
BSopt Choreographies -
Transforming Global

Choreographies into Workflow
Deployment Artifacts

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Mario Topf
Matrikelnummer 0025177

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Mag. Dr. Christian Huemer
Mitwirkung: Univ.Ass. Dipl.-Ing. Mag. Dr. Marco Zapletal

Wien, 27.09.2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der

Arbeit

Mario Topf, Wiedner Hauptstrasse 117, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit einschlieÿlich Tabellen, Karten und Abbildungen, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. September 2010
Mario Topf

i

ii

Acknowledgments

First and foremost I want to thank my parents, who always supported me over the
course of my studies.

I also want to express my thankfulness towards my advisors Christian Huemer and
Marco Zapletal, who promptly provided me with guidance when needed during the
course of the BSopt project and during the writing of my thesis.

Last but not least, I want to thank my colleagues, who also worked in the context of
the BSopt project and consequently strived to make BSopt Designer a reality: Philip
Liegl, Dieter Mayrhofer, Thomas Motal, Rainer Schuster and Hannes
Werthner.

Figure 0.1: Finished.

iii

iv

Abstract

This thesis covers the transformation of interorganizational business processes in the
area of business-to-business (B2B) electronic commerce. It builds upon the approach
devised as part of the Business Semantics on top of Process Technology (BSOPT)
project [2]. BSopt aims to integrate management-, administration- and IT perspec-
tives in B2B collaborations as inspired by the Open-edi reference model [20] into one
consistent tool environment. The resulting BSopt Designer [24] tool was extended by
the use of visual domain speci�c languages (DSLs) encompassing the concepts given in
Open-edi. Additionally, C# developed transformation wizards were created to support
a semi-automatic mapping from business models to business process models and, �nally,
to technologically dependent executable deployment artifacts. The thesis describes the
contributions to the BSopt approach starting with the transformation of business pro-
cess descriptions as seen by a neutral observer into a participant-view dependent design.
It continues to show, how these so called �local choreographies� are transformed fur-
ther into concrete Microsoft Windows Work�ow Foundation (WF) 4.0 based work�ow
artifacts ready for integration into the service oriented architecture (SOA) of IT environ-
ments. In doing so we also accommodate adapted business document speci�cations into
the transformation process. These speci�cations are used in business processes to de�ne
which messages are sent or received at any point in time during a B2B collaboration.
The last contribution to the BSopt approach comes in the form of an example business
application. It supports the one-click hosting of generated work�ow artifacts and acts
as a tool to test the validity and correct functionality of the generated work�ows. An
accompanying example scenario involving both buyer and seller in a typical ordering
process is introduced early in the thesis. It acts as an ongoing demonstration of the
di�erent views on business processes and �nally illustrates, how the decisions of the
involved parties in�uence the outcome of the business process in the example business
application.

v

vi

Kurzfassung

Diese Diplomarbeit behandelt die Transformation von Geschäftsprozessen zwischen
Unternehmen im Business-to-Business (B2B) Bereich des elektronischen Handels. Sie
baut hierzu auf dem im Rahmen des Business Semantics on top of Process Technology
(BSOPT) [2] Projekts erdachten Ansatzes auf. BSopt zielt darauf ab, die Management-,
Verwaltungs- und IT Perspektiven innerhalb von B2B Kollaborationen, wie im Open-
edi Referenz Modell [20] vorgestellt, in eine konsistente Toolumgebung zu integrieren.
Das hieraus entstandene BSopt Designer [24] Tool wurde um visuelle domänenspezi�-
sche Sprachen (DSLs) gemäss der Konzepte aus Open-edi erweitert. Zusätzlich wurden
in C# entwickelte Transformations-Wizards entwickelt, um halbautomatische Abbil-
dungen von Geschäftsmodellen nach Geschäftsprozessmodellen und schliesslich techno-
logieabhängiger ausführbarer Deployment-Artefakte zu unterstützen. Die Diplomarbeit
beschreibt die Beiträge zum BSopt-Ansatz beginnend mit der Transformation von Ge-
schäftsprozessmodellen, beschrieben aus der Perspektive eines externen neutralen Beob-
achters, in eine Darstellung, die sich an der Perspektive eines bestimmten Teilnehmers
des Prozesses orientiert. Sie stellt weiters dar, wie diese sogenannten �lokalen Choreo-
graphien� weiter in Microsoft Windows Work�ow Foundation (WF) 4.0 basierte Ar-
tefakte transformiert werden, welche zudem direkt in die serviceorientierte Architektur
(SOA) einer IT Umgebung integriert werden können. Innerhalb dieses Schrittes nehmen
wir zusätzlich angepasste Spezi�kationen von Geschäftsdokumenten im Transformati-
onsprozess auf. Diese Spezi�kationen werden im Geschäftsprozess verwendet, um zu
de�nieren, welche Nachrichten zu jedwedem Zeitpunkt während einer B2B Kollaborati-
on gesendet oder empfangen werden. Der letzte Beitrag für den BSopt-Ansatz besteht
aus einer Beispielsgeschäftsapplikation. Diese unterstützt das Ein-Klick Hosten der er-
zeugten Work�ow Artefakte und fungiert als Werkzeug um die Validität und korrekte
Funktionalität der erzeugten Work�ows sicherzustellen. Ein begleitendes Beispielsze-
nario, welches Käufer und Verkäufer in einem typischen Bestellsprozess darstellt, wird
zusätzlich in der Arbeit vorgestellt. Dieses agiert als laufende Demonstration der un-
terschiedlichen Ansichten auf Geschäftsprozesse und illustriert schlussendlich, wie die
Entscheidungen der eingebundenen Parteien den Ausgang des Geschäftsprozesses in der
Beipielsgeschäftsapplikation beein�ussen.

vii

viii

Inhaltsverzeichnis

1 Introduction 1

1.1 Motivation . 2
1.2 Contribution . 3
1.3 Structure of the thesis . 5

2 State of The Art and Selected Technologies 7

2.1 Work�ows . 7
2.2 Microsoft Windows Work�ow Foundation 3.x 11

2.2.1 Integration into a service oriented architecture 14
2.3 Microsoft Windows Work�ow Foundation 4.0 18

2.3.1 Integration into a service oriented architecture 21
2.3.2 Comparing WF 3.0 and WF 4.0 21

2.4 Domain speci�c languages . 22
2.5 Microsoft Domain-Speci�c Language Tools 24

3 Contributions to the BSopt approach 29

3.1 BSopt Designer . 31
3.1.1 Architecture . 33

3.2 From global to local choreographies . 36
3.2.1 The business choreography language (BCL) 37
3.2.2 Introduction of the accompanying example scenario 38
3.2.3 The local choreography language (LCL) 40
3.2.4 Transforming a BCL model into LCL models 43

3.3 Processing of message type descriptions 51
3.3.1 The business document transformation wizard 51
3.3.2 Evaluation of XSD transformation tools 51
3.3.3 Business document instance creation 53

3.4 Generation of work�ow artifacts . 57
3.4.1 Implementation of the work�ow artifact generation process . . . 61

3.5 The work�ow hosting application . 75

4 Conclusion and outlook 81

Abbildungsverzeichnis 83

Tabellenverzeichnis 85

Listings 87

Literaturverzeichnis 89

ix

1 Introduction

The area of e-commerce has been in a steady development since the late 1970ies. Doing
business by exchanging electronic documents in contrast to information printed and
delivered on paper promises great advantages in speed and manageability. On the other
hand information processed by computer systems had to be de�ned unambiguously
which required the introduction of structured data and mutually agreed upon data ex-
change standards. E-commerce and more speci�cally the area of business to business
(B2B) were long inhibited by the resulting document standards which su�ered from
companies exposing their data in ambivalent ways and the usage of di�erent technolo-
gies for delivery. This lead to a situation where only few enterprises willing and able to
invest heavily into the area then called Electronic Data Interchange (EDI) could cope
with the ensuing management requirements of those times. After the commercial usage
of the Internet as inexpensive means for a worldwide communication network was allo-
wed in 1991, companies slowly started to see its potential. This facilitated a new boom
in the B2B area as smaller enterprises saw their chance to pro�t from the new tech-
nological possibilities. While a new communication platform and the advent of related
technologies such as XML could not solve the problem of distinct data interpretation,
progress went on and brought with it new ways to automate enterprises. EDI �rst had a
document centric view with employees knowing how to handle incoming data and their
linked semantic meaning in an overall business process. Those processes were typically
based on a set of rules which were implicitly applied by the o�cials assigned to deal
with the incoming information. Enterprises started to uncover those structures and use
the ideas of business process modeling to explicitly de�ne the logic needed to reach their
business goals in a B2B context and to be able to assess its e�ciency.

As the human factor was gradually replaced by automated processes, companies no
longer depend on interpersonal agreements to reach their business goals. In return the
awareness of collaborating parties about a common way of predictable electronic corre-
spondence is required. Businesses need to publish which business processes they support
in order to be able to reach other players on the market with their service o�erings. The
service as centerpiece in the execution of a business collaboration has also established
itself in the paradigm of service-oriented architectures (SOA) which evolved as a wi-
dely adopted methodology for service-based communication. This paradigm allows the
realization of business processes by aligning services with the desired procedure. More
generally SOA according to [49] is about örganizing and utilizing distributed capabilities
that may be under control of di�erent ownership domains. In general, entities (people
and organizations) create capabilities to solve or support a solution for the problems they
face in the course of their business". Furthermore, it is concretized: "The main drivers
for SOA-based architectures are to facilitate the manageable growth of large-scale enter-
prise systems, to facilitate Internet-scale provisioning and use of services and to reduce
costs in organization to organization cooperation". It follows that SOA not only encom-
passes IT realizations such as the common adoption of web services but is deeply linked
with the requirements of the business it aims to support.

The Open-edi reference model coincides with SOA on this matter. The ISO standard
14662 [20] on the Open-edi reference model partitions B2B related concerns into two

1

1 Introduction

����������	
������
����
���������	
������������������������

����

����

����������
����
���
����������������	�	
������

����
�������	��������
������������������������

Abbildung 1.1: The three distinct perspectives of B2B collaborations

main views as illustrated in �gure 1.1. The business operational view (BOV) encom-
passes the business side which itself consists of a value- and a process �ow perspective.
The value perspective in the BOV is concerned with a business model which de�nes the
basis for actions in e-commerce. After all only business models which provide possibi-
lities for seizing pro�t are viable options. The second perspective included in the BOV
is based on business process models which de�ne the sequence of interactions between
business partners for a given business model, the structure of interchanged informati-
on and all possible outcomes of such processes. All information de�ned in the BOV is
technology independent. This is in contrast to the functional service view (FSV), the
second big aspect in Open-edi which is concerned with concrete technology suited to
implement the information coming from the BOV. The deployment artifacts resulting
from the execution perspective in the FSV are derivations from the information given
in the BOV and thus di�erent technological solutions for the same business de�nitions
are possible.

This thesis is based on an application implementation carried out for the Business
Semantics on Top of Process Technology (BSopt) project [2]. It follows the semantics of
Open-edi and encompasses the formulation of business models, business process models
and deployment artifacts in a top-down wizard driven construction process. In doing so
users of BSopt technology are enabled to integrate their business service o�erings into
their IT environment based on the concepts of SOA.

1.1 Motivation

This section describes motivators which lead the BSopt project to create its main soft-
ware delivery called BSopt Designer [24]. This tool is an integrated environment for
the formulation of data in the BOV of Open-edi. Importantly it also supports the semi
automatic mapping between those data artifacts.Furthermore it allows the creation of
technology dependent deployment artifacts in the FSV by supporting the transforma-
tion of business process models. These motivators are important for this thesis as it
covers the software modules developed for the BSopt project.

The creation of BSopt Designer is tailored to the needs of three di�erent groups of
users. Those consist of individuals with either a management-, business modeling-, or
IT-background. Traditionally each group comes with di�erent tools of trade to formulate
their output. People from management are used to consider the implications of business
models by �lling spreadsheets to anticipate economic opportunities and threats. Busi-

2

1.2 Contribution

ness analysts work with specialized tools including those for business process modeling
by, e.g., arranging and connecting graphical elements on a canvas. At last developers and
system administrators on the IT layer of Open-edi use integrated development environ-
ments, administration panels and command line shells to create and handle deployment
artifacts representing a business process. Information coming from management must
be reinterpreted by business analysts to be formulated as business process. Correspon-
dingly, data formulated in the process �ow perspective can not be directly adopted by
IT in order to create the desired deployment artifacts. One motivational aspect coming
from this background is the heterogeneity of information on each of those layers. As
data from the value perspective has to be reinterpreted to be useful for business process
modeling (as is the same with process �ow perspective data used in the execution per-
spective) resources are spent on restructuring of data. The BSopt Designer tool is made
with a design in mind to alleviate this process and allow semi automatic mappings from
value perspective data to process �ow information and �nally readily executable work-
�ow artifacts which can be integrated into an IT environment. This way businesses are
able to react in a more e�cient way to ever changing business realities by minimizing
turnaround times.

Another motivational factor for BSopt comes from the observation that current tools
designed to de�ne business processes and deployment artifacts tend to set their sole
focus on the technologies necessary to �nally support the process. As business processes
themselves derive their legitimacy from their ability to reach their company's business
goals, the BSopt project team considered the inclusion of facilities to de�ne business
models focusing on the value perspective an essential and novel feature.

The derivation of new representations by transforming and enriching data from a
given perspective is also in line with the strategy of a �top-down approach�. Businesses
following the contrary bottom-up approach start with the formulation of their desired
business process by de�ning internal execution semantics and continue with the speci-
�cation of external message exchange details. This strategy leads to a business process
de�nition with little chance for incidental support by other players on the market. Only
big enterprises able to dictate the rules may be successful this way as they may force
potential business partners to adopt the given process as centrally de�ned. In contrast
the BSopt project aims to support business collaborations by �rst de�ning processes
from a neutral global perspective. This view also acts as a service contract for all invol-
ved parties and serves as a common source for the derivation of �tting complementary
business process descriptions to be adopted by market participants. While all parties
still need to agree on a common global version for a business process, each company
may implement the internals as of their choosing to satisfy their needs. This top-down
approach enables businesses to search for potential partners also supporting the same
globally de�ned business process. By basing the adoption of business processes on a
global perspective the fragmentation of the market can be avoided as processes serving
a speci�c business goal come only in few speci�c formulations. This is in contrast to a
scenario where each company would publish their business process descriptions based
on their very own bottom-up design.

1.2 Contribution

The contributions for this thesis are all derived from the prospect of transforming a
business process model into executable work�ow artifacts. The resulting implementa-
tion parts were all integrated into the BSopt Designer tool environment and consist
of transformation dialogs leading the user through corresponding wizard user interfa-

3

1 Introduction

����������	
������
����
�����	�����	����������

����������	
������
���
���	���������
����	����������

�����������������	����
���

����	�������	��	��������
��	����
�
	��������
�����
��
	���
���

���������	�
���
��
Abbildung 1.2: Steps in the creation process of work�ow artifacts

ces and the actual transformation logic. Figure 1.2 shows a generic overview of the
accomplished tasks necessary to create work�ow artifacts. It illustrates that business
process models �rst describe their speci�c logic in terms of a neutral perspective. This
process de�nition has to be transformed into de�nitions describing the process from the
perspective of each participating business partner. Additionally the messaging part has
to be handled which is accomplished by transforming given message type descriptions
outlining which information is to be exchanged in a given business process into a �tting
intermediate representation. The �nal step is to take both a business process model
from the perspective of one participant and the message type intermediate representa-
tion and transform those into work�ow artifacts ready to be hosted by an appropriate
business application. In order to test the validity of the work�ow artifacts generated an
example business application also had to be developed.
Factored into distinct tasks the contributions for this thesis are fourfold:

1. Transform a business process model de�ned from a neutral perspective into busi-
ness process models de�ned from the perspective of each participating business
partner.

2. Transform message type descriptions into a �tting intermediate representation
suitable for integration into the �nal work�ow artifacts.

3. Transform a business process model from the perspective of a speci�c participant
into work�ow artifacts by integrating the intermediate messaging representations

4

1.3 Structure of the thesis

and speci�c user input into the process.

4. Provide an example business application which is able to host work�ow artifacts
generated with BSopt Designer in order to execute the embedded business logic.

1.3 Structure of the thesis

The remaining parts of this theses are structured as follows: Section 2 covers the two
main technologies dealt with in the actual implementation work for BSopt Designer :
domain speci�c languages and work�ows. It outlines the current state of the art and
also familiarizes the reader with the speci�c technologies used or tested to accomplish
the project goals. Section 3 covers the contributions for this thesis in detail. It describes
the transformation of business process models and message type descriptions. Additio-
nally it describes the workings of the proof of concept business application, how speci�c
problems with the provided APIs have been solved and accompanies each speci�c sub-
section with an ongoing example showcasing how the result can be treated by a user
to automatically generate work�ow artifacts. Finally, section 4 brie�y summarizes the
thesis, ending with a conclusion and o�ers an outlook into future work related to the
approaches in the BSopt project.

5

1 Introduction

6

2 State of The Art and Selected

Technologies

The implementation of the contributions for the BSopt project outlined in this thesis
spans over a wide array of related technologies. It includes language-integrated query
(LINQ), XPath, C++ interop (IJW), COM interop, Windows Management Instrumen-
tation (WMI), Visual Studio Shell and base technologies such as Windows Forms just
to name a few. However the most prominent roles are held by work�ows and domain
speci�c languages. The purpose of this chapter is to introduce both on a conceptual
level. Additionally, concrete libraries implementing both worfklows and domain speci�c
libraries will be described in further detail.

2.1 Work�ows

Businesses have always been trying to formalize and improve their reoccurring processes
as more e�cient ways to manufacture a good or the removal of bottlenecks helped to
advance their corresponding trade. An enabling strategy for this idea was to separate
a bigger process into distinct work packages, identify dependencies and the �ow of in-
formation or objects from the physical world as well as roles and constraining factors.
While these processes originally described human interaction, the advent of information
technology meant that many tasks such as sending an invoice, doing business related
calculations or forwarding documents could be virtualized and integrated into an IT
environment thereby relieving employees of any repetitive automatable tasks. As out-
lined in [12] one way to look at such operations in this context is to separate them
into material or information based processes. While material processes are rooted in the
physical world and describe the actual assemblage, delivery or some way of handling of
physical components, information processes deal with any kind of data suitable for au-
tomated processing. Based on this distinction [12] goes on to derive business processes
as �market-centered descriptions of an organization's activities, implemented as infor-
mation processes and/or material processes�. In other words business processes are to
realize business obligations or to serve customers by the means of suitable information
or material processes.

When a company has established to de�ne its business processes it's able to improve
those by utilizing the techniques of Business Process Re-engineering (BPR). The Work-
�ow Reference Model published by the Work�ow Management Coalition (WfMC) [15]
de�nes BPR as being �concerned with the assessment, analysis, modelling, de�nition and
subsequent operational implementation of the core business processes of an organisation
(or other business entity)�. BPR itself can be supported by the notion of Work�ow Ma-
nagement (WFM). Its main purpose is to focus on the logistics of business processes and
ensuring that at each given point in time the appropriate actions are taken to support
the overall business process [1]. The operational perspective of WFM itself is associated
withWork�ow Management Systems supporting this approach. The according de�nition
by the WfMC de�nes any Work�ow Management System as: Ä system that complete-

7

2 State of The Art and Selected Technologies

����������	
���	���

���������	
���	���

�����	
���	���

�����

�������	�

���
���

��
������������

Abbildung 2.1: Three dimensions of a work�ow [12]

ly de�nes, manages and executes �work�ows� through the execution of software whose
order of execution is driven by a computer representation of the work�ow logic". The
term �work�ow� itself is rather ambiguous and often used casually. The WfMC de�nes
work�ows quite generally as �The computerised facilitation or automation of a business
process, in whole or part�. For the remainder of this thesis we shall use the de�nition
given by Georgakopoulos and Hornick in [12] where a work�ow is �a collection of
tasks organized to accomplish some business process� with a task being some kind of
work to be accomplished by one or more software systems, one or more humans or a
combination of those.
Work�ows are case-based, meaning that they base their execution on a work�ow

process de�nition explicitly tailored for a speci�c type of operation [1]. This could
be the process of document approval in an enterprise, the booking of a �ight or the
ordering of a product by a customer. Tasks executed in the context of a speci�c case
instance (e.g. ÿend seat selection form to customerïn the case "booking of �ight 747 for
customer Smith") are called �work items� and are mostly linked to a type of resource
which may be an automated system such as a printer, a server, a type of robot in
manufacturing or a human resource. A work item linked to a speci�c resource is called
an �activity�. These de�nitions serve the purpose for the visualization of a work�ow as
three-dimensional entity as shown in �gure 2.1: here a work�ow is depicted as having a
case-, a process- and a resource dimension. First all cases are processed independently
from each other as visualized by the case dimension. Secondly, the process dimension
speci�es the tasks and the execution �ow. Thirdly, the resource dimension maps to
di�erent roles or organizational units within an enterprise. A work�ow can thus be
represented as a number of entries within this three-dimensional space.
Another way to look at work�ows and dissociate the speci�c notion from the broader

context of business process is given in �gure 2.2. This illustration is focused on the
scope of case-based business processes. According to [1] the speci�c characteristics of a
work�ow process are that it is

• case driven

8

2.1 Work�ows

�����������		

�����
	

���
�	

�����
	

�����
�����	

���
�����	

�����������	
�
���
��
��

�����
	
��������	

������������	
�
���������

�����
����	
��������	

���������

Abbildung 2.2: classi�cation of processes in the context of work�ows [1]

• considered to be essential

• explicitly de�nable in a formal manner

Based on these requirements collaborative processes (not to be confounded with the
notion of �business collaborations�) are the kind of processes not to be considered work-
�ow processes. This is as they emphasize information sharing and communication in an
unstructured way in favor of well de�ned process centric de�nitions. On the other side
of the spectrum production work�ows are very process centric with most cases handled
in always the same default way and usually a lot of cases to process. Administrative
processes allow for more variation but are still entirely prede�ned to handle any case
possible. At last ad-hoc work�ows may be considered as work�ows in the above sense
but they base their execution on processes not entirely known beforehand. As shown the
typi�cation of these processes is not always clear-cut and transitions from one type of
process to the next can be �uent but administrative processes and production work�ows
can still always be de�ned as work�ows.

