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Executable Time-Triggered Model
(E-TTM) for the development of
safety-critical embedded systems

The development of distributed safety-critical and real-time embedded sys-
tems that must satisfy a certain set of timing constraints with an ever-
increasing functionality leads to a considerable complexity growth. For
example, a current premium car implements about 270 functions that a
user interacts with, deployed over 67 independent embedded platforms,
amounting to about 65 megabytes of binary code. Tackling the complexity
challenge, providing a consistent notion of time and preserving time proper-
ties and constraints throughout the development process are key challenges
for the development of such systems.

The Executable Time-Triggered Model (E-TTM) is a novel approach
for the executable modeling of safety-critical embedded systems based on
the Time-Triggered Architecture (TTA), which provides a consistent no-
tion of time based on the sparse-time concept. Different mechanisms are
supported for the description of time properties and constraints, which
are intrinsically preserved through model refinement steps and execution.
For example, in the simulation of periodic control applications, period and
phase relationships are kept constant but independently configurable en-
abling the simulation of models faster, slower or at the same pace as phys-
ical time but always producing the same results at the same simulation
time instants. The E-TTM also provides additional strategies to tackle the
complexity challenge such as abstraction, partition and segmentation.

E-TTM meta-model has been implemented as a C++ library that ex-
tends SystemC with the time-triggered Model of Computation (MoC), and
enables the codesign and execution of E-TTM models in SystemC. This
approach might be used from the early stages of a development process, in
order to develop time-triggered executable specifications and Platform In-
dependent Models (PIM). Whenever the system is implemented in a TTA
based system, time related properties and constraints might be preserved
from the model down to the final implementation.
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Executable Time-Triggered Model
(E-TTM) for the development of
safety-critical embedded systems

Die Entwicklung verteilter sicherheitskritischer eingebetteter Systeme mit
ständig wachsender Funktionalität, die bestimmte Echtzeitvorgaben erfül-
len müssen, führt zu einer erheblichen Steigerung der Komplexität. Die
Komplexität unter Beibehaltung der zeitlichen Zusammenhänge zu reduzie-
ren, sowie die zeitlichen Eigenschaften und Vorgaben im gesamten Entwick-
lungsprozess zu wahren, stellt eine der Hauptaufgaben in der Entwicklung
dieser Systeme dar.

Das vorgestellte ausführbare zeitgesteuerte Modell (E-TTM, Executable
Time-Triggered Model) stellt eine neue Herangehensweise dar, um Time-
Triggered-Architektur- (TTA)-basierte Systeme zu modellieren und dabei
mittels sparse-time base unter Wahrung der zeitlichen Zusammenhänge die
Komplexität zu bewältigen. Dieser Ansatz, in dem das Simulationsintervall
konfigurierbar ist, die Phasenbeziehungen jedoch erhalten bleiben, erlaubt
die Simulation der Modelle mit höherer oder geringerer Geschwindigkeit
sowie in Echtzeit. Die hierbei erzielten Ergebnisse stimmen zu jedem Simu-
lationszeitpunkt überein. Darüber hinaus stellt E-TTM weitere Strategien
bereit, um die Komplexität zu reduzieren: Abstraktion, Partitionierung,
Segmentierung und sparse-time.

E-TTM wurde als C++-Bibliothek implementiert, die SystemC um das
time-triggered Model of Computation (MoC) erweitert. Dieser Ansatz kann
bereits in der Anfangsphase von Entwicklungsprozessen angewandt werden,
um ausführbare TTA-Spezifikationen und plattformunabhängige Modelle
(PIM, Platform Independent Model) zu entwickeln. Wann immer ein Sy-
stem als TTA implementiert ist, bleiben zeitliche Eigenschaften und Rand-
bedingungen von der Spezifikation oder dem Modell bis zur Implementie-
rung erhalten.
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Simplicity does not precede complexity, but follows it

Alan Perlis

Chapter 1

Introduction

1.1 Overview

The development of distributed real-time and safety-critical embedded sys-
tems that must satisfy a certain set of timing constraints with an ever increas-
ing functionality leads to a considerable complexity growth [Kop07, PC06].
For example, a current premium car implements about 270 functions that
a user interacts with, deployed over 67 independent embedded platforms,
amounting to about 65 megabytes of binary code [SS04, PBKS07]. Tackling
the complexity challenge [Kop07, JTM07, PC06], providing a consistent no-
tion of time and preservation of properties through the development process
[HS07, JTM07, BFLS01] are key challenges for the development of such sys-
tems.
State-of-the-art models and methods described in Chapter 6 provide differ-
ent solutions of interest for the design of distributed real-time and safety-
critical embedded systems, where multiple models and methods might be used
in conjunction during the development process (e.g., UML [wwwj], SysML
[wwwf], MARTE [omg08], Matlab / Simulink [wwwe], SCADE [wt], Giotto
[Tem05], TDL [Tem05], TMO [MHJGK+00], etc.). However, as identified in
this chapter, systematic preservation of time properties from the model down
to the implementation is a key challenge that still needs to be addressed in
the development of safety-critical embedded systems. The Time-Triggered
Architecture (TTA) provides a validated and certifiable core technology for
the development of safety-critical embedded systems [JSPP04], based on the
sparse-time consistent notion of time [Kop98], that could be used as the foun-
dation of a modeling approach for the purpose of preserving time properties
through the model refinement steps down to the implementation. However,
available time-triggered modeling approaches (e.g., TMO, TDL) have some
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1.1 Overview 1 Introduction

differences with respect to the time-triggered Model of Computation (MoC)
[Kop98] that limit their applicability, e.g., different notion of time not based
on the sparse-time concept.

This dissertation defines the Executable Time-Triggered Model (E-TTM), a
novel approach for the executable distributed modeling of safety-critical em-
bedded systems based on the Time-Triggered Architecture (TTA). This ap-
proach might be used from the early stages of a development process, in order
to develop time-triggered executable specifications and Platform Independent
Models (PIM). The E-TTM meta-model has been implemented as a C++
library that extends SystemC with the time-triggered MoC, and enables the
codesign and execution of E-TTM models in SystemC. Distributed models
are connected using physical communication channels such as Ethernet and
Time-Triggered Ethernet (TTE).

The E-TTM foundation relies on the time-triggered MoC, which provides a
consistent notion of time based on the sparse-time concept, and provides dif-
ferent mechanisms to describe time properties and constraints. Time properties
and constraints are intrinsically preserved throughout the modeling refinement
process, and might be preserved down to the final implementation if the sys-
tem is based on the TTA. For example, in the simulation of periodic control
applications, simulation time period and phase relationships are kept constant
but independently configurable, enabling the simulation of models to be exe-
cuted faster, slower or at the same pace as physical time (in a similar way as
video-recorder might be played faster) but always producing the same results
at the same simulation time instants.

SystemC is the selected modeling language because it provides multiple advan-
tages. First of all it is an standard language [iee05] that is becoming de facto
standard in industrial codesign [BMS08] and has already been evaluated as a
suitable modeling language for embedded systems. It is a C++ library that
inherits the benefits of object-oriented programming and can be integrated in
different design flows and design environments, including constrained transfor-
mations from UML to SystemC [YXGB+06] and SystemC to VHDL. Based
on this the design and dependability assessment by means of simulation can
be done in a single codesign framework. In addition to this, it has already
been evaluated as a suitable modeling language for Simulated Fault Injection
(SFI) of safety-critical embedded systems [PAAP10] where the global simula-
tion time can be used to define fault injection time instants - durations and
trigger simultaneous faults in modules.
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1.2 Objective

The objective of this thesis is the ’definition of an executable PIM modeling
approach (meta-model) for the design of TTA based safety-critical embedded
systems’ with the following properties / features:

1. Time and value domain determinism

2. Period-phase conserving simulation

3. Support strategies that tackle the complexity challenge

This objective targets previously identified key challenges for the design of
safety-critical embedded systems:

• Consistent notion of time: The E-TTM foundation relies on the time-
triggered MoC, which provides the sparse-time consistent notion of time.

• Preserving time properties: Time determinism is required to ensure the
preservation of time properties by means of fundamental modeling at-
tributes (composability, consistency and predictability). The period-
phase conserving simulation enables the design space exploration of dif-
ferent period configurations, where simulations coupled with the physical
time can be executed faster, slower or at the same pace as the physical
time but always produce the same results at the same phase time instants.

• Tackle complexity challenge: Determinism is a sufficient precondition for
logical reasoning and a solid foundation to tackle the complexity chal-
lenge by means of supported abstraction, partition and segmentation
techniques [Kop08a].

1.3 Contributions

All in all, the main contributions of this thesis are:

• Definition of a time and value domain deterministic and period-phase con-
serving executable PIM modeling approach (meta-model) for the design
of TTA based safety-critical embedded systems.

• Extend SystemC to support the defined meta-model and required execu-
tion framework, which supports single or distributed model simulations
coupled or decoupled from physical time

3



1.4 Structure of this Thesis 1 Introduction

• Tackle complexity challenge by means of abstraction, partition, segmen-
tation and sparse-time.

As an example, the main contributions of this thesis can be applied in the
development of safety-critical embedded systems as follows:

• Executable models enable early dependability assessments that reduce
the risk of late discovery of safety related design pitfalls. In addition to
this, the overall time required for each assessment can be reduced by a
proper model partition and distributed execution of the model. This is
illustrated in a case study (see Section 7.2).

• The international safety standard IEC-61508 highly recommends fault
injection techniques in all steps of the development process [PAAP10].
E-TTM provides time determinism and period-phase conserving simula-
tion that enables the injection of faults at precise time instants. Based
on this, Simulated Fault Injection (SFI) can be used in all steps of the
design process, in order to analyze the reaction of the system in a faulty
environment and to validate the correct implementation of fault toler-
ance mechanisms. This is illustrated in a case study (see Section 7.3).

• Executable models can be used as reference models for the design and
verification, where developed system / subsystems should exchange mes-
sages with the same content and at the same time instants as the ref-
erence model. Developed system / subsystems can be verified against
the single / distributed model executed coupled with the physical time.
In a distributed simulation topology, one or multiple model partitions
(submodels) could be replaced by developed subsystems and from the
message interchange perspective should not be possible to distinguish
between submodels and subsystems.

1.4 Structure of this Thesis

This thesis is organized as described below and shown in Figure 1.1:

• Chapter 2 introduces the background and basic concepts on which the
work in this thesis is based.

• Chapter 3 describes the proposed Executable Time-Triggered Model (E-
TTM) modeling approach that is elaborated in detail in Chapters 4 and
5:
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– Chapter 4 analyses the concept of time with a focus on safety-
critical and real-time embedded systems, identifying suitable time
representations, time constraints expressiveness and time abstrac-
tion models.

– Chapter 5 describes the E-TTM meta-model (mmE-TTM), the rules
and constructs according to which a E-TTM model is created, and
the meta-model implementation in SystemC that provides the E-
TTM execution framework (xfE-TTM).

• Chapter 6 describes related work to the topic of this thesis, covering syn-
chronous languages, Timing Definition Language (TDL), Modeling and
Analysis of Real-Time Embedded Systems (MARTE), Time-triggered
Message-triggered Object (TMO), IEC-61499 and Periodic Finite State
Machine (PFSM).

• Chapter 7 describes two example case study E-TTM models.

– A safety-related real-time industrial control application, Voltage /
Frequency (V/F) control of an IGCT based multi-megawatt evalu-
ation platform.

– A safety-critical odometry subsystem integrated within a European
Train Control System (ETCS), an on-board automatic train protec-
tion system (SIL-4) that protects the high-speed train by continu-
ously supervising the traveled distance and speed.

• Chapter 8 discusses the key results, conclusions of the work presented
and an outlook on future research in this area.
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1. Introduction

2. Background and basic concepts

3. Executable Time-Triggered Model (E-TTM)

6. Related work

7. Case Study

8. Conclusion

4. On the notion of time

5. The meta-model

Figure 1.1: Map of chapters.
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“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said, gravely, “and

go on till you come to the end: then stop.”

Alice’s Adventures in
Wonderland, Lewis Carroll

Chapter 2

Background and Basic Concepts

The principles used throughout this thesis span over several fields of research.
This chapter sets out to introduce the background and basic concepts on which
the work in this thesis is based.

2.1 Cognitive complexity

Complexity is defined as “the degree to which a system or component has a
design or implementation that is difficult to understand and verify”[dic91] and
simplicity is the antonym. The development of distributed safety-critical em-
bedded systems that must satisfy a certain set of constraints (e.g., timing,
resources, dependability, etc.) with state-of-the-art technology leads to a con-
siderable complexity growth. For example, a current premium car imple-
ments about 270 functions that a user interacts with, deployed over 67 in-
dependent embedded platforms, amounting to about 65 megabytes of binary
code [SS04, PBKS07]. There is a need to tackle this complexity challenge
[RE06, Rum06, Kop08a, JTM07] that might be summarized thus: “One key
to achieving dependability at reasonable cost is a serious and sustained com-
mitment to simplicity, including simplicity of critical functions and simplicity
in system interactions. This commitment is often the mark of true expertise”
[JTM07].

2.1.1 Human cognitive limitations

Complexity and cognitive complexity are used interchangeably within this the-
sis because complexity is considered only from a cognitive perspective. The
cognitive complexity of a task describes the cognitive resources required to
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2.1 Cognitive complexity 2 Background and Basic Concepts

perform this task [Rum06]. Research in this area limits the human cognitive
capabilities to the ’magic’ number four, up to four simultaneous relationships
[RE06, HBMB05] and working memory capacity for up to four simultaneous
chunks of information [Cow01]. Relational complexity states that the process-
ing load of a task is determined by the complexity of the relations processed
in a given step (the number of independent elements that must be processed
simultaneously) [RE06] and it is stated that quaternary relations are the most
complex we can handle [RE06, HBMB05]. Human working memory capacity
is one of the most limiting factors and it is stated to be limited also to about
four chunks of information [Cow01].

2.1.2 Simplification strategies, tackling complexity

Embedded systems might sometimes be unnecessarily complex due to the com-
plexity introduced by the design (accidental complexity), in addition to the
complexity which is inherent in the problem being addressed (essential com-
plexity) [Rum06]. Three basic strategies might be used to tackle complexity (in
particular accidental complexity) and enable a development to be processed by
the limited cognitive capabilities of humans [Kop08a, RE06, Rum06, OK09]:

• Abstraction is defined as “a view of an object that focuses on the in-
formation relevant to a particular purpose and ignores the remainder of
the information” [dic91] so that complexity is reduced by omitting the
irrelevant details and focusing on the information relevant for a given
purpose.

• Partitioning, separation of concerns, deals with the ’spatial decompo-
sition’ of a problem into smaller parts that can be analyzed in isolation.
The clear separation of computation from communication and the choice
of appropriate communication mechanism reduce the complexity.

• Segmentation deals with the ’temporal decomposition’ of a problem
into smaller parts that can be processed sequentially. This reduces the
amount of parallel information that must be considered simultaneously.

“A model behaves deterministically if and only if, given a full set of initial
conditions (the initial state) at time t0, and a sequence of future timed in-
puts, the outputs at any future instant t are entailed” [Kop08a]. Whenever
possible, deterministic models (time and value domain) should be developed
because they enable logical reasoning, provide proper handling of simultaneity,
consistent behavior prediction, higher abstraction levels and also ensure that a
properly derived real world implementation will always produce the same result
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for the same stimulus in accordance with the original design [GLMS02]. Thus,
deterministic models reduce the cognitive complexity and provide predictabil-
ity of the system. In addition to this, whenever possible use design patterns
that make possible the reutilization of proven solutions and proven engineering
practices.

2.2 Architecture

There are multiple definitions for the term architecture, from which the follow-
ing three have been preselected:

1. “The organizational structure of a system or component” [dic00, dic91].

2. “Specific configuration of hardware and software elements in a system”
[iec98].

3. “A technical system architecture (or architecture for short) is a frame-
work for the construction of a system for a chosen application domain
that provides generic architectural services and imposes an architectural
style for constraining an implementation in such a way that the ensuing
system is understandable, maintainable, extensible, and can be built cost
effectively” [KOPS04].

Architecting is a consequence of system complexity because it reduces the ef-
fort of the design process as the fundamental decisions have already been made
[Rum06]. In order to cope with the complexity challenge posed by the develop-
ment of safety-critical embedded systems [Rum06, Kop07, PC06, Kop97] there
seems to be a need for a system foundation that goes beyond the organization /
configuration of systems and provides an ‘underlying linking structure’ (frame-
work) with a set of services and properties. Therefore, the term architecture
used within this thesis will refer to the third definition [KOPS04].

TTA (Time-Triggered Architecture)

Time-Triggered Architecture (Time-Triggered Architecture) is a composable
and scalable architecture for the design of distributed real-time embedded sys-
tems. The Time-Triggered MoC is based on the partition of a large distributed
computer system into nearly autonomous systems with small and stable in-
terfaces. The interfaces and predictable time-triggered communication system
decouple the interactions among the subsystems from the data processing func-
tions [Kop98]. In TTA, the real-time system is composed of subsystems called
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2.2 Architecture 2 Background and Basic Concepts

clusters that are composed of nodes interconnected by the Time-Triggered
Protocol (TTP) real-time communication network [Kop97, KB03, KT98].

• The TTA node is the basic computational building block, which as shown
in Figure 2.1 comprises a time-triggered Communication Controller (CC),
Communication Network Interface (CNI) and a host processor with mem-
ory that executes the operating system and the application software.
Clusters are composed of nodes connected to the network by the CC.

• The TTA communication system is autonomous and periodic, the times
of periodic fetch and delivery actions are contained in the message-
scheduling table, Message Descriptor List (MEDL), of each commu-
nication controller. The TTA defines three communication protocols
[Kop97, KB03, KT98, KAGS05]: the TTP/C is a fault-tolerant time-
triggered protocol that provides autonomous fault tolerant message trans-
port, the TTP/A is the low-cost field-bus protocol used to connect low-
cost smart transducers to nodes and the TTE (Time-Triggered Ethernet)
is a communication infrastructure for integration of real-time and non
real-time traffic compatible with Ethernet that supports fault toler-
ant systems [KAGS05].

CC
CNI
Host

CC
CNI
Host

CC
CNI
Host

CC
CNI
Host

CC
CNI
Host

CC
CNI
Host

Node

Comm.
Channel

Figure 2.1: Structure of TTA cluster [KB03].

DECOS (Dependable Embedded Components and Systems)

DECOS (Dependable Embedded Components and Systems) [wwwc] is an
integrated-architecture that follows a platform-based design based on different
abstraction layers as shown in Figure 2.2. DECOS provides technology indepen-
dent architectural services that serve as a validated stable baseline that reduces
application development effort and facilitates reuse [KOPS04, wwwc, MBSP02].
The time-triggered core architecture is the architecture foundation that pro-
vides a consistent distributed computing base [MBSP02] that uses time-
triggered protocols such as TTP/C and TTE. The core services are the minimal
set of services that must be provided across all platforms (predictable message
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transport, fault-tolerant clock synchronization, strong fault isolation, and con-
sistent diagnosis of failing nodes). The high-level services are built on top
of the core services and used by the application, which might contain multi-
ple DASes (Distributed Application Subsystem), safety-critical (SC) and non
safety-critical (NSC).
A Distributed Application Subsystem (DAS) is a nearly independent distributed
subsystem of a large distributed real-time system that provides a well-specified
application service. A DAS can be decomposed into smaller units called jobs
that employ ports to communicate with other jobs, and each job has access
to its relevant transducers, either directly or via a communication system with
known temporal properties. For example, a car system might be divided into
the following DASes: steering, braking, powertrain, vehicle dynamics, driver
control, passive safety, infotainment, etc. [POT+05].

Time-Triggered
Core Architecture

Core Services

High Level Services

Application

NSC NSC SC SC

Figure 2.2: DECOS Integrated System Architecture [POT+05]

2.3 Event

Event is defined as “a thing that happens or takes place” [Oxf07] and represents
a relevant happening that occurs at a given time instant. Event sequences
can be classified as periodic (Ep), sporadic (Es) and aperiodic (Ea) as shown
in Equation 2.1. Periodic event sequences (Ep) are described by an initial
offset (r), period (p) and phase (ϕ). Sporadic event sequences (Es) are not
periodic, but occur at least once within a maximum time interval (a). Aperiodic
event sequences cannot usually be defined by a time pattern. From the jobs
execution perspective, events are job execution triggering mechanisms that
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can be classified into periodic events (time-triggered) and aperiodic / sporadic
events (event-triggered).

Ep : ∀k ∈ N+
0 → ∃e : (tk(e) = r + (k · p+ ϕ)) (2.1)

Es : ∀k ∈ N+
0 → ∃e : (tk−1(e) < tk(e) < tk−1(e) + a) (2.2)

Ea : unknown (2.3)

2.4 Entity

Entity is defined as “a thing with distinct and independent existence” [Oxf07],
thus, an entity exists and its existence is guaranteed independent from all
other possible entities [Gho99]. Due to its existence, an entity must be self-
contained and its behavior defined under all possible scenarios. And due to its
independent existence, its behavior is only known to itself and the entities to
which it is connected. The concept of entity is widely used in the discipline of
digital systems and HDL, where hardware is composed of entities (e.g., AND
gate, microprocessor, etc.). Each entity is described by an interface, a behavior
description, timing, control, exceptions, etc. [Gho99].

2.5 Component

A component [KOESH07, RE06] is a self contained subsystem that can be used
as a building block in the design of a larger system. A component is an entity
that provides a desired service to its environment across a well-specified inter-
face, and should maintain its encapsulation (value and temporal) when used in
a larger system while encapsulating the inner mechanisms and implementation
technology (e.g., software).
Components can be classified into computational components (c-components)
and interface components (i-components). Computational components accept
input messages, provide a useful service (computation) and produce output
messages after some elapsed physical time, i.e., it can contain internal state.
Interface components act as gateways, transforming the idiosyncratic represen-
tation of the information outside a given cluster into the standardized cluster
internal representation [Kop08a].
The precise definition of component interfaces is of utmost importance to reduce
the possibility of interactions beyond the control of the designer. Components
interact with other components and the outside world through the exchange of
messages across interfaces, which as shown in Figure 2.3 four different types of
interfaces shall be distinguished [KOESH07, RE06]:
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• Linking Interface (LIF) is the Real-Time Service (RS) interface that of-
fers the services of the component to other components. It is the most
important interface from the system integration and composability point
of view, because it must provide all the information needed to understand
the behavior of the component, while hiding the implementation details.

• Configuration and Planning (CP) is the interface for the component con-
figuration.

• Diagnostic and Maintenance (DM) is the interface used for maintenance
through which it is possible to observe and modify the internal elements
of the component.

• Local interfaces are linked to the environment controlled by the com-
ponent. Closed components contain no local interface to the real world
while open components contain a local interface to the real world. Open
components might be a source of indeterminism [Kop97].

COMPONENT

Lo
ca
l

CP

DM

LIF

Figure 2.3: Interfaces of a component [KOESH07].

2.6 Model-Based Design (MBD)

Model-Based Design (MBD) is a system design approach supported by differ-
ent modeling language standards from OMG (e.g., UML [wwwj], SysML [wwwf]
and MARTE [omg08]), Matlab / Simulink [wwwe] de facto standards in con-
trol systems, SCADE [wt] for safety-critical embedded systems and additional
multiple modeling languages of interest (e.g., Giotto-TDL [Tem05]). In MBD
the system behavior and functionality is first designed in a Platform Indepen-
dent Model (PIM) and then mapped and refined to a given platform using a
Platform Specific Model (PSM). An executable high-level model of an appli-
cation, the PIM, captures and documents the intended application properties
(function, timing) of the evolving design without regard to the idiosyncrasies
of the targeted execution platform. At a PIM level, a DAS can be represented
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by a set of time-aware computational components, PIM-jobs, which exchange
messages [KOESH07].

2.6.1 Model

A model is defined as “a simplified description, especially a mathematical one,
of a system or process, to assist calculations and predictions” [Oxf07] and
the essence of modeling lies in accuracy for the stated purpose, simplification
and understandability. In order to reduce the cognitive complexity, a mod-
eling language having the following features is preferable: a small number of
well-specified concepts and relationships that focus on the essential properties
(e.g., time and value domain), with a clear structure and model functions, with
optional formal notation and clearly stated model assumptions. Therefore,
models used in the development of embedded systems should be simple and
understandable (to reduce cognitive complexity), they should provide simplifi-
cation strategies based on coherent model assumptions coverage and whenever
possible should be deterministic in the time and value domain for the given
model assumptions [Kop97, Kop08a].

2.6.2 Meta-Model

A meta-model “is a model of a modeling language” [Kur05] that defines the
rules and constructs according to which a model is created, thus, a model is
frequently considered to be an instance conforming a meta-model. For example,
the UML meta-model describes the UML language, which is used to model
systems.

2.6.3 Model transformation

Model transformation is the process of converting one model into another
model, frequently using a model transformation language that enables the au-
tomatic process of transformation to take place [Kur05, Tru07]. According to
Kurtev, there are three types of model transformations [Kur05, Tru07]:

• Refactoring transformation reorganizes a model, based on some precisely
defined criteria.

• Model-to-model transformation transforms one model to another model
(e.g., PIM to PSM).

• Model-to-code transformations convert models into text, such as source-
code (e.g., C++).
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2.7 Naming

Naming is an important but frequently overlooked area in the design of dis-
tributed embedded systems, as it is for computer science in general [Pas99].
The name provides an unambiguous identifier which specifies a unique entity
(uniqueness). Names should not only be meaningful but also reflect the cor-
rect intended meaning following a human-oriented conceptual knowledge about
the world, so that it enables a person (e.g., the engineer) to identify and un-
derstand the functionality and the structure of a given system. These names
might be qualitatively different from the names used to construct the systems
(e.g., names used in the software source code) [Pas99, DP05, BMW93].

Name scheme

A naming scheme consists of the syntactic and semantic interpretation of
names, and the set of names complying with a naming scheme forms a name
space. If a uniform name scheme is provided, any system resource of interest
can be bound to a name [THH02]. The Uniform Resource Identifier (URI)
[BL05] was defined by the IETF in order to access abstract and physical re-
sources available via the Internet, and might be classified as a name (URN), a
locator (URL) or both.

• The Uniform Resource Name (URN) [Moa97, Spa04] is a URI that uses
the ’urn scheme’ and sets out to be a persistent and location indepen-
dent resource identifier (e.g., “urn:isbn:0792398947” specifies the book
[Kop97]). The URN naming scheme is defined as described in Equation
2.4 [Moa97], where NID is the Namespace Identifier (e.g., ISBN) and NSS
is the Namespace Specific String (e.g., 0792398947).

• The Uniform Resource Locator (URL) specifies the location of a re-
source, how it can be retrieved and sometimes the name as well
(e.g., http://www.ieee.org).

< URN >::= ”urn : ” < NID > ” : ” < NSS > (2.4)

2.8 SystemC

SystemC [iee05, wwwg, GLMS02] is an open-source C++ class library used to
develop executable models of hardware-software systems at different levels of
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abstraction, standardized as IEEE-1666 [iee05]. Strictly speaking SystemC is
not a language, but it is usually referred as a System-Level Design Language
(SLDL), and it is not a software design environment but a software-hardware
development and execution environment. One of the most important features
of SystemC design flow is that both hardware and software components can be
described using a common language (codesign of HW and SW). In addition
to this, there is an interesting research effort towards the usage of UML and
SystemC in system level modeling of the software, where UML is used to design
the software and generate the SystemC executable implementation [YXGB+06,
NZTWF04].

