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Abstract

In the present diploma thesis, the eight 3d transition metal monoxides ScO, TiO,

VO, CrO, MnO, FeO, CoO and NiO were studied in the ideal rocksalt structure. The

Vienna Ab-initio Simulation Package (VASP) was used to solve the Kohn–Sham equa-

tions of Density Functional Theory (DFT) selfconsistently within the framework of the

Projector-Augmented Wave method (PAW). The compounds presented above are con-

sidered to be prototypes of systems containing localized electrons, for which exchange

and correlation effects are not sufficiently described by the Local Density Approxima-

tion (LDA), or the semilocal Generalized Gradient Approximation (GGA). All eight

monoxides were studied in an antiferromagnetic configuration, in bulk as well as in a

(100) monolayer, which, to our best knowledge, was not done before.

The Hartree–Fock hybrid functional HSE06 was used to create a benchmark lattice

constant and density of states (DOS) graph for each system. In the following attempts

were made to reproduce the HSE06 lattice constants and DOS peaks with a computa-

tionally much cheaper method by adding an on-site repulsion term for the 3d electrons

to the LDA. This approach is known as the LDA+U method. To find the right value

for the parameter U , the DOS was dissected into Oxygen p, and transition metal deg

and dt2g states. The peak positions and bandwidths were used as characteristic fitting

values, as well as the lattice constant. The parameter U was optimized for different sets

of conditions by minimizing the mean quadratic deviation with respect to the HSE06

calculation. In order to create a bandgap, or enlarge the already existing gap to its

hybrid functional counterpart, another parameter, the scissor shift ∆, was calculated.

While being in the same order of magnitude, values for the on-site interaction param-

eter U are often quite different, depending on the chosen set of fitting attributes. For

bulk CrO, the ideal values of U are for example found to be: 0.0 eV for the valence

bandwidth, 1.2 eV for the lattice constant, 2.9 eV for all parameters and 4.6 eV for the

peak positions. The spread is usually smaller in the case of the (100) monolayer, with

an overall increased U . This was to be expected, as the restrictive geometry forces the

electrons even closer together.

This work provides a large dataset of U and ∆ values for the gradually filling 3d shell.

It also indicates in which cases the approximation of the HSE06 calculation with the

LDA+U+∆ works well and in which it does not. The monolayer calculations allow to

extrapolate the change of these parameters for real surface layers in a slab.
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Kurzfassung

In der vorliegenden Diplomarbeit wurden die acht 3d Übergangsmetalloxide ScO, TiO,

VO, CrO, MnO, FeO, CoO und NiO, in der idealen Kochsalzstruktur analysiert. Um

die auf der Dichtefunktionaltheorie (DFT) aufbauenden Kohn–Sham Gleichungen zu

lösen, kam das Vienna Ab-initio Simulation Package (VASP) genannte Programm-

paket zum Einsatz, wobei das Verhalten der Elektronen im Potential der Atomrümpfe

mit der Projector Augmented Wave Methode (PAW) beschrieben wurde. Die oben

genannten Verbindungen gelten als Prototypen für Systeme mit stark lokalisierten

Elektronen, für die die gängigen Näherungen für die Austausch- und Korrelationswech-

selwirkung nur bedingt sinnvoll anwendbar sind. Diese üblichen Funktionale sind die

Lokale Dichtenäherung (LDA) und die um den Gradienten der örtlichen Dichte erweit-

erte, semilokale “Generalized Gradient Approximation” (GGA). Alle acht Verbindung-

en wurden in antiferromagnetischer Konfiguration sowohl im unendlich ausgedehnten

Kristall, als auch in einer (100) Monolage untersucht, was zu unserem besten Wissen

bisher noch nicht versucht wurde.

Das Hartree–Fock Hybridfunktional HSE06 wurde verwendet um für jede Verbindung

eine Referenzgitterkonstante und einen Referenzgraphen der Denity of States (DOS)

zu bestimmen. Es wurde versucht diese Attribute mit einer, die Rechenzeit betreffend,

viel günstigeren Methode zu imitieren, bei der zur LDA ein weiterer Term hinzugefügt

wird (LDA+U), der eine lokale, abstoßende Wirkung auf die 3d Elektronen beschreibt.

Um den Parameter U zu bestimmen wurden die DOS Graphen in einen Sauerstoff p,

sowie in Übergangsmetall deg und dt2g Teile aufgespalten. Die Positionen der einzel-

nen Peaks dieser Teile, die Bandbreiten und die Gitterkonstante wurden als Parameter

herangezogen. Der Wert von U wurde nun dahingehend optimiert, dass der mittlere

quadratische Fehler, in Bezug zu den HSE06 Referenzen, für verschiedene Gruppen

von Attributen minimalisiert wurde. Um die Bandstruktur besser anzupassen wurde

zusätzlich eine Parameter ∆ berechnet, der den Abstand von Valenz- zu Leitungsband,

also die Bandlücke, korregieren kann.

Obwohl grundsätzlich von gleicher Größenordnung können die genauen Werte von U

für eine Verbindung beträchtlich variieren, je nachdem für welchen Parameter optimiert

wurde. So sind die idealen Werte für CrO zum Beispiel 0.0 eV für die Valenzbandbreite,

1.2 eV für die Gitterkonstante, 2.9 eV wenn alle Parameter berücksichtigt werden und

4.6 eV für die Peak Positionen. Diese Abweichungen sind für die Monolagen nach un-

seren Berechnungen meist geringer, wobei aber ein insgesamt höheres U zur Anpassung
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benötigt wird. Dies ist nicht verwunderlich, da die Elektronen durch die einschränkende

Geometrie noch näher zusammengedrückt werden.

Diese Arbeit bietet einen guten Überblick über die verschiedenen Werte von U und ∆

für die sich stetig auffüllende 3d Schale. Außerdem wird gezeigt in welchen Fällen die

Annäherung an die HSE06 Methode mit dem LDA+U+∆ Konzept gut gelingt, und in

welchen Fällen gröbere Abweichungen in Kauf genommen werden müssen. Durch die

Kenntnis der Werte für den unendlich ausgedehnten Kristall und die Monolage können

Rückschlüsse auf die Parameter in verschiedenen Schichten einer realen Oberfläche

gezogen werden.
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1 INTRODUCTION

1 Introduction

While Computational Material Science (CMS) is still a young field in condensed matter

physics, ever increasing computer power and continuous advances in programming have

made the “computer experiment” a popular choice for predicting results of experiments

and testing theories. Ab initio calculations (in theory) do not require any other input,

but the type of lattice and the atomic species used, as well as some fundamental

constants.

Rather than solving immensely complicated many-body Schrödinger-equations, one

may utilize the Density Functional Theory (DFT) to solve the electronic problem. This

method, which will be described in more detail in section 2.1, deals with the electronic

charge density and can, in theory, describe the exact groundstate of the examined sys-

tem. However, the exact exchange and correlation terms are presently unknown, and

several approximations have to be used. While the standard Local Density Approxi-

mation (LDA), or its successor, the Generalized Gradient Approximation (GGA) give

usually good results, this is not the case for systems containing localized electrons,

e.g. transition metals and their oxides. In the present work two DFT-based methods,

a Hartree-Fock Hybrid Functional (HSE06) and the LDA+U approach, that uses an

additional parameter U as a penalty function to the energy for localized electrons, are

discussed (see sections 2.3 and 2.4) and compared (section 4). The aim of this effort is

to model the computationally very expensive HSE method with the about a hundred

times cheaper LDA+U approach.

Eight 3d transition metal monoxides (TMOs), ScO, TiO, VO, CrO, MgO, FeO, CoO

and NiO, were studied in bulk as well as in a monolayer. All systems were set up in the

ideal rocksalt structure, although in reality the structure of VO is distorted, TiO shows

about 15% vacancies and Sc and Cr do not even exist as monoxides. This should not be

considered to be a big problem, as the discussed compounds only serve as models for

much larger systems, containing similar bonds between transition metals and oxygen.

It is a reasonable guess, that the values of U found in this thesis should at least be

good starting points for the electron exchange and correlation in other systems, which

are too large to be treated with the HSE functional.

The structure of this work is ordered as follows. DFT, LDA, GGA, LDA+U and HSE,

as well as the used program package VASP, are discussed briefly in section 2. A short
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1 INTRODUCTION

account of ferro- and antiferromagnetism, as well as a quick survey of the exchange

and superexchange interaction, will be given in the third section. The main results of

this work are presented in section 4, followed by a summary and conclusion in section

5.
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2 COMPUTATIONAL METHODS

2 Computational Methods

2.1 Density Functional Theory

As mentioned in section 1, Density Functional Theory, or DFT, is widely used in ab-

initio calculations. The overview that is given here, is following [1]. The idea is based

on the observation of Hohenberg and Kohn, that the information contained in a many-

electron wave function of a given problem is in principle completely represented by the

electron density ρ. The Hohenberg-Kohn theorem [2] states now, that the ground state

energy is a functional of the electronic density E[ρ], which is minimized at the density

ρ(~r) = ρ0(~r). This theorem can be proven in an elegant way (see [3]).

To obtain the functional, which is equal to the expectation value 〈Φ|H|Φ〉, were Φ de-

notes the many-body wave function, one usually splits it into four parts, expressing the

kinetic energy, the ionic potential, the Hartree term and the exchange and correlation

term.

E[ρ] = Ekin[ρ] + Eion[ρ] + EHartree[ρ] + Exc[ρ] (2.1)

Now one strives to express these terms through the electron density, which is easily

done for the ionic potential and the Hartree term:

Eion[ρ] =

∫
d3r Vion(~r)ρ(~r) (2.2)

EHartree[ρ] =
1

2

∫
d3r′

∫
d3r

ρ(~r′)ρ(~r)
|~r − ~r′| (2.3)

At this point it is interesting to observe that E[ρ] − Eion[ρ] is a universal functional,

which does only depend on the number of electrons in the system, but not on the ionic

potential. This means, that, if the exact expression for Exc could be found (it will be

shown that the Ekin term does not make any trouble) all materials could be solved by

simply adding the adequate potential. Unfortunately, no exact representations for the

exchange-correlation term is known so one is forced to use one of several approxima-

tions.
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2.1 Density Functional Theory 2 COMPUTATIONAL METHODS

To circumvent the difficulties in expressing the kinetic energy through ρ, Kohn and

Sham [4] introduced auxiliary single-electron orbitals ϕi(~r), which form exactly the

same charge density.

ρ(~r) =
N∑

i=1

|ϕi(~r)|2 (2.4)

With the new functions ϕi(~r), the kinetic energy now yields

Ekin =
∑

i

∫
d3r

~2

2m
(∇ϕi(~r))

2 . (2.5)

For calculating the energy and density of the ground state, one has to minimize the

energy functional E[ρ] with respect to ρ

δ{E[ρ]− µ(
∫
d3r ρ(~r)−N)}

δρ(~r)
= 0 (2.6)

where the Lagrange parameter µ fixes the number of electrons to N. This equation

can now be transformed to minimize with respect to the ϕi instead of ρ, whereupon εi

ensures the normalization of the functions ϕi.

δ{E[ρ]− εi(
∫
d3r |ϕi(~r)|2 − 1)}

δϕi(~r)
= 0 (2.7)

The result leads to the Kohn-Sham equations [4],

[
− ~2

2me

∆ + Vion(~r) +

∫
d3r′

ρ(~r′)
|~r − ~r′| +

δExc[ρ]

δρ(~r)

]
ϕi(~r) = εiϕi(~r) (2.8)

which are Schrödinger equations of single electrons moving in an effective (single-body)

potential Veff = Vion + VH [ρ] + Vxc[ρ].

Veff (~r) = Vion(~r) +

∫
d3r′

ρ(~r′)
|~r − ~r′| +

δExc[ρ]

ρ(~r)
(2.9)
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2.2 LDA and GGA 2 COMPUTATIONAL METHODS

The Kohn-Sham potential and the charge density could now be calculated selfconsis-

tently, were it not for the unknown term Exc. How approximations are found for the

exchange and correlations will be shown in the next section.

2.2 LDA and GGA

The various Local Density Approximation (LDA) models are obtained by evaluating

the correlation and exchange energy of the homogeneous electron gas at the density of

the local non-homogeneous system. This is a good approximation for systems with a

slowly varying charge density, which is true for s- and p-states, but should not work

well for d- and f-electrons.

εLDA
xc [ρ(~r)] := εhom

xc (ρ0)|ρ0→ρ(~r) (2.10)

For spin-polarized calculations, one usually speaks of LSDA (Local Spin Density Ap-

proximation) and the prescription is carried out for ρ+(~r) and ρ−(~r). (Also frequently

the parameterization ρ(~r) = ρ+(~r) + ρ−(~r) and ζ(~r) = 1
ρ(~r)

(ρ+(~r) − ρ−(~r)) is used.)

For reasons of simplicity, these distinction shall not be made in this section, although

nearly all calculations in the present work were spin-polarized.

