
A secure global time base for
time triggered systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Teschnische Informatik

eingereicht von

Haris Isakovic
Matrikelnummer 0325697

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter PUSCHNER
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Christian El-Salloum

Wien, 26.08.2011
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

A secure global time base for
time triggered systems

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Computer Science

by

Haris Isakovic
Registration Number 0325697

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter PUSCHNER
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Christian El-Salloum

Vienna, 26.08.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Haris Isakovic
Hagenmüllergasse 27-33/105, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

Without the people around me the completion of this thesis would not have been possible.
I owe my deepest gratitude to Univ.Ass. Dipl.-Ing. Dr.techn. Christian El-Salloum, who

made the work on this thesis possible. He supported me as a mentor and a colleague throughout
this endeavour and showed an excellent competence by doing so.

I would like to thank Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner for evaluating my
work and providing me with the most helpful insights in the process.

A special thanks to my dear friend and colleague Emir Causevic. We shared this experience
from the beginning and he provided me with the invaluable help, support, and most of all an
unforgeable time.

To all the collogues at the Real-Time Systems Group of the University of Vienna I would
like to express my sincere gratitude for their assistance and friendship.

I am indebted to my beloved girlfriend Nerma as she encouraged and motivated me during
all this time.

Most of all I would like to thank my family: my mother Enisa, my father Sefik nad my sister
Nerma. Their suport has been essential all these years and it is an honour to be able to thank
them like this.

iii

Abstract

Time-Triggered protocols provide high dependability and guaranteed timeliness and are present
in many distributed real-time applications today. They provide various services such as clock
synchronisation, membership, redundancy management etc. The ever growing demand for de-
pendable real-time systems imposes new requirements on these communication protocols. One
of the open challenges is security.Current implementations of time-triggered communication
protocols are not focused on security and their protection against malicious attacks is weak or
non-existing.

Time-triggered systems are based on a consistent notion of time. The functionality of all
essential services in these systems depends on this time, therefore it is of vital importance that
the global time is secured against malicious attacks (i.e. unauthorized modification).

The main task of this thesis is to design a security layer for the Time-Triggered Architecture
(TTA) with a focus on implementing a secure and fault tolerant clock synchronisation algorithm.
The approach consists of a platform-independent security layer realized on top of the existing
clock synchronisation algorithm provided by the underlying time-triggered communication pro-
tocol. In this thesis we use Time-Triggered Ethernet as an implementation platform.

Our security layer protects the global time from many different kinds of malicious attacks
like the fabrication, modification, replay, delay or speed up of clock synchronization messages.
Our approach is based on an interplay of asymmetric and symmetric ciphers, and provides a
high level of security while keeping the resource overhead low.

The feasibility of our approach is demonstrated by carefully selected experiments, that show
how the time base of unprotected standard time-triggered protocols can be attacked, and how
our security layer reliably detects such attacks. Furthermore, various tests have been conducted
in an experimental setup in order to measure the computational overhead and the general usage
of system resources.

v

Kurzfassung

Zeitgesteuerte Protokolle bieten hohe Zuverlässigkeit und garantiertes zeitliches Verhalten und
werden heutzutage in vielen verteilten Echtzeitanwendungen eingesetzt. Sie bieten verschiedene
Dienste wie z.B. Uhrensynchronisation, Membership, Redundanz-Management etc. Der ständig
steigende Bedarf nach zuverlässigen Echtzeitsystemen stellt neue Anforderungen an die Kom-
munikationsprotokolle. Eine der noch offenen Herausforderungen ist die Informationssicherheit
(auf English Security). Die aktuellen Implementierungen von zeitgesteuerten Kommunikations-
protokollen sind nicht auf Informationssicherheit ausgerichtet und ihr Schutz gegen bösartige
Attacken ist nicht ausreichend.

Zeitgesteuerte Systeme benötigen eine konsistente Sicht der Zeit im gesamten System. Die
Funktionalität aller essentiellen Dienste in diesen Systemen hängt von der Zeit ab. Deshalb ist
es von entscheidender Bedeutung, dass die globale Zeit gegen bösartige Attacken gesichert ist.

Die Hauptaufgabe dieser Diplomarbeit ist die Entwicklung einer Sicherheitsschicht für die
Time-Triggered Architecture (TTA) mit dem Schwerpunkt auf einer sicheren und fehlertole-
ranten Uhrensynchronisation. Der Ansatz besteht aus einer plattformunabhängigen Sicherheits-
schicht oberhalb des bestehenden Uhrensynchronisationsalgorithmus. In dieser Arbeit verwen-
den wir Time-Triggered Ethernet (TTE) als eine Implementierungsplattform.

Unsere Sicherheitsschicht schützt die globale Zeitbasis vor verschiedenen bösartigen An-
griffsarten, z.B. der Fälschung, der Modifikation, der Wiederholung, oder der Verzögerung oder
der Beschleunigung der Uhrensynchronisationsnachrichten. Unser Ansatz basiert auf einem
Wechselspiel von asymmetrischen und symmetrischen Verschlüsselungsverfahren, und bietet
ein hohes Sicherheitsniveau, mit geringem Ressourcenverbrauch.

Die Realisierbarkeit des Ansatzes wird durch sorgfältig ausgewählte Experimente demons-
triert. Die Experimente zeigen, wie die Zeitbasis des ungeschützten normalen zeitgesteuerte Pro-
tokolls angegriffen werden kann, und wie unsere Sicherheitsschicht solche Angriffe zuverlässig
erkennt. Darüber hinaus werden verschiedene Tests in einer Versuchsanordnung durchgeführt,
um den Rechenaufwand und den allgemeinen Ressourcenverbrauch zu messen.

vii

Contents

List of Figures xi

List of Tables xiii

List of algorithms xv

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2

2 Related Work 5
2.1 IEEE 1588 . 5
2.2 Secure Time Synchronization Protocols for Sensor Networks 6
2.3 Security Platforms for Time Triggered Systems 7

3 Basic Concepts 9
3.1 Distributed Real-Time Systems . 9
3.2 The Time-Triggered Architecture . 14
3.3 Time-Triggered Ethernet . 19
3.4 Security Concepts . 27

4 System Model 33
4.1 Security Threats and Requirements . 34
4.2 The Secure Clock Synchronization Algorithm 35
4.3 Summary of the System Model . 39

5 Implementation 41
5.1 Hardware . 41
5.2 System Software . 43
5.3 Development, Debugging and Evaluation Tools 46

ix

5.4 Application Software . 47
5.5 Summary of the Development Environment 55

6 Experimental Evaluation 57
6.1 Attack Scenario . 57
6.2 Experimental Setup . 58
6.3 Experiments . 59

7 Conclusion 65

Bibliography 67

x

List of Figures

3.1 Real-Time System . 10
3.2 Distributed Real-Time System . 12
3.3 Node of a Distributed Real-Time System . 13
3.4 Node of a Time-Triggered Architecture . 14
3.5 Time-Triggered Architecture Cluster . 15
3.6 Single event on two different clocks. 16
3.7 π/∆-precedence . 16
3.8 Sparse time-base . 17
3.9 TTE Message Format . 19
3.10 Time-Triggered Ethernet Cluster . 21
3.11 TTE Time Format . 23
3.12 TTE Message Periods and Offsets . 24
3.13 TT Synchronization Message . 25
3.14 TT Data Message . 26
3.15 Symmetric Encryption Scheme . 29
3.16 Message Authentication Code Scheme . 30

4.1 A man-in-the-middle attack on the global time . 34
4.2 Layer perspective of TTE . 35
4.3 Secure clock synchronization protocol . 36
4.4 Sequence diagram of the secure clock synchronization protocol. 38

5.1 Soekris net4801 . 42
5.2 TT Ethernet Switch . 44
5.3 Software structure of the implementation . 48
5.4 Authentication Protocol Schedule . 49
5.5 Development Environment . 56

6.1 Normal mode: Schreenshots of individual measurements 58
6.2 Normal operation: Oscilloscope screenshot . 59

xi

6.3 Normal mode: Drift offset trend function . 60
6.4 Undetected attack: Oscilloscope schreenshot . 61
6.5 Undetected attack: Drift offset trend function . 62
6.6 Active authentication protocol: Oscilloscope screenshot 63
6.7 Active authentication protocol: Drift offset trend function 64

xii

List of Tables

3.1 TTpM Control Field . 26
3.2 TTsM Control Field . 26

5.1 Authentication Protocol Schedule . 49

xiii

List of Algorithms

1 The secure clock synchronization algorithm of the master node. 51
2 Sign and Update Task of the master node . 51
3 Verify Slave Time Task of the master node . 51
4 The secure clock synchronization algorithm of a slave node. 52
5 Authenticate and Update Task of a slave node 52
6 Verify Membership Vector Task for a slave node 53

xv

CHAPTER 1
Introduction

This thesis explores a special kind of computer systems called embedded systems [1]. This
special class of computers systems are a computer system integrated in a larger system with
strictly defined tasks. In most cases they are connected with a mechanical subsystem, user
interface and communication system. The use of embedded systems is extensive, they can be
found in every modern kitchen appliance, almost every car has one, and they control the flight
control systems in an airplane. Embedded systems are used in many applications and every
day more and more people depend their correct service. They are expected to control both
non critical systems and safety critical systems with great reliability. Therefore they have to be
protected against both, accidental and malicious faults. Each fault in a safety critical system can
cause a large safety risk and endanger human lives.

Although they operate as individual units, providing in most cases only few, their power is
the connectivity in a larger distributed system. The communication system used for the coordi-
nation of the single embedded computers in the network must be reliable and secure. A failure
in the communication infrastructure may lead to the failure of the entire system.

One of the communication methods used in large number of embedded applications is time-
triggered communication [2]. The strength of the time triggered communication is its determin-
ism. To establish determinism, the communication protocol implements a clock synchronization
algorithm to establish a global notion of time for all members in the network. Only then the com-
munication and the execution of tasks can be considered to be deterministic. This is the most
important requirement on every time triggered system. If the clock synchronization algorithm
is in any way dysfunctional the determinism is lost, and the whole system is compromised. The
clock synchronization can be disabled with a malicious attack and doing so, endangers the entire
system. If the system is safety critical, the extent of the damage could be catastrophic with even
human casualties (i.e. car failure while driving).

The goal of this thesis is to isolate potential weak spots of the global time base of time-
triggered systems and to provide a reliable security policy which will be able to protect against
various any attacks against the global time base. This security policy integrated with other
security methods will constitute a security platform for embedded time-triggered systems.

This security policy is implemented as a security overlay for current clock synchronization

1

algorithms. It implements all security techniques and tools needed for the secure clock synchro-
nization without changing the actual algorithm clock synchronization.

1.1 Contribution

In the scope of this thesis a security layer is developed which provides a secure global time
base for time triggered systems. The secure layer is implemented on top the Time Triggered
Ethernet [3] protocol.

First, the potential security threats are identified. The security properties violated by these
threats are identified requirements for a security model. Based on this model an algorithm is
developed for the protection of the global time base. The design also considers the cryptographic
methods required to achieve the security properties.

For the implementation of the design a development environment is built. It provides all
necessary hardware and software for the Time Triggered Ethernet system. The development
environment is designed as a generic platform and can be used for other research projects, in the
area of the computer communication.

Finally several experiments are performed to test the implemented security layer on Time
Triggered Ethernet. The achieved results show significant improvement of the security of the
global time base in Time Triggered Ethernet.

1.2 Outline

The thesis is structured as follows:

• Chapter 3 describes basic terms and concepts in the field of real-time systems, distributed
systems, Time Triggered Ethernet Protocol and security of computer systems. The chapter
gives an introduction on time-triggered communication and cryptography.

• Chapter 2 gives a short overview of two current implementations of secure clock synchro-
nization and the description of various research projects which can be integrated with the
main concepts and the results of this thesis to create a more complete security platform
for the Time-Triggered Architecture.

• Chapter 4 describes the system model for the secure clock synchronization protocol. In
this chapter malicious threats on the global time base of time-triggered systems are iden-
tified and measures to counteract potential attacks are proposed. The secure clock syn-
chronization protocol is designed as security layer on top of the existing time triggered
Ethernet protocol. It uses cryptographic tools to achieve authentication and other security
properties.

• Chapter 5 provides an overview of the development environment and all its components.
The hardware, software and the tools for development, debugging and evaluation are de-
scribed. It also gives a detailed description of the implementation of the model for Time
Triggered Ethernet. This includes the description of the configuration data and the algo-
rithms used to implement the secure clock synchronization algorithm.

2

• Chapter 6 describes the experiments performed for the evaluation of the secure clock syn-
chronization protocol implemented on Time Triggered Ethernet. The experiment shows
that the global time is indeed vulnerable with respect to malicious attacks and that these
attacks can be prevented, with the security model described in the Chapter 4.

• Chapter 7 contains the final words on the thesis and a discussion of the results acquired
from the experiments.

3

CHAPTER 2
Related Work

The protection of clock synchronization protocols against malicious attacks is the concern and
the research field of many scientists over the last few years. There are several clock synchro-
nization protocols which implement security mechanisms for the protection against malicious
attacks. Although many of these protocols are designed for embedded systems they provide no
efficient solution for securing the clock synchronization in a time triggered architecture [2]. In
this chapter two secure clock synchronization protocols are described: a clock synchronization
of the IEEE 1588 standard [4], and a secure clock synchronization protocol for wireless net-
works [5]. Also a security platform designed for time-triggered systems is described and the
integration of this thesis with other research projects to create this kind of a security platform
for the time-triggered systems.

2.1 IEEE 1588

The IEEE 1588 is a standard for network clock synchronization also called Precision Time Pro-
tocol (PTP). It is created for networked measurements and control systems, telecom applications
and industrial applications. The main task of the protocol is to provide clock synchronization
in distributed systems. The protocol operates on the master/slave 1 principle. For establishment
of the necessary relationships it uses the Best Master Clock (BMC) algorithm.This algorithm
provides division of masters throughout the network so that each part of the network that has no
PTP connection with the rest of the network has one clock master. The main time source for the
entire network is named a grandmaster clock. All clocks in the network first exchange informa-
tion about their stability and accuracy and then the master clock is chosen. After the master is
chosen, the rest of nodes have the role of a slave nodes. The precision of the clock synchroniza-
tion of the PTP can be achieved in nanosecond ranges on packet oriented networks.Beside the
master and slave clocks the PTP has also transparent clocks. The task of these clocks is to serve
as switches and to maintain the precision of the clock synchronization.

The most of the applications using PTP have low security requirements, but still there are
also applications which require high security requirements on clock synchronization. These

1Communication protocol where single device called master controls other devices called slaves.

5

applications come mostly from the field of the industrial applications. The highest threats on
PTP systems represent so called man-in-the-middle replay attacks. These attacks use weakness
of the systems in open networks. The attacker is able to access the lines of the network to
connect a computer, which is able to cause faults in the clock synchronization systems. The
security protocol for PTP is based on following security mechanisms [4]:

• A message authentication code to verify that the message is not modified in any way.

