
3: distance = getDistance(v, vertex)
4: distanceMap.put(distance)
5: totalDistance+ = distance
6: end for

7: for entry : distanceMap do

8: weight = (totalDistance− entry)/(totalDistance ∗ (dinstanceMap.size() − 1)
9: weightSum+ = weight
10: pos = entry.getV ertexPos.scale(weight)
11: vertexToInterpolatePosNew+ = pos
12: end for

13: deformV ector = vertexToInterpolatePosNew − v.getPosition()
14: deformSimple(deformV ector, v,max(distanceMap))
15: return deformedMeshVertices

Algorithm 4.10: Interpolation module

31

4.10 Subdivision

Subdivision is used as a method to refine meshes. It is needed if a mesh is too coarse to align

it smoothly to the shape to be segmented. It splits the polygons the mesh is composed of into

smaller ones and adjusts the old and new vertex positions according to a smoothing criterion.

This step is repeated until the desired smoothness level is reached and a smooth alignment is

possible If only a part of the mesh is subdivided this is called adaptive subdivision. Figure 4.12

shows a simple triangle mesh before and after a
√
3-subdivision. As subdivision algorithm the√

3-subdivision presented by Kobbelt [32] was chosen due to the following reasons:

• the number of triangles increases slower than with the use of other subdivision algorithms

• simple extension to adaptive subdivision

• all meshes to subdivide are triangle meshes

• lower shrinkage effect (explained in 4.12) than other subdivision methods

• if a mesh is propagated to datasets to be segmented and subdivided in only one of these

datasets, the
√
3-subdivision algorithm preserves the vertex correspondences

(a) original mesh (b) mesh after
√

3-subdivision

Figure 4.12: Mesh before and after
√
3-subdivision

32

(a)
√

3-subdivision step 0. (b)
√

3-subdivision step 1. (c)
√

3-subdivision step 2.

Figure 4.13: This figure illustrates the
√
3-subdivision steps. Figure 4.13a shows the initial

triangles. The newly inserted vertices and edges are shown in red in figure 4.13b. The resulting

triangulation after flipping the old edges is depicted in figure 4.13c.

4.10.1
√
3-subdivision

Given a mesh M0 a 1-3 split is performed for every triangle by inserting a vertex at its centre.

1-3 split means that one triangle is split into three triangles. After that every new vertex is

connected to the surrounding vertices of the triangle in which centre it lies. The next step is to

rebalance the valence of the mesh vertices. This is done by flipping every old edge to the centre

points of its two adjacent triangles. If the 1-3 split is applied twice, every original triangle is

split into nine subtriangles. The application of the 1-3 split twice is also called a tri-adic split.

Therefore Kobbelt regarded one subdivision step as the square root of the tri-adic split. Figure

4.13 illustrates the steps of this subdivision method.

After the new vertices have been inserted and the edge flipping is done the positions of the

old and new vertices have to be adjusted to retain the smoothness of the mesh. The position vi
of an inserted vertex vi with index i is calculated as

vi =
1

3
(vj + vk + vl) (4.14)

where j, k and l are the indices of the vertices of the original triangle into which vi was
inserted. The new position v′i of an already existing vertex vi is calculated by:

v′i = (1− α) vi + α
1

val(vi)

∑

∀k∈Ki

vk (4.15)

where α is defined as

α =

4− 2 cos

(

2π

val(vi)

)

9
. (4.16)

The module for the
√
3-subdivision is outlined in algorithm 4.11.

33

subdivide[mesh m]1

1: insertV ertexAtEveryTriangleCentre(m)
2: connectNewV ertices()
3: flipOldEdges()
4: calculateNewV ertexPositions()
5: return subdividedMesh

Algorithm 4.11:
√
3-subdivision module

4.10.2 Adaptive
√
3-subdivision

Although in the case of
√
3-subdivision the number of triangles increases not as fast as in the

case of other subdivision methods (e.g. Loop [34]), after a few subdivision steps performed on

the whole mesh the number of vertices goes beyond the computational power of an ordinary

computer. Therefore it is useful to subdivide the mesh only in regions where a higher number of

triangles is necessary. This is done by adaptive subdivision.

The algorithm implemented and developed in the course of this work is designed to preserve

border and feature edges. A feature edge describes an edge for which the angle between the

normals of the two adjacent triangles is beyond a specific threshold θ. To ensure the preservation
of border and feature edges a counter ci has to be determined for every edge. The i denotes for
the edge index. The counter ci counts the times a specific border or feature edge was not flipped

in the subdivision process. The algorithm needs a set of edges E as input that determines the

area of the mesh to be subdivided.

The algorithm works as follows: At the beginning a vertex is inserted at the centre of every

triangle adjacent to any of the edges. Subsequently every new vertex is connected to the sur-

rounding vertices of the triangle in whose centre it lies. The edge flip is done only for edges

that are not marked as feature edges. If an edge is a feature or border edge and no edge flip

is done and c for edge eij is odd, c is increased by one. If no edge flip is done and the above

introduced counter c for edge eij is even, two vertices vl and vk are inserted. One at the centre

of the first half of the edge and one at the centre of the second half of the edge. These two new

vertices are connected to the points previously inserted at the centre of the adjacent triangles. As

shown in Figure 4.14 it is possible to preserve feature edges throughout the subdivision steps.

The position of vl and vk are calculated by

vl =
1

3
vi +

2

3
vj (4.17)

and

vk =
2

3
vi +

1

3
vj (4.18)

If an edge is a feature edge its vertices remain unchanged. The positions of all other points

are calculated as described in equation 4.15. To give a better understanding the pseudo code in

algorithm 4.12 exemplifies the module with the approach of the algorithm. This adaptive
√
3-

subdivision increases the number of triangles more than other known subdivision algorithms

(like Yu et al. [58]), but has the advantage that it can be programmed in a way that only one

34

(a) original mesh (b) one subdivision (c) two subdivisions

Figure 4.14: The red edge in the three images is the feature edge. (a) shows the original trian-

gulation. (b) shows the triangle after the first subdivision step. No vertices were inserted on

the feature edge as its counter is odd after the first step. (c) shows the mesh after the second

subdivision step. Now two vertices are inserted in the feature edge and connected to the vertices

inserted at the centre of the adjacent triangles of the feature edge.

iteration over the mesh part to be subdivided is necessary. Yu et al. [58] in contrast needs, due to

the edge flip, at least two iterations. Because of this advantage in computational effort this way

to subdivide parts of the mesh was chosen.

4.11 Decimation

Decimation algorithms simplify the topology of meshes in areas where a high tessellation is not

necessary. In the remainder of this section the decimation approach of Hussain et al. [25] is

presented. This method was chosen because of its easy implementation and its fast computation.

Hussain et al. [25] decimate meshes by collapsing edges. The idea of the edge collapse used

is depicted in figure 4.15. To delete an edge from a vertex v1 to a vertex v2, all occurrences of
v1 are replaced by v2 or vice versa. Additionally, the two triangles that share the edge from v1
to v2 are deleted. The decision which vertex is replaced depends on which vertex replacement

has the lower costs and which vertices have the lower visual importance. The whole decimation

process for one mesh is, according to Hussain et al. [25] defined as follows:

1. Calculate the visual importance for every v of the original meshM0.

2. Compute the cost for every possible vertex replacement.

3. Assign every vertex of M0 the smallest cost of its possible replacements and scale it with

the visual importance. If the visual importance is below a threshold put the obtained value

in a priority queue.

4. Take the smallest value out of the priority queue and replace the vertex corresponding with

the value by its assigned vertex.

5. Replace M0 with the new resulting mesh and go to 1. except when there are no more

values in the priority queue.

35

adaptiveSqrt3Subdivision[EdgeSet E]1

1: edgeSetSize = E.size()
2: for i = 0→ edgeSetSize do
3: edge = E.getEdge(i)
4: triangle0 = edge.getT riangle0()
5: triangle1 = edge.getT riangle1()
6: insertPointAtTriangleCentre(triangle0)
7: insertPointAtTriangleCentre(triangle1)
8: centreV ertex0 = triangle0.getCentreV ertex()
9: centreV ertex1 = triangle1.getCentreV ertex()
10: for j = 1→ 3 do
11: vertexTr0 = triangle0.getV ertex(j)
12: vertexTr1 = triangle1.getV ertex(j)
13: connectV erticesWithEdge(centreV ertex0, vertexTr0)
14: connectV erticesWithEdge(centreV ertex1, vertexTr1)
15: end for

16: if isFeatureOrBorderEdge(edge) then
17: c = edge.getCounter()
18: if isOdd(c) then
19: c← c+ 1
20: else

21: firstHalfV ertex = inserV ertexAtF irstEdgeHalf(edge)
22: secondHalfV ertex = inserV ertexAtSecondEdgeHalf(edge)
23: triangle0.connectV ertexWithCentre(firstHalfV ertex)
24: triangle0.connectV ertexWithCentre(secondHalfV ertex)
25: triangle1.connectV ertexWithCentre(firstHalfV ertex)
26: triangle1.connectV ertexWithCentre(secondHalfV ertex)
27: c← c+ 1
28: end if

29: else

30: flipEdge(edge)
31: end if

32: end for

33: return subdividedMesh

Algorithm 4.12: Adaptive
√
3-subdivision module

36

To fasten up the algorithm the calculation of the visual importance of every vertex and the

costs of the vertex replacements after every vertex replacement can be discarded. This is only

necessary if an edge is collapsed and an edge of the one ring neighbourhoods of the deleted

vertex and its substituting vertex also needs to get collapsed. This is because the collapse of

an edge only exerts influence on the visual importance or the costs in this region. The new

algorithm flow changes slightly and now looks as follows:

1. Calculate the visual importance for every v of M .

2. Compute the cost for every possible vertex replacement.

3. Assign every v the smallest cost of its possible replacements and scale them with the

visual importance. If the visual importance lies below a threshold put the obtained value

in a priority queue.

4. Replace all vertices, starting from the smallest value until there are no possible replace-

ments left that share no common vertex with the one ring neighbourhoods of a replaced

vertex and its substituting vertex of one of the already replaced vertices.

5. Go to 1. except there are no more values in the priority queue.

This change of the algorithm can produce a different result from the original one as it re-

places vertices with high priority later then vertices with low priority when the vertices with

high priority and their substituting vertices share a common vertex in their one ring neighbour-

hoods. This loss of an optimal vertex replacement order has been chosen as this method is more

than 30 times faster and the decrease of the quality of a mesh is minimal. The faster computation

is because the calculation of the vertex weights and the visual importance of the mesh vertices

after a vertex replacement has to be done only a few times instead of after every vertex replace-

ment. The decimation of a vertebra mesh with 4710 vertices and 14130 edges needs about 30

seconds with the original algorithm and less than 1 second with the adapted one on machine 1

described in section 6.3.

The remainder of this section shows the calculation of the costs and the visual importance as

well as the module for the decimation algorithm. Before the costs can be calculated, the visual

importance for every vertex is needed. The visual importance for a vertex vi is defined as

ωvi = 1− αvi (4.19)

where

αvi = ‖
∑

∀t∈Tvi
a(t)nt

∑

∀t∈Tvi
a(t)

‖. (4.20)

ωvi is zero if vertex vi has a flat one ring neighbourhood. The costs for replacing a vertex vi
by a vertex vj are calculated as follows:

Cost (vi, vj) =
∑

t∈Tvi
−Teij

(

0.5
(

a(t) + a(t′)
)

θtt′
)

. (4.21)

37

t′ is the triangle t after the vertex replacement. θtt′ is the angle between the normals of t
and t′. For a faster computation, θtt′ can be approximated, according to Hussain et al. [25], by

1− ntnt′ . The module for the decimation process is shown in algorithm 4.13.