The groundstate of a homogeneous electron gas against a uniform background of pos-

itive charge (the jellium model) can be solved with the Hartree–Fock approximation

using plane waves. This yields an exchange term of fundamental constants, where V

denotes the Volume, N the number of electrons and kF the Fermi wavelength. (The

solution for jellium can, for instance, be found in [5])

εLDA
x (ρ0) = − N

V

3

4

e2kF

π
= − 3

4

(
3

π

) 1
3

e2ρ
4
3
0 = −Cx ρ

4
3
0 (2.11)

This result is the exchange energy per unit volume. The correlation contribution εLDA
c

of the jellium density ρ0 can be obtained e.g. from advanced many-body techniques like

Quantum Monte Carlo. The approximated functional is now obtained by integrating

εLDA
xc = εLDA

x + εLDA
c .
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2.3 Hartree–Fock Hybrid Functionals 2 COMPUTATIONAL METHODS

Exc[ρ]
LDA≈

∫
d3r εLDA

xc (ρ0 = ρ(~r)) (2.12)

This can now be inserted into equation (2.8), which then can be solved selfconsistently.

Surprisingly, the LDA does not only work well in the slowly varying limit of the charge

density, but also gives quite acceptable results for many other systems. Gunnarsson

et al. showed [6], that the exchange-correlation hole modeled by the LDA does not

have to be an exact facsimile of the true hole, but that it is sufficient that it provides

a reasonable approximation of the spherical average of the real exchange correlation

hole. Other reasons for the suprising success of the LDA as well as a detailed account

of parameterizations can be found in [7].

The freedom to modify the exchange-correlation term however, has provoked a large

amount of effort, culminating in the Generalized Gradient Approximations (GGA). The

concept states that it should be possible to better the functional by adding derivative

terms. The resulting functional still does not take non-local contributions into account,

but by adding the gradients of the density one obtains a semilocal exchange-correlation

term.

EGGA
xc [ρ,∇ρ] =

∫
d3r εGGA

xc (ρ(~r), |∇ρ(~r)|) (2.13)

In general, GGA, in comparison to LDA, tend to improve total energies and atomization

energies [8]. It also softens bonds to correct [9] or overcorrect [10] the LDA and generally

favors density inhomogeneity more than LDA does. There is no standard functional,

but PW91 [11] by Perdew et al. and PBE [12] by Perdew, Burke and Ernzerhof, which

was also utilized for the present work, are very commonly used. (There is also no

standard functional for the LDA, but in that case variations in the parameterization

are much smaller.)

2.3 Hartree–Fock Hybrid Functionals

Another way of treating electron-electron interactions in the context of DFT is to uti-

lize the Hartree–Fock equation. One obtains the equation by means of the variational

14



2.3 Hartree–Fock Hybrid Functionals 2 COMPUTATIONAL METHODS

principle that states, that wave functions which solve Schrödinger‘s equation are ex-

trema of the functional FH [ψ] = 〈ψ|Ĥ|ψ〉, under the constraint that 〈ψ|ψ〉 = 1. For

the wave function |ψ〉 one now uses Slater determinants. The derivation of the actual

equation can be found in many textbooks (e.g. [5]) and will not be given here. For

our purpose it is sufficient to give the result of the coulomb interaction part of the

expectation value of the Hamiltonian. (As the Hamiltonian is not spin-dependent, it

is possible to give ψ the form ψj(~riσi) = ϕj(~ri)χj(σi), were χj is either “spin up” or

“spin down”.)

Exc =

∫∫
e2 d3r1 d

3r2
|~r1 − ~r2|

∑
i<j

[ |ϕi(~r1)|2 |ϕj(~r2)|2 − ϕ∗i (~r1)ϕ
∗
j(~r2)ϕi(~r2)ϕj(~r1) δχiχj

]

(2.14)

The first term is the coulomb integral, which also appears in the Hartree equation which

does not use antisymmetrical wave functions. The second term is called the exchange

integral. It is non-local and can be interpreted as two electrons switching places while

interacting. The minus sign is a consequence of antisymmetry, while δχiχj
is shorthand

for
∑

σ χi(σ)χj(σ).

In actual use not the whole exchange is taken from Hartree–Fock but a so called hybrid

functional is constructed, mixing some Fock–exchange to the usual GGA term while

correlation is treated exclusively by GGA.

Ehybr
xc = aEHF

x + (1− a)EGGA
x + EGGA

c (2.15)

The mixing coefficient a is determined from comparison with advanced many-body ap-

proaches. The hybrid method successfully delocalizes the exchange hole and presents a

significant improvement over the GGA descriptions of molecular properties. However,

until recently, calculation of the spatially decaying
(

1
r

)
Fock-exchange in solids with

periodic boundary conditions was nearly impossible, due to the vast amount of com-

puting power needed. In 2003, Heyd, Scuseria and Ernzerhof proposed a new hybrid

functional based on a screened Coulomb potential for the exchange [13], which distin-

guishes between short- and long-ranged parts of the interaction and circumvents this

bottleneck. The GGA method used is PBE, and all other Coulomb interactions of the

Hamiltonian, e.g. the repulsion of the electrons, are still treated with the full range

15



2.4 LDA+U 2 COMPUTATIONAL METHODS

potential. The Coulomb operator 1
r

for the exchange however, is split into a short-

(SR) and a long-range (LR) part,

1

r
=

erfc(ωr )

r︸ ︷︷ ︸
SR

+
erf(ωr )

r︸ ︷︷ ︸
LR

(2.16)

where erfc(ωr) = 1−erf(ωr). The parameter ω is used to define the borderline between

the short- and longe-range parts, where for ω = 0 the SR part is equivalent to the full

Coulomb operator and the LR part vanishes, while the opposite is true for ω → ∞.

After splitting every term of equation 2.15 into a SR and a LR part, Heyd at al. found,

that, for reasonable values of ω, the HF long-range exchange terms contribute quite

little to this functional and may therefore be replaced by its PBE counterpart. Today,

the originally functional by Heyd, Scuseria and Ernzerhof (HSE03) proposed in [13] is

not commonly used, because a mistake in the code led to two different values for ω, for

each HF and PBE respectively (see [14]). The tests and refinements carried out in 2006

in [15] fix ω to 0.2Å
−1

and a to 1
4

to form the HSE06 functional which is frequently

used and was also applied in the present work.

EHSE06
xc =

1

4
EHF,SR

x +
3

4
EPBE,SR

x + EPBE,LR
x + EPBE

c (2.17)

2.4 LDA+U

A different approach to rid the LDA from its faults in strongly correlated systems is the

usage of quasi atomic interactions for the localized d- or f-electrons. In 1991 Anisimov,

Zaanen and Andersen proposed to incorporate an additional parameter U , as used in

the Hubbard Hamiltonian, into the LDA [16]. The Hubbard model, devised in 1936,

was originally developed to explain magnetic ordering and is an addition to the tight

binding approximation, in which an energy penalty U is added for any atomic site

occupied by more than one electron. In second quantization the Hubbard Hamiltonian

reads

Ĥ =
∑

〈ij〉σ
−t

[
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

]
+ U

∑
i

n̂i↑ n̂i↓ (2.18)
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2.4 LDA+U 2 COMPUTATIONAL METHODS

where the sum 〈ij〉 is taken over distinct nearest neighbor pairs and t denotes the

hopping integral.

Anisimov et al. argued that localization in the LDA is not controlled by a Hubbard

U , but by the Stoner Parameter I, which represents the Hund‘s rule exchange and is

typically one order of magnitude smaller than U . While in a homogenous electron gas

spin dependence has its physical origin indeed in the Hund‘s rule exchange, this does

not hold for strongly localized electrons. The functional provided by Anisimov and

coworkers fixed this problem, but had the serious disadvantage of depending on the

chosen orbital basis. This flaw was corrected by Liechtenstein, Anisimov and Zaanen

in 1995 [17]. Their rotationally invariant LDA+U functional reads

ELDA+U [ ρσ, nσ ] = ELDA[ ρσ ] + EU [nσ ] − Edc[n
σ ] , (2.19)

where ELDA[ρσ] is the standard functional dependent of the charge density of spin-σ

electrons. EU [nσ] denotes the orbital polarizations in a screened mean field (Hartree–

Fock) way and nσ is the density matrix for correlated electrons. The last term corrects

for double counting, so that in the limit of vanishing orbital polarization, the functional

is reduced to normal LDA. It is worth noting, that EU , as well as Edc, depend on the

screened Coulomb parameter U and the screened exchange parameter J and that for

a diagonal density matrix nσ this approach is equivalent to the original LDA+U .

All this still leaves the question how to obtain the parameters U and J , that are

necessary for practical calculations. In [16] a method is described to calculate U and

J by applying a variety of constraints. To acquire for example the appropriate U for a

d-electron, one has to remove the transfer integrals between the selected orbitals and

the rest of the system. The d-occupancy is now varied (δnd), while the other electrons

are allowed to relax. It follows that

U =
δ2Etot

δn2
d

(2.20)

with Etot being the total LDA energy. More about this constrained LDA (CLDA)

method and also about the GW approach [18] (G stands for Green‘s function and W

for a dynamically screened Coulomb interaction) can be found in [19]. Several other
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methods and variants for calculating the parameters U and J were developed recently

(see e.g. [20, 21, 22]), but no “golden standard” has emerged yet, and results can be

quite different. It is therefore often more practicable to leave the confines of the ab-

initio approach and fit parameters consistently with experiments or different calculation

methods such as HF hybrid functionals (see 2.3). Exactly this was done in the present

thesis, using the LDA+U flavor of Dudarev et al. [23]. In this simplified approach, only

the difference between U and J is relevant, and so only one parameter has to be varied

to find optimal results.

ELDA+U = ELDA +
(U − J)

2

∑
σ

[(∑
m1

nσ
m1,m1

)
−

( ∑
m1,m2

n̂σ
m1,m2

n̂σ
m2,m1

)]
(2.21)

Again, nσ denotes the on-site occupation matrix. The ansatz can be understood as

adding a penalty functional to the LDA total energy, that leads the on site occupancy

matrix in the direction of idempotency, i.e. nσ = nσnσ. Real matrices are only idempo-

tent if their eigenvalues are either 0 or 1, corresponding to fully occupied or unoccupied

states.

2.5 VASP

2.5.1 General Information

VASP is the abbreviation for Vienna Ab-initio Simulation Package [24, 25, 26, 27],

which was used for all computions in this work. It is a complex program to perform

ab-initio quantum-mechanical molecular dynamics simulations. The term ab-initio in-

dicates that the calculation is from the ground up, using as only input the type of

lattice and the atomic species, but no empirical data. VASP uses a plane wave basis

set, periodic boundary conditions and can be operated with either ultrasoft pseudopo-

tentials (US-PP [28, 29]) or the projector-augmented wave method (PAW [30, 31]) . It

is based on DFT (see section 2.1) and it is possible to select a vast amount of different

calculation schemes and options. Forces and the full stress tensor can be calculated

with VASP and used to relax atoms into their instantaneous ground-state.
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2.5.2 Input- and Output–Files

When working with VASP, one encounters numerous files which can be divided roughly

in input- and output-files, even though several output files can be used as input for

another calculation. None but the most essential files for this work shall be discussed

here. These are: INCAR, POSCAR, POTCAR, KPOINTS, OUTCAR and DOSCAR.

• INCAR

The INCAR file tells the program what to do and how to do it. Conveniently,

most of the many selectable options have reasonable default values, that will work

for many calculations, so one can often get by with defining just a few. In the

given example, the tag ISPIN sets a spin polarized calculation and LHFCALC

determines the use of Hartree-Fock like calculations while the screening tag HF-

SCREEN, set to 0.2, selects the HSE06 functional. Lines that beginn with an

exclamation mark are not read, so the ISIF tag, which would be set to 3, thus

allowing the cell and the ions to relax in any way, is ignored and put to the

default value 0, which allows the ions to relax, but keeps the cell as it is. But,

as the ionic steps are set to 1 in the NSW tag, no relaxation can be performed

anyway.

SYSTEM = FeO bulk

ISPIN = 2

MAGMOM = 2.6 -2.6 2*0.0

LORBIT = 11

!ISTART = 1

ICHARG = 1

LHFCALC = .TRUE. ; HFSCREEN = 0.2

ALGO = DAMPED ; TIME = 0.5

ENCUTFOCK = 0

NKRED = 2

!LREAL = A

ISMEAR = 0

NSW = 1

IBRION = 1

!ISIF = 3

File 1: INCAR

• POSCAR

In the POSCAR file, the VASP-user specifies the lattice vectors of the systems

(lines 3 to 5), the lattice constant (line 2), the type and number of the ions (line

6 to 7) and finally, the initial positions of these ions, given either in cartesian or

direct mode. (In cartesian mode, each position is scaled by the lattice constant
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only, whereas in direct mode it is multiplied by the lattice vectors.) The first line

in the file is a comment line and usually displays the systems name.

FeO bulk AF rocksalt

4.33000000000000

1.0000000000000000 0.5000000000000000 0.5000000000000000

0.5000000000000000 1.0000000000000000 0.5000000000000000

0.5000000000000000 0.5000000000000000 1.0000000000000000

Fe O

2 2

Cartesian

0.0000000000000000 0.0000000000000000 0.0000000000000000

1.0000000000000000 1.0000000000000000 1.0000000000000000

0.5000000000000000 0.5000000000000000 0.5000000000000000

1.5000000000000000 1.5000000000000000 1.5000000000000000

File 2: POSCAR

• POTCAR

POTCAR files are provided for each atomic species with the VASP-package. They

contain the pseudopotential as well as fundamental constants like mass, valance

and energy in the reference configuration. There are several files (US-PP or PAW,

LDA or PBE or PW91) for each element, which can be selected. If several atomic

species are used in a calculation, the POTCAR files need to be joined together

with the same ordering as the POSCAR file.