2.8.1 Time

SystemC simulation time provides a discretized time abstraction model of con-
figurable granularity, from femtoseconds to seconds. The simulation engine
updates the simulation time that acts as a virtual physical time for the sim-
ulation, decoupled from the real world physical time. The simulation time
is represented by a 64 bit-unsigned integer [iee05]. SystemC simulation time
might be used to provide a simulation global time of configurable granularity.
In addition to this, time deterministic models can be designed if appropriate
model design restrictions are applied [GLMS02, iee05].

Delta-delay

SystemC events are instantaneous, they have no value and no duration, and
can be established consistently at all simulation processes. The computational
time of a process is zero (simulation time) and all processes sensitive to a given
event will be triggered in the same consistent discretized point in time in case of
event activation, leading to simultaneous-instantaneous execution of processes.
In order to execute simultaneous processes, SystemC imposes a partial order for
each delta-cycle that lasts for an infinitesimal amount of time and which does
not advance the simulation time. That means that all simultaneous actions
are executed concurrently in zero simulation time, the delta cycle. SystemC
supports the same delta-cycle concept as VHDL [IEE94] and Verilog.

Time determinism

In order to develop time deterministic models (see Section 2.1.2), simultane-
ity of events must be properly handled [Kop08a]. This requires the following
minimum recommendations to be met [iee05, GLMS02, Gho02]:
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• Whenever possible use a MoC that is known to guarantee determinism.

• Whenever possible use primitive channels with request-update
(e.g., sc_signal) or rely on a two-phase synchronization scheme
communication, for inter-module and inter-process communication.

• Avoid synchronization mechanisms that could lead to race-conditions such
as mutexes and semaphores.

Clock

The SystemC class sc_clock models hardware clocks that generate periodic
events of configurable period and phase. All clock instances are based on the
same global simulation time and initialized before simulation starts, thus all
clock period and phases are consistent during the simulation.

2.8.2 Simplification strategies, tackling cognitive com-
plexity

SystemC could be used to provide all three previously defined model simpli-
fication strategies, described in Section 2.1.2, for the development of safety-
critical embedded systems:

• Abstraction: SystemC provides the notion of global time and a powerful
functionality description capability based on C++. It provides structural
decomposition by means of hierarchical modules which only expose the
required interface while the internal implementation details are hidden.
Transaction-Level Model (TLM) is a high-level approach to modeling em-
bedded systems, were communication between modules is modeled using
function calls abstracted from the detailed implementation of the com-
munication architecture [GLMS02].

• Partitioning: SystemC provides a strict separation of computation and
communication, and message based communication support.

• Segmentation: The internal functionality of SystemC modules, can be
described with other modules and processes that execute sequentially or
simultaneously. Simultaneous execution, is performed sequentially by the
execution engine using the delta-cycle concept.
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2.8.3 Codesign of HW and SW

One of the most important features of SystemC design flow is that both hard-
ware and software components can be described using a common language. In
fact, at the beginning of the design both are indistinguishable as the assign-
ment of modules to hardware or software has not yet been made. This enables a
seamless exploration of different architectures and hardware vs. software trade-
offs without the need for describing modules in domain specific languages such
as C and VHDL [Pan01].

• Software: There is an interesting research effort towards the usage of
UML and SystemC in system level modeling of the software, where UML
is used to design the software and generate the SystemC executable imple-
mentation [YXGB+06, NZTWF04]. However, the current SystemC ver-
sion does not support software tasks and preemptive scheduling, which
are scheduled for SystemC version 3.0. Therefore, current support for
complete software modeling and execution is limited but looks promising
in conjunction with UML.

• Hardware: A subset of SystemC models typical hardware functional-
ity by means of constructs analogous to HDLs, so it can synthesized or
translated into HDL languages such as VHDL [Pan01].

2.8.4 Extensions

SystemC aims to provide a simple foundation that can be extended to support
heterogeneous MoC, design libraries, modeling guidelines, and design method-
ologies that are required for system design. SystemC currently only supports
the discrete-event MoC providing a lightweight event-triggered execution en-
gine with simple and flexible synchronization capabilities provided by events
and wait statement. Based on this different extensions can be built on top of
SystemC, such as SystemC-AMS [wa] and HetSC [HVG+07, VH08].
SystemC-AMS (SystemC - Analog Mixed Signal) [wa] extends SystemC to
support the functional simulation, simulation based verification, Transaction-
Level Model and modeling of analog and mixed signals [VGE03b, MDHH05].
SystemC-AMS extension provides support for the modeling and simulation of
continuous time-models and heterogeneous models such as mixed-signal (analog
and digital) and mixed-domain (e.g., electromechanical) [VGE03b, VGE04]. A
synchronization layer, provided as part of the SystemC-AMS library, ensures
the timing consistency [VGE03b, VGE03a, HVG+07].
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The identification of abstraction levels and the devel-

opment of corresponding deterministic models, where

the indeterminism of the world at the lower levels does

only have a negligible effect, are at the root of scientific

discovery and engineering practice [Kop97]

Hermann Kopetz

Chapter 3

Executable Time-Triggered
Model (E-TTM)

This chapter provides an overview of the Executable Time-Triggered Model
(E-TTM), which is elaborated upon in detail in the following Chapters 4 and
5. The E-TTM is a time deterministic executable modeling approach for the
composable development of safety-critical embedded systems based on Time-
Triggered Architecture (TTA). E-TTM might be used from the early phases of
a V-model development process, in order to provide executable specifications
and PIM models that could also be used during the verification and validation
phases. It targets both Platform Independent Model (PIM) and Platform Spe-
cific Model (PSM) views, but only the PIM view is elaborated upon within this
thesis.

3.1 Introduction

E-TTM provides a component-based modeling approach for systems based on
Time-Triggered Architecture (TTA), a time deterministic executable modeling
approach for the composable development of safety-critical embedded systems.
For this purpose, it provides a consistent notion of time based on the sparse-
time concept from the time-triggered MoC [Kop98], expressiveness to describe
time properties and constraints, support for replica determinism (e.g., TMR)
[PBWB00], mechanisms to tackle the complexity challenge [Kop08a, JTM07],
etc. Time properties and constraints are intrinsically preserved through model
refinement steps and execution, and through the development process when-
ever the implemented system is based on the TTA. Nonetheless, E-TTM could
also be used for the development of (generic) distributed real-time and safety-
critical embedded systems, not necessarily based on the TTA, where the de-
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signers are responsible for ensuring that properties of interest are preserved.
The E-TTM approach involves a set of constraints that can be relaxed for this
purpose by the designers.
The E-TTM simulation time is invariant of the physical time progression and
the distributed simulation topology. When modeling periodic controls appli-
cations the simulation time might be coupled or decoupled from the physical
time. If it is coupled, a periodic time synchronization is performed at every
macrotick, but the ratio between simulation time and physical time might be
configurable in order to enable the execution of models faster, slower or at the
same pace as physical time. This is similar to a video-player which can play
films faster, slower or at the same pace as physical time, but in all cases, the
executed model provides the same simulation results at the same simulation
instants because simulation time periods and phases are kept constant. This
simulation time result invariance property is also supported in the execution of
distributed simulation topologies.

3.2 Views (PIM and PSM)

In order to reduce the design cognitive complexity, E-TTM supports both
Model Driven Architecture (MDA) abstraction views, Platform Independent
Model (PIM) and Platform Specific Model (PSM). For each abstraction level
the interface description can be partitioned and analyzed in isolation or con-
junction, and designers can concentrate on different attributes and properties
meaningful for each development stage. This enables the cooperation of differ-
ent teams through the development stages such as system control team at the
PIM level and embedded-systems team at all levels with an emphasis on the
PSM level.

• Platform Independent Model (PIM): At this level the designer spec-
ifies the structure, interfaces (time and value domain), describes the func-
tionality (semantic and syntactic), specifies dependability requirements
(e.g., redundancies) and specifies performance constraints that can be re-
fined through the modeling process. The PIM structures the overall ap-
plication functionality into systems, DASs and jobs [HOP06, KOESH07].
The designer is abstracted from technical details and platform specific
requirements.

• Platform Specific Model (PSM): At this level the designer maps pre-
vious PIM into physical distributed platforms, taking into account plat-
form specific requirements and constraints (e.g., Time-Triggered Network-
on-Chip (TTNoC) [OESHK08]).
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3.3 V-model life cycle

The development of safety-critical embedded systems usually follows the well
known V-model approach shown in Figure 3.1, at least for industrial and trans-
portation control domains [PC06]. The left part of the V-model includes the
specification, design and development phases, which as shown in Figure 3.2
could be done in consecutive steps that starting from the ’what’ (specification)
leads to the ’how’ (synthesis, development) using different abstraction views in
the design process (PIM, PSM).

Specification

Synthesis

Validation

Design Verification

Figure 3.1: Simplified V-Model life cycle.

R
efi
ne
m
en
t

H
ow

?

A
bs
tr
ac
ti
on

W
ha

t?

Specification

Design

Synthesis

PIM

PSM

...

Figure 3.2: Multi-step development process [HVF+05].
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The E-TTM modeling approach follows this abstraction and refinement ap-
proach and could be used from the early phases of a V-model development
process in order to provide executable specifications and PIM models. These
models could also be used during the verification and validation phases, for
comparison purposes between the specified or PIM modeled system and the
developed system. For example, a distributed E-TTM model coupled with
the physical time should exchange messages with the same content and at the
same time instants as the equivalent physical system should: thus, it would not
be possible to distinguish whether the sender of messages is a submodel or a
subsystem by just comparing the arrival time and content of messages.

3.4 Meta-model

As shown in Figure 3.3 the E-TTM modeling approach is based on a meta-
model definition and implementation, described in Chapter 5. The E-TTM
meta-model (mmE-TTM) specifies the rules and constructs according to which
a E-TTM model is created. On the other hand, the meta-model implemen-
tation provides the meta-model elements required to develop E-TTM models
and the meta-model E-TTM execution framework (xfE-TTM) on top of which
developed models are executed.

Meta-model Meta-model exec. framework

Model

mmE-TTM xfE-TTM

E-TTM

implements

complies

uses

1

N

1

N

Figure 3.3: E-TTM model, meta-model and execution framework.
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3.5 Notation

The following Table 3.1 describes the notation used to describe the E-TTM:

Symbol Description
et/tt Event-Triggered / Time-Triggered
i/o Input / Output
e Event, e+ triggered and e− non triggered
E Set of events, E = {e}
c Component
C Set of components, C = {c}
x(c) Component (c) execution
e(c) Component (c) activation event
port Interface port, port ∈ [LIF,CP,DM ]
m Message
M Set of messages, M = {m}
s/r Send / Receive message
Π Sparse-Time activity interval
∆ Sparse-Time silence interval
Γ Sparse-Time macrotick,
tick Global Time tick, tick ∈ N+, tick = K · Γ
δ Delta delay

Table 3.1: E-TTM notation.
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What then is time? If nobody asks me, I know what

time is, but if I am asked then I am at a loss what to

say.

St. Augustine [J.00]

Chapter 4

On the notion of time

This chapter analyses the notion of time from different perspectives related to
the development of safety-critical embedded systems, identifying suitable time
representations, time constraints expressiveness and time abstraction models
to be included in the definition of the E-TTM.
The concept and nature of time [Dav95, Gal03, J.00, Mer05] has been analyzed
by philosophy, art, religion and science for thousands of years but still no
common agreement is available among them. The relativity of time and it’s
implications makes any agreement even more difficult. What St. Augustine
(AD 354-430) said several centuries ago still might be considered valid nowadays
“What then is time? If nobody asks me, I know what time is, but if I am asked
then I am at a loss what to say” [J.00].

4.1 Introduction

The concept of time commonly used in the development of real-time embed-
ded systems is based on the Newtonian physics concept of time, disregarding
relativistic effects. Time has a key role in the development of Safety-Critical
Embedded-Systems (SCES) and Real-Time Embedded System (RTES), be-
cause a notion of physical time is required to express time requirements that
must be met by the system (e.g., hard deadline). However, historically the
notion of time has not been supported with the required rigour by computer
science [Lee99, MCIJ+02, Gho99], as stated by Lee: “Time has been systemat-
ically removed from theories of computation, since it is an annoying property
that computations take time. ’Pure’ computation does not take time, and has
nothing to do with time. It is hard to overemphasize how deeply rooted this
is in our culture. So called ’real-time’ operating systems have so little to go
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on that they often reduce the characterization of a component (a process) to a
single number, its priority. ” [Lee99, MCIJ+02].

4.2 Basic Concepts

Time is defined as “the indefinite continued progress of existence and events
in the past, present, and future, regarded as a whole” [Oxf07]. The second is
the unit of time according to the International System of Units (SI), defined
as “the duration of 9,192,631,770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the cesium-
133 atom”. In addition to this, time is considered to be a fundamental quantity
in physics, other units of physical quantities can be generated from it [BIP08].

4.2.1 Flow of time

The flow of time based on Newtonian physics might be modeled as a directed
timeline that extends from the past to the future, as shown in Figure 4.1. An
instant is a cut in the timeline where the instant now, the present, separates
the past from the future. An event is a relevant happening that occurs at an
instant and the interval between two instants is called a duration [OESHK07].
The timeline might be modeled as dense / continuous (e.g., real world) or
discretized.

Time
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past future

Figure 4.1: Flow of time.

4.2.2 Time measurement

A (physical) clock is a device for measuring time, and almost every clock may be
considered a two-part device, an oscillating device for determining the length
of a periodic time interval and an increasing counter. The periodic event is
called the microtick [Kop97] of the clock and the time duration between two
consecutive microticks is called the granularity of the clock. Atomic clocks are
the most accurate clocks, they are claimed to be so accurate that they would
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neither gain nor lose even a second in more than 200 million years [LZC+08].
The reference oscillation of an atomic clock is based on an electromagnetic
signal associated with a quantum transition between two energy levels in an
atom [Kop97, AAH97].

A physical clock can exhibit two failure modes, the counter could be mutilated
by a fault and / or the drift rate of the clock could depart from the specified
drift rate which for a perfect clock would be zero [Kop97]. In principle, if a clock
were set perfectly and the frequency remained perfect, it would keep the correct
time indefinitely. But this is not possible for real clocks [AAH97] because it is
not possible to set clocks perfectly (due to random and systematic variations
intrinsic to any oscillator mechanism), environmental causes can cause the clock
frequency to vary from the specified frequency and time relativity (time is a
function of position and motion).

GPS is a global navigation system that relies on precise timing technology re-
quired for this purpose, based on synchronized atomic clocks that even take
the theory of relativity into consideration [Gal03]. Due to the low receiver
equipment cost it has become the world’s principal supplier of accurate time
and might be used by real-time embedded systems as an external clock syn-
chronization source [Kop97, AAH97].

4.2.3 Causality

Causality is a fundamental law in the physical universe and philosophy, which
states that “for every cause there is an effect and for every effect there must have
been a cause”, and timing constitutes the external and observable manifestation
of the causal relationship between activities [Gho99].

If multiple causal events happen within a system, the exact temporal order
of the events is helpful in order to identify the primary event(s). If event e2
occurs after event e1, then e1 might be the cause of event e2 but not otherwise.
Therefore, the temporal order of events is necessary but not sufficient in order
to establish the causal order [Kop97].

Causes and effects cannot be simultaneous in reality within a dense timeline,
zero time interval between the cause event and the effect event, because the
speed with which an action may occur is limited by the speed of light and
therefore the time interval might be very small (infinitesimal) but always bigger
than zero. Therefore, the principle of causality helps to distinguish between
the past and the future [Gho99].
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4.2.4 Determinism

Determinism [PC07b, Kop08a] means that for a given set of relevant conditions
a given item (e.g., property, output, etc.) is completely predictable and does
not depend on randomness or stochastic statements. As shown in Equation
A.7, and explained in Section A.5 on page 134, this implies that an output (o)
is deterministic for a given set of relevant conditions (c), if given the same set
of initial conditions then the system (s) always generates the same outputs at
the same time (tso) when given the same inputs (i) at the same time (tsi).
This definition implies that the notion of time must be consistent at the system
level under analysis, which means for example that in the case of a distributed
embedded system the notion of time should be based on the sparse time (see
Section 4.5 on page 38). It also means that if the system under analysis and the
external observer that makes the judgement do not share the same notion of
time, determinism might just be a local property of the system under analysis
and not an ’absolute’ property from the observers perspective (it is ’relative’).

4.2.5 Simultaneous, synchronous and coincident

Simultaneous, synchronous and coincident are three similar concepts that de-
scribe the occurrence of an event at about the same time:

• Synchronous is defined as “existing or occurring at the same time”
[Oxf07] and derives from the Greek words sun “together” and khronos
“time”.

• Simultaneous is defined as “occurring, operating, or done at the same
time” [Oxf07] and derives from the Latin word simul that means “at the
same time”.

• Coincidence is defined as “correspondence in nature or in time of oc-
currence” [Oxf07].

According to their definitions synchronous, simultaneous and coincident might
seem to be synonyms but they do in fact represent different concepts. In con-
trast to simultaneity and synchrony, coincidence expresses the occurrence of
events at about the same time (usually within a wide time interval) without
implying a relationship or dependency among them. Synchrony is related to the
triggering of an event or the repetitive time pattern in which two or more events
are activated at the same time instants (or harmonic). On the other hand simul-
taneous is related to the occurrence of multiple events within a narrow or zero
time interval, and this occurrence might not be always repetitive. Synchronous
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languages rely on the zero execution time principle, thus executions are both
synchronous and simultaneous. However, in the real world synchronous events
are not always simultaneous. Imagine for example two parallel Analog Digital
Converter (ADC) that sample analog values:

• Synchronous and simultaneous: If the conversion is triggered by the same
clock and the ADC conversion time is equal, the conversion will be syn-
chronous and simultaneous (disregarding delays due to different hardware
signal routing).

• Synchronous: If the conversion is triggered by the same clock and the
ADC conversion time is different (e.g., different types of ADC), the con-
version will be synchronous but not simultaneous (not happening at the
same time).

• Simultaneous: If the conversion is triggered by different clocks with the
same frequency and offset difference equal to the ADC conversion time
difference, the conversion will be simultaneous but not synchronous. This
could also be the case for different independent ADCs and triggering
clocks, that by chance perform a simultaneous conversion (coincidence).

If not handled properly, simultaneity of events might be a challenge to the
designer of SCES because it might be a source for indeterminism and un-
predictability in the time and value domains: the meta-stability problem in
hardware, the mutual exclusion problem in operating systems, the consistent
message ordering problem in distributed systems, race conditions, etc. At a dis-
tributed embedded system level, simultaneity of events happening in a dense
timeline is at the root of indeterministic behaviour (time and value domain)
because it is basically impossible to arrive to a system wide consistent notion
of simultaneity [Kop08a].

4.2.6 Parallel, concurrent and sequential

Parallel, concurrent and sequential are three related concepts that describe the
execution of activities during time:

• Parallel is defined as “occurring or existing at the same time or in a
similar way” [Oxf07] and derives from the Greek word parallelos, para
meaning “alongside” and llelos “one another”.

• Concurrent is defined as “Existing, happening, or done at the same
time” [Oxf07] and derives from the Latin word concurrent that means
“running together, meeting”.
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• Sequential is defined as “forming or following in a logical order or se-
quence” [Oxf07]. Sequence is defined as “a particular order in which
related things follow each other” [Oxf07] and derives from the Latin word
sequent that means “following”.

Sequential execution implies no simultaneous execution, only one execution at
a time and one after another in time. On the other hand, parallel and concur-
rent might seem to be synonyms but they represent indeed different concepts.
Parallel execution of activities imply that activities might be executed simulta-
neously, which means that at a given point in time several activities might be
executed. Concurrent execution of activities might be in parallel, or sequential
by interleaving all different activities in time giving the illusion of parallelism.

4.2.7 Periodic, aperiodic and sporadic

Periodic, aperiodic and sporadic are three related concepts that describe the
time interval execution of activities or activation of events:

• Periodic is defined as “appearing or occurring at intervals” [Oxf07] and
derives from the Greek word periodikos meaning “coming round at inter-
vals”.

• Aperiodic is defined as “not periodic; irregular” [Oxf07].

• Sporadic is defined as “occurring at irregular intervals” [Oxf07] and
derives from the Greek word sporadikos meaning “scattered”.

Periodic events are cyclic, they occur at fixed known time intervals. Sporadic
events can occur at arbitrary points in time, but with defined minimum inter-
arrival times between two consecutive events. On the other hand, aperiodic
events have irregular time intervals, not known a priori, which might be random
or described only by statical means [Kop97].

4.2.8 Instantaneous

The term instantaneous is defined as “occurring or done instantly” [Oxf07],
which means that either the execution activity is triggered in the same instant
(zero time interval delay) and / or the execution time of an activity is zero (it
happens in the same instant, where a time instant has no duration, zero time
interval). If the interval of occurrence is (very) small compared to all other
intervals of interest, this occurrence might also be considered to be ’instanta-
neous’ even if the interval time is not zero. Instantaneously, like simultaneity,
might be a source of non-determinism if not handled properly. In fact, multiple
instantaneous events are simultaneous events.
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4.3 Cognitive Time

In our reality, at the level of human comprehension, time is synonymous with
the wall clock [Gho99]. The human perceptual sense of time is a fundamen-
tal cognitive life function according to the Layered Reference Model of the
Brain (LRMB), which might be considered as the thinking engine of the brain
with a seven-layered hierarchical structure, where time is the fifth [Yin08].
The cognitive capabilities, the mental process by which time is perceived and
reasoned (psychology and neuroscience), plays a central role in the design of
real-time embedded systems by human designers.

4.3.1 Time perception

The brain measures time continuously and the sense of time is needed for
most human life functions such as planning, coordination and execution of ac-
tivities, observing the sequence of events, etc. Time perception is an ability
usually taken for granted, but still relatively little understood and experiments
on human time perception are in their infancy. Different studies suggest the
involvement of multiple human brain regions in timing functions and the min-
imum interval of human sense of time is identified within the scope of 25ms
to 150ms [LWS07, Yin08, Dav95, Eag08]. Time perception is slightly different
among people and might depend on the context (e.g., frightening situation)
[Eag08].
Temporal processing is likely distributed and temporal and spatial process-
ing are intrinsic properties of neural functions [MB04]. However, the neural
mechanisms for time perception seem to be different for different timing scales,
cognitive time perception deals with ’long scales’ (e.g., second, minute, hour,
day, month, etc.) and ’automatic’ or ’direct sensation’ deals with subsecond
timing [Eag08, Ram99].

• On the subsecond timing scale, ’automatic’ or ’direct sensation’, Eagle-
man states that a diverse group of neural mechanisms seem to mediate
temporal judgements. Multiple research results in neuroscience state that
the brain represents time in a distributed manner, and provides a single
synchronized notion of time by detecting the coincidental activation of
different neural populations [BM05, MB04, Eag08]. Temporal judgements
are constructions of the brain that enable a consistent reconstruction of
the world around us (e.g., causality), but can be twisted in laboratory
experiments converting them into temporal illusions [Eag08].

– For example, different sensorial information requires different pro-
cessing time in the brain, e.g., hearing is processed faster than visual
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information. However, the brain synchronizes all sensorial informa-
tion by delaying some of it in order to produce a consistent recon-
struction of our ’reality’, so that for example the visual image of
a person clapping and the hearing of the clapping is simultaneous.
Even if the person is relatively far away from us, thus the clapping
noise will physically arrive later (speed of sound vs. speed of light),
the brain will still try to synchronize this information and it will
seem to be simultaneous to the human observer if the delay of the
arriving information is below approximately 1/10th of a second.

• On a larger time scale (bigger or equal to one second), there seems to be
a single source of temporal information (single internal abstract clock)
used by the cognitive system [vRT08]. This is analyzed in the following
Sections.

4.3.2 Asynchronous brain, multiple clocks

The human sense of time can be described by the physical, cognitive and bio-
logical clocks as shown in Figure 4.2.

• The cognitive clock is a conscious and subjective perception of time
based on the internal biological clock and a conscious relative perception
of the external physical clock.

• The biological clock is an unconscious and subjective notion of time
based on the physiological and biological rhythms of the human body.
The typical pacemakers of the biological rhythms, the subconscious ticks,
are the sleep-awake cycle, heartbeats, breathing, metabolic activities,
etc. The sense of time can be altered by multiple biological and physio-
logical factors (e.g., the biological pace is proportional to the temperature
of the human body) [Yin08].

Biological clock

Cognitive clock

Physical clock

Biological rythms (the ticks)

Unconscious synchronization

Conscious synchronization

Figure 4.2: Sense of time according to the internal and external clock [Yin08].
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The brain seems to be an asynchronous system, there is no obvious central
clock at the conscious, subconscious or physiological levels [LMZO03, Sta05,
Yin08, LW05]. However, different research studies have analyzed how humans
perceive and reproduce intervals of time relatively accurately and the capabil-
ities for timing multiple overlapping intervals. One of the conclusions of this
research is that a single source of temporal information (single internal abstract
clock) is used by the cognitive systems to account for the estimation of partly
overlapping intervals [vRT08].
In addition to this, different parts of the brain might act as pacemakers of the
biological clock, such as the hypothalamus which is believed to be the responsi-
ble for the circadian rhythm [Yin08]. There also seems to be a biological clock
synchronization with the external physical time to synchronize daily activities
with the external world. The physiological rhythmic cycle tends to synchronize
at a 25 hours cycle per day, rather than 24 hours, and this might indicate that
human beings still keep an ancient rhythmic cycle which was formed several
hundred million years ago when the daily cycle of the earth was longer than
nowadays [Yin08].
All in all, it seems as if the cognitive clock acts as a notion of global time
at the brain level (the single internal abstract clock), based on a transparent
internal clock synchronization (e.g., biological clocks, neural populations, etc.)
and external physical clock synchronization (e.g., watch, daylight, etc.).

4.3.3 Concurrent multitasking

One of the most impressive aspects of human cognitive capability is concurrent
multitasking, the ability to manage and execute multiple concurrent tasks.
In some situations the concurrency is ubiquitous and seems to be effortless
(e.g., walking and talking), while others seem to be extremely difficult if not
impossible (e.g., reading one text and listening to a different one). Threaded
cognition deals with concurrent multitasking and aims to provide a theoreti-
cal and computational framework for understanding, modeling and predicting
performance of the concurrent execution of arbitrary tasks [ST08].
The development of distributed embedded systems requires the development of
distributed and multi-thread applications, concurrent multitasking. As already
known by software and hardware developers, this leads to a complexity explo-
sion difficult to handle by the human cognitive limitations even if the human
is capable of timing multiple overlapping intervals. The number of threads,
relationships and temporal interdependencies between them easily exceeds the
maximum number of concurrent relationships that adult humans are capable
of processing concurrently [HBMB05], thus “a non trivial software written with
threads, semaphores and mutexes is incomprehensible to humans” [Lee06].
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4.4 Time Representation

Time is a fundamental concept for the development of SCES, thus, the pre-
cise and consistent time representation is of utmost importance. This section
describes time standards, time formats and the time cycle concept, a cyclic
timing representation that suits control algorithms.

4.4.1 Time Standards

Different time standards have been defined to measure the time difference be-
tween any two events and establish their position relative to some commonly
agreed time base origin, called the epoch, of which TAI and UTC are the most
most relevant for embedded systems [Kop97]:

• TAI (International Atomic Time) is a high-precision atomic time stan-
dard that provides a chronoscopic time-scale (there are not discontinu-
ities) measured in seconds [wwwb].