(a) before vertex replacement (b) after vertex replacement

Figure 4.15: The edge collapse is done by replacing all occurrences of v1 by v2 and deleting the

two triangles that share the edge between these two vertices.

decimate[mesh m]1

1: while true do
2: for vertex : m do

3: calculateV isualImportance(v)
4: end for

5: computeCostsForHalfEdgeCollapse()
6: scaleCostsWithV isualImportance()
7: priorityQueue = getPriorityQueue()
8: collapseHalfEdges(priorityQueue)
9: if !priorityQueue.isEmpty then

10: updateMesh()
11: else

12: break
13: end if

14: end while

15: return decimatedMesh
Algorithm 4.13: Decimation module

4.12 Smoothing Methods

Another method to increase the quality of meshes is to smooth them. The advantage over subdi-

vision and decimation is that smoothing methods alter only the position of vertices, the topology

38

remains unchanged. According to Botsch et al. [8] smoothing methods can be divided into de-
noising and fairing methods. Denoising has the aim of eliminating high frequency artefacts like

small changes in the vertex positions that do not belong to the mesh structure. Denoising algo-

rithms can be regarded as low pass filters. Fairing a mesh is similar to denoising but it also takes

aesthetic aspects into account. Sapidis [45] states that aesthetic shapes are free of unnecessary

features and have a simple design. Sapidis [45] summarizes this as the principle of simplest
design. Energy minimization functions are used to fair meshes.

Three smoothing algorithms were implemented in this work. A simple Laplacian smoothing

algorithm by Desbrun et al. [17], a recursive Laplacian method by Kobbelt et al. [33] and a

barycentre approach developed by Kainmueller et al. [27]. They are all denoising methods as

for medical structures, like tumours, aesthetic aspects need not to be taken into account. The

main drawback of this kind of algorithms is the shrinkage effect. As they all pull the vertices

to smooth towards the barycentre of their one ring neighbourhood the volume of a model gets

smaller with every smoothing step. Section 4.12.5 will discuss the differences of these three

methods and will explain why the algorithm by Kobbelt et al. [33] was chosen as the best suited

algorithm to support solving the problem stated in section 1.5.

4.12.1 Laplacian Mesh Smoothing

One common mesh smoothing method is Laplace smoothing. It is defined as the divergence of
the gradient of a function f or in other words the sum of all second partial derivatives of f in xi:

∆f = ∇2f =
u
∑

i=1

∂2f

∂x2i
. (4.22)

xi denotes for the Cartesian coordinates, u is the number of dimensions of the space. There

are different discrete approximations of the Laplace operator. One of them is

L(vi) =
∑

∀x∈Kvi

ωij (vx − vi) (4.23)

which is defined by Desbrun et al. [17]. ωij was, due to the need of fast computation, chosen as

1/n, n is the number of vertices in the one ring neighbourhood of vi. With this weight, equation

4.23 is also know as umbrella operator. The Laplacian operator for the entire mesh can be

represented by anmxm matrix A:

Aij =

−1 i = j

wij (i, j) ∈ E

0 otherwise

(4.24)

wherem is the number of vertices of the mesh and E is a set that contains all edges of the mesh.

This operator pulls a vertex towards the barycentre of its one ring neighbourhood. The smoothed

position v′i for vertex vi is calculated with

v′i = vi + L(vi). (4.25)

39

4.12.2 Recursive Laplacian Mesh Smoothing

An extension to the approach of section 4.12.1 is the recursive umbrella operator presented by

Kobbelt et al. [33]. The recursive umbrella operator

L(L(vi)) =
∑

j∈Ki

ωij (L(vj)− L(vi)) (4.26)

is a discrete approximation of ∆2f . The smoothed position for a vertex vi can be calculated by

v′i = vi −
1

d
L(L(vi)) (4.27)

with a so called “diagonal element”

d = 1 +
1

val(vi)

∑

∀y∈Kvi

1

val(vy)
. (4.28)

The module for the smoothing method with the recursive Laplacian operator is defined in

algorithm 4.14.

smoothMesh[vertexArray v]1

1: for vertex : v do

2: l = computeLaplacian(vertex)
3: laplaceMap.put(l)
4: end for

5: for l : laplaceMap do

6: l2 = computeLaplace(l)
7: vertexPosNew = vertexPosOld− (l2/diagonalElement)
8: end for

9: return smoothMesh
Algorithm 4.14: Recursive Laplacian operator module

4.12.3 Barycentre Mesh Smoothing

A fully automatic liver segmentation is presented by Kainmueller et al. [27]. Their approach is

based on statistical shape models and a constrained free form deformation step. This free form

deformation step contains a smoothing algorithm similar to the approach in section 4.12.1 that

can be applied to simple mesh smoothing. Given a set of vertices V , every vertex v of V is, like

in section 4.12.1, pulled towards its barycentre. The smoothed vertex position v′i of a vertex vi
is calculated by

v′i = vi − u (4.29)

where

u = ω

(

vi −
∑

∀y∈Kvi
vy

val(vi)

)

(4.30)

40

ω is set to 0.15 according to Kainmueller et al. [27]. The difference to the technique in

section 4.12.1 is that this approach attenuates the force that pulls a vertex towards the barycentre

with ω. This lowers the shrinkage effect.

4.12.4 Laplacian Eigenvalue Smoothing

A mesh can be seen as a discrete time signal. The removal of all high frequencies would smooth

the mesh. According to Taubin [52] the eigenvectors of the Laplace matrix A (definition 4.24)

correspond to the frequencies of the mesh. Eigenvectors with high eigenvalues correspond to

high frequencies and vice versa. The eigenvectors form the Laplacian eigenbasis (LBS). The

mesh can be represented in the LBS as

x =

n
∑

i=1

uTi xui (4.31)

where x stands for the Cartesian coordinates and u for the eigenvectors. By truncating the

eigenvectors with high eigenvalues the mesh gets smoothed. Sorkine and Nealen [50] presented

a smoothing method that makes use of the eigenvectors and eigenvalues of the Laplace matrix.

This method was also implemented in this thesis but discarded later because the computation of

the eigenvectors and eigenvalues took too much time and is therefore not applicable for a real

time smoothing.

4.12.5 Conclusion

The approach of 4.12.2 was chosen to be the best suited algorithm for the program developed

in this thesis because it presents, according to Desbrun et al. [17] the best compromise between

computational cost and shrinkage effect. Furthermore, the computational costs of the algorithm

can be minimised by avoiding the double computation of the umbrealla operator. Figure 4.16c

shows that the recursive Laplacian best preserves the original shape of the vertebra. With the

use of the simple Laplacian the processes of the vertebra vanish (figure 4.16b). The barycentre

approach (figure 4.16d) provides, due to the weighting factor, a much better result than the

simple Laplacian but has a higher shrinkage effect than the recursive Laplacian.

4.13 Curvature Measurement

As smoothing meshes consumes a lot of time and interrupts the user interaction flow, an al-

gorithm was implemented that determines whether a mesh should be smoothed or remain un-

changed. To smooth only the areas of a mesh where it is really necessary saves a lot of com-

putational costs. The here presented algorithm evaluates the curvature at every vertex position

and assigns the vertex a value that decides if the area around the vertex should be smoothed.

The method implemented to solve this task was proposed by Desbrun et al. [17] and calculates

a curvature normal κn for every vertex. κni is defined as:

41

(a) original vertebra mesh (b) mesh after Laplacian

smoothing

(c) mesh after recursive

Laplacian smoothing

(d) mesh after barycentre

smoothing

Figure 4.16: (a) shows the original mesh. (b), (c) and (d) show the mesh after 100 iterations of

the respective smoothing algorithm. It can be seen clearly that the recursive Laplacian operator

seen in (c) shrinks the mesh least of all operators.

κni = −
1

4
∑

∀t∈Tvi
a(t)

∑

∀x∈Kvi

(cotαvx + cot βvx) (vx − vi) (4.32)

αvx and βvx are the two angles opposite to the edge from vertex vi to vx. If the length

of κni is over a specific threshold the area around the vertex is going to be smoothed. The

advantage of using the value of this operator as a decision threshold is, that this operator results

in zero if the area is flat. The Laplace operator is only zero if the evaluated vertex lies exactly

at the barycentre of its one ring neighbourhood. The module for the curvature measurement is

specified in algorithm 4.15.

measureCurvature[vertexArray v]1

1: for vertex : v do

2: curvatureNormal = calcCurvatureNormal(vertex)
3: curvatureNormalArray.put(curvatureNormal)
4: end for

5: return curvatureNormalArray

Algorithm 4.15: Curvature measurement module

4.14 4D Deformation and Transformation Propagation

To manually segment a four dimensional dataset, 3D dataset by 3D dataset, can be very tedious

and time consuming. Therefore some tools were implemented that ease and speedup the 4D

segmentation process. With the use of the first tool the mesh of one 3D dataset can be set as

starting mesh for the other datasets. This can be useful if the shape is already segmented in one

3D dataset, so that this segmentation can be used as initialization for the segmentation of the

other datasets. This method is very similar to the one presented by McInerney and Terzopoulos

42

[37]. The difference is that with the introduced method the user can choose the 3D datasets

where the current mesh model should be inserted. The advantage over a global setting of the

model is that this method can be used more than once in one segmentation task as the global

setting of the model overrides always all already segmented shapes. The module for this method

is defined in algorithm 4.16.

setMeshToDatasets[Mesh m, DatasetArray ds]1

1: for dataset : ds do
2: dataset.setMesh(m)
3: end for

4: return datasetsWithNewMesh
Algorithm 4.16: Set mesh in dataset module

The second tool is capable of recording deformation and transformation steps that are car-

ried out on a 3D dataset. Afterwards all recorded steps can be propagated to the other datasets.

For the different deformation respectively transformation methods different variables have to

be recorded. Using the information of these variables it is possible to simulate a complete de-

formation respectively transformation step carried out by the user in the different datasets. By

simulating deformation respectively transformation steps and the use of the Sticky Edges algo-

rithm varying edge positions from dataset to dataset can be handled. Furthermore, it is possible

to scale the deformations and transformations along the fourth dimension. The scaling is done

with the Gaussian function mentioned in equation 4.5 with the adjustment that the Gaussian

function in the numerator gets as argument the number of datasets that lie between the dataset

where the operations were recorded and the dataset where the operations are currently applied.

With the adjustment of σ the number of slices on which the deformations and transformations

have an impact on can be defined. In the case of a transformation the translation variable, the

scale factor and the rotation angle are weighted with the Gaussian function. In the case of defor-

mations the deformation vector and the kernel size are downscaled.

With the use of scaling, motion can be segmented easier as the shape of motion in nature is

often similar to the shape of a Gaussian function. Furthermore, scaling simplifies the deforma-

tion of meshes of different sizes. For example, if systole and diastole of the heart motion are to

be segmented, the mesh in the systole dataset is smaller than the mesh in the diastole dataset. To

deform the systole mesh in the same way as the diastole mesh would not be meaningful as the

diastole mesh needs more precise deformations as the heart is in the systole state smaller than in

the diastole state. Furthermore, the kernel size used in the diastole dataset is too big for the mesh

in the systole dataset as the use of the same kernel size in the systole dataset would encompass a

larger anatomical region than in the diastole dataset. This can be seen in figure 4.17 and can be

avoided by downscaling the deformations on the diastole dataset before they are applied to the

systole dataset.

The big advantage of simulating the deformation and transformation steps in the different

datasets is that it does not make a difference which topology the meshes in the datasets have.

This facilitates the usage of subdivision or decimation if a more precise or coarser tesselation is

necessary in different datasets. The module for the second tool is outlined in algorithm 4.17.

43

(a) diastole dataset (b) systole dataset

Figure 4.17: In both figures the yellow line marks the outline the deformation area with a kernel

size of 20. The pink line marks the outline of the part of the mesh that does not belong to the

deformation area. The green square denotes the bounding box around the mesh and the yellow

dots indicate edge pixels in the dataset. As can be seen in the systole dataset the kernel embraces

a much bigger part of the mesh as in the diastole dataset.

propagateOperations[OperationArray op, boolean scale]1

1: for dataset : allDatasets do
2: for operation : op do
3: if scale then
4: scaleOperation(op, dataset)
5: end if

6: dataset.applyOperation(op)
7: end for

8: end for

9: return datasetsWithNewMesh
Algorithm 4.17: Propagate operations module

44

4.15 Putting the Methods Together to an Segmentation Algorithm

This section gives information about the architecture of the algorithm. It shows, how the pre-

viously mentioned methods were put together to an algorithm that is able to segment shapes

captured by diverse modalities in 3D and 4D. The algorithm can be divided into a deformation,

a 4D propagation and an optimization module.

4.15.1 Deformation

The first step is to load a dataset. In the next step the mesh respectively, in the case of a 4D

dataset, the meshes are loaded and placed in the dataset. If a 4D dataset is loaded but the mesh

file contains only one 3D mesh, the same mesh is set in every volume of the 4D dataset. If

the mesh file contains stored edge information for the dataset this information is also loaded,

otherwise the edge positions are calculated with the Canny (section 4.4.1) or the LoG (section

4.4.2) edge detection algorithm in a bounding box (section 4.3) around the mesh. After the edges

are determined they are also getting classified with the algorithm mentioned in section 4.5.