As illustrated in �gure 2.3 the handling of work�ows in a work�ow mangement system
can be separated into three areas: [15]

• build time support to enable the de�nition of work�ow processes.

• run time functionalities to create work�ow instances from process de�nitions and
control their corresponding execution �ow.

• runtime support for human interaction and the communication with other com-
ponents in an IT environment.

Build time support is mostly provided in the scope of a separated development en-
vironment or system speci�c development components. It supports the de�nition of
work�ow processes by o�ering work�ow speci�c data structures, commonly required
task de�nitions and means to arrange the overall control �ow. This is often supported
by visual editing enabling developers to e�ciently de�ne processes. [68]

9

2 State of The Art and Selected Technologies

����������	
��������������
�
�����������������
���

���

����������	
��������������
�
�����������������
���

���

�
	���
�������������	�����

� �����
��
��!���

���

�	
������������
����������
��

�����������
"��������

�	
�����!��������
��
��#
��	
��

!���	���
�����$�%��	�
��� �����
���

���

�	
������$�����

Abbildung 2.3: Work�ow Management System Characteristics [15]

The runtime environment of a Work�ow Mangement System itself is formalized by
the WfMC in the form of a work�ow enactment service which consists of one or more
work�ow engines and internal control data. At their most basic form work�ow engines
are responsible for the instantiation and execution of work�ow processes. Zur Mueh-
len further elaborates in [68] by recognizing eight modules a work�ow engine can be
responsible for. These modules are able to communicate with each other by utilizing
some sort of event handling system as enumerated in the following and summarized in
Figure 2.4:

• the process management facility takes the role of the entity responsible for instan-
tiation of work�ow processes. It must also ensure the validity of any execution
constraints speci�ed for the system.

• the control �ow manager 's task is to oversee state changes in work�ow instances
and enclosed activities. As part of this requirement it also creates new activity
instances to drive work�ow execution forward.

• the worklist handler manages the interaction between actual participants in a
work�ow and workitems to be processed in the work�ow.

• the user management facility handles coordination with system users based on
their roles and rights in an organization by utilizing organizational directory ser-
vices or equally applicable systems (also called �organizational repository�).

• the application invocation module is responsible for executing external applica-
tions, aggregating resulting data and taking notice of any error conditions and
return codes provided by these external entities.

• the data management component translates data between activity instances.

• the history management component is responsible for producing audit data both
on a general system level and based on the execution of speci�c work�ow instances.

10

2.2 Microsoft Windows Work�ow Foundation 3.x

• the integration APIs allow calling applications to access the work�ow system
programmatically and also provide means to integrate a Work�ow Engine into an
external system.

With work�ows and the idea of work�ow mangement systems introduced in this
section, the next step is to look at some systems currently in use in the software industry
and tested for the BSopt project. The next two sections will look at Microsoft's Windows
Work�ow Foundation technologies in the versions 3.x and 4.0.

2.2 Microsoft Windows Work�ow Foundation 3.x

The Microsoft Windows Work�ow Foundation (WF) 3.0 was released to the public in
November 2006 and despite its version number is the �rst product in its line. It is not a
deployable product in its own right but is delivered as a library component as part of the
Dot Net (.NET) Framework 3.0. This means, that application developers can integrate
the library into their own products in order to gain the full bene�ts of a work�ow
engine for free. Additionally, a range of products coming from Microsoft also use WF3,
most notably the SharePoint Server software platform designed for corporate intranets.
The .NET Framework itself provides an environment to run 'managed' applications
written in languages supporting the Common Language Runtime (CLR) such as C#
or Visual Basic .NET and aims to support the trusted and safe execution of code
and minimize deployment and versioning con�icts [28]. An update to the WF library
raising its version number to 3.5 was added later and brought a tighter integration with
the Windows Communication Foundation (WCF) components of the .NET Framework.
Work�ows can be de�ned declaratively by creating .XOML �les based on the Extensible
Application Markup Speci�cation [30] and can include code behind �les or be de�ned
completely in code. In order to support this process Microsoft has shipped add-ons for
its Visual Studio 2005 and 2008 IDEs so work�ows can be described visually as shown
in �gure 2.5.

The runtime portion of the system is shown in �gure 2.6 hosted inside a work�ow ena-
bled application process. The process utilizes the functionality provided by WF in order
to execute a work�ow. The role of the work�ow enactment service is represented here by
the runtime engine which can host multiple work�ows. Additionally multiple runtime
engines may coexist in one process. The runtime engine is responsible for instantia-
ting work�ows and scheduling their activities by accessing runtime services provided as
default implementations or externally added ones. The distinction between tasks, work
items and activities is not made in this product. Each entity performing some kind of
work, be it at build- or runtime is called activity.

WF comes with a batch of out-of-the-box activities as part of its base activity library.
Those include pre-built entities to govern the control �ow inside a work�ow de�nition as
illustrated in table 2.1 as well as basic multi-purpose elements such as delay-,code- and
terminate-activities. Developers are encouraged to develop custom activities when their
needs cannot be met by using the basic shipped components. In order to accomplish
this task they may derive from given base classes provided by the WF object model.
By overriding speci�c virtual methods and properties new functionality can be provided
and harbored in consuming work�ow de�nitions. Alternatively custom activities may
also be composed in a visual way. This is supported by a designer canvas included
in Visual Studio which allows the composing of new activities out of simpler building
blocks. Work�ows itself are based on the activities they include. The system provides
two default execution styles which are most widely used: sequential and state machine

11

2 State of The Art and Selected Technologies

���������	
��
����������	
	����
���
����������	
	�������������	
�����
�		��	
����
����
��	
������
���	��
������

������	
����
���������	
	����
�������	��
��
���	��
�

���������	�
�������������
���������	�
���������	�
����������	�
��� �������	�
��� ��������������	�
���

���������
	�
���

����������
���������������
����������

��������	�
����������	
��
������
���
��	����

�	�	�

��������	
���������	����	��������	

���	

Abbildung 2.4: Composition of a Work�ow Engine and its dependencies [68]

12

2.2 Microsoft Windows Work�ow Foundation 3.x

Abbildung 2.5: The WF 3.5 designer showing a sequential work�ow de�nition

based1. While sequential execution advances from one activity to the next in a sequence
by utilizing special control �ow activites (compare table 2.1) state machine work�ows
de�ne distinct states a work�ow can be in and transition conditions to be met for a
state change. While the �rst control style makes it easier to describe and explain what
a work�ow should be doing it is also less expressive compared to a state machine based
approach.

As shown in �gure 2.6 WF also comes with a batch of work�ow related �services�.
These are implementations of speci�c interfaces which the runtime engine can use to
accomplish certain tasks. Table 2.2 lists these so-called �base services� which either in�u-
ence the behavior of the work�ow engine or add new functionality to the infrastructure.
The work�ow �persistency service� is of speci�c importance in this context as it enables
the persisting of an idling work�ow instance into a backing store such as a relational
database. This allows the system to move work�ows between di�erent work�ow hosts
and take pressure o� the host system by relieving memory requirements. Developers
are free to add their own custom services to the work�ow runtime. These services may
either act as replacements of base services or as generic objects used in conjunction
with custom activities to support special needs relevant for speci�c designs. This can
be useful for several purposes such as providing a common communication platform for
di�erent work�ows run by the same runtime engine.

The behavior of activities in WF 3.x can be �ne tuned by controlling the proper-
ties they expose. There are two kinds of properties: instance properties and metadata
properties. The latter can only be changed at design time and in most cases are provi-
ded to control the speci�c operation mode an activity is in. Metadata properties also
allow automatic validation of its given design time value. As an example all activities
have an Enabled property which can be used to disable an activity e.g. for testing re-
asons. This can't be changed while a work�ow is running. Instance properties on the

1The control �ow execution semantics of a work�ow are in theory freely de�nable but managing
this area is considered an advanced topic not widely pursued.

13

2 State of The Art and Selected Technologies

Host Process

��������
��	
���������������

��������	�
����

�
�����������
�
�
�
�
�

������������

����������������

���������������������

�
��������	�
�
���
������
�

Abbildung 2.6: The hosting of Work�ow Foundation inside a process

other hand can be changed at runtime and may either be exposed as normal C# class
properties or in the form of so called dependency properties. Dependency properties
support binding to data de�ned outside of an activity which enables �ow of information
between di�erent activities. The actual de�nition of dependency properties is rather
complicated but the authoring environment provided by Microsoft supports this task
well. Listing 2.1 shows the code necessary to de�ne a dependency property of type
System.Work�ow.ComponentModel.ActivityCondition called ExecutionCondition.

2.2.1 Integration into a service oriented architecture

While the initial release of Work�ow Foundation came with certain activities to in-
voke web services and host services itself it wasn't able to o�er a fully con�gurable
infrastructure for communication with heterogeneous systems. This was recognized and
solved with version 3.5 which o�ered a tight integration with the Windows Communi-
cation Foundation (WCF), a library about to be presented in this subsection:

WCF is a subsystem included since the .NET Framework 3.0 and allows the creation
of highly �exible service oriented applications. It is based on a modular and extensible
approach by separating responsibilities into distinct layers and allowing the combination
of di�erent layer setups. Figure 2.7 illustrates the architecture of WCF. An application
using this framework is free to de�ne its needs on each of the following four areas: [32]

• The �Contracts & Descriptions� area de�nes how data structures and messages
are built up and how the actual message signatures will look like. Additional-
ly bindings are to in�uence the transport (e.g. HTTP or TCP) and the actual
encoding while certain policies can �ne tune security requirements.

• The �Service Runtime� layer is to be used at runtime to control certain aspects
of the framework such as whether to publish metadata descriptions for services
o�ered, how to deal with error conditions, transactions, the instancing behavior
of a service and so on.

14

2.2 Microsoft Windows Work�ow Foundation 3.x

Activity Description

ListenActivity Enables your work�ow to branch conditionally
depending on some event or on the expiration of
a time-out period.

IfElseActivity Tests a condition on each branch and performs
activities on the �rst branch for which the con-
dition equals True.

ParallelActivity Enables your work�ow to perform two or more
operations independently of each other.

SuspendActivity Suspends the operation of your work�ow to ena-
ble intervention in the event of some error con-
dition.

TerminateActivity Enables you to immediately end the operation of
your work�ow in the event of some error condi-
tion.

WhileActivity Enables your work�ow to loop until a condition
is met.

ConditionedActivityGroup Also known as CAG. Executes child activities ba-
sed on a condition that applies to the CAG itself,
and based on conditions that apply separately to
each child activity.

EventDrivenActivity Wraps another activity and executes it when the
speci�ed event occurs.

ReplicatorActivity Creates and executes multiple instances of a child
activity.

SequenceActivity Runs a set of child activities according to a single
de�ned ordering.

Tabelle 2.1: Control-�ow activities from the base activity library [33]

• The �Messaging� layer deals with transport and protocol channels. Transport
channels interact by transporting data on the network e.g. over HTTP, TCP, na-
med pipes or MSMQ. Protocol channels are used to augment data with additional
headers to facilitate protocols such as WS-Security [50] or WS-Reliability [48].

• The �Activation and hosting� layer supports the hosting and activation of services
by di�erent container processes such as IIS, Windows Activation Services (WAS)
or self hosting custom executables.

Using and extending WCF is a huge topic by itself. As this section has its focus on
Work�ow Foundation 3.x only the integration of WCF to support �exible interoperabili-
ty in a service oriented architecture shall be discussed. As mentioned before, the release
of Windows Work�ow Foundation 3.5 achieved this goal by providing two new activi-
ties: the SendActivity and ReceiveActivity activities. While SendActivity can be used to
communicate with an external entity e.g. by calling a SOAP based web service, Recei-
veActivity allows the implementation of WCF services [5]. In order to call a web service,
clients �rst have to de�ne a service contract interface or let Visual Studio generate this
information by deriving it from an already enabled web service which exposes meta
data about itself via WSDL [64]. The manual generation of a service contract interface

15

2 State of The Art and Selected Technologies

Service Description

Scheduling Service Allows the control of activity scheduling,
e.g. synchronously or asynchronously.

Work�owCommit WorkBatch-
Service Services

Allows for �ne grained control of the
committing process of work�ow batches
after a transaction, e.g. to introduce spe-
cialized error handling.

Persistence Services Supports the runtime by persisting idle
work�ow instances to a given data store.

Tracking Services Comparable to the history management
component described in [68]

Work�ow Loader Service Enables the generation of work�ow de-
�nitions from input formats other than
XAML.

Tabelle 2.2: Base Services utilized by the WF 3.x runtime engine

public stat ic DependencyProperty Execut ionCondit ionProperty = DependencyProperty
. Reg i s t e r ("Execut ionCondit ion " , typeof (System .Workflow . ComponentModel .
Act iv i tyCond i t i on) , typeof (Act iv i tyL ib ra ry2 . Act iv i ty1)) ;

[D e s i g n e r S e r i a l i z a t i o nV i s i b i l i t yA t t r i b u t e (D e s i g n e r S e r i a l i z a t i o nV i s i b i l i t y .
V i s i b l e)]

[BrowsableAttr ibute (true)]
public System .Workflow . ComponentModel . Act iv i tyCond i t i on ExecutionCondit ion
{

get
{

return ((System .Workflow . ComponentModel . Act iv i tyCond i t i on) (base . GetValue
(Act iv i tyL ib ra ry2 . Act iv i ty1 . Execut ionCondit ionProperty))) ;

}
s e t {

base . SetValue (Act iv i tyL ib ra ry2 . Act iv i ty1 . ExecutionCondit ionProperty ,
va lue) ;

}
}

Listing 2.1: An example Dependency Property de�nition as described in [33]

consists of de�ning an interface and the methods it exposes. The interface de�nition as
well as the method de�nitions must be attributed with meta data in order to further
describe each fragment. A sample service contract de�nition is illustrated in listing 2.2.
A send activity in a work�ow de�nition has a ServiceOperation property which allows
developers to select an operation from all given service contracts and expose any in-
or outgoing parameters to the work�ow. Receive activities also feature this property
which enables them to import a given service contract operation. Additionally, service
operations can also be speci�ed in the work�ow itself. Work�ows can be de�ned so that
their hosting environment automatically creates new instances when a special expected
message is being received. For this to work the work�ow has to begin with a receive
activity with its CanCreateInstance property explicitly set to True. If an incoming mes-
sage's signature matches the signature expected by this �rst activity, the work�ow host
launches a new work�ow instance and hands it the received data. Work�ows hosted this
way are also called �service work�ows�. The possibility of a work�ow host creating new

16

2.2 Microsoft Windows Work�ow Foundation 3.x

���������	
	����������	

�����
������	��

������
������	��

�����	��
������	��

����	����
�������

������	������	
���������	

�������
���������	�
�����	�
 �����

�������

�������

�������

�����

�������
�����������	
������	 �������

�������
�����������	
���	��� ��������������	���
����������

���������	
��������
�����

�����	
�
����

�����	
�
����
�����	
�

��
��������
���������
������
���������	�
��	�
������

���������	
�����	�	����	�	����	�	���	�������	���������
�

����������	��
	������	

��������
�����������
�	����	�

����� ��������
�	����	�� �����

����������	

Abbildung 2.7: The WCF 3.x architecture [32]

[Se rv i ceContrac t (SessionMode=SessionMode . Required)]
public interface IBusinessDocument
{

[Operat ionContract (I s I n i t i a t i n g = true , IsOneWay = fa l se)]
void Submit (string documentData , IDic t ionary<string , string> context) ;

}

Listing 2.2: A sample service contract de�nition

instances based on speci�c ingoing messages also hints that the hosting infrastructure
implicitly supports hosting multiple work�ows in di�erent states at each given point
in time. The question arises how an incoming message can be dispatched back to the
appropriate work�ow instance, an area called �work�ow correlation�. WF 3.5 supports
correlating messages by usingWCF context correlation, a process described in [46,65]. It
is based on the idea of adding a unique identi�er to an original message. The identi�er
can then be used by responders when replying to reach the originally sending work-
�ow instance. This additional meta information enables a work�ow host to dispatch
incoming messages appropriately. The process is supported by speci�c WCF bindings
which will enable the inclusion of context data via HTTP cookies or as SOAP header
as described in detail in the .NET Context Exchange Protocol Speci�cation [41]. The
preferred way to exchange context tokens when �rst contacting another party is to make
the data an explicit part of an operation. Other options and their pros and cons are
discussed in [66].

17

2 State of The Art and Selected Technologies

Abbildung 2.8: The WF 4.0 designer with an example work�ow

Listing 2.2 shows the de�nition of a service contract interface called IBusinessDocu-
ment with one Submit operation. The provided context token which is represented as
a string dictionary holds the unique id identifying the sending work�ow instance. It is
explicitly given so the other party can call back using this data for its context binding
when necessary. Apart from supporting correlation it shall also be noted that context
bindings are useful in de�ning �durable services�. This means that due to the shared
context between client and server it's also possible to contact a given work�ow instance
after a long time, or when a connection has been closed forcibly e.g. due to a server
crash. On the downside parties involved in a work�ow process must be aware of the
contextful information so they can include or prune the information.

2.3 Microsoft Windows Work�ow Foundation 4.0

The Windows Work�ow Foundation 4.0 (WF4) was released in its �nal form in April
2010 as part of the .NET Framework 4.0 preceded by a number of public �community
technical preview� (CTP) and beta releases. It is a complete rewrite of the work�ow
system o�ered before with a number of new concepts introduced. Although it is not
compatible with WF 3.x per se it allows developers to include legacy activities wrapped
inside an �interop activity�. Additionally, the .NET Framework 4.0 still comes with
everything needed to develop work�ows for the older work�ow system.

This section aims not to de�neWF4 by describing all the di�erences to its predecessor.
Instead the library will be presented in a holistic way which also includes all important
features missing in WF3. In [3] WF4 is introduced with the following bene�ts:

• scalability

• support for persistence

• automatic coordination of parallel work

18

2.3 Microsoft Windows Work�ow Foundation 4.0

• automatic tracking

• visualizing of processes

These points of interest will be explored in more detail in the following. Chappell
points out that code written in a traditional way, while easy to understand, is hard to
make scalable [3]. For instance, business logic waiting for a reply from a web service
normally can't just be persisted to a database in order to free resources. Furthermore
this also prevents the code from continuing its execution on another computer in order
to support a scalable approach based on the anticipated workload. On the other hand,
when traditional code is designed for scalability it loses its simplicity as its structure has
to be rede�ned into independent chunks of execution. Furthermore, while the execution
sequence of the code was given implicitly before, it's now necessary to explicitly test
the validity of the current control �ow. This is because state and �ow of control get
fragmented in this process. The solution, Chappell points out, is to let a work�ow
runtime handle state management and enable developers to maintain a uni�ed view on
the control �ow of the business logic. Figure 2.8 illustrates how the control �ow de�ned
for a business process can be visualized in a WF4 work�ow.

Next he tackles the problem of a process waiting for external input. This may take
a long time but still, traditionally the component executing this business logic has to
stay in memory consuming resources while just idling. The work�ow runtime helps to
absorb this impact on available resources by detecting idle work�ows and persisting their
complete state into an external persistence store. This action frees up any resources the
work�ow previously consumed. When the runtime detects input the persisted work�ow
was waiting for, it regenerates the instance from the data store in order to resume
the execution of business logic. Another advantage of this approach is that resumed
instances may be launched on a completeley di�erent system altogether again supporting
scalability.

The synchronization of parallel work can be tricky as race conditions or deadlocks
might be the result when handling the process in code. WF4 helps avoiding these pro-
blems by providing activities to perform parallel work. Developers are not inclined to
manage semaphores or any other synchronization constructs this way as visual compo-
sition in the designer environment allows them to put di�erent tasks side by side in a
parallel activity to express the simultaneous nature of the described process.

Tracking is another feature which needs much work to be supported in traditional
business logic as developers must inject appropriate constructs all over their code. As
any work�ow instance is transparent in its execution and state to the WF4 runtime,
the system allows �ne grained introspection and thus supports the activity of tracking
for visualization or debugging purposes.

Finally, as in its predecessor, WF4 comes with a visual designer to support work�ow
creation. The designer is now based on the Windows Presentation Foundation (WPF)
which helps to visualize complex work�ow constructs much quicker than in WF3. Addi-
tionally the inherent intent of a process can be displayed in a much more straightforward
way by plotting it visually. This is also supported by the new �owchart control �ow style.
While state machine work�ows in WF3 could be hard to explain or introspect visually,
�owchart work�ows now support a visual style resembling a directed graph including
the support for loops. Figure 2.8 shows that di�erent work�ow styles also can be mixed
as the example showcased in it starts o� in a sequential way only to transcend into a
�owchart when needed later.

