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Abstract
This thesis discusses the use of computer vision for assisting elderly in the

field of Ambient Assisted Living with Aging-in-place. Falling has been iden-

tified as a major health issue for elderly, especially for those that live inde-

pendently. Therefore an abnormal activity recognition system for detecting

falls is presented. Activity or event recognition has been gaining much in-

terest in the computer vision community in recent years. The application

area covers a wide range, from video surveillance and monitoring, human-

computer interaction to augmented reality. The fundamental problem lies

within the detection and modeling of Video events, the semantic concepts

that humans perceive when observing a scene. When emulating this process

with computer vision, the semantic content of the low-level input has to be

abstracted with meaningful features. Finding reliable models for describing

and recognizing events given these abstractions is the key part in event un-

derstanding. In order to detect falls reliably a multi-camera vision system is

proposed. The image evidence is fused early and fall detection is performed

in 3D space. This allows the computation of reliable, view invariant features.

Fuzzy logic is used to estimate the membership of the currently observed

features to different human motion models. Using a novel feature, which

is presented in this work, the unexpectedness of a fall incident is modeled

reliably. The evaluation shows, that the proposed approach is a reliable and

computationally efficient fall detector.



Zusammenfassung
Diese Masterarbeit beschäftigt sich mit dem Einsatz von Computer Vision im

Bereich Ambient Assisted Living. Ambient Assisted Living umfasst Metho-

den und Technologien, die das tägliche Leben älterer und pflegebedürftiger

Menschen bedarfsorientiert und unaufdringlich unterstützen. Bei älteren

Personen sind Stürze eines der Hauptrisiken im täglichen Leben, beson-

ders für jene, die alleine Leben. Im Rahmen der Arbeit wird ein System

zur Erkennung von anormalen Aktivitäten, im konkreten Fall von Stürzen,

präsentiert. Durch die vielfältigen Anwendungsgebiete der Ereigniserken-

nung, von der automatischen Auswertung von Videos bis zur Anwendung

in der Mensch-Maschine Interaktion, ist das automatische Erkennen von

Ereignissen in den letzten Jahren auf großes Interesse in der Forschungscom-

munity gestoßen. Das Grundproblem ist das Modellieren und Erkennen von

sogenannten Video Events, also jenen semantischen Konzepten, die Men-

schen wahrnehmen. Hierfür muss der semantische Inhalt der Bilddaten mit

aussagekräftigen Features abstrahiert werden. Basierend auf diesen Daten

müssen zuverlässige Modelle zur Beschreibung und Erkennung der Events

angewendet werden. Um das zu erreichen und Stürze zu erkennen, wird in

dieser Arbeit ein Sturzerkennungssystem basierend auf mehreren Kameras

gezeigt. Dabei werden die Bilddaten der verschiedenen Kameras zu einer

dreidimensionalen Repräsentation kombiniert. Das ermöglicht es von den

Kameras unabhängige, aussagekräftige und stabile Features zu extrahieren.

Mit Methoden der Fuzzylogik wird die Zugehörigkeit der beobachteten Fea-

tures zu den verschiedenen Bewegungsmodellen bestimmt. Ein neuartiges

Feature, welches in der Arbeit vorgestellt und evaluiert wird, erlaubt es

die “Unvorhergesehenheit” eines Ereignisses zuverlässig zu modellieren. Die

durchgeführten Auswertungen zeigen, dass das hier vorgestellte Verfahren

zuverlässig und performant Stürze erkennen kann.
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Chapter 1

Introduction

Humans can perceive and understand semantic concepts when observ-

ing video sequences. Recently much effort has been made to offer solutions

to this problem using computer vision and machine learning approaches.

The recognition of events or video event understanding has a wide range of

applications, including video surveillance and monitoring, human-computer

interaction and augmented reality, or content based video databases. Appli-

cations such as “smart” surveillance, content-based video databases, gesture

driven human computer interaction or motion analysis have already become

available [TCSU08]. An event understanding framework abstracts the in-

put image sequence into meaningful units. These are processed by the event

model, which determines, if an event of interest occurred. The output is

usually a decision whether a particular event occurred or a summary of the

input [LRR09]. The overall video understanding process can be separated

into two problems of abstraction and modeling:

Event Abstraction The formulation and computation of meaningful ab-

stractions of the input.

Event Modeling Finding suitable formalisms to model events of interest

and allow recognition of these events.

1
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Video event understanding is generally considered the highest level image

processing task, since it is based on a variety of lower level algorithms and

systems that facilitate the recognition process. Among the events, actions,

activities or gestures that have been investigated by means of computer vision

are hand washing [MCB04], tennis strokes [YKI92], airport apron activities

[FVB+07], sign language gestures and drinking actions in movies [LP07].

In monitoring applications recognizing unusual or unexpected events is of

interest. Since these are events that differ from the expected behavior, they

should be reported for further examination [ZSV04]. However, they are rare,

hard to predict and generally difficult to describe, so recognizing them is not

straight forward. Given a large number of observations of normal or expected

behavior, the verification can be tackled with machine learning approaches.

In this thesis, the unusual events are falls and we investigate computer vision

based recognition of falls in the field of supportive homes.

1.1 The Need for Supportive Homes

Living and aging at home is the preferred lifestyle by many seniors [AF08].

In this context, the term Aging-in-place has been defined as “living where

you have lived for many years, or to living in a non-healthcarehealth care

environment, and using products, services and conveniences to enable you to

not have to move as circumstances change” [AF08]. Smart home technology,

so called “supportive homes”, can be used to continuously monitor the well-

being of “patients”.

Currently, more than a third (35.81%) of the people living in a single-

person household in Austria are aged 65 and above [KE06]. This makes up

more than half (52.6%) of all the population aged 65 and above. As is illus-

trated in figure 1.1, the number of those living in a single-person household

is rising with age: While 37.7% of the 65-79 years old live in a single-person

household, this number steadily increases to 79.3% for those 85 years and

above.

Falling has been identified as a health issue for the elderly, especially for

those who live independently. Falls are the primary cause of the injuries
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Figure 1.1: The percentage of Austrians aged 65 and above living in a single-
person household (e.g.: unwed, divorced, married but living apart or wid-
owed) as of 2006 [KE06].

for those 65 years and older, 63% of all injuries within this age group are

related to falls, accounting for 15,802 deaths in the USA in the year 20051.

One third of the elderly fall once in a year, almost 50% of these falls are

recurrent. Almost 10% of the falls result in serious injuries. Currently, an

estimated 6% of the US health care expenses are related to elders recovering

from a fall [RFW+98, CKN90, SCFM06]. Studies show that the risk of falling

increases with age [GAA77, GLS+96]. It is reported, that the earlier a fall

is reported and treated, the lower the mortality rate [GLS+96]. However,

falls are not only a major threat for the physical health, but also reduce the

independence of living even further due to the traumatic accident experience

[NFR+07]. “For elderly people who live alone, becoming incapacitated and

unable to get help is a common event, which usually marks the end of their

ability to live independently [GLS+96].”

1.1.1 Demographic Trends

Since 1950 the proportion of the elderly has risen steadily. The United Na-

tions estimate, that the worldwide population aged 65 years and over will

1According to the Department of Health and Human Services, Centers for Disease
Control and Prevention, Web-based Injury Statistics Query and Reporting System.
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Figure 1.2: Growth of the population aged 65 and above from 1950 to 2050
[Zlo06].

increase to 22% by 2050 [Zlo06]. For the more developed regions2 a rise from

16% as of 2010 to 26% is estimated (Figure 1.2). In this period the potential

support ratio3 will decrease from to 4 to 2. While this indicates the steadily

rising quality of the health care systems of the more developed countries, it

implies more age-related diseases and raises questions on the long-term care

for elderly. This development is seen as a great challenge for the health care

systems in the developed countries [Com04, MER00].

A survey conducted in the UK in 1999 with 11,500 users involved, showed

that the expected savings due to the introduction of smart homes for telecare

would be around £7,100,000. Translating these results to the UK as a whole

the savings would be around £7.7 billion over a 10-year period [BBB+99].

1.1.2 Acceptance and Perception

Ethical considerations are key issues that have to be taken into account in

the design of smart homes, especially if computer vision is deployed. On

2All regions of Europe plus Northern America, Australia/New Zealand and Japan
[Zlo06]

3The number of people age 15-64 per one person aged 65 or older
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the one hand, the users are monitored during their daily activities intruding

their privacy; on the other hand this monitoring enables them to live an

autonomous life in their own homes. In 2004 a study on the acceptance of

smart home technology and sensoring devices has shown that elderly people

accept vision based approaches for fall detection [DRA+04], however a major

concern is that continuous monitoring is used “because technology can do

it” rather than out of a necessity. The questions on how to protect the

patients privacy, how much information should be accessible and to whom

this information should be accessible, are another major concern [CARP07].

The EU funded CONFIDENCE project4 aims to build a care system for

the detection of abnormal events. In the course of the project user require-

ments and acceptance were evaluated. While most of the participants engage

in social and physical activities, 50% are afraid of falling and 20% are afraid of

going out. A majority showed a positive attitude towards CONFIDENCE

and would trust the system in a fall situation. However, privacy and dignity

concerns are raised by 18 respondents.

1.2 Recognizing a Fall

Even though falls are experienced by everybody, is difficult to describe and

thus detect a fall [NFR+07]. The World Health Organization defines a fall

as “An event, which results in a person coming to rest inadvertently on the

ground or other lower level” [PKS02].

In [NRB+08] it is proposed to partition the behavior into four categories

when detecting falls: prefall, critical, postfall and recovery (see Figure 1.3).

During the prefall phase, the person performs random activities of daily

living (ADL). Sudden movements can occur, like when sitting down, getting

up or lying down rapidly. The critical phase marks the actual fall event. It

consists of a sudden movement towards the ground, and ends with a vertical

4CONFIDENCE: “Ubiquitous Care System to Support Independent Living”. Project
reference: FP7-ICT-214986. “The main objective of the CONFIDENCE project is the
development and integration of innovative technologies to build a care system for the
detection of abnormal events (such as falls) or unexpected behaviors that may be related
to a health problem in elderly people.” http://www.confidence-eu.org/

http://www.confidence-eu.org/
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Figure 1.3: The four phases of a fall [NRB+08].

shock. The duration of this phase is roughly 300–500ms. The time the person

remains inactive, lying on the ground is the postfall phase. To reduce the

sanitary consequences, this phase should be as short as possible. Last comes

the recovery phase, where the victim gets up on his own or with the help

from another person. Since the critical phase is relatively short and a highly

dynamic process, time, speed and direction vary strongly [HHdW08]. Thus,

fall detectors do not necessarily recognize the falls, but rather the postfall

phase, where the patient is lying on the ground.

1.3 Thesis Objective and Contribution

This work presents an overview on video event understanding. The focus is on

the recognition of unusual events, namely falls. Currently, wearable devices

that have embedded accelerometers or gyroscopes are available on the market.

However, it is commonly agreed upon, that they are insufficient for a number

of reasons; they rely on user interaction and on the users capability and

willingness to wear or use them. Those that restrain mobility are likely to be

removed. Additionally, if alarms are not triggered automatically, especially

severe falls, where the user is unconscious or might be unable to move, are

not reported.

Vision based approaches have already shown promising results in labora-

tory setups. However, most use single cameras [TM06, RMSAR06, RMSAR07,

FAP08, VMS07] and presume a strict camera placement [SJ04, FCLD08,

HHdW08, YNC09], which is not possible under real world conditions. An-

derson et al. [ALK+09] combine image evidence from multiple cameras, by
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performing a 3D reconstruction in voxel space.

Therefore a fall detection framework that uses multiple camera views is

proposed. Multiple cameras increase the observation space and limit the

effect of occlusions. To allow proper alignment of the views and fusion of the

data, the cameras are calibrated. This gives better results than previously

proposed approaches that rely only on a single uncalibrated camera. Further,

in this setup the camera placement is not restricted, but cameras have to be

mounted statically.

Detection of the critical and the postfall phases are attempted, to enhance

the detection performance. Different features for event abstraction, as well

as different event models are discussed and recognition results compared.

1.4 Structure of the thesis

A thorough investigation of the related fall recognition work is in Chapter 2

presented. First, user-activated and worn automatic devices, are presented in

Section 2.1. Fall detectors based on acoustic information (Section 2.3) and

floor vibration pattern (Section 2.4) are presented as well. In Section 2.5,

computer vision fall detectors are presented in chronological order.

In Chapter 3 the proposed acquisition system and the laboratory setup are

presented. The underlying camera model is introduced in Section 3.1. A re-

fined model, which takes into account lens distortions, is presented in Section

3.2. Further an introduction to the state of the art in camera calibration is

given in Section 3.3.

Chapter 4 discusses event abstraction methods. Silhouette extraction ap-

proaches are described in Section 4.1. The proposed early fusion of the image

evidence in a global 3D voxel space is introduced in Section 4.2. Features,

that describe shape and motion properties of the voxel representation are

discussed in Section 4.3.

In Chapter 5, an introduction the Event Understanding terminology is given.

This is followed by an introduction to the commonly employed modeling

approaches: k-Nearest Neighbors (Section 5.1.1), Neural Networks (Section

5.1.2), Support Vector Machines (Section 5.1.3), Finite State Machines (Sec-
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tion 5.1.4), Hidden Markov Models (Section 5.1.5) and Fuzzy Inference (Sec-

tion 5.1.6).

In Chapter 6 the proposed system and the experimental results are presented

and discussed. Section 6.1 describes the system setup, the feature subset that

was evaluated and the recognition pipeline. An evaluation of the proposed

setup is given in 6.2 with a comparison to the state of the art.

Finally, Chapter 7 concludes the thesis, with a summarization of the contri-

bution and the obtained results. Further an an outlook for future work in

this area is given.



Chapter 2

Related Work

Different types of non computer vision related fall detectors have been com-

mercially available or under active research for some time now. This section

gives an introduction to these devices and presents the state of the art for

computer vision based fall detection. These devices can be classified as one

or a combination of the following four categories: User-Activated Alarms

and Pendants (Section 2.1), Automatic Fall Detectors (Section 2.2), Acous-

tic Fall Detectors (Section 2.3) and Floor Vibration-Based Fall Detectors

(Section 2.4). This is followed by a review of the relevant computer vision

based approaches in Section 2.5.

2.1 User-Activated Alarms and Pendants

These devices generally require the user to press an alarm button in case of

a fall. It is obvious that these systems are only suitable for cognitively intact

persons and fail under certain situations, e.g.: if the person loses conscious-

ness, or cannot reach the alarm button, due to trauma or pain. Such systems

are available on the market [AF08]. An example is the Phillips Lifeline1: It

consists of a stationary communicator device, that is connected to the tele-

phone network, and a wearable personal help button (see Figure 2.1). On

pressing the button a two way voice communication with the service center

1Phillips Lifeline - the trusted medical alert service provider (accessed Dec. 2008)
http://www.lifelinesys.com/

9

http://www.lifelinesys.com/
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Figure 2.1: The Phillips Lifeline consists of a stationary device that is con-
nected to the telephone network and a wearable personal help button.

is established and the call will be handled immediately by an attendant of

the service center. Based on the type of incident and the condition of the

caller, a neighbor, a family member or emergency services are contacted.

2.2 Automatic Fall Detection Devices

A number of automatic wearable devices have been designed. They generally

model the fall as an impact on the floor, followed by a near horizontal ori-

entation of the faller [VBNL08, PFME06]. Accelerometers are employed to

detect an impact and tilt sensors determine the orientation of the faller after

an impact was detected. Fall detectors are usually worn around the chest,

the waist or the thigh. A problem for the acceptance of this kind of fall

detectors, if worn visibly, is the possible stigmatization of the users [AF08].