Before the deformation starts, the mesh is roughly aligned to the shape to be segmented

with the use of the three transformation functions (section 4.7). To deform a mesh the algorithm

needs the deformation centre, the deformation vector, the kernel size and which deformation

method shall be chosen as input variables. With the use of the kernel size, the deformation area

is calculated. Every vertex of the mesh that lies within the specified kernel size is added to

the deformation area. The distance to the deformation centre is the shortest edge path from the

deformation centre to a specific vertex. For the deformation the normal of the deformation centre

and the normals of the mesh vertices in the deformation area are needed. The normals of the

vertices are calculated by taking the mean of the normals of the triangles the vertex is part of. The

normal of the deformation centre is calculated by taking the mean of the normals of the vertices

that are part of the edge that lies closest to the deformation centre. After the determination of

the region to deform, the mesh is, according to the corresponding input variable, deformed with

the simple deformation (section 4.7.1) or the deformation with the use of the normals (section

4.7.2). After the deformation the Sticky Edges method (4.8) is executed for a better alignment

of the deformation area to the shape to be segmented.

As after a free deformation step and the Sticky Edges step the mesh surface may have some

unwanted sharp features, the curvature of the vertices in the deformation area is determined with

the use of the algorithm explained in section 4.13. If the curvature of one vertex lies above a

given threshold, the deformation area is smoothed with the recursive Laplacian smoothing op-

erator mentioned in subsection 4.12.2. This smoothing step is repeated 10 times or there is no

vertex with a curvature higher than the given threshold left left. The iteration threshold of 10

was chosen because sometimes vertices with a curvature higher than the given threshold lie at

the border of the deformation area. The recursive Laplacian smoothing operator is not able to

smooth this vertex in a way that its curvature value falls below the threshold because for that,

also the vicinity of this vertex would need to be smoothed. As the vicinity is not part of the

deformation area the algorithm is not able to smooth the area around the vertex without the cur-

vature value going beyond given threshold. Such a case would, without the iteration threshold,

cause an infinite loop. Experience showed that coarse areas caused by deformation steps are

45

completely smoothed out after 10 smoothing steps. After every deformation and transformation

step the program examines if the bounding box around the area of the calculated edges is still

big enough. For this purpose two criteria are taken into account. If one of them is fulfilled the

edges are recalculated and classified. These two criteria are:

Mesh ratio: If the maximal extent in x-, y- or z-direction of the mesh after deformation re-

spectively transformation divided by the maximal extent before is higher than a given

threshold, the edges are recalculated.

Centre change: If the change of the mesh centre in x-, y- or z-direction divided by the maximal

extent of the unchanged mesh in the particular direction is higher than a given threshold

the edges are recalculated.

This is done to avoid that vertices are dragged out of the bounding box where the Sticky

Edges algorithm can not be applied. The module for the whole deformation process is specified

in algorithm 4.18.

4.15.2 4D Propagation

To propagate the deformation to other meshes in a 4D dataset, the deformed mesh can be ei-

ther included in the other 3D volumes or the deformation and transformation operations can be

recorded and then applied to the other meshes. To use the second method, specific variables

have to be recorded. The following listing gives an overview on the recorded variables:

transformation: the position from where the user is currently viewing the mesh (camera posi-

tion), transformation mode (translation, rotation or scaling), the positions where the user

pressed and released the mouse

deformation: kernel size, attenuation function, deformation mode, camera position, the indices

of the currently viewed slices, the positions where the user pressed and released the mouse,

if available the gradient direction of the edge where the user dropped the deformation

centre

These variables are necessary to simulate a deformation or transformation carried out by

the user on the other datasets. Together with these variables the method needs a boolean value

that indicates whether the recorded operations shall be weighted or not. The variable σ for the

Gaussian weighting of the operations was chosen to be one third of the number of 3D datasets

contained in a 4D dataset. This value was chosen because with this adjustment it does not

matter which dataset is segmented. The propagation always affects every other dataset. The 4D

propagation module is specified in algorithm 4.19.

4.15.3 Mesh Optimization

To optimize a mesh after deformation four methods can be used. Some of the optimization

methods are able to handle input variables (i.e., a set of triangles or edges). With the use of this

46

deform[edgeDetection ed, deformMethod dm, deformationCentre dc, deformationVector1

dv, kernelSize k, standardDeviation σ, threshold zc, threshold T1 and T2,

curvatureThreshold curTr, meshRatioThreshold mrTr, centreChangeThreshold cCTr]

1: loadDataset()
2: meshes = loadMesh()
3: calculateBoundingBox(m)
4: if dataset has no edge informaiton then

5: if ed = LoG then

6: eIdx = calculateEdgesForImgWithLoG(k, σ, zc)
7: else

8: eIdx = calculateEdgesForImgWithCanny(k, σ, T1, T2)
9: end if

10: classifyEdges(mesh.dataset, eIdx)
11: end if

12: transform()
13: calcDeformationArea(dc, k)
14: if dm = simple then
15: deformSimple(dv, dc, k)
16: else

17: deformWithNormals(dv, dc, k)
18: end if

19: stickyEdges(deformationArea, dc)
20: curvatureNormals = measureCurvature(mesh.vertices)
21: while curvatureNormals.notEmpty()OR i <= 10 do

22: for curvatureNormal : curvatureNormals do
23: if curvatureNormal > curTr then
24: vertex v = getV ertexForCurvature(curvatureNormal)
25: smoothingArray.add(v)
26: end if

27: end for

28: smoothMesh(smoothingArray)
29: curvatureNormals = measureCurvature(mesh.vertices)
30: i++
31: end while

32: mc = getChangeOfMeshCentre() / getMaxMeshExtentOld()
33: msp = getMeshExtentNew() / getMeshExtentOld()
34: if cCTr > 0.1 OR msp > mrTr then
35: calculateBoundingBox(m)
36: end if

37: return deformedMesh
Algorithm 4.18: Deformation module

47

propagate[propagationType t, datasetsToSetMesh datasets, recordedOperations op,1

boolean weightOperations]

1: if t = setMeshes then
2: m = getCurrentMesh()
3: setMeshToDatasets(m,datasets)
4: else

5: propagateOperations(op,weightOperations)
6: end if

7: return propagatedMeshes

Algorithm 4.19: 4D propagation module

variables it is possible to specify the area of a mesh on which the algorithm should be applied.

The first one is the adaptive
√
3-subdivision algorithm described in subsection 4.10.2. If the

method is applied and the input edge set is empty the whole mesh is evaluated whether it contains

edges to subdivide or not. An edge needs to get subdivided if the angle between its two adjacent

triangles is greater than 40◦ or its subdivision counter is even. Feature edges, also mentioned in

subsection 4.10.2, are not used in this step as the aim of this step is a fine mesh without sharp

edges. If an edge fulfils the subdivision criterion it is added to a set that contains all edges to

subdivide. The edges in the set are then processed by the algorithm and the evaluation step starts

again. This is repeated until no more edges are contained in the set or this loop has iterated five

times. The threshold of five is used to avoid a mesh with too many triangles. Because in the

case that subdivision criterion is not fulfilled after fiver iterations of the algorithm, the use of the

smoothing algorithm would make more sense. If the input edge set is not empty it is processed

by the algorithm. In this case no evaluation of the mesh is done before or after subdivision and

the algorithm terminates after the edges in the set have been subdivided once. The second one

is the the decimation method explained in section 4.11. In contrast to subdivision this method is

not able to handle input. The whole mesh is always evaluated. For the evaluation, the method

needs a threshold for the visual importance, which is used in step three of the algorithm as input

parameter. The recursive umbrella operator discussed in section 4.12.2 is used to smooth the

mesh. The algorithm iterates only once over the mesh. As the deformation area gets scanned

after every deformation step to determine if smoothing is necessary and gets smoothed if the

scanning algorithm returns true, a higher iteration number is not required as a good base level

of smoothness is thereby guaranteed. The last method is the interpolation operator shown in

section 4.9. The method needs the vertex whose position has to be interpolated and an array of

sampling vertices as input.

These methods are currently not part of the core algorithm and have to be called separately.

This was done as machine 1 (section 6.4) where the program was developed in the course of

this work is too slow to guarantee a fast computation of the program when the optimization

methods are implemented in a post processing step of the deformation module. The module that

combines all optimization methods is specified in algorithm 4.20.

48

opimize[optimizationMethod op, edgesToSubdivide sdEdges, vertexToInterpolate vToInt,1

samplingVerticesArray samplV]

1: if op = subdivide then
2: if sdEdges.isEmpty() then
3: meshEdges = mesh.getEdges()
4: while i <= 5 do
5: for edge : meshEdges do
6: if edge.getSubdivisionCounter.isEven() then
7: edgesToSubdivde.add(edge)
8: else

9: angle = getAngleBetweenAdjacentTriangles(edge)
10: if angle > 40◦ then
11: edgesToSubdivde.add(edge)
12: end if

13: end if

14: end for

15: if sdEdges.isNotEmpty() then
16: subdivide(mesh)
17: else

18: break
19: end if

20: i++
21: end while

22: else

23: subdivide(mesh)
24: end if

25: else if op = decimate then
26: decimate(mesh)
27: else if op = smooth then

28: smoothMesh(mesh.getV ertices())
29: else if op = interpolate then
30: interpolate(vToInt, samplV)
31: end if

32: return optimizedMesh

Algorithm 4.20: Optimization module

49

CHAPTER 5
Implementation

5.1 Overview

This chapter shows how the algorithm mentioned in section 4.15 was implemented to build a

program that fulfils the needs listed in section 1.6. The program was developed as a plug-in

for a prototyping framework called Model Building Studio developed at the VRVis. The plug-

in is called Mesh Plugin. Section 5.2 shows and describes the graphical user interface (GUI),

section 5.3 explains the data structures used and section 5.4 illustrates the work flow and how

the algorithm was implemented to enable the user to achieve the best segmentation results.

5.2 GUI

The GUI seen by the user when the Model Building Studio starts is depicted in figure 5.1. The

tab seen is called the navigation tab. With the use of the sliders in the area marked with a red

1 the currently visible slices can be set. This can also be achieved by holding the ctrl-key and

moving the mouse wheel. The buttons in area 1 hide respectively show a particular plane. With

the use of the radio buttons in area 2 the regions under and above a particular plane can be cut

off. The thickness of these regions can be adjusted with a slider. An example can be seen in

figure 5.2. Area 3 shown in figure 5.1 gives information about the distances between the slices.

With the use of the sliders in area 4 the range of the shown intensity values can be adjusted. In

case of a four dimensional dataset the intensity range can be adapted for every 3D sub-dataset

separately. With the slider in area 5 the currently shown volume of a 4D dataset can be chosen.

This can also be done with the left and right arrow keys of the keyboard. Area 6 contains the

3D area that shows the dataset and the mesh the user can work on. The drop down menus in the

upper left corner of the GUI, seen in figure 5.3, offer functionalities to open and export datasets,

load plug-ins and to change the program’s properties. A click on open volume or open DICOM
in the file drop down menu opens a file chooser dialogue which is shown in figure 5.4.

51

Figure 5.1: The navigation tab is seen by the user when the application starts. Its input elements

can be used to traverse a dataset and to change the view of a dataset.

To segment a dataset the Mesh Plugin has to be loaded. This step can be seen in figure

5.5. The Mesh Plugin is depicted in figure 5.6. With the use of the buttons of area 1, seen
in this figure, a mesh model can be loaded respectively saved. Area 2 can be used to deform

or transform a mesh and is called the Transform/Deform area. With the use of the slider, the

kernel size can be determined. The radio buttons are used to choose the desired deformation

respectively transformation method. The three buttons and the check box at the bottom of this

area provide functionalities to support the user in the segmentation of four dimensional datasets.

A click on the Set Mesh . . . button opens the dialogue shown in figure 5.7. This dialogue

contains a check box for every 3D dataset loaded. Area 3 (the optimization area) contains four
buttons to optimize the mesh shape or mesh topology. The mesh can be smoothed, decimated or

subdivided with the use of the particular button. The Interpolate button is needed to interpolate

vertex positions. With the use of the elements in area 4 an edge detection algorithm can be

chosen and its parameters adjusted. This area is called the edge detection area. With the two

radio buttons at the bottom of the box the edge detection algorithm can be selected. Canny
stands for the Canny edge detection operator described in subsection 4.4.1 and LoG for the

Marr-Hildreth operator explained in subsection 4.4.2. The Kernel Size field contains the size

52

Figure 5.2: A vertebra model clipped at the xy-plane.

