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Abstract

In the last years extensive research in the field of quantum cryptography and in

particular in quantum key distribution (QKD) has been done. Most of the QKD

protocols studied and implemented today are based on the idea presented in a pio-

neering work by Bennett and Brassard in 1984, the BB84 protocol. But there are

other protocols based on the phenomenon of entanglement, e.g. the first protocol

was suggested by Ekert in 1991. Further, protocols going beyond key distribution,

for example protocols realizing authentication or secret sharing using quantum me-

chanics, make heavy use of entanglement in multi-qubit systems.

The main goal of the thesis is to provide a deeper insight into the security of

protocols based on entanglement in multi-qubit systems and to give a connection to

the security thresholds of the BB84 and equivalent protocols.

In this thesis we focus on protocols based on entanglement in multi-qubit systems.

Starting from an attack strategy we developed where an adversary entangles herself

with the legitimate parties the security of such protocols using multi-qubit systems is

analyzed in detail. The security analysis is based on the violation of the correlations

given by entanglement swapping and we could show that for some protocols the

adversary is able to obtain full information about the key. Further, we discuss the

effect of noise in connection with entanglement swapping. Based on the detailed

security analysis thresholds for the fidelity of the initial states are defined. In detail,

we show that for a fidelity of the initial entangled states greater than 94.28% a

natural error rate of at most 11% is introduced, which is the maximal tolerable error

rate for the BB84 and equivalent protocols. Furthermore, we relate this fidelity

to the length of the quantum channel and find 1.19 km as the maximum length

for secure communication. Using different models of quantum channel we obtain

a maximum length of up to 5.98 km. To enlarge these distances entanglement

purification protocols are of great interest and their effect on the attack strategy we

developed is investigated.



Zusammenfassung

In den letzten Jahren wurden auf dem Gebiet der Quantenkryptographie, speziell

der Quantum Key Distribution (QKD) große Fortschritte in der Forschung gemacht.

Viele der QKD Protokolle, die heutzutage studiert und implementiert werden, ba-

sieren auf einer Idee von Bennett und Brassard aus dem Jahr 1984, dem BB84

Protokoll. Andere Protokolle hingegen, wie das von Artur Ekert aus dem Jahr 1991,

verwenden das Phänomen des Entanglement. Vor allem Protokolle, die über die bloße

Verteilung von Schlüsseln hinausgehen, basieren auf Entanglement in Multi-Qubit

Systemen. Dazu gehören etwa Protokolle zur Authentifizierung oder zum Secret

Sharing.

Das vornehmliche Ziel dieser Arbeit ist es, einen tieferen Einblick in die Sicherheit

von Protokollen basierend auf Entanglement in Multi-Qubit Systemen zu geben und

eine Verbindung zu den Sicherheitsparametern des BB84 und ähnlichen Protokollen

herzustellen.

In dieser Dissertation gehen wir auf eben diese Protokolle, die Entanglement in

Multi-Qubit Systemen einsetzen, ein. Ausgehend von einem Angriffsszenario, das

von uns entwickelt wurde und bei dem sich der Angreifer mit den Parteien ver-

schränkt, wird die Sicherheit von Protokollen gegenüber dieser Attacke betrachtet.

Die Sicherheit in diesen Protokollen basiert auf den Korrelationen gegeben durch das

Entanglement Swapping und wir konnten zeigen, dass für einige Protokolle ein An-

greifer volle Information über den Schlüssel erhält. Im Zuge der Sicherheitsanalyse

werden auch die Auswirkungen von natürlichen Störungen auf die Korrelationen des

Entanglement Swapping untersucht. Durch die Erkenntnisse aus diesen Sicherheits-

analysen ergeben sich Schwellwerte für die Fidelity der Initialsysteme. Im Einzelnen

ergibt sich bei einer Fidelity von nicht mehr als 94.28% ein natürlicher Fehler von

weniger als 11%, was die maximale Fehlerrate beim BB84 und ähnlichen Protokol-

len darstellt. Darüber hinaus bringen wir die Fidelity mit der Länge des Kanals in

Zusammenhang und erhalten, basierend auf unterschiedlichen Modellen, eine Länge

von 1.19 km bis hin zu 5.98 km als die maximale Distanz, um sichere Kommunikation

zu garantieren. Um diese Distanzen zu überschreiten sind Entanglement Purification

Protokolle von großem Interesse und werden in Hinsicht auf ihre Auswirkungen auf

die von uns entwickelte Attacke untersucht.
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Chapter 1

Introduction

Quantum Cryptography

Quantum cryptography is an interdisciplinary field of quantum mechanics, classical

cryptography and information theory. It mainly addresses a central problem from

classical cryptography, the confidential distribution of secrets, i.e. keys, between two

or more parties. To achieve that quantum cryptography uses laws and phenomena

of quantum physics to provide unconditional secure communication between these

parties. This separates it from classical methods like public key cryptosystems

[43, 123], which depend on computational assumptions.

The most studied part of quantum cryptography is quantum key distribution

(QKD) [57, 48, 126, 94, 22]. With QKD it is possible to generate a classical key

based on quantum mechanical phenomena between two parties which initially do

not need to share a common secret but only need an authenticated channel. In

classical cryptography a public key infrastructure (PKI) based on the RSA [123] or

Diffie-Hellman algorithm [43] serves a similar purpose because anyone who is able

to obtain the public key of some other person can send a secret message to this

person. That means by distinguishing between a public and a private key the two

communication parties do not have to share a common secret. The major problem

of this scheme is that its security is based on computational assumptions. Today

there is no efficient way to extract the private key from the public key but if an

sophisticated algorithm or some new technology like the quantum computer [41]

is realized these schemes become totally insecure [137]. On the other hand, QKD

provides unconditional security and an adversary will have no better chance than

1
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guessing the key whatever technology or computational power the adversary has.

The first QKD protocol was presented by Bennett and Brassard in 1984 [8].

They used the polarization of photons to represent information and showed that

any attempt by an adversary to eavesdrop this information will be detected by the

two parties with arbitrarily high probability. This argument and consequently the

security is based on two major laws of quantum mechanics, i.e. the fact that an

unknown quantum state can not be copied perfectly (which is also called the no

cloning theorem [166]) and the fact that the observation of a quantum system alters

its state.

Based upon the results of Bennett and Brassard several other protocols using sim-

ilar ideas have been published [5, 24, 82, 125]. These protocols have been studied in-

tensively and various proofs of their security have been published [7, 81, 96, 97, 135].

In these proofs it has been shown that the protocols are secure against individual

and coherent attacks as long as the error rate is below a certain threshold value.

In 1991 a QKD protocol based on a different technology, i.e. the phenomenon of

entanglement, has been proposed by Ekert [51]. Two entangled particles have the

property that if one of them is measured the other one immediately collapses into a

correlated state regardless of the distance between them. This phenomenon has first

been stated by Einstein, Podolsky and Rosen in their famous gedankenexperiment

[50]. In this way two communication parties, each in possession of one particle

of an entangled state, are able to create a secret key. The security of this type

of QKD protocols is based on the inequalities stated by Bell [2], who proposed

an experiment to test the conjecture of Einstein et al., and their extended version

published by Clauser at al. [33]. A violation of these inequalities indicates a non-

local behavior as stated by quantum mechanics (cf. section 2.3). Although several

kinds of particles can be entangled we focus in this thesis only on photons since they

are the most commonly used carrier of information in QKD protocols.

A major practical problem of QKD protocols is the distance between the two

communication parties. Photon sources and detectors are not perfect and introduce

further errors into the protocol. The quantum channels over which most QKD

protocols are performed are common optical fibers at telecom wavelength or free-

space links. Due to the attenuation of optical fibers and atmospheric influences

in free space links as well as the polarization mode and chromatic dispersion the

visibility of the photons is lowered and their state is altered permanently. Hence,
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the information can not be recovered after the photons traveled a certain distance.

Relation to Current Research

The continuous improvement of the physical apparatus – photon sources as well as

quantum channels – in the last years made it possible to enlarge the distance over

which QKD is feasible from 23 km in the first experiments outside the laboratory

up to over 200 km for optical fibers (cf. [106, 140, 58, 143]). Regarding free-

space communication, an experiment over 144 km has been realized in 2007 [150].

Unfortunately, the secret key rate is too low for a reasonable communication at such

large distances [143, 150]. Nevertheless, at distances of about 20 - 25 km high rates

can be achieved [118]. A first experiment to shown that QKD is of practical use was

performed in 2004, when a bank transfer in Vienna has been encrypted using a key

generated by QKD [117].

One possibility to overcome the distance problem is to use quantum networks.

Like in classical networks there are various nodes connected by several quantum

channels. The classical information is decoded at every node and passed on to

the next node. In the course of the research of quantum networks the SECOQC

project has been started in the sixth framework program of the European Union

[112]. The goal of this project was to determine whether a global network for secure

communication based on quantum cryptography is possible and thus to give a hint

how to solve the distance problem in QKD. In October 2008 a prototype of such

a network was presented in Vienna to show how quantum cryptography can be

employed efficiently to secure today’s communication [118, 112].

A second solution for the distance problem are quantum repeaters. Unlike classi-

cal repeaters which are able to read and copy the necessary information quantum re-

peaters have to follow a different concept – entanglement swapping [172, 20, 110, 21]

– due to the laws given by quantum physics. Entanglement swapping is a special

case of quantum teleportation [10, 12, 85] where two particles become entangled

although they never interacted in the past. Schemes for quantum repeaters have

been presented, for example, by Duan et al. [44] and by Dür et al. [45]. The latter is

of particular interest because it combines entanglement swapping and entanglement

purification [12, 14, 42] to achieve efficient quantum repeaters over long distances. In

2008, an actual implementation [168] of such a scheme has shown that a realization
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of quantum repeaters is feasible with today’s technology.

Besides the problem of key distribution, there are a lot of other primitives (e.g.

secret sharing or multiparty communication) in the field of classical cryptography

which can also be formalized in quantum terms. Some of the classical protocols

like Shamir’s secret sharing scheme [133] already provide unconditional security and

therefore a quantum version of secret sharing is not that big of an interest. Further,

it is often stressed that classical cryptography can be done as long as the keys are

distributed using QKD protocols. Nevertheless, it is interesting to look at quantum

protocols for sharing classical secrets from a theoretical point of view. Furthermore,

to share quantum secrets between several parties the quantum version of secret

sharing is necessary.

For multi-qubit protocols the technology used for BB84-like protocols is often not

enough. Many of these protocols make extensive use of entanglement as a resource

and entanglement swapping as a method to transport the information between the

involved parties. Nevertheless, the major problem of entanglement based protocols is

the implementation due to today’s physical limitations. For example, the creation

of entangled pairs at a high rate is rather sophisticated but has improved over

the last years. Moreover, the physical implementation of entanglement swapping

is even more challenging since it is based on complete Bell state measurements

(BSM). Due to this high complexity none of the multi-qubit protocols discussed in

this thesis have been physically implemented yet. But the first steps towards an

implementation have been made, for example, by Pan et al., who presented four-

photon entanglement and a corresponding teleportation scheme [111].

Hypothesis

In this thesis we are going to focus on quantum cryptographic protocols for quantum

key distribution and quantum secret sharing based on multiple Bell pairs and multi-

qubit states, eg. GHZ states [60]. Such protocols use entanglement swapping and

the respective correlated measurement results to establish a secure classical commu-

nication. Since particles have to be in transit to share the entanglement between

the legitimate parties, they can be intercepted by an adversary. In principle, the

adversary is able to perform any quantum operation on the intercepted particles to

gain some knowledge about the key. Our main question is how much information
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the adversary is able to obtain about the key from the intercepted particles without

being detected?

It has already been shown by Zhang, Li and Guo [170] that an adversary is able

to obtain full information about the secret key in a specific scenario [27]. Since this

attack strategy by Zhang, Li and Guo (in the following called ZLG attack) is just

defined for one other QKD protocol by Cabello [26] it is not a good candidate for a

generalized approach. Furthermore, these two protocols can also be secured against

the ZLG attack [28, 90]. We define an attack strategy based on the same concept

but providing a more general approach. The main idea of our attack strategy is to

simulate and furthermore to preserve the correlations between the legitimate parties

which provide the basis for the security of protocols using on entanglement swapping.

Further, we show that our attack strategy is not only an generalization of the ZLG

attack, i.e. it gives the same results when applied on the protocols described in

[27, 26], but a more powerful extension since it provides an adversary with more

information when applied on [90]. Additionally, our attack strategy is applicable on

a whole family of QKD protocols.

A crucial point which has not been addressed in most of the protocols is that

entanglement swapping uses, in theory, perfectly entangled states which is not pos-

sible per se due to noise in optical fibers. Therefore, we analyze how the results of

entanglement swapping change in a system where non-maximally entangled states

are used. A damage of the correlation to a certain amount allows an adversary

great latitude in the choice of his attack strategies. As a result an adversary might

stay undetected where he would not if the entanglement was pure. While discussing

entanglement swapping with mixed states we are going to define the amount of nat-

ural error tolerable in QKD protocols. Here we are giving threshold values for the

fidelity of the initial states for some specific protocols. Additionally, we analyze the

decrease of the fidelity over distance and its implications on the security.

To overcome the transmission losses entanglement purification protocols are used

[6, 12, 14, 42]. Such protocols take several impure entangled states as input and

produce one entangled pair with a higher amount of entanglement. Based on the

thresholds values on the initial entangled states we analyze the overhead necessary

to guarantee security in cryptographic protocols, i.e. how many entangled states are

necessary to successfully use entanglement swapping.
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Outline of the Thesis

In the following chapter we are going into detail on the definition of entanglement.

We also describe the basic phenomena which are applied in the protocols later

on. In chapter 3 we give a short overview on entanglement measures for 2-qubit

and multi-qubit systems to characterize the entanglement between two or several

qubits. Chapter 4 deals with different models of noisy quantum channels and how

the entanglement is affected if qubits of an entangled state are transmitted over a

noisy channel. In this context some basic entanglement purification procedures are

discussed.

Chapter 5 gives a basic introduction into quantum cryptography and the ideas

behind it. The most relevant QKD and QSS protocols are described and we also give

a short overview on physical implementations. In chapter 6 we discuss the security

of the protocols described in chapter 5. We present decision trees as a basic method

to calculate Eve’s information about the sifted key and provide detailed security

considerations for the basic protocols.

The simulation attack strategy is characterized in detail in chapter 7 together

with the concept of the ZLG attack. There we present our main idea of simulating

the correlations between Alice’s and Bob’s measurement results as well as simulating

rotations and basis transformations. Chapter 8 deals in detail with the application of

the simulation attack onto several protocols. There we show how much information

an adversary is able to obtain from the simulation attack. We also provide strategies

to secure quantum cryptographic protocols against the simulation attack.

In chapter 9 we bring the protocols from chapter 8 into a noisy environment and

look at the natural error rate for these protocols. Further, we relate the fidelity

to the respective length of the quantum channel and we analyze how the noisy

environment affects the adversary’s attack strategy and information. In the end we

give a short overview on the most important results and refer to open questions

arising from these results.
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Entanglement

One of the most significant quantum effects is entanglement, which has first been

described in 1935 by Schrödinger [130] and has been heavily discussed by Einstein,

Podolsky and Rosen [50]. Einstein called it a ”spooky action at a distance” since en-

tanglement describes effects on two particles which seem to violate the basic concepts

of realism and locality (cf. section 2.3 for further details on the EPR gedankenexper-

iment). Although Einstein used the concept of entanglement to proof that quantum

mechanics is not a complete theory, it has later been shown by Bell [2] that entan-

gled states exist. Since then a large number of experiments have been performed

in connection with entanglement and several applications have been described (cf.

section 2.5 below). Throughout this thesis we focus on entanglement of qubits, i.e.

systems with two degrees of freedom, since they are the carrier of information used

in the protocols described later on.

2.1 Bipartite Entanglement

2.1.1 Pure State Entanglement

Considering a quantum system consisting of two particles located at distant loca-

tions, one in Alice’s laboratory and one in Bob’s laboratory, one particle can be fully

described by an element of a 2-dimensional complex vector space, a so called Hilbert

Space. Such a state can be written in the Dirac notation as

|ϕ〉 = α|i〉+ β|j〉. (2.1)

7
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Here, |i〉 and |j〉 form a basis of the 2-dimensional Hilbert space H. In general,

the computational basis is used, where |i〉 = |0〉 and |j〉 = |1〉, due to its direct

connection to the building block of classical information, the bit. Accordingly to

the classical version, a single quantum state is called qubit. Nevertheless, any other

two vectors forming a basis can be used to describe a quantum state. The only

restriction is that quantum states have to be of unit length, i.e. |α|2 + |β|2 = 1.

To describe the composite system |ϕ〉AB of both Alice’s and Bob’s particle the

formal concept of the tensor product is used to describe this larger Hilbert space

HAB

HAB = HA ⊗HB (2.2)

which is one of the four postulates of quantum mechanics (cf. for example the

textbook of Nielsen and Chuang [109] for details on the postulates of quantum

mechanics). Such a state |ϕ〉AB is called a product state or separable state if and

only if there exist states |ψ1〉A ∈ HA and |ψ2〉B ∈ HB such that

|ϕ〉AB = |ψ1〉A ⊗ |ψ2〉B, (2.3)

i.e. the state can be written as a product of states of the smaller Hilbert spaces.

As it has been pointed out by Einstein et al. and Schrödinger [50, 130], there

exist states |Φ〉AB in the combined Hilbert space HAB that can not be written as

presented in eq. (2.3). Such states are called entangled. The best known examples

for entangled states in the 2-qubit case are the EPR- or Bell-states. They can be

written as (here the ⊗ is omitted)

|Φ〉± =
1√
2

(

|0〉A|0〉B ± |1〉A|1〉B
)

|Ψ〉± =
1√
2

(

|0〉A|1〉B ± |1〉A|0〉B
)

.
(2.4)

One special property of these states is that they give completely correlated results

when qubits A and B are measured separately. From eq. (2.4) we can see that the

results coming from a measurement on qubits A and B in the computational basis

are either the same or the opposite, depending on the Bell state. The Bell states

themselves form an orthonormal basis of the 4-dimensional Hilbert space HAB and

thus can be distinguish by a so called complete Bell state measurement, which is

heavily used in various protocols described later on (cf. section 2.4 for details on

the Bell state measurement).
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2.1.2 Mixed State Entanglement

A more complex scenario occurs if Alice and Bob obtain their particles from a source

which does not emit a specific state but one of several states. In this case Alice and

Bob only know the set of possible states, for example the four Bell states, but not

which state is emitted at a specific time. In the most general case Alice and Bob only

know that some states |ψi〉AB ∈ HAB are emitted with a certain probability but they

are not aware if these are entangled states. The resulting system of Alice and Bob

is called a mixed state and can be described by an element of the Hilbert-Schmidt

space, a so called density matrix

ρAB =
∑

i

pi|ψi〉〈ψi|AB (2.5)

where the pi ≥ 0 and
∑

pi = 1. The density matrix ρAB is a complex matrix with

non-negative eigenvalues and Tr(ρAB) = 1 because of the fact that all probabilities

pi sum up to 1. As we will see later on, mixed states are also used to describe states

that are transmitted over a noisy channel (cf. section 4.1).

Entanglement for the mixed states is defined accordingly to eq. (2.3) such that a

state is a product state if it can be written as

ρAB = δA ⊗ δB (2.6)

with δA and δB states from the respective smaller Hilbert-Schmidt spaces A and B.

Regarding mixed states, separable states are defined similar to the definition above,

i.e. as a convex sum of product states

ρAB =
∑

i

pi
(

δ
(i)
A ⊗ δ

(i)
B

)

. (2.7)

At last, a state that is not separable is an entangled state. For the 2-qubit case

the terms separable state and product state can be used interchangeably. When we

consider higher dimensions or more particles there exist separable states which are

no product states.

2.1.3 Separability

As a next step we want to address the problem of how to distinguish between

separable and entangled states. To achieve that several separability criteria have
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been defined which can also be used to detect entanglement. As we will see in the

following paragraphs the problem to identify separable states is solved for the 2-

qubit case using the PPT criterion. Nevertheless, we want to describe some other

criteria as well, which focus on higher dimensions. For further information we want

to refer to the book of Bengtsson and Zyzczkowski [3] and the extensive overviews

by Gühne and Toth [64] and by Horodecki et al. [76] as well as the literature within.

In 1996 Peres and Horodecki et al. presented a separability criterion based on the

partial transpose of a density matrix called the PPT criterion [114, 70]. The PPT

criterion makes use of the partial transpose ρTB , i.e. the transpose of the system B

of a state ρ, which is defined as

ρTB =
∑

ijkl

pijkl|i〉A ⊗ |l〉B〈k|A ⊗ 〈j|B. (2.8)

for the general matrix of a 2-qubit state ρ ∈ HA ⊗HB

ρ =
∑

ijkl

pijkl|i〉A ⊗ |j〉B〈k|A ⊗ 〈l|B (2.9)

with pijkl ≥ 0 and
∑

pijkl = 1. In a block matrix representation this can be written

as

ρ =

(

P Q

R S

)

ρTB =

(

P T QT

RT ST

)

(2.10)

with P , Q, R and S being 2× 2 matrices in the 2-qubit case.

The PPT criterion states that if ρ is entangled, then ρTB < 0 which means that it

has at least one negative eigenvalue. In general this criterion is just a necessary but

not sufficient condition for separability such that one or more negative eigenvalues of

ρTB indicate entanglement but non-negative eigenvalues are an inconclusive result.

It has been proven that for systems of size 2 ⊗ 2 (qubits) and 2 ⊗ 3 (qutrits) the

condition is necessary and sufficient [70]. These properties together with the fact

that the PPT criterion is simple to compute makes it very useful for the protocols

we are discussing later on.

Since the PPT criterion is not able to find all separable states in higher dimensions

or in case of more particles other separability criteria have been developed. One of

these is the CCNR criterion [30, 124] which detects entanglement in many scenarios

where the PPT criterion fails to do so. Nevertheless, the CCNR criterion fails to

detect all entangled states in the 2-qubit case, which the PPT criterion does. To
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describe this criterion the Schmidt decomposition has to be applied in operator space

(a definition of the Schmidt decomposition can be found in several textbooks, for

example in [109]). Any density matrix ρ can be written as

ρ =
∑

k

λk
(

γ
(A)
k ⊗ γ

(B)
k

)

(2.11)

where λk ≥ 0 and γAk and γBk are orthonormal bases of the spaces HA and HB. The

CCNR criterion now states that if
∑

λk ≤ 1 then the state is separable. In other

words, a state is entangled if
∑

λk > 1.

A necessary and sufficient condition for separability provides the positive map

criterion presented in [70]. This criterion defines a state ρ as separable, if and

only if ρ′ = (Λ ⊗ 1)ρ is positive for all positive maps Λ. In contrary to the PPT

criterion, this is in general rather hard to use since all positive maps have to be

considered. The simple cases are the 2 ⊗ 2 and 2 ⊗ 3 systems where also the PPT

criterion is necessary and sufficient as pointed out above. To apply this criterion the

positive transpose TA has to be used, which leads to the Peres-Horodecki criterion

[114, 70]. Hence, the positive map criterion declares that a state acting on a Hilbert

space H = HA ⊗ HB of dimension dim(H) ≤ 6 is separable if and only if ρTA has

non-negative eigenvalues. Here, the authors show that all bipartite states can be

divided into two classes: the class of PPT states and not-PPT states (NPPT). For

the simple case of qubits and qutrits these are exactly the classes of separable states

(PPT) and entangled states (NPPT) but for the general case there exist entangled

states which fulfill the PPT criterion and thus give the impression that they are

separable.

Due to the fact that there are PPT entangled states it is desirable to find a way

to detect them. One possibility to achieve that is the range criterion presented

by Horodecki [74] which states that if ρ is a separable state there exists a set of

pure product states |ψi〉 ⊗ |ϕi〉 such that they span the range of ρ and the partial

transpose (|ψi〉 ⊗ |ϕi〉)TB span the range of ρTB . Using this criterion the first PPT

entangled state was found by Horodecki in the 2 ⊗ 4 system. The criterion is also

constructive such that it shows how PPT entangled states can be build.

Another necessary but not sufficient condition for separability is stated in the

reduction criterion [29, 75]. Here, if a state ρ is separable, the reduced states

ρA = TrB(ρ) and ρB = TrA(ρ) satisfy

(

ρA ⊗ 1
)

− ρ ≥ 0 and
(

1⊗ ρB
)

− ρ ≥ 0. (2.12)
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This criterion is closely related to the positive maps criterion but not stronger than

the PPT criterion [3]. Nevertheless, it has an important consequence, as shown

in [75]: any state ρ that violates the reduction criterion stated in eq. (2.12) is

distillable. That means, there exists a protocol based only on local operators and

classical communication (in short LOCC ) such that a maximally entangled state

can be generated out of several copies of ρ. In contrary, states that do not violate

eq. (2.12) are called bound entangled. Examples in the composite Hilbert space with

dim(H) ≤ 6 are obvious: PPT states are separable and NPPT states entangled and

distillable. In higher dimensions, as already pointed out, there exist PPT entangled

states of which all are not distillable [71]. Furthermore, also the NPPT states don’t

seem to be distillable [46].

2.2 Multipartite Entanglement

2.2.1 Pure States

In the multi-qubit case the structure of entanglement is much deeper than in the

2-qubit case, since entanglement can be found between a larger number of qubits.

Moreover, there are several classes of multipartite entanglement which are inequiv-

alent, which means they can not be transformed into each other by local operations

and classical communications. In contrary to the bipartite case there are several

versions of separability regarding multipartite states. The simplest version are fully

separable states which have the form

|ϕ〉A1...An
= |α1〉A1

⊗ |α2〉A2
⊗ · · · ⊗ |αn〉An

(2.13)

for a system of n parties. Further, there are p-separable states which are generated

by grouping several parties together. For p = 2 a so called biseparable state can be

written as

|ψ〉A1|A2...An
= |β1〉A1

⊗ |β2〉A2...An
. (2.14)

Of course, there are several possibilities for the grouping and p can go up from 2 to

n where the n-separable state is the fully separable state from eq. (2.13). Any state

the is not fully separable or p-separable is called genuine entangled.

There are several classes of genuine entanglement in the multipartite case. When

looking at entangled 3-qubit states there are the GHZ states and the W-states
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[60, 47]. The GHZ states have first been studied by Greenberger, Horne and Zeilinger

can be described as

|P±
ij 〉 =

1√
2

(

|0ij〉 ± |1̄ij̄〉
)

(2.15)

where i, j ∈ {0, 1} and ī is the complement of i, thus giving 8 different GHZ states

for the 3-qubit case. GHZ states are maximally entangled states and a multipartite

generalization of the Bell states presented in eq. (2.4). They further have the

property that when one of the qubits is measured all other qubits collapse into a

state completely determined by the result of the measurement.

The second class of genuine entangled 3 qubit states are the W-states, for example

|W3〉 =
1√
3

(

|001〉+ |010〉+ |100〉
)

. (2.16)

The main difference to the GHZ states is that the entanglement in W-states is much

more robust against loss of particles and decoherence [63]. If one of the particles is

measured or gets lost (i.e. is traced out) the remaining qubits collapse into a Bell

state, i.e.

TrC
(

|W3〉〈W3|ABC
)

=
1

3
|00〉〈00|AB +

2

3
|Ψ+〉〈Ψ+|AB. (2.17)

When going to higher systems there are even more inequivalent entanglement

classes [154] but they are not very well studied yet.

2.2.2 Mixed States

The definition of multipartite mixed entangled states is analogous to the bipartite

case using convex sums of the respective states. Accordingly, fully separable mixed

states consist of a convex sum of fully separable pure states as presented in eq.

(2.13), i.e.

ρA1...An
=
∑

i

pi|ϕi〉〈ϕi|A1...An
. (2.18)

Similarly, p-separable mixed states are defined as a convex sum of p-separable pure

states. Taking the biseparable state from eq. (2.14) the respective mixed state can

be written as

ρA1|A2...An
=
∑

i

pi|ψi〉〈ψi|A1|A2...An
. (2.19)

As already pointed out above there are several possible partitions for separable

states. Therefore, a general p-separable mixed state can consist of different par-

titions of p-separable pure states. Additionally, separate classes for the respective
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partitions of p-separable mixed state can be defined which contain only states from

one partition [64].

Any mixed state that is not fully separable or p-separable is then called entan-

gled. It has already been mentioned that in the multipartite case there exist several

inequivalent entanglement classes such that the mixed entangled state can again be

divided into classes according to the pure states they consist of. For example, in the

3-qubit case there are 2 inequivalent classes of genuine entangled states, the GHZ

states and the W-states. Thus, there are also two classes of entangled mixed states:

a state is in the GHZ class if it is described by a convex combination of pure GHZ

states and a state is in the W-class if it is described by a convex combination of

pure W-states. When going to higher qubit and qudit systems this becomes even

more sophisticated. In a recent article Huber et al. described a framework to iden-

tify genuinely multipartite entangled mixed quantum states in arbitrary-dimensional

systems [79].

2.2.3 Separability

Also in the multipartite case there is the question how to decide whether a state is

separable or not. Since there are much more possible combinations of entanglement

as compared to the bipartite case it is much more difficult to find separability criteria

for multipartite entanglement. We just want to shortly describe one of the criteria

since it is directly derived from the PPT criterion for bipartite states. For more

information on separability of multipartite states see, for example, the review by

Gühne and Toth [64].

The criterion we want to describe is the permutation criterion. This is a gener-

alization of the PPT and the CCNR criterion presented in section 2.1.3 above to

more than two parties [164, 73, 32]. Let the state ρ be

ρ =
∑

i1j1...iN jN

pi1j1...iN jN |i1〉〈j1| ⊗ · · · ⊗ |iN〉〈jN | (2.20)

then the permutation criterion states that ρ is separable if

‖pπ(i1j1...iN jN )‖1 ≤ 1. (2.21)

where, π() is some permutation of the indices and ‖ρ‖1 = Tr(
√

ρρ†) is the trace

norm. It has been shown in [164, 32] that not all permutations π result in differ-

ent criteria. For example, in the 2-qubit case there are the PPT and the CCNR
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criterion, in the 3-qubit case there are 6 criteria and in the 4-qubit case there are

22 independent permutation criteria. Nevertheless, all these criteria can only rule

out fully separable states, i.e. they can not distinguish between p-separable and

entangled states.

2.3 EPR Argument and Bell Inequalities

In their article in 1935 [50] Einstein, Podolsky and Rosen tried to show that quantum

mechanics could not be a complete theory if such a thing as entanglement should

be considered. They pointed out that entanglement would violate the concept of

local realism and their argument was based on the following gedankenexperiment:

suppose two parties, Alice and Bob, are in possession of a source emitting entangled

states of the form

|Φ+〉AB =
1√
2

(

|00〉AB + |11〉AB
)

. (2.22)

Alice and Bob each take one particle of the state |Φ+〉 and travel in different di-

rections. Then Alice performs a measurement in the computational basis on her

particle (c.f picture (1) in figure 2.1) using the operators

M0 = |0〉〈0| ⊗ 1 M1 = |1〉〈1| ⊗ 1. (2.23)

Since her particle is in a completely mixed state as pointed out in section 2.1.1

above, she obtains both |0〉 and |1〉 with equal probability of 1/2, i.e.

p0 = 〈Φ+|M †
0M0|Φ+〉 = 1

2

p1 = 〈Φ+|M †
1M1|Φ+〉 = 1

2

(2.24)

as it would be expected. Further, due to the measurement the entangled state

collapses into a product state of the form

|ϕ0〉AB =
1√
p0
M †

0M0|Φ+〉AB = |00〉AB

|ϕ1〉AB =
1√
p1
M †

1M1|Φ+〉AB = |11〉AB
(2.25)

if Alice obtains |0〉 or |1〉, respectively. As it can be clearly seen from |ϕ0〉AB and

|ϕ1〉AB Bob’s particle is in the exact same state as Alice’s particle whatever result

she obtains. This is shown in picture (2) of figure 2.1 where it is assumed that Alice
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obtained |0〉 as a result from her measurement. Additionally, Bob’s particle collapses

into the same state in the very same moment Alice performs her measurement, no

matter how far the two parties are apart. Einstein et al. stressed in their article

that this would be a violation of locality.

b b

Alice Bob Alice Bob

|Φ+〉 |0〉 |0〉

(1) (2)

Z

Figure 2.1: (EPR gedankenexperiment) Alice and Bob share a Bell state of the form

|Φ+〉AB and the dashed circle indicates a measurement in the computational basis.

The principle of locality denotes in classical physics that an action performed at

one place should not have any immediate impact at a distant instance. That would

mean information is transmitted faster than the speed of light which is not possible.

When looking at the gedankenexperiment it seems to violate this principle because

Bob’s qubit collapses into a state determined by Alice’s measurement in the very

same moment she performed her measurement. Further, the principle of realism

states that the properties of Alice’s and Bob’s particles have definite values which

exists independent of their observation. In case of the gedankenexperiment it seems

that the properties of Alice’s and Bob’s particles have no definite value at all until the

moment of measurement. The violation of these two principles was the main point

of criticism of Einstein, Podolsky and Rosen at the theory of quantum mechanics.

As pointed out in the next paragraphs it has been shown in various experiments that

entangled states behave as described in the gedankenexperiment. Hence, quantum

mechanics suggests that one of the two principles, locality or realism, is not valid.

After Einstein, Podolsky and Rosen published their article a number of other

physicists began to question the EPR argument since it seems not really convincing.

Finally, about 30 years after the original article was published, Bell proposed an

experiment to actually show that the argumentation of Einstein et al. was not

correct [2]. In this experiment Charlie prepares two particles in whatever way he

likes (with the only restriction that the preparation has to be repeatable) and sends

one particle to Alice and the other one to Bob. When Alice receives the particle
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she performs a measurement on it. Therefore, she has two measurement apparatus

such that she can choose one of them completely at random. Let’s denote the two

properties measured by each apparatus PQ and PR, respectively, with the outcomes

Q and R. We want to stress that the properties PQ and PR are only revealed by

Alice’s measurement and can not be accessed in any other way. Similarly, Bob is

also able to measure two properties PS and PT resulting in the outcomes S and T .

For reasons of simplicity Alice’s as well as Bob’s results will take the values ±1.

Further, their measurements are arranged in a way that they take place at the same

time, such that no information can be transmitted between the two parties.