• UTC (Coordinated Universal Time) is a high-precision atomic time stan-
dard that defines time with seconds defined by the TAI and needs to add
leap seconds to compensate for discrepancies such as the earth’s slowing
rotation. Each day contains 86400 seconds (24 hours x 60 minutes x 60
seconds) but occasionally the last minute of the day might have 59-61
seconds leading to a day of 86399-86401 seconds. As of 2009, TAI is 34
seconds ahead of UTC [wwwb].

4.4.2 Time Format

Different time format standards have also been defined to represent and identify
time instants, from which the following ones shown in Figure 4.3 and described
below are the most relevant for embedded systems:

Network Time Protocol (NTP) is the Internet time format standard used
to synchronize system clocks among a set of distributed servers and clients
that use UTC [Mil06]. The NTP time is not chronoscopic because it is
based on UTC and the occasional insertion of a leap second can disrupt
the continuous operation of a time-triggered real-time system. The NTP
timestamp is 8 bytes long and it is divided into two fields as shown in
Figure 4.3, the timestamp (most significant 4 bytes) represents seconds
according to UTC that span 136 years and fraction (less significant 4
bytes) represents second fractions with a resolution of about 232 picosec-
onds. The initial epoch is 1 January 1900.
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Global Positioning System (GPS) time format is the same as the NTP
time format shown in Figure 4.3 except for the initial epoch which is
different, 6 January 1980.

Uniform Time Format (UTF) [OMG01] is an OMG time format, used by
TTE [KAGS05], represented in binary 64 bits (8 bytes) as shown in Figure
4.3. Full seconds are represented in 40 positive powers of two (up to 30000
years) and fractions of a second are represented as 24 negative powers of
two (smallest value is approximately 60 nanoseconds). Based on this
format, every instant from the initial epoch, January 1980, to around
30000 years in the future can be represented uniquely with a granularity
of about 60 nanoseconds.

IEEE-1588 [iee04] is an international standard issued by the International
Electrotechnical Commission (IEC), IEC-61588, that defines a precision
clock synchronization protocol for networked measurement and control
systems. Time is represented in 64 bits, full seconds are represented as
a 32 unsigned integer and nanoseconds as a 32 bit signed integer. The
sign of the nanoseconds counting integer, represents a positive / negative
timestamp post / prior to the epoch. The epoch depends on the type of
grandmaster clock used (e.g., GPS), but for most cases it is based on the
PTP epoch, 0 hours on 1 January 1970.

ISO 8601:2004 [iso04] is an international standard issued by the International
Organization for Standardization (ISO) for date and time representations:
Gregorian dates, time of day, combined date and time of day, and time
intervals. For example, 2008− 10− 23T12 : 48Z defines the time instant
23 October 2008 at 12 hours, 48 minutes Coordinated Universal Time
(UTC) time, while P3Y 6M4DT12H30M5S defines a period of 3 years,
6 months, 4 days, 12 hours, 30 minutes and 5 seconds. This time format
is usually used by humans operating with systems, HMI, and by system
designers for the time specification of system activities.

Natural language standardized expressions such as the one defined by the
VHDL standard [IEE94], time value and time unit (e.g., 10 nanosecond).
This time format is powerful, natural, simple and widely used to express
time.

Timestamp Fraction

(a) NTP

0 31 32 63
Seconds Fraction

(b) UTF

0 39 40 63
Seconds Nanoseconds

(c) IEEE-1588

0 31 32 63

Figure 4.3: NTP, UTF and IEEE-1588 time formats (64 bits, 8 bytes).
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4.4.3 Time Cycle

The temporal structure of a typical distributed real-time control system is
cyclic, where each control cycle can be decomposed into a number of steps
[OESHK07, OESHK08]. The timing descriptor of each step (Tstep), as shown
in Equation 4.1, is composed by the period (p) and the phase (φ) relative to
the cycle start. This cyclic representation suits real-time control system timing
representation better than linear model, thus reducing the cognitive complexity
in the design of such systems.

Tstep =< p, φ > (4.1)

5

6
E

45
D

3

4

C

2

3B

1 2
A

1: Start of control cycle
A: Observation of sensor input
2: Start of transmission of sensor data
B: Transmission of input data
3: Start of processing of control algorithm
C: Processing of control algorithm
4: Termination of processing
D: Transmission of control value
5: Start of output to actuators
E: Output operation at the actuators
6: Termination of output operation

Figure 4.4: Cyclic period with temporal alignment in control loops [OESHK08].

4.4.4 Temporal relations algebra

The study of temporal representation and reasoning is a core area of research
in different domains such as Artificial Intelligence (AI) [PSPG00]. This sec-
tion defines the basic algebra to express time instants, time intervals and time
interval relationships to be used within the current document.

Time instant

As previously explained in Section 4.2.1, a time instant is a cut in the timeline.
All possible basic temporal relationships that might be established between any
two time instants (ta, tb) are described below:

• ta = tb: Both instants are equal, simultaneous.
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• ta¬tb: Both instants are different, exclusive.

• ta < tb: ta precedes tb.

• ta ≤ tb: ta precedes or equals tb.

• ta > tb: ta follows tb.

• ta ≥ tb: ta follows or equals tb.

Time interval

Time intervals (e.g., X) can be represented by modeling the endpoint instants,
beginning instant (X−) and ending instant (X+) [Bru72]. According to this
definition a zero duration interval, instantaneous, might be defined as X− =
X+.

Time interval relationships

The following Table 4.1 shows all possible basic temporal relationships between
ordered pair of time intervals [All86].

Relation Symbol Inverse Diagram Relations on
Symbol Endpoints

X before Y < > X: ——— X+ < Y−
Y : ———

X equal Y = 6= X: ——— (X− = Y −) ∧ (X+ = Y +)
Y : ———

X meets Y m mi X: ——— X+ = Y −

Y : ———
X overlaps Y o oi X: ——— (X− < Y −) ∧ (X+ > Y −)

Y : ——— ∧ (X+ < Y +)
X during Y d di X: —– ((X− ≥ Y −) ∧ (X+ ≤ Y +))

Y : ———
X starts Y s si X: —– X− = Y −

Y : ———
X finishes Y f fi X: —– X+ = Y +

Y : ———

Table 4.1: Temporal relationships between ordered pair of time intervals [All86].
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4.5 Time Abstraction Models

As previously explained, instantaneity and simultaneity could be a source of
indeterminism if not properly handled. In order to tackle this issue different
time abstraction models shown in Figure 4.5 and additional mechanisms could
be used in the development of RTES.

Continuous Time
Discrete Time
Global Time
Sparse Time

A
bs
tr
a
ct
io
n

Figure 4.5: Physical time abstraction models.

Continuous / Dense Time: In a dense time model time has a continuous na-
ture as shown in Figure 4.6(a) and Equation 4.2. Time advances continuously,
time instants (t) are modeled by real numbers and the delay between two events
can be arbitrarily small. This time abstraction suits for example open-world
physical systems, analog electronic systems and models (e.g., Simulink).(

∀ti, tk ∈ <+
)
∧ (ti 6= tk)⇒ ∃tj → ti < tj < tk (4.2)

Discrete Time: In a discrete time model, time has a discrete nature where
time is advanced by discrete steps (time intervals) and time instants are mod-
eled by positive integers as shown in Figure 4.6(b) and Equation 4.3. Events
can only happen at discrete time values (integer value) and the delay between
two events can only be a multiple of this time step. The discrete time ticks are
usually generated by a clock (z) that generates the periodic event called the
microtick. This time abstraction suits synchronous systems, synchronous lan-
guages (e.g., Lustre), Hardware Description Languages (HDL) and centralized
/ distributed embedded systems in general.(

∀ti, tk ∈ N+
)

; (ti 6= tk)⇒ (ti < tk) ∨ (ti > tk) (4.3)

Global Time: The global time is a common notion of time that helps to
establish a consistent temporal order of events based on their timestamps and
a time consistent execution of control algorithms, within a distributed RTES.
Global time is approximated by the generation of a global time macrotick based
on a set of distributed node clocks microticks, as shown in Figure 4.6(c) and
Equation 4.4, using a (fault tolerant) clock synchronization algorithm [Kop08a].
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∀gt, t ∈ N+

gt = clksync({t}
(4.4)

Sparse Time: The sparse-time model provides a deterministic consistent dis-
tributed system wide notion of simultaneity based on the global time. As shown
in Figure 4.6(d) and Equation 4.5, this is done by restricting the occurrence of
events that are in the sphere of control of the computer system to the activity
intervals of a sparse-time base. The continuous real-time is partitioned into a
sequence of alternating intervals of activity of duration π and silence of dura-
tion ∆ [Kop08a]. This time abstraction suits distributed real-time embedded
systems where a deterministic and system wide temporal order of events and
notion of simultaneity is required.

∀ti ∈ <+; ∀Πi,∆i ∈ N+ ⇒ (ti ∈ {Π}) ∨ (ti ∈ {∆})
∀e (ti)⇒ ti ∈ {Π}

(4.5)

t
1.2[sec] 3.14159[sec] 6.54[sec]

(a) Continuous Time

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Discrete Time

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) Global Time

t
π ∆ π ∆ π ∆ π ∆

(d) Sparse time
Figure 4.6: Time abstractions.

In addition to this, the delta-delay [Gho99] concept is used to overcome the in-
determinism of instantaneous actions executed simultaneously and which might
generate race conditions (e.g., logical circuits with loops). The delta-delay (δ)
represents an infinitesimal advance in time, which provides a mean for order-
ing events that are causal but appear to be simultaneous in the time domain.
It must be stated that when the delta-delay is used with zero execution time
(e.g., VHDL) instead of infinitesimal, this could lead to non deterministic be-
haviour under certain circumstances [Gho99].
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4.6 Time Constraints

A constraint is defined as “a limitation or restriction” [Oxf07] and the most
stringent temporal constraints for real-time embedded systems have their origin
in the requirements of the system to be controlled (e.g., the plant) [Kop97]. The
time constraints covered within this section might apply to jobs implemented
as hardware and software, where constraint equivalences might be found in the
respective development environments and languages (e.g., VHDL).

4.6.1 Time constraints for data

The temporal validity / accuracy interval of data within a real-time embedded
system is limited, or at least for the real-time data. This temporal validity /
accuracy interval depends on the nature or source of the data. For example:

• In system control applications, a real-time entity is a significant state
variable (e.g., speed) of the controlled plant which changes over time. A
real-time image corresponds to the observation of a real-time entity, and
a given real-time image is only accurate for a limited time interval which
depends on the dynamics of the controlled plant [Kop97]. Therefore,
the real-time image accuracy interval is limited and must be taken into
consideration as a time constraint.

• Real-Time databases contain persistent and time-varying data, so real-
time database transactions have timing constraints [Sno95]. The tem-
poral validity of a given piece of information is given by the deadline
associated with this information.

• Multimedia systems process a variety of multimedia information with
associated temporal characteristics and temporal validity [WR94].

4.6.2 Time constraints for jobs

Real-time systems timing constraints for jobs have been analyzed and described
in the literature [XP93, EJ00, IF00, Xu03, But04], usually assigned to software
tasks. A job is considered the smallest self-contained execution entity with
a given functional purpose (as in DECOS), which might be implemented as
software, hardware or any combination of both. Job timing constraints might
be defined as the composition of job and inter-job timing constraints.
From the activation event point of view two types of jobs shall be differenti-
ated [XP93]. Asynchronous jobs are activated by an internal or external event
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(event-triggered) while periodic jobs are activated by a periodic event (time-
triggered), thus executed repeatedly once every fixed period of time. The kth
of a periodic job Jp is denoted by Jkp .

J

release time deadline period

max.
input jitter

max.
output jitter

(a) Job

J1 J2 J1 J2

J1

J2

J1 J2

min. distance max. distance

max.
correlation

(b) Inter-Job

Figure 4.7: Job and inter-job timing constraints [EJ00].

4.6.3 Job timing constraints

Job timing constraints define the time limits with which the job must operate
and can be defined as the vector of parameters described in Table 4.2 and
Figure 4.7(a) [XP93, EJ00, Xu03]. From all these parameters, Xu identified
(prdp, rp, dp, cp) and (mina, da, ca) as the required timing constraints for periodic
(p) and aperiodic (a) timing constraints definition [XP93, Xu03], thus other
parameters might be considered as optional.
Inter-job timing constraints express time limits within which jobs should be ex-
ecuted in relation to others that can also be described as a vector of parameters
described in Table 4.3 and Figure 4.7(b).

Job Type Parameter Description
Periodic job
(p)

Period (prdp) Execution period

Release time (rp) The earliest time it can start its computa-
tion, also called phase (ϕ).

Deadline (dp) The time it must finish its computation
WCET (cp) Worst-case execution / computation time
Relative deadline
(d−p )

The maximum tolerable time interval be-
tween the activation and end of execution.

Jitter input (ji) Maximum difference between release time
(rp) and execution start.

Jitter output (jo) Maximum difference between deadline (dp)
and execution end.
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Asynchronous
job (a)

Min. Time Req.
(mina)

Minimum time between two consecutive re-
quests

Deadline (da) Execution deadline
WCET (ca) Worst-case execution / computation time
Relative deadline
(d−a )

The maximum tolerable time interval be-
tween the activation and end of execution.

Jitter input (ji) Maximum difference between release time
(rp) and execution start.

Jitter output (jo) Maximum difference between deadline (dp)
and execution end.

Table 4.2: Job level timing constraints.

Constraint
Name

Description

Distance
D (X|Y )

It constrains the distance (in time) between the production and
consumption of an output, by a producer and a consumer job.
This is for example the case where two jobs are executed in dif-
ferent communicated nodes, and the distance constraint specifies
the delay required (WCCOM) to send the output of a job (Y )
to the other job input (X): D (X|Y ) = WCCOM

Freshness
F (Y |X)

Sometimes called propagation delay, it bounds the time it takes
for data to flow through the system because data must be pro-
duced sufficiently recently in order to be safely consumed by re-
ceivers. The freshness constraint defines the RT image ‘temporal
accuracy interval’.
For example, if a system output (Y ) requires a system input (X)
with a freshness of 10ms it is described as F (Y |X) = 10ms.

Correlation
C (Y |X)

It limits the maximum time-skew between several inputs used
to produce an output. For example, this is required by voters
of a fault tolerant distributed system, where the voter requires
all inputs with a maximum reception time-skew to produce the
voter output.
For example, if a system output (Y ) requires two system inputs
(X1,X2) with a maximum time-skew of 2ms, this is described as
C (Y |X1, X2) = 2ms.
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Separation
S(Y )

It constrains the jitter between consecutive values on a single
output channel, by specifying the minimum and maximum out-
put value production time.
For example, if a system output (Y ) is delivered with a minimum
rate of 3ms and a maximum of 10ms this is expressed as S(Y ) =
[3, 10]ms

Harmonicity
H(Jr|Js)

It specifies the harmonicity of job periods because it is usually
desirable for the execution period of the consumer jobs to be
exactly divisible by the executing period of the sender job.
For example, if the receiver (Jr) has a period pr and the sender
(Js) has a period ps exactly divisible by 2, the harmonicity is
expressed as : H(Jr|Js) = pr ÷ ps = 2

Synchrony
SY NC (X)

It constrains whether a set of jobs must start synchronously /
simultaneously.

Precedent
P ({J}a , {J}b)

“A process segment i is said to precede another process segment
j if j can only start execution after i has completed its computa-
tion” [XP93]. Jobs should execute in a given order expressed by
a precedence constraint. The expression P ({J}a , {J}b) denotes
that the set of jobs {J}a precedes the set of jobs {J}b.

Exclusion
E ({J}a , {J}b)

“A process segment i is said to exclude another process segment
j if no execution of j can occur between the time that i starts
its computation and the time that i completes its computation”
[XP93]. Exclusion constraints determine whether a given set of
jobs are allowed to be executed concurrently. The expression
E ({J}a , {J}b) denotes that the set of jobs {J}a excludes the
set of jobs {J}b. Two exclusion types should be distinguished,
Eany ({J}a , {J}b) denotes that if any job of set {J}a is being
executed none from {J}b can be executed while Eall ({J}a , {J}b)
requires that all from {J}a are executing concurrently for this
to happen.
Table 4.3: Inter-job level timing constraints.

4.7 Real-Time Embedded System

A real-time embedded system is an embedded system in which the correct oper-
ation depends on both the logical results of the computation and the physical
instant in which these results are produced [Kop97]. From a SCES point of
view, the notion of time is a key concern because every SCES is an RTES with
at least one hard deadline. The real-time embedded system must interact with
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the environment within the time intervals dictated by the environment and
/ or the controlled system (e.g., controlled plant) [Kop97]. The interactions
between the real-time embedded system and the environment (e.g., sensoring,
actuating, waiting for stimuli, etc.) might be periodic, aperiodic, sporadic or a
mixture of all.

4.7.1 Time in software and HDL

The temporal behaviour of software has been mainly considered not a fun-
damental issue, so the notion of time has historically been systematically re-
moved from theories of computation. The major goal of the software process
has been to develop a functionally correct implementation of algorithms with
little regard to the notion of time [Lee99, MCIJ+02, SM03]. Therefore, current
MDA based modeling languages such as UML do not support time with the re-
quired rigour for the development of distributed SCES [Kop00b]. Nonetheless,
MARTE [omg08] aims to be the UML standard extension to support modeling
of real-time embedded system[AMPF07, AMdS07, MPP07] (see Section 6.3).
On the other hand, the temporal behaviour of hardware is usually a critical
part of the specification, design and implementation. For this reason the notion
of time is a key concern in Hardware Description Languages such as VHDL
[IEE94]. In VHDL time constraints and relationships are expressed within
designs and implementations using the same hardware description language,
where time is the only predefined physical type, defined as a 32 bit integer with
an ascending range and femtosecond as the default unit. HDLs such as VHDL
are based on the discretized time model, in other words, on an underlying
discrete-event model of computation.

4.7.2 Real-Time scheduling

The latest instant at which a result must be produced is called deadline and
might be classified as soft, firm or hard depending of the effect of missing the
deadline. Missing a soft deadline might worsen the QoS of the given service,
missing a firm deadline renders the result not useful for its purpose and missing
a hard deadline might result in a catastrophe. Thus a SCES is a real-time em-
bedded system with at least one hard deadline, and the SCES must always
provide a guaranteed temporal behaviour under all specified load and fault
conditions [Kop97]. Thus, a time predictable scheduling is a key concern in the
development of SCESs.
The real-time scheduling problem is concerned with the schedule of jobs so
that all timing requirements (e.g., deadlines) are satisfied. A schedule is an
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assignment of a set of jobs J = {J1, ...Jn} to a set of processors P = {P1, ...Pm}
so that each job is executed until completition. That means, a schedule is a
function σ : R+ → N such that ∀t ∈ R+, ∃t1, t2 such that t ∈ [t1, t2] and
∀t′ ∈ [t1, t2) σ (t) = σ (t′) [But04].

4.7.3 Control Theory

Control theory is a branch of engineering that deals with the automatic control
of systems, in such a way that the controlled system (the plant) behaves in a
pre-specified desired manner. This kind of systems are deployed everywhere,
from a petrochemical plant to the braking system of a car, and the automatic
control system is often implemented as a distributed embedded system. Time
underpins control theory, classical and modern, because the output (y) of dy-
namic systems depends on the inputs (u) and time (t), y = f(u, t). These
control algorithms are usually executed periodically and have stringent tempo-
ral requirements imposed by the plant (e.g., jitter) [Oga01, Kop97]. Therefore,
the execution platforms are real-time embedded systems with stringent tempo-
ral constraints. The one-to-one concept mapping between control theory and
real-time embedded systems, with a special focus of time, is a key issue.

4.7.4 Worst-Case Execution Time (WCET)

The Worst-Case Execution Time (WCET) [PB00] analysis of software is a key
concern in the development of safety-critical systems with high availability, in
order to proof that required hard deadlines will be met because the execution
time of tasks is bounded and known in advance.

4.8 Analysis

From a Safety-Critical Embedded-Systems (SCES) point of view, the notion
of time is a key concern because every SCES is a RTES with at least one
hard deadline. Therefore, the notion of time, the representation of time, the
description of time constraints and ensuring time properties consistency from
requirements to execution is a key concern and challenge for the design of RTES
and SCES:

• Time cognitive, the mental process by which time is perceived and
reasoned by engineers (see Section 4.3), plays a central role in the de-
velopment of real-time embedded systems. However, the main limitation
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for engineers in the development of such systems seems not to be re-
lated to the ability to perceive time or multitasking, but to the cognitive
limitations required to deal with the emerging complexity of multiple in-
terdependent threads and time relationships representation. Therefore,
cognitive complexity needs to be tackled. Segmentation could be used
in order to reduce this cognitive complexity due to the concurrent mul-
titasking of multiple interdependent threads. Segmentation refers to the
“temporal decomposition of complex behaviour into smaller parts that
can be processed sequentially” [Kop08a], thus reducing the amount of in-
formation that has to be processed in parallel at a given instant in order
to avoid human cognitive limitations.

• Time representation: There are multiple time-formats that suit the
required consistent representation of time and that could be used to rep-
resent time in RTES (see Section 4.4.2), from which the standard IEEE-
1588 [iee04] seems to be gaining momentum. In addition to this, the time
cycle representation suits real-time control systems timing representation
better than linear model, thus reducing the cognitive complexity of time
representation.

• Time Abstraction Model: There is no single time abstraction model
valid for all possible contexts and development abstraction levels, but a
set of time abstraction models that could be used to provide time deter-
minism for that given context, structure and implementation technology
(see Section 4.5). Of course, it is possible to combine all or some of them.
For example, any HDL should at least support a discrete-time model and
provide a mechanism to ensure time determinism in case of instantaneous
and simultaneous execution (e.g., delta-delay).

• Time constraints must usually be met by RTES and SCESs. There-
fore, the capability to express time constraints (see Section 4.6) using
standardized semantics could reduce cognitive complexity in the develop-
ment of embedded systems, and could help ensure time properties con-
sistency from requirements to the execution. Thus, real-time embed-
ded system modeling languages should provide support to express time-
constraints in order to reduce the cognitive complexity and ensure time
consistency throughout the development stages.

• Simultaneity and instantaneity: Instantaneity and simultaneity
could be a source for indeterminism and unpredictability in the time and
value domains for embedded systems if not properly handled . Therefore,
if time determinism is required (e.g., SCES), the models should provide
the required time abstraction for a given target (e.g., sparse-time for
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distributed real-time embedded system) and provide required additional
mechanisms (e.g., delta-delay) to ensure time determinism in the case of
simultaneous and instantaneous events.

• Modeling languages to be used in the development of embedded sys-
tems should provide required time abstraction models and consistent
mechanisms to specify time properties and time constraints using stan-
dardized time representations.

– MARTE modeling language is the UML standard extension to sup-
port modeling of embedded systems (see Section 6.3).

– SystemC modeling language (see Section 2.8) could be used for
the modeling of complete embedded systems, different structures
(centralized vs. distributed) and technology / algorithms (software
and hardware). It provides the required time abstract models and
mechanisms to ensure determinism in the time domain by handling
simultaneity and instantaneity properly.

– Formal languages could be used in the development of SCESs,
in order to proof the correctness of a given algorithm. However, a
real-time property verified in the model can not always be directly
transferred to the realization, because a model is only an approxi-
mation of its realization in terms of the issuing time of events (model
coverage) [JVG03]. The continuous-time abstraction model used in
multiple formal languages (e.g., Uppaal) does not match the time
abstraction models used in embedded systems: discrete-time, global
time and sparse-time. If the timing abstractions available in formal
models could also cover them, the model coverage would increase
and enable ’realistic’ formal proofs that could be widely used in
SCES and RTES developments.

47



4.8 Analysis 4 On the notion of time

48



The bottom line for mathematicians is that the archi-

tecture has to be right. In all the mathematics that I

did, the essential point was to find the right architec-

ture. It’s like building a bridge. Once the main lines of

the structure are right, then the details miraculously

fit. The problem is the overall design.

Freeman Dyson

Chapter 5

The meta-model

This chapter describes the E-TTM meta-model (mmE-TTM) [PNOES10,
PPO10], which specifies the rules and constructs according to which an E-
TTM model is created, and the E-TTM execution framework (xfE-TTM) that
corresponds to the meta-model implementation.

5.1 Introduction

The E-TTM meta-model (mmE-TTM) is based on a strict separation of con-
cerns (partition) between computation and communication, where components
communicate among them by means of the exchange of messages across com-
munication channels. Events trigger the execution of components, which can
either be time-triggered or event-triggered based on their associated triggering
event (e.g., clock-events for time-triggered components). The notion of global
time, based on the sparse-time concept, is common for all elements (compo-
nents and communication channels). The mmE-TTM supports the modeling
of systems based on Time-Triggered Architecture (TTA).
The meta-model implementation, a C++ library that extends SystemC with
the time-triggered Model of Computation (MoC), enables the codesign and
execution of E-TTM models in SystemC. The meta-model implementation
provides both the meta-model elements required to develop models and the
E-TTM execution framework (xfE-TTM) for developed models.
As shown in Table 5.1, there is a natural mapping between basic architectural
concepts (see Section 2.2) and SystemC. Based on this, SystemC could be
used to model basic architectural components on which mmE-TTM is based,
leading to a natural mapping of higher-level mmE-TTM concepts and SystemC
concepts as it will be explained throughout this section.
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The PIM of a DAS consists of A SystemC model consists of
• a set of jobs • a set of modules
• that communicate via interfaces
containing logical ports,

• that communicate via interfaces
connected to ports

• connected to a virtual communi-
cation channel

• implemented by communication
channels

• with a common notion of time • with a common notion of time

Table 5.1: Natural mapping of architectural concepts to SystemC.

5.2 Elements and relationships

As shown in Figure 5.1 mmE-TTM is based on a strict separation of concerns
(partitioning) between computation and communication, while the global no-
tion of time is common for both. Components communicate among them by
means of the exchange of messages across ports connected to communication
channels that provide interfaces. The items in gray correspond to items pro-
vided by the meta-model infrastructure. Thus, the developer is responsible
for the definition and connection of components following a two-level design
methodology [Kop00b, Kop97]: the development of components (define) and
the design of the system architecture that leads to the specification of the
Communication Network Interface (CNI) in the time and value domain (con-
nection).

• Time: The notion of time is common for all elements (global time) and
supports time abstraction models described in Section 4.5.

• Entities, the smallest functional items used to build a model

– Components (c), as described in Section 5.2.3, provide a desired
service to its environment across ports with well-specified interfaces.

– The communication channel, as described in Section 5.2.6, is a
communication infrastructure for the exchange of messages between
components.

• Relationships specify how entities are connected and triggered

– Events trigger the execution of components, events can only be
time-triggered (clock event) or event-triggered (any other type of
event, sporadic or aperiodic).
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– Interfaces (I/F) and ports, as described in Section 5.2.5, specify
the provided communication functionalities, while the implementa-
tion of these functionalities is provided by the communication chan-
nel. Interfaces are connected through ports (P ) to both components
and the communication channel.

Component

Lo
ca
l

CP

DM

LIF Comm. Channel

Global Time

Figure 5.1: mmE-TTM elements and relationships.

5.2.1 Naming

The non-standard usage of the URN (see Section 2.7), just called Resource
Name (RN), suits the naming needs of mmE-TTM models, because entities
could be simply, uniquely and unambiguously identified by their names while
abstracted from physical locations. The RN naming scheme is specified as
’rn:NID: NSS’ and only alpha-numerical characters can be used.