• Message counters are implemented to prevent replay of the messages.This is resending of
messages and thus inserting the false data in for the certain time instant.

• For the acceptance of new members in the network and establishing their authenticity, a
challenge-response mechanism is implemented. This mechanism is also used to refresh
existing trust relations.

The communication of the security protocol is implemented with security associations (SAs).
The SA provides a necessary infrastructure for the security protocol. It contains a source and a
destination information (e.g. port, address), a key, a lifetime identification number, and a replay
counter. The SA is valid in only one direction. Each SA has only one source, but it can have
multiple destinations. The sender node is responsible for creating a SA. After the SA is created,
it is transmitted to the receiver. The sender decides whether it will create one SA for multiple
receivers or one SA for each receiver. The key of the SA is shared among all members which
use that SA and it serves as a secret key for message authentication algorithm. The lifetime
identification number, together with the replay counter implement a protection against replay
attacks.

The protocol requires an additional system for the distribution of the secret. It provides
protection against message modification and message replay, but it fails to provide accountability
and traceability of the actions in the network. It also provides no protection against gradual delay
or speed up, of the synchronization messages.

2.2 Secure Time Synchronization Protocols for Sensor Networks

A wireless sensor network is a network of embedded systems serving as sensors for observing
real-world phenomena. That small computational units are highly mobile devices with large
diversity of use, due to their flexibility and robustness. Again, their lack of computational power
makes them unsuitable for the implementation of usual clock synchronization protocols.In the
following text one of the approaches for the secure time synchronization in wireless sensor net-
works is described [5].The protocol is a variation of a clock synchronization protocol, specially
designed for sensor networks, with the additional security layer. The security layer provides
protection of the sensor network clock synchronization protocol against external and internal
attackers. The external attacker is a subject which intercepts a communication among nodes
and executes malicious attack to deny correct functionality. The internal attacker is a subject,
which controls one or several nodes in the network, and trough that malicious nodes create faulty
conditions in the system.The protection against external attacks can be achieved with the use of

6

message authentication. The internal attacks are more difficult. Here, the attacker can use com-
promised nodes to attack clock synchronization. If the attacker gets an access to the sensor node,
it also gets the access to its secret keys. This is why these networks require a security scheme
which can timely detect an attack.

The clock synchronization protocols for sensor networks are based on a so called single-hop
pairwise synchronization.The single-hop pairwise synchronization is a technique to synchronize
two neighbour nodes. The sensor networks are normally very dense and each node has several
neighbours. These properties are used to implement the security scheme, which uses neighbour
nodes to verify other node in its reach and detect potential attacks. The idea hides behind a fact
that wireless networks use broadcast type of communication. Every node can monitor the traf-
fic of its neighbours, including synchronization messages between synchronization pairs. Each
sensor node can easily check if the synchronization of the neighbour node is correct. The im-
plementation of the security protocol described in the research article from Li, Yanfei, Wen and
Chen [5] the secure clock is achieved by combining a reference broadcast synchronization (RBS)
with the sender-receiver model for single-hop pairwise clock synchronization. The execution of
the protocol is implemented in three phases:

• a level discovery phase,
• a synchronization phase, and
• a verification phase.

In the level discovery phase the sensor nodes are organized in a hierarchy with a root at a
base station. The base station is a computer system which provides a synchronization reference
and serves as a collector of a sensor data. In the hierarchy two connected nodes are called
neighbours. The nodes at level 1 are synchronized from the base station and all other nodes
have verifier nodes, which control the synchronization. The synchronization phase comprises a
synchronization process between each node and its parent. The two nodes synchronized from the
same parent node are called siblings. They can serve to each other as verifiers and this process
is called verification phase.

The method presented above is developed for wireless networks with single-hop synchro-
nization where the principle of operation is completely different from the time-triggered net-
works where the medium of communication is wire and the central master synchronization al-
gorithm is used.

2.3 Security Platforms for Time Triggered Systems

A security platform for time-triggered systems as described in the work of Wasicek [6] merges
several techniques to ensure the protection against malicious threats.The platform contains a
secure global time base,a message authentication for the application-level communication, and
secure start-up service for a system. The techniques used to implement this platform use features
specific for time-triggered systems, with cryptographic algorithms to provide needed security
properties.

One of the security techniques, which considerably benefits from the properties of the time-
triggered environment, is the TESLA (Timed Efficient Stream Loss-tolerant Authentication)

7

protocol [7]. TESLA represents the message authentication technique for broadcast communi-
cation. In the work of Causevic [8] the TESLA is used to achieve a secure group communication
among the members of a time-triggered network. The method is very convenient for the secure
application-level communication.

For a correct execution a TESLA based authentication algorithm requires a reliable and
secure clock synchronization algorithm like the one proposed in this thesis.

8

CHAPTER 3
Basic Concepts

This chapter describes basic definitions and concepts on distributed real time systems and real-
time communication introduced mainly by Kopetz in [1]. It also describes security concepts and
mechanisms used for the implementation. The description of the basic concepts has the goal of
familiarizing the reader with the topics used in the latter chapters of this thesis.

3.1 Distributed Real-Time Systems

If the functionality of a single application depends on the behaviour of several systems in a
network and the communication between these systems, then these systems form a distributed
system. If the functionality of such system depends not only on the correct behaviour in the value
domain of all subsystems but also on the time accurate execution of tasks and a time accurate
transmission of messages we say that the system operates under constraint of real-time and as
such is called a Distributed Real-Time System.These systems operate under a strict schedule
and even the slightest timing delay could cause faults or failures. It is therefore of essential
importance that the timeliness guarantees stay valid.

3.1.1 Characteristics of a real-time system

A Distributed real-time system is set of computer systems where the fundamental unit is a real-
time computer system. [1]

A real-time computer system is a computer system in which the correctness of the
system behaviour depends not only on the logical results of the computations, but
also on the physical instant at which these results are produced.

The real-time computer system interacts with other components through series of interfaces
forming a larger system called a real-time system. Together with the components for communi-
cation with the user and components for the control of the environment, the real-time computer
system forms a larger system, a real-time system.A man-machine interface provides connec-
tion between real-time computer and a user interface. The user interface has two basic types the

9

Operator
(Operator
Cluster)

Real-Time
Computer

System
(Computational

Cluster)

Controlled
Object

(Controlled
Cluster)

Man-Machine
Interface

Instrumentation
Interface

Figure 3.1: Real-Time System [1]

input and output. The input user interface serves a human user for the entering commands which
are than transferred by the real-time computer to the control object. The output user interface
provides information about the controlled object to the human user. The instrumentation in-
terface serves for the communication of the real-time computer with the controlled object. Its
main tasks are:

• a translation of the physical signals acquired from the sensors into data which can be
processed by the real time computer, and

• a generation of physical signals for the control environment which use them to control
actuators.

A real-time system is not limited to a single set of these components, and depending on the
application they can be implemented in groups called clusters.

The execution of the tasks in a real-time computer systems is constrained by deadlines. If the
execution of a certain task must be done inside a given deadline for the results of the task to be
valid the deadline is called firm. If a deadline is set for a task in a critical system and its violation
causes serious damage to the system the deadline is called hard. In most cases the violation of
a hard deadline causes catastrophic consequences and the complete failure of the system. In the
case of a firm deadline, a system continues to operate normally and it only discards the results
after the deadline is violated. If the violation of the deadline does not effect the system in any
way and it can be tolerated such deadline is called soft deadline.Based on this characterisation
of deadlines real-time computer systems are divided to hard (safety-critical) real-time and soft
real-time computer systems.

As mentioned before, besides functional requirements, a real-time system must also meet
temporal requirements of the application. The functional requirements are described as basic

10

functions of the real-time system computer. The temporal requirements originate from the sys-
tems where the response of the system is conditioned by the time. Real-time systems are used
in a wide range of applications and with respect to the type of the application they must possess
a adequate level of quality. The quality standards are imposed by the dependability properties
which can be classified into following four groups:

• Reliability is defined as probability that a system will provide a service for a certain
period in time, given constant failure rates.

• Safety can be interpreted as a probability of a catastrophic failure of the system or the
probability that the system will continue to provide service after a benign failure.

• Maintainability is the time needed for system to be repaired after a benign failure.

• Availability is a measure of the delivery of correct services with respect to the alternation
of correct and incorrect service.

• Security is the ability of the system to prevent unauthorized access to information or
services.

Real-time systems are modelled with the set of the significant state variables, these variables
are called real-time (RT) entities. Each of these variables belongs to a certain subsystem and
only this subsystem can change the value of the RT entity [1]. The RT entity is described by its
attributes which can be divided in static attributes, that does not change with the time (i.e. name,
type) and dynamic attributes that change with the time. A change of the value of the RT entity
is captured with observations represented as an atomic data structure composed out of the name
of the RT entity, the value of the RT entity and the time of observation. The observation is valid
only for t a limited interval, therefore it can be described as temporally accurate picture of RT
entity in time instant t and we call it real-time image [2].

3.1.2 Distributed approach

When a single application becomes too complex to be efficiently realized on a single centralized
system, the work load is divided among several systems, thus forming a system of systems. To
provide efficient functionality, the systems are interconnected and through exchange of messages
they stay coherent. If these systems are real-time systems and they are interconnected with a
real-time communication system, they form a higher level system, which is called a distributed
real-time system.

A single node of the distributed real-time system is composed out of three integral hardware
components:

• Host computer provides the computational functionality of the node.

• Communication Network Interface (CNI) ensures that operations of the communication
network are seen as generic functions observed from the side of the Host Computer, with
no concern on how they operate.

11

Real-Time Communication System

Node A Node B Node C

Node D Node E Node F

Figure 3.2: Distributed Real-Time System [1]

• Communication Controller provides physical connection to the communication net-
work.

The advantages of the distributed real-time systems in comparison to the centralized solution
stem from their ability to satisfy composability, scalability and dependability requirements.

Composability ensures that the independently created subsystems continue to provide full
functionality after integration into a larger system. All properties foreseen for the single subsys-
tems must be retained, independent from the configuration of the larger system. Each subsystem
should be replaceable so that a subsystem with a different internal implementation but with the
same functionality within the larger system can be installed instead.

Scalability of the system is determined via the ability to extend the system fundamentally
while the complexity of the system stays within controllable boundaries. It requires that there
are no limit on the extendibility of the system. The realization of the system in the form of a
distributed real-time system provides outstanding extensibility, with acceptable increase in the
complexity of the system.

Dependability of a distributed system depends on the ability of the system to achieve fault
containment, error containment and fault tolerance. If a subsystem fails the larger system will
continue to operate correctly or to achieve some safe state without any catastrophic conse-
quences.The occurrence of a fault or error must be contained on subsystem level, this enables

12

Host Computer

Communication Network Interface (CNI)

Communication Controller

Messages to and from
the Communication

Network

Figure 3.3: A node of the real-time system. [1]

designers to implement methods like a triple modular redundancy (TMR) to achieve the fault
tolerance.

The Communication System

The other integral part of the distributed real-time system is the real-time communication system.
It provides proper exchange of the messages among nodes of the system. If the transmission and
reception of the messages are actuated by an event, we say that the communication system is
event-triggered. The time instant of the message transmission is set by the host, these messages
are than transmitted to the receiver and stored in the reception buffer where they will reside
until the read event is initiated by the host of the receiver. Therefore, the timing behaviour of
the communication is not regulated by and can not be influenced by the communication system.
This type of the communication is not preferable for a distributed real-time system, because it
fails to provide a timeliness under certain conditions, like faulty senders that send more messages
then specified.

If the transport of the messages is regulated via a predefined time schedule the communi-
cation system is called time-triggered (TT). The host writes messages in to the memory of the
CNI, these messages are then transferred by the communication system to the receiver at a pre-
defined moment in time and also will be made available to the receiver host in the CNI memory
at the known time instant. This allows hosts to communicate confidently with respect to the
timing behaviour of the system. In the next Section 3.2 the basic theory about time triggered
communication systems will be discussed.

13

Input-Output Subsystem

Host Processor with Memory,
Operating System and Application

Software

TT Communication Controller

CNI

CNI

To/from Replicated
Communication Channels

Figure 3.4: A node of the time-triggered architecture. [2]

3.2 The Time-Triggered Architecture

Every system is designed with the intend to carry out certain task. The requirements of the
task and its complexity determine the design of the system. If the requirements of the applica-
tion includes high composability, scalability and dependability the usage of the time-triggered
approach would be a logical choice. The framework which enables such design is the Time-
Triggered Architecture (TTA). It allows complex applications to be decomposed into clusters
and nodes including the implementation of a system wide fault-tolerant global time.

Because the TTA is a framework for designing large distributed real-time systems the basic
building block is a node.The internal structure of the node consists out of three parts: Input-
Output Subsystem, Host Processor with Memory, Operating System with Application Software,
Time-triggered Communication Controller (Figure 3.4). Several nodes connected over the TT
communication system form a cluster (Figure 3.5). Special getaway nodes allow clusters to be
connected with one another or with some external network. This reduces the complexity of the
system and increases its dependability [2].

The communication system operates independently from the nodes and the messages are
transmitted via a priori specified time-division multiple access (TDMA) schedule. The hosts
store a message data in the CNI memory and at the given time instant this message is deliv-
ered via communication system to the CNI memory of the other node. The actions of the host
computer can be planed a priori synchronous to the TDMA schedule [2].

3.2.1 The Global Time

The consistent perception of time among all nodes, is one of the most important requirements
of the distributed real-time system. The actions of the system are executed on different nodes

14

Host

CC

Host

CC

Host

CC

Host

CC

Host

CC

Cluster Communication System

CC: Communication
Controller

Host: Host Computer

Communication Network Interface

Replicated Broadcast Chanels

Figure 3.5: Time-Triggered Architecture Cluster [2]

and it is of the essential importance that the temporal ordering of these events is guaranteed.
Each node has its own local clock periodically driven by the quartz crystal oscillator, which
generates an interrupt called microtick on each cycle. The duration between two microticks is
called granularity g of the clock.

Because of the fact that each oscillator has slightly different frequency, the clocks driven
by this oscillators will generate ticks at different rate. This is why it is impossible to perfectly
synchronize two local clocks. The difference between two clocks is called offset. The maximal
offset between two clocks in the system is called precision of the system Π.