Furthermore, depending on the formalization of the fall, alarms my not be

triggered if the fall does not occur on a horizontal floor [AF08].

Recently Perolle et. al. have presented a wearable wireless platform

for fall detection that is additionally equipped with a GPS system to allow

localization and enables bidirectional communication with a service center

using GSM/GPRS [PFME06].
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Figure 2.2: SPEEDY is an automatic fall detector embedded in a wrist watch
[DJRW03].

With SPEEDY, a first prototype of a fall detector integrated in a wrist

watch is presented [DJRW03] (see Figure 2.2). The device is more comfort-

able to wear and discreet, which increases the acceptance of fall detectors

among elderly. It can be conveniently worn around the clock in contrast to

devices that are worn with a belt around the hip. A disadvantage is the

greater complexity of the fall detection algorithm, as the arm has six degrees

of freedom. This is visible in the overall detection performance of only 65%.

However during the test no false alarm was reported.

A wearable airbag with an integrated automatic fall detector has been

presented in [TYS+09]. In this study, acceleration as well as angular velocity

features are used as input for a thresholding classifier.

In [ST09] a software, which utilizes GPS and accelerometers that are em-

bedded in recent smart phones is presented. This allows a non-obtrusive

device, which can provide location independent fall detection and alarm no-

tification.
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2.3 Acoustic Fall Detectors

An entire telemonitoring system based on unusual sound detection has been

presented by [CVI+03]. The system analyzes the sound environment of an

apartment in real time and detects abnormal sounds - falls of objects or

the patient - that could indicate a distress situation in the living space, and

calls for help. The system was designed, because “the elderly had difficul-

ties in accepting the video camera monitoring, considering it a violation of

their privacy” [CVI+03]. In an experimental setup, low cost, omni-directional

microphones were installed in each room of the apartment. In a two step ap-

proach unusual sounds are recognized: in a first step relevant sound events are

extracted and in the second step, sound events are classified in two groups,

normal and abnormal. The event classification is transmitted to a master

computer, which fuses the sound event data with data from medical sensors

and sends alarm messages if necessary.

More recently an acoustic fall detection system that uses an array of

acoustic sensors has been presented [PLSR08]. That way, the height of the

sound-source is determined, thus reducing the false alarm rate.

2.4 Floor Vibration-Based Fall Detectors

A fall detector that directly measures the vibration has been presented in

[ARK+06]. It is based on the observation, that human activities like walking,

running cause measurable vibrations on the floor. The hypothesis is, that the

vibration patterns resulting from falls are significantly different form those

generated by normal daily activities or by objects falling on the floor. To

measure and evaluate the floor vibration, a piezoelectric sensor coupled to

the floor surface, by means of a mass and spring arrangement, combined with

preprocessing electronics is used. The detector reports falls to a responder

via a pager or a cellular phone. Controlled laboratory experiments with

anthropomorphic dummies on mezzanine concrete floor and concrete slab

floor showed a 100% detection rate. The detection range for the sensor was

found to be 15 - 20 ft (4.5 to 6m). depending on the floor type and the cover.
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Thus one device per room should be sufficient for most settings. To cover

larger rooms, multiple devices can be installed. The installation procedure

does not require significant customization by technical staff, as is generally

the case with video monitoring-based fall detectors. Further experiments

still have to be conducted, as different types of floors (e.g.: carpeted floors,

parquet) alter the vibration-properties of floors drastically. Additionally the

performance under realistic fall scenarios has to be evaluated as well.

2.5 Computer Vision

The traditional wearable devices presented above have various drawbacks.

User activated alarms are not suitable in situations the faller becomes un-

conscious, immobilized or is mentally not in the shape to activate the alarm

[RMSAR07]. Worn devices that use accelerometers can automatically detect

falls, but are unintentionally often not worn, e.g. when returning home or

if forgotten, because of dementia. If they are uncomfortable or cause alarms

during housekeeping tasks, they are often removed. Moreover it has been

pointed out, that these devices depend on the occupants willingness to wear

such a device [Dou00, TM06]. Other systems based on acoustics or floor

vibrations have shown promising results, but have not been thoroughly eval-

uated so far.

This led to the development of non-invasive vision based systems that

operate automatically and do not constrain the occupant. A chronological

presentation of the state of the art of vision based fall detection is given.

Nait-Charif and McKenna have shown that fall detection and activity

summarization can be achieved with a single overhead-mounted camera per

room [NCM04]. An adaptive background model with shadow detection is

used to compute moving regions. Subsequently persons are modeled as

ellipses and tracked with particle filtering. The authors claim that repre-

senting persons as ellipses yields a representation that is rich enough to al-

low detection relevant actions such as standing, sitting or falling, while it

is coarse enough to allow tracking under various different body poses and

clothing. The tracker provides trajectories in the 5D ellipse parameter space
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Figure 2.3: Top down view on a room, with motion trajectories (yellow) and
inactivity zones marked as red circles. The entry zones are marked red on
the left and top of the image. Image taken from [NCM04].

- (xt, yt, ψt, st, et) with the center (xt, yt) and orientation ψ, scale st and ec-

centricity et – which are used together with the persons speed st (computed

over a 40-frame temporal window) to provide a compact representation of

the patients motion. It has been shown that context-specific spatial models

can reduce the complexity of behavior interpretation greatly [MNC04, ZK10].

Two kinds of meaningful spatial regions are learnt from the motion trajec-

tories: Inactivity zones such as a chair, a sofa, or a bed where it is usual,

that little motion occurs for an extended amount of time. Entries and exits

areas are labeled as entry zones. This was achieved using MAP estimation of

Gaussian mixture models. Each Gaussian PDF, p (xt | k) provides a model

for the spatial extent of zone k. The activities in a room are semantically rep-

resented by temporally segmenting the sensor data into: time spent entering

via an entry zone, inactivity in the inactivity zones, transition between the

inactivity zones, and exiting the room. Figure 2.3 shows an observation with

the motion trajectories and the inactivity zones marked. Fall detection works

as follows: when the speed st drops to an extent that indicates inactivity, the

PDF’s provide a way of checking whether the inactivity occurred in a known

inactivity zone or not.
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An array of low-cost infrared detectors is used to detect falls in [SJ04].

Since interpreting the low-resolution infrared data can be implemented on

small size, low-cost embedded hardware, the motion analysis occurs locally

within the detector, in a single device. Object position, velocity shape and

size are tracked with an elliptical-contour gradient-tracker. For fall detection,

a neural network using vertical-velocity estimates provided by the tracked

data as input is employed. Additional modules are employed to detect subtle

motion and monitor inactivity. The output of the three modules is processed

by a high-level reasoner, which triggers alarms based on long-term inactivity

or falls. The performance of the fall detector was evaluated on laboratory

data. The detector performed poorly with only 35.7% of the fall scenarios

detected correctly. However, for the non-fall scenarios a 100% detection rate

was achieved. The authors conclude that the vertical-velocity alone is not

enough to discriminate falls from normal activity. However the postfall (i.e.

the inactivity monitor) processing yields satisfying results.

In [TDc05] a combination of audio and video is used to detect falls with

Hidden Markov models. In the image processing part, the width to height

ratio ρ(n) = w
h

of the person’s bounding box is transformed to the wavelet

domain ωi. This 1-D signal is then used as the input for two three state

Markov models for classification. They argue that using wavelet coefficients

has 2 major advantages over directly using ρ: First, wavelets easily reveal the

aperiodic characteristic of the fall. Second, setting thresholds is considered

easier, since slow variations in the original signal lead to zero-mean wavelet

signals. It is assumed, that while walking, ω is quasi periodic, while it rapidly

converges to zero when falling and finally does show significant change. Two

thresholds T1, T2 are introduced to formulate three states of Markov models,

one for walking and one for falling:

S1 : |ωi| < T1 falling/after a fall

S2 : T1 < |ωi| < T2 in between (used for transitions)

S3 : |ωi| > T2 walking, change in appearance

(2.1)

In the walking model, since the signal is quasi periodic, the state transition
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probabilities are expected to be similar. While in the falling model, S1 is

expected to be dominant, while S2 provides hysteresis and prevents sudden

S1 ⇔ S2 changes.

In [TM06] the vertical angle of a person’s principal axis θ is tracked as

a 1-D signal over time. From the motion segmentation the minimal bound-

ing rectangle is computed, which gives the orientation of the principal axis.

Applying metric image rectification, the image is transformed such, that the

horizontal image axis corresponds to the 3D Z-axis. Thus θ can be used as

a reliable feature for fall detection. A two layer Hierarchical hidden Markov

model (HHMM) is proposed to model and recognize activity. The first layer

motion models are denoted as elementary behavioral pattern, and describe the

corresponding observations. The following three pattern models are used: “Is

Walking”, “Is Falling” and “Is Lengthened”. For the given observations, the

most probable elementary behavioral pattern model is computed. On the

second level the states correspond to the elementary patterns. Of the models

WALK and FALL the one that best explains the sequence of elementary be-

havioral patterns detected is chosen. The usage of HHMM is motivated by

their low computational cost and by additionally becoming tolerant to errors

in the segmentation process.

The fall detection system presented in [RMSAR07] is designed as a low

cost system, and works with an uncalibrated USB wide angle camera. It

is based on three hierarchical verifications of the motion of the extracted

persons blob and the ellipse approximating the blob. First a motion history

image MHI (Hτ ) is used to quantify the blob motion Cmotion. The MHI

is a gray scale image, where the intensity of a pixel is a function of the

temporal history of motion at this point. The more recent motion occurred,

the brighter is the pixel:

Cmotion =

∑
Pixel(x,y)∈blobHτ (x, y, t)

#pixels ∈ blob (2.2)

If large motion is detected (Cmotion > 65%) the approximated human shape

is analyzed to distinguish normal motion from a fall. Two properties of the

ellipse are examined: the angle θ between the ellipse’s major axis and the
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horizontal axis x, as well as the ratio ρ = a
b

of the major axis a and the

minor axis b. Both are assumed to change significantly during a fall. This is

measured by computing the standard deviation of θ and ρ over a 1–second

period. In the third step, a fall candidate is confirmed if a lack of motion of

the ellipse is detected during a 5–second period. Non-motion is indicated by

a low Cmotion and stable ellipse position and shape properties.

Luštrek et al. [LK09] have developed a fall detection prototype for the

CONFIDENCE project, using a combination of 12 infrared body markers

and multiple cameras to locate, and measure angles between body parts.

From these locations three different sets of attributes are computed: the

location in a reference world coordinate system, the location in a body coor-

dinate system and the angles between adjacent body parts. Different machine

learning algorithms and their performance on the different attribute sets have

been evaluated. Support Vector Machine (SVM) produced the most accu-

rate results, yielding a classification accuracy of 96.5% on the combination

of reference and angle attributes.

Hazelhoff et al. proposed an approach designed to handle real life sit-

uations [HHdW08]. Their method can handle inaccurate person segmenta-

tion caused by occlusions or due to additional objects such as walking aids.

They achieve their goal using two uncalibrated perpendicular cameras. Us-

ing background subtraction and connected component analysis, persons are

segmented in the image. Since two cameras are used, a tracker matches

the detected objects and additionally discards non-human objects based on

size constraints. The person’s principal axis angle φ and the variance ratio

ρ are computed, and are used as feature input to determine a fall using a

multi-frame Gaussian classifier. Since falling is a dynamic process involving

varying time, speed and direction, the authors claim that it is more practical

to identify lying persons. Manually defined inactivity zones are used to dis-

criminate between intentionally lying poses and lying resulting from a fall. A

Gaussian classifier is set up to discriminate between the two classes FALLS

and NON-FALL. For each feature set (principal axis angle and variance ratio)

the probability of a fall pfall (ρ, φ) is computed and thresholded to obtain a

binary classification result.
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pfall (ρ, φ) =
1√

2π |Σ|
e

− 1
2


 φ− µφ
ρ− µρ

ΣT

 φ− µφ
ρ− µρ




(2.3)

To further reduce false positives, the position of the head is checked against

the previous position and the fall rejected if the position is approximately

the same.

Fu et al. [FCLD08] have presented an approach based on an Address-

Event Temporal Contrast (ATC) Vision Sensor. An ATC sensor emulates

the data–driven biological vision architecture [Lic06] as opposed to standard

frame cameras. Instead of letting the receiver poll at a predefined frame rate,

ATCs extracts changing pixels and reports temporal contrast as a sequence

of events to a receiver [FCLD08]. The fall detection is based on centroid

position and speed. Centroids are computed as the temporal averages of a

series of event addresses. The centroid event address (xc, yc) during a fixed

period of N frames is calculated as:

xc =

⌈∑N
i=1 xi
N

⌉
, yc =

⌈∑N
i=1 yi
N

⌉
(2.4)

The event rate – the readout speed in the ATC – correlates with motion

speed, size and light contrast. So when the lighting conditions are set, the

motion in the scene can be derived from the event rate. Falls can cause 5120

events/s, while walking causes approximately 2100 events/s. The centroids

vertical velocity during time period T is given by:

Vy =
4yc
4t =

(yc,i − yc,,j)
ti − tj

(2.5)

with 4t = ti − tj. The self-contained non-intrusive detector is small in size

and has low power consumption. Since no image data is obtained, the authors

claim that privacy is protected. However the system relies strongly on the

ATC sensors position mounted at a height of 0.8m. At that height, it is

likely that objects such as chairs or tables obscure the sensors field of view.

Since detection results have not been published, a detailed evaluation is not
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possible.

Anderson et al. [ALK+09] use four calibrated cameras for their proposed

linguistic summarization approach. After motion detection they compute the

volume the person is occupying in 3D voxel space – the “voxel person” – by

back-projecting the silhouette images to the 3D space. For each frame, they

compute the membership of the voxel person to a set of three predefined states

(upright, on-the-ground and in-between) based on three features: centroid,

eigen-based height and similarity of the major orientation with the ground

plane. The state memberships are defined by fuzzy operators and have the

following definitions:

Upright Voxel person has a large height, the centroid is at medium height

and the primary orientation of the voxel person is similar to the ground-

plane normal.

On-the-ground Voxel person has low height and low centroid. The primary

orientation of the voxel person is dissimilar to the ground plane normal.

In-between Height and centroid are medium, and the primary orientation

is non-identifiable or similar to the ground plane normal.

Activities are characterized according to the state duration, frequency of the

state occurrence and the state transition behavior. Given an observation o,

a membership confidence value is assigned for each state at time t. Based

on the fuzzy state memberships, a human readable linguistic summarization

in the form of: Xc is Si in Pk for Tj is generated. Xc is the tracked person

and Si is the observed state. The scene is partitioned into K non-overlapping

locations and Pk denotes the location. Tj is the duration, measured in J fuzzy

set definitions over the time domain. An example summarization would be

“Person A is on-the-ground in the kitchen for a short time”.

The authors argue, that while their proposed fuzzy logic based recognition

requires domain expert knowledge for the formulation of the rules, fuzzy rules

allow the recognition of activities as well as modeling of special cases. Their

approach is flexible enough for rules to be added, removed or modified, which

is extremely difficult with hidden Markov models.
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Vishwakarma et al. [VMS07] employ a two state Finite state machine

(FSM) in order to discriminate falls from normal activities. Three features

are used as input: The width to height ratio of the object bounding-box, the

object gradient and the fall angle.