• Namespace Identifier (NID):

– job, DAS, system: Architectural items described in Section 2.2.
– group: Group of architectural items used for multicast and broad-

cast communication (see Section 5.2.6).
– rte (real-time entity): State variable of relevance for a given pur-

pose, either located in the environment or in the computer system
(e.g., temperature measurement, voltage set-point, etc.) [Kop97].

• Namespace Specific String (NSS):

– Name of the identified item which can be expressed using two dif-
ferent visibility scopes, global or local, as described below.

– Format (e.g., double) and size of the identified item, specified only
if required.
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As it will be explained in Section 5.4.1, mmE-TTM models follow a hierarchy
imposed by the hierarchy of the architectural items. That means jobs are
grouped into DASes and DASes into systems. Based on this idea, different
visibility scopes can be specified for the NSS name of the identified item, global
or local.

• Local: The NSS name corresponds to the name of the architectural item
(e.g., job).

• Global: The NSS name is described using the local name and
all the names of the hierarchical items are separated by dots
(e.g., system.das.job).

For example, the RN ’rn : job : s.d.j’ globally specifies a job (j) logically
located within a system (s) and DAS (d) and the RN ’rn : rte : s.d.rt1 : double’
specifies a real-time entity (rt1) of format double and logically located within
a system (s) and DAS (d). On the other hand at a given DAS level, a job
could locally name another as ’rn : job : j’ without the need to specify the
global system and DAS names. And a job could also locally name a local
real-time entity as ’rn : rte : rt1 : double’.

5.2.2 Time

The mmE-TTM is based on a simulation global time, based on the sparse-
time concept. The communication infrastructure provides a simulation global
time synchronization mechanism so that it is invariant of the selected model
execution topology, local when executing the model on a single platform or
distributed. Thus, the simulation period / phases are kept constant and the
simulation could be executed faster, slower or at the same pace (coupled) as
physical time similar to the way in which a video-recorder can be played faster,
slower or at a normal pace. Based on this, a distributed model coupled with
the physical time will exchange messages with the same content and at the
same time instants as the physical RTES should, thus, distributed submodels
could be replaced by real RTES subsystems that from the message interchange
perspective will not be able to distinguish between submodels and subsystems.

Tick relationships

mmE-TTM models execute components only on each sparse-time macrotick
(Γ), as explained in Section 5.2.4. On the other hand, heterogeneous MoC
modules described in Section 5.2.3, might require a time tick faster than the
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macrotick. The relationship between the global tick (tick) and the sparse-
time macrotick (Γ) is described in Equation 5.1 where K corresponds to the
number of global ticks per macrotick. Figure 5.2.2 describes an example for
K = 5, where each sparse-time macrotick is divided into five ticks for the
integration of heterogeneous MoC modules.

Γ, tick,K ∈ N+

tick = K · Γ
(5.1)

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Γ Γ Γ Γ

Figure 5.2: mmE-TTM time ticks relationship for K = 5.

Time expressiveness

mmE-TTM supports time expressiveness such as description of time properties,
values and constraints:

• Time formats: As described in Section 4.4.2, different time formats are
used in the embedded domain to manipulate and describe timing val-
ues. For each representative time format an associated time format class
definition is provided in order to express, manipulate and convert it into
other formats (e.g., ttm_dt_time_format_omg64 for UTF). Supported
time formats are: Network Time Protocol (NTP) [Mil06], Global Position-
ing System (GPS), Uniform Time Format (UTF) [OMG01], IEEE-1588
[iee04] and natural language standardized expressions [IEE94].

• Periodic clock: The time-triggered execution of jobs is configured with
the timing configuration given by the designer (time_pdescr_item) that
includes the initial delay, execution period and relative phase. One clock
is assigned per job, so that the timing configuration of each job is inde-
pendent but still based on the same simulation time.

• Time representation: As described in Section 4.4.3, time-cycle represen-
tation suits the timing specification requirements of control application.
It is possible to express the timing configuration of a control DAS using
a time-cycle class instance (tmm_time_cycle) where the timing config-
uration of each job is given by a time-cycle entry (time_cycle_item).
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• Time Constraints: As described in Section 4.6, job timing constraints
specify the time limits with which the job must operate and inter-job
timing constraints express time limits within which jobs should execute
in relation to others. Job timing constraints definition are already cov-
ered in previous descriptions regarding periodic clocks and time rep-
resentation. Inter-job timing constraints are supported by the class
ttm_time_constraints that enables inter-job timing constraints to be
specified [EJ00]: distance (D), freshness (F ), correlation (C), separation
(S), harmonicity (H), synchrony (S), precedent (P ) and exclusion (E).

SystemC

As explained in Section 2.8.1, SystemC provides a global simulation time of
configurable granularity and time deterministic execution of modules as long
as a set of recommendations are met. However, SystemC with SystemC-AMS
[wa] supports all time abstraction models described in Section 4.5 except for
the sparse-time concept.

• Continuous / dense time abstraction model is provided by the SystemC-
AMS extension [VGE03b, VGE04].

• Discretized time abstraction model is provided by SystemC natively.

• Global time abstraction model of configurable granularity (macrotick)
is provided by SystemC natively, because the simulation time of config-
urable granularity is common for all the simulation items. Time deter-
ministic models can be designed if appropriate model design restrictions
are applied (see Section 2.8.1).

All in all, the SystemC notion of time, clocks and time abstraction models
suit all mmE-TTM needs and requirements except for the sparse-time concept.
The sparse-time concept is used to restrict the execution and communication
of components to the intervals of activity, in order to ensure time determinism
even in the presence of simultaneous events. The xfE-TTM extends SystemC
with the sparse-time concept, by restricting the occurrence of mmE-TTM clocks
events and generic events to the activity interval, the macrotick. Thus, all
events that can trigger the execution of mmE-TTM components are restricted
to the activity interval.

5.2.3 Components

Components are entities that provide a desired service (e.g., computation) to its
environment across a well-specified interface that should maintain its encap-
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sulation (value and temporal). Components interact with other components
and the outside world by means of the exchange of messages across inter-
faces connected via ports (LIF, CP, DM and local interface). Time-triggered-
components and event-triggered-components shall be differentiated as shown
in Equation 5.2, Figure 5.3 and Listing 5.2.3, based on the type of triggering
event, time-triggered event (sc_in_clk clock_event) and event-triggered event
(ttm_event event) respectively.

∀c→ c ∈ Ctt ∨ c ∈ Cet

∀c, ∃!e(c)→ e(ctt) ∈ Ett ∨ e(cet) ∈ Eet
(5.2)

tt-job

Lo
ca
l

CP

DM

LIF

clock event

(a) time-triggered component

et-job

Lo
ca
l

CP

DM

LIF

event

(b) event-triggered component
Figure 5.3: Time-triggered and event-triggered job components.

SC_MODULE( ettm_ttjob ) //TT Job SC_MODULE( ettm_etjob ) //ET Job
{ {

/∗ I n t e r f a c e ∗/ /∗ I n t e r f a c e ∗/
sc_port<ttm_cc_if> l i f ; sc_port<ttm_cc_if> l i f ;
sc_port<ttm_cc_if> dm; sc_port<ttm_cc_if> dm;
sc_port<ttm_cc_if> cp ; sc_port<ttm_cc_if> cp ;

/∗ Events ∗/ /∗ Events ∗/
sc_in_clk clock_event ; ttm_event event ;

/∗ Constructor ∗/ /∗ Constructor ∗/
SC_HAS_PROCESS( ttm_ttjob ) ; SC_HAS_PROCESS( ttm_etjob ) ;
ttm_ttjob ( sc_module_name name ) ; ttm_etjob ( sc_module_name name ) ;

/∗ Threads : ∗/ /∗ Threads : ∗/
/∗ − c locked thread ∗/ /∗ ∗/
/∗ − thread ∗/ /∗ − thread ∗/
/∗ − method ∗/ /∗ − method ∗/
virtual void ctask_cthread ( ) { } ;
virtual void ctask_thread ( ) {} ; virtual void ctask_thread ( ) { } ;
virtual void stask_method ( ) {} ; virtual void stask_method ( ) { } ;

} ; } ;

Figure 5.4: SystemC modules for time-triggered & event-triggered components.
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Encapsulation

The service functionality provided by a given component could be implemented
using different algorithms, heterogeneous MoC [EZ07, HV06, YJL07], different
abstraction and refinement levels, different technologies (e.g., software vs. hard-
ware), etc. as long as they do not violate the TT MoC of the component it-
self. However, this is encapsulated within the component so that the system
integrator and other components are abstracted from implementation details.
Therefore, the component communication syntax, timing and semantics should
be consistent so that which implementation choice has been selected should not
be discernible [Kop06].

Integration with heterogeneous MoC

Components internal functionality could be implemented using different MoC
as long as the model assumptions described in Section 5.5 are met. Instead of
transforming models (e.g., Simulink to SCADE [CCM+03]), the model autogen-
erated C / C++ code is integrated within components. In addition to this, com-
ponents could interact with external modules using local interfaces, i.e., open-
components. Open components could be a source of non-determinism, and it is
the responsibility of the designer to ensure the time and value determinism of
the integrated heterogeneous MoC model. Based on this, the following example
heterogeneous MoC could be integrated:

• Discrete Time (DT) and Synchronous Data Flow (SDF) MoC are natu-
rally supported by SystemC.

• Synchronous languages (e.g., Lustre) are based on a perfectly synchronous
concurrency model in which processes are able to perform computa-
tions and exchange information in zero time. The integration within
SystemC could be done by integrating the autogenerated source code
(e.g., SCADE) or by translating a subset of the synchronous language to
SystemC [BS07].

• Continuous Time (CT) MoC can be expressed naturally in SystemC using
SystemC-AMS. Simulink models could be integrated by using the auto-
generated C source code. CT models should use fixed time steps multiple
of the sparse-time microtick, instead of variable time-step [GG06].

5.2.4 Execution

As shown in Equation 5.3 the execution of components is restricted to the
sparse-time macrotick that corresponds to the activity interval Π (instanta-
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neous), while execution of components should not occur between macroticks
(silence interval ∆). As generic events (e) could be triggered at any sim-
ulation point in time, the triggering of activation events is delayed till the
next macrotick. At a given macrotick multiple components could be executed
sequentially by a given simulation platform, i.e., segmentation of concurrent
components. Any given sequential order of execution would not violate time
determinism if race-conditions among executing components are avoided. Two
restrictions should be applied for this purpose: output messages should not
be delivered during the execution macrotick to avoid modifying current input
messages queue, and generated events should not trigger activation events till
next execution macrotick.

(Π,∆) = (0,∆Γ)
ett ∈ {Γ} , eet ∈ R→ e(c) ∈ {Γ} ⇒ x(c) ∈ {Γ}

(5.3)

The time domain determinism of components execution is ensured as described
below. Based on this, both example executions shown in Figure 5.5 are equiv-
alent and always produce the same outputs at the same sparse-time macrotick.

• Sparse Time: The execution of job components is restricted to the sparse
time abstraction model as shown in Figure 5.5 with an activity (π) and
silence ratio (∆) of 0/1. That means that components can only execute
at each periodic microtick instant (zero execution time, π = 0), and
not between microticks (silence interval, ∆ = 1[microtick]). Therefore,
all time-triggered events (clock events) and event-triggered events that
trigger the execution of components are restricted to this sparse time.

• Delta-Cycle: If multiple components are triggered simultaneously, all trig-
gered components are executed sequentially and instantaneously (zero
time). The order in which these components are executed is not im-
portant (time determinism is not affected), because race conditions are
not possible, due to the delta-delay message delivery approach provided
by the communication infrastructure where messages sent are not deliv-
ered until the next delta-cycle (infinitesimal time delay). If any com-
ponent uses local interfaces, open component, the communication is not
restricted by the communication infrastructure and therefore it is the
responsibility of the designer to ensure that race conditions and commu-
nication ’hidden channels’ are not possible.
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(a) Sparse-time execution A
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(b) Sparse-time execution B

Figure 5.5: Equivalent sparse-time executions.

5.2.5 Interface (I/F) & port

Components communicate with other components via ports, which provide a
given interface implemented by the communication infrastructure. The fol-
lowing Listing 5.2.5 describes the LIF, DM and CP interfaces with virtual
operations to be implemented by the communication channel. The LIF com-
munication interface supports the sending / receiving of messages to / from
other jobs and the access to real-time entities using push / pull mechanism.
DM and CP interfaces are based on the LIF interface, because at a PIM level
there is not restriction and therefore they support the most complete / stringent
interface including the Real-Time Service.

• Send / Receive messages, where the message content is of type ’variant’:

– Send a given message, with content (msg) and identifier (id) to a
job whose name is given by an RN (see Section 5.2.1).

– Receive next message data-type (ttm_dt_msg), which contains
the message content (ttm_dt_msg_content) and message header
(ttm_dt_msg_header). If no message is available null message is
received.

• Push / Pull real-time entity:

– Push a given real-time entity image (rt_image) value to a given
real-time entity whose name is given by an RN (see Section 5.2.1).

– Pull a given real-time entity image (rt_image) value from a given
real-time entity whose name is given by an RN (see Section 5.2.1).
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struct ttm_com_lif : public s c_ in t e r f a c e
{

/∗ Send / r e c e i v e messages ∗/
virtual void send ( ttm_dt_rn rn_job ,

ttm_dt_id msg_id ,
ttm_dt_variant &msg) = 0 ;

virtual ttm_dt_msg r e c e i v e ( ) = 0 ;

/∗ Push/ Pu l l S ta t e messages ∗/
virtual void push ( ttm_dt_rn rn_rte , ttm_dt_variant &rt_image ) = 0 ;
virtual ttm_dt_variant pu l l ( ttm_dt_rn rn_rte ) = 0 ;

} ;
struct ttm_com_dm : public ttm_com_lif {} ;
struct ttm_com_cp : public ttm_com_lif {} ;

Figure 5.6: LIF, DM and CP interface class definition.

5.2.6 Communication

Components interact with other components and the outside world by means of
the exchange of messages across ports, with interfaces provided by the commu-
nication channel (communication infrastructure). The message exchanging is
quasi-instantaneous (delta delay) and follows the fate-sharing approach where
no unnecessary state information is stored. As the functionality of the interfaces
is provided by the communication channel, they could be replaced (e.g., TTE)
and refined without affecting the computational components.

Time domain determinism

As described in Section 2.5 each component has three independent bidirec-
tional ports for sending and receiving messages (LIF, CP, DM). As shown in
Equation 5.4 whenever a component sends a message (during activity interval)
the message is delivered to communication infrastructure which generates a
unique header information: timestamp, message identifier, job identifier and
automatically incremented message counter per port. The communication in-
frastructure delivers all sent messages to destination component ports during
the silence interval.

Each component port has a message queue where all incoming messages are
sorted following a deterministic sorting algorithm, based on a string key gener-
ated from the header content. The messages sorting criteria selects the lowest
unique key value that corresponds to the lowest timestamp (temporal order),
message identifier, job identifier and message counter. Thus, segmentation of
simultaneous messages is provided by this algorithm because it enables the se-
quential deterministic sorting of simultaneous messages to be carried out. This
algorithm does not impose a design constraint because each TTP provides a

59



5.2 Elements and relationships 5 The meta-model

time deterministic sorting algorithm for time-triggered messages that replaces
it at system implementation phase.

∀c,m→ ∃!header
header = [timestamp,mid, jobid,mcounter]

∀ca, cb,m→
{
ca.port→ s (m) ∧ t = Γ→ cb.port
cb.port← r (m) ∧ t = Γ + δ ← ca.port

(5.4)

In the real world, computational activities and data exchange require a certain
(possibly bounded) amount of time that can be represented by the delayed
transmission of output messages by a given number of macroticks. Figure 5.7
shows an example communication between components c1− c2− c3, where the
transmission delay between components c2→ c1 is set to zero macroticks and
the delay between components c3→ c2 is set to one macrotick.

t
π0 ∆ π1 ∆ π2 ∆ π3 ∆
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c2

c1
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c2

c1

c2

c3

Figure 5.7: Communication with message transmission delay.

Unicast, multicast and broadcast

The default sending of messages from one component to another is unicast,
point to point. In order to enable multicast communication, a ’group’ RN
must be specified and the list of components that integrate this group could
be specified statically (compilation time) or dynamically by adding new com-
ponents to the list during run-time (compilation time permission is required).
Whenever a sender component sends a message to a group RN, the message
is cloned and forwarded to each receiver component specified in the group list.
The group ’rn:group:*’ specifies the special and reserved group definition for
broadcast, any message sent to this group will be cloned and forwarded to all
components if broadcast communication is enabled. The following list describes
some example group definitions:

• ’rn:group:g1’: This is a local scope group definition of name ’g1’, locally
visible within the hierarchical level of the sender component.
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• ’rn:group:s.d.g2’: This is a local group definition of name ’g2’(specified
within the system of name ’s’ and the DAS of name ’d’) that can be
globally visible within the complete model.

• ’rn:group:*.g3’: This is a model global group definition of name ’g3’,
globally visible within the complete model.

5.3 Simulation topology

As shown in Figure 5.8 mmE-TTM execution supports both centralized and
distributed execution topologies, while providing deterministic execution of the
overall model in the simulation time and value domain under the model as-
sumptions described in Section 5.5. That means that the same exact results
are generated, in the simulation time and valued domain, irrespective of the
selected simulation topology (local vs. distributed). This implies that the com-
munication protocol(s) used to connect the distributed models must not only
provide the services and properties of the communication infrastructure de-
scribed in Section 5.2.6, but must also take into consideration communication
and synchronization requirements because they must connect two different time
islands (simulation time and physical time) in a consistent manner.

M

(a) Centralized model

m4

m3

m2

m1

(b) Distributed model
Figure 5.8: Simulation topology, centralized and distributed model.

5.3.1 Open vs. close simulation

In a close simulation scenario there is no time relationship with the open world
physical time and the notion of time is only based on SystemC time. Alterna-
tively, in an open simulation scenario there is a time relationship with the open
world physical time (e.g., synchronization). Table 5.2 describes time terms of
interest for both scenarios:
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Scenario Term Description
Close /
Open

Simulation
time reference

SystemC time, a discretized time abstraction
model of configurable granularity.

Open Physical time
reference

Open world time reference based on the New-
tonian physics concept of time (wall clock).

Close /
Open

Simulation
time

Time instant or duration referenced to SystemC
time (simulation time reference).

Open Physical time Time instant or duration referenced to the
physical time reference.

Open Execution time Physical time required to execute a simulation,
total or partial.

Open Execution time
jitter

Physical time difference between the ideal syn-
chronization instant and the instant when simu-
lation resumes execution after synchronization.

Open Average ratio Average relationship between simu-
lation and execution time, ravg =
execution time/simulation time. If r = 1,
execution time and simulation time are equal.
If r < 1, execution time was smaller than sim-
ulation time (accelerated simulation). If r > 1,
execution time was bigger than simulation time
(slower simulation).

Open Synchronization
ratio

Synchronization relationship between simula-
tion and physical time references, rsync =
physical time/simulation time. Both simula-
tion and physical time references are coupled.

Table 5.2: Time terms for open and close simulation scenarios.

5.3.2 Communication

Communication, the sending and receiving of information among nodes, could
be implemented using a wide variety of communication protocols. In any case,
as opposed to the simulation time which does advance until all sent messages
have been delivered, physical time advances while messages are being delivered.
Therefore, whenever the distributed model is intended to be executed at the
same pace as physical time, the developer must ensure that appropriate mea-
sures are taken to ensure that all sent messages are delivered within physical
time deadlines. If the communication protocol used is a TTP, such as TTE,
this could be systematically guaranteed at the design stage.

If the model is executed decoupled from physical time, the time required for
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delivery of messages can only affect overall simulation performance. If a TTP
is used for this purpose, and the physical time taken by simulation macroticks
or periods can be bounded (known WCET), then it is possible to specify a
communication period multiple of the simulation period and execute the overall
distributed simulation with a given synchronization ratio. The equivalent phys-
ical time is somehow extended like a piece of ’chewing-gum’ to accommodate
simulation speed ratios, while maintaining constant period-phase relationships
as shown in the following Figure 5.3.2.

clk
Γ=0 Γ=1 Γ=2 Γ=3 Γ=4 Γ=5 Γ=6 Γ=7 Γ=8 Γ=9

r = 2.0 a b c d a b c d a b c d a b c d a b c d

r = 1.0 a b c d a b c d a b

r = 0.5 a b c d a

Figure 5.9: Example timing diagram, communication with different time ratios.

5.3.3 Synchronization and simulation global time

In order to ensure simulation time consistency in a distributed topology, a
synchronization mechanism that provides a consistent simulation global time
is required. For this purpose, the mechanisms could be different for different
specific protocols:

• Generic protocols (e.g., Ethernet), could be used in a central master topol-
ogy where one of the distributed models acts as master and the others as
slaves. Whenever each slave reaches the next macrotick, a single message
is delivered to the central master that contains the new macrotick value
and all messages to be delivered outside the submodel. The central mas-
ter waits and processes all incoming messages from slaves, one and only
per slave submodel, and whenever all messages have been processed a
message is sent to each slave confirming the new macrotick and including
the messages to be delivered to this specific submodel. This mechanism
ensures that all distributed submodels are synchronized and share the
same notion of simulation global time.

• Time-Triggered Protocol (e.g., TTE), could be used in a distributed
topology in which all submodels are entities that exchange messages
among each other, each submodel being a component. The usage of TTP
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is a natural approach for the composable distribution of submodels, be-
cause the mmE-TTM itself is based on the TTA and the communication
infrastructures is based on the same foundation as TTP protocols.

5.4 Complexity management

In order to reduce cognitive complexity, it is preferable to have a modeling
language with a small number of well-specified concepts and relationships, that
focus on the essential properties (e.g., time and value domain), with a clear
structure and model functions, with optional formal notation and clearly stated
model assumptions [Kop08a]. So, these recommendations have been followed in
the definition of the mmE-TTM in addition to three different strategies that can
be used to achieve simplicity [Kop08a]: abstraction, partitioning, segmentation
and hierarchy.

5.4.1 Hierarchy

Hierarchy provides simplification by means of system partitioning and abstrac-
tion. mmE-TTM models follow the architectural hierarchy described in Sec-
tion 2.2 where each entity could be represented as a component. Thus, models
correspond to the composition of interconnected systems, DASes and job com-
ponents. As shown in Figure 5.11, a DAS is a composition of interconnected
jobs with an additional i−component for gateway purposes so that the internal
details and internal communication of the DAS are hidden from outside. Based
on this, the DAS itself can be considered to be a component, a hierarchical com-
ponent (h-component) composed of multiple internal components. The same
could be applied to a system, which could be considered to be an h-component
composed of multiple internal components (DAS), and so on. Thus, as shown
in Figure 5.10 the concept of component is common for all hierarchy levels,
from system to jobs, reducing the cognitive complexity of the design.

This approach also enables the encapsulation of the component internal design,
IP protection, so that for example a given supplier could design and deliver a
DAS as a compiled library. The internals of this component, e.g., job implemen-
tation details, are completely hidden and only the information to be exchanged
by the i−component is visible. As the RN for jobs and real-time entities can be
different inside and outside the component, the external integrator would not
even know the number and real names of the internal jobs and real-time entities.
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Figure 5.10: mmE-TTM model hierarchy.
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Figure 5.11: DAS component composition and representation as h-component.

5.4.2 Abstraction

As explained in Section 2.1.2, abstraction is a simplification strategy to tackle
the complexity challenge, in which complexity is reduced by omitting the ir-
relevant details and focusing on the information relevant for a given purpose.
The mmE-TTM approach at PIM level provides abstraction as follows:

• The Object-Oriented Programming (OOP) of the underlying SystemC
implementation provides OOP abstraction.

• Encapsulation of the internal functional and timing description of com-
ponents

• Hierarchy, where the same notion of component abstracts different archi-
tectural entities (job, DAS and system).
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5.4.3 Partition

As explained in Section 2.1.2, partitioning is a simplification strategy to tackle
the complexity challenge, where complexity is reduced by spatial division of
the problem into nearly independent parts. The mmE-TTM approach at PIM
level provides partitioning as follows:

• Separation of concerns between communication and computation

• Separation of concerns between temporal correctness and data transfor-
mation correctness.

• Separation of concerns between application and modeling infrastructure
(e.g., communication infrastructure)

• Partition of applications into independent executable entities, compo-
nents.

• The Object-Oriented Programming (OOP) of the underlying SystemC
implementation, provides OOP partitioning of applications.

5.4.4 Segmentation

As explained in Section 2.1.2, segmentation is a simplification strategy to tackle
the complexity challenge, where complexity is reduced by temporal decompo-
sition into parts that can be processed sequentially. The mmE-TTM approach
at PIM level provides segmentation as follows:

• Sequential deterministic execution of simultaneous components, where at
simulation level time determinism is invariant of the (unknown) order in
which simultaneous components are sequentially executed.

• Sequential deterministic sorting of simultaneous messages.

5.5 Model assumptions

mmE-TTM PIM modeling approach is stated to be deterministic in the time
and value domain under the following model assumptions:

• Components: Integrated components behave deterministically, time and
value domain, based on the definition given in Section A.5 - Equation
A.7. The developer needs to take appropriate measures when developing
the component internal functionality.
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• Time domain: The execution framework (xfE-TTM)) provides a notion
of common simulation time and the TT MoC provides sparse-time ab-
straction. The execution platform must provide a consistent notion of
physical time.

• Value Domain: The execution platform, compiler options and math li-
brary provide bit-exact arithmetic support. This must be ensured by the
designer, by using for example a common floating point arithmetic library
that ensures bit-identical results among different platforms ([iee85]).

• Scheduling: The xfE-TTM execution framework provides a deterministic
scheduling algorithm and describes the restrictions and limitations for
the integration of developed modules.

• Communication: The execution of distributed models requires a com-
munication protocol, which provides the same services and properties as
the communication infrastructure described in Section 5.2.6 and Section
5.3. This is the case for Time-Triggered Protocols (TTP), such as Time-
Triggered Ethernet.

• Fault-Hypothesis: The modeling approach could be used to model fault-
tolerant systems, e.g., safety-critical embedded systems. However, the
modeling infrastructure does not support the presence of faults, as it has
been designed under a zero fault-hypothesis.

5.6 Metrics

The meta-model has been implemented as a C++ library (xfE-TTM) that
extends SystemC with the time-triggered MoC. It has been implemented fol-
lowing the requirements described in Section 2.8.1 for the development of time
deterministic SystemC models. The main metrics and figures are listed as
follows:

• Source code files: 38 source code files, 21 header files (.h) and 17 source
files (.cpp)

• Classes and namespaces: 32 clasess and 4 namespaces, where Figure 5.12
shows the hierarchy of most important classes.

• Lines Of Code (LOC): 6.351 lines from which 1.096 are executable code
lines, 1.360 are declaration code lines, 3.107 are comment lines and 788
are blank lines.
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• Complexity metrics: Maximum cyclomatic complexity is 19, average cy-
clomatic complexity 1,52 and maximum nesting index 6.

Figure 5.12: mmE-TTM class hierarchy (most important classes).
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The ability to ask the right question is more than half

the battle of finding the answer

Thomas J. Watson

Chapter 6

Related Work

This chapter analyses the modeling of safety-critical and real-time embedded
systems, which has been an active research area for decades, identifying points
for improvement and ideas that could be used and combined. This chapter
is called related work, because multiple modeling approaches could be com-
bined during a development process, and the proposed E-TTM should also be
combined and related to others.