• KPOINTS

As one might expect from the name the KPOINTS file deals with the coordinates,

weights and mesh size of the k-point grid. The first line is treated as a comment,

and one lets the mesh usually be generated automatically by VASP, by typing

0 in the second line. (Alternatively all k-points can be entered manually, or one

generates ’strings’ of k-points along high symmetry lines, which is usefull for band-

structure calculations.) The third line specifies if the grid should be centered on

the Γ point, or if a original Monkhorst-Pack scheme should be used. The fourth

line set the number of subdivisions along the reciprocal latticevector, defining the

refinement of the mesh. The fifth line corresponds to an optional shift in the grid.

Automatic

0 ! automatic generation

Gamma

10 10 10

0 0 0

File 3: KPOINTS
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• OUTCAR

This file is composed of (nearly) all relevant output of a VASP run. The resulting

energy, magnetic moments, charge distribution, bandstructure, stress tensor and

much more can be found here. The file is usually a couple of thousend lines long,

so only a short section near the end is printed here. If one is only interested in the

resulting energy and how quick the results converge, one can also use the more

accessible OSZICAR file.

magnetization (x)

# of ion s p d tot

----------------------------------------

1 0.006 0.005 3.620 3.630

2 -0.006 -0.005 -3.620 -3.630

3 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000

------------------------------------------------

tot 0.000 0.000 0.000 0.000

------------------------------------------------------------------------------------------------

FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)

---------------------------------------------------

free energy TOTEN = -46.965139 eV

energy without entropy= -46.965139 energy(sigma->0) = -46.965139

FORLOC: cpu time 0.00: real time 0.00

FORHF : cpu time 1641.67: real time 1641.82

FORNL : cpu time 0.47: real time 0.47

FORCOR: cpu time 2.33: real time 2.33

VOLUME and BASIS-vectors are now :

-----------------------------------------------------------------------------

energy-cutoff : 400.00

volume of cell : 40.59

direct lattice vectors reciprocal lattice vectors

4.330000000 2.165000000 2.165000000 0.346420323 -0.115473441 -0.115473441

2.165000000 4.330000000 2.165000000 -0.115473441 0.346420323 -0.115473441

2.165000000 2.165000000 4.330000000 -0.115473441 -0.115473441 0.346420323

length of vectors

5.303145293 5.303145293 5.303145293 0.382982077 0.382982077 0.382982077

File 4: OUTCAR

• DOSCAR

The DOSCAR file contains the density of states (DOS) as well as the integrated

DOS. A header (containing the energy range and the Fermi energy) is followed

by five columns showing: Energy, DOS(up), DOS(down), integrated DOS(up),

21



2.5 VASP 2 COMPUTATIONAL METHODS

integrated DOS(down). If a PAW potential is used and the LORBIT tag in the

INCAR file is greater than 10, there are additional 19 columns for each ion. In

these, the partial DOS for each orbital (s, py, pz, px, dxy, dyz, dz2, dxz and dx2)

for each spin are mapped against the energy.

For more information about VASP in general and the different VASP files, listed or

not listed in this section, please consult [32]

2.5.3 Setup for Calculations

The calculations in the present thesis are performed with the VASP package using the

PAW potentials with the PBE functional [12]. For all transition metals, all but the

3d and 4s states are frozen in the core potential, but for Chromium, Vanadium and

Titanium the 3p states and for Scandium, both 3p and 3s orbitals were considered

as valence states. For the Oxygen ions, 2s and 2p electrons were used. The Hartree-

Fock hybrid calculations were performed with settings equivalent to the HSE06 [15]

functional and for the LDA+U runs, the approach by Dudarev [23] was used. The

plain wave energy cutoff was usually 400 eV, but was increased to 600 eV if relaxations

were performed.
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3 FERRO- AND ANTIFERROMAGNETISM

3 Ferro- and Antiferromagnetism

Although magnetism is known since ancient times (Thales of Milet, about 625-564

b.c., wrote about a stone that could attract iron), microscopic theories on magnetism

were not presented before the late 19th century. Ferromognetism was first explained in

1907 by Weiss in his molecular field model, but the physical origin of this molecular

field, was not known at that time. The reason for the slow development in magnetism

physics lies in the solely quantum mechanical origin of magnetic effects in solids. In

the following subsections, the molecular field model of Weiss will be discussed. After

that, a brief description of the quantum mechanical reason for the molecular field,

the exchange interaction, is given. The more complicated situation in transition metal

oxides is governed by the superexchange process, which will be discussed afterwards.

The whole section closely follows the book [33] by Peter Mohn.

3.1 Weiss Molecular Field Model

In his 1907 work [34], Weiss proposed the existence of an internal magnetic field, HM ,

responsible for spontaneous magnetic order. It consists of a proportionality factor N

and the magnetization M .

HM = NM (3.1)

It is therefore assumed, that the interaction between the spins, leading to magnetic

order, has the form of a uniform field. While the temperature dependence of the mag-

netization is calculated by classical mechanics, quantum theoretical principles enter by

the assumption of discrete energies, associated with the quantum number mJ . For a

particle with quantum numbers J and mJ , the magnetic moment is

µ = mJgjµB , for − J ≤ m ≤ +J (3.2)

where gj is the Landé factor and µB is the Bohr magneton. It arises, because the

magnetic moment is not simply the sum of angular and spin component, but one has to

take the different gyromagnetic factors (gl = −1 and gs = −2.0023, here approximated
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to gs = −2) into account.

gj = − 3J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(3.3)

Following classical mechanics, the magnetization M at given temperature T is given

by the statistical average over all possible states of mJ .

M

M0

=
1

JgjµB

∑+J
mJ=−J mJgjµB e

− W
kBT

∑+J
mJ=−J e

− W
kBT

(3.4)

In equation (3.4), W = −mJgjµBH and H consists of the molecular field plus an

external field Hext, while M0 is the magnetic moment at T = 0. To calculate this

expression, one introduces abbreviations

a =
JgjµBH

kBT
, x = e

a
J = e

gjµBH

kBT (3.5)

thus producing

M

M0

= J−1

∑+J
−J mJx

mJ

∑+J
−J x

mJ

. (3.6)

Now, one can rewrite the fraction of the sums given above using the derivative.

∑
mJx

mJ

∑
xmJ

= x
d
dx

∑
xmJ

∑
xmJ

= x
d

dx
ln

∑
xmJ (3.7)

The result of the sum of xm
J from −J to J is known and one can take the logarithm

and then carry out the calculation

+J∑
−J

xmJ =
x−J

(
1− x2J+1

)

1− x
=
x−J − xJ+1

1− x
,

ln
∑

xmJ = ln
(
x−J − xJ+1

)− ln (1− x) ,
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x
d

dx
ln

∑
xmJ =

−Jx−J − (J + 1) xJ+1

x−J − xJ+1
+

x

1− x

=
−J (

x−J + xJ+1
)

x−J − xJ+1
− xJ+1

x−J − xJ+1
+

x

1− x

=
J

(
x2J+1 + 1

)

(x2J+1 − 1)
− xJ+1

x−J − xJ+1
− x

x− 1

=
J

(
x2J+1 + 1

)

(x2J+1 − 1)

+
1

2

(
xJ+1 + x−J + xJ+1 − xJ

xJ+1 − x−J
− x+ 1 + x− 1

x− 1

)

=

(
J +

1

2

)
x2J+1 + 1

x2J+1 − 1
− 1

2

(
x+ 1

x− 1

)
.

Now the final result is obtained by resubstituting the abbreviations and using the

identity coth x = e2x−1
e2x+1

.

M

M0

= B (a, J) =
2J + 1

2J
coth

(
a
2J + 1

2J

)
− 1

2J
coth

( a

2J

)
, (3.8)

where B(a, J) denotes the Brillouin function.

To calculate an expression for the Curie temperature Tc, one can approximate the coth

in the limit of high temperatures (a << 1).

coth x =
1

x
+
x

3
− . . . (3.9)

This yields a much easier form of the Brillouin function

B(a, J) ∼= 1

3
a

(
J + 1

J

)
. (3.10)

Now, one simply inserts a, sets Hext = 0, uses HM = NM and solves for kBTc.

M

M0

=
1

3

J + 1

J

JgJµB

kBT
NM ,

⇒ kBTc =
1

3
(J + 1) gJµBNM0 (3.11)
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This result can be further simplified for electrons, where J = S = 1
2

and |gj| = 2.

kBTc = µBNM0 (3.12)

Now the molecular field constant can be calculated if experimental results for µB and

Tc are inserted into (3.12).

N (T/µB) HM (T)

Fe 700 1500
Co 1300 2100
Ni 1600 940

Table 1: Molecular field constant N and respective molecular field HM for Fe, Co and
Ni. After P. Mohn [33]

The calculated fields (see table 1), are much larger than one would expect of a magnetic

interaction. The magnitude of this fields lies in the nature of the exchange interaction,

that is responsible for it. It will be discussed in section 3.2.

For paramagnetic systems, the molecular field constant N is zero and the susceptibility

can be calculated by differentiating M with respect to Hext.

χ =
1

3
J(J + 1)

g2
jµ

2
B

kBT
=

µ2
J

3kBT
(3.13)

The quantum mechanical value of the magnetic moment due to the angular momentum

J is

µ2
J = J(J + 1)g2

jµ
2
B = µ2

eff . (3.14)

Here, an effective moment µeff is defined, that can be calculated by measuring the

Curie constant (3.16). It gives the size of local magnetic moments above the Curie

temperature. For itinerant magnetic moments, it is not well defined.

For the calculation of the susceptibility in ferromagnetic systems above the Curie tem-

perature Tc one uses equation (3.11).
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M

M0

=
1

3

J + 1

J

JgjµB

kBT
(Hext +NM)

=
1

3

J + 1

J

JgjµB

kBT

(
Hext +

3kBTcM

(J + 1) gjµBM0

)
,

⇒ M

M0

(
1− Tc

T

)
=

1

3

(J + 1) gjµB

kBT
Hext ,

⇒ χ =
M

Hext

=
C

T − Tc

, with C =
1

3
(J + 1)

gjµB

kB

M0 . (3.15)

This relation is the Curie-Weiss law. The general expression for the Curie Constant

C =
µ2

eff

3kB

. (3.16)

is found by using the definitions for µeff (3.14) and M0 (3.4). For J = S = 1
2

and

|gj| = 2, C is reduced to µBM0

kB
. All systems follow the linear temperature dependence

of the inverse susceptibility χ−1 for high enough temperatures, as it is the classical

limit.

The spontaneous magnetization as a function of temperature is also given by the Bril-

louin function. Using equation (3.1) and (3.11) to transform a in equation (3.8), one

gets
M

M0

= B

(
3J

J + 1

M

M0

Tc

T
, J

)
, (3.17)

which again for J = S = 1
2

and |gj| = 2 gives

M

M0

= tanh

(
M

M0

Tc

T

)
. (3.18)

Using the classical limit J = ∞, one finally gets an expression known as the Langevin

function.
M

M0

= coth (a)− 1

a
. (3.19)

Equation (3.19) is a transcendental equation which is usually solved graphically or

numerically. However, approximate solutions can be found around T = 0 and T = Tc.

Expanding (3.19) around Tc one immediately obtains the mean field exponent β = 1
2

M

M0

=

(
3

(
Tc

T
− 1

)) 1
2

'
(
Tc

T
− 1

)β

. (3.20)
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This is a universal relation between the magnetization M and the temperature T ,

but unfortunately it does not work satisfactorily for metals and alloys. The critical

exponent β = 1
2

differs from experiment, were it is found to be approximately 0.33.

In systems with weak interaction between individual spins however, the Weiss model

works well. Expanding (3.19) around T = 0 gives

M

M0

= 1− 2e(−
2Tc
T ) . (3.21)

Finally it should be said, that this mean field model is only valid in the case of localized

magnetic moments and fails for itinerant electrons, except in the high temperature

regime, were the classical limit is reached. Also, the temperature dependence is more

often given by a power law, than the complex relation in (3.18).

3.2 The Exchange Interaction

The molecular field, that Weiss used to describe ferromagnetism in 1907, was at that

time a somewhat arbitrary construct and it was not clear what kind of interaction

should produce such strong fields. In 1919, Miss van Leeuwen proved in her Ph.D.

thesis, that for any dynamical system rigorous application of statistical mechanics

must lead to zero susceptibility [35]. Therefore it was clear, that magnetic order had

to stem from quantum mechanical origins.

The term exchange interaction comes from the original formulation of the Hartree–Fock

theory, where it is one of two integrals, that describe electron–electron interaction (see

also 2.3). In a general form the exchange integral can be written as

J =

∫
ϕ∗1(~r2)ϕ

∗
2(~r1)W (~r1, ~r2)ϕ1(~r1)ϕ2(~r2) d3r1 d3r2 , (3.22)

with W being an exchange operator (e.g. the Coulomb operator 1
|r1−r2|). It is called

the exchange integral, because two electrons switch places during the interaction. An

easy way to understand the exchange interaction and its connection to magnetism is

the Heitler–London theory of the H2 molecule. It shall be reviewed in the next section.
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3.2.1 Heitler–London Theory of the Exchange Field

In 1927, Walter Heitler and Fritz London presented their solution of the H2 molecule

[36]. There they considered the electron spin and the Pauli principle, resulting in anti-

symmetric wavefunctions. Their approach was a linear combination of atomic orbitals

(LCAO) and so results are only valid for localized electrons.