When looking at the quantity QS + RS + RT − QT we see immediately that

either (Q+R)S = 0 or alternatively (Q−R)T = 0 since Q,R = ±1 and

QS +RS +RT −QT = (Q +R)S + (R−Q)T (2.26)

As a result we know that QS + RS + RT − QT = ±2. Taking p(q, r, s, t) as the

probability that Charlie initially prepared Q = q, R = r, S = s and T = t the mean

value of this expression is

E
(

QS +RS + RT −QT
)

=
∑

qrst

p
(

q, r, s, t
)

(qs+ rs+ rt− qt)

≤ 2
∑

qrst

p
(

q, r, s, t
)

= 2
(2.27)

Further, from the same expression we get

E
(

QS +RS +RT −QT
)

=
∑

qrst

p
(

q, r, s, t
)

qs+
∑

qrst

p
(

q, r, s, t
)

rs

+
∑

qrst

p
(

q, r, s, t
)

rt−
∑

qrst

p
(

q, r, s, t
)

qt

=E
(

QS
)

+ E
(

RS
)

+ E
(

RT
)

− E
(

QT
)

(2.28)

Combining these two results we get the Bell inequality

E
(

QS
)

+ E
(

RS
)

+ E
(

RT
)

− E
(

QT
)

≤ 2 (2.29)

which is also known as the CHSH inequality [33].

The argumentation for getting to the Bell inequality above is based solely on

classical physics, i.e. the particles have been prepared by Charlie in a certain state

with a certain probability. When quantum mechanics comes into play everything
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gets a little more sophisticated. In this case Charlie prepares the Bell state |Ψ−〉
and again sends the first particle to Alice and the other particle to Bob. For the

observables Alice and Bob use

Q = σz R = σx

S =
1√
2

(

−σz − σx
)

T =
1√
2

(

σz − σx
)

(2.30)

Calculating the average value
〈

QS
〉

= 〈Ψ−|(Q⊗ S)|Ψ−〉 we get

〈

QS
〉

=〈Ψ−|
(

σz ⊗
1√
2

(

−σz − σx
)

)

|Ψ−〉

=
1√
2

(

〈Ψ−| − 〈Φ+|
)

|Ψ−〉 = 1√
2

(2.31)

and similarly for the other three observable

〈

RS
〉

=
〈

RT
〉

=
1√
2

〈

QT
〉

= − 1√
2

(2.32)

which results in
〈

QS
〉

+
〈

RS
〉

+
〈

RT
〉

−
〈

QT
〉

= 2
√
2. (2.33)

Comparing this result with eq. (2.29) from above we see that for an entangled

state the CHSH inequality is violated which stands in contrary to the classical

assumptions. The violation of the CHSH inequality and the Bell inequality has first

been done in a laboratory by Aspect in 1982 [1] thus invalidating the critics by

Einstein, Podolsky and Rosen. Using the CHSH inequality it can be tested in a

laboratory whether particles coming from a source are entangled or not.

2.4 Bell State Measurement

As we have mentioned in section 2.1 above the four Bell states |Φ±〉 and |Ψ±〉 form
an orthonormal basis of the 2-qubit space. Hence, an arbitrary 2-qubit state can be

described in this basis, i.e. according to the four Bell states. Therefore this special

measurement is called Bell state measurement (BSM) with the addition complete if

all four Bell states are discriminated perfectly. Since we are making extensive use of

the complete Bell state measurement throughout the thesis we are going into detail

on the mathematical and physical background of this measurement.
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From the definition of the Bell states the measurement operators can be directly

defined as

|Φ+〉〈Φ+| = 1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

|Φ−〉〈Φ−| = 1

2
(|00〉〈00| − |00〉〈11| − |11〉〈00|+ |11〉〈11|)

|Ψ+〉〈Ψ+| = 1

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|)

|Ψ−〉〈Ψ−| = 1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01|+ |10〉〈10|)

(2.34)

Using these operators any 2-qubit state can be projected onto the Bell basis. Ad-

ditionally, an arbitrary 2-qubit state can be written directly in the Bell basis, i.e.

|ϕ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉

=
1√
2
(α0 + α3) |Φ+〉+ 1√

2
(α0 − α3) |Φ−〉

+
1√
2
(α1 + α2) |Ψ+〉+ 1√

2
(α1 − α2) |Ψ−〉

(2.35)

From this equation we can directly obtain the probability of getting a specific Bell

state as result of the measurement and it can be extended straightforward to multi-

qubit systems. Therefore, we prefer this representation throughout the thesis when-

ever a Bell state measurement is described.

Although the discrimination of all four Bell states can be conveniently described

in theory a practical realization of a Bell state measurement is rather difficult. To

give a basic idea how such a measurement can be implemented we want to sketch an

experiment presented by Kim et al. [85] where a complete Bell state measurement

is realized using photons as qubits. The main part of this experiment is the sum

frequency generation (SFG), also called ”upconversion”. This non-linear operation

takes two photons with a certain polarization and transforms them into one photon

with a different polarization. Here, two different types of SFG crystals are needed

[85]: the type-I SFG takes photons with the same polarization, i.e. either the state

|00〉 or |11〉, and transforms them into one photon in the state |1〉 or |0〉, respec-
tively. The type-II SFG takes two photons of different polarization, i.e. photons

in the state |01〉 and |10〉 and also transforms them either in the state |1〉 or |0〉,
respectively. Every sum frequency generation consists of two crystals which perform

the transformation either on horizontal or vertical polarized photons. Using this

method the four Bell states can be distinguished perfectly.
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In [85] an EPR state enters the setup with photons of wavelength 730 nm and 885

nm. They are sent into the type-I SFG where the first crystal changes |00〉 to |1〉
and the second changes |11〉 to |0〉. After the SFG the photons hit on the dichroic

beam splitter which reflects the photons that have been altered by the type-I SFG.

The reflected photon is then going through a ±45◦ polarization projector and hits

one of two detectors thus discriminating between |Φ+〉 and |Φ−〉.
The transmitted photon reaches the type-II SFG, which performs the transforma-

tion from |01〉 to |1〉 and from |10〉 to |0〉. Since there are only these four possibilities

we can be sure that all the photons entering the type-II SFG are transformed. Again,

a ±45◦ dichroic beam splitter and two detectors are located behind the type-II SFG

crystals. The photon travels through the beam splitter and hits one of the detectors

which discriminate between |Ψ+〉 and |Ψ−〉, respectively.

2.5 Applications of Entanglement

There are several applications and phenomena where entanglement plays a major

role and has been studied extensively. In the following sections we want to shortly

describe the schemes for dense coding, teleportation and entanglement swapping.

In particular entanglement swapping is extensively used in the protocols discussed

later on in chapters 7 and 8. Quantum cryptography, the most important field where

entanglement is used, will be covered in detail in section 5 below.

2.5.1 Dense Coding

One application where entanglement provides a significant advantage is dense coding

which was presented by Bennett and Wiesner in 1992 [4]. Here the challenge for

Alice is to send a message to Bob consisting of 2 classical bits but she can only

send one qubit. The Holevo bound [69] states that one qubit can carry at most one

bit of classical information. Hence, this would suggest that Alice’s attempt is not

possible but Bennett and Wiesner suggest the following procedure: As a preliminary

setting, Alice and Bob share the entangled state |Φ+〉AB such that each party is in

possession of one particle. The information about Alice’s classical string is then

carried by both qubits of the state. Depending on which of the four messages (00,
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01, 10, or 11) Alice wants to send, she performs one of the four Pauli operators

1 =

(

1 0

0 1

)

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0

0 −1

) (2.36)

on her qubit (cf. picture (1) in figure 2.2). These operators have the property to

map the Bell states onto one another if they are applied on one of the two qubits

of the state. For example, a Pauli operation applied on the first qubit of the state

|Φ+〉AB – as it is the case here – gives

1⊗ 1 |Φ+〉AB = |Φ+〉AB σx ⊗ 1 |Φ+〉AB = |Ψ+〉AB
σy ⊗ 1 |Φ+〉AB = |Ψ−〉AB σz ⊗ 1 |Φ+〉AB = |Φ−〉AB

(2.37)

and analog for the other three Bell states (for a full overview of the mapping cf.

table 4.1 in section 4.2.2 below). Then Alice sends her qubit to Bob who performs a

complete Bell measurement to discriminate between all four states (cf. picture (2)

in figure 2.2). Since he knows the initial state |Φ+〉AB of both qubits Bob is able to

infer which operation Alice performed on her qubit. Using a mapping between the

Pauli operators and the messages, i.e.

1 7−→ 00 σx 7−→ 01 σy 7−→ 10 σz 7−→ 11 (2.38)

Bob knows exactly the two classical bits of Alice. Hence, Bob receives the full 2-bit

message from Alice although she only sent one qubit.

Alice Bob Alice Bob

|Φ+〉

(1) (2)

σx

|Ψ+〉

Figure 2.2: (Dense Coding) Alice and Bob share a Bell state of the form |Φ+〉AB .
Here, the circle indicates the application of an operation, i.e. the σx operation.

Although this procedure seems to violate the Holevo bound it needs in fact two

qubits to be sent to make the dense coding work. In the setup of the protocol it is
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assumed that an entangled state is somehow shared between Alice and Bob. But

to achieve that one qubit has to be transmitted (either from Alice to Bob or from

Bob to Alice). This qubit also counts for the communication although it transports

no actual information. Only in connection with the second qubit coming from Alice

the full information can be extracted from the entangled state, which fits perfectly

into the Holevo bound.

2.5.2 Teleportation

Bennett et al. also described a scheme of how to send an unknown quantum state

|ϕ〉C = α|0〉C + β|1〉C (2.39)

from Alice to Bob with the help of entanglement [10]. Without entanglement this

task can only be achieved rather poorly: Alice would perform a measurement in

some basis on the qubit to determine it’s state and tell it Bob over a classical

channel. However, if she does not accidentally choose the correct basis most of the

information about the state is lost due the measurement and Bob gets an insufficient

version of the state. In a classical environment Alice would be able to make copies

of the unknown state to perform several measurements in different bases and thus

improve her estimation of the state. In a quantum setting this is not possible since

it violates the no cloning theorem presented by Wooters and Zurek in 1982 [166].

Nevertheless, if Alice and Bob share an entangled state, e.g. |Φ+〉AB as in the

last section, Alice can perfectly achieve the task of sending Bob an unknown state

using teleportation. As presented by Bennett et al. Alice performs a complete Bell

state measurement on her particle of the entangled state together with the unknown

state |ϕ〉C as shown in picture (1) of figure 2.3. A complete discrimination of the

four Bell states can be achieved using nonlinear optics, as described in [85]. This

brings the overall state |Φ+〉AB|ϕ〉C to

|Φ+〉AB ⊗ |ϕ〉C =
1

2

(

|Φ+〉AC ⊗
(

α|0〉B + β|1〉B
)

+|Φ−〉AC ⊗
(

α|0〉B − β|1〉B
)

+|Ψ+〉AC ⊗
(

β|0〉B + α|1〉B
)

+|Ψ−〉AC ⊗
(

β|0〉B − α|1〉B
)

)

.

(2.40)

From this equation we see that the projection of particles A and C at Alice’s side

onto the Bell states leaves the particle B at Bob’s side immediately in a state very
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similar to the unknown state |ϕ〉 (cf. picture (2) in figure 2.3). To finally bring Bob’s

particle into the state |ϕ〉 he just has to perform one of the four Pauli operations onto

it. Which operation he has to use fully depends on the result of Alice’s measurement,

which she tells Bob over a classical channel.

b

b

Alice Bob Alice Bob

|Φ+〉

(1) (2)

|Φ+〉|φ〉

|φ〉

Figure 2.3: (Teleportation) Alice and Bob share a Bell state of the form |Φ+〉AB .
Here, the dashed line indicates a measurement in the Bell basis.

When we look at the states at Alice’s and Bob’s side we see that the no-cloning

theorem has not been violated by teleportation. Alice’s qubits are in one of the four

Bell states with equal probability and she has no information about the unknown

state |ϕ〉. Furthermore, the unknown state has been moved to Bob using the entan-

gled state |Φ+〉 and no other copy is present. Additionally, Bob has no information

about the state in his possession until he receives Alice’s classical information about

her measurement result ruling out the argument of faster than light communication

brought up in the discussion of the EPR gedankenexperiment in section 2.3 above.

2.5.3 Entanglement Swapping

The last phenomenon we want to discuss in connection with entanglement is entan-

glement swapping, which has been introduced by Bennett et al. [10], Zukowski et

al. [172] as well as Yurke and Stolen [169], respectively. Entanglement swapping

provides the unique possibility to generate entanglement from particles that never

interacted in the past. The procedure works similar to teleportation described above

but now the unknown state Alice wants to teleport to Bob is part of an entangled

state. In detail, Alice and Bob share two Bell states of the form |Φ+〉A1B1
and

|Φ+〉A2B2
such that Alice is in possession of qubits A1 and A2 and Bob of qubits B1

and B2. Then Alice performs a complete Bell state measurement on the two qubits
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in her possession (cf. picture (1) in figure 2.4) which results in

|Φ+〉A1B1
⊗ |Φ+〉A2B2

=
1

2

(

|Φ+〉A1A2
|Φ+〉B1B2

+ |Φ−〉A1A2
|Φ−〉B1B2

+|Ψ+〉A1A2
|Ψ+〉B1B2

+ |Ψ−〉A1A2
|Ψ−〉B1B2

)
(2.41)

Thus, after the measurement the two qubits B1 and B2 at Bob’s side collapse into

a Bell state although they originated at completely different sources. Moreover,

the state of Bob’s qubits is fully correlated to Alice’s result. As presented in eq.

(2.41) Bob always obtains the same result as Alice when performing a Bell state

measurement on his qubits. This is shown in picture (2) of figure 2.4 where we

assumed that Alice obtains |Φ+〉A1A2
from her Bell state measurement. For different

initial states Alice’s and Bob’s result also change but the correlation between them

is preserved (cf. table 2.1 below).

Alice Bob Alice Bob

|Φ+〉

|Φ+〉

|Ψ+〉 |Ψ+〉

(1) (2)

Figure 2.4: (Entanglement Swapping) Alice and Bob share two Bell states each of

the form |Φ+〉. Here, the dashed line indicates a measurement in the Bell basis.

If there are three parties, Alice, Bob and Charlie, which share two Bell states

|Φ+〉AB and |Φ+〉BC the scheme works analog. Since Bob is the only one to perform

a Bell state measurement it has the effect that in the end Alice and Charlie share

an entangled state. Such a scheme is used in a quantum repeater setup as presented

by Dür et al. [45] to establish an entangled state over several hops to overcome long

distances (cf. also section 4.4 for details).
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|Φ+〉A1A2
|Φ−〉A1A2

|Ψ+〉A1A2
|Ψ−〉A1A2

|Φ+〉A1B1
|Φ+〉A2B2

|Φ+〉B1B2
|Φ−〉B1B2

|Ψ+〉B1B2
|Ψ−〉B1B2

|Φ+〉A1B1
|Φ−〉A2B2

|Φ−〉B1B2
|Φ+〉B1B2

-|Ψ−〉B1B2
-|Ψ+〉B1B2

|Φ+〉A1B1
|Ψ+〉A2B2

|Ψ+〉B1B2
|Ψ−〉B1B2

|Φ+〉B1B2
|Φ−〉B1B2

|Φ+〉A1B1
|Ψ−〉A2B2

|Ψ−〉B1B2
|Ψ+〉B1B2

-|Φ−〉B1B2
-|Φ+〉B1B2

|Φ−〉A1B1
|Φ+〉A2B2

|Φ−〉B1B2
|Φ+〉B1B2

|Ψ−〉B1B2
|Ψ+〉B1B2

|Φ−〉A1B1
|Φ−〉A2B2

|Φ+〉B1B2
|Φ−〉B1B2

-|Ψ+〉B1B2
-|Ψ−〉B1B2

|Φ−〉A1B1
|Ψ+〉A2B2

|Ψ−〉B1B2
|Ψ+〉B1B2

-|Φ−〉B1B2
-|Φ+〉B1B2

|Φ−〉A1B1
|Ψ−〉A2B2

|Ψ+〉B1B2
|Ψ−〉B1B2

|Φ+〉B1B2
|Φ−〉B1B2

|Ψ+〉A1B1
|Φ+〉A2B2

|Ψ+〉B1B2
-|Ψ−〉B1B2

|Φ+〉B1B2
-|Φ−〉B1B2

|Ψ+〉A1B1
|Φ−〉A2B2

-|Ψ−〉B1B2
|Ψ+〉B1B2

|Φ−〉B1B2
-|Φ+〉B1B2

|Ψ+〉A1B1
|Ψ+〉A2B2

|Φ+〉B1B2
-|Φ−〉B1B2

|Ψ+〉B1B2
-|Ψ−〉B1B2

|Ψ+〉A1B1
|Ψ−〉A2B2

-|Φ−〉B1B2
|Φ+〉B1B2

|Ψ−〉B1B2
-|Ψ+〉B1B2

|Ψ−〉A1B1
|Φ+〉A2B2

-|Ψ−〉B1B2
|Ψ+〉B1B2

-|Φ−〉B1B2
|Φ+〉B1B2

|Ψ−〉A1B1
|Φ−〉A2B2

|Ψ+〉B1B2
-|Ψ−〉B1B2

-|Φ+〉B1B2
|Φ−〉B1B2

|Ψ−〉A1B1
|Ψ+〉A2B2

-|Φ−〉B1B2
|Φ+〉B1B2

-|Ψ−〉B1B2
|Ψ+〉B1B2

|Ψ−〉A1B1
|Ψ−〉A2B2

|Φ+〉B1B2
-|Φ−〉B1B2

-|Ψ+〉B1B2
|Ψ−〉B1B2

Table 2.1: Correlation between Alice’s and Bob’s measurement result based on all

possible initial states.





Chapter 3

Entanglement Measures

As pointed out in chapter 2 entanglement is a central resource in several quan-

tum mechanical primitives like teleportation and entanglement swapping. In such

scenarios a major question is how much entanglement is given between the two

communication parties. Due to the effects of noisy channels or operations on the

entangled states the amount of entanglement is reduced, which has influence on

the communication between the parties. Therefore, it is important to quantify the

amount of entanglement in a certain system, which is achieved using entanglement

measures.

3.1 Entanglement of Distillation and Entangle-

ment Cost

Taking a set of mixed entangled states ρ, which have been, for example, tampered

by a noisy channel, it is possible to perform certain operations on these states

to create a smaller set of states which are in a pure entangled state, e.g. |Ψ−〉.
This procedure is called entanglement distillation and is described in further detail

in chapter 4. The idea of entanglement distillation can also be used to define a

measure of entanglement, the so called Entanglement of Distillation ED(ρ). The

entanglement of distillation is given as the maximal number of pure states |Ψ−〉
that can be generated from the input state ρ. It has to be stressed that only local

operations and classical communication (LOCC) are used to manipulate the mixed

27
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state ρ. A more formal definition is [64]

ED
(

ρ
)

= sup
LOCC

lim
n 7→∞

m

n
(3.1)

where n is the number of input states ρ and m is the number of output states |Ψ−〉.
Here we want to denote m = f(n) to stress that the number of output states is

directly related to the number of input states. This relation f(n) may not be given

explicitly or may vary depending on the number of input states but it shows that

ED(ρ) does not go to 0 for n 7→ ∞. Moreover, it is important that the conversion to

the output states has to be perfect only in the asymptotic limit. Overall, the higher

the rate of perfect entangled states to mixed input states is the more entanglement

is present in the input states.

There is also a dual version of the entanglement of distillation, which is called

entanglement cost. Here, the setting is reversed as there is a number of perfectly

entangled states |Ψ−〉 given which have to be used to produce mixed states of the

form ρ by LOCC. The entanglement cost EC(ρ) is then the minimal number of

entangled states needed to create one mixed state ρ. Again, the formal description

is [64]

EC
(

ρ
)

= inf
LOCC

lim
m7→∞

n

m
(3.2)

where n is the number of mixed states ρ to be created and m the number of pure

entangled input states. As stated above, we can describe n as a function g(m) of the

input states to stress that EC(ρ) does not go to 0 for m 7→ ∞ but that the number

of mixed output states is in some way related to the number of pure entangled input

states.

It has been shown in [72] that the entanglement of distillation and the entan-

glement cost describe a lower and an upper bound for any entanglement measure

satisfying the basic axioms presented in the following section. In other words,

ED(ρ) ≤ EC(ρ) and therefore ED and EC are called extreme measures. When

dealing with pure states it has been shown [14] that ED and EC coincide such that

ED(ρ) = EC(ρ) is given by the von Neuman entropy (cf. section 3.3.1 below).

Looking at bound entangled states introduced in section 2.1.3 we know that no

entanglement can be distilled out of them (i.e. ED = 0) but that they need entan-

glement for their creation (i.e. EC > 0) [75]. Thus, bound entangled states can have

ED(ρ) 6= EC(ρ).
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3.2 Properties for Entanglement Measures

Before we explicitly discuss several measures for 2-qubit and multi-qubit systems

we want to present some properties which an entanglement measure E has to meet.

It can be distinguished between properties for measurements on pure states and on

mixed states as it has been done in [107]. We will not go into such a detail since the

properties in connection with pure states are just special cases of the properties in

connection with mixed states.

1. The first and most intuitive property for a general entanglement measure E is

that E(ρ) = 0 if ρ is separable.

2. The next property, which comes also quite natural, requires the measure E to

be invariant under local unitary transformations, i.e.

E
(

ρ
)

= E
(

(

UA ⊗ UB
)

ρ
(

U †
A ⊗ U †

B

)

)

. (3.3)

3. The third property deals with the evolution of entanglement under LOCC

and it states that entanglement does not increase on average under LOCC. In

detail,
∑

i

piE
(

Λi
(

ρ
)

)

≤ E
(

ρ
)

(3.4)

where the Λi is a LOCC transformation which maps ρ onto some ρi with

probability pi. Although this is a rather strong requirement it is fulfilled by

numerous entanglement measures. A somewhat weaker property, which can

also be found in literature, states

E
(

Λ
(

ρ
)

)

≤ E
(

ρ
)

. (3.5)

These two versions of the property also correspond to the fact that entangle-

ment can not be created by local operations and classical communication.

4. Another property required for an entanglement measure is convexity. That is

the overall entanglement decreases when two or more states are mixed, i.e.

E
(

∑

i

piρi

)

≤
∑

i

piE
(

ρi
)

. (3.6)

This property states that loosing the information about the specific states ρi

in an ensemble is equivalent to a decrease of the entanglement. The convexity
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property is very strict and since it is not fulfilled by all entanglement measures

it has been discussed to relax this condition such that E(ρ) should not increase

if locally distinguishable states are mixed [115].

5. The last property of an entanglement measure we will discuss here is additivity.

This addresses the scenario where two or more copies of a state are analyzed.

Then, an entanglement measure should satisfy

E
(

ρ⊗n
)

= nE
(

ρ
)

. (3.7)

A stronger version is the full additivity, which extends the property to different

states such that

E
(

ρ1 ⊗ ρ2
)

= E
(

ρ1
)

+ E
(

ρ2
)

(3.8)

Such additivity is very difficult to prove [116] and is not fulfilled by some

entanglement measures.

As we have seen in section 3.1 above it is not straightforward to define an entan-

glement measure. One way is to take a certain task as a measure of entanglement,

for example the distillation process. Then the optimal distillation rate ED(ρ) for

some state ρ is an entanglement measure, as we have seen in case of the entangle-

ment of distillation. Nevertheless, it is obvious that such quantities are difficult to

compute since a computation involves an optimization over all possible distillation

protocols, which is almost impossible to accomplish.

Another possibility to define an entanglement measure is to first define a measure

E(|ϕ〉) on pure states and then bring it to mixed states as [149]

E
(

ρ
)

= inf
pi,|ϕi〉

∑

i

piE
(

|ϕi〉
)

(3.9)

where ρ =
∑

i pi|ϕi〉〈ϕi| and the infimum is taken of all possible decompositions

of ρ. This method is called the convex roof construction, since E(ρ) is defined

as the largest convex function smaller than E(|ϕ〉). The convex roof construction

has the great advantage that the resulting entanglement measure comes with some

desirable properties such as, for example, that E(ρ) is convex. Additionally, from

the properties of E(|ϕ〉) one can directly deduce which properties E(ρ) fulfills [155].

Also the measures constructed by the convex roof are difficult to compute since all

possible decompositions of a mixed state have to be taken into account. Nevertheless,
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it is straightforward to find lower and upper bounds for the respective measures [64].

The main idea is to take a convex function F (ρ) which is easy to compute and find

a lower bound for F on pure states. Since the convex roof E(ρ) resulting from the

measure E on pure states is the largest convex function smaller than E, the lower

bound F holds also for the mixed states measure E(ρ).

3.3 Measures for 2-Qubit Systems

3.3.1 von Neuman Entropy

The most fundamental measure to determine the amount of entanglement in a pure

states is the von Neuman entropy which has been published in 1932 [158] and is

defined as

S
(

ρ
)

= −Tr
(

ρ log ρ
)

(3.10)

where log is the binary logarithm. It is usually calculated using the eigenvalues of

ρ, i.e.

S
(

ρ
)

= −
∑

i

Tr
(

λi log λi
)

. (3.11)

The von Neuman entropy is defined very similar to the Shannon entropy known

from classical information theory [134] which comes from the fact that the Shannon

entropy is based on the von Neuman entropy.

There is also another version of the von Neuman entropy, which acts on the

reduced density matrix of a state ρ. Accordingly, this version is called reduced von

Neuman entropy or entropy of entanglement [12] and is defined as

EE
(

ρ
)

= −Tr
(

ρA log ρA
)

. (3.12)

Here, ρA denotes the reduced density matrix describing the system of Alice but

similarly also the system of Bob, ρB, could be used instead. In contrary to the

entanglement of distillation and the entanglement cost the entropy of entanglement

has no operational meaning and is thus called an abstract measure.

3.3.2 Entanglement of Formation

Since the von Neuman entropy is only defined on pure states the convex roof con-

struction is used to generalize the measure to mixed states. This convex roof of
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the von Neuman entropy is called entanglement of formation [14] and is defined

accordingly to eq. (3.9) as

EF
(

ρ
)

= inf
pi,|ϕi〉

∑

i

piS
(

TrB
(

|ϕi〉〈ϕi|
)

)

(3.13)

where ρ =
∑

i pi|ϕi〉〈ϕi|. The physical interpretation of the entanglement of forma-

tion is that it gives the minimal number of entangled states necessary to create a

single copy of ρ. The main problem of the entanglement of formation is again the

difficulty of the computation. To calculate the convex roof we have to optimize over

all possible decompositions of the mixed state ρ.

One property of the entanglement of formation is of special interest: it is not

known whether the entanglement of formation is fully additive or not. The solution

of this problem is of such great interest because it has implications on, for example,

the classical capacity of quantum channels [116].

3.3.3 Concurrence

The concurrence is a rather popular measure for entanglement and has been intro-

duced in [67]. The main advantage of this measure is that there exists a closed form

for an arbitrary mixed state ρ. This closed form is based on the complex conjugate

matrix ρ∗ of ρ. Further, the Pauli operator σy is used to perform a bit- and phase-flip

on ρ∗ to finally obtain the matrix

R =
√√

ρ
(

σy ⊗ σy
)

ρ∗
(

σy ⊗ σy
)√

ρ (3.14)

The concurrence C is then defined as

C
(

ρ
)

= max
{

0, λ1 − λ2 − λ3 − λ4
}

(3.15)

where the λi are the eigenvalues of R in decreasing order.

The concurrence is also directly connected to the entanglement of formation de-

scribed above, i.e. [67]

EF
(

ρ
)

= h

(

1 +
√

1− C2(ρ)

2

)

(3.16)

where h(p) is the binary entropy function −p log p− (1− p) log(1− p). Thus, using

the concurrence there is a simple method to compute the entanglement of formation

for arbitrary mixed states without the need of optimizing over all possible ensembles

describing the mixed state.
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3.3.4 Distant Measures

A large group of entanglement measures are the distance measures. These measures

are based on the idea that the closer a state is to the set of separable states the

less entanglement it contains (c.f also figure 3.1). This distance between the mixed

state and the nearest separable state is then used as an entanglement measure.

From this description we can already identify the main problem of the distance

measures: it is usually not trivial to find the closest separable state to some mixed

state ρ. Moreover, the minimal distance between a state ρ and all states in the set

S of separable states has to be found. This results in the definition of a distance

measurement

ED
(

ρ
)

= inf
δ∈S

D
(

ρ, δ
)

(3.17)

where D is some distance measure.

S

b

b

D(ρ, σ)}

ρ
σ

Figure 3.1: (Distance Measure) Graphical description of a distance measure. The

inner circle represents the set S of separable states and δ ∈ S the closest state to the

entangled state ρ. The closer the distance D(ρ, δ) the less entangled is ρ.

Since there are several possible distance measures, several individual measures

arise. The most common function in this context is the relative entropy [153]

S
(

ρ‖δ
)

= Tr
(

ρ
(

log ρ− log δ
)

)

(3.18)

giving the relative entropy of entanglement

ER
(

ρ
)

= inf
δ
S
(

ρ‖δ
)

. (3.19)

As the name indicates, the relative entropy of entanglement is closely related to the

entropy of entanglement discussed above as it reduces to the entropy of entanglement
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if ρ is a pure state. We have to stress that the relative entropy of entanglement is

not a metric but can be seen as a function to distinguish between quantum states.

Nevertheless, it is applicable as a distance function in this special context giving an

entanglement measure.

Another distance measure often found in the literature in the context of entan-

glement measures is the Bures metric [25, 153]

DB

(

ρ‖δ
)

= 2− 2
√

F (ρ, δ). (3.20)

Here, the function F (ρ, δ) is called the Uhlmann’s transition probability [148] and

is defined as

F
(

ρ, δ
)

=

(

Tr
(

√√
δρ
√
δ
)

)2

(3.21)

resulting in the respective measure

EB
(

ρ
)

= inf
δ
DB

(

ρ‖δ
)

. (3.22)

In contrary to the relative entropy the Bures metric is a real metric but, however,

has no direct relation to the entropy of entanglement. In fact, the entanglement

measure based on the Bures metric is smaller than the entropy of entanglement

[153].

3.3.5 Negativity

As we have already seen from the examples above most of the entanglement measures

are in general rather difficult to compute. A measure that is much easier to evaluate

is the negativity [156]. It is directly connected to the PPT separability criterion

defined in section 2.1.3 and is based on the partial transpose and the trace norm.

The negativity is defined as

N
(

ρ
)

=
‖ρTB‖1 − 1

2
(3.23)

or, in a similar version called logarithmic negativity

EN
(

ρ
)

= log ‖ρTB‖1 (3.24)

Similar to all entanglement measures the negativity and the logarithmic negativity

vanish for separable states but, since they are connected to the PPT criterion, these

measures can not distinguish between separable states and PPT entangled states.

Nevertheless, both measures can be used to quantify how much a state ρ violates

the PPT criterion.
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3.4 Measures for Multi-Qubit Systems

3.4.1 Distance Measures

Most of the measures as for example the distillable entanglement, the entanglement

cost or the concurrence described in the previous section are strictly related to Bell

states, i.e. to the bipartite case. From the definition it is not obvious how these

measures can be brought to the multipartite case. One possibility to overcome this

drawback is switch from a definition based on 2-qubit states (i.e. the Bell states) to

a more abstract one like the CNOT gates used in the process of distillation or the

number of qubits transferred in the process of creation [108]. For example, looking

at the entanglement cost the number of qubits transmitted between Alice and Bob

could be such an alternative quantity to measure the entanglement. In this way

the extension from the bipartite to the multipartite case could be done much easier.

Nevertheless, the field of entanglement measures in multi-qubit systems is much

more complex than the bipartite case and has not yet been covered very well.

The main exception are the distant measures like the relative entropy of entangle-

ment, which have no relation to the dimension of the state ρ used in their definition.

Thus, they are applicable to any density matrix describing ρ regardless of the di-

mension. Nevertheless, the main problem of the distant measures - the identification

of the closest separable state - is still valid and even more sophisticated in the mul-

tipartite case. For example, the PPT criterion discussed in section 2.1.3 can not be

used to perfectly identify separable states in the multipartite case, as pointed out

above.

3.4.2 Tangle

An entanglement measure defined for three qubits is the tangle, which has been

introduced in [35]. It is defined similarly to the concurrence described in section

3.3.3 above. It also starts using the σy operation on both qubits of the complex

conjugated state ρ, i.e.

ρ̃ =
(

σy ⊗ σy
)

ρ∗
(

σy ⊗ σy
)

(3.25)

Next, the product ρAB ρ̃AB is computed and the tangle is

τAB
(

ρ
)

=
(

max
{

0, λ1 − λ2 − λ3 − λ4
}

)2

(3.26)
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with λ1 to λ4 are the square roots of the eigenvalues of ρAB ρ̃AB in decreasing order.

This result is very similar to eq. (3.15) such that the relation of the tangle to the

entanglement of formation is obvious using eq. (3.16), i.e.

EF
(

ρ
)

= h

(

1

2
+

1

2

√

1− τAB(ρ)

)

. (3.27)

Because of this relation and eq. (3.26) the tangle can also be interpreted as the

square of he concurrence [35]. The tangle for 2 qubits in a pure state has the

convenient property that it can be computed directly. The product ρABρ̃AB has

only one non-negative eigenvalue such that τAB = 4detTrB(ρ). The tangle for

mixed states is defined directly using the convex roof and can also be calculated for

special cases [95, 53].

The definition of the tangle τAB for two qubits can be used also in a system with

three qubits. For τABC we get [35]

τABC
(

ρ
)

= τA|BC
(

ρ
)

− τAB
(

ρ
)

− τAC
(

ρ
)

. (3.28)

To obtain this equation we have to start with the problem how to define the relation

between two qubits in a 3-qubit system. For reasons of simplicity we focus on the

case where the 3-qubit system is in a pure state. Since in any such system every

2-qubit subsystem has only 2 non-zero eigenvalues the eq. (3.26) can be rewritten

as

τAB
(

ρ
)

=
(

max
{

0, λ1 − λ2
}

)2

=
(

λ1 − λ2
)2

= λ21 + λ22 − λ1λ2 = Tr
(

ρAB ρ̃AB
)

− λ1λ2

≤ Tr
(

ρAB ρ̃AB
)

.

(3.29)

This estimation can be done for τAC accordingly resulting in

τAB
(

ρ
)

+ τAC
(

ρ
)

≤ Tr
(

ρAB ρ̃AB
)

+ Tr
(

ρAC ρ̃AC
)

. (3.30)

Evaluating the term Tr
(

ρAB ρ̃AB
)

+Tr
(

ρAC ρ̃AC
)

using the coefficients of the density

matrix we can simplify eq. (3.30) above to [35]

τAB
(

ρ
)

+ τAC
(

ρ
)

≤ 4 detTrB
(

ρ
)

. (3.31)

Further, the relation between two qubits and the remaining one can be described as

τA|BC which is also equal to 4 det TrB(ρ) such that

τAB
(

ρ
)

+ τAC
(

ρ
)

≤ τA|BC
(

ρ
)

. (3.32)
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To make this inequality an equation the difference of the two sides is of interest,

which is called the residual tangle τABC . This quantity can be interpreted as the

amount of entanglement between qubits A and BC which can not be characterized

by τAB and τAC . Therefore, τA|BC can be written as

τA|BC
(

ρ
)

= τAB
(

ρ
)

+ τAC
(

ρ
)

+ τABC
(

ρ
)

(3.33)

or alternatively, for the residual tangle

τABC
(

ρ
)

= τA|BC
(

ρ
)

− τAB
(

ρ
)

− τAC
(

ρ
)

. (3.34)

Thus, the residual tangle characterizes the relation between all three qubits of the

state ρ and also stays unchanged under permutation of the qubits.