6.1 Synchronous Languages

Synchronous languages are a well established and mature programming tech-
nology (over 25 years) that enables the modeling, specification, validation and
implementation through code-generation of real-time embedded applications.

Description: Synchronous languages are based on a perfectly synchronous
concurrency model in which processes are able to perform computations and
exchange information in zero time, the reactions to input signals are instanta-
neous and occur at discrete logical instants called ticks. This simplification is
based on the Newtonian physics model (planets evolve in a deterministic and
perfectly synchronous way) and provides simplicity, time determinism within
synchronous model assumptions and technology-independence at the language
level. However, the real implementation and execution is governed by the
equivalent of the vibration physics model in which actual response propagation
times depend on implementation details [Ber00].
Synchronous languages provide a deterministic behaviour based on the presence
of a single global clock and are built on a common mathematical framework
that combines [Mar03, BCE+03, Hal98, PBdST04, Ber03, Ber00]:
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• Synchrony: Time advances in locksteps with one or more clocks and the
program progresses according to successive atomic reactions.

• Deterministic concurrency: They support functional concurrency and rely
on notations that express concurrency in a user-friendly manner. The key
advantage of using a solid mathematical foundation is the ability to reason
formally about the operation of the system along with the availability of
formal verification tools. This facilitates certification because it reduces
ambiguity and makes it possible to construct proofs about the operation
of the system.

The three most mature synchronous languages have been developed by different
French universities:

Esterel is a single-rate concurrent imperative synchronous language, based
on formal semantics and suited for describing control-dominated reactive
systems at the system level. Intuitively, an Esterel program consists of a
collection of nested, concurrently running threads described using a tra-
ditional imperative language that communicate through signals, which
behave like wires in digital logic circuits. From the beginning, optimiza-
tion, analysis and verification were considered central to the compilation
process [BCE+03, Hal98, PBdST04, Ber03, Ber00, LBH06]. The INRIA
provides a free version of the Esterel compiler.

Lustre is a single-rate declarative synchronous language based on the data-
flow model, in which the usual formalisms are either systems of equations
(differential, finite-difference, boolean equations) or data-flow networks
(analog diagrams, block-diagrams, gates and flips-flops) . It is single-rate
because only flows with equal clocks can be combined by the operators,
which ensures that the program can be computed with finite memory
[Mar03, HLR92, CCM+03, SSC+04, Ber00]. As an example, the mathe-
matical expression Sn = 2×(Xn × Yn) is translated into Lustre as follows
S = 0 → 2 ×X × Y , where the initial value for S is 0. Lustre provides
the notion of node to help structure the program. A node is a function of
flows that takes a number of input flows, executes a system of equations
and defines a number of output flows. In addition to this, it provides
clocks and activation clocks functionalities.

Signal is a declarative programming language for real-time applications that
defines the data-flow as signals with an associate clock, which is the se-
quence of instants in which the signal has a value [Mar03]. It is similar
to Lustre, but it allows oversampling, and flows with different clocks can
be combined by the operators [Ber00].
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Analysis: The correct and efficient implementation and execution of syn-
chronous languages is still a challenge due to different reasons such as:

• Consistency: Synchronous languages rely on the synchrony model and
parallelism to describe discrete-time models that can be formally verified.
However, “analysis must typically make assumptions about the execution
platform, the external environment, and operator responses, any of which
may turn out to be unwarranted” [JTM07]. Therefore, a key challenge is
to systematically ensure that the implementation and execution of these
programs stills preserves the properties and constraints required by the
designed model.

– Simplification: While synchronous languages are based on the sim-
plified synchrony model of computation, implementations and execu-
tion environments are governed by the less simple vibration model in
which actual response propagation times depend on implementation
details [Ber00]. Therefore, a systematic verification of the complete
application and execution framework is required to ensure that the
synchrony model assumptions are met.

– Properties and constraints: “Determinism should be preserved
by the program whenever it is an essential feature of the specifi-
cation” [Ber03], thus the behavioural determinism (time and value
domain) described with the synchronous language should also be
preserved by the application and execution framework. It is impor-
tant to emphasize that “A small timing deviation between the model
and its realization may cause properties that are valid in the model
to be invalid in the realization” [Hua05].

– Parallelism in sequential processors is simulated by the concurrent
execution of threads scheduled by a RTOS [LBH06, Edw99] and
executed within an execution framework. Therefore, the complete
application and execution framework must be analyzed to ensure
that all hard-deadlines are met.

– Technology: The execution framework software (e.g., RTOS and
middleware) is commonly defined by programming languages such
as C or Ada that have no or weak notion of time. The formal
scheduling analysis required to ensure that all hard-deadlines are
met might be generally infeasible and multiple restrictions in the
execution environment are enforced in order to preserve time pre-
dictability (e.g., formally verify the scheduling algorithm, formal
bound of WCET of the safety related software, etc.). In the same
way, the execution framework hardware and communication proto-
col also need to be time predictable.
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• Execution framework: Synchronous programs are generally converted
to commonly used languages such as C. However, the concurrency, signals
and preemption mechanisms of synchronous languages such as Esterel be-
have very differently from C [PKjE06]. Therefore, the generated code usu-
ally requires glue code and emulates the reactive features of the language,
which could also impact performance because “the resultant code is thus
inefficient and bulky” [RSD04, TC03]. In addition to this, concurrency
is simulated by the concurrent execution of threads and the overhead of
context changes can be considerable in large projects [LBH06, Edw99].

• Distributed target: “Compiling synchronous languages into code for
distributed architectures is obviously a challenge” [Hal98]. Lustre and
TTA have already been combined by the product SCADE-TTA, Lus-
tre for the application components and TTA for the communication
[DLSMG04]. However, a holistic approach that provides a distributed
time predictable execution framework that goes beyond the TTA com-
munication is missing.

6.2 Giotto and TDL

Giotto and TDL are time-triggered languages based on the LET approach
developed by the University of California (Berkeley) and designed specifically
for embedded control applications programming. They both consider time as
a key element to be precisely described and provide an interesting approach
towards the development of time predictable real-time embedded systems.

Description: Giotto [HHK01, HK02, KSHP02, Sze05, KSHP02] is based on
an abstract programmer’s model that provides timing predictability for the im-
plementation of embedded control systems with hard real-time constraints that
exhibit time-periodic and multi-modal behaviour as in automotive, aerospace
and manufacturing control. It provides a clean separation between the platform
independent computation, that can for example be generated from a Simulink
model, the I/O timing functionality code generated from the Giotto model
(E-code) and the platform dependent concerns of software scheduling and exe-
cution. At the design stage, the Giotto compiler must find a suitable schedule
that satisfies the jobs execution timing constraints. During run-time a virtual
machine, called the E-machine, executes the timing code (E-code) while the
functionality code is scheduled by the operating system’s scheduler. A Giotto
system consists of the following entities:
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• Jobs are the basic functional entity that read sensors, perform computa-
tions and update output ports and actuators.

• Drivers copy data between ports and physical devices, sensors and actu-
ators, satisfying the synchrony assumption (zero time execution).

• Ports are typed memory locations, for carrying the system state and
inter-job communication.

LET (Logical Execution Time) [HHK01, HKS05, PT05], as shown in Figure
6.1, represents the time frame in which a given job must be executed, and it
is defined by the ’release’ and ’terminate’ time instants in which the inputs
and outputs are refreshed. The compiler must ensure that even if the job
could be preempted, it always finishes the execution before the ’terminate’
time instant. In order to provide deterministic execution behaviour of a set of
real-time jobs, the LET approach avoids race conditions by introducing a delay
for the observable outputs. Based on this, which value is in use at which time
instant is always specified, thus avoiding race conditions.
TDL (Timing Definition Language) [Tem05, PT05, FHPS04, Tem07] is a high-
level textual notation based on LET and Giotto for defining the timing be-
haviour of real-time applications [Tem05]. The TDL language seems to be an
evolution of Giotto, with extended features and complete development envi-
ronment integration with Matlab / Simulink.

time
physical

logical

release terminate
Logical Execution Time

start suspend resume stop

Task invocation

(a) LET

task a

task b

time

time

o:1 o:2 o:3

1 2 3

1 2 3

LET

(b) LET unit delay

Figure 6.1: LET programming model time boundaries (a) and unit delay (b).

Analysis: The correct and efficient implementation and execution of applica-
tions developed with Giotto / TDL is still a challenge due to different reasons
such as:

• Consistency: Giotto and TDL rely on the synchrony model as syn-
chronous languages, so ensuring consistency of the designed model prop-
erties and constraints in the implementation and execution framework is
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also a key challenge as described in 6.1. Nonetheless, the Giotto com-
piler aims to ensure that the logical semantic (functionality and timing)
is preserved [KSHP02, HK02].

• Execution framework: The execution of Giotto / TDL applications
require a virtual-machine, this way it imposes an important development
restriction because the virtual-machine should provide the required fault-
tolerance and SIL level for each given execution target. This also involves
an overhead through predicate checks, calls of wrapper functions, and
the copying of ports. Measurements in an example developed system
(e.g., helicopter control system) have shown that this amounts to less than
2% of time and the implementation of the embedded machine accounts
for 6KB [KSHP02].

• Distributed target: TDL supports the distributed execution of real-
time embedded systems [MHF04].

• Codesign: The development of embedded systems usually require a
codesign approach, where a given functionality could be implemented
in software, hardware or any combination of both. The Giotto and TDL
approach deal with software only.

6.3 MARTE

Description: SysML [sys06] and UML hardly formalize real-time aspects of
embedded systems or at least not with the required rigour [Kop00b, AMdS07].
MARTE (Modeling and Analysis of Real-Time Embedded Systems) [omg08]
is the UML standard extension to support modeling of real-time embedded
system [AMPF07, AMdS07, MPP07], it provides multiple MDA mechanisms
to tackle the complexity challenge (e.g., OOP) and enables the generation of
executable models by generating automatic code for SystemC models [MPP07].
In MARTE, time representation can be physical (dense or discretized) or logi-
cal (related to user-defined clocks) [AMdS07]. The time structure of a design is
built using time bases (TimeBase), a totally ordered set of dense or discretized
instants, in which a distributed or multi-thread application consists of multiple
time bases (MultipleTimeBase) which are a priori independent. The progress
of physical time is measured using the model element clock, which is referenced
to a given time base. The Clocked Constraint Specification Language (CCSL)
enables semantical and graphical representation using stereotypes of clock con-
straints such as periodicity, coincidence, strict precedence, independence and
exclusion [Kyu08].
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Analysis: MARTE provides an interesting foundation for the modeling of
safety-critical embedded systems [KAVS08], but this is still a challenge for
different reasons such as:

• Consistency: Ensuring consistency of the designed model properties
and constraints up to the implementation and execution framework is
also a key challenge

– Formalism: MARTE as UML is a semi-formal language, and this
is why it imposes some limitations on the way functionality and
time properties can be expressed and verified at model level and
during the implementation process up to the (distributed) execution
platform.

– Time determinism: While MARTE supports the notion of time
and the generation of executable SystemC models, it does not pro-
vide clear restrictions on handling simultaneity. Therefore, the ex-
ecution of simultaneous components could lead to race conditions,
because it does not naturally support time execution determinism.

• Execution framework: It does not restrict the execution framework.

• Distributed execution: It does not restrict the execution topology,
distributed or single.

• Codesign: It does not restrict the implementation technology, which
could be software, hardware or both.

6.4 TMO

Description: Time-triggered Message-triggered Object (TMO)
[MHJGK+00, JT06] targets the design and modeling of high-level dis-
tributed real-time embedded systems. It supports the functional and timing
behaviour specification in an analyzable form, following different refinement
steps. A TMO is built using three different elements: the Object Data Store
(ODS) stores real-time and non real-time data, the service method activated
by a message from outside and the spontaneous method activated by a clock
(time-triggered method).
The TMO model for real-time distributed object-computing supports the spec-
ification of temporal constraints and provides execution engines (middleware)
for ensuring that these constraints are met at runtime [OHK+05]. Distributed
TMO objects may interact via remote calls and spontaneous methods cannot
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be disturbed by service methods. A TMO execution engine, middleware, is
required for the execution of applications structured as TMO networks. The
TMO model has been extended to safety-critical domain [OHK+05] by sup-
porting TMO application on top of the TTA.

Analysis: TMO provides a distributed object-computing support that en-
ables the modeling and implementation of distributed real-time embedded sys-
tems. However, the modeling and implementation of safety-critical embedded
systems based on TMO has some limitations such as:

• Consistency: TMO based systems use a globally referenced time base
[OHK+05], a global time. However, as explained in [Kop97] the notion of
global time is not sufficient to ensure consistent time-stamps of events in
a distributed system, even less in the presence of simultaneous events.

• Execution framework: The execution of TMO objects requires a mid-
dleware both for the simulation and implementation, this way it imposes
an important development restriction because the middleware should pro-
vide the required safety requirements for each given execution target.

• Distributed execution: TMO supports the distributed execution of
applications.

• Codesign: The development of embedded systems usually requires a
codesign approach, in which a given functionality could be implemented
in software, hardware or any combination of both. The TMO approach
deals with software only.

6.5 IEC-61499

IEC-61499 [wwwd, Vya07] is an open standard for the design and execution of
distributed control and automation embedded systems. It aims to overcome the
drawbacks in IEC-61131 [wwwd, PLC08] programming languages that do not
fit into the new requirements for distributed and flexible automation systems
well but which have been extremely successful in industrial automation systems
because they are based on the way and patterns of thinking of control engineers
[Vya07].

Description: IEC-61499 applications are designed as event-driven block di-
agrams composed of different types of function blocks: basic, composite, com-
munication and service interface (a function block that interacts with hardware

76



6 Related Work 6.5 IEC-61499

resources, e.g., inputs / outputs). The IEC-61499 function block is an abstrac-
tion that describes an interface and functionality, which can be implemented as
software and / or hardware, so that this abstract yet executable functionality
description is not dependent on a particular implementation. A basic function
block, from which composite function blocks are built, is a platform indepen-
dent abstraction of a software component that can be programmed in any form
supported by the implementation platform (IEC-61131, C, etc.) [Vya07].
The designer designs the application as a function block diagram and maps
the function blocks to different resources in different devices. The event-driven
execution semantic of the whole system designed using IEC-61499 does not
depend on the particular number and topology of computational resources and
devices. This design could be processed by an IEC-61499 COTS tool that gen-
erates a system configuration to be loaded in each target device. The system
configuration is an executable description that contains the description of the
functionality and description of the system architecture. The system configu-
ration is feasible (i.e., can run) if each device in it supports the function blocks
that are mapped on it [Vya07].
The IEC-61499 also provides new opportunities for intelligent automation sys-
tems by enabling the intelligent integration of system services usingWeb Service
(WS) technology. In a distributed environment, each integrated component
within the distributed system could inform the main supervisor system about
the services that can be provided using the semantic web technologies. The
system supervisor could use this information to generate intelligent manufac-
turing schedules and negotiate with different manufacturing execution units
[Vya07].

Analysis: The correct and efficient implementation and execution of appli-
cations developed with IEC-61499 is still a challenge for the development of
safety-critical embedded systems for different reasons such as:

• Value domain composability: Function blocks can be implemented
using different programming languages supported by the execution plat-
form, thus, IEC-61499 does not preserve value domain composability. As
explained in Section A.3, page 126, the same function block implemented
with different programming languages in a different platform could pro-
vide non-identical results (not bit-exact).

• Time domain composability: The IEC-61499 does not consider time
domain with the required rigour and does not preserve time domain com-
posability (see Section A.3, page 126, for further details). The designer
can specify execution periods for different sub-applications that need to
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be tested in the execution platform because execution time is just a conse-
quence of the mapping of function blocks to different devices. The system
configuration feasibility test does not consider time and time-sequence di-
agrams used to specify service primitives are just a “qualitative specifica-
tion form as it does not specify exact timing requirements to the services”
[Vya07].

• Predictability: Due to the IEC-61499 event-driven nature it is difficult
to predict the execution order and timing properties of a given applica-
tion. For example, several function blocks can be activated simultane-
ously and scheduled by the resource to be executed simultaneously, but
this could lead to race conditions and lack of execution execution order
predictability which is required for the design of safety-critical embedded
systems. This also makes an integrated-architectural approach impossi-
ble.

• Resource and constraints allocation: IEC-61499 does not address
the global resource and constraints allocation problem (e.g., computation
time, communication bandwidth, shared components, etc.).

Therefore, IEC-61499 provides multiple interesting concepts for the develop-
ment of control application in distributed embedded systems (e.g., a function
block is an abstract yet executable functionality description, not dependent
on a particular implementation or execution platform) but does not seem to
be suitable for the development of safety-critical embedded systems due to its
limited predictability and composability in the time and value domain.

6.6 AUTOSAR

Description: AUTomotive Open System Architecture (AUTOSAR) [wwwa]
is a development partnership among major automotive industry players, for-
mally launched in 2003, for the specification of an open standard for automotive
E/E architecture. The industry objective of the AUTOSAR consortium is to
“cooperate on standards and compete on implementation” [Sou06], avoiding
wasting time and effort adapting existing black-box components to different
environments and products. AUTOSAR has nine primary objectives that are
listed below [AUT05]:

1. Consideration of availability and safety requirements

2. Redundancy activation
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3. Scalability to vehicle and platform variants

4. Implementation and standardization of basic system functions

5. Transferability of functions throughout network

6. Integration of functional modules from multiple suppliers

7. Maintainability throughout the whole “Product Life Cycle”

8. Increased use of “Commercial off the shelf hardware”

9. Software updates and upgrades over vehicle lifetime

AUTOSAR mainly concentrates on the software architecture and aims to im-
prove complexity management of integrated E/E architectures through in-
creased reuse and exchangeability of software modules among manufacturers,
suppliers and platforms. It specifies the Virtual Functional Bus (VFB) that
provides standardized communication mechanisms and services to the software
components, by decoupling the application from the underlying infrastructure
[AUT05]: Run Time Environment (RTE) and Basic Software. As the Unified
Modelling Language (UML) has become de-facto standard for modeling OO
embedded systems, AUTOSAR uses similar concepts to UML 2.0 (e.g., compo-
nents, ports and interfaces) and goes beyond in the definition of other concepts
(e.g., interfaces) [Kor06]. The AUTOSAR methodology supports a distributed,
function-driven development process and standardizes the software architecture
for each Electronic Control Unit (ECU).
An AUTOSAR software component is a unit of execution described by its
ports, which interact only by well defined interfaces according to contractual
guarantees, and that in theory can be independently deployed and composed
without modification [SG07]. The behaviour of each component is represented
by a set of runnables, event-triggered and time-triggered procedures, executed
by a set of threads in a task and resource model [FDNG+09].

Analysis: AUTOSAR provides an interesting methodology for the develop-
ment of software components for the automotive domain industry, in constant
evolution and improvement. However the modeling and development of safety-
critical embedded systems based on AUTOSAR does not seem to be feasible
nowadays:

• Consistency: AUTOSAR lacks a timing model and timing description
support which leads to components execution timing inconsistencies and
issues that needs to be tackled during the system integration phase
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[FDNG+09, Ric06, Ham07]. Nonetheless, the Timing Model (TIMMO)
project [wwwh, FDNG+09] aims to provide AUTOSAR with a timing
model and a standardized infrastructure for the handling of time specifi-
cations.

• Dependability: As stated in the first item of the AUTOSAR objective
list dependability is just considered, but not supported.

• Execution framework: The execution of AUTOSAR applications require
the availability of a Run Time Environment, a middleware which provides
the required execution framework. This is indeed an important restric-
tion for the development of safety-critical embedded systems, because the
RTE should be an order of magnitude safer than the application and this
is indeed very difficult to achieve even more so when taking the previ-
ously described lack of timing model and dependability consideration into
account.

• Distributed Execution: AUTOSAR supports the distributed execution of
applications. However, due to previously described time inconsistencies
and dependability considerations, it does not support the systematic de-
velopment of distributed real-time and safety-critical embedded systems.

• Codesign: AUTOSAR handles software components only.

• Simulation: AUTOSAR methodology does not consider simulation, par-
tially because the lack of a timing model makes it unclear how distributed
real-time applications made of multiple components might execute. This
is a considerable drawback, because early simulation helps to evaluate
the system in the early phases. Different solutions have been proposed,
such as using SystemC during the design process of AUTOSAR-conform
systems [KBH+07] and the use of Simulink [aut06].

• Complexity management: AUTOSAR provides several mechanisms to
tackle the ever increasing complexity challenge [HSF+04], such as ab-
straction and partition. However, due to previously specified time incon-
sistencies it does not systematically support segmentation.

6.7 Periodic Fine State Machine (PFSM)

Description: The Finite State Machine (FSM) model is timeless, so it is
not possible to model system properties that are dependent on the progres-
sion of real-time such as duration of computations and the limited temporal
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validity of real-time data. The Periodic Finite State Machine (PFSM) incor-
porates the notion of time and overcomes previous limitations [KESHO07].
PFSMs [KESHO07, OESHK07] provide a consistent notion of time that in-
corporates the notion of global time, sparse time, periodic clock constraints,
time-triggered activities and state variables. This enables a concise represen-
tation of distributed control systems and reduces the gap between a modeled
system and its implementation.

Analysis: PFSM provides an interesting approach for the design and devel-
opment of distributed state-machines for safety-critical embedded systems:

• Consistency: PFSM provides time determinism based on the notion
of sparse-time and supports formal analysis through model checking
[OESHK07].

• Execution framework: It does not restrict the execution framework,
but in order to ensure time domain formalism the (distributed) execution
framework should provide a notion of sparse-time (e.g., TTA).

• Distributed Execution: It supports the development of distributed
real-time embedded systems [OESHK07].

• Codesign: It does not restrict the implementation technology, which
could be software, hardware or both [OESHK07].

6.8 Analysis

As explained in Section 1.1, tackling the complexity challenge, providing a
consistent notion of time and preservation of properties through the devel-
opment process are key challenges for the development of safety-critical em-
bedded systems. State-of-the-art models and methods described in this sec-
tion provide different solutions of interest for the design of distributed safety-
critical and real-time embedded systems, in which multiple models and meth-
ods could be used during the development process. However, as discussed in
this section, there are several limitations and issues that need to be addressed
in the discipline of safety-critical embedded systems design and development
[Kop07, HS07, JTM07, KOPS04, BFLS01]. As has been discussed, the E-
TTM approach provides multiple benefits, addresses some of these limitations
and could be used in conjunction with different modeling approaches, at the ex-
pense of targeting a specific architecture (TTA) and meeting a set of restrictive
constraints
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6.8.1 Preservation of time properties

A key challenge is to systematically ensure that the development and execution
of a designed model still preserves the properties and constraints of interest for
the system, e.g., time. As explained in Sections 6.1 and 6.3, time properties
and constraints expressed in synchronous languages and MARTE cannot sys-
tematically be preserved throughout the development process, so consistency
problems can arise during the development process. On the other hand, Giotto,
TDL, TMO and AUTOSAR rely on a virtual-machine or middleware in order to
consistently preserve time properties from the model up to the implementation.
But the use of these virtual-machines and middleware for safety-critical embed-
ded systems does not seem to be feasible because they would need to be of an
order of magnitude safer than the application with the highest Safety Integrity
Level (e.g., SIL-4 according to IEC-61508). This requires an expensive and long
certification process (e.g., TTA) and a safety foundation which these virtual-
machines and middleware do not seem to have.

The E-TTM provides a consistent notion of time and time properties preserva-
tion from the model down to the implementation (if this is based on the TTA),
without imposing the requirement of a middleware in the final implementation
(see Section 6.8.5). This would constitute a considerable benefit compared with
the available solutions, but at the expense of targeting a specific architecture
(TTA) and meeting a set of restrictive constraints. Nonetheless, it can also be
used to model generic real-time and safety-critical embedded systems by relax-
ing the imposed constraints, thus the developer is then responsible for ensuring
the consistency and preservation of time properties.

6.8.2 Tackling the complexity challenge

All the modeling approaches and methods described in this section, provide
powerful simplification strategies and mechanisms, e.g., MARTE provides OOP
strategy. However not all of them where created with this purpose as one of
the top objectives, e.g., tackling the complexity challenge is not considered in
the top nine AUTOSAR objectives [AUT05].

On the other hand, the E-TTM approach as described in Sections 5 and 5.4, has
been designed from the foundation with the objective of tackling the complexity
challenge by means of simplification strategies such as abstraction, partitioning
and segmentation.
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6.8.3 Distributed simulation of time-triggered embed-
ded systems

The distributed simulation of embedded systems has been an active research
area for decades [HSLGM07]. There is a wide variety of solutions, from generic
solutions that integrate heterogeneous applications into a distributed model
interconnected by TCP/IP [HA04], to specific solutions that target the dis-
tributed simulation of time-triggered embedded systems such as:

• TMO [MHJGK+00, KJ05, JT06], as explained in [HSLGM07] and Section
6.4, represents a successful object-oriented approach that combines time-
triggered and event-triggered behaviour for distributed simulation and
implementation. However, the underlying notion of time does not sup-
port the sparse-time concept derived from the time-triggered MoC and
time determinism is not systematically preserved in the presence of simul-
taneous events. TMO has already been integrated into Time-Triggered
Protocols (TTP) at execution platform level [OHK+05].

• TDL supports the distributed execution of developed real-time embedded
systems, but no distributed simulation support claim has been found.

• The DECOS tool-chain proposed different solutions for the simulation of
distributed time-triggered systems, covering specific solutions such as dis-
tributed simulation of time-triggered based systems derived from SCADE
[HSLGM07].

The E-TTM provides an additional complementary approach for the mod-
eling and distributed simulation of TTA based safety-critical embedded sys-
tems, providing a time deterministic execution framework based on the time-
triggered MoC. This constitutes a considerable benefit compared with the avail-
able solutions, but at the expense of targeting a specific architecture (TTA)
and meeting a set of restrictive constraints. The E-TTM could also be used
in conjunction with other modeling approaches previously described by using
appropriate communication gateways and restrictions.

6.8.4 Simulation time and physical time decoupling

The E-TTM simulation is invariant of the physical time progression and the
distributed simulation topology, this is indeed a powerful property that has not
been identified in any other analyzed modeling approach for the development
of embedded systems. This property enables the simulation of periodic controls
application models (described with time-cycle period and phases) faster, slower
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or at the same pace as physical time, but producing the same results at the
same simulation time instants always. This is similar to a video-player which
can play films faster, slower or at the same pace as physical time.

6.8.5 Execution framework

Whenever possible, the design methodology should not impose restrictions
on the final execution framework or those restrictions should provide a clear
benefit for the safety-case. For example, TDL requires the availability of a
virtual-machine and TMO requires a middleware in the final execution plat-
form, which involves considerable safety limitations (see Section 6.8.1) and
limits the applicability of these modeling approaches in the development of
safety-critical embedded systems. TMO has already been integrated with
Time-Triggered Protocols (TTP) at execution platform level [OHK+05], but it
would also need to be certifiable in order to be used in a safety-critical embed-
ded system. On the other hand, synchronous languages, PFSM and MARTE
do not impose limitations on the underlying execution framework.

The E-TTM requires the availability of an execution framework (xfE-TTM)
for simulation purposes only, which does not have dependability requirements.
In order to take full advantage of this modeling approach, the implementation
should be based on the TTA that provides a validated and certifiable core
technology for the development of safety-critical embedded systems [JSPP04]
and a set of certified tools and products already used in the development of
safety-critical embedded systems, which provide a clear benefit for the safety-
case. Nonetheless, the developer could also choose to implement the TTA based
system using custom developments (non-commercial) or could implement the
safety-critical embedded systems using a different architectural approach.