Figure 5.3: Click on open volume or open DICOM to open a dataset.

53

Figure 5.4: The open volume- dialogue to open datasets.

Figure 5.5: Open the Mesh Plugin by clicking on it in the plugin menu.

54

Figure 5.6: The Mesh Plugin offers the user the necessary tools to segment a dataset.

of the convolution kernel and Sigma the standard deviation σ. The fields Canny1 and Canny2
hold the values for the thresholds T1 and T2 which are specific for the Canny edge detector.

Z.-C.-Threshold holds the zero crossing threshold used by the Marr-Hildreth operator. Area 5
contains the 3D area already mentioned above. In this chapter only the GUI parts relevant for

this thesis were described. An explanation of the whole GUI would go beyond the scope of this

work.

5.3 Data Structures

The used 3D datasets can be stored in different file types that contain the intensity values of the

three dimensional image. These files can be zipped with other files that may contain additional

information like the slice distance. In the case of 4D datasets it is possible that one file contains

all corresponding 3D datasets or that they have to be loaded separately. As this work is not about

the storage of medical image datasets, only a concise explanation is given. A short illustration

of the used zvo file format used in this thesis can be found in appendix A.1.

A Java implementation of the data structure proposed by Tobler and Maierhofer [53] was

used to represent the meshes. Figure 5.8 shows the shows the structure of the stored topological

information. References from vertices to edges, from edges to faces and from faces to vertices

exist. This data structure enables a fast mesh building process and fast access to diverse mesh

55

Figure 5.7: With the use of this dialogue the datasets for which the currently active mesh is set

as starting mesh for further segmentations can be chosen.

elements like vertices, edges or faces. This is necessary as the whole application is interactive,

therefore no performance bottlenecks due to mesh building or mesh accessing are acceptable.

Adding vertices to an existing mesh can also be done very fast. A disadvantage is that the

deletion of vertices or the substitution of a vertex by another, which is necessary in the case

of the half edge collapse, is very costly. After vertices are deleted or substituted the array that

stores the vertex positions needs to get re-indexed which is very time consuming. As vertex

deletion or substitution is only needed when the decimation algorithm is applied to a mesh

and this occurs considerably less often than the access of mesh elements or the need for the

mesh building method, this represents an acceptable drawback. When a mesh is stored only an

array that contains the vertex positions and an array that indicates which vertex is part of which

triangle together with possible attributes like vertex or triangle colours need to be written to a

file. To save computation time when the mesh is loaded multiple times, additionally the edges

and gradient directions are saved with the mesh by storing the index positions of the edges and

pointers to the positions of the corresponding gradient directions in an array.

5.4 Workflow and Program Description

The following subsections explain the work flow as it presents itself to the user who wants to

segment a dataset but also the routines and method interactions within the program, that run in

the background. Furthermore the values chosen for the specific method parameters are listed.

56

Figure 5.8: Structure of the topological information in the data structure used for mesh represen-

tation [53].

5.4.1 Initialization

The first step in a segmentation process is to load a dataset. This can be done by clicking on

file in the upper left corner and choosing either open volume or open DICOM in the opened

drop down menu. In the appearing file chooser dialogue one or more datasets can be loaded by

marking the corresponding file or files and clicking on Öffnen. The selection order determines

the order of the datasets in the program. A reordering afterwards is currently not possible. The

next step is to load a mesh. This is done via the Load button of the Mesh Plugin. If the mesh file

contains no stored edge information the edges are calculated due to the user settings contained

by the fields seen in area 4 in figure 5.6.

5.4.2 Transformation

After the mesh has been loaded the user roughly aligns the mesh to the shape to be segmented

with the use of the transformation functions: rotation, scaling and translation. This can be

achieved by selecting one of these three functions in the Transform/Deform area in figure 5.6.

The transformation is done by clicking in the 3D area with the right mouse button and then

dragging the mouse in the desired direction. The following listing gives an overview how the

values needed for the transformation methods are calculated.

57

Rotation: The rotation angle is the angle between the vector that points from the mesh centre

to the clicked position and the vector that points from the mesh centre to the current mouse

position.

Scaling: To gain the scale factor the difference between the clicked position and the mouse

position is calculated. Then the coordinate with the highest difference is taken and divided

by the maximal extent of the mesh in this direction. The received value plus one is the

scale factor.

Translation: The translation value is simply calculated by taking the difference between the

clicked position and the mouse position.

The respective values are used with the particular transformation matrix which is multiplied

with every mesh vertex position to calculate the transformation. The mesh transforms simultane-

ously with the mouse motion. By releasing the mouse button the transformation step is stopped.

5.4.3 Deformation

The deformation methods can be used to change the shape of a mesh and align it to the shape

to be segmented in the underlying image. The deformation is done in a view mode that displays

only two dimensional cuts through the mesh. This is done to prevent the occlusion of fine details

in the dataset by parts of the mesh. Although during the deformation the user sees only a change

in the shape of the outline of the cut through the mesh, the whole mesh is deformed.

Initialization

To deform the mesh, the user needs to select one of the two deformation methods shown in area 2
in figure 5.6. By selecting Simple Deformation the deformation method explained in subsection

4.7.1 is chosen. By selecting Deformation Using the Normals the deformation method described

in subsection 4.7.2 will be used by the program. After one of the two possibilities has been cho-

sen the program automatically switches to a view mode in which the outline of the cut through

the mesh with the currently viewed image slice is displayed. This border is represented by the

2D cut explained in section 4.6. To give the user a feeling for the 3D changes of the mesh, the

2D cuts two slices above and below the currently viewed slice are also shown. This can be seen

in figure 5.9. To mark a region to be deformed, the user clicks on or near the 2D cut. The closest

point of the 2D cut to the clicked position is set as deformation centre. Then the deformation

area is calculated with the use of the value of the kernel size slider (seen in Figure 5.6, area 2).

The kernel size can be changed either with the use of the slider depicted in area 2 in figure 5.6

or by holding the shift button and simultaneously moving the mouse wheel. Which region of the

mesh lies within the kernel size is shown by colouring the 2D cut as seen in figure 5.10.

Deformation step

To deform the mesh the user has to click in the 3D area with the right mouse button and drag

the mouse to a desired position. The deformation vector is the vector that points from the de-

formation centre to the actual mouse position. Concurrently with the dragging, all points in

58

Figure 5.9: The user always sees three cuts through the mesh during deformation. The pink line

is the cut at the currently viewed slice. The green lines are two slices above respectively below.

This gives the user a feeling of how the mesh changes in 3D when the 2D cut is changed.

the deformation area change their positions according to the Gaussian attenuation function de-

picted in equation 4.5. The 2D cut is updated concurrently with the mouse movement during the

dragging process. The user sees the deformations in real time. The period between the start of

dragging and dropping is considered as one deformation step. The kernel size can be changed

after every deformation step.

In an approach, that was however discarded, the user was allowed to set an initial kernel size

and then increase it automatically the farther the deformation centre was dragged. This strategy

was discarded as it would have needed, compared to the final approach, more computational

costs to increase the kernel size concurrently with the deformation process and it turned out that

this approach was not an intuitive one and confused the user. The confusion arises because the

user does not expect the deformation area to increase and often the use of a large deformation

area for big deformations is not required. Another drawback can be seen in the deformation

of small meshes. For example if the user wants to segment a tumour with a very long but thin

excrescence. In this case a small region of the mesh has to be dragged very far. With the

use of a concurrently increasing kernel size the whole mesh would very quickly be part of the

deformation area and would get deformed. Also a mixed solution was discussed, giving the user

59

Figure 5.10: The yellow part of the 2D cut marks the deformation area.

the opportunity to choose between a variable and a fixed kernel size. Also the mixed solution

was rejected as good solutions can be achieved by just using the fixed kernel size and the user

interface should be kept simple and limited to the necessary features.

5.4.4 4D Deformation and Transformation

The program offers two options (already explained in section 4.14) to support the user in a 4D

segmentation task. With the first one the user segments a shape in one dataset and then uses the

shape as segmentation initialization in the other 3D datasets. The second one works by recording

the deformation and transformation operations that are performed to segment one 3D dataset and

then propagating the operations to the other datasets.

The first option is done by navigating to the dataset that contains the mesh which should

serve as initialization for other datasets either by using the left and right keyboard arrow key or

by using the slider seen in area 5 in figure 5.1. After the desired dataset has been reached the

dataset is segmented. If the user is satisfied with the result the Set Mesh . . . button in area 2
of figure 5.6 has to be pressed. The opened dialogue shows a check box for every dataset. By

setting the check boxes of datasets active with a check mark and clicking the Ok button, the

mesh of the current dataset is inserted in the datasets checked in the dialogue.

60

The second method to support the user in segmenting a 4D dataset is to record all deforma-

tion and transformation operations performed by the user and then to apply them to the other

datasets. This is done by navigating to the dataset to be segmented in the same way as men-

tioned above and then clicking the Prop. Start button in area 2 of the Mesh Plugin seen in figure

5.6. From this moment all deformations and transformations the user applies on the dataset are

recorded.

To stop the recording of the operations and to start the propagation to the other datasets, the

Prop. End button has to be clicked. This click starts the application of all recorded operations

on the other 3D datasets in the same order as they were carried out by the user. For every dataset

a single thread is started to run the propagation for different datasets in parallel processes. This

is done to speed up the whole process as often a lot of transformation and deformation steps

are necessary to segment a shape and the propagation in one single thread would take too much

time.

With the use of the check box Weight Deform seen in area 2 in the Mesh Plugin in figure

5.6 it is possible to weight the recorded deformation and transformation methods as explained

in section 4.14. If the check box is activated the recorded operations are getting down scaled, if

not the methods are propagated without any scaling. In figure 5.11 it can be seen how well the

natural motion of the heart can be approximated with this method.

5.4.5 Mesh Optimization

Often, after a lot of deformation and transformation steps, the appearance of a mesh does not

meet the requirements of the user any more. For this case four tools were implemented to opti-

mize the mesh topology and mesh shape. With the use of this tools the mesh can be subdivided,

decimated and smoothed. Also vertex positions can be interpolated to eliminate so called “val-

leys” between two slices.

Before commenting in detail on the optimization methods, an explanation of how triangles

and vertices of a mesh can be marked by the user has to be given. To mark a single triangle the

user just has to click on the mesh triangle. To mark multiple triangles the user has to hold down

the Shift button of the keyboard, before or after the first triangle has been marked, and then click

on the other triangles to mark those. Marked triangles are highlighted to give the user a visual

feedback which triangles are already marked. If a triangle is clicked a second time the mark

is removed. To mark a vertex whose position is to be interpolated the user has to hold down

the i button of the keyboard and simultaneously click on the wanted vertex. Figure 5.12 shows

highlighted triangles and a vertex that has been marked to interpolate its position.

To subdivide a mesh the user can either mark triangles and then press the Subdivide button or
simply press the Subdivide button. The Subdivide button is placed in area 3 of the Mesh Plugin

seen in figure 5.6. For the subdivision process the adaptive
√
3-subdivision algorithm described

in subsection 4.10.2 of the previous chapter is used.

A mesh can be decimated by simply clicking on the Decimate button in area 3 of the Mesh

Plugin. The implemented mesh decimation is at this point not capable of handling user input

like the subdivision method. As decimation algorithm the method proposed in section 4.11 is

used.

61

(a) timestep 1 (b) timestep 2 (c) timestep 3

(d) timestep 4 (e) timestep 5 (f) timestep 6

(g) timestep 7 (h) timestep 8 (i) timestep 9

Figure 5.11: This time sequence shows how well the motion of the left ventricle can be approx-

imated by weighting the deformation and transformation methods with a Gaussian kernel. (a)

dataset where the ventricle was segmented. (b) to (i) datasets where the transformation and de-

formation operations were propagated. The irregularities in the outline in some images result

from the Sticky Edges algorithm.

62

Figure 5.12: The yellow highlighted triangles have been marked by the user. The white vertex

in the centre has been marked to interpolate its position.