In [FAP08] three different kinds of behavior are distinguished: normal,

abnormal (stumbling and limping) and unusual (falling). This is achieved

by a combination of five features that are computed from the motion seg-

mented silhouette. The first two features are based on an approximated

ellipse: standard deviation of the orientation (major axis) and standard de-

viation of major/minor axis length ratio. Normalized horizontal and vertical

projection histograms as well as the frame to frame difference of the approx-

imated head position are considered. A Multi-layer perceptron is used to

differentiate the three behavior classes.

A simple thresholding approach is empowered by Yu et al. to detect

falls [YNC09]. The vertical and horizontal head velocities are tracked with

particle filtering and a first order random walk model with additive Gaussian

noise. Depending on the overall objects motion magnitude, the variance of

the added noise is altered. Motion magnitude is obtained with MHI as in

[RMSAR07].

Inspired by the work presented in [ALK+09], a comparison of early vs.

late fusion has been presented in [ZMK10] as part of the MuBisA project2.

As features for the fuzzy-based inference system, semantic driven features are

chosen: bounding box aspect ratio, axis orientation, ellipse axis ratio and the

motion speed. The evaluation showed that the early fusion of image evidence

in a 3D space outperforms multiple independent fall detectors.

An overview of the presented acoustic and vision related literature as well as

the vibration based approach by Alwan et al. is given in Table 2.2.

2MuBisA: “Computer Vision for an Independent Lifestyle of the Elderly and Disabled”.
Based on the idea of smart-homes, the aim of the MuBisA project is the development of
a closed system for the automated event detection and the communication with mobile
devices. In the project technical expertise of the state of the art computer vision is
merged with the needs of well known consumer carriers in the field of assisted living.
http://www.cogvis.at/mubisa/

http://www.cogvis.at/mubisa/
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Author Type Detection Abstraction Model
Castelli

[CVI+03]
audio direct sound events GMM

Sixsmith [SJ04] IR-vision combined vertical object velocity
Neural

Network

Nai-Charif
[NCM04]

vision indirect
object centroid

trajectory, centroid
speed

GMM

Töreyin
[TDc05]

vision +
audio

indirect
wavelet transformed

objects width to
height ratio

HMM

Alwan
[ARK+06]

vibration direct
vibration pattern

(frequency, amplitude,
duration, succession)

integrated
circuit

Thome [TM06]
vision
(multi

camera)
combined

object 3D principal
angle

HHMM

Rougier
[RMSAR07]

vision combined
object motion

quantification and
principal angle

rules

Vishwakarma
[VMS07]

vision combined
object width to height
ratio, object gradients,

angle
FSM

Fu [FCLD08]
vision
(ATC)

direct
vertical centroid

velocity
NN

Popescu
[PLSR08]

audio direct
signal energy, sound

height
K-NN

Hazelhoff
[HHdW08]

vision indirect
object principal angle,
ratio of variance, head

position

Gaussian
classifier

Foroughi
[FAP08]

vision direct

standard deviation of
orientation and angle,
projection histogram,

head position

MLP
Neural

Network

Anderson
[ALK+09]

multi-
camera
vision

combined
centroid velocity,
height and angle

fuzzy
inference

Lustrek et al.
[LK09]

IR-marker combined body angles SVM

Yu [YNC09] vision direct
motion magnitude, 3D

head velocities
threshold

Zambanini
[ZMK10]

multi-
camera
vision

indirect

3D bounding box
ellipse aspect ratio,

orientation, axis ratio
and motion speed

fuzzy-
based

Table 2.2: An overview of automatic fall detectors, in chronological order.



Chapter 3

Acquisition System

In order to increase the observation volume and to reduce the effect of occlu-

sions, image evidence from multiple cameras is used. In a laboratory setup,

four cameras with partially overlapping views monitor a single room. At

some point in the event recognition framework, the data derived from the

multiple views has to be fused. Based on the results presented in [ZMK10]

an approach is proposed, where the image evidence is fused early in the pro-

cessing pipeline. In the suggested early fusion approach, the multiple views

are combined to reconstruct a 3D voxel representation of the human. See

Figure 3.1 for a comparison of early and late fusion. When working with

multiple cameras, the data of the individual cameras has to be fused at some

stage in the event recognition process. In late fusion approaches each camera

performs data abstraction and event recognition individually. The recogni-

tion outputs of all cameras are fused late by a voting algorithm. With early

fusion however, the camera data is fused early and data abstraction and event

recognition are performed on the accumulated information provided by the

different cameras.

Camera Calibration is the process of acquiring the internal and external

parameters of the camera. With calibrated cameras a relation between the

projection of the scene and the scene itself can be established. Starting with

the pinhole camera model in Section 3.1 the mathematical fundamentals of

the image acquisition process are described in this chapter. Since the pinhole

22
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(a) (b)

Figure 3.1: A comparison of early (a) and late fusion (b). [ZMK10].

camera model is an idealized camera model, this simplified model is extended

in Section 3.2 to account for the distortions introduced when using lenses. In

Section 3.3 an overview of calibration methods is presented, with references

to further literature.

3.1 Camera model

The Pinhole Camera model describes the mapping of the coordinates of 3D

points to the image plane of the camera through a perspective projection. In

this model an ideal camera without lens is assumed. Instead the light enters

the camera through an infinite small hole. Light rays reflected by objects

pass through this pinhole and give an inverted projection of the object on

the image plane π. The parameters of the camera can be categorized into

extrinsic and intrinsic parameters.

The extrinsic camera parameters describe the location and orientation

of the camera coordinate system in a known world coordinate system and

are therefore required to transform from world coordinates to camera co-

ordinates. To transform the world coordinate point Pw at (Xw, Yw, Zw) to

Pc, (Xc, Yc, Zc) in camera coordinates a translation followed by a rotation is
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applied:  Xc

Yc

Zc

 = R (Pw − t) (3.1)

The vector t = (tx, ty, tz) translates the origin of the camera coordinate sys-

tem to the origin of the world coordinate system. The 3×3 matrixR expresses

three elementary rotations – roll ψ, pitch ϕ and yaw θ – of the coordinate

axes along x, y and z. This makes up six extrinsic camera parameters: three

rotation and three translation parameters.

The intrinsic parameters define the projection of camera coordinates to

pixel coordinates. Figure 3.2 depicts the pinhole camera model showing the

camera coordinate system having origin C and the axes X, Y, Z and the image

coordinate system with origin c and the axes x, y. Capital letters denote

points in the camera coordinate system, while small letters denote points in

image coordinates. The pinhole C is called optical center or focal point. The

Z-axis is the optical axis and points away from the image plane π. The image

plane is perpendicular to the optical axis, which intersects π in the principal

point, c = (cx, cy). The distance f of the focal point to the image plane is

the focal length.

As is illustrated in Figure 3.2, the world coordinate point M is projected

along a ray through the optical center onto the image plane to the point m.

As mentioned above the projection is inverted (rotated by 180°). Thus, a

common simplification of the pinhole camera model is to introduce a virtual

image plane in front of the optical center with z = f [XZ96].

By similar triangles one can clearly see that the map of M with coordi-

nates (Xc, Yc, Zc) to m(xi, yi) in the image coordinates is given by:

xi =
f

Zc
Xc and yi =

f

Zc
Yc (3.2)

Using homogeneous notation, affine transformations can be written as a ma-

trix multiplication. The above transformation is written in homogeneous
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Figure 3.2: The pinhole camera model. The point M in world coordinates is
projected along a ray through the optical center C onto the image plane π
as m.

coordinates as:

 xi

yi

1

 =


f
Zc

0 0 0

0 f
Zc

0 0

0 0 1 0

 �


Xc

Yc

Zc

1

 (3.3)

Equation 3.2 assumes that the origin of the coordinates system in the image

plane is at the principal point. Since we are dealing with digital images, we

are using discrete positive coordinates, the pixel coordinates. The associated

projection from camera coordinates (xc, yc) to pixel coordinates (u, v) shifts

the coordinate system to have it’s origin at (0, 0) and incorporates the size

of sensoring elements sx, sy: u

v

1

 =


1
sx

0 cx 0

0 1
sy

cy 0

0 0 1 0

 �
 xc

yc

1

 (3.4)
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Figure 3.3: The general principle of radial and tangential distortions (left),
the effect of radial distortion (center) and of tangential distortion (right).

Combining the mappings (3.4) and (3.3) we have the camera calibra-

tion matrix or matrix of intrinsic parameters :

 u

v

1

 =

 fx 0 cx 0

0 fy cy 0

0 0 1 0


︸ ︷︷ ︸

�


Xc

Yc

Zc

1


camera calibrationmatrix

(3.5)

where fx = f
zcsx

, fy = f
zcsy

.

3.2 Lens Distortions

The pinhole model is just an approximation of the projection when using

a lens. It is useful, as it allows us to formulate the relationship between

world and image coordinates in a simple way. However, it is practically

not valid, since any lens introduces distortions. Most notably are radial

and tangential distortions [HS97]. However depending on the quality of the

lens they can be minimized. Figure 3.3 illustrates the effects of radial and

tangential distortions.

With radial distortion, the location of pixels near the edge of the image

are distorted more that at the center, where there is zero distortion. It is
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approximated by the first few terms of a Taylor series:(
δxrc

δyrc

)
=

(
xc(κ1r

2 + κ2r
4 + . . . )

yc(κ1r
2 + κ2r

4 + . . . )

)
(3.6)

With κ1, κ2, . . . the radial distortion coefficients and r =
√
x2
c + y2

c .

The tangential distortion is formulated as:(
δxrc

δyrc

)
=

(
2p1xcyc + p2(r2 + 2x2

c)

p1(r2 + 2y2
c ) + 2p2xcyc

)
(3.7)

where p1, p2 are the tangential distortion coefficients. In most cases it is

sufficient to only estimate the first and second order radial distortions κ1, κ2.

The tangential distortion is generally only applied for fisheye and wide angle

lenses [Tsa86, Zha00]. Other types of distortion have been proposed in the

literature, but depending on the physical properties of the lens, their effects

are usually little, or can be approximated by radial and tangential distortions

[WCH92].

3.3 Camera Calibration

Combining the pinhole camera model with the equations for radial and tan-

gential distortion and the external parameters, the full camera model is spec-

ified. The rotation matrix can be expressed as three separate rotations, thus

there are the following parameters:

� Extrinsic

– tx, ty, tz - the components of the translation vector t

– ψ, ϕ, θ - the three elementary rotations - roll, pitch and yaw

– fx, fy - focal length in x and y direction

� Intrinsic

– cx, cy - the image center
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(a) (b) (c)

Figure 3.4: Three examples of calibration images, two planar and one 3D
target: (a) with a checkerboard pattern [Bou99], (b) with a circular pattern
[ZS04] and (c) a 3D target [Bou99].

– κ1, κ2 - the radial distortion coefficients

– p1, p2 - the tangential distortion coefficients

The process of estimating the best set of model parameters is called cam-

era calibration. Typically images of a calibration target – an object with

known geometric properties – are acquired. The set of parameters, that

best match the estimated projection with the observed projection are esti-

mated [Bou99]. Heikkila [HS97] uses a cubic 3D calibration object with a dot

pattern, while others use flat targets with checkerboard or circular patterns

[WCH92, Bou99] that are easier to handle. Figure 3.4 shows examples of

calibration targets: two planar and one 3D target.

In [ZS04] the quasi standard approaches of Tsai [Tsa86], Heikkila [HS97]

and Zhang[Zha00] are compared, with the result, that all three approaches

provide feasible results for close range photogrammetry, however practicabil-

ity is determined by the modeled camera parameters. The selection of an

appropriate approach depends on the desired accuracy and the quality of the

lens system.

In [Tsa86] Tsai presents a method that estimates the parameters in a

semi-linear way. This is achieved by reducing the distortion parameters to

the first order radial distortion parameter κ1. This simplification is sufficient

to determine the extrinsic parameters (except for tx) uniquely in a first step,

without providing an initial guess. In the second step the f, tz and κ1 are

estimated by non-linear optimization.
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Heikkila and Olli’s [HS97] method is based on the direct linear transform

(DLT). DLT is based on the pinhole camera model, ignoring the nonlinear

distortion parameters. In the first step the linear transformation from object

coordinates (Xi, Yi, Zi) to image coordinates (ui, vi) is solved. The non linear

parameters are estimated using least squares method of the differences of the

computed image coordinates and the measured coordinates. This requires

initial guesses that are provided by the parameters of the DLT.

The approach proposed by Zhang [Zha00] requires at least two views on a

planar target. Zhang assumes that Z = 0 for the calibration target and that

the world coordinate system is aligned with the axes of the calibration tar-

get. With the points in image coordinates pi = (ui, vi) and the corresponding

known points in 3D world coordinates Pi = (Xi, Yi, Zi = 0) a homography

can be derived. The homography is solved with a closed form solution and

refined with a Maximum likelihood estimation inference. Distortion param-

eters are estimated by extending the maximum likelihood equation with the

parameters for radial and tangential distortion.

Recently, Svoboda et al. [SMP05] have presented a fast multi-camera

calibration procedure, which uses a virtual calibration target. This solves

the two major problems of traditional approaches when calibrating multiple

cameras: First, calibrating a multi camera system involves a lot of manual

work: From placing the calibration target in each camera view, to registering

all views to one common world coordinate system. Second, with the size

of the working volume, the calibration target size has to grow as well. By

moving a laser pointer in the working volume, a virtual 3D calibration target

is created over time. Their approach is aimed at multi camera systems and

requires at least three roughly synchronized cameras.

Grammatikopoulos et al. [GKP07] have presented an automatic approach

for camera calibration from vanishing points of scenes that satisfy the Man-

hattan world assumption. This assumption states, that the image scene

contains three orthogonal, dominant directions, which is usually satisfied in

indoor and urban images [CY99]. While other approaches [DIM02] often only

estimate the external camera parameters and focal length, their approach is

able to estimate the camera constant, location of principal point, and the
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Figure 3.5: Camera Placement.

two radial distortion coefficients.

Zhang’s calibration method efficiently supports the camera model de-

scribed in section 3.1 with the distortions introduced in Section 3.2. While

a short overview has been given in this section, a detailed description of the

calibration procedures is out of the scope of this thesis. The reader may refer

to [Zha00] for details on the closed form and maximum likelihood estimation

equations.

3.4 System Setup

Using 4 calibrated cameras, the working volume for the proposed early fusion

approach covers approximately 6×4.5×2m. The camera placement is shown

in Figure 3.5. The cameras are placed at approximately 2m height. Calibra-

tion was performed using the approach suggested by Bouguet [Bou99], with

respect to a common world coordinate system, having its origin roughly in

the center of the observation area.



Chapter 4

Data Abstraction

Image sequences consist of massive amounts of raw information in the form

of spatio-temporal pixel intensity variations [TCSU08]. Most of this infor-

mation however is irrelevant for the recognition of motion, as was shown in

an experiment by Johansson [Joh76]. Observers were able to identify human

motion patterns just by observing light sources placed on 5-10 limb joints,

without any other contextual information. In this chapter data abstraction

methods are discussed. These abstractions are commonly referred to as fea-

tures, the set of features at time t makes up the feature vector. Pixel level and

object level features are examined. Pixel level abstraction are those that rely

on single pixel or group of pixel features such as color information, texture,

edges, gradients and so forth. Object based abstraction on the other hand is

founded on the assumption that a description of the objects participating in

scene is a reasonable intermediate representation scheme [LRR09]. It builds

on a meaningful grouping of pixels into objects and their properties, includ-

ing size, shape, trajectory, speed, etc. Object based abstraction builds on

previous object segmentation and tracking approaches.

In the following sections, various features, with an emphasis on object

based features are presented. Since silhouettes are the foundation of the

later proposed object based features, the state of the art is presented in

Section 4.1. Shape from Silhouette, which is a method for reconstructing the

3D Volume of objects based on silhouette images from different viewpoints is

31
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presented in Section 4.2. In Section 4.3 various object based features as well

as a novel unexpectedness feature are presented.