The TTA introduces the notion of a global time to define weaker boundaries for the syn-
chronization problem. The tick of the global time (macrotick) can be defined as a set of the
microticks of the local clocks, under condition that the offset between two clocks is smaller than
the precision of the system Π. We say that the global time t fulfils the reasonableness condition
if

g < Π (3.1)

holds for all local implementations of the global time. This condition ensures that the syn-
chronization error in the system is never larger than one macrotick (Figure 3.6) [1]. After the
global time is established the temporal order of events that occur on different nodes must be
determined. In order to do this the notion of π/∆-precedence must be defined. If two events
occur on the same macrotick it means that they occurred within certain time interval π. Until the
next occurrence of the event there is a time interval ∆ (Figure 3.7). We say that a set of events
occurring on the single macrotick is a π/∆-precedent if the following condition holds:

[|z(ei)− z(ej)| ≤ π] ∨ [|z(ei)− z(ej)| > ∆] (3.2)

15

0 1 2 3 4 5 6 7 8 9

event occurence

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

denotes value of timestamp

external
observer

clock j

clock k

Figure 3.6: A timescale interpretation of the event occurance on two clocks [1].

clock k

clock j

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
clock m

π π π Δ Δ

0 1 2 3 4 5 6 7 8 9

Figure 3.7: π/∆-precedence depicted on three different clocks. [1]

The π/∆-precedence states that events of one subset within the interval π are separated from
the other subset for at least interval ∆.If the π is 0 than all events occur on the same time
instant or they are a time interval ∆ apart. At least 0/3g-precedent event set is required to
establish temporal order from the timestamps generated by the global time [1]. The time is
usually represented with a directed linear timeline with infinite number of instants between any
two occurring events. There are two representations of time [1]:

Assume a set {E} of significant events which are of importance in a particular
context. This set can be a tick of all clocks or the events of sending and receiving
messages.If these events are allowed to occur at any instant of the timeline, we call
the time base dense. If the occurrence of the events is restricted to some sections of

16

0 1 2 3 4 5 6 7 8 9

Δ Δ ε

ε

ε

Macrotick

Time

Figure 3.8: A graphical interpretation of the sparse time-base. Where the ε marks periods of
the activity and ∆ periods of silence [1]

.

the timeline, we call the timebase sparse.

The time-triggered architecture use time base where the events can occur only on certain instants,
located within so called active intervals of time ε. Every two active intervals of time are separated
with the silent interval ∆. The time base divided into active and silent intervals of time is called
ε/∆-sparse or simply sparse (Figure 3.8) [1].

3.2.2 Clock Synchronization

At the beginning of the previous Section 3.2.1 the synchronization problem was introduced.
It is mentioned that due to imperfectness of quartz crystal oscillators two clocks on different
nodes will generate ticks at the different rate. Also to implement a system wide global time
the precision Π of the system must be smaller than the granularity of the global time. To en-
sure this all clocks in the system must be periodically resynchronized, the period between two
resynchronization instants is called resynchronization interval Rint. The synchronization of the
clocks within a cluster is called internal clock synchronization and it is independent to any
external time line. After each resynchronization interval all clocks are adjusted to achieve suf-
ficient precision. After the synchronization is preformed the clocks will drift again until next
resynchronization interval. A synchronization condition of the ensemble of clocks is given by:

Φ + Γ ≤ Π (3.3)

where

- Φ is convergence function and it denotes offset of the values immediately after resynchro-
nization.

- Γ denotes drift offset, which is maximum divergence between any two good clocks from
each other during the resynchronization interval Rint and can be calculated as

Γ = 2ρRint (3.4)

where the ρ denotes maximum specified drift rate.

17

The internal synchronization is carried out via synchronization algorithms.The simplest algo-
rithms are so called master-slave synchronization algorithms. Which use a central master node
to send its time value periodically to all other nodes.The Slave nodes compare their previously
recorded time with the time from the slave and accordingly adjust their clocks.The synchroniza-
tion condition for the systems with a central master algorithm is defined as

Πcentral = ε+ Γ (3.5)

where ε denotes the latency jitter between the event of reading the clock value at the master and
the events of message arrival at all slaves, which corresponds to the convergence function Φ [1].
The simplicity is the main advantage of this method, the drawback of the method is absence of
fault tolerance.

Other way to synchronize the clock ensemble is with a distributed synchronization algo-
rithm. These algorithms topically have three phases of the execution:

• In the first phase the time values from all nodes are exchanged among members of the
network, such that every node has the status of the global time of every other node.

• In the second phase all values first examined for errors, then each node executes the con-
vergence function to calculate correction term for the local global time counter. If the
calculated correction term is larger then the specified precision of the ensemble the node
is irreversibly out of the synchronization with the ensemble and it shuts itself.

• In the last phase each node adjusts its local clock to the calculated correction term.

The overview of the well known methods for clock synchronization in distributed systems
can be found in the works of Tanenbaum [9] and Ramanathan [10]. The synchronization of the
ensemble with the externally provided reference time is called external clock synchronization.
The external source of execution is topically special computer with access to the high precision
clock, like an atomic clock. The global time is represented in a format based on physical second,
these formats are described in the follwing text of this thesis (see Section 3.2.3).

3.2.3 Time Standards

The measurement of the time can be based on astronomical events or atomic clock. The astro-
nomical measurement of the time is done by a mechanical clock and it depends on the rotation of
the earth. The rotation of the earth and its orbiting around the sun are not constant therefore the
measurement is for certain applications not precise enough (e.g. critical real-time system). In
order to provide more reliable time measurement the atomic clock was invented. A brief survey
of the atomic clock story can be found in [11]. A atomic clock is generating time by counting the
transitions of cesium 133 atom. The 9,192,631,770 transitions of the cesium 133 atom represent
one second.

The world time based on atomic clock is produced by the Bureau International de l’Heure
(BIH) in Paris, France. They collect time values from the atomic clocks of the international
timekeeping institutes and by averaging them they produce International Atomic Time (TAI).
This time is basis for all other time formats used today, the most important one is Coordinated

18

Preamble
Destination

Address
Source

Address
CRC...Data Field (Payload)

SO
F

Ty
p

e

7 1 6 6 2 46-1500 4

0x88D7
Control

Field
Msg

Length
Parameter Field Data Field

bytes

bytes 2 1 1 4-12

IEEE 802.3 Frame

TTE Frame

Figure 3.9: The format of the Time Triggered Ethernet Message. Upper block represents the
IEEE 802.3 messages and lower block shows the TTE specific fields.

Universal Time (UTC). The UTC is a global standard for representation of time. Most of the
clocks in the world are set by this standard. It is calculated from TAI by occasionally adding
a leap second to compensate for Earth’s slowing rotation [12]. The UTC has a discontinuous
time scale and in order to calculate the correct interval between two timestamps the table of
the leap second correspondences is required. Because of this many scientific applications that
require such precise measurements use TAI representation directly. For the systems which have
to be synchronized with standardized world time usually the UTC is used. Based on the TAI and
UTC there are several other time formats like the Network Time Protocol (NTP) format [13],the
format of the Global Positioning System (GPS) [14], the Uniform Time Format (UTF) [15],the
Precision Time Protocol (PTP) format [16] developed for dedicated applications. The UTF is
used by the Time-Triggered Ethernet protocol and it will be discussed in detail in the Section
3.3.

3.3 Time-Triggered Ethernet

Time Triggered Ethernet (TTE) is an implementation of the TTA (see Section 3.2) based on
the IEEE standard Ethernet (more on Ethernet [17]).The TTE extends the standard Ethernet,
which is non-deterministic, with the deterministic fault-tolerant time-triggered communication
service, which provides a excellent infrastructure for the development of distributed real-time
applications or distributed multimedia applications [18]. It can be used both for non-critical
and safety critical applications.The TTE is designed to support both ordinary and safety-critical
applications. The usage of safety-critical configuration requires more resources then the ordinary
one. The TTE supports two classes of messages:

• Event-triggered (ET) messages
• Time-Triggered (TT) messages

The TT messages format is based on the format of the standard IEEE 802.3 messages (ET
messages) (see Figure 3.9), with the specially designated value of the field Type for different
types of messages based on the IEEE 802.3 standard. For the purpose of the TTE the frame type

19

0x88d7 is assigned by the IEEE EtherType Field Registration Authority [19].
The TTE system consist out of TTE Nodes, TTE Switches with the possibility to incorporate
regular Ethernet nodes in the same network. The conflicts between ET and TT messages are
resolved by preempting the ET messages so the TT messages can meet deadlines set by an
a priori defined schedule. The schedule can be calculated offline or online depending on the
requirements of the application.

3.3.1 Time Triggered Ethernet System

The TTE system is organized in clusters of TTE Nodes and any other systems with standard
Ethernet, connected with the specially designed TTE Switch (Figure 3.10). The TTE have one
master node called rate master which is used to disseminate global time to the rest of the
cluster. The rest of the nodes are so called slave nodes, also called time-keeping nodes. In the
fault-tolerant version of the TTE there is a node which serves as a secondary rate master master
in case the primary rate master fails.The communication among members of the TTE system is
established using the Time Triggered Ethernet Protocol. The TTE Node is a computer system
composed out of four components:

• Host Computer,
• Hardware abstraction layer (HAL),
• Communication network interface (CNI),
• Time-Triggered Ethernet Controller.

The transmission of the ET messages is the same as in the standard Ethernet and if the Node
does not require TT messages a standard Ethernet controller can be used. The communication
of the TT messages requires additional resources and a specially designed infrastructure. The
mechanisms used to provide time-triggered communication on top of the standard Ethernet can
be implemented either in hardware or in software. These mechanisms are encapsulated in the
subsystem of the TTE Node called TTE Controller. The TTE Controller is a multifunctional
communication controller specially designed to be able to provide both the ET and the TT com-
munication. In the CNI memory of the node a memory space is allocated for outgoing and
incoming TT messages. On the reception of the TT message the memory place allocated for this
message is overwritten with the data of the last received message. The host computer retrieves
message data with a pull method. The transmission of the messages is regulated by the TT dis-
patcher so the conflict-free sending of the TT messages can be achieved. It reads message data
from the CNI memory, written by the host with a push method, and transmits it on the next send
instance. The ET messages are sent when the transmission of the TT messages is over.

Similar as the TTE Controller the TTE Switch also handles the TT and the ET messages
differently. The ET messages are queued and transmitted accordingly when the communication
channels are not used to transmit TT messages. If the ET message comes in to conflict with
a TT message the TTE Switch clears the channel for the TT message.In such cases the ET
messages are preempted and sent later. The maximum delay time of the TT message on the TTE
Switch is called switch transmission delay, which is the time needed by the switch to clear
communication channel currently used by the ET message.

20

Host
Computer

TTE
Controller

Host
Computer

TTE
Controller

Host
Computer

TTE
Controller

Host
Computer

TTE
Controller

TTE SwitchTTE Switch

TTE Cluster

Host
Computer

Standard
Ethernet

Controller

Host
Computer

Standard
Ethernet

Controller

Figure 3.10: A typical structure of a TTE cluster [18]

3.3.2 TTE Services

The TTE is real-time communication system based on standard Ethernet and it provides fault-
tolerant deterministic message exchange among the nodes of a distributed system. Without
any additional hardware TTE is able to transmit and receive both ET and TT messages. These
two functionalities together with several other can be arranged in six services to describe the
complete scope of operation of the TTE:

1. Global Time Base and Service

2. Standard Ethernet Message Exchange Service

3. Time Triggered Message Exchange Service

4. Medium Access Service

5. Diagnostic Service

21

6. Remote Configuration Service

Global Time Base

The existence of the global time is of the great importance for the distributed systems where the
temporal coordination of events in the system is needed. The concept of the global time and its
most important aspects are introduced in the Section 3.2.1 of this thesis. The basic two goals of
this service are generation of the global time and maintaining the certain level of synchronization
among the members of the network. The global time of the TT Ethernet is represented in the
UTF time format (Figure 3.11). This format is based on an 64-bit register where the upper 40
bits represent seconds and the lower 24-bits represent fractions of the second. The epoch of the
UTF starts at the January 6, 1980 and it has an horizon of 34841 years.

The global time is disseminated by the rate-master node to the rest of the cluster via TT
synchronization (TTsync) messages. The granularity of the global time is given in macrotics
(MT), which is the basic unit of the global time. Every node in the cluster has a local clock
which is used to generate macroticks on individual nodes. The correctness of the global time
depends on the precision of the local clocks. The duration of the macrotic is configurable and its
value should be equal for all nodes in the cluster, in order to maintain the consistent global time
on all nodes. The granularity of the local clock is called microtick (µT) and it can be different
for every node, because it depends on the hardware implementation and nominal frequency
of the used oscillator. To preserve consistent length of the macrtotick every nodes adjusts the
µT/MT ratio which is called macrotick microtick conversion factor (MMCF). The adjustment
is preformed by a master-slave clock synchronization algorithm.

The global time of the cluster is based on the local time of the rate master node. The rate
master node sends out the TT synchronization messages (TTsync) (see Section 3.3.3 to all other
nodes. On the reception of the the TTsync message the synchronization data of the message
is stored in the buffer accessible by the host computer. The host computer uses this data to
calculate and apply clock correction term. The clock correction term is calculated as follows:

∆Ri = MTDi
TSi−TSCS

The terms in the formula are defined as:

• TSCS is the time stamp of the received TTsync message stored on reception,

• MTDi is the measured time difference at the received synchronization frame i,

• TSi the time stamp of the measurement and

• ∆Ri is the difference of rate between local node and rate master node.

The final rate correction term is calculated as the average value of two rate difference values:

RCT =
∆R1 + ∆R2

2
(3.6)

22

63 62 61 60 59 58 57 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 02

2 s39 1 s

...
Bit
Number

Figure 3.11: The time format of the TT Ethernet is implemented with the 64-bit register.Where
the last forty bits are measuring seconds and the rest the second fractions.

The rate correction is realized on all nodes at the same time instant, this point in time has
distinct period and phase and it is called synchronization instant. As it is stated above the
rate correction is applied by changing MMCF:

MMCFnew = MMCFold +RCT (3.7)

If the difference of the global time on a local node is too large the slave node applies state
correction instead of rate correction, by setting the value of the global time register on the slave
node to a value of the rate master node.

The rate master node is able to synchronize its time to the external time (i.e. GPS), the rest
of the system is then synchronized with the internal clock synchronization algorithm. The rate
master node has no knowledge of the synchronization of the cluster, meaning the rate master
node does not know whether any slave is synchronized.The TTE provides no protection against
possible attacks on the global time. In the following chapters these problems are isolated and
solutions are proposed to counteract them.

Standard Ethernet Message Exchange Service

The communication of ET messages is implemented as a store-and-forward paradigm with the
best-effort delay specified by the Ethernet standard [18]. It requires no communication schedule
and if a node requires no TT traffic a standard Ethernet controller can be used. More on standard
Ethernet message exchange can be found in the official document of the IEEE 802.3 standard
[17].

TT Message Exchange Service

The exchange of the TT messages is executed by the a priori defined schedule. In the schedule
of the TTE 16 different periods (Figure 3.12) can be used. The TT messages can be configured
to be transmitted in each of these 16 periods. All the 16 periods are a power of two of the base
period, which is usually 1s but can be configured as needed. The periods can be represented on
the global time counter such that the portion of the register left from a period bit is increased by
one each time the cycle of that period passes. Within the periods the offset (Figure 3.12) can be
designated for the TT message. The offset is represented with the 12 bits right of the period bit.