With the use of the Smooth button positioned in area 3 of the Mesh Plugin depicted in figure

5.6 the mesh can be smoothed with the recursive umbrella operator discussed in 4.12.2. In

contrast to the method triggered by the Subdivide button the user is not able to choose which

region is going to be smoothed. The algorithm initiated by the Smooth button always treats the

whole mesh.

The fourth mesh optimization tool is the interpolation tool. This tool makes use of the

method described in the previous chapter in section 4.9 to remove so called “valleys”. To remove

such a “valley” the user has to mark the vertex whose position has to be interpolated with the use

of the i keyboard button. The sampling vertices are determined by marking triangles with the

use of the Shift keyboard button. Every vertex of a marked triangle is used as sampling vertex.

If the user is satisfied with his/her choice a click on the Interpolate button starts the algorithm.

An example of a mesh before and after interpolation can be seen in figure 5.13.

63

(a) mesh with a “valley” before interpolation (b) mesh with a “valley” after interpolation

Figure 5.13: The vertices of the yellow marked triangles are the sampling vertices. The position

of the white coloured vertex at the “valley” bottom is going to be interpolated. (a) mesh before

and (b) mesh after one interpolation step. As can be seen the “valley” has nearly vanished.

64

CHAPTER 6
Results

6.1 Overview

This chapter shows how the developed program performs and how exact segmentation results can

be achieved compared to a segmentation framework developed with MeVisLab. MeVisLab was

developed by the MeVis Medical Solutions AG [1] and Frauenhofer MEVIS [38]. MeVisLab is

a powerful tool for medical image processing, segmentation, registration and visualization. It is

module based. A module offers a specific functionality and can be combined with other modules

to resolve complex tasks. For further information about MeVisLab please refer to the program

homepage [2].

As no segmentation ground truth exists for the anatomies to be segmented in the available

medical image datasets they were manually segmented with the use of MeVisLab at first. The

MeVisLab segmentation was done with a Livewire approach. The idea of Livewires is presented

in the work of Mortensen and Barrett [41]. The module framework used for segmentation is

explained in appendix A.2. The MeVisLab segmentation results were used as ground truth and

compared with the results of the program developed in the course of this work.

The comparison was done by taking into account different figures of merit (fom) and the time

involved. The fom were calculated with the use of PolyMeCo. PolyMeCo is a tool for the anal-

ysis and comparison of the characteristics of polygonal meshes. Further information about the

tool is provided by Silva et al. [49] and de Santiago [15]. The different fom and the amount of

time needed for segmentation provide a good insight how the Mesh Plugin performs in compar-

ison to an approved and well known medical image segmentation approach. All segmentation

tasks were performed by the author. The skills of the author in segmenting datasets with the use

of the Mesh Plugin as well as with the MeVisLab Livewire approach are comparable.

65

6.2 Use Cases

6.2.1 Data

Four different datasets were used to validate the Mesh Plugin. Table 6.1 gives an overview on the

data characteristics. The following listing provides a more detailed explanation of the datasets.

Dataset 1: This dataset contains a T1 weighted three dimensional MR volume of a human

brain. On the upper left part of the parietal lobe is a big tumour located. This tumour is

the shape to be segmented. This dataset was chosen as test dataset as the tumour is a very

diffuse structure with no clear borders and therefore it is hard to segment. One slice of

this dataset can be seen in figure 6.1.

Dataset 2: Images of different modalities are contained in dataset two. The first two scans

in the four dimensional dataset are 3D CT scans with different contrast settings. The

third one is a three dimensional PET dataset. The three scans depict a human heart. The

structure to be segmented is the left ventricle. This dataset was chosen to test how the

Mesh Plugin can deal with multi modal datasets. One slice of every 3D volume contained

in dataset 2 can be seen in figure 6.2.

Dataset 3: The third dataset is a 3D+T MR scan of the human heart. Unfortunately the MR

type is not known. The shape to be segmented is the left ventricle. This dataset contains

25 3D MR scans. The scans were taken every 0.4 seconds, so this dataset can be watched

like a short movie of the human heart motion. This dataset was chosen to evaluate how

well motion can be segmented with the Mesh Plugin. For a better understanding of the

dataset, one slice each of volume 1, volume 10 and volume 25 is depicted in figure 6.3.

Dataset 4: This is the second multi modal dataset. It contains three 3D MR scans of a human

brain. A T1 weighted MR scan, a T2 weighted MR scan and a MRA. As this brain shows

no obvious pathological structure, the cavum septi pellucidi was chosen as the part to be

segmented. This dataset was chosen to test how the Mesh Plugin performs on multi modal

datasets. A slice of every scan can be seen in figure 6.4.

The datasets contain different images of different organs and were taken by different modal-

ities so the results presented later on give an overview on how the Mesh Plugin performs in the

different areas of medical imaging. Unfortunately it was not possible to get an ultrasound dataset

for this paper, which would have further added to the findings in relation to the well known im-

age modalities explained in section 1.1. All four dimensional datasets were registered with the

use of the MeVisLab module called Reformat. As registration basis always the first volume in a

dataset was used.

6.2.2 Compared Systems

The MeVisLab segmentation, which served as ground-truth for the evaluation, was performed

with the use of the MeVisLab LiveWireMacro module with the predefined parameters for bone

images. The segmentation was started by loading a dataset and scrolling through the xy-slices

66

Figure 6.1: A slice of dataset 1. The brighter structure at the bottom of the right hemisphere is

the tumour to be segmented.

(a) one slice of the first CT scan of

dataset 2

(b) one slice of the second CT scan of

dataset 2

(c) a slice of the PET volume of

dataset 2

Figure 6.2: Dataset two contains three volumes that give different views of the left ventricle. (a)

and (b) show the cavity whereas (c) shows the heart muscle.

until the shape to be segmented was found. Starting from one end of the shape in z-direction the

outline of the shape was delineated with the Livewire algorithm in every slice, in every second

slice, in every third slice or in every fourth slice. How many slices can be skipped depends on the

shape of the structure to be segmented. The bigger the changes in the structure, the fewer slices

can be skipped. The outlines of the skipped slices were calculated by interpolating the outlines

of the processed slices. Unfortunately the MeVisLab module used for the Livewire algorithm

is not able to interpolate over more than four slices. The possibility of skipping more than four

slices could have saved a lot of time, especially in the case of dataset 2 with more than 400 slices.

With the outlines marked, a binary image mask was generated. With the use of this mask the final

mesh was created with the left module branch seen in appendix A.2. Finally the mesh was saved

in a Wavefront .obj file. More details about the Wavefront file format can be found in appendix

A.3. The Wavefront file format was chosen as PolyMeCo can only deal with this type of format.

67

(a) volume 1 (b) volume 10 (c) volume 25

Figure 6.3: The three figures show slices of volume 1, volume 10 and volume 25 of dataset 3.

In all three figures the muscle of the left ventricle can be seen very well. In (a) the diastole of

the heart at the beginning of image recording can be seen. (b) shows a systole of the heart in the

middle of the recording and (c) shows the diastole at the end of the recording.

(a) T1 weighted MR scan (b) T2 weighted MR scan (c) MRA acquisition

Figure 6.4: This figure shows a slice of each MR volume in dataset 4. The order of the images

correlates with the order of the volumes in the dataset. In each figure the cavum septi pellucidi

can be seen. As it is filled with liquor it is dark in image (a) and brighter in image (b) and (c).

68

Dataset Organ Shape to

Segment

Resolution

(Voxel)

Voxel Size (Mil-

limeter)

Dim Image

Modality

1 brain tumour 256x256x85x1 0.89x0.89x1.99 3 MR

2 heart left

ventricle

512x512x414x3 0.35x0.35x0.40 4 CT, PET

3 heart left

ventricle

156x192x10x25 1.97x1.97x11.19 4 MR

4 brain cavum

septi

pellucidi

512x512x65x3 0.44x0.44x1.19 4 MR

Table 6.1: The table shows the shapes to be segmented in the test datasets, the image resolution,

the voxel size, the dimension and the image modality. Voxel size and image resolution are good

indicators for the image quality. The higher the resolution and the lower the voxel size are, the

higher is the image quality.

The segmentation with the Mesh Plugin was performed by using the LoG (section 4.4.2)

edge detection algorithm. The parameters used for the edge detection can be seen in table 6.2.

To start the segmentation the specific dataset and a sphere with 20480 triangles was loaded. Then

the sphere was dragged to the centre of the shape to be segmented and scaled to a size that serves

as good starting point for the exact delineation. After that the sphere was aligned to the borders

of the segmentation shape with the use of the available tools. In the case of a four dimensional

dataset the mesh produced in one dataset was then propagated to the other datasets either by

inserting the mesh or by applying the recorded deformation steps. The last segmentation step

was to adjust the propagated meshes in a way that they fit the structure to be segmented. In

some test cases, when bigger deformations where necessary, parts of the mesh were subdivided

to enable an exact alignment to fine structures. The parameters used for the mesh deformation

and the mesh optimization are shown in table 6.3. In the end the generated mesh was saved in a

Wavefront .obj file.

Variable Value

Kernel size: 7

Standard deviation: 2.3

Zero crossing threshold: 0.05

Table 6.2: The parameters used for the LoG algorithm that was used to generate the Mesh Plugin

results.

6.2.3 Evaluation Methods

As already mentioned, the comparison of the Mesh Plugin and the MeVisLab meshes was done

by comparing the amount of time needed for the segmentations and different figures of merit

69

Variable Value

curvature threshold: 0.3

decimation threshold: 0.0006

mesh ratio threshold: 1.2

centre change threshold: 0.1

Table 6.3: The parameters used for the mesh deformation and mesh optimization.

calculated with the use of PolyMeCo. To analyse the generated meshes the intrinsic properties

listed below were taken into account.

Smoothness: This measure indicates how smooth the surface of a mesh is. For every vertex

the centre of its one ring neighbourhood is calculated and compared with the position of

the vertex. The smaller the difference is the smoother is the surface.

Gaussian curvature: The Gaussian curvature is calculated by using methods proposed by

Meyer et al. [39].

Mean curvature: The mean curvature is calculated by using methods proposed by Meyer et al.

[39].

Triangle quality: For every triangle its minimum angle is calculated. When the minimum

angle is close to 60◦ the triangle is considered to be equilateral which constitutes a good

triangle quality.

To compare the meshes produced with MeVisLab and the Mesh Plugin the following fom

were used.

Geometric deviation: The geometric distance between the two mesh surface vertices is mea-

sured. If the two meshes to compare do not have the same number of vertices the surfaces

are sampled to get common points to compare. How the geometric deviation and the

vertex correspondences are determined is explained by Roy et al. [43].

Normal deviation: This methods compares how the normals of the vertices change from one

mesh to the other one. This method is also based on the work of Roy et al. [43].

Gaussian curvature deviation This fom gives information about the Gaussian curvature devi-

ation. PolyMeCo calculates the Gaussian curvature deviation with methods proposed by

Karni and Gotsman [30] and Sorkine et al. [51].

Mean curvature deviation: The mean curvature deviation compares how large the difference

in the mean curvature is between two meshes. For this comparison PolyMeCo uses meth-

ods discussed by Karni and Gotsman [30] and Sorkine et al. [51].

70

The temporal requirements to be compared were measured as follows.

MeVisLab: The recording of the time needed to segment a dataset was started when the nav-

igation to the first slice to be segmented was carried out and the segmentation with the

Livewire approach was started. The time recording was stopped immediately after the

mesh had been generated with the use of the binary mask.

Mesh Plugin: After the mesh of the sphere had been dragged to its initial position (in all cases

the centre of the shape to be segmented) the timing of the segmentation started. As soon

as the segmentation and the enhancement of the mesh quality by smoothing, decimation

and subdivision finished, timing was stopped.

Starting the timing after the navigation to the first slice to be segmented respectively the

placing of the sphere at the centre of the shape to be segmented, helped to exclude lag time due

to not finding the shape to be segmented in the set of slices and to compare only the time needed

for segmentation. If some unexpected errors occurred, like the breakdown of the MeVisLab slice

interpolation algorithm because too many slices were skipped or holes occurred in the generated

mesh, the segmentation process was aborted and started again. After the time recording had

been stopped no further changes were made to the meshes. For both techniques, the first result

generated was used for the comparison. This was done to exclude good results due to routine.

Before starting the segmentation all datasets were inspected to get a clue of the shape to be

segmented.

6.3 Used Hardware

Three different PCs were used to segment the datasets mentioned in the previous section. Table

6.4 shows the details of the three different machines.