4.1 Silhouette Detection

To extract the objects of interest (the foreground) a background subtraction

is usually applied. Background subtraction is based on the assumption, that

there is a relatively static background and a moving foreground. The cur-

rent image at time t is subtracted from the background and thresholded to

separate foreground F and background B.

Another approach for estimating pixel based motion in image sequences

are based on the estimation motion vectors. Horn [HS81] describes optical

flow as the distribution of apparent velocities of movement of brightness

patterns in an image. Velocities are assigned to each pixel in the frame, which

describe the motion from the previous frame. This forms a dense motion field,

where the discontinuities resemble image segments from different objects.

One major advantage of optical flow approaches over background subtraction

is that they inherently handle camera motion.

Since we propose static cameras, background modeling can be applied.

However background subtraction and optical flow approaches have to be able

to handle a variety of common scenarios. These typical problems have been

summarized in [TKBM99]:

Unclean initialization In uncontrolled scenes, a clean view on the back-

ground (with no foreground objects) is not possible.

Varying illumination During observation the illumination conditions can

usually change. This is caused by the changes of the time of day (solar

irradiation), cloudy weather conditions or when lights are switched on

or off.

Moved object Background object are generally not static. Such moving

background introduces an additional “ghost”, located at the position of

the object while it was part of the background.
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Waving trees Background objects can show high frequent changes. Exam-

ples are waving trees or curtains.

Shadows Due to lightning conditions, foreground objects cast shadows,

which move along with the object.

Foreground Aperture Uniformly colored objects show observable motion

only at their boundaries.

4.1.1 Color Mean and Variance

The underlying assumption of the Color Mean and Variance (CMV) approach

is that the background can be modeled by a single Gaussian distribution

[WADP97]. Considering standard RGB color space, each pixel is modeled

per channel by it’s the mean µR,µG, µB and variance σR, σG, σB. A newly

observed pixel o is classified as foreground if:

|oc − µc| > ασc for c∈{R,G,B} (4.1)

where α controls the sensitivity of the segmentation. Considering the Nor-

mal distribution, 99, 73% of the background is covered for an α = 3. The

background model is initialized from the first N -frames, which ideally only

show the static background.

µc =
1

N

N∑
t=1

oc(t) (4.2)

σc =

√√√√ 1

N

N∑
t=1

oc(t)− µ2

c (4.3)

Using a simple adaptive filter the background model is updated after the

classification:

µt = λot + (1− λ)µt−1

σt = λ |ot−1 − µt−1|+ (1− λ)σt−1 (4.4)
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The learning rate λ is different for foreground and background pixels. An

extension to a multi-modal Gaussian mixture model is presented in the next

section.

4.1.2 Gaussian Mixture Model

Grimson et al. have proposed an adaptive background modeling and main-

tenance algorithm that is widely used for long term1 observation scenarios

[GLRS98, SG99].

Based on the idea that backgrounds are dynamic as well, and thus at

different times background pixels can represent multiple objects, possibly

under different lightning conditions, the background is modeled by a mixture

of K Gaussian distributions for each pixel2. The normal distributions η are

specified by the mean µ and the covariance Σ. The probability of observing

the value X for a pixel at time t is given by:

P (Xt) =
K∑
k=1

ωk,t ∗ η(Xt, µk,t,Σk,t) (4.5)

where ωk,t is an estimate of the weight (what portion of the data is accounted

for by this Gaussian). To match a pixel value against the model, the K

distributions are first ordered by their fitness:

fitness = ωk/σk (4.6)

which increases as the distribution gains more evidence and the variance

decreases. This puts the most likely distributions on top and less probable

ones on the bottom, where they are eventually replaced by new distributions.

Of these, the first B distributions constitute the current background model,

where

B = argminb

(
b∑

j=1

wj > T

)
. (4.7)

1In [SG99] continuous observation over a 16 month period has been reported.
2Typically the value of K is 3 to 5
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T represents the minimum proportion of pixel data that should be accounted

for by the background. Every new pixel Xt is tested for membership in the

Gaussian distributions. A match Mi,t of Xt in ith distribution is defined as:

Mi,t =

 1 if
∣∣Xt − µi,t

∣∣ < ασi,t

0 otherwise
(4.8)

As before, α controls the sensitivity and is usually a value in the range of

2− 3 [SG99]. If a match is found within the first B distributions, Xt is part

of the background. If none of the distributions match, the least probable

distribution is replaced with Xt as the mean, an initially high variance and

low weight. After classification, the model is updated as follows:

ωi,t = (1− α)ωi,t−1 + α(Mi,t)

µi,t = (1− ρ)µi,t−1 + ρXt

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(Xt − µi,t)T (Xt − µi,t)T
(4.9)

where ρ = αη(XT |µk, σk ) is the learning rate for mean and variance and

α is the learning rate for weights. For distributions that match the new

observation, ω,µ and σ are adjusted, while only the weight is updated for

unmatched distributions.

The Gaussian Mixture Model is robust enough to handle most of the

problems mentioned above: Since it is adaptive and continuously maintains

the background, unclean initialization and gradual illumination changes are

handled. Sudden illumination changes are not handled properly. The waving

tree problem is successfully addressed, since multiple background distribu-

tions are maintained. Foreground objects become motionless are integrated

in the background, without destroying the original distributions. Thus, if this

object moves again, distributions that describe the previous background are

still valid and will quickly be re-incorporated. Since multiple distributions are

independently maintained for each pixel, GMM is both memory demanding

and computationally complex. Thus one has to either reduce the number of

distributions, or decrease the image resolution. Figure 4.1 shows the results

of the Gaussian Mixture Model in comparison to an ideal foreground.
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Figure 4.1: A comparison of the Gaussian Mixture Model and the ground
truth[TKBM99].

4.1.3 Codebook model

With the codebook model, Kim et al. [KCHD05] recently presented a per-

formant, non-statistical clustering technique for background modeling. It

is designed for long term usage, and can model mixed backgrounds by us-

ing multiple codewords. For each pixel a codebook C, consisting of multiple

codewords ci, i = 1 . . . L is maintained. Each codeword consist of a color vec-

tor vi = (Ri, Gi, Bi) and the 6-tuple auxi =
〈
Ǐi, Îi, f, λi, pi, qi

〉
containing

the brightness values and temporal variables of the codeword:

I
min

i , I
max

i minimum and maximum brightness of all pixels assigns to this

codeword

f is the frequency with which the codeword has occurred

λ the maximum negative run-length MNRL defined as the longest period

this codeword has not occurred

p, q the first and last access times, that the codeword has occurred

The brightness is defined as I =
√
R2 +G2 +B2 . Detecting the foreground

follows a straight forward algorithm. The distance from the current observa-

tion o to the nearest codeword is computed and compared to a threshold. If

no codeword matches the observation, the pixel is marked as foreground.

1. For all codewords ci, find the first codeword that satisfies:
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(a) colordist (o, ci) < ε2

(b) brightness (I, (Imini , Imaxi )) = true

2. BGS(o) =

FG if there is no match

BG otherwise

A matched codeword cm is updated as follows:

vm ←
(
fmR̄m +R

fm + 1
,
fmḠm +G

fm + 1
,
fmB̄m +B

fm + 1

)
(4.10)

auxm ←
〈
min

(
I, Imin

)
,max (I, Imax) , fm + 1,

max (λm, t− qm) , pm, t〉 (4.11)

The two conditions (a) and (b) match the observation with a codeword based

on color and brightness similarity, respectively. Observing that pixel colors

change over time and under varying lighting conditions, and that this change

is mostly distributed in an elongated shape along the axis towards (0, 0, 0)

a color model was developed. The principle idea is, that background pixel

values lie along the axis of the codeword, with low and high bounds for

brightness. Having an input pixel ot = (R,G,B) and the codeword ci with

vi =
(
R̄i, Ḡi, B̄i

)
, the color distortion colordist is measured as:

colordist (ot,vi) =

√
‖ot‖2 − 〈ot,vi〉

2

‖vi‖2 (4.12)

Where

‖ot‖
2

= R2 +G2 +B2 (4.13)

‖vt‖
2

= R̄2
i + Ḡ2

i + B̄2
i (4.14)

〈ot,vi〉2 =
(
R̄iR + ḠiG+ B̄iB

)2
(4.15)

As will be discussed in greater detail in section 4.1.4, shadows cause changes

in brightness, but leave the color relatively unchanged. To account for

changes in brightness due to shadows, minimum and maximum brightness



CHAPTER 4. DATA ABSTRACTION 38

of the codeword is stored in the aux tuple and compared to the observed

value:

brightness
(
I,
(
Imini , Imaxi

))
=

true ifIlow <= ‖ot‖ <= Ihi

false otherwise
(4.16)

with Ilow = αImax and Ihi =
{
βImax,

Imin
α

}
.

Construction of the initial codebook for N learning frames, for a single

pixel x follows a straight forward algorithm:

1. xt = (R,G,B) , I =
√
R2 +G2 +B2

2. Find the first codeword cm matching xt based on

� colordist (o, ci) < ε1

� brightness (I, 〈Imini , Imaxi 〉) = true

3. If there is a match, then update the codeword as in 4.10

4. If there is no match, then create a new codeword cL with L← L+ 1:

� vL ← (R,G,B)

� auxL ← 〈I, I, 1, t− 1, t, t〉

For each codeword ci wrap around λi by setting

λi ← max {λi, (N − qi + pi − 1)} (4.17)

To allow codebook generation with foreground objects present, only code-

words present in at least half of the frames are preserved, thus stale entries

in the codebook are removed.

4.1.4 Shadow Removal

Practically every scene, indoor or outdoor contains shadows. After back-

ground subtraction, we obtained an image, where the color values differ from
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(a) (b) (c)

Figure 4.2: Improved segmentation results after shadow detection is applied.
Two persons are tracked as one object since shadows are detected as fore-
ground (a). The output of the segmentation with shadow detection applied
is shown in (b). White pixels mark foreground, red shadows. The correct
tracker output is shown in (c). Images from [CGP+01].

the reference background. However this does not necessarily reflect a change

of the foreground. Shadows cast by foreground objects also satisfy this re-

striction and are not of interest. The effect of shadows being detected as

foreground that can lead from small shape distortions to merged objects are

illustrated in Figure 4.2.

In [RE95] interpretation of shadows and their effects on the image pix-

els have been defined as: “a semi-transparent region in which the scene re-

flectance undergoes a local attenuation”. Thus it is assumed that a shadow

reduces the luminance of pixel while the chromaticity is preserved. The ef-

fects of highlights can be described similar: the chromaticity is preserved,

while the luminance is increased. Concise recognition of shadows is a diffi-

cult task, which requires knowledge of the scene geometry, the materials and

the properties of the light sources. This information however is generally not

present and considering dynamic scenes is not obtainable. Salvador [Sal04]

has presented several empirically deducted cues for the presence of shadows.

1. A material in shadow appears darker than the same material not in

shadow.

2. The change of chroma due to a shadow is predictable.

3. Surface texture tend to continue across a shadow boundary
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4. Shadows cast by objects moving with respect to a fixed light source

move across the scene.

5. The motion of a shadow-casting object that moves relative to a fixed

light source and that of its shadow are correlated.

Other cues have been described, however they require higher level processing

and are out of scope.

These observations have been successfully utilized for shadow removal

by other authors [WADP97, HHD99, CGP+01, BWHK06, NBT08]. Follow-

ing the definitions given by Horprasert et al. [HHD99] each pixel can be

classified as one of the four categories Background B, Shaded background

S, Highlighted background H and Foreground F . The following basic rules

have been laid out to classify a pixel Px with the corresponding background

model BMx:

Background if it’s brightness and chromaticity are similar to BMx.

Shaded background if it has similar chromaticity but lower brightness

than BMx.

Highlighted background if it has similar chromaticity but higher bright-

ness than BMx.

Foreground if the chromaticity is different from BMx.

In [MJD+00] the first-order gradient is additionally evaluated to support the

shadow classification. In [NBT08] texture information is exploited, based on

the idea that within a shadow region, adjacent pixels show the same intensity

reduction ratio.

With the above given rules, the question arises on how to ideally represent

color in the background model. A color model or color space is a mathemat-

ical model, defining a way color is modeled as a vector of numbers, typically

with 3 or 4 components. A multitude of different color spaces exists, each

designed for specific domains. There is RGB, which is commonly used in

display (CRT or LCD monitors) and retrieval units (cameras or scanners).
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Figure 4.3: Sketch of the RGB color cube. Gray levels are on the main
diagonal (0, 0, 0)− (1, 1, 1)

It is an additive color model, that is composed of three the primaries red,

green and blue. CMYK is a subtractive color model used for color printing.

In analog video YUV or similar color spaces (YCbCr, YPbPr) are standard.

They are not composed of primary colors, but have a separate luminance

channel Y and two chromatic channels UV, CbCr, PbPr. This more closely

corresponds to the way humans perceive color. The CIELAB, or just Lab is

designed in a way, that the Euclidean distance corresponds to the perceived

distance of colors. It is obtained from RGB data using CIE XYZ as an

intermediate space. However for this conversion, the white point has to be

estimated, which limits its practical use [Han08].

4.1.4.1 RGB Color Space

Digital images are usually processed in the RGB color model as it is the

natural representation of color for digital display and retrieval systems. The

three primaries red, green and blue are in the range of [0, 1] and form a 3D

Cartesian coordinate system. It is often represented as the RGB-color cube

which is shown in Figure 4.3.

Because all three channels encode chromaticity and luminance, RGB is

inadequate for shadow detection. This led to the development of the nor-
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malized RGB color space, that aims to separate the brightness from the

chromaticity components [BWHK06]. It is has been applied to background

modeling and shadow detection [MJD+00, HW03]. The conversion of the

components R, G, B to their normalized counterparts r, g, b and the lumi-

nance l is defined as:

l = R +G+B, r =
R

l
, g =

G

l
, b =

B

l
(4.18)

if l 6= 0 otherwise r = g = b = 0. Since b = 1 − (r + g) a pixel is satisfac-

tory described in nRGB by the brightness component l and two chromatic

components r and g. The conversion from RGB to nRGB is computationally

inexpensive [NBT08], what makes it a popular choice in real time applica-

tions. However, the chromatic components are frail to sensor noise or com-

pression artifacts, in areas where the luminance is low [BWHK06]. Figure

4.4 illustrates this issue. Additionally, the dominant wavelength is only im-

properly represented in RGB and normalized RGB, thus two chromaticities,

with different dominant wavelengths, could be considered [NBT08].

Shadow Detection In normalized RGB, a pixel is considered foreground

if:|oc − µc| > ασc for any channel ∈ {r, g, l}, with the observed value oc, back-

ground model mean µcand standard deviation σc, and foreground threshold

α. Foreground pixels are classified as shadow if:

ol < µl ∧ ol > βµl (4.19)

|or − µr| < τc ∧ |og − µg| < τc (4.20)

Horprasert et al. [HHD99] have presented a CMV background model

based in the RGB color space, attempting to separate the chromatic com-

ponents from the brightness component. The codebook model introduced in

section 4.1.3 is based on that model. Figure 4.5 illustrates this idea. Let

Ei = 〈µR(i), µG(i), µB(i)〉 denote the ithpixel’s expected color in the back-

ground model, ot is the current pixel and OEi is referred to as the expected
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(a) (b)

(c) (d)

Figure 4.4: An Image from the PETS’2001 dataset in normalized RGB: The
RGB image (a), luminance l (b) and the chromatic components r (c) and g
(d). The sensitivity of r and g to noise is visible in the dark areas top-left
(bushes) and bottom-right (car shadow).