One starts with Schrödinger’s equation of the system containing two protons (at the

sites a and b) and two electrons (at sites 1 and 2). The distance between the protons

shall be rab, the distance between the electrons r12 and the distances between the

electrons and the protons ra1, rb1, ra2 and rb2, respectively.

(
− ~2

2me

(∇2
1 +∇2

2

)
+

[
e2

rab

− e2

ra1

− e2

ra2

− e2

rb1

− e2

rb2

+
e2

r12

])
Ψm = Um Ψ (3.23)

Um is the exact eigenvalue for the molecular wavefunction Ψm. For two separated H

atoms, the groundstates (1s), wavefunctions (ψa1 and ψb2) and the eigenvalues (both

times E0) are known. In the molecule, the groundstate would be four times degenerate,

if the electron-electron interaction would not be considered, because each electron can

have either spin up (α = 1
2
) or spin down (β = −1

2
). Um would be 2E0.

If the electron-electron interaction is taken into account the molecular wavefunction

Ψm can no longer be calculated analytically. The usual way to solve this problem is

to set up a sum of known wavefunctions, furnish these with coefficients and then use

these coefficients as variational parameters to minimize the total energy. In the case of

the H2 molecule, one constructs out of the four wavefunctions, ψaα, ψaβ, ψbα and ψbβ,

four slater determinants to satisfy the antisymmetry condition.

Ψ1 =

∣∣∣∣∣
ψaα (1) ψbα (1)

ψaα (2) ψbα (2)

∣∣∣∣∣ ⇒MS = 1 , (3.24)

Ψ2 =

∣∣∣∣∣
ψaβ (1) ψbα (1)

ψaβ (2) ψbα (2)

∣∣∣∣∣ ⇒MS = 0 , (3.25)

Ψ3 =

∣∣∣∣∣
ψaα (1) ψbβ (1)

ψaα (2) ψbβ (2)

∣∣∣∣∣ ⇒MS = 0 , (3.26)

Ψ4 =

∣∣∣∣∣
ψaβ (1) ψbβ (1)

ψaβ (2) ψbβ (2)

∣∣∣∣∣ ⇒MS = −1 . (3.27)
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As shown in the following, the degenerate groundstate is now split into a spin singlet

(S = 0, MS = 0) and a triplet (S = 1, MS = −1, 0,+1). The triplet is “ferromagnetic”,

with two parallel spins, while the singlet is “antiferromagnetic”, with antiparallel spins.

At the moment it is not clear which one is going to be the groundstate, and how large

the energy splitting is going to be.

Since one started from isolated atoms, an orthogonality relation between the electronic

wavefunction is easily written down,

Sαβ =

∫
ψaαψbβdτ = 0 , (3.28)

Sαα =

∫
ψaαψbαdτ = Sββ =

∫
ψaβψbβdτ = S , (3.29)

and the overlap integral S is directly related to it. Two cases are possible

rab = 0 ⇒ S = 1 the wavefunctions are identical,

rab → ∞⇒ S = 0 no overlap.

A linear combination of the slater determinants Ψi is used to construct an approxi-

mation wave function for the molecule. The coefficients ci are later used as variational

parameters.

Ψ =
4∑

i=1

ciΨi (3.30)

To calculate the Hamiltonian for this wavefunction, a number of abbreviations are

introduced.

HΨ = UΨ ,

with H = 2E0 + V0 ,

and V0 = e2
[

1

rab

− 1

ra2

− 1

rb1

+
1

r12

]
.

Note, that the eigenvalue U of the approximate wavefunction is not the exact solution
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Um. It is also convenient to introduce the following spin functions

σ1 = α (1)α (2) MS = +1 ,

σ2 = β (1)α (2) MS = 0 ,

σ3 = α (1) β (2) MS = 0 ,

σ4 = β (1) β (2) MS = −1 .

Now the Schrödinger equation (3.23) can be rewritten in a more compact form.

(U − 2E0) Ψ− V0Ψ = 0 (3.31)

Multiplying (3.31) with the product ψaα (1)ψbβ (2) form the right yields

(U − 2E0)

∫

σ

α (1) β (2) dσ

∫

τ

Ψψa (1)ψb (2) dτ

=

∫

σ

α (1) β (2) dσ

∫

τ

ΨV0 ψa (1)ψb (2) dτ ,

or in general

(U − 2E0)

∫

σ

σkdσ

∫

τ

Ψψa (1)ψb (2) dτ =

∫

σ

σkdσ

∫

τ

ΨV0 ψa (1)ψb (2) dτ.

(3.32)

One can now replace Ψ with the sum in (3.30) and obtain

4∑
i=1

ci [Hik + (2E0 − U)Sik] = 0 , (3.33)

where

Sik =

∫

σ

σkdσ

∫

τ

Ψi ψa (1)ψb (2) dτ , (3.34)

and

Hik =

∫

σ

σkdσ

∫

τ

Ψi V0 ψa (1)ψb (2) dτ . (3.35)

Both indices, i and k, run from one to four. Now one can vary the total energy with
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respect to the coefficient ci, which leads to a block diagonal matrix determinant.

∣∣∣∣∣∣∣∣∣∣

H11 + ES11 0 0 0

0 H22 + ES22 H23 + ES23 0

0 H32 + ES32 H33 + ES33 0

0 0 0 H44 + ES44

∣∣∣∣∣∣∣∣∣∣

= 0 , (3.36)

with E = 2E0 − U . While the block in the center has to be diagonalized first, the first

and the last element have the same form, and can be calculated immediately. They

both have S = 1 and give “ferromagnetic” solutions with parallel spins. For the first

element (S11 →MS = +1 , i = 1 , k = 1), both electrons have spin “up”, and for the

last, (S11 →MS = −1 , i = 4 , k = 4), they have both spin “down”. The calculation

of the first element is now shown explicitly:

Ψ1 = σ1 [ψa (1)ψb (2)− ψa (2)ψb (1)] ,

S11 =

∫

σ

σ2
1dσ

︸ ︷︷ ︸
=1

∫

τ

ψa (1)ψb (2)ψa (1)ψb (2) dτ

︸ ︷︷ ︸
=1

−
∫

σ

σ2
1dσ

︸ ︷︷ ︸
=1

∫

τ

ψa (2)ψb (1)ψa (1)ψb (2) dτ

︸ ︷︷ ︸
=S2

,

S11 = 1− S2 , (3.37)

H11 =

∫

σ

σ2
1dσ

︸ ︷︷ ︸
=1

∫

τ

|ψa (1)|2 |ψb (2)|2 V0dτ

︸ ︷︷ ︸
=C

−
∫

σ

σ2
1dσ

︸ ︷︷ ︸
=1

∫

τ

ψa (2)ψb (1)ψa (1)ψb (2)V0dτ

︸ ︷︷ ︸
=J

,

H11 = C − J . (3.38)

Here S is the overlap, C the coulomb, and J the exchange integral. The first matrix
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element is now given by

H11 + (2E0 − U)S11 = 0 ,

⇒ U = U1 = 2E0 +
C − J

1− S2
, MS = +1 . (3.39)

U4 is calculated analogously and yields the same value as U1. For the diagonalization

of the center block of (3.36), one can use the following relations, which stem from the

fact, that the matrix is hermitian.

S22 = S33 =

∫

σ

σ2
2dσ

∫

τ

|ψa (1)|2 |ψb (2)|2 dτ = 1 , (3.40)

H22 = H33 =

∫

σ

σ2
2dσ

∫

τ

|ψa (1)|2 |ψb (2)|2 V0dτ = C , (3.41)

S23 = S32 =

∫

σ

σ2
3dσ

∫

τ

ψa (2)ψb (1)ψa (1)ψb (2) dτ = S2 , (3.42)

H23 = H32 =

∫

σ

σ2
3dσ

∫

τ

ψa (2)ψb (1)ψa (1)ψb (2)V0dτ = J , (3.43)

With this, the block can be rewritten to

∣∣∣∣∣
C + (2E0 − U) J + (2E0 − U)S2

J + (2E0 − U)S2 C + (2E0 − U)

∣∣∣∣∣ = 0 ,

which leads to the eigenvalues

U2 = 2E0 +
C + J

1 + S2
, MS = 0 , S = 0 , (3.44)

and

U3 = 2E0 +
C − J

1− S2
, MS = 0 , S = 1 . (3.45)

The solution for U3 is equal to the solutions for U1 and U4, therefore, the Heitler–

London model for the H2 molecule produces two energy states. One triplet state with

S = 1 and MS = −1, 0,+1 for U4, U3 and U1, respectively, and one singlet with

S = 0 and MS = 0 for U2. The singlet has antiparallel spins and represents the

“antiferromagnetic” solution. If the wavefunction overlap S is small, the relations for
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the triplet and the singlet are simplified to

Utriplet = 2E0 + C − J (3.46)

Usinglet = 2E0 + C + J (3.47)

From this it is clear, that the sign of the exchange integral J is responsible for ferro-

or antiferromagnetic order. If J > 0, the ferromagnetic state is the groundstate, for

J < 0 the antiferromagnetic is. In the case of the H2 molecule, the singlet state is

the groundstate, as it is indeed for all systems containing two fermions with non–

pathological potential. The theorem which proofs this fact is usually attributed to

Wigner and can be reviewed, as well as an extension for n-electron systems, in [37].

Also, the unphysical large molecular fields in the theory of Weiss is explainable now. The

magnitude of the exchange interaction is, in the approximation of vanishing overlap, 2J

and J is an interaction of Coulomb type. The origin of the molecular field is therefore

of electrostatic, rather than of magnetic nature.

3.2.2 Exchange in Larger Systems – The Heisenberg Model

This section contains a short glance on the Heisenberg model [38, 39], and shall serve as

an additional viewpoint on the connection of the exchange interaction and magnetism

for more than two electrons. A complete overview of the model is not even attempted,

but can be found in many textbooks (e.g. [33, 40]).

The famous quantum mechanical Heisenberg Hamiltonian in its simplest form

H = J
∑

〈i,j〉
Si Sj , (3.48)

can be viewed as the operater for the exactly half filled band in the t–J model (see e.g.

[40]). Si and Sj are the spin operators on lattice sites i and j and J is the exchange

parameter. The summation is running over nearest neighbors.

Exchange interactions in this model can now be understood as follows. If every lattice

site has one state per spin and is occupied by one electron (the exactly half filled band),

than a virtual hopping process (one spin changes lattice site and forms an intermediate

spin–zero–pair with its neighbor), is only allowed if neighboring spins have antiparallel
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sign. The Pauli principle prohibits hopping for a ferromagnetic state. Although the

energy cost of a ↑↓ spin pair on one lattice site is U , the kinetic energy gain (from

second–order perturbation theory) is ∼ t2

U
, with the hopping parameter t and the on–

site Coulomb term U (this is no other than the Hubbard–U). Usually U is of the range

of 2–5 eV and t is of the order of 0.1 eV. Therefore the ordinary groundstate of the

Heisenberg model is ferromagnetic. In several cases, for example the one dimensional

Hubbard model, the kinetic energy gain due to the virtual admixture of doubly occu-

pied sites outweights the cost of the on–site interaction and antiferromagnetic order is

favorable [40]. Of course, as one can see from the Hamiltonian (3.48), again, the sign

of J determines ferro- or antiferromagnetic order.

3.2.3 Superexchange

When working on transition metal oxides, it is of uttermost importance to familiarize

oneself with the notion of superexchange. The concept was first brought up by Kramers

in 1934 [41] and describes the magnetic coupling of two magnetic ions over the “bridge”

of an unmagnetic one. This is the case for TMOs in the AFM II phase, where the biggest

antiferromagnetic coupling of the transition metal ions is found between next nearest

neighbors, with an oxygen ion in between. This was observed as early as 1949 by neutron

diffraction for MnO [42]. In 1950 Anderson published a theory for superexchange and

antiferromagnetism based on a spin–operator method [43], which was criticized by

Slater for not dealing with non–orthogonality of overlapping wavefunctions [44]. The

same criticism holds also for the approaches suggested by van Vleck and studied by

several workers, namely an improved Heitler–London ansatz [45, 46]. In 1959, Anderson

took a new viewpoint and tried to incorporate different suggested schemes as parts of

the same physical mechanism [47]. In the present work the mathematical aspects of

superexchange will be largely left aside, in favor of a phenomenological explanation

which will follow ideas presented in [40]. For more detailed descriptions of the matter,

one may consult the references given above, and the overview of several methods given

in [48].

In a transition metal oxide, the electron hopping, that reduced the energy in the an-

tiferromagnetic case in section 3.2.2, seems impossible, because the 3d orbitals of the

transition metals, which carry the magnetic moments, are separated by a large Oxygen

anion. Direct 3d–3d hopping seems very unlikely. To understand why the energy gain
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of kinetic exchange can even be enhanced in such situations (some TMOs have quite

high ordering temperatures) one can look at an idealized example.

or

dz2-r2

cation B
dz2-r2

cation A
pz

anion

Figure 1: Superexchange of two cations via an intermediate anion.