Machine Operating System CPU RAM

1 Windows XP, 32-bit Intel Pentium 4, 3.2 GHz 2 GB

2 Windwos 7, 64-bit Intel Core 2 Quad Q6600, 2,4 GHz per Core 4 GB

3 Windwos 7, 64-bit Intel Core i7, 2,67 GHz per Core 12 GB

Table 6.4: This table shows the three different PCs used for testing.

The segmentation of the datasets 1, 2 and 4 with MeVisLab and the Mesh Plugin was per-

formed on machine 1. Due to the huge amount of data in dataset 2 it was not possible to segment

it on machine 1 as there was not enough memory available. Therefore the MeVisLab segmenta-

tion of dataset 2 was done on machine 2 and the Mesh Plugin segmentation was carried out on

machine 3. Machine 3 was needed for the Mesh Plugin in the case of dataset 2 because a big

amount of RAM was necessary to store the edge information. In the selection of the machine

used for segmentation the main points to be observed where that the application runs seamlessly

and smoothly and that the user has no lag time during the segmentation due to computation

latency of the machine. Only usability and quality of the segmentation algorithms ought to

determine the outcome.

71

Figure 6.5: This figure explains what kind of information the box-plots used in this paper provide

about the underlying data.

6.4 Results

All fom are visualized with box-plots. Figure 6.5 explains shortly how to interpret box-plots. In

some plots the dataset numbers have decimal places. This decimal places indicate the number

of the volume within a 4D dataset. In some plots the y-axis is scaled logarithmically to give a

good view of the data even if there are a lot of outliers. Table 6.5 shows the number of vertices

of the different meshes as in some cases it is necessary to know them to understand the result.

6.4.1 Time Needed

The time that was needed to segment the particular datasets either with MeVisLab or the Mesh

Plugin is depicted in Figure 6.6. It can be seen that on all four datasets the segmentation with the

Mesh Plugin was much faster than with MeVisLab. In the case of the three dimensional dataset 1

the segmentation performed with the Mesh Plugin was 5 times faster than the segmentation with

MeVisLab. In the case of the four dimensional datasets the segmentation with the Mesh Plugin

was done 7 to 25 times faster than with the LiveWire approach of MeVisLab. The increase of

segmentation speed is due to the fact that with MeVisLab nearly every slice has to be segmented

separately and with the Mesh Plugin it is possible to deform regions that spread over many

slices with an appropriate kernel size. Also the Sticky Edges algorithm helps to align the mesh

to the desired edges faster. These advantages of the Mesh Plugin can be seen very clearly from

the results of dataset 2 that contains a huge amount of slices. The lower time requirements of

the Mesh Plugin in case of four dimensional datasets arises from the possibilities to propagate

deformation steps over the fourth dimension and to set an already deformed mesh as start mesh

in another volume. This saves a lot of work compared to the MeVisLab LiveWire approach

where every volume has to be segmented from scratch.

72

Vertices Vertices

Mesh MeVisLab Mesh Plugin Mesh MeVisLab Mesh Plugin

1 237 10243 2.13 64 10242

2.1 6323 10243 2.14 71 10242

2.2 2403 10242 2.15 75 10242

2.3 5136 10242 2.16 74 10242

3.1 80 10242 2.17 74 10242

3.2 82 10242 2.18 79 10242

3.3 82 10242 2.19 77 10242

3.4 69 10242 2.20 77 10242

3.5 62 10242 2.21 78 10242

3.6 54 10242 2.22 78 10242

3.7 45 10242 2.23 77 10242

3.8 42 10242 2.24 85 10242

3.9 42 10242 2.25 86 10242

3.10 40 10242 4.1 1007 10294

3.11 46 10242 4.2 6938 10294

3.12 55 10242 4.3 895 10294

Table 6.5: The number of vertices of the meshes produced with MeVisLab and the Mesh Plugin.

6.4.2 Smoothness Analysis

The figures 6.7, 6.8 and 6.9 show the results of the smoothness analysis performed with Poly-

MeCo. The lower the value, the better is the result. As can be seen the smoothness values of the

Mesh Plugin meshes are lower than the values of the meshes produced with MeVisLab. This is

because the Mesh Plugin meshes have much more vertices but the same size as the MeVisLab

meshes which implies that the distance of a vertex to the centre of its one ring neighbourhood

is smaller. The smoothness analysis results for the meshes of the Mesh Plugin as well as the

meshes of MeVisLab are acceptable as the median smoothness is only a fraction of the mesh

size. For example the median smoothness of the mesh produced with MeVisLab with dataset 1

(the smallest of all meshes) is 0.98 mm. To to enclose the whole mesh a bounding box with the

side lengths of 45x50x30 mm would be necessary.

6.4.3 Gaussian Curvature

The results of the Gaussian curvature analysis of the meshes are depicted in figure 6.10 for the

datasets 1, 2 and 4, in figure 6.11 for the first part of dataset 3 and in figure 6.12 for the second

part of dataset 3. The figure 6.13 shows the Gaussian curvature deviation of the Mesh Plugin

and MeVisLab meshes for the datasets 1, 2 and 4. Figure 6.14 shows this fom for dataset 3. The

metric unit for the y-axis in all figures is dioptre (dpt). Dioptre is the reciprocal of the focal

length measured in metres. The figures show that the Gaussian curvature of all meshes is very

low and that the Gaussian curvatures of the MeVisLab and the Mesh Plugin meshes are very

73

1 2 3 4
0

20

40

60

80

100

120

140

160

180

Datasets

M
in

u
te

s
MeVisLab

Mesh Plugin

Figure 6.6: Bars indicate the time in minutes that was needed to segment the dataset.

1 1 2.1 2.1 2.2 2.2 2.3 2.3 4.1 4.1 4.2 4.2 4.3 4.3

10
−3

10
−2

10
−1

10
0

10
1

Datasets

S
m

o
o

th
n

e
s

s
 (

m
m

)

MeVisLab

Mesh Plugin

Figure 6.7: The results of the PolyMeCo smoothness analysis algorithm applied on the meshes

produced with MeVisLab and the Mesh Plugin with the datasets 1, 2 and 4.

74

3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.8 3.9 3.9 3.10 3.10 3.11 3.11 3.12 3.12

0

1

2

3

4

5

6

7

8

9

Datasets

S
m

o
o

th
n

e
s

s
 (

m
m

)

MeVisLab

Mesh Plugin

Figure 6.8: The results of the PolyMeCo smoothness analysis algorithm applied on the meshes

produced with MeVisLab and the Mesh Plugin with the first 12 volumes of dataset 3.

3.13 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.17 3.17 3.18 3.18 3.19 3.19 3.20 3.20 3.21 3.21 3.22 3.22 3.23 3.23 3.24 3.24 3.25 3.25

0

1

2

3

4

5

6

7

Datasets

S
m

o
o

th
n

e
s

s
 (

m
m

)

MeVisLab

Mesh Plugin

Figure 6.9: The results of the PolyMeCo smoothness analysis algorithm applied on the meshes

produced with MeVisLab and the Mesh Plugin with the last 13 volumes of dataset 3.

75

1 1 2.1 2.1 2.2 2.2 2.3 2.3 4.1 4.1 4.2 4.2 4.3 4.3

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Datasets

G
a

u
s

s
ia

n
 C

u
rv

a
tu

re
 (

d
p

t)

MeVisLab

Mesh Plugin

Figure 6.10: The Gaussian curvature analysis results of the meshes produced with MeVisLab

and the Mesh Plugin with the datasets 1, 2 and 4.

similar except for some outliers of the Mesh Plugin meshes in dataset 3. These outliers result

from an indentation which causes a sharp peak and a narrow valley on the surface and therefore

an increase of the Gaussian curvature in that part of the mesh. Figure 6.15 shows the coloured

Gaussian curvature analysis of the Mesh Plugin mesh with its segmented indentation and the

MeVisLab mesh generated with dataset 3.10.

6.4.4 Mean Curvature

The mean curvature analysis results for the meshes generated with MeVisLab and the Mesh Plu-

gin are presented in figure 6.16 for the datasets 1, 2 and 4, in figure 6.17 for the first part of

dataset 3 and in figure 6.18 for the second part of dataset 3. The mean curvature deviation of the

MeVisLab and Mesh Plugin meshes is depicted in figure 6.19 for the datasets 1, 2 and 4 and in

figure 6.20 for dataset 3. The metric unit for the y-axis in all figures is dioptre (dpt). The results

are similar to the results of the Gaussian curvature analysis. The mean curvature of all meshes is

very low and the mean curvatures of the meshes generated with the Mesh Plugin and the meshes

generated with MeVisLab are similar except for outliers of the Mesh Plugin meshes in datset

3. These outliers are, as already mentioned in the Gaussian curvature analysis 6.4.3, the result

of a segmented indentation. This indentation is represented with a small peak and a narrow val-

ley that causes an increase of the mean curvature in that region.

76

3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.8 3.9 3.9 3.10 3.10 3.11 3.11 3.12 3.12
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Datasets

G
a

u
s

s
ia

n
 C

u
rv

a
tu

re
 (

d
p

t)

MeVisLab

Mesh Plugin

Figure 6.11: The Gaussian curvature analysis results of the meshes produced with MeVisLab

and the Mesh Plugin with the first 12 volumes of dataset 3.

3.13 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.17 3.17 3.18 3.18 3.19 3.19 3.20 3.20 3.21 3.21 3.22 3.22 3.23 3.23 3.24 3.24 3.25 3.25

10
−8

10
−6

10
−4

10
−2

10
0

Datasets

G
a

u
s

s
ia

n
 C

u
rv

a
tu

re
 (

d
p

t)

MeVisLab

Mesh Plugin

Figure 6.12: The Gaussian curvature analysis results of the meshes produced with MeVisLab

and the Mesh Plugin with the last 13 volumes of dataset 3.

77

1 2.1 2.2 2.3 4.1 4.2 4.3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Datasets

G
a

u
s

s
ia

n
 C

u
rv

a
tu

re
 D

e
v

ia
ti

o
n

 (
d

p
t)

Figure 6.13: The Gaussian curvature deviation between the meshes of the datasets 1, 2 and 4

produced with MeVisLab and the Mesh Plugin.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25

10
−3

10
−2

10
−1

10
0

Datasets

G
a

u
s

s
ia

n
 C

u
rv

a
tu

re
 D

e
v

ia
ti

o
n

 (
d

p
t)

Figure 6.14: The Gaussian curvature deviation between the meshes of dataset 3 produced with

MeVisLab and the Mesh Plugin.

78

(a) Gaussian curvature analysis of the Mesh Plugin

mesh of dataset 3.10.

(b) Gaussian curvature analysis of the MeVisLab

mesh of dataset 3.10.

Figure 6.15: The Gaussian curvature of the meshes generated with the Mesh Plugin ((a)) and

MeVisLab ((b)) with dataset 3.10. The red parts indicate a bad Gaussian curvature value, which

can be seen very clearly in the area of the small segmented indentation on the top of the Mesh

Plugin mesh. Blue regions indicate a good Gaussian curvature value.

1 1 2.1 2.1 2.2 2.2 2.3 2.3 4.1 4.1 4.2 4.2 4.3 4.3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Datasets

M
e

a
n

 C
u

rv
a

tu
re

 (
d

p
t)

MeVisLab

Mesh Plugin

Figure 6.16: The mean curvature of the meshes of the datasets 1, 2 and 4.

79

3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.8 3.9 3.9 3.10 3.10 3.11 3.11 3.12 3.12

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Datasets

M
e

a
n

 C
u

rv
a

tu
re

 (
d

p
t)

MeVisLab

Mesh Plugin

Figure 6.17: The mean curvature of the meshes of the first 12 volumes of dataset 3.

3.13 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.17 3.17 3.18 3.18 3.19 3.19 3.20 3.20 3.21 3.21 3.22 3.22 3.23 3.23 3.24 3.24 3.25 3.25

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Datasets

M
e

a
n

 C
u

rv
a

tu
re

 (
d

p
t)

MeVisLab

Mesh Plugin

Figure 6.18: The mean curvature of the meshes of the last 13 volumes of dataset 3.