While work�ows in WF3 could be based on XAML descriptions the system made it
hard to create purely declarative work�ow schematics without any additional code. This

19

2 State of The Art and Selected Technologies

Abbildung 2.9: A simple custom activity for adding numbers

was enforced by the way data was handled by activities. WF3 did not feature a way
to de�ne new variables declaratively which meant that in a purely declarative fashion
only data exposed by other activities could be bound to. In practice developers had to
support this idea by rolling out assemblies with speci�c custom activities and use their
self made infrastructure to de�ne business logic purely in XAML. WF4, building up on a
revised XAML speci�cation [42] changes this by integrating scoped variable de�nitions
and data �ow into work�ow declarations. In fact, when authoring a work�ow, code
behind �les are no longer an option. WF3 activities featured events a developer could
hook into in order to react to changed conditions in a code-behind �le. WF4 integrates
this custom logic by introducing an expression language based on the syntax of Visual
Basic. This enables developers to enter their code as inline work�ow expression which
are no longer separated from the work�ow itself. Figure 2.8 shows an expression editor
including an evaluation expression to determine whether the current day of the week is
either Saturday or Sunday. This expression is used as property de�nition for the decision
activity inside the �owchart which will branch to one of the two possible execution paths.

The concept of dependency properties is not reused in WF4. The �ow of data in- and
out of activities is explicitly described by so called �arguments�. This strategy trans-
forms activities into entities which take incoming arguments, use them in their business
logic and output any outgoing arguments back to the enclosing work�ow environment.
This concept has similarities to the process of calling a method and thus is a suitable
abstraction for developers. Figure 2.9 illustrates this process by showing the visual de-
�nition of a custom activity used for adding integers. The ingoing arguments a and b
are to be added and stored into the outgoing result argument using an assign activity.
When instanced in another work�ow or custom activity2 the system inserts one entity

2technically the system does not distinguish between work�ows and activities

20

2.3 Microsoft Windows Work�ow Foundation 4.0

with a,b and result properties. The direction of arguments is also used in the static
validation process of WF4: as the result property is marked as outgoing-only, assigning
it a constant integer value would result in the expected error message �Invalid L-value
expression�.

2.3.1 Integration into a service oriented architecture

WF4 comes with a set of messaging activities based on the updated WCF 4.0 framework.
As some concepts in this area have been changed between WF3 and 4, Microsoft has
released a services migration document [44] as part of a collection on migration guidance.
Some of the most notable news come from areas of service contract speci�cation and
correlation.

WF3 Developers either had to manually specify a service contract interface or infer
the information from a WSDL description. Receive activities optionally could also em-
bed a service contract speci�cation as part of the work�ow. WF4 goes further into that
direction by automatically inferring and exposing service contracts from the Receive-
and Reply activities used inside a work�ow de�nition. Importing external service con-
tract interfaces is no longer possible but might be added later on in a future release or
service pack 3.

While variants on context based correlation summed up by the de�nition �protocol
based correlation� are still possible as in its predecessor, a content based approach
has been introduced in this version. This enables developers to let a work�ow host
dispatch incoming messages back to speci�c work�ow instances based on some kind of
content included in the message such as a customer id or other uniquely identifying
data structures. Albeit an extensible mechanism, the default way for working with
content based correlation is powerful enough for most scenarios. It works by initializing
a correlation token by specifying an �XML Path Language� (XPATH) [63] expression
identifying the data to be used for subsequent correlations. By referring to this token
later on it's possible to correlate messages without using special bindings or making the
information part of operation signatures. In order to support this process, a number of
custom XPATH functions have been added for this scenario e.g. to help �nd the start
of the actual body in a received SOAP message.

2.3.2 Comparing WF 3.0 and WF 4.0

As previously mentioned, WF 4.0 is a completely independent work�ow library not
building up on the codebase from WF 3.0. Both systems share a multitude of similarities
such as resembling control �ow paradigms, a designer aided editing experience, WCF
integration and the same service concept. However, an evaluation of the feature set for
both libraries concluded, that the requirements of the BSopt project are better met
by an implementation based on WF 4.0. The reason for this decision is based on the
following unique capabilities of WF 4.0:

• The WF4 design encourages completely declarative work�ow de�nitions. This
encompasses the data handling perspective as well as the possibility of using
inline expressions to formulate logic. In contrast dynamically de�ning and linking
code-behind �les with a work�ow de�nition would be a much harder and less
straightforward strategy.

3http://social.msdn.microsoft.com/Forums/en-US/wfprerelease/thread/09c40427-a974-4233-
ab03-b5bf88c885f2

21

2 State of The Art and Selected Technologies

• The new �owchart control �ow allows the direct translation of business process
models which base their execution logic on the same concept. At the time of
evaluation it was already clear that the source models used by the BSopt team
were perfect matches in this context.

• Content based correlation frees the design from a dependency on speci�c con-
textful bindings which was used for correlation in WF3. This also simpli�es the
interoperation with other platforms as data may be transported without extra
header information to be considered.

• The automatic deduction of service contracts from a given work�ow frees devel-
opers from manually de�ning service contract interfaces. This is especially useful
when the work�ow de�nition is created dynamically as no managed source code
has to be de�ned, compiled and linked with a work�ow de�nition on the �y.

• Due to the completely new take on work�ows WF3 is a legacy library already.
While Microsoft still supports the older system there are reasons for this drastic
approach. Customer feedback showed that companies required better performan-
ce, easier ways to declaratively de�ne work�ows and an overall easier usage ex-
perience [56]. Backward compatibility was one sacri�ce which was necessary to
enable those demands.

2.4 Domain speci�c languages

Domain speci�c languages (DSLs) are computer languages �of limited expressiveness
focused on a particular domain� [7]. Opposed to general purpose languages such as
C++ or Java which are designed to instruct a computer to perform arbitrary tasks,
DSLs are created with simplicity in mind. This means, that it shall be possible to
express all necessary concepts of a domain using the language but not get any more
complicated. While limited expressiveness might have an undesirable notion to it, it's
actually a big advantage in this case. The less generic a language is the easier it is to use
and understand. This makes it a more powerful alternative to using a general purpose
language. Fowler identi�es four characteristics which must hold to de�ne a language
as DSL more concisely [7]:

1. must be a computer programming language.

2. the nature of the language must allow the de�nition of speci�c information by a
�uent combination of expressions genuine to the language.

3. limited expressiveness with super�uous high level language features and abstrac-
tion concepts missing.

4. strict domain focus with well de�ned constraints.

The notion of DSLs can be separated into three distinct patterns called internal DSLs,
external DSLs and language workbenches [7]. External DSLs are used by components
in a system to help with accomplishing a domain speci�c task and are characterized
by their di�ering syntax and semantics. Well known examples for the usage of external
DSLs are SQL statements, regular expressions or XML con�guration �les.
Internal DSLs4 on the other hand are based on the same language as the remain-

der of a bigger system is written in but are tailored to only use a limited amount of

4also sometimes referred to as �embedded DSLs�

22

2.4 Domain speci�c languages

private void makeNormal (Customer customer) {
Order o1 = new Order () ;
customer . addOrder (o1) ;
OrderLine l i n e 1 = new OrderLine (6 , Product . f i nd ("TAL")) ;
o1 . addLine (l i n e 1) ;
OrderLine l i n e 2 = new OrderLine (5 , Product . f i nd ("HPK")) ;
o1 . addLine (l i n e 2) ;
OrderLine l i n e 3 = new OrderLine (3 , Product . f i nd ("LGV")) ;
o1 . addLine (l i n e 3) ;
l i n e 2 . s e tSk ippab l e (true) ;
o1 . setRush (true) ;

}

Listing 2.3: Example code for setting up a customer in a usual imperative way [8]

private void makeFluent (Customer customer) {
customer . newOrder ()

. with (6 , "TAL")

. with (5 , "HPK") . sk ippab l e ()

. with (3 , "LGV")

. pr io r i tyRush () ;
}

Listing 2.4: Listing 2.3 rewritten in a �uent style [8]

available language features. The style the o�ered operations are named and their return
values create a natural way to use the DSL. One example for an internal DSL is the
Rails framework for Ruby and more generically internal DSLs are characterized by the
�FluentInterface� design pattern [8]. The transformation of listing 2.3 into listing 2.4
shows how it's possible to create an internal DSL by cleverly designing methods ali-
gning with the speci�ed domain's characteristics. Note that the transformed java code
is more easily readable by humans and is able to omit the explicit usage of temporary
objects created only to aid setting up the customer instance. Another side e�ect of using
internal DSLs is that it still comes with full refactoring and debugging support by the
used development environment which is much harder to achieve using external DSLs.

Finally language workbenches are environments to enable �Language Oriented Pro-
gramming� which uses DSLs as a main strategy to build software [6]. As illustrated
in �gure 2.10, in contrast to common text based computer languages where the source
code as storage format equals the editable component of the model language, DSLs in
language workbenches separate storage and editable representation. Users then direct-
ly manipulate the abstract representation of the model by working with its projection
provided as editor environment which might be completely graphical. Furthermore any
processing steps such as generating executables from the model can also be based on the
abstract representation which always stays in the background. This approach is contrary
to the way traditional source code compilation works where an abstract representation
of the input data (e.g. an abstract syntax tree) is only transiently used for object �le
generation.

While using domain speci�c languages can be very bene�cial, it's also linked to so-
me extra investments in the creation phase. Internal DSLs come with the advantage of
an easy automatic integration into any developer tool as they do nothing more than
building up on a language already well integrated into a tool chain. This means that
features such as automatic expression completion are naturally available. On the other
hand the semantic possibilities of internal DSLs are also restricted by the used language
which sometimes might not be su�cient enough. Here external DSLs o�er much more
semantic freedom due to limitless design possibilities inherent to their nature. On the

23

2 State of The Art and Selected Technologies

�������
���	
������

�
���
�

����
�

���������	�
	���������� �����������	�
	����������

��	����	�
	����������
����	����	�
	����������

�������

Abbildung 2.10: DSLs inside a language workbench [6]

other hand their integration into a development tool is costly. Language workbenches
try to unify the advantages of both types of DSLs just mentioned. The tool integration
is designed to support DSLs by allowing the editing of abstract model representations
which can be very powerful. Compared to internal and external DSLs, language work-
benches are of course more constrained to their editing environment. A standard model
for interoperation between langauge workbenches has not been agreed upon as of the
time of writing.

2.5 Microsoft Domain-Speci�c Language Tools

The de�nition of domain speci�c languages - depending on its concrete realization - can
be a time consuming and error prone process. Microsoft, recognizing the usefulness of
this technology, thus began introducing the DSL Tools [26] as part of its Visual Studio
2005 SDK and updated its components for each new version of its development envi-
ronment. In order to simplify the development of DSLs the modeling environment plugs
itself into Visual Studio and is realized as graphical DSL itself. Using this environment,
developers may express domain classes and their relationships their target language will
consist of in order to form a �domain model� called meta model. Finished meta models
can be packaged and used to extend compatible editions of Visual Studio and related
shell editions. The technology thus supports the notion of �language workbenches� as
discussed in chapter 2.4.

Figure 2.11 shows a conceptual overview of the most important entities used in the
domain model creation process. Each domain model consists of domain classes and
domain relationships referring to those. A domain relationship itself might either be
a reference relationship describing any link between two classes or an embedding re-
lationship where one class is contained in another and subsequently is also destroyed
when the parent class is deleted. Both domain classes and domain relationships might
hold speci�c values through the addition of speci�cally named and typed properties.
The domain model and its included class and relationship de�nitions form the basis
for any model instance which bases its structure on this meta information. A model
instance must only consist of classes and relationships as de�ned in its inherent domain

24

2.5 Microsoft Domain-Speci�c Language ToolsDomain Model
Domain Class Domain Relationship

Model1* *1
2 *

IncludesIncludes
has

participiates in
1 *based on

Property1 * * 1has
Reference RelationshipEmbedding Relationship

Abbildung 2.11: Conceptual overview of DSL Tools

model. Figure 2.12 illustrates how the meta model editing process looks like by showing
a section of the domain model editor from Visual Studio. It pictures the data model
of a DSL developed for the BSopt project on the left swim lane. Inheritance is used to
de�ne classes deriving from the base class NamedElement. It also shows an n:m rela-
tionship between ControlFlowElement domain classes. The �Diagram Elements� swim
lane is used for de�ning shape elements which are used for visualization in concrete DSL
models.

The graphical domain model speci�cation enhances productivity and enables an easier
understanding of the DSL's meta model. One thing it cannot o�er is the means to de�ne
custom validation logic or more generically the �ne grained adaption of a domain model
through custom code. In order to enable this scenario a domain model o�ers its own API
targeting compatible DSLs. The domain model API itself consists of code transformed
from the graphical domain model speci�cation, supporting library code and optional
custom code. The abstract representation of a DSL as outlined in �gure 2.10 is based on
this API and de�nes the DSL's �domain model� as summarized in [9] as �An object model
of the domain that incorporates both behavior and data.�. In many scenarios DSL models
are speci�cally tailored to support a transformation process. In this way they serve as
an intermediate representation on the way to the creation of code or the execution of
a speci�c operation. In principle there are three ways to enable this scenario: (i) text
template transformation, (ii) accessing the domain model API and (iii) directly working
with the DSL model storage representation.

The DSL Tools use template transformation to create an object model out of the
domain model speci�cation de�ned by users in the DSL Tools editing environment.
This technology can also be used for custom model transformation and is especially
useful if the desired output is known to have a speci�c static structure. It is called
text template transformation toolkit (T4) [34] and is shipped as a part of the DSL
Tools. The concept of template transformation is to process a text template containing
text blocks and control logic to generate the desired output. In order to enable this

25

2 State of The Art and Selected Technologies

Abbildung 2.12: A section of the DSL Tools domain model editor

scenario T4 uses the services of a given host5 which acts as base for communication
between the user, the external environment and the T4 engine. Directive processors
handle special directives in the template by executing type speci�c code and outputting
any results. Default directives for e.g. including �les and processing code inline are
already prede�ned. The process of text template transformation can be separated in two
steps. First the T4 engine creates a source code representation of the given input. This
is accomplished by parsing the data and emitting statements to write any text which
is not representing an explicit directive for the system. Built-in and custom directives
are processed to create directive dependent output to be inserted into the source code
about to be created. Next, this representation is compiled and run in an environment
provided by the host. The resulting output is then returned to the host which completes
the transformation process e.g. by writing the data into a �le [57]. When using this
technology in Visual Studio, host developers need to de�ne their text template, add it
to a project in solution explorer and run the �TextTemplatingFileGenerator� custom tool
on it. As demand in the development community for runtime inclusion of transformation
technology surfaced, the release of Visual Studio 2010 came with an extension to this
concept called �preprocessed text templates�. Instead of the �nal transformation output,
the output of preprocessed text templates is the transformation source code [58]. This
can then be used by custom applications to execute transformations at runtime.

The second way to transform a DSL model is by using its API. This also enables
developers to create new models from scratch. While model generation in Visual Studio
automatically creates layout information by the user putting elements on the canvas,
this process has to be imitated by developers generating new models in code. The API
supports limited automatic layouting but unfortunately does not support the aligning
of nested shapes.

The third option developers have when transforming DSL models is to directly pro-
cess their storage representation. Models created by the DSL Tools infrastructure are

5The default T4 template host is Visual Studio. Microsoft also o�ers a command line host and
custom hosts can be de�ned by developers.

26

2.5 Microsoft Domain-Speci�c Language Tools

serialized into an XML based storage representation which is easy to reverse engineer.
While it's not as convenient to work with model data on this level, this approach al-
lows to process the model using arbitrary programming languages for XML processing.
Moreover this approach also allows the usage of model data on platforms where no
dedicated DSL API has been provided.

27

2 State of The Art and Selected Technologies

28

3 Contributions to the BSopt

approach

�������
���	
��	����

���������	
��	����

�
����
���
��
��	���������
����������
����

������
����
�
��
����
����

�����
����
�
�������
��

���������	�
���
��
• �������	� ��!�"
��	�������

• ��������������� ��#	������$��
�
• �#���������%���
�����
����

• ���
����
������#���	����
��� 	���	#��#	
�

Abbildung 3.1: Concrete steps in the creation process of work�ow artifacts as
part of the BSopt approach

The main delivery produced by the BSopt project is a development environment
supporting an integrated methodology for inter-organizational systems spanning from
business models over business process models to their execution in a service-oriented
architecture (SOA) [24] (also compare �gure 1.1). It acts as a language workbench by
providing users with perspective dependent graphical domain speci�c languages and the
means to transform the enclosed information accordingly.
This chapter is about the actual contributions of this thesis for the BSopt approach.

The focus lies on the transformation of a given logical business process description into
an executable work�ow de�nition. While the handling and transformation of business
models in the value perspective as well as the formulation of business documents are part
of the BSopt approach, these areas will not be part of further elaborations. However,
the interested reader is referred to the website of the BSopt project [24] which includes
an ever updated listing of academic papers also dwelling on these topics. Additional
information about the BSopt value perspective can also be found in [17,18,55].
Figure 3.1 shows the chain of transformations to be discussed in the following sections.

It is a substantiated version of �gure 1.2 introduced in section 1.2.
In order to generate the WF4 based work�ow artifacts shown in the illustration, a

business process described from a neutral global perspective, the global choreography,

29

3 Contributions to the BSopt approach

has to be transformed into a business process description as seen from the perspective
of a speci�c participant - the local choreography. Additionally the electronic messages
interchanged in the course of a business collaboration have to be adopted into a format
suitable for consumption by the generated work�ow artifacts. As will be argued, the
message type descriptions, coming in the form of XML schema descriptions, are best
transformed into managed types and o�ered as a compiled .NET class library. Finally,
given message type descriptions also need to act as base for the instantiation of actual
message instances sent over the wire in order to advance a running B2B process. The
�nal generation of work�ow artifacts may be commenced after these three intermediate
results have been generated beforehand.
The following sections will both describe BSopt Designer itself as well as the practical

contributions for this thesis as outlined in section 1.2. First the DSLs implemented for
the realization of global- and local choreographies will be presented, followed by the
description of the actual transformation process. Next the handling of message type
type descriptions will give way to the concluding description of the work�ow artifact
generation process. The last section of this chapter will introduce the work�ow hosting
application both conceptually and from the view of a user. It will conclude the main
part of this thesis by demonstrating the actual validity and executability of the artifacts
generated in BSopt Designer.
An accompanying example scenario designed to illustrate the actual work�ow and

further contextualize the ideas outlined in each section will act as �nal concept validation
of the BSopt approach.

30

3.1 BSopt Designer

Abbildung 3.2: The primary BSopt Designer user interface components

3.1 BSopt Designer

The BSopt Designer application is a modular tool environment supporting the BSopt
approach by providing various graphical DSLs and specialized wizards for data transfor-
mation and generation. This section will supply the reader with a general understanding
of the vital components of the environment, the ways users are able to interact with it
as well as the general tool architecture.

Figure 3.2 shows a screenshot of the application with some example data loaded. The
application window is separated into several tool windows which can be repositioned
freely by the user and serve distinct but mostly context-sensitive purposes. The handling
of data �les starts with the solution explorer window (F). Its main responsibility is
the visualization of the currently managed �les. These �les itself are usually linked
with a speci�c kind of project which also may provide specialized context menus or
other ways to handle the data. Projects are embedded in a solution which acts as the
root of the project management system. Most importantly the solution explorer tool
window will provide access to the storage representation of various DSL models. By
double clicking an item in the tree view an associated editor will be opened in the
editor area (C). An editor is the interactive projectional representation of the item's
domain model and allows the manipulation of its data. The Toolbox window (A) is
�lled with elements related to the current selection context. In the given illustration it
o�ers various constructs to be dragged into the editing canvas for a BSopt Designer DSL.
If a component supports the element it will react in a sensible fashion and allow a drag-
and-drop event to take place. This way speci�c data can be added to a DSL diagram
or any other destination in the environment. In case the user describes a syntactically
correct idea which is �awed at a semantic level such as non allowed circular references

31

3 Contributions to the BSopt approach

Abbildung 3.3: The BSopt Designer projection creation dialog

it's important to alert the user of the problem. The error list tool window (B) is made
for this purpose and more generally for the listing of information, warning and error
messages relevant to the current usage context. The output window in the tab next
to it is also supporting this task but is better suited for less structured information.
Introduced speci�cally for DSL handling the model explorer tool window (D) acts as a
schematically designed representation of the currently active DSL model. It illustrates
the diagram in a tree-like fashion and supports the selection of entities in the model
based on their logical relation to other elements. Last but not least, the property tool
window (E) acts a general purpose utility to visualize any important data related to
the current selection inside BSopt Designer. It consists of two columns with the �rst
showing each property's name and the second the according property's value. The value
�eld may be a simple textual representation but can also be a complex designer to help
with data entry such as a visual calendar. Properties need not always be editable but
most elements inside a DSL model o�er their speci�c properties so that users can adapt
the given information accordingly.