In figure 1, two Ti3+ cations bond in a 180◦ angle with an O2− anion in between. In this

configuration, the cations have one electron each in their d shell, while the Oxygen 2p

shell is completely filled. However, the 3dz2−r2 orbitals of the Ti ions hybridize with the

O 2pz orbital, and covalent mixing leads to a partially reoccupation of the d orbitals

by the nominal p electrons, giving rise to fractional charges. But this rearrangement

depends on the relative orientation of the cations d spins, thus the process transmits

a d–d interaction. The following sketch of a deviation is based on the point of view of

the pz electrons for the two cases of cationic spin settings, ↓↓ and ↓↑. As seen in figure

1, the ↑-spin p electron can allways hop to the left and the resulting state will be a mix

of p and d character.

| pz↑ 〉′ ∼ | pz↑ 〉 + b | dA↑ 〉√
1 + b2

(3.49)

The mixing amplitude b is derived from perturbation theory and it is assumed that

εp < εd.

b ∼ 〈 pz |H | dA 〉
εp − εd

(3.50)

If now both d spins are ↓ (the ferromagnetic case), the same spin up electron can also

travel to the cation on site B, while the Pauli principle prohibits hopping for the pz↓
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electron. Thus the total energy of the two p electrons is approximately

E↓↓ ∼ 1

1 + 2b2
( 〈 pz↑| + b 〈 dA↑| + b 〈 dB↑| )

〈 pz↓ |H | pz↓ 〉 ( | pz↑ 〉 + b | dA↑ 〉 + b | dB↑ 〉 )

= 2εp +
2b2

1 + 2b2
( εp − εd ) (3.51)

For the antiferromagnetic case, where the d spin configuration is ↓↑, the pz↑ electron

can still hop to site A, but now the pz↓ electron can hop to site B. Its new state is thus

| pz↓ 〉′ ∼ | pz↓ 〉 + b | dB↓ 〉√
1 + b2

. (3.52)

The total energy is evaluated at

E↓↑ ∼ ′〈 pz↓| ′〈 pz↑| H | pz↑ 〉′ | pz↓ 〉′

= 2εp +
2b2

1 + b2
( εp − εd ) (3.53)

The splitting between this two configurations is the first effective exchange parameter

J
(1)
eff .

J
(1)
eff ∼ E↓↓ − E↓↑ ∼ 2b4 ( εd − εp ) (3.54)

J
(1)
eff is positive, which means that the ↓↓ configuration costs more energy than the ↓↑

configuration. The anion–mediated effective exchange, known as superexchange is thus

antiferromagnetic.

In terms of perturbation theory, this is a fourth order process, with two electrons jump-

ing away from the central anion, and two coming back. Another fourth order process

is responsible for the second part of the interaction. Namely the changes introduced

in the character of the d–states by the covalent mixing process. The new d-states

are of |dA〉′ ∼ | dA〉 + b |pz〉 type, and even if the original d-orbitals were strictly non

overlapping, an overlap of ∼ b2(εd − εp) exists now on the anion site. This overlap is

proportional to the hopping amplitude t∗AB between the new d–states. It is now possi-

ble for a ↓–spin electron from cation A to jump to the anion site and then to site B,

instantly followed by the ↑–spin electron from site B going the opposite way. This is
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quite literally a spin exchange with the coupling

J
(2)
eff ∼ 2 b4

( εd − εp )2

U
∼ (t∗AB)2

U
. (3.55)

The on site, intraatomic electron-electron repulsion U enters from the intermediate

state, when both electrons are at the same cation site. The parameters derived in

(3.54) and (3.55) now form the total superexchange coupling

Jeff = J
(1)
eff + J

(2)
eff . (3.56)

Thus the superexchange mechanism is quite analogous to the kinetic exchange discussed

briefly in the last section.

It should be mentioned that the estimate given above is not a real calculation for a

superexchange coupling constant. In reality higher lying orbitals have to be consid-

ered also, which leads to a dazzling number of intermediate states. Additional, the

bond–angle plays a significant role and can even lead to a change in the sign of the

interaction. The Goodenough-Kanamori rules, which were reformulated by Anderson,

give guidelines for many cases and can be reviewed in e.g. [49].
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4 Results

4.1 Atomic and Crystal Properties

In this section the chalcogen Oxygen, as well as the transition metals Scandium, Tita-

nium, Vanadium, Chromium, Manganese, Iron, Cobalt and Nickel and their monoxides,

are discussed briefly. An overview of the rocksalt crystal structure, which was used as

a prototype model for all discussed TMOs, is also given.

4.1.1 Elements

• Oxygen

Oxygen is the element with atomic number 8 and has the stable isotopes 16O,
17O and 18O. Of those three, the configuration with 8 neutrons,16O, is by far the

most abundant (99.8%). The configuration of the eight electrons is 1s2 2s2 2p4.

At normal pressures and temperatures it forms the diatomic gas O2. Due to its

high electronegativity of 3.44 on the Pauling scale, Oxygen can build chemical

bonds with nearly any other element.

• Scandium

Scandium, with the chemical symbol Sc, has the atomic number 21 and exists

naturally in a single isotope, 45Sc. It therefor consists of 21 protons, 24 neu-

trons and 21 electrons. The electronic configuration is [Ar] 3d1 4s2. Scandium

crystallizes in a hexagonal structure (hcp) with the lattice constant a = 3.31 Å

and c = 5.27 Å [50]. The oxidation state is usually Sc3+ and it does not exist

as a monoxide (ScO, or Scandium(II) oxide) but rather as Sc2O3 (Scandium(III)

oxide).

• Titanium

Titanium has five stable isotopes, 46Ti to 50Ti, with 48Ti at 73.8% being the most

abundant. This isotope has 22 protons, 26 neutrons and, in its neutral state, 22

electrons in the configuration [Ar] 3d2 4s2. The crystal structure is hexagonal

with a = 2.95 Å and c = 4.69 Å [50]. The 4+ oxidation state dominates Titanium

chemistry, but 3+, 2+ and 1+ states are also possible. Titanium monoxide is
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non-stoichiometric in a range from TiO0.7 to TiO1.3 [51]. Pure TiO crystallizes in

a defect rocksalt structure (fcc) with about 15% vacancies and a = 4.18 Å [50].

• Vanadium

With 23 protons and electrons, Vanadium, with the symbol V, has one stable

isotope, 51V, with 28 neutrons. The electronic configuration of the neutral atom

is [Ar] 3d3 4s2. Vanadium has four common oxidation states, 5+, 4+, 3+ and 2+.

Pure Vanadium adopts a body centered cubic crystal structure (bcc) with a lattice

constant of a = 3.02 Å [50]. VO is a non-stoichiometric compound crystallizing

in a rocksalt structure with a = 4.06 Å [50]. The composition varies between V0.8

to V1.3 [52].

• Chromium

Three stable Chrome (Cr) isotopes exist, with 28, 29 or 30 neutrons. The most

common of these is 52Cr with 83.8% natural abundance. The element has 24

protons and electrons, the electron configuration being [Ar] 3d5 4s1. At room

temperature it forms an antiferromagnetic bcc crystal with the lattice constant

a = 2.88 Å [50]. The principal oxidation states are 2+, 3+ and 6+, with Cr6+

being the most common. Its monoxide, CrO, crystallizes in the rocksalt structure

[51].

• Manganese

The element with the atomic number 25 and the symbol Mn exists in only one

stable isotope, 55Mn, with 30 neutrons. Its electron configuration is [Ar] 3d5 4s2

and it crystallizes in the cubic, and quite unusual, α Manganese (A12) structure

with a lattice constant of a = 8.89 Å [50]. Manganese is an antiferromagnet and

its most common oxidation states include +2,+4 and +7. The TMO MnO forms

in the rocksalt structure with a = 4.44 Å [50] and the composition can vary

between MnO and MnO1.045 [52].

• Iron

The most common element on the planet, Iron, with the symbol Fe and the

atomic number 26 has three stable isotopes with either 30, 31, or 32 neutrons.

The configuration with 30 neutrons, 56Fe, is the most common, with over 91.7%

natural abundance. The 26 electrons arrange themselves in the configuration [Ar]

3d6 4s2. Although Iron can have oxidation states ranging from -2 to +6, +2 and

+3 are by far the most common. Fe crystallizes in the bcc structure with a lattice
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constant of a = 2.87 Å [50] and is ferromagnetic. The fraction of iron in the non-

stoichiometric compound FexO varies typically between Fe0.84O and Fe0.95O [52].

Stoichiometric FeO has a lattice parameter of a = 4.31 Å [50].

• Cobalt

The only stable Cobalt isotope, 59Co has 28 protons and electrons and 32 neu-

trons. The electronic configuration is [Ar] 3d7 4s2 and gives rise to the oxidation

states -1,+1,+2,+3,+4 and +5, where +2 and +3 are the most common. Cobalt

forms a ferromagnetic hcp unit cell with a = 2.51 Å and c = 4.07 Å [50]. CoO

forms an antiferromagnetic (below 16 ◦C [53]) rocksalt crystal with a = 4.27 Å

[50].

• Nickel

With an atomic number of 29, Nickel has five isotopes. 58Ni, 60Ni, 61Ni, 62Ni

and 64Ni, where 58Ni, containing 30 neutrons is the most common with 86.1%

natural abundance. Nickel crystallizes in a face centered cubic (fcc) structure

with a = 3.52 Å [50] and is ferromagnetic. The electronic configuration is [Ar]

3d9 4s1. The most common oxidation state is 2+, but 0, 1+, 3+ and even 4+

can occur. NiO, the only Nickel oxide, is non-stoichiometric and crystallizes in

the rocksalt structure with a = 4.17 Å [50].
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4.1.2 The Rocksalt Structure

The rocksalt structure (see figure 2), also known as halite structure, is, of course,

called like that because of the NaCl prototype. It is basically a face centered cubic

translational lattice system with two atoms in its unit cell. The primitive vectors of

the fcc lattice are

~A1 =
1

2
a




0

1

1


 ~A2 =

1

2
a




1

0

1


 ~A3 =

1

2
a




1

1

0




with a being the lattice parameter. The positions of the two ions are (were TM stands

for transition metal):

~B1 = ~0 (TM) (4a)

~B2 =
1

2
~A1 +

1

2
~A2 +

1

2
~A3 (O) (4b)

The space group is Fm3̄m with the number 225, the Pearson symbol is cF8 and the

Strukturbericht designation is B1. If one wants to work with an antiferromagnetic

system, one has to include four ions into the cell. Antiferromagnetism in rocksalt-type

structures typically consists of ferromagnetic planes perpendicular to the 111 direction

with alternating spin sign. This is known as the AFM II phase. The cell has than the

new unit vectors
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1
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and new ion positions.

~B1 = ~0 (TM)

~B2 =
1

2
~A1 +

1

2
~A2 +

1

2
~A3 (TM)

~B3 =
1

4
~A1 +

1

4
~A2 +

1

4
~A3 (O)

~B4 =
3

4
~A1 +

3

4
~A2 +

3

4
~A3 (O)

Figure 2: Rocksalt structure
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4.2 Bulk TMOs

The eight TMOs, ScO, TiO, VO, CrO, MnO, FeO, CoO and NiO, were analyzed using

the HSE06 functional (see section 2.3) and the LDA+U method in the Dudarev flavor

(see section 2.4). As a starting point PBE calculations (see section 2.2) were performed

first.

After performing static antiferromagnetic HSE calculations (and ferromagnetic runs

where the PBE calculations hinted in that direction), for several reasonable lattice

parameters to find the equilibrium constant, an ideal parameter U was sought to mimic

the HSE-obtained density of states (DOS). The LDA+U calculations were started at

the lattice parameter found in the HSE runs, but the cell volume of the systems was

allowed to relax, in order to obtain a groundstate. The cell shape, however, was kept

constant and the ions were not allowed to deviate from their defined positions in the

rocksalt structure. The U -optimization process was done as follows.

4.2.1 U and ∆ Optimization Process

At first, the DOS was dissected into the three parts: Oxygen p-states, TM deg-states

(containing the dz2−r2 and the dx2−y2 orbitals) and TM dt2g-states (containing the dxy,

dyz and dxz orbitals). Each of these parts was than spilt at the Fermi-energy to form

a “valance” and a “conduction” section, even when no bandgap was observed. For

each of this six sections the first and second momentum of the function was evaluated,

giving values corresponding to the peak position and the bandwidth. For conductors,

all bandwidths and the peakpositions of both bands of a LDA+U run for a given

U were compared directly with their HSE counterparts by calculating the quadratic

deviation. For insulators and semiconductors, the peak positions of the conduction

band were evaluated relatively to each other (e.g. TM deg − O p) and the quadratic

error was calculated for these differences. This was done to eliminate the influence

of the bandgap, which is a major problem in TMOs, requiring sometimes enormous

values of U , but can also be dealt with differently. As shown by Rödl et al. [54] an

additional scissor shift ∆ is easily incorporated into LDA+U (forming LDA+U+∆)

and allows to enlarge the bandgap by will. For this reason the magnitude of the gap

was not considered in the U -optimization.
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If one also includes the lattice constant, one counts now 13 conditions ( 6 bandwidths, 6

peak positions (of which 3 are relative in insulators), and the lattice parameter), which

can be used to calculate the mean quadratic error of the LDA+U DOS in respect to

the HSE DOS. To achieve a reasonable result, the quadratic deviations were scaled

to be of comparable order of magnitude. The quadratic lattice constant errors were

multiplied by a factor of 1000, whereas the quadratic bandwidth error was divided by

100 to get all to an order of magnitude 1.