80

1 2.1 2.2 2.3 4.1 4.2 4.3

10
−1

10
0

10
1

10
2

Datasets

M
e

a
n

 C
u

rv
a

tu
re

 D
e

v
ia

ti
o

n
 (

d
p

t)

Figure 6.19: The mean curvature deviation between the meshes of the datasets 1, 2 and 4 pro-

duced with MeVisLab and the Mesh Plugin.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25

10
−2

10
−1

10
0

Datasets

M
e

a
n

 C
u

rv
a

tu
re

 D
e

v
ia

ti
o

n
 (

d
p

t)

Figure 6.20: The mean curvature deviation between the meshes of dataset 3 produced with

MeVisLab and the Mesh Plugin.

81

1 1 2.1 2.1 2.2 2.2 2.3 2.3 4.1 4.1 4.2 4.2 4.3 4.3

0

10

20

30

40

50

60

Datasets

T
ri

a
n

g
le

 Q
u

a
li

ty
 (

d
e

g
re

e
)

MeVisLab

Mesh Plugin

Figure 6.21: The triangle quality of the meshes of the datasets 1, 2 and 4.

6.4.5 Triangle Quality

An overview of the triangle quality analysis results can be seen in figure 6.21 for the datasets 1, 2

and 4 and in the figures 6.22 and 6.23 for dataset 3. The triangle quality of the meshes produced

with MeVisLab and the meshes generated with the Mesh Plugin is similar. Both programs

provide meshes with a median minimum triangle angle between 30 and 45 degree. The worst

triangle quality is present in the meshes produced with the Mesh Plugin for dataset 4. This is due

to the fact that the cavum septi pelludici is a very long form and therefore the sphere has to be

lengthened which results in elongated triangles with a small minimum angle. Figure 6.24 shows

the coloured triangle quality of the meshes produced with the Mesh Plugin and MeVisLab on

dataset 4.1. The best results were achieved on the datasets 1 and 3. This is because the shape to

be segmented in these datasets is more sphere-like so the triangles do not have to be elongated.

As can be seen in figures 6.22 and 6.23 the meshes created with the Mesh Plugin with dataset 3

show some really badly shaped triangles with a minimum triangle angle close to zero. These

badly shaped triangles are due to an indentation. In the segmentation of this indentation changes

on the mesh with a small kernel size had to be made which elongated the involved triangles.

6.4.6 Geometric Distance

The outcomes of the PolyMeCo analysis regarding the geometric distance between the MeVis-

Lab and the Mesh Plugin meshes can be seen in figure 6.25 for the datasets 1, 2 and 4 and in

figure 6.26 for dataset 3. Notice the the big geometric distance in the third volume of dataset 2

82

3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5 3.6 3.6 3.7 3.7 3.8 3.8 3.9 3.9 3.10 3.10 3.11 3.11 3.12 3.12

0

10

20

30

40

50

60

Datasets

T
ri

a
n

g
le

 Q
u

a
li

ty
 (

d
e

g
re

e
)

MeVisLab

Mesh Plugin

Figure 6.22: The triangle quality of the meshes of the first 12 volumes of dataset 3.

3.13 3.13 3.14 3.14 3.15 3.15 3.16 3.16 3.17 3.17 3.18 3.18 3.19 3.19 3.20 3.20 3.21 3.21 3.22 3.22 3.23 3.23 3.24 3.24 3.25 3.25

0

10

20

30

40

50

60

Datasets

T
ri

a
n

g
le

 Q
u

a
li

ty
 (

d
e

g
re

e
)

MeVisLab

Mesh Plugin

Figure 6.23: The triangle quality of the meshes of the last 13 volumes of dataset 3.

83

(a) coloured triangle quality of the Mesh Plugin

mesh of dataset 4.1

(b) coloured triangle quality of the MeVisLab mesh

of dataset 4.1

Figure 6.24: The triangle quality of the Mesh Plugin mesh and the MeVisLab mesh produced

with dataset 4.1. Blue triangles indicate good triangle quality. Red triangles indicate a bad

triangle quality.

(the PET dataset). This is because in this dataset the heart muscle around the left ventricle is

very easy to recognize and with the use of MeVisLab this muscle was segmented whereas with

the Mesh Plugin only the ventricle was segmented. This was done because the work flow of the

two programs is different. With MeVisLab the segmentation of a volume has to be done from

scratch and so the only visible structure in the third volume of dataset 3 was segmented, which

was the muscle around the left ventricle. In the case of the segmentation with the Mesh Plugin

the left ventricle had already been segmented in the other two volumes. This segmentation was

then used as start mesh for volume 3 therefore the basic form was already known and the shape

of the mesh only had to get aligned to the inner edges of the muscle seen in volume 3.

6.4.7 Normal Deviation

The normal deviation between the Mesh Plugin and the MeVisLab meshes of the datasets 1, 2

and 4 is depicted in figure 6.27. Figure 6.28 shows the results of the normal deviation analysis for

dataset 3. The third volume of dataset 2 shows a very strong deviation of the meshes compared

to the other datasets. As already mentioned in 6.4.6, this is because with the use of MeVisLab

the muscle around the ventricle was segmented and with the use of the Mesh Plugin the cavity of

the left ventricle was segmented. As the muscle is a quasi-hollow pattern and the left ventricle

was segmented as closed form the normals of the surface in the inner part of the muscle point to

the opposite direction compared to the normals of the ventricle surface. There is no explanation

as to why this deviation has a maximum of just 2 degrees as there is no discussion available how

PolyMeCo calculates the normal deviation.

84

1 2.1 2.2 2.3 4.1 4.2 4.3

0

5

10

15

20

25

30

Datasets

G
e

o
m

e
tr

ic
 D

is
ta

n
c

e
 (

m
m

)

Figure 6.25: The geometric distance between the meshes of the datasets 1, 2 and 4 produced

with MeVisLab and the Mesh Plugin.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25

0

2

4

6

8

10

12

14

16

18

Datasets

G
e

o
m

e
tr

ic
 D

is
ta

n
c

e
 (

m
m

)

Figure 6.26: The geometric distance between the meshes of dataset 3 produced with MeVisLab

and the Mesh Plugin.

85

1 2.1 2.2 2.3 4.1 4.2 4.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Datasets

N
o

rm
a

l
D

e
v

ia
ti

o
n

 (
d

e
g

re
e

)

Figure 6.27: The normal deviation between the meshes of the datasets 1, 2 and 4 produced with

MeVisLab and the Mesh Plugin.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Datasets

N
o

rm
a

l
D

e
v

ia
ti

o
n

 (
d

e
g

re
e

)

Figure 6.28: The normal deviation between the meshes of dataset 3 produced with MeVisLab

and the Mesh Plugin.

86

6.4.8 Discussion

Summarizing, it can be said that the Mesh Plugin outperformed the Livewire approach realized

with MeVisLab regarding the time needed for segmentation. Furthermore the Mesh Plugin pro-

duced meshes of good quality. Only in cases with huge deformations or in the segmentation of

very sharp structures, bad mesh quality can be established. The results for the segmentation time

and the mesh quality can still be improved by using other initial meshes which are more similar

to the shape to be segmented. For example an appropriate model would be a model of the organ

to be segmented. This would reduce the deformation steps and increase the mesh quality a lot,

as the model only has to be adjusted to the anatomical peculiarities of the actual dataset and no

big deformations would be necessary. Finally, to complete this chapter and to give one entire

segmentation result of the Mesh Plugin, figure 6.29 shows all slices of dataset 1 in which the

tumour to be segmented and the outlines of the mesh produced with the Mesh Plugin on dataset

1 are visible.

87

(a) slice 62 (b) slice 63 (c) slice 64 (d) slice 65

(e) slice 66 (f) slice 67 (g) slice 68 (h) slice 69

(i) slice 70 (j) slice 71 (k) slice 72 (l) slice 73

(m) slice 74 (n) slice 75 (o) slice 76 (p) slice 77

Figure 6.29: Images (a) to (p) show all slices of dataset 1 in which the tumour to be segmented

is visible combined with the outlines of the mesh generated with the Mesh Plugin on dataset 1.

88

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

In this thesis a tool is presented that enables the user to manually segment structures of arbitrary

shape from scratch and to improve or correct segmentation results of other segmentation meth-

ods. The tool is capable of dealing with three and four dimensional datasets of different image

modalities. Solely the parameters of the edge detection algorithm have to be adjusted if a dataset

of another image modality is loaded.

To segment a 3D dataset an initial mesh is loaded and aligned to the shape to be segmented

with simple transformation methods and a novel deformation approach. With the use of this

approach the user sees and deforms only the 2D outline of the mesh at a specific slice but in

the background the whole mesh is affected by the actions performed. During the deformation

the user is supported by the tool to align the outlines of the mesh to the shape to be segmented

faster and more exact. Support is provided by the newly developed Sticky Edges algorithm that

pushes the mesh vertices in the vicinity of the deformation centre towards an edge if the user

has placed the deformation centre on or near this edge. This algorithm uses edge classes to

push the vertices only to edges that have the same edge class as the edge on which the user

placed the deformation centre. The edges are classified by the use of the edge gradient and

their spatial vicinity. In the case of a 4D datasets segmentation, steps performed in one 3D sub-

volume can be propagated along the fourth dimension to facilitate the segmentation of the other

sub-volumes. The propagation is mesh topology independent. So meshes with different vertex

counts can be used in the sub-volumes. To ensure a good mesh quality subdivision, decimation

and smoothing methods were implemented that are triggered in the background but can also

be applied by the user manually. The tool runs on every customary computer. Just for very big

datasets more internal memory is needed because of the large amount of data that arises from the

edge detection algorithm. The tool was evaluated by comparing the segmentation results of four

different datasets with the segmentation results of a Livewire approach realized with MeVisLab.

The comparison was done by matching the amount of time needed for segmentation and different

89

figures of merit generated with PolyMeCo. The evaluation showed that segmentation with the

Mesh Plugin is much faster than the Livewire approach and produces meshes of good quality.

7.2 Future Work

Future continuation of this work, which would aim at preventing errors during the segmentation

process, is the implementation of self intersection detection and prevention. Sometimes the

outline of one part of a mesh is dragged over the outline of another part of the mesh by the user.

Such a self intersection of the mesh does not exist in nature and is therefore not necessary. Also,

it is very hard to undo in the current version of the program. A detection of self intersections

and the subsequent prevention of such deformations by the tool would prevent these errors.

A decrease in computation time can be achieved by implementing a hierarchical data struc-

ture to store the vertex positions. Such a data structure would make the detection of the closest

point to an arbitrary point in the dataset, for example the clicked position of the user, easier and

faster.

As a lot of the methods presented in this work are based on the outcome of the edge detec-

tion algorithm, an edge preserving smoothing algorithm that enhances the outcome of the edge

detection algorithm would increase the quality of the results and decrease the time needed for

segmentation. This enhancements would be due to the fact, that the Sticky Edges algorithm

could align the vertices around the deformation centre to an edge the more efficiently the better

the outcome of the edge detection algorithm is. A possible approach can be found in the work

of Wang [54].

To improve the 4D propagation a method would be useful that finds for every vertex in

one mesh the closest related vertex of another mesh, independent of the vertex count of both

meshes. The closeness of two points should be determined by their position and their curvature

so that for example the tip of the nose can be found even if the head is turned to the side in one

volume. These relationships would have to be calculated after loading the meshes and after every

change in topology but would avoid the calculation of the deformation area for every propagated

deformation step for every mesh.

90

APPENDIX A
Appendices

A.1 ZVO File Format

The zvo file format or zipped volume object is used in this work to store three and four dimen-

sional image datasets. To store a dataset the image data need to be present in a dat or raw file

format. The dat file format is in this case also a raw file with additional information about the

volume size. In the case of four dimensional datasets for every time step respectively modality

one 3D dataset is needed.

In addition to the files that contain the image data either a hvr or vol file is created during the
saving process. These two files provide information about the image dataset so that the dataset is

displayed correctly. Both file types are text files that contain a list of all 3D volumes. In the case

of a 3D dataset the list has only one entry, in a 4D case the list order determines the order of the

volumes in the Mesh Plugin. Also the voxel size for the datasets is stored in the file. Only one

slice distance is stored. So it is assumed that all datasets have the same voxel size. The image

data files and the information file are zipped to the zvo file in the ZIP format.

A.2 MeVisLab Module Framework

The MeVisLab modules used to segment the medical image datasets and to create the ground

truth meshes can be seen in figure A.1. With the modules outgoing from the ImgLoad module,

the binary masks that indicate the segmentation were generated with the use of the Livewire

approach. The modules origin from the LoadMask module was used to generate meshes utilizing

the binary masks generated in the first step. More information about the modules is provided by

the documentation on the MeVisLab site [2].