6.8.6 Codesign

Whenever possible, the design methodology should enable codesign and not im-
pose restrictions on the implementation technology to avoid technology obsoles-
cence, enable energy consumption trade-off analysis, etc. Previously described
Giotto, TDL, TMO and AUTOSAR target the development of software while
synchronous languages and MARTE do not impose limitations on the tech-
nology to be used for the development of systems. The E-TTM meta-model
supports the codesign of systems thanks to the underlying SystemC implemen-
tation, which as described in Section 2.8.3 supports the codesign of systems.
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6.8.7 Heterogeneity

System designers deal with a wide variety of engineering disciplines (e.g., con-
trol engineer, software engineer, hardware engineer, etc.), heterogeneous MoCs,
heterogeneous languages, heterogeneous tools, etc. . Therefore, there is a need
for heterogeneous specification and modeling support, which is supported to a
different extent by each of the previously described modeling approaches.
SystemC has started to play a significant role as a unifying system-level lan-
guage and the recent standardization as IEEE-1666 is a clear symptom of ac-
ceptance and support [HVG+07]. The E-TTM meta-model implementation
is based on SystemC, thus as described in Section 5.2.3, it builds on top of
SystemC heterogeneity support which must be restricted in order to meet
the meta-model constraints. Nonetheless, multiple MoCs could be used to
define the functionality of components and integrate at (distributed) model
level. Therefore, E-TTM heterogeneity is built on top of an open standardized
system-level language as opposed to other modeling approaches.

6.8.8 Conclusion

All in all, the Executable Time-Triggered Model (E-TTM) approach seems to
be a valid an interesting approach for the executable modeling and develop-
ment of safety-critical embedded systems. As previously analysed, it provides
multiple potential benefits compared with the available solutions, but at the
expense of targeting a specific architecture (TTA) and meeting a set of restric-
tive constraints. However, the developer could also use the E-TTM to model
generic real-time and safety-critical embedded systems by relaxing the imposed
constraints, and ensuring the consistency and preservation of time properties.
In addition to this, E-TTM could also be used in conjuction with some of the
previously described modeling approaches:

• The use of PFSMs for the design of state machines seems to be a natural
approach, both are based on the time-triggered MoC.

• A new MARTE profile could be generated for the modeling of TTA
based systems, which could be based on the E-TTM meta-model (mmE-
TTM) and autocode generation could be based on the E-TTM execution
framework (xfE-TTM).

• As explained in Section 5.2.3, synchronous languages could be used within
E-TTM by encapsulating the generated code within E-TTM components.
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However beautiful the strategy, you should occasion-

ally look at the results

Sir Winston Churchill

Chapter 7

Case Study

This chapter assesses the proposed E-TTM modeling approach with the model-
ing and analysis of two case study systems: an example industrial real-time con-
trol system [PPO10] and a safety-critical odometry system [PAAP10]. Each
case study is subject to experimental evaluation, with the execution of simula-
tions using different experimental setups and analysis of collected results.

The mmE-TTM and xfE-TTM described in Section 5 specify the rules and con-
structs according to which SystemC based time deterministic E-TTM models
are constructed if a given set of model assumptions are met. The experimental
evaluation performed in this Section aims to validate previously stated time
determinism and analyze different time related issues that might arise when
the simulation and physical time references are coupled.

On the other hand, the experimental evaluation performed in this Section does
not evaluate how supported simplification strategies reduce the cognitive com-
plexity of the design, due to the psychological and subjective nature of the
matter. Nonetheless, supported strategies are based on the research of dif-
ferent authors [Kop08a, RE06, JTM07] and strategies proposed by multiple
embedded system experts from different domains [OK09].

7.1 Experimental setup

The experimental setup defines both the model configuration and simulation
platform, and implicitly the experimental results that can be collected. Any
given experiment is defined by an experimental setup.
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7.1.1 Simulation platforms

Three different simulation platforms shown in Figure 7.1 have been selected for
the simulation of centralized and distributed model configurations:

• Single platform, Figure 7.1(a), a laptop with a dual core microprocessor
(2.40 GHz) with Windows XP operating system and Visual Studio 2008
development environment (using ’O2’ maximize speed optimization).

• Single multicore platform, Figure 7.1(a), the same dual core laptop.

• Distributed platform, Figure 7.1(b), based on the commercial TTE
100 Mbits/s development kit from TTTech [wwwi]:

– eeePC: An eeePC laptop with Ubuntu 2.6.24-24-rt kernel and GNU
g++ 4.4.1 compiler (using ’-O3’ optimization).

– Atom PC: An Atom CPU based PC with Ubuntu 2.6.24-24-rt kernel
and GNU g++ 4.4.1 compiler (using ’-O3’ optimization).

– TTE switch, with support for TTE and Ethernet protocols.

(a) Single / Single
multicore

switch

(b) Distributed

Figure 7.1: Simulation platforms.

A close communication scenario [Kop08b] is defined for Ethernet based ex-
periments, where no other computer except for the ones defined in the sim-
ulation platform are connected to the switch. This is also applied for TTE
based experiments, although not strictly required because TTE is a time de-
terministic communication protocol for time-triggered dataflow (as explained
in [KAGS05, Kop08b]) that avoids temporal conflicts in the communication
system. TTE based experiments use time-triggered dataflow. Ethernet based
experiments are implemented using Winsock with TTE drivers unloaded, and
synchronized as described in Section 5.3.3 for Ethernet communication.
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7.1.2 Simulation configuration

Each system design under analysis can been modeled and simulated using dif-
ferent configurations such as:

• Plant MoC: The plant to be controlled can be modeled as a Continuous
Time (CT) plant model (using SystemC-AMS) or as a Discrete Time
(DT) plant model, as described in Sections 5.2.3 and 5.5.

• Centralized vs. distributed: A centralized model uses SystemC based
communication channels to intercommunicate components. However,
SystemC based communication channels can be replaced by physical com-
munication channels (e.g., TTE) allowing the partition of models into
submodels that can be executed in a distributed platform as described
in Section 5.3. A single executable file is compiled and linked, contain-
ing the whole model and all selectable model partitions. In a centralized
execution a single executable instance is executed, while in a distributed
execution one executable instance per model partition is executed where
the selected partition is an execution parameter.

• Coupled or decoupled: Simulation time (SystemC) and physical time
(wall clock) references can be coupled or decoupled as described in Section
5.3.3.

7.1.3 Simulation results

Collected simulation results depend on the selected experimental setup,
e.g., with the simulation of a centralized model there is no network proto-
col analyser data to collect. The following simulations results can be collected
(see Section 5.3.1 for a description of time related terms):

• Simulation time trace file(s): Both case studies have a ’trace to file’ op-
tion that stores component time traces in a log file with the following
information: component resource name and component simulation time.

• Execution time trace file(s): Both case studies have a ’trace to file’ option
that stores component execution time traces in a log file with the follow-
ing information: component resource name, component simulation time,
component execution start and end time referenced with the physical
time (computer clock)

• Data trace file(s): When the plant is modeled using CT MoC (using
SystemC-AMS) a data trace file stores the value of variables of interest.
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• Network protocol analyser data: Wireshark network protocol analyser is
used to collect communication messages sent between distributed sub-
models, for both Ethernet and TTE communication protocols.

7.2 Industrial real-time control system

The first case study models an example industrial real-time control sys-
tem [PPO10] where an example triphasic power-electronic evaluation platform
[PdAEOSS+08] must be controlled with a Voltage / Frequency (V/F) control,
which controls the value and frequency of the voltage applied to an electric
load. In addition to this, the control system implements a safety-related func-
tion (SIL-2) that protects the power-electronic system from overcurrents. The
system is designed using the mmE-TTM and xfE-TTM described in Section 5
and experimentally evaluated with different simulation topologies.

7.2.1 System description

Figure 7.2 shows a simplified deployment model of the complete system. The
control system requires the acquisition of the bus voltage, phase voltages and
currents, and commands the digital output assigned to the load contactor and
six power-semiconductor device drivers. The user interacts with the control
subsystem by sending commands and receiving status and monitoring infor-
mation. Figure 7.3 shows the plant block diagram and Figure 7.4 shows the
electric circuit diagram.

• The voltage source provides a constant voltage to the inverter, bus voltage
(vbus).

• The inverter block generates a triphasic output voltage of variable
value and frequency, as controlled by the real-time control system.
It is composed of a sensor (vbus), actuator (do) and six IGCTs
(S_1, ¯S_1, S_2, ¯S_2, S_3, ¯S_3) with driver commands ([S1..S]).

• The load block is a composed of sensors (iu,v,w, vu,v,w) and the tripha-
sic resistor and inductance load. Voltage sensors are not represented in
Figure 7.4 for simplicity.

The control system executes a control strategy that regulates the on/off switch-
ing of the power-semiconductor devices in order to generate a triphasic sinu-
soidal output voltage of given voltage and frequency set-points (V/F control).
The on/off switching of power-semiconductor devices is restricted by a set of
rules, e.g, Sx and S̄x must not be both ’on’ at the same time.
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<execution environment>

CONTROL SYSTEM PLANT

user

Command Monitor & Status

S [1..6] , do

vbus, iu,v,w, vu,v,w

Figure 7.2: System deployment model.

+
−vbus

inverter

do S[1..6]

vbus

load

iu,v,w, vu,v,w

Figure 7.3: Plant block diagram.

+
−vbus

do

V

S1

S̄1

A

S2

S̄2

A

S3

S̄3

Aiu

iv

iw

inverter load

Figure 7.4: Plant electric circuit diagram.

7.2.2 System design

As shown in Figure 7.5(a) the designed system is composed of:
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• Components: The User Interface (UI) DAS shown in Figure 7.5(b) has a
single job (job_ui). The control DAS shown in Figure 7.5(c) is composed
of multiple jobs: acquisition (job_acq), control (job_control), modula-
tion (job_modulation) and digital output actuation (job_act_do).

• Communication channels: Components are interconnected by commu-
nication channels. The system level communication channel that inter-
connects both DASes can be replaced with a physical communication
protocol, e.g., Ethernet.

• Plant: The plant provides a simplified model of the plant, either as a
CT or DT model. The plant interchanges signals with the control DAS
using SystemC signals (sc_signal). The CT model is implemented using
SystemC-AMS using electrical linear networks MoC.

Resource names

Table 7.1 lists the resource names of all components and real-time entities.

Resource Name Description
rn:das:ui User Interface (UI) DAS
rn:das:control Control DAS
rn:job:ui.job_ui User Interface (UI) job
rn:job:control.job_acq Acquisition job
rn:job:control.job_control Control job
rn:job:control.job_do Digital output actuation job
rn:job:control.job_mod Modulation job
rn:rte:ctrl_cmd Control command identifier [enumeration]
rn:rte:ctrl_state Control state identifier [enumeration]
rn:rte:v_bus Bus voltage [V]
rn:rte:v_u Voltage phase U [V]
rn:rte:v_v Voltage phase V [V]
rn:rte:v_w Voltage phase W [V]
rn:rte:i_u Current phase U [A]
rn:rte:i_v Current phase V [A]
rn:rte:i_w Current phase W [A]
rn:rte:do Digital output command [on/off]

Table 7.1: System resource names, components and real-time entities.
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(a) System

(b) UI DAS

(c) Control DAS
Figure 7.5: Example industrial real-time control system.
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Timing configuration

Selected model timing configuration is described in Table 7.2 where one sparse-
time macrotick corresponds to one global time tick Γ = tick = 2.5 ms (K = 1)
and µtick = 25 µs.

• The plant is executed with a fixed step-size of one µtick (25 µs).

• The acquisition and modulation jobs are executed with a period of one
global time tick (2.5 ms).

• The user interface, control and digital output actuation jobs (job_ui,
job_control, job_act_do) are executed with a period of p = 200 ms
and different offsets. At offset 10 %, oversampled acquisition values are
procesed by the control job generating set-points for the modulator job
and the digital output actuation job to be executed with an offset of
20 %. At offset 50 %, the user interface job is executed providing updated
information and receiving commands from the end user.

Figure 7.6 provides a time-cycle graphical representation where UI job sim-
ulation instant is represented with dashed lines, control jobs simulation in-
stants are represented with black lines and plant simulation instant is repre-
sented with gray lines. As the plant is executed 8.000 iterations per period
(k = 8000 = 200 ms/25 µs) the circle seems to be filled gray.

DAS job period (p) phase (φ)
UI 0, ui 200 ms = 80 · Γ 50 %

Control

1, acq 2.5 ms = 1 · Γ 0 %
2, control 200 ms = 80 · Γ 10 %
3, do 200 ms = 80 · Γ 20 %
4, mod 2.5 ms = 1 · Γ 0 %

Plant 5, plant 25 µs = 1 · µtick 0 %

Table 7.2: System timing configuration.

Metrics

The example has been implemented as a C++ application based on mmE-TTM
and SystemC. The main metrics and figures are listed as follows:

• Centralized model (CT plant) source code: 16 source code files, 8 header
files (.h) and 8 source files (.cpp,.c), 12 classes and 2.700 lines of code
from which 681 are statements.
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Figure 7.6: System timing configuration represented as time cycle.

• Centralized model (DT plant) source code: 36 source code files, 18 header
files (.h) and 18 source files (.cpp,.c), 18 classes and 4.591 lines of code
from which 1.040 are statements.

• Centralized model (DT plant) SystemC-AMS statistics: 1 dataflow clus-
ter, 6 dataflow modules/solver and 2.500 ns cluster period. Linear solver
instance with 25 equations for 24 modules and 2.500 ns initial time step.

7.2.3 Experimental evaluation

Table 7.3 describes selected experiments to be simulated and evaluated. In a
distributed model, one submodel integrates the UI DAS and the second sub-
model integrates the plant and the control DAS.

Expected Outcome and Hypotheses

Simulation time trace file(s) should be identical for all experiments, all compo-
nents must be executed at the same simulation time macroticks as defined by
the timing configuration. Simulation time and physical time can be coupled
by a given ratio if the simulation platform provides enough computational per-
formance. The coupling will not be perfect and the execution time jitter will
depend on the simulation platform.
Network protocol analyser data will be available for distributed topologies
based on Ethernet or TTE communication protocols, except for the multicore
distributed model because Ethernet communication is local. The communica-
tion time jitter for TTE should be in the range of microseconds [SGAK06].
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ID Simulation
Platform

Model Protocol Plant
MoC

Time

1 Single Centralized None DT coupled x1.0
2 Single Centralized None DT coupled x0.5
3 Single Centralized None DT coupled x2.0
4 Single Centralized None DT decoupled
5 Single Centralized None CT coupled
6 Single Centralized None CT decoupled
7 Single multicore Distributed Ethernet DT coupled x1.0
8 Single multicore Distributed Ethernet DT coupled x0.5
9 Single multicore Distributed Ethernet DT coupled x2.0
10 Single multicore Distributed Ethernet DT decoupled
11 Distributed Distributed Ethernet DT coupled x1.0
12 Distributed Distributed Ethernet DT decoupled
13 Distributed Distributed TTE DT coupled x1.0
14 Distributed Distributed TTE DT coupled x0.5
15 Distributed Distributed TTE DT coupled x2.0

Table 7.3: Analyzed simulation experiments.

Centralized Model

The centralized model shown in Figure 7.5(a) is executed in a single computer
(Figure 7.1(a)), using the following experimental setup options: CT / DT
plant MoC and coupled / decoupled time. The simulation times trace file(s)
are identical for all experiments. Table 7.4 and Figure 7.7 describe time results
of interest.

• Experiment 1 simulates the DT model coupled with physical time with
a ratio rsync = 1.0 as shown in Figure 7.7(a). The simulation execution
jitter, shown in Figure 7.7(b), has an average value of 4 µsec, maximum
value of 0.3 ms and variance value of 1.78e − 11. The jitter peak seems
to be due to an sporadic Windows operating system task switch.

• Experiment 2 simulates the DT model coupled with physical time with
a ratio rsync = 0.5 as shown in Figure 7.7(a). The simulation execution
jitter has an average value of 8 µsec, a maximum value of 9.32 ms and
variance value of 4.83e− 07.

• Experiment 3 simulates the DT model coupled with physical time with
a ratio rsync = 2.0 as shown in Figure 7.7(a). The simulation execution
jitter has an average value of 4 µsec, maximum value of 0.3 ms and
variance value of 1.15e− 11.
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• Experiment 4 simulates the DT model decoupled from physical time as
shown in Figure 7.7(c) (accelerated simulation).

• Experiment 5, the laptop does not have enough computational perfor-
mance to execute the CT model coupled with physical time, thus the
result is considered Not Applicable (N/A).

• Experiment 6 simulates the CT model decoupled from physical time.

ID Platform(s) Simulation
Time

Execution
Time

Ratio

1

Single 3600.00 sec

3600.00 sec rsync = 1.000
2 1800.00 sec rsync = 0.500
3 7200.00 sec rsync = 2.000
4 134.15 sec ravg = 0.038
5 N/A N/A
6 59424.68 sec ravg = 16.506

Table 7.4: Centralized model simulation time results.

Figure 7.8 shows the simulation results of interest, while enable signal is active
the control commands the plant and generates a triphasic sinusoidal voltage of
configurable amplitude and frequency and when the enable signal is not active,
the output voltage is zero.
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(c) Execution time for experiment 4.

Figure 7.7: Centralized model execution time.
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Figure 7.8: Centralized model simulation results with CT model of the plant.

Distributed Model - Ethernet Multicore

The distributed model shown in Figure 7.9 is executed in the distributed com-
puter (Figure 7.1(b)), using the following experimental setup options: DT plant
MoC, Ethernet protocol and coupled / decoupled time. The model is parti-
tioned in two submodels, as shown in Figure 7.9, one submodel integrates the
UI DAS and the second submodel integrates the plant and the control DAS.
Each model partition is executed in a different executable file instance and
assigned by Windows XP to a different core where both models communicate
among them using Ethernet. Simulation times trace file(s) are identical for all
experiments and Table 7.5 and Figure 7.10 describe time results of interest.
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Figure 7.9: Distributed model, example industrial real-time control system.

ID Platform(s) Simulation
Time

Execution
Time

Ratio

7

Single multicore 3600.00 sec

3600.00 sec rsync = 1.000
8 1800.00 sec rsync = 0.500
9 7200.00 sec rsync = 2.000
10 118.93 sec ravg = 0.033

Table 7.5: Distributed model simulation time results (multicore and Ethernet).

• Experiment 7 simulates the DT model coupled with physical time with
rsync = 1.0 as shown in Figure 7.10(a). The simulation execution jitter,
shown in Figure 7.10(b), has an average value of 4 µsec, maximum value
of 0.35 ms and variance value of 2.09e− 11. Execution jitter peak seems
to be due to sporadic Windows operating system task switch.

• Experiment 8 simulates the DT model coupled with physical time with
rsync = 0.5 as shown in Figure 7.10(a). The simulation execution jitter
has an average value of 4 µsec, maximum value of 0.32 ms and variance
value of 2.13e− 11.

• Experiment 9 simulates the DT model coupled with physical time with
rsync = 2.0 as shown in Figure 7.10(a). The simulation execution jitter
has an average value of 4 µsec, maximum value of 0.37 ms and variance
value of 1.54e− 11.

• Experiment 10 simulates the DT model decoupled from physical time as
shown in Figure 7.10(c) (accelerated simulation). For the analysed model,
the distributed execution time is less than the centralized execution time
(compare experiments 4 and 10).
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(a) Execution time for experiment 5.
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(b) Execution time jitter for experiment 5.
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(c) Execution time for experiment 6.

Figure 7.10: Distributed model time results (multicore Ethernet).

Distributed Model - Ethernet

The distributed model shown in Figure 7.9 is executed in two computers com-
municated using Ethernet as shown in Figure 7.1(b). Simulation times trace
file(s) are identical for all experiments and Table 7.6 and Figure 7.11 describe
time results of interest.

• Experiment 11 simulates the DT model coupled with physical time with
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ID Platform(s) Simulation
Time

Execution
Time

Ratio

11 Distributed 3600.00 sec 3600.00 sec rsync = 1.000
12 49.20 sec ravg = 0.013

Table 7.6: Distributed model simulation time results (Ethernet).

rsync = 1.0 as shown in Figure 7.11(a). The communication execution
jitter, shown in Figure 7.11(b), has an average value of 15 µsec, maximum
value of 40µ sec) and variance value of 2, 05997e− 10.

• Experiment 12 simulates the DT model decoupled from physical time
as shown in Figure 7.11(c) (accelerated simulation). For the analysed
model, the distributed execution time is much less than the centralized
execution time (compare experiments 4 and 12).

Distributed Model - TTE

The distributed model shown in Figure 7.9 is executed in two computers com-
municated using TTE as shown in Figure 7.1(b). Simulation times trace file(s)
are identical for all experiments and Table 7.7 and Figure 7.12(b) describe time
results of interest.

ID Platform(s) Simulation
Time

Execution
Time

Ratio

13
Distributed 3600 sec

3600 sec rsync = 1.000
14 1800 sec rsync = 0.500
15 7200 sec rsync = 2.000

Table 7.7: Distributed model simulation time results (TTE).

• Experiment 13 simulates the DT model coupled with physical time with
rsync = 1.0 as shown in Figure 7.12(a). The simulation communication
jitter, shown in Figure 7.12(b), has an average value of 8 µsec, maximum
value of 14 µsec and a variance value of 5.38e− 12.

• Experiment 14 simulates the DT model coupled with physical time with
rsync = 0.5 as shown in Figure 7.12(a). The simulation communication
jitter has an average value of 13 µsec, maximum value of 54 µsec and a
variance value of 5.12e− 9.
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(b) Communication time jitter for experiment 11.
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(c) Communication time for experiment 12.

Figure 7.11: Distributed model communication time for Ethernet.

• Experiment 14 simulates the DT model coupled with physical time with
rsync = 2.0 as shown in Figure 7.12(a). The simulation communication
jitter has an average value of 10 µsec, maximum value of 25 µsec and a
variance value of 2.81e− 11.
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(b) Communication time jitter for experiment 13.

Figure 7.12: Distributed model communication time for TTE.

7.2.4 Conclusion

The real-time control system has been designed using the mmE-TTM and
xfE-TTM described in Section 5 and experimentally evaluated with different
simulation topologies leading to the following conclusions:

• Simulation time determinism property of the model has been confirmed
as expected, simulation trace file(s) are identical for all experiments.

• Simulation data determinism has not been confirmed because required
data determinism model assumption described in Section 5.5 has not
been met for floating-point operations. Selected compiler options (see
Section 7.1.1) and compiler default mathematical libraries do not provide
floating-point bit-exact results among platforms.

• Open simulations coupled with physical time have an execution and com-
munication jitter dependent of the simulation platform and communica-
tion network. Whenever possible the jitter should be small and bounded
(e.g., TTE provides a small and bounded jitter [SGAK06]).

104



7 Case Study 7.3 ETCS Odometry

• The selection between CT and DT based plant models is a simulation
execution time vs. accuracy trade off. In this case-study the DT based
plant model is executed 434 times faster (16.506/0.038 = 434.36) than
the CT based plant model at the cost of simulation accuracy. Simulation
execution time results might be considered reasonable for the design of
safety-critical embedded systems, where DT based plant models can be
used for faster intermediate simulation assessments while slower CT based
plant models can be used for final simulation assessments.

• Simulation platform operating-system, compiler tools and compiler op-
tions have a considerable effect on the simulation execution time. In this
case-study Ubuntu based simulation platforms used for distributed plat-
form experiments have considerable lower simulation execution time than
Windows based simulation platforms (Experiment 12 vs. Experiment 10,
118.93 vs. 49.20 sec). On the other hand, as it could be generally expected
given the same simulation platform the distributed simulation execution
time is smaller than the centralized one (Experiment 4 vs. Experiment
10, 134.15 vs. 118.93 sec). Nonetheless, this assumption requires a proper
model partition and cannot be generalised.

7.3 ETCS Odometry

The second case study models an example odometry safety-critical embedded
system (SIL-4), which is subject to Simulated Fault Injection (SFI) using a
generic SystemC based SFI environment described in [PAAP10]. The odom-
etry system provides traveled speed and distance estimations using diverse
redundant sensors (e.g., radars, accelerometer and wheel sensors) and sensor-
fusion algorithm [MAR+08].

7.3.1 System description

The European Rail Traffic Management System (ERTMS) [Win09] is an Eu-
ropean Union backed initiative for the definition of a unique train signaling
standard throughout Europe, where the on-board European Train Control
System (ETCS) is an Automatic Train Protection (ATP). The high-speed train
on-board ETCS is a safety-critical embedded system (SIL-4) that protects the
train by supervising the traveled distance and speed, activating the emergency
brake if authorized values are exceeded. The ETCS safety-computer is called
European Vital Computer (EVC).
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The ETCS relies on the distance and speed measurements provided by the
on-board odometry system, which performs dead reckoning based on a set of
diverse sensors such as wheel angular speed encoders, longitudinal accelerom-
eters and Doppler radars. The standard requires the odometry precision to
be within the boundaries described in Equation 7.1, the error must always be
lower than five meters plus five percent of the traveled distance for a maxi-
mum traveling speed of 500km/h, where s is the traveled distance and sm is
the measured distance. The railway infrastructure provides train absolute po-
sitions whenever a new eurobalisse is read, and this location is used to correct
an recalibrate on-line the odometry system.

∀t, |sm(t)− s(t)| ≤ 5m+ (5/100) · s(t) (7.1)

Reference architecture

Figure 7.13 shows the ETCS on-board reference architecture [Win09] parti-
tioned into several subsystems all connected to the EVC safety computer:

• The EVC is the central safety processing unit that communicates with all
subsystems and executes all safety functions associated to the traveling
speed and distance supervision. The EVC executes the safety kernel and
includes the odometry subsystem, which estimates the traveling distance
and speed based on a set of diverse sensors.

• The Driver Machine Interface (DMI) is the driver interface, periodically
updated with state parameters (e.g., traveling speed) and transmitting
sporadic event information (e.g., button pressed).

• The Juridical Recorder Unit (JRU) must record all relevant external
events (e.g., new eurobalisse message) and internal events (e.g., activate
emergency brake).

• The Balise Transmission Module (BTM) telepowers eurobalisses as the
train passes them, receives information sent by the eurobalisse and trans-
mits the demodulated information to the EVC. The Loop Transmission
Module (LTM) provides equivalent functionality with received informa-
tion from Euroloops.

• The Global System for Mobile Communications - Railway (GSM/R) in-
terface enables the bidirectional information exchange between remote
control centers and the train, supporting track and operation related
data exchange.

106



7 Case Study 7.3 ETCS Odometry

• The Train Interface Unit (TIU) reads / writes a set of input / output
digital values, some of which are safety related such as the emergency
brake digital output. In addition to this, additional train interfaces such
as Multifunction Vehicle Bus (MVB) must be considered.

• Odometry sensors such as encoders, Doppler radars and longitudinal ac-
celometers provide measurements of diverse nature such as pulses with
a frequency proportional to the longitudinal speed, speed measurement
based on Doppler effect and longitudinal acceleration.

EVC

BTM-LTM

DMI

JRU

TIU

interface
Train

GSM/RGSM/R

GSM/R
antennas

Eurobalisse
Antenna

Radars

Figure 7.13: ETCS on-board reference architecture [Win09].