It is not surprising, that one U in general can not optimize all of these parameters

simultaneously and so, as can be seen in sections 4.2.3 to 4.2.10, different optimizations

were carried out for each TMO.

4.2.2 PBE Calculations

All eight systems were calculated with the standard PBE-GGA functional in a non-

magnetic, a ferromagnetic and an antiferromagnetic setting. Each electronic system

was relaxed at different lattice constants a, to determine the energy minimum. A full

ionic relaxation was also performed to confirm these results.

ScO TiO VO CrO MnO FeO CoO NiO

NM - a 4.48 4.29 4.19 4.14 4.11 4.10 4.11 4.17
FM - a 4.48 4.29 4.26 4.36 4.45 4.31 4.25 4.20
AF - a 4.48 4.29 4.32 4.36 4.44 4.30 4.22 4.19

FM - µ 0 0 1.806 3.719 4.785 4.001 2.952 1.519
AF - µ 0 0 2.365 3.241 4.316 3.429 2.400 1.305

NM - E -17.090 -17.440 -16.897 -15.849 -14.886 -13.823 -12.709 -11.471
FM - E -17.090 -17.440 -16.933 -16.727 -16.477 -15.030 -13.078 -11.499
AF - E -17.090 -17.440 -17.157 -16.601 -16.628 -15.004 -13.231 -11.755

Table 2: PBE lattice parameters (in Å), magnetic moments (in µb) and total energies
(in eV) for nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AF) bulk
TMOs. Values corresponding to lowest energies are printed bold.

As can be seen in table 2, ScO and TiO show no magnetism in the PBE approximation,

but for all other TMOs, the magnetic ordered states have lower total energy than the

nonmagnetic states. For VO, MnO, CoO and NiO, the antiferromagnetic state is the

groundstate, while for CrO and FeO ferromagnetism leads to a lower energy solution.
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4.2.3 ScO

Scandium monoxide has a single electron in the d-shell, so one would not expect much

change by the LDA+U method in comparison to a PBE calculation. This is indeed

true as shown in figure 3. However, this does not mean, that the GGA approximation

works well in the case of ScO, but only states that electrons do not come close to each

other in the d-orbital. The hybrid functional, using short range Fock exchange for all

electrons, shifts the lower band, which has mainly Oxygen p character, down by about

2 eV in comparison to LDA+U . In figure 3, the HSE DOS is compared to three values

of U , each one obtained by an optimization process. U = 0.0 is the best approximation

if one wants to reproduce the HSE06 lattice constant. U = 1.5 optimizes the valence

bandwidths, whereas U = 2.2 is best for the peak positions. U = 2.2 is also the value

of choice if all parameters are considered in the optimization process. Lattice constants

(a), magnetic moments per TM ion (µ) and fundamental bandgaps (Gap) are given

in table 3 for all mentioned values of U . No other research on ScO in the rocksalt

structure could be found, which is not too surprising, since it does not exist. Naturally,

it is therefore not possible to provide any experimental data.

a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.440 0.001 0.0
U=0.0 4.478 0.000 0.0
U=1.5 4.517 0.000 0.0
U=2.2 4.536 0.000 0.0

Table 3: Data for bulk ScO

Summarizing, the LDA+U method does not provide a significant improvement over

normal PBE calculations for ScO, because adding a larger and larger U only leads to

an increasing lattice constant, which is already to big for U = 0. Figure 13 in section

4.2.11 shows the mean quadratic error dependent on U . While being rather large in

comparison to the other tested systems, it does not vary much in the displayed region.

The reason for the increase after the minimum at U = 2.2 is mainly the increasing

lattice constant.

46



4.2 Bulk TMOs 4 RESULTS

 0.5
 1

 1.5
 2

 2.5
 3

HSE
O p

Sc deg
Sc dt2g

 0.5

 1

 1.5

 2

 2.5

U=0.0

O p
Sc deg
Sc dt2g

 0.5

 1

 1.5

 2

 2.5

U=1.5

O p
Sc deg
Sc dt2g

 0
 0.5

 1
 1.5
 2

 2.5

-10 -8 -6 -4 -2 0 2 4 6

U=2.2
O p

Sc deg
Sc dt2g

Figure 3: Bulk DOS of ScO (energy in eV)
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4.2.4 TiO

If one considers the HSE06 and the LDA+U DOS graphs in figure 4, the difference in

the width of the upper energy band is easily recognizable. The dip in the HSE DOS

at the Fermi energy is also a pronounced feature, that is not seen (at least for lower

values of U) in the LDA+U DOS. As observed for ScO, the lower LDA+U band is

shifted upwards by about 1 eV in comparison to the HSE calculation. The whole DOS

of TiO is very similar to the ScO DOS, for HSE as well as for very small U values, but in

contrast to Scandium oxide, a profound change of the DOS is observed if the parameter

U is increased. At short glance, U = 2.6 gives a rather good approximation of the HSE

DOS, but the optimization process yields much smaller values. This might be the case

because the two bands are not treated separately in the process, but the partition is

made at the Fermi energy, in the middle of the upper band. For peak positions as well

as for the optimization with respect to all parameters, the optimal U is found to be

0.6. If one optimizes for the lattice constant and the valence bandwidth, one gets U

values of 1.0 and 0.0, respectively. However, the mean quadratic error does not change

much at these low U values, as one can see in figure 13 in section 4.2.11.

a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.320 1.373 0.0
U=0.0 4.288 0.000 0.0
U=0.6 4.300 0.034 0.0
U=1.0 4.320 0.616 0.0
U=2.6 4.406 1.385 0.0

Table 4: Data for bulk TiO

Table 4 demonstrates that the magnetic moment is also just about right for U = 2.6.

This, as well as the DOS graph, indicates that the optimization process, described in

section 4.2.1, might not work properly in the case of TiO. As there were no publica-

tions to be found on stoichiometric TiO with no vacancies in the AFM II phase, it is

unfortunately not possible to back up this idea with any data.
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Figure 4: Bulk DOS of TiO (energy in eV)

49



4.2 Bulk TMOs 4 RESULTS

4.2.5 VO

The HSE06 DOS of Vanadium oxide in the AFM II phase shows a semiconductor with

three distinct bands. For very low values of U , the upper valence band in the LDA+U is

joined with the conduction band at the Fermi energy, forming a metal. Other than the

presence of the bandgap and the slightly broader bandwidth for the HSE calculations,

the LDA+U approach works well in VO (see figure 5). The calculated optimal values

of U are 0.2, 0.5, 0.8 and 1.3 for the lattice constant, valence bandwidth, peak posi-

tions and all parameters, respectively. The mean quadratic error for optimization with

respect to all parameters is much lower than for ScO and TiO (see figure 13). With

U = 1.3 and a ∆ = 2.9 a very good approximation to the HSE06 DOS is found with

the LDA+U+∆ approach. While non spin polarized calculations predict VO to be a

strongly correlated metal [55], Mackrodt et al. showed that introducing magnetism and

exact exchange into the calculations produces a semiconductor, even down to 10% ex-

act exchange contribution [56]. The group of Mackrodt found the AFM I phase, where

the ferromagnetic planes of alternating spin are stacked along the (100), rather than

the (111) direction, to be the groundstate of VO, but this phase is not discussed in

this thesis. In table 5 the results from this work are compared with UHF (unrestricted

Hartree-Fock) and B3LYP (a hybrid functional method) calculations for the AFM II

phase by Mackrodt et al. [56].

As HSE06 uses 25% of exact exchange, the results should be comparable to the values

given in table 5 for B3LYP (0.2). The lattice constant, as well as the magnetic moment

and the bandgap are slightly smaller for HSE06, even though 5% more exact exchange

was used. The bandgap scales linearly with higher percentages of HF-exchange, reach-

ing over 14 eV for UHF. This is an order of magnitude larger as the gap predicted

by HSE06, but as stoichiometric VO still features about 16% vacancies (see [55]), a

comparison with experiments is not possible.

4.2.6 CrO

As the PBE groundstate of CrO was found to be ferromagnetic, rather than antiferro-

magnetic (see section 4.2.2), HSE06 calculations were carried out for both phases. The

energy of the ferromagnetic phase remained lower than the antiferromagnetic one, but

for the benefit of coherence, it was decided to fit the LDA+U model to the AFM II
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Figure 5: Bulk DOS of VO (energy in eV)

a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.330 2.599 2.896
U=0.2 4.327 2.390 0.0
U=0.5 4.339 2.442 0.0
U=0.8 4.349 2.480 0.0
U=1.3 4.363 2.527 0.0

Previous calculations

UHFa 4.4539 3.027 14.039
B3LYP (1.0)a 4.3528 2.983 14.142
B3LYP (0.8)a 4.3615 2.976 11.500
B3LYP (0.6)a 4.3737 2.965 8.896
B3LYP (0.4)a 4.3715 2.943 6.196
B3LYP (0.2)a 4.3824 2.891 3.239
B3LYP (0.1)a 4.3898 2.831 1.756

Table 5: Data for bulk VO; values in parentheses next to B3LYP denote fraction of
exact exchange; aReference [56]
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phase.

Mainly, two things are happening to the PBE DOS (denoted by U = 0.0 in figure 6) of

CrO if one quarter of exact exchange is introduced by the HSE06 functional: First, the

dt2g states are split at the Fermi energy, and the lower energy part is shifted downwards

by about 1.5 eV, while the upper part is shifted to about 2 eV higher energies. Second,

the deg states are split into three parts (all containing dz2−r2 as well as dx2−y2 orbitals),

one of which stays at the Fermi level, while the two others are shifted upwards and

downwards, respectively. While the behavior of the dt2g states is mimicked well by the

LDA+U approach, the deg splitting at the Fermi level does not occur. This results in

a much higher density of states at the Fermi energy for LDA+U as for HSE. Other

than that, bandwidths and peak positions are quite well reproduced and the overall

error is rather small (see figure 13). The ideal values of U are found to be: 0.0 for

the valence bandwidth, 1.2 for the lattice constant, 2.9 overall and 4.6 for the peak

positions. Lattice constants, magnetic moments and bandgaps are found in table 6. No

data from experiments or other calculations could be obtained.
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Figure 6: Bulk DOS of CrO (energy in eV)
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a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.390 3.674 0.0
U=0.0 4.357 3.424 0.0
U=1.2 4.390 3.601 0.0
U=2.9 4.431 3.771 0.0
U=4.6 4.459 3.896 0.0

Table 6: Data for bulk CrO

4.2.7 MnO

In the HSE calculation of this work MnO, in the AFM II phase, has a substantial

bandgap of 2.98 eV. While a gap is reproducible with LDA+U , it is significantly smaller

for reasonable values of U , that do not distort the rest of the DOS too much. As figure

7 shows, U = 2.3, the optimized value for the peak positions, mimics the valence DOS

very well. If the valence bandwidths are the focus of interest, an even lower value of

U , 1.4, is the appropriate one, and U = 0.8 minimizes the error in the lattice constant.

The broadening of the conduction Mn dt2g states with rising values of U , leads to an

much larger optimal U of 3.8 if all parameters (peak positions, bandwidths and lattice

constant) are considered. This value leads to a sizable gap, so only a rather small ∆

of 1.3 is needed to reach the HSE value. Rödl et al. [54] reported a smaller value of U ,

combined with a larger ∆, of 2.0 and 3.0 respectively.

The weighted mean quadratic error for U = 3.8 with respect to the HSE06 calculation

is 1.3. Figure 13 shows the U -dependence of the error. In table 7 calculated data from

this thesis is compared to other calculations and experiments.
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Figure 7: Bulk DOS of MnO (energy in eV)

The Abbreviations used in table 7 (and following tables) read as follows. EXX: exact ex-

change. FPLO: full potential local orbital method with Perdew-Wang (1992) exchange-

correlation functional. Gaussian: Gaussian local orbital code, Slater exchange (α = 2/3)

and Vosko-Wilk-Nusair correlation. PW-US-PP: plane-wave basis using ultrasoft pseu-

dopotentials, with the Perdew-Zunger exchange-correlation functional. LMTO-ASA:

linear muffin-tin orbital code in the atomic sphere approximation, using the Perdew-

Zunger exchange-correlation functional. XD: x-ray diffraction. XPS: x-ray photoemis-

sion spectroscopy. BIS: bremsstrahlung-isochromat spectroscopy.