The main advantage of the tangle is that in [35] a closed form for the residual

tangle τABC based on the coefficients of the density matrix of ρ is given, which is

τABC
(

ρ
)

= 2
∣

∣

∣

∑

aα1α2α3
aβ1β2β3aγ1γ2γ3aδ1δ2δ3ǫα1β1ǫα2β2ǫγ1δ1ǫγ2δ2ǫα3γ3ǫβ3δ3

∣

∣

∣
(3.35)

where ρ = |ϕ〉〈ϕ| and |ϕ〉 =∑ ai1i2i3 |i1i2i3〉. Further, the terms ǫ01 = −ǫ10 = 1 and

ǫ00 = ǫ11 = 0. Since the other coefficients of eq. (3.34) are also easy to compute this

makes the tangle a very powerful tool to describe pure state entanglement between

three qubits.

In their article [35] Coffman et al. suggested that the tangle can be generalized

to handle a multipartite version of the W-state. Wong and Christensen defined in

an article a version the tangle for higher qubit systems, called the n-tangle [165]

where n indicates the number of qubits of the analyzed state. The closed form of

the residual tangle τABC presented in eq. (3.35) can be extended from 3 to n qubits

as given in [165]

τ1...n
(

ρ
)

= 2
∣

∣

∣

∑

aα1...αn
aβ1...βnaγ1...γnaδ1...δn

ǫα1β1 . . . ǫαn−1βn−1
ǫγ1δ1 . . . ǫγn−1δn−1

ǫαnγnǫβnδn

∣

∣

∣

(3.36)

for all even n. Wong and Christensen showed in their article that only even n can

be used since the equation is in general not invariant under permutations for odd

n > 3 which makes it infeasible as a entanglement measure for states with an odd

number of qubits.

Wong and Christensen also proposed a generalization of the n-tangle to mixed

states [165]. Therefore, they used the convex roof approach resulting in

τmin
1...n

(

ρ
)

= min
∑

i

piτ1...n
(

|ϕi〉
)

(3.37)
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where the minimum goes over all possible pure state decompositions of ρ, where

ρ =
∑

pi|ϕi〉〈ϕi|.
The versions of the n-tangle for pure and mixed states are closely related to the

concurrence and further to the entanglement of formation and thus describe a good

measure of entanglement for multipartite systems. Nevertheless, one drawback is

that the n-tangle is in general not defined for odd n > 3. Additionally, the n-tangle

is only defined for subsystems that are qubits.

3.4.3 Huber-Hiesmayr Measure

In an article from 2008, Huber and Hiesmayr proposed an entanglement measure for

any discrete multipartite system [66] based on a generalization of the concurrence

defined on two systems [67]. The authors showed that the total amount of entangle-

ment can be described using the sum over the m-flip concurrence as defined below,

in detail

E
(

ρ
)

= C2
(2)

(

ρ
)

+ C2
(3)

(

ρ
)

+ · · ·+ C2
(m)

(

ρ
)

. (3.38)

Here, E(ρ) denotes the amount of entanglement of ρ. This makes it possible to

separate the entanglement E(ρ) into 2-, 3-, ..., m-flip entanglement. Furthermore,

for special cases E(ρ) can be interpreted as the sum of 2-, 3-, ... and m-partite

entanglement. Looking at three qubits the amount of entanglement can be defined

as

E
(

ρ
)

= E(2)

(

ρ
)

+ E(3)

(

ρ
)

(3.39)

with E(n)(ρ) describing the n-partite entanglement. For n = 2 this is defined as

E(2)

(

ρ
)

= E(12)

(

ρ
)

+ E(23)

(

ρ
)

+ E(13)

(

ρ
)

. (3.40)

To define the m-flip concurrence the authors introduce the entanglement of a

state as the sum of the mixedness of all its subsystems, i.e.

E
(

ρ
)

=

n
∑

s=1

M2
(

ρs
)

=

n
∑

s=1

M2
s

(

ρ
)

(3.41)

where ρs is the subsystem s given by the partial trace on ρ. Further, the squared

mixedness M is defined on the one hand as

M2
(

ρ
)

=
d

d− 1

(

1− Tr
(

ρ2
)

)

(3.42)
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where d is the dimension of the state, e.g. d = 2 for qubits. On the other hand the

squared mixedness of a subsystem s can be defined by flipping, i.e. using the Pauli

operation σx in the qubit case, in any other subsystem s′ 6= s of the state and in all

subsystems [66]. Hence, E(ρ) can be described as the sum of all terms containing

two flips, all terms containing three flips and so on. These terms are then denoted

by C2
(m) which is the definition of the m-flip concurrence. For pure states this is

C2
(m)

(

|ψ〉
)

=
∑

{αj}

∑

i∈{α}

∑

{in}6={i′n}

∣

∣

∣
〈ψ|Ô{αj}

(

|{in}〉〈{in}| − |{i′n}〉〈{i′n}|
)

|ψ〉∗
∣

∣

∣

2

(3.43)

Here, {αj} = {α1, α2, . . . αm} is the set of all possible permutations of m flips in

n systems such that αj denotes the system of the flip. Similarly, |{in}〉 denotes

the state |i1i2 . . . in〉. For every i ∈ {αj}, {in} 6= {i′n} denotes that for all systems

s where a flip takes place is 6= i′s and for all systems t where no flip takes place

it = i′t. The operator Ô is a tensor product having σx in the system αj and the

identity 1 everywhere else. As pointed out in [66] the flip operations are in general

the d dimensional symmetric Gellman matrices and reduce to the Pauli operations

for d = 2. In the general case there are also two additional sums over all dimensions

which can be omitted in the qubit case. Using the definition of them-flip concurrence

C2
(m) the entanglement measure for pure states is given as

E
(

|ψ〉
)

=
n
∑

m=2

C2
(m)

(

|ψ〉
)

. (3.44)

It has to be stressed that for a system of 2 qubits this reduces to the concurrence

introduced by Hill and Wootters [67] multiplied by a factor of 2.

Nevertheless, the m-flip concurrence does not describe the m-partite entangle-

ment. As it is pointed out in [66] the m-flip concurrence is also not invariant under

local operations but can be altered to gain this property and thus describe also

m-partite entanglement. For the three-qubit case this leads to

E(2)

(

|ψ〉
)

= E(12)

(

|ψ〉
)

+ E(23)

(

|ψ〉
)

+ E(13)

(

|ψ〉
)

= C2
(2)

(

Tr3(|ψ〉〈ψ|)
)

+ C2
(2)

(

Tr1(|ψ〉〈ψ|)
)

+ C2
(2)

(

Tr2(|ψ〉〈ψ|)
)

E(m)

(

|ψ〉
)

= max
[

C2
(m)

(

|ψ〉
)

+ C2
(m−1)

(

|ψ〉
)

, E(m−1)

(

|ψ〉
)

]

−E(m−1)

(

|ψ〉
)

(3.45)

with m ≥ 3. The main argument is that the amount of entanglement of any sub-

system is caculated by ignoring the other subsystems.
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The m-flip concurrence can also be defined for mixed states using the convex roof

construction [66]

C2
(m)

(

ρ
)

= inf
pi,|ψi〉

∑

pi,|ψi〉
piC

2
(m)

(

|ψi〉
)

(3.46)

which consequently gives the entanglement measure following eq. (3.44) as

E
(

ρ
)

=
n
∑

m=2

C2
(m)

(

ρ
)

. (3.47)

The main advantage of this measure compared to e.g. the entanglement of formation

is that the m-flip concurrence can be computed easily and thus the measure pre-

sented by Huber and Hiesmayr is a practicable multipartite and multidimensional

entanglement measure.



Chapter 4

Entanglement Purification

In the last chapter, we presented the framework of entanglement measures, which

enables us to characterize how entangled two qubits are. Nevertheless, for commu-

nication protocols it is not only necessary to detect a decrease of entanglement but

also to have a method to repair the tampered states and regain the entanglement.

This is achieved by entanglement purification protocols which enable two communi-

cation parties to recover as much entanglement as they need for their communication

protocol by the use of some of the transmitted states.

4.1 Models of Quantum Channels

4.1.1 Perfect and Noisy Channels

When looking at classical communication we know that information is altered when

traveling through a channel due to noise effects. There are several models represent-

ing noisy channels of which the binary symmetric channel is the simplest and most

commonly used one. In this model the noise is described by a flip of one bit from

0 to 1 and vice versa with probability 1 − p, cf. figure 4.1. Although it is a rather

elementary model of noise in a channel it is sufficient for our further needs.

In classical communication theory there has been extensive research to overcome

these errors to successfully transmit a message over a noisy channel. As a result the

field of error correction has been established and algorithms have been developed

which can detect and correct errors. One simple example for such an error correcting

code is the repetition code, where a single bit is just repeated several times to create

41
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0

1

0

1

p

p

1− p

1− p

Figure 4.1: (Binary Symmetric Channel) Schematic depiction of the classical binary

symmetric channel.

redundancy in the transmission. From this redundancy the receiving party can

deduce the original bit. A good description of other codes for error correction as

well as the theoretical foundations behind them are, for example, given in [161].

In the quantum world, the qubits traveling in a quantum channel are also altered

due to their interaction with the environment. One severe problem is that the infor-

mation stored in qubits is much more fragile than in the classical case. Therefore,

immediately three major problems arise

• Qubits can not be copied unless their exact state is known, as pointed out

in the no-cloning theorem [166]. Thus, an amplification or repetition of the

quantum signal is not possible.

• The measurement of a qubit destroys the information it contains. Therefore,

it is not possible to measure qubits to obtain the exact state for repetition

since all information will be lost. This is another important point against

amplification of a quantum signal.

• Qubits live in a continuous state space whereas classical bits only have two

discrete states, 0 and 1. That means also the errors effecting the qubits are

continuous. Where in the classical case only a bit flip can occur, in the quan-

tum case the information can be altered in many different ways.

Fortunately, these drawbacks are not that severe as it may seem and communication

over noisy quantum channels is also possible in the quantum world. In fact, there are

two possible ways to overcome the effects of noise based on the carrier of information

that is used. If just single qubits are transmitted over a channel then the information

can be recovered using quantum error correction [136, 14]. Such algorithms use

the fact that every possible error in the quantum case can be described by a linear
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combination of bit flip and phase flip errors. Since we focus in this work on entangled

qubits we will not go into detail on error correction but leave the interested reader

with references to [139, 88, 86].

If the carrier of information is entanglement then entanglement purification is

used to correct the error introduced by noise. The main idea is to use a number of

entangled states influenced by noise and generate a fewer number of pure states out

of them. Protocols for entanglement purification have been introduced by Bennett

et al. [12, 14] and are described in detail in section 4.3.

4.1.2 Quantum Noisy Channel Model

Taking some quantum system S and a state ρS in this system, the evolution of ρS

to ρ′S can be described by some map NS, i.e.

ρS
NS7−→ ρ′S. (4.1)

In the most general case NS is subject to the following constraints [131]

• NS has to be linear in the density operators, i.e. for ρS = p1σS + p2δS

NS

(

ρS
)

= p1σ
′
S + p2δ

′
S

= p1NS

(

σS
)

+ p2NS

(

δS
)

(4.2)

• NS has to be trace preserving, i.e. TrρS = Trρ′S = 1.

• NS has to be positive, i.e. if ρS is positive, then ρ′S has to be positive, too.

• NS has to be completely positive, i.e. for any composite system S⊗E the op-

erator NS⊗1E is positive. That means, adjoining a system E (e.g. describing

the environment) does not change the operator NS up to an trivial component

(the system E is left untouched).

With the first three constraints it is assured that NS maps normalized density oper-

ators on normalized density operators. The fourth describes the need that NS has

to be positive also with respect to a larger system. In [132] a quantum information

theory is described which deals with the information processing in the quantum

world. Besides our explanations here we would like to refer to this article for further

details.
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Since the effect of noise on a quantum state ρS is nothing else than the evolution

of ρS to ρ′S it can be described by the superoperator NS. Especially, all unitary

operations US of the form

ρ′S = USρSU
†
S (4.3)

fulfill the four constrains stated above. But also unitary operations that interact with

an environmental system E are included. That means, assuming the environment

to be in the state |0〉E, there are unitary operations USE on the joint system which

fulfill

NS

(

ρS
)

= TrE

(

USE
(

ρS ⊗ |0〉〈0|
)

U †
SE

)

(4.4)

Alternatively, the superoperator describing the noise can be represented in operator-

sum form, which is

NS

(

ρS
)

=
∑

i

AiρSA
†
i . (4.5)

Here, the Ai are all operators acting on the system S fulfilling the condition

∑

i

A†
iAi = 1 (4.6)

Based on this representation of noise we will discuss in the following paragraphs

some models of quantum channels, which are commonly used in literature.

4.1.3 One-Pauli Channel

The simplest model of a noisy channel is the one-Pauli channel [146]. In this model

the qubit going through the noisy channel is affected by a single Pauli operation σ,

i.e.

ρ
σ7−→ ρ′, (4.7)

where σ is either σx, σy or σz.

Taking the Pauli operator σx the corresponding quantum channel is called a bit

flip channel which means the state |0〉 is flipped to |1〉 and vice versa with probability

1 − p (cf. picture (1) in figure 4.2). The state passes the channel unchanged with

probability p. Using the operator sum representation from above this can be written

as

A0 =
√
p 1 =

√
p

(

1 0

0 1

)

A1 =
√

1− p σx =
√

1− p

(

0 1

1 0

)

(4.8)
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|0〉

|1〉

|0〉

|1〉

1− p

1− p

p

p

(1)

|0〉

|1〉

|0〉

−|1〉

|1〉
1− p

1

p

(2)

|0〉

|1〉

−|1〉

|0〉

|1〉

1− p

1− p

p

p

(3)

Figure 4.2: (One-Pauli Channel) Simplified overview of the one-Pauli channel. Pic-

ture (1) represents the σx operation (bit flip), picture (2) the σz operation (phase flip)

and picture (3) the σy operation (combined bit and phase flip).

which leads directly to N (ρ) describing the noise

N
(

ρ
)

= p ρ+
(

1− p
)

σxρσx (4.9)

The quantum channel is called a phase flip channel, if the Pauli operation is σz

(cf. picture (b) in figure 4.2). With probability 1 − p this alters the phase of |1〉
to −|1〉 and of −|1〉 to |1〉. Again, the state remains unchanged with probability p.

Taking the operator sum notation we have

A0 =
√
p 1 =

√
p

(

1 0

0 1

)

A1 =
√

1− p σz =
√

1− p

(

1 0

0 −1

)

(4.10)

and for the illustration of the noise

N
(

ρ
)

= p ρ+
(

1− p
)

σzρσz (4.11)

The third possibility is a combination of the two channels mentioned above, the

bit-phase flip channel. In this case the qubit going through the quantum channel

is flipped from |0〉 to |1〉 and vice versa as well as phase flipped, i.e. from |1〉 to

−|1〉 with probability 1 − p (cf. picture (c) in figure 4.2). The state leaves the

channel unchanged with probability p, respectively. Analogous from above, we get

the operators

A0 =
√
p 1 =

√
p

(

1 0

0 1

)

A1 =
√

1− p iσxσz =
√

1− p

(

0 −i
i 0

)

(4.12)

for the operator-sum representation of the noise induced by the channel

N
(

ρ
)

= p ρ+
(

1− p
)

σyρσy (4.13)
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4.1.4 Two-Pauli channel

Similar to the One-Pauli channel the two-Pauli channel is characterized by the

simultaneous application of two Pauli operators on the state passing the channel

[145]. In detail, this is

A0 =
√
p 1 A1 =

√

1

2
(1− p) σ1 A2 =

√

1

2
(1− p) σ2 (4.14)

where σ1 and σ2 are chosen from the three Pauli operators.

There are again 3 possible combinations of Pauli operations for the Two-Pauli

channel. The first is where σ1 = σx and σ2 = σz which means the state passes the

channel unchanged with probability p, and with probability 1/2(1− p) either a bit

flip or a phase flip occurs. The operator representation for that is

A0 =
√
p 1 A1 =

√

1

2
(1− p)

(

0 1

1 0

)

A2 =

√

1

2
(1− p)

(

1 0

0 −1

)

(4.15)

bringing the noise N (ρ) to the form

N
(

ρ
)

= p ρ+
1− p

2

(

σxρσx + σzρσz
)

(4.16)

Similarly, if σ1 = σx and σ2 = σy the state in transit is either changed by a bit

flip or a combined bit and phase flip with probability 1/2(1−p). Therefore, we have

A0 =
√
p 1 A1 =

√

1

2
(1− p)

(

0 1

1 0

)

A2 =

√

1

2
(1− p)

(

0 −i
i 0

)

(4.17)

describing the noise N (ρ) in the operator-sum form

N
(

ρ
)

= p ρ+
1− p

2

(

σxρσx + σyρσy
)

(4.18)

The third model where σ1 = σz and σ2 = σy representing a phase flip and a combined

phase and bit flip with probability 1/2(1− p) is defined analog.

4.1.5 Depolarizing Channel

The most general and most important model of a quantum channel is the depolar-

izing channel [15, 144, 54]. In this model the noise of the channel depolarizes the

qubit completely thus bringing it into the maximally mixed state 1/2. This brings

us directly to the description of the noise N (ρ)

N (ρ) = p ρ+ (1− p)
1

2
(4.19)
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Obviously, this is not in the operator-sum form but it can be easily brought into

this form using the representation

1

2
=
ρ+ σxρσx + σyρσy + σzρσz

4
. (4.20)

Using this representation for 1/2 in the above equation, we get for the noise N (ρ)

N (ρ) =
1 + 3p

4
ρ+

1− p

4

(

σxρσx + σyρσy + σzρσz
)

(4.21)

Usually, the depolarizing channel is parameterized in a different way, relying also

on the Pauli operations. In this case the channel is described as leaving the state

in transit unchanged with probability α and applying the σx, σy and σz operation

each with probability (1− α)/3. In detail, this means

N (ρ) = α ρ+
1− α

3

(

σxρσx + σyρσy + σzρσz
)

. (4.22)

Comparing eq. (4.22) and eq. (4.21) we directly compute α = (1 + 3p)/4. The

respective operators for this representation are

A0 =
√
α 1 A1 =

√

1

3
(1− α)

(

0 1

1 0

)

A2 =

√

1

3
(1− α)

(

0 −i
i 0

)

A3 =

√

1

3
(1− α)

(

1 0

0 −1

) (4.23)

As we will see later on, the output of this channel is a Werner state [162], which is

used heavily in the following analyses.

4.2 Building Blocks of Entanglement Purification

4.2.1 Bell-Diagonal States and Werner States

The states observed in entanglement purification protocols are mixed states since a

noisy quantum channel corrupts the initially pure state as we have shortly described

in section 4.1 above. Based on the models of quantum channels from above the

most commonly used states are the so called Bell-diagonal states. Such states are a

mixture of all four Bell states weighted with a certain probability, i.e.

W = p1 |Φ+〉〈Φ+|+ p2 |Φ−〉〈Φ−|+ p3 |Ψ+〉〈Ψ+|+ p4 |Ψ−〉〈Ψ−| (4.24)
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where
∑

pi = 1 and pi ≥ 0. A Bell-diagonal state can be considered as coming

from a very general depolarizing channel, i.e. it is affected by each of the 4 Pauli

operations to a certain degree. The most studied special case of a Bell-diagonal state

is the Werner state [162], which is heavily used in connection with entanglement

purification. A Werner state is characterized only by one parameter F instead of

four and is written as

WF = F|Ψ−〉〈Ψ−|+ 1− F

3

(

|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|
)

. (4.25)

The parameter F of the Werner state describes its fidelity F = 〈Ψ−|WF |Ψ−〉 relative
to the initial pure state |Ψ−〉. Also the connection to the depolarizing channel is

much more obvious for a Werner state. Looking at eq. (4.22) we immediately see

that a Werner state is described by a mixture of the pure state |Ψ−〉 and some white

noise

WF = p |Ψ−〉〈Ψ−|+
(

1− p
) 1

4
(4.26)

with p = (4F − 1)/3. As already described above the identity operator 1 is just

another notation for the sum of all four Bell states

1 = |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|. (4.27)

The 1/4 is the completely mixed state of two qubits, i.e. a state consisting of

all four Bell states with equal probability which indicates that every information

about the initial state is completely lost. As we will describe in the next section

every Bell-diagonal state can be brought into a Werner form using a number of twirl

operations.

4.2.2 Unilateral and Bilateral Operations

In the process of entanglement purification Bell states sometimes have to be mapped

onto other Bell states to perform some operations correctly. This is especially the

case when dealing with a Werner state, which is in a mostly |Ψ−〉〈Ψ−| form but

should be brought, for example, into a mostly |Φ+〉〈Φ+| form to continue with the

operations. This can be achieved by unilateral rotations of the angle π on one qubit

of a Bell state, bilateral π/2 rotations on both qubits of a Bell state or a bilateral

controlled NOT operation on two Bell states.

The simplest form of a mapping of Bell states onto Bell states are the unilateral

rotations of the angle π. These rotations correspond to the Pauli operations σx, σy
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and σz, where the σi describes a rotation about the i-axis. The general representation

of such a rotation operator is

Rx

(

θ
)

=

(

cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2

)

Ry

(

θ
)

=

(

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

)

Rz

(

θ
)

=

(

e−iθ/2 0

0 eiθ/2

)

(4.28)

which leads to the Pauli operations already defined throughout section 4.1

σx = iRx

(

π
)

=

(

0 1

1 0

)

σy = iRy

(

π
)

=

(

0 −i
i 0

)

σz = iRz

(

π
)

=

(

1 0

0 −1

)

(4.29)

The Pauli operators – together with the identity matrix 1 – map the 4 Bell states

onto one another when applied on one qubit. For example, giving |Φ+〉, σx applied

on the first qubit changes the state into |Ψ+〉, σy maps it onto |Ψ−〉 and σz brings

the state to |Φ−〉, i.e.
(

σx ⊗ 1
)

|Φ+〉 = 1√
2

(

(

σx|0〉
)

|0〉+
(

σx|1〉
)

|1〉
)

= |Ψ+〉
(

σy ⊗ 1
)

|Φ+〉 = 1√
2

(

(

σy|0〉
)

|0〉+
(

σy|1〉
)

|1〉
)

= −i|Ψ−〉
(

σz ⊗ 1
)

|Φ+〉 = 1√
2

(

(

σz|0〉
)

|0〉+
(

σz|1〉
)

|1〉
)

= |Φ−〉

(4.30)

In some cases the resulting state has a global phase, in this case −i for σy, which can

be neglected when dealing with purification protocols. An overview of the mapping

of all Bell states is given in table 4.1. As already pointed out, these mappings using

Pauli operations are often used to bring a Werner state of a mostly |Ψ−〉〈Ψ−| form
(c.f eq. (4.25)) into a mostly |Φ+〉〈Φ+| form and vice versa to correctly apply the

twirl-operation as mentioned above. In detail,

(

σy⊗1
)

WF

(

σy⊗1
)

= F|Φ+〉〈Φ+|+1− F

3

(

|Φ−〉〈Φ−|+|Ψ+〉〈Ψ+|+|Ψ−〉〈Ψ−|
)

(4.31)
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|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
1 |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
σx |Ψ+〉 |Ψ−〉 |Φ+〉 |Φ−〉
σy |Ψ−〉 |Ψ+〉 |Φ−〉 |Φ+〉
σz |Φ−〉 |Φ+〉 |Ψ−〉 |Ψ+〉

Table 4.1: Mapping of Bell states onto Bell states using Pauli operations. Global

phases are omitted.

A second way to realize a mapping from one Bell state onto another is a bilateral

π/2 rotation, i.e. applying a rotation of an angle π/2 on both qubits of a Bell state.

These operations follow directly from the general rotation operations described in

eq. (4.28) and can be written as

Bx =
1√
2

(

1 −i
−i 1

)

By =
1√
2

(

1 −1

1 1

)

Bz =
1√
2

(

e3iπ/4 0

0 eiπ/4

)

(4.32)

The effect of the π/2 rotation on the Bell state |Φ+〉 is then
(

Bx ⊗ Bx

)

|Φ+〉 = 1√
2

(

Bx|0〉Bx|0〉+Bx|1〉Bx|1〉
)

= −i|Ψ+〉
(

By ⊗By

)

|Φ+〉 = 1√
2

(

By|0〉By|0〉+By|1〉By|1〉
)

= |Φ+〉
(

Bz ⊗ Bz

)

|Φ+〉 = 1√
2

(

Bz|0〉Bz|0〉+Bz|1〉Bz|1〉
)

= i|Φ−〉.

(4.33)

From this equation we see that the map does not reach all four Bell states but only

|Φ+〉, |Φ−〉 and |Ψ+〉 (up to a global phase) if |Φ+〉 is used. In fact, each of the three

operations maps one Bell state onto one of three Bell states but never onto the state

|Ψ−〉. |Ψ−〉 is completely untouched by the operators Bx, By and Bz and maps only

onto itself, as it can be seen in table 4.2.

An application of these rotation operators is to bring an arbitrary mixed state

into a Werner form using the so called twirl operation [14, 12]. The twirl is a random

combination of 12 SU(2) operations consisting of the Bx, By and Bz operators, i.e.

U1 = 1 U2 = BxBx U3 = ByBy U4 = BzBz

U5 = BxBy U6 = ByBz U7 = BzBx U8 = ByBx (4.34)

U9 = BxByBxBy U10 = ByBzByBz U11 = BzBxBzBx U12 = ByBxByBx
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|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
1 |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
Bx |Ψ+〉 |Φ−〉 |Φ+〉 |Ψ−〉
By |Φ+〉 |Ψ+〉 |Φ−〉 |Ψ−〉
Bz |Φ−〉 |Φ+〉 |Ψ+〉 |Ψ−〉

Table 4.2: Mapping of Bell states onto Bell states using π/2 rotations. Global phases

are omitted.

such that the overall twirl operation U can be described as

U =
1

12

12
∑

i=1

Ui (4.35)

The twirl has the effect of removing the off-diagonal elements of a mixed state

thus bringing it into a Werner form. As it is described in the detailed purification

protocols below the Werner form is needed to guarantee that the fidelity reaches 1

in the asymptotic limit.

To interchange between the Bell states as it can be done with Pauli operations

is a much more difficult task using only π/2 rotations, since the state |Ψ−〉 can’t be
reached. Furthermore, in contrary to the Pauli operators, both parties somehow have

to agree upon which operation to perform if they want to alter a Bell state shared

between them. This has a much higher complexity regarding the communication

compared to one party using a Pauli operation to change the state.

4.2.3 Bilateral CNOT Operation

Another method to map between Bell states is to use controlled NOT (CNOT)

operations on two Bell pairs. A controlled NOT is an operator of the form

CNOT12 = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ σx =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













(4.36)

which takes the first qubit as source and the second qubit as target. If qubit 1 is |1〉
then qubit 2 is flipped, otherwise nothing happens. The CNOT operation has the
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ability to entangle two qubits, i.e.

CNOT12

(

1√
2

(

|0〉1 + |1〉1
)

⊗ |0〉2
)

= |Φ+〉12 (4.37)

or, controversially, to disentangle a Bell state by applying a CNOT onto it. In

the context of entanglement purification the CNOT is used to perform a test and

generate, with a certain probability, an entangled pair of higher fidelity out of two

input pairs. To achieve that a CNOT operation is performed by both parties involved

in the protocol, hence the operation is called a bilateral CNOT (BCNOT). The

operation is of the form

BCNOT =CNOT⊗ CNOT

=|00〉〈00| ⊗ 1⊗ 1+ |01〉〈01| ⊗ 1⊗ σx

+|10〉〈10| ⊗ σx ⊗ 1+ |11〉〈11| ⊗ σx ⊗ σx.

(4.38)

The BCNOT also maps the source and target state onto other Bell states as described

in table 4.3. If both parties share a Werner state ρ in a mostly |Φ+〉〈Φ+| form we can

Source

Target
|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉

|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉 (source)

|Φ+〉 |Φ+〉 |Φ+〉 |Ψ+〉 |Ψ+〉 (target)

|Φ−〉 |Φ+〉 |Ψ−〉 |Ψ+〉 (source)

|Φ−〉 |Φ−〉 |Φ−〉 |Ψ−〉 |Ψ−〉 (target)

|Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉 (source)

|Ψ+〉 |Ψ+〉 |Ψ+〉 |Φ+〉 |Φ+〉 (target)

|Φ−〉 |Φ+〉 |Ψ−〉 |Ψ+〉 (source)

|Ψ−〉 |Ψ−〉 |Ψ−〉 |Φ−〉 |Φ−〉 (target)

Table 4.3: Mapping of Bell states onto Bell states using BCNOT operations. Global

phases are omitted.

directly compute, based on this mapping, the resulting state after they performed
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the BCNOT. This is the state δ = BCNOT(ρ⊗ ρ)BCNOT, i.e.

δ = F|Φ+〉〈Φ+| ⊗
(

F|Φ+〉〈Φ+|+ (1− F)

3
|Ψ+〉〈Ψ+|

)

+
(1− F)

3
|Φ−〉〈Φ−| ⊗

(

F|Φ−〉〈Φ−|+ F|Φ+〉〈Φ+|

+ F|Ψ−〉〈Ψ−|+ F(1− F)

3
|Ψ+〉〈Ψ+|

)

+
(1− F)

3
|Ψ+〉〈Ψ+| ⊗

(

F|Ψ+〉〈Ψ+|+ (1− F)

3
|Φ+〉〈Φ+|

+
(1− F)

3
|Φ−〉〈Φ−|+ (1− F)

3
|Ψ+〉〈Ψ+|

)

+
(1− F)

3
|Ψ−〉〈Ψ−| ⊗

(

F|Ψ+〉〈Ψ+|+ (1− F)

3
|Φ+〉〈Φ+|

+
(1− F)

3
|Φ−〉〈Φ−|+ (1− F)

3
|Ψ+〉〈Ψ+|

)

(4.39)

4.2.4 Measurement in the Computational Basis

After the application of the BCNOT both parties are able to determine whether

the source qubits 1 and 2 are in an entangled state by performing a measurement

on the target qubits 3 and 4 in the computational basis. The operators for this

measurement are

M00 = 1⊗ 1⊗ |00〉〈00| M01 = 1⊗ 1⊗ |01〉〈01|
M10 = 1⊗ 1⊗ |10〉〈10| M11 = 1⊗ 1⊗ |11〉〈11|.

(4.40)

projecting qubits 3 and 4 onto the states |00〉, |01〉, |10〉 and |11〉. The state δ from

eq. (4.39) above has the property that qubits 1 and 2 collapse into a mixed state ρ′

if Alice and Bob obtain the same result from their measurement, i.e.

ρ′ =
1

Tr(M †
00M00δ)

(

M00δM
†
00

)

=
1

Tr(M †
11M11δ)

(

M11δM
†
11

)

=
1

5− 4F + 8F2

[

(1− 2F + 10F2)|Φ+〉〈Φ+| − 6F
(

F− 1
)

|Φ−〉〈Φ−|

+2
(

F− 1
)2|Ψ+〉〈Ψ+|+ 2

(

F− 1
)2|Ψ−〉〈Ψ−|

]

.

(4.41)

This state has a fidelity 〈Φ+|ρ′|Φ+〉 > 〈Φ+|ρ|Φ+〉 if both parties obtain the same

results. In this case the source qubits are kept to use further on. If the results of the

measurement are different, the state of qubits 1 and 2 is the maximally mixed state

of 2 qubits, 1/4. Thus, all entanglement is lost and the source qubits have to be

discarded. The probability peq of obtaining the same result, i.e. |00〉 or |11〉, from the
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measurement of qubits 3 and 4 depends fully on the initial fidelity F = 〈Φ+|ρ|Φ+〉
of the Werner state ρ = |WF 〉〈WF |. For a better understanding we will choose

F = (1 + 3α)/4, which describes the Werner state ρ as the effect of a depolarizing

channel on the entangled state |Φ+〉, i.e.

|Φ+〉〈Φ+| 7−→ α|Φ+〉〈Φ+|+ (1− α)1 (4.42)

This gives for the probability peq that both parties obtain the same result

peq = p00 + p11 = Tr
(

M †
00M00

)

+ Tr
(

M †
11M11ρ

)

=
1

2

(

1 + α2
)

(4.43)

and, accordingly, for the probability pneq that their results are different

pneq = p01 + p10 = Tr
(

M †
01M01

)

+ Tr
(

M †
10M10ρ

)

=
1

2

(

1− α2
)

. (4.44)

It directly shows from eq. (4.43) and figure 4.3 that it is more likely for Alice and

peq

pneq

0.0 0.2 0.4 0.6 0.8 1.0
Α0.0

0.2

0.4

0.6

0.8

1.0

p

Figure 4.3: (Probabilities in a depolarizing channel) Alice’ and Bob’s probability to

obtain equal (solid line) and different (dashed line) results depending on α.

Bob to obtain the same results the higher α and thus the initial fidelity F of the

state ρ is. The probabilities peq and pneq are the same if α = 0 (and F = 0.25,

respectively) and the resulting state is just the completely mixed state 1/4. The

fidelity F ′ = 〈Φ+|ρ′|Φ+〉 is higher than the fidelity F = 〈Φ+|ρ|Φ+〉 of the initial state
only if 〈Φ+|ρ|Φ+〉 > 0.5 which is the minimal fidelity Fmin required for purification

of Bell states. Regarding the coefficient α from the depolarizing channel model this

means

F =
1 + 3α

4
<

1 + 2α+ 5α2

4 + 4α2
= F′ 7−→ α <

2α + 4α2

3 + 3α2
= α′ (4.45)
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which is valid for α > 1/3 (and F > 1/2), as it is given in figure 4.4. It has also

been shown [42] that the fidelity 〈Φ+|ρ′|Φ+〉 approaches 1 in the asymptotic limit.

Thus, it is possible to obtain the pure state |Φ+〉 out of infinitely many mixed states

ρ, which are coming from a noisy channel.

0.0 0.2 0.4 0.6 0.8 1.0
Α0.0

0.2

0.4

0.6

0.8

1.0
Ά

Figure 4.4: (Fidelities in a depolarizing channel) The coefficient after the measure-

ment (α′) in relation to the coefficient of the initial state (α). The dashed line indicates

the limit α′ = α for entanglement purification.

The new state ρ′ is then used in another iteration of the entanglement purification

procedure and so on to generate a state arbitrarily close to the pure initial state.

Alice and Bob have to be aware that the state ρ′ is no longer of a Werner state form,

as described in eq. (4.41). Therefore, both parties have to apply a σy operation

to bring the state first into a mostly |Ψ−〉〈Ψ−| form and then perform the twirl

operation U (c.f eq. (4.35)) which does not affect the |Ψ−〉〈Ψ−| part. Afterwards

they rotate the state back to a mostly |Φ+〉〈Φ+| Werner form. As we will see later

on it is also possible to apply a Bx operation instead of U to achieve the same effect

(cf. section 4.3.1).

