
D I P L O M A R B E I T

Complexity results and algorithms for
Multicut on graphs of bounded

clique-width

Ausgeführt am

Institut für Informationssysteme,

Abteilung für Datenbanken und Artificial Intelligence,

der Technischen Universität Wien

unter der Anleitung von

Prof. Dr. Reinhard Pichler
und

Univ.Ass. Dipl.-Ing. Stefan Rümmele

durch

Martin Lackner

1020 Wien

9. September 2010

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

D E C L A R AT I O N

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe,
dass ich die verwendeten Quellen und Hilfsmittel vollständig angege-
ben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen,
Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.”

Wien, September 2010

Martin Lackner

C O M P L E X I T Y R E S U LT S A N D A L G O R I T H M S F O R
M U LT I C U T O N G R A P H S O F B O U N D E D

C L I Q U E - W I D T H

martin lackner

lackner@dbai.tuwien.ac.at

To Dr. Johann Wruß,
who introduced me to the beauty of mathematics

and showed me that mathematics is a truly creative activity

A B S T R A C T

Multicut is an extensively studied problem in the area of algorithms
on graphs. It plays an important role in different fields such as circuit
design or network theory. A Multicut problem is given by a graph G
and the so-called terminal set which contains pairs of vertices. The aim
is to find a minimal cut that separates all terminal pairs. However, even
on simple graphs such as trees, Multicut is NP-complete.

Often it is not just the size of the input that makes a problem compu-
tationally hard, but certain properties of the input. These properties are
used as parameters for a more detailed analysis of hard problems. Such
a parameterized complexity analysis sometimes leads to fixed parameter
tractable (FPT) algorithms, which are especially efficient when a certain
parameter is small. A number of recent results have found tractable
fragments of Multicut. Especially tree-width has proven to be a useful
parameter. However there is a clear drawback of FPT algorithms via
tree-width: the graph has to be sparse.

The goal of this thesis is to systematically study Multicut on graphs
of bounded clique-width. Clique-width is a graph complexity measure
similar to tree-width, but it can be small for both sparse and dense
graphs. We present an efficient, fixed-parameter tractable algorithm
with the size of the terminal set and the clique-width of G as parameter.
Furthermore an extensive complexity analysis of Multicut on graphs of
bounded clique-width establishes boundaries of this approach.

We also present an extension of a metatheorem about graphs of
bounded clique-width by Courcelle et al. Our extension is applicable
to arbitrary structures where the clique-width of their incidence graphs
is bounded. Finally we prove that a class of graphs has bounded tree-
width if and only if their incidence graphs have bounded clique-width.

5

Z U S A M M E N FA S S U N G

Multicut ist ein viel untersuchtes Problem aus dem Gebiet der Algorith-
men auf Graphen. Es hat große Bedeutung in verschiedensten Gebieten,
wie zum Beispiel beim Schaltungsentwurf oder in der Netzwerktheorie.
Ein Multicut-Problem ist durch einen Graphen G und die so genann-
te Terminalmenge gegeben, die Paare von Knoten enthält. Das Ziel
des Multicut-Problems ist es, alle Knotenpaare in der Terminalmenge
durch Schnitte im Graphen zu trennen. Dies ist ein Problem mit hoher
Rechenkomplexität, da Multicut schon auf Bäumen NP-vollständig ist.

In vielen Fällen ist es nicht nur die Größe der Eingabe, die ein Pro-
blem rechnerisch komplex macht, sondern spezielle Eigenschaften der
Eingabe. Diese Eigenschaften der Eingabe werden als Parameter für eine
detailliertere Untersuchung von Problemen mit hoher Rechenkomple-
xität verwendet. Solch eine parametrisierte Komplexitätsanalyse führt
manchmal zu parametrisierbaren Algorithmen (kurz: FPT-Algorithmen),
die besonders effizient sind, wenn bestimmte Parameter klein sind. In
mehreren Publikation wurden bereits FPT-Algorithmen für Multicut
gefunden. Hierbei hat sich die Baumweite als besonders geeigneter
Parameter herausgestellt. Allerdings haben auf Baumweite basieren-
de FPT-Algorithmen einen klaren Nachteil: Sie funktionieren nur für
Graphen mit wenigen Kanten.

Das Ziel dieser Arbeit ist es, für Multicut eine systematische Unter-
suchung in Bezug auf Graphen mit beschränkter Cliquenweite durch-
zuführen. Cliquenweite ist ein Komplexitätsmaß für Graphen ähnlich
zur Baumweite mit dem bedeutenden Unterschied, dass sie auch klein
für dichte Graphen sein kann. In dieser Arbeit präsentieren wir einen
effizienten FPT-Algorithmus mit der Kardinalität der Terminalmenge
und der Cliquenweite von G als Parameter. Darüber hinaus zeigen wir
mit einer umfangreichen Komplexitätsanalyse Grenzen dieses Ansatzes
auf.

Wir präsentieren auch eine Erweiterung des Cliquenweite-Meta-
theorems von Courcelle et al. über Graphen mit beschränkter Cliquen-
weite. Abschließend beweisen wir noch, dass eine Klasse von Graphen
genau dann beschränkte Baumweite hat, wenn ihre Inzidenzgraphen
beschränkte Cliquenweite haben.

6

A C K N O W L E D G M E N T S

First and foremost I want to thank my advisors Reinhard Pichler, Stefan
Rümmele and Stefan Woltran. I am deeply grateful for their help,
guidance and inspiration. I especially want to thank them for their
countless ideas how to improve the content and presentation of this
thesis. It is certainly due to them that I really enjoyed working on this
thesis.

I owe my deepest gratitude to my parents. Their support in the last five
years gave me the possibility to focus on my studies and concentrate
on pursueing my goals.

To Mimi Bruner a big "Tack!" for helping me improve this thesis, con-
vincing me to really write the story "Ganz ohne Orakel" and for 62

other fundamentals.

I am indebted to Dr. Roswitha Wruß and Dr. Johann Wruß. Their
spontaneous and devoted support significantly improved this thesis.

I especially want to thank Andreas Pfandler for helping me with the
dark LATEX arts in many ways.

Finally I would like to thank the following people for proof-reading
the story "Ganz ohne Orakel" and supporting me in my decision to
publish it: Johann Lackner, Peter Lackner, Robert Luh and Peter Regner.

This work was supported by the Austrian Science Fund (FWF), project
P20704-N18.

7

C O N T E N T S

1 Introduction 9

1.1 Summary of the results 10

1.2 Organization 12

2 Preliminaries 13

2.1 Basic definitions 13

2.2 Multicut problems 16

2.3 Graph decompositions 19

2.4 Parameterized complexity theory 24

3 Complexity results 30

3.1 Graphs of bounded clique-width 30

3.2 Clique-width of the primal graph 34

4 An FPT algorithm for Vertex Multicut 44

5 Metatheorems 58

5.1 The clique-width metatheorem and Multicut 58

5.2 A clique-width metatheorem for incidence graphs 60

5.3 Clique-width of incidence graphs and tree-width 66

6 Conclusion 72

6.1 An overview of the results 72

6.2 Future work 73

a Appendix: Ganz ohne Orakel 74

bibliography 84

8

1
I N T R O D U C T I O N

Multicut is an extensively studied problem in the area of algorithms
on graphs [9, 43]. It plays an important role in different fields such as
circuit design or network theory. However, even on simple graphs such
as trees, Multicut is NP-complete [6, 15]. Since this is a rare property,
Multicut is also very interesting from a theoretical point of view.

A Multicut problem is given by a graph G and the so-called terminal
set H which contains pairs of vertices. The aim is to find a minimal cut
that separates all terminal pairs. There are different possibilities which
kind of cuts is allowed. For Edge Multicut edges may be cut, for Vertex
Multicut vertices. Vertex Multicut can be restricted to disallow cutting
terminal vertices. All these variations are in general NP-complete.

But what makes Multicut computationally so hard? Parameterized
complexity theory, a subdiscipline of complexity theory, is studying
questions of that sort. Often it is not just the size of the input that
makes a problem computationally hard, but certain properties of the
input. These properties are used as parameters for a more detailed
analysis of hard problems. Examples of often useful parameters for
graphs are the maximal vertex degree, the size of the solution, etc. Such
an analysis sometimes leads to algorithms that are especially efficient
when a certain parameter is small. Therefore finding such algorithms,
so-called fixed parameter tractable (FPT) algorithms, is a major strategy
for tackling NP-complete problems.

The hope for Multicut FPT algorithms has led to a search for suit-
able parameters. In [30] an FPT algorithm has been found, with the
cardinality of the cut and the cardinality of H as parameters. However,
many other parameters do not yield FPT algorithms. Examples are the
cardinality of H alone or the tree-width of the graph. The tree-width
of a graph is a measure for the sparseness and acyclicity of a graph.
For many intractable problems there are FPT algorithms on graphs of
bounded tree-width [10]. However, again Multicut remains stubborn.
Only bounded tree-width of G together with bounded cardinality of
H allows for an FPT algorithm [31]. A recent result by Gottlob and
Lee [26] has just found an FPT algorithm for a single parameter. This
parameter is the tree-width of the primal graph G ∪ H. The primal

9

1.1 summary of the results 10

graph G ∪ H is the graph G with an edge between each terminal pair.
This modification introduces more cycles into the graph and hence po-
tentially increases the tree-width. While this is a triumph over Multicut,
there is a clear drawback of tree-width FPT algorithms: the graph has
to be sparse.

Clique-width is a complexity measure similar to tree-width, but it can
be small for both sparse and dense graphs. For example the tree-width
of trees is 1, the clique-width of trees is 3. However, the clique-width of
cliques is 2, whereas the tree-width is unbounded. In general bounded
tree-width implies bounded clique-width, but not the other way round.
This makes clique-width a stronger notion than tree-width. However,
so far clique-width has not been studied in the context of Multicut.

The goal of this thesis is to do an analysis of the Multicut problem
with respect to clique-width. If tractable classes can be identified, this
would go beyond previous results, since it extends previous results to
dense graphs. Of course larger classes also increase the possibility of
intractability. Hence, FPT algorithms will be harder to obtain, but if
found, they will be usable in a more general setting. The following
questions arise in this context:

• Gottlob and Lee [26] have used as parameter the tree-width of the
primal graph G ∪ H. Do we get an FPT algorithm if we bound
the clique-width of this primal graph?

• Since intractability for classes of bounded tree-width implies
intractability for classes of bounded clique-width, we know that
it will not be enough to bound only the clique-width of G. But
is there a second parameter, such that we can obtain an FPT
algorithm?

• Courcelle et al. [14] have proved a meta-theorem about graphs
of bounded clique-width, guaranteeing FPT algorithms for op-
timization problems that are definable in the logic MSO1. This
theorem is not directly applicable to Multicut. Are there any ways
to circumvent its limitations?

1.1 summary of the results

Surprisingly Multicut behaves very differently on classes of bounded
tree- and clique-width. Since clique-width is a more general concept, it

1.1 summary of the results 11

is much harder to get FPT algorithms. This is shown with an extensive
complexity analysis. In detail the results of this thesis are:

• The approach of Gottlob and Lee [26] does not work for clique-
width. Vertex and Edge Multicut are NP-complete for bounded
clique-width of the primal graph G ∪ H. However, there is one
interesting exception: For Vertex Multicut, if the removal of ter-
minal vertices is disallowed and the clique-width of G ∪ H is 2,
an efficient algorithm has been found.

• The search for an tractable fragments of the Multicut problem
have been successful. For Vertex Multicut we have found an
efficient FPT algorithm with clique-width of G and the number of
terminal pairs as parameters. The running time of the algorithm
is linear with respect to the input size and single-exponential with
respect to the parameters.

• We present an extension of Courcelle’s theorem about graphs
of bounded clique-width. Our extension is no longer limited to
graphs, but can be used for optimization problem on arbitrary
structures. Also a significantly larger class of optimization prob-
lems can be dealt with, namely those definable with MSO2 logic.
This is achieved by requiring the clique-width of the incidence
graph of the structure to be bounded. MSO2 is strong enough
to capture all Multicut problem. Hence, we get single-parameter
FPT algorithms for Vertex Multicut and even Edge Multicut.

It is surprising that the clique-width metatheorem can be extended
to MSO2, a logic that is closely related to tree-width. This is
explained by showing that a class of graphs with bounded clique-
width of their incidence graphs has bounded tree-width. As a
direct consequence we get that a class of graphs has bounded
tree-width if and only if their incidence graphs have bounded
clique-width.

This thesis also contains a narrative. This is an attempt to explain
some of the concepts and results in this thesis in an entertaining way. It
is written with a non-scientific audience in mind. The idea behind this
story is to find a way to explain the intrinsic motivation of theoretical
research to a broader audience. The language of this story is German.

1.2 organization 12

1.2 organization

This thesis is structured as follows: Chapter 2 introduces basic con-
cepts which appear throughout the thesis. It contains an introduction
to Multicut, graph decompositions and to parameterized complexity
theory. Chapter 3 contains a detailed complexity analysis of Multicut
with regard to clique-width. In Chapter 4 we present a dynamic pro-
gramming FPT algorithm for Vertex Multicut. Chapter 5 contains all
results regarding the clique-width metatheorem. In Chapter 6 we put
the results in perspective of known results and give possible directions
for future work. The appendix contains the story "’Ganz ohne Orakel"’,
which explains some of the concepts and results in this thesis for a
non-scientific audience.

2
P R E L I M I N A R I E S

This chapter provides basic definitions, already known results and
an introduction to concepts that will appear throughout this thesis.
The first section covers basic definitions, the second introduces Multi-
cut, the third is about graph decompositions, especially clique-width
and k-expressions, and the fourth section is a short introduction to
parameterized complexity theory.

2.1 basic definitions

This section contains basic definitions about sets, graphs and logic.

2.1.1 Sets

Definition 2.1. Let S be a set. The cardinality or size of a set is denoted
by |S|. All sets in this thesis are finite. a

Definition 2.2. For any n ∈ N, S[n] denotes the set of all subsets of S
with cardinality n, formally S[n] B {S′ ⊆ S : |S′| = n}. a

Definition 2.3. Let S be a set of sets. Then
⋃

S, the union of S, is defined
as ⋃

S B {a : ∃b ∈ S with a ∈ b}. a

2.1.2 Graphs

In this thesis we only consider finite simple undirected graphs. For
easier notation we do not define the edge set as a subset of V ×V, but
as a set consisting of subsets of V with cardinality 2.

Definition 2.4. A simple, undirected graph G is a tuple (V, E). V is the
set of vertices. E is a subset of V [2], i.e. E contains subsets of V of size 2.
The intended meaning of E is that the graph contains an edge between
a and b if {a, b} ∈ E.

By graph we always mean a simple, undirected graph. a

13

2.1 basic definitions 14

Definition 2.5. Let G B (V, E) be a graph and W ⊆ V. Wc is the
complementary set of vertices, i.e. Wc B V\W. Ec denotes the edge
complement, i.e. Ec = V [2]\E. Gc is the complement graph, i.e. Gc B

(V, Ec). a

Definition 2.6. Let G B (V, E) be a graph. A tuple (a1, ..., an) is a path if
for all i ∈ {1, ..., n− 1}, {ai, ai+1} ∈ E and a1, ..., an are pairwise distinct.
The length of a path (a1, ..., an) is n− 1.

We define the distance d(a, b) between two vertices a and b in a graph
as the length of the shortest path between them. If there is no path
between two vertices, the distance is ∞.

The diameter of a graph is defined as max
a,b∈V

d(a, b).

A connected component in a graph is a set of vertices S such that for
each a ∈ S,

d(a, b) =

an integer b ∈ S

∞ b < S.

A graph is connected if it has exactly one connected component.
The degree of a vertex a is |{b : d(a, b) = 1}|, i.e. the number of all

adjacent vertices. a

Definition 2.7. Let G B (V, E) be a graph and V ′ ⊆ V. A V ′-induced
subgraph is a graph (V ′, E′) with E′ B {{a, b} ∈ E : a ∈ V ′ ∧ b ∈ V ′}.
We denote the V ′-induced subgraph by G[V ′] or (V, E)[V ′]. a

Definition 2.8. Let G1 B (V1, E1) and G2 B (V2, E2). If V1 ∩ V2 = ∅,
then the disjoint union G1 ∪G2 is defined as the graph (V1 ∪V2, E1 ∪ E2).

a

Definition 2.9. A clique or complete graph is a graph of the form (V, V [2]),
i.e. a graph where any pair of vertices is connected by an edge. a

An important graph class in this thesis are cographs. The following
definitions and characterizations can be found for example in [5].

Definition 2.10. A cograph is a graph constructed by the following rules:

• A single vertex graph is a cograph.

• If G is a cograph, then the complement graph Gc is also a cograph.

• If G1 and G2 are cographs, then their disjoint union G1 ∪ G2 is a
cograph.

2.1 basic definitions 15

There are other characterizations of cographs. We list some of them:

• Cographs are exactly those graphs that are P4-free. That means
that there are no four vertices a, b, c and d, such that the induced
subgraph G[{a, b, c, d}] is isomorphic to P4, the graph consisting
of a path with 4 vertices.

Another formulation is that whenever there is a path on four
vertices (a, b, c, d), then either (a, c) or (b, d) or (a, d) have to be
an edge in the graph.

• Cographs are all graphs whose connected induced subgraphs
have diameter at most 2. a

2.1.3 Logic

Two logics play an important role in this thesis, the monadic second-
order logics MSO1 and MSO2. Both are fragments of second-order
logic. Second-order logic is an extension of first-order logic, where
quantification over relations is allowed.

Definition 2.11. An MSO1-formula is a second-order formula, where
second-order quantification is only allowed for unary variables, i.e.
quantification over sets. MSO1[τ] denotes the class of MSO1-formulas
over τ-structures. a

MSO2 is usually defined for graphs as MSO1 with the additional
possibility to quantify over subsets of the edge relation. We use a
more general notion of MSO2 for arbitrary structures. All structures
we consider in this thesis are relational structures, i.e. their signature
does not contain functions.

Definition 2.12. Let τ be a signature and R ∈ τ. Every MSO1-formula
is also an MSO2-formula. Additionally if φ is an MSO1- or MSO2-
formula, then ∀X ⊆ R φ and ∃X ⊆ R φ are MSO2-formulas. This means
it is allowed to quantify over subsets of relations. As before MSO2[τ]
denotes the class of MSO2-formulas over τ-structures. a

In the special case when talking about graphs, i.e. the signature is
{E}, MSO1 is first order logic where additionally quantification over
sets of vertices is allowed. MSO2 extends MSO1 with the option to
quantify also over subsets of E.

In Example 2.36 we will see an exemplary MSO1 characterization of
an algorithmic problem.

2.2 multicut problems 16

a b

c d

Figure 1: The primal graph of the example structure SEx.

h
a

h′

g
b c

g′

Figure 2: The graph GEx will serve as a running example throughout this
thesis.

Definition 2.13. Let S B (U, R1, ..., Rn) be a structure. The primal graph
(or Gaifman graph) of S contains a vertex for each element in the
domain U. Let v and w be vertices. The set {v, w}, v , w, is an edge in
the primal graph if and only if one of the relations {R1, ..., Rn} contains
a tuple (a1, ..., ar) with v, w ∈ {a1, ..., ar}. a

Example 2.14. Let SEx B (U, R1, R2) be a structure with the domain
U B {a, b, c, d}, R1 B

{
(a, b), (b, a), (a, c)

}
and R2 B

{
(a, c, d)

}
. Its

primal graph can be seen in Figure 1. �

2.2 multicut problems

This section explains and defines the Multicut problem. We start with an
exemplary Multicut problem, which is followed by formal definitions.

Example 2.15. Given is the graph GEx shown in Figure 2 and the so-
called terminal set HEx B {{g, g′}, {h, h′}}. GEx and HEx will serve as
a running example throughout this thesis.