Figure 4.5: Illustration of the RGB color model presented in [HHD99].
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chromaticity line. The variation from ot and Ei is decomposed into the

brightness distortion αi and the chromatic distortion CDi. Geometrically,

αiEi is the intersection of OEi and the plane defined by ot and the normal

OEi. Thus CDi is the shortest distance from ot to OEi. In the background

model a pixel is modeled as the four-tuple 〈Ei, si, ai, bi〉, Ei is the vector of

RGB means, si = 〈σR (i) , σG (i) , σB (i)〉 is the standard deviation vector, ai

and bi are the quadratic means of the brightness distortion and chromatic

distortion respectively:

ai = RMS(αi) =

√∑N
i=1 (αi − 1)2

N
(4.21)

b = RMS(CDi) =

√∑N
i=1 (CDi)

2

N
(4.22)

In order to use a single threshold for subtraction, αi and CDi are normalized

by the respective ai and bi: α̂i = αi−1
ai

, ĈDi = CDi
bi

. A pixel is classified

according to the following rules:

F : ĈDi > τCD , else

B : τα1 < α̂i < τα2 , else

S : α̂i<0 , else

H : otherwise

(4.23)

4.1.4.2 HSV Color Space

HSV is not a hardware oriented model as RGB, but a perceptual model,

developed to facilitate intuitive mixing of colors for artists [Smi78]. It is just

one of many representations of the RGB color space in terms of 3D-polar

coordinates [Han03]. The transformation of RGB to a 3D-polar color space

is done with the help of an opponent color space (OCS) introduced in RGB

space. The OCS is built as follows: An achromatic axis, that is aligned with

the main axis of the RGB color cube, is placed in the RGB space. A chromatic

plane perpendicular to the achromatic axis and the origin at the intersection

with the achromatic axis is introduced and all RGB values are projected on
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that plane. The coordinates on the achromatic axis give a measure of the

lightness and the position on the plane a measure for the chromaticity of a

pixel [Han08].

In HSV chromaticities are represented by the two values hue h and sat-

uration s. Brightness is represented as value v. Under the condition that

R,G,B ∈ [0, 1] and assigning max to the greatest of value R,G,B and min

to the lowest, RGB values are converted to h, s, v with:

h =



undefined, if max = min

G−B
max−min

× 60◦, if max = r

2 + B−R
max−min

× 60◦, if max = g

4 + R−G
max−min

× 60◦, if max = b

(4.24)

s =

0, if max = 0

max−min
max

= max−min
v

, otherwise
(4.25)

v = max (4.26)

Hue represents the dominant color, or more precisely the dominant wave-

length in degrees [0◦, 360◦), where red is at 0◦, green at 120◦ and blue at

240◦. Saturation refers to the proportion of pure light of the dominant wave-

length, and is given in the range [0, 1]. Value is in the range of [0, 1] and is a

measure for the brightness. The HSV color space is typically visualized as a

“hexcone” as illustrated in Figure 4.6a. The v-axis corresponds to the main

diagonal of the RGB cube. The chromatic plane is at v = 1, and contains

the colors planes of the RGB cube where R = 1, G = 1 and B = 1. Due

to the normalization of the saturation that was introduced by Smit [Smi78],

it is actually shaped as a cylinder (see Figure 4.6b). This normalization is

the root of the drawbacks of applying HSV for shadow detection. First, the

saturation is dependent on the brightness. Second, it is not necessarily low

in achromatic regions [Han03]. The effects are illustrated in Figure 4.7c: The

dark areas around the bush in the upper-left corner and the window of the car

in the center appear fully saturated. Additionally image noise is amplified in

these regions.
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(a) HSV Cone (b) HSV Cylinder

Figure 4.6: Representations of the HSV color space.

(a) (b)

(c) (d)

Figure 4.7: Sample Image in HSV format: The original image (a), the chro-
matic channels hue h (b) and saturation s (c) and value v (d).
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In contrast to the RGB space, where all three channels are independent,

h and s have a strong relation. For example, if s is approximately 0, a big

difference in h does not denote a big difference in observed chromaticities, as

there is no dominant wave length. This observation has implications on the

exact formulation of the shadow detection algorithm, as thresholds for these

values are to be dependent as well [NBT08].

Shadow Detection In [CGP+01] a traffic surveillance system, where the

segmentation results are enhanced by applying shadow removal in HSV, has

been presented. Only pixels that are marked as foreground by the motion

detection are evaluated. Cues 1 and 2 are exploited for their shadow classi-

fication. A pixel I is marked as Shadow if:

if τ1 ≤ Iv
Bv
≤ τ2

∧ (Is −Bs) ≤ τs

∧ |(Ih −Bh)| ≤ τh

(4.27)

where B is the corresponding background model value, subscripts v, s, h de-

note the channels in HSV. τ1and τ2 name the lower and upper brightness

thresholds, τs the saturation difference threshold and τh the hue difference

threshold.

4.1.4.3 IHLS Color Space

The Improved Hue Luminance and Saturation (IHLS) color space was in-

troduced by Hanbury and Serra [Han03, HS03]. Compared to similar color

spaces (GHLS, HSV, etc.), the normalization of the saturation by the bright-

ness is removed. Referring to the OCS introduced for the construction of

the HSV space, for IHLS we have a luminance y giving the position on the

achromatic axis, the saturation s is defined by the distance from the axis and

hue θH by the angle with respect pure red.

The conversion from RGB to IHLS as given in [BWHK06], which differs

from the formulations in the original paper is presented here:
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Figure 4.8: Diagram of the chromatic plane of the IHLS color space.

y = 0.2125R + 0.7154G+ 0.0721B (4.28)

s = max(R,G,B)−min(R,G,B) (4.29)

cr =
√
cr2

1 + cr2
2 (4.30)

cr1 = R− G+B

2
(4.31)

cr2 =

√
3

2
(B −G) (4.32)

θH =


undefined if cr = 0

arccos( cr1
cr

) if cr 6= 0 ∧ cr2 ≤ 0

360◦ − arccos( cr1
cr

) if cr 6= 0 ∧ cr2 > 0

(4.33)

where cr1 and cr2 denote chrominance coordinates and cr ∈ [0, 1] the chroma.

Note that hue is undefined if s = 0 and that the entropy of hue decreases for

values of s close to the achromatic axis. Figure 4.8 illustrates the chromatic

plane of the IHLS color space
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Shadow Detection Before going into the shadow detection using the IHLS

background model, some foundations have to be laid out. While standard

linear statistics can be used for brightness and saturation, hue is an angular

value. Thus circular statistics have to be applied. Consider the following

example: Given two hue observations θA = 1◦ and θB = 359◦ the linear mean

gives 180◦. Additionally the tight relationship of the chromatic components

hue and saturation should be considered. In [BWHK06] this is called Satu-

ration weighted hue statistics. Let (θi, si) i = 1, . . . , n be n pairs of hue and

saturation values. The vector on the chromatic plane from (0, 0) to the point

(θi, si) is given by (sicosθi, sisinθi). For the mean chrominance cn we have:

cn =

(C
n
,
S
n

)T

(4.34)

where

C =
n∑
i=1

cosθi, S =
n∑
i=1

sinθi (4.35)

Testing similarity of cn and a newly observed chrominance vector co the

Euclidean distance is used:

D =

√
(cn − co)

T (cn − co) (4.36)

Considering a uni-modal background model as presented in Section 4.1.1 the

background is modeled pixel-wise by the mean luminance µy and standard

deviation σy, the mean chrominance vector cn and the mean Euclidean dis-

tance σD. A pixel with luminance yo, chromatic vector co is classified as

foreground if: ∣∣yo − µy
∣∣ > ασy ∨ ‖cn − co‖ > ασD (4.37)

with α, the foreground threshold. Similar to shadow classification in HSV, a

pixel is classified as shaded background if:

yo < y ∧ yo − µy < βµy

∧ so −
∥∥Rn

∥∥ < τds

∧
∥∥hoRn − cn

∥∥ < τh

(4.38)
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where so and ho are the observed saturation and hue, Rn = ‖cn‖. The first

equation checks if the observation is darker than the background, with the

upper threshold β taking into account the strength of the predominant light

source [BWHK06]. The test of reduced of saturation is performed in the

second equation. The third check is performed using the statistical model

introduced earlier in this section, as opposed to the linear comparison in

the HSV shadow detection. The observed hue vector ho = (cosθo, sinθo)
T is

scaled to the same length as the mean chrominance vector and tested against

it using the Euclidean distance.

4.2 Shape from Silhouette

Shape from Silhouette (SFS), or voxel carving, aims to reconstruct the 3D

shape of an object form binary silhouette images of the object observed from

different viewpoints [Bau74]. The closest approximation to the object that

can be obtained with SFS is the object’s visual hull. The visual hull S is

defined as the maximal object that gives the same silhouette as S from any

possible viewpoint [Lau91]. Therefore only objects that conform to their vi-

sual hull are exactly reconstructable. It is obvious that this does not include

concave objects. The human body however is for the most part convex and

smooth, which makes SFS a popular and robust method for 3D human body

modeling and motion tracking algorithms [CH04, HLS04, KG06, MGBB07].

In Figure 4.9a, shape from silhouette, with four cameras (C1, . . . , C4) is il-

lustrated.

The standard algorithm for computing the visual hull works as follows

[CH04]:

1. Subdivide the observation space into voxels

2. Project each voxel onto the image plane of each view

3. Keep the voxels that lie within the silhouette of each view

With a high resolution volume and with an increasing number of views,

this is computationally and memory intensive. A working volume of 4000×
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(a) (b)

Figure 4.9: Shape from Silhouette with four cameras (C1, . . . , C4) for one
object (a): The gray area marks the intersection of all camera views; the
reconstructed shape is yellow and the original shape red. Shape from shading
with two objects (b): When multiple objects are in the scene, ambiguities
can be reconstructed as “ghosts” (green).

4000× 2000mm and voxel size of 25mm, spans a 160× 160× 80 voxel space.

Computing the volume in a coarse to finer resolution instead of the fixed

sized voxels is a common speedup technique [CH04]. Kehl et al. [KG06]

address the problem the other way round by mapping of pixels to voxels.

In a preprocessing step, a look-up table for each view is built, where for

each pixel a list of voxels that project on this particular pixel is generated.

This approach is illustrated in Figure 4.10. This representation has several

advantages: first of all, the image coordinates of voxels do not have to be

computed during run-time nor are they stored in memory. The representation

of a voxel can be simplified to a bit mask, where each bit bi is 1 if it is in

the foreground of camera i, which can be evaluated fast. Additionally, the

volume be can updated instead of being recomputed from scratch in each

frame: The bit mask of a voxel only changes, if one of the pixels, the voxel is

projected onto, changes it’s foreground-background membership. Thus only

pixels set in the difference of two consecutive foreground segmentations have

to be evaluated. This again reduces the number of voxel look-ups. However

there is additional memory required to store the look-up table for each view.
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Figure 4.10: Illustration of the Shape from Silhouette approach from [KG06].
The look-up table that maps pixels to voxels is computed offline. This way
the volume can be very efficiently updated at run-time, since the – compu-
tationally expensive – voxel projection is preprocessed.

With the advent of programmable graphics hardware, GPU based ap-

proaches have been presented that drastically increase the reconstruction

speed [HLS04, MGBB07].

There are two major problems, which shape from silhouette suffers from

[MGBB08]. First, while adding additional views improves the reconstruc-

tion quality, the working volume is reduced simultaneously (see Figure 4.9a).

Moreover SFS can possibly reconstruct visual ambiguities as“Ghost”objects,

where empty regions are extracted as illustrated in Figure 4.9b. Solutions

have been proposed in [MGBB08].

The reconstructed volume lies in a global 3D world coordinate system.

This simplifies further processing, as it is independent of the different cam-

eras. Further, noise in the silhouette images is automatically filtered in the

volume estimation process, since it is not coherent across views.

4.3 Feature Extraction

A number of features that describe elementary properties such as shape,

color, texture or motion of images or image regions have been presented in
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the literature. We aim for real-time detection of falls in multiple cameras,

thus descriptors have to be computationally inexpensive. After noise is re-

moved from the object segmentation and connected components are grouped

into blobs, these features are extracted. In the following sections a range

of features that has been utilized widely in the fall detection literature is

presented.

4.3.1 Bounding-Box Aspect Ratio

A common way to model and track objects is using their bounding box

[Sen02, Sal04, TM05, KD06]. The bounding-box or minimum bounding rect-

angle of a set of pixels is defined by (xo, y0, w, h), the top left point, width and

height. It is the smallest axis aligned rectangle that completely contains the

region. Previously, the bounding box aspect ratio has been used extensively

[TDc05, AKS+06, RMSAR07, VMS07] as a feature for fall recognition:

Blf =
h

w
(4.39)

In the early fusion case, the bounding box aspect ratio is defined as:

Bef =
h

mean(wx, wy)
. (4.40)

Since the bounding box is aligned with the image axis, the view point and

camera angle have a strong effect on its descriptiveness of 2D bounding-boxes.

Another drawback is that it is highly sensitive to shape changes, possibly due

to segmentation errors. This restriction applies to the 3D bounding box as

well. Figure 4.11 illustrates these issues.

4.3.2 Ellipse

Instead of bounding-boxes, ellipses too have been widely used for modeling

and tracking [NCM04, TM06, RMSAR07, HHdW08]. They offer various ad-

vantages compared to a bounding-box approach. Since they are not aligned to

the image axes, they can more accurately model objects. Another advantage
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(a) (b) (c)

Figure 4.11: The descriptiveness of the bounding-box (yellow) is influenced
by the camera placement (a) and (b). It is further frail to segmentation errors
(c). Modeling blobs using the ellipse (red), is more accurate and stable under
segmentation errors.

is their inherent stability against segmentation errors. Since the covariance

matrix is used to estimate the properties of the ellipse, outliers due to in-

accurate silhouette segmentation are removed. In Figure 4.11 bounding box

and ellipse features are compared.

An ellipse is defined as a quintuple 〈cx, cy, θ, a, b〉 with the center cx, cy,

the orientation θ, the angle between the major–axis and the x–axis, and the

length of the major and minor semi axes a and b. The ellipse can be estimated

by computing the covariance matrix of the binary segmentation.

The moment of order (i, j) for a binary image I(x, y) is defined as:

mij =

∑
x

∑
y x

iyjI (x, y)∑
x

∑
y I (x, y)

(4.41)

It is obvious that zeroth moment m00 = 1. The mean (centroid) of f (x, y)

is given by the first moments x̄ = m10,ȳ = m01. With the centroid, we can

define the central moment of order (i, j) as:

µij =

∑
x

∑
y (x− x̄)i (y − ȳ) jI (x, y)∑

x

∑
y I (x, y)

(4.42)

The central moments µ11, µ20, µ02 correspond to the covariance between

x and y, between x and itself and between y and itself. Thus the covariance

matrix
∑

can be expressed with first and second order central moments as:



CHAPTER 4. DATA ABSTRACTION 55

∑
=

[
µ20 µ11

µ11 µ02

]
. (4.43)

Since the covariance matrix is symmetric and positive semidefinite the eigen-

values λmax, λmin and the associated eigen-vectors can be easily computed.

λmin,max =
(µ20 + µ02)±

√
4µ2

11 + (µ20 − µ02)2

2
(4.44)

The eigen-vectors are perpendicular and the vector associated with λmax

defines the major orientation θ of the ellipse with the x–axis. The length

of the semi-major and semi-minor ellipse axes a and b equal
√
λmax and√

λmin respectively [THS99]. In voxel space, ellipsoids can be computed via

moments of the volumetric data in the same way.