With these principal user interface elements explained the next step is to describe how
users may start interacting with the application. In order to edit any DSL model it �rst
must be added as part of a project to an open solution. As pictured in �gure 3.3 the �New
Project� dialog o�ers project types for each of the three distinct perspectives identi�ed
in the BSopt approach: value-, process �ow- and execution perspective. When creating
a new project the enclosing solution is automatically generated as well. Alternatively a
project type for blank solution creation is also o�ered by the system.

When opened inside BSopt Designer, each distinct project type o�ers its own special
set of item types to add. Figure 3.4 shows the available item types to be added to a
�ProcessFlow Perspective� project. As mentioned before double clicking an item will
open an associated editor to enable the editing of data. A more thorough examination

32

3.1 BSopt Designer

Abbildung 3.4: The Add New Item Dialog for �ProcessFlow Perspective� projects

of DSL editors relevant to this thesis will be presented when suitable in the following
chapters. Additionally items in solution explorer may be right clicked to launch a context
menu displaying all the possible actions for the item. This context menu approach is
used throughout BSopt Designer to o�er users the transformation of DSL models by
subsequently launching custom transformation wizards.

3.1.1 Architecture

This section will look at the general architecture of BSopt Designer. The application is
designed as a Microsoft Windows program mainly developed with the C# 3.0 langua-
ge [13]. C# is a �managed� language meaning it builds upon the Common Language
Runtime (CLR) of the .NET Framework [27]. BSopt Designer is also depending on the
.NET Framework 3.5 release which corresponds with C# 3.0. The application further
builds upon the Visual Studio 2008 extensibility model. This development environment
o�ers three basic ways for extension [36]:

• The macro mechanism can be used to record repetitive tasks and is o�ered to
replay a series of commands. Macros can also be created, edited and debugged
themselves which is supported by Visual Basic acting as macro language. While
useful in automating smaller tasks, macros are not suited to creation of tool
windows or more elaborate tasks.

• Addins and Wizards are Component Object Model (COM) based binaries im-
plementing speci�c interfaces supported by the Visual Studio core automation
model. Using this approach it's possible to seamlessly integrate functionality into
the environment which supports custom menu- or toolbars this way. Additionally
new tool windows and option property pages can be created. Wizards are a spe-
cial type of addin implementing an interface to support leading the user through
a series of steps in order to accomplish a task.

33

3 Contributions to the BSopt approach

• The Visual Studio SDK o�ers the most comprehensive ways to extend the VS
IDE. It is used for integration of new programming languages, project types,
editors or debuggers. It o�ers an object model for native (concrete platform tar-
geting) and managed code based on the concept of so called packages. Registered
packages are automatically loaded by the IDE and are provided with data ne-
cessary for extension. Building on this concept starting with the Visual Studio
2008 SDK Microsoft also provides the Visual Studio Shell. Shell instances are
based on a series of core packages which provide the basic functionality of Visual
Studio without any programming languages and are o�ered for developers aiming
to create extensive solutions for speci�c domains. Visual Studio Shell solutions
come in either integrated- or isolated mode. The former requires a �tting instance
of Visual Studio already installed on a system and will integrate itself into the
application. The latter, coming with an own �application id�, will be provided as
a detached application not sporting any further dependencies on a Visual Studio
installation at all.

Figure 3.5 shows the building blocks of the BSopt Designer architecture. We chose to
use the Visual Studio isolated shell as basis for the application so it can be deployed in
environments where no previous Visual Studio versions have been installed. Fortunately
using the shell this way is a royalty free process. As can be seen the extension of the
isolated shell just described is realized by the addition of a number of domain speci�c
languages. As described in section 2.5 the DSL Tools shipped as part of the Visual
Studio 2008 SDK are used to de�ne each custom language �nally o�ered by the tool.
The template created in this process also o�ers a Visual Studio package implementa-
tion which, when referenced by the shell, will automatically embed the DSL into the
environment. What's not done in this process is to automatically o�er project templa-
tes for each usage perspective and the accompanying item templates as was shown in
�gures 3.3 and 3.4. The Visual Studio Managed Package Framework for Projects (MPF-
Proj) [53] helps in this respect by providing source code for realizing these tasks and
was subsequently used for their implementation.
As the overall tool concept builds on the idea of representation transformation it

became clear that this process had to be supported by some kind of wizard user interface.
Certain items in a BSopt Designer solution o�er context menu items to launch these
wizards. While the Visual Studio addin model supports the creation of wizards, their
design time experience is lacking in comparison to today's standards. The simple wizard
control [22] introduced as open source library on the developer website �The Code
Project� was thus chosen for its easy handling and powerful design time experience
as shown in �gure 3.6. Developers using the control are able to visually de�ne each
individual step of a wizard, drop controls on the according canvas and de�ne events
raised when the state of the control is changing.
One work�ow system targeted by BSopt is the Windows Work�ow Foundation 4.0

(WF4) which ships with the .NET Framework 4.0. In order to create WF4 based arti-
facts from BSopt Designer, the tool itself must also inherit a dependency on the .NET
Framework 4.0. However Visual Studio 2008 based code such as BSopt Designer itself
is not able to directly consume code written for the new Common Language Runtime
(CLR) version introduced with .NET 4.0. As a consequence the functionality used to
create and host WF4 work�ows has been externalized into separate console based appli-
cations which then can be called by the appropriate components in the tool environment.
This also bears the advantage that these actions can also be performed independently
from BSopt Designer if necessary.

34

3.1 BSopt Designer

���������	
����

��������	�
������������
������	�
���
���

	������������	�
��������
��������	
��������

��������	
��������

��������	���������������

������
����

������

������

��������	���������������
����

��������	���������������

�����������
���
�����
�������
����

������

Abbildung 3.5: Building blocks of the BSopt Designer architecture

Abbildung 3.6: Design time experience of the simple wizard control [22]

35

3 Contributions to the BSopt approach

�����
�����	��

�����
�����	��

�����
�����	��

����������	
��

�����
�����	��

�����
�����	��

�����
�����	��

����������	
��
����������	
�����	��	�

�
���������

�

������	
�����	��	�
�
���������

�
��
�������

Abbildung 3.7: The di�ering scopes of orchestration and choreography [54]

3.2 From global to local choreographies

When designing a business process including two or more interacting participants there
are two basic ways to start: �rst the process can be created in a top-down approach
starting with a sequence of inter-organizational messages, their contents and the formu-
lation of generally expected behavior. Next the internal control logic and other intra-
organizational information may be added by each company involved in the creation
process independently. Secondly, businesses may start with the details and end with the
big picture of the process at the end. Unless businesses are in�uential enough to get
other participants in the market to adopt their design it's very unlikely for two enter-
prises to connect using the second approach. This section deals with the �rst strategy
and before introducing concrete implementation details in BSopt Designer it's useful to
discuss some terms referred to later on.

The domain of business process modeling distinguishes between the two related con-
cepts of orchestration and choreography. According to [54] an orchestration encompasses
the interaction of one party with internal and external web services, the necessary busi-
ness logic and sequence of actions in order to complete a business process. Choreographies
on the other hand restrict themselves to the observable sequence of public message ex-
change between business partners as illustrated in �gure 3.7. In [14] Hofreiter further
distinguishes between local- and global choreographies. While global choreographies are
based on a neutral perspective, local choreographies can be seen as projections on a
corresponding orchestration illustrating only the external message exchange from the
point of view of one business partner.

As the di�erence between the two kinds of choreographies is only their perspective
it's always possible to transform one representation into the other. This also means that
conforming orchestration skeletons may very well be derived from a global choreography
by transforming its representation into local choreographies for all participants. The
additional internal business logic described by an orchestration can then be added by
each business partner independently without breaking the common contract de�ned by
the global choreography.

The process discussed in this section relates to �gure 3.1 and de�nes one aspect
necessary for work�ow artifact creation in BSopt Designer. Here it also covers the �rst
major contribution for this thesis, namely the transformation of a DSL model describing
a global choreography into a local choreography for each original participant. In order

36

3.2 From global to local choreographies

to properly outline this process it's necessary to review source and target DSLs which
will be discussed in the next two subsections.

3.2.1 The business choreography language (BCL)

The motivation for the BCL [47] was to enable the modeling of global choreographies
based on the UN/CEFACT Modeling Methodology (UMM) as presented in [16]. Whi-
le a UML pro�le for modeling UMM constructs already existed, feedback from real
world projects showed that some concepts were hard or cumbersome to express. These
problems were identi�ed to result from the need to adhere to the UML meta model
constraining the ways to represent global business processes. The BCL aims to replace
this modeling approach by embracing the strengths of domain speci�c languages and
allow users to express global choreographies in a more straightforward way while still
conforming to the UMM. Altogether [47] identi�ed eight concepts which were translated
from their UMM representation into BCL opponents which are brie�y discussed in the
following:

• a business transaction de�nes the message exchange between exactly two business
partners and is the basic component in a global choreography de�ned by the
UMM. Its aim is to update and synchronize both partners' states of information
by utilizing uni- or bidirectional message exchange patterns. The legal status is
governed by the business transaction pattern used for the business transaction.

• business transaction patterns in UMM follow the de�nition of the six Open-edi
patterns. They may either be unidirectional (noti�cation, information distribu-
tion) or bidirectional (request/response, query/response, request/con�rm, com-
mercial transaction) and specify the way two business partners exchange business
documents. As speci�ed in the implementation draft for UMM v2.0 [16] each
business transaction pattern comes with a set of default values associated with
its business transaction which governs its quality of service aspects. Additionally,
the type of a business transaction pattern also directs whether acknowledgment
messages are to be expected and for which occasions these will be sent.

• the quality of service concept de�nes security- and communication aspects for a
business transaction. Those include data such as time frames in which participants
need to respond, whether non repudiation of received messages is required and
how often senders shall retry to send a message to their business partners before
giving up.

• business documents are exchanged by business partners in a business transaction.
In the case of a unidirectional business transaction pattern the initiating party is
the only one to send a business document in order to synchronize the information
level of both parties. An example for such a scenario would be the noti�cation
of shipment of an ordered item. When bidirectional business transaction patterns
are used the responding partner will answer with a business document de�ning
the �nal outcome of the business transaction. This translates to a new common
understanding of the business situation on both ends. As an example for this
scenario the ordering of an item is answered by the item's seller by either accepting
or denying a buyer's request.

• a business collaboration is a long running business process which enables two or
more participants to engage in one ore more business transactions in order to

37

3 Contributions to the BSopt approach

accomplish their immediate business goals. The business collaboration not only
de�nes the number and speci�c kind of business transactions but also the control
�ow between those. It also supports splitting and merging control �ow constructs
(AND, OR, XOR) so more complicated control routings can be expressed.

• as already mentioned shared states for both business partners have to be synchro-
nized accordingly in order to enable participants to properly engage in a business
collaboration. The shared state reached after the completion of a business tran-
saction is further important as it in�uences the continuing control �ow of the
business collaboration.

• Reuse of business transactions is a concept to minimize unnecessary duplication
of modeling e�orts.

• Role mapping supports the usage of business transactions on an abstract level
by referring to roles instead of concrete business partners. This concept is used
to map two speci�c participants in a business collaboration to the initiant- and
responder-roles inside a business transaction. Additionally, it also increases the
usefulness of business collaborations as they can be nested inside other business
collaborations with certain participants mapped to speci�c roles.

While not directly derived from the UMM speci�cation, ideas from the Business
Process Modeling Notation (BPMN) [52] further in�uenced the following three concepts
which were also introduced in the BCL to extend its expressiveness:

• timer events introduce a temporal component into the model by enabling abso-
lute or relative delays of the control �ow. This may be used for the modeling of
time-out scenarios which could e.g. end a business collaboration after a speci�ed
amount of time has passed.

• compensations provide a solution for scenarios where process-wide transactions
might not be feasible. Long running business collaborations are very applicable
to this scenario for resource reasons and thus are well suited for this technology.
When participants in a business collaboration experience technological faults for-
cing them to stop, the process compensations make sure that the already agreed
upon state changes coming from successfully �nished business transactions can be
rolled back. This is accomplished by redirecting the control �ow toward compen-
sation business transactions introduced to restore the state of information before
the business collaboration has started.

• event based XOR split nodes as presented in [62] provide an opportunity to intro-
duce deferred choices into the model by basing the branching of the control �ow
on external events such as the (�rst) incoming message applicable to the current
state in the business collaboration.

Those concepts just presented are best illustrated by an example DSL model based
on the BCL. The following subsection will introduce this example as a starting point of
an ongoing process leading to actual work�ow artifacts ready to be hosted by a business
application.

3.2.2 Introduction of the accompanying example scenario

Before discussing the distinct elements used in the composition of BCL models the
example scenario is presented in a more general way: the principal premise driving

38

3.2 From global to local choreographies

Abbildung 3.8: The �order from quote� example scenario expressed in the BCL

this business process is the interaction between two participants acting as buyer and
seller of goods. The general outline schedules the buying party to initiate the process
by requesting non-binding quote information for a product from the seller. The seller
may or may not comply with this request leading to the common understanding that
either a quote has been refused or provided. In case of the latter the buyer continues
to place a legally binding order for the quoted item type which is de�ned to conclude
with the seller accepting or rejecting the order. An accepted order will at some point
lead to a shipment for the buyer. This will induce a noti�cation for the buyer when
the ordered items have been shipped. After this shipment noti�cation has been sent
from seller to buyer the business collaboration ends successfully. In case the order was
rejected beforehand it ends in a failure.

Figure 3.8 showcases the just described example scenario modeled in the business
choreography language. Users of BSopt Designer can create this example from scratch
by adding a new �le into a process�ow project and dropping applicable elements onto
the provided DSL editing canvas.

The upper half in �gure 3.8 depicts the de�nition of a business collaboration contai-
ning three business transactions, including two participants acting as buyer and seller.
The �rst business transaction follows the bidirectional request/response pattern while
the second is de�ned to indicate a two way commercial transaction. Finally, the last
one follows a one way noti�cation pattern. According to the UMM v2.0 foundation mo-
dule speci�cation draft [16] the request/response pattern is used to return �information
that needs to be dynamically assembled and hence cannot be returned immediately�. In
contrast to the commercial transaction pattern the involved parties have no residual
obligation to ful�ll the terms of a contract. Finally, the noti�cation pattern is used
to inform the other party �about an irreversible business state� which is - despite its

39

3 Contributions to the BSopt approach

informational one way character - veri�ed by the inclusion of an acknowledgment of re-
ceipt message as is also done with the commercial transaction pattern. Additionally the
commercial transaction pattern also veri�es the successful processing of a sent business
document by requiring an appropriate acknowledgment message.

Each element in this area has been dragged from the toolbox window shown in the
�gure onto the editor canvas where it manifested its shape as de�ned by the DSL aut-
hor. The illustration distinguishes those di�erent entities by marking them each with a
letter between A and E in order to highlight this fact. Each entity possesses type speci�c
properties which may be changed by the user. The illustration shows this editing aspect
by introducing the properties re�ected by the �request for quote� business transaction
as shown in the properties tool window from the editing environment. Those include the
type of business transaction pattern used, quality of service parameters as de�ned in the
�tagged values� section and the mapping of the given participant roles buyer and seller
from the business collaboration to business transaction speci�c initiant- and responder
roles. Additionally, each business transaction contains separated compartments de�ning
both the one requesting and all possible (none to many) responding business documents
which shall be valid in the scope of the business transaction. As an example for the �re-
quest for quote� business transaction this translates to a quote request being answered
by either a quote refusal or quote provision business document. Finally, the �resulting
entity states� compartment abstracts the new common understanding of both business
partners after the completion of the business transaction. While the shared state of both
participants includes the concrete information exchanged using business documents, re-
sulting entity states allow to partition these realities into a discrete number of possible
outcomes. Control �ow entities which are de�ning all valid routes for a business colla-
boration can refer to these resulting entity states as starting points. Generally and as
depicted in �gure 3.8 a business collaboration includes exactly one �initial state� entity
acting as starting point for a business collaboration and one to many ��nal state� enti-
ties ending with either a business success or failure. All non-�ow elements in the BCL,
but the �participants� entity, must be connected by either control �ow or compensation
�ow shapes in order to be part of the business collaboration. The �participants� entity
de�nes all roles in the scope of the business collaboration and is only allowed once per
diagram. While join/merge nodes and the additional concepts derived from BPMN are
also supported in BCL they are not included in this example as they won't be processed
by the current transformation engine. Nevertheless they are discussed at length in [47].

3.2.3 The local choreography language (LCL)

Global choreographies de�ne business processes as seen from an external observer's neu-
tral perspective by outlining the types of messages exchanged as well as the sequence of
their appearance. As discussed in the previous section, the business choreography lan-
guage is used in BSopt Designer to support the modeling of global choreographies. Local
choreographies di�er from global ones in that they show the public message exchange as
perceived from the perspective of a participant directly involved in the process. Oppo-
sed to global choreographies work�ows are generally business process descriptions based
on one speci�c participant's perspective and thus have more similarities to local cho-
reographies and orchestrations. In order to gradually lead the transformation of global
choreographies toward work�ow artifacts it was deemed sensible to introduce another
representation of the business process based on the qualities of local choreographies.
The result is re�ected in the domain speci�c local choreography language (LCL) which
will be presented in the following.

40

3.2 From global to local choreographies

Abbildung 3.9: The local choreography language zoomed in on the transformati-
on of the NotifyShipment business transaction from the example
scenario for the buyer

Figure 3.9 anticipates parts of the resulting local choreography coming from the
transformation of the �order from quote� example outlined in section 3.2.2. It illustrates,
that the LCL is in many ways similar to the BCL but more concrete in certain de�ning
aspects. Fundamentally LCL models are still technology independent descriptions of
business logic. Similar to the BCL, the LCL is also a composition of single entities out
of a �nite set of di�erent types showcased in the toolbox window screenshot in the lower
right half of �gure 3.9. Also each entity instance on the editing canvas can be selected to
reveal type speci�c properties in the properties window of BSopt Designer. One aspect
that's not been used in the BCL is the possibility of de�ning parent/child relationships.
In the LCL, business transactions are generally represented as parent shapes nesting all
child entities acting within their boundaries. This change of representation presents the
opportunity to speci�cally outline the di�erent actions to be taken by the participant
while in course of a business transaction. The elements used inside a business transaction
are realizations of concepts suggested in [19] which presents a strategy to translate
UMM business transactions into state machine based graph representations for local
choreographies. As the BCL itself is de�ned as a projection of UMM concepts into the
area of domain speci�c languages, the resulting elements demonstrated in [19] were well
suited as starting point for the LCL. One consequence of this design is that strictly

41

3 Contributions to the BSopt approach

speaking some aspects of the LCL such as validation fall into the area of orchestrations.
Despite this circumstance the communication with a business application where most
of the internal logic is processed is abstracted in this process. Thus for this thesis we
will keep referring to the LCL as a meta model for local choreographies.

The following enumeration addresses the types of entities used in the transformation
process to create LCL models. The bracketed characters are referring to elements from
�gure 3.9:

• business transaction instances are de�ned by the reacting- and initiating activity
(C) types. The only di�erence between those is the indication whether the par-
ticipant is in a reacting or initiating role. This di�erence represents whether the
�rst message exchange action turns out to be based on a receiving or sending ac-
tivity. Additionally business transactions expose properties such as their original
business transaction pattern and a maximum retry count. This property is adop-
ted from the de�nition in [16] and tells how often a requesting authorized role
must re-initiate the business transaction in the case of a timeout exception. The
exception will be thrown when the time to acknowledge a receipt or processing
or time to respond has been exceeded.

• the initial activity type (A) represents the starting point of the control �ow both
on a global level and inside each business transaction instance where it must occur
exactly once.

• the �nal activity type (B) de�nes end points for a business collaboration on a
global level and inside each business transaction. They are attributed to de�ne
either a business failure or success.

• the interaction activity type (D) is responsible for message exchange in di�erent
contexts. It possesses an interaction type property which may either be �ingoing�
or �outgoing� thus de�ning whether it symbolizes a message receiving- or sending
action. Additionally, its activity type property must have one out of four di�erent
values:

1. the value of �acknowledgment� makes the activity send or receive an ack-
nowledgment message.

2. the value of �message� relates to the in- or outgoing handling of a business
document.

3. the value of �business application� refers to communication with the business
application indi�erent of set interaction type. This indicates that a business
application must infer a business decision.

4. the value of �error message� is used to communicate an impending business
failure.

• a control �ow element (F) is used to connect other entities on a global perspec-
tive or inside a business transaction. The entity possesses a control �ow outcome
property which may either be unspeci�ed, indicate a success or a failure. The vali-
dation activity uses this property to branch based on successful or failed validation
as do business transactions based on their business outcome.

• the validation activity (E) is another multi contextual entity. Its validation type
property may be one of the following:

42

3.2 From global to local choreographies

1. the check retry count value validates whether there is a retry left after re-
initiating the business transaction. This is used so a participant will not try
to endlessly contact a non reachable or technologically impaired business
partner.

2. the check ack receipt and check ack processing values are used to scan the
content of a speci�c acknowledgment message and branch accordingly if an
error is being detected in the course of this process.

3. the check res business doc value symbolizes the data validation for a business
document with checks such as grammar-, sequence- and schema validation
[19].

4. the validate content of res business doc value speci�es the validation of a
business document on a higher level, e.g. amounts of money being in a
meaningful value range.