System architecture design

Figure 7.14 shows the simplified architecture design of a high-speed train on-
board ETCS solution proposal. TTE is used as the single communication
infrastructure for the interconnection of multiple subsystems of mixed criticality
and timing constraints: Triple Modular Redundancy (TMR) of computers that
form the EVC, DMI, GSM/R, JRU and BTM.

The odometry sensor-fusion algorithm to be used requires at least the availabil-
ity of two encoders and one accelerometer. A periodic input agreement protocol
is executed at the EVC, between host computers, with the periodic publica-
tion of all sensor measurements so that all host computers compute odometry
with the same input values. Two encoders and one longitudinal accelerometer
sensors are connected to each EVC host computer, so that the failure of any
single host computer or multiple sensors does not jeopardize availability while
ensuring safety.
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Figure 7.14: ETCS design.

7.3.2 System design

As shown in Figure 7.16, the odometry subsystem is composed of three repli-
cated odometry DASes, one instance per EVC host computer. The odometry
DAS is composed of four jobs as shown in Figure 7.17:

• The acquisition job (job_acq) reads input sensors and performs input
agreement protocol among replicas.

• The calculation job (job_calc) uses the previously acquired sensor infor-
mation to calculate using a sensor-fusion algorithm [MAR+08] the esti-
mated traveled distance (sm), speed (vm) and acceleration (am).

• The resynchronization job (job_resync) receives resynchronization infor-
mation from the EVC, the absolute position reading (s, ts) used to resyn-
chronize the speed and distance calculation algorithm parameters. The
absolute position reading is received aperiodically, whenever a balise is
passed.

• The voter job (job_voter) performs output agreement protocol of calcu-
lated odometry estimations with other replicas. The voter output is the
agreed odometry estimation of the traveled distance (smv), speed (vmv)
and acceleration (amv).
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The system design is integrated with a generic SystemC based SFI environment
[PAAP10], which enables the early dependability assessment of the design by
means of SFI. The selection of faults to be considered is guided by the FMEA
analysis where potential faults that could lead to system failure are analyzed
at different abstraction levels. Figure 7.15 shows the design model and fault
injection environment, identifying the following main modules:

• The system interacts with the environment, composed by the physical
world on which the odometry operates (train and railway) and the in-
frastructure the odometry interacts with (ETCS subsystems).

• The odometry harness, provides saboteur encoder and longitudinal sen-
sors connected to the odometry system.

• The checker module verifies a set of rules during system simulation.

• The fault injection module injects faults in the model.

ENVIRONMENT

Train
Railway Infr.

ETCS

ODOMETRY HARNESS
C
he
ck
er

Fault Injection

v

a

sabs

sodo
vodo
aodo

sts

Figure 7.15: Design model and fault injection environment.

Figure 7.16: Example odometry system model.
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Figure 7.17: Example odometry DAS model.

Resource names

Table 7.8 lists the resource names of all components and real-time entities.

Resource Name Description
rn:das:odometry[0] Odometry DAS instance A
rn:das:odometry[1] Odometry DAS instance B
rn:das:odometry[2] Odometry DAS instance C
rn:job:odometry[x].job_acq Acquisition job
rn:job:odometry[x].job_calc Calculation job (sensor-fusion)
rn:job:odometry[x].job_resync Resynchronization job
rn:job:odometry[x].job_voter Voter job
rn:rte:odometry[x].s External absolute distance measurement [m]
rn:rte:odometry[x].ts External absolute distance measurement time

instant [ms]
rn:rte:odometry[x].sm Distance estimation [m]
rn:rte:odometry[x].vm Speed estimation [m/s]
rn:rte:odometry[x].am Acceleration estimation [m/s]
rn:rte:odometry[x].smv Agreed (voted) distance estimation [m]
rn:rte:odometry[x].vmv Agreed (voted) speed estimation [m/s]
rn:rte:odometry[x].amv Agreed (voted) acceleration estimation [m/s]

Table 7.8: System resource names, components and real-time entities.
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Timing configuration

Table 7.10 shows timing constraints and Table 7.9 shows the odometry subsys-
tem timing configuration, based on [MTAC01]. In this example, one sparse-
time macrotick corresponds to one global time tick Γ = tick = 100 ms (K = 1)
and in order to execute the plant with higher time resolution a local fixed-time
step µtick = 2 ms is specified.
Figure 7.18 provides a time-cycle graphical representation where job_rsyn,
job_calc and job_vote simulation time instants are represented with black
lines and job_acq and plant simulation time instants are represented with gray
lines.

DAS job period (p) phase (φ)
Train Plant 0, plant 2 ms = 1 · µtick 0 %

Odometry

1, acq 2 ms = 1 · µtick 0 %
2, rsyn 100 ms = 1 · Γ 0 %
3, calc 100 ms = 1 · Γ 50 %
4, vote 100 ms = 1 · Γ 75 %

Table 7.9: ETCS odometry model timing configuration.
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Figure 7.18: System timing configuration represented as time cycle.

7.3.3 Experimental evaluation

This section describes the simulation results of previously designed odometry
safety system within the SFI environment shown in Figure 7.15, as already
analyzed in [PAAP10]. Table 7.11 describes the faults to be inserted, where

111



7.3 ETCS Odometry 7 Case Study

Constraint Description
S (DAS_odo[0..2]) Odometry replicated DAS channels must be executed

synchronously in order to get a synchronous reading
of all input sensors.

P (job_acq, job_calc)
P (job_resync, job_calc)

Calculation job must be executed after acquisition job
and resynchronization job in order to ensure calcula-
tion data consistency.

H (job_calc|job_acq) Acquisition job performs oversampling, thus, it is exe-
cuted with higher frequency than the calculation job.
The harmonicity is 50, 100 ms/2 ms.

F (s|as) ≤ 100 ms The traveled distance calculation is aperiodically
resynchronized with the absolute position reading
from a balise. The freshness of the absolute position
state information limits the odometry resynchroniza-
tion accuracy, and this way it is bounded to a reason-
able value of one execution period.

Table 7.10: ETCS odometry model timing constraints.

the notion of time tick is replaced by the notion of distance (s) and faults are
inserted at a given traveled distance tick with a granularity of 1km.

Experiment

The odometry system is subject to a simulated fault injection experiment based
on the simulator commands listed in Table 7.11. A common assessment scenario
and fault environment is described, which defines the operating train speed set-
points (vsp) and default values for accelerometer location faults (ζ, θ), distance
between eurobalisses (sbalisse), wheel adhesion factor (adhesion) and wheel ra-
dius difference (∆wheel_radiusdiff ). The railway adherence factor (adhesion)
behavioral fault is updated at different distance windows.
Simulator commands listed in Table 7.11 are used by the transactor and system
model saboteurs as identified in Table 7.12. Fault tolerance is achieved using
replication and error masking, by the external voter and the sensor-fusion al-
gorithm that relies on a set of diverse redundant sensors. The checker module
generates a trace file with variables of interest and verifies a set of rules during
system simulation (e.g., Equation 7.1).

Expected Outcome and Hypotheses

Determinism is a sufficient precondition for logical reasoning [Kop08a]. Sim-
ulation time determinism property of the design model under analysis should
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window(distance) idx value
−1,−1,−1 sbalisse 2.5 [km]
−1,−1,−1 adhesion 100 [%]
−1,−1,−1 θ 2 [grad]
−1,−1,−1 ζ 2 [grad]
−1,−1,−1 ∆wheel_radiusdiff 0.001 [m]
0, 0, 2 vsp 15 [km/h]
0, 2, 3 vsp 50 [km/h]
0, 5, 95 vsp 250 [km/h]
0, 100, 50 vsp 125 [km/h]
0, 150, 100 vsp 250 [km/h]
0, 250, 250 vsp 15 [km/h]
0, 275, F vsp 0 [km/h]
0, 2, 200 adhesion 80 [%]
0, 50, 150 adhesion 70 [%]

Table 7.11: Experiment command table.

idx Used by
vsp Transactor
sbalisse Transactor
∆wheel_radiusdiff Transactor
θ Accelerometer sensor saboteur
ζ Accelerometer sensor saboteur
adhesion Encoder sensor saboteur

Table 7.12: Simulator commands used by transactor and saboteurs.

support the early dependability assessment by means of SFI, where faults can
be injected at precise time instants and implemented fault tolerance mecha-
nisms validated.

Experiment results

The high-speed train odometry system is subject to SFI with the previously
described experiment leading to the results illustrated in Figure 7.19. Simula-
tions are executed using a laptop with a dual core microprocessor (2.40 GHz)
and Windows XP operating system. The simulated two hours (7200 sec) and
290 km long journey is executed in less than 60 seconds.
Small speed measurement errors can be identified in Figure 7.19 during acceler-
ation and braking phases due to wheel slid-skid. Speed measurement errors lead
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Figure 7.19: Train speed vs. measured speed.

to distance measurement errors, where voted measurement errors are within the
required safety margin described in Equation 7.1 as verified by the checker mod-
ule. Each odometry DAS employs sensor fault tolerance and sensor-fusion to
provide an accurate and reliable measurement even under the presence of exter-
nal environmental faults. On the other hand, highest distance errors are due to
slid-skid faults originated by external environmental faults such as degradated
adhesion factor and incorrect acceleration sensor positioning.

7.3.4 Conclusion

The ETCS odometry safety-critical embedded system has been designed using
the mmE-TTM and xfE-TTM described in Section 5 and experimentally eval-
uated with a SFI based dependability assessment. Determinism is a sufficient
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precondition for logical reasoning [Kop08a] and simulation time determinism
property of the design model under analysis enables the early dependability as-
sessment by means of SFI, where faults can be injected at precise time instants
and implemented fault tolerance mechanisms validated.
All in all, the early dependability assessment has been successful and experi-
mental results indicate that selected architectural fault tolerance mechanisms
(TMR) and sensor-fusion provide sufficient fault tolerance for the given exper-
iment. On the other hand, sensor fault tolerance and sensor-fusion algorithms
could be further improved. For example, the addition of an additional diverse
sensor such as a Doppler radar would enhance fault tolerance and mitigation
during wheels slip-skid faults.

7.4 Summary

In order assess the proposed E-TTM modeling approach in a practical way, two
case studies have been designed using the mmE-TTM and xfE-TTM described
in Section 5 and experimentally evaluated: an example industrial real-time con-
trol system [PPO10] and a safety-critical odometry system [PAAP10].
The industrial real-time control system example (see Section 7.2) has been
experimentally evaluated with different simulation topologies leading to the
following conclusions summary:

• Simulation time determinism property of the design model under analysis
has been confirmed as expected.

• Simulation data determinism has not been confirmed because required
data determinism model assumption described in Section 5.5 has not
been met for floating-point operations.

• Open simulations coupled with physical time have an execution and com-
munication jitter dependent of the simulation platform and communica-
tion network. Whenever possible the jitter should be small and bounded.

• The selection between CT and DT based plant models is a simulation
execution time vs. accuracy trade off, where DT based plant models can
be used for faster intermediate simulation assessments while slower CT
based plant models can be used for final simulation assessments.

• Simulation platform operating-system, compiler tools and compiler op-
tions have a considerable effect on the simulation execution time.
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The ETCS odometry example (see Section 7.3) has been experimentally eval-
uated with a Simulated Fault Injection (SFI) based dependability assessment.
Determinism is a sufficient precondition for logical reasoning [Kop08a] and sim-
ulation time determinism property enables the early dependability assessment
by means of SFI, where faults can be injected at precise time instants and
implemented fault tolerance mechanisms validated. This is indeed important
for the development of safety-critical embedded systems because the interna-
tional safety standard IEC-61508 highly recommends fault injection techniques
in all steps of the development process, in order to analyze the reaction of
the system in a faulty environment and to validate the correct implementation
of fault tolerance mechanisms. SFI enables an early dependability assessment
that reduces the risk of late discovery of safety related design pitfalls.
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“Nihil est enim simul et inventum et perfectum”

(Nothing is ever invented and perfected at the same

time)

Cicero, Brutus 71

Chapter 8

Conclusion

This chapter reviews the Executable Time-Triggered Model (E-TTM) ap-
proach, provides a critical analysis of the results and identifies future work
lines.

8.1 Review

This thesis has presented the Executable Time-Triggered Model (E-TTM), a
novel approach for the executable PIM modeling of safety-critical embedded
systems based on Time-Triggered Architecture (TTA) . It can also be used in
different development phases (see Chapter 3), for the generation of executable
specifications and during the verification and validation phases using the model
as ’reference model’.
Chapter 4 has analyzed the notion of time from different perspectives related to
the development of safety-critical embedded systems and cognitive complexity
reduction, identifying suitable time representations, time constraints expres-
siveness and time abstraction models to be included in the specification of the
E-TTM meta-model.
E-TTM models are instantiations of the E-TTM meta-model (mmE-TTM)
described in Chapter 5, which provides a global-simulation time and a strict
separation of concerns (partition) between computation and communication,
where components communicate among them by means of the exchange of
messages across communication channels. The meta-model relies on a consis-
tent notion of time, the sparse-time concept from the time-triggered MoC, that
enables single or distributed models coupled or decoupled from physical time
to be executed while preserving simulation time determinism (simulation time
invariance). This consistent notion of time in conjunction with the ability to
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express time and time constraints, also enables the preservation of time proper-
ties through model refinements steps and throughout the development process.
The meta-model implementation is a C++ library that extends SystemC with
the time-triggered Model of Computation (MoC) and enables the codesign and
execution of models in SystemC.
As analyzed in Chapter 6, the E-TTM approach provides multiple potential
benefits compared with state-of-the-art modeling solutions, but at the expense
of targeting a specific architecture (TTA) and meeting a set of restrictive con-
straints. However, the developer could also use the E-TTM approach to model
generic real-time and safety-critical embedded systems by relaxing the imposed
constraints, and ensuring the consistency and preservation of time properties.
In addition to this, E-TTM could also be used in conjunction with other mod-
eling approaches such as MARTE, PFSM, synchronous languages, etc.
Finally Chapter 7 describes the development of two case-studies, two E-TTM
models instantiated from the E-TTM meta-model using the SystemC based
E-TTM execution framework.

8.2 Critical analysis of the results

This thesis provides an interesting approach towards the systematic develop-
ment of ’correct by construction’ safety-critical embedded systems based on
the TTA. However, nothing is ever invented and perfected at the same time.
A critical analysis could identify the following list of issues, where most issues
could be addressed as future work as described in Section 8.3.

• The proposed E-TTM modeling approach targets the development of
safety-critical embedded systems, but only the PIM level has been de-
veloped in this thesis.

– The development of the PSM was outside the scope of the thesis but
nonetheless already considered as possible future work (see ’PSM’
in Section 8.3).

• The proposed E-TTM relies on the TTA, but not all safety-critical em-
bedded systems are based on the TTA.

– The E-TTM approach does not restrict the development process
nor the underlying product architecture. If the underlying product
architecture is TTA, properties of interest (e.g., time) could be sys-
tematically preserved throughout the development process, and if
another architecture is used the designers are responsible for ensur-
ing that properties of interest are preserved.
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• This thesis focuses primarily on safety-critical embedded systems, and
the constraints applied for the development of E-TTM might be too re-
strictive for the development of other types of embedded systems.

– The E-TTM approach targets the development of safety-critical em-
bedded systems and provides a solid time model foundation based on
the sparse-time for this purpose. Nonetheless, it can also be used to
model generic real-time and safety-critical embedded systems by re-
laxing the imposed constraints, in which case the developer is then
responsible for ensuring the consistency and preservation of time
properties.

• The development of safety-critical embedded systems requires the use of
tools and formal methods to ensure the correctness of the product being
developed. Neither the tools available nor the formal verification of E-
TTM models have been described.

– As described in Section 8.3 (see ’MBD’), there is an ongoing research
effort towards the automatic SystemC code generation from multiple
MBD languages such as UML and MARTE. So, a new MARTE
profile could be defined to support the design of TTA based systems
and automatic generation of E-TTM models.

– The E-TTM enables code generated from formal languages
(e.g., synchronous languages) to be integrated but so far it has not
provided a formalism.

• The development and configuration (time and communication) of both
case-studies has been manual. There is no tool support and therefore the
generation of models and suitable configuration is quite tedious and error
prone.

– As previously described (see also ’MBD’ in Section 8.3) a new
MARTE profile could be defined to support the design of TTA based
systems and automatic generation of E-TTM models.

8.3 Future work

The results and foundation of this thesis can be extended in various ways,
leading to the identification of future work and research lines:

• Platform Specific Model (PSM): As explained in Section 3.2, at PSM
level the designer maps the previously designed E-TTM PIM model into
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physical distributed platforms, taking into account platform specific re-
quirements and constraints. The definition of the E-TTM PSM level
should also rely on the TTA architecture and address different integra-
tion levels, e.g., Time-Triggered Network-on-Chip (TTNoC) [OESHK08].

• Model-Based Design (MBD): A new MARTE profile could be defined to
support the design of TTA based systems and automatic generation of
E-TTM models. There is already an ongoing research effort towards the
automatic SystemC code generation from multiple MBD languages such
as UML and MARTE that could be used as reference.

• Tools: The availability of a MARTE profile for the modeling and gen-
eration of E-TTM models and a PSM view support, would enable the
E-TTM modeling approach to be integrated using existing tools [wwwi]
for the development of TTA based solutions. This would close the loop
and enable the the design to be automated. PIM and PSM views, and
bridge the gap to the final system implementation.

• TT-WSDL: Web Service Description Language (WSDL) is a standard
language for the description of Web Services (WS) that describes how po-
tential clients are intended to interact with the services [www07, W3C07].
The Q-WSDL [D’A06] extension proposed by D’Ambrogio, extends
WSDL for the descriptions of QoS properties. A new extension could be
defined for the specification of TT-WSDL, time-triggered WSDL. This
could also be used to specify components using the TT-WSDL, so that
the functionality and interface of components is described using the ex-
tension of an standardized language.

• SystemC extensions: The E-TTM meta-model implementation extends
SystemC with the time-triggered MoC. The development of embedded
systems requires heterogeneity of MoCs, so, the E-TTM should be used
in conjuction with other extensions such as SystemC-AMS and HetSC.
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We can’t solve problems by using the same kind of

thinking we used when we created them

Albert Einstein

Appendix A

On fundamental attributes

This chapter analyses certain fundamental concepts of interest for embedded
systems and their development such as complexity, dependability, composabil-
ity, predictability, determinism, abstraction and consistency. As analyzed by
the author, attributes such as determinism are inconsistently used within tech-
nical and scientific literature [PC07b], so, the purpose of this chapter is to
analyze these fundamental attributes and identify their implicit requirements
and implications.

A.1 Complexity

The nouns complexity and complication derive from the Latin word complexus
and complicare that means to “fold together” [Oxf07]. Complication is “an
involved or confused condition or state” [Oxf07] and complexity is the “the
state or quality of being intricate or complicated” [Oxf07]. Simplicity is the
antonym of complexity and simplification is the antonym of complication.

Definition: There are multiple computer-science domain specific definitions
for the term complexity as shown in the following Table A.1:

Domain Definition
General “The degree to which a system or component has a design or im-

plementation that is difficult to understand and verify” [dic91]
Mathematics “The complexity of a process or algorithm is a measure of how

difficult it is to perform. The study of the complexity of algorithms
is known as complexity theory.” [mat07]

continued on the next page
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(continued)

Domain Definition

Embedded Systems “The number of system elements times the number of connections
times the value for type of mutual reaction yields a measure for
complexity.” [Hei02, Rie00]
“The complexity of a system relates to the number of parts, and
the number and types of interactions among the parts, that must
be considered to understand a particular function of the system”
[Kop97]

Software “Complexity is the extent of difficulty in programming” [YJ03]
“Software complexity, the measure of how difficult the program is
to comprehend and work with” [HMKD82]

Table A.1: Domain specific definitions for complexity.

Description: From a safety-critical embedded systems point of view, com-
plexity is described as:

Complexity is quantifiable: expressed quantitatively using measurements
and qualitatively (e.g., this solution is more complex).

Cognitive Complexity: The terms complexity and cognitive complexity are
used interchangeably within this thesis. Cognitive complexity (see Sec-
tion 2.1) of a given task describes the amount of cognitive resources re-
quired to perform a task, which is related to the amount of time required
for the task and the amount of errors that occur [Rum06, Kop07, RE06].
The higher the cognitive complexity, the higher the amount of time and
errors that can occur. Therefore it is of the utmost importance to reduce
the cognitive complexity of the development of safety-critical embedded
systems as stated by Jackson: “one key to achieving dependability at rea-
sonable cost is a serious and sustained commitment to simplicity, includ-
ing simplicity of critical functions and simplicity in system interactions”
[JTM07].

Complexity source: As previously defined, complexity is “the degree to
which a system or component has a design or implementation that is
difficult to understand and verify” [dic91]. So, the real complexity source
in the development of embedded systems is not the amount / type of
functionalities and requirements to implement, but the lack of availabil-
ity / usage of appropriate architectures, methodologies and tools that
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might reduce the difficulty to understand, develop and verify embedded
systems. What is complex today might not be complex tomorrow.

Computational complexity theory: deals with the classification of prob-
lems (P -problem, NP -problem and NP complete problem) based on the
amounts of resources (e.g., execution time) required for the execution of
algorithms.

Complexity management: is the simplification of a complex scenario in or-
der to be processed by the limited cognitive capabilities of humans. Sec-
tion 2.1.2 describes three basic simplification strategies: abstraction, par-
tition and segmentation [Kop07, Rum06].

A.2 Dependability

Dependability is “the ability to avoid service failures that are more frequent
and more severe than is acceptable” [ALRL04].

Definition: There are multiple definitions for the term dependability from
which the most representatives are shown in the following Table A.2:

Domain Definition
General “trustworthy and reliable” [Oxf07]

Embedded Systems “the ability to avoid service failures that are more frequent and
more severe than is acceptable. It encompasses the following at-
tributes: availability, reliability, safety, integrity and maintainabil-
ity” [ALRL04]
“A system is dependable when it can be depended on to produce
the consequences for which it was designed, and no adverse effects,
in its intended environment” [JTM07]

Table A.2: Dependability property definitions.

Description: The development of a dependable embedded-system that must
provide a given service despite the occurrence of faults, requires the distribution
of functions to achieve fault containment, error containment, fault tolerance
and fault prevention [Kop97]. From a safety-critical embedded systems point
of view, dependability involves and requires:

Dependability properties: Dependability encompasses the following prop-
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erties [ALRL04].

• Availability is the “readiness for correct service” [ALRL04] that is
usually expressed as “the probability that a system will be able to
execute a function accurately at any given time” [dic00].
• Reliability is “the characteristic of an item or system expressed by

the probability that it will perform a required mission under stated
conditions for a stated mission time” [dic00].
• Safety is the “freedom from unacceptable risk” [iec98] an it is ex-

pressed as the probability that no critical failure will occur in a given
interval of time [0, t).
• Integrity is the “absence of improper system alterations”

[ALRL04].
• Maintainability is the “ability to undergo modifications and re-

pairs” [ALRL04] and alternatively “the ease with which a software
system or component can be modified to correct faults, improve per-
formance or other attributes, or adapt to a changed environment”
[dic00, dic91].
• Security is “a composite of the attributes of confidentiality, in-

tegrity, and availability” [ALRL04] that ensures “the protection of
computer resources (e.g., hardware, software and data) from acci-
dental or malicious access, use, modification, destruction or disclo-
sure" [dic00].

Threats to dependability: According to Avizienis [ALRL04], the threats to
dependability are failures, errors and faults. The error propagation fol-
lows a sequential propagation chain where faults can trigger errors, errors
can trigger failures, failures can also trigger faults and so on.

• Fault is “the adjudged or hypothesized cause of an error” [ALRL04]
which from the IEC-61508 point of view is defined as the “abnormal
condition that may cause a reduction in, or loss of, the capability of
a functional unit to perform a required function” [iec98].
• Error is the “the part of the total state of the system that may

lead to its subsequent service failure” [ALRL04] which from the
IEC-61508 point of view is defined as the “discrepancy between a
computed, observed or measured value or condition and the true,
specified or theoretically correct value or condition” [dic00, iec98].
• Failure is “an event that occurs when the delivered service deviates

from correct service” [ALRL04] which from the IEC-61508 point of
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view is defined as the “termination of the ability of a functional unit
to perform the required function” [dic00, iec98].

Certification: Safety-critical embedded systems are often subject to certifi-
cation, a formal assurance that the system has met technical standards
to ensure the safety operation of the system. However, current “certifica-
tion of the dependability of a software-based system usually relies more
on assessments of the process used to develop the system than on the
properties of the system itself” [JTM07].

The international standard IEC-61508 is the basic functional safety stan-
dard for many industry and transportation domains and it is supported
by the DECOS architecture [SAS+07]. The standard covers the complete
safety life cycle, covering both SW and HW aspects, and it has been the
baseline or reference to develop sector specific standards such as: railway
EN-5102X [en501, en503], vertical transportation (lift) EN-81-1/prA1
[en804], automotive ISO-WD-26262, process industry sector (e.g., oil in-
dustry) IEC-61511 [std04], machinery sector IEC-62061 [std05], nuclear
plants IEC-61513 [std01], medical IEC-60601 [iec], etc.

Dependability as a property of the complete system: Dependability is
not a local property of modules or subsystems (e.g., software module) but
must be articulated and evaluated from a systems perspective that takes
into account the usage context. In addition to this, the consequences and
intended environment must be stated explicitly with a clear priorization
of the system requirements and environmental assumptions [JTM07].

Dependability and complexity are strongly linked where “one key to
achieving dependability at reasonable cost is a serious and sustained com-
mitment to simplicity, including simplicity of critical functions and sim-
plicity in system interactions” [JTM07]. In addition to safety, “the link
between complexity and security is a well-accepted fact in system security
engineering” [LT07] based on the security design principles outlined by
Schroeder and Saltzer [SS75]. The principle of psychological acceptabil-
ity states that the introduction of a security mechanism should not make
the system more complex than it is without it. The principle of economy
of mechanisms recommends that system security mechanisms should be
kept as simple as possible [LT07].

The three Es: A recent report by the ’National Academy of Sciences’ of
software dependability stated that in order to develop dependable sys-
tems cost effectively three key points, the three Es, must be considered
[JTM07]:
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Explicit claims: “No system can be dependable in all respects and un-
der all conditions. So to be useful, a claim of dependability must be
explicit.” [JTM07]

Evidence: Dependability claims require concrete evidences that sub-
stantiates the dependability claim, which will take the form of a
’dependability case’.

Expertise: in dependable embedded systems and the application do-
main under consideration is required to achieve dependable systems.

A.3 Composability

The nouns composability and composition derive from the Latin word com-
ponere that means to “put together” [Oxf07] and are generally defined as:

• Composition: “The act of combining parts or elements to form a whole”
[Web89, KS03, Kop04, SKMVM04] and “the action of putting things
together; formation or construction” [Oxf07].

• Composability: “The ease of forming a whole by combining parts”
[Web89, KS03, Kop04, SKMVM04, Rum06].

Definition: There are multiple computer-science domain specific definitions
for the terms composition and composability, as listed in the following table,
from which the definition made by Kopetz [Kop97] has been used in this thesis.