In general it is our aim to disconnect all terminal pairs, i.e. {g, g′}
and {h, h′}. That means that there must not be a path from g to g′ and
no path from h to h′.

We start with the Vertex Multicut problem, or more precisely: the
Unrestricted Vertex Multicut (UVMC) problem. Here we are allowed to

2.2 multicut problems 17

remove arbitrary vertices to disconnect terminal pairs. It is our aim to
remove as few vertices as possible. One can easily find a cut consisting
of two vertices. For example {a, b} and {a, c} are cuts, but also {g, h}
or {g, a}. We can easily see here that there is no cut of cardinality 1.

The second variant of Vertex Multicut is Restricted Vertex Multicut
(RVMC). Here we are no longer allowed to remove terminal vertices,
i.e. we are just allowed to remove a, b and c. There are still cuts of
cardinality 2: {a, b} and {a, c}. {a, b, c} is of course also a valid cut, but
has larger cardinality. We observe that every RVMC cut is a UVMC cut.

The last Multicut variant is Edge Multicut (EMC). Now we are allowed
to remove edges to disconnect terminal pairs. In our example there is
exactly one cut of cardinality 2: cutting the edges {h, a} and {c, g′}. All
other cuts have larger cardinality. �

We continue with a formal definition of Multicut problems.

Definition 2.16. A Multicut instance is given by the triple (G, H, m).
G B (VG, EG) is a graph. H is the terminal set and consists of pairs
of vertices. These pairs are called terminal pairs. m is the greatest
allowed cardinality of the cut. We further define VH B

⋃
H, the set of

all terminal vertices.
The Multicut decision problems are:

UNRESTRICTED VERTEX MULTICUT (UVMC)

Instance: The Multicut graph G B (VG, EG), the terminal set H,
the maximal cut size m.

Question: Is there a cut set C ⊆ VG with |C| ≤ m, such that in
the induced subgraph G[VG\C] no terminal pair is
connected?

RESTRICTED VERTEX MULTICUT (RVMC)

Instance: The Multicut graph G B (VG, EG), the terminal set H,
the maximal cut size m.

Question: Is there a cut set C ⊆ VG\VH containing no termi-
nal vertices with |C| ≤ m, such that in the induced
subgraph G[VG\C] no terminal pair is connected?

2.2 multicut problems 18

EDGE MULTICUT (EMC)

Instance: The Multicut graph G B (VG, EG), the terminal set H,
the maximal cut size m.

Question: Is there a cut set C ⊆ EG with |C| ≤ m, such that in
the graph (VG, EG\C) no terminal pair is connected?

Multicut search problems are to output a cut set of cardinality ≤ m.
a

We continue with the definitions of (minimal) cut set, (maximal) solution
set and (maximal) solution graph.

Definition 2.17. For UVMC and RVMC a cut set is a set of vertices,
C ⊆ VG, such that the induced graph G[VG\C] contains no path between
terminal pairs. For EMC a cut set is a set of edges, C ⊆ EG, such that
the graph (VG, EG\C) contains no path between terminal pairs. A cut
set is called minimal cut set if there is no cut set with smaller cardinality.

A solution set is the complement of a cut set. For UVMC and RVMC
a solution set is a set of vertices, S ⊆ VG, such that the induced graph
G[S] contains no path between terminal pairs. For EMC a solution set
is a set of edges, S ⊆ EG, such that the graph (VG, S) contains no path
between terminal pairs. A solution set is called maximal solution set if
there is no solution set with larger cardinality.

For UVMC and RVMC a graph G′ is a solution graph if there is a
solution set S ⊆ VG such that G′ = G[S]. For EMC a graph G′ is a
solution graph if there is a solution set S ⊆ EG such that G′ = (VG, S). A
solution graph is a maximal solution graph if the corresponding solution
set is maximal. a

Note that neither minimal cut sets, maximal solution sets nor maxi-
mal solution graphs have to be unique.

Definition 2.18. The predicate UVMC(G, H, C) is true if C is a cut set
of the UVMC problem (G, H, |C|).

The predicate RVMC(G, H, C) is true if C is a cut set of the RVMC
problem (G, H, |C|).

The predicate EMC(G, H, C) is true if C is a cut set of the EMC
problem (G, H, |C|). a

Note that the size of C does not matter for these predicates.

2.3 graph decompositions 19

Definition 2.19. Let G be a graph and H a terminal set. Then G ∪ H is
a short notation for the primal graph of the structure (VG, EG, H), i.e.
G ∪ H is the graph (VG, EG ∪ H). a

Theorem 2.20. UVMC, RVMC and EMC are NP-complete.

This follows directly from the following stronger statements. The
definition of a series-parallel graph can be found for example in [5].

Theorem 2.21. UVMC is NP-complete on series-parallel graphs. [6]

Theorem 2.22. RVMC is NP-complete on trees. [6]

Theorem 2.23. EMC is NP-complete on trees. [15]

Theorem 2.20 also follows from results proved in this thesis: NP-
completeness for Vertex Multicut follows from Theorem 3.1 and from
Theorem 3.5 and for Edge Multicut from Theorem 3.2 and from Theo-
rem 3.15.

2.3 graph decompositions

Graph decompositions play an important role in parameterized com-
plexity theory. For this thesis tree decompositions (and the corre-
sponding parameter tree-width) and k-expressions (clique-width) are of
special interest. However, there are many other decomposition methods
and corresponding parameters: e.g. branch-width [41], path-width [42],
local tree-width [23], rank-width [38], NLC-width [44], etc. For a survey
paper on width-parameters see [33].

2.3.1 Clique-width

Clique-width is a complexity measure for graphs. It was originally
introduced in terms of graph grammars by Courcelle, Engelfriet and
Rozenberg [13]. Its name is a bit misleading. The clique-width of a
graph is not only small if the graph is dense (e.g. a clique), but also if
it is sparse. For example cographs have clique-width at most 2 (which
include cliques), trees have clique-width at most 3 and cycle graphs
have clique-width at most 4.

To define clique-width we first define k-expressions, which are de-
scriptions of how to construct a graph with four operations. Each
k-expression has a corresponding (labeled) graph, which is obtained by
constructing the graph according to the k-expression.

2.3 graph decompositions 20

Definition 2.24. Let k ∈ N. k-expressions and their corresponding
labeled graphs are defined recursively:

• (Adding a new vertex) Let v be a vertex and the label i ∈ {1, ..., k}.
Then i(v) is a k-expression. The corresponding graph consists of
the vertex v, which is labeled with i.

• (Renaming labels) Let the labels i and j be in {1, ..., k} with i , j
and let s be a k-expression. Then ρj←i(s) is a k-expression. The
corresponding graph is the graph generated by s, where each
i-labeled vertex is now labeled with j.

• (Connecting vertices) Let the labels i and j be in {1, ..., k} with i , j
and let s be a k-expression. Then ηi,j(s) is a k-expression. The
corresponding graph is the graph generated by s, where every
i-labeled vertex is connected with every j-labeled vertex.

• (Disjoint union) Let s and t be k-expressions that have no vertices
in common. Then s ⊕ t is a k-expression. The corresponding
graph is the disjoint union of both graphs.

We define G(s) as the corresponding labeled graph generated by the
k-expression s. a

Definition 2.25. A graph G has clique-width k (short: cw(G) = k) if k
is the smallest number such that there is a k-expression s for which the
unlabeled version of G(s) is equal to G. With a slight abuse of notation,
we will from now on denote such an equivalence with G = G(s). a

To illustrate these concepts we give a 3-expression κEx for our ex-
ample graph GEx in Figure 2. For easier readability we do not give
the actual 3-expression but give the parse tree of κEx in Figure 3. Each
node in the parse tree contains one operation and hence each sub-
tree corresponds to a subexpression. Note that each subexpression is
again a 3-expression and also has a corresponding labeled graph. In
Figure 4 we show the graphs generated by the subtrees rooted in the
double-framed tree nodes.

The last operation η2,3 of κEx adds the remaining edges to the graph.
This is shown in Figure 5. The new edges are the dashed lines.

This shows that we have really found a 3-expression for GEx. But
is there also a 2-expression? The answer is no, since graphs of clique-
width 2 are cographs [11] and GEx is not a cograph. In order to see this

2.3 graph decompositions 21

η2,3

⊕

ρ2←3

η1,3

⊕

η2,3

⊕

η1,2

⊕

2(b) 1(h′)

3(a)

1(h)

⊕

η1,3

⊕

3(c) 1(g′)

3(g)

Figure 3: The 3-expression κEx displayed as a parse tree.

2.3 graph decompositions 22

1(h)

2(a)

1(h′)

3(g)

2(b) 3(c)
1(g′)

⊕

ρ2←3 ⊕

1(h)

2(a)

1(h′)

2(b)

3(c)
1(g′)3(g)

Figure 4: The graphs generated by the subtrees rooted in the double-framed
tree nodes of the parse tree in Figure 3.

1(h)

2(a)

1(h′)

3(g)

2(b) 3(c)

1(g′)

Figure 5: The example graph GEx generated by κEx. The dashed lines show
the edges that have been added by the last operation η2,3.

2.3 graph decompositions 23

observe that GEx[{g, b, c, g′}] is isomorphic to P4 (see Definition 2.10 for
details).

We conclude this introduction to clique-width with the question of
how actually to find a k-expression. In general this is a hard problem.
In [19] it was shown that it is NP-complete just to determine if a graph
has clique-width k. However, it is feasible to find a non-optimal k-
expression. [37] contains an algorithm which, for a given k, either
concludes that cw(G) > k or outputs a (23k+2 − 1)-expression of the
graph. Its running time is O(|V|4).

2.3.2 Tree-width

Tree-width is a notion similar to clique-width. However, contrary to
clique-width, the tree-width of a graph is small only for sparse graphs.
Intuitively it captures the "tree-likeness" and acyclicity of the graph.
Surveys on this topic are for example [2, 3, 4].

Definition 2.26. A tree decomposition of a graph G B (V, E) is a pair
(X, T), where X B {X1, ..., Xn} are subsets of V. T is a tree, where the
tree nodes are the so-called bags X1, ..., Xn. Furthermore, the following
properties have to hold:

1. Each v ∈ V has to be element of at least one Xi, i ∈ {1, ..., n}.

2. Each edge e ∈ E has to be a subset of at least one Xi, i ∈ {1, ..., n}.

3. (Connectedness condition) If Xi and Xj both contain v ∈ V, then
each tree node on the path between node Xi and Xj has to contain
v. a

The width of a tree decomposition is the size of its largest bag minus
1. The tree-width of a graph tw(G) is the minimum width over all
possible tree decompositions. a

Example 2.27. To illustrate this concept, we give a tree decomposi-
tion of the example graph GEx in Figure 6. The width of this tree
decomposition is 2, i.e. the maximal size of a bag is 3.

Corneil and Rotics [7] proved the following important connection
between clique-width and tree-width, which is an improvement over
the original bound proved by Courcelle and Olariu [11].

Theorem 2.28. (Corneil and Rotics [7])

For every graph G, cw(G) ≤ 3 · 2tw(G)−1 + 1.

2.4 parameterized complexity theory 24

{a, b}

{a, b, g}

{a, h}

{a, b, h′} {a, b, c}

{c, g′}

Figure 6: A tree decomposition of the example graph GEx

2.4 parameterized complexity theory

Often it is not just the size of the input that makes a problem compu-
tationally hard, but certain properties of the input. In parameterized
complexity theory such properties are being used as parameters for a
more detailed analysis of hard problems. Such an analysis sometimes
leads to algorithms that are especially efficient when a certain parame-
ter is small. Therefore finding such algorithms, so-called fixed parameter
tractable (FPT) algorithms, is a major strategy for tackling NP-complete
problems.

2.4.1 Fixed parameter-tractability (FPT)

In parameterized complexity theory, FPT is the most basic complexity
class. It can be seen as the parameterized equivalent to PTIME. To
define FPT we first introduce the notion of parameterized problems.

Definition 2.29. A parameterized (decision) problem is a language L ⊆
Σ∗ ×N, where Σ is a finite alphabet. The second component of the
input is called the parameter. a

Definition 2.30. A parameterized decision problem L with parameter
k is fixed-parameter tractable (FPT) if there is a deterministic Turing
machine M and a computable function f , such that M decides in at
most f (k) · nO(1) steps whether the input (x, k) ∈ L.

L is fixed-parameter linear (FPL) if this can be done in f (k) · n time. a

There are other parameterized complexity classes, even hierarchies.
These are not mentioned here, since they do not appear in this thesis.
An extensive treatment can be found in [16, 21].

2.4 parameterized complexity theory 25

2.4.2 Metatheorems

A central result concerning the usefulness of tree-width in parameter-
ized complexity theory is Courcelle’s theorem [10]. It shows that every
MSO2 definable problem is in FPL with regard to the tree-width of the
input instance. Such a result is called a metatheorem. For surveys on
metatheorems and their applications see [29, 34].

In detail Courcelle’s theorem states:

Theorem 2.31. (Courcelle [10]) Let τ be a signature, C a set of τ-structures
and Φ an MSO2[τ]-formula. Then there is a fixed-parameter linear algorithm
with regard to the tree-width of the primal graph of A ∈ C, which decides
A |= Φ.

There are many extensions of this theorem, most notably with respect
to counting, enumeration and optimization problems [1, 25].

Since this thesis is mostly concerned with clique-width, a similar
result by Courcelle, Makowsky and Rotics for clique-width is of greater
importance here. We will state the optimization version. For optimiza-
tion problems we have to specify which results are "optimal" for us. To
give this a precise meaning we introduce linear evaluation functions.

Definition 2.32. Let U be the domain of the underlying structure. A
k-ary linear evaluation function is a function from Uk to Z. Let f be a
k-ary evaluation function and R a set of k-tuples, i.e. R is a relation.
Then f (R) B ∑

r∈R
f (r). a

We furthermore have to define the notion of p-graphs.

Definition 2.33. A p-graph G is a relational structure (V, E, P1, ..., Pp),
such that the pair (V, E) is a graph and the relations P1, ..., Pp are unary.
Furthermore, let τp denote the signature of G. a

Note that a p-graph can be seen as a vertex-colored graph, which
allows more than one color per vertex.

As opposed to tree-width, the clique-width metatheorem only al-
lows MSO1 characterizations of problems. This weakens this theorem
regarding the expressiveness, but on the other hand clique-width is
a more general notion and hence the theorem guarantees FPT results
for a larger class of graphs. The actual connection between MSO1 and
clique-width is an open question, however partial results have been
found e.g. in [12].

2.4 parameterized complexity theory 26

r
g

b

b
r b

r

Figure 7: A 3-coloring of the example graph GEx.

Definition 2.34. For a fixed p ∈ N let Φ be an MSO1[τp]-formula
with free unary second-order variables S1, ..., Sn. Then LinEMSO1(Φ) is
defined as

LinEMSO1(Φ)

Instance: A p-graph G B (V, E, P1, ..., Pp), a k-expression for the
graph (V, E), evaluation functions g1, ..., gn for the
free variables of Φ and opt ∈ {min, max}.

Parameter: k.

Output: Sets of vertices T1, ..., Tn such that G |= Φ [T1, ..., Tn]

and
n
∑

i=1
gi (Ti) is maximal or minimal (depending on

opt).
a

Theorem 2.35. (Courcelle, Makowsky, Rotics [14]) Let Φ be an arbitrary
but fixed MSO1-formula. Then LinEMSO1(Φ) is fixed-parameter linear with
regard to k.

We continue with an example that illustrates the usefulness of Theo-
rem 2.31 and Theorem 2.35.

Example 2.36. We want to apply Theorem 2.35 to the 3-colorability
problem:

3-COLORABILITY

Instance: A graph G B (V, E) and its k-expression κ.

Parameter: k

Question: Is there a vertex coloring with red, green and blue,
such that no two adjacent vertices have the same
color?

2.4 parameterized complexity theory 27

The 3-colorability problem is in general NP-complete [24]. Therefore
it would be desirable to find FPT algorithms. If we find an MSO1

description of 3-colorability, Theorem 2.35 will directly yield an FPT
result with the clique-width of G as parameter. One way to formulate
3-colorability with MSO1 is the following formula:

∃R ∃G ∃B ∀x ∀y
(

R(x) ∨ G(x) ∨ B(x)︸ ︷︷ ︸
∗

)
∧
(
E(x, y)→ Diff (x, y)︸ ︷︷ ︸

∗∗

)
,

where Diff (x, y) is an abbreviation for

¬(R(x) ∧ R(y)) ∧ ¬(G(x) ∧ G(y)) ∧ ¬(B(x) ∧ B(y)).

The part of the formula marked with * checks that every node has
(at least) one color. It is not a problem that vertices can have more than
one color, since this makes the problem just harder. The part marked
with ** checks that no two adjacent vertices have the same color.

This MSO1 characterization of the problem cannot only be used for
the clique-width metatheorem, but also for the tree-width metatheorem,
Theorem 2.31. Thus we also get that 3-colorability is FPT with regard
to tw(G). �

However, these metatheorems have a critical drawback. Even if the
parameter (tree-width or clique-width) is small, the running time of the
algorithms one gets from these theorems have huge multiplicative con-
stants. This makes these algorithms useless for practical purposes [28].
Therefore from a practical point of view these metatheorems can only
be used to establish that a problem is fixed-parameter tractable. In
the next section we will discuss how efficient implementations of FPT
algorithms can be found with the help of dynamic programming.

2.4.3 Fixed-parameter tractable algorithms via dynamic programming

Dynamic programming is a major strategy for finding efficient fixed-
parameter tractable algorithms. Dynamic programming can be used
for problems that inhibit the principle of optimality. This means that the
problem can be broken down into subproblems, which can be optimally
solved independently of the sequence of operations that lead to this
subproblem. Hence, the "history" of a subproblem can be discarded.
The monograph Invitation to Fixed-Parameter Algorithms [36] offers an
excellent introduction to dynamic programming and its application to
parameterized complexity.

2.4 parameterized complexity theory 28

Dynamic programming is also the main strategy to solve problems,
where a graph decomposition is available (or can efficiently be com-
puted). For Multicut this has been used to get FPT counting and
enumeration algorithms [39]. In this thesis we use dynamic program-
ming for Vertex Multicut on graphs of bounded clique-width. In order
to introduce this concept the following example shows how dynamic
programming can be used for 3-colorability on graphs of bounded
clique-width.

Example 2.37. The basic idea of the algorithm is to traverse the parse
tree of the k-expression bottom-up. At each step all possible colorings
of the corresponding subgraph are calculated. In order to compute
these colorings for a node in the parse tree only the possible colorings
of each child node are required.

The data structure
The underlying data structure is a set S of k-tuples. This set has to

be calculated for each subexpression of κ. Let s be a subexpression
of κ. Then we denote the set at the node s in the parse tree with Ss.
Each k-tuple in Ss describes possible colorings of the graph G(s). Each
component of such a k-tuple (ai)1≤i≤k is a subset of {r, g, b}. ai contains
all colors (red, green, blue) that are being used to color i-labeled vertices.
If there are no i-labeled vertices, ai is empty.

A dynamic programming FPT algorithm for the decision problem
The algorithm traverses the parse tree bottom-up. At the leaves of

the parse tree, only vertex introductions can occur, since this is the only
0-ary operation. Internal nodes contain the other three operations ρ, ⊕
and η.

• i(v): (Adding a new vertex) At this step only a single vertex is
present in the graph G(i(v)), which has to have exactly one color.
Hence, Si(v) contains three tuples:

(∅, ..., {r}, ..., ∅), (∅, ..., {b}, ..., ∅) and (∅, ..., {b}, ..., ∅),

where the non-empty set is at the i-th position.

• ρi←j: (Renaming labels) Let s be a subexpression of κ. Sρi←j(s) is
calculated by replacing each element (a1, ..., ai, ..., aj, ..., ak) in Ss

with (a1, ..., ai ∪ aj, ..., aj−1, ∅, aj+1, ..., ak).