4.3 Entanglement Purification Protocols

In the following we will describe a number of one-way and two-way entanglement

purification protocols. The terms one-way and two-way describe the way how the

two parties performing the purification, Alice and Bob, communicate with each

other: if they exchange information bilaterally the protocol is called two-way and
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one-way otherwise. Both one- and two-way protocols start with an initial amount

of n entangled states. Due to the noise coming from the channel these states are

impure and in a Werner form similar to eq. (4.25),

ρ = F|Φ+〉〈Φ+|+ 1− F

3

(

|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|
)

(4.46)

The general attempt is to analyzem of these pairs such that the remaining n′ = n−m
are of a higher fidelity than the initial states. How this can be achieved is discussed

in detail in the following sections.

How effective a certain purification procedure is can be measured comparing the

yield of several protocols. The yield of a purification procedure is defined [14]

D
(

ρ
)

= lim
n→∞

n′

n
(4.47)

where ρ is an impure state (cf. also eq. (3.1), i.e. the definition of the entanglement

of distillation). If the state is perturbed due to traveling through a quantum channel

the yield D(ρ) can be seen as the number of qubits that can be transmitted through

this channel.

4.3.1 Recurrence Method

This purification procedure was originally described in [12] and is a two-way protocol.

In this protocol Alice chooses two states at random from an ensemble of Werner

states ρ. We want to remind that these states are shared between Alice and Bob

and thus Alice can only act on the qubits in her possession. Both apply the BCNOT

operation on their qubits which affects the corresponding qubits at Bob’s side in a

way described in table 4.3. After the BCNOT the two pairs are in a mixture of

entangled states δ (cf. eq. (4.39)) and Alice and Bob measure the target qubits.

They obtain the same results with probability

peq = Tr
(

M00δ
)

+Tr
(

M11δ
)

=
1

9

(

5− 4F + 8F2
)

(4.48)

similar to eq. (4.43) above and in this case keep the source pair. Otherwise they

discard the two qubits from the source of the BCNOT operation. They repeat these

actions for all the n initial states thus ending up with a smaller set of states ρ′

(cf. eq. (4.41)) which passed their test. As pointed out in section 4.2.4 above, the

fidelity F′ = 〈Φ+|ρ′|Φ+〉 is
F′ =

1− 2F + 10F2

5− 4F + 8F2 (4.49)
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which is, as pointed out in section 4.2.4 above, higher than the fidelity of the initial

state as long as F > Fmin = 0.5 but is not of a Werner form any more.

Therefore, Alice and Bob perform the bilateral twirl operation U from eq. (4.35)

on their remaining states bringing them into Werner form again. Then, the situation

is similar to the beginning and Alice and Bob start a second round of purification on

the remaining n′ Werner states. The fidelity of the remaining states after the second

iteration increases as described in eq. (4.49). Therefore, Alice and Bob can continue

their action in further iterations of the protocol to bring the fidelity arbitrarily close

to 1 or until they end up with a number of states with sufficient fidelity.

As it is given in [14], there was a comment by Macchiavello regarding the twirl

operation. He pointed out that the use of only the Bx operation instead of the twirl

would be more efficient. Taking only the Bx operation the state is no longer of

Werner form after the first iteration of the purification procedure. Nevertheless, the

fidelity will not only converge to 1 in the asymptotic limit but will converge faster

than in the original protocol using the twirl operation.

The recurrence method is rather inefficient since at least half of the entangled

pairs have to be discarded each round because either they are measured by Alice

and Bob or don’t pass the test and can’t be used in the next iteration. This means

the yield DR(ρ) tends to 0 in the asymptotic limit, which is not a desirable case. One

improvement has been described in [12] where the authors suggest that 1/
√
1− F

states are used as source for the BCNOT operation. Using this change in the

purification procedure only (2
√
1− F)/3 pairs have to be discarded in each step and

thus a positive yield can be achieved in the asymptotic limit.

4.3.2 Quantum Privacy Amplification

Another purification protocol similar to the recurrence method has been presented by

Deutsch et al. [42]. They proposed a scheme called Quantum Privacy Amplification

(QPA) referring to classical privacy amplification [13]. In their scheme Deutsch et al.

start with the legitimate assumption that the Bell states shared by Alice and Bob

are prepared by an adversary. Hence, both parties can not make any conjectures

about their initial states, thus defining them as ρ12 and ρ34 with ρ the Bell-diagonal

state

ρ = α1|Φ+〉〈Φ+|+ α2|Φ−〉〈Φ−|+ α3|Ψ+〉〈Ψ+|+ α4|Ψ−〉〈Ψ−| (4.50)
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Alice and Bob start the QPA by performing a Bx rotation (cf. eq. (4.32)), i.

e. Alice applies Bx onto her qubits whereas Bob applies the inverse operation B−1
x ,

i.e. a rotation of −π/2 about the x-axis, onto his qubits. Similar to the recurrence

method described in the previous section Alice and Bob perform a bilateral CNOT

operation onto ρ12⊗ρ34 where 1 and 2 are the control qubits and 3 and 4 the target

qubits. Afterwards, they measure the target qubits in the Z-basis and compare their

results. If both parties obtain the same result the control qubits are kept, otherwise

qubits 1 and 2 are discarded.

In detail, using the initial state ρ⊗ ρ the probability for Alice and Bob to obtain

coinciding results is

peq = Tr
(

M00δ
)

+Tr
(

M11δ
)

=
(

α1 + α4

)2
+
(

α3 + α2

)2
(4.51)

In this case, Alice and Bob keep the control qubits, which have a fidelity F ′ =

〈Φ+|ρ′|Φ+〉 of
F ′ =

α2
1 + α2

4

(α1 + α4)2 + (α3 + α2)2
(4.52)

which is larger than the original fidelity F = α1 if α1 > Fmin = 1/2. As pointed

out in [42] a repeated application of the QPA on an ensemble of n qubit pairs in

the state ρ increases the fidelity of the resulting state (if Alice’s and Bob’s result

coincide) and it converges to 1.

Taking α2 − α4 with the same value, i.e.

α2 = α3 = α4 =
1− α1

3
(4.53)

the initial state ρ becomes a Werner state and the scheme reduces to the recurrence

method. Hence, Machiavello’s comment in [14] mentioned above is approved in the

QPA scheme.

The scheme by Deutsch et al. [42] has been extended by Dür et al. [45] who

suggested to use an auxiliary Werner state with a specific fidelity Fπ as target of

the BCNOT operation instead of the entangled state coming from the previous

purification round. The main drawback of this alternative scheme is that it does

not converge to 1 due to the fixed fidelity Fπ and therefore is only applicable in

scenarios where perfect entanglement is not necessary. Nevertheless, the resources

needed for the purification are decreased drastically which makes it the favorable

scheme for the nested purification and the quantum repeater (cf. section 4.4 below).
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4.3.3 Direct Purification

Although most of the purification protocols use mixed states of a Werner form or

at least of a Bell-diagonal form it is also possible to purify a state directly. This

has the advantage that the entanglement is not decreased by the application of the

twirling operation. Taking a mixture of an entangled state and a product state, e.g.

ϑ =
1

2
|01〉〈01|+ 1

2
|Φ+〉〈Φ+|, (4.54)

the state can not be purified by the recurrence method since it’s fidelity 〈Φ+|ϑ|Φ+〉 =
0.5. Nevertheless, using the following procedure an ensemble of the states ϑ can be

brought to |Φ+〉 with a certain probability. As in the recurrence method Alice

and Bob randomly draw two impure pairs from the ensemble and apply a BCNOT

operation on the qubits in their possession. This leads to the state

ϑ′ =BCNOT
(

ϑ⊗ ϑ
)

=
1

4

[

|01〉〈01| ⊗
(

|01〉〈01|+ |Ψ+〉〈Ψ+|
)

+|Φ+〉〈Φ+| ⊗ |Φ+〉〈Φ+|+ |GHZ4〉〈GHZ4|
]

(4.55)

where |GHZ4〉 is the 4-qubit GHZ state 1/
√
2(|0001〉+|1110〉). Then they both mea-

sure their target qubits in the computational basis and publicly compare the results.

It is shown from the structure of ϑ′ that the source qubits will be in the entangled

state |Φ+〉 if Alice and Bob both obtain the result |1〉 from their measurement, which

happens with probability 1/8. In this case Alice and Bob will immediately end up

with a pure entangled state.

This scheme can be generalized such that the initial state is

ϑ =
(

1− F
)

|01〉〈01|+ F|Φ+〉〈Φ+| (4.56)

and the probability for Alice and Bob to obtain a pure entangled state is F2/2.

Since the direct purification method has only one step it is more efficient than

the recurrence method. It also has to be noted that a different model of the noisy

channel is used. Additionally, the procedure does not make use of the twirl operation

such that no entanglement is destroyed by the bilateral rotations. Furthermore, as

it is pointed out in the example, with this method Alice and Bob are able to use

states with a fidelity smaller than 0.5 to generate pure states. The only drawback is

that half of the qubits are useless since they are measured by Alice and Bob. This
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gives an overall yield of half of the probability that Alice and Bob obtain |11〉 from
their measurement, i.e. DD(ρ) = F2/4.

4.3.4 Breeding Method

In the breeding method, first described in [12], Alice and Bob take advantage of a

number of preshared pure entangled states to purify an ensemble of Werner states.

This has the advantage that, if the fidelity of the Werner states is not too low, i.e.

their von Neuman entropy is less than 1, the generation of the new entangled states

will not exceed the consumption of the preshared pure states. In detail, Alice and

Bob have a pool of preshared pure Bell states |Φ+〉 and a set of mixed state WF . In

this case the mixed states are treated as an ensemble of pure Bell states and the two

parties try to bring all entangled pairs into the state |Φ+〉 using Pauli operations.

As in the other purification procedures they make use of the BCNOT operation but

this time they use the qubits coming from the quantum channel as source and one of

the preshared pure states as target. As it is shown in table 4.3 if the state |Φ+〉 is the
target of a BCNOT operation, the source stays unchanged and the target changes to

|Ψ+〉, if the source is |Ψ±〉. By performing BCNOT operations on random subsets

of the incoming qubit pairs Alice and Bob use this fact to apply some sort of parity

check to locate all |Ψ±〉 states. Then one party applies the Pauli operator σx on one

qubit of these states to convert |Ψ±〉 to |Φ±〉. Afterwards, both parties apply the

bilateral By rotation on all qubits in their possession, which brings the states |Φ−〉 to
|Ψ+〉 (cf. table 4.2). Now, Alice and Bob perform another BCNOT test to identify

the remaining |Ψ+〉 states and convert them into |Φ+〉 using the σx operation.

The actions performed by Alice and Bob can also be described alternatively: The

BCNOT operation applied on the Werner states together with the pure states |Φ+〉
as target brings the four qubits into the state

ρ′ = F|Φ+Φ+〉〈Φ+Φ+|+ 1− F

3

(

|Φ−Φ+〉〈Φ−Φ+|

+|Ψ+Ψ+〉〈Ψ+Ψ+|+ |Ψ−Ψ+〉〈Ψ−Ψ+|
)

(4.57)

Then, Alice and Bob use the operator

1⊗ 1⊗|Φ+〉〈Φ+|+ 1⊗ 1⊗ |Φ+〉〈Φ−|
+σx ⊗ 1⊗|Ψ+〉〈Φ+|+ σx ⊗ 1⊗ |Ψ−〉〈Φ−|

(4.58)
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to apply the σx operator on the |Ψ±〉 states exclusively. The operator in eq. (4.58)

can be understood as a controlled σx which only acts on Alice’s qubit if the target

is either |Ψ+〉 or |Ψ−〉. This brings the state ρ′ to

ρ′′ = F|Φ+Φ+〉〈Φ+Φ+|+ 1− F

3

(

|Φ−Φ+〉〈Φ−Φ+|

+|Φ+Ψ+〉〈Φ+Ψ+|+ |Φ−Ψ+〉〈Φ−Ψ+|
)

(4.59)

Afterwards, both parties apply the bilateral By operation swapping the |Φ−〉 to

|Ψ+〉, i.e.

ρ′′′ = F|Φ+Φ+〉〈Φ+Φ+|+ 1− F

3

(

|Ψ+Φ+〉〈Ψ+Φ+|

+|Φ+Ψ+〉〈Φ+Ψ+|+ |Ψ+Ψ+〉〈Ψ+Ψ+|
)

(4.60)

Applying the operator from eq. (4.58) a second time switches all |Ψ+〉 states to |Φ+〉
leaving the source qubits finally in the pure state |Φ+〉. The qubits originating from

the preshared pure states have to be discarded.

We have to stress that this alternative method is just an interpretation and can

not be implemented in this way. The main reason is that the operation in eq. (4.58)

is acting on all four qubits, i.e. all four qubits have to be located in one place. Since

Alice and Bob are separated, the implementation of this operation is not possible.

Nevertheless, this alternative description gives a good hint for the idea behind the

breeding method.

Regarding the efficiency of the breeding method it is stated in [12] that the yield

DB = 1 − S(ρ) where S is the von Neuman entropy. As described in the article,

this is based on the fact that the number of BCNOT tests to find all errors in the

ensemble is S(ρ) per impure pair in the asymptotic limit. For Werner states this

yield can be written as

1− S
(

ρ
)

= 1 + F log2 F +
(

1− F
)

log2
1− F

3
(4.61)

and becomes positive for F > 0.8107 [12]. Using a more efficient version of the

breeding protocol performing a so called partial breeding as presented in [77] the

necessary fidelity for a positive yield can be reduced to F > 0.7424.

4.4 Nested Entanglement Purification

In the description of the purification protocols above we already pointed out that

the entanglement between two qubits has to be of fidelity larger than Fmin to make
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purification possible. For example, taking the recurrence method from section 4.3.1

and the quantum privacy amplification from section 4.3.2, Fmin = 1/2. Using an

initial state with fidelity F < Fmin the purification procedure is going to reduce the

fidelity instead of increasing it.

In a realistic environment we also have to take into account that the fidelity F of

the Werner state decreases exponentially with the length l of the channel. Modeling

our quantum channel as a photonic channel [152] it has been shown in [22] that the

fidelity is given by

F ≃
∣

∣

∣

∣

1 + e−l/2lc

2

∣

∣

∣

∣

2

(4.62)

where lc is the coherence length of an optical fiber. Therefore, we see from figure

4.5 that the fidelity of the initial state is below 0.5 for a channel longer than 17.62

km with a coherence length lc = 10 km which means that purification is no longer

possible at this distance. For a higher coherence length the maximum distance is

increased accordingly.

lc=10 km

lc=30 km

lc=50 km
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Figure 4.5: (Noisy Channels) Correlation between the fidelity F and the length l of

a noisy quantum channel.

To overcome the distance problem Dür et al. [45] proposed a scheme for nested

purification to establish entanglement over longer distances. The main idea is to

divide the whole distance into N segments of smaller length such that an entangled

state of fidelity larger than Fmin can be created. This leads to a scheme with N − 1

control centers C1 . . . CN−1 between Alice and Bob, which establish a Bell state
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between Ci and Ci+1 (cf. figure 4.6). These N Bell states can be connected again

using entanglement swapping performed at each control center Ci. Consequently,

two additional problems arise: first, since the initial Bell states are not pure, the

entanglement swapping is not perfect either such that the fidelity of the resulting

state in the end is lower than the initial fidelity. This can be overcome by sharing

M Bell states initially between Alice and C1, CN−1 and Bob as well as Ci and

Ci+1 such that Alice and Bob are able to purify the resulting Bell states after the

entanglement swapping. In general, and this is the second problem, the fidelity of

the states resulting from the entanglement swapping performed by the Ci is below

Fmin such that purification is no longer possible.

...

A C1 C2 C3 CN−1 B

Figure 4.6: (Nested Purification Protocol) Illustration of the connection of N seg-

ments, i.e. N Werner states, between Alice and Bob.

Therefore, Dür et al. suggest an iteration of the connection-purification process

[45]. The total number of segments, N , is divided into groups consisting of L

segments (cf. figure 4.7) such that these L segments can be connected and the

fidelity FL of the resulting state is higher than Fmin. Hence, the M Bell states

between the parties can be purified to at least their initial fidelity. This scheme is

repeated for every group of L segments until there are N/L of these groups. For the

purification process of the next iteration a multiple of M of additional Bell states

is needed. Now, the connection centers CL, C2L and so on are able to connect the

Bell states using entanglement swapping and purify the resulting states.

This scheme allows Alice and Bob to share entanglement over a large distance

with an arbitrarily high fidelity using the help of several control centers Ci. Dür

et al. presented this scheme as a possible implementation for quantum repeaters to

overcome the distance problem in quantum cryptography (cf. section 5.2.4).

One topic of major interest regarding the quantum repeater scheme is the cost,

i.e. the number of entangled states required to establish one state of at least fidelity

F between Alice and Bob. To describe this amount in detail we are going to use

in the following paragraphs the recurrence method as purification protocol. Is has

been pointed out by Dür et al. that this protocols requires a rather high number
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L

M

L L

M

M

Figure 4.7: (Nested Purification Protocol) Schematic depiction of the nested purifi-

cation by Dür et al. [45]. Here we have N = 9 segments, divided into L = 3 parts

and using M = 4 copies of entangled states for each purification round.

of entangled states [45] but the amount of entangled states can be described very

easily. We define the number of required entangled states as

S
(

l, N,F
)

= N ×N It(Fswap,Fseg) × 2It(Fseg,F) (4.63)

with l the whole distance between Alice and Bob, N the number of segments into

which the distance is divided and F the desired fidelity of the resulting state. The

function It(Fin,Fout) returns the number of iterations required using a specific purifi-

cation protocol to bring a number of input states of fidelity Fin to a desired fidelity

Fout. In this context the fidelities Fseg is the fidelity of an entangled state over the

distance of a segment, i.e.

Fseg =

∣

∣

∣

∣

1 + e−l/20N

2

∣

∣

∣

∣

2

(4.64)

defined accordingly to eq. (4.62) above. At last, Fswap describes the fidelity after

the entanglement swapping between states.

The number S(l, N,F) gives a lower bound on the number of required states

because only successful purification steps are considered. As already discussed,

Alice and Bob could end up with different results from their measurements on the

target qubits during the entanglement purification. In this case they have to discard

the source qubits too and use the next states. Nevertheless, S(l, N,F) gives a good

approximation of the amount of required states for entanglement purification when

using the recurrence method (cf. section 9.4). An approximation of the cost of other

purification schemes has been done by Dür et al. [45].



Chapter 5

Quantum Cryptography

The main field of application for quantum mechanics is quantum cryptography. The

idea of the combination of quantum mechanics and cryptography was introduced

by Wiesner who proposed a system for counterfeit-proof money based on quantum

states [163]. The special need for quantum cryptography has been addressed by Shor

who described an algorithm for a quantum computer to solve the discrete logarithm

and the factorization problem [137] based on the implementation of the quantum

Fourier transformation [41]. These two problems are the basis of most of todays

public key cryptosystems [43, 123]. Therefore, the goal was to find an alternative

way to securely transmit information even in the presence of a quantum computer.

One cryptographic primitive to achieve that is quantum key distribution (QKD).

5.1 The Basic Idea

In a quantum cryptographic protocol the information transmitted between the com-

munication partners, from now on called Alice and Bob, is encoded into quantum

states, mainly single qubits but also entangled qubit pairs or entangled multi-qubit

states. The states are measured by both parties and they retrieve the same infor-

mation only if they use the same bases in their measurements. Due to the quantum

nature of the communication system there are some major differences to classical

communications, which are sketched in the next few paragraphs.

The security of quantum cryptographic protocols is based on phenomena from

quantum mechanics. At this, the most important phenomenon is that a measure-

ment perturbs a quantum systems. When looking at the classical context it is always

65
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possible to access the bits stored on a hard drive or in transit in a communication

channel. Hence, an adversary, Eve, is able to gain full access to the bits sent from

Alice to Bob over a classical channel. In a quantum setting Eve can not intercept

and measure a qubit in transit between Alice and Bob without changing it unless

she knows the exact basis. Since Alice and Bob choose their bases at random (cf.

the protocols described in the following sections) it is very unlikely that Eve achieves

a correct guess for every single qubit. As a consequence of Eve’s measurement, the

original information is lost and Eve’s intervention introduces a certain error rate

into the measurement results of Alice and Bob, which can be detected by them.

Another phenomenon which is counter-intuitive from a classical point of view is

that a quantum state, i.e. a qubit, can not be cloned. As just pointed out for the

classical case, an adversary can intercept the bits in transit between Alice and Bob

and perform operations on them. Moreover, Eve is able to make a copy of classical

bits to store and analyze them later on when she gains additional information, for

example, about their encryption. Regarding quantum information Wooters and

Zurek showed in their article [166] that qubits can not be copied in such a way,

which is called the no-cloning theorem. This results directly from the fact that

the measurement of a qubit destroys its information unless the correct basis is used.

Since for a qubit in an unknown state the correct basis for a measurement can not be

determined, information is lost during the attempt of copying. Thus, an adversary

is not able to make a perfect copy of a qubit in transit and measure it later on to

reduce the error introduced by directly measuring the qubit.

A number of quantum cryptographic protocols also make use of a third phe-

nomenon of quantum mechanics: entanglement. As already described in chapter 2

one feature of an entangled state is that a measurement performed by Alice and

Bob on their respective particles results in correlated measurement outcomes. Alice

and Bob can use this property such that they share an entangled state and later on

measure the qubits in their possession. If Eve interferes with the entangled state

by measuring a qubit she destroys the entanglement. Consequently, Alice and Bob

do not obtain correlated results for a large number of their measurement, i.e. Eve’s

intervention again introduces a certain error rate.

At this point it should be stressed that in quantum cryptography the effects of

quantum mechanics do not prevent an eavesdropper from obtaining at least parts

of a key. By interfering with the protocol Eve introduces a certain error rate which
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can be detected by Alice and Bob. At that point Eve has already obtained some

information about the key due to her intervention. If the error rate is above a certain

predefined threshold Alice and Bob abort the protocol and thus Eve’s information

is useless. If the error rate is below the threshold Eve might have information about

some parts of the key. Thus, Alice and Bob have to perform additional operations

to reduce even this small amount of Eve’s information. This is also rather different

to classical communications where you usually do not know whether an adversary

knows any part of the key.

5.2 Quantum Key Distribution

5.2.1 Single Qubit Schemes

The first QKD protocol was presented by Bennett and Brassard in 1984 [8] and is

commonly known as BB84 protocol. In the BB84 protocol the two communication

parties Alice and Bob represent the information by the polarization of single photons

to generate a classical key between them. Alice is in possession of a single photon

source and prepares the photons randomly according to the Z- and the X-basis (cf.

figure 5.1), i.e. {|0〉, |1〉} and {|x+〉, |x−〉}, respectively, where

|x+〉 = 1√
2

(

|0〉+ |1〉
)

and |x−〉 = 1√
2

(

|0〉 − |1〉
)

. (5.1)

These bases are called Z- and X-basis due to their relation to the Bloch sphere. The

four states can be understood as Bloch vectors pointing in the positive and negative

Z and X directions of the Bloch sphere. To transfer a state from the Z basis into

the X basis the Hadamard operation H can be used. This operation can be written

as

H =
1√
2

(

|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|
)

(5.2)

and maps the state |0〉 onto |x+〉 and |1〉 onto |x−〉.
After Alice chose the basis, the qubit is sent to Bob, who performs a measurement

on it. Since Bob doesn’t know which basis Alice used he will not be able to retrieve

the full information for every qubit. The best strategy for him is to randomly choose

between the Z- and X-basis himself. In this case Bob will choose the correct basis

1/2 of the time but until now he does not know in which cases he has guessed right.
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Thus, Alice and Bob compare the choice of their bases in public after Bob measured

the last qubit.

Alice and Bob eliminate their measurement results for those measurements where

they used different bases (cf. figure 5.1). This step is called sifting [81]. The

remaining measurement results are converted into classical bits. This is achieved

using the mapping

{

|0〉, |x+〉
}

−→ 0 and
{

|1〉, |x−〉
}

−→ 1. (5.3)

At this stage Alice and Bob should have identical classical bit strings if the channel is

perfect. Nevertheless, they have to check for errors to be sure to obtain an identical

bit string. To estimate the error rate Alice and Bob publicly announce a fraction of

their results. If the error rate is not too high (cf. section 5.2.3 for bounds on the

error rate) they use classical error correction to eliminate the differences in their bit

strings.

It is important that the announcement of the bases takes place after all qubits

have been sent to minimize the possibility of a successful attack of an eavesdropper.

As we already discussed in section 4.1 above a channel usually has an influence on

the state of the qubits in transit between Alice and Bob. Therefore, it is possible

that their results differ by a small amount. But if this error rate is above a certain

predefined threshold both parties have to discard their remaining bit strings and

start over because they have to assume that the error is coming from the presence of

an eavesdropper. In the ideal case (noiseless channels, no eavesdropper) Alice and

Bob find no error in their results and they can use the remaining bits as input for

further operations.

In 1992 Charles Bennett pointed out that two non-orthogonal states instead of

four would be enough to perform the BB84 protocol [5]. The idea is that two

non-orthogonal states can not be perfectly distinguished but they can be distin-

guished without making a wrong decision using positive operator-valued measure-

ment (POVM) [113]. That means when Bob measures the state sent by Alice he

will never make a wrong decision but sometimes he will not be able to make any

decision at all.

In detail, Alice prepares one of the states |ϕ〉 and |ψ〉, where |ϕ〉 codes for a

classical 0 and |ψ〉 for a classical 1. She sends the qubit to Bob, who uses the

operators

M0 = 1− |ψ〉〈ψ| and M1 = 1− |ϕ〉〈ϕ| (5.4)
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bit A 1 1 1 0 0 1 0 1 0 1 1 0

basis A Z Z X Z X X Z Z Z Z X X

qubit A |1〉 |1〉 |−〉 |0〉 |x+〉 |−〉 |0〉 |1〉 |0〉 |1〉 |−〉 |x+〉
basis B X Z Z X X Z Z X X X X Z

qubit B |−〉 |1〉 |0〉 |x+〉 |x+〉 |1〉 |0〉 |x+〉 |−〉 |x+〉 |−〉 |1〉
bit B 1 1 0 0 0 1 0 0 1 0 1 1

Raw key 1 0 0 1

Table 5.1: Example of a BB84-protocol performed with 12 qubits.

to distinguish between |ϕ〉 and |ψ〉. From this equation we see that M0 annihilates

|ψ〉 but gives a positive result with |ϕ〉 and vice versa. That means, if Alice sent

|ϕ〉 Bob’s probability to measure |ψ〉 is 0 and to measure |ϕ〉 is 1 − |〈ϕ|ψ〉|2. To

describe a complete measurement a third operator M2 is necessary such that the

completeness relation
∑

Mi = 1 is fulfilled, giving

M2 = 1−M0 −M1 (5.5)

If operator M2 is the result of Bob’s measurement he can not decide whether Alice

sent |ϕ〉 or |ψ〉. As an example let |ϕ〉 = |0〉 and |ψ〉 = |x+〉 and the operators

M0 = 1− |x+〉〈x+ | = |x−〉〈x− |
M1 = 1− |0〉〈0| = |1〉〈1|
M2 = 1−M0 −M1.

(5.6)

As pointed out above, if Alice sends |0〉 Bob obtains operator M1 with probability

p(1) = 0 and

p
(

0
)

= 〈0||x−〉〈x− ||0〉 = 1

2
p
(

2
)

= 〈0|M2|0〉 =
1

2
. (5.7)

Similarly, if Alice sends |x+〉 Bob obtains operator M0 with probability p(0) = 0

and operators M1 and M2 with equal probability of 1/2. Therefore, when Bob

measures the qubit coming from Alice he obtains a correct result half of the time.

For the other half he obtains an undecidable result and both have to eliminate that

qubit. Both Alice’s choice of the state as well as Bob’s choice of the measurement

operator is completely random. In the end Bob announces where his measurements

had an undecidable result and they have to discard these results. For the remaining
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results Alice and Bob publicly announce a fraction of them to check whether they

are really correlated. If the error rate is above some predefined threshold they have

to assume that it is due to the presence of an eavesdropper rather than a noisy

quantum channel or imperfect devices and they restart the protocol.

A natural extension of the BB84 protocol is the six state protocol [24]. In this

protocol additionally to the Z- and the X-basis the third complementary basis, i.e.

the Y -basis is introduced, having

|y+〉 = 1√
2

(

|0〉+ i|1〉
)

|y−〉 = 1√
2

(

|0〉 − i|1〉
)

(5.8)

This extension is called ”natural” because in this case all three dimensions of the

Bloch sphere are used. Alice chooses randomly one of the six states and sends it

to Bob. Bob has to select one out of three (instead of two as in [8]) bases and

performs a measurement on the received qubit. Hence, his choice will correspond

to Alice’s preparation only in 1/3 of the cases such that they will have to discard

a greater amount of qubits when they publicly compare their measurement bases.

As in the other protocols described above, Alice and Bob choose a certain fraction

of the remaining measurement results and compare them in public to check if an

eavesdropper is present. The major advantage of the six state protocol is that it

is more sensitive to attacks and an adversary will have a smaller chance to stay

undetected.

5.2.2 Entanglement Schemes

Whereas the protocols just discussed above are based on single photon sources Ekert

presented a protocol in 1991 [51] which uses a source emitting maximally entangled

qubit pairs, e.g. the Bell state

|Ψ−〉 = 1√
2

(

|01〉 − |10〉
)

. (5.9)

This source is located between Alice and Bob and one qubit of the state is flying to

Alice and the other one to Bob. It is also possible that one of the communication

parties is in possession of the source, which is the case when looking at implemen-

tations of the Ekert protocol. Alice and Bob randomly measure the polarization of

their qubit according to three different angles

a1 = 0◦ a2 = +45◦ a3 = +22.5◦ (5.10)
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at Alice’s side and

b1 = 0◦ b2 = −22.5◦ b3 = +22.5◦ (5.11)

at Bob’s side which they choose at random. Note that these angles are non-

orthogonal in contrary to the measurements discussed in connection with single

photon schemes above.

After all photons have been exchanged Alice and Bob publicly compare their

orientation of the measurement. If Alice chooses ai and Bob chooses bj they will

obtain perfectly correlated results if the difference ai − bj = 0◦ due to the special

properties of entanglement (cf. chapter 2). If ai − bj = 45◦ they discard the results

because the error probability is maximal at this setting. All other cases where

ai − bj = ±22.5◦ or ai − bj = 67.5◦ are used in the CHSH inequalities to check

for eavesdroppers. The CHSH inequalities are violated in the quantum case, i.e. if

an entangled state is present (for details on the inequalities cf. section 2.3 above

and, of course, [33]). Therefore, Alice and Bob can check whether they still share

an entangled state which is given if the CHSH inequalities are maximally violated

(with 2
√
2). If their result is less or equal to 2 there has been some interference and

they restart the protocol.

At this point we want to stress that there is a major conceptual difference between

QKD protocols using single photon sources like the BB84 protocol and protocols

using entangled photons. Where in the first case Alice more or less transmits a

key to Bob, in the latter the key comes into being at Alice’s and Bob’s side at

the moment of their measurement. That means, whereas there is some information

about the key in transit between Alice and Bob in the BB84 protocol, in the Ekert

protocol the qubits flying to Alice and Bob contain no information at all. Thus

eavesdropping on such protocols is much more difficult.

In 1992 Bennett, Brassard and David Mermin presented a variant of the Ekert

protocol where they show that a test of the CHSH-inequalities [33] is not necessary

for the security of the protocol [11]. Instead Alice and Bob use two complementary

measurement bases and randomly apply them on the received qubits. In detail,

Alice and Bob receive qubits coming from the source located in the middle of them

(as pointed out above, the protocol does not change if the source is in possession of

Alice or Bob). Again, the qubits are parts of the Bell state |Ψ−〉. After receiving

both randomly and independently choose either the Z- or the X-basis to measure
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the qubit. Due to the entanglement of the qubits Alice’s measurement completely

determines the state of Bob’s qubit, i.e. if Alice measures a |1〉, Bob’s qubit is

in the state |0〉, and vice versa (cf. section 2.3). If Bob measures in a different

basis than Alice he destroys the information carried by the qubit and thus will not

obtain the same result as Alice. Therefore, after the measurements are finished both

parties publicly compare their measurement bases and discard their results where

they used different bases. The remaining results should be perfectly correlated and

the communication parties compare a randomly chosen fraction in public. If there is

too much discrepancy between their results they have to assume that an adversary

is present and they start over the protocol. It has also been shown by Bennett et al.

in this paper that the security of this version of the protocol is equal to the security

of the BB84 scheme [11].

5.2.3 Error Correction and Privacy Amplification

The protocols described in sections 5.2.1 and 5.2.2 by themselves do not provide a

perfectly secure key shared between Alice and Bob. The resulting classical bit string

is usually called raw key to indicate that it has to be further processed. Following

the protocols solely as presented above the communication parties would just obtain

a shared key under ideal conditions. That means they use perfect devices, a loss-free

quantum channel and there is no adversary present. In reality, as already discussed

in section 4.1, quantum channels are lossy and have some noise which alters the

qubits in transition. Further the detectors are imperfect which means that dark

counts may occur, i.e. a detector clicks although no photon is present.

Another big problem is that there exist no single photon sources but in some

implementations weak coherent pulses are used instead. In this case the source

emits a superposition of quantum states with 0, 1, 2, . . . n photons which gives

an adversary, in principle, the opportunity to split one photon from the pulse (cf.

section 6.2.2 for details). Because of these problems QKD protocols have to recover

from noise and have to deal with influence from an adversary. A measure for the

amount of noise in the quantum channel is the quantum bit error rate (QBER). The

QBER is basically defined as the number of wrong detections divided by the number

of total detections [106] (for more details see also [57]) and is calculated after the

sifting procedure. Nevertheless, if there is too much noise involved it is not possible

to obtain a key and the protocol has to be restarted.
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A first step towards the final secret key has already been described in sections

5.2.1 and 5.2.2 above and is called sifting [81]. During this process Alice and Bob

compare in public their choice of measurement bases and discard all results where

they used different bases. Next, they perform error correction which is a classical

algorithm to cancel out the discrepancies in their bit strings. To perform error

correction Alice and Bob first have to estimate the QBER to check whether error

correction is even possible or not. If too much information leaks to an adversary

they have to restart the protocol. Therefore, they publicly compare a fraction of

the remaining results to check whether they are correlated. A procedure that has

been heavily used for error correction is the CASCADE algorithm first introduced

by Charles Bennett et al. [7]. In this algorithm Alice and Bob publicly agree on a

random permutation of their bits and then divide the resulting string into blocks of

a certain size. The block size is chosen such that it is unlikely that there is more

than one error per block. Then they compute the parity of each block and compare

it in public. For blocks with equal parity they assume that they are identical and

for the other blocks they subdivide them to find the error. For every block the

parity is tested they discard the last bit to avoid leaking of too much information.