Domain Definition

Embedded Systems

“Composability: Ability to link subsystems so that properties es-
tablished at subsystem levels hold at the system level” [Szt00, SS01]
“An architecture is said to be composable with respect to a specified
property if the system integration will not invalidate this property,
once the property has been established at the subsystem level. Ex-
amples of such properties are timeliness or testability. In a compos-
able architecture, the system properties follow from the subsystem
properties” [Kop97]

Software and OOP “Composability is a property of a software component meaning that
it may easily and systematically be combined with other compo-
nents” [Bar02]
“Composability allows for the modular specification of modules
with multiple independent concerns” [Ber96, WRMS03]

continued on the next page
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(continued)

Domain Definition

Modelling “Composability is the capability to select and assemble simulation
components in various combinations into valid simulation systems
to satisfy specific user requirements” [PW03a]
“Model composability is concerned with techniques for developing
a whole model of a system from the models of its sub-systems.”
[HD05]

Table A.3: Domain specific definitions for composition
and composability.

Description: From a safety-critical embedded systems point of view, com-
posability involves the following considerations:

Composability is a boolean property: Composability requires that sys-
tem integration will not invalidate properties once the properties have
been established at subsystem level. Therefore composability is a boolean
property, an item is either composable (does not invalidate properties) or
not composable (invalidates properties) [Kop04].

It requires defining which attribute and under which conditions:
Composability always refers to a given attribute and set of conditions /
scenarios. Therefore, the definition of what composability is an attribute
of and under which conditions / scenarios (if any) is required.

Composability and interoperability are not the same: The adjective
interoperable is defined as “able to operate in conjunction” [Oxf07] and
the adjective compatible as “able to exist or be used together without
problems or conflict” [Oxf07]. Functional composability goes beyond
functional interoperability / compatibility, which are necessary but not
sufficient to ensure that properties are not invalidated during integration.

Functional composability (syntactic and semantic): Functional com-
posability is the capability to select, combine and assemble components.
Two functional composability types are distinguished: syntactic com-
posability determines whether the components be connected [ST07]
while semantic composability is a question of whether the composed
components can be meaningfully composed [PW03b].
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Safety composability: “So, is safety... composable per se?” [Sur06]. Safety
might be a composable property if required architectural and certifica-
tion safety constraints are met. For example, as shown in Figure A.1,
the IEC-61508-2 [IEC00] describes the composition rules of given serial
and parallel subsystems to produce aggregate systems of known Safety
Integrity Level (SIL).

SIL1 SIL2 SIL1 SIL1=>

(a) serial

SIL2

SIL2

SIL3=>

(b) parallel
Figure A.1: IEC-61508 safety composition for serial and parallel channels.

Architectural composability: An architecture that supports composability
(e.g., time domain) ensures that services established at the component
level will also function properly at the system level and that the in-
tegration of the components proceeds without unintended side effects
[KS03]. For an architecture to be composable (functional and time do-
main) Kopetz has specified that it must comply with the following four
principles with respect to the RS interfaces [Kop00a, KS03, Kop04]: in-
dependent development of components, stability of prior services, con-
structive integration of components and replica determinism behaviour.

Composability requirements: Different types of embedded systems require
different composability requirements as shown in Table A.4.

Type Composability of properties
Functional Distributed Time

Domain
Value
Domain

Safety

Generic Yes Optional - - -
Real-Time Yes Optional Yes - -
Safety Critical Yes Yes Yes Yes Yes

Table A.4: Composability requirements for embedded systems.

Algebraic notation

Composition can also be algebraically represented. First, composition of
generic services is algebraically represented and then this is applied to rep-
resent the composition of jobs and DASes [wwwc, KOPS04].
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Composition of Services: It is possible to define the composition scheme
(⊕) of services (S) as a function where the dimension (D) corresponds to
the number of properties / attributes that are composable (e.g., time).

⊕ : SD ⊕ SD → SD (A.1)

Basic Service: Each service is defined by a Linking Interface (LIF) that de-
fines the service behaviour in all composable dimensions D (e.g., time
and value domain) and which must meet a set of architectural constraints
({Ac}). The definition of the LIF is required by the first composability
principle, independent development of components, while the architec-
tural constraints define the constraints required to meet the third prin-
ciple, constructive integration. Each single service is the composition of
the main intended service (Si,0) plus additional sigma potential additional
emerging services (δi,j).

LIFD
i ∈ {Ac} ⇒ Si

Si = Si,0 ⊕
j=∞∑
j=0

δSi,j
= Si,0 ⊕ δSi,0 ⊕ δSi,1 ⊕ δSi,2 ⊕ ...

(A.2)

Composition of services: The composition of N services is defined as fol-
lows and meets the second principle, stability of prior services, where the
composition of services does not change previous single services but could
bring new emerging services [SKMVM04].

{S}N =
i=N∑
i=1

Si = S0 ⊕ S1 ⊕ ...⊕ SN−1

{S}N =
i=N∑
i=1

Si =
i=N∑
i=1

Si,0 ⊕ j=∞∑
j=0

δSi,j

⇒ {S}N ≥ i=N∑
i=1

(Si,0)
(A.3)

In a similar way, the composition of services is a composition of LIF that
must meet a set of architectural constraints:

{S}N =
i=N∑
i=1

Si =
(
i=N∑
i=1

(
LIFD

i

))
∈ {Ac} →

{
LIFD

}
N
∈ {Ac} (A.4)

Composition of properties: By definition, composability is an attribute of
a set of properties ({P}D) where the composition of services does not
invalidate the properties of single services. So, every service (Si) has a
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set of properties that are not invalidated by the composition operator as
long as services meet the architectural constraints.

Si → {p}i

{S}N =
i=N∑
i=1
{p}i = {p1}D ⊕ {p2}D ⊕ ...⊕ {pN}D = {{p}D}N

(A.5)

Composition of DAS and jobs: Following the given algebraic representa-
tion a job (j) is a basic service, DAS is a composition of jobs and system
application is a composition of DASes:

ji = ji,0 ⊕
j=∞∑
j=0

δj = ji,0 ⊕ ji,1 ⊕ ...

DAS = {j}N =
i=N∑
i=1

ji = j0 ⊕ j1 ⊕ ...⊕ jN−1

app = {DAS}M =
j=M∑
i=0

DASi

(A.6)

A.4 Predictability

The verb to predict derives from the Latin word praedict that means to “made
known beforehand, declared” [Oxf07] and it is generally defined as to “say
or estimate that (a specified thing) will happen in the future or will be a
consequence of something” [Oxf07].

Definition: There are multiple definitions for the noun predictability, some
of them domain specific, as listed in the following table:

Domain Definition
Software “... the ability of the software firm to accurately estimate the needed

resources, time, performance, quality and functionality of its soft-
ware projects” [AFC03]

Scheduling Alg. “A scheduling algorithm is predictable if and only if for any set of
jobs the finish time for the actual execution time is no later than
the finish time for the maximum execution time” [RL94, XSH+06]

MBD “Predictability in the component-based development approach is
the ability to reason about application behaviour from the qual-
ity attributes of the components and the components interconnec-
tions.” [Lar04]

continued on the next page130
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(continued)

Domain Definition
RT Embedded “One of the most important properties that a hard real-time sys-

tem should have is predictability [SR90]. That is, based on the
kernel features and on the information associated with each task,
the system should be able to predict the evolution of the tasks
and guarantee in advance that all critical timing constraints will be
met” [But04]

Table A.5: Domain specific definitions for predictable
and predictability.

Description: From a safety-critical embedded-systems point of view, pre-
dictability involves the following considerations:

Predictability is quantifiable To predict is defined as “say or estimate that
(a specified thing) will happen in the future or will be a consequence
of something” [Oxf07] and predictability refers to the degree that an
output or attribute meets the expected value. This degree is quantifiable
and can be expressed quantitatively (e.g., there is 80% probability) and
qualitatively (e.g., this solution provides more predictability).

Definition of what and under which conditions The definition of which
attribute is predictable and under which conditions and scenarios (if any)
is required. For example an architecture might have multiple attributes,
and therefore which one is the predictable attribute and under which
conditions has to be defined, e.g., time predictability under a single fault-
hypothesis.

Predictability, entropy and determinism Predictability is a quantifiable
property, where null predictability is entropy and full predictability with
no stochastic argument is determinism.

Predictable and potentially predictable Predictable attributes that are
not feasible to predict due to resource limitations such as computational
effort and time could be called potentially predictable. For example, “For
the calculation of the Worst-Case Execution Time of a program, the ideal
thing would be to measure (or simulate) all the possible execution paths.
This is generally not affordable because it would be very expensive in
time.” [RS03]. So, even though the WCET calculation is predictable, in
reality it might just be potentially predictable due to resource limitations.
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Time predictability is required for safety-critical embedded systems in or-
der to ensure that timing constraints are met [XP90, HLTW03, ZLL04,
WT06]. Therefore, the timing behaviour of real-time tasks is usually as-
sessed based on WCET analysis [WKPR05]. In static real-time systems
“if the prediction is that 100% of all tasks over the entire life of the system
will meet their deadlines, then the system is predictable without resort-
ing to any stochastic evaluation. In dynamic real-time systems we must
resort to stochastic evaluation for part of the performance evaluation”
[SR90].

Threats to time domain predictability Threats to time predictability of
embedded systems can be found for example in the processor architec-
ture, software, network, operating system and scheduling dependencies
on several levels [TW04, ZLL04, WT06]

Processor architecture Processor architectures are usually optimized
for average-case performance and not for predictable performance
[HLTW03, ZLL04, WKPR05, WT06]. Modern microprocessors are
composed of thousands of millions of transistors that interact among
them and define functional blocks such as execution pipelines, mem-
ory caches, execution units, etc. that aim to improve average per-
formance but which are not designed to be predictable in the time
domain.
For example caches add unpredictability to the execution timing
analysis because “the timing behaviour of an individual instruction
cannot be determined locally, but depends on the execution his-
tory” [TW04] and this can increase the variability of execution times
[But04, WT06]. The addition of multiple hardware mechanisms in
order to improve the average performance of modern processors has
not only made them non time deterministic, but they can also be
considered to be chaotic [BGPT06]. This unpredictability of the in-
ternal microprocessor state has even also been used to define pseu-
dorandom number generators for cryptographic purposes [SS03].

Software Due to limited human cognitive capabilities, “nontrivial soft-
ware written with threads, semaphores and mutexes is incompre-
hensible to humans” [Lee06]. In general, it is difficult or even im-
possible to analyze and validate the schedulability of real-time sys-
tems, ensuring timeliness of real time systems, due to the various
forms of dependencies among tasks such as shared resources, pri-
ority inversion and multiple kinds of conflicts and rare event situ-
ations [ZLL04, Lee06]. In addition to this, even the programming
language might be a source of unpredictability due to the lack of sup-
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port in the definition of explicit time constraints on task execution
(e.g., Ada, C), non-deterministic constructs (e.g., select statement
in Ada), etc. [But04]

Real-Time Operating Systems (RTOS) must provide multiple
functionalities and manage multiple resources that can be sources
of unpredictability in the real-time system: thread scheduling and
synchronization, concurrency control protocol for accessing shared
resources, kernel preemptability, timer resolution, network protocol
stack, etc. [But04, ZLL04]. The use of virtual resources such as
virtual memory paging makes timing analysis even more difficult
[PH07].

Scheduling on several levels Distributed safety-critical applications
have static and / or dynamic scheduling on several levels that might
lead to unpredictable behaviour [TW04] at a system level. Example
scheduling levels are:
• System application level: local vs. distributed task scheduling

of computation and communication
• Node application level: task scheduling, multi-threading

scheduling and share resources scheduling
• Microprocessor level: static vs. dynamic instruction scheduling

In order to provide time predictability in a complex hard real-
time embedded system, major task (timing) characteristics must
be known or bounded in advance because otherwise it would be im-
possible to guarantee a priori that all timing constraints are met
[XP93].

Threats to value domain predictability Almost every microproces-
sor as well as many programming languages from C to Java have
specified the floating-point arithmetic to be IEEE-754 [iee85] com-
pliant [Sch03]. However, IEEE-754 standardizes a few basic oper-
ations, and functions such as trigonometric sine are not specified
by this standard. Therefore, the results obtained by executing the
same mathematical application code in different targets depend on
the combination of the microprocessor, compiler, libraries and run-
time environment. These discrepancies, also known as the ’consis-
tent comparison problem’ [BBKL89], might not be negligible and
could even have noticeable consequences: they could lead to value
domain unpredictability [Par01, Mon07].

Threats to functional predictability System updates and system
upgrades are two important sources of behaviour unpredictability
(time and value domain) because “Even small changes can result
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in unexpected and difficult to resolve failures. Eventually, these
changes exceed the capacity of the system” [FLV00]. It is difficult
to ensure that behavioural constraints defined in the specification
and design are guaranteed in the execution platform [FLV00] and
this requires sound methods and tools to derive reliable and precise
run-time guarantees [TW04]. Testing provides a limited guarantee
only [Car], because the testing notion of predictability relies on the
premise that if we observe enough past executions we can predict
future behaviour and this is not a sound method.

Layer by layer predictability It has been stated that in order to ensure
predictability, the complete system development must be predictable
from the model to the system architecture, language, operating sys-
tem, etc. That means that a layer by layer predictability is required
[SR90, CVH93, TW04].

A.5 Determinism

The noun determinism derives from the Latin word determinare, which means
to “limit, fix” [Oxf07] and it is generally defined as “Pertaining to a process,
model or variable whose outcome, result, or value does not depend on chance.
Contrast: stochastic” [dic91, dic00].

Definition: There are other multiple definitions for the adjective determin-
istic, some of them domain specific, as listed in Table A.6.

Domain Definition
Mathematics “Stochastic is often used as counterpart of the word deterministic,

which means that random phenomena are not involved. Therefore,
stochastic models are based on random trials, while deterministic
models always produce the same output for a given starting condi-
tion.” [mat07]

Replica Determinism “A set of node is replicate determinate, if all the nodes in this set
contain the same externally visible h-state at their ground state,
and produce the same output messages at points in time that are
at most an interval of time units apart” [Kop97]
“... fault-free replicated components are required to exhibit replica
determinism i.e., they have to deliver identical outputs in an iden-
tical order within a specified time interval” [PBWB00]

continued on the next page
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(continued)

Domain Definition
Model “A model behaves deterministically if and only if, given a full set

of initial conditions (the initial state) at time T0, and a sequence
of future inputs, the outputs at any future instant T are entailed”
[Kop07] in the context of sparse time base.

Software “If a software component is called twice with the same input values
at the same time instants, it should both times produce the same
output values at the same time instants.” [PT05]

Communication “Two correctly operating independent deterministic communication
channels will deliver messages always in the same order.” [Kop06]

System “the outputs of the system should be uniquely determined by its
inputs and possibly by their timing” [Ber00]

Table A.6: Domain specific definitions for determinism
and deterministic.

Description: All in all, determinism means that for a given set of relevant
conditions a given item (e.g., property, output, etc.) is completely predictable
and does not depend on randomness or stochastic statements. This implies
that an output (o) is deterministic for a given set of relevant conditions (c), if
given the same set of initial conditions then the system (s) always generates
the same outputs at the same sparse-time (t) when given the same inputs (i)
at the same sparse-time (ts), as shown in Equation A.7. The definition and
description of sparse-time concept can be found in [Kop97].

∀i, o, o′ ∈ c (< s, i, tsi >→< o, tso > ∧ < s, i, tsi >→< o′, tso′ >)
⇒ (o = o′; tso = tso′)

(A.7)

The determinism concept involves the following considerations:

Determinism is a boolean property: an item is either deterministic or not
because the algebraic Equation A.7 must be met for all inputs and outputs
under the given set of conditions.

Requires defining what and under which conditions: The terms deter-
minism and deterministic require the definition of ‘what’ attribute and
under ‘which’ conditions: ‘what’ is deterministic for ‘which’ conditions.

No randomness involved: Determinism by definition should not rely on
random or stochastic arguments, thus references to stochastic arguments
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should be avoided. In addition to this, the proof of determinism of a given
attribute should not be based on non-exhaustive scenario verification and
simulation because they could miss rare events [CSEF06].

Stochastic attributes cannot be deterministic (e.g., dependability):
Determinism property should not be applied to items that are intrinsi-
cally stochastic. As an example dependability cannot be deterministic
because dependability is interpreted in a probabilistic sense: “The extent
to which a system possesses the attributes of dependability should be
interpreted in a relative, probabilistic sense, and not in an absolute,
deterministic sense: due to the unavoidable presence or occurrence
of faults, systems are never totally available, reliable, safe, or secure”
[ALR00]. However, dependability can be quantified by deterministic or
probabilistic measures [Nel90].

Determinism and predictability are not the same: Determinism is a
boolean property while predictability is quantifiable, null predictability
is entropy and full predictability with no stochastic argument is deter-
minism. In addition to this, deterministic rules and models imply that
the outcome is fully predictable, yet the computational effort required
to predict the outcome might sometimes limit the real feasibility (poten-
tially predictable): “We cannot determine the behaviour of the system
not because we cannot ‘know how it works’, but because its complexity
exceeds our computing or perceptual capabilities” [Ger02].

Determinism and composability: The development of embedded systems
based on composable architectures (e.g., TTA [Kop00a]) benefits from
the capability to reason about the properties of the composed system
based on the architectural composable properties and not in the specific
implementation and integration of components [Kop04, PC07a]. If an ar-
chitecture is not composable for a given property (e.g., time) it cannot be
deterministic for that property, because the lack of composability means
that it is not possible to predict the properties of all possible compo-
sitions without stochastic arguments. Architectural instances (systems)
will not inherit property determinism from the architecture but specific
instances could be designed and proved to be deterministic based on a
costly implementation specific analysis.

Determinism and simultaneity: Determinism in the time domain must
deal with the simultaneity of events that must be established consis-
tently within the distributed embedded system. The sparse time model
is required to handle simultaneity in the absence of agreement protocol,
because “it is principally impossible to always arrive at a system-wide
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consistent notion of simultaneity in a distributed system that allows the
occurrence of physically distributed events at any instant of the dense
timeline” [Kop07].

Abstraction Level, building determinism from non-determinism
Multiple safety-critical embedded systems are defined as deterministic in
the value and time domain under a single fault hypothesis. Determinism
in the time and value domain is a system property required by safety-
critical embedded systems, which implicitly requires every safety-critical
sub-system to be also deterministic in both domains. However, at a
lower abstraction level systems are made of components that are not
deterministic under a single fault hypothesis (e.g., single communication
bus) but at the system abstraction level the non-determinism of the
single fault hypothesis is masked (e.g., redundant communication
bus). Thus, under some circumstances determinism can be built from
non-determinism.

A.6 Abstraction

The noun abstraction derives from the Latin verb abstrahere that means to
“draw away” [Oxf07] and it is generally defined as “ the process of considering
something independently of its associations or attributes” [Oxf07].

Definition: There are multiple computer-science domain specific definitions
for the term abstraction as listed in the following Table A.7:

Domain Definition
Embedded System “a view of an object that focuses on the information relevant to a

particular purpose and ignores the remainder of the information”
[dic91]

Model “ Abstraction is the activity that tries to remove (or hide) irrele-
vant information, which improves the comprehensibility of existing
design models and facilitates the evaluation of different design so-
lutions.” [HVF+05]

Table A.7: Domain specific definitions for abstraction.

Description: Raising the level of abstraction is key towards the development
of small and large dependable embedded systems due to our limited cognitive
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capabilities for understanding the overall system [Kop03, SLMR05]. From an
embedded systems development point of view abstraction involves and requires
the following:

Safety-critical embedded systems: For safety-critical embedded systems
‘the information relevant to a particular purpose’ is dependability, func-
tional composability and determinism in the value and time domain prop-
erties. So, abstraction in this domain is achieved by ‘ignoring the remain-
der of the information’.

Abstraction and models: Models provide a “higher abstraction level than
code, thus, they are less connected to their target platforms” [SLMR05].
Therefore, the specification and design of embedded systems with suitable
models that do not deal with software and hardware details (e.g., software
classes) but with dependability and time and value domain correctness
would provide a higher abstraction level.

Current abstraction limitations: Even though the hardware industry has
kept pace with Moore’s law during last 25 years, software development
and programming languages seem not to have changed at this pace. In
fact, embedded software engineers use the same programming languages
as 20-30 years ago (e.g., C, Ada and ASM). C is the most widely used
programming language that even though it was designed in the early
1970s when most applications ran on a single processor with few resources
(e.g., memory), nowadays it is widely used to program distributed safety-
critical multi-processor systems. In addition to this, “programming lan-
guage semantics do not handle time, so developers can only specify timing
requirements indirectly” [Lee05]. This is also the case for UML model-
ing language which right now does not specify the time domain with the
required rigour [Kop00b].

A.7 Consistency

The noun consistency derives from the Latin word consistentia that means to
“standing firm or still, existing” [Oxf07] and the adjective consistent is generally
defined as “acting or done in the same way over time, especially so as to be fair
or accurate; not containing any logical contradictions” [Oxf07].

Definition: There are other multiple definitions for the adjective consistent
and noun consistency, some of them domain specific, as described in Table
A.8. The term consistency used within this thesis will refer to the definition
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made by Besana [BB03] and will usually be used in the context of safety-
critical embedded systems development.

Domain Definition
Embedded System “Consistency is the property of maintaining the same behaviour

at different levels of abstraction through synthesis and refinement,
leading to functionally correct implementation.” [BB03]

Table A.8: Domain specific definitions for consistent and
consistency.

Description: The consistency concept involves and requires the following
considerations from a safety-critical embedded systems development point of
view:

Consistency is a boolean property: an item is either consistent or not be-
cause properties and constraints of interest are either preserved or not
preserved.

Requires defining what and under which conditions: The terms con-
sistent and consistency require the definition of ‘what’ properties / con-
straints and under ‘which’ conditions: ‘what’ is consistent for ‘which’
conditions / scenarios.

Consistency and composability: Composability, ensuring that system in-
tegration will not invalidate the properties of subsystems, can be seen as
the mechanism required to ensure development consistency. That means,
development consistency requires development composability of selected
properties and constraints for a given development process. In addition to
this, consistency is also required to develop composable systems in which
selected properties and constraints are preserved. Thus, both consistency
and composable are bidirectionally linked.

Consistency and determinism: Determinism, predictability with no
stochastic argument, can be seen as the basic property of any given
development process that must ensure consistency because it must
be able to always predict that selected properties and constraints are
preserved throughout the development process if certain rules are met.
In addition to this, consistency is also required to develop deterministic
systems in which selected properties and constraints are preserved.
Thus, both consistency and determinism are bidirectionally linked.
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Consistency and dependability: The development of safety-critical em-
bedded systems requires the highest levels of dependability, in which
testing alone will rarely suffice and will have to be augmented by anal-
ysis. This analysis, involves a rigorous process which will be needed to
ensure that the chain of evidence for dependability claims is preserved
[JTM07]. Thus, consistency of the development process ensuring that
selected properties and constraints are preserved during the development
is key towards the development of cost-effective highly dependable em-
bedded systems.
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List of Acronyms

Ada Ada programming language

ADC Analog Digital Converter

AI Artificial Intelligence

AMS Analog Mixed Signal

ASM Assembly Language

ATP Automatic Train Protection

AUTOSAR AUTomotive Open System Architecture

BTM Balise Transmission Module

C C Programming Language

C++ C++ Programming Language

CC Communication Controller

CCSL Clocked Constraint Specification Language

CNI Communication Network Interface

COTS Commercial-Off-The-Self

CP Configuration and Planning

CPU Central Processing Unit

CT Continuous Time
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DAS Distributed Application Subsystem

DECOS Dependable Embedded Components and Systems

DM Diagnostic and Maintenance

DMI Driver Machine Interface

DT Discrete Time

ECU Electronic Control Unit

E/E Electrics / Electronics

ERTMS European Rail Traffic Management System

ETCS European Train Control System

EVC European Vital Computer

E-TTM Executable Time-Triggered Model

FMEA Failure Mode and Effect Analysis

GNU GNU’s Not Unix!

FSM Finite State Machine

HDL Hardware Description Language

HetSC Heterogeneous Specifications in SystemC

HMI Human Machine Interface

HW Hardware

IEC International Electrotechnical Commission

IEC-61131 IEC standard for PLCs

IEC-61508 IEC standard for “Functional safety of electrical / electronic /
programmable electronic safety-related systems (E/E/PES)”

IEC-61499 IEC open standard for distributed control and automation

IEC-61588 IEC precision clock synchronization protocol for networked
measurement and control systems

IEEE Institute of Electrical and Electronics Engineers
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IEEE-1588 IEEE precision clock synchronization protocol for networked
measurement and control systems

IEEE-1666 IEEE Standard SystemC Language Reference Manual

IEEE-754 IEEE Standard for Binary Floating-Point Arithmetic

IETF Internet Engineering Task Force

I/F Interface

IGCT Integrated Gate Commutated Thyristor

INRIA Institut National de Recherche en Informatique et en Automatique

IP Intellectual Property

ISBN International Standard Book Number

ISO International Organization for Standardization

GPS Global Positioning System

GSM/R Global System for Mobile Communications - Railway

JRU Juridical Recorder Unit

KB Kilobyte

LET Logical Execution Time

LIF Linking Interface

LOC Lines Of Code

LRMB Layered Reference Model of the Brain

LTM Loop Transmission Module

MARTE Modeling and Analysis of Real-Time Embedded Systems

Matlab Matrix Laboratory; Numerical computing environment and
programming language created by Mathworks

MEDL Message Descriptor List

MDA Model Driven Architecture

MBD Model-Based Design
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mmE-TTM E-TTM meta-model

MoC Model of Computation

MVB Multifunction Vehicle Bus

N/A Not Applicable

NID Namespace Identifier

NoC Network-on-Chip

NSS Namespace Specific String

NTP Network Time Protocol

ODS Object Data Store

OMG Object Management Group

OO Object-Oriented

OOP Object-Oriented Programming

PFSM Periodic Finite State Machine

PIM Platform Independent Model

PLC Programmable Logic Controllers

PSM Platform Specific Model

PTP Precision Time Protocol, see IEEE-1588

QoS Quality of Service

RN Resource Name

RS Real-Time Service

RT Real-Time

RTE Run Time Environment

RTES Real-Time Embedded System

RTOS Real-Time Operating Systems

SCADE Safety Critical Application Development Environment
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SCES Safety-Critical Embedded-Systems

SDF Synchronous Data Flow

SDL System Description Language

SFI Simulated Fault Injection

SI International System of Units

SIL Safety Integrity Level

SLDL System-Level Design Language

SW Software

SysML Systems Modelling Language

SystemC SystemC SDL / SLDL

SystemC-AMS SystemC - Analog Mixed Signal

TAI International Atomic Time

TCP/IP Transmission Control Protocol (TCP) / Internet Protocol (IP)

TDL Timing Definition Language

TIMMO Timing Model

TIU Train Interface Unit

TLM Transaction-Level Model

TMO Time-triggered Message-triggered Object

TMR Triple Modular Redundancy

TT Time-Triggered

TTA Time-Triggered Architecture

TTE Time-Triggered Ethernet

TTNoC Time-Triggered Network-on-Chip

TTP Time-Triggered Protocol

TTP/A TTP Class A
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TTP/C TTP Class C

TTTech Time-Triggered Technologies

UI User Interface

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UTC Coordinated Universal Time

UTF Uniform Time Format

VHDL VHSIC HDL

VHSIC Very-High-Speed Integrated Circuits

Verilog Verilog is an HDL

VFB Virtual Functional Bus

V/F Voltage / Frequency

WCCOM Worst-Case Communication delay

WCET Worst-Case Execution Time

Winsock Windows Sockets API

WS Web Service

WSDL Web Service Description Language

xfE-TTM E-TTM execution framework
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