• s ⊕ t: (Disjoint union) Let s and t be two k-expressions and Ss

and St the corresponding sets of k-tuples. For each element

2.4 parameterized complexity theory 29

(a1, ..., ak) ∈ Ss and (b1, ..., bk) ∈ St the set Ss⊕t contains the tuple
(a1 ∪ b1, ..., ak ∪ bk).

• ηi,j: (Connecting vertices) Let s be a subexpression of κ. Sηi,j(s)
contains each tuple (al)0≤l≤k ∈ Ss for which ai ∩ aj = ∅. For
tuples where this is not the case, an edge between two vertices
of the same color has been introduced. Therefore this tuple no
longer represents a valid 3-coloring.

There is no valid 3-coloring if and only if S = ∅ after the algorithm
finishes. �

3
C O M P L E X I T Y R E S U LT S

This section contains a number of complexity results about Multicut. We
show that obvious choices for parameters are not suitable, i.e. Multicut
remains NP-complete even if these parameters are bounded. For two
special cases PTIME algorithms are presented, too.

3.1 graphs of bounded clique-width

A natural starting point to investigate the usefulness of clique-width
for Multicut problems is to ask the question:

If we bound the clique-width of G, is Multicut still NP-hard?

We get a rough answer directly from tree-width results. In [6] it was
shown that UVMC is NP-hard on series-parallel graphs. A definition
of series-parallel graphs can be found for example in [18]. These are
graphs of tree-width at most 2. Because of Theorem 2.28 we know that
series-parallel graphs have clique-width at most 7. Hence, UVMC is
NP-hard for input instances where the clique-width of G is bounded by
a number ≥ 7. This argument gives no information about cases where
the clique-width is bounded by a number from 2 to 6. Note that a
graph has clique-width 1 if and only if it has no edges, thus all Multicut
problems are trivially tractable for input instances where cw(G) = 1.

For RVMC and EMC we know that both problems are NP-hard on
trees. This was proven for RVMC in [6] and EMC in [25]. Trees have
clique-width at most 3 and hence RVMC and EMC are NP-hard for
input instances where the clique-width of G is bounded by a number
≥ 3. For graphs of clique-width 2, which are cographs, there have been
no results so far.

This section fills these gaps and gives a complete complexity analysis
for Multicut on graphs of bounded clique-width. We show that all
non-trivial Multicut problems regardless of their bounds on clique-
width are NP-complete. Surprisingly there is one exception: RVMC for
graphs of clique-width ≤ 2 is in PTIME.

30

3.1 graphs of bounded clique-width 31

=⇒

Γ G (VH, H)

Figure 8: An example for the reduction from INDEPENDENT SET to UVMC

3.1.1 UVMC

Theorem 3.1. UVMC is NP-complete for input instances where cw(G) is
bounded by a number ≥ 2.

We show this by a reduction from the following problem:

INDEPENDENT SET (IS)

Instance: A graph Γ B (VΓ, EΓ), an integer l

Question: Is there a subset S ⊆ VΓ of size at least l, such that
the induced subgraph Γ[S] contains no edges?

INDEPENDENT SET was one of the early examples of NP-complete
problems. CLIQUE, a very similar problem, was even one of Karp’s 21

original NP-complete problems [40].

Proof. Let Γ B (VΓ, EΓ) be an arbitrary graph for which we want to
find an independent set of size at least k. Our input for UVMC is
G B (VΓ, V [2]

Γ), i.e. the complete graph on VΓ, and H B EΓ. Figure
8 shows an example. Since G is a clique, cw(G) = 2. We will show
that UVMC(G, H, |VΓ| − l) is a YES-instance if and only if IS(Γ, l) is a
YES-instance. This proves NP-hardness for UVMC for a class of input
instances with cw(G) = 2 and therefore for input instances where
cw(G) is bounded by a number ≥ 2.

Assume that UVMC(G, H, |VΓ| − l) is a YES-instance. That means
there is a solution set S of size at least l. In the solution graph G[S] no
terminal pair is connected. Since each terminal pair is also an edge in
G, at least one vertex of each terminal pair is removed. Therefore no
edges are present in Γ[S] = (VG, H)[S] and |S| ≥ l.

3.1 graphs of bounded clique-width 32

=⇒

Γ G (VH, H)

n

Figure 9: Example for the reduction from INDEPENDENT SET to EMC

Now let us assume that IS(Γ, l) is a YES-instance. That means there is
a set S of size at least l such that Γ[S] contains no edges. We show that S
is a solution set. We have to check that for any terminal pair {a, b} ∈ H,
there is no path from a to b in G[S]. However, this is trivially true
because either a < S or b < S, since Γ[S] contains no edges. Therefore
we have found a solution set of size at least l and its complement is a
cut set of size at most |VΓ| − l. �

3.1.2 EMC

Theorem 3.2. EMC is NP-complete for input instances where cw(G) is
bounded by a number ≥ 2.

Proof. Let Γ B (VΓ, EΓ) be an arbitrary graph for which we want to
find an independent set of size at least k. The input graph for EMC is
G B (VΓ ∪ {n}, EG), where n is an additional vertex not present in VΓ

and EG B {{a, n} : a ∈ VΓ}. Figure 9 shows an example. Assume that
VΓ B {v1, ..., vg}. G can be constructed by the following 2-expression
using labels 1 and 2: η1,2

(
1(v1)⊕ ...⊕ 1(vg)⊕ 2(n)

)
. Therefore cw(G) =

2. H, the second part of the input for EMC, is EΓ. The intended meaning
is that the vertex vi is element of the independent set if and only if the
edge {vi, n} is in the EMC solution set. This relation between EMC
and IS will allow us to show that EMC(G, H, |VΓ| − k) is a YES-instance
if and only if IS(Γ, k) is a YES-instance. This proves NP-hardness for
EMC for a class of input instances with cw(G) = 2 and therefore for
input instances where cw(G) is bounded by a number ≥ 2.

Assume that EMC(G, H, |VΓ| − k) is a YES-instance. That means there
is a solution set S ⊆ EG of size at least k. In the solution graph (VG, S)

3.1 graphs of bounded clique-width 33

no terminal pair is connected. We will show that I B {v : {v, n} ∈ S}
is an independent set. Since each terminal pair {a, b} is connected by
the path (a, n, b) in G, either the edge {a, n} or {n, b} or both have to
be removed. This guarantees that in Γ for each edge {e1, e2} ∈ EΓ either
e1 < I or e2 < I or both. Therefore I is an independent set. Furthermore,
|I| = |S| ≥ k.

Now we assume that IS(Γ, k) is a YES-instance. That means there is
a set I ⊆ VΓ of size at least k such that Γ[I] contains no edges. We show
that S B {{v, n} : v ∈ I} is a solution set for the EMC problem. For
this purpose we have to check that for any terminal pair {a, b} ∈ H,
there is no path from a to b in (VG, S). Because each edge in G contains
n, (a, n, b) is the only path from a to b. Furthermore, we know that
H = EΓ that means that for any terminal pair {a, b} either a < I or b < I
or both. Hence, either {a, n} < S or {b, n} < S. Since |S| = |I| ≥ k we
have found a solution set of size at least k and its complement is a cut
set of size at most |VΓ| − k. �

3.1.3 RVMC

RVMC for input instances where cw(G) is bounded by a number ≥ 3
is NP-complete. This follows directly from the fact that RVMC is NP-
complete on trees [6] and that trees have clique-width 3. However, for
clique-width 2 RVMC becomes tractable. We give a PTIME algorithm
for cographs, which are exactly those graphs with clique-width ≤ 2 [11].

Theorem 3.3. There is a PTIME algorithm for RVMC on cographs. The
running time is O(|H| · |VG|) = O(n2), where n is the size of the input.

Cographs are exactly those graphs that are P4-free. That means
whenever there is a path on four vertices (a, b, c, d), then either {a, c}
or {b, d} or {a, d} have to be an edge in the graph. For the proof of the
theorem, we need the following observation about cographs.

Lemma 3.4. Let G B (V, E) be a cograph and a and c two vertices with
(a, c) < E. If G contains a path from a to c of length ≥ 2, then there is a vertex
b in this path such that (a, b, c) is a path.

Proof. We prove this by induction on the length of the path. For paths of
length 2 it is trivial. Let there be a path of length n + 1 with the vertices
a1, ..., an, an+1. The induction hypothesis guarantees the existence of b ∈
{a1, ..., an} with {a1, b} ∈ E and {b, an} ∈ E. Therefore (a1, b, an, an+1)

3.2 clique-width of the primal graph 34

is a path. Since cographs are P4-free and by assumption {a1, an+1} < E
either (a1, b, an+1) or (a1, an, an+1) is a path. �

Proof. (of Theorem 3.3): We give a PTIME algorithm for the RVMC
problem on cographs. The algorithm first checks if there is a terminal
pair {a, c} such that {a, c} ∈ EG. In this case there is no solution for
the Multicut problem and the algorithm terminates. Otherwise the
algorithm constructs the set

C B {b ∈ VG : ∃(a, c) ∈ H s.t. (a, b, c) is a path}.

C contains vertices we have to remove. Therefore if C contains a
terminal vertex, there is no solution for the Multicut problem and the
algorithm terminates. Otherwise C is the minimal cut.

To prove the correctness, we first show that C is a cut set. We know
that in the solution graph G[VG\C] there is no path between a terminal
pair of length 2. We consider the case of longer paths. Let {a, c} ∈ H
and let (a, b1, ..., bl , c) be a path in G of length ≥ 3. Here we know
because of Lemma 3.4 that this path contains a vertex b ∈ {b1, ..., bl},
such that (a, b, c) is a path in G. Therefore b ∈ C and (a, b1, ..., bl , c) is
not a path in the solution graph G[VG\C].

It remains to show that C is a minimal cut set. We show that if C′ is
a cut set then C ⊆ C′. Towards a contradiction assume the existence
of b ∈ C with b < C′. Then there is a terminal pair {a, c} such that
(a, b, c) is a path in G. (a, b, c) is also a path in G[VG\C′] and therefore
C′ cannot be a cut set.

For the running time analysis we observe that the algorithm consists
of two steps: checking if there exists a set {a, c} ∈ H ∩ EG and con-
structing the set C. If we assume linear time for checking if an edge
exists, the first step takes O(|H|) time. In the second step we check for
each terminal pair {a, c} and vertex b, if (a, b, c) is a path. This takes
O(|H| · |VG|) time, which is quadratic in the size of the input. �

3.2 clique-width of the primal graph

Gottlob and Lee [26] showed that Multicut is fixed-parameter tractable
with regard to the tree-width of the primal graph G ∪ H. G ∪ H is
the graph G together with an edge between each terminal pair (see
Definition 2.19 for details).

The analogous result for clique-width does not hold. When the
clique-width of G ∪ H is bounded, UVMC and EMC are NP-complete.

3.2 clique-width of the primal graph 35

For RVMC, if the clique-width of G ∪ H is bounded by 2, i.e. G ∪ H is
a cograph, there exists a PTIME algorithm. Since a graph has clique-
width 1 if and only if it has no edges, all Multicut problems are trivially
tractable for input instances where cw(G ∪ H) = 1.

When we compare these results with those of the previous section,
we see that bounded clique-width of G and bounded clique-width of
G ∪ H yield the same complexity results.

G ∪ H can be seen as the primal graph of the structure (VG, EG, H).
Whereas the tree-width of the primal graph is a very useful param-
eter (see Theorem 2.31), the following proofs show that bounded
clique-width of the primal graph does not allow for better results
than bounded cw(G). Hence, these NP-hardness results also show that
clique-width and tree-width are fundamentally different concepts.

3.2.1 Vertex Multicut

Theorem 3.5. UVMC is NP-complete for input instances where cw(G ∪ H)

is bounded by a number ≥ 2 .

Before starting the proof of Theorem 3.5, we present a large class of
NP-complete problems, which was found by Yannakakis [45]. Let Π be
a property of graphs that fulfills the following requirements:

• Π has to hold for arbitrarily large graphs.

• Whenever Π holds for a graph, it has to hold for each induced
subgraph, too.

• Π must not hold for every graph.

INDUCED SUBGRAPH WITH PROPERTY Π

Instance: A graph G, a positive integer n ≤ |V|.
Question: Is there a subset V ′ ⊆ V with V ′ ≥ n such that the

subgraph of G induced by V ′ has property Π?

Theorem 3.6. (Yannakakis [45]) INDUCED SUBGRAPH WITH PROP-
ERTY Π is NP-hard.

This theorem allows us to prove NP-completeness for the following
problem, which will appear in the proof of Theorem 3.5.

3.2 clique-width of the primal graph 36

INDUCED SUBGRAPH OF DISJOINT CLIQUES

Instance: A graph G, a positive integer n ≤ |V|.
Question: Is there a subset V ′ ⊆ V with V ′ ≥ n such that the

subgraph of G induced by V ′ consists only of disjoint
cliques?

Corollary 3.7. The INDUCED SUBGRAPH OF DISJOINT CLIQUES
problem is NP-complete.

Proof. This problem is obviously in NP. NP-hardness can be shown
by using the fact that INDUCED SUBGRAPH WITH PROPERTY Π is
NP-hard. Our property Π is “consists of disjoint cliques”. That Π is a
valid property can easily be checked. �

Proof. (of Theorem 3.5): We show that UVMC is NP-complete for a
class of input instances of the form (G, H, m) with cw(G ∪ H) = 2.

Let the class of input instances contain tuples (G, H, m) with G B
(VG, EG), where for every set of vertices VG, EG can be any subset of V [2]

and H B V [2]\EG. Since G ∪ H is a complete graph, cw(G ∪ H) = 2.
Such a tuple (G, H, m) has the special property that whenever two

vertices a and b are not connected in G, the pair {a, b} ∈ H. This
reduces the problem of finding a subset S (of size at least |V| − m),
such that the induced subgraph consists only of disjoint cliques. This is
because if the S-induced subgraph of G did not consist only of disjoint
cliques, it would contain vertices a and b such that there is a path from
a to b but {a, b} < EG. If (a, b) < EG then {a, b} ∈ H. We have found
a connected terminal pair. This contradicts the assumption that S is
a solution set. On the other hand let the S-induced subgraph consist
only of disjoint cliques. Let a and b be two vertices. We check that S
is a solution of the UVMC problem. If a and b are both in the same
clique, then {a, b} ∈ EG and hence {a, b} < H. If a and b are in different
cliques, then there is no path from a to b because all cliques are disjoint.
Therefore no terminal pair is connected.

With this equivalent formulation of the problem we can use Corollary
3.7 with input (G, |V| −m). Corollary 3.7 yields that our special case
of the UVMC problem is NP-complete. Hence, we have found a class
of inputs with cw(G ∪ H) = 2 for which the UVMC problem is NP-
complete. This implies that it is also NP-complete for instances, where
cw(G ∪ H) is bounded by a number ≥ 2. �

3.2 clique-width of the primal graph 37

The aim for the rest of this section is to show that there is a PTIME
algorithm for RVMC if G ∪ H is a cograph, i.e. for input instances
where cw(G ∪ H) = 2.

We already know from Theorem 3.3 that RVMC is in PTIME for input
instances where cw(G) = 2. However, this does not imply that RVMC
is in PTIME when cw(G ∪ H) = 2, since cw(G) can be larger than
cw(G ∪ H). Even more than that - for any graph G there is a terminal
set H, such that cw(G ∪ H) = 2 (for example the complement of EH).
That means that for an input class with unbounded cw(G), cw(G ∪ H)

can be bounded. In the other direction there is no correlation either. If
for an input instance cw(G ∪ H) is arbitrarily large, VG can be empty
and hence cw(G) = 1. This shows that the class of input instances
(G, H, m) where cw(G) = 2 is entirely different from the class where
cw(G ∪ H) = 2.

We start with a lemma about cographs.

Lemma 3.8. A cograph does not contain induced subgraphs isomorphic to
Cn, the cycle on n vertices, with n ≥ 5.

Proof. Cn with n ≥ 5 contains a path (a, b, c, d) where (a, d), (b, d) and
(a, c) are not edges. This contradicts the assumption that the graph is
P4-free. �

It is easy to check that C1,...,C4 are cographs and can be subgraphs of
a cograph.

We have already encountered the NP-complete decision problem
INDEPENDENT SET in Theorem 3.1. The analogue search problem
MAXIMAL INDEPENDENT SET will play an important role for RVMC
when cw(G ∪ H) = 2.

MAXIMAL INDEPENDENT SET

Instance: A graph Γ B (VΓ, EΓ).

Output: A maximal subset S ⊆ VΓ, such that the induced
subgraph Γ[S] contains no edges.

Proposition 3.9. The search problem MAXIMAL INDEPENDENT SET for
cographs is in PTIME.

The algorithm relies on the cotree representation of the given cograph.
Details about cotrees and cographs can be found for example in [32].

3.2 clique-width of the primal graph 38

Definition 3.10. A cotree is a binary tree in which the internal nodes are
labeled with 0 and 1. Every cotree defines a cograph. The leaves in the
cotree represent the vertices in the cograph. Furthermore, each subtree
of a cotree represents an induced subgraph of the cograph. Inductively
we define:

• A subtree consisting of a single leaf represents the subgraph
consisting of a single vertex.

• A subtree with a 0-labeled root represents the disjoint union of
the subgraphs represented by its two children.

• A subtree with a 1-labeled root represents the disjoint union of
the subgraphs represented by its two children. However, also
edges are added. Let Ga and Gb be the two children subgraphs.
Then an edge is added between each vertex from Ga and each
vertex from Gb. a

Note that this definition expresses exactly the graphs that can be
generated by a 2-expression, which are exactly cographs. We will use
this cotree representation to give a MAXIMAL INDEPENDENT SET
algorithm for cographs.

Proof. (of Proposition 3.9) Since the algorithm follows almost imme-
diately from the cotree representation of the cograph, we just sketch
it. A cotree representation for Γ can be found in linear time [8]. The
algorithm traverses the cotree bottom-up. At each node we construct a
maximal independent set with regard to the subgraph. The root set is a
maximal independent set.

At leaf nodes the maximal independent sets consist of the vertex
represented by that leaf. At 0-labeled nodes the set is the union of the
children sets. At 1-labeled nodes we take the larger of the children sets
as our next set. This algorithm requires linear time in the input size. �

Theorem 3.11. RVMC is in PTIME if G ∪ H is a cograph, i.e. for input
instances where cw(G ∪ H) = 2.

Proof. The algorithm is based on the algorithm of Theorem 3.3. How-
ever, we no longer know that G is a cograph, just that G ∪ H is a
cograph. As before we want to find the minimal cut.

To begin with, the algorithm checks for any terminal pair {a, b} ∈ H
if {a, b} ∈ EG. If that is the case, there is no solution to the RVMC
problem and the algorithm terminates.

3.2 clique-width of the primal graph 39

Now the algorithm constructs a set C, which consists of vertices that
"trivially" have to be cut. We call C the trivial set.

First we take a look at terminal pairs. Let {a, b} ∈ H. If there is no
path from a to b, we can ignore this pair. Let (a, n1, ..., nl , b) be a path
in G. Because {a, b} ∈ H, (a, n1, ..., nl , b) forms a cycle in G ∪ H. The
algorithm just looks at induced cycles in G∪H, i.e. cycles (a, n1, ..., nl , b)
such that the induced subgraph has no diagonals. Because of Lemma
3.8 we know that there are only two cases: (a, n1, b) and (a, n1, n2, b).

We start with the case (a, n1, n2, b), where both n1 and n2 are terminal
vertices. We cannot cut any of those vertices. Hence, if {n1, n2} ∈ EG
then there is no solution to the Multicut problem. The algorithm
terminates. If on the other hand {n1, n2} ∈ H but {n1, n2} < G, then
(a, n1, n2, b) is not a path in G and we can ignore this cycle.