91

Figure A.1: The MeVisLab modules and their combination used to generate the ground truth

meshes that were used to evaluate the Mesh Plugin.

92

A.3 Wavefront file format

The Wavefront file format is a format developed by Wavefront Technologies [55]. This section

gives only a short overview on the parts of the file format used for this work. In this work it

was only necessary to store triangles and the vertices with their positions that are part of the

triangles. This is done by generating a text file and initially writing every vertex with its position

in one line. To store three vertices, one with position 2/4/5, one with position 2/3/3 and one with

position 4/3/5 the file looks like the following:

v 2 4 5

v 2 3 3

v 4 3 5

where v denotes a vertex, the first digit is the x-coordinate, the second one the y-coordinate

and the last one the z-coordinate. To store a triangle that is composed of the above mentioned

vertices the file has to be extended by one line. This would look like:

v 2 4 5

v 2 3 3

v 4 3 5

f 2 1 3

where the f denotes a face and the following numbers show the vertex indices. The indices

in the Wavefront format start at 1. The vertices are stored in a counter clockwise order.

93

Bibliography

[1] MeVis Medical Solutions AG. MeVis Medical Solutions,

http://www.mevis.de/mms/index.html. Accessed: 2011-05-17.

[2] MeVis Medical Solutions AG. MeVisLab, medical image processing and visualization,

http://www.mevislab.de/. Accessed: 2011-05-17.

[3] M.R. Anderberg. Cluster analysis for applications. Academic Press, New York, 1973.

[4] I.N. Bankman. Handbook of medical imaging: processing and analysis. Academic Press

Series in Biomedical Engineering. Academic Press, 2000.

[5] H.G. Barrow and J.M. Tenenbaum. Interpreting line drawings as three-dimensional sur-

faces. Artificial Intelligence, 17(1-3):75 – 116, 1981.

[6] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer

Academic Publishers, Norwell, MA, USA, 1981.

[7] A. Bornik, R. Beichel, and D. Schmalstieg. Interactive editing of segmented volumetric

datasets in a hybrid 2D/3D virtual environment. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, VRST ’06, pages 197–206, New York, NY, USA,

2006. ACM.

[8] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy, S. Bischoff, and C. Rössl. Geometric

modeling based on polygonal meshes. In ACM SIGGRAPH 2007 courses, SIGGRAPH
’07. ACM, 2007.

[9] M. Botsch, M. Pauly, M. Wicke, and M. Gross. Adaptive space deformations based on

rigid cells. Computer Graphics Forum, 26(3):339–347, 2007.

[10] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell., 8:679–698, November 1986.

[11] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. Int. J. Comput. Vision,
22:61–79, February 1997.

[12] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image
Processing, 10(2):266 –277, February 2001.

95

[13] R. Chandrashekara, A. Rao, G. Sanchez-Ortiz, R. Mohiaddin, and D. Rueckert. Construc-

tion of a statistical model for cardiac motion analysis using nonrigid image registration. In

Information Processing in Medical Imaging, volume 2732 of Lecture Notes in Computer
Science, pages 599–610. Springer Berlin / Heidelberg, 2003.

[14] C.T. Metz, M. Schaap, T. van Walsum, A.G. van der Giessen, A.C. Weustink, N.R. Mol-

let, G. Krestin and W.J. Niessen. 3D segmentation in the clinic: A grand challenge II -

Coronary artery tracking. Insight Journal, 2008.

[15] Campus Universitário de Santiago. PolyMeCo - Polygonal Mesh Analysis and Comparison

Tool, http://www.ieeta.pt/polymeco/. Accessed: 2011-05-17.

[16] M. del Fresno, M. Vénere, and A. Clausse. A combined region growing and deformable

model method for extraction of closed surfaces in 3D CT and MRI scans. Computerized
Medical Imaging and Graphics, 33(5):369 – 376, 2009.

[17] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr. Implicit fairing of irregular meshes

using diffusion and curvature flow. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pages 317–324. ACM

Press/Addison-Wesley Publishing Co., 1999.

[18] J. Dornheim, L. Dornheim, B. Preim, I. Hertel, and G. Strauß. Generation and initialization

of stable 3D mass-spring models for the segmentation of the thyroid cartilage. In DAGM-
Symposium, pages 162–171, 2006.

[19] L. Dornheim, K.D. Tönnies, and J. Dornheim. Stable dynamic 3D shape models. In IEEE
International Conference on Image Processing, volume 3, pages 1276–9, 2005.

[20] M. Erdt, M. Kirschner, and S. Wesarg. Smart manual landmarking of organs. In Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7623, March

2010.

[21] W. Faulkner and E. Seeram. Rad Tech’s Guide to MRI: Basic Physics, Instrumentation,
and Quality Control. Wiley-Blackwell, 2001.

[22] R. Fisher, S. Perkins, A.Walker, and E.Wolfart. HIPR - The Hypermedia Image Processing
Reference. John Wiley & Sons Ltd, 1996.

[23] O. Gerard, A.C. Billon, J.-M. Rouet, M. Jacob, M. Fradkin, and C. Allouche. Efficient

model-based quantification of left ventricular function in 3-D echocardiography. IEEE
Transactions on Medical Imaging, 21(9):1059 –1068, September 2002.

[24] A. Goshtasby. Design and recovery of 2-D and 3-D shapes using rational Gaussian curves

and surfaces. International Journal of Computer Vision, 10:233–256, 1993.

[25] M. Hussain, Y. Okada, and K. Niijima. Efficient and feature-preserving triangular mesh

decimation. In Proceedings of WSCG’04, pages 167–174, 2004.

96

[26] M. Jackowski and A. Goshtasby. A computer-aided design system for revision of seg-

mentation errors. In Proceedings of the 8th International Conference on Medical image
computing and computer-assisted intervention - Volume Part II, MICCAI’05, pages 717–

724. Springer-Verlag, 2005.

[27] D. Kainmueller, T. Lange, and H. Lamecker. Shape constrained automatic segmentation

of the liver based on a heuristic intensity model. In Proceedings of the MICCAI Workshop
3D Segmentation in the Clinic: A Grand Challenge, pages 109 – 116, 2007.

[28] D. Kainmueller, H. Lamecker, H. Seim, S. Zachow, and H.-C. Hege. Improving deformable

surface meshes through omni- directional displacements and mrfs. In Proceedings of the
13th International Conference on Medical Image Computing and Computer-Assisted Inter-
vention: Part I, MICCAI’10, pages 227–234. Springer-Verlag, 2010.

[29] Y. Kang, K. Engelke, and W.A. Kalender. Interactive 3D editing tools for image segmenta-

tion. Medical Image Analysis, 8(1):35 – 46, 2004.

[30] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pages 279–286. ACM Press/Addison-Wesley Publishing Co., 2000.

[31] R. Kindermann and J.S. Laurie. Markov Random Fields and Their Applications (Contem-
porary Mathematics ; V. 1). Amer Mathematical Society, 1980.

[32] L. Kobbelt.
√
3-subdivision. In Proceedings of the 27th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’00, pages 103–112. ACM

Press/Addison-Wesley Publishing Co., 2000.

[33] L. Kobbelt, S. Campagna, J. Vorsatz, and H.P. Seidel. Interactive multi-resolution modeling

on arbitrary meshes. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, pages 105–114. ACM, 1998.

[34] C.T. Loop. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis, University

of Utah, Department of Mathematics, U.S.A., August 1987.

[35] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construc-

tion algorithm. SIGGRAPH Comput. Graph., 21:163–169, August 1987.

[36] D. Marr and E. Hildreth. Theory of Edge Detection. Royal Society of London Proceedings
Series B, 207:187–217, February 1980.

[37] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey.

Medical Image Analysis, 1(2):91 – 108, 1996.

[38] Fraunhofer MEVIS. Fraunhofer MEVIS, http://www.mevis.fraunhofer.de/. Accessed:

2011-05-17.

97

[39] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr. Discrete differential-geometry opera-

tors for triangulated 2-manifolds. Building, 3(7):1–26, 2002.

[40] J. Montagnat and H. Delingette. 4D deformable models with temporal constraints: appli-

cation to 4D cardiac image segmentation. Medical Image Analysis, 9(1):87 – 100, 2005.

[41] E.N. Mortensen and W.A. Barrett. Intelligent scissors for image composition. In Proceed-
ings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pages 191–198. ACM, 1995.

[42] M. Poon, G. Hamarneh, and R. Abugharbieh. Efficient interactive 3d livewire segmentation

of complex objects with arbitrary topology. Computerized Medical Imaging and Graphics,
32(8):639 – 650, 2008.

[43] M. Roy, S. Foufou, and F. Truchetet. Mesh comparison using attribute deviation metric.

International Journal of Image and Graphics, 4(1):127–140, January .

[44] D. Salomon. Curves and Surfaces for Computer Graphics. Springer New York, 2006.

[45] N.S. Sapidis. Designing fair curves and surfaces: shape quality in geometric modeling and
computer-aided design. Geometric Design Publications. Society for Industrial and Applied

Mathematics, 1994.

[46] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. In Pro-
ceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’86, pages 151–160. ACM, 1986.

[47] J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cam-

bridge University Press, 1999.

[48] V. Sherrow. Medical Imaging (Great inventions). Marshall Cavendish Benchmark, 2006.

[49] S. Silva, J. Madeira, and B.S. Santos. POLYMECO - A Polygonal Mesh Comparison Tool.

In Proceedings of the Ninth International Conference on Information Visualisation, pages
842–847, Washington, DC, USA, 2005. IEEE Computer Society.

[50] O. Sorkine and A. Nealen. A note on lapla-

cian mesh smoothing. Submitted for publication, 2006,

http://rutgers.academia.edu/AndrewNealen/Papers/236778/A_Note_on_Laplacian_Mesh_Smoothing,

Accessed: 2011-08-02.

[51] O. Sorkine, D. Cohen-Or, and S. Toledo. High-pass quantization for mesh encoding. In

Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry process-
ing, SGP ’03, pages 42–51, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics

Association.

98

[52] G. Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,

pages 351–358. ACM, 1995.

[53] R.F. Tobler and S. Maierhofer. A mesh data structure for rendering and subdivision. In

Proceedings of WSCG (International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision), pages 157–162, 2006.

[54] X. Wang. On the gradient inverse weighted filter [image processing]. Signal Processing,
IEEE Transactions on, 40(2):482 –484, February 1992.

[55] Wikipedia, the free encyclopedia. Wavefront Technologies,

http://en.wikipedia.org/wiki/Wavefront_Technologies. Accessed: 2011-06-01.

[56] D. Yang, J. Zheng, A. Nofal, D. Joseph, and I.M. El Naqa. Techniques and software

tool for 3D multimodality medical image segmentation. Journal of Radiation Oncology
Informatics, 1(1):1–21, 2009.

[57] T.S. Yoo. Insight Into Images: Principles and Practice for Segmentation, Registration, and
Image Analysis. Ak Peters Series. A K Peters, 2004.

[58] R. Yu, Z. Liu, and Y. Liu. A local
√
3-subdivision algorithm preserving sharp features. In

Control, Automation, Robotics and Vision, 2006. ICARCV ’06. 9th International Confer-
ence on, pages 1 –6, dec 2006.

[59] S. Zambal. Anatomical Modeling for Image Analysis in Cardiology. PhD thesis, Vienna

University of Technology, Institute of Computer Graphics and Algorithms, Austria, March

2009.

99

	List of Figures
	List of Tables
	Introduction
	Imaging Methods
	Segmentation
	Deformation
	Four Dimensional Datasets
	Problem Statement
	Aim of the Thesis
	Thesis Overview
	Related Work
	Overview
	Related Work

	Approach of this Thesis
	Implemented Methods
	Overview
	Surface Representation
	Bounding Box Calculation
	Edge Detection
	Edge Classification
	2D Cut
	Manual Mesh Transformation and Deformation
	Sticky Edges
	Interpolation between Slices
	Subdivision
	Decimation
	Smoothing Methods
	Curvature Measurement
	4D Deformation and Transformation Propagation
	Putting the Methods Together to an Segmentation Algorithm
	Implementation
	Overview
	GUI
	Data Structures
	Workflow and Program Description

	Results
	Overview
	Use Cases
	Used Hardware
	Results
	Conclusion and Future Work
	Conclusion
	Future Work
	Appendices
	ZVO File Format
	MeVisLab Module Framework
	Wavefront file format

	Bibliography