23

25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-24 2-25 2-23 2-26 2-14

0123456789101112131415

Period 15

Period 14

Period 13
Period 12

Period 11

Period 10
Period 9

Period 8

Period 7

Period 6

Period 5
Period 4

Period 3

Period 2

Period 1

Period 0

Offset bits

Global time
counter

3
2

 s

1
6

 s

8
 s

4
 s

2
 s 1
 s

5
0

0
 m

s

2
5

0
 m

s

1
2

5
 m

s

6
2

,5
 m

s

3
1

,2
 m

s

1
5

,6
 m

s

7
,8

 m
s

3
,9

 m
s

1
,9

5
 m

s

9
7

6
,5

 µ
s

4
8

8
,5

 µ
s

2
4

4
,2

 µ
s

1
2

2
 µ

s

6
1

 µ
s

3
0

,5
 µ

s

1
5

,2
 µ

s

7
,6

 µ
s

3
,8

 µ
s

1
,9

 µ
s

9
5

3
,6

 n
s

4
7

6
,8

 n
s

2
3

8
,4

 n
s

1
1

9
,2

 n
s

5
9

,6
 n

s

2
9

,8
 n

s

1
4

,9
 n

s

Figure 3.12: TT Ethernet periods and offsets for the base period of one second. [20]

The exchange of the TT messages depends on the type of the TT message. In the TT Eth-
ernet two types of TT messages can be distinguished: periodic and sporadic. The periodic
TT messages are usually used to transmit state information of the node, they are transmitted
periodically in every cycle of the period for which is the message configured. These messages
are transmitted from the CNI memory of the sender to the CNI memory of the receiver, where
each message has a reserved place in both instances of the CNI memory. Upon the reception
of a message the old message in the CNI memory of the receiver will be overwritten. The host
can access the message by pulling the information from the CNI memory.Although they are not
delivered periodically the resources for these messages are allocated a priori. Therefore they
are much similar to the periodic messages. The sporadic TT messages are sent only if the host
computer have updated the message since last transmission and the information is delivered in
the push mode to the host computer. They are used to transmit sporadic events in the network.

Every TT message has a specified reception window, and only messages received within
this time interval are considered to be valid. This time is dynamically recalculated after every
received message for the next message. The reception window with configurable size is defined
to compensate for the drift offset. The quality of the synchronization in the cluster is the main
factor by choosing the size of the receive window.

There exists also a constant delay for TT messages which is caused by the network elements
like switches and the length of the cables. This delay is also called propagation delay and it
is stored in the configuration memory of the TT controller. Each node has the propagation
delay for any other node in the network.The propagation delay can be changed on runtime if the
configuration of the network changes.

24

C
o

n
tr

o
l F

ie
ld

M
es

sa
ge

 L
en

gt
h

M
es

sa
ge

 ID

Se
n

d
er

 ID

M
es

sa
ge

 C
o

u
n

te
r

Sc
h

ed
u

le
 ID

R
at

e
M

as
te

r
M

em
b

er
sh

ip

Ex
te

rn
al

 C
lo

ck

C
o

rr
ec

ti
o

n

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

G
lo

b
al

 T
im

e
(U

TF
 F

o
rm

at
)

1 1 1 1 1 12 2 2 8 8 18bytes

Figure 3.13: The format of the TT synchronization message. [20]

3.3.3 TT Message Types in TTE

As it is mentioned above, the TTE supports both ET and TT traffic, where the ET messages
are handled by the IEEE 802.3 standard.The focus of this thesis is to describe how the TTE
handles the TT traffic and how it can be improved with the spotlight on the security. The TT
communication of the TTE is particularly designed to provide services needed for establishment
of deterministic fault-tolerant communication. Four types of TT messages can be distinguished:

• TT Synchronization Messages (TTsync)
• TT Data Messages

- Sporadic TT Messages (TTsM)
- Periodic TT Messages (TTpM)

• TT Diagnostic Messages (TTdiag)

The Data Field of a TT message defined by the IEEE 802.3 standard contains a TT message
header and the TT message payload. The first byte of the TT message header, which is 12 bytes
long, is called Control Field.It contains the type of the TT message, the message update bit and
the last message bit which marks the last message of the sequence.

TT Synchronization Messages

The synchronization messages are a special class of messages sent out by the rate master to
the rest of the cluster to establish clock synchronization. The length of these messages is fixed
(34 bytes) and they are identified by the value 0x74 of the Control Field (Figure 3.13). They
contain all information needed for the clock synchronization. The reception timestamps of these
messages and the global time information in the message are used by clock synchronization al-
gorithm to calculate clock correction term for a node. The reception timestamp of the synchro-
nization messages is adjusted with the propagation delay to simplify the clock synchronization
algorithm.

25

C
o

n
tr

o
l F

ie
ld

M
es

sa
ge

 L
en

gt
h

M
es

sa
ge

 ID

Se
n

d
er

 ID

M
es

sa
ge

 C
o

u
n

te
r

Sc
h

ed
u

le
 ID

R
at

e
M

as
te

r
M

em
b

er
sh

ip

P
ay

lo
ad

D
at

a
Fi

el
d

1 1 1 1 12 2 3 34-1488bytes

R
es

er
ve

d

Figure 3.14: The format of the TT data message [20].

TT data Messages

The TT data messages (Figure 3.14) are used to transmit an application information among the
nodes of the cluster. These messages are highly customizable and can be defined as periodic
or sporadic. The length of these messages is limited to the maximal length of 1488 bytes. The
TT data messages can be scheduled in any period. The period of a TT data message is encoded
into the period ID field of the message header, which together with the offset of the message
is used as a distinct identifier for the TT data message. Periodic TT Messages (TTpM) are
sent repeatedly and each new message rewrites the old message in the CNI memory. The host
access the TTpMs with the information pull mode and the sender receives no acknowledgement
whether the message is received or not. The control field of the message has a three distinct
values described in Table 3.1. The TT sporadic message (TTsM) is a type of a TT message

TTpM status Control Field Value
not last message, not updated by host 0x20
not last message, updated by host 0x24
last message updated by host 0x2C

Table 3.1: TTpM Control Field

that is transmited only if the content of the message is updated by the host. It also has three
different values of the control field Table 3.2

TTsM status Control Field Value
not last message 0x34
last message 0x3C

Table 3.2: TTsM Control Field

26

TT Diagnostic Messages

The TT Diagnostic messages (TTdiag) are used to transmit local diagnostic data and the diag-
nostic data about the local view of the global state of the system . The header of the TTdiag
messages corresponds the header of the TT periodic messages. The local diagnosis data is col-
lected and updated by the TT Controller, but there is the possibility, to allocate space at the end
of the TTdiag message if the host needs to transmit diagnosis data.

3.4 Security Concepts

The following section describes basic security concepts, techniques, and mechanisms used to
protect assets of the computer systems against any threats against these assets. The overall usage
of computer systems increased drastically in past few years and one of the main requirements
of these systems is security (see Section 3.1). Because more and more computer systems use a
connection to the internet or to other system in order to provide certain functionality, their assets
become even more exposed to diverse threats and it is of essential importance to provide them
with adequate protection. This becomes even more important if the computer system is safety-
critical or it is part of a larger safety critical system. The same standards hold for distributed
real-time systems and the security aspect is even more important than in computer systems in
general. For example if in a modern car the brake-by-wire system is compromised in anyway it
could lead to catastrophic consequences. Computer security is defined as [21]:

The protection afforded to an automated information system in order to attain ap-
plicable objectives preserving the integrity , availability, and confidentiality of in-
formation system resources (includes hardware, software, information/data, and
telecommunication).

Therefore, main objectives of the computer security are [21]:

• Confidentiality ensures that confidential information stay undisclosed to unauthorized
subjects and that the privacy of the individuals which own this data is completely re-
spected. Which means that only they can decide how and with whom they wish to share
this information.

• Integrity assures that data can only be changed in supervised and authorized manner
and that the system operates under optimal intended function without any accidental or
intentional manipulation.

• Availability assures that system is not any way denied to intended users.

These three concepts represent the most general description of security which can also vary
depending on the type of the system. Often an introduction of new concepts is needed in order to
fully define security of the given system. The most common concepts additionally introduced to
describe security of computer systems are authenticity and accountability. Authenticity assures
that the subject can be verified as genuine and can be trusted, also the data received in trans-
mission can be validated.Authenticity can be observed as a subset of integrity.Accountability

27

assures that actions of an entity can always be traced to that exact entity. It comprises non-
repudiation, deterrence, fault isolation, intrusion detection and detection, and after-action recov-
ery and legal action [21].

Security represents dependability of a system with respect to prevention of unauthorized ac-
cess and/or handling information and/or availability.For safety critical systems security is subset
of safety and for such systems any unauthorized manipulation or access can result in accident.
For systems where unauthorized access may result in accident, security is needed but not in the
same extend as in former case [22].
The threats on assets of the computer system can be classified in three categories [21]:

• Hardware threats include any actions which would make hardware elements of the sys-
tem indisposable in any way. This type of threats mainly bring the availability of the
system at risk.

• Software threats comprise any attacks against the operating system, applications or utility
drivers running on the system. Threats on software in dependence of the type of an attack
can influence all three main security properties of the computer systems.

• Data threats consider unauthorized actions on data files of the systems. These actions
can be destruction, manipulation, or duplication of data files.

• Communication Channels threats are divided in two type of attacks passive attacks and
active attacks. Passive attacks represent eavesdropping or monitoring, where the attacker
passively collect confidential information about the system. Active attacks appear during
runtime and consist of modifying or replaying data, masquerade, or denial of the service
on the communication channel.
Modification of data means that a portion of the message is change with false data.The
replay attack consist of retransmitting valid messages to create malicious effects. Mas-
querade means that a attacker pretends to be a valid user and as such tries to infiltrate
the system. The denial of service represents any obstruction of a regular operation of the
system.

For the protection of computer systems various security services and applications are devel-
oped. These services ensure that security requirements of the system are fulfilled. The important
part of these services are cryptographic techniques and mechanisms which provide means in or-
der to accomplish security objectives. Cryptography is defined as [23]:

The art and science of keeping messages secure, by applying a encryption algo-
rithm, also called cipher, to the plaintext of the message in order to disguise it in to
ciphertext.

The basic cryptographic algorithms used to provide the security properties to the computer sys-
tem can be summarized in five following categories:

• Symmetric Encryption
• Message Authentication

28

Ecryption
Algorithm
(e.g. AES)

Decryption
Algorithm

Key K Key K

Transimited
Ciphertext

Plaintext
Plaintext

X

Y = E[K,X] X = D[K,Y]

Figure 3.15: The plaintext is encrypted on the left side and sent over the network. The message
contains ciphertext which is than decrypted on the right side by the decryption algorithm. [21]

• Public Key Encryption
• Digital Signature
• Key Distribution

3.4.1 Symmetric Encryption

The symmetric encryption algorithms disguise plaintext messages using a single key. The
same key is used to decrypt the ciphertext by a decryption algorithm (see Figure 3.15).The
main goal of symmetric encryption algorithms is to provide confidentiality and protect data
from passive attacks.This way of encryption has been used since ancient times (e.g. Julius
Caesar). The symmetric encryption algorithms can be classified in two major groups block
ciphers and stream ciphers. The block ciphers encrypt chunks of plaintext (i.e. 64-bit or 128-
bit), whereas the stream ciphers encrypt data one byte at the time. The symmetric encryption
algorithm family has a large number of members, where the block ciphers are more common
and the stream ciphers are more useful in particular applications. The most important symmetric
encryption algorithms are the Data Encryption Standard (DES) and the Advanced Encryption
Standard (AES). Both algorithms are block ciphers with the block size of 64-bit by the former
and 128-bit by the latter. The DES algorithm is considered to be one of the most resistant
algorithms to cryptanalysis. Today a brute-force attack is considered as the only way to brake
the DES algorithm. The increase in computational power of computers exposed somewhat the
DES to brute-force attacks. Although it is still widely used the National Institute of Standards
(NIST) of the United States published the new standard AES eventually to replace DES. The key
length of the AES range from 128 to 256 bits and even in shortest case are sufficient to provide
enough protection for the foreseen future.

3.4.2 Message Authentication

Even if the received message is encrypted with the valid key, this does not prove that it is gen-
uine. The encrypted message could be changed or falsified with an active attack. In order to

29

MAC
algorithm

MAC
algorithm

Message

Transmit

MAC

Key K

Key K

Compare

Figure 3.16: The creation, transmission, and verification of the Message Authentication Code
[21]. The light gray block is the message and the blue block represents the MAC.

prevent active, attacks message authentication algorithms must be implemented. Most com-
mon techniques for message authentication are: Message Authentication Code, One-Way Hash
Function, and Secure Hash Function. In the scope this thesis the Message Authentication Code
(MAC) method is used, which is described in more detail in following text. For the prove of
concept either method could be used, the MAC is chosen because of the more convenient imple-
mentation.

The Message Authentication Code (MAC)

From the plaintext of the message using a encryption algorithm a small block of data is gener-
ated. This block of data is also called Message Authentication Code or Message Tag (see Figure
3.16). The encryption algorithm used to generate the MAC can be any symmetric algorithm,
therefore it also uses symmetric keys. The encryption in this case must not be reversible because
to authenticate a message a receiver also runs the message trough the same algorithm. If the
both tags match the message is said to be authentic. The plaintext is encrypted with a symmetric
algorithm and the MAC is created out of the ciphertext (e.g. CMAC, OMAC). The MAC can
also be generated from a hash function (e.g. HMAC) with the similar principle as in the former
case.

30

3.4.3 Public-Key Encryption (PKE)

The Public-key Encryption is based on the concept of the asymmetric keys. It is first introduced
by Diffie and Hellman in 1976 as new direction in cryptography [24]. The basic principle of
Public-key cryptography is that instead of a single key every entity has two keys,a public key
and a private key. In communication of two entities A und B, first they need to exchange the
public keys, while the private keys remain secret. If A wants to send an encrypted message to
B it encrypts message with the public key of B. The entity B decrypts message with its private
key. Depending on the application PKE can be used to ensure confidentiality or authentication
and data integrity. The applications of the PKE can be classified in three groups: symmetric key
distribution, digital signature, and encryption of secret keys.
The most commonly used PKE technique is called RSA by it authors R.L.Rivest, A.Shamir,
L.Adleman, published in 1977. Since than it became one of the most implemented techniques
in cryptography (e.g. Secure Shell (SSH) [25], Transport Layer Security (TLS) [26]).In the
last couple of years a new scheme called Elliptic Curve Cryptography (ECC) has gained on
popularity and it is considered to be concurrent to RSA. It was first proposed by two authors in-
dependently in 1986, Miller [27] and Koblitz [28]. The ECC provides the same level of security
as RSA with shorter keys which brings a significant increase in performance as the length of the
key increases [29]. The RSA is on the other side more analysed and it has greater confidence
level.