Next we consider the case (a, n1, n2, b), where either n1 or n2 is a
terminal vertex. Without loss of generality let n2 be a terminal vertex.
Because a, b and n2 are terminal vertices, n1 has to be cut. We add n1

to the trivial set C.
Now we take a look at the cycles on three vertices, i.e. the case

(a, n1, b). If n1 is a terminal vertex it must not be cut. Hence, there is
no solution to the Multicut problem and the algorithm terminates. If
n1 is not a terminal vertex, we cut it and add n1 to C.

There are no more cases which allow us to find trivial cuts. This
means that the trivial set C can either be built by the algorithm or
formally be defined as

C B
{

n ∈ VG\VH : ∃{a, b} ∈ H s.t. (a, n, b) is a path in G ∨
∃c ∈ VH : (a, c, n, b) is a path in G

}
. (3.1)

At last we consider the case (a, n1, n2, b), where both n1 and n2 are
not terminal vertices. It may be unclear at this point whether n1 or n2

or both have to be cut. One of them has certainly to be cut, because
for RVMC it is not allowed to cut a or b. If either n1 or n2 has been cut
in previous steps, we can disregard the cycle (a, n1, n2, b). If that is not
the case, let us call such a pair {n1, n2} a nondistinctive pair. We have
to consider all nondistinctive pairs to decide which of the remaining
vertices have to be cut. We build a graph (VN , EN) that consists of all
nondistinctive pairs. We call this graph nondistinctive graph. Formally
we can define

EN B
{
{n1, n2} :n1 < VH ∪ C ∧ n2 < VH ∪ C ∧ ∃{a, b} ∈ H

s.t. (a, n1, n2, b) is a path in G
}

(3.2)

3.2 clique-width of the primal graph 40

and

VN B
⋃

EN . (3.3)

At this point we have considered all induced cycles in G ∪ H but
have encountered some nondistinctive pairs. The nondistinctive pairs
are represented by the graph (VN , EN). For each edge {n1, n2} in EN ,
we have to remove either n1 or n2. This corresponds with finding a
maximal subset D ⊆ VN , such that the D-induced subgraph of (VN , EN)

contains no edges. Therefore at least one element of each nondistinctive
pair is not element of D. Then we cut all vertices in VN\D and have
hereby disconnected all paths of the form (a, n1, n2, b). Since D is a
maximal subset, VN\D is a minimal cut.

Now we actually have to find this maximal subset D. D is a max-
imal independent set. In general the problem of finding a maximal
independent set is NP-complete. However, by Proposition 3.9 finding a
maximal independent set is in PTIME for cographs. We will show in
Lemma 3.12 that actually (VN , EN) is a cograph. Therefore we can find
a maximal independent set D in polynomial time.

Here the algorithm terminates successfully. The minimal cut set of
the RVMC problem is C ∪ (VN\D).

In order to prove the correctness of the algorithm, we first note
that every cut we make is necessary. We just have to check that we
have actually disconnected all terminal pairs. Let (a, n1, ..., nl , b) be an
arbitrary path between a terminal pair {a, b}. In G ∪ H, (a, n1, ..., nl , b)
is a cycle because {a, b} ∈ H. Because of Lemma 3.8 we know that
there are indices i and j in {1, ..., l} such that either (a, b), (a, ni, b) or
(a, ni, nj, b) are induced cycles in G ∪ H. In all these cases we have
disconnected a and b - if this is possible at all. Therefore (a, n1, ..., nl , b)
is also disconnected. �

Lemma 3.12. The nondistinctive graph (VN , EN), as defined by Formula (3.2)
and (3.3), is a cograph.

Proof. To show this we will use the following characterization of a
cograph:

Cographs are all graphs whose connected induced sub-
graphs have diameter at most 2.

It follows immediately from this characterization that induced sub-
graphs of cographs are also cographs. Let us consider

Eind
N B {{n1, n2} ∈ EG : n1 ∈ VN ∧ n2 ∈ VN ,

3.2 clique-width of the primal graph 41

where C is the trivial set defined by Formula (3.1). Eind
N is a superset of

EN and (VN , Eind
N) is the induced subgraph G[VN]. Therefore (VN , Eind

N)

is a cograph.
We observe that EN = Eind

N \X with

X B {{n1, n2} ∈ EG : @{a, b} ∈ H s.t. (a, n1, n2, b) is a path}.

Hence, we just have to show that we do not lose the cograph property by
removing all edges {n1, n2} ∈ X from Eind

N . We do this by removing one
edge at a time and by showing at each step that we still have a cograph.
Let {n1, n2} be an edge in X. We have to check that the remaining
subgraph has no connected induced subgraphs with diameter > 2.
There are three cases how this could happen:

1. A vertex v0 was connected with n2 by the path (v0, n1, n2). Now v0

and n2 are still connected but the shortest path is (v0, v1, .., vl , n2)

where l ≥ 2.

2. A vertex v0 was connected with n1 by the path (n1, n2, v0). Now v0

and n1 are still connected but the shortest path is (v0, v1, .., vl , n1)

where l ≥ 2.

3. Now n1 and n2 are still connected but the shortest path between
n1 and n2 is (n1, v1, .., vl , n2) where l ≥ 2.

We will show that neither of those cases is possible.
Case 1: Because of Lemma 3.4 there has to exist b ∈ {v1, .., vl} such

that (v0, b, n2) is a path. Hence, the distance of v0 and n2 is 2. This
contradicts the assumption that (v0, v1, .., vl , n2) was the shortest path.

Case 2 is symmetrical to case 1.
Case 3: For the vertex n1 to be element of VN , it is required that

there is a non-terminal vertex n3 and terminal vertices a and b, such
that (a, n1, n3, b) is a path in G. Since the edge {n1, n2} < EN , certainly
n3 , n2. (n2, n1, n3, b) is a path on four vertices in G ∪ H and therefore
either {n2, n3}, {n1, b} or {n2, b} have to be edges. Figure 10 shows
these cases. Since none of these edges is a pair of terminal vertices, they
have to be edges in G (and not elements of H). We will show now that
all these three cases are contradictory.

• If {n2, n3} was an edge in G, then the shortest path from n1 to n2

would be (n1, n3, n2) which contradicts the assumption that the
shortest path from n1 to n2 has length ≥ 3.

3.2 clique-width of the primal graph 42

b n3

a
n1 n2

Figure 10: A sketch for case 3 from the proof of Lemma 3.1.

• If {n1, b} was an edge in G, then (a, n1, b) is a path in G. However,
in this case n1 would be element of C and hence not element of
VN .

• If {n2, b} was an edge in G, then (a, n1, n2, b) was a path in G and
therefore {n1, n2} ∈ EN . This is a contradiction, since {n1, n2} ∈
X.

This concludes the proof. We have shown that after removing all
edges in X, all connected induced subgraphs of (VN , EN) still have
diameter ≤ 2. Hence, (VN , EN) is a cograph. �

3.2.2 EMC

A result like Theorem 3.5 also holds for EMC. In the proof we use a
corollary, which is a special case of the following theorem by El-Mallah
and Colbourn [17].

Theorem 3.13. (El-Mallah and Colbourn [17]) The Pl-EDGE DELETION
PROBLEM is NP-hard.

Pl-EDGE DELETION PROBLEM

Instance: A graph G B (V, E), positive integers n ≤ |E| and l ≥ 3

Question: Is there a set of edges E′ with |E′| ≤ n such that the graph
(V, E\E′) has no induced subgraph isomorphic to Pl?

(V, E\E′) can be seen as the graph G, where all edges in the set E′

were deleted.

Corollary 3.14. The DISJOINT CLIQUES EDGE DELETION PROBLEM
is NP-complete.

3.2 clique-width of the primal graph 43

DISJOINT CLIQUES EDGE DELETION PROBLEM

Instance: A graph G B (V, E) and positive integers n ≤ |E|
Question: Is there a set of edges E′ with |E′| ≤ n such that the graph

(V, E\E′) consists of disjoint cliques?

Proof. A graph consists of disjoint cliques if and only if it does not
contain P3 as an induced subgraph. Hence, by Theorem 3.13 this
problem is NP-hard. It is easy to see that the DISJOINT CLIQUES
EDGE DELETION PROBLEM is in NP. �

Theorem 3.15. EMC is NP-complete for input instances where cw(G ∪ H)

is bounded by a number ≥ 2.

Proof. The proof is similar to the proof of the analogous result for
UVMC (Theorem 3.5). We show that EMC is NP-hard for problem
instances where G ∪ H is a clique. As before, we can show that this
problem is equivalent to finding a subgraph consisting only of disjoint
cliques. Since we are considering the EMC problem here, we do not
delete vertices but edges. The question is: Is it possible to get a
subgraph consisting only of disjoint cliques by removing k edges. By
Corollary 3.14 this problem is NP-hard and hence EMC is also NP-
complete for input instances where cw(G∪ H) is bounded by a number
≥ 2. �

4
A N F P T A L G O R I T H M F O R V E RT E X M U LT I C U T

We have seen in the previous chapter that it is much harder to obtain
tractable algorithms for graphs of bounded clique-width than for graphs
of bounded tree-width. Ideas that work for tree-width, e.g. looking
at the primal graph, do not work for clique-width. The aim of this
chapter is to give an efficient algorithm for Vertex Multicut for graphs
of bounded clique-width. The clear advantage of such an algorithm
is that contrary to tree-width algorithms it can be used for both dense
and sparse graphs.

More precisely speaking we give a two-parameter, dynamic pro-
gramming FPT algorithm for UVMC and RVMC. The parameters are
cw(G) and |H|. Only the combination of these two parameters al-
lows for an FPT algorithm. In the previous chapter we have seen that
cw(G) alone is not enough. For bounded |H|, Multicut also remains
NP-complete [15, 35, 31].

It is reasonable to assume that both parameters are small in many
situations. cw(G) is small for both dense and sparse graphs and the size
of H does usually not depend on the input size. Therefore a typical area
of application for this algorithm would be a dense graph with a small
number of terminal pairs. Tree-width algorithms are not applicable in
this situation, since the tree-width of dense graphs is large.

We start by introducing the notion of connected component sets, which
will play a central role in the algorithm.

connected component sets

The central idea of the Multicut algorithm presented here is to keep
track of the connected components of G, while G is built accordingly
to its k-expression. Especially the connected components that contain
terminal vertices are important. As long as no terminal pair is in
a single connected component, the graph under consideration is a
solution graph. The following definition captures the idea to store all
information about "important" connected components.

44

an fpt algorithm for vertex multicut 45

Definition 4.1. Let G be a graph labeled with 1, ..., k. We define ccs(G),
the connected component set (CCS) of G. For this let c1 ⊆ VH and
c2 ⊆ {1, ..., k}. The set c1 ∪ c2 is an element of ccs(G) if and only if there
is a connected component in G

1. that contains exactly the terminal vertices in c1 and

2. whose vertices are labeled exactly with the numbers in c2. a

Intuitively a CCS describes all connected components in a graph.
Each set in a CCS corresponds to at least one connected component.
If an element of a CCS contains an element of VH, there is only one
corresponding connected component. This is because a terminal vertex
can be present in only one connected component. However, if an
element of a CCS does not contain an element of VH, there may be
many corresponding connected components.

It is worth noting that every graph G has exactly one corresponding
CCS, although, of course, different graphs can have the same CCS.

We now want to extend this concept to Vertex Multicut.

Definition 4.2. Let s be a k-expression and G(s) its corresponding
graph. Furthermore, let G be the unlabeled version of G(s). Then
CCS(G(s), H, m) is defined as the set of all ccs(G(s)[S]), where S is a
solution set for the UVMC/RVMC problem (G, H, m). a

Of course, CCS(G(s), H, m) differs for a UVMC problem and for a
RVMC problem. However, we do not make a clear distinction, since
this notion will only be used if the statements hold for both UVMC
and RVMC.

the algorithm

We give an algorithm which is FPT with regard to cw(G) and |H|. The
algorithm relies heavily on the k-expression of G. Since we do not want
to determine how the k-expression is found, we consider it as a part of
the input.

The algorithm solves the following two problems:

an fpt algorithm for vertex multicut 46

UNRESTRICTED VERTEX MULTICUT (UVMC)

Instance: The Multicut graph G B (VG, EG), its k-expression κ,
the terminal set H, the maximal cut size m.

Parameters: k and |H|
Question: Is there a cut set C ⊆ VG with |C| ≤ m, such that in

the induced subgraph G[VG\C] no terminal pair is
connected?

RESTRICTED VERTEX MULTICUT (RVMC)

Instance: The Multicut graph G B (VG, EG), its k-expression κ,
the terminal set H, the maximal cut size m.

Parameters: k and |H|
Question: Is there a cut set C ⊆ VG\VH containing no termi-

nal vertices with |C| ≤ m, such that in the induced
subgraph G[VG\C] no terminal pair is connected?

The underlying data structure is a set S of CCS together with a
function cuts from S to N. The algorithm traverses the parse tree of
the k-expression bottom-up, i.e. starting at the leaves. The subtree
rooted in each tree node represents a subexpression of κ. Let s be such
a subexpression of κ. Then Ss, the set S built by the subexpression s,
contains all possible CCS of solution graphs for the UVMC or RVMC
problem (G(s), H, m), i.e. Ss = CCS(G(s), H, m). For each CCS ∆ ∈ Ss,
cutss(∆) is the minimal number of cuts required to obtain a graph
represented by ∆ from the original graph G(s). The function cuts is
essential to discard CCS that have size greater than m. Since ∆ ∈ Ss =

CCS(G(s), H, m), cutss(∆) is always ≤ m.
Once the algorithm reaches the root node, which corresponds to the

k-expression κ, Sκ contains all possible CCS of solution graphs for the
UVMC or RVMC problem (G, H, m), i.e. Sκ = CCS(G(κ), H, m). There
is a cut set of size ≤ m if and only if Sκ is not empty.

We now give a detailed description of the algorithm. We start by
introducing the functions ren and con that will allow us to give a
succinct description of the algorithm. ren is closely related to the
ρ-operation.

an fpt algorithm for vertex multicut 47

Definition 4.3. ri←j is a function from subsets of VH ∪ {1, ..., k} to sub-
sets of VH ∪ {1, ..., k}\{j}. Let c ⊆ VH ∪ {1, ..., k}. Then it is defined
by

ri←j(c) B

c ∪ {i}\{j} if j ∈ c,

c if j < c.

reni←j is a function that maps a CCS to another CCS. Let ∆ be a CCS.
Then reni←j(∆) B

{
ri←j(c) : c ∈ ∆

}
. a

Example 4.4. Let ∆ B {{a, 1, 2}, {2}, {3}} be a CCS and a ∈ VH. Then
ren1←2(∆) = {{a, 1}, {1}, {3}}. �

The other function we want to define is con. It is closely related to the
η-operation, which often connects connected components. con captures
this "merging" of connected components in a CCS.

Definition 4.5. coni,j is a function that maps a CCS to another CCS. Let
∆ be a CCS. Then

coni,j(∆) B {c ∈ ∆ : i < c ∧ j < c} ∪
{⋃
{c ∈ ∆ : i ∈ c ∨ j ∈ c}

}
.

a

Example 4.6. Let ∆ B {{1}, {1, 2}, {1, 3}, {2}, {3}} be a CCS. Then
con1,2(∆) = {{1, 2, 3}, {3}} and con2,3(∆) = {{1}, {1, 2, 3}}. �

Furthermore, we want to introduce the predicates Valid and Vert.
Both predicates are defined for CCS. Valid checks if an η-operation
leads again to a solution graph. This is the case if after the connect
operation no terminal pair is in the same connected component.

Definition 4.7. Let ∆ be a CCS. Validi,j is defined by

Validi,j(∆) B

false if h ⊆ ⋃{c ∈ ∆ : i ∈ c ∨ j ∈ c} for an h ∈ H,

true otherwise.

a

Example 4.8. Let ∆ B {{1, a}, {2, b}, {2, 3}} be a CCS, where {a, b} is
a terminal pair. Then Valid1,2(∆) = false and Valid2,3(∆) = true. �

Verti checks if there is an i-labeled vertex in the graphs represented
by the CCS. This is the case if i is an element of an element in the CCS.

an fpt algorithm for vertex multicut 48

Definition 4.9. Let ∆ be a CCS. Verti(∆) is defined as

Verti(∆) B

true if ∃c ∈ ∆ : i ∈ c,

false otherwise.

a
Example 4.10. Let ∆ B {{1, a}, {1, 3, b}} be a CCS. Then Vert1(∆) =

true whereas Vert2(∆) = false. �
We can now describe what the algorithm does at each node in the

parse tree of the k-expression κ, depending on the operation at this
node (adding a new vertex, renaming labels, connecting vertices and
disjoint union). Since we are only interested in cut sets of size at most
m, we can discard CCS that require more than m cuts. To be precise let
s be a subexpression of κ. If Ss contains a CCS ∆ with cutss(∆) > m, ∆
is discarded before the algorithm proceeds to the parent tree node.

At the leaves of the parse tree, only vertex introductions can occur,
since this is the only 0-ary operation. Internal nodes contain the other
three operations ρ, ⊕ and η.

• i(v): (Adding a new vertex) There are two possibilities - either
remove the vertex or add it to the graph. Depending on whether
v is a terminal vertex there are two cases:

– v is a terminal vertex. This is the only part of the algorithm
which differs for UVMC and RVMC. For UVMC Si(v) B

{∅, {{i, v}}}. cutsi(v)(∅) = 1 and cutsi(v)({{i, v}}) = 0.
The CCS {{i, v}} represents the connected component that
contains the i-labeled terminal vertex v, the empty CCS
represents the empty graph. For RVMC removing v is not
an option and hence Si(v) B {{{i, v}}}.

– If v is not a terminal vertex, then Si(v) B {∅, {{i}}}. Again
cuts(∅) B 1 and cuts({{i}}) B 0.

• ρi←j: (Renaming labels) Let s be the k-expression of the subtree
below the current node ρi←j. Then

Sρi←j(s) B {reni←j(∆) : ∆ ∈ Ss},

i.e. Sρi←j(s) is generated by replacing each symbol j in the data
structure Ss with i. For each ∆new ∈ Sρi←j(s) the cuts function is
defined as

cutsρi←j(s)(∆new) B min
{

cutss(∆) : ∆ ∈ Ss ∧ reni←j(∆) = ∆new
}

.

an fpt algorithm for vertex multicut 49

• s⊕ t: (Disjoint union) Let s and t be the k-expression of the subtree
below the current ⊕-node. Furthermore, let Ss and St denote both
data structures and cutss and cutst their cuts-mappings. Then

Ss⊕t B {∆s ∪ ∆t : ∆s ∈ Ss ∧ ∆t ∈ St∧
cutss(∆s) + cutst(∆t) ≤ m} and

cutss⊕t(∆) B min{cutss(∆s) + cutst(∆t) :

∆s ∈ Ss ∧ ∆t ∈ St ∧ ∆s ∪ ∆t = ∆}.

• ηi,j: (Connecting vertices) Let s be the k-expression of the subtree
below the current node ηi←j. For each ∆ ∈ Ss there are two cases:

– {i, j} * ⋃∆, i.e. there is no i-labeled or no j-labeled ver-
tex in the graphs that are represented by ∆. Therefore no
connections are introduced and hence nothing has to be
done.

– Otherwise ∆ is replaced by coni,j(∆). However, edges might
have been added such that a terminal pair was connected.
That is the case if Validi,j(∆) is false. Then coni,j(∆) has to
be discarded, because ∆ represents graphs with a connected
terminal pair.

These two cases can be summarized by

Sηi,j(s) B
{

∆ : ∆ ∈ Ss ∧ ¬(Verti(∆) ∧Vertj(∆))
}
∪{

coni,j(∆) : ∆ ∈ Ss ∧Verti(∆) ∧
∧Vertj(∆) ∧Validi,j(∆)

}
.