With the entities used in the transformation process explained we can return to ela-
borate on the business transaction in �gure 3.9. The upper half of the illustration shows
the result of transforming the notify shipment business transaction from its BCL re-
presentation (�gure 3.8)into its LCL representation for the buyer role. It consists of a
reacting activity acting as a parent for seven interconnected child entities. The internal
control �ow starts with the obligatory initial activity and continues with the business
document receiving interaction activity called �waitForBusinessDoc_Incoming�. It next
advances to the validation activity named �check res business doc� with identical va-
lidation type. After that it either branches to another interaction activity in order to
acknowledge the receipt of the business document or ends with an interaction activity
indicating an error after failing validation. The resulting business state will be deter-
mined by each concluding �nal state activity. The notify shipment business transaction
has been chosen for �gure 3.9 as it results in the least complicated and thus smallest
business transaction but still explains the way an automatically generated LCL business
transaction will look like. Figures 3.10 and 3.11 show the complete transformations of
the BCL example for both, buyer and seller. The di�erence in size between the three
business transactions is due to the di�erent business transaction patterns used in the
source choreography. As an example the commercial transaction pattern used for the
legally binding �place order� business transaction includes the most acknowledgment
handling and validation entities and, thus, is the most complicated transformation case.

The transformation process de�ned in [19] envisions the task of checking the retry
count before sending a requesting business document. As this task is only performed
in initiating local business transactions those feature a by one higher number of child
entities as opposed to their corresponding reacting business transactions. Apart from
this detail the transformation from a global choreography into local choreographies
guarantees that the created structures are exactly complementary to each other. In
other words this means that for each speci�c sending activity a compatible receiving
activity has to be scheduled for the overall business collaboration to work �awlessly as
expected.

3.2.4 Transforming a BCL model into LCL models

Having introduced the source and target representations of the example choreographies
the transformation process connecting BCL and LCL models will be elaborated. This
description is separated into two parts. First the general approach of transforming a

43

3 Contributions to the BSopt approach

Abbildung 3.10: the �order from quote� example transformed to a local choreo-
graphy for the buyer role

44

3.2 From global to local choreographies

Abbildung 3.11: the �order from quote� example transformed to a local choreo-
graphy for the seller role

45

3 Contributions to the BSopt approach���������������	�
�����������
���������������������
���������	
�����������
���
�������������������������������	������������������
�����
��������������	���������������������������������
������	��
��
���
����
��	���������������������������	����������������������	�������������������
���������������������	���	�������������� !�����"����#�������������
��������������������������������
�����������
���	���$����	������
���������������%�������������������������	���%�����������	���������	��������������������������������
��		��������������������������
����������������������������������
�������������������������&��������������'���������������&�����������	��������������������������
��������������������������
��(�������)�����
�����*���+,���)�����
�����*��������������������������������������(),������������������-��
��	����������������������������
���������������������������������������	�����
�����������������������������	�����������������
�������������
��	����������������'������������������������
���
����.�����	���������������'����������������������	���������������������	���������������
����������������
���������/�������0������������������'������������������������'���'�������'��������	���������	�����������������������������'�������
Abbildung 3.12: The �transform global choreography into local choreographies�

use case.

global choreography within BSopt Designer will be highlighted. Afterwards, the followi-
ng part will cover the speci�c way this transformation was implemented and integrated
into the tool environment.
The steps a user has to consider in order to transform a global choreography into

LCL models are best demonstrated in the form of a use-case description. Figure 3.12
demonstrates the necessary steps to accomplish this task. As demonstrated, the one
relevant choice users face is the selection of the roles for which to generate local choreo-
graphies. The concrete implementation in BSopt Designer o�ers a context menu item
for .bcv �les acting as storage representation of BCL models in the tool's solution ex-
plorer. Once clicked the transformation wizard will be launched displaying the single
steps visualized in �gure 3.13 in the course of a normal sequence of events. The only
dynamic content is shown in step 2 where the roles a user can select are taken from the
entries of the expected single participants container from the input choreography.
The implementation of the transformation process extends the approach presented

in [19]. Furthermore, it considers the di�erent kinds of business transaction patterns
described in [16]. As mentioned in section 2.5 three possibilities for model transformation
were considered:

• Using the T4 templates technology in order to transform a given base template
�le into a new representation by accessing additional data from a source model.

• Working with the domain model API provided by the DSL tools infrastructure.

• Manual creation of the target DSL storage representation by creating and seria-
lizing a tree of suitable XML-constructs.

46

3.2 From global to local choreographies

Abbildung 3.13: The transformation process for the �order from quote� sample

From these three approach (3) was dismissed quickly due to the unnecessary work and
possible maintenance problems due to a still changing meta model. This is in contrast to
the option of working with an always up-to-date object model provided by the DSL Tools
system for free. While a transformation process using T4 principally would have been
possible, there was little to gain with this approach as the embedding of information into
a static template structure was at no point needed. Additionally, the tool support for
creating text templates presented itself less mature than the powerful ways to handle
C# source code in Visual Studio. Finally, the handling of a text template in BSopt
Designer to transform a .bcv �le was much less straightforward compared to using the
object model provided for source and target DSLs. The basic approach is thus to load
the global source choreography, iterate over all business transaction objects in code,
create corresponding constructs using the object model of the local choreography DSL
and reconnect entities creating a comparable topology in the target DSL. Describing the
resulting code in depth would require to elaborate about the speci�cs of the DSL Tools
domain model and also cover a lot of code required to account for each speci�c business
transaction pattern, certain properties to set and so on. As this approach would add
little convertible information for most readers, the basic structure of the code has been
condensed into the function TransformGlobalChoreography de�ned in algorithm 1 which
is expressed in pseudo-code. The resulting entities transformed from global business
transaction activities are based on the state machine depictions presented in [19].

After a local choreography instance for a speci�c role has been devised, it must be
serialized into its storage representation. The DSL Tools object model provides helper
classes for both serialization and deserialization out of the box. Additionally as mentio-
ned in the use case description in �gure 3.12 each local choreography must be associated

47

3 Contributions to the BSopt approach

with a .diagram �le. This �le separates the layout and sizing information saved for the
visual representation of a DSL from its data part. While the layout for user created
diagrams is generated based on user actions while editing the models it's less straight-
forward when creating a model from scratch in code. The core object model of DSL
Tools o�ers limited auto layouting facilities which only support the layouting of global
shapes. In other words while this facility su�ced to create well looking BCL models it
was not adequate to build local choreographies including business transaction shapes
nesting a number of child activities. In its default realization all nested business tran-
saction child shapes in a local choreography were positioned at the upper left corner of
the parent and had to be repositioned exhaustingly by users in order to visualize the
devised process �ow.

Manually layouting nested diagram elements in an LCL model

As the default layout produced for LCL models was generally considered unacceptable
the logical conclusion was to create a custom �tting layout supporting the nesting of
child shapes. This was possible as the DSL Tools object model provides the user with
both the logical relationship between activities matching a directed graph representation
and sizes of activity shapes which are a natural factor when considering the layout of a
graph1. As the layout generation for graphs is an active research topic in its own right
the logical conclusion was not to start inventing or duplicating known algorithms but
to rely on the experience of others. The requirements for the LCL model were de�ned
as follows:

• The component must be provided as a library or set of source �les released free of
cost under a (preferably open source) license not restricting BSopt Designer from
being released under the GNU General Public License, Version 3.0 [10] when
used in the product.

• The visualization of LCL models is based on shapes of di�erent sizes connected by
angular arrows. A suiting component must support these visual traits in its layou-
ting algorithm and support �nding a constellation which minimizes intersecting
control �ow elements while keeping the resulting graph reasonably compact.

• Interoperation with the library shall be reasonably straight forward. The best
case scenario would be a library supporting direct usage under .NET.

After looking at various graph layouting libraries provided on the world wide web
it showed that a library optimally satisfying all three requirements was probably not
existing right now. Many high quality libraries were commercial, based on the java pro-
gramming language or simply did not support explicit orthogonal layouting approaches.
The best �t for this scenario presented itself in the Open Graph Drawing Framework
(OGDF) [59]. As described by its authors OGDF is �a self-contained C++ class library
for the automatic layout of diagrams. OGDF o�ers sophisticated algorithms and da-
ta structures to use within your own applications or scienti�c projects. The library is
available under the GNU General Public License. �. While a C++ library cannot be ac-
cessed directly from a .NET environment there are 3 basic ways to enable interoperation
with unmanaged code [35]:

• Platform Invoke (�pinvoke�) is a mechanism which allows to call unmanaged func-
tions exported by a dynamic link library (DLL) by de�ning and attributing the

1Parent shape sizes are of course dynamic and depending on the bounds of their children.

48

3.2 From global to local choreographies

signature of the function as seen in a .NET environment with platform speci�c
information such as calling convention, name mangling settings and the concrete
name of the function's entry point. Data transferred between the two environ-
ments is marshalled on the managed side according to a default behavior or
explicit attribution including how exactly to marshal string values, where exactly
�elds in an unmanaged structure representation are positioned and many more
details like that. While a relatively simple approach, pinvoke is best suited for
integrating procedural code into a managed environment.

• C++ interop also called It Just Works (IJW) builds on the ability of the Visual
C++ compiler to process both unmanaged and managed code. By enabling CLR
compilation it's possible to create �mixed assemblies� including both unmanaged
and managed code which o�ers a simpler way of interoperation as managed code
may access unmanaged data and vice versa. The usual way to provide unmanaged
code to a .NET environment by using IJW is to o�er managed wrapper classes
which internally reuse an unmanaged object model exported by the original un-
managed library.

• upport for the Component Object Model (COM) allows C# to directly consu-
me COM components and also extend its services into the world of COM itself.
Specialized tools such as the �type library importer� application support the au-
tomatic creation of interop assemblies which can be used from .NET just like any
other managed code.

As OGDF is not built to expose COM components the approach taken was to statical-
ly link the library with a new CLR supporting C++ project creating a mixed assembly
for consumption in C#. One reason for this decision was that OGDF is not o�ered as
a DLL in the �rst place which means that adapting it for pinvoke would have taken
more time and hardly provided any bene�ts over IJW. While OGDF itself supports
many layouting algorithms and di�erent ways to treat graphs such as the specialized
handling of colored subgraphs, weighted nodes and edge styles the requirements for
LCL layouts were relatively simple. The approach taken was to look at the �orthogonal
layout� sample presented on the library's site, �rst duplicate reasonable results for a
test choreography using a native C++ application and then wrap only those classes
needed to repeat the results from C#. The resulting �ManagedOGDF� library was then
used in the transformation process to create reasonable layouts as were presented in
�gures 3.10 and 3.11. The approach taken to yield results was de�ned by recursively
looking at any possible children of a shape and map the according graph topology and
node dimensions from the LCL object model into an OGDF representation. Next we
let the library �nd a suitable new layout and retranslate the data back to dimensions
used in the LCL model. Parent shape dimensions are adapted based on their resulting
child layout bounds.

49

3 Contributions to the BSopt approach

Algorithm 1 Transformation of a global choreography into a local choreography
for the role speci�ed

1: function TransformGlobalChoreography(globalChor, role)
2: localChor ← new local choreography
3: â Transform business transactions:
4: for each business transaction bt in globalChor do
5: if bt includes participant with role then
6: localBt← TransformGlobalBusinessTransaction(bt, role)
7: localChor.AddBusinessTransaction(localBt)
8: end if

9: end for

10: â Transform �nal+initial activities:
11: for each �nal activity finalAct in globalChor do
12: localChor.CreateCorrespondingFinalActivityFor(finalAct)
13: end for

14: localChor.CreateCorrepondingInitialActivityFor(globalChor.InitialActivity)
15: â Rewire global activities:
16: for each activity localAct in localChor do
17: globalAct←source activity from globalChor for localAct
18: rewire localAct according to globalAct's direct connections
19: end for

20: return localChor
21: end function

22:

23: function TransformGlobalBusinessTransaction(globalBt, role)
24: if role is initiating in globalBt then
25: return TransformGlobalBtForInitiant(globalBt)
26: else

27: return TransformGlobalBtForResponder(globalBt)
28: end if

29: end function

30:

31: function TransformGlobalBtForInitiant(globalBt)
32: localBt← new local business transaction
33: â Based on the business transaction pattern of globalBt
34: â localBt will receive di�erent child activities here.
35: â basic structure: �rst send business doc, then optionally receive reply
36: return localBt
37: end function

38:

39: function TransformGlobalBtForResponder(globalBt)
40: localBt← new local business transaction
41: â Based on the business transaction pattern of globalBt
42: â localBt will receive di�erent child activities here.
43: â basic structure: �rst receive business doc, then optionally send reply
44: return localBt
45: end function

50

3.3 Processing of message type descriptions

3.3 Processing of message type descriptions

The electronic message exchange between partners involved in a business process is
relying on an explicit understanding of the speci�c kinds of messages expected and how
these messages are structured. In order to enable conformance in this area, message types
have to be prede�ned so they can then be adopted in a process de�nition. As presented,
global choreographies modeled using the BSopt approach de�ne any message exchange
by linking business documents to their business transaction activities and separating
between requesting and responding information. The business document de�nition for
BSopt Designer relies on the Core Components [60] standard which �nds its integration
into the tool by a collection of DSLs as described in [23]. The result of a business
document modeling process is a set of XML schema �les de�ning one business document
made up of simple typed properties and/or more complex container types.
Business documents need to be integrated into work�ow artifacts automatically. This

problem de�nition means that in its most minimal form a work�ow must incorporate
given XML schemas for referenced business documents so it can validate the struc-
ture of incoming data. Additionally, a way to integrate schematically correct outgoing
messages into the process has to be devised. For the concrete target work�ow system
�Windows Work�ow Foundation 4.0� the strategy to solve this task has been aligned
with the possibilities of the framework: WF4 relies on WCF services in order to send
data over the wire. Messaging information involved in this process is always based on
a �data contract� which is �a formal agreement between a service and a client that ab-
stractly describes the data to be exchanged� [32]. Serializable .NET types, even when not
attributed explicitly to act as data contract can be used in WCF to de�ne a mutual
understanding of the data structures exchanged between client and server. The sending
of real object representations instead of one string containing XML comes with the
advantage of automatic grammar and schema validation. Thus, not well-formed and in-
valid documents are rejected by WCF. Furthermore, the data access inside the work�ow
is greatly simpli�ed as sent or received messages ultimately are stored in variables and
dealt with in the same way as any other object in the system. For this setup to work the
given XML schemas have to be turned into serializable .NET types. Those types can
then be used in the work�ow artifact creation process to act as technical realizations of
the original business documents.

3.3.1 The business document transformation wizard

Before describing the steps which lead to the realization of a transformation process
which is able to transform business document schemas into managed types, it's illustra-
tive to look at the �nal result. Figure 3.14 illustrates the use case scenario which leads
the user to the generation of a message type assembly. The wizard usage resembles the
wizard for transforming global choreographies. There's only one dynamic step in which
the user has to select the business documents he wants included in the �nal result, a
processing phase and a summary screen. Figure 3.15 visualizes this sequence for the
�order from quote� sample presented in section 3.2.2. The resulting �MessageTypes.dll�
assembly will be used in the �nal wizard for creating a work�ow, which is discussed
later.

3.3.2 Evaluation of XSD transformation tools

Having outlined the motivation for creating a .NET type assembly out of XML sche-
ma descriptions, we now concentrate on the actual implementation. While a feasible

51

3 Contributions to the BSopt approach���������������	�
������	����������������	����������������	�����	
�����������
�������������������������������������	��������������
������	����������������������	����������	����������������	����������������������	���������������
�����
��������������	���	������������
������	������������������������ �������!����	�����"���#$�������������������������
��
���
����
����������%&������������������������������	��������'������%&����������	����������������������	��������'��������������������������������	���������������%&����������	������	�������������������
������	������������������������������������'�������	���������(&���������������������������)���������(&����������	��������������*!�����+�������,�������������������������������	��������������������������������������	�����-&������������������������	����������������	��������������������������)���������-&����������	���������	���������������������������
������	������������������������	���������������������������������	����������������������������	����������������	��������������		���.&�����������������������'�����.&����������	�������������'������������
���������������������	����������������	���,�� �������!����	�����"�������������
����/�����	������������������������'�������������	���������������������	��0�������$��	���������	�������������������������������������
Abbildung 3.14: The �transform XML schemata into a .NET message assembly�

use case.

approach would be to manually create code representations out of XML based type
descriptions, general consensus was that �rst this approach might consume a lot of im-
plementation time until yielding usable results and secondly was pretty complex and
thus had to be tested rigorously. As free tools for deriving code from XML schemas are
available the sensible approach was to evaluate those �rst before devising any code. The
three tools tested were the XML schema de�nition tool xsd.exe [29], the serviceModel
metadata utility tool svcutil.exe [31] and the LINQ to XSD [40] library.

The XML schema de�nition tool xsd.exe is a standard tool coming with the .NET
framework since version one and can be used to generate �XML schema or common
language runtime classes from XDR, XML, and XSD �les, or from classes in a runtime
assembly�. While generated classes are de�ned as serializable, partial so they can be
extended externally and often of good quality there are XML schemas which lead to
poor results or cannot be processed such as the XSDs o�ered as part of the BPMN 2.0
Beta 2 speci�cation [51].

The serviceModel metadata utility tool svcutil.exe has been introduced together with
WCF and is most commonly linked to automatic class generation based on WSDL
input sources. What's less known is that it can also derive code from XML schemas.
The testing of sample schemas showed that the utility is generally able to process our
business documents and create compilable C# source code out of it. But our tests also
revealed that the tool has its limits and tends to give up on complex schemas, creating
C# classes with a very generic Nodes property of type System.Xml.XmlNode[] to act
as generic container for any data. The e�cient handling of generated classes de�nitely
requires strongly typed structures which was the reason for abandoning this tool.

LINQ to XSD is an open source community project originally started at Microsoft
aiming to build upon the existing LINQ to XML technology introduced with the .NET

52

3.3 Processing of message type descriptions

Abbildung 3.15: The XSD transformation process for the �order from quote�
sample.

Framework 3.5. It consists of a library o�ering the basic framework and comes with a
console application which creates typed wrapper classes and readily compiled assemblies
from XML schemas. The output generated was generally showing the highest quality,
o�ered convenience methods such as static load and save functionality and even inclu-
ded documentation into the source code when applicable. Figure 3.17 shows the most
important elements created from the shipment noti�cation business document as a class
diagram coming from the XML schema de�nition portrayed in �gure 3.16. It shows that
the strategy used by LINQ to XML is not to create completely independent types but
base their functionality on a common framework. This design avoids code bloat but
introduces a new dependency which was deemed acceptable for BSopt.

As the output by the LINQ to XSD console application generated usable CLR based
assemblies the design decision was to include the project with BSopt Designer and
use the console application in the transformation wizard introduced earlier in order
to generate the message type assembly. This also resulted in a pretty straightforward
processing step which consists of the building of appropriate command line arguments
and the execution of the LINQ to XSD utility with this information.

3.3.3 Business document instance creation

As we have seen the adoption of business documents into WF4 work�ows can be sol-
ved by transforming any document structure into a .NET type representation ready to
be plugged into a work�ow de�nition. While this approach covers the validation and
receiving of messages, the sending of data is inherently linked to document instances

53

3 Contributions to the BSopt approach

Abbildung 3.16: Schematic view of three generated XSD �les describing the Ship-
mentNoti�cation business document for the �order from quote�
example.

conforming to the same business document structure. Work�ow hosting business appli-
cations or users need to generate suitable XML documents prior to the work�ow sending
them. Listing 3.1 shows an example XML instance conforming to the schema de�ned
for the shipment noti�cation business document from the order from quote example
scenario.

54

3.3 Processing of message type descriptions

<?xml version=" 1 .0 " encoding="utf−8"?>
<MessageAssembly xmlns=" tuw i en : b s op t : d a t a : Sh i pmen tNo t i f i c a t i o n : 1 : d r a f t ">

<bsopt_ShipmentNot i f i cat ionbsopt_ShipmentNot i f i cat ion>
<bsopt_Informationbsopt_Text>The order has been shipped .</

bsopt_Informationbsopt_Text>
<bsopt_ShippedAtbsopt_DateTime FormatCodeString="dd .MM. yyy HH:mm:ss "

TimeZoneCodeString="W. Europe Standard Time">31 .07 . 2010 10 : 5 0 : 4 5</
bsopt_ShippedAtbsopt_DateTime>

</bsopt_ShipmentNot i f i cat ionbsopt_ShipmentNot i f i cat ion>
</MessageAssembly>

Listing 3.1: A shipment noti�cation instance for the �order from quote� example
based on a Core Components de�nition derived XML schema

55

3 Contributions to the BSopt approach

Abbildung 3.17: Created .NET class representation of the shipment noti�cation
business document

56

3.4 Generation of work�ow artifacts

3.4 Generation of work�ow artifacts

All steps previously described came with the motivation to serve as necessary inter-
mediate stages in the generation of work�ow artifacts. The purpose of this section is
to describe this last element in the processing chain which builds upon a given local
choreography, a �tting message type assembly describing all business documents to be
used in the work�ow and XML �les de�ning speci�c messages to be sent. The choice
to abandon WF 3.x and build upon WF4 which at the time of evaluation still was in
a volatile beta 1 phase was motivated by the following facts as was also discussed in
section 2.3.2:

• While WF3 supports the notion of message correlation which is necessary to route
an incoming message to the right work�ow instance, its realization �context-based
correlation� is related to speci�c kinds of contextful bindings and practically the
inclusion of a �context token� into any conversation initiating operation contract
[44]. Contrary to this WF4 also supports �content-based correlation� where the
problem can be tackled on a higher level without depending on speci�c data
included as message headers.