Since there could be more than just one error per block Alice and Bob permute the

resulting bit string again and start over the error correction. They stop if they do

not find an error for a specific number of runs.

Due to the fact that Alice and Bob publicly compare the parity of each block an

adversary is able to obtain further information about the bit string (assuming Eve’s

presence has not been detected during error correction). A last process called privacy

amplification [13] performed by Alice and Bob uses hash functions to minimize the

amount of Eve’s information. It is shown in [13] that using a specific type of hash

functions Eve’s information of the resulting shared secret key can be made arbitrarily

small. An example for such hash functions are the strongly-universal2 hash functions

presented in [160]. It has to be pointed out at this time that a single bit error after

error correction will result in completely uncorrelated bit strings at Alice’s and Bob’s

side after privacy amplification.

Usually, error correction as well as privacy amplification are treated as one-way

communication, i.e. Alice tells Bob what to do and both alter their classical bit string

accordingly. Using solely one-way communication Alice and Bob are able to obtain

a secret key up to an quantum bit error rate of ≃ 15% [57]. There are protocols
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called advantage distillation which use two-way communication to provide a secret

key also for an error rate above 15%. If such protocols are applied the security of

the whole system is not based on the laws of physics but on the assumptions about

Eve’s technology [104]. Hence, whenever error correction or privacy amplification

is mentioned in the following sections we are going to limit the considerations to

protocols based on one-way communication.

Furthermore, error correction reveals some information about the corrected key

in public and therefore in particular to Eve. Hence, the loss of information due to

the error correction and Eve’s information about the key have to be subtracted from

the overall information. Following this argumentation the maximal QBER such that

Alice and Bob are still able to obtain a secret key is ≃ 11% [135, 87].

5.2.4 Physical Realizations

In the following we want to focus briefly on some physical realizations of photon

sources and coding schemes as well as give a feeling on the evolution of experimental

implementations of QKD systems. For more detailed information confer [142] and

the references therein as well as the references in the following sections.

Photon Sources

There are a number of limitations when going to real-life implementations of QKD

protocols. As already pointed out, there are no perfect singe-photon sources which

can be used in the protocols described in section 5.2.1 above. Therefore, other

sources have to be found. A simple way to realize a single photon source is to use a

weak coherent pulse, i.e. a pulse from a standard telecom laser with a very low mean

photon number µ. The signal from such a laser can be described by the coherent

state

|α〉 = e
−|α|2

2

∞
∑

n=0

αn√
n!
|n〉 (5.12)

which can be seen as a superposition of Fock states (states with 0 . . . n photons). The

probability to find more than one photon in a pulse follows a Poissonian distribution

[57]

P
(

n, µ
)

=
µn

n!
e−µ (5.13)

and is approximately µ/2, which can be made arbitrarily small. The problem is

that most of the pulses from the laser will contain no photon at all and thus can not
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contribute to the communication. Due to the high modulation rate of such telecom

lasers the amount of pulses containing one photon is sufficiently large to keep up a

adequate bit rate for communication.

Another problem in this scheme are the detectors. They have to be active for all

incoming pulses, whether or not they contain a photon. Because of the large fraction

of empty pulses a detector could click although no photon has been sent which is

called a dark count. The number of total dark counts increases with the modulation

rate of the laser and the signal to noise ratio decreases with µ. Therefore, the

mean photon number can not be made really small, i.e. smaller than 0.01, because

otherwise there is too much noise involved [57]. In most experiments a µ = 0.1 is

used giving a chance of 5% that a pulse contains more than one photon.

Another possibility to realize single photon sources is to use entangled pairs of

photons. Such photon pairs are generated by spontaneous parametric down conver-

sion in a non-linear crystal, e.g. a β-barium borate crystal (cf. [85, 22] for a good

description of the down conversion). A photon coming from a laser generates inside

the crystal two photons of lower energy. Taking both photons together they have

the same energy as the original photon.

The main disadvantage of this scheme is that it is rather inefficient but if the

generation is successful it is very unlikely that two pairs have been generated. Even

if two entangled states are created occasionally at the same time it is not a big

problem since they are independent of each other. Splitting off the additionally

created qubit does not provide any information since Alice and Bob are using the

other qubit pair in their protocol. Further, one photon of the pair is used to trigger

the detector at the communication partner. That means, one photon of the pair

is measured instantaneously by the communication party obtaining the source. If

the detector clicks the sender knows that the other photon must be on its way and

the detector at the receiver’s side can be activated. Therefore, the amount of dark

counts is much lower since the detector of the receiver is not active all the time.

Regarding the Ekert scheme (cf. section 5.2.2) and other protocols based on

entanglement the parametric down conversion is used to create entangled photons.

The application is the same as for the single photon source: the party in possession

of the source pumps a laser beam into a non-linear crystal and whenever entangled

photons are created they are used either for key generation or to check the CHSH

inequalities.
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Channels

As already pointed out in section 4.1 above quantum channels interfere with the

qubits in transit and thus introduce errors in their polarization or phase. Additional

to the more theoretical schemes presented in section 4.1 optical fibers, which are the

most common transmission medium for quantum communications, have some special

properties. As it has been shown in [106] telecom fibers working at a wavelength

from 1310 nm to 1550 nm can be used for implementations based on weak coherent

pulses. Most implementations with entangled photons need an optical fiber working

at a different wavelength (e.g.. 810 nm [117]). The major problem arising from

optical fibers are the polarization effects as birefringence and polarization mode

dispersion. Although, regarding birefringence, today’s optical fibers are far better

than e.g. a decade ago and are very well suited for classical communication, in

the quantum case any birefringence is a severe problem. Due to asymmetries in

the fiber or imperfections in the fabrication of the fiber two orthogonal polarization

states can propagate with two different phase velocities which may cause errors in

the detection of the photons. This effect is called polarization mode dispersion and

is present in every optical fiber [37]. The amount of photons which are influenced by

this effect is rather low and depends on the quality of the fiber. But the polarization

mode dispersion can not be corrected since it is a completely statistical effect.

Yet, there is a possibility to make an optical fiber polarization maintaining. In

this case the core of the fiber is alternatively shaped such that one polarization orien-

tation is preserved (e.g. the horizontal-vertical polarization). Photons in any other

orientation are completely depolarized and can not be corrected. Since the secu-

rity of QKD protocols relies on the application of different polarization orientations

polarization maintaining fibers are of no use in quantum key distribution.

Looking at free-space links these two problems of optical fibers are mainly not

given since the atmosphere is weakly dispersive and essentially non-birefringent [57].

Nevertheless, there are other influences like atmospheric conditions or daylight which

result in a high error rate. For example, daylight or even moonlight can cause

detections at the receiver even if no photon was sent. Further, a transmission is

only manageable with clear weather. Some effect of atmospheric turbulences like

arrival-time jitter can be overcome using a reference beam but in general, good

atmospheric conditions are very important for a faithful transmission.
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Coding Schemes

To overcome the limitations given by the photon sources and quantum channels

different coding schemes have been established. To encode qubits in the polarization

of photons is a very obvious solution and has already been suggested in the BB84

protocol [8] but is nevertheless rather difficult to manage. An experimental setup

for polarization coding is sketched in figure 5.1 and is similar to the setup that has

been used in the experiment of 1996 by Muller et al. [106].

In this scheme four laser diodes (LD) are used at Alice’s place emitting pulses

with the polarizations 0◦, 90◦ and ±45◦. The laser diodes are triggered randomly

and one at a time for every single qubit. Using a sequence of beam splitters (BS)

the pulse is guided to a set of filters (F) which reduce the number of photons below

1 and then it is sent over the quantum channel to Bob. Since the optical fiber alters

the polarization of the photons as described above a number of wave plates have

to be used at Bob’s side to reverse the change and restore the original polarization.

Next, the pulse hits a beam splitter where half of the particles are reflected and

the other half is transmitted. Both reflected and transmitted photons are analyzed

using a set of polarization beam splitters and photon counting detectors. Before the

reflected photons hit the beam splitter they are rotated from diagonal to horizontal

using a λ/2 wave plate and are analyzed afterwards.

Alice Bob

LD 1

LD 2

LD 3

LD 4

BS

BS BS

PBS

PBS

F

0

0

1

1

λ/2

WP
Quantum Channel

Figure 5.1: (Polarization coding scheme) Illustration of the polarization coding

scheme used in the BB84 protocol [8]. LD: Laser Diode, (P)BS: (Polarization) Beam

Splitter, F: Filter.

Another idea of coding the value of qubits is the phase of photons, which has

been first proposed by Bennett in the two state protocol [5] and is depicted in

figure 5.2. It is an optical fiber version of the Mach-Zehnder interferometer where
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a phase modulator is placed in each arm. To implement quantum key distribution

a photon source (LD 1) emitting weak coherent pulses is used at Alice’s side. Alice

randomly chooses the phase φA of her phase modulator (PM) to be either 0, π/2, π

or 3π/2, where 0 and π/2 code for 0 and π and 3π/2 for 1. Similarly, Bob chooses

between a phase 0 or π/2 for his modulator and his two detectors, 0 and 1, code

for the respective classical bits. If the phases of Alice and Bob differ by π/2 or

3π/2 destructive interference is obtained and they can not use the photon for the

classical key unless it is combined with the method depicted in figure 5.1. If the

difference between Alice’s and Bob’s phase is 0 or π one of Bob’s detectors will click

with certainty (for 0 detector 0 and for π detector 1) and they have secretly shared

a classical bit.

Alice Bob

LD 1

0

1

φ
A

φ
B

Figure 5.2: (Phase coding scheme) Illustration of the phase coding scheme proposed

by Bennett [5]. LD: Laser Diode; φA, φB : phase modulation of Alice and Bob.

Unfortunately, the path distance becomes unstable if Alice and Bob are separated

by more than a few meters [57]. Therefore another setup has been presented in [5]

(cf. fig 5.3) where two interferometers are used, one at each communication party.

Both interferometers have a long and a short arm, where a phase modulator (PM) is

placed in the long arm. A single photon has three possibilities to pass through the

interferometer: in the first two scenarios it takes either the short or the long arm

at both Alice’s and Bob’s side. The third scenario is important because the photon

takes the short arm at Alice’s and the long arm at Bob’s side or vice versa. In this

case Bob observes interference since the path distances coincide. If Bob monitors

the photon counts as a function of the time he is able to distinguish interfering from
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non-interfering events, since the photons going through the short arm at both sides

will arrive first whereas the photons going through the long arm at both sides will

arrive last. All the other photons will arrive at the same time only if the phases at

Alice’s and Bob’s side are equal. By choosing randomly between two phases Alice

and Bob are able to secretly share a classical key.

Alice Bob

LD

0

1

φ
A

φ
B

Figure 5.3: (Double Mach-Zehnder scheme) Illustration of the double Mach-Zehnder

scheme proposed by Bennett [5]. LD: Laser Diode; φA, φB : phase modulation of Alice

and Bob.

A major drawback to this scheme is, similar to the polarization coding, that

the phase of a photon is altered while running through the optical fiber. Thus, a

third scheme has been proposed which automatically and passively compensates all

polarization fluctuations in an optical fiber [105]. The setup is similar to the double

Mach-Zehnder scheme described in the previous paragraph. One major difference is

that the photons are emitted by Bob and reflected at Alice’s side using a Faraday

mirror. A Faraday mirror is a normal mirror glued on a Faraday rotator and thus

rotates the polarization of a photon by 45◦, i.e. any polarization state is transformed

into its orthogonal. This reflection is important to overcome the influences of the

optical fiber because when the photons return to Bob the influences are reversed

due to the Faraday mirror. To perform QKD the phase shifts of the modulators

at Alice’s side and Bob’s long arm are again chosen randomly between 0 and π.

Bob obtains destructive interference if Alice and Bob choose different phase shifts.

Otherwise, Bob will detect a photon and can be sure that Alice sent the same bit

(the coding is equivalent to the double Mach-Zehnder interferometer).



80 Chapter 5. Quantum Cryptography

Experiments

The first major experiment implementing the BB84 protocol over a relevant distance

was performed by Muller et al. in Geneva [106]. In this experiment a 23 km long

standard telecom fiber installed under the Lake Geneva and connecting Geneva and

Nyon is used to establish a shared secret key. Thus Muller et. al. showed that QKD

is, in principle, feasible with today’s technology and standardized components like

telecom fibers. The experiment implements the BB84 protocol using polarization

coding. Their setup is similar to the one presented in figure 5.1 and described in

detail in the respective section.

After this experiment the aim was to enlarge the distance between the commu-

nication parties. In the course of the next years quantum links over huge distances

where realized, such as, for example, 122 km over a standard telecom fiber [58] or

even 144 km via a free-space link between the Canary Islands of La Palma and

Tenerife [150]. The main problem is that the key generation rate, i.e. the amount

of key material established per second, is very low. A real communication over such

a long distance is therefore infeasible. Hence, research focused on smaller distances

for the quantum links but very high key generation rates to be of higher practical

relevance.

The first practical application of QKD was a bank transfer in Vienna which was

secured by QKD [117]. The implemented QKD protocol is the variant of the Ekert

protocols presented in [11]. In this experiment the distance is only 1.45 km but the

key generation rate from the QKD protocol is high enough such that it can be used

immediately for classical cryptography. Therefore, it has been shown that QKD

is not only feasible using current technology but also is of practical use in today’s

communication. Based on this first result a prototype of a whole quantum network

secured by QKD was build in 2008 [118, 112]. This prototype was set up in Vienna

and the communication between the various users of the network was encrypted

with keys coming from QKD devices. To achieve that different technologies like

plug and play systems [140], weak coherent pulse systems [49], coherent one-way

systems [141], continuous variable systems [61, 62] and entanglement-based systems

[78] were merged together [112]. Hence, it has been shown that the application of

QKD in our current communication infrastructure is possible. The main drawback of

the prototype was that a high key generation rate was only maintained at distances

up to 20km. From this distance problem the vision arises to establish free-space



5.3. Quantum Secret Sharing 81

links from earth to satellites to create a global QKD network [157].

5.3 Quantum Secret Sharing

5.3.1 The Classical Version

Suppose there are n scientist working together on a secret project. They want to

lock away their results in their laboratory but, unfortunately, they do not trust each

other entirely. Thus, it is impossible that they have only one key and one lock and

every scientist gets the same key for the laboratory. The scientists agree that at

least k of them have to come together to open the laboratory such that none of

them will steal their joint results. The question is how many locks and different

keys are needed to achieve that?

Such a problem is called secret sharing and a solution has been introduced indi-

vidually by Shamir [133] and Blakley [19] in 1979. The idea is every scientist gets a

share of the secret and any combination of k shares makes it possible to reconstruct

the secret. Further, any single share or any combination of k− 1 or less shares does

not reveal any information about the secret. Shamir’s solution relies on polynomial

interpolation in the 2-dimensional plane which says that at least k points are nec-

essary to identify a polynomial of order k − 1. For any number n ≥ k of points the

original polynomial is easy to compute, but the knowledge of only k − 1 or fewer

points gives no information about the polynomial. Such a scheme is called a (k, n)

threshold scheme. The polynomial is of the form

f
(

x
)

= s+

k−1
∑

i=1

aix
i (5.14)

where s is the secret and the ai are chosen at random. The Shamir secret sharing

protocol is usually implemented over a finite field, therefore, the secret s as well

as the ai are elements of this finite field. n points of this polynomial, i.e. the

shares, are computed and sent to the respective parties involved in the protocol. If

the secret is needed, k parties have to bring their shares together and can use the

Lagrange interpolation to reconstruct the polynomial and the secret s. The main

advantage of this protocol is that it is information-theoretical secure, which means

that an adversary has no better chance to obtain the secret than just guessing it.

We want to stress that in this case, different from the key distribution described in
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section 5.2 above, it is possible that there exist one or more dishonest communication

parties. In fact, when dealing with the security of secret sharing protocols it is much

more important to focus on dishonest parties since they are more powerful than any

eavesdropper from the outside as described later on.

The scheme presented by Blakley [19] is also based on a geometric fact, i.e. that

any k non-parallel k-dimensional hyperplanes intersect at one specific point. For

example, in the 2-dimensional case two non-parallel lines intersect in one specific

point and in the 3-dimensional case three non-parallel planes intersect in one specific

point and so on. Thus, for a (k, n) threshold scheme n k-dimensional hyperplane are

needed as shares and sent to the communication parties. k of them have to come

together to compute the intersection point and recover the secret. The scheme by

Blakley is a little less efficient than Shamir’s scheme but is nevertheless information-

theoretical secure.

Secret sharing is usually applied in settings where some of the parties involved

are not trustworthy but a secure communication has to be established. This could

be, for example, that the key for the digital signature of a company is split among

the authorized signatories.

5.3.2 Sharing Classical Secrets

The first quantum versions of secret sharing were presented by Hillery, Bužek and

Berthiaume [68] as well as Karlsson, Koashi and Imoto [84] in 1999, which are

described in detail below. They used GHZ states and Bell states, respectively, to

share a classical bit string between two parties. In the following years additional

protocols were described, e.g. by Cabello [26], Guo et al [65] and Markham et

al. [103]. The two main differences between these protocols and the classical secret

sharing schemes described above is that the secret between the parties is created, i.e.

it is not possible for Alice to share a predefined secret as in [133, 19]. Second, these

protocols describe (n, n) threshold schemes. Hence, all parties have to work together

to recreate the secret – it is not possible to establish a (k, n) threshold scheme with

k < n as in the classical case with these protocols. However, Gottesman et al.

showed that a (k, n) threshold scheme is possible also using quantum secret sharing

[34, 59]. They presented a (2, 3) QSS protocol based on qutrits, i.e. 3-dimensional

quantum states. They also showed that there is a connection between QSS and

quantum error correction [34]. Nevertheless, we will focus on the (n, n) threshold
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since they mostly rely on entanglement between two or more qubits.

The HBB Scheme

In their article Hillery et al. they presented a quantum secret sharing scheme based

on the distribution of GHZ states [60] between three parties, Alice, Bob and Charlie

[68]. Each party measures its qubit at random in one of two bases. Based on their

results, Bob and Charlie together are able to determine Alice’s result but individually

have no information about it. In detail, Alice generates copies of the GHZ state

Alice

Bob Charlie

|P+

00〉

(1)

Alice

Bob Charlie

|P+

00〉

(2)

Alice

Bob Charlie
(3)

Alice

Bob Charlie
(4)

b

b b

|x−〉

|x−〉 |x+〉

X

X X

Figure 5.4: (HBB secret sharing scheme) Illustration of the QSS protocol by Hillery

et al. [68].

|P+
00〉 =

1√
2
(|000〉+ |111〉)ABC (5.15)
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Alice

Bob

|x+〉 |x−〉 |y+〉 |y−〉
|x+〉 |x+〉 |x−〉 |y+〉 |y−〉
|x−〉 |x−〉 |x+〉 |y−〉 |y+〉
|y+〉 |y−〉 |y+〉 |x−〉 |x+〉
|y−〉 |y+〉 |y−〉 |x+〉 |x−〉

Table 5.2: Charlie’s state depending on Alice’s and Bob’s measurement result.

in her laboratory (cf. picture (1) in figure 5.4) and sends qubit B to Bob and qubit

C to Charlie (cf. picture (2) in figure 5.4). Then, each party randomly chooses to

measure its qubit either in the X or in the Y basis. Taking the X basis the GHZ

state |P+
00〉 can be written as

|Ψ〉ABC =
1

2
[(|x+〉A|x+〉B + |x−〉A|x−〉B)|x+〉C

+(|x+〉A|x−〉B + |x−〉A|x+〉B)|x−〉C]
(5.16)

Therefore, we directly see that if both Alice and Bob perform their measurements

in the X basis and obtain the same result, Charlie ends up with the state |x+〉 (cf.
pictures (3) and (4) in figure 5.4). Otherwise, if Alice and Bob obtain different

results, Charlie ends up with the state |x−〉. Regarding the case when Alice and

Bob perform their measurement both in the Y basis or in different bases similar

conditions can be found for Charlie’s state (cf. table 5.2).

After each party performed its measurement they all announce their bases for

the whole sequence sent by Alice but do not reveal the specific result. Additionally,

they perform an error estimation procedure, i.e. all three parties sacrifice some of

the remaining measurement results to check for eavesdroppers and dishonest parties

by comparing them publicly. Based on the information about the basis choice of

the remaining qubits Charlie always knows whether Alice and Bob have the same

results or not, but he has no information about their exact results. Further, Bob

knows that he either has the same or the opposite result of Alice and thus needs

the information about Charlie’s measurement result to fully determine it. Thus,

Bob and Charlie have to collaborate to obtain Alice’s result. Due to the random

choice of the measurement bases, Charlie will measure in the wrong basis half of the
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times. These cases can be identified when the three parties reveal their bases and

the respective qubits have to be discarded.

The KKI Scheme

Another quantum secret sharing protocol was published also in 1999 by Karlsson,

Koashi and Imoto [84]. In this scheme Alice randomly chooses a bit string and

encodes it in two non-orthogonal bases (like in the BB84 protocol [8]), i.e. either as

{0, 1} 7→ {|Ψ+〉, |Φ−〉} or {0, 1} 7→ {|λ+〉, |λ−〉} where

|λ±〉 = 1√
2

(

|Φ−〉 ± |Ψ+〉
)

. (5.17)

Alice sends the respective qubits to Bob and Charlie who perform a measurement

Bob Charlie

|Ψ+〉

(1)

Alice

Bob Charlie
(2)

Alice

Bob Charlie
(3)

Alice

Bob Charlie
(4)

Alice

b b

|x−〉 |x−〉
X X

|Ψ+〉

Figure 5.5: (KKI secret sharing scheme)) Illustration of the QSS protocol by Karls-

son et al. [84].
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Charlie

Bob

|0〉 |1〉 |x+〉 |x−〉
|0〉 |Φ−〉 |Ψ+〉 |λ+〉 |λ−〉
|1〉 |Ψ+〉 |Φ−〉 |λ−〉 |λ+〉
|x+〉 |λ+〉 |λ−〉 |Ψ+〉 |Φ−〉
|x−〉 |λ−〉 |λ+〉 |Φ−〉 |Ψ+〉

Table 5.3: Bob’s and Charlie’s results depending on Alice’s initial state.

according to the Z or X basis (cf. pictures (2) and (3) in figure 5.5). As already

described in section 2.1 above, the Bell states can be described in the Z basis as

|Φ−〉BC =
1√
2

(

|00〉 − |11〉
)

BC
|Ψ+〉BC =

1√
2

(

|01〉+ |10〉
)

BC
(5.18)

and similarly for the X basis. If both Alice and Bob measure in different bases the

two states are written as

|λ+〉BC =
1√
2

(

|0〉|x+〉+ |1〉|x−〉
)

BC
=

1√
2

(

|x+〉|0〉+ |x−〉|1〉
)

BC

|λ−〉BC =
1√
2

(

|0〉|x−〉+ |1〉|x+〉
)

BC
=

1√
2

(

|x+〉|1〉+ |x−〉|0〉
)

BC
.

(5.19)

From this results a relation between Bob’s and Charlie’s similar to table 5.2 above

can be defined (cf. table 5.3).

Both parties publicly declare their measurement results (0 or 1) for a fraction

of their bits to test for eavesdropping. After the results are announced they also

declare their respective basis (Z or X) for all of their measurements. Karlsson et

al. stress in their article [84] that the chronological order in which the measurement

results and bases are declared is crucial for the security (see section 6.3.4 for details).

The party who first declared the measurement outcomes has to be the last to declare

the respective basis. When Alice and Bob revealed their bases Alice announces all

the bases in which she prepared the initial state and also her exact state for the

test bits. Using this information Alice and Bob are able to individually perform

a check for adversaries. Further, if no adversary is present, they have to discard

approximately half of their results where they chose the wrong bases according to

the basis of Alice’s initial state. From the other half Bob and Charlie can calculate

Alice’s initial state only if they combine their results.
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5.3.3 Sharing Quantum Secrets

Although usually classical information, i.e. classical bits, are shared using QSS

protocols there are also schemes where quantum information, i.e. a quantum state,

is shared between two parties. Such protocols are called quantum state sharing

(QSTS) schemes [89]. In contrary to a classical secret, which is located at Bob’s

and Charlie’s laboratory at the end of the protocol, the two parties will not each

end up with a copy of the secret quantum state, since that would violate the no-

cloning theorem [166]. In case of quantum state sharing the two parties have to

work together to recreate the secret quantum state at one of their laboratories.

A first protocol for quantum state sharing was introduced by Li et al. [92] where

they present a scheme to share a qubit in an arbitrary state between two parties.

Therefore, Alice shares two Bell states |Φ+〉, one with Bob and one with Charlie (cf.

picture (1) in figure 5.6), and prepares the secret state as

|φ〉S = α|0〉+ β|1〉 (5.20)

with |α|2+ |β|2 = 1. It is crucial for the security of the protocol that the Bell states

are not tempered during their distribution (cf. sec 6.3 for details). The overall state

of Alice, Bob and Charlie is then

|φ〉S ⊗ |Φ+〉A1B ⊗ |Φ+〉A2C (5.21)

where Bob is in possession of qubit B and Charlie of qubit C. Alice then performs

a complete GHZ measurement on all of her qubits (cf. picture (2) in figure 5.6), i.e.

qubits S, A1 and A2 are projected onto the subspace spanned by the GHZ states

(cf. eq. (2.15) in section 2.2). The overall system described in eq. (5.21) can be

written in the GHZ basis as

1√
2

[

|P+
00〉SA1A2

(

α|00〉+ β|11〉
)

BC
+ |P−

00〉SA1A2

(

α|00〉 − β|11〉
)

BC

+|P+
01〉SA1A2

(

α|01〉+ β|10〉
)

BC
+ |P−

01〉SA1A2

(

α|01〉 − β|10〉
)

BC

+|P+
10〉SA1A2

(

α|10〉+ β|01〉
)

BC
+ |P−

10〉SA1A2

(

α|10〉 − β|01〉
)

BC

+|P+
11〉SA1A2

(

α|11〉+ β|00〉
)

BC
+ |P−

11〉SA1A2

(

α|11〉 − β|00〉
)

BC

]

(5.22)

such that after the GHZ state measurement the information of the secret qubit S is

equally distributed between the qubits in Bob’s and Charlie’s possession. Moreover,
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b
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Bob Charlie

|Φ+〉 |Φ+〉

|φ〉

(1)
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|φ〉

(2)

b b
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Bob Charlie

|P+

00〉

X

(3)

b b

Alice

Bob Charlie

|P+

00〉

|x+〉 |φ〉

(4)

Figure 5.6: Illustration of the QSTS protocol by Li et al. [92].

the qubits B and C end up in an entangled state as given in eq. (5.22). Alice

publicly reveals her measurement outcome such that Bob and Charlie are able to

recover the secret qubit. To achieve that Alice specifies one party at random, say

Bob, who performs a measurement in the X-basis on his qubit (cf. picture (3) in

figure 5.6) and tells Charlie his result. Assuming Alice’s result is |P+
00〉, Bob’s and

Charlie’s state is α|00〉BC + β|11〉BC and can be written in the X-basis as

1√
2

[

|x+〉B
(

α|0〉+ β|1〉
)

C
+ |x−〉B

(

α|0〉 − β|1〉
)

C

]

. (5.23)

With the information about Bob’s measurement result Charlie is able to identify

an operation (in this case 1 or σz) to reconstruct the secret state in his laboratory.

Further, eq. (5.22) and (5.23) show that neither Bob nor Charlie are able to obtain

Alice’s secret state from their own states.
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It is also possible to share more than one qubit, as Deng et al. presented in two

QSTS-schemes [38, 39]. In the scheme presented in [39] they showed how to share an

arbitrary 2-qubit state between two parties as a rather straight forward extension of

the above protocol [92]. In this scheme, Alice prepares four Bell states of the form

Alice

Bob Charlie

|φ〉

|Φ+〉

|Φ+〉

|Φ+〉

|Φ+〉

(1)

Alice

Bob Charlie

|φ〉

|Φ+〉 |Φ+〉

|Φ+〉 |Φ+〉

(2)

Alice

Bob Charlie

|P+

00〉

|P+

00〉

X

X

(3)

b

b

Alice

Bob Charlie

|P+

00〉

|P+

00〉

|x+〉

|x+〉 |φ〉

(4)

Figure 5.7: Illustration of the QSTS protocol by Deng et al. [39].

|Φ+〉 together with the secret 2-qubit state

|φ〉S1S2
= α|00〉S1S2

+ β|01〉S1S2
+ γ|10〉S1S2

+ δ|11〉S1S2
(5.24)

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. This leads to the overall state of the system (cf.

picture (1) in figure 5.7)

|φ〉S1S2
⊗ |Φ+〉A1B1

⊗ |Φ+〉A2B2
⊗ |Φ+〉A3C1

⊗ |Φ+〉A4C2
. (5.25)
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Previously to the protocol Alice sends qubit B1 and B2 to Bob and qubits C1 and

C2 to Charlie. Again, it is crucial for the security of the protocol that the Bell states

are not tempered during their distribution (cf. sec 6.3 for details). As her first step

Alice performs two GHZ measurements, one on qubits S1, A1 and A3 and the other

on qubits S2, A2 and A4 (cf. picture (2) in figure 5.7). Similar to eq. (5.22), this

teleports the information of qubits S1 and S2 onto the respective qubits in Bob’s

and Charlie’s possession. For example, if Alice obtains |P+
00〉S1A1A3

and |P+
00〉S2A2A4

,

Bob’s and Charlie’s state is

(

α|0000〉+ β|0101〉+ γ|1010〉+ δ|1111〉
)

B1B2C1C2
. (5.26)

Alice reveals her measurement outcomes such that the other two parties are able to

recover the secret state. Afterwards, Bob measures his two qubits in the X-basis

(cf. picture (3) in figure 5.7). Since the state from eq. (5.26) can be rewritten as

1

2

[

|x+〉B1
|x+〉B2

(

α|00〉+ β|01〉+ γ|10〉+ δ|11〉
)

C1C2

+|x+〉B1
|x−〉B2

(

α|00〉 − β|01〉+ γ|10〉 − δ|11〉
)

C1C2

+|x−〉B1
|x+〉B2

(

α|00〉+ β|01〉 − γ|10〉 − δ|11〉
)

C1C2

+|x−〉B1
|x−〉B2

(

α|00〉 − β|01〉 − γ|10〉+ δ|11〉
)

C1C2

]

(5.27)

Charlie is able to reconstruct the secret state |φ〉 from his qubits from the public in-

formation about Alice’s measurement results and Bob’s secret measurement results.

Solely from their local information neither Bob nor Charlie is able to recover Alice’s

state |φ〉, i.e. the two parties have to collaborate.

In the other QSTS-scheme by Deng et al. [38] published in the same year they

used a slightly different method to share the secret two-qubit state |φ〉S1S2
between

Bob and Charlie. In this scheme Alice prepares two GHZ-states, e.g. |P+
00〉A1B1C1

and |P+
00〉A2B2C2

, and sends qubits B1 and B2 to Bob and C1 and C2 to Charlie,

respectively. Therefore, the initial state of the overall system is (cf. picture (1) in

figure 5.8)

|φ〉S1S2
⊗ |P+

00〉A1B1C1
⊗ |P+

00〉A2B2C2
(5.28)

Then, she again makes use of quantum teleportation to distribute the secret between

the two parties. Alice performs a Bell state measurement onto one qubit of the secret

state and one qubit of the GHZ state, i.e. onto qubits S1 and A1 as well as S2 and A2
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Figure 5.8: Illustration of the QSS protocol by Deng et al. [38].

(cf. picture (2) in figure 5.8). Assuming that Alice obtains |Φ+〉S1A1
and |Φ+〉S2A2

the state of the remaining qubits is then

(

α|0000〉+ β|0011〉+ γ|1100〉+ δ|1111〉
)

B1C1B2C2
(5.29)

Hence, the remaining qubits at Bob’s and Charlie’s laboratory contain the full in-

formation about the secret state. Similar to the protocols described already, Bob

and Charlie still need Alice’s measurement result to reconstruct |φ〉S1S2
. Thus, Alice

publicly announces the results of her Bell state measurements and one of the other

parties, let’s say Bob, also performs a Bell state measurement and announces his

result (cf. picture (3) in figure 5.8). As it is pointed out in [38], Bob’s Bell state

measurement destroys some of the information about the secret state. Thus, Alice

has to use a trick to overcome that: she applies a Hadamard operation H on qubit
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A2, B2 and C2 of the second GHZ state (cf. picture (1) in figure 5.8) thus changing

the state to
1

2

(

|000〉+ |011〉+ |101〉+ |110〉
)

A2B2C2

. (5.30)

Based on this altered initial state the qubits B1, B2, C1 and C2 are then in the state

(

α|0000〉+ α|0011〉+ γ|1100〉+ γ|1111〉
β|0001〉+ β|0010〉+ δ|1101〉+ δ|1110〉

)

B1C1B2C2

(5.31)

after Alice performed her measurements (assuming she obtains from her measure-

ment |Φ+〉S1A1
and |Φ+〉S2A2

). Hence, Charlie finally ends up with

α|00〉C1C2
+ β|01〉C1C2

+ γ|11〉C1C2
+ δ|10〉C1C2

(5.32)

after Bob’s measurement (assuming Bob obtains |Φ+〉B1B2
). Using Bob’s result

Charlie is able to identify two unitary operations (in this case they are both the

identity) to apply on his qubits followed by a CNOT operation on both of them to

correct the state in his possession and reconstruct the secret |φ〉S1S2
.

Both schemes [38, 39] can be extended rather straight forward to am-qubit secret

|φ〉S1···Sm
, i.e.

|φ〉S1···Sm
=

m−1
∑

i=0

αi|ib〉Ai
(5.33)

where ib is the binary form of i and
∑ |αi|2 = 1. Therefore, in the first scheme [39]

Alice has to create 2 Bell states for every qubit of her secret state. In contrary, in the

second scheme [39] Alice has to create one GHZ state for every qubit of |φ〉S1···Sm
.

Hence, in the first protocol Alice needs m qubits more than the second protocol to

share an m-qubit secret state. As it is discussed in the general case in section 5.3.4

below, this number multiplies with the number of parties the secret is shared among.

Although it uses more qubits, the main advantage of the first protocol is that it only

uses Bell states as a quantum channel between the parties, which can be generated

at a high rate and in a good quality rather easily with nowadays technology (cf.

section 5.2.4 for implementations of sources of Bell states in QKD systems). In the

second protocol 3-qubit GHZ states (and in the general case n-qubit GHZ states, see

section 5.3.4 below) are needed, which are much more complex to create. Regarding

the measurement in the respective schemes the second protocol is based on Bell state

measurements which are easier to implement compared to the complete GHZ state

measurement in the first protocol. Nevertheless, compared to the effort of preparing
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GHZ states it is much easier to measure in the GHZ basis, which makes the first

protocol more interesting for an actual implementation in a laboratory.