3.4.4 Digital Signature

For applications which require authentication and non-repudiation at the same time the digital
signatures are certainly most effective solution. The process of digital signature starts with
creating a hash from an plaintext message with a hash function. The hash is than encrypted using
its private key to create a signature. The message is than sent together with the signature. The
receiver first calculates the hash of the message with the same hash function. Than the receiver
decrypts the signature with the public key of the sender and compares the calculated hash with
the decrypted hash. If the hashes match, the receiver is certain that the message is authentic
and that it comes from the right sender. The most common algorithm for the generation of
digital signatures is the Digital Signature Algorithm (DSA) as proposed by NIST in the Digital
Signature Standard (DSS) [30] [31]. For the purposes of digital signatures in scope of this thesis
the Elliptic Curve Digital Signature Algorithm (ECDSA) [31] has been used. It is a version of
DSA which uses ECC for public key encryption.

3.4.5 Key Distribution

The secure distribution of a key is equally important as the encryption of the message itself.
The exchange of public keys is done with so called public key certificates, which allow the key
exchange with the prove of authenticity. The most common standard used for representation of
public key certificates is X.509 which is applied in numerous network protocols and applications
(e.g. SSH [25], TLS [26]). For the exchange of symmetric keys a PKE schemes such as Diffie-
Hellman key exchange [24] can be used.

31

CHAPTER 4
System Model

The introduction of the x-by wire technology 1 in transportation systems increased the number
of distributed real-time computer systems in cars, aircraft, trains, ships, ect. These are only few
examples where safety is a crucial property of the system and the lack of security endangers
safety. The importance of security is not only bounded on such safety critical systems with high
safety concerns. The lack of the security endangers also other systems (e.g industrial plants)
and their valuable assets. Let us consider for example a control of several valves in an industrial
plant, where each valve is controlled by a real-time network node. Each valve controls a flow of
the certain chemical in to the industrial chemical process. The actions executed on valves must
be perfectly synchronized throughout the real-time network.If even a slight deviation occurs in
the operation of the distributed real-time system, which controls these valves. It could lead to
serious problems and even catastrophic consequences (e.g. the chemicals are wrongly mixed and
the reaction starts fire). It is therefore of essential importance that the synchronization algorithm
can not be compromised in any way. This means that the global time is protected from accidental
and malicious faults.

If an attacker could gain access to the system and execute a malicious attack against the
global time on one of the real-time network nodes, such that the global time on the node drifts
from the actual global time, which effects could arise? The answer to this question is: unaligned
control of the valve on the faulty node with the rest of the system. One of the consequences
for the industrial process is late or to early application of the chemical controlled by this node.
This could ruin the whole proces, create dangerous chemical reaction (i.e. fire, radiation). If the
attack is executed with such precision and patience that the deviation is impossible to discover,
with the time the deviation can reach a critical point and cause unrepairable damage. Eventually,
the fault is discovered but the damage is done and valuable resources must be spent on fixing
the problem. In the worst case the consequences of such a short time drift can be a failure of
the industrial plant or even loss of a human life. If the threat is discovered in time, the negative
consequences can be avoided.

In this chapter the basic system model for the protection of the global time base in TT
systems is described with the possible threats, requirements on security and dependability, and

1x stands for safety related application such as steering, breaking, suspension control, powertrain etc.

33

methods to provide them. In the example described above the sensibility of the security issues
in general have been established. Now we want to go further and pinpoint the discussion on TT
systems. The focus will be on communication channel threats and ways to counteract them.In
particular we will discuss active attacks against the global time and augmentation of the current
clock synchronization algorithm of the TTE, as the implementation platform, with the set of
security mechanism to provide protection against malicious attacks. The security layer for the
TT systems provides authenticity and non-repudiation to the global time.

4.1 Security Threats and Requirements

A malicious attack against TTE system can be directed towards the host or towards the com-
munication channels of the system. The hosts are usually black box systems and it is very hard
for the unauthorized user to get access to the system. But very often these systems are designed
with security weak spots (i.e. buffer overflow) that can be exploited to carry out the attack. If
the unauthorized user gets access to the system, he can change or deny its functionality.

If the host of TTE node is considered secure, the most serious threats against the TTE system
are attacks against its communication channels.The basic functionalities in danger are the clock
synchronization and the global time base. The precise notion of the global time is the basic
principle in the real-time systems and any unauthorized access to the global time puts the whole
system in imminent danger of failing catastrophically. Connections among nodes of the TTE
system are external and can be easily accessed. Therefore the TTE systems are also vulnerable
to both passive and active attacks. The difference between standard Ethernet and the TTE is the
timing of the messages must also be considered. In the Chapter 3 the types of messages in TTE

TTE
Master

TTE
Slave

TTE Connection Line

Attack
Hardware

Global Time Global Time

Figure 4.1: The time drift communication channel attack scenario. With the attacker connected
on the communication line between a master and a slave altering the global time.

34

TTE Protocol

Application

Authentication Protocol

Figure 4.2: The Layer perspective of TTE with secure clock synchronization algorithm. First
block from the bottom represents the TTE system functions, second block is divided in two parts
a application and the secure clock synchronization protocol.

have been described. The application running on the host is responsible for the data messages
security. The information carried by these messages can be protected by conventional crypto-
graphic techniques described in Section 3.4. The TTE protocol ensures the timing behaviour of
data massages. The security of the clock synchronization algorithm depends on the security of
synchronization messages used for dissemination of the global time. With the special hardware,
connected to the external lines of a TTE network, the delivery time of any TT message can be
delayed or pushed ahead by an attacker. The reception of TT messages is expected in the re-
ception window for the message. If the message is received within this window, it is considered
valid, if not, the TTE controller will discard it. This way of causing damage can be considered
as active attack, the combination of modification and denial of service attacks.

The manipulation of the synchronization messages by the attacker causes the global time to
drift from the actual value and it creates a false view of time at the targeted node (see Figure
4.1).This kind of attack against synchronization messages affects the whole system, because
although only one node has a false sense of time, the TT communication with other nodes
and the execution of the tasks are not aligned with the rest of the system. TTE provides no
protection against such attacks. A special security mechanism is needed, on top of the existing
clock synchronization algorithm to neutralize this threat. The main security requirement in this
case is authenticity of the global time. The global time must be authenticated for every node by
the trusted authority and the result of this process has to be delivered to the individual nodes also
in an authenticated manner. This will make the information about the state of global time on
each node available system-wide. In the following section this mechanism is described in more
detail.

4.2 The Secure Clock Synchronization Algorithm

The current clock synchronization algorithm uses synchronization messages to disseminate global
time information for a cluster of TTE nodes. TTE is designed as a fault-tolerating protocol and

35

Slave 1 Slave 2 Slave n

Master
 (TAA)

1 1 0 1 1 1 0 1 0 1 0Membership Vector Sn

1 2 3 4 5 6 7 8 9 10 n

Authenticated Global Time of the Slave

Digitally signed Membership Vector

Figure 4.3: The Secure clock synchronization protocol with three nodes and the master. The two
line colors represent two types of the messages used by the protocol. The secure membership
vector is stored on the master and only the master can change its content.

it provides certain level of protection against accidental faults but none for intentional malicious
faults. The introduction of cryptographic techniques would require redesign of the whole pro-
tocol. The authentication protocol is designed as a security layer on top of the current clock
synchronization algorithm because the secure clock synchronization is an optional service. The
authentication protocol is also called a secure clock synchronization protocol. The implementa-
tion of the authentication protocol requires no changes in the TTE protocol or the synchroniza-
tion protocol and it can be considered as a security abstraction layer for the TTE. In the Figure
4.3 the structure of the TTE System with the secure clock synchronization protocol is depicted.
The secure clock synchronization protocol operates in the background of the application using
the standard TTE protocol.

36

The authentication protocol uses the master/slave principle of the communication. Beside
being the global time authority, the master node is also designated to be a trusted authentication
authority (TAA). The master node receives the global time from each slave in authenticated
messages. If the authentication code of the message is genuine and the value of the slaves global
time corresponds to the actual global time of the master, the slave is marked as trusted. If the
security or global time checks fail, the slave is marked as untrusted. The security status of
the slaves is saved in a membership vector, so that value 0 is designed to the untrusted node
and value 1 to the trusted node. The membership vector is transmitted so that each slave has
access to it and can act upon the information it contains. The application on the host of the
slave node decides how to handle nodes with a certain security status. The messages of the
authentication protocol must be protected against malicious attacks. The messages sent from the
slave to master must be authenticated using message authentication techniques described in the
Section 3.4. The authenticity of the message is required because the master must be able to verify
that certain value of the global time comes from the genuine slave. The messages containing
membership vector sent from the master, must be digitally signed so that the authenticity and
non-repudiation can be verified.The non-repudiation is required if the results of the protocol have
to be elaborated to the third party. This is useful in cases of legal actions in the case of failure of
a system, where the system must be able to show why a certain action has been executed. If the
slave node executed actions as the result of the protocol status change it must be able to show
who is accountable for the cause of that action and be able to trace the source of the problem.
This is important because only the master should be able to create the membership vector. The
usage of symmetric message authentication algorithms in former and digital signatures in latter
case ensures required security properties.

The secure clock synchronization protocol can only be activated, after all nodes in the net-
work have been started and the synchronization among these nodes has been established.The
global time of the TTE system is established after at least one synchronization message reaches
all nodes. The authentication protocol is executed periodically. It transmits messages according
to a predefined schedule. The secure clock synchronization requires two types of messages, the
membership vector message transmitted from the master to the slaves and the global time mes-
sage transmitted from slaves to the master. The schedule for the authentication protocol is part
of the TTE protocol schedule. The resources for the authentication protocol must be reserved a
priori and it must consider the execution times for the cryptographic algorithms. The order of
the authentication protocol messages in the schedule depends on the implementation.

The execution of the protocol is implemented in several stages. In the first stage, so called
initialisation stage of the protocol, the master transmits the membership vector to the slaves with
no trusted members, as they are jet to be verified. The values of the vector in the initial round
are ignored by the application. In the same round all slaves send their global time values in an
authenticated message to the master. After global time messages from the slaves are delivered,
the master verifies the authenticity of the messages and only if the message can be authenticated,
the global time value contained within the message is compared to the masters local global time
value. If the global time value received from the master corresponds to the actual global time,
the slave node is marked as trusted and value 1 is written in the membership vector cell for
that slave. In the next round the membership vector, with updated values, is transmitted to the

37

Loop: Secure Clock Synchronization Protocol

Master/TAA Slave

Startup of the TT Ethernet and initialization of the Global Time

Slave Global Time with MAC

Membership Vector

After the Slave is synchronized with
the global time periodically it takes A

snapshot of the local global time value
and creates the MAC for it.

The Master/TAA first authenticate the
message and then checks the global

time value. The status is written in to
the membership vector.

Start up of the Authentication Protocol

Startup of the application

The membership vector is digitally
signed and ready to be disseminated

to slaves.

The Slave verifies the signature and
commits the membership vector to

the application.

If the verification fails the slave Enters
to the safe state.

Figure 4.4: Sequence diagram of the secure clock synchronization protocol.

slave nodes in a digitally signed message. Hereby the second stage of the protocol in which
detection of the malicious faults takes place is over. In the third stage the detected malicious
faults are committed to applications on slave nodes. First, the slaves verify the signature of
the message with the public key of the master. If the verification of the signature fails, the
slave recognizes that the master is fraud and that the synchronization can not be trusted. If the

38

synchronization can not be trusted the basic condition for the time triggered communication
is not fulfilled and the slave goes to a safe state. If the verification of the digital signature is
successful, the membership vector contained in the message is copied to the designated place
and committed to the application. The application routines check the status of the current node
and if the slave is marked as untrusted in the membership vector, the slave is brought in to a safe
state. The application also has access to the statuses of other nodes and if it notices that some of
the nodes with whom it communicates can not be trusted, it can terminate the communication
and wait until a valid synchronization is established.

The visual representation of the protocol is depicted on the sequence diagram in Figure 4.4.
The cryptographic tools MAC and DSA used in the Figure 4.4 are chosen for simpler under-
standing of the protocol functionality. Also other cryptographic tools with the same security
properties could be used instead of these cryptographic methods.

4.3 Summary of the System Model

The advantage of using the secure synchronization protocol in TTE is a secure and dependable
synchronization within TTE network. The increase of the security level increases also the safety
of the system. This augments the area of the utilization for the TTE. The downside of the
protocol is the requirement of additional resources. Embedded systems are usually designed to
maximise the usability of the available resources. On the other hand, it is definitely an acceptable
trade-off for systems where security means safety.

39

CHAPTER 5
Implementation

In Chapter 4 the concept of the secure synchronization protocol has been described. This chap-
ter describes the practical implementation of the system for development and evaluation of the
secure clock synchronization protocol on TTE . The appropriate system must be built in order
to test the model and its characteristics . The system must be able to simulate malicious faults
which can endanger the global time and execute the authentication algorithm to counteract them.
To realize these tasks a chain of tools is required starting from the hardware components, devel-
opment software, application software to the authentication protocol itself. The implementation
of the secure clock synchronization protocol for Time Triggered Ethernet comprises several de-
velopment tools and methods:

• hardware,
• system software,
• development, debugging and evaluation tools.
• application software,

In the following sections all tools and methods will be described in detail.

5.1 Hardware

In Section 3.1 a basic real-time system architecture has been described. Later on in the Section
3.3 this same architectural concept has been described in the scope of TTE. According to this
concept, two essential elements in this architecture are the host computer and the communication
controller. In most cases the former integrates the latter forming a single computational unit.
For the purposes of this thesis a small embedded development computer named Soekris net4801
[32] has been used as the host computer. The communication controller is a TTE Controller
implemented as an PCI extension card.

41

TT Ethernet Controller PCI expansion card

Soekris net4801 communication computer

Figure 5.1: Development board Soekris net4801 with TTE Controller PCI extension card.

5.1.1 Soekris net4801

The communication computer Soekris net4801 [32] is based on the GEODE SC1100 266 MHz
[33] embedded processor from Advanced Micro Devices (AMD). The system is PC 1 compatible
designed for network and communication applications [32]. The net4801 communication com-
puter disposes with the 32 - 128 MB PC133 SDRAM 2 and 512 KB Flash memory for BIOS3

purposes. The communication interface consists of two PCI 4 slots, standard PCI and Mini-PCI 5

ports, three standard Ethernet ports, a USB 6 port, two serial ports. The board also disposes with
twelve general purpose I/O pins for various uses. For the purposes of the mass storage device
there is a one CompactFlash type I/II socket. The installation of a operation system on Soekris

1Personal Computer
2Standard for Synchronous dynamic random memory
3Basic input/output system
4Peripheral Component Interconnect Bus
5Miniature version of PCI designed for uses on systems with dimension constraints.
6Universal Serial Bus

42

net4801 computer can be done using CompactFlash or using a standard Ethernet connection.
More on this subject will be discussed in Section 5.2.