• The control �ow semantics WF 3.x supports are based on either a sequential or
event based processing of activities. While event based work�ows allow the repre-
sentation of more complex business processes they are also harder to follow by
humans compared to sequential work�ows. While papers such as [61] show the
possibility of transformations from graph based process de�nitions into sequen-
tial ones, they also quite evidently show that these strategies are more complex
compared to any direct mapping approach. As WF4 comes with the new graph
based �owchart control �ow, it can be used in a more straightforward mapping
approach to represent given local choreographies. This speci�c control �ow pat-
tern supports the transformation of any given activity in a local choreography
into work�ow speci�c constructs while the control �ow semantics on the work�ow
side stay the same.

• The data handling perspective in WF3.x is based on �elds and properties de�ned
in code-behind �les with data �ow being realized by binding to these in-code
de�nitions using dependency properties. While this approach may still allow a
declarative work�ow de�nition strategy when using speci�c custom activities its
realization is challenging. WF4 introduces a completely declarative approach by
incorporating the de�nition of variables and the accompanied data �ow into the
work�ow speci�cation. This design supports the generation of self contained work-
�ow artifacts and lets us avoids the problem �eld of generating custom code on
the �y.

• As with data handling, WF4 also supports the declarative de�nition of execution
logic by introducing its own Visual Basic based expression language. Speci�c
logic can thus be included into a generated work�ow de�nition itself where a code
behind �le was necessary in WF3.x2.

• In WF3 it was necessary to de�ne service contract interfaces which de�ne the
desired data exchange semantics to be performed by the work�ow. De�ning this

2It shall be noted that WF3.x comes with its own rules engine which can replace in-code
logic at some places. Nevertheless the applicability of this technology is much more limited
compared to WF4 expressions.

57

3 Contributions to the BSopt approach

information for dynamic operations and creating binaries out of these de�nitions
would have introduced a new area of complexity into the system including all the
disadvantages that come with it. WF4 replaces this approach by an automatic
service interface deduction mechanism. This approach was much more desirable
as it meant that de�ned work�ows just work based on the declarations created
by the work�ow artifact generator.

With these preliminaries out of the way this section is structured by �rst introducing
the usage perspective of the work�ow generation wizard. Secondly, an elaboration of
the actual transformation implementation is presented and thirdly, certain speci�cs
considered noteworthy are discussed.

With work�ow artifact generation the gap between technologically independent pro-
cess description and concrete implementation is closed. This transgression toward a
speci�c technology comes with concrete requirements for additional information to be
entered by the end user. In case of Windows Work�ow Foundation 4, these missing
input tokens needed to successfully transform a local choreography model are threefold:

1. One required data item is the speci�c WCF binding used for communication
with business partners. This also de�nes the mode of communication which as
example includes message queues, message transportation over HTTP or binary
transportation.

2. The speci�c endpoint information for all business partners has to be given so it
is known where to contact process participants.

3. All message based interaction activities from the input choreography have to be
correlated with speci�c business document types. Sending interaction activities
also need to be linked with speci�c message instances.

Figure 3.18 outlines the corresponding use case which describes a user inputting those
informational fragments into a wizard in order to generate work�ow artifacts. As an
accompanying illustration, �gure 3.19 shows the actual user experience of the work-
�ow generation wizard. As shown, users �rst select the choreography to transform and
which message type assembly deemed suitable for the actual message exchange. Next
they can decide whether to input work�ow speci�c data by using the wizard or by using
a prede�ned XML �le holding equivalent information. Assuming users choose to input
data manually they now assign each incoming activity from the source choreography
one or more business documents taken out of the message type assembly provided. As
an example the buyer from the �order from quote� scenario might receive a quote pro-
vision or a quote refusal message when requesting a quote in the �request for quote�
business transaction. The following step in the wizard requests similar information for
outgoing activities de�ned in the source choreography. This time users additionally need
to provide the actual content of outgoing business documents which are to be provided
in the form of XML �les as described in section 3.3.3. Again one or more business docu-
ments can be associated with one interaction activity. At last users have to specify the
concrete WCF binding information governing �transport, encoding, and protocol details
required for clients and services to communicate with each other� [32]. Additionally a
�base address� has to be speci�ed for the work�ow services for all process participants.
The wizard automatically derives �tting endpoint addresses for all messaging activities
speci�ed in the source choreography thus alleviating users of having to specify each and
every endpoint address and linked service contracts manually as would be necessary
when de�ning the work�ow in a traditional way.

58

3.4 Generation of work�ow artifacts

���������������	���
���
������������������	������������	�
����������	����������������
��������������	
�����������
�������������������������
���
�����������������������������	��������������
���������������
����������	�����������
���
������������
�������������
�����
�������
������	������������������
�����������������������������������
�����������������������
�����	�������
������
��������
�
���
�������	������������	�
�����������
��
���
����
��������� !"��������
������������������	��������#������!"��������	�����
���������������	��������#���������������������������������	������������ $"�������������������������������$"��������	�����
�������%&�����'������(������������������������
���
������������������	������������	�
������$"��������	������	�����������������
���
����������������	������������	�
������������������������#������	�������)"���������
������
���
�������������������	������������	�
�����������������������������)"��������	����������%*��+������	
���
(������ ,"���������
���	
���
����������������������
�����	���	�����
�������������������������,"�+���	
���
��������	�����
�������%+����������������(����-�
������������������������#���������������������������.�/"�� 0"��������
�����������������	�����������������	����
���
��������������
��������������������	����	������������	�
�����������������������������0"��������	����������%1�����������������(������ 2"��������������������������������
�����	������������

���������	��
�������
������������������������������	����
���
��������������
��������������������	����	������������	�
�����������������������������	��2"��������	����������%&����������������������(������ /"���������
�����������������������������������
��-������������������������

���������������������������
��-�����������������������

�������������������������
���
��/"��������	����������%3���������

����������(������ 4"��������������
����������(��������������������������
��������������������
����������������������������������4"��������	����������%��������	���(�����������������������������������	�����

�����������%5�	�
����(�������������	�����
��������		��� 6"��������
���������#������6"��������	��
���������#�������������
��
�����	�����������
����
���
����������������������
����������������	
������
������������-�������
������������������������
-��

���������	����������������������	�
��������������
����
����*����	������������
��������#�������������	�����������������	��7������8���������������������������
���������������������	��������	����������������������������������
Abbildung 3.18: The �Transform a local choreography with message type assem-

bly and XML messages into work�ow artifacts� use case.

59

3 Contributions to the BSopt approach

Abbildung 3.19: The work�ow artifact generation for the buyer in the �order from
quote� example

60

3.4 Generation of work�ow artifacts

Abbildung 3.20: A class diagram representing types used for userinput.xml
serialization

The concrete outputs the wizard generates are a work�ow de�nition based on the
XAML Object Mapping Speci�cation 2009 [42], an application con�guration �le de�ning
necessary endpoint speci�cs to be applied by hosting business applications and �les
supporting the automatic hosting process. Those consist of assemblies needed for type
resolution (LINQ to XSD base types and message types) and copies of given XML
documents.

3.4.1 Implementation of the work�ow artifact generation
process

The WF4 technology is based on the Common Language Runtime version 4 acting as
Microsoft's implementation of the Common Language Infrastructure (CLI) standard
[4]. While this new version comes with many improvements and provides new feature
possibilities to CLR based languages it also means that programs written for older
versions of the CLR cannot directly interoperate with CLR 4 based data structures.
BSopt Designer, building upon the Visual Studio 2008 Shell is developed using C# 3.0
which uses libraries provided with the .NET Framework 3.5 and is supported by the CLR
version 2.0. This means that it's not possible to directly work with the data structures
necessary to serialize WF4 artifacts from within the BSopt Designer process. Fortunately
there is backward compatibility from CLR 4 to CLR 2 which means that e.g. class
libraries written in C# 3.0 can be loaded into a CLR 4 based process [21]. Exploiting
this possibility the general concept for the work�ow artifact generation process is based
on building a CLR 4 based console application taking input data such as described in
the previous section and using this information to create the desired output data.

The resulting local choreography transformer application LCT.exe takes just one com-
mand line argument which de�nes the transformation directory on the �le system. Howe-
ver this directory must include exactly one .LCL model �le, a message type assembly, a
userinput.xml �le, additional assemblies needed for type resolution and all needed busi-
ness document representing XML data �les. When using the work�ow transformation
wizard within BSopt Designer, those �les are automatically copied into a destination
folder before calling the actual transformer. The rest of this section is separated into

61

3 Contributions to the BSopt approach

three parts. First the contents saved in a userinput.xml �le are given a closer look. Se-
condly, the actual transformation steps are explained. Thirdly, the section is �nished by
an observation of the creation process of the co-created application con�guration �le.

The data stored inside any userinput.xml �le is basically a serialization of the classes
involved in �gure 3.20, which come from a class library shared between BSopt Desi-
gner and LCT.exe. The Userinput class stores the information users have to enter when
using the work�ow transformation wizard in BSopt Designer: apart from single proper-
ties concerning the used binding, and base addresses its main responsibility is to link
messaging activities de�ned in the local choreography to either service- or client des-
criptions. Which of these description classes are to be used is depending on whether the
original activity is de�ned as in- or outgoing. Each activity in the source choreography
is identi�ed by a globally unique identi�er (GUID) as is each client/service description
and those ids are used in the linking process as modeled in the DslActivityToDescrip-
tion class. Apart from the data a user is entering explicitly, additional information is
automatically derived in order not to overwhelm users with technical details while only
sacri�cing minimal technical �exibility:

• An operation name is stored inside the description classes as part of the impli-
citly set up WCF service contract which is automatically de�ned to be either
�SendMessage� or �SendAcknowledgement�.

• Endpoint addresses are unique per business transaction and generated by adding
the business transaction name, stripped of whitespaces and encoded to an XML
local name, to the base address given by the user.

• A unique XML local name encoded service contract name is automatically derived
from the current business transaction name and the speci�c kind of message. The
algorithm for creating a service contract distinguishes between acknowledging-
and business document handling activity types.

It adds the character 'I' to the XML local name encoded name of the current busi-
ness transaction. Then it concatenates the index of the messaging activity inside
a business transaction based on its activity type and a character encoding the ac-
tivity type itself ('A' for acknowledgments, 'M' for business document messages).
Finally, it adds another character to distinguish alternative messages for the sa-
me activity in the source choreography. A work�ow-wide unique example service
contract would read �IRequest_x0020_for_x0020_Quote1Mb� and represent the
2nd business document messaging activity3 in the �Request for Quote� business
transaction acting as 2nd alternative.

• The CanCreateInstance property is needed when a work�ow is de�ned to act as a
�service work�ow�. Contrary to a �non-service work�ow� which is to be launched
manually a new service-work�ow instance is only created by the work�ow de�niti-
on host when receiving a special �rst message. In the �order from quote� example
the seller would host service-work�ows as he's waiting for �QuoteRequest� messa-
ges while the buyer is launching non-service work�ows. Receive activities in WF4
can launch new work�ow instances but for this to work their CanCreateInstance
property has to be set to true and the Receive activity must be the �rst activity
inside a work�ow de�nition. This is the reason for the CanCreateInstance pro-
perty inside the ServiceDescription class which will only be set to true for the

3Indexing starts with zero.

62

3.4 Generation of work�ow artifacts

�rst receiving activity inside the �rst business transaction of a service-work�ow
describing choreography.4

The actual transformation of a choreography into a work�ow de�nition in LCT.exe
can be separated into four steps which will described precisely in the sections following
the enumeration:

1. Creation of an object representation from the local choreography storage model
(choreography loading).

2. Transformation of business transactions and relinking of target work�ow activities
based on the source choreography graph topology.

3. Postprocessing of the created work�ow de�nition on the object level.

4. Serialization of the work�ow de�nition into its XAML based storage representa-
tion.

Transformation step one: choreography loading

While the handling of local choreographies in section 3.2.4 was based on the object
model supported by DSL Tools 2008, the object model representation in the local cho-
reography transformer application is not relying on it. Instead the class hierarchy has
been rewritten to work by directly interpreting the .LCL XML storage representation,
which is greatly facilitated by the LINQ to XML [39] base technology included with
the .NET framework 4.0. The reason for this move is that Visual Studio 2010 does not
directly support DSL Tools 2008 but comes with an updated yet incompatible new
version. It might have been possible to directly reference the local choreography's API
generated with Visual Studio 2008. However, this approach was not further tested as
the reality of switching development environments each time the DSL meta model was
changed externally was considered too cumbersome and error prone to be practical. The
version control system used by the BSopt project does not include generated binaries.
Thus, each team member using the local choreography transformer would have to make
sure individually, that the newest meta model assembly for the local choreography was
referenced in Visual Studio 2010.

Transformation step two: activity transformations

Step two, the actual transformation process, is based on algorithm 2. The algorithm
shows how a directed graph can be used as a source for creating a new destination
graph representation with transformed nodes but the same topology such as the source
graph. Lines 3 to 6 transform each source vertex from the source graph into a new
representation (by calling ConvertToDstVertex()) which gets added to the destination
graph. In a second pass lines 7 to 13 show the algorithm iterating through pairs of
vertices connected by an edge in the source graph and applying an equivalent edge on the
destination graph so to reconstruct the topology from the source graph representation.

As WF4 supports a �owchart based control �ow it's possible to use this algorithm
to transform the graph structure of a local choreography into a corresponding work�ow
de�nition. The actual implementation does this on two levels: �rst, the graph containing
global elements representing either initial-, �nal- or transaction activities is converted

4In this context '�rst' is based on the order of execution a choreography de�nition prede�nes.

63

3 Contributions to the BSopt approach

Algorithm 2 General transformation of a source graph into a destination graph
representation

1: function TransformGraphRepresentation(sourceGraph)
2: dstGraph← new destination graph
3: for each vertex vert in sourceGraph do

4: dstV ert← ConvertToDstVertex(vert)
5: dstGraph.AddVertex(dstV ert)
6: end for

7: for each vertex vert in sourceGraph do

8: dstV ert← GetDestinationVertexFor(vert)
9: for each vertex srcTargetV ert in GetTargetsOf(vert) do
10: dstTargetV ert← GetDestinationVertexFor(srcTargetV ert)
11: dstGraph.AddEdge(dstV ert, dstTargetV ert)
12: end for

13: end for

14: return dstGraph
15: end function

and rewired to represent the same topology as the source graph. Initial- and Final- acti-
vities are converted into WriteLine activities to state the current state of the work�ow.
Transaction activities are transformed into FlowChart activities. Secondly, the child ac-
tivities contained inside each source transaction activity are transformed again in the
same fashion as on the global level. As business transaction activities in LCL hold ob-
jects all deriving from the common ControlFlowElement base class, a simple approach
to transformation would be to introduce speci�c transformation operations based on the
concrete type of an object using an ever extending if-else pattern. While this approach
keeps the common concern of transformation on a local level, it clearly is problematic
as changing object hierarchies are hard to maintain this way, especially when a code
base starts to �ll with this design at many di�erent places. The approach of introducing
a virtual method on the base of the type hierarchy in order to perform the transforma-
tion, while generally advantageous for solving type dependent concerns, clearly violates
the single responsibility principle which states that �a class or module should have one,
and only one, reason to change� [25]. However, transformations into work�ow elements
clearly are not the reason the classes have been de�ned for in the �rst place. One design
pattern created to aid in scenarios where it's desired to non-intrusively extend a type
hierarchy with external algorithms is the visitor pattern [11]. By introducing double
dispatching, it enables calls which are depending on the runtime types of the processed
objects in the type hierarchy and a visitor's concrete type. The pattern realization in
LCT.exe is shown in �gure 3.21, which shows the Transformer class associated with
the IControlFlowElementVisitor interface and ControlFlowElement types. Each type
deriving from ControlFlowElement has to implement the Accept method as shown in
the Note in the illustration. A Transformer instance can then iterate over a collecti-
on of ControlFlowElement instances and call Accept() on each instance while handing
over an IControlFlowElementVisitor implementing instance such as a ControlFlowEle-
mentToActivityTransformationVisitor. This results in two polymorphic dispatches with
the �rst being the virtual call on the ControlFlowElement. The second resolves the
particular method to be called on the visitor which works as the concrete type of the
ControlElement is known from within the instance's Accept method which enables the

64

3.4 Generation of work�ow artifacts

Transformer void Visit(InitialActivity)void Visit(FinalActivity)void Visit(ValidationActivity)void Visit(InteractionActivity)void Visit(ReactingActivity)void Visit(InitiatingActivity)
<<interface>>IControlFlowElementVisitor

Accept(IControlFlowElementVisitor)<<abstract>>ControlFlowElement
Accept(IControlFlowElementVisitor)InitialActivity Accept(IControlFlowElementVisitor)FinalActivity Accept(IControlFlowElementVisitor)ValidationActivity
Accept(IControlFlowElementVisitor)InteractionActivity Accept(IControlFlowElementVisitor)ReactingActivity Accept(IControlFlowElementVisitor)InitiatingActivity

List<FlowNode> ResultsFromLastVisit {get; }ControlFlowElementToActivityTransformationVisitor<<realize>>
// C# implementation for each ControlFlowElement deriving type:public override void Accept(IControlFlowElementVisitor visitor){ visitor.Visit(this);}

Abbildung 3.21: The visitor design pattern as realized in the local choreography
transformer application.

right overload on the visitor to be called.

The ControlFlowElementToActivityTransformationVisitor o�ers the public property
List<FlowNode> ResultsFromLastVisit with FlowNode describing an abstract base
class for all nodes which can be included inside a WF4 �owchart based work�ow. This
property acts as destination vertex as de�ned on line 4 of algorithm 2 with the Convert-
ToDstVertex function realized by the usage of the just presented visitor implementation.

Before discussing the transformation of each child activity of a business transaction
container within a local choreography, the structure of a resulting work�ow de�nition
must be de�ned. Figure 3.22 shows the result of the work�ow transformation for the
buyer in the �order from quote� example scenario. The layout has been done manually
as an automatic layouting feature was out of scope. The basic structure of the work�ow
de�nition is very much comparable to the source choreography: the execution logic leads
work�ows into business transactions, which are represented as nested �owchart activi-
ties. It then makes them branch afterwards based on a switch construct which might
very well encode more than just two cases as seen in the illustration. What's not directly
displayed is that each switch statement on the global level is based on the evaluation of
a global work�ow variable of type Int32 called lastTransactionOutcome. This variable
is set inside each nested business transaction representing �owchart activity based on
the individual business result. Table 3.1 lists this and all other global variables which
are de�ned for a generated work�ow.

The build up of �owcharts which are describing business transactions is dependent on
the topology of the source choreography. This topology itself is the result of the selected
business transaction pattern in the original global choreography and the speci�c role of
the executing party for this business transaction. Despite this inherent volatility there
are some variables which are de�ned on a per-�owchart basis. Table 3.2 outlines the
name, type and reason for the de�nition of these.

As argued in the beginning of this section, one great advantage of the new version
4 of Work�ow Foundation is that its design allows the straightforward de�nition of
work�ows in a purely declarative way. While the base activity library coming with the
product helps tremendously in this realization, there are always cases when this is not
enough. Work�ows generated with BSopt Designer need to communicate with a hosting
business application to enable human interaction for decision making. One strategy to
implement this requirement is to rely on available WCF based communication activities

65

3 Contributions to the BSopt approach

Abbildung 3.22: The work�ow generated for the buyer in the �order from quote�
example.

66

3.4 Generation of work�ow artifacts

Variable Name Type Usage context

businessDecisionIndex Int32 Holds the integer encoded busi-
ness decision of a user based on
an incoming request and is used
to decide which reply to send
back to the requesting party.

collaborationId System.Guid Holds the unique id used for cor-
relating all messages to one busi-
ness collaboration. This id is also
assigned to each outgoing messa-
ge so correlation will work.

contentHandle CorrelationHandle A handle which is necessary for
content based correlation.

lastTransactionOutcome Int32 After having �nished a business

transaction, this variable holds
the decision for the switch activi-
ty, which comes next in the con-
trol �ow to implement the sub-
sequent branching behavior.

var1,var2,...,varN IdContainer<T> Holds each sent or received mes-
sage with the type parameter
�T� being an actual business do-
cument representing type or an
acknowledgment type. IdContai-
ner represents a wrapper type,
which comes with an extra Guid
used for content based correlati-
on.

skipFirstReceiveInTransaction Boolean Only used inside service work-
�ows. There, the �rst Receive
activity from the �rst business

transaction has been dragged
out to enable this scenario. The
�rst business transaction in such
work�ows has to skip the re-
ceiving of a business document,
which is indicated by the value
of this variable. The reason for
this move is explained in the sec-
tion �transformation step three:
postprocessing�.

Tabelle 3.1: Global variables de�ned in generated work�ow de�nitions

67

3 Contributions to the BSopt approach

Variable Name Type Usage context

retryCount Int32 �The requesting authorized role must re-
initiate the business transaction so many ti-
mes as speci�ed by the retry count in ca-
se that a time-out-exception � by exceeding
the time to acknowledge receipt, or the ti-
me to acknowledge processing, or the time
to respond � is signaled. This parameter on-
ly applies to time-out signals and not docu-
ment content exceptions or sequence valida-
tion exceptions � i.e., failed business control
exceptions.� [16]

experiencedTimeout Boolean Holds whether a timeout has been experi-
enced while waiting for an incoming message
which in�uences the control �ow.

resultingEntityStates String[] Holds possible outcomes for a business tran-
saction. As an example those would be �quo-
te [provided]� or �quote [refused]� for the �re-
quest for quote� business transaction.

replyOptions List<Object> Used only by responding parties to hold the
available responding messages subsequently
used for communicating a business decision
to the business partner.