The cuts function cutsηi,j(s) is defined for each ∆new ∈ Sηi,j(s) as the
minimum of the following set:{

cutst(∆) : ∆ ∈ Ss ∧ ¬(Verti(∆) ∧Vertj(∆)) ∧ ∆ = ∆new
}
∪{

cutst(∆) : ∆ ∈ Ss ∧Verti(∆) ∧Vertj(∆)∧

Validi,j(∆) ∧ coni,j(∆) = ∆new
}

.

Intuitively cutsηi,j(s) (∆new) is the minimum number of cuts of
all CCS that lead to ∆new if i-labeled and j-labeled vertices are
connected.

an fpt algorithm for vertex multicut 50

h
a

h′

g
b c

g′

Figure 11: The example graph GEx together with the example terminal set HEx.
Solid lines depict edges whereas dashed lines represent terminal
pairs.

If the algorithm has traversed the parse tree of κ up to the root node,
the algorithm terminates. There is a cut set for the RVMC/UVMC
problem of size at most m if and only if Sκ , ∅.

Theorem 4.11. The running time of the algorithm is O
(

2cw(G)+2·|H| · ‖κ‖
)

,
where ‖κ‖ denotes the number of operations in κ. Therefore the algorithm is
fixed-parameter linear.

Proof. The algorithm basically operates on CCS. CCS are subsets of
{1, ..., k} ∪ VH and hence there are 2cw(G)+2·|H| possible CCS. The op-
erations for each CCS can be done in constant time. Since the data
structure S is calculated for each subexpression of κ, we have ‖κ‖ as a
factor. �

example for rvmc

This section contains an example computation of the algorithm for the
RVMC instance (GEx, HEx, 2). GEx and HEx are shown in Figure 11.
Solid lines depict edges whereas dashed lines represent terminal pairs.
The terminal set is HEx B {{g, g′}, {h, h′}}.

Figure 12 shows the parse tree of the 3-expression κEx for the example
graph GEx. Additionally certain tree nodes are marked with s1, ..., s7.
Let s1, ..., s7 denote the subexpressions of κEx corresponding to the
subtrees rooted at these nodes. For these nodes we give the data
structure S and the cuts function.

an fpt algorithm for vertex multicut 51

η2,3

⊕
s7

ρ2←3
s5

η1,3
s4

⊕

η2,3
s3

⊕

η1,2
s2

⊕
s1

2(b) 1(h′)

3(a)

1(h)

⊕
s6

η1,3

⊕

3(c) 1(g′)

3(g)

Figure 12: The parse tree of the 3-expression κEx. s1, ..., s7 denote the subex-
pressions rooted in these nodes.

an fpt algorithm for vertex multicut 52

1. Subexpression s1. Operation in this node: ⊕
CCS cuts{

{1, h′}
}
∪
{
{2}

}
0{

{1, h′}
}
∪
{ }

1

Observe that the vertex h′ is present in every CCS, since it is a
terminal vertex.

2. Subexpression s2. Operation in this node: η1,2

CCS cuts{
{1, 2, h′}

}
0{

{1, h′}
}

1

The second CCS does not contain the label 2 and hence nothing
has to be done here.

3. Subexpression s3. Operation in this node: η2,3

CCS cuts{
{1, 2, h′} ∪ {3}

}
0{

{1, h′}, {3}
}

1{
{1, 2, h′}

}
1{

{1, h′}
}

2

These four rows correspond to (in this order): no vertex cut, vertex
b cut, vertex a cut and both a and b cut.

4. Subexpression s4. Operation in this node: η1,3

CCS cuts{
{1, 2, 3, h′} ∪ {1, h}

}
0{

{1, h′} ∪ {3} ∪ {1, h}
}

1{
{1, 2, h′}, {1, h}

}
1{

{1, h′}, {1, h}
}

2

Row 1 and 2 are not a valid CCS, since the terminal pair {h, h′} is
in one connected component. In row 3 and 4 the 3-labeled vertex
a has been cut and therefore no edges have been added.

an fpt algorithm for vertex multicut 53

5. Subexpression s5. Operation in this node: ρ2←3

CCS cuts{
{1, 2, h′}, {1, h}

}
1{

{1, h′}, {1, h}
}

2

Since no rows contain the label 3, all CCS remain unchanged.

6. Subexpression s6. Operation in this node: ⊕
CCS cuts{

{1, 3, g′}
}
∪
{
{3, g}

}
0{

{1, g′}
}
∪
{
{3, g}

}
1

In the first row no cuts have been made. In the second row the
3-labeled vertex c has been cut.

7. Subexpression s7. Operation in this node: ⊕
CCS cuts{

{1, 2, h′}, {1, h}
}
∪
{
{1, 3, g′}, {3, g}

}
1{

{1, h′}, {1, h}
}
∪
{
{1, 3, g′}, {3, g}

}
2{

{1, 2, h′}, {1, h}
}
∪
{
{1, g′}, {3, g}

}
2{

{1, h′}, {1, h}
}
∪
{
{1, g′}, {3, g}

}
3

The CCS in the last row would require more than 2 cuts and is
therefore discarded.

8. The root node. Operation in this node: η2,3

CCS cuts{
{1, 2, 3, g, g′h′}, {1, h}

}
1{

{1, h′}, {1, h}, {1, 3, g′}, {3, g}
}

2{
{1, 2, 3, g, h′}, {1, h}, {1, g′}

}
2

The CCS in the first row is not valid, since the terminal pair {g, g′}
is in one connected component. The two other rows are CCS of
solution graphs. The algorithm terminates here and yields two
solutions of the RVMC problem. Both have a cut set of size 2. The
solution in row three corresponds to the cut set {a, b} and the
solution in the last row with the cut set {a, c}. These are exactly
the RVMC solutions we found in the Multicut Example 2.15.

an fpt algorithm for vertex multicut 54

proof of correctness

The proof of correctness has two parts. The first part shows that a
UVMC or RVMC instance (G, H, m) is a YES-instance if and only if
the set CCS(G(κ), H, m) is not empty. The second part shows that the
algorithm indeed calculates CCS(G(κ), H, m).

For the following proofs we fix a UVMC or RVMC instance (G, H, m).

Theorem 4.12. There is a cut set of size at most m if and only if the set
CCS(G(κ), H, m) is not empty.

Proof. Let C be a cut set of size ≤ m and G B (VG, EG). Then the graph
G[VG\C] is a solution graph. By Definition 4.2

ccs (G[VG\C]) ∈ CCS(G(κ), H, m)

and therefore CCS(G(κ), H, m) , ∅.
On the other hand let ∆ ∈ CCS(G(κ), H, m). That means that there

has to be a solution graph G′ B (VG′ , EG′), such that ccs(G′) = ∆ and
|VG\VG′ | ≤ m. Hence, VG\VG′ is a cut set. �

Theorem 4.13. The algorithm computes Sκ = CCS(G(κ), H, m).

Proof. We show per structural induction on κ that for each subexpres-
sion s of κ

Ss = CCS(G(s), H, m)

and especially Sκ = CCS(G(κ), H, m).
In the leaf nodes of the parse tree there are only vertex introductions

i(v). A vertex can either be removed or not. This results in the possible
graphs (∅, ∅) and ({v}, ∅). The connected component set for the first
graph is

{}
; for the second one

{
{i}
}

, or
{
{i, v}

}
if v is a terminal

vertex. That is exactly what Si(v) consists of.
Now assume that Ss = CCS(G(s), H, m). In the induction step there

are three cases: ρi←j, s⊕ t and ηi,j.
First we show that Sρi←j(s) = CCS(G(ρi←j(s)), H, m). This is because

Sρi←j(s) =
{

reni←j(∆) : ∆ ∈ Ss
}

=
{

reni←j(∆) : ∆ ∈ CCS(G(s), H, m)
}

= CCS
(
G(ρi←j(s)), H, m

)
.

an fpt algorithm for vertex multicut 55

The last equality is due to the fact that renaming labels in the graph
and renaming labels directly in the CCS leads to the same CCS.

Furthermore, we have to show that if Ss = CCS(G(s), H, m) and
St = CCS(G(t), H, m), for subexpressions s and t of κ, then Ss⊕t =

CCS(G(s⊕ t), H, m). This is because

Ss⊕t = {∆s ∪ ∆t :∆s ∈ Ss ∧ ∆t ∈ St ∧
cutss(∆s) + cutst(∆t) ≤ m}

= {∆s ∪ ∆t : ∆s ∈ CCS(G(s), H, m) ∧
∆t ∈ CCS(G(t), H, m) ∧
cutss(∆s) + cutst(∆t) ≤ m}

= CCS(G(s)∪̇G(t), H, m)

= CCS(G(s⊕ t), H, m).

Finally we show that Sηi,j(s) = CCS
(
G(ηi,j(s)), H, m

)
. Using the

induction hypothesis we get

Sηi,j(s) =
{

∆ : ∆ ∈ Ss ∧ ¬(Verti(∆) ∧Vertj(∆))
}
∪{

coni,j(∆) : ∆ ∈ Ss ∧Verti(∆) ∧Vertj(∆) ∧Validi,j(∆)
}

= {∆ : ∆ ∈ CCS(G(s), H, m) ∧
¬(Verti(∆) ∧Vertj(∆))} ∪

(4.1a)

{coni,j(∆) : ∆ ∈ CCS(G(s), H, m) ∧
Verti(∆) ∧Vertj(∆) ∧Validi,j(∆)}.

(4.1b)

Let us call the set in Formula (4.1a) S1 and the set in Formula (4.1b)
S2, i.e. Sηi,j(s) = S1 ∪ S2. We have to show that

S1 ∪ S2 = CCS
(
G(ηi,j(s)), H, m

)
.

First, let ∆ ∈ S1. Since Verti(∆) ∧Vertj(∆) is false, there are either no
i-labeled or no j-labeled vertices in the graphs represented by ∆. Hence,
ηi,j does not change these graphs and ∆ ∈ CCS

(
G(ηi,j(s)), H, m

)
.

On the other hand if ∆ ∈ CCS
(
G(ηi,j(s)), H, m

)
and either Verti(∆)

is false or Vertj(∆) is false, then ∆ ∈ CCS (G(s), H, m) and therefore
∆ ∈ S1.

Now let coni,j(∆) ∈ S2. Then ηi,j adds edges in the graphs represented
by ∆. Each component containing i is connected with each component

an fpt algorithm for vertex multicut 56

containing j. This leads to one big connected component that consists
exactly of the connected components in ∆ that contain either i or j. This
transformation is captured by the function coni,j. Therefore con(i,j)(∆)
is an element of CCS

(
G(ηi,j(s)), H, m

)
.

In the opposite direction let ∆ ∈ CCS(G(ηi,j(s)), H, m) such that both
Verti(∆) and Vertj(∆) are true. Then there is a ∆′ ∈ CCS(G(s), H, m)

with coni,j(∆′) = ∆. Obviously Verti(∆) and Vertj(∆) also hold for ∆′.
Validi,j(∆′) is also true, because otherwise Validi,j(∆) would also be false.
Therefore ∆ ∈ S2.

This concludes the induction. �

applying this algorithm to emc

Since this algorithm works perfectly well for UVMC and RVMC, the
question arises if it can be extended to EMC. However, this is not
possible. In principle the CCS concept can be used for EMC. The
problem is that in case of an η-operation, we have to know how many
edges are introduced. Otherwise we would not know how many edges
have to be cut to keep two connected components apart, which is
essential to maintain solution graphs.

In order to have this information available we have to store the
number of vertices for each label and each connected component. The
problem is that this count of vertices is not unique for a CCS. A CCS
can have many possible counts of vertices.

Example 4.14. Figure 13 shows an example to highlight this problem.
Here the terminal set is {g, g′}. In the left graph the edge {g, a} has
been removed, in the right graph edge {a, b}. Both graphs have the
CCS

{
{1}, {1, g}, {2, g′}

}
. However, they lead to a different number of

cuts. Assume that the next operation is η1,2. The dashed lines show
the edges that are added with this operation. Then the right graph
requires two cuts to remain valid, whereas the left graph requires only
one. In retrospective the left graph should have been preferred to the
right graph. However, this was not known before the η1,2-operation.
Therefore the number of vertices for both the middle and the right
graph has to be stored. �

If we look at this data structure, we notice that we can no longer
bound the number of CCS by k and |H|, since the number of i-labeled
vertices in one connected component is unbounded with regard to
these two parameters. A more detailed analysis shows that the running

an fpt algorithm for vertex multicut 57

1(a)

2(g′)

1(a)

2(g′)

1(g) 1(g)

1(b) 1(b)

Figure 13: These two graphs have the same CCS but lead to different results.

time of the algorithm would contain a factor nm, where n is the input
size and m is the maximal number of cuts. Therefore the algorithm is
no longer fixed-parameter tractable. One could, of course, add m as a
parameter, but it is already known that |H| and m suffice as parameters
for fixed parameter tractability [35].

The next section shows another reason why cw(G) might be the
wrong parameter to tackle EMC. On the other hand we will see that the
clique-width of the incidence graph of the structure (VG, EG, H) allows
for a single-parameter FPT algorithm.

5
M E TAT H E O R E M S

This chapter contains results about metatheorems and their application
to Multicut. In the first section we show how the clique-width metathe-
orem can be used to obtain FPT results for Multicut. In the second
section we present an extension of Courcelle’s theorem about graphs of
bounded clique-width. The third section further explains this extension
by showing that bounded clique-width of the incidence graph implies
bounded tree-width of the graph.

5.1 the clique-width metatheorem and multicut

The metatheorem for graphs of bounded clique-width, Theorem 2.35,
would be an easy way to prove that Multicut is fixed-parameter tractable.
However, it is not directly applicable since it deals with p-graphs and
not about general structures. This section discusses how this problem
can be circumvented. We will see that the FPT results from Chap-
ter 4 also follow from the metatheorem. As remarked in Section 2.4.3,
metatheorems are constructive but do not yield algorithms feasible
for actual implementations. Therefore the results in this section do
not make the FPT algorithm of Chapter 4 unnecessary, but show an
straightforward way how to obtain fixed-parameter tractability for a
problem, specifically for Multicut.

A Multicut instance consists of the triple (G, H, m). We therefore
have to code G and H into a p-graph (for a fixed p). In general this
is not directly possible, since we would need colors for edges instead
of colors for vertices. However, if the number of terminal vertices is
bounded, we can circumvent this problem by assigning each terminal
pair a color. Recall that colors of p-graphs are considered as unary
predicates. Furthermore, let p B |H|. We then have a p-graph with a
unary predicate for each terminal pair. Let H1, ..., Hp be these unary
predicates.

58

5.1 the clique-width metatheorem and multicut 59

To apply the metatheorem we have to find MSO1 characterizations
for the Multicut problems. Gottlob and Lee [26] have already found
MSO1formulas for UVMC and RVMC. These contain the abbreviation

connects(S, x, y) ≡ S(x) ∧ S(y) ∧ ∀P
(

(P(x) ∧ ¬P(y))→ ∃v∃w(

S(v) ∧ S(w) ∧ P(v) ∧ ¬P(w) ∧ E(v, w))
)
.

For a set of vertices S ⊆ V connects(S, x, y) is true if and only if there
is a path from x to y that lies entirely in S. A detailed explanation of
connects can be found in [26]. Now UVMC can be characterized with
the following MSO1formula, where X is the cut set we are looking for:

uvmc(X) ≡ ∀x∀y
(

H(x, y)→
∀S (connects(S, x, y)→ ∃v (X(v) ∧ S(v)))

)
.

However, we cannot use this formula, since it contains H. We therefore
have to replace H(x, y) by

(H1(x) ∧ H1(y)) ∨ ...∨ (Hh(x) ∧ Hh(y)) .

This modification allows us to use the clique-width metatheorem. Our
evaluation function is the cardinality function | · |. We therefore want to
minimize |X|, which is the size of the cut set. By Theorem 2.35 we get
a fixed-parameter linear algorithm with regard to k if |H| is constant.
This means that the running time of that algorithm is O (f (k, |H|) · n),
where n is the size of the input. Therefore the algorithm is also FPL
with regard to k and |H|.

Exactly the same argumentation works for RVMC. Here we use the
formula

rvmc(X) ≡ uvmc∧ (∀x (X(x)→ ¬∃y H(x, y))) ,

where we replace H(x, y) as before.
EMC, however, has no (obvious) MSO1 characterization. EMC deals

with finding a cardinality-minimal set of edges. Quantification over
sets of edges is only allowed for MSO2. Gottlob and Lee [26] give an
MSO2 characterization of EMC:

emc(X) ≡ ∀x∀y
(

H(x, y)→
∀S(connects(S, x, y)→
∃v∃w(X(v, w) ∧ S(v) ∧ S(w)))

)
.

5.2 a clique-width metatheorem for incidence graphs 60

X is again the cut set, but in this case it is a set of edges. Therefore
it is not an LinEMSO1 problem and we cannot use the clique-width
metatheorem. That the natural logical formula for EMC requires MSO2

is another indication that bounded cw(G) might not help to solve EMC.

5.2 a clique-width metatheorem for incidence graphs

The aim of this section is to extend the clique-width metatheorem,
Theorem 2.35, to structures, where the clique-width of the incidence
graph is bounded. This will allow that an MSO2-formula - instead of
MSO1 - may be used to describe the optimization problem.

Definition 5.1. Let U be the domain of a τ-structure with R ∈ τ. R
is an n-ary symmetric relation if R(x1, ..., xn) is true implies that for
each permutation π on {1, ..., n}, R(xπ(1), ..., xπ(n)) is also true. We will
consider symmetric relations as sets that contain subsets of U with
cardinality n or formally R ⊆ U[n]. R(x1, ..., xn) is true if {x1, ..., xn} ∈
R.

A symmetric structure is a relational structure, consisting only of
symmetric relations. a

In this chapter we only consider symmetric structures. An example
for a symmetric structure is an undirected graph.

Definition 5.2. Let S B (U, R1, ..., Rl) be a symmetric structure. The
arities of the relations are r1, ..., rl . Its incidence graph

I(S) B (VI , EI , PU , P1, ..., Pl)

can be seen as a colored graph. Precisely speaking (VI , EI) is a graph
and PU , P1, ..., Pl are unary predicates.

VI contains vertices for each element in U and for each set in the
relations R1, ..., Rl . Hence,

VI B {vu : u ∈ U} ∪
l⋃

i=1

{vr : r ∈ Ri}.

The edge set is defined as

EI B
l⋃

i=1

{{vr, vx} : x ∈ r, r ∈ Ri},

5.2 a clique-width metatheorem for incidence graphs 61

va

v{a,b}

vb

v{b,c} v{a,c,d}

vc vd

Figure 14: The incidence graph of the example structure Ssym.

i.e. each vertex representing a set in a relation is connected with the
vertices representing the elements of that set. The unary relations Pi,
i ∈ {1, ..., l}, are defined as Pi = {vr : r ∈ Ri} and PU = {vu : u ∈ U}.

τ′ B {EI , PU , P1, ..., Pl} is the signature of I(S). a

Definition 5.3. In order to give a better description of the relation
between S and I(S), we define for each relation Ri in S a function
fi : Ri → {vr : r ∈ Ri} with {x1, ..., xn} 7→ v{x1,...,xn}. fU is a function
from U, the domain of S , to {vu : u ∈ U} that maps u 7→ vu. Clearly
all fi, i ∈ {1, ..., l}, and fU are bijective. For T ⊆ Ri with i ∈ {1, ..., l},
fi(T) is defined as { fi(x) : x ∈ T}.