In a later article Deng et al. presented two other QSTS protocols to share an

arbitrary 2-qubit state [40]. Here, Alice starts with the same overall state from eq.

Alice

Bob Charlie

|φ〉

|Φ+〉

|Φ+〉 |Φ+〉

|Φ+〉

(1)

Alice

Bob Charlie

|φ〉

|Φ+〉 |Φ+〉

|Φ+〉 |Φ+〉

(2)

Alice

Bob Charlie

|Φ+〉 |Φ+〉

|Φ+〉

|φ〉

|Φ+〉

(3)

Alice

Bob Charlie

|φ〉|Φ+〉

|Φ+〉 |Φ+〉

|Φ+〉

(4)

Figure 5.9: Illustration of the QSS protocol by Deng et al. [40].

(5.25) where the secret 2-qubit state |φ〉S1S2
is the same as in eq. (5.24) (cf. picture

(1) in figure 5.9). The distribution of the qubits is also the same as in [39]: Alice is

in possession of qubits S1, S2, A1, A2, A3, and A4, Bob is in possession of B1 and B2

and Charlie of qubits C1 and C2. In a first step Alice swaps the secret state |φ〉S1S2

onto the qubits B2 and C1 (cf. section 2.5.3 for details on entanglement swapping).

She achieves that by performing a Bell-state measurement on qubits S1 and A2 as

well as S2 and A3 (cf. picture (2) in figure 5.9) which leaves the remaining qubits
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in the state (assuming that Alice obtains |Φ+〉S1A2
and |Φ+〉S2A3

)

|φ〉B2C1
⊗ |Φ+〉A1B1

⊗ |Φ+〉A4C2
(5.34)

Afterwards, she publicly announces her results. Hence, Bob and Charlie each have

one half of the secret state but can not obtain any information from their qubit.

Further, Alice performs a second Bell state measurement on qubit A1 and A4 to

entangle qubits B1 and C2. Let’s say Alice again obtains |Φ+〉A1A4
from her mea-

surement then the qubits B1 and C2 are also in the Bell state |Φ+〉B1C2
. Now, Bob

and Charlie are able to use the entangled state of qubits B1 and C2 to teleport the

secret state into either of their laboratories (cf. picture (3) and (4) in figure 5.9).

Nevertheless, to reconstruct the state after the teleportation, for example at Char-

lie’s laboratory, Bob has to send him the outcome of his measurement. Otherwise

Charlie has no chance to recover the secret by himself.

Since this scheme is very source intensive for Alice (she has to prepare 4 Bell

states and distribute them between Bob and Charlie) Deng et al. also suggest a

”circular” version of the protocol [40]. In this protocol the qubit pair A1 and B1 can

be omitted and Bob and Charlie create qubits A4 and C2 themselves to establish

a Bell state between them. The rest of the protocol is similar to the one described

above. The secret state |φ〉S1S2
is teleported onto qubits B2 and C1 by Alice and

later on either into Bob’s or Charlie’s laboratory where it is reconstructed.

5.3.4 Multiparty Secret Sharing

Sharing a secret – classical or quantum – between two parties as in the schemes

described above is often not enough. Usually, more parties are involved in the

communication and the secret has to be shared among all of them. Therefore, some

QSS protocols can be extended to the multiparty case.

Looking at the HBB scheme an extension to n parties has been presented in [167].

Alice prepares copies of the n-partite GHZ state

|P+
0...0〉 =

1√
2
(|000 . . . 0〉+ |111 . . . 1〉)AB1...Bn−1

(5.35)

and distributes n − 1 qubits of every state to her communication partners, now

denoted B1 to Bn−1 (cf. pictures (1) and (2) in figure 5.10). As in the original

protocol, each party randomly chooses between the X and the Y basis and performs

a measurement in the respective basis. It is stressed in [167] and also in [68] that the
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Figure 5.10: Illustration of the extension of the HBB protocol to n parties [167].

number of parties using the Y basis has to be even. The n-qubit state |Ψ〉 can also

be written in the X and Y basis (similar to eq. (5.16)) such that it is – in theory –

possible to generate a list of correlations like in table 5.2 for Alice’s result and the

result of each Bi. Since this table would be too complex for large n there is another

possibility to model the correlations between the results more conveniently [167].

Assigning the value 0 to |x+〉 and |y+〉 and 1 to |x−〉 and |y−〉 Alice’s measurement

result can be computed using the modulo 2 sum of the results of B1 to Bn−1. There

are only two distinct cases to be aware of: if the number of applications of the Y

basis is 4k, with k some non-negative integer, Alice’s result rA can be computed

intuitively as

rA = rB1
⊕ rB2

⊕ · · · ⊕ rBn−1
. (5.36)

Otherwise, if the number of parties using the Y basis is 2(2k + 1) Alice’s result is
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computed as

rA = rB1
⊕ rB2

⊕ · · · ⊕ rBn−1
⊕ 1, (5.37)

i.e. the value is the inverse of the sum of the results of the Bi. After Alice distributed

all qubits each of the Bi publicly announces his choice to make sure that an even

number of parties has chosen the Y basis. If the number is odd, the respective qubits

have to be discarded. Then Alice selects a subset of all measurements and each Bi

discloses his result for the respective measurement and Alice is able to check if some

parties are dishonest or if an eavesdropper is present. If no adversary is found the

Bi collaborate and use their remaining measurement results to determine Alice’s

secret.

When looking at quantum state sharing the protocol presented by Li et al. [92]

can also be generalized to n parties. In this case Alice prepares n− 1 Bell states of

the form |Φ+〉 and sends one qubit to each Bob B1 · · ·Bn−1 (cf. picture (1) in figure

5.11). The secret state |φ〉S Alice wants to share is the same as given in 5.20. Thus,

the overall state of the system is

|φ〉S ⊗
(

|Φ+〉AiBi

)⊗(n−1)
(5.38)

where the qubits Ai are kept by Alice and the qubits Bi are sent to the respective

Bobs. Similar to the 3-party protocol, Alice performs a general n-qubit GHZ mea-

surement, i.e. a measurement projecting the system onto the basis described by

the n qubit GHZ states (cf. section 5.3.3 above). This projects the state of Alice’s

qubits onto a n-qubit GHZ state and the secret state |φ〉S is distributed onto the

remaining qubits, i.e. the overall state is similar to eq. (5.22) (cf. pictures (2) and

(3) in figure 5.11). To recover the secret n− 2 of the Bob’s perform a measurement

in the X basis on their respective qubit. The one party, call it Bn−1, who does not

perform the measurement will end up with a state very similar to the secret state

|φ〉S. Using the information about Alice’s result and the results of all the other Bobs

it is possible for Bn−1 to reconstruct the secret state.

In [39] Deng et al. described how to extend their scheme to n parties. Therefore,

Alice prepares 2(n− 1) Bell states and shares them with the Bobs B1 · · ·Bn−1. The

overall state of the scheme can then be written as

|φ〉S1S2

n−1
⊗

i=1

(

|Φ+〉AiBi
⊗ |Φ+〉AkCi

)

(5.39)
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Figure 5.11: Illustration of the extension of the QSS protocol by Li et al. to n

parties [92].

where k = n − 1 + i. Similar to the version for 3 parties described shortly in

section 5.3.3 above Alice performs a complete n-qubit GHZ state measurement on

qubit S1 and the qubits A1 · · ·An−1 as well as on qubit S2 and the qubits labeled

An · · ·A2(n−1) in her possession. As a result Alice obtains two n-qubit GHZ states

and she announces her results publicly. Further, the Bobs B1 · · ·Bn−2 measure the

two qubits in each of their laboratories according to the X basis and reveal their

results to Bn−1 who is then able to identify a unitary operation to recover the secret

state |φ〉 from the qubits in his possession.

In the multiparty-version of the second protocol by Deng et al. [38] Alice prepares

two n-qubit GHZ states of the form

|P+
0···0〉A1B1···Bn−1

=
1√
2

(

|0〉⊗n + |1〉⊗n
)

A1B1···Bn−1

(5.40)
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and

|P+
0···0〉A2C1···Cn−1

=
1√
2

(

|0〉⊗n + |1〉⊗n
)

A2C1···Cn−1

(5.41)

to share the secret 2-qubit state |φ〉S1S2
. Alice sends the qubits Bi and Ci to the

respective Bobs and then performs Bell measurements on S1 and A1 and S2 and

A2. This distributes the secret state among all the Bobs. Each one of the parties

Bi except the last one performs a Bell state measurement on the two qubits Bi

and Ci in his possession such that the total information about the secret is brought

onto the two qubits in the laboratory of Bn−1. Using the information about Alice’s

measurement result together with the results of the other Bobs Bi, the party Bn−1

is able to reconstruct the secret state using a specific unitary operation identified

by the results. As already pointed out above it is stressed in [38] that a Hadamard

operation has to be applied on every qubit of the second state |P+
0···0〉A2C1···Cn−1

to

make a conclusive reconstruction of the secret possible.

The most general case is, of course, to share an m-qubit state |φ〉S1···Sm
between

n − 1 different parties B1 · · ·Bn, which can be easily achieved using the protocols

just presented. Taking, for example, the protocol from [38] Alice has to prepare m

copies of the n-qubit GHZ state |P+
0···0〉A1B1···Bn−1

and send the Bi of each state to the

respective communication party. Afterwards, she performs Bell state measurements

on each pair Si of the secret state and Ai of the n-qubit GHz state to teleport the

information to each party Bi. This gives every party a piece of the information

about the secret state but not enough to recover it by himself. All parties have to

come together to combine their information as described in the original protocol [38]

such that one single party is able to reconstruct the secret. The major drawback of

this scheme is, as mentioned in the previous section, the creation of n-qubit GHZ

states is very complex in practice.

A multi-qubit version of the protocol in [39] is more efficient since only Bell states

are used. In this case Alice has to prepare m(n−1) Bell states |Φ+〉 to share the m-

qubit state |φ〉S1···Sm
between n−1 parties. Again, the respective protocol to achieve

that is generalized straight-forwardly from the original scheme: starting with the

initial state

|φ〉S1···Sm
⊗

m
⊗

j=1

n−1
⊗

i=1

|Φ+〉AjiBji
(5.42)

Alice sends the qubits Bji to the respective Bobs. Then, for every j she performs

a n-qubit GHZ state measurement on Sj and all the Bji. As already described in
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the original protocol this distributes the secret state between all the Bobs such that

they have to bring their informations together to reconstruct the state.

We see that this protocol [39] is also easier to implement and more efficient when

dealing with multi-qubit secrets. Although it consumes roughly twice as much qubits

as the protocol in [38] it is much easier to generate the Bell states applied in this

protocol and perform a measurement in the n-qubit GHZ basis than to generate the

n-qubit GHZ states and perform Bell state measurements.

5.3.5 Physical Realizations

Physical realizations of quantum secret sharing protocols have not been of such

great interest as implementations of quantum key distribution protocols. Hence,

no experiment realizing a QSS protocol in a real-world environment has yet been

accomplished. One major reason is that most QSS schemes make heavy use of

multipartite entangled states like GHZ states. Whereas today it is rather easy to

generate 2-qubit entanglement and use it for QKD protocols the generation of GHZ

states and states of higher dimensions is still rather difficult.

The first implementation of a QSS protocol was performed by Tittel et al. [147]

where an HBB scheme was realized. Since the generation of GHZ states was very

difficult at that time, as just pointed out, a so called pseudo GHZ state was used

instead. The main difference to a true GHZ state is that this state is based on

a source creating energy-time entangled Bell states and that the three photons do

not exist at the same time. Hence, it is obvious that tests for the non-locality are

of no significance for this state. Nevertheless, the probability function describing

the coincidences of the three photons is the same as the one coming from a true

GHZ state. With this setup a rate of maximally 800 coincidences in 50 seconds was

achieved [147] which shoes that QSS is in principle possible. The rate is of course

far too low to perform actual communication, i.e. to share a secret of reasonable

length.

An implementation using an actual GHZ state was first presented by Chen et al.

[31]. In this setup a 4-qubit GHZ state

|ϕ〉 = 1√
2

(

|0000〉+ |1111〉
)

(5.43)

is created by basically sending two Bell states through a polarization beam splitter.

The main idea is that it is not possible to distinguish from which source each photon
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originated after it passed through the polarization beam splitter. The desired 3-qubit

state is then obtained from the 4-qubit state using a projection of one particle onto

the state |x+〉. The QSS protocol implemented in this experiment is again the HBB

scheme. The experiment succeeds in sharing a key between Alice, Bob and Charlie

with an average rate of a quarter bit per second [31].

A more recent experiment has been done by Gaertner et al. [56] where they

succeeded in sharing a secret between four parties. Therefore, the 4-qubit GHZ

state

|ϕ〉 = 1

2
√
3

(

2|0011〉 − |0101〉 − |0110〉 − |1001〉 − |1010〉+ 2|1100〉
)

(5.44)

is generated. As it is described in [56] this state perfectly fulfills the correlation

function needed for the protocol. In contrary to the HBB protocol the four parties

involved in this experiment perform their measurements in different bases. They

either choose a set of bases similar to the BB84 protocol (cf. section 5.2.1) or similar

to the Ekert protocol (cf. section 5.2.2). Thus, when checking for eavesdroppers

they can use the techniques from the BB84 protocol or try to violate a Bell-like

inequality like in the Ekert protocol. The rest of the protocol is rather similar to

the ones previously discussed. Regarding the efficiency of the experiment 2000 raw

key bits were exchanged in about 16 hours, which leads to a secret key bit rate of

100 bits per hour [56].



Chapter 6

Security of Single-Qubit Protocols

In the previous chapter it has been pointed out that the protocols described there are

not secure per se since information about the secret key can leak to an adversary.

Additional procedures like error correction and privacy amplification have to be

applied to guarantee security. Therefore, it is important to estimate the amount of

information an eavesdropper can obtain when infiltrating the protocol. The actions

an eavesdropper is able to perform can be classified in different attack scenarios,

which are then inspected in detail. Some passages of this chapter are closely related

to [127].

The protocols discussed in this chapter are called single-qubit because we refer to

the qubits in transit between Alice and Bob at one specific iteration of the protocol.

For the BB84 protocol and similar schemes described in the last chapter this is

obvious. The Ekert protocol also fits in this category, although there is an entangled

qubit pair involved, since the party in possession of the source keeps one qubit at its

own laboratory. In the next chapter we focus on more complex attacks on protocols

where two or more qubits are involved.

6.1 Basics from Information Theory

In the discussions about the security of QKD protocols Eve’s information about the

secret key shared between Alice and Bob is of main interest. To provide an overview

on the basic principles we want to sketch only the most important mechanisms

coming from information theory and identify their connection to the security of

quantum cryptography. For further information confer the excellent textbooks by

101
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Cover and Thomas [36] as well as MacKay [99].

Every attack on a QKD protocol is characterized by the amount of information

Eve is able to obtain about the secret key. Hence, Alice’s and Bob’s goal is to min-

imize Eve’s information. Usually, Eve’s information about the secret key consists

of two parts: the information she obtains from her measurements on the signals in

transit and the information about Alice’s and Bob’s choice of bases. The second

part tells Eve whether she performed her measurement in the correct basis for the

respective qubit or not. In the latter case she introduces an error since her inter-

vention alters the state of the qubit. The probability that Eve obtains the result

m from her measurement if Alice originally sent the secret classical bit s is best

expressed by the conditional probability p(m|s).
For the computation of Eve’s information about Alice’s classical bit s we need

another conditional probability, p(s|m). This is the probability that Eve obtains the

classical bit s if her measurement outcome is m. The value p(s|m) can be computed

directly using the probabilities p(m|s) by the formula based on Bayes’ theorem

p
(

s|m
)

=
p(m|s)

∑

s′ p(m|s′) (6.1)

Another interesting quantity Using the conditional probability p(s|m) is the prob-

ability that Eve obtains the same classical bit s from her measurement as Alice

originally prepared. This is called the collision probability Pc(m) and it is computed

as squared conditional probability p(s|m) for all possible bits s, i.e.

Pc
(

m
)

=
∑

s

p
(

s|m
)2

(6.2)

Further, the collision probability can be computed over all possible measurement

outcomes m of Eve giving the expected collision probability
〈

Pc
〉

which is described

as
〈

Pc
〉

=
∑

m

p
(

m
)

Pc
(

m
)

(6.3)

The average collision probability is a central quantity when discussing the security

of a protocol. It can be computed by Alice and Bob without any knowledge of Eve’s

actual measurement results necessary and it is needed to estimate Eve’s information

about the secret key. Further, the collision probability is used to define security

thresholds on the acceptable error rate as described in the following sections.

To quantify Eve’s amount of information on Alice’s bit an estimator of the un-

certainty of a probability distribution is required. This is a function quantifying the



6.1. Basics from Information Theory 103

difficulty to predict the outcome of a random event based on a probability distribu-

tion given some a-priori knowledge. In the following two such estimators are used:

the Shannon entropy H [134] and the Renyi entropy R [121]. Shannon entropy and

Renyi entropy are both bounded between 0, i.e. when there is no uncertainty at all,

and n for a classical bit string of length n.

The Shannon entropy is the most commonly used estimator of uncertainty and

is defined as

H
(

X
)

= −
∑

x

p
(

x
)

log p
(

x
)

(6.4)

for some random variable X with values x1 . . . xn. It can also be conditioned on a

random variable such that we get for a specific outcome m

H
(

S|M = m
)

= −
∑

s

p
(

s|m
)

log p
(

s|m
)

(6.5)

with S describing all possible bits and M all possible measurement results. This is

averaged over all probabilities of Eve’s results m as

H
(

S|M
)

=
∑

m

p
(

m
)

H
(

S|M = m
)

(6.6)

The Shannon entropy H is an estimator of the uncertainty of a probability distri-

bution and thus the variation of the Shannon entropy can be interpreted as the

information gain I. For the a-priori probability distribution X and the a-posteriori

distribution Y the information gain is I = H(X)−H(Y ). This can be used to de-

scribe the amount of information Eve obtains on Alice’s key based on her measure-

ment results, here called mutual information IAE . In this case we have the Shannon

entropy of a classical bit conditioned on Eve’s measurement outcome H(S|M). Eve

has no a-priori information about the secret key since Alice chooses her bit string

at random and thus H(S) = 1. Therefore, the amount of information gained by

Eve for one specific value m is ImAE = 1 − H(S|M = m). This is averaged over all

possible outcomes m to obtain

IAE = 1−
∑

m

p
(

m
)

H
(

S|M = m
)

= 1−H
(

S|M
)

(6.7)

which will be used constantly in the following sections.

The Renyi entropy is actually defined as a generalization of the Shannon entropy,

i.e.

Hα

(

X
)

=
1

1− α
log

(

∑

x

p
(

x
)α
)

(6.8)
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for α ≥ 0 and α 6= 1. With α approaching 1 Hα converges to the Shannon entropy

such that we can say H1 = H [121]. Throughout the thesis we reduce ourselves to

the second-order Renyi entropy R = H2, which is conveniently defined using the

collision probability, i.e.

R
(

X
)

= − log
∑

x

p
(

x
)2

= − logPc
(

X
)

(6.9)

Accordingly to the Shannon entropy the Renyi entropy is conditioned for a specific

measurement result m as

R
(

S|M = m
)

= − logPc
(

m
)

= − log
∑

s

p
(

s|m
)2
. (6.10)

with again S describing all possible bits and M all possible measurement results.

To obtain the Renyi entropy R(S|M) for all of Eve’s results m R(S|M = m) is

averaged over the respective probabilities of Eve’s measurement results, i.e.

R
(

S|M
)

=
∑

m

p
(

m
)

R
(

S|M = m
)

(6.11)

Besides Eve’s information on the secret key we are interested in the amount of

error Eve introduces into a protocol since this amount can be recognized by the

legitimate communication parties Alice and Bob. The probability of an error is

simply defined as the occurrence of an incorrect result, i.e. a result Bob would not

expect from his measurement according to the additional information he has about

Alice’s measurement. To express that we make use of the conditional probability

p(m|s) which is the probability that Bob obtains the incorrect result m although

Alice prepared the bit s. This directly gives the error probability Pe as

Pe
(

m
)

=
∑

s

p
(

m|s
)

(6.12)

for some specific message m. Accordingly to the collision probability the expected

error probability
〈

Pe
〉

is defined for all possible messages as

〈

Pe
〉

=
∑

m

p
(

m
)

Pe
(

m|s
)

(6.13)

Another important question is how much key material has to be discarded to min-

imize Eve’s knowledge about the key. This amount is called the discarded fraction

τ and is computed using the expected collision probability

τ = 1 + log
〈

Pc
〉

1

n (6.14)
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Following from this equation a bit string of length n has to be reduced by nτ bits

during privacy amplification to leave Eve with at most 1 Shannon bit of information

on the whole secret key no matter its length [96].

6.2 Attacks on QKD Protocols

In the following we want to discuss some basic attack strategies on ideal and realistic

sources. All these strategies are individual attacks, which means that the eavesdrop-

per, Eve, interacts with each signal coming from Alice separately. An extension

to the individual attacks are the collective attacks, where Eve prepares an ancilla

state for each signal coming from Alice and lets it interact with the signal [52]. The

benefit for Eve is that she can store the ancilla at her laboratory until she has more

information about how to measure it. It has been proven that the same security

bound defined for QKD protocols also holds if collective attacks are applied [18, 17].

The most general version of attacks are coherent attacks where Eve is allowed

to perform any quantum operation on the signal in transit and use any possible

ancilla state. In particular, Eve is able to collect ancilla states from all qubits sent

by Alice and perform operations on a subset or all of these ancilla states. Hence,

such attacks are very complex to analyze. Nevertheless, bounds for information-

theoretical security against coherent attacks have been found which are equal to the

bounds for collective attacks [126].

In the analysis below we want to focus mainly on individual attack strategies

since we discuss collective attacks on multiple qubits in detail in the next chapter.

6.2.1 Attacks on Ideal Sources

Naive Intercept-Resend Attack

The most intuitive kind of an individual attack is the intercept and resend (I&R)

attack [81]. The main intention for Eve is to get hold of each photon coming from

Alice and measuring it in some predefined basis. According to her result Eve pre-

pares a new photon and forwards it to the legitimate receiver, Bob. Looking at the

application of the naive I&R attack on the BB84 protocol, Alice’s qubit will either

be in the Z- or the X-basis, explicitly one of the four states |0〉, |1〉, |x+〉 or |x−〉.
As already described in section 5.2.1 if Alice sends a 0 she will either encode it into
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|0〉 or |x+〉 with equal probability. Similarly, if she sends a 1 she encodes it either

into |1〉 or |−〉. Eve, unaware of Alice’s choice, will chose randomly between the Z-

and the X-basis. Thus, she will obtain a correct result in case Alice sent |0〉 and

Eve measured in the Z-basis or Alice sent |x+〉 and Eve measured in the X-basis,

respectively. Any other combination will result in a completely random measure-

ment outcome. This leads to the decision tree in figure 6.1. For now, we will also

Alice’s bit = 0

Alice’s result

Eve’s basis choice

|0〉 |1〉 |x+〉 |x−〉 |0〉 |1〉 |x+〉 |x−〉

01 1

2

1

2

1

2

1

2 01

1

2

1

2

1

2

1

2

1

2

1

2

Z X Z X

|0〉 |x+〉

Figure 6.1: (Naive I&R attack) Decision tree for the naive intercept/resend attack

strategy.

assume that Eve does not listen to any public communication between Alice and

Bob. Therefore, she will not know in which case her measurement was wrong. As

pointed out above, the best way to express the situation when Eve made a correct

measurement is the conditional probability p(m|s). The four possible results are

then

p
(

m = |0〉|s = 0
)

= p
(

m = |x+〉|s = 0
)

=

(

1

2

)3

+

(

1

2

)2

· 1 =
3

8

p
(

m = |1〉|s = 0
)

= p
(

m = |x−〉|s = 0
)

=

(

1

2

)3

+

(

1

2

)2

· 0 =
1

8

(6.15)

and equally for p(m|s = 1). From these probabilities we can directly compute the

error rate introduced by Eve’s intervention. Whenever Eve choses the correct basis

she does not introduce any error. Thus, we are only interested in the probabilities

p(m = |1〉|s = 0), p(m = |x−〉|s = 0), p(m = |0〉|s = 1) and p(m = |x+〉|s = 1)

which are all 1/8. Since p(m) = 1/2 for all m we obtain

〈

Pe
〉

=
1

2

(

4 · 1
8

)

=
1

4
(6.16)
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For the conditional probabilities p(s|m) the sum
∑

s p(m|s) = 1/2 and thus we

get p(s|m) = 2p(m|s). Looking at the collision probability we get for this naive

version of the I&R attack

Pc
(

m = |0〉
)

=

(

3

4

)2

+

(

1

4

)2

=
5

8
(6.17)

and similar values for m = |1〉, m = |x+〉 and m = |x−〉. Therefore, the average

collision probability computes to

〈

Pc
〉

=
∑

m

1

4
Pc
(

m
)

= 4

(

1

4

)

[

(

1

4

)2

+

(

3

4

)2
]

=
5

8
(6.18)

From the collision probability the discarded fraction can be computed which is for

the naive I&R attack τ ≃ 0.322. Thus, only one-third of the key has to be discarded

to guarantee that Eve has less than one bit of information on the whole key.

Looking at the Renyi entropy for m = |0〉 we get

R
(

S|M = |0〉
)

= − logPc
(

m = |0〉
)

= − log
5

8
= 3− log 5 (6.19)

Since the Renyi entropy for m = |1〉, m = |x+〉 and m = |x−〉 is the same and all

four results are equally probable the average Renyi entropy is

R
(

S|M
)

=
∑

m

1

4
R
(

S|M = m
)

= 4

(

1

4

)

(

3− log 5
)

= 3− log 5 (6.20)

For the conditional Shannon entropy H(S|M = |0〉) we get

H
(

S|M = |0〉
)

= −3

4
log

3

4
− 1

4
log

1

4
= 0.811 (6.21)

which is equal to the other entropies H(S|M = |1〉), H(S|M = |x+〉), H(S|M =

|x−〉), such that

H
(

S|M
)

=
∑

m

(

1

4

)

H
(

S|M = m
)

= 4

(

1

4

)(

−3

4
log

3

4
− 1

4
log

1

4

)

= 0.811

(6.22)

The total information Eve will have in the end about each bit is IAE = 1−H
(

S|M
)

≃
0.2, which is rather poor for Eve. Therefore, Eve will use another strategy, which

gives her more information. One possibility is to use another measurement basis,

e.g the Breidbart basis [9] and to listen to the communication between Alice and

Bob. In particular, listening to the communication between Alice and Bob gives

Eve more information on the raw key bits as in the naive approach, as we explain

in the following paragraphs.
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Full Intercept-Resend Attack

In the most successful version of the I&R attack Eve measures in the Z- and X-

basis and also takes Alice’s and Bob’s decisions into account. In this attack Eve

randomly chooses again between the Z- and the X-basis to measure the signals

coming from Alice. She forwards the results she obtains to Bob and listens to the

public communication between Alice and Bob during the sifting phase. If Alice

sends a 0 encoded as |0〉 Eve will either measure it in the Z- or X-basis. As we have

already seen above, if Eve uses the Z-basis she will obtain |0〉 with certainty and

introduce no error. Otherwise, she will obtain |x+〉 or |x−〉 with equal probability

(cf. figure 6.2).

Alice’s bit = 0

Alice’s result

Eve’s basis choice

|0〉, Z |1〉, Z |x+〉, Z |x−〉, Z |0〉, X |1〉, X |x+〉, X |x−〉, X

01 1
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1

2

1

2

1

2
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1

2

1

2

1

2

1

2

Z X Z X

|0〉 |x+〉

Figure 6.2: (Full I&R attack) Decision tree for the full I&R attack strategy.

Comparing the decision tree with the one from the naive I&R attack in figure

6.1 above we immediately see that Eve can eliminate two events for s = 0, i.e. if

she measured |1〉 and Alice used the Z-basis and |x−〉 and Alice used the X-basis.

These two events occur with probability p = 0 which increases Eve’s information.

In detail, the probabilities p(m|s) are

p
(

m =
(

|0〉, Z
)

|s = 0
)

=

(

1

2

)2

· 1 =
1

4
= p
(

m =
(

|x+〉, X
)

|s = 0
)

p
(

m =
(

|1〉, Z
)

|s = 0
)

=

(

1

2

)2

· 0 = 0 = p
(

m =
(

|x−〉, X
)

|s = 0
)

p
(

m =
(

|x+〉, Z
)

|s = 0
)

=

(

1

2

)3

=
1

8
= p
(

m =
(

|0〉, X
)

|s = 0
)

p
(

m =
(

|x−〉, Z
)

|s = 0
)

=

(

1

2

)3

=
1

8
= p
(

m =
(

|1〉, X
)

|s = 0
)

(6.23)
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and we get similar values for s = 1. The expected error probability
〈

Pe
〉

computes

conformal to the naive intercept-resend attack above such that we obtain again
〈

Pe
〉

= 1/4. For the sum
∑

s p(m|s) we obtain 1/4, such that p(s|m) = 4p(m|s).
This results in the collision probabilities 1 if Eve chooses the correct basis for her

measurement and 1/2 if she chooses a basis different from Alice’s preparation. Thus,

the average collision probability is

〈

Pc
〉

=
1

4
+ 4

1

16
+

1

4
=

3

4
(6.24)

Calculating the discarded fraction τ we get τ ≃ 0.585 which is equal to the discarded

fraction when using the Breidbart basis [9].

For the Renyi entropy we obtain R(S|M = m) = − log 1 = 0 whenever Eve’s

choice of the basis is correct and R(S|M = m) = − log 0.5 = 1 otherwise. The

average Renyi entropy is then

R
(

S|M
)

=
1

2

(

0 + 1
)

=
1

2
(6.25)

For the Shannon entropy we also get either 0, if Eve guessed the same basis as Alice

and 1/2 otherwise. This results in a Shannon entropy of

H
(

S|M
)

= 4
1

8
=

1

2
(6.26)

Accordingly, Eve’s information gain from the full I&R attack is IAE = 1−H(S|M) =

1/2 per bit of the sifted key. This strategy gives more information to Eve than the

naive approach (cf. eq. (6.22)) or the I&R attack in the Breidbart basis [9].

Intercept-Resend on the BBM Protocol

The intercept-resend attack is not only applicable on prepare and measure protocols

but also on protocols using entangled states. In section 5.2.2 above we described the

BBM-version of the BB84 protocol [11]. In this version a source emitting entangled

pairs of qubits is used instead of a single photon source. One advantage of this

scheme is that the secret key is generated at both parties using perfect randomness

whereas in the BB84 protocol Alice more or less prepares the secret and sends it

to Bob. Nevertheless, an eavesdropper Eve located between Alice and Bob can

intercept the qubits coming from the entangled source. Following the considerations

from above we want to examine how much information an eavesdropper can get

when applying a full intercept-resend attack on the BBM protocol. In general, it is
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not stated explicitly where the entangled source is located. Hence, it could be either

in the middle of the two parties (in the laboratory of some trusted third party) or

at the laboratory of one of the parties. According to these scenarios Eve has two

possibilities to intervene: in the first scenario she measures both qubits before either

Alice or Bob receives them. In the second scenario where we assume that Alice is

in possession of the source Eve can only intercept Bob’s qubit.

Alice’s bit = 0

Alice’s result

Eve’s basis choice

|0〉, Z |1〉, Z |x+〉, Z |x−〉, Z |0〉, X |1〉, X |x+〉, X |x−〉, X
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1

2 0 1 1

2

1
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1
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1

2

1

2

1

2

1

2

1

2

Z X Z X

|0〉 |x+〉

Figure 6.3: (I&R attack on BBM) Decision tree for the full I&R attack strategy on

the BBM protocol [11].

Eve’s strategy in the first scenario is to intercept both qubits while they are flying

from the source to Alice and Bob. This case is somehow extraordinary because it

can be understood as Eve generating the secret due to her measurement since Eve

destroys the entanglement and forwards single qubits in a defined state to Alice and

Bob. Nevertheless, Alice’s and Bob’s measurement introduces enough randomness

to obtain a secure key because they choose their measurement bases at random.

Eve’s measurement basis coincides only for a fraction of all signals such that Eve

introduces an expected error probability of 1/4 as in the QKD protocols discussed

in the previous section.

In the second scenario where the source is located at Alice’s lab the only strategy

for Eve is to intercept Bob’s qubit and measure it. This happens usually after Alice

performed her measurement and thus the strategy is very similar to the full intercept-

resend attack presented above in connection with prepare and measure protocols.

Either Eve chooses the same basis as Alice and is able to measure the qubit perfectly

or she chooses the wrong basis and destroys the information. Therefore, we get the
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probabilities
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(

|x+〉, X
)

|s = 0
)

=

(

1

2

)2

· 1 =
1

4

p
(

m =
(
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(6.27)

describing Eve’s measurement results (of course, similar probabilities occur for s =

1). Regarding her average collision probability we get

〈

Pc
〉

=
1

4
+ 4

1

16
+

1

4
=

3

4
(6.28)

When looking at the probability that Bob obtains an incorrect result although both

Alice and Bob measured in the same basis we get

p
(

m =
(

|1〉, Z
)

|s = 0
)

= p
(

m =
(

|x−〉, X
)

|s = 0
)

=

p
(

m =
(

|0〉, Z
)

|s = 1
)

= p
(

m =
(

|x+〉, X
)

|s = 1
)

=
1

8

(6.29)

which results in the expected error probability

〈

Pe
〉

=
1

2

(

1

4
+

1

4

)

=
1

4
. (6.30)

Thus, we see that the average error probability as well as the average collision

probability in both scenarios is the same as for prepare and measure QKD proto-

cols which indicates that the security is the same for single photons and entangled

sources. Regarding Eve’s information gain IAE we compute the Shannon entropy

similar to the full I&R attack above and get H(S|M) = 1/2 such that

IAE = 1−H
(

S|M
)

=
1

2
. (6.31)

Hence, Eve has the same information on the raw key bits regardless whether she

attacks the BB84 or the BBM protocol using the full intercept-resend attack.

Collective Attack

As already pointed out shortly, in a collective attack Eve uses ancilla states and

entanglement to obtain information of the qubits sent by Alice. In this case Eve
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prepares an ancilla state for each qubit coming from Alice, entangles the ancilla

with it and then passes only the original qubit on to Bob. Later on, Eve is able

to perform a measurement or any other quantum operation on the ancilla in her

possession to gain information about the original signal. As pointed out in the

beginning the analysis in this chapter is restricted to individual attacks only. Thus,

we will just look at scenarios where Eve performs her operation on one single ancilla.

An operation on a subset or even all of the ancilla states is used in coherent attacks

but will not be discussed here.