Tabelle 3.2: Local variables de�ned in generated business transaction de�nitions

and realize the business application communication that way. While possible, this ap-
proach comes with high costs as the setup on both sides must be synchronized to work
together even though the hosted work�ow and the business application are executing
within the same process. An easier way to achieve the same result is to provide spe-
cialized custom activities within a custom .NET assembly which is needed anyways to
transport specialized types such as the IdContainer<T> type described in table 3.1. Fi-
gure 3.23 shows the types provided by the Tuwien.Big.Bsopt.Work�ow assembly written
to support any BSopt derived work�ow infrastructure. Right on top of the illustration
there are three di�erent classes deriving from the NativeActivity type. These are custom
activities used for the following reasons:

• The BusinessDecisionActivity type takes a list of objects corresponding to possible
responding messages and returns the zero based index of the message chosen from
this list inside the business application. It provides a static C# event [38] which
can be used by the business application to provide users with an opportunity to
make business decisions.

• The TransactionOutcomeDecisionActivity type is used for mapping the informa-
tion exchanged inside a business transaction to an actual outcome. It provides a
list of possible business transaction outcomes and returns a zero based index de�-
ning the chosen result. Again it provides a static C# event which can be handled
by a business application hosting the work�ow.

• The ExposeDataToHostActivity type is an activity to provide generic data to event

68

3.4 Generation of work�ow artifacts

Abbildung 3.23: The types provided to any work�ow de�nition by the Tuwi-
en.Big.Bsopt.Work�ow assembly.

consumers who were registering to its static DataExposing event. Its usage for
BSopt work�ows condensed down to notifying interested parties about the current
state of the work�ow which is realized by exposing BSOptWork�owStateData
instances through the event and handing over any received messages.

With the used variables and custom activities explained it's now possible to get
back to the actual transformation steps and summarize what has to be done in order
to generate a working business transaction representing nested �owchart activity. As
activities inside a local choreography are independent from each other, it's possible
to transform each element into new independent entities for the work�ow de�nition.
Table 3.3 shows the choreography activities involved in this process and their results
within the work�ow. The transformation of document exchanging interaction activities
is also dependent on the given additional userinput.xml based meta data. It de�nes
how many document possibilities are available. Also it sets whether resulting Receive
activities shall be able to create new work�ow instances.
Another specialty of message exchange activities is their need for correlation. A work-

69

3 Contributions to the BSopt approach

Source Type Transformation result

InitialActivity An ExposeDataToHostActivity signaling the start of a
new business transaction.

FinalActivity In case of a business success a TransactionOutcomeDeci-
sionActivity prompting the business application to decide
on one business outcome used for further dispatching. Al-
ways followed by an ExposeDataToHostActivity signaling
the end of a business transaction.

ValidationActivity Validation types other than �check retry count� are co-
vered by the validation functionality of the WCF runtime
and need no further implementation inside the work�ow.
Else the value of the retryCount work�ow variable is tes-
ted for being greater than zero and used for adequate
branching.

InteractionActivity (ac-
tivity type: business ap-
plication)

For responding business transactions a BusinessDecisio-
nActivity is emitted so the business application may
prompt users for a decision based on the received busi-
ness document information.

InteractionActivity (ac-
tivity type: non-business
application)

For outgoing activities a Send activity will be created. In
case of multiple sending possibilities a Switch activity will
decide which Send to use at runtime based on a previous
business decision.
For ingoing activities a Picker activity with as many Re-
ceive activity triggers as necessary and an additional De-
lay activity trigger used to react to timeouts will be crea-
ted as is illustrated in �gure 3.24. For received messages
the custom ExposeDataToHostActivity type is used to si-
gnal the received message to the business application. In
the case of a timeout the experiencedTimeout variable is
set to true.

Tabelle 3.3: Basic transformation strategy for creating �owchart nodes from ac-
tivities inside a local choreography

�ow host may at every point in time manage multiple work�ow instances possibly wai-
ting for the same incoming message types. Hence, it's important to have a way to decide
which received message belongs to which work�ow instance. The chosen strategy to sol-
ve this problem is called �content based correlation�. It decides the routing of messages
based on their included information. As the messages exchanged by business partners
are of a form not previously known to BSopt developers, the strategy for introducing
content based correlation starts with wrapping each sent or received message inside the
generic IdContainer<T> type shown in the class diagram in �gure 3.23. This type is able
to transport each message as its Data property and includes an additional Id property
of type System.Guid which will act as a unique id used for the entire business collabora-
tion. Content based correlation involves this type, all Send or Receive activities and the
correlation handle variable contentHandle introduced in table 3.1. The contentHandle
variable has to be initialized exactly once with a �query correlation initializer�, which
de�nes what to look for inside a given message. Once the variable has been initialized

70

3.4 Generation of work�ow artifacts

Abbildung 3.24: A pick branch including two Receive activities waiting for dif-
ferent incoming messages and a Delay activity to indicate a
timeout.

it can be reused for �nding correlation matches as often as desired. The default imple-
mentation for correlation queries is based on XPath expressions which have to be set
up to match the Id property of each processed IdContainer<T> based message wrapper.
In the used implementation the XPath expression �sm:body()/*/xg0:Id� is used with
�sm:body()� being a custom XPath function provided by WCF. It �nds the start of the
actual message body inside a SOAP envelope. The transformer has to distinguish whe-
ther the currently processed Interaction activity is the �rst in execution order or not. If
it is, the resulting WF messaging activity will be set up to initialize the contentHand-
le variable, else the activity will correlate based on the already initialized correlation
handle.

Transformation step three: postprocessing

Phase 3 in the transformation process, the postprocessing step, is necessary to enable
work�ow de�nitions which result in the host creating new instances when receiving a
�rst incoming message - so called �service work�ows�. Service work�ows demand that
they start with a Receive activity with its CanCreateInstance property explicitly set
to true. Until this point it's not guaranteed that this is the case. The postprocessing
step clones the Receive activity from the �rst business transaction in a service work�ow
de�nition. It inserts this cloned activity at the very start of the work�ow to support the
automatic creation of new work�ow service instances. Also, it ensures that the activity's
CanCreateInstance property is true. Then it adds a following global Assign activity to
save the collaboration id taken from the received message into the global collaborationId
variable. This id-value is used for the rest of the worfklow for setting up messages about
to be sent. Only service work�ows will depend on a collaboration id initialized exter-
nally. Non-service work�ows on the other hand are starting with their collaborationId
variable set to the default value of Guid.NewGuid() which is automatically creating a
new unique id for the business collaboration. Finally it makes sure that the original
Receive activity within the �rst business transaction will be skipped once so to prevent
the work�ow from trying to receive the same message type twice. It adds and uses the

71

3 Contributions to the BSopt approach

<Act iv i ty
xmlns : sxs=" c l r−namespace:System .Xml . S e r i a l i z a t i o n ; assembly=System .Xml , Vers ion

=4 .0 . 0 . 0 , Culture=neutra l , PublicKeyToken=b77a5c561934e089"
xmlns :x s l=" c l r−namespace:Xml . Schema . Linq ; assembly=Xml . Schema . Linq , Vers ion

=1 .0 . 0 . 0 , Culture=neutra l , PublicKeyToken=nu l l "
>

Listing 3.2: The two missing CLR namespace declarations necessary when
including LINQ to XSD based business document classes in a
work�ow de�nition

global skipFirstReceiveInTransaction variable for this purpose which is set to true by
default and will be set to false after the Receive activity has been skipped.

Transformation step four: serialization

Step 4 in the transformation process is to serialize the work�ow instance that's been
built on an object level into its XAML structure. It was also deemed desirable to be
able to visualize the work�ow as shown in �gure 3.22, which is a screenshot taken
from within Visual Studio 2010. The XAML speci�cation is not only used to describe
work�ows but can be seen more generally as a technology to work with runtime object
hierarchies. Subsequently the easiest way to serialize a work�ow is to just use the static
Save() method provided by the System.Xaml.XamlServices class and provide it with the
work�ow object and a �lename. In [67] it is made clear that for work�ow designers5 to be
able to visualize a XAML work�ow, it must actually describe a type instead of an object
hierarchy. This is supported by adding the x:Class attribute to the XML de�nition.
The specialized System.Activities.XamlIntegration.ActivityXamlServices class provides
a method for creating XamlWriter instances which support this scenario.

Unfortunately, tests showed that this is not enough. BSopt Designer generated work-
�ows reference business documents which themselves depend on a common base class
provided by the LINQ to XSD project (compare �gure 3.17). The given XamlWriter
instances will not detect this dependency and thus create results which can't execute
or be visualized. The missing types had to be included manually: for CLR assemb-
lies to be referenced inside a XAML instance the concept of XML namespaces has
been extended. XML namespace de�ning URIs still can be mapped to pre�xes which
may then be used within the rest of the XML structure to reference elements residing
in the speci�ed namespace. As an example this is done with the declaration xmlns:x
= "http://schemas.microsoft.com/winfx/2006/xaml", which is declaring an �x� pre�x.
Additionally, pre�xes may be mapped to assembly speci�c .NET namespaces so mana-
ged types may be instantiated within a XAML de�nition. This is realized by supporting
a special syntax to reference .NET namespaces as is documented in [45]6. Listing 3.2
shows the two missing mapped CLR namespaces. After having been added to the ori-
ginal serialization results, these made the work�ow infrastructure load the declared
assemblies. It is noteworthy that the de�ned pre�xes were never directly used inside the
work�ow de�nition. The automation of this process consists of two phases: �rst all ne-
cessary namespace declarations have to be detected for a given work�ow de�nition. The
resulting collection of namespace declarations then has to be written out instead of the
namespaces the default implementation of XamlXmlWriter would serialize. The imple-
mentation thus re�ects over all types it encounters referenced by a work�ow de�nition

5In this context a 'designer' is just API-lingo for a visual editor.
6While this referenced documentation refers to WPF it's also applicable to WF.

72

3.4 Generation of work�ow artifacts

Abbildung 3.25: The generated application con�guration �le for the buyer for the
�order from quote� example scenario.

Abbildung 3.26: An excerpt of the preprocessed app.con�g generating transfor-
mation template.

and creates distinct CLR namespace declarations for all types in their inheritance chain.
It considers all implemented interfaces and also recursively checks all type arguments
found in any generic type. Next a subclassed version of XamlXmlWriter is used to over-
ride speci�c methods such asWriteNamespace in order to add the additional namespace
declarations which are given to the instance as additional constructor argument. With
these extra e�orts in place, the local choreography transformer supports the creation of
work�ows with external dependencies automatically considered and solved.

Generation of the application con�guration �le

The app.con�g �le is a general concept predominantly used in .NET. It allows the
declarative con�guration of applications with user- or application- speci�c properties
especially set up to be modi�able at deployment time. Additionally, if available, code
can access specialized sections of the app.con�g �le and read data from there. One
example is the WCF, which allows the declaration of speci�c services using an app.con�g

73

3 Contributions to the BSopt approach

void GenerateAppConfig ()
{

AppConfigTemplate appConfigTemplate = new AppConfigTemplate
{

InputFileName = _userInputFi lePath
} ;
string genData = appConfigTemplate . TransformText () ;
i f (appConfigTemplate . Errors . Count > 0)

throw new ArgumentException (string . Format (Cu l ture In fo . CurrentCulture , "
Transforming the app l i c a t i on c on f i gu r a t i on f i l e f a i l e d with {0}
compi le r e r r o r s . " , appConfigTemplate . Errors . Count)) ;

using (var f s = F i l e . Open(AppConfigFilename , FileMode . Create , F i l eAcce s s .
Write , F i l eShare . None))

{
TextWriter tw = new StreamWriter (f s) ;
tw . Write (genData) ;
tw . Flush () ;

}
}

Listing 3.3: Code to transform text with a preprocessed T4 template class

�le instead of creating the desired setup in code. Using application �les for service
con�guration at deployment time is desirable for BSopt Designer created work�ows.
The reason for this is, that it serves to decouple work�ows from business applications.
This is contrary to the approach of hard-coding the WCF objects hosted work�ows
require at runtime. App.con�g �les can thus be used more universally as consuming
business applications do not need to know in advance how to set up any services a hosted
work�ow might need. Figure 3.25 depicts an excerpt of the application con�guration �le
generated for the buyer role for the �order from quote� example scenario. The XML block
WCF is concerned with starts with the system.servicemodel element and contains client
and service speci�c con�gurations including endpoint adresses, bindings, contracts and
names. While the illustration might be quite self explanatory a thorough documentation
of the related con�guration XML schema is available at [43]. The structure of the
app.con�g �le supporting business applications is prede�ned with client and service
elements repeating dynamically based on the information work�ows want to exchange.
This precondition is a perfect usage scenario for a preprocessed T4 text template which
was already mentioned in section 2.5 on page 25.
The template contains a mixture of (i) static XML data and speci�c directives to

either (ii) execute some code or (iii) write the result of a code evaluation into the output.
Figure 3.26 shows an excerpt of the text template illustrating those three di�erent
kinds of data. Lines 52 to 55 show static output with the plotting of an evaluated
code statement into the output at line 54. Finally, lines 56 to 66 feature C# code
which has to be executed in order to generate the various endpoint elements seen in
�gure 3.25. The input variable which is referred to in the illustration is de�ned at the end
of the text template and of kind UserInput as de�ned in �gure 3.20. The text template
is automatically transformed into a C# class which then can be used at runtime to
transform data from a userinput.xml �le into an app.con�g �le. Listing 3.3 shows how
the resulting AppCon�gTemplate class is used by calling its TransformText() method
and writing the returned string data to the �le path given by the AppCon�gFilename
property.

74

3.5 The work�ow hosting application

Abbildung 3.27: Hosting a generated WF4 work�ow from within BSopt Designer.

3.5 The work�ow hosting application

Work�ows as de�nition of an executable business process have some merit in the visua-
lization of their structure. However, their main bene�t is that they enable the concise
description of machine executable business logic. This allows prepared applications to
consume and �just run� the work�ow. The assemblies which come with BSopt Desi-
gner allow third party developers to create their own business applications. These can
consume created work�ow artifacts as all types needed - such as the custom activities
described in the last section - are provided publicly. For testing reasons and for va-
lidating whether the generated process descriptions worked in the �rst place, BSopt
Designer also provides users with a sample business application. It comes as a console
application, automatically detects whether a given work�ow is a service- or non-service
work�ow and hosts the given business logic accordingly. This section will describe this
hosting application by �rst presenting the user perspective and then describing the app-
lication's implementation. As the hosting application's behavior is very much depending
on the hosted work�ow de�nition, a speci�c use-case description with prede�ned pro-
cessing structure is omitted. However, the ways users can interact within the bounds of
the business process will be described in the following.

In order to launch the work�ow hosting application, an execution perspective project
must be opened in BSopt Designer's solution explorer. This project type o�ers an ad-
ditional context menu for �les with the �le extension .xaml named �Host Work�ow�.
Users selecting this menu entry will launch the BSopt sample work�ow host for the
selected �le as illustrated in �gure 3.27. This console application will by default look for
an app.con�g �le within the .xaml �le's directory on the �lesystem and use this for set-

75

3 Contributions to the BSopt approach

ting up its client- and service endpoints. Next - if not told speci�cally - the application
will try to detect whether it's dealing with a service- or non-service work�ow. Finally,
the work�ow gets validated so any con�guration warnings or errors will be detected
before hosting starts. Based on the detected or given kind of work�ow, the hoster will
either wait for speci�c incoming messages which can trigger the instantiation of a new
work�ow or launch one non-service work�ow instance immediately.
The illustration in �gure 3.27 shows the hosting of artifacts created for the seller for

the �order from quote� example scenario. Subsequently, the hosting business application
detects a service work�ow as the seller's role is to wait for incoming QuoteRequest
messages. As shown in the screenshot, the application receives a quote request from a
buyer asking for a quote about one item with id 4711. This leads to the instantiation and
execution of a new work�ow and toward a business decision requiring human interaction:
should the seller provide a quote or refuse it? For brevity the user in this scenario chooses
to refuse the quote. This makes the business application transcend into the �Quote
[refused]� state. Thus, the execution logic of the work�ow reaches an end. It recognizes
a business failure for this example. The buyer's side reaches the same conclusion after
receiving the seller's reply. According to the underlying information originating from
the global choreography, the host of the buyer-work�ow also recognizes the end of the
business process which leads to a business failure end-state.
Had the seller instead provided a quote by choosing to reply with a quote provision

message, the work�ow would have completed the �Request for Quote� business transac-
tion with a business success state. This would have lead the control �ow into the �Place
Order� business transaction, where the same basic scenario would then repeat. In the
case of a successful order, the �nal business transaction in the �order from quote� exam-
ple scenario is called �notify shipment�. Here the seller has the role of the initiant and
the buyer is de�ned not to reply. Hence, the very last message of a successful business
process execution is the seller notifying the buyer about the shipping of the ordered
goods.

Implementation of the work�ow hosting application

The work�ow hosting application is based on a main executable which is depending on
types from the Tuwien.Big.Bsopt.Work�ow assembly. Both components themselves rely
on additional external assemblies provided by the .NET framework. The implementation
of the work�ow hosting application is separated into four stages:

1. Parsing of commandline arguments and work�ow host initialization.

2. Optional detection of the work�ow kind.

3. Hosting of the work�ow based on its kind.

4. Handling of work�ow events.

In the following each of those stage will be discussed.

1. Parsing of commandline arguments and work�ow host initialization

The work�ow host o�ers commandline options to specify a custom application con�gu-
ration �le which shall be used for the set up of WCF based endpoints and to explicitly
de�ne the work�ow kind. In most cases the application may be left to �nd the most
appropriate setting on its own. Application con�guration �les are by default associated
with applications when their �lename is the concatenation of the source application's

76

3.5 The work�ow hosting application

�lename with the string �.con�g�. For the work�ow hosting application �work�owhos-
ter.exe� the application con�guration �le name would thus be named �work�owhos-
ter.exe.con�g�. It's clearly undesirable to require work�ow supporting application con-
�guration �les to be copied into the work�ow host application's directory and to be
renamed to a speci�c �lename, possibly overwriting other �les in this process. The hos-
ting application thus solves this problem by using the concept of application domains
(�appdomains�): �Application domains provide an isolation boundary for security, relia-
bility, and versioning, and for unloading assemblies.� [37] Another feature they support
is the usage of custom application con�guration �les which makes it possible to specify
a selected app.con�g �le at runtime instead of deployment time. In order to use the
custom con�guration �le the work�owhost thus creates a new appdomain, creates and
unwraps the main hosting class in it and proceeds to control this instance from the
original appdomain. Types in di�erent appdomains are completely isolated from each
other. Yet it's still possible to communicate with code in another appdomain by using
.NET remoting features and either make sure the data transferred into another appdo-
main is serializable or supports the creation of proxy objects e.g. by deriving from the
special System.MarshalByRef type. The hosting application de�nes a Work�owHoster
class which does the latter and provides an Execute method which is called when its
initialization is complete. The initialization in the class constructor consists of loading
all assemblies in the destination work�ow's directory to make sure all types referenced
later can be resolved correctly and by collecting additional con�guration data sent from
the original appdomain scope of the application.

2. Detection of the work�ow kind

The detection of the work�ow kind is straightforward. It uses a XamlXmlReader instance
to iterate over all XAML elements in the work�ow and looks whether it can detect a
CanCreateInstance property which is only set explicitly when its default value of false
has been changed. In case this property has been detected the work�ow is deemed to
be a service work�ow, else it's of the non-service work�ow kind.

3. Hosting of the work�ow

The hosting of the work�ow service is based on the kind of work�ow detected or ex-
plicitly given. What's the same for both kinds is the creation of a Work�owService
instance from the given work�ow de�nition, which can be validated using the Sys-
tem.Activities.Validation.ActivityValidationServices class and handed over to a Work-
�owServiceHost instance, which is responsible for hosting work�ows and support the
messaging infrastructure. This instance will start to host the work�ow service given to
it when its Open method has been called. It will also create all endpoints speci�ed via
the custom application con�guration �le linked with the application domain in which
the host is executing.

For non-service work�ows an instance has to be launched explicitly, which is achieved
by communicating with the work�ow runtime using a special work�ow management
endpoint. It has to be added to the work�ow service host before it can be accessed
using a Work�owControlClient instance. This class is able to control already existing
work�ow instances and is used in the application to unsuspend the freshly created
non-service work�ow. As speci�ed in the WF documentation in the section �Work�ow
Service Host Extensibility� the only way to launch a non-service work�ow is to derive
from the Work�owHostingEndpoint class. One has to override the methods linked to
instance creation to work together with a custom service contract interface de�ned to

77

3 Contributions to the BSopt approach

Abbildung 3.28: The source code of the BusinessDecisionActivity written to let
users input their business decision into a work�ow.

create a new work�ow instance. After this endpoint has been added to the work�ow
host, the service contract interface may be used in conjunction with a WCF channel
factory to create a proxy object. This object allows to issue a work�ow instance creation
command to the (not directly exposed) work�ow runtime.