For notational reasons we sometimes refer to fi as fRi . a

Example 5.4. Let Ssym B (U, R1, R2) be a symmetric structure with
U B {a, b, c, d}, R1 B

{
{a, b}, {a, c}

}
and R2 B

{
{a, c, d}

}
. Then its

incidence graph I (SEx) consists of the vertices

{va, vb, vc, vd, v{a,b}, v{b,c}, v{a,c,d}}.

The edges between them can be seen in Figure 14. �

We can now define LinEMSO2, which is similar to LinEMSO1 but
allows more complex optimization problems.

Definition 5.5. Let τ be a signature and let Φ be an MSO2[τ]-formula
with free second-order variables S1, ..., Sn. Furthermore, let π be a
mapping from {1, ..., n} to {0, 1, ..., l}. Then LinEMSO2[Φ] is defined as

5.2 a clique-width metatheorem for incidence graphs 62

LinEMSO2[Φ]

Instance: A symmetric τ-structure S B (U, R1, ..., Rl), a k-ex-
pression defining I(S), evaluation functions g1, ..., gn

for the free variables of Φ and opt ∈ {min, max}.
Parameter: k.

Output: Sets T1 ⊆ Rπ(1),...,Tn ⊆ Rπ(n), where R0 B U with

arity r0 B 1, such that S |= Φ [T1, ..., Tn] and
n
∑

i=1
gi (Ti)

is maximal or minimal (depending on opt).

Theorem 5.6. Let Φ be an arbitrary but fixed MSO2-formula. Then the
problem LinEMSO2[Φ] is fixed-parameter linear with regard to k.

We show this by applying theorem 2.35 to the incidence graph of S .
Since Φ is a MSO2[τ]-formula, we have to translate Φ in a MSO1[τ′]-
formula.

Definition 5.7. We define a translation function tr, which maps arbi-
trary MSO2[τ]-formulas to MSO1[τ′]-formulas. tr is defined by using
structural recursion on Φ. To allow a shorter definition we assume that
all existential quantifiers in Φ have been replaced by negated universal
quantifiers in the usual way.

• Let x1 and x2 be free first-order variables. Then

tr(x1 = x2) ≡ (x1 = x2).

• Let x1, ..., xri be free first-order variables. Then

tr (Ri(x1, ..., xri)) ≡ ∃v

Pi(v) ∧
ri∧

j=1

EI (xj, v)

 .

• Let S be a free n-ary second-order variable and let x1, ..., xn be
free first-order variables.

tr (S(x1, ..., xn)) ≡ ∃v

S(v) ∧
n∧

j=1

EI (xj, v)

 .

• Let φ and ψ be MSO2-formulas. PU(S) is an abbreviation for
∀x (S(x)→ PU(x)) and Pi(S) for ∀x (S(x)→ Pi(x)). Then

tr (φ ∧ ψ) ≡ tr(φ) ∧ tr(ψ),

5.2 a clique-width metatheorem for incidence graphs 63

tr (¬φ) ≡ ¬tr(φ),

tr(∀xφ) ≡ ∀x (PU(x)→ tr(φ)) ,

tr(∀S ⊆ Riφ) ≡ ∀S (Pi(S)→ tr(φ)) and

tr(∀S ⊆ Uφ) ≡ ∀S (PU(S)→ tr(φ)) .

a

One can easily check that for any MSO2[τ]-formula Ψ, tr(Ψ) is indeed
an MSO1[τ′]-formula.

For the rest of this section let Φ′ B tr(Φ). To begin with, we will
prove the following lemma.

Lemma 5.8. Let τ be a signature and let S B (U, R1, ..., Rl) be a symmetric
τ-structure. Let Φ be a MSO2[τ]-formula with free second-order variables
S1, ..., Sn and free first-order variables x1, ..., xm. Furthermore, let π be a
mapping from {1, ..., n} to {0, 1, ..., l}. Again R0 B U with arity r0 B 1.
Then ∀T1 ⊆ Rπ(1) ... ∀Tn ⊆ Rπ(n) and ∀u1 ∈ U ... ∀um ∈ U

S |= Φ[T1, ..., Tn, u1, ..., um]⇐⇒
I(S) |= Φ′(fπ(1)(T1), ..., fπ(n)(Tn), fU(u1), ..., fU(um)).

Proof. We prove this by structural induction on Φ. First we prove the
left-to-right direction of the equivalence:

Base cases:

• x1 = x2

Since fU is a bijection, u1 = u2 implies fU(u1) = fU(u2) for any
u1, u2 ∈ U.

• Ri(x1, ..., xri) with i ∈ {1, ..., l}
Let u1, ..., uri ∈ U such that Ri(u1, ..., uri). Then there exists
v B fi({u1, ..., uri}) ∈ VI . By Definition 5.2 v satisfies Pi(v) and
EI (fU(uj), v) for any j ∈ {1, ..., ri}.

• S(x1, ..., xn)

Let {u1, ..., un} ∈ T and T ⊆ Ri, i ∈ {0, 1, ..., l}, such that ri = n.
Then there exists v B fi({u1, ..., un}) ∈ VI . Again by Definition
5.2 v satisfies EI (fU(uj), v) for any j ∈ {1, ..., n}. Recall that
fi(T) = { fi(t) : t ∈ T} and therefore v ∈ fi(T). This proves

I(S) |= ∃v

 fi(T)
(
v
)
∧

n∧
j=1

EI (fU(uj), v)

 .

5.2 a clique-width metatheorem for incidence graphs 64

Induction steps:

• Immediate for ∧ and ¬.

• ∀xφ, where x occurs freely in φ

We know that S |= ∀xφ and hence S |= φ[u] for all u ∈ U. By
the induction hypothesis I(S) |= tr(φ)[fU(u)] for any u ∈ U.
PU = { fU(u) : u ∈ U} and hence

I(S) |= ∀x(PU(x)→ tr(φ)).

• ∀S ⊆ Ri φ, where S occurs freely in φ and i ∈ {1, ..., l}
We know that S |= ∀S ⊆ Ri φ and hence S |= φ[T] for all T ⊆ Ri.
By the induction hypothesis

I(S) |= tr(φ)[fi(T)] for any T ⊆ Ri.

Since Pi(S) guarantees S ⊆ Pi and Pi = fi(Ri), we have

I(S) |= ∀S(Pi(S)→ tr(φ)).

• The proof for the case ∀S ⊆ U φ, where S occurs freely in φ, is
analogous to the previous case.

We continue with the base cases of the right-to-left direction from
the equivalence:

• x1 = x2

Since fU is a bijection, fU(u1) = fU(u2) implies u1 = u2 for any
u1, u2 ∈ U.

• Ri(x1, ..., xri) with i ∈ {1, ..., l}
Let v ∈ VI such that Pi(v) and EI (fU(uj), v) for any j ∈ {1, ..., ri}.
Since there are edges between v and fU(uj) and fi is bijective,
fi({u1, ..., uri}) = v. Furthermore, Pi = fi(Ri). Hence, S |=
Ri({u1, ..., uri}).

• S(x1, ..., xn), where S is an n-ary second-order variable
Let T ⊆ Ri and u1, ..., un ∈ T. Furthermore, let v ∈ VI such that
fi(T)

(
v
)

and EI (fU(uj), v) for any j ∈ {1, ..., n}. Since there are
edges between v and fU(uj) and fi is bijective, fi({u1, ..., un}) = v.
Hence, S |= T({u1, ..., un}).

5.2 a clique-width metatheorem for incidence graphs 65

Induction steps:

• Immediate for ∧ and ¬.

• ∀xφ, where x occurs freely in φ

We know that I(S) |= ∀x (PU(x)→ tr(φ)) and hence I(S) |=
tr(φ)[fU(u)] for all u ∈ U. By the induction hypothesis S |= φ[u]
for all u ∈ U. Hence, S |= ∀xφ.

• ∀S ⊆ Ri φ, where S occurs freely in φ and i ∈ {1, ..., l}
We know that I(S) |= ∀S (Pi(S)→ tr(φ)) and hence I(S) |=
tr(φ)[fi(T)] for all T ⊆ Ri. By the induction hypothesis S |= φ[T]
for any T ⊆ Ri and therefore S |= ∀S ⊆ Ri φ.

• Again the proof for the case ∀S ⊆ U φ, where S occurs freely in
φ, is analogous to the previous case.

�

The proof of Theorem 5.6 is a direct consequence of Lemma 5.8.

Proof. (of Theorem 5.6) We transform Φ with the translation function
tr and get Φ′ B tr(Φ). Φ′ is an MSO1-formula. Furthermore, we
construct the incidence graph I(S). Thus we have translated the
LinEMSO2 problem into an LinEMSO1 problem. Its input is I(S), a
k-expression defining I(S) and evaluation functions g

′
1, ..., g

′
n, where g

′
i,

i ∈ {1, ..., n}, is defined as gi ◦ fri . One can easily check that the size of
this input is linear with regard to the original input. We use Theorem
2.35 to solve it in linear time. The output can be translated back into
S by applying the inverted f -functions. In this way we have found a
solution to the LinEMSO2 problem in linear time. �

This theorem can now directly be used for Multicut.

Theorem 5.9. UVMC, RVMC and EMC are FPL with cw(I(G, H)) as
parameter, where (G, H) is an abbreviation for the structure (V, E, H).

Proof. In Section 5.1 MSO1 characterizations for UVMC and RVMC and
an MSO2 characterization for EMC have been presented. Together with
those Theorem 5.6 immediately yields the FPT result. �

As a final remark we answer the question if it is enough to consider
cw(I(G)) as the parameter instead of cw(I(G, H)). This is not the case:

5.3 clique-width of incidence graphs and tree-width 66

Theorem 5.10. RVMC and EMC are NP-complete for input instances where
cw(I(G)) is bounded by a number ≥ 3.

UVMC is NP-complete for input instances where cw(I(G)) is bounded by
a number ≥ 4.

Proof. It is known that RVMC and EMC are NP-complete on trees [6, 25].
The incidence graph of a tree is again a tree. Since trees have clique-
width at most 3, RVMC and EMC are NP-complete for input instances
where cw(I(G)) is bounded by a number ≥ 3.

UVMC is NP-complete on series-parallel graphs [6]. Again the
incidence graph of a series-parallel graph remains a series-parallel
graph. Since series-parallel graphs have clique-width at most 4, UVMC
is NP-complete for input instances where cw(I(G)) is bounded by a
number ≥ 4. �

5.3 clique-width of incidence graphs and tree-width

The main result of this section is that a class of graphs with bounded
clique-width of their incidence graphs has bounded tree-width. As a
direct consequence we get that a class of graphs has bounded tree-width
if and only if their incidence graphs have bounded clique-width.

We start with the definition of incidence graphs, however this time
not for arbitrary structures but only for graphs. This is a special case
of Definition 5.2, but for better readability we fully state the definition
again:

Definition 5.11. Let G B (V, E) be a graph. Its incidence graph I(G) is
defined as the pair (VI , EI). VI contains a vertex for each element in V
and a vertex for each element in E. The first type of vertices in I(G) is
called v-vertices and the second type e-vertices. Formally

VI B {vw : w ∈ V} ∪ {ve : e ∈ E}.

The edge set EI is defined as

EI B
{
{vw, ve} : w ∈ V ∧ e ∈ E ∧ ∃x ∈ V s.t. e = {w, x}

}
,

i.e. in I(G) there is an edge between a v-vertex and an e-vertex if and
only if the corresponding edge in G connects the corresponding vertex
in G with another vertex. There is never an edge between v-vertices in
I(G) and never between e-vertices either. a

5.3 clique-width of incidence graphs and tree-width 67

Lemma 5.12. Let G be a graph and κ a k-expression for incidence graph, i.e.
I(G) = G(κ). Furthermore, let ηi,j(s) be a subexpression of κ. Without loss
of generality let there be an i-labeled v-vertex. Then in G(ηi,j(s)) exactly one
of those statements is true: (The expressions in the brackets denote the names
of the statements.)

1. (v1-e1) There is exactly one i-labeled vertex, which is a v-vertex, and
exactly one j-labeled vertex, which is an e-vertex.

2. (v1-e≥2) There is exactly one i-labeled vertex, which is a v-vertex, and
two or more j-labeled vertices, which are all e-vertices.

3. (v2-e1) There are exactly two i-labeled vertices, which are both v-vertices,
and exactly one j-labeled vertex, which is an e-vertex.

Proof. First, observe that it is correct to assume without loss of general-
ity that there is an i-labeled v-vertex, since there are no edges between
e-vertices. Furthermore, in case of an ηi,j-operation it is not possible
that there are both v-vertices and e-vertices with the same label (i or j).
If we take these remarks into account, there are exactly two cases not
listed in the lemma:

4. (v2-e≥2) There are exactly two i-labeled vertices, which are both
v-vertices, and two or more j-labeled vertices, which are all e-
vertices.

5. (v≥3-e≥1) There are three or more i-labeled vertices, which are
both v-vertices, and one or more j-labeled vertices, which are all
e-vertices.

We show that Case 4 and Case 5 are not possible. For Case 4 let a and
b be two i-labeled v-vertices and e and f two j-labeled e-vertices. After
the ηi,j-operation there is a path (a, e, b) and a path (a, f , b). Hence,
there would be two edges between a and b in G, which is not possible
since we consider only simple graphs.

For Case 5 let a, b and c be v-vertices and e an e-vertex. After
applying the ηi,j-operation (a, e, b), (a, e, c) and (b, e, c) would be paths
and therefore in G the vertices a and c would be connected by the same
edge as b and c. Hence, only the cases 1-3 are possible. �

Theorem 5.13. Let G be a graph. Then tw(G) ≤ 2 · cw(I(G))− 1.

Before starting the proof, we first define labels for notational reasons.

5.3 clique-width of incidence graphs and tree-width 68

Definition 5.14. Let s be a k-expression and G(s) its corresponding
graph. Furthermore, let v be a vertex in G(s) and i its label. Then
labelss(v) is the number of i-labeled vertices in G(s). a

Proof. (of Theorem 5.13) Let G B (V, E) be a graph and I(G) B

(VI , EI) its incidence graph. Furthermore, let κ be a k-expression
of I(G). We construct a tree decomposition (X, T) of the graph G with
width 2k − 1, i.e. the largest bag has size at most 2k. The tree T is
exactly the parse tree of κ. Therefore our bags will be labeled with
subexpressions of κ. We define the bags in X inductively:

• i(v): We distinguish between the introduction of v-vertices and
e-vertices. This is because since we are constructing a tree de-
composition for G and not for I(G), i.e. the bags contain only
v-vertices. Actually the bags should contain elements of V, but we
identify vertices in V with their corresponding v-vertices. Hence,

Xi(v) B

{v} if v is a v-vertex,

∅ if v is an e-vertex.

• ρi←j(s): Renaming of labels does not change the graph and there-
fore

Xρi←j(s) B Xs.

• s ⊕ t: Here we have to take the union of the bags Xs and Xt.
Potentially this could lead to a bag of size 4k. However, we will
put only vertices of those labels in the bag that may later appear
in an η-operation. From Lemma 5.12 we know that if there are
more than two v-vertices with the same label, there cannot be a
η-operation using that label. Therefore we will discard all vertices
that share a label with two or more vertices:

Xs⊕t B {v ∈ Xs ∪ Xt : labelss⊕t(v) ≤ 2} .

• ηi,j(s): Here we have to distinguish the three cases presented in
Lemma 5.12.

– (v1-e1) Let v be the v-vertex and e the e-vertex. Further-
more, let w be the (unique) remaining v-vertex, which is

5.3 clique-width of incidence graphs and tree-width 69

connected with e. If the edge between w and e has already
been introduced in G(s), then

Xηi,j(s) B Xs.

If the edge between w and e has not yet been introduced in
G(s), then

Xηi,j(s) B Xs ∪ {w}.

This rule will be essential to satisfy Condition 2 for tree
decompositions (Definition 2.26).

– (v1-e≥2) and (v2-e1): Here

Xηi,j(s) B Xs.

This concludes the construction of the tree. It remains to show that
this is indeed a tree decomposition of width 2k− 1.

We start by showing per induction on the tree that the maximal size
of a bag is 2k. At the leaves the size of a bag is 0 or 1. ρ-operations
do not change the size of a bag. Let s and t be subexpressions of
κ. For ⊕-operations note that there are k different labels and hence
Xs⊕t cannot contain more than 2k vertices. In the η-operation cases
(v1-e≥2) and (v2-e1) no vertices are added. Only in the (v1-e1) case one
additional vertex may be added. For the subexpression ηi,j(s) let v
be the v-vertex and e the e-vertex. Furthermore, let w be the (unique)
remaining v-vertex which is connected with e. If the edge between w
and e has already been introduced in G(s), then no vertex is added to
the bag. Therefore let us assume that the edge between w and e has
not yet been introduced in G(s). There are two possibilities how this
edge will be introduced later on: (v1-e1) and (v1-e≥2). In both cases
w is the only vertex with its label, i.e. labelss(w) = 1. Therefore if w
has already been introduced in G(s) but has not yet been connected to
e, w is certainly in the bag Xs and hence the

∣∣∣Xηi,j(s)

∣∣∣ = |Xs|. If w has
not been introduced yet, there are no j-labeled v-vertices, just j-labeled
e-vertices. Hence, the bag Xs has size at most 2k− 2 and by adding
w to it the size is at most 2k− 1. Also note that until w and e will be
connected, the only j-labeled vertices can be e-vertices. Furthermore,
until the edge {e, w} is introduced, w will be the only vertex that will
be connected to the j-labeled e-vertices. Hence, w is the only v-vertex

5.3 clique-width of incidence graphs and tree-width 70

that is "assigned" to the label j. Therefore all bags in X have size at
most 2k.

It remains to check that the previously defined tree is indeed a
tree decomposition. For this we have to check the three conditions in
Definition 2.26.

• (Each x ∈ V has to be element of at least one Xs, s subexpression
of κ):

This is trivially true, since each x ∈ V appears at least in a leaf
bag, or more precisely vx appears for each x ∈ V.

• (Each edge e ∈ E has to be a subset of at least one Xi, i ∈
{1, ..., n}):
Let e = {x, y} with x, y ∈ V. Without loss of generality assume
that when I(G) is built accordingly to κ, the edge {vx, ve} is
introduced before the edge {vy, ve}. As before we do not really
distinguish between vx and x, vy and y and ve and e. According
to Lemma 5.12 there are 3 possibilities how the edge {vx, ve} is
introduced:

1. (v1-e1) In this case both x and y are in the bag. Since there
is no edge between vy and ve, y has been added to the bag.
Also x is in the bag since it is the only vertex with its label.

2. (v1-e≥2) In this case at least two e-vertices of the same label
are to be connected to vx. Since both e-vertices have the same
label, later on both would be connected to vy. This would
result in at least two edges from x to y in G. Since G is a
simple graph, this case is not possible.

3. (v2-e1) Here vx and vy have the same label and there are no
other vertices with this label. Hence, both vx and vy are in
the bag, since only vertices are discarded if there are more
than 2 vertices of the same label.

• (If Xi and Xj both contain v ∈ V, then each tree node on the path
between node Xi and Xj has to contain v):

The only way how this might fail is if a v-vertex is discarded
because there are three or more vertices of its label and then re-
introduced by a (v1-e1) η-operation. However, that is not possible,
since a (v1-e1) η-operation requires that the v-vertex is the only
one of its label.

5.3 clique-width of incidence graphs and tree-width 71

�

Theorem 5.15. Let G be a class of graphs. Then G has bounded tree-width if
and only if the incidence graphs of G have bounded clique-width.

Proof. Let the tree-width of all graphs G in G be bounded by k. Then
for all G ∈ G we know that

tw(I(G)) ≤ k + 1

by [27]. This implies by Theorem 2.28 that

cw(I(G)) ≤ 3 · 2k + 1.