4.3.2.1 Orientation

For detecting falls, having the orientation of the ellipse, which corresponds to

the main orientation of the human body, is an important feature. A Person

standing upright has a main orientation almost perpendicular to the ground

plane, while it is parallel to the ground plane, when the person is lying.

However, the main axis can only be measured properly if it is perpendicular to

the optical axis of the camera [HHdW08]. In 3D however this does not apply

and the orientation of the major axis can be directly used as a meaningful

feature.

4.3.2.2 Axis Ratio

In [ZMK10] the axis ratio of the ellipse in image and voxel space has been

suggested.

A =
a

b
(4.45)
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4.3.2.3 Centroid Height

In [ALK+09], the height of the person’s center is approximated by the cen-

troid height.

4.3.3 Motion

It was shown, that falls can be distinguished from normal activities by using

vertical and horizontal velocities characteristics in a 3D world coordinate

system [Wu00]. They are a major cue for the critical falling phase as well as

the postfall phase. The objects frame to frame velocity vector at time t is

computed from the center C as

vt = Ct−1 −Ct (4.46)

where C is the centroid of a bounding box or an ellipse. Since the direction

of the velocity is typically not meaningful, we are only interested in the speed

vt = |vt| . (4.47)

Additionally the acceleration is measured as the rate in which speed changes:

at = vt−1 − vt (4.48)

4.3.3.1 Motion History Images

Motion History Images (MHI) introduced in [BD01] are another way of rep-

resenting how and where motion occurs. Each pixel in the MHI Hτ is a

function of the temporal history of motion at that point. Let F (x, y, t) be

the segmented foreground at time t and τ the duration for which the MHI is

computed, then the MHI at time t is

Hτ (x, y, t) =

τ if F (x, y, t) = 1

max(0, Hτ (x, y, t− 1)− 1) otherwise.
(4.49)

Rougier et al. propose a motion coefficient Cmotion based on the MHI
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[RMSAR07].

Cmotion (t) =

∑
Pixel (x,y)∈blobHτ (x, y, t)

#pixels ∈ blob (4.50)

Cmotion is within [0, 1] indicating no motion 0 and full motion 1. In [BD01]

and [RMSAR07] the importance of defining τ is laid out. A duration of 500ms

is proposed in [RMSAR07].

4.3.3.2 Motion speed

A similar approach that is inspired by MHI, which just computes the inter-

frame motion speed is used in [ZMK10]. Here the relative number of new

motion pixels in the current frame compared to the previous frame is esti-

mated:

M ef =
|F (t) \ F (t− 1)|

|F (t)| (4.51)

where F (t) denotes the set of foreground pixels at time t.

4.3.4 Head Position

For the verification of falls, it has been proposed to use the head position as

an additional feature [RMSAR06, YNC09]. In [RMSAR06] a single calibrated

camera provides the image evidence, while the head position is computed with

the POSIT algorithm [DD95]. Input arguments for POSIT are the known

3D dimensions of the head (which are based on anthropometric data), the

corresponding 2D points of the ellipse modeling the head, and the camera

calibration matrix. The algorithm calculates the relative position of the head

in the camera coordinate system, from which the world coordinate position

of the head can be easily computed. Similarly, in [YNC09] the position is

computed from two calibrated cameras.

Hazelhoff et al. [HHdW08] propose to estimate the head position in order

to increase the robustness of the fall detector and for identifying objects as

humans. The proposed head detection is straight forward: The head is con-

sidered as the skin colored blob farthest away from the center along the main
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Figure 4.12: Illustration of the head detection approach proposed by
[HHdW08]

axis on the border of the silhouette (see Figure 4.12). A head candidate is

matched against size constraints. The head is tracked in successive frames by

searching for skin-colored blobs nearby the head position. The head position

is used just as an additional cue for their system: if a fall is detected, it is

checked if the head position has remained stationary. If this is the case, the

fall is rejected.

4.3.5 Accumulated Hitmap

Approaches that detect the postfall phase, where the person is on the ground,

typically model the spatial unexpectedness of the fall. In [NCM04] the motion

trajectories are used to split the observation space into inactivity regions like

beds, sofas, or chairs, where it is commonly expected that little or no motion

occurs and activity zones, where little or no motion is not expected. When

a fall event is recognized, it is checked, if the spatial location of the fall is

within an inactivity zone and can thus be rejected.

To model the unexpectedness of an event, the accumulated hitmap, which

operates on the pixel level, has been proposed in [ZK10]. The hitmap is a

counter for the consecutive appearance of foreground at a given location, and

is decreased if the location is background for n-consecutive frames, where n

controls the robustness of the hitmap. In Figure 4.13 a sample input image

and the corresponding accumulated hitmap are shown. The unexpectedness

HU(x, y) is essentially the deviation of the observed hitmap HO and the

trained hitmap HT . In the original paper the following equation is proposed
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Figure 4.13: Input image (left) and the corresponding trained accumulated
hitmap (right) [ZK10].

Figure 4.14: Visualization of the trained accumulated hitmap in Voxel space.
Blue areas indicate low, red medium and yellow a high hit-count.

to compute HU(x, y):

HU (x, y) =


(

1 + α
1+max(HT )−HO(x,y)

)Hdiff (x,y)2

if HO > HT

0 otherwise

where Hdiff = HO−HT . In [ZZK10] the accumulated hitmap has been used

for fall verification in 2D. Therefore, the unexpectedness is summed up in the

area contained in the bounding box and compared to a threshold. The fall

is verified if the threshold is exceeded in a four seconds verification window

(two seconds before and two seconds after the fall incident is suggested.

Building on this approach, we suggest to compute the accumulated hitmap

for the early fusion approach directly in voxel space. A visualization of the

trained accumulated hitmap is show in Figure 4.14.
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4.4 Selected Approach

The approaches presented in this chapter represent some of the commonly

used methods to abstract the raw input into meaningful features vectors for

the subsequent event understanding. Leaving the choice of cameras aside, the

fundamental part in the presented fall detection framework is the person’s

silhouette extraction. These approaches represent the state of the art. Due

to the low computational cost and low memory requirements, a Color Mean

and Variance approach with a Shadow removal in normalized RGB space is

suggested. While the other presented methods provide higher quality results,

they are computationally more demanding and not sufficiently efficient to be

applied in the suggested setup.

With the Accumulated Hitmap, a feature for modelling the unexpect-

edness has been presented. The other features shown in Section 4.3 have

previously been applied for fall detection. As part of the experiments these

features and feature sets are evaluated.



Chapter 5

Event Understanding

In an event understanding framework the input is abstracted into meaningful

units. These features are processed by the event model, which determines if

an event of interest occurred. The output is usually a binary decision whether

a particular event occurred, or an activity summary [LRR09]. Features have

been discussed in the previous chapter. In this chapter the terminology

will be defined and an overview of approaches is given. Finally, these are

examined for their suitability for the proposed fall detection approach.

The vast application space in which event understanding has been applied

has lead to a variety of different terms for essentially same concepts. From

hand washing [MCB04] and sign language gestures [LP07], to tennis strokes

[YKI92] or airport apron activities [FVB+07], different kinds of events have

been tried to model and recognize. Hence, terms like “behavior”, “activity”,

“scenario”, “gesture” or “event” are used in the literature. While they carry

some context about the particular application and domain and event com-

plexity, they essentially describe the same concepts [TCSU08]. Recently, the

generic, unifying terminology that is presented in this section has been pro-

posed in [LRR09]. It is formulated around the concept of an “event”, which

has the following characteristics:

1. An event occupies a period of time.

2. An event is built of smaller semantic unit building blocks.

61
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3. An event is described using the salient aspects of video input.

4. An event is an occurrence of interest.

When describing the various properties of these events, such as the hierarchi-

cal, temporal or content composition, instead of introducing vague distinc-

tions, prefixes are attached to name these properties. That way, an event

may be recursively composed of multiple “sub-events” and the same con-

cept is used to describe “simple” as well as complex activities. Analogous a

“super-event” is composed of sub-events. An “atomic event” has no sub-event

composition. When referring to the abstraction primitives that are used to

describe an event, content prefixes are inserted. Thus an“object based event”

is modeled by means of object properties and tracking (size, shape, trajec-

tory) while “pixel based event” refers to events modeled using pixel features

such as color, texture or gradient. The temporal composition of events is ad-

dressed with the terms “single-threaded-event” and “multi-threaded-event”,

describing linear (“single-threaded-”) or the non-linear (“multi-threaded-”)

composition.

With the introduction of the “event” term, much of the context of previ-

ously used terms as “activity”, “gesture” or “behavior” is lost. To re-establish

context, the “event domain”, a possibly natural language description of pre-

cisely what kind of events are tried to recognize, is introduced. In Table 5.1

the proposed terminology is summarized.

5.1 Event models

Event models aim to describe and classify the events of interest in a particular

event domain. They build upon features that have been identified as mean-

ingful in the data abstraction process. The classification task can be seen as

a labeling task: Given an observation (the feature vector) x = (f1, . . . , fn)

the aim is to choose the appropriate event label lx from a set of m class-labels

L = 〈l1, . . . , lm〉. As of today, a variety of event models has been presented

[LRR09, TCSU08].
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Composition Prefixes
Atomic Has no sub-event composition

Composite Has sub-event composition

Content Prefixes

Pixel-Based
Described by pixel-level features (color, texture,
gradient)

Object-Based
Described by object-level feature (size, shape,
trajectory)

Temporal Prefixes

Single-Thread
Has sequential temporal relationships between
sub-events

Multi-Thread
Has non-sequential temporal relationships
between sub-events

Relation to Event of Interest Prefixes
Sub Component of an event

Super Composed of events

Table 5.1: An overview of the event terminology as proposed in
[LRR09].

Finite State Machines (FSM), Grammars and Petri Nets are examples of

deterministic event models, while Bayesian Networks, Hidden Markov Mod-

els (HMM), Conditional Random Fields (CRF) and Stochastic grammars

associate a probability score with the occurrence of an event [LRR09]. Dis-

criminative models directly model the posterior probability p (l | x). However

generative models first model and learn the joint probability p (x, l). Each

approach has its advantages as well as limitations [UB05]: while discrimina-

tive models have a lower error rate when using a large number of training

samples, generative models converge faster even with a small training set.

Additionally generative models can handle incomplete data and additional

classes more flexible and are thus considered to be more suited for complex

patterns [UB05].

In [LRR09] event models are grouped in three categories based on the uti-
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lization of semantic knowledge for the recognition task: “pattern-recognition

methods”,“state models”, and“semantic models”. Pattern Recognition Meth-

ods do not address the representational aspect of event modeling. Event

recognition is rather treated as a classic pattern recognition or classifica-

tion problem. Hence algorithms such as k-Nearest Neighbor (k-NN), Neural

Networks (NN), Support vector machines (SVMs) or Boosting fall in this

category. These methods require minimal semantic knowledge of the appli-

cation domain and are in most cases fully specified from training data. Pat-

tern recognition methods thus are generally straight forward to implement

and have moderate processing costs. Since these models do not incorporate

the high level semantic knowledge about the event domain, they are mostly

applied for the recognition of atomic events [LRR09].

State Event models improve the pattern recognition methods as they

intrinsically model the structure of the state space of the event domain. This

allows these models to capture both the temporal evolution of states as well as

their hierarchical nature. Finite State Machines, Hidden Markov Models or

Bayesian Networks fall into this category. Given previously labeled training

data, these allow the estimation of optimal model parameters. However, with

increasing complexity of events, the state space increases and training as well

as evaluating becomes unmanageable.

Semantic models do not try to define the entire state space as state event

models do, however semantic rules, constraints and relations of events are

defined, which is more like humans define events and connections between

events. They allow the capturing of high-level semantics like long-term tem-

poral dependence, hierarchy, partial, ordering concurrency as well as complex

relations among sub-events and abstraction features [LRR09]. As a result,

the models have to be manually specified by domain experts. Learning or

training of the model structure and parameters is either ill defined or impos-

sible for these models.

Choosing the appropriate event model is crucial to achieve a meaningful

labeling of the feature input. It is important that the model is capable of

handling the various possible event prefixes of the specific domain. Further,

when applying an approach that is based on training samples, the availability
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Figure 5.1: With the K -Nearest Neighbor classifier, a newly observed point
(shown by the black cross) is labeled according to the majority class mem-
bership of the K closest training data points.

of a large enough training dataset is essential. Therefore, in the following

sections modeling approaches are reviewed with an emphasis on those that

have been proposed to tackle fall detection in the literature.

5.1.1 k-Nearest Neighbor

The Nearest Neighbor classifier assigns to an unlabeled observation x the

class-label of the closest training point. Typically, the k-Nearest Neighbors

(k-NN) are evaluated for classification and via a majority vote the label for

x is determined. k-NN is illustrated in Figure 5.1. A proper choice of distant

measure or previously normalizing the feature space is crucial for K-NN to

perform well [Bis06]. The quality of the model is additionally dependent on

the coverage of the feature space with labeled points. The more dense it

is covered, the better the classification results. However, with the size of

the dataset increasing, so do the computational and memory costs during

recognition. It should be noted that it was shown that as the dimensionality

of the feature space increases, the distance of the nearest point approaches

the distance of the farthest point [BGRS99].

In [PLSR08] and [FCLD08] k-NN has been applied to the recognition of

falls.
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5.1.2 Neural Networks

Artificial Neural Networks have their origin in attempts to find mathematical

representations of biological information processing systems [Roj96]. They

simulate biological neural systems with neurons connected by communication

channels. In a feed-forward network, the connections are organized in layers

and the information flow is unidirectional from one layer to the next. Nodes

within a layer are not connected. This is an important simplification, which

makes Neural Networks of practical use. The basic neural network model is

described as a composition of functional transformations. In the first network

layer, M linear combinations a0, . . . , aM are computed of the input variables

x1, . . . , xD

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.1)

where j = 1, . . . ,M the superscript (1) indicates that the weights and the

biases are in the first layer. The aj are then transformed using a differentiable,

nonlinear activation function h:

zj = h (aj) (5.2)

These are referred to as hidden units and they are again linearly combined

to yield the output unit activations, the second layer of the network

ak =
M∑
j=1

w
(2)
ki zi + w

(2)
k0 (5.3)

where K is the total number of outputs, and k = 1, . . . , K. Again there

are weights w
(2)
ki and bias parameters w

(2)
k0 . The output unit activations are

transformed using an appropriate activation function to give the network

outputs yk

yk = σ (ak) . (5.4)

Activation functions that are generally used are hyperbolic tangent tanh or

the logistic sigmoid function σ (a) = 1
1+e−a

. This choice is directly related
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Figure 5.2: Illustration of a feed-forward neural network. The nodes represent
the input, hidden variables and output, while the connections illustrate the
weights [Bis06].

to the problem of training the network [Bis06]. To simplify notation, the

bias parameters in (5.1) (and in all other layers) can be integrated into the

weighted parameters by adding the additional input variable x0 = 1:

aj =
D∑
i=0

w
(1)
ji xi

Thus the overall neural network function yk (x,w) with one hidden layer is

given by:

yk (x,w) = σ

(
M∑
j=0

w
(2)
ki h

(
D∑
i=0

w
(1)
ji xi

))
(5.5)

An example of a two layer feed-forward neural network is illustrated in Figure

5.2. The nodes represent the input, hidden and output variables, while the

edges represent the weight parameters of the network. The two layer net-

work – one hidden layer and the output layer – presented here can be easily

extended with additional hidden layer units in the form of (5.3) and acti-

vation functions (5.4). Neural Networks have been widely used and studied
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as universal approximators [Bis06]. The key problem is training the network

parameters given a set of training data.