Taking the BB84 protocol [8] which we also referred to in section 6.2.1 above, a

rather simple strategy for Eve is to use an entangled pair, i.e. one of the Bell states

from eq. (2.4), and to perform a measurement in the Bell basis on the photon coming

from Alice together with one of the entangled photons. This is equal to a quantum

teleportation scheme (cf. section 2.5.2 for further details) where the unknown signal

state is teleported onto Eve’s ancilla state.

(

α|0〉+ β|1〉
) 1√

2

(

|00〉+ |11〉
)

=

1

2

(

|Φ+〉
(

α|0〉+ β|1〉
)

+ |Φ−〉
(

α|0〉 − β|1〉
)

+|Ψ+〉
(

α|1〉+ β|0〉
)

+ |Ψ−〉
(

α|1〉 − β|0〉
)

)

.

(6.32)

Eve is able to keep her ancilla until Alice reveals her basis choice and to measure

it in the correct basis to obtain full information. If we look at the average collision

probability and Eve’s Shannon information about Alice’s bit we see that

〈

Pc
〉

= 1 and IAE = 1−H
(

S|M
)

= 1. (6.33)

Hence, Eve has full information about the bit Alice sent. Nevertheless, the signal,

which Eve has forwarded to Bob is now in a Bell state, i.e. it has lost every informa-

tion about Alice’s basis choice and is in a completely mixed state. Bob will obtain a

random result upon a measurement in the Z as well as in the X-basis as it is given

by Bob’s average collision probability 〈Pc〉 = 1
2
. Thus, Alice and Bob will detect

too many errors during their sifting phase (around 50%) and therefore will abort

the protocol. As we see, regarding the BB84 protocol, Eve gains full information

about Alice’s bit using this attack strategy but the average collision probability is

the same compared to the full I&R strategy (cf. eq. (6.24)). Thus, she can gain no

additional information from this strategy.
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Looking at the Ekert protocol [51] a strategy for Eve in this case is to prepare

her ancilla in the state |0〉 and perform a CNOT operation (cf. eq. (4.36) in section

4.2.3) on the signal and her ancilla state. The CNOT operation applied on the signal

coming from Alice and Eve’s ancilla will alter the state into

CNOT23|Φ+〉 ⊗ |0〉 = 1√
2

(

|000〉+ |111〉
)

(6.34)

The resulting state is a GHZ state [60] which has the special property that if one of

b

Alice Eve Bob

|Φ+〉

|0〉

(1)

Alice Eve Bob

|ϕ〉

(2)

Figure 6.4: (Collective Attack) Illustration of a collective attack on the Ekert pro-

tocol [51]. The dotted line indicates the application of the CNOT operation.

the photons is measured the other two photons immediately collapse into a certain

state depending on the measurement result (cf. section 2.2). In case of eq. (6.34)

if Alice measures in the Z basis Bob and Eve will obtain the same result as Alice if

they also perform their measurement in the Z basis. In case Alice uses the X-basis

Bob’s measurement result in the same basis will not correlate to Alice’s result in

50% of the times. For the collision probability and Shannon information this means

〈

Pc
〉

= 1 and IAE = 1−H
(

S|M
)

= 1 (6.35)

if Alice and Bob measure in the Z basis. For a measurement in the X-basis Bob

obtains the same result as Alice with probability 〈Pc〉 = 1
2
. Therefore, the overall in-

formation Eve obtains on each secret bit is 1−H(S|M) = 0.75, which is significantly

more compared to the I&R strategies discussed in section 6.2.1 above. Nevertheless,

an error is detected with probability 0.5 every time Alice and Bob use the X-basis.

This unbalanced occurrence of errors makes it easier for Alice and Bob to identify

the presence of Eve.
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6.2.2 Attacks on Realistic Sources

We want to stress again that we were dealing in the previous section with ideal

setups, which means perfect sources and channels. In a physical implementation of

QKD protocols the signals going from Alice to Bob are tempered by natural noise

and imperfect devices (inefficient detectors, multi-photon sources, etc.). There are

various systems trying to overcome some of these errors coming from the physical

limitations as we already described in section 5.2.4 above. To focus in detail on

the impacts of such problems onto the security of these protocols would go beyond

the scope of this thesis but we want to refer to these articles [57, 126, 118] (and

the references therein) which give a great overview on this complex topic. In the

following paragraphs we just want to give an idea which attack strategies are possible

in an real-world environment.

Photon Number Splitting Attack

The photon number splitting attack (PNS) was first introduced by Huttner et al.

[82] and later discussed by Brassard et al. [23] as well as Lütkenhaus [97] and is

a very powerful attack strategy. It is applied on realistic photon sources emitting

weak coherent pulses which generate single photons only with a certain probability.

With a small probability multi-photon pulses are emitted containing 2 or more

photons having the same polarization. The strategy for Eve is to intercept these

pulses coming from Alice, take one photon of the multi-photon pulse and send the

remaining photon(s) along to Bob. Eve waits until Alice and Bob publicly compare

their measurement bases and then measures the intercepted photon in the correct

basis.

In detail, according to eq. (5.13), the probability that Alice’s source emits a

vacuum pulse (containing zero photons) is very high and the probability of a single

photon pulse is around 10%. Hence, the probability of a multi-photon pulse is

very low (around 5% [57]). Because of this Eve can not split a photon off each

pulse but she has to check for the multi-photon pulses. Therefore, she performs a

non-demolition measurement to collapse the pulse into a state containing a fixed

number of photons. This is accomplished by a projection onto Fock spaces. If Eve

intercepted a multi-photon pulse, she applies an operator AN , which destructs one
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photon of the pulse and creates an appropriate auxiliary state, i.e.

AN |N, 0〉+|α〉 = |N − 1, 0〉+|ϕ1〉
AN |0, N〉+|α〉 = |0, N − 1〉+|ϕ2〉
AN |N, 0〉×|α〉 = |N − 1, 0〉×|ψ1〉
AN |0, N〉×|α〉 = |0, N − 1〉×|ψ2〉

(6.36)

From her measurement on the auxiliary system together with the information about

Alice’s basis choice Eve is able to determine the correct value of the secret bit.

Therefore, 〈ϕ1|ϕ2〉 and 〈ψ1|ψ2〉 have to be zero such that they can be distinguished

by Eve. As pointed out in [23] such an operator can be described by the Jaynes-

Cummings model.

Using the operator AN Eve is able to obtain full information from multi-photon

signals generated by Alice’s source. But, as we already pointed out, the probability

that a multi-photon signal is emitted is rather small. Only if the probability that

Bob detects a signal is smaller than the probability of a multi-photon signal the

attack becomes a severe problem. In this case Eve suppresses all dark counts in

Bob’s module and the efficiency of his detectors is increased to 100%. Further,

Eve replaces the quantum channel with a perfect channel such that there are no

losses due to the channel any more. It is a rather paranoid assumption to give Eve

the power to do all these things, since they affect Bob’s hardware directly. But,

to be secure, all possible scenarios have to be considered. For each signal coming

from Alice Eve acts in the following way: all signals with zero photons are ignored,

since dark counts have been suppressed. All multi-photon signals are attacked using

the PNS strategy. This gives Eve full information about the corresponding bit of

the secret key. A fraction of the single-photon signals is suppressed and the other

single-photon signals are attacked using the I&R strategy (cf. section 6.2.1 above).

Eve chooses the amount of discarded signals such that they are consistent with

Bob’s total detection probability. With a perfect quantum channel and perfect

detectors all errors in this scenario are introduced by Eve’s I&R attack (the PNS

attack introduces no error). Bob is not able to distinguish these errors from the

ones he expects due to dark counts and the lossy channel. In this case the whole

communication becomes insecure.

In [98] it has been shown that also the Poisson photon number distribution can be

preserved using the PNS attack, which makes it undetectable as long as a publicly
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known signal intensity is used. Therefore, the decoy states method [83, 93, 159]

uses different intensities to detect the PNS attack. Another way to secure BB84-like

protocols against the PNS attack was presented in [125]. Scarani et al. suggested an

alternative sifting procedure such that Alice does not give away her measurement

basis. Instead, she announces one of four pairs of non-orthogonal states. This leaves

Bob with an inconclusive or ambiguous result and he will have to discard his result

for 75% of all signals. Although the efficiency of this protocol is much lower than

for standard BB84 protocols (where about 50% of the signals are discarded) it gives

not enough information to an eavesdropper and the PNS attack can not be applied

successfully.

Trojan Horse Attack

Another attack strategy on realistic setups of QKD systems is the Trojan Horse

attack or light injection attack. It has been introduced first in [122, 16] and was

discussed in more detail in [151] later on. The main idea of this attack strategy

is not to interact with the photons in transit between Alice and Bob but to probe

the devices in Alice’s and Bob’s laboratory by sending some light into them and

collecting the reflected signal. In this way Eve is able to obtain information about

the detectors and further on which classical bit Bob measured. In detail, Eve is in

possession of a laser and a detection scheme. She sends out light pulses towards

Alice’s or Bob’s setup, which are reflected and enter the detection scheme when

returning to Eve. In [151] it is assumed that Eve uses homodyne detection for the

reflected pulse and thus needs a reference pulse. This reference pulse is delayed in an

arm of the optical fiber and enters the detection system together with the reflected

pulse.

Eve can use the information of the reflected signal to detect which basis Alice’s

used for the preparation of the photon. The detection of the correct basis is based on

a phase modulation occurring due to the different ways the reflected and reference

beam go through [151]. If Eve is able to do this before Alice’s photon reaches Bob

she can perform a simple I&R attack (cf. section 6.2.1 above), i.e. intercept the

photon in transit, measure it in the correct basis and send it on to Bob. This will

give her full information on the secret bit string.

A counter-measure against this kind of attack strategy is implemented in the

plug & play systems where the intensity of incoming light is monitored [122, 16].
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The idea is that Bob sends a rather intense beam of light to Alice which is used

for synchronization with a special timing detector at Alice’s setup. This detector

notifies the legitimate communication parties when the power of an incoming signal

extends some predefined level. For protocols where light just goes one way (e.g.

out of Alice’s lab into Bob’s lab) a strategy for preventing the attack is to add

components in Alice’s and Bob’s laboratory to block Eve’s injected pulse. This

means, for example, that the laser pulses have to pass through an optical isolator

and a band-pass filter [151] when leaving Alice’s setup. The isolator reduces the

signals coming into Alice’s laboratory to make a light injection attack impossible.

Faked States Attack

The faked states attack is a kind of I&R attack strategy but Eve does not try to

recreate the intercepted state. Instead, Eve manages to send a signal to Bob which he

can only detect in a way totally controlled by Eve. This attack was first introduced

in [101] and later extended in [100, 102]. In detail, Eve intercepts the signals coming

from Alice using an apparatus similar to Bob’s. Further, she forwards a state to

Bob which can only be detected by him if he chooses the same basis as Eve. She

can achieve this by exploiting the full detector efficiency mismatch [100]. This is a

phenomenon where the signal coming into the detector has a time-shift such that

it is outside the detector’s sensitivity curve. Therefore, only one detector can fire

and the other one is blinded out. In this way Eve can control the bit value Bob

will obtain from his measurement. The second goal of the faked states attack is to

eliminate the case where Bob performs a measurement in a basis incompatible to

Eve’s basis, thus detecting an error. Eve can achieve that by adding a relative phase

to the signal such that the whole signal is deflected to the blinded detector and is

lost.

For the BB84 protocol [8] the faked states attack works as follows: Eve performs

an I&R attack and obtains some result from her measurement. Then she sends a

signal pulse to Bob which has the opposite bit value in the opposite basis compared

to what she has detected. Eve also sets the time shift of the signal such that the

detector for the opposite bit value compared to what she has detected is blinded

out. Thus, if Bob tries to detect the signal in a different basis than Eve he won’t

detect anything. Otherwise, if Bob chooses the same basis as Eve, he will either

detect the same bit as Eve or nothing at all. Therefore, every time Eve measured
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Alice’s state in the wrong basis, also Bob will measure it in the wrong basis and the

results will be discarded. If Eve has chosen the right basis, also Bob measured in

the right basis and Eve has full information about this bit of the secret key.

As it is explained in [100, 102] it has to be stressed that Bob’s detection efficiency

is reduced by the faked states attack since all signals where Bob measured in a

different basis compared to Eve and half of the signals where Bob measured in the

same basis are suppressed. Eve can overcome this rather easily using faked states

with a proportionally increased brightness. If Eve is not able to blind one detector

completely, she can only obtain partial information about the key but, nevertheless,

stays undetected [119].

Possible counter measures to prevent the attack are, for example, to actively mon-

itor the timing of incoming pulses at Bob’s side [100]. This can be achieved through

a random shifting of Bob’s time window or with additional detectors. Alternatively,

Bob can test the characteristics of his detectors over a variety of input signals to

especially check all features of the sensitivity curve. Another counter measure for

Bob is to introduce random jitter into the detector synchronization to smear the

curves and lower the mismatch.

Time Shift Attack

An alternative version of the faked states attack is the time-shift attack strategy

[119]. The time-shift attack also exploits the detector efficiency mismatch, but, in

contrary to the faked states attack, it is feasible with today’s technology, as it has

been shown in [171]. Similar to the faked states attack Eve randomly shifts the time

of Alice’s signal such that it arrives outside of Bob’s detector’s sensitivity curve.

Due to her choice of the time delay Eve is able to infer the exact result of Bob’s

measurement. As pointed out in the previous section describing the faked state

attack, if Eve is able to completely blind a detector by her time shift, she is able to

obtain full information about Bob’s measurement result. Otherwise, Eve will obtain

only partial information about the secret key. In both cases, Eve never introduces

any error, since she does not measure or otherwise interact with Alice’s state in

transit.

One difference to the faked states attack is that Eve has to deal with the increased

loss at Bob’s side in another way. Regarding the faked states attack Eve uses a

brighter lases pulse to overcome the losses, as described above. With respect to the
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time-shift attack Eve has to replace the quantum channel by a low-loss version to

compensate Bob’s additional losses.

The counter measures regarding the faked states attack described in the previ-

ous section will also work here to prevent an application of the time-shift attack.

Additionally, phase shift settings can be applied to Bob’s phase modulator and the

detection rate and the channel loss can be checked to secure a protocol against the

time-shift attack [119].

6.3 Attacks on QSS Protocols

The security analysis of QSS schemes is a little different to the analysis of QKD

protocols. In general, the security of QSS protocols is rather complex to analyze since

there are usually more parties involved compared to QKD and almost every protocol

makes use of entanglement. Therefore, collective attacks are of much greater interest.

Some of the legal participants of a QSS protocol have to be considered dishonest

which gives a second threat besides eavesdroppers from the outside. That’s because

the aim of QSS is to share a secret such that no single party (or no subset of

parties) is able to obtain it by itself. This model of adversaries from the inside is in

fact much stronger because such an adversary in general has more advantages than

an eavesdropper from the outside. For example, a dishonest party is able to send

authenticated classical messages to the other parties whereas an eavesdropper from

the outside is not. Thus, we will especially focus on dishonest parties in the following

sections. For the sake of completeness we give a short overview on strategies for an

eavesdropper in the next section.

As already pointed out in section 5.3.1 above the number of dishonest parties is

also important. How many dishonest parties can be handled in a QSS scheme is

given by the threshold of the scheme. We pointed out that a (k, n) threshold scheme

is able to deal with k−1 dishonest parties since k−1 or less shares brought together

do not reveal any information about the secret. In the following we discuss (n, n)

threshold schemes which means all the shares have to be combined to reconstruct

the secret. With other words all but one of the receiving parties can be dishonest

without compromising the security of the protocol.
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6.3.1 Intercept-Resend by an Outside Adversary

An eavesdropper, Eve, is able to interfere with the qubits in transit between Alice

and her communication parties Bob and Charlie (let’s assume, for now, that only

three parties are involved in the protocol). Similar to the intercept-resend attacks

on QKD protocols Eve’s aim is to measure the intercepted qubit according to some

basis and generate a new qubit based on her result. Unlike in most of the QKD

protocols, the qubits in a QSS protocol are usually part of an entangled state which

means that an individual qubit is in a completely mixed state. Therefore, the major

problem for Eve is, as we have already seen in section 6.2.1 above, that she only

obtains information about the secret if her measurement basis corresponds to the

bases Alice, Bob and Charlie are going to use for their respective measurements.

Hence, she introduces a certain error into the protocol, which can be detected by

Alice, Bob and Charlie.

Looking at the HBB scheme [68] Eve’s strategy is to intercept the qubits flying

to Bob and Charlie and to measure them individually either in the X- or Y -basis.

Since Eve has no information about which bases Bob and Charlie are going to use

she chooses her measurement basis at random. Therefore, Eve sometimes performs

measurements which are compatible to the protocol, e.g. Eve uses XX or Y Y when

Alice obtained |x+〉 from her measurement, as well as measurements which will

destroy some of the information. The possible outcomes for Eve are then

p
(

m = (|x+ x+〉, X)|s = 0
)

= p
(

m = (|x− x−〉, X)|s = 0
)

=

p
(

m = (|y + y−〉, X)|s = 0
)

= p
(

m = (|y − y+〉, X)|s = 0
)

=
1

32

(6.37)

for the measurements corresponding to the protocol (cf. also table 5.2 in section

5.3.2). The probability for the other outcomes is then

p
(

m = |x± y±〉|s = 0
)

= p
(

m = |y ± x±〉|s = 0
)

=
1

64
(6.38)

Following the computation of the collision probability as described in section 6.2.1

above we obtain the conditional probabilities

p
(

s = 0|m = (|x+ x+〉, X)
)

= p
(

s = 0|m = (|x− x−〉, X)
)

=

p
(

s = 0|m = (|y + y−〉, X)
)

= p
(

s = 0|m = (|y − y+〉, X)
)

=

p
(

s = 0|m = (|x+ y+〉, Y )
)

= p
(

s = 0|m = (|x− y−〉, Y )
)

=

p
(

s = 0|m = (|y + x−〉, Y )
)

= p
(

s = 0|m = (|y − x+〉, Y )
)

= 1

(6.39)
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and 1/2 for the other cases. For s = 1 we obtain similar results and therefore the

expected collision probability for Eve computes as

〈

Pc
〉

= 2×
(

8× 1

32
+ 8× 1

64

)

=
3

4
. (6.40)

Additionally to the collision probability we want to know the probability that

Eve is detected by the legitimate communication parties. As stated in section 6.2

on QKD protocols above, Alice, Bob and Charlie will detect Eve whenever they

detect a wrong result during their test although they measured in the correct bases.

In detail, this means we are interested in the probabilities

p
(

m = (|y + y−〉, X)|s = 0
)

= p
(

m = (|y − y+〉, X)|s = 0
)

=

p
(

m = (|x+ x−〉, X)|s = 0
)

= p
(

m = (|x− x+〉, X)|s = 0
)

=

p
(

m = (|y + x+〉, Y )|s = 0
)

= p
(

m = (|y − x−〉, Y )|s = 0
)

=

p
(

m = (|x+ y−〉, Y )|s = 0
)

= p
(

m = (|x− y+〉, Y )|s = 0
)

=
3

128

(6.41)

and similarly for s = 1. Computing the expected error probability
〈

Pe
〉

from all the

single error probabilities from the equation above we get

Pe = 2×
(

8× 3

128

)

=
3

8
. (6.42)

As we can see, this probability is higher than, for example, in the prepare and

measure protocols above (cf. section 6.2.1). If a similar strategy is pursued by a

dishonest party it is much more effective, as we will show in the following section.

Looking at Eve’s information about the secret key we first compute the Shannon

entropy. Taking the conditional probabilities from the collision probability we get

H
(

S|M
)

= 2×
(

8× 1

32

)

=
1

2
(6.43)

which is the same as for the full intercept-resend attack on the BB84 protocol de-

scribed in eq. (6.26) above. The overall information Eve obtains about Alice’s secret

key is then IAE = 1−H(S|M) = 1/2.

6.3.2 Intercept-resend by a dishonest Party

In QSS schemes the presence of one or more dishonest parties has to be considered

besides an adversary from the outside. This is due to the fact that the main goal of
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a QSS scheme is to distribute a secret key between several parties such that none of

the parties is able to individually reconstruct the key. Such a dishonest party, let’s

assume it is Charlie, tries to gain knowledge about the secret from the messages in

transit between Alice and Bob. Hence, in any security analysis of a QSS protocol

we also have to evaluate the scenario of one or more dishonest parties. Actually,

the threat by an adversary from the inside, i.e. Charlie, is much higher than by an

adversary from the outside, i.e. Eve, since Charlie himself has some control over the

protocol. We want to point out shortly in this section, how big this advantage is

regarding the full intercept-resend attack.

Similar to Eve, Charlie’s intention is also to measure the qubits coming from

Alice to Bob to obtain some information about them. Therefore, he randomly

chooses between a measurement in the X- and Y -basis for the intercepted qubit

and forwards the qubit to Bob. Since Charlie does not know Alice’s basis choice

yet he also measures his qubit in the X- or Y -basis. This gives Charlie a collision

probability equal to the one presented in the previous section where Eve attacked

the protocol:
〈

Pc
〉

= 2×
(

8× 1

32
+ 8× 1

64

)

=
3

4
. (6.44)

Charlie’s advantage over an attack from the outside is that Alice eliminates some

of the measurement results where Bob and Charlie used non-corresponding bases.

For example, if Alice’s outcome is |x+〉 and Charlie measured both Bob’s and his

own qubit in the X-basis the state of Bob’s qubit is |x+〉 afterwards (cf. table 5.2).
Although Bob chooses again between the X- and Y -basis only the measurement in

the X-basis will count for any further step because a measurement in the Y -basis

does not correspond to Alice’s result |x+〉 (cf. table 5.2). Hence, the probabilities

for an incorrect result during the test for adversaries are

p
(

m = (|x+ x−〉, X)|s = 0
)

= p
(

m = (|x− x+〉, X)|s = 0
)

=

p
(

m = (|y + y+〉, X)|s = 0
)

= p
(

m = (|y − y−〉, X)|s = 0
)

=

p
(

m = (|x+ y−〉, X)|s = 0
)

= p
(

m = (|x− y+〉, X)|s = 0
)

=

p
(

m = (|y + x+〉, X)|s = 0
)

= p
(

m = (|y − x−〉, X)|s = 0
)

=
1

64
.

(6.45)

which leads to the expected error probability

〈

Pe
〉

= 2×
(

8× 1

64

)

=
1

4
. (6.46)



6.3. Attacks on QSS Protocols 123

Hence, we can see that both attack strategies from the outside and from the

inside have the same collision probability of 3/4. Nevertheless, an adversary from

the outside introduces 50% more error than a dishonest party which makes an attack

from the outside much easier to detect by the legitimate parties. This is the main

reason why we will not focus on attacks from Eve in the next sections. Moreover,

the intercept-resend attack is not the most powerful attack in this scenario. As we

will present in the next sections collective attacks give a dishonest party even more

advantages.

6.3.3 Attacks on the HBB Protocol

The security of the HBB protocol is mainly based on the fact that a dishonest

party is detected during the test procedure of the protocol. As described in section

5.3.2 above, after Alice eliminated the uncorrelated measurements she tells Bob and

Charlie to announce some of their measurement results of the remaining qubits.

Using table 5.2 Alice is able to compare the results with her own and check if the

desired correlation is given. If too many errors occur during this check (assuming we

have ideal sources and perfect channels, no errors should occur) Alice has to believe

that an adversary is present and restarts the protocol.

The security argument, as it is described in [68] has been proven to be wrong by

Karlsson et al. later that year [84]. They commented that the order in which

the measurement bases and the results for the test bits are revealed is crucial.

They showed that the HBB scheme becomes insecure if the measurement bases are

revealed before the results for the test bits. They suggested the same sequence as in

their protocol (see below for details): first, Bob and Charlie publicly disclose their

measurement results for the test bits and afterwards, in the reversed order, they

announce the corresponding measurement bases. The reversed order is important

such that none of them can gain too much information from the actions of the

previous parties.

In [120] it has also been shown – using a more general approach – that the HBB

scheme is insecure. The main idea is that Charlie performs a collective attack, i.e.

intercepts the qubit flying to Bob and entangles it with an ancilla qubit. Later

on, he uses his qubit together with the ancilla qubit to infer Alice’s measurement

result without Bob’s assistance. Furthermore, Charlie manages to stay undetected

during the test phase of the protocol since he knows which result to announce to
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maintain the correlation. In detail, Charlie uses an ancilla qubit in the state |0〉E and

entangles it with the intercepted qubit B of the GHZ state |P+
00〉 of eq. (5.15). He

achieves that using the Hadamard operation H on qubit B and the CNOT operation

on qubits B and E. This brings the initial system |P+
00〉ABC ⊗ |0〉E into the state

|Ψ〉 = 1

2
(|0000〉+ |0101〉+ |1010〉 − |1111〉)ABCE (6.47)

Charlie sends qubit B to Bob and waits until Bob announces his measurement basis.

Since Charlie did not perform his measurement yet he announces some random basis

and waits until Alice also reveals her basis choice. According to the measurement

results of Alice and Bob, the qubits C and E in Charlie’s possession collapse into

some predefined state. In case both Alice and Bob measure in the X-basis Charlie

obtains one of the states

|Ψx+x+〉 =
1

2
(|00〉+ |01〉+ |10〉 − |11〉)CE

|Ψx+x−〉 =
1

2
(|00〉 − |01〉+ |10〉+ |11〉)CE

|Ψx−x+〉 =
1

2
(|00〉+ |01〉 − |10〉+ |11〉)CE

|Ψx−x−〉 =
1

2
(|00〉 − |01〉 − |10〉 − |11〉)CE

(6.48)

Charlie uses this fact together with the information about Alice’s and Bob’s measure-

ment basis and to determine the correct value he has to announce to stay undetected.

This can easily be done due to the fact that the states |Ψx±x±〉 are completely dis-

tinguishable. Charlie just performs a CNOT operation on qubits C and E followed

by a Hadamard operation which changes the states |Ψx±x±〉 into the Bell states.

Afterwards he measures the qubits and announces 1 if he obtains either |Φ±〉 and

0 if he obtains |Ψ±〉 [120]. Further, Charlie is also able to compute Alice’s result

for the remaining qubits without any help of Bob performing a similar procedure

(application of a single Hadamard operation of qubit C), which makes the whole

protocol insecure.

Besides the sequence of the announcement of their measurement bases and results,

Alice, Bob and Charlie have a second opportunity to secure the HBB protocol. As

presented in [128], if Alice, Bob and Charlie sacrifice some of their measurement

results they can test whether they still share a genuine 3-qubit entanglement using

a series of inequalities. If these inequalities are maximally violated the three parties

can be sure that no eavesdropper or dishonest party entangled an additional system
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as described in [120]. Of course, if the qubits are intercepted and measured in

transit the 3-qubit entanglement is also destroyed and the inequalities are no longer

maximally violated. This strategy to detect the presence of an eavesdropper is very

powerful and therefore is discussed in further detail in section 7.3.

6.3.4 Attacks on the KKI Protocol

Regarding the protocol presented by Karlsson et al. [84] the security is also based

on the fact that a dishonest party is detected during the error estimation phase of

the protocol. The main result of the KKI scheme is that the sequence in which

the measurement bases and results are revealed during the error estimation phase

is crucial for the security. It is stressed in [84] that the measurement results have

to be revealed before the measurement bases and that the party which revealed its

results first should be the last to reveal the bases. This explicit order of messages

makes it very unlikely for a dishonest party to stay undetected if some qubits are

tempered.

Looking at the protocol in detail as described in section 5.3.2 above, Alice tells

Bob and Charlie during the error estimation phase which measurement results they

have to reveal. Then, Alice publicly announces her results for the respective qubits,

followed by Bob. Afterwards, Bob announces his corresponding measurement bases

followed by Alice announcing her bases. Due to these informations Alice is able

to check the correlation of the measurement bases and results with the state she

prepared using table 5.3 from above. For all measurements where Bob and Charlie

used non-corresponding bases Alice discards the respective results. For all the other

measurements, if the results do not correlate for a certain number of times Alice has

to assume that an adversary is present and aborts the protocol.

Karlsson et al. also showed in their article [84] that the protocol does become

insecure if the sequence of revealing the bases and results is changed (i.e. first the

bases are declared, then the results). In this case a good strategy for a dishonest

Charlie is to capture Bob’s qubit coming from Alice and send qubit D from a fake

state, e.g. |Φ−〉DE, instead. Bob then performs a measurement on qubit D and

announces his basis. Charlie can measure the other qubit E according to the same

basis and thus obtain Bob’s exact result. Further, he measures the intercepted

qubit B of the original state according to the same basis and his qubit C of the

original state according to some random basis, as stated in the protocol. Due to this
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information Charlie is always able to announce a result which agrees to both Bob’s

result of his measurement on the fake state and the initial state sent by Alice thus

fulfilling the correlations in table 5.3. Hence, when Alice checks for the correlation

between Bob’s and Charlie’s result Charlie’s intervention does not introduce any

error and leaves him undetected. In further consequence, Charlie is able to recreate

Alice’s secret from the remaining measurements without Bob’s help.

From this strategy we see that a strictly defined sequence of the messages can be

used to secure the KKI secret sharing scheme. Furthermore, this security argument

can also be used to detect a dishonest party in the HBB scheme [84]. Nevertheless,

we want to stress that relying on the sequence of messages is not a very efficient way

to secure a protocol since such an order of messages is not implicitly preserved by

the network. Hence, there is an overhead for managing the sequence of the messages

and more communication has to be done between the parties. Alice has to tell each

party when to send its result and has to wait for the response. In case of three

parties as in the HBB or the KKI scheme this overhead is of no big significance but

it can become large when going to n parties. Therefore, the method described in

[128] is much more efficient.

6.3.5 Attacks on QSTS Protocols

When looking at the QSTS schemes described in section 5.3.3 above different attack

scenarios are of interest. Intercepting a qubit in transit and measuring it is no

longer a good strategy since these protocols are dealing with quantum information.

Moreover, they make extensive use of entanglement as we can see from the protocols

described in [92, 38, 39, 40]. Hence, collective attacks and strategies involving fake

states are of higher interest. Regarding the protocol presented by Li et al. [92] it can

easily be shown that the scheme is insecure against a dishonest party, e.g. Charlie.

A good strategy for Charlie is to intercept the qubit flying from Alice to Bob and

instead send a qubit from a fake state |Φ+〉DE. If Alice decides that the secret should
be reconstructed at Charlie’s laboratory, Bob performs – according to the protocol

– a measurement in the X-basis on the fake qubit D obtaining, for example, |x+〉.
Due to entanglement Bob’s action on qubit D alters the state of qubit E in Charlie’s

possession such that he obtains the same result as Bob. Based on this information,

Charlie is able to project qubit B he intercepted onto |x+〉 and obtain the secret

|ϕ〉 without Bob’s help. Otherwise, if the secret should be reconstructed at Bob’s
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laboratory Charlie performs a measurement in the X-basis on his qubit C. This

brings the qubit B in a state similar to the secret |ϕ〉 and Charlie teleports this

state to Bob using the state |Φ+〉DE he shares with him. In this case Charlie has

to collaborate with Bob to obtain the secret but his intervention is not detected.

Therefore, Charlie has full information about half of the secrets without Bob’s help

which is too much for a secret sharing protocol.

As already pointed out above, the scheme presented in [39] is a rather straight

forward extension of the above protocol to a secret consisting of two qubits. Thus,

the attack strategy can also be extended to this protocol. In this scenario Charlie

sends two fake states |Φ+〉D1E1
and |Φ+〉D2E2

to Bob and intercepts the qubits B1

and B2 coming from Alice. If Bob has to perform a measurement in the X-basis on

his qubits, Charlie can obtain his results from his qubits E1 and E2 without Bob’s

help and project qubits B1 and B2 on the corresponding states. Otherwise, Charlie

performs the measurements in the X-basis and teleports the result to Bob. Hence,

Charlie’s actions again stay undetected and he obtains full information about half

of Alice’s secrets without Bob’s help.

One possibility to overcome that vulnerability of these two protocols is to allow

Bob to measure in either the X- or the Y -basis. This does not change the protocol

significantly because Charlie only has to apply an additional σy operation on his

qubit if Bob measured in the Y -basis. Nevertheless, a dishonest Charlie can not

obtain any useful information from his fake state |Φ+〉 since he does not know which

basis Bob used. Accordingly, Charlie can not obtain Alice’s secret although he

intercepted the qubit flying to Bob and therefore has to rely on Bob’s help. Another

possibility is to introduce another step into the protocol before Bob performs his

measurement. In this step Alice, Bob and Charlie test the CHSH inequalities using

some of the qubits of their entangled states to guarantee that they really do share the

desired entanglement. If they can be sure that there is only entanglement between

Alice and Bob as well as Alice and Charlie, respectively, they can follow the protocols

as described in the original versions [92, 39].

The protocol described in [38] is a little more complex because Alice, Bob and

Charlie share GHZ states (cf. section 5.3.3 and figure 5.7) but the strategy is the

same for the protocols in [92, 39]. The dishonest Charlie intercepts the qubits B1

and B2 coming from Alice, prepares a 4-qubit state |ψ〉E1E2E3E4
as

|ψ〉 = 1

2

(

|0000〉+ |0101〉+ |1010〉+ |1111〉
)

E1E2E3E4
(6.49)
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and sends qubits E1 and E2 to Bob. Following the protocol Bob performs a Bell

state measurement on his qubits of the fake state which leaves the qubits at Charlie’s

side in the same state as Bob’s result, since

|ψ〉 = 1

2

(

|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉+ |Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

. (6.50)

Therefore, Charlie can project the qubits B1 and B2 onto this state and obtain the

secret from his qubits C1 and C2 without Bob’s help. Additionally, if Charlie has to

perform the measurement he teleports the secret into Bob’s laboratory as described

above. In this way Charlie stays undetected and obtains full information on half of

Alice’s secret states.



Chapter 7

Security of Multi-Qubit Protocols

We have seen that quantum cryptographic protocols involving single photons have

been of major interest over the last years not alone due to the fact that they can

be implemented with today’s physical apparatus. Nevertheless, the application of

entanglement and the phenomenon of entanglement swapping is of big interest, too.

These concepts have been introduced in several protocols as the main resource for

generating and distributing a secret between two or more parties.

In this chapter cryptographic protocols involving entanglement and entanglement

swapping are at the focus of attention. We consider systems where at least 4 qubits

(2 entangled pairs) are involved and 2 qubits are in transit between Alice and Bob,

thus speaking of multi-qubit protocols as opposed to the last chapter. The main

question is to which amount the entanglement between Alice and Bob can be used

by an adversary to obtain information about the secret shared between them.

7.1 The ZLG Attack

Besides the Ekert protocol [51] described in section 5.2.2 above, there are other

entanglement-based protocols for quantum key distribution. A large part of them

makes use of entanglement swapping (cf. section 2.5.3 for details) as a way to

generate and distribute the secret. Originating from these protocols also an attack

strategy based on entanglement swapping has been considered by Zhang, Li and Guo

[170] as described in the following paragraphs. Protocols as well as attack strate-

gies based on entanglement swapping are a rather theoretical approach because the

realization is very complex due to current limitations of the physical apparatus.