5.1.2 TTE Controller

The communication controller used in this implementation is designed at the Technical Univer-
sity of Vienna by the Real Time Systems Group [34].The TTE Controller is implemented as a
Cardbus 7 expansion card. The configuration and data area are mapped into the memory of the
host computer, in this case Soekris net4801. The functionality of the card is implemented as
FPGA 8 with Altera Cyclone II [35] device. The standard Ethernet transceiver is used to convert
the I/O standard of the FPGA to the Ethernet physical level standard. Each card can be uniquely
identified with the configuration data stored in a non-volatile memory of the card.

5.1.3 Server and Network Equipment

To complete the description of the hardware part of the development environment the network
equipment and development server is yet to be described. The network equipment used to im-
plement the secure clock synchronization protocol on TTE comprises three communication net-
works: the standard Ethernet detached from TT Ethernet, the RS-232 network and the TT Eth-
ernet network. The first two networks connect TTE nodes with a server and are used for the
development, diagnostic purposes and the evaluation. The server is a standard computer (PC)
specially equipped with hardware components and software tools for development, communi-
cation, diagnosis and evaluation.The TT Ethernet network is used for the implementation and
the testing of the Secure Clock Synchronization Protocol. Except of the server networks com-
municate over switches for standard Ethernet, RS-232 and TTE. The TTE Switch is specially
designed to be able to handle both the time-triggered and standard Ethernet communication and
it is also implemented in FPGA.

5.2 System Software

All essential hardware components of the development environment have been described in Sec-
tion 5.1. System software required for operation of hardware components consists of operating
systems and drivers for hardware components. Two types of operating systems are required for
the implementation of the secure clock synchronization protocol:

• real-time operating system for the Soekris net4801 computers, and

• standard Linux equipped with the additional server infrastructure and the appropriate
driver software for the TTE Controller.

The driver software enables operating system to control the TTE Controller by creating memory
mapping between the host computer and the TTE Controller.

7Standard for PCMCIA 5.0 or latter devices, which is 32-bit PCI bus in form of a card extension. http:
//web.archive.org/web/20080822091330/http://www.pcmcia.org/

8Field Programmable Gate Array

43

http://web.archive.org/web/20080822091330/http://www.pcmcia.org/
http://web.archive.org/web/20080822091330/http://www.pcmcia.org/

Figure 5.2: TT Ethernet Switch implemented in FPGA.

5.2.1 Operating System for Soekris net4801

The TTE Node is designed as a real-time fault-tolerant system with the ability of real-time
communication.The design ensures that the system provides temporal predictability and deter-
minism. To achieve these goals, both the TTE Controller and the host computer must be im-
plemented with these requirements. On the one hand, the controller for TTE is the dedicated
component designed to provide real-time fault-tolerant communication. On the other hand the
host computer, in this case Soekris net4801, is general purpose communication computer and
requires specially designed software to provide temporal predictability and determinism. This is
why the use of a real-time operating system is necessary in these systems.

The real-time operating system used within this thesis is based on Linux with changes in
kernel to provide hard real-time task execution. The Linux distribution is patched with the Real
Time Application Interface (RTAI) creating an environment where standard basic functions and
hard real-time functions are available. The patching of the Linux kernel is done by installing a
generic Real Time Hardware Abstraction Layer (RTHAL). The RTHAL reorganizes the kernel
internal data and functions dependent so that they can be used by RTAI when hard real-time is
needed [36]. The RTAI provides task schedulers and services needed to provide temporally pre-
dictable and deterministic execution. The Linux distribution used to create real-time operating
system is called Voyage [37] . It is a Debian 9 based Linux distribution specially optimized for
embedded systems. It requires very little resources and still supports almost all standard Linux
functionalities. This makes it a ideal operating system for a communication node. For the im-
plementation of TTE Node within this thesis Voyage Linux is patched with the RTAI to create
a light fully functional Linux based operating system. It provides full hard real-time POSIX

9Linux distribution for x86 and embedded architectures. http://www.debian.org/.

44

http://www.debian.org/

10,11 support for kernel threads and RTAI tasks, which enables efficient partitioning of tasks
into threads. This way it is easier to separate application and authentication protocol within a
program.

Installation of the operating system on Soekris net4801 boards can be performed either by
loading the system image on the Compactflash card and booting the system from the card di-
rectly, or storing it on the development server and booting the system over the network. The
second option is more convenient for the application development because the whole file system
of the target system (host computer of the TTE Node Soekris net4801) is placed on development
server and can be accessed without any restrictions. It is therefore obvious choice for develop-
ment of a distributed system where developer must simultaneously install application software
on several target systems.

The last step of system software setup is to install driver software for the TTE Controller.
Without the driver software a TTE Application can not be executed. The driver software is
implemented as a standard Linux kernel module and as such it is executed using standard Linux
procedures. It maps register files of the TTE Controller to the memory of the host computer.
The driver software is written in the generic C code and can be adopted for various platforms.

Boot process for Soekris net4801 and Voayage/RTAI Linux

The boot-loader of the Soekris net4801 is implemented with included drivers for the standard
Ethernet and it can establish connection with the server, which provides the kernel image of the
operating system and boot the system over the network.

The boot-loader uses Preboot Execution Environment (PXE) to load the operating system
into the on-board memory. PXE is a procedure designed to allow over-the-network-booting
of the client system in an enterprise.This allows a better control over large number of computer
systems and simplifies development and maintenance. PXE uses standardized network protocols
and communication methods. The PXE system consists of a slave node or a target node and a
server on which file systems and images of the slaves are stored. The Server also hosts services
needed for the execution of network protocols. In the first step of the PXE protocol the target
node searches for a valid DHCP 12 server, if the server is reachable, it assigns IP address to
the target system and the boot-loader can acquire information about a running PXE [38] server
in the network. The PXE server provides the target system with the file path to the Network
Bootstrap Program (NPB), in this case the image of the Voyage/RTAI Linux kernel, and loads it
to the RAM memory of the target computer. The NPB is transferred using a Trivial File Transfer
Protocol (TFTP) [39]. The kernel is compiled with the ability to use a Network File System
(NFS) [40] instead of the traditional disk based file system. This avoids the need for a mass
storage devices on the system and simplifies the usage.

10Portable Operating System Interface (POSIX) between operating system and application.
11http://pubs.opengroup.org/onlinepubs/9699919799/
12Dynamic Host Configuration Protocol

45

http://pubs.opengroup.org/onlinepubs/9699919799/

5.2.2 Operating System for Development Server

For a development server a Debian Linux distribution is chosen as the operating system. The
installed version of the Linux is adapted to serve as the server for several communication proto-
cols needed by the target systems such as booting and services used in development toolchain.
It provides networking services which allow a user great flexibility in development, debugging
and evaluation. The networking services installed on the system are: DHCP server service,
FTP server service, TFTP server service, SSH server service, RS-232 communication software.
The application of these services for the booting process of the target systems are described in
Section 5.2.1, a use of the services for other purposes is described in latter sections.

5.3 Development, Debugging and Evaluation Tools

For the implementation of the secure synchronization protocol two types of the software are
used: a system software described in Section 5.2 and a application software. The application
software comprises all programs created by the user to accomplish a given task. In the case
of this thesis the task is to establish the time triggered communication using TTE with a se-
cure clock synchronization algorithm. The development process for the application software is
implemented in four stages:

• source code writing,
• compiling and linking,
• installation and execution,
• debugging and evaluation.

The application software is written with a C programming language and the standard GNU
Compiler Collection (GCC) is used for the compiling and linking. The applications are executed
on the Soekris net4801 computer with the Voyage/RTAI Linux operating system platform. These
computers are limited with computational power and development process is carried out on
development server. The compilation of the source code is done using a cross compiler so
that environment variables and software library dependencies correspond to the Voyage/RTAI
Linux platform. To simplify the development of the application software, the whole process is
integrated into specially adapted software named Eclipse IDE 13 [41].

The first three steps of the development process are executed on the development server as
the final development stage is implemented on the target computers. All three initial steps can be
executed within the Eclipse IDE. The source code is translated by the compiler to an executable
file which is than installed on the target system. The installation requires transfer of the binary
executable files to a specially designated places on the hard drive of the server, where the file
systems of the target operating systems are stored. The content of the target file system can be
changed by the server at any point in time even while the target computer is running. This makes
development of the application software for the target system very simple and effective.The
execution of a application is preformed by a user on the target using the standard Linux console.

13Integrated Development Environment

46

The console of the target system can be accessed either using a RS-232 connection with the
Minicom 14 program on the server side or using a SSH connection. The SS connection can be
made directly from the server or trough the server which is connected to the external network
from the remote workstation.

The lasts steps in the development process are to find potential errors and to evaluate re-
sults that were achieved with the secure clock synchronization algorithm. The debugging of the
application is done using three methods:

• monitoring kernel diagnosis console output using minicom or ssh,
• monitoring stdio error messages,
• monitoring TTE communication channels using Wireshark15.

The evaluation of the secure clock synchronization protocol requires precise temporal mea-
surements. To provide both visual and statistical evaluation of the protocol the system is con-
nected with a digital oscilloscope over a general purpose I/O (GPIO) port on the Soekris net4801
computer. To enable GPIO control additional drivers must be installed for the hardware con-
trollers which control the GPIO on the Soekris net4801. A corresponding device for each pin
must be identified and installed in the Voyage/RTAI Linux. The controlling I/O pins to show
the temporal behaviour of the TTE messages out of the application software create delays which
taint the results. Instead of modifying the application software, the drivers for TTE are modified
to avoid delays, so that they produce signal on I/O pins for certain event. This event can be: a
reception interrupt, a transmission interrupt, a periodic host interrupt etc.. This method for the
evaluation of the temporal behaviour of the TTE system captures events with µs precision. The
signals produced over GPIO are captured with an oscilloscope for further analysis and statistical
evaluation. More on this topic and the results of the evaluation are presented in Chapter 6.

5.4 Application Software

The standard TTE application designed for the RTAI Linux operates trough RTAI tasks. In
this implementation each task occupies a single POSIX thread. The main() function of such
application is used for a initialization and a configuration while the standard functionality is
organized as a state machine in the single RTAI task. This task is executed periodically and it
communicates with the driver of the TTE controller trough a mailbox system characteristic for
RTAI Linux. The data received from the driver are reports on the ongoing events in the hardware
(i.e. message reception interrupt). The state machine uses these messages for the hardware and
controls accordingly the program .The application specific functions can be implemented within
the thread as a function or as an additional thread. The implementation of the secure clock
synchronization protocol requires parallel execution of its routines. Therefore, it is implemented
in two additional threads. In the Figure 5.3 the structure of the application software has been
depicted including the authentication protocol threads.

14Minicom is a text based terminal emulation software for modem control. Mostly used for establishing a serial
console connections. http://alioth.debian.org/projects/minicom/

15Wireshark packet analyser program used for network development. http://www.wireshark.org/

47

http://alioth.debian.org/projects/minicom/
http://www.wireshark.org/

main() Thread: TTE Standard Thread: Encrypt and Send

Thread: Receive and Decrypt

Secure Clock Synchronization
ProtocolStandard TTE Application

func: Initialization

func: Configuration

func: Application A

func: Application B

Thread: Application C

Figure 5.3: The software structure of the implementation of the secure clock synchronization
protocol. The red block depicts the TTE application without the secure clock synchronization
protocol. The blue block contains tasks required for the execution of the authentication protocol.

5.4.1 The Secure Clock Synchronization Protocol

The integration of the authentication protocol algorithm in to the TTE is done by adding its rou-
tines in to the application software of the TTE system. The structure of the modified application
is described in the introduction of the Section 5.4. The authentication protocol is implemented
in two POSIX threads as a hard-real time RTAI task. The first thread is generally called encrypt
and send. On the master side it is named sign and update and its task is to apply the crypto-
graphic schemes the membership vector and to update the data with the cryptographic context
in to the CNI memory. On the master side this thread is called authenticate and update and its
task is to authenticate local time of a slave and to update the CNI memory. The second thread
is named receive and verify thread and its task is to verify received messages and to commit
the information to the application. On the master side it is called Verify Slave Time and on
the slave side Verify Membership Vector. The schedule of the TTE application must also be
modified to accommodate messages needed by the authentication protocol. The security prop-
erties of the authentication protocol are implemented via cryptographic tools incorporated into a
cryptographic library named libtomcrypt [29] [42] [43]. The One-key Message Authentication
Code (OMAC) [44] algorithm is used for the message authentication, and the Eliptic Curve DSA
(ECDSA) [30] for the digital signature of the messages.

48

Membership Vector
Message

Slave 1 Global Time Slave 2 Global Time Slave 3 Global Time

0 s 1 sPeriod 8 End Period 14 End =

Synchronization Messages

Figure 5.4: The relative placement of the messages required by the secure clock synchronization
protocol in the application schedule.

The Schedule

The schedule of the TTE system determines the temporal execution of the tasks. It is defined
by the application and it requires a slot for the synchronization messages other messages are
optional.Beside messages, the schedule can also contain user defined periodical interrupts called
Host Interrupts. These interrupts can be used to schedule a periodical task for the application.
Although each period can be chosen for the synchronization message, shorter periods are more
convenient because of the better precision. A application with the authentication protocol re-
quires two more types of messages. The one is for the membership vector from the master to
the slaves and the other is for the global time messages from the slaves to the master. The au-
thentication protocol messages are scheduled in the longer period, like the period 14 in order
to leave enough time after each transmission for the processing of data and a execution of the
cryptographic tasks. The Host Interrupt is used to execute the needed tasks for the protocol like
the authentication or digital signing. Chronologically, the Host Interrupt is set at the beginning
of the period 14 with the phase offset to avoid the conflict with the synchronization message and
to leave enough time for the cryptographic tools to be executed on messages before the mes-
sage sending slot. The depiction of the schedule in Figure 5.4 shows a relative placement of the
messages within the interval of one second.

The facts behind the schedule are summarized in the Table 5.1.

Message Period (dec.) 15 Phase (hex.)16

Synchronization Message 1 0x000
Host Interrupt 14 0x006
Membership Vector Message 14 0x802
Global Time Message Slave 1 14 0x803
Global Time Message Slave 2 14 0x804
Global Time Message Slave 3 14 0x805

Table 5.1: Authentication Protocol Schedule

49

The Algorithm

In this section the algorithms used to implement the authentication protocol are described. The
algorithms presented below are written in pseudo code.There are two algorithms: a master algo-
rithm and a slave algorithm. The algorithms are simplified in comparison to the actual C code
for better understanding. Nevertheless they posses all essential characteristics, needed to show
the functionality of the secure clock synchronization protocol.