The other direction follows directly from Theorem 5.13. �

6
C O N C L U S I O N

6.1 an overview of the results

We have presented a detailed complexity analysis of the Multicut prob-
lem with regard to clique-width. Furthermore, we have found an
efficient FPT algorithm for Vertex Multicut and two PTIME algorithms
for RVMC on cographs. The following table summarizes these com-
plexity results and puts them in context of previously known results.
As usual the Multicut instance is given as the tuple (G, H, m).

Parameters UVMC RVMC EMC

tw(G) NP-c [6] NP-c [6] NP-c [25]
in PTIME for

tw(G) = 1

cw(G) NP-c (Thm 3.1) NP-c (Chp 3.1.3) NP-c (Thm 3.2)

in PTIME for

cw(G) ≤ 2

tw(G ∪ H) FPT [26] FPT [26] FPT [26]

cw(G ∪ H) NP-c (Thm 3.5) in PTIME for

cw(G ∪ H) ≤ 2
NP-c (Thm 3.15)

|H| NP-c [35] NP-c [31] NP-c [15]

cw(G), |H| FPT (Chp 4) FPT (Chp 4)

tw(G), |H| FPT [31] FPT [31] FPT [31]

m, |H| FPT [35] FPT [35] FPT [35]

cw(I(G)) NP-c (Thm 5.10) NP-c (Thm 5.10) NP-c (Thm 5.10)

cw(I(G, H)) FPT (Thm 5.9) FPT (Thm 5.9) FPT (Thm 5.9)

In addition to these results, we have found an extension of the clique-
width metatheorem for classes of graphs, where the clique-width of
the incidence graphs is bounded. We also have proved that a class of
graphs has bounded tree-width if and only if their incidence graphs
have bounded clique-width.

72

6.2 future work 73

6.2 future work

So far only evidence has been collected that EMC might not be in
FPT with cw(G) and |H| as parameters. The exact complexity of this
parameterized problem is an open problem. A detailed analysis as for
example in [22] might yield interesting results.

The algorithm presented in Chapter 4 uses connected component
sets, which contain subsets of VH ∪ {1, ..., k}. It would be enough to
consider subsets of H ∪ {1, ..., k}, i.e. which decreases the size of this
set from 2|H|+ k to |H|+ k. This would reduce the running time of
the algorithm to O

(
2cw(G)+|H| · ‖κ‖

)
(see Theorem 4.11 for notational

details). Also an implementation of this algorithm would offer further
information about its applicability.

Furthermore, there are some other parameters worth studying:

• Is the maximal vertex degree of the graph (VH, H) a useful param-
eter? Does for example cw(G) together with the maximal degree
allow for an FPT algorithm?

• Does cw(G) and m, the maximal size of the cut, allow for an FPT
algorithm?

• Is the diameter of (VH, H) a useful parameter?

• Rank-width is a width parameter closely related to clique-width.
However, it has the advantage that decompositions can be found
far more easily. Hence, it would be worthwhile to find out if the
algorithm in Chapter 4 can be modified to work with rank-width
or if a new algorithm is necessary.

• Signed clique-width, a notion introduced in [20], could be adapted
for the Multicut problem. It seems that by encoding both G and
H this could be used to obtain a single-parameter FPT algorithm.

A
A P P E N D I X : G A N Z O H N E O R A K E L

This story is an attempt to explain some of the concepts and results
in this thesis in an entertaining way. It is written for – but certainly
not limited to – a non-scientific audience. The language of this story is
German. It is my hope that this does not exclude potential readers. If it
does, I want to apologize.

Since this is somewhat of an experiment, I am very interested in
feedback of any sort.

Martin Lackner,
lackner@dbai.tuwien.ac.at

ganz ohne orakel

Unsere Geschichte beginnt am Olymp, der schon seit Anbeginn der
Zeit ein beliebter Treffpunkt zahlreicher Götter war. Auch heute noch –
nicht zuletzt wegen der akzeptablen Getränkepreise – ist er gut besucht.
So sitzen auch an diesem Sonntag Vormittag zwei Stammgäste in einer
wolkenverhangenen Ecke und spielen Schach. Der eine, mit hünenhafter
Statur, ist Hephaistos, Gott des Feuers, der Schmiedekunst und der
Vulkane. Ihm gegenüber sitzt ein Jüngling mit blonden Locken, schlank
und auch sonst in starkem Kontrast zu seinem Gegenüber. Hier, in
Griechenland, ist er unter dem Namen Eros bekannt, da ihm aber
der Name Amor lieber ist, wollen wir ihn auch so nennen. Amor
lungert auf seinem Sessel herum und rührt abwesend mit einem seiner
Pfeile in einem Becher Himbeerbowle. Hephaistos hingegen starrt mit
verbissener Miene auf das Schachbrett und hat noch keinen Schluck
von dem Guinness genommen, das vor ihm steht.

Aber wir wollen unsere Aufmerksamkeit fürs Erste nicht auf die
beiden Götter sondern auf das Schachbrett lenken, denn dort hat die

74

appendix : ganz ohne orakel 75

schwarze Dame, gespielt von Hephaistos, den weißen König arg in
Bedrängnis gebracht. Ihre feuerroten Locken und die schwarze Rüstung
verstärken ihre Bedrohlichkeit noch weiter. Der weiße König, fern all
seiner Untergebenen, steht mit Schweiß auf der Stirn an den Rand des
Spielbretts gedrängt, während die schwarze Dame Schritt für Schritt
näherkommt. Hephaistos blickt mit grimmiger Genugtuung auf das
Brett, wo seine Dame kurz davor ist, der blutrünstigen Natur des
Spiels entsprechend den gegnerischen Monarchen zu erdolchen. Doch
dem ist nicht so. Anstatt dem weißen König das Leben zu nehmen,
beugt sie sich vor und drückt ihm einen Kuss auf den Mund. Nur
wenige geflüsterte Worte später verlassen die beiden Hand in Hand
das Spielfeld.

Hephaistos tobt: „WAS? Wie kannst du es wagen? Du kannst nicht
einfach alles mit ... deiner verdammten Liebe lösen!"1 Amor hört auf in
seinem Getränk zu rühren und antwortet mit einem Grinsen: „Doch.
Kann ich.“ Die Gesichtsfarbe von Hephaistos nähert sich der Farbe von
Magma. „Ich werde ... Eine Götterwette. Ja, eine Götterwette. Nie und
nimmer kannst du DAS mit deiner Liebe in etwas Gutes verwandeln!“
Mit diesen Worten schlägt er mit seinem massiven Schmiedehammer
auf den Boden. Tausende Kilometer entfernt, unter Island, beginnen
sich Magmamassen zu bewegen und bahnen sich ihren Weg in Rich-
tung Erdoberfläche. Nur wenig später beginnt ein Vulkan2 Asche, Lava
und Rauch zu spucken. Mehr und mehr und mehr. „Und jetzt zeige
mir, Bürschchen, wie du da etwas mit deiner Liebe machen kannst.“
Mit gespielter Zuversicht grinst ihn Amor an: „Nichts leichter als das.
Nichts leichter als das.“ Die beiden schütteln sich noch die Hand und
die Wette ist besiegelt. Amor gewinnt die Götterwette, wenn er mit
seinen Kräften aus dem Vulkanausbruch etwas Gutes machen kann.
Zuversichtlich verlässt er den Olymp.

An dieser Stelle muss sich die Leserin oder der Leser auf einen plötzli-
chen Ortswechsel gefasst machen, nämlich nach Madrid. Solche Orts-
wechsel werden in dieser Geschichte noch oft vorkommen, weil Götter
sehr flott reisen können und sich wenig um Zoll und Passkontrollen
kümmern. Wir befinden uns auf dem Flughafen Madrid-Barajas. Dort

1 Man muss an dieser Stelle hinzufügen, dass Hephaistos einige Entäuschungen mit
„der verdammten Liebe“ erleben musste. Die Geschichte mit Aphrodite hat sich sogar
bis zu den Sterblichen herumgesprochen.

2 Nach bester isländischer Tradition hat dieser Vulkan einen gänzlich unaussprechlichen
Namen, der sich hauptsächlich aus ‘æ’s, ‘jö’s und ‘fj’s zusammensetzt.

appendix : ganz ohne orakel 76

lernen sich seit ein paar Minuten Myra und Thorsten kennen. Myra,
sehr entspannt, wartet auf ihren Flug in ihre Heimatstadt Chicago, der
erst in drei Stunden starten wird. Thorstens Flug nach Berlin hingegen
geht in 45 Minuten. Das heißt, er muss spätestens in einer Viertelstunde
in Richtung Sicherheitskontrolle aufbrechen. Das ist nicht viel Zeit,
vor allem nicht genug Zeit um dieses Gespräch zu einem Punkt zu
bringen, wo Thorsten es wagen würde, ein weiteres Treffen vorzuschla-
gen. Nachdem Myra über 7000 km entfernt wohnt, ist so ein Treffen
nichts, was so spontan vorgeschlagen werden kann. „Ein bisschen mehr
Zeit, nur ein bisschen mehr Zeit“, denkt Thorsten, während Myra von
Franz Kafka schwärmt, der auch der Lieblingsautor von Thorsten ist.
Im Hintergrund beobachtet Amor dies und langsam beginnt sich in
seinen Gedanken eine Idee zu formen.

Wieder Ortswechsel, diesmal zum Oslo International Airport. Dort
sitzen, nur fünf Sitze von einander entfernt, Luc und Clémentine. Die
beiden waren zusammen in der Schule und dort enge Freunde. Fast
sogar mehr als enge Freunde, doch als dann Clémentine ins Ausland
ging, riss ihr Kontakt ab. Aber wie es der Zufall so will, denken die
beiden gerade aneinander. Bloß gesehen haben sie sich noch nicht. Und
es wirkt so, als würde das auch nicht mehr passieren, denn Clémentine
macht sich gerade auf, um zu ihrem Flugzeug zu gehen. „Wenn aller-
dings ihr Flug ausfallen würde", murmelt Amor und sein Plan nimmt
Gestalt an.

„Insgesamt habe ich auf 31 Flughäfen in Europa solche Szenen be-
obachtet. Alle bräuchten nur etwas mehr Zeit, genauer gesagt: ihre
Flüge müssten entfallen", schließt Amor seine Erzählung. Zeus, seines
Zeichens Göttervater, Herr des Himmels und des Wetters, hebt eine
Augenbraue. „Eine Götterwette zwischen dir und Hephaistos ... wieder
einmal. Ich nehme an, du wirst mir gleich erklären, wie ich dir helfen
kann.“ Zeus seufzt schwer und lehnt sich in seinem Ledersessel zurück.
Während er die letzten Wetterdaten auf dem Monitor vor sich überprüft,
deutet er in Richtung Amor fortzufahren. Dieser ignoriert gekonnt Zeus’
Unmut. „Also diese 31 Paare sind auf 31 verschiedenen Flughäfen in
Europa. Wäre es dir nicht leicht möglich, die Aschewolke des Vulkans
so zu verblasen, dass diese Flughäfen gesperrt werden müssen? Damit
hätte ich genügend Zeit, mit ein paar wohlplatzierten Pfeilen für ein
wenig Romantik zu sorgen.“ Amor setzt ein gewinnendes Lächeln auf.

Zeus überlegt. Eigentlich war ihm ganz und gar nicht nach solchen
Spielereien zu Mute. Er hatte alle Hände voll zu tun, seit dieser Vulkan
ausgebrochen war. Seine gewöhnlichen Wettermodelle waren wertlos

appendix : ganz ohne orakel 77

mit so viel Asche in der Luft. Womit er dann aber doch wieder bei
dieser Wette wäre. Es würde ihm zumindest ein bisschen Genugtuung
verschaffen, wenn er es Hephaistos etwas heimzahlen könnte, das Wet-
ter so in Unordnung gebracht zu haben. „Nun gut, mal schauen was
ich machen kann.“ Zeus startet auf seinem Computer eine Aschewol-
kensimulation.

Ein paar Minuten später blickt Zeus wieder von seinem Computer
auf. Das entspannte Lächeln auf Amors Gesicht und der Fruchtcocktail
in seiner Hand zeigen vor allem eins: Er hält sich bereits für den
Sieger. Für Zeus ist das alles andere als klar: „Nun gut, hör zu. Die
schlechte Nachricht: Ich kann nicht 31 Flughäfen überdecken. Dazu ist
zu wenig Asche in der Luft und die Zeit ist zu kurz. Was ich kann –
und das ist das absolute Maximum – ist Asche über 25 Flughäfen zu
verteilen. Die gute Nachricht ist, dass das eventuell genug sein könnte.
Thorsten, den du vorher erwähnt hast, hat einen Flug von Madrid
über Wien nach Berlin. Und Clémentine von Oslo über Frankfurt nach
Wien. Es würde also genügen, wenn Wien gesperrt ist, um beide Flüge
zu verzögern. Wenn wir alle Startflughäfen, Zielflughäfen und auch
alle Zwischenstopps berücksichtigen, sind insgesamt 67 Flughäfen für
deine Idee relevant. Die Frage die sich also stellt: Ich kann 25 dieser
67 Flughäfen blockieren. Genügt dies um alle 31 Flüge ausfallen zu
lassen?"

Amor ist für viel bekannt – aber nicht unbedingt für seine Geduld:
„Und? Geht es sich aus?“ „Nun ja, da beginnen die wirklich schlechten
Nachrichten. Diese Fragestellung – also ob 25 blockierte Flughäfen ge-
nug sind zum Ausfall aller 31 Flugverbindungen – ist NP-vollständig.“
„NP-was?“ „NP-vollständig. Das sind Fragestellungen, für die es sehr
leicht überprüfbar ist, ob eine potentielle Lösung korrekt ist, aber das
tatsächliche Finden der Lösung ... das ist eine andere Frage. Hätten wir
die Lösung für unser Problem, also eine Liste von 25 Flughäfen, wäre
es kein Problem, zu überprüfen, ob diese Lösung korrekt ist. Dies kann
getan werden, indem man überprüft, ob es keine Flugverbindungen
mehr zwischen den Start- und Zielflughäfen gibt.“ „Ja, aber wie finden
wir diese 25 Flughäfen?“ Man merkt wie unangenehm es für Zeus ist,
die folgende Antwort zu geben: „Ehrlich gesagt, am besten du befragst
ein Orakel. Die Korrektheit des Orakelspruchs können wir dann ja
anschließend überprüfen.“ Amor hat deutlich weniger Vorbehalte bei
der Wahl seiner Hilfsmittel. „Nichts leichter als das. Wenn ich mich
beeile, sollte das Orakel in Delphi heute eigentlich noch offen haben."

appendix : ganz ohne orakel 78

Wiederum ein plötzlicher Ortswechsel. Amor ist inzwischen in Del-
phi angekommen und spaziert pfeifend auf das Orakelgebäude zu. Auf
dem Schild vor dem modernen Bürogebäude steht nur ‘Oracle Con-
sulting Inc.‘. Als Amor gerade die Gegensprechanlage betätigen will,
erscheint eine hünenhafte Gestalt direkt hinter ihm. „Amor, Amor, das
war doch zu erwarten. Nachdem du keine Idee hast, wie du diese Wette
gewinnen kannst, willst du nun vom Orakel eine Lösung.“ Hephaistos
blickt verärgert auf Amor herab. „Du weißt so gut wie ich, dass die
Verwendung von Orakeln bei Götterwetten verboten ist. Regel 1: Ganz
ohne Orakel.“ Amor überlegt noch kurz, mit Hephaistos zu diskutieren,
aber er kennt dieses Leuchten in Hephaistos’ Augen nur zu gut – hier
kann er nicht mit Nachsicht rechnen.

Als Zeus sich den Bericht von Amor angehört hat, lässt er sich nach-
denklich in seinen Sessel zurücksinken. „Du erinnerst dich daran, dass
es für NP-vollständige Fragestellungen einfach zu überprüfen ist, ob
eine mögliche Lösung korrekt ist oder nicht. Ein Computer könnte
also alle möglichen Orakelsprüche erzeugen und dann überprüfen, ob
eine dieser Antworten korrekt ist. Ich fürchte nur, dass dies viel zu
lange dauert. Oder genauer gesagt“, Zeus lässt wieder seine Finger
über die Tastatur seiner Computers fliegen, „mehr als sechs Monate.“
Amor runzelt verwirrt die Stirn. „Sechs Monate? So viel Zeit habe ich
nicht! Ich dachte du hast ein Großrechenzentrum zur Verfügung?“ Zeus
antwortet ruhig: „Ja, das habe ich. Aber das Problem sitzt tiefer. Ein
Großrechenzentrum rechnet schon viel schneller als ein Laptop, aber
im Grunde haben sie die gleichen Möglichkeiten und Beschränkungen.
Also insbesondere keinen Zugang zu Orakeln.“

Amor überlegt. Dies sind nicht die Probleme, mit denen er sich
normalerweise auseinandersetzt. Seiner Erfahrung nach ist es immer
eine gute Idee, bei Problemen Blumen zu schenken, aber wie dies in
der momentanen Situation weiterhilft, will ihm nicht einfallen. „Gibt
es nicht irgendeine andere Möglichkeit? Braucht man wirklich ein
Orakel? Gibt es nicht eine schnellere Möglichkeit so ein Orakel mit
deinem Rechenzentrum zu simulieren?“ Amor ist immer noch sehr
verwundert, dass eine Halle voller Computer nicht augenblicklich jede
Antwort berechnen kann. Zeus lächelt leicht. „Da bist du auf eins der
größten Probleme der modernen Informatik und Mathematik gestoßen.
Die Frage, ob sich Orakel schnell am Computer simulieren lassen, oder
P=NP?, wie die Frage in der Wissenschaft genannt wird, ist nach wie
vor ungelöst. Aber die meisten Wissenschaftler sind davon überzeugt,

appendix : ganz ohne orakel 79

dass es nicht möglich ist Orakel zu ersetzen. Beziehungsweise, da
Menschen ohnehin keinen Zugang zu Orakeln haben, lautet die Frage,
ob es wirklich notwendig ist, alle möglichen Orakelsprüche überprüfen
zu lassen.“

„Ich ...“, Thorsten ist am Ende seiner Weisheit, „Es war ... schön dich
kennen gelernt zu haben.“ Das ist nicht das, was er eigentlich sagen
will, aber es ist das, was er gesagt hat. „Vielleicht ... sehen wir uns ja
wieder“, sagt Myra und Thorsten nickt ohne Überzeugung. Das war es,
denkt Thorsten.

Amor will sich so schnell nicht geschlagen geben: „Da muss es doch
noch eine andere Möglichkeit geben. Da Menschen überhaupt keinen
Zugang zu Orakeln haben, müssen sich doch schon Leute über dieses
Problem Gedanken gemacht haben!“ Nach etwas Überlegen meint
Zeus: „Eine Möglichkeit fällt mir noch ein. Unser Problem ist ja, dass
es viel zu viele mögliche Lösungen gibt – oder anders gesagt: viel zu
viele mögliche Orakelsprüche. Dies liegt daran dass sich die Anzahl
der Orakelsprüche bei jedem Flughafen mehr als verdoppelt. Bei 67

Flughäfen ergibt dies eine gigantische Zahl. Aber manchmal ist die
Größe des Problems, also in unserem Fall die Anzahl der involvierten
Flughäfen, gar nicht so relevant. Manchmal gibt es Eigenschaften des
Problems, so genannte Parameter, die viel wichtiger sind als die Größe.
Wenn ein solcher Parameter klein ist, kann man ein Problem schnell
lösen, obwohl es viel zu lange dauern würde, alle möglichen Lösungen
durchzuprobieren. Die Disziplin, die sich mit solchen Überlegungen
beschäftigt, heißt Parametrisierte Komplexitätstheorie. Vielleicht hilft
uns dieser Ansatz weiter.“

Amor runzelt die Stirn. „Du meinst also, wir müssen so einen Pa-
rameter finden? Und wenn der dann für unser Problem passend ist,
finden wir schnell eine Lösung? Wie findet man so einen Parameter?“

„Am besten wir zeichnen unser Problem einmal auf.“ Zeus faltet
einen großen Bogen Papier auf und macht für jeden Flughafen einen
Punkt darauf. Dann beginnt er Flugverbindungen einzuzeichnen. Für
Thorsten verbindet er Madrid mit Wien und Wien mit Berlin, für Clé-
mentine Oslo mit Frankfurt und Frankfurt mit Wien. Nach kurzer Zeit
bildet sich ein dichtes Netz aus Linien auf dem Papier. Amor starrt
ratlos darauf. „Hier soll man einen Parameter erkennen?“ „Probiere
es. Das ist meine letzte Idee“, antwortet Zeus und beugt sich über den
Papierbogen.