129
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|Φ−〉

|Φ+〉 |Φ+〉

1 2

3 4

5 6

Alice Bob

(1)

|Ψ−〉

|Ψ+〉 |Φ+〉

Alice Bob

(2)

|Ψ−〉

|Ψ+〉

|Φ+〉

Alice Bob

(3)

|Ψ−〉

|Ψ+〉

|Φ+〉

Alice Bob

(4)

Figure 7.1: (Illustration of the protocol in [27].

Nevertheless, attack strategies based on entanglement swapping have to be consid-

ered because we have to concede Eve the possibility to hold the physical means to

perform such attacks efficiently. Further, some protocols have already been shown

to be insecure against them.

7.1.1 Application on a QKD Protocol

Protocol Description

An example for a QKD scheme open to an attack based on entanglement swapping

is a protocol presented by Adan Cabello [27]. The main idea of this protocol is to

get rid of measurement in alternative bases to avoid the loss of half of the qubits,

on average, as it is the case in the prepare and measure protocols described above

[8, 5, 11]. In this protocol Alice has two entangled pairs in the state |Φ−〉12 and

|Φ+〉35 whereas Bob has one pair in the state |Φ+〉46. Alice sends qubit 2 to Bob

and performs a Bell state measurement on qubits 1 and 3 in her possession (cf. (1)

in figure 7.1) which entangles qubits 2 and 5 due to entanglement swapping as

|Φ−〉12|Φ+〉35 =
1

2

(

|Φ−〉13|Φ+〉25 − |Φ+〉13|Φ−〉25

+|Ψ−〉13|Ψ+〉25 − |Ψ+〉13|Ψ−〉25
)

.
(7.1)
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Alice

Bob

|Φ+〉56 |Φ−〉56 |Ψ+〉56 |Ψ−〉56
|Φ+〉24 |Φ−〉13 |Φ+〉13 |Ψ−〉13 |Ψ+〉13
|Φ−〉24 |Φ+〉13 |Φ−〉13 |Ψ+〉13 |Ψ−〉13
|Ψ+〉24 |Ψ−〉13 |Ψ+〉13 |Φ−〉13 |Φ+〉13
|Ψ−〉24 |Ψ+〉13 |Ψ−〉13 |Φ+〉13 |Φ−〉13

Table 7.1: Alice’s state of qubits 1 and 3 depending on her and Bob’s measurement

result.

In detail, if qubits 1 and 3 are in the state |Ψ−〉13 after the Bell state measurement,

Alice knows that qubits 2 and 5 are in the state |Ψ+〉25 (cf. (2) in figure 7.1). After

receiving qubit 2 from Alice, Bob also performs a Bell state measurement on qubits

2 and 4 and obtains, for example, |Φ+〉24. Now, qubits 5 and 6 are in the entangled

state |Ψ+〉56 (cf. eq. (3) and (4) in figure 7.1) since

|Ψ+〉25|Φ+〉46 =
1

2

(

|Φ+〉24|Ψ+〉56 − |Φ−〉24|Ψ−〉56

+|Ψ+〉24|Φ+〉56 − |Ψ−〉24|Φ−〉56
)

(7.2)

Bob sends qubit 6 to Alice, who is able to determine the state of qubits 5 and 6

by measuring them in the Bell basis. She publicly announces her result and both

parties are able to calculate the state of qubits 1, 3 and 2, 4, respectively, using

table 7.1. Alice and Bob use these two states to agree upon a shared secret key.

Attack Strategy and Security

In this protocol the entanglement between Alice and Bob is used to both establish

and transport the secret between the two parties. The main question now is whether

this entanglement, since it is the source of the information, can be misused to eaves-

drop parts of the secret key. This question has been addressed in a comment on the

Cabello protocol by Zhang, Li and Guo [170]. They presented an attack strategy

which gives an adversary full information about the key shared between Alice and

Bob (this is often referred to as the ZLG attack). The idea is that Eve prepares an

entangled pair |Φ+〉78 herself and uses qubit 7 to replace qubit 2 flying to Bob (cf.
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(1) in figure 7.2). Due to entanglement swapping Bob’s measurement on qubits 4

and 7 entangles qubits 6 and 8 shared between Bob and Eve leading to the state

|Φ+〉78|Φ+〉46 =
1

2

(

|Φ+〉47|Φ+〉68 + |Φ−〉47|Φ−〉68

+|Ψ+〉47|Ψ+〉68 + |Ψ−〉47|Ψ−〉68
)

.
(7.3)

Following the protocol, Bob sends qubit 6 to Alice and Eve intercepts it performing

a Bell state measurement on qubits 6 and 8. As we have seen in eq. (7.1) above,

qubits 2 and 5 are in the state |Ψ+〉25 according to Alice’s measurement. Based on

the outcome of her measurement Eve knows the exact result of Bob’s measurement

(cf. eq. (7.3) and (3) in figure 7.2). Moreover, she also knows how to change the

state of qubits 2 and 5 such that the state of qubits 5 and 6 will correspond to Alice’s

and Bob’s result in table 7.1. Therefore, Eve uses one of the Pauli operators onto

qubit 2 to alter the state |Ψ+〉25 such that she applies 1 if she obtains |Φ+〉68, σx if

she obtains |Ψ+〉68, iσy if she obtains |Ψ−〉68 and σz if she obtains |Φ−〉68 (cf. (3)

in figure 7.2). When Eve returns qubit 2 to Alice, Alice performs her measurement

and will obtain a result correlated to Bob’s measurement outcome, as it would be

expected from table 7.1 (compare (4) in figure 7.1 and (4) in figure 7.2). Since Eve’s

qubits 6 and 8 are in the same state as Bob’s qubits 4 and 7, Eve is able to obtain

full information about the key between the two legitimate communication partners

without being noticed.

Revised Protocol

As a reaction Cabello published an addendum to his protocol [28]. He described a

solution to the problem, i.e. a way to secure the protocol in [27] against the ZLG

attack. Cabello suggested to use the Hadamard operation H , which alters the Bell

states such that

H|Φ±〉 = 1√
2

(

|Φ∓〉 ± |Ψ±〉
)

= |ω±〉

H|Ψ±〉 = 1√
2

(

|Ψ∓〉 ± |Φ±〉
)

= |χ±〉
(7.4)

In detail, Alice and Bob exchange qubits 2 and 6 as in the original protocol but

they perform their Bell state measurements after they sent their respective qubits

(cf. (2) and (3) in figure 7.3). Additionally, Alice decides randomly whether or not

to perform a Hadamard operation on qubit 3 in her possession, which alters her Bell
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Alice Eve Bob

|Φ−〉

|Φ+〉 |Φ+〉
|Φ+〉
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(1)
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|Ψ+〉
|Φ+〉

|Φ+〉
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Alice Eve Bob

|Ψ−〉

|Ψ+〉

|Φ+〉

|Φ+〉1

(3)

Alice Eve Bob

|Ψ−〉

|Ψ+〉 |Φ+〉

|Φ+〉
(4)

Figure 7.2: (ZLG attack) Illustration of the ZLG attack scenario [170].

Alice Bob

|Φ−〉

|Φ+〉
|Φ+〉

H

1 2

3
4

5 6

(1)

Alice Bob

|Φ−〉

|ω+〉
|Φ+〉

(2)

Alice Bob

|Ψ−〉

|Φ+〉

|χ+〉
(3)

Alice Bob

|Ψ−〉

|Ψ+〉

|ω+〉

H

(4)

Figure 7.3: Illustration of the revised version of Cabello’s QKD protocol [28].
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Alice (Secret)

Alice

(Public)

|Φ+〉13 |Φ−〉13 |Ψ+〉13 |Ψ−〉13
|Φ+〉56 |Φ−〉24 |Φ+〉24 |Ψ−〉24 |Ψ+〉24
|Φ−〉56 |Ψ−〉24 |Ψ+〉24 |Φ−〉24 |Φ+〉24
|Ψ+〉56 |Φ+〉24 |Φ−〉24 |Ψ+〉24 |Ψ−〉24
|Ψ−〉56 |Ψ+〉24 |Ψ−〉24 |Φ+〉24 |Φ−〉24

Table 7.2: Bob’s state of qubits 2 and 4 depending on Alice’s measurement results

for the revised protocol.

state measurement accordingly to

|Φ−〉12|ω+〉35 =
1

2

(

|Φ+〉13|ω−〉25 + |Φ−〉13|ω+〉25

+|Ψ+〉13|χ−〉25 + |Ψ−〉13|χ+〉25
)

.
(7.5)

Assuming Alice obtains |Ψ−〉13 the state of qubits 2 and 5 changes into |χ+〉25.
Alice’s measurement on qubits 5 and 6 can then be written as

|χ+〉25|Φ+〉46 =
1

2

(

|Φ+〉56|χ+〉24 + |Φ−〉56|χ−〉24

+|Ψ+〉56|ω+〉24 + |Ψ−〉56|ω−〉24
)

.
(7.6)

Alice announces her choice together with the result of her measurement on qubits

5 and 6, which is in our example |Ψ+〉56. If Alice does use the Hadamard operation

Bob also performs a Hadamard operation on qubit 4 to undo the Alice’s effects (cf.

(4) in figure 7.3) otherwise he does nothing. Finally, he performs the Bell state

measurement on qubits 2 and 4. It has to be stressed that the Hadamard operation,

applied on the first and second qubit of a Bell state leaves only the states |Φ+〉 and
|Ψ−〉 invariant whereas |Φ−〉 changes into |Ψ+〉 and vice versa. Therefore, table 7.1

describing the correlations has to be slightly changed into table 7.2. This fact has

to be kept in mind when evaluating the key.

Attack Strategy and Security of the Revised Protocol

When looking at the ZLG attack in this alternative scenario we immediately see

that the strategy in its original formulation is not really effective any more as it is
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shown in [28]. If Alice does not apply the Hadamard operation the strategy works

perfectly for Eve as in the original version of the protocol. If Alice does apply the

Hadamard operation Eve is still able to intercept qubit 2 and send qubit 7 to Bob

instead as well as intercept qubit 6 coming from Bob. By measuring qubits 6 and

8 at this time Eve determines Bob’s result and alters the state of qubits 1 and 2

with her Pauli operation. For example, assuming Eve obtains |Ψ−〉68 from her result

Bob’s state is also |Ψ−〉74 and she applies iσy onto qubit 2 which leads to |Ψ+〉12.
Eve returns qubit 2 to Alice who now applies the Hadamard operation onto qubit 3

and performs a Bell state measurement on it together with qubit 1 which leads to

|Ψ+〉12|ω+〉35 =
1

2

(

|Φ+〉13|χ+〉52 − |Φ−〉13|χ−〉52

+|Ψ+〉13|ω+〉52 − |Ψ−〉13|ω−〉52
)

(7.7)

If Alice obtains |Ψ−〉13 from her measurement as in the examples above, her mea-

surement on qubits 5 and 2 results either in |Φ+〉52 or in |Ψ−〉52. Alice announces

the state of qubits 5 and 2 together with the fact that she performed the Hadamard

operation H and Bob also applies the operation H thus changing |Ψ−〉74 to |χ−〉74.
When he performs his measurement on the two qubits he either obtains |Ψ+〉74 or

|Φ−〉74. Comparing these outcomes with table 7.2 we see that although Alice’s and

Bob’s results are uncorrelated they will end up with valid results half of the time.

Hence, for a random application of the Hadamard operation this gives an average

error probability
〈

Pe
〉

=
1

2
× 0 +

1

2
× 2

4
=

1

4
(7.8)

which is equal to the full intercept-resend attack on the BB84 protocol (cf. eq. (6.24)

in section 6.2.1 above). Whenever Alice and Bob apply the Hadamard operation

Eve obtains a collision only half of the time. Otherwise, she obtains full information

due to her intervention. Therefore, the average collision probability for Eve is

〈

Pc
〉

=
1

2
× 1 +

1

2
× 1

2
=

3

4
. (7.9)

Further, the Shannon entropy H = 0, i.e. Eve has full information about the

secret bits, whenever Alice applies the 1 operation, and the entropy is maximal

whenever Alice applies the Hadamard operation. With a random application of the

two operations we obtain the same entropy as in the full intercept-resend attack on

the BB84 protocol, i.e.

H
(

S|M
)

=
1

2
(7.10)
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which defines Eve’s information about the secret key as IAE = 1−H(S|M) = 1/2.

7.1.2 Application on a QSS Protocol

Protocol Description

In the same year Adan Cabello presented another protocol [26] for quantum key

distribution and quantum secret sharing which is also open to a similar kind of

attack. In this protocol three parties are involved which are able to distribute a key

among them or share a secret between two of them. The aim is to use the 3 qubit

entanglement of the GHZ state similar to the HBB protocol [68] described above to

achieve these tasks. Therefore, each party is in possession of an entangled pair, i.e.

|Φ+〉12, |Φ+〉4C ,|Φ+〉5D, and Alice generates the GHZ state |P+
00〉3AB at her side (cf.

(1) in figure 7.4). She keeps qubit 3 of the GHZ state and sends the other two qubits

to Bob and Charlie, respectively. Then, Alice performs a Bell state measurement

on qubits 2 and 3, which alters the GHZ state as

|Φ+〉12|P+
00〉 =

1

2

(

|Φ+〉23|P+
00〉1AB + |Φ−〉23|P−

00〉1AB

+|Ψ+〉23|P+
11〉1AB + |Ψ−〉23|P−

11〉1AB
)

.
(7.11)

Bob performs his measurement on qubits 4 and A and Charlie performs his mea-

surement on qubits 5 and B (cf. (2) in figure 7.4). As a consequence qubits 1, C

and D are now in a GHZ state due to entanglement swapping as it is described in

table 7.3 (there are similar tables if Alice obtains |Φ−〉23, |Ψ±〉23. For example, we

see from table 7.3 that if Alice, Bob and Charlie obtained |Φ+〉 from their respective

measurements this leaves qubits 1, C and D still in the GHZ state |P+
00〉1CD, as

presented in figure 7.4.

Bob and Charlie send their remaining qubits C andD back to Alice, who performs

a GHZ state measurement and publicly announces the outcome (cf. (3) and (4) in

figure 7.4). Based on this public result and the results of their own measurements

the three parties can realize a QSS scheme where Bob and Charlie have to work

together to recover both of Alice’s secret bits. Alternatively, a QKD protocol can

be realized since Bob and Charlie are always able to individually obtain one bit of

information about Alice’s secret from their own measurement [28].
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Bob

Charlie

|Φ+〉4A |Φ−〉4A |Ψ+〉4A |Ψ−〉4A
|Φ+〉5B |P+

00〉1CD |P−
00〉1CD |P+

10〉1CD |P−
10〉1CD

|Φ−〉5B |P−
00〉1CD |P+

00〉1CD |P−
10〉1CD |P+

10〉1CD
|Ψ+〉5B |P+

01〉1CD |P−
01〉1CD |P+

11〉1CD |P−
11〉1CD

|Ψ−〉5B |P−
01〉1CD |P+

01〉1CD |P−
11〉1CD |P+

11〉1CD

Table 7.3: Alice’s GHZ state after Bob’s and Charlie’s measurement (assuming Alice

herself obtained |Φ+〉23).

Alice

Bob Charlie

|P+

00〉

|Φ+〉

|Φ+〉 |Φ+〉

1

2

3

A B

4

C

5

D

(1)

Alice

Bob Charlie

|Φ+〉 |Φ+〉

|Φ+〉

|P+

00〉

(2)

Alice

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|P−

01
〉

(3)

Alice

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|P−

01〉

(4)

Figure 7.4: Illustration of the protocol in [26].
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Attack Strategy and Security

It has been shown by Lee et al. [90] that also this protocol is open to the ZLG

attack. In detail, Eve prepares two entangled pairs in the state |Φ+〉PQ and |Φ+〉RS
and intercepts qubits A and B coming from Alice. She keeps the qubits P and R

and forwards qubit Q and qubit S to Bob and Charlie, respectively (cf. (1) in figure

7.5). Both parties perform their measurement as described in the protocol and they

return the qubits C and D. Eve intercepts also these qubits and performs a Bell

measurement on the pairs P , C and R, D. Due to entanglement swapping these

measurements can be described as

|Φ+〉4C |Φ+〉PQ =
1

2

(

|Φ+〉4Q|Φ+〉PC + |Φ−〉4Q|Φ−〉PC

+|Ψ+〉4Q|Ψ+〉PC − |Ψ−〉4Q|Ψ−〉PC
)

|Φ+〉5D|Φ+〉RS =
1

2

(

|Φ+〉5S|Φ+〉RD + |Φ−〉5S|Φ−〉RD

+|Ψ+〉5S|Ψ+〉RD − |Ψ−〉5S|Ψ−〉RD
)

.

(7.12)

From eq. (7.12) we immediately see that Eve obtains the same result as Bob and

Charlie, respectively, from her measurements. According to her results Eve is able

to select a Pauli operator and apply it on the qubits A and B she intercepted from

Alice to preserve the correlation given in table 7.3 (cf. (3) in figure 7.5). She uses

the mapping

|Φ+〉 7−→ 1 |Φ−〉 7−→ σz |Ψ+〉 7−→ σx |Ψ−〉 7−→ σy (7.13)

i.e. Eve applies a σx operation on qubit A if she obtained |Ψ+〉PC and a σz operation

on qubit B if she obtained |Φ−〉RD. Since they are still in a GHZ state together with

qubit 1 from Alice, these operations alter the overall state in a way such that it

correlates with Alice’s, Bob’s and Charlie’s measurement results (compare (4) in

figure 7.4 with table 7.3). In the end Eve returns the two qubits to Alice, who

performs a GHZ state measurement on them as described in the protocol. The

three legitimate communication parties will not detect Eve since, due to her Pauli

operations, she does not introduce any error in the protocol. As pointed out above

Eve knows from her measurement the exact state of Bob’s and Charlie’s secret

measurements and therefore has also full information about Alice’s secret.
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Alice
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Bob Charlie

|Φ+〉 |Φ+〉

|Φ+〉

|P+
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1

2

3

A B
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Q S
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D

5

(1)

Alice
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Bob Charlie
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|Φ−〉 |Ψ+〉

|P+
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|Φ−〉 |Ψ+〉
(2)

Alice

Eve

Bob Charlie

σz σx

|Φ+〉

|Φ−〉 |Ψ+〉

|Φ−〉 |Ψ+〉

|P+

00〉 (3)

Alice

Eve

Bob Charlie

|Φ−〉 |Ψ+〉

|Φ+〉
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|P−
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Figure 7.5: (ZLG attack) Illustration of the ZLG attack strategy on Cabello’s QSS

protocol [26] with an external adversary Eve.
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Revised Protocol

In their paper [90] Lee et al. also presented a method to protect Cabello’s protocol

against the ZLG attack. In this case Bob and Charlie use the quantum Fourier

transformation (QFT) defined as

|j〉 QFT7−→ 1√
N

N−1
∑

k=0

e2Πijk/N |k〉 (7.14)

to secure the qubits in transit. (cf. for example [109] for details on the QFT). In

this special case applying the QFT has the same effect as applying the Hadamard

operation. Therefore, we will use the Hadamard operation in the following consid-

erations. The course of the protocol is slightly different to the original one. Mainly,

Alice, Bob and Charlie exchange all their qubits before performing any measurement

(cf. (1) in figure 7.6). Additionally, Bob and Charlie randomly apply a Hadamard

operation on the qubits in their respective laboratories. As already discussed this

changes the state |Φ+〉 according to eq. (7.4). After Alice received the qubits from

Bob and Charlie she performs a Bell state measurement on qubits 2 and 3 and Bob

and Charlie act similarly on their qubits 4 and A as well as 5 and B, respectively,

as described in the original protocol (cf. (2) in figure 7.6). If both Bob and Charlie

do not apply the Hadamard operation the protocol is the same as in the original

version. If either of them applies the Hadamard operation onto his qubit this alters

the GHZ state after Bob’s measurement as

|ω+〉4C |P+
00〉1AB =

1

2

(

|Φ+〉4A
1√
2

(

|P−
00〉+ |P+

10〉
)

1CB

+|Φ−〉4A
1√
2

(

|P+
00〉+ |P−

10〉
)

1CB

+|Ψ+〉4A
1√
2

(

|P−
00〉 − |P+

10〉
)

1CB

−|Ψ−〉4A
1√
2

(

|P+
00〉 − |P−

10〉
)

1CB

)

(7.15)

and similarly for Charlie’s measurement (in this case Charlie obtains either |P±
00〉 or

|P±
01〉). In case both parties apply the Hadamard operation the GHZ state changes
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into

|ω+〉5D
1√
2

(

|P−
00〉+ |P+

10〉
)

1CB
=

=
1

2

(

|Φ+〉5B
1

2

(

|P+
00〉+ |P−

01〉+ |P−
10〉+ |P+

11〉
)

1CD

+|Φ−〉5B
1

2

(

|P−
00〉+ |P+

01〉+ |P+
10〉+ |P−

11〉
)

1CD

+|Ψ+〉5B
1

2

(

|P−
00〉 − |P+

01〉+ |P+
10〉 − |P−

11〉
)

1CD

−|Ψ−〉5B
1

2

(

|P+
00〉+ |P−

01〉 − |P−
10〉+ |P+

11〉
)

1CD

)

(7.16)

if Bob obtained |Φ+〉4A and equivalently for |Φ−〉4A and |Ψ±〉4A. Then, Bob and

Charlie publicly announce their decision and Alice performs the Hadamard operation

on the qubits she received from Bob and Charlie according to their decision (cf. (3)

and (4) in figure 7.6). Alice’s Hadamard operation brings the GHZ state back to

the state corresponding to the correlation described in table 7.3.

Attack Strategy and Security of the Revised Protocol

Similar to the addendum to Cabello’s protocol [28] Eve is not able to overcome the

random application of the Hadamard operation by Bob and Charlie. If Eve follows

the attack strategy described in [90] she intercepts the qubits A and B coming from

Alice as well as the qubits C and D coming Bob and Charlie but she can not find

a Pauli operation to correct the GHZ state. In detail, Eve forwards qubits Q and

S to Bob and Charlie, respectively, and measures the qubit pairs P , C and R,

D. Depending on whether Bob and Charlie applied the Hadamard operation these

measurements are similar to eq. (7.12) or to

|ω+〉4C |Φ+〉PQ =
1

2

(

|Φ+〉PC|ω+〉4Q + |Φ−〉PC |ω−〉4Q

+|Ψ+〉PC |χ+〉4Q − |Ψ−〉PC|χ−〉4Q
)

|ω+〉5D|Φ+〉RS =
1

2

(

|Φ+〉RD|ω+〉5S + |Φ−〉RD|ω−〉5S

+|Ψ+〉RD|χ+〉5S − |Ψ−〉RD|χ−〉5S
)

.

(7.17)

As we can see Eve’s measurement determines the states of qubits 4, Q and 5, S,

respectively, at Bob’s and Charlie’s laboratory. Based on her outcomes Eve performs

the Pauli operations given by eq. (7.13) on qubits A and B and returns them to

Alice. Upon receipt of the qubits Alice performs her Bell state measurement on
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Alice

Bob Charlie
H

|P+

00〉

|Φ+〉

|Φ+〉 |Φ+〉

1

2

3

A B

C

4

D

5

(1)

Alice

Bob Charlie

|ω+〉 |Φ+〉

|Φ+〉

|P+

00〉

(2)

Alice

Bob Charlie

H

|Φ+〉

|Φ−〉 |Ψ+〉

(3)

Alice

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|P−

01〉

(4)

Figure 7.6: Illustration of revised version of Cabello’s QSS protocol [26]. In this

case only Bob applies the Hadamard operation on his qubit.
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qubits 2 and 3. Simultaneously, Bob measure qubits 4, Q and 5, S, respectively. As

we can see from eq. (7.17) above Bob as well as Charlie will obtain two possible

results each with probability 1/2. Assuming only Bob performed the Hadamard

operation and the results for Eve, Bob and Charlie are |Φ+〉PC and |Φ+〉RD as well

as |Φ−〉4Q and |Φ+〉5S it is easy to compute that the GHZ state is of the form

1√
2

(

|P−
00〉+ |P+

10〉
)

. (7.18)

From table 7.3 we see that only |P−
00〉 is the correct state for this combination.

Similarly, if both Bob and Charlie perform the Hadamard operation only 1 out of 4

possible results of Alice’s measurement on the GHZ state corresponds to Bob’s and

Charlie’s results. As already pointed out, if neither of them applies the Hadamard

operation Alice will always obtain a correlated result. Therefore, the expected error

probability for the revised protocol is

〈

Pe
〉

=
1

4

(

0 +
1

2
+

1

2
+

3

4

)

=
7

16
(7.19)

which is almost twice as much as in Cabello’s revised QKD protocol [28] described

above (cf. eq. (7.8)) due to Bob’s and Charlie’s combined usage of the Hadamard

operation. Nevertheless, the expected collision probability is much higher compared

to Cabello’s revised QKD protocol, i.e.

〈

Pc
〉

=
7

8
(7.20)

which leads also to a Shannon entropy H(S|M) = 0.25. Thus, Eve’s information

about the key is in this case is

IAE = 1−H
(

S|M) =
3

4
(7.21)

such that she knows 75% of Alice’s secret bit string after her attack. Since she

introduces a very high error rate it is rather easy for Alice and Bob to detect her

intervention such that Eve is not able to take advantage of her information about

the secret.

As pointed out in section 6.3 above regarding quantum secret sharing protocols

the involved parties always have to be aware of an adversary from the inside. In

this case, Lee et al. showed that a dishonest Charlie also has no chance to stay

undetected when using the same strategy as Eve to interfere with the protocol.
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Charlie intercepts Alice’s qubit A and resends qubit Q of the state |Φ+〉PQ. Further,
he intercepts Bob’s qubit C and performs a Bell measurement as described in eq.

(7.12) or (7.17) depending on whether Bob applied the Hadamard operation or

not. We already showed that Charlie introduces no error if Bob does not apply the

Hadamard operation. In case he does apply the Hadamard operation Bob and Alice

will obtain uncorrelated results half of the time (based on the same argumentation

given in the paragraph above describing Eve’s attack). Thus, the expected error

probability is
〈

Pe
〉

=
1

2

(

0 +
1

2

)

=
1

4
(7.22)

which is lower than in the attack from an external eavesdropper described above. It

is remarkable that the expected collision probability for this scenario is

〈

Pc
〉

= 1 (7.23)

which means that Charlie has full information about Alice’s secret, i.e H(S|M) = 0

and IAE = 1. Every combination of Charlie’s measurement results together with

the public information from Alice and Bob corresponds to one of the four possible

secret results of Alice. Although Charlie’s measurement result of the intercepted

qubits does not always correspond to Bob’s secret measurement result there is still

a chance that Bob’s secret result together with Charlie’s secret result and Alice’s

public GHZ state is a valid correlation and Charlie’s intervention is not detected.

Nevertheless, Charlie is not able to reduce the error rate by any means since he can

not control Bob’s application of the Hadamard operation. Hence, it is in this case

very obvious that a dishonest party is much more successful in eavesdropping the

key because Charlie has a lot more information and introduces less error than an

external adversary.

In their article [90] Lee et al. described a slightly different attack strategy on

their revised version of Cabello’s protocol. They showed that their revised version

is secure against this attack where Eve uses entanglement swapping. As described

in the article, Eve prepares 4 instead of just 2 Bell states such that the initial state

of Alice, Bob, Charlie and Eve is

|Φ+〉12|P+
00〉3AB ⊗ |Φ+〉4C ⊗ |Φ+〉5D ⊗ |Φ+〉PQ|Φ+〉RS|Φ+〉TU |Φ+〉VW . (7.24)

Eve intercepts all qubits in transit, i.e. qubits A and B coming from Alice, which

she replaces by Q and S, respectively, as well as qubits C and D coming from Bob
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and Charlie, which she replaces by U and W , respectively. As described above,

Alice’s measurement on qubits 2 and 3 alters the GHZ state in a way described in

eq. (7.11). Following the protocol Bob and Charlie individually decide at random

whether to apply a Hadamard operation and perform a Bell state measurement on

their respective qubits. Due to entanglement swapping this alters qubits P , C and

R, D in Eve’s possession. When Bob and Charlie announce the decision about their

operation, Eve also applies the Hadamard operation onto qubits C and D to bring

the qubit pairs back into Bell states. Further, she applies Hadamard operations on

qubits T and V if necessary to impersonate Bob’s and Charlie’s decisions. Hence,

Eve obtains full information about Alice’s secret from her measurement results from

the qubit pairs P , C and R, D, i.e. the expected collision probability
〈

Pc
〉

= 1.

Because the qubits 3, U and W located at Alice’s laboratory are not in a GHZ state

Alice’s measurement on them returns a random result. Hence, there is only one

state such that the correlations given in table 7.3 between Alice’s result from that

measurement and Bob’s and Charlie’s result is still valid. This gives the average

error probability
〈

Pe
〉

= 7/8 which is very large compared to the QKD schemes

described in the previous chapter.

Eve is also able to entangle qubits 3, U and W into a GHZ state at Alice’s

laboratory has not been considered in the attack described in [90]. Therefore, she

first has to alter the GHZ state she still shares with Alice according to her results

from the qubit pairs P , C and R, D and the mapping in eq. (7.13). Then, Eve

teleports the information of qubits A and B onto qubits U and W , respectively,

in Alice’s possession which is achieved using entanglement swapping. Due to the

teleportation of her information onto the GHZ state Eve obtains random results

such that the correlations in table 7.3 are violated with probability 1/8. Hence,

applying this additional step to the attack does not give Eve a better chance to

succeed in her attempt to stay undetected.

7.2 The Simulation Attack

7.2.1 The Basic Idea

In the previous section we discussed in two examples how the entanglement between

Alice and Bob can be exploited by an eavesdropper Eve to obtain full information
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about the shared key. Now, we are going to describe a more general attack based

on the same principle. In this attack strategy Eve prepares a multi-qubit state and

entangles herself with the legitimate parties by the help of entanglement swapping.

Due to the fact that Eve’s intervention is mainly based on simulating Alice’s and

Bob’s correlations and operations – as described in the following paragraphs – we

will refer to this strategy as simulation attack.

As we have seen in the previous section the security check is based on the corre-

lations between the respective measurement results of Alice and Bob coming from

the entanglement swapping. If these correlations are violated Alice and Bob have

to assume that an eavesdropper is present. Hence, Eve’s major intention is to find

a quantum state which preserves the correlation between the two legitimate parties.

If she is able to find such a state Eve stays undetected during her intervention. The

most intuitive candidate fulfilling these requirements is of course the state

|ϕ〉 = |Φ+〉12|Φ+〉34 =
1

2

(

|0000〉+ |0011〉+ |1100〉+ |1111〉
)

1234
(7.25)

which comes directly from our basic definition of entanglement swapping (cf. eq.

(2.41)) and hence perfectly preserves the correlation given in this equation if Alice

performs a Bell state measurement on qubits 1 and 3, i.e.

|ϕ〉 = 1

2

(

|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉+ |Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

1324
. (7.26)

Nevertheless, Eve does not gain any information since the state |ϕ〉 only simulates

the entanglement swapping. Therefore, she introduces 2 additional qubits to distin-

guish between the Alice’s different measurement results. This changes the state |ϕ〉
to [129]

|δ〉 = 1

2
√
2

(

|000000〉+ |001101〉+ |010111〉+ |011010〉

|100110〉+ |101011〉+ |110001〉+ |111100〉
)

123456
.

(7.27)

This state preserves the correlation of Alice’s and Bob’s measurement results upon

the entanglement swapping on qubits 1 and 3 and additionally gives Eve full infor-

mation about the respective measurement results, i.e.

|δ〉 = 1

2

(

|Φ+〉|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉|Φ−〉

|Ψ+〉|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉|Ψ−〉.
)

132456

(7.28)
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In detail, Eve distributes qubits 1, 2, 3 and 4 between Alice and Bob such that

Alice is in possession of qubits 1 and 3 and Bob is in possession of qubits 2 and

4. When Alice performs a Bell state measurement on qubits 1 and 3 the state of

qubits 2 and 4 collapses into the same Bell state that Alice’s obtained from her

measurement as it is given by entanglement swapping (cf. eq. (2.41)). Hence, Eve

stays undetected when Alice and Bob compare some of their results in public to

check for eavesdroppers. Qubits 5 and 6, which remain at Eve’s side, are also in the

same state as Alice’s and Bob’s qubits. Therefore, Eve has full information about

the secret measurements at Alice’s and Bob’s side and is able to perfectly eavesdrop

the secret key later on.

We want to stress that the state |δ〉 is generic for all protocols where 2 qubits

are exchanged between Alice and Bob during one round of key generation as, for

example, the QKD protocol presented by Cabello [27] (cf. section 7.1.1 above). For

protocols with a higher number of qubits the state has to be extended accordingly

(cf. for example section 8.4).

The distribution of the state |δ〉 is done by entanglement swapping. Eve intercepts

the qubit coming from Alice and performs a Bell state measurement on it together

with the first qubit from |δ〉. She obtains one of the four Bell states at random which

changes the overall state of the other qubits a little, according to Eve’s result. The

measurement can be described as

|Φ+〉|δ〉 = 1

2

(

|Φ+〉 1√
2

(

|000000〉+ |001101〉+ |010111〉+ |011010〉

+|100110〉+ |101011〉+ |110001〉+ |111100〉
)

+|Φ−〉 1√
2

(

|000000〉+ |001101〉+ |010111〉+ |011010〉

−|100110〉 − |101011〉 − |110001〉 − |111100〉
)

+|Ψ+〉 1√
2

(

|000110〉+ |001011〉+ |010001〉+ |011100〉

+|100000〉+ |101101〉+ |110111〉+ |111010〉
)

+|Ψ−〉 1√
2

(

|000110〉+ |001011〉+ |010001〉+ |011100〉

−|100000〉 − |101101〉 − |110111〉 − |111010〉
)

)

.

(7.29)

Based on her result Eve is able to correct the state back to its initial form |δ〉 using
the Pauli operations. Therefore, she performs a σz operation on qubits 4 and 6, if

she obtains |Φ−〉, a σx operation onto qubits 4 and 5, if she obtains |Ψ+〉. If she
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obtains |Ψ−〉 she combines these two actions, i.e. she first performs a σx on qubits

4 and 5 followed by a σz on qubits 4 and 6. In case Eve obtains |Φ+〉 she does not

need to do anything. We see from eq. (7.29) above that these actions change the

overall state of the 6 qubits after the entanglement swapping back into |δ〉 although
Alice is now in possession of one qubit of the state.

As pointed out above, the state |δ〉 is applicable in all protocols where 2 qubits

are exchanged between Alice and Bob during one round of key generation. Thus, we

also have to discuss how the entanglement swapping between Eve and Bob works.

Eve intercepts the qubit coming from Bob and performs a Bell state measurement

on it together with qubit 4, which leads to

|Φ+〉|δ〉 = 1

2

(

|Φ+〉 1√
2

(

|000000〉+