The algorithms contain several important variables which control the execution of the proto-
col. First, the boolean variable terminate controls the execution of the entire program. As long
as this variable is set to false ,the program continues to run periodically, if the variable is set to
true ,the program will terminate freeing all resources. Each interrupt has a unique identification
number. The variable IDinterrupt stores the interrupt identification number in case of the host
interrupt or error interrupt, or the message identification number in case of a message reception
interrupt. The IDecryptinterrupt contains the identification number of the host interrupt defined
for the authentication protocol. (IDmessage) holds the unique identification number of the mes-
sage which is received . AuthID is the set of all message identification numbers of the messages
that are send by the slaves and are related to the authentication protocol. The identification num-
ber of the message that is sent from the master to slaves and that contains the membership vector,
is represented with the variable IDMembershipV ectorMessage. Each node in the TTE network has
also unique identification number (IDSlave). The master uses this id to select the correspond-
ing symmetric key for a given slave. The membership vector is represented with the variable
MembershipV ector. The boolean variables untrusted and trusted represent the status of the
slaves within membership vector. The time is represented with the GlobalT imeLocal for the
local global time of the master and SlaveSendInstant for the local clock value of the slave
at the send instant of the message from a slave to the master. Signature is the digital signa-
ture of the membership vector calculated by the master via ECDSA, and MAC is the message
authentication code calculated by the slaves via OMAC.

Algorithm 1 represents the master node implementation of the authentication protocol al-
gorithm. The purpose of the master node in the authentication protocol is to serve as a trusted
authentication authority. It is responsible for gathering global time values, verifying them and
informing the slaves about the security status of the cluster. On the master side of the protocol
there are two tasks:

• The sign and update task is described in Algorithm 2 and is responsible for signing the
membership vector messages and for updating the CNI memory with the new membership
vector message. The digital signature is created with ECDSA using a secret private key of
the master. The TTE controller automatically transmits the membership vector message
in CNI memory to the slaves in the next round. The signing of the membership vector and
the updating of the membership vector message is done periodically on the occurrence of
encrypt interrupt which generated by the TTE controller.

15Decimal number representation.
16Hexadecimal number representation.

50

Algorithm 1 The secure clock synchronization algorithm of the master node.
1: procedure MAIN CONTROL()
2: PrivateKey← GET PRIVATE KEY FOR ECDSA()
3: AuthID ← GET MESSAGE IDS FOR AUTHENTICATION PROTOCOL()
4: while terminate = false do
5: IDinterrupt←WAIT FOR INTERRUPT()
6: if IDinterrupt ∈ AuthID then
7: TRIGGER RECEIVE AND VERIFY TASK(IDinterrupt)
8: else if IDinterrupt = IDecryptinterrupt then
9: TRIGGER SIGN AND UPDATE TASK()

10: else
11: STANDARD INTERRUPT HANDLER(IDinterrupt)
12: end if
13: end while
14: end procedure

Algorithm 2 Sign and Update Task of the master node
1: procedure SIGN AND UPDATE()
2: Signature← SIGN ECDSA(MembershipV ector, PrivateKey)
3: Message← MERGE(Signature,MembershipV ector)
4: UPDATE MESSAGE(Message)
5: end procedure

Algorithm 3 Verify Slave Time Task of the master node
1: procedure VERIFY SLAVE TIME(IDinterrupt)
2: IDmessage← IDinterrupt

3: IDSlave← GET SLAVE ID(IDmessage)
4: SymetricKey← GET SYMMETRIC KEY(IDSlave).
5: Message← GET MESSAGE(IDmessage)
6: SlaveT imeSendInstant← GET SLAVE TIME(Message)
7: MACmessage← GET MAC(Message)
8: MAC ← CREATE MAC(SlaveSendInstant, SymetricKey)
9: GlobalT imeLocal ← GET GLOBAL TIME LOCAL()

10: if MAC = MACmessage & VERIFY(GlobalT imeLocal,SlaveSendInstant) then
11: MembershipV ector← SET STATUS(IDSlave,trusted)
12: else
13: MembershipV ector← SET STATUS(IDSlave,untrusted)
14: end if
15: end procedure

51

• The second task described in Algorithm 3 is called Verify Slave Time and it is responsible
for the reception of the global time messages from the slaves and the authentication and the
verification of the global time. The global time messages are authenticated by the slaves
with OMAC and each master/slave pair share a single secret key for authentication. The
verification of the global time is performed by comparing the global time value received
from a slave with the local global time of the master. If the results of the authentication or
verification are negative the slave is marked as untrusted in the membership vector.

Algorithm 4 The secure clock synchronization algorithm of a slave node.
1: procedure MAIN CONTROL()
2: PublicKey← GET PUBLIC KEY FOR ECDSA()
3: SymetricKey← GET SYMMETRIC KEY(LocalSlaveID).
4: while terminate = false do
5: IDinterrupt←WAIT FOR INTERRUPT()
6: if IDinterrupt = IDMembershipV ectorMessage then
7: TRIGGER RECEIVE AND VERIFY TASK(IDinterrupt)
8: else if IDinterrupt = IDencryptinterrupt then
9: TRIGGER AUTHENTICATE AND UPDATE TASK()

10: else
11: STANDARD INTERRUPT HANDLER(IDinterrupt)
12: end if
13: end while
14: end procedure

Algorithm 5 Authenticate and Update Task of a slave node
1: procedure AUTHENTICATE AND UPDATE()
2: GlobalT imeLocal ← GET GLOBAL TIME LOCAL()
3: MAC ← CREATE MAC(GlobalT imeLocal)
4: Message← MERGE(MAC,GlobalT imeLocal)
5: UPDATE MESSAGE(Message)
6: end procedure

Algorithm 4 represents the slave node implementation of the authentication protocol algo-
rithm. It is responsible for delivering its local view of global time in an authenticated manner to
the master. Like the master, the slave algorithm can be divided in two basic tasks:

• The task described in Algorithm 5, the authenticate and update task, provides authen-
tication of the global time messages which are sent to the master. The authentication is
implemented using the OMAC algorithm, by creating a MAC from the global time value
and a secret key.

• The second task is named Verify Membership Vector (Algorithm 6). It verifies the mem-
bership vector messages received from the master and provides the received membership

52

Algorithm 6 Verify Membership Vector Task for a slave node
1: procedure VERIFY MEMBERSHIP VECTOR(IDinterrupt)
2: Message← GET MESSAGE(IDMembershipV ectorMessage)
3: MembershipV ectormessage← GET MEMBERSHIP VECTOR(Message)
4: SignatureIDMembershipV ectorMessage

← GET SIGNATURE(Message)
5: StatusSigrnature←VERIFY SIGNATURE(SignatureIDMembershipV ectorMessage

,PublicKey)
6: if StatusSigrnature 6= valid then
7: terminate← true . The message is compromised by an attacker.
8: else
9: MembershipV ectorlocal ←MembershipV ectormessage

10: . The membership vector is committed to the application.
11: end if
12: end procedure

vector to the application. The membership vector message contains a digital signature
generated with the ECDSA. To verify the digital signature a slave uses the corresponding
public key. Only if the signature is verified successfully, the membership vector is made
available to the application.

The functions used in the algorithms are explained in the following text:

• Trigger Sign and Update Task () starts the task for signing the membership vector
message updating the corresponding location in the CNI. This functionality was realized
as a separate task to keep the interrupt service routine as short as possible. Thus, the
master can receive other messages while this executes.

• Trigger Authenticate and Update Task () starts the task for authenticating the message
containing the slave’s local view on the global time for updating the corresponding loca-
tion in the CNI. This functionality was realized as a separate task to keep the interrupt
service routine as short as possible. Thus, a slave can receive other messages while this
executes.

• Trigger Verify Slave Time Task (Interrupt ID) starts the task for the verification of the
received global time message from the slave. This functionality was realized as a separate
task to keep the interrupt service routine as short as possible. Thus, the master can receive
other messages while this executes.

• Trigger Verify Membership Vector Task (Interrupt ID) starts the task for the verifica-
tion of the received global membership vector message from the master. This functionality
was realized as a separate task to keep the interrupt service routine as short as possible.
Thus, a slave can receive other messages while this executes.

• Get Public Key for ECDSA(), Get Private Key for ECDSA() provide keys for the
ECDSA.

53

• Get message IDs for Authentication Protocol() creates set of the message identification
numbers from the messages related to the authentication protocol.

• Update Message(Message) copy the message content to the designated place in the mem-
ory which is than sent over the network.

• Create MAC(Global Time) is the function for the message authentication. Same function
is used for the encryption on the slave side and the verification on the master side.

• Merge (Data 1, Data 2) merges two data blocks in to the single message.

• Get Message(Message ID) retrieves message data for the interrupt ID received from the
controller over RTAI mailbox.

• Get MAC(message extracts MAC from the message.

• Standard Interrupt Handler (ID) represents handler function for the interrupts in the
standard application.

• Get Slave Time (message) extracts the local clock value of the slave from the received
message.

• Get symmetric key (Slave ID) retrieves the symmetric key for the slave using its identi-
fication number.

• Get Global Time Local() returns the local value of the global time.

• Set Status (slave, status, membership vector) writes current security status for the given
slave in to the membership vector.

• Verify(Time 1, Time 2) compares two time values and returns true if the drift offset
between those two values is within permitted boundaries and false otherwise.

• Sign ECDSA (payload, private key) creates digital signature from the plaintext using
private key.

• Get Signature(Message ID) retrieves the signature from the membership vector message.

• Verify Signature(signature, public key) provides verification of the signature for the
ECDSA. The function returns status of the signature (e.g. valid, invalid).

• Get Membership Vector () retrieves the membership vector received from the master.

• Wait for Interrupt() blocks the execution by waiting on a interrupt from the TTE Con-
troller. The function returns the interrupt ID in case of the interrupt and message ID in
case of the message reception interrupt.

54

One-key Message Authentication Code (OMAC)

The OMAC is the version of block-cipher chaining message authentication code (CBC MAC)
[45]. It is designed to accept the messages of any length and its performance is much more
optimized than the standard CBC MAC.It is also recommended by the NIST in their publica-
tion on cipher modes of operation [46]. The recommended cipher in this publication is named
CMAC and it corresponds to the OMAC1 implementation. The same version is implemented
in a libtomcrypt collection of cryptographic tools.This implementation uses the AES symmet-
rical cipher with a 128-bit key to create MAC. This combination is considered to be safe for a
foreseeable future. The keys are stored statically without any key management system which
assumed that keys are secure. The execution time of the OMAC algorithm form the libtomcrypt
is under 0.01 seconds on the Soekris net4801 with the RTAI Voyage Linux.

Elliptic Curve Digital Signature Algorithm (EC DSA)

The EC DSA is a variant of the DSA using an elliptic curve public key cryptography. In com-
parison with the standard DSA key, lengths are much shorter for the same security level, which
brings significant performance increase. This property is valuable when the algorithm is imple-
mented on embedded systems with the limited computational power. For the implementation
of this thesis 224-bit long keys have been used, the recommended length by the NIST is 256-
bit [30]. For the embedded applications can be used even shorter keys, as the life span of the
data is relatively short (i.e. sensor data).

5.5 Summary of the Development Environment

In this chapter all components of the development environment have been described and their
role in the overall system has been established. The platform created to support the imple-
mentation phase of this thesis has a multifunctional character and it can be easily adapted for
other research projects. The schematic overview on the development environment is depicted in
Figure 5.5. The combination of the security model presented in this thesis with other security
methods creates a cornerstone for a security platform for the time triggered architecture.

55

Internet

TT Ethernet
Switch

Development
Server

Ethernet Switch RS 232 Switch

Debugging Line (Wireshark tool)

External access
over SSH

Figure 5.5: The schematic depiction of development environment. The blue lines represent
standard Ethernet circuit used for development, booting of the target system and debugging.
Black lines represent RS-232 network circuit used for the control and debugging. Red lines are
the TT Ethernet circuit. The dashed black line and the green line are the debugging connection
for the TT traffic and the connection to Internet.

56

CHAPTER 6
Experimental Evaluation

For the evaluation of the secure clock synchronization protocol we will simulate an attack on
the timing of the clock synchronization messages that are received by the attacked host. In
the next sections we describe the attack scenario, the experimental setup, and the experiments
themselves.

6.1 Attack Scenario

According to the attacker model described in Section 4.1 we assume that an attacker has the
ability to change the timing of all messages on the network in two ways, it can delay messages
or it can speed up messages. In the case of clock synchronization messages, this will lead in both
cases to a synchronization error of the attacked node (i.e., the node that receives the delayed or
speeded up messages), if the timing modification is not detected.

To a given extend, TTE is natively robust against such attacks. If the timing of a clock
synchronization message is modified such that it is received outside the reception window of the
node, the node will detect the modification and will not accept the synchronization message. In
our scenario, the attacker performs a very clever attack, that makes it impossible for the TTE
controller alone to detect the timing modification. This is possible, by modifying the timing
of all messages received by a node only by a such small amount that they stay in the bounds
of the node’s reception window. In this way, the node will not be able to detect the timing
modification. Furthermore, it will adjust its clock value to the modified timing of the received
clock synchronization messages (keep in mind that the attacker delays or speeds up all messages
that are received by the attacked node). Since the attacked node has adjusted its local clock value,
the reception window will have slightly moved towards the direction of the timing modification
in the next resynchronization interval. Thus the attacker can now increase the magnitude of the
timing modification of the received messages (whether it was delayed or speeded up) without
being detected. With each received clock synchronization message, it can slightly increase the
delay (or speed up) without violating the reception window and thus cause the attacked node to
drift away from the cluster without being detected by the attacked node, i.e. the attacked node
cannot recognize that it is no more in synchrony with the rest of the cluster.

57

6.2 Experimental Setup

The development environment is connected to an oscilloscope for the experimental evaluation of
the implemented concepts. The clamps of the oscilloscope are connected to the GPIO pin on the
Soekris net4801 computer. This pin is set or cleared by the TTE controller in order to signalise
a system-wide periodic instant, with respect to the local clock of a node. If the cluster would
be always perfectly synchronized, this signal would periodically change its value at all nodes at
exactly the same time. The maximum offset of this signal for any two nodes indicates the actual
precision of the cluster. The measurement data are stored on the oscilloscope locally, or on a
network drive. We use Matlab for statical evaluation and for the representation of the results.

The TTE cluster used for experiments consists of a master node and three slave nodes. The
master node provides the global time to the cluster and serves as the trusted authentication au-
thority. The period for the synchronization message is 8 with the phase 0. The host interrupt is
scheduled in period 14 with the phase 0x006.

Measurement 1 Measurement 2

Measurement 4Measurement 5

Slave 1

Slave 2

Drift Offset

1/8"Drift OffsetDrift Offset

Figure 6.1: Four single measurements in normal mode.

58

6.3 Experiments

In this section we show the results of three different kinds of experiments. The first experiment
shows TTE under normal operation. In the second experiment we will perform the above men-
tioned attack without our security layer. In this case, the attack will be undetected. The third
experiment shows how our security layer can detect the attack.

6.3.1 Normal Mode of Operation

The goal of the experiment is to measure the average drift offset of two slaves in the normal
mode of operation. In the Figure 6.2 a screenshot of the oscilloscope is shown. The upper signal
represents the first slave node and is used as a trigger to provide a stable picture. The second
signal represents the second slave and is recorded with a trace function allowing the changes of
the drift offset to be observed. Each instance of the rising edge on lower signal represents one
measurement and the horizontal difference between the two signals in that instant is the drift
offset. In normal operation, the average drift offset is very small (in range of ±1µs). Figure 6.1
shows some of the measurements of Figure 6.2, but one measurement at the time.