Nach ein paar Minuten reibt sich Amor die Augen. „Egal wie viel
ich darauf starre, das einzige was ich sehe, ist, dass fast jeder Flug-

appendix : ganz ohne orakel 80

hafen mit fast jedem anderen verbunden ist. Wenn das nicht zufällig
ein Parameter ist, dann hab ich echt keine Idee.“ Zeus schüttelt den
Kopf. „Nein, das ist kein Param– Moment. Vielleicht ist es das, was wir
wollen. Einen Moment, ich bin gleich wieder da.“

Zeus spaziert die schier endlosen Bücherreihen in seiner Bibliothek
entlang und lässt seinen Blick schweifen. So sehr er auch im Laufe
des letzten Jahrhunderts die Vorzüge der modernen Technologie zu
schätzen gelernt hat, seine Bibliothek zu digitalisieren, hat er noch
nicht über das Herz gebracht. Es war einfach ein erbauendes Gefühl, zu
sehen, wieviel Wissen und Erkenntnis die Menschheit hervorgebracht
hat. So ist es seine Hoffnung, dass sich vielleicht schon jemand über
Amors Problem Gedanken gemacht hat. Dank einer guten Mischung
aus Fernsicht, göttlicher Intuition und einer Portion Glück bleiben seine
Augen ein wenig später an einer gebundenen Diplomarbeit hängen.
‘Complexity results and algorithms for Multicut on graphs of bounded
clique-width‘ist der klobige Name. An dieser Stelle macht sich Zeus’ In-
teresse an Theoretischer Informatik bezahlt, denn zumindest ein wenig
sind ihm die Begriffe vertraut.

„Ich glaube, ich habe ‘and‘, ‘for‘, ‘on‘, ‘of‘ verstanden, aber nicht
einmal da bin ich mir ganz sicher.", meint Amor, als Zeus ihm den Titel
der Arbeit vorgelesen hat. „Bist du sicher, dass das irgendetwas mit
Aschewolken zu tun hat?“ Zeus lächelt. „Nun ja, nicht direkt. Aber
Multicut ist genau das Problem, über das wir uns Gedanken machen.
Bei dem Multicut-Problem geht es um die Suche nach Punkten, die
weggeschnitten werden können, um eine Anzahl von verbundenen
Anfangs- und Endpunkten zu trennen. Und das ist genau das, was wir
brauchen. Wir haben viele Punkte, beziehungsweise Flughäfen, die mit
Linien, oder eben Flugverbindungen, verbunden sind. Darüber hinaus
gibt es noch 31 Anfangs- und Endpunkte, so wie Madrid und Berlin
für Thorsten oder für Clémentine Oslo und Wien. Und wir haben 25

Schnitte zur Verfügung um diese 31 Anfangs- und Endflughäfen zu
trennen.“

Amor ist noch nicht überzeugt: „So weit waren wir doch schon. Ich
dachte dieses Problem lässt sich ohne Orakel nicht in vernünftiger Zeit
lösen?“ „Da hast du Recht. Im Allgemeinen können wir dieses Problem
nicht schnell lösen, aber in manchen Spezialfällen schon. Hier kommt
die Parametrisierte Komplexitätstheorie wieder ins Spiel. Diese Arbeit
zeigt nämlich, wie man das Problem schnell lösen kann, wenn es ent-
weder sehr viele oder wenige Verbindungen gibt. Das steckt in ‘graphs

appendix : ganz ohne orakel 81

of bounded clique-width’ und trifft genau auf unseren Fall zu. Wie du
glücklicherweise bemerkt hast, sind nahezu alle Flughäfen miteinander
verbunden. Somit können wir diese Ergebnisse verwenden.“

„Nun gut, nun gut“, Amor spielt nervös mit seinen Locken, „Wie
lange dauert das also nun? Viel Zeit ist nicht mehr.“ Zeus wendet
sich wieder seinem Computer zu und startet die Berechnungen. Nach
einiger Zeit zieht er eine goldene Taschenuhr aus seiner Jackettasche
und wirft einen nachdenklichen Blick darauf. „Nun ja .. es wird knapp.“

In Madrid sitzt Thorsten inzwischen im Flugzeug. Um ihn herum
befüllen die Leute die Gepäckfächer. Er starrt trübsinnig durch das klei-
ne Fenster. Auch Clémentine blickt durch ihr Fenster auf das Rollfeld
des Oslo International Airport. In ihr beginnt sich das unbestimmte
Gefühl zu verstärken, irgendwas vergessen zu haben. Oder verpasst?
Beiden, Thorsten und Clémentine, steigt in diesem Moment der selbe
Gedanke in den Kopf: Ist es möglich, dass sich das Bauchgefühl nicht
irrt? Kann es sein, dass es das beste wäre, aufzustehen und dieses
Flugzeug zu verlassen? Macht das Sinn? Nach kurzem Nachdenken
verneinen beide die Frage. Amor hätte sich an dieser Stelle an den
Kopf gegriffen, wenn er diese Gedanken gehört hätte. Schon oft hatte
er feststellen müssen, dass Menschen bei kaum einer Frage mehr irrten,
als bei der, ob es Sinn macht, von ihrem geplanten Weg abzuweichen.
Amors Erfahrung zufolge machte das immer Sinn.

Amor geht unruhig von einer Seite des Zimmers zur anderen. Er
hofft inständig, dass diese Berechnungen bald fertig sein werden. Bei
dem Gedanken an Hephaistos verkrampft sich sein Magen. Es ist ein
ungeschriebenes Gesetz, dass bei einer Götterwette der Verlierer dem
Sieger einen Wunsch gewährt. Bei Hephaistos wäre das gewiss nichts
Nettes. Zuletzt hatte er eine Woche in seiner Schmiede arbeiten müssen.
Der Geruch von Rauch war tagelang nicht von ihm gewichen. Und jetzt
hing alles an diesem seltsamen Multicut-Problem und Parametrisierter
Komplexitätstheorie! Die Welt war manchmal schon ein überraschend
seltsamer Ort, selbst für ihn als Gott.

In dem Moment tönt Zeus ruhige Stimme durch den Raum: „Fertig.“
Amor fährt herum. „Fertig? Das waren doch nur ...“ Zeus blickt wie-
derum auf seine Taschenuhr. „3 Minuten.“ Er lächelt – bis ihn Amor
stürmisch umarmt. Zeus schiebt ihn mit Nachdruck wieder von sich
weg. „Schon gut, schon gut. Ich mache mich jetzt besser daran ein paar
Aschewolken über Europa zu verteilen.“ Doch Amor lässt sich nicht

appendix : ganz ohne orakel 82

so leicht abwimmeln. „Also sag, wie hat das funktioniert? Zuerst 6

Monate und dann doch nur drei Minuten?“
„Diese Diplomarbeit enthält eine Methode, mit der die Berechnungs-

dauer nicht mehr wirklich von der Anzahl der Flughäfen abhängt,
sondern nur mehr von der Anzahl der Paare und der ‘clique-width‘.
Auch in Summe sind diese beiden Parameter deutlich geringer als die
Anzahl der Flughäfen. Und schon ein minimaler Unterschied zwischen
diesen beiden Werten erlaubt die Berechnung der Lösung in einem
Bruchteil der Zeit. Man kann also sagen, dass Multicut relativ schnell
lösbar ist, solange es nicht zu viele Paare gibt und die meisten Flughä-
fen verbunden sind.“

Es ist noch nicht viel Zeit vergangen, als Thorsten schnellen Schrit-
tes zurück in die Wartehalle eilt. Die erfreuliche Mitteilung des Piloten,
dass der Flug aufgrund einer Aschewolke abgesagt werden muss, klingt
noch in seinen Ohren nach. Dort, wo er sie zurückgelassen hat, sitzt
immer noch Myra. Ihre Blicke treffen sich. Und beide lächeln.

Clémentine geht wesentlich ruhiger zurück zur Wartehalle. So recht
will sich bei ihr Ärger darüber nicht einstellen, dass ihr Flug ausgefallen
ist. Unbewusst steuert sie zurück zu ihrem vorigen Sitzplatz. In diesem
Moment fällt ihr Blick auf Luc. Obwohl einige Jahre vergangen sind,
erkennt sie ihn sofort. Erinnerungen steigen in ihr hoch. Als würde er
die Blicke spüren, blickt Luc auf. Auch er erkennt sie sofort. Und beide
lächeln.

Wir befinden uns wieder am Olymp, dort wo alles seinen Anfang
nahm. Der schwarze König tobt. Mit lautem Geschrei und wilden Ges-
ten jagt er seine Untergebenen über den Spielplan. Die Schmach der
letzten Partie sitzt ihm noch tief in den Knochen. Von der eigenen Dame
verraten. Mehr und mehr umkreist er mit seinen Truppen den gegne-
rischen König. Doch die weiße Dame wehrt heldenhaft jeden Angriff
ab. Man könnte fast meinen, die Angriffe zielen nicht auf den König
sondern auf die Dame ab. Auf die weiße Dame mit den feuerroten
Locken.

„Dir ist schon bewusst, dass du meinen König attackieren musst und
nicht meine Dame?“, sagt Amor grinsend. Hephaistos knurrt verächt-
lich und meint: „Diese Verräterin erwische ich noch.“ „Ich glaube nicht.
Schach.“ Hephaistos reißt die Augen auf. Wiederum ein Knurren von
ihm, dann schleudert er das Schachbrett vom Tisch. Als er sich wie-
der beruhigt hat und einen großen Schluck Guinness genommen hat,

appendix : ganz ohne orakel 83

wendet er sich wieder Amor zu. „Nun gut, ich gebe mich geschlagen.
Vielleicht steckt in deiner Liebe doch irgendetwas ...“ Er bricht ab. Für
ein paar Sekunden starrt er in sein Glas und spricht dann weiter: „Du
hast die Götterwette also gewonnen und dir steht ein Wunsch frei. Was
willst du?“ Es ist offensichtlich, dass die Nachdenkpause von Amor
nur gespielt ist. „31 Paare, auf Flughäfen überall in Europa, haben
soeben ein wenig Zeit bekommen. Ich wünsche mir von dir 62 neu
geschmiedete Pfeile für meinen Bogen.“ Hephaistos nickt. „Ach ja“,
fügt Amor hinzu, „eins wollte ich dir noch sagen: Es geht auch ganz
ohne Orakel.“

Für Mimi,
die mich davon überzeugt hat,

diese Geschichte tatsächlich aufzuschreiben.

B I B L I O G R A P H Y

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems
for tree-decomposable graphs. J. Algorithms, 12(2):308–340, 1991.
(Cited on page 25.)

[2] Hans Bodlaender. Treewidth: Algorithmic techniques and results.
In Mathematical Foundations of Computer Science 1997, volume 1295

of Lecture Notes in Computer Science, pages 19–36. Springer Berlin /
Heidelberg, 1997. (Cited on page 23.)

[3] Hans Bodlaender. Treewidth: Characterizations, applications, and
computations. In Graph-Theoretic Concepts in Computer Science, vol-
ume 4271 of Lecture Notes in Computer Science, pages 1–14. Springer
Berlin / Heidelberg, 2006. (Cited on page 23.)

[4] Hans L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11:1–23, 1993. (Cited on page 23.)

[5] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph
classes: a survey. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1999. ISBN 0-89871-432-X. (Cited on
pages 14 and 19.)

[6] Gruia Calinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts
in unweighted graphs and digraphs with bounded degree and
bounded tree-width. Journal of Algorithms, 48(2):333 – 359, 2003.
(Cited on pages 9, 19, 30, 33, 66, and 72.)

[7] Derek G. Corneil and Udi Rotics. On the relationship between
clique-width and treewidth. SIAM J. Comput., 34(4):825–847, 2005.
(Cited on page 23.)

[8] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear
recognition algorithm for cographs. SIAM Journal on Computing,
14(4):926–934, 1985. (Cited on page 38.)

[9] Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin. Mini-
mal multicut and maximal integer multiflow: A survey. European
Journal of Operational Research, 162(1):55–69, 2005. (Cited on page 9.)

84

bibliography 85

[10] Bruno Courcelle. Graph rewriting: An algebraic and logic ap-
proach. Handbook of theoretical computer science, volume b: formal
models and sematics, pages 193–242, 1990. (Cited on pages 9 and 25.)

[11] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique
width of graphs. Discrete Applied Mathematics, 101(1-3):77 – 114,
2000. (Cited on pages 20, 23, and 33.)

[12] Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-
order logic, and a conjecture by Seese. J. Comb. Theory Ser. B, 97(1):
91–126, 2007. (Cited on page 25.)

[13] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg.
Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci.,
46(2):218–270, 1993. (Cited on page 19.)

[14] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear
time solvable optimization problems on graphs of bounded clique-
width. Theory Comput. Syst., 33(2):125–150, 2000. (Cited on pages 10

and 26.)

[15] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou,
Paul D. Seymour, and Mihalis Yannakakis. The complexity of
multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994. (Cited
on pages 9, 19, 44, and 72.)

[16] Rodney G. Downey and Michael R. Fellows. Parameterized Com-
plexity. Springer, 1999. (Cited on page 24.)

[17] Ehab S. El-Mallah and Charles J. Colbourn. The complexity of
some edge deletion problems. IEEE transactions on circuits and
systems, 1988. (Cited on page 42.)

[18] David Eppstein. Parallel recognition of series-parallel graphs.
Information and Computation, 98(1):41 – 55, 1992. (Cited on page 30.)

[19] Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan
Szeider. Clique-width is NP-complete. SIAM J. Discrete Math., 23

(2):909–939, 2009. (Cited on page 23.)

[20] Eldar Fischer, Johann A. Makowsky, and Elena V. Ravve. Counting
truth assignments of formulas of bounded tree-width or clique-
width. Discrete Applied Mathematics, 156(4):511–529, 2008. (Cited
on page 73.)

bibliography 86

[21] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Birkhäuser, 2006. (Cited on page 24.)

[22] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket
Saurabh. Clique-width: on the price of generality. In SODA
’09: Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 825–834, Philadelphia, PA, USA, 2009. So-
ciety for Industrial and Applied Mathematics. (Cited on page 73.)

[23] Markus Frick and Martin Grohe. Deciding first-order properties
of locally tree-decomposable structures. J. ACM, 48(6):1184–1206,
2001. (Cited on page 19.)

[24] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990. ISBN 0716710455. (Cited on page 27.)

[25] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-
dual approximation algorithms for integral flow and multicut in
trees. Algorithmica, 18(1):3–20, 1997. (Cited on pages 25, 30, 66,
and 72.)

[26] Georg Gottlob and Stephanie Tien Lee. A logical approach to
multicut problems. Information Processing Letters, 103(4):136 – 141,
2007. (Cited on pages 9, 10, 11, 34, 59, and 72.)

[27] Georg Gottlob and Reinhard Pichler. Hypergraphs in model check-
ing: Acyclicity and hypertree-width versus clique-width. SIAM J.
Comput., 33(2):351–378, 2004. (Cited on page 71.)

[28] Martin Grohe. Descriptive and parameterized complexity. In Proc.
CSL’99, Volume 1683 of LNCS, pages 14–31. Springer-Verlag, 1999.
(Cited on page 27.)

[29] Martin Grohe. Algorithmic Meta Theorems. In Graph-Theoretic
Concepts in Computer Science, 34th International Workshop, WG 2008,
Durham, UK, Lecture Notes in Computer Science. Springer, 2008.
(Cited on page 25.)

[30] Jiong Guo and Rolf Niedermeier. Fixed-parameter tractability and
data reduction for multicut in trees. Networks, 2005. (Cited on
page 9.)

bibliography 87

[31] Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and
Johannes Uhlmann. Complexity and exact algorithms for multicut.
In SOFSEM 2006: Theory and Practice of Computer Science, 32nd
Conference on Current Trends in Theory and Practice of Computer
Science, Merín, Czech Republic, January 21-27, 2006, volume 3831 of
Lecture Notes in Computer Science, pages 303–312. Springer, 2006.
(Cited on pages 9, 44, and 72.)

[32] Frank Harary. Graph Theory. Westview Press, 1994. (Cited on
page 37.)

[33] Petr Hliněný, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width
Parameters Beyond Tree-width and their Applications. The Com-
puter Journal, 51(3):326–362, 2008. (Cited on page 19.)

[34] Stephan Kreutzer. Algorithmic meta-theorems. CoRR,
abs/0902.3616, 2009. (Cited on page 25.)

[35] Dániel Marx. Parameterized graph separation problems. In Theor.
Comput. Sci., volume 351, pages 394–406. 2006. (Cited on pages 44,
57, and 72.)

[36] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2002. (Cited on page 27.)

[37] Sang-il Oum. Approximating rank-width and clique-width quickly.
ACM Transactions on Algorithms, 5(1), 2008. (Cited on page 23.)

[38] Sang-il Oum and Paul Seymour. Approximating clique-width and
branch-width. J. Comb. Theory Ser. B, 96(4):514–528, 2006. (Cited
on page 19.)

[39] Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Multicut
algorithms via tree decompositions. In Algorithms and Complexity,
7th International Conference, CIAC 2010, Rome, Italy, May 26-28, 2010.
Proceedings, Lecture Notes in Computer Science, pages 167–179.
Springer, 2010. (Cited on page 28.)

[40] Richard M. Karp. Reducibility Among Combinatorial Problems.
Complexity of Computer Computations, 1972. (Cited on page 31.)

[41] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstruc-
tions to tree-decomposition. J. Comb. Theory, Ser. B, 52(2):153–190,
1991. (Cited on page 19.)

bibliography 88

[42] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a
forest. J. Comb. Theory, Ser. B, 35(1):39–61, 1983. (Cited on page 19.)

[43] Zhifeng Sun. Multicut survey. Technical report, 2008. URL http://

www.ccs.neu.edu/home/austin/papers/multicut.pdf. (Cited on
page 9.)

[44] Egon Wanke. k-NLC graphs and polynomial algorithms. Discrete
Appl. Math., 54(2-3):251–266, 1994. (Cited on page 19.)

[45] Mihalis Yannakakis. Node- and Edge-Deletion NP-Complete Prob-
lems. In Conference Record of the Tenth Annual ACM Symposium on
Theory of Computing, 1-3 May 1978, San Diego, California, USA, pages
253–264, New York, NY, USA, 1978. ACM. (Cited on page 35.)

http://www.ccs.neu.edu/home/austin/papers/multicut.pdf
http://www.ccs.neu.edu/home/austin/papers/multicut.pdf

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Summary of the results
	1.2 Organization

	2 Preliminaries
	2.1 Basic definitions
	2.2 Multicut problems
	2.3 Graph decompositions
	2.4 Parameterized complexity theory

	3 Complexity results
	3.1 Graphs of bounded clique-width
	3.2 Clique-width of the primal graph

	4 An FPT algorithm for Vertex Multicut
	5 Metatheorems
	5.1 The clique-width metatheorem and Multicut
	5.2 A clique-width metatheorem for incidence graphs
	5.3 Clique-width of incidence graphs and tree-width

	6 Conclusion
	6.1 An overview of the results
	6.2 Future work

	A Appendix: Ganz ohne Orakel
	Bibliography