In a nutshell, the most simple transition metal oxide (with its exactly half filled d-

shell), can be very well described with the LDA+U method. A gap in the right order

of magnitude is opened by U = 3.8 and can be easily enlarged to the HSE result by

adding a ∆ of 1.3.
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a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.450 4.524 2.98
U=0.8 4.452 4.392 0.054
U=1.4 4.458 4.439 1.272
U=2.3 4.469 4.500 1.460
U=3.8 4.485 4.585 1.724

Previous calculations

HSE03a - 4.50 2.60
HSE03+G0W

a
0 - - 3.40

GGAa - 4.30 0.70
GGA+Ua - 4.50 -
EXXb 4.445 4.81 3.85
FPLOc 4.317 4.52 0.72
Gaussianc 4.317 4.53 1.13
PW-US-PPc 4.272 4.42 0.92
LMTO-ASAc 4.317 4.42 1.04
PBEd 4.450 4.26 0.90
LDA+Ud 4.400 4.50 1.90
B3PW91d 4.460 4.38 1.30
PBE0d 4.510 4.40 1.30

Experiments

e 4.45 - -
neutron diffractionf - 5 -
γ-ray diffractiong - 4.54(5) -
neutron diffractionh 4.432* 4.58 -
XD, XPS, BISi 4.4415 - 3.9

Table 7: Data for bulk MnO; *distorted rocksalt (=rhombohedral) structure (α >
90◦); aReference [54], bReference [57], cReference [58], dReference [59], eReference [50],
fReference [60], gReference [61], hReference [62], iReference [63]
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4.2.8 FeO

As seen in table 2 in section 4.2.2, the PBE groundstate of FeO is ferromagnetic.

When treated with the HSE06 functional, this is no longer true, and the AFM II phase

has lower energy. Also, HSE opens a bandgap of 2.23 eV. This gap was found to be

irreproducible by means of LDA+U alone, even if the structure was totally relaxed and

lattice distortions were allowed. As one can see in figure 8, the Fe dt2g orbital presents

itself with one single- and one double-peak around the Fermi energy. For HSE, the

double-peak (an overlap of two peaks), is located in the conduction band and the single

one forms the top of the valence band. In case of LDA+U , the situation is very different.

The three peaks are split at another point, so that the double-peak is located at a lower

energy compared to the single one. The double-peak then sits unmoving at the Fermi

energy, while the single-peak is shifted upwards in energy with increasing U . Thus, in

contrast to MnO, it is not possible to describe FeO well with LDA+U . However, if

one is willing to introduce another fit parameter, the scissor shift ∆, into the model,

good agreements can be achieved. To fit the (relative) peak positions, the parameter

U = 3.2 was calculated in this thesis. Optimization with respect to valence bandwidth

and lattice constant yields U = 3.5 and U = 2.9, respectively. An optimization of all

parameters leads to a U of 3.8, the same as for MnO. The corresponding value for ∆ is

2.2. The parameters found in [54] are U = 3.0 and ∆ = 1.5. Data is shown in table 8.

4.2.9 CoO

According to [65] CoO at room temperature is cubic and paramagnetic with a =

4.2614 Å. The transition to the antiferromagnetic ordered phase is accompanied by a

change of lattice symmetry to a monoclinic structure. At 10 Kelvin the lattice constants

are a = 5.1819 Å, b = 3.0176 Å and c = 3.0186 Å. For reason of simplicity the cubic

rocksalt structure was used for the AFM II phase as well in this work. The HSE06

calculation then yields a gap of 3.5. As can be seen in figure 9, The LDA+U approach

opens a bandgap if U ≥ 2.0. To minimize the errors in the peak position a U value of

1.5 was calculated, which is also the optimum if one includes all parameters. While the

parameters U = 3.0 and ∆ = 2.5 are given by [54], U = 1.5 and ∆ = 3.5 are proposed

here. For the valence bandwidth one obtains U = 2.2, and for the lattice constant one

seems to have a choice between U = 1.0 and U = 4.2. This is quite astonishing, because

usually a larger U leads to a larger lattice constant.
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Figure 8: Bulk DOS of FeO (energy in eV)
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a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.330 3.630 2.23
U=2.9 4.330 3.648 0.0
U=3.2 4.331 3.665 0.0
U=3.5 4.332 3.682 0.0
U=3.8 4.334 3.698 0.0

Previous calculations

HSE03a - 3.40 2.1
HSE03+G0W

a
0 - - 2.2

GGAa - 3.40 0.0
GGA+Ua - 3.60 -
EXXb 4.334 3.85 1.66
PBEc 4.300 3.49 0.0
LDA+Uc 4.280 4.23 0.0
B3PW91c 4.350 4.15 1.3
PBE0c 4.400 4.30 1.2

Experiments

d 4.31 - -
neutron diffractione - 3.32 -
f - - 2.4

Table 8: Data for bulk FeO; aReference [54], bReference [57], cReference [59], dReference
[50], eReference [60], fReference [64]
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Figure 9: Bulk DOS of CoO (energy in eV)
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This behavior is connected to a sudden change in the DOS, the energy and the lattice

constant, between U = 4.1 and U = 4.2, as can be seen in figure 10. It corresponds to

an insulator–conductor transition with an energy difference of about +1.5 eV.
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Figure 10: Bulk DOS of CoO (energy in eV)

This phase transition only occurs if one allows only a relaxation of the structures vol-

ume, but not its cell shape or the ion positions. If these degrees of freedom are turned

on, the continuous behavior returns, as can be seen in figure 11. Also, if the wave-

functions of the fully relaxed run are used as a starting point for a volume relaxation,

the insulator–conductor transition does not occur. The same is true if the symmetry is

broken by shifting one of the Co ions very slightly (< 1%) from its ideal position. The

perfect agreement of the LDA+U lattice constant with its HSE counterpart at U = 4.2

(and slightly higher values) should therefore be ignored in the context of this work, as

it is only valid in context of the phase transition. Giving that the structure of CoO in

the AFM II phase is really monoclinic and not cubic, it is not surprising that unforseen

results can occur if the crystal is forced into a “wrong” shape. Astonishing, however, is

the very sudden appearance of the conduction state, by changing U by just 0.1 eV. The

above mentioned phase transition serves as a good reminder for being attentive while
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calculating magnetically ordered structures. Symmetries or the breaking of symmetries

might be very important to change magnetic ordering or conductivity. Table 9 shows

a collection of data from this work, previous studies and experiments for CoO.
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Figure 11: Bulk DOS of CoO (energy in eV)

4.2.10 NiO

If Nickel oxide in the AFM II phase is treated with the HSE06 functional it yields a

bandgap of 4.4 eV. Other groups ([54, 59]) report the opening of a gap of about 0.5

eV for GGA calculations, which cannot be confirmed by this work due to the large

DOS smearing used. In figure 12, the PBE result can be seen in the part marked with

U = 0.0. While the DOS graph drops significantly at the Fermi energy, fractional

occupation numbers show that no gap is formed. Nevertheless a sizable gap of 1.251 is

observed at a quite low U value of 1.0. Optimization for peak positions, lattice constant,

valence bandwidths and all parameters combined result in U values of 3.5, 0.0, 3.5 and

5.3, respectively. A U of 5.3 opens a bandgap of 3.1, so a ∆ of 1.3 must be used to
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a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.260 2.668 3.535
U=1.0 4.260 2.493 0.0
U=1.5 4.263 2.531 0.0
U=2.2 4.275 2.581 1.345
U=4.0 4.286 2.680 2.390

Previous calculations

HSE03a - 2.40 3.20
HSE03+G0W

a
0 - - 3.40

GGAa - 2.40 0.00
GGA+Ua - 2.60 -
EXXb 4.254 2.88 2.62
PBEc 4.240 2.60 0.00
LDA+Uc 4.200 3.48 2.70
B3PW91c 4.280 3.23 2.00
PBE0c 4.320 4.14 2.10

Experiments

d 4.27 - -
neutron diffractione - 3.8 -
x-ray diffractionf 4.267 3.98 -

Table 9: Data for bulk CoO; aReference [54], bReference [57], cReference [59], dReference
[50], eReference [60], fReference [65]
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mimic the HSE behavior. Rödl et al. report values of U = 3.0 and ∆ = 2.0 [54]. More

data for NiO can be found in table 10.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

HSE
O p

Ni deg
Ni dt2g

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
U=0.0

O p
Ni deg
Ni dt2g

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
U=3.5

O p
Ni deg
Ni dt2g

 0
 0.5

 1
 1.5
 2

 2.5
 3

 3.5

-8 -6 -4 -2 0 2 4 6 8

U=5.3
O p

Ni deg
Ni dt2g

Figure 12: Bulk DOS of NiO (energy in eV)

4.2.11 Bulk TMO Summary

In this short summary, the values of U and ∆, as found by optimizing with respect to

all parameters, are given for each transition metal oxide and compared to the previous

calculation by Rödl et al. [54] (see table 11). The U values given in reference [54], are,

with the exception of CoO, lower than the parameters calculated in the present work.

If one optimizes with respect to the peak positions, the values match quite well, with

CoO being the exception again. Summing up, it is not possible to mimic all aspects

of the HSE06 DOS with a single U in the case of the bulk TMOs considered in this

work. If the system is too large to allow an HSE calculation, one has to decide which

feature is most important, or accept an equal deviation for all facets by choosing the

parameters given in table 11. Figure 13 shows the U dependence of the mean quadratic

DOS error for each TMO.
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a [Å] µ [µb] Gap [eV]
Present work

HSE06 4.190 1.659 4.416
U=0.0 4.190 1.299 0.0
U=3.5 4.194 1.596 2.378
U=5.3 4.196 1.689 3.084

Previous calculations

HSE03a - 1.60 4.1
HSE03+G0W

a
0 - - 4.7

GGAa - 1.30 0.6
GGA+Ua - 1.50 -
EXXb 4.171 1.89 4.1
PBEc 4.200 1.21 0.4
LDA+Uc 4.120 1.72 3.2
B3PW91c 4.210 1.70 2.8
PBE0c 4.240 1.73 2.8

Experiments

d 4.17 - -
neutron diffractione 4.170 1.90 -
XPS, BISf - - 4.0
Photoemissiong - - 4.3

Table 10: Data for bulk NiO; aReference [54], bReference [57], cReference [59],
dReference [50], eReference [62], fReference [66], gReference [67]

ScO TiO VO CrO MnO FeO CoO NiO
Present work

U [eV] 2.2 0.6 1.3 2.9 3.8 3.8 1.5 5.3
∆ [eV] 0.0 0.0 2.9 0.0 1.3 2.2 3.5 1.3

Reference [54]

U [eV] - - - - 2.0 3.0 3.0 3.0
∆ [eV] - - - - 3.0 1.5 2.5 2.0

Table 11: Parameters U and ∆ for bulk TMOs

64



4.2 Bulk TMOs 4 RESULTS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 1 2 3 4 5 6 7

  ScO
TiO
VO
CrO

MnO
FeO
CoO
NiO

Figure 13: U dependent mean quadratic DOS error between HSE06 and LDA+U for
bulk TMOs. (U in eV on the x-axis, error in arbitrary units on the y-axis)

65



4.3 Monolayer 4 RESULTS

4.3 Monolayer

All eight 3d transition metal monoxides were also analyzed in the form of a monolayer.

The layer was “cut” along the (100) direction of the cell, so that transition metal ions

and oxygen ions form a checkerboard pattern in the x-y-plain. A distance of three

lattice constants was left between repeating monolayers, which computes to more than

12 Å in any case. Thus, the primitive vectors are

~A1 = a




1

0

0


 ~A2 = a




0

1

0


 ~A3 = a




0

0

3




with a being the lattice parameter. The four ions necessary for an antiferromagnetic

solution are then positioned at

~B1 = 0 (TM)

~B2 =
1

2
~A1 +

1

2
~A2 (TM)

~B3 =
1

2
~A1 (O)

~B4 =
1

2
~A2 (O)

were TM denotes a transition metal ion and O an Oxygen site. By assigning the TM at

position ~B1 spin “up” and the TM at ~B2 spin “down”, the coupling between nearest TM

neighbors (d =
√

2
2
a) is antiferromagnetic. Therfore the dominant process for magnetic

coupling is direct exchange rather than superexchange, as in the bulk configuration

(see section 3.2.3).

The monolayer was used to simulate an “ideal surface”, and the idea of the effort was

to provide values of U , that may approximate the parameter in surface layers of a real

slab. By comparing bulk and monolayer values, one may find at least starting numbers

for more complex surface calculations. The U optimization process was in essence

the same as for the bulk calculations (see section 4.2.1), but the lattice constant was

omitted as a parameter. All calculations were done at the bulk HSE lattice constants

of the respective TMOs and no relaxations were performed to simulate the stress on a

real surface layer, which also has to retain the bulk lattice constant. DOS graphs and
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further information on the monolayer calculations, from ScO too CoO, can be reviewed

in sections 4.3.1 to 4.3.7. For NiO, the HSE calculation gave unphysical results, and

no comparison to LDA+U was performed. There were no previous calculations to be

found for TMO monolayers, so no references are given.

4.3.1 ScO

In contrast to bulk ScO, the monolayer converges to an antiferromagnetic solution for

both HSE06 and LDA+U , if one initializes antiparallel magnetic moments. Even for

U = 0, which is equivalent to PBE, the magnetic moments reach half of the HSE value.

As shown in figure 14, increasing U does not help to push down the Oxygen p–states to

the appropriate HSE position. The most noticeable change in the LDA+U DOS with

increasing U is the splitting of the dt2g and deg states, which first approaches the HSE

situation and then even leads to a metal–insulator transition. At U = 7.0 a sizable gap

of 1.6 eV has formed. The optimal U values found were 5.2 for the peak positions and

for the overall optimization and 6.1 for the valence bandwidth. Data is shown in table

12. All things considered, one has to conclude that the approximation of the HSE06

DOS with the LDA+U method works quite well in the case of an ScO monolayer. This

result is somewhat different from the bulk situation, were the variation of U did not

change a lot in the DOS. The quadratic deviation from the HSE DOS for different

values of U can be observed in figure 21 in section 4.3.8.