Given a training set {xn} of size N , and a set of target values {tn},
the optimal networks parameters w can be estimated by minimizing a cost

function e.g.: the sum-of-squares error function:

E(w) =

N∑
n=1

{y(xn,w)− tn}2 (5.6)

In practice this is complicated due to the non-linearity of y(xn,w). The

backpropagation algorithm has been widely used as an efficient technique

for minimizing the error function using gradient descent [Bis06]. Gradient

descent is a method for finding the minimum of a function by iteratively

moving from the current point in the direction of the negative gradient. In

each step the weights are updated as follows

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.7)

for small enough η > 0, E
(
w(τ+1)

)
< E

(
w(τ)

)
. Since E is a function of the

entire training set {xn}, it is required to process the entire set in order to

calculate ∇E.

An efficient solution for computing the gradient is given by the previously

mentioned backpropagation algorithm [Roj96]. In the first step, the output

activations are computed and the derivatives of the error function with re-

spect to the weights are evaluated and propagated backwards through the

network. In the second stage, the weights are adjusted using the calculated

derivatives. In summary, it works as follows:

1. The weighted sum of the inputs of each unit is computed

aj =
∑
i=1

wjizi (5.8)

and the nonlinear activation function h is applied to give the activation

zj of unit j:

zj = h (aj) . (5.9)
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2. The error in the output units δk is computed by:

δk = yk − tk (5.10)

3. A particular δ of a hidden unit is linked to the δ′ks of units higher up

in the network by the backpropagation formula:

δj = h′ (aj)
∑
k

wkjδk (5.11)

4. Finally the derivatives are calculated, by simply multiplying the delta

at the output end of the weight with the activation at the input end:

∂En
∂wji

= δjzi

Neural networks are used in [SJ04],[FAP08] to recognize falls.

5.1.3 Support vector machines

Support vector machines (SVMs) are a supervised learning technique, for

two class classification, where the two classes are separated by an optimal

hyperplane. Optimal in the sense, that the margin – the smallest distance of

the hyperplane and the closest data-points – is maximized. However, since

the dataset may not be linearly separable in the feature space, it is mapped

to a higher dimensional space, where it is linearly separable. This is achieved

by applying a kernel function and is referred to as the kernel trick [ABR64].

In Figure 5.3 the principle of SVM is illustrated. In the example, the data

is not directly linearly separable. However mapped to a higher dimensional

space, the data becomes separable. For now, the case where the data is

directly linearly separable shall be considered, and this idea extended later

to use kernel functions.

Given is a training set {xn} of size N , xi∈R each assigned a label ti ∈
{−1,+1}. The goal is to find the hyperplane separating the two classes,
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Figure 5.3: Illustration of a Support vector machine separating the data in a
higher dimensional space. The two classes are +1 and −1, and not linearly
separable (a). After transformation to a higher dimensional space, the data
is separable (b). The maximized margin is illustrated as two dashed lines.
Its location is determined only by a subset of the data-points, the support
vectors (indicated by circles) [Bis06].

which maximizes the class margin. The hyperplane is defined as:

w · x + b = 0 (5.12)

where w is the normal and b is the bias of the hyperplane. Points of class

+1 lie in the region by H1 : w · xi + b ≥ 1 and those of class −1 at H2 :

w · xi + b ≤ −1. Since data-points have to lie on or outside of the margin,

the following constraint has to be satisfied

tn (w·xi + b) ≥ 1, n = 1, . . . , N (5.13)

Consider the hyperplanes H1 and H2 in Figure 5.3. Their perpendicular

distance from the origin is |1−b|‖w‖ and |−1−b|
‖w‖ respectively. From this it is obvious,

that the margin is 2
‖w‖ . Thus the pair of optimal hyperplanes H1 and H2 can

be obtained by maximizing ‖w‖−1, which is equivalent to minimizing ‖w‖2
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[LRR09]:

arg minw.b
1

2
‖w‖2 (5.14)

subject to the constraints in (5.13).

In order to solve this minimization problem, we will use Lagrangian mul-

tipliers. Later this will allow the extension to the nonlinear case [Bur98]. For

each constraint in (5.13) a Lagrangian multiplier an ≥ 0 is introduced, what

gives:

LP (w, b, a) =
1

2
‖w‖2 −

N∑
i=1

ai (ti (w·xi + b)− 1) (5.15)

Now LP has to be minimized in respect to w and b requiring that the

derivatives of LP with respect to a vanish, subject to the constraint that

an ≥ 0. This is a quadratic programming (QP) optimization problem. Equiv-

alently one can maximize LP subject to the constraints that the gradient of

LP with respect to w, b vanishes, subject to an ≥ 0 [Bur98]. By the require-

ment, that the gradient of LP (w, b, a) vanishes, the following conditions are

obtained:

w =
N∑
n=1

antnxn (5.16)

0 =
N∑
n=1

antn (5.17)

With (5.16) and (5.17), w and b can be eliminated from LP (w, b, a) , which

gives the dual representation of the maximum margin problem, where

LD (a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk (xn,xm) (5.18)

is maximized subject to (5.17) and an ≥ 0. k(xn,xm) = xn · xm is the kernel

function. Moving to the dual representation, makes it possible to reformulate

the model using a kernel function, and thus it can be efficiently applied to

high dimensional feature spaces [LRR09]. The general idea of the kernel trick

is that if an algorithm is formulated such that the input x is only present

in the form of a dot product, then this can be replaced by any other choice
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of kernel [LRR09]. The simplest kernel k(xn,xm) is the identity mapping,

linear kernel function in the form of xn ·xm. Depending on the feature space,

polynomial and radial basis function kernels are applied as well.

Training of the support vector machine amounts to the aforementioned

maximization problem of LD. Thus for every training point, a Lagrangian an

exists, however only points for which an > 0 contribute to the result, and lie

on the hyperplanes. These are the support vectors. This is a central property

of SVM, since after training, only the support vectors have to be kept, while

the other training data can be discarded.

For classification, the sign of (5.12) is evaluated. Therefore the parame-

ters {an} and the kernel function substitute for w using (5.16):

f (x) = sign

(
N∑
n=1

antnk (x,xm) + b

)
(5.19)

What has not been discussed yet, is the case where the data is non-

separable. Therefore the hard margin constraint is relaxed by introducing a

slack variables ξn ≥ 0 for each training data point [CV95]. The relaxed form

of the classification constraints (5.13) is:

tny (xn) ≥ 1− ξn. (5.20)

Since misclassified points will have ξn > 1,
∑

n ξn is an upper bound for

the number of training errors. The previous minimization problem in (5.14)

is reformulated as

C
N∑
n=1

ξn +
1

2
‖w‖2 (5.21)

with the parameter C > 0 controlling the trade-off between minimizing the

training errors and allowing misclassification. Higher values of C correspond

to a higher penalty for errors. The corresponding dual Lagrangian is the

same as in the separable case, only the constraints have changed:

0 ≤ an ≤ C (5.22)
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N∑
i=1

aiti = 0 (5.23)

Unseen data is again predicted with (5.19). What remains to be calculated

is the bias b. Support vectors where (5.22) holds, satisfy

tny (xn) ≥ 1− ξn (5.24)

and have ξn = 0 [Bis06], so that they lie on the margin and will satisfy

tn

(∑
m∈S

amtmk (xn,xm) + b

)
= 1 (5.25)

where S is the set of support vectors. A numerically stable solution is found,

by averaging

b =
1

NM

∑
n∈M

(
tn −

∑
m∈S

amtmk (xn,xm)

)
(5.26)

where M denotes the set of points where 0 ≤ an ≤ C [Bis06].

The two class SVM can be generalized to a multi-class classification. In

the commonly employed one-versus-the-rest approach one SVM for each of

the K classes is built. The model is trained with data from class Lk as

positive examples and the rest of the data as negatives. In the one-versus-one

approach, K (K − 1) /2 different two-class SVMs are trained on all possible

class-pairs. Data is classified according to the class with the most “votes”.

Luštrek et al. [LK09] have used several two class SVMs to distinguish

between normal activities and falling.

5.1.4 Finite state machines

A finite state machine (FSM) is composed of a finite number of states, tran-

sitions between these states, and assigned to the transitions conditions that

trigger state changes [LRR09]. A FSM is typically represented by using a

state transition diagram as shown in Figure 5.4. The quintuple (Σ,S, s0, δ, f)

describes the FSM, with:
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R2¬R1

Figure 5.4: A simple 2 state fall detection FSM with the states Walk and
Fall, and Walk being the initial state [VMS07].

� Σ, the input alphabet

� S, a finite set of possible states

� s0 ∈ S, the initial state

� δ (x, q) , x ∈ Σ, q ∈ S, the state transition function: δ (x, q) : S ×Σ→
S

� F ⊆ S is the (possibly empty) set of final states

FSM are based on a set of fully observable states, input symbols and state

transitions, and can thus be learned from training data are deterministic

and computationally efficient [LRR09]. FSM fail to capture the hierarchical

property of events and do not capture uncertainty. While extensions have

been presented that address these issues of FSM, other models that are well

adapted to such aspects offer more general solutions – such as Hidden Markov

Models [LRR09].

In [VMS07] a two state FSM with“Walk”and“Fall”states is implemented.

5.1.5 Hidden Markov Models (HMM)

Hidden Markov models (HMM) are directed tree structured graph models,

where it is assumed that future predictions are independent of all but the

most recent observations. This is in contrast to FSM, where observations

are considered as independent and identically distributed [Bis06]. HMMs

however exploit the fact that previous states, give a strong clue on what the

next state might be.
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The foundation of HMM are Markov chains. A first-order Markov chain

is a random process with the property, that the next state only depends on

the current state, it is thus independent on all, but the most recent state.

This is also called the Markov property. If we denote the N possible states

S = {S1, . . . , SN} and the state at time t is as qt, the conditional distribution

of observing state Sj at time t is given as:

p(qt = Sj|qt−1 = Si, qt−1 = Sk, . . . ) = p(qt = Sj|qt−1 = Si). (5.27)

Hence, the overall probability distribution of the states depends on the initial

state probabilities

πi = p(q1 = Si) (5.28)

and the set of state transition probabilities:

aij = p (qt+1 = Sj|qt = Si) , 1 ≤ i, j ≤ N (5.29)

for which the following stochastic constraints apply:

aij ≥ 0 (5.30)

N∑
j=1

aij = 1 (5.31)

Moving to higher-order Markov chains, where the current state depends

on more than the most recent observation are not an option, since the model

parameters grow exponentially withM , and thus applying the model becomes

unfeasible for large values of M . By introducing additional latent variables,

a rich class of models can be constructed out of simple components [Bis06].

So for each observation xn a corresponding latent variable zn, with possibly

different dimensionality and type, is introduced. It is assumed that the latent

variables zn form a Markov chain. The resulting model is the so called

state space model, and is illustrated in Figure 5.5. This models a double

stochastic embedded process with an underlying stochastic process that is not

observable, but can be observed through another set of stochastic processes
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x1 x2 xn−1 xn xn+1

z1 z2 zn−1 zn zn+1

Figure 5.5: Sequential data is represented via latent variables zn, that form
a Markov chain. Each 〈zn,xn〉-pair represents a single “time-slice” of the
model.

that produce the observation sequence.

A HMM is described by the triple λ = 〈A,B, π〉, where

� A is the state transition matrix A = {aij}. The aij are the state

transition probabilities, defined as in (5.29).

� B = {bjk} is the observation symbol probability distribution in state j,

for the observed variable xk:

bjk = p(xk|qt = Sj) (5.32)

� π = {πi} is the initial state distribution as defined in 5.28.

With the number of statesN and the number of observationsM given, HMMs

can be used as a model of how a given observation sequence O = {x1, . . . ,xn}
was generated by an appropriate HMM [Rab89].

Figure 5.6 shows the transition diagram for a three state model, with four

possible observations.

In [Rab89], the three basic problems for HMMs are described:

1. Evaluation: Given the model λ and an observation sequence O, how

can the probability that the observation sequence was produced by

that model p(O|λ) be computed? In other words: how well does a

given model match a given sequence of observations? A solution to

this is given by the forward-algorithm. The forward variable αt (i) is

defined as:

αt(i) = p (x1...t, qt = Si|λ) (5.33)
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Figure 5.6: Transition diagram for a three state hidden Markov model with
four observations. The circles correspond to the hidden states, the lines
denote the transition probabilities between the states, the dashed-lines the
observation symbol probabilities bjk. In order to facilitate reading, only b1k

for S1 are illustrated.

where x1...t is the observation sequence until time t. This can be itera-

tively solved for αt (i) as follows:

(a) Initialization

α1 (i) = πibi (x1) 1 ≤ i ≤ N (5.34)

(b) Iteration

αt+1 (j) =

[
N∑
i=1

αt (i) aij

]
bj (xt+1) 1 ≤ t ≤ T − 1 (5.35)

(c) Termination

p(O|λ) =
N∑
j=1

αT (i) (5.36)

2. Optimization: Given an observation sequence O and model λ, how

can the corresponding optimal state sequence Q = {q1, q2, . . . } be esti-

mated? This requires some kind of optimality criterion. A solution to

this problem is offered by the Viterbi algorithm [Rab89].

3. Training: Given the observation sequence O, how can the model pa-
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rameters λ = 〈A,B, π〉 be adjusted to maximize p (O|λ)? In some cases

[TM06] the state transition matrix is set up manually. The Baum-

Welch algorithm, an application of expectation-maximization, offers a

solution for estimating A and B [Rab89].

In [TM06] a Hierarchical Hidden Markov Model (HHMM) is used to model

motion. The HMMs in the first layer model the elementary behavioral pat-

tern. For each of the three motion patterns “Is walking”, “Is falling”, “Is

Lengthened” a HMM is trained and, given the input sequence, evaluated.

The first layer output is used as input to the two second layer HMMs for the

“WALK” and “FALL” case.

While several extensions [LRR09], like HHMM, have been suggested to

allow modeling of complex event compositions, Hidden Markov Models tend

to become unmanageable [LRR09]. The most critical issue with HMMs is

that they require a large amount of training data, which is in most cases –

as in the example of fall detection – not available. However, in case of less

complex events, the model parameters can also be estimated empirically as

in [TM06].

5.1.6 Fuzzy inference

Fuzzy logic [Zad65] allows reasoning with imprecise concepts, much like the

way humans do [MP05]. It is based around the concept of fuzzy sets. In

contrast to classical set theory, where an element is either member of the

set or not, in fuzzy set theory for each element a membership grade is given.

Formally a fuzzy subset A in space X = {x} is characterized by a membership

function fA (x), which associates a number in the interval [0, 1] with each

point in X :

fA (x)→ [0, 1] , ∀x ∈ X . (5.37)

where a value close to 1 indicates a high grade of membership. While this

resembles a probability function to some degree, there are essential differences

between these concepts. Probability theory describes the uncertainty of the

occurrence of a particular event, while fuzzy set theory describes the degree
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in which the event occurs [Kos90]. Various operators are defined for fuzzy

sets [Zad65]:

Complement The complement of a fuzzy set A, denoted by A
′

is

fA′ = 1− fA. (5.38)

Containment Fuzzy set A is contained in set B if and only if fA 5 fB

Union The union C of sets A and B, written as C = A ∪B is given as

fc(x) = max (fA(x), fB(x)) , ∀x ∈ X (5.39)

Intersection The intersection C = A∩B of fuzzy sets A and B is given as

fc(x) = min (fA(x), fB(x)) , ∀x ∈ X (5.40)

Complement, union and intersection are defined such that they correspond

to the Boolean logic operators negation ¬ , disjunction ∨ and conjunction

∧, respectively. Input membership functions generally describe linguistic

variables such as very low, low, medium, and high.