Figure 6.2: Two slaves in normal mode. The first slave is used as the trigger (green signal) and
for every rising edge, the drift offset of the second slave is recorded (blue signal). Each trace of
the blue signal represents one measurement and the horizontal difference the drift offset.

If the index of the measurements and the drift offsets are represented in a two-dimensional
graph where the index of the measurements are on the X axis and the drift offset on Y axis, the
graph has the shape of a straight line with occasional spikes. Figure 6.3 depicts the graph that
shows the drift offset per measurement. The spikes in the drift offset values are due to delays
created by the hardware, the driver software and the operating system.

59

0 100 200 300 400 500 600 700 800 900 1000
-50

-40

-30

-20

-10

0

10

20

30

40

50
D

e
lt
a

 D
e

la
y
 (

s
)

Measurement

D
ri

ft
 O

ff
se

t
(μ

s)

Figure 6.3: Drift offset of two slaves in the normal mode of operation represented as a trend
function over thousand measurements

6.3.2 Attack Performed Without Security Layer

In this experiment the attacker modifies the timing of all messages received by Slave 2 (blue line
in Figure 6.4). It gradually speeds up the synchronization messages received by Slave 2, staying
always in the bound of the precision window. In each round, Slave 2 cannot detect the speed up,
and adapts its local clock according to the speeded up clock synchronizing message. Speeding
up the synchronization message makes Slave 2 adjusting its local clock to a future point in time.
Since Slave 2 adjusts repeatedly its local clock to a future point in time, it will progressively
develop a positive offset to the other nodes in the system. Figure 6.4 shows how the signals
of Slave 2 arrive earlier and earlier compared to Slave 1 as time evolves (over a period of 5
minutes).

Figure 6.5 shows the growth of the drift offset over a longer period of time. Although the
global time has drifted over 80 µs neither the TTE Controller nor the application has recognized
the attack and they continued to operate under the perception that the present view on the global
time is correct. If the functionality of the application depends on a reliable global time on all
nodes, the system would fail.

60

10 second trace 1 minute trace

2 minute trace

4 minute trace

3 minute trace

10 second trace

5 minute trace

Figure 6.4: Oscilloscope trace of an undetected attack (over a period of 5 minutes)

61

0 100 200 300 400 500 600 700 800 900
-10

0

10

20

30

40

50

60

70

80

90
D

e
lt
a
 D

e
la

y
 (

s
)

Measurement

D
ri

ft
 O

ff
se

t
(μ

s)

Figure 6.5: Trend function of the drift offset showing an undetected attack

6.3.3 Attack performed with active security layer

This experiment shows the attack of the last experiment, but with our activated security layer. In
this experiment, the security layer successfully detected the attack and informed the application
that the local view on the global time is no more trusted. The application can now decide how to
act after having received this information. Typically, the application would go to a safe state. In
our case, the application simple stops the TTE controller, and no more signal is generated (see
Figure 6.6 and 6.7).

62

A B

DC

Figure 6.6: Oscilloscope screenshot showing that the undetected drift is bounded by the active
authentication protocol. After detection of the attack, the TTE controller of Slave 2 is switched
of and no more trace is generated

63

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4

6

8

10

12

D
ri
ft

 O
ff

s
e
t(

s
)

Measurement

Threshold
Attack Detected

Figure 6.7: The attack is detected after the drift offset has exceeded the threshold

64

CHAPTER 7
Conclusion

This thesis has identified several major security threats against the global time in time-triggered
systems and developed a security model to prevent various malicious attacks against the global
time base. The security model is based on a secure authentication protocol designed to periodi-
cally check the global time in the network and report any anomalies. The authentication protocol
operates according to the master slave principle where the master has the role of a trusted au-
thentication authority. As a prove of concept, the authentication protocol is implemented on a
Time Triggered Ethernet system as a security layer on top of the existing clock synchronization
algorithm. The implementation comprises a set of hardware components, operating systems,
application software and evaluation tools integrated in a single development environment.

We have experimentally demonstrated that without adequate additional protection, a TTE
node can be unnoticeably brought out of synchrony by a malicious attacker. On the other hand,
the security layer proposed in this work detects many different kinds of attacks, including the
fabrication, modification, replay, delay or speed up of clock synchronization messages. The fea-
sibility and efficiency of the proposed approach has been demonstrated by various experiments
with simulated attacks. The implementation of the security layer was able to detected all attacks
as specified by the attacker model.

Because of the obvious benefits, our approach has already been included in large-scale scien-
tific and industrial projects like the ARTEMIS ACROSS 1 project lead by the Real-Time Systems
Group of the Institute of Computer Engineering, at the Technical University of Vienna. In this
project, the proposed approach is used to secure a global time base on multiple system-on-chip
(SoC) components using a time triggered network on chip as a communication infrastructure.
Although the architecture is fundamentally different from the implementation in this thesis, the
security model proposed in this thesis withstands all challenges and provides promising results.

Concluding we can state, that the approach described in this thesis is independent from the
actual implementation of the underlying platform and can be considered as a general model for
securing the global time base in time triggered architectures.

1http://www.across-project.eu/

65

http://www.across-project.eu/

Bibliography

[1] Hermann Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations, Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997.

[2] H. Kopetz, “The time-triggered architecture”, in Proceedings of the First International
Symposium on Object-Oriented Real-Time Distributed Computing, Kyoto, Japan, April
1998, pp. 22–29.

[3] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer, “The time-
triggered ethernet (tte) design”, 8th IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC), Seattle, Washington, May. 2005.

[4] “Ieee standard for a precision clock synchronization protocol for networked measurement
and control systems”, IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pp. c1 –269,
24 2008.

[5] Hui Li, Yanfei Zheng, Mi Wen, and Kefei Chen, “A secure time synchronization protocol
for sensor network”, in Emerging Technologies in Knowledge Discovery and Data Mining,
Takashi Washio, Zhi-Hua Zhou, Joshua Huang, Xiaohua Hu, Jinyan Li, Chao Xie, Jieyue
He, Deqing Zou, Kuan-Ching Li, and Mário Freire, Eds., vol. 4819 of Lecture Notes in
Computer Science, pp. 515–526. Springer Berlin / Heidelberg, 2007.

[6] Armin Wasicek, “Security in time-triggered systems”, PhD.

[7] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song, “The tesla broadcast authentica-
tion protocol”, 2002.

[8] Causevic Emir, “A secure group communication middleware for time-triggered systems”,
Master Thesis.

[9] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler, “Fault-tolerant clock
synchronization in distributed systems”, Computer, vol. 23, pp. 33–42, October 1990.

67

[10] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Principles and
Paradigms (2nd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[11] N.F. Ramsey, “The past, present, and future of atomic time and frequency”, Proceedings
of the IEEE, vol. 79, no. 7, pp. 921 –926, July 1991.

[12] R. A. Nelson, D. D. Mccarthy, S. Malys, J. Levine, B. Guinot, H. F. Fliegel, R. L. Beard,
and T. R. Bartholomew, “The leap second: its history and possible future metrologia”.

[13] D.L. Mills, “Internet time synchronization: the network time protocol”, Communications,
IEEE Transactions on, vol. 39, no. 10, pp. 1482 –1493, October 1991.

[14] Ahmed El-Rabbany, Introduction to GPS: the Global Positioning System, ARTECH
HOUSE, INC., Norwood, MA, USA, 2nd edition, 2002.

[15] S. Aslam-Mir, W. Haidinger, W. Elmenreich, T. Losert, and H. Kopetz, “OMG Smart
Transducers, v1.0”, Smart Transducers Specification, 2003.

[16] John C. Eidson, Measurement, Control, and Communication Using IEEE 1588 (Advances
in Industrial Control), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[17] “Ieee standard for information technology-telecommunications and information exchange
between systems-local and metropolitan area networks-specific requirements part 3: Car-
rier sense multiple access with collision detection (csma/cd) access method and physical
layer specifications amendment 4: Media access control parameters, physical layers and
management parameters for 40 gb/s and 100 gb/s operation”, IEEE Std 802.3ba-2010
(Amendment to IEEE Standard 802.3-2008), pp. 1 –457, 22 2010.

[18] Petr Grillinger Hermann Kopetz, Astrit Ademaj and Klaus Steinhammer, “Time-Triggered
Ethernet Protocol Specifcation”, Technische Universität Wien,Institut für Technische In-
formatik, Treitlstr.1-3/182-1, 1040 Vienna, Austria„ 2006.

[19] IEEE Standard Association IEEE EtherType Field Registration Authority., “Ether-
Type Field Public Assignments.”, http://standards.ieee.org/develop/
regauth/ethertype/eth.txt, 2005, [Online; accessed 30-May-2011].

[20] Klaus Steinhammer, Design of an FPGA-Based Time-Triggered Ethernet System, PhD
thesis, Technischen Universität Wien, Dezember 2006.

[21] William Stallings and Lawrie. Brown, Computer security : principles and practice / Willam
Stallings, Lawrie Brown with contributions by Mick Bauer and Michael Howard, Prentice
Hall, Upper Saddle River, NJ :, 2008.

[22] Nancy G. Leveson, Safeware: system safety and computers, ACM, New York, NY, USA,
1995.

[23] Bruce Schneier, Applied cryptography (2nd ed.): protocols, algorithms, and source code
in C, John Wiley & Sons, Inc., New York, NY, USA, 1995.

68

http://standards.ieee.org/develop/regauth/ethertype/eth.txt
http://standards.ieee.org/develop/regauth/ethertype/eth.txt

[24] Whitfield Diffie and Martin E. Hellman, “New directions in cryptography”, 1976.

[25] B. Harris, “Rsa key exchange for the secure shell (ssh)”, http://tools.ietf.org/
html/rfc4432, March 2006.

[26] E. Rescorla T. Dierks, “The transport layer security (tls) protocol”, http://tools.
ietf.org/rfcmarkup/5246, August 2008.

[27] Victor S Miller, “Use of elliptic curves in cryptography”, in Lecture notes in computer
sciences; 218 on Advances in cryptology—CRYPTO 85, New York, NY, USA, 1986, pp.
417–426, Springer-Verlag New York, Inc.

[28] Neal Koblitz, Alfred Menezes, and Scott Vanstone, “The state of elliptic curve cryptogra-
phy”, Des. Codes Cryptography, vol. 19, pp. 173–193, March 2000.

[29] T.S. Denis and S. Johnson, Cryptography for developers, Safari Books Online. Syngress
Publishing, Inc., 2007.

[30] National Institute of Standards and Technology, “Digital signature standard (dss)”, 2000.

[31] National Institute of Standards and Technology, “Digital signature standard (dss)”, 2009.

[32] Soekris Engineering inc., “net4801 series boards and systems. user’s manual”, 2004.

[33] Inc. Advanced Micro Devices, “Amd geodeTM gx processors data book”, August 2005.

[34] Klaus Steinhammer and Astrit Ademaj, “Hardware implementation of the time-triggered
ethernet controller.”, in IESS, Achim Rettberg, Mauro Cesar Zanella, Rainer Dömer, An-
dreas Gerstlauer, and Franz-Josef Rammig, Eds. 2007, vol. 231 of IFIP, pp. 325–338,
Springer.

[35] Altera Corporation., “Altera Cyclone II”, http://www.altera.com/products/
devices/cyclone2/cy2-index.jsp, [Online; accessed 12-July-2011].

[36] L. Dozio and P. Mantegazza, “Linux Real Time Application Interface (RTAI) in low cost
high performance motion control”, Motion Control, pp. 27–28, 2003.

[37] Voyage Design and Consultants, “Voyage Linux”, http://linux.voyage.hk/,
[Online; accessed 14-July-2011].

[38] Intel Corporation, “Preboot Execution Environment(PXE) Specification 2.1”, 1999.

[39] K. Sollins, “The tftp protocol (revision 2)”, http://tools.ietf.org/html/
rfc1350, July 1992.

[40] D. Robinson R. Thurlow Sun Microsystems Inc. C. Beame Hummingbird Ltd. M. Eisler
D. Noveck Network Appliance Inc. S. Shepler, B. Callaghan, “Network file system (nfs)
version 4 protocol”, http://tools.ietf.org/html/rfc3530, April 2003.

69

http://tools.ietf.org/html/rfc4432
http://tools.ietf.org/html/rfc4432
http://tools.ietf.org/rfcmarkup/5246
http://tools.ietf.org/rfcmarkup/5246
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp
http://www.altera.com/products/devices/cyclone2/cy2-index.jsp
http://linux.voyage.hk/
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc3530

[41] Eclipse Foundation, “Eclipse IDE”, http://www.eclipse.org/, [Online; accessed
14-July-2011].

[42] Tom St. Denis, “LibtomCrypt Website”, http://libtom.org/?page=
features&newsitems=5&whatfile=crypt, [Online; accessed 14-July-2011].

[43] Tom St. Denis, “LibtomCrypt Developer Manual”.

[44] Tetsu Iwata and Kaoru Kurosawa, “Omac: One-key cbc mac”, in Pre-proceedings of Fast
Software Encryption, FSE 2003. 2002, pp. 137–161, Springer-Verlag.

[45] M. Bellare, J. Kilian, and P. Rogaway, “The security of cipher block chaining”, 1994.

[46] National Institute for Standards and Technology, “Recommendation for block cipher
modes of operation: The cmac mode for authentication”, NIST Special publication 800-
38B, May 2005.

70

http://www.eclipse.org/
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt

	List of Figures
	List of Tables
	List of algorithms
	Introduction
	Contribution
	Outline

	Related Work
	IEEE 1588
	Secure Time Synchronization Protocols for Sensor Networks
	Security Platforms for Time Triggered Systems

	Basic Concepts
	Distributed Real-Time Systems
	Characteristics of a real-time system
	Distributed approach

	The Time-Triggered Architecture
	The Global Time
	Clock Synchronization
	Time Standards

	Time-Triggered Ethernet
	Time Triggered Ethernet System
	TTE Services
	TT Message Types in TTE

	Security Concepts
	Symmetric Encryption
	Message Authentication
	Public-Key Encryption (PKE)
	Digital Signature
	Key Distribution

	System Model
	Security Threats and Requirements
	The Secure Clock Synchronization Algorithm
	Summary of the System Model

	Implementation
	Hardware
	Soekris net4801
	TTE Controller
	Server and Network Equipment

	System Software
	Operating System for Soekris net4801
	Operating System for Development Server

	Development, Debugging and Evaluation Tools
	Application Software
	The Secure Clock Synchronization Protocol

	Summary of the Development Environment

	Experimental Evaluation
	Attack Scenario
	Experimental Setup
	Experiments
	Normal Mode of Operation
	Attack Performed Without Security Layer
	Attack performed with active security layer

	Conclusion
	Bibliography