µ [µb] Gap [eV]

HSE06 0.476 0.0
U=0.0 0.225 0.0
U=5.2 0.602 0.0
U=6.1 0.629 0.020
U=7.0 0.659 1.603

Table 12: Data for ScO (100) monolayer

4.3.2 TiO

As in the bulk HSE calculation, the monolayer HSE06 DOS of Titanium oxide is

quite low at the Fermi energy (see figure 15). PBE does not show this behavior but

67



4.3 Monolayer 4 RESULTS

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

HSE

O p
Sc deg
Sc dt2g

 0.5
 1

 1.5
 2

 2.5
 3

U=0.0

O p
Sc deg
Sc dt2g

 0.5
 1

 1.5
 2

 2.5
 3

U=5.2

O p
Sc deg
Sc dt2g

 0
 0.5

 1
 1.5
 2

 2.5
 3

-10 -8 -6 -4 -2 0 2 4 6

U=7.0

O p
Sc deg
Sc dt2g

Figure 14: DOS of ScO (100) monolayer (energy in eV)
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it is reproducible with LDA+U . However, it is difficult to broaden the conduction

band to its HSE value of about 8 eV, because the DOS at the Fermi level decreases

with increasing U , till a gap is opened at about U = 6.0. As it was the case for

the ScO monolayer, the Oxygen p–band is located about two eV lower than its PBE

counterpart, and increasing U does not push this band to lower energies, but shifts it

nearer to the Fermi level. The optimal parameters found for TiO are very similar for

every optimization, yielding U = 2.5 for the valence bandwidth and U = 2.6 for the

peak positions and the overall optimization. It is definitely a plus, that it is possible

to mimic every aspect of the HSE06 DOS with the essential same value of U , but the

overall quadratic mean error is quite high in comparison to the other TMOs, as one

can see in figure 21. Data for TiO is found in table 13.
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Figure 15: DOS of TiO (100) monolayer (energy in eV)

4.3.3 VO

Unlike in bulk, the HSE06 calculation for the VO monolayer yields a metallic DOS

with a broad dt2g peak at the Fermi level (see figure 16). Increasing U does not change
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µ [µb] Gap [eV]

HSE06 1.438 0.0
U=0.0 1.123 0.0
U=2.6 1.503 0.0
U=5.0 1.627 0.0

Table 13: Data for TiO (100) monolayer

the occupation numbers of the orbitals, but shifts all d states away from the central

dt2g peak. The U values found in the optimization process for the peak positions and

for all parameters are quite close, with U = 4.9 and U = 5.2, respectively. However,

in contrast to TiO, the ideal parameter for the valence bandwidth, at U = 0.0, is very

different. As there is no gap for any calculation no parameter ∆ is needed. The mean

quadratic error (figure 21) is quite low and features a broad and not very pronounced

minimum. All things considered, the HSE06 calculation of the VO monolayer is nicely

reproducible with the LDA+U method. Magnetic moments and fundamental bandgaps

are given in table 14.

µ [µb] Gap [eV]

HSE06 2.594 0.0
U=0.0 2.406 0.0
U=2.4 2.583 0.0
U=4.9 2.690 0.0
U=5.2 2.702 0.0

Table 14: Data for VO (100) monolayer

4.3.4 CrO

For CrO the calculated values for U depend strongly on the parameters which were

chosen for the optimization. U = 0.0 is best for the valence bandwidth, U = 1.7 is for

the peak positions and U = 4.5 is ideal for all parameters combined. In contrast to VO

however, a gap is opening at reasonable low U values. Still, to reach the same gap size,

a ∆ of 0.7 eV is required for U = 4.5. While the valence DOS of the CrO monolayer

is very well reproduced by the LDA+U method (see figure 17), the prominent peak

of the conducting deg states is missing. For U > 3.0, also the dt2g peak is starting to
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Figure 16: DOS of VO (100) monolayer (energy in eV)
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disappear. This results in a high overall mean quadratic error, as can be seen in figure

21 in section 4.3.8. Data for CrO is given in table 15.
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Figure 17: DOS of CrO (100) monolayer (energy in eV)

4.3.5 MnO

The good agreement of HSE06 and LDA+U can easily be seen with the naked eye in

the case of MnO (figure 18) and the mean quadratic error is indeed very low (figure 21).

Furthermore, all optimization processes for the valence bandwidth, the peak positions

and all parameters combined yield the same U parameter, namely 4.1. Although MnO

features a very low value of the DOS in a wide area around the Fermi energy, the actual

HSE bandgap, with just 0.2 eV, is very small. Even for a high U value of 6.0 no gap

is formed for the LDA+U functional, as can be concluded from fractional occupation

numbers. Therefore a ∆ of 0.2 eV has to be used. The typical behavior of the LDA+U

functional can be very well observed in this case. The splitting of the d states of the

Manganese ions is increased with increasing U . The Oxygen p states however remain
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µ [µb] Gap [eV]

HSE06 3.733 3.051
U=0.0 3.634 0.0
U=1.7 3.726 0.0
U=3.0 3.784 1.579
U=4.5 3.839 2.352

Table 15: Data for CrO (100) monolayer

basically unchanged, about 1 eV too high in comparison to the DOS calculated with

the HSE06 method. Data for the MnO monolayer is provided in table 16.
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Figure 18: DOS of MnO (100) monolayer (energy in eV)

4.3.6 FeO

The general behavior of the LDA+U DOS of Iron monoxide for increasing values of U

is not different to that of MnO. The d states are shifted away from the Fermi energy at
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µ [µb] Gap [eV]

HSE06 4.587 0.161
U=2.0 4.550 0.0
U=4.1 4.645 0.0
U=6.0 4.719 0.0

Table 16: Data for MnO (100) monolayer

both sides, but in the case of FeO, a gap is formed at U = 2.3. The optimization with

respect to the valence bandwidth, as well as with respect to the peak positions lead to

an ideal U value of 3.4, resulting in a needed ∆ of 1.2 eV. For the overall optimization

one gets U = 4.4 with a ∆ of 1.1 eV. For this U parameter, the mean quadratic error is

even lower as for MnO, as can be seen in figure 21. The HSE–LDA+U DOS comparison

is shown in figure 19, and data is collected in table 17.
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Figure 19: DOS of FeO (100) monolayer (energy in eV)
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µ [µb] Gap [eV]

HSE06 3.741 2.613
U=1.0 3.649 0.0
U=3.4 3.745 1.408
U=4.4 3.779 1.513
U=6.0 4.719 1.663

Table 17: Data for FeO (100) monolayer

4.3.7 CoO

HSE06 yields a semiconductor with a bandgap of 2.4 eV for the (100) monolayer of

Cobalt monoxide. The mean quadratic error of the LDA+U DOS, with respect to the

HSE06 one, was found to be the lowest for all discussed monolayers (see figure 21).

The overall optimization yields U = 4.7, which corresponds to a ∆ value of 1.1 eV. For

the valence bandwidth as well as for the peak positions, 4.1 is the best value for U ,

yielding also to a ∆ of 1.1 eV. As it was the case for MnO and FeO as well, the top of

the valence band of CoO has a large region of very low DOS. The HSE06 calculation

yields a direct bandgap of 3.45 eV, just more than 1 eV larger than the fundamental

gap. DOS graphs are given in figure 20 and data can be found in table 18.

µ [µb] Gap [eV]

HSE06 2.775 2.425
U=2.0 2.693 0.0
U=4.1 2.776 1.278
U=4.7 2.794 1.343
U=6.0 2.831 1.471

Table 18: Data for CoO (100) monolayer

4.3.8 Monolayer TMO Summary

In this section, the optimal U and ∆ values, with respect to overall optimization, are

summed up in table 19. If one compares this parameters to the bulk values in 11, the

uniform enlargement of U is instantly visible. On average, the monolayer demands an
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Figure 20: DOS of CoO (100) monolayer (energy in eV)
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increase of U of about 2 eV, with only Manganese and Iron being lower than 1, namely

0.3 and 0.6 eV. The ∆ parameter is usually smaller than for bulk configurations, with

the exception of ScO and TiO, which are conducting in both configurations, and CrO,

which is a conductor in the infinite crystal, but a semiconductor in the monolayer.

ScO TiO VO CrO MnO FeO CoO
Present work

U [eV] 5.2 2.6 4.5 4.5 4.1 4.4 4.7
∆ [eV] 0.0 0.0 2.3 0.7 0.2 1.1 1.1

Table 19: Parameters U and ∆ for (100) monolayer TMOs
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Figure 21: U dependent mean quadratic DOS error between HSE06 and LDA+U for
monolayer TMOs. (U in eV on the x-axis, error in arbitrary units on the y-axis)

Figure 21 shows the mean quadratic error of the LDA+U calculations with respect to

the HSE06 DOS for the U values given in table 19.
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5 Summary and Conclusion

Eight 3d transition metal monoxides, ranging from ScO to NiO, were studied with two

DFT based methods, the HSE06 functional and the LDA+U(+∆) approach in their

antiferromagnetic phases. The crystal structure used for bulk calculations was the ideal

rocksalt structure, and if relaxations were performed, only the cell size was allowed to

change, so no breaking of the symmetry was possible. Also a (100) monolayer, kept

rigid at the bulk lattice constant, was analyzed for each TMO. All calculations were

performed with the program package VASP, using PAW potentials provided in this

package. The goal of this work on prototype systems was to provide reference points

for the on-site interaction parameter U , with respect to the much more expensive

HSE06 functional, for various transition metal compounds. To our best knowledge, no

previous study compared these methods for such a wide range of materials, or included

surface geometries.

The bulk HSE06 results match previous calculations and experiments quite well, were

such data could be obtained (see tables 5, 7, 8, 9 and 10). It is therefore reasonable to

conclude, that the hybrid functional approach serves also as a good standard for the

optimization of the parameters U and ∆.

For the selection of the constants U and ∆, it was attempted to fit the electronic density

of states from the LDA+U approach to the respective HSE benchmark. Hence, the

DOS was first dissected into a valence and a conduction band and then into Oxygen

p, transition metal dt2g and transition metal deg states. The peak positions and the

bandwidths were obtained by calculating the first and second moments of this functions.

Now these 13 conditions, including the lattice parameter, were used to find values for

U , that gave the best approximation for the given target. If a optimal U was found,

∆ was selected in a fashion, that the LDA+U bandgap plus ∆ was equal to the gap

found with the HSE06 functional.

Compared to the parameters U and ∆ from previous calculations, the values calcu-

lated in the present work differ in detail, but are of the same order of magnitude.

Often quite different values for U are calculated for the same compound, depending

on the parameters chosen for the optimization and so comparison to other results is

complicated.
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If one compares the bulk results with the monolayer parameters, one finds an increase

of the on-site interaction parameter. This is to be expected, as the electrons are even

more localized in the confines of the monolayer configuration. At the same time electron

mobility is reduced as the DOS at the Fermi level decreases. (With the exception of

CrO, which is metallic in bulk and a semiconductor in the monolayer.)

Concluding, one may argue that leaving the ab-initio confines in favor for the LDA+U

approach with an adapted U parameter is a reasonable way of dealing with strongly

localized electrons in large systems. However, only in a few cases does a single set of

parameters describe the whole DOS well in respect to a HSE06 calculation. Usually

one has to concentrate on a single aspect, e.g. the bandwidths, and the U chosen will

than not approximate other aspects well. Therefore it is not generally advisable to use

this method for predictions, but rather to serve as a model for a better understanding

of the exchange interaction of a given system. A final list of all calculated data is given

in table 20.

U optimized for ScO TiO VO CrO MnO FeO CoO NiO
Bulk

Lattice Constant
U 0.0 1.0 0.2 1.2 0.8 2.9 1.0 0.0
∆ 0.0 0.0 2.9 0.0 2.9 2.2 3.5 4.4

Peak Positions
U 2.2 0.6 0.8 4.6 2.3 3.2 1.5 3.5
∆ 0.0 0.0 2.9 0.0 1.5 2.2 3.5 2.0

Valence Bandwidths
U 1.5 0.0 0.5 0.0 1.4 3.5 2.2 3.5
∆ 0.0 0.0 2.9 0.0 1.7 2.2 2.2 2.0

Overall
U 2.2 0.6 1.3 2.9 3.8 3.8 1.5 5.3
∆ 0.0 0.0 2.9 0.0 1.3 2.2 3.5 1.3

Monolayer

Peak Positions
U 5.2 2.6 4.9 1.7 4.1 3.4 4.1 -
∆ 0.0 0.0 0.0 3.1 0.2 1.2 1.1 -

Valence Bandwidths
U 6.1 2.5 0.0 0.0 4.1 3.4 4.1 -
∆ 0.0 0.0 0.0 3.1 0.2 1.2 1.1 -

Overall
U 5.2 2.6 5.2 4.5 4.1 4.4 4.7 -
∆ 0.0 0.0 0.0 0.7 0.2 1.1 1.1 -

Table 20: Calculated values U and ∆ (in eV) for different optimizations.
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