The last piece of code in the hosting process is an additional thread, which is used
to react to user input and either close the application or accept data entry for pending
decisions.

4. Handling of work�ow events

While the previous descriptions are su�cient to support the hosting of generic work-
�ows, the work�ow hoster at hand has to be more specialized in order to support the
scenarios common to all created work�ow instances. As presented in the last section
BSopt Designer generated work�ows consist of custom activities used to provide users
with the opportunity to make business decisions or to exchange states or received data
with a business application. The mechanism to in�uence work�ows from outside and
exchange data is enabled by so called bookmarks. Those are named entities which sup-
port the resumption of a work�ow with a linked callback method. By default custom
activities which create bookmarks while executing are not considered completed until
the bookmark itself has been resumed. Code outside the work�ow can resume a pending
bookmark if it knows the bookmark name and also transfer data back to the work�ow at

78

3.5 The work�ow hosting application

the same time. This is used by the custom activities to receive user decisions and by the
business application to be able to in�uence running work�ows. Figure 3.28 shows the
entire source code of the BusinessDecisionActivity which lets users input their decisions
into a running work�ow instance by providing users with a set of decision objects to
choose from. It consists of an Execute method which is called by the work�ow runtime
when the activity shall execute. Inside the method a bookmark with a unique name is
created which, when resumed will lead to the execution of the OnBookmarkCallback
method. Next it will raise its static PendingDecision event which will transport the
bookmark name, the workfklow instance id and all decision objects to any code which
registered for the event. When the bookmark is resumed by external code the OnBook-
markCallback method interprets the returned state as the chosen index into the list of
decision objects. This in turn can be used by other activities inside the work�ow to
drive its execution forward. The inner workings of the two other custom activities are
based on the same principle. The work�ow hosting application, by registering to the
events exposed by all three custom activities is provided with the relevant information
from a work�ow instance. Using this data it can resume the work�ow at hand as it was
provided with the right bookmark name as part of each event related data.

79

3 Contributions to the BSopt approach

80

4 Conclusion and outlook

This thesis covered the transformation of logical business process descriptions into exe-
cutable work�ow artifacts and their subsequent deployment in a custom example busi-
ness application. The process is aligned with the two main views described in the Open-
edi reference model [20]. The approach for BSopt [2] identi�es three distinct perspec-
tives which in�uence B2B collaborations (�gure 1.1): The value perspective considers
the economic drivers for the realization of business models as seen by management. In
the process �ow perspective business analysts direct the formulation of logical business
process descriptions based on given business models. Finally, the execution perspective
is managed by IT specialists who convert business process descriptions into executa-
ble work�ow artifacts ready for integration into their service oriented architecture. The
BSopt approach aims to integrate these three di�ering layers by providing domain spe-
ci�c languages integrated into the tool environment called �BSopt Designer� [24]. It
provides a semi automatic, wizard guided mapping between the di�erent areas in order
to e�ciently transport information from one domain into the other. This strategy helps
to shorten turn-around times as given information need not be reinterpreted by humans.

This thesis described four main contributions supporting the aforementioned BSopt
approach. They follow the contributions as given in section 1.2 on page 4:

• A wizard was integrated into BSopt Designer to support the transformation of a
global choreography given in the form of the BCL [47] into local choreographies
de�ned as LCL models.

• Another wizard was created to transform message type descriptions given as XML
schemas into CLR compatible types. The type de�nitions are then compiled into
a .NET assembly to support the messaging logic inside work�ow artifacts.

• A third wizard was built to map an LCL model description and a compatible
message type assembly into WF4 based work�ow artifacts.

• An example business application was written which allows the automatic one-click
hosting of generated work�ow artifacts from within BSopt Designer.

The presentation of the di�erent transformation implementations is accompanied by
an example business process. It describes a buyer communicating with a seller in order
to receive a quote for an item. Next the buyer continues to order the speci�ed item and
�nally the seller noti�es the buyer when the ordered goods have been shipped. This
example comes as a business process description elaborated from a neutral perspective.
It gets transformed into two local choreography descriptions showing the process from
the perspective of each participant. Next, these process descriptions result in two com-
plementary XAML based work�ow artifacts which are ready to communicate with each
other in a fashion based on the settings entered in the work�ow generation wizard. The
hosting of both work�ows in the work�ow hosting application �nally proves both their
validity and correct functionality. It shows, that the generated work�ows change their
execution �ow as expected based on the decisions users make. The environment must
only support a small set of requirements necessary to drive any business process which

81

4 Conclusion and outlook

demands human interaction. Hence, the work�ow hoster is able to support a wide range
of di�erent BSopt Designer generated work�ow artifacts.
Despite the �ne results obtained when validating the implementation, there are still

open research areas demanding attention in the future. First, the concepts of compensa-
tion and extended control �ow constructs are not yet considered in the transformation
of global choreographies. Moreover, business process descriptions would also pro�t from
the integration of evaluation statements which could facilitate tool based automatic de-
cision making, e.g., to accept only goods no more expensive than a given baseline value.
Finally, the current work�ow artifacts come with no generated layout which handicaps
their visualization for developers. A natural step possible to improve the system would
be to change this fact and introduce a �tting automatic layout such as was done for the
local choreography DSL model.
Concluding, the transformation of business process descriptions into work�ow arti-

facts has demonstrated real usage value. We compared it with the process necessary
to create equivalent work�ows from scratch. The modeling approach in BSopt Designer
showed, that it is possible to have an example process such as the one presented in this
thesis up and running within minutes. The manual realization of equivalent work�ows
took much longer to develop and due to the required complex combination of properties
left much room for accidental errors. It is also easy to adapt processes to changing eco-
nomic realities as new models on higher levels can be transformed back into work�ow
artifacts at any time.

82

Abbildungsverzeichnis

0.1 Finished. iii

1.1 The three distinct perspectives of B2B collaborations 2
1.2 Steps in the creation process of work�ow artifacts 4

2.1 Three dimensions of a work�ow [12] . 8
2.2 classi�cation of processes in the context of work�ows [1] 9
2.3 Work�ow Management System Characteristics [15] 10
2.4 Composition of a Work�ow Engine and its dependencies [68] 12
2.5 The WF 3.5 designer showing a sequential work�ow de�nition 13
2.6 The hosting of Work�ow Foundation inside a process 14
2.7 The WCF 3.x architecture [32] . 17
2.8 The WF 4.0 designer with an example work�ow 18
2.9 A simple custom activity for adding numbers 20
2.10 DSLs inside a language workbench [6] 24
2.11 Conceptual overview of DSL Tools . 25
2.12 A section of the DSL Tools domain model editor 26

3.1 Concrete steps in the creation process of work�ow artifacts as part of the
BSopt approach . 29

3.2 The primary BSopt Designer user interface components 31
3.3 The BSopt Designer projection creation dialog 32
3.4 The Add New Item Dialog for �ProcessFlow Perspective� projects 33
3.5 Building blocks of the BSopt Designer architecture 35
3.6 Design time experience of the simple wizard control [22] 35
3.7 The di�ering scopes of orchestration and choreography [54] 36
3.8 The �order from quote� example scenario expressed in the BCL 39
3.9 The local choreography language zoomed in on the transformation of the

NotifyShipment business transaction from the example scenario for the
buyer . 41

3.10 the �order from quote� example transformed to a local choreography for
the buyer role . 44

3.11 the �order from quote� example transformed to a local choreography for
the seller role . 45

3.12 The �transform global choreography into local choreographies� use case. 46
3.13 The transformation process for the �order from quote� sample 47
3.14 The �transform XML schemata into a .NET message assembly� use case. 52
3.15 The XSD transformation process for the �order from quote� sample. . . . 53
3.16 Schematic view of three generated XSD �les describing the ShipmentNo-

ti�cation business document for the �order from quote� example. 54
3.17 Created .NET class representation of the shipment noti�cation business

document . 56
3.18 The �Transform a local choreography with message type assembly and

XML messages into work�ow artifacts� use case. 59

83

Abbildungsverzeichnis

3.19 The work�ow artifact generation for the buyer in the �order from quote�
example . 60

3.20 A class diagram representing types used for userinput.xml serialization . 61
3.21 The visitor design pattern as realized in the local choreography transfor-

mer application. 65
3.22 The work�ow generated for the buyer in the �order from quote� example. 66
3.23 The types provided to any work�ow de�nition by the Tuwien.Big.Bsopt.Work�ow

assembly. 69
3.24 A pick branch including two Receive activities waiting for di�erent inco-

ming messages and a Delay activity to indicate a timeout. 71
3.25 The generated application con�guration �le for the buyer for the �order

from quote� example scenario. 73
3.26 An excerpt of the preprocessed app.con�g generating transformation tem-

plate. 73
3.27 Hosting a generated WF4 work�ow from within BSopt Designer. 75
3.28 The source code of the BusinessDecisionActivity written to let users input

their business decision into a work�ow. 78

84

Tabellenverzeichnis

2.1 Control-�ow activities from the base activity library [33] 15
2.2 Base Services utilized by the WF 3.x runtime engine 16

3.1 Global variables de�ned in generated work�ow de�nitions 67
3.2 Local variables de�ned in generated business transaction de�nitions . . . 68
3.3 Basic transformation strategy for creating �owchart nodes from activities

inside a local choreography . 70

85

86

Listings

2.1 An example Dependency Property de�nition as described in [33] 16
2.2 A sample service contract de�nition . 17
2.3 Example code for setting up a customer in a usual imperative way [8] . . 23
2.4 Listing 2.3 rewritten in a �uent style [8] 23

3.1 A shipment noti�cation instance for the �order from quote� example ba-
sed on a Core Components de�nition derived XML schema 55

3.2 The two missing CLR namespace declarations necessary when including
LINQ to XSD based business document classes in a work�ow de�nition 72

3.3 Code to transform text with a preprocessed T4 template class 74

87

88

Literaturverzeichnis

[1] Aalst, V. D. The application of petri nets to work�ow management, 1998.

[2] BSopt. Business semantics on top of process technology. Project website online
at http://www.bsopt.at.

[3] Chappell, D. The work�ow way - understanding windows work�ow foundation.
Online at http://www.davidchappell.com/TheWork�owWay�Chappell.pdf, April
2009.

[4] ECMA. Standard ecma-335 common language infrastructure (cli) 4th edition.
Online available at
http://www.ecma-international.org/publications/standards/Ecma-335.htm, June
2006.

[5] Flanders, J. Windows work�ow foundation integration with windows
communication foundation. Online at
http://msdn.microsoft.com/en-us/library/cc626077.aspx, May 2008.

[6] Fowler, M. Language workbenches: The killer-app for domain speci�c
languages? Online at http://martinfowler.com/articles/languageWorkbench.html,
June 2005.

[7] Fowler, M. Domain Speci�c Languages. Addison-Wesley Professional, 2010.
�nal draft available at http://my.safaribooksonline.com/9780132107549.

[8] Fowler, M., and Evans, E. Fluentinterface. Online at
http://www.martinfowler.com/bliki/FluentInterface.html, December 2005.

[9] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mef, R., and
Stafford, R. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

[10] Free Software Foundation, I. GNU Gereral Public License, Version 3.
Online at http://www.gnu.org/licenses/gpl-3.0.html, June 2007.

[11] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] Georgakopoulos, D., Hornick, M., and Sheth, A. An overview of
work�ow management: From process modeling to work�ow automation
infrastructure. In DISTRIBUTED AND PARALLEL DATABASES (1995),
pp. 119�153.

[13] Hejlsberg, A., and Torgersen, M. Overview of C# 3.0. Online at
http://msdn.microsoft.com/en-us/library/bb308966.aspx, March 2007.

[14] Hofreiter, B. Registering uml models for global and local choreographies. In
ICEC '08: Proceedings of the 10th international conference on Electronic
commerce (New York, NY, USA, 2008), ACM, pp. 1�10.

89

Literaturverzeichnis

[15] Hollingsworth, D. The work�ow reference model (issue 1.1). Available from
http://wfmc.org/reference-model.html, January 1995.

[16] Huemer, C., Dietrich, J., Hofreiter, B., Liegl, P., Miller, G., Moyer,
H., Schuster, R., and Zapletal, M. UN/CEFACT's Modeling Methodology
(UMM) Meta Model - Foundation Module Candidate for 2.0 Draft for
IMPLEMENTATION VERIFICATION. Available online from
http://www.untmg.org/speci�cations/, October 2009.

[17] Huemer, C., Liegl, P., Schuster, R., Werthner, H., and Zapletal, M.
Inter-organizational systems: From business values over business processes to
deployment. Digital Ecosystems and Technologies, 2008. DEST 2008. 2nd IEEE
International Conference on 1 (2008), 294�299.

[18] Huemer, C., Liegl, P., Schuster, R., and Zapletal, M. A 3-level
e-business registry meta model. Services Computing, IEEE International
Conference on 1 (2008), 441�450.

[19] Huemer, C., and Zapletal, M. A State Machine executing UMM Business
Transactions. In Digital EcoSystems and Technologies Conference, 2007. DEST
'07. Inaugural IEEE-IES (21-23 2007), pp. 57 �62.

[20] ISO. Information technology - open-edi reference model, 2004. Second Edition.

[21] Kaplan, J., and Santos, L. F. Clr inside out - in-process side-by-side. MSDN
Magazine December 2009 Issue, December 2009. Online available at
http://msdn.microsoft.com/en-us/magazine/ee819091.aspx.

[22] Kumar, M. R. A simple wizard control for .net 2.0 with full designer support.
Online at http://www.codeproject.com/KB/cs/WizardDemo.aspx, February
2008.

[23] Liegl, P., and Mayrhofer, D. A domain speci�c language for un/cefact's
core components. Services Part II, IEEE Congress on 0 (2009), 123�131.

[24] Liegl, P., Schuster, R., Zapletal, M., Motal, T., Mayrhofer, D., and
Topf, M. BSopt Designer. Online, 2010.
http://code.google.com/p/bsopt-designer/.

[25] Martin, R. C. Clean Code - A handbook of agile software craftmanship, vol. 5.
Prentice Hall, 2009.

[26] Microsoft. Domain-speci�c language tools. Online at
http://msdn.microsoft.com/en-us/library/bb126235

[27] Microsoft. Microsoft .NET Framework. Online at
http://www.microsoft.com/net/. http://www.microsoft.com/net/.

[28] Microsoft. .NET Framework Conceptual Overview. Online at
http://msdn.microsoft.com/en-us/library/zw4w595w

[29] Microsoft. Xml schema de�nition tool (xsd.exe). Online at
http://msdn.microsoft.com/en-us/library/x6c1kb0s2005.

[30] Microsoft. [ms-xaml]: Xaml object mapping speci�cation 2006 v1.0. Available
online at http://msdn.microsoft.com/en-us/library/dd3618522006.

90

Literaturverzeichnis

[31] Microsoft. Servicemodel metadata utility tool (svcutil.exe). Online at
http://msdn.microsoft.com/en-us/library/aa3477332007.

[32] Microsoft. Windows Communication Foundation (.NET Framework 3.5
development reference). Online at
http://msdn.microsoft.com/en-us/library/ms735119

[33] Microsoft. Windows Work�ow Foundation (.NET Framework 3.5 development
reference). Online at http://msdn.microsoft.com/en-us/library/ms735967

[34] Microsoft. Domain-speci�c language tools - generating artifacts by using text
templates. Online at http://msdn.microsoft.com/en-us/library/bb126445

[35] Microsoft. Interoperability overview (c# programming guide). Online at
http://msdn.microsoft.com/en-us/library/ms173185

[36] Microsoft. Visual studio automation and extensibility - the spectrum of visual
studio automation. Online at http://msdn.microsoft.com/en-us/library/9b54865a

[37] Microsoft. Application domains. Online at
http://msdn.microsoft.com/library/EN-US/113A8BBF-6875-4A72-A49D-
CA2D92E19CC8(VS.100),
2010.

[38] Microsoft. C# language speci�cation 4.0. Online available from
http://www.microsoft.com/downloads/details.aspx?FamilyID=dfbf523c-f98c-
4804-afbd-459e846b268e&displaylang=en, April
2010.

[39] Microsoft. Language-integrated query (linq) - linq to xml. Online at
http://msdn.microsoft.com/library/EN-US/F0FE21E9-EE43-4A55-B91A-
0800E5782C13(VS.100),
2010.

[40] Microsoft. Linq to xsd. Online at http://linqtoxsd.codeplex.com/, April 2010.

[41] Microsoft. [MC-NETCEX]: .NET Context Exchange Protocol Speci�cation.
Available online at http://msdn.microsoft.com/en-us/library/cc4419822010.

[42] Microsoft. [MS-XAML-2009]: XAML Object Mapping Speci�cation 2009.
Available Online at http://msdn.microsoft.com/en-us/library/�6291552010.

[43] Microsoft. system.servicemodel. Online at
http://msdn.microsoft.com/library/EN-US/78519531-AD7A-40D3-B3E7-
42F1103D8854(VS.100), June
2010.

[44] Microsoft. Wf guidance: Work�ow services. Available online at
http://www.microsoft.com/downloads/details.aspx?FamilyID=bd94c260-b5e0-
4d12-93ec-53567505e685&displaylang=en, 1
2010.

[45] Microsoft. Xaml namespaces and namespace mapping for wpf xaml. Online at
http://msdn.microsoft.com/en-us/library/ms747086.aspx, 2010.

91

Literaturverzeichnis

[46] Milner, M. Foundations: Work�ow services. MSDN Magazine - Launch 2008
Issue Online at http://msdn.microsoft.com/en-us/magazine/cc164251.aspx, 2008.

[47] Motal, T., Zapletal, M., and Werthner, H. The business choreography
language (bcl) - a domain-speci�c language for global choreographies. Services
Part II, IEEE Congress on 0 (2009), 150�159.

[48] OASIS. Web services reliable messaging tc ws-reliability 1.1 oasis standard.
Online at http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-
ws_reliability-1.1-spec-os.pdf, November
2004.

[49] OASIS. Reference model for service oriented architecture. Available online at
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf, October 2006. OASIS
Standard, Version 1.0.

[50] OASIS. Web services security: Soap message security 1.1 (ws-security 2004) oasis
standard speci�cation. Online at
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, February
2006.

[51] OMG. Documents associated with business process model and notation (bpmn)
version 2.0 - beta 2. Online at http://www.omg.org/spec/BPMN/2.0/Beta2/,
May 2010.

[52] (OMG), O. M. G. Business process modeling notation speci�cation (bpmn),
January 2009. Version 1.2.

[53] Pavlov, D. Visual studio managed package framework for projects (mpfproj).
Online at http://mpfproj.codeplex.com/, 2008.

[54] Peltz, C. Web services orchestration and choreography. Computer 36, 10
(2003), 46�52.

[55] Schuster, R., and Motal, T. From e3-value to REA: Modeling Multi-party
E-business Collaborations. E-Commerce Technology, IEEE International
Conference on 0 (2009), 202�208.

[56] Simpkins, C. The road to wf 4.0 (part 1). Online at
http://blogs.msdn.com/b/endpoint/archive/2009/01/20/the-road-to-wf-4-0-part-
1.aspx, January
2009.

[57] Sych, O. T4 Architecture. Online at
http://www.olegsych.com/2008/05/t4-architecture/, May 2008.

[58] Sych, O. Understanding T4: Preprocessed Text Templates. Online at
http://www.olegsych.com/2009/09/t4-preprocessed-text-templates/, 2009.

[59] Technical University of Dortmund, Friedrich-Schiller-University
Jena, University of Cologne and oreas GmbH. Ogdf - open graph
drawing framework. Online available at http://www.ogdf.net, December 2007.

92

Literaturverzeichnis

[60] UN/CEFACT. Core components technical speci�cation version 3.0. Available
online at http://www.unece.org/cefact/codesfortrade/CCTS/CCTS-Version3.pdf,
September 2009.

[61] van der Aalst, W. M., and Lassen, K. B. Translating unstructured
work�ow processes to readable bpel: Theory and implementation. Information
and Software Technology 50, 3 (2008), 131 � 159.

[62] van der Aalst, W. M. P., Ter, Kiepuszewski, B., and Barros, A. P.
Work�ow patterns. Distributed and Parallel Databases 14, 1 (July 2003), 5�51.

[63] W3C. XML Path Language (XPath) Version 1.0. Online at
http://www.w3.org/TR/xpath/, November 1999.

[64] W3C. Web Services Description Language (WSDL) 1.1. Online at
http://www.w3.org/TR/wsdl, March 2001.

[65] Winkler, M. Advanced work�ow services talk (demo 2 of 4). Online at
http://blogs.msdn.com/b/mwinkle/archive/2008/08/06/advanced-work�ow-
services-talk-demo-2-of-4.aspx, Aguust
2008.

[66] Winkler, M. Q & a on advanced work�ow services talk. Online at
http://blogs.msdn.com/b/mwinkle/archive/2008/08/07/q-a-on-advanced-
work�ow-services-talk.aspx, August
2008.

[67] Winkler, M. Types, metatypes and bears, oh my! Online at
http://blogs.msdn.com/b/mwinkle/archive/2009/06/10/types-metatypes-and-
bears-oh-my.aspx, June
2009.

[68] zur Muehlen, M. Work�ow-based Process Controlling - Foundation, Design,
and Application of Work�ow-driven Process Information Systems. Logos Verlag
Berlin, 2004.

93