A Mamdani type fuzzy inference system is composed of the following steps

[MA95]:

1. Determination of a set of fuzzy rules in the form of: IFATHENB, or

short A⇒ B, where both A and B are linguistic terms defined by fuzzy

sets. A is called the antecedent and B the consequent.

2. “Fuzzyfication” of the input by applying the membership functions for

each input.

3. Implication of the antecedent to the consequent, where the consequent

membership function is reshaped using a function associated with the

output of the antecedent.
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4. Aggregation of all consequents. When all consequents are computed,

the result of the fuzzy inference is in the form of one fuzzy set per

output variable, by application of the union operator on all consequents

[PGK+09].

5. Defuzzyfication of the aggregated outputs. This step yields a single

valued output, for example by computing the centroid of the aggregated

fuzzy set.

To illustrate the inference process, the fuzzy inference system employed by

Anderson et al. [ALK+09] may be considered. A 24 rules inference sys-

tem, with the antecedent variables centroid, eigen-based height, similarity to

ground plane normal (as described in chapter 4) and three consequents up-

right, in-between and on-the-ground has been built. The fuzzy sets for the

antecedents are mappings to the values: {L,M,H}, low, medium and high,

and for the consequents the values {V, L,M,H} (very low, low, medium and

high). The rules are formulated like:

IF centroid = H ANDheight = H AND similiarity = H THEN

upright = L, in-between = V , on-the-ground = V (5.41)

5.2 Evaluation

Choosing an event model is crucial to successfully classify events in a specific

domain. The k-Nearest Neighbor approach is straightforward to apply how-

ever, it requires the whole training dataset for evaluation. Furthermore it is

not possible to model temporal event composition. Though Neural Networks

can be used as arbitrary approximators, their application is cumbersome.

They require a large training dataset as well as appropriate preprocessing of

the training samples to overcome the problem of overfitting to the training

data. In order to successfully apply support vector machines, the choice of

the kernel is crucial. As for Neural Networks, the size and distribution of

the training dataset are limiting factors. The problem with Hidden Markov
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Models lies in the Markov property, namely that the next state only de-

pends on the current state. Additionally, HMMs require a large amount of

parameters to be learned and thus a large training dataset is crucial. It is

claimed [ALKS08, ALK+09], that fuzzy inference is superior to more complex

probabilistic models such as HMMs and Neural Networks. The first problem

noted earlier, is the requirement of those models for a large amount of labeled

training data (which are not available in the case of fall detection). Fuzzy

systems on the other hand can easily incorporate domain expert knowledge

in the design of the membership function. Additionally modifying the fuzzy

rules is a straightforward process. HMMs, SVMs and Neural Networks have

to be retrained to incorporate new knowledge. Further Anderson et al. ar-

gue that the confidence output in the fuzzy system can be understood and

reliably used to reject a wide range of unknown activities [ALK+09]. With

the small-sized dataset that is available for fall detection it is proposed to

apply a fuzzy inference system for classifying fall incidents.



Chapter 6

Experiments

The proposed system is designed to be capable of monitoring the well being of

persons in real time. Thus the focus of the proposed system is on simplicity,

computational efficiency, reliability and extensibility. This chapter starts

with an introduction of the system in Section 6.1. Evaluation results and a

comparison with previous work is presented in Section 6.2.

6.1 Proposed approach

The workflow of the proposed early fusion system is illustrated in Figure 6.1.

In previous research, early fusion clearly outperformed late fusion [ZMK10].

For each camera, the person silhouette is extracted. These silhouettes are

used to obtain a voxel space representation of the object of interest. In this

global 3D world coordinate system, view-invariant features are extracted that

estimate the human posture. Finally, fall confidence scores are estimated by

a fuzzy logic inference system.

In order to estimate the 3D silhouette, the cameras are calibrated using

the method by Bouguet [Bou99]. It efficiently supports the enhanced camera

model presented in Section 3.

The 2D silhouettes are extracted using the color mean and variance ap-

proach (Section 4.1.1) with an additional shadow and highlight detection step

in normalized RGB space (Section 4.1.4.1). The Gaussian mixture model and

82
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Figure 6.1: The work-flow of the proposed early fusion approach.

the Codebook model have been evaluated as well. However, they have been

rejected in favor of the computationally less expensive CMV–approach. To

remove noise, morphological operations are applied.

As described in Section 4.2, the 3D reconstruction of the person is based

on a high performance Shape from Silhouette approach. The 6 × 4.5 × 2m

observation volume is sampled in a regular 50×50×50mm grid. In a previous

work [ZMK10] the voxel size was twice as large. The grid size was chosen as

small as possible without having a notable impact on the run-time.

Selecting features is a crucial part in the event recognition process [RSV05].

In Section 4.3, features that are commonly used in the fall detection and ac-

tivity recognition literature have been presented. Of these, the following

features have been chosen for evaluation:

1. Bounding-box aspect ratio

2. Orientation of the ellipse major axis in respect to the ground plane

normal

3. Ellipse axis ratio

4. Motion speed
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Figure 6.2: Plot of trained Gaussian membership functions gaussmf (red)
and gauss2

mf (blue) of the axis orientation feature in the postfall case.

5. Centroid speed

6. Centroid height

7. Unexpectedness based on the accumulated hitmap

Features are extracted from the voxel reconstruction in each frame, and fed

into a fuzzy inference system. To achieve real-time capable performance, the

proposed fall detector is implemented in C++. The current system runs at

a frame rate of ∼ 22 fps on an Intel Core2 Duo (E7300@2.66GHz) proces-

sor. Previously, a MATLAB implementation has been presented [ZMK10],

working at 5 fps, but with a half the 3D resolution.

The fuzzy classification procedure assigns a membership degree for each

feature for each class. Contrary to previous work, Gaussian membership

functions, which can be learned from training data, are proposed instead of

the empirically established trapezoid functions membership functions.

gaussmf (x) = e−
(x−µ)
σ

2

Since the normal distribution, does not take into account the nature of the

features, a simple extension, an asymmetric Gaussian membership function

is suggested. To motivate this idea, consider for example feature 2, the axis

orientation. For an angle of 90° the trained membership function gaussmf

yields a membership confidence of 0.8881 in the postfall class.

The asymmetric Gaussian membership function gauss2
mf is defined by
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Figure 6.3: Plot of trained Gaussian membership functions for the four phases
plotted for each feature.

(σlow, µ, σhigh):

gauss2
mf =

e
− (x−µ)
σlow

2

ifx < µ

e
− (x−µ)
σhigh

2

otherwise

Based on the trained parameters for gaussmf , the parameters have been

manually estimated. Plots of the adjusted membership functions are shown

in Figure 6.3. The final class membership degree is computed as the mean

of the membership degree of all features.
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Category Name Outcome #

Backward fall

Ending sitting Positive 4
Ending lying Positive 4
Ending in lateral
position

Positive 3

With recovery Negative 4

Forward fall
On the knees Negative 6
Ending lying flat Positive 11
With recovery Negative 5

Lateral fall
Ending lying flat Positive 13
With recovery Negative 1

Fall from a chair Ending lying flat Positive 8
Syncope Vertical slipping against

a wall, finishing in
sitting position

Negative 2

Neutral

Sit down on a chair then
to stand up

Negative 4

Lie down then to rise Negative 2
Walk around Negative 1
Bend down, pick
something up on the
floor and rise again

Negative 2

Cough or sneeze Negative 3

Table 6.1: Overview of the evaluation dataset scenarios with the number of
videos [ZMK10].

6.2 Evaluation

A dataset consisting of 73 sequences, which follows the scenarios described

in [NFR+07], that have already been used for evaluation in previous works

[ZMK10, ZZK10], was used for the evaluation. Five actors have simulated a

total of 49 falling and 24 non-falling sequences in a laboratory setup. There

are 17 forward and 15 backward falls, 13 lateral falls, 6 syncope sequences,

8 involving a chair and 4 falls where the subject could recover. A summary

of the sequences is given in Table 6.1. The sequences were shot with four

un-synchronized cameras with a 288×352 resolution at 25 frames per second.

The dataset ground truth is labeled according to the four phases proposed
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by Noury et al. [NRB+08]:

1 – prefall normal activity

2 – critical the actual fall

3 – postfall on-the-ground after a fall

4 – recovery getting up, with or without help

Providing accurate per-frame labels for the dataset is difficult, since there

is no distinct point at which normal behavior ends, and the critical phase

starts. The dataset was labeled such that the critical phase begins whenever

a change in acceleration and angle is visible, and ends with the persons head

touching the ground. The recovery phase is starting with the first push off

the ground.

As suggested in [NFR+07], the classification performance is measured

in terms of the classifier being able to positively recognize fall and non-fall

events. The event recognition output can thus be one of:

True Positive – TP a fall occurs and is detected

True Negative – TN a normal activity is performed and recognized

False Positive – FP a fall is wrongly detected

False Negative – FN a fall occurred, but is not detected

The output of the fuzzy detector is the membership degree in the range

of [0, 1] of the current feature vector in the postfall class, which is thresh-

olded to give the discrete fall or normal classification results. The receiver

operating characteristics (ROC) curve is obtained by plotting sensitivity vs.

1-specificity computed for each threshold of the fall membership. ROC curves

have become a popular method for visualizing and comparing classifier per-

formance in machine learning [Faw06].

The sensitivity or true positive rate tpr of a classifier is

sensitivity =
TP

TP + FN
. (6.1)
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And the false positive rate fpr is

tpr =
FP

TN + FP
(6.2)

Other measures that are associated with ROC curves are specificity

specificity =
TN

FN + TP
= 1− fpr, (6.3)

the classifier accuracy

accuraccy =
TP + TN

FP + FP + TN + FN
, (6.4)

the positive prediction value or precision

precision =
TP

TP + FP
(6.5)

the F1-score

F1 = 2 · precision · tpr
precision+ tpr

(6.6)

and the area under the ROC curve AUC.

In Figure 6.4 the ROC curves for the evaluated feature sets are plotted.

As can be seen, the ROC curves are similar. For comparison, in Figure 6.5,

the ROC of the results comparing early and late fusion presented in [ZMK10]

are given. As you can see, considerably better results have been achieved, as

in [ZMK10], regardless of the feature set.

Table 6.2 compares the performance of the feature sets for the optimal

threshold – the one that maximizes accuracy. The best score for each per-

formance measure is emphasized. For each measure, the optimal value is

1. As in the ROC plot, it can be seen that the feature sets result in simi-

lar detection performance. The best results however are achieved with the

proposed unexpectedness measure (feature 7). The highest AUC, precision

and specificity are obtained when incorporating the unexpectedness. The

quality of the previously proposed motion speed feature (4) in comparison to

the easier to compute centroid speed (5) has been evaluated as well. Similar
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Figure 6.4: The computed fall confidence (blue), with accuracy optimized
threshold (green), plotted against the ground truth (red).

Figure 6.5: ROC of the previously proposed early and late fusion approaches
[ZMK10].
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Adjusted Gaussian Membership function
Features accuracy precision sensitivity specificity F1-score AUC
1,2,3,5 0.858 0.902 0.916 0.982 0.909 0.992
1,2,3,4,7 0.828 0.916 0.898 0.985 0.907 0.993
1,2,3,5,7 0.861 0.907 0.918 0.983 0.913 0.992
1,2,3,4,6,7 0.825 0.915 0.896 0.985 0.905 0.994
1,2,3,5,6,7 0.844 0.908 0.908 0.983 0.908 0.993
1,2,4,5,6,7 0.849 0.915 0.912 0.985 0.913 0.993

Table 6.2: Evaluation results using the adjusted Gaussian membership func-
tions. The best values for each measure are emphasized.

performance was achieved using both features. However the centroid speed

can be computed more easily and shows slightly better results in combination

with other features.

Using the same feature set (1, 2, 3, 4) as in previous experiments [ZMK10]

the recognition quality could be increased. An AUC of up to 0.994, compared

to the 0.935 in [ZMK10], is achieved.

A direct comparison of the ground truth and the computed fall confidence

values for the first three sequences is shown in Figure 6.6. The computed

fall confidence is plotted in blue and the ground truth data in red. A ground

truth value of 1 indicates a fall in the ground truth data. For illustration of

the ground truth, the critical phase is plotted at 0.5 and the recovery phase

at 0.75. As noted above, a crisp distinction between critical, postfall and

recovery is not easily definable, and this is where classification errors occur.

As can be seen in the plots, all fall scenarios are detected, however, the fall

is detected with a delay of a few frames.
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Figure 6.6: The computed fall confidence (blue), with accuracy optimized
threshold (green), plotted against the ground truth (red). Feature sets
from top to bottom: (1, 2, 3, 4), (1, 2, 3, 4, 7), (1, 2, 3, 5, 7), (1, 2, 3, 4, 6, 7),
(1, 2, 3, 5, 6, 7)

Nevertheless, all fall incidents in the test-set were successfully classified

as such, regardless of the feature set.

As mentioned earlier, the results presented here outperform previous ones

in [ZMK10] with an AUC of 0.994. As other authors use different datasets

and report per incident as opposed to the per frame evaluation given here,

results cannot be compared straightforward. Using a similar setup, Anderson

et al. [ALK+09] obtain higher sensitivity 0.976 but lower specificity 0.932.

Based on the evaluation of four test sequences Hazelhoff et al. [HHdW08]

report the accuracy of fall detection per incident with 100% under “normal”

and “realistic” activity, and 55% under “occluding” activity. In a strictly
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controlled environment, Foroughi et al. [FAP08] achieve similar results (sen-

sitivity: 0.928, specificity: 0.976), as are presented here in an unconstrained

environment. Detecting falls with a single camera and a combination of mo-

tion quantification and shape features, Rougier et al. [RMSAR07] achieve

a sensitivity of 0.882 a specificity of 0.875. Thome and Miguet [TM06] use

two perpendicular cameras and the person’s principal angle for fall detection.

They report a sensitivity of 0.82 a specificity of 0, 983.



Chapter 7

Conclusion

In this thesis, a video understanding framework that allows the reliable de-

tection of falls has been presented. The key considerations are applicability

in real world scenarios while achieving a real-time performance. A thorough

investigation of the related vision and non-vision based fall detection is the

starting point of the here presented research. The main drawback of existing

solutions is that they are not independent of camera placement. Further, they

cannot deal with occlusions. Therefore they are only applicable in laboratory

setups.

With the proposed system, a fall detector that extracts view invariant fea-

tures in a global 3D coordinate system, based on a voxel space representation

of persons is presented. It is shown that the proposed approach automat-

ically and reliably detects falls in real time using a straight forward fuzzy

logic approach. The evaluation results show that previous works that uses

more complex event understanding schemes such as Hidden Markov models

are outperformed by the proposed approach. Fuzzy inference offers a flexible

event understanding approach, which makes adding features and rules sim-

ple. HMMs in contrast would have to be retrained when new features are

added.

Using the accumulated hitmap as an unexpectedness measure, the per-

formance of the feature set is considerably increased. It was shown, that the

unexpectedness is an important clue when detecting falls as it allows false

93
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positives to be rejected. Such a feature has been ignored in the related work

so far.

Since event understanding is just the final step in the processing pipeline,

more advanced lower level approaches benefit the classification task. Rang-

ing from fully automatic camera calibration [GKP07], to object segmenta-

tion with person identification [CHK+06] and robust tracking approaches

[HHdW08]. Occlusions, shadows, different rates of execution and multiple

actors are the main problems when working with real world scenarios. The

combination with non-vision features like in [TDc05] is another way to tackle

these problems.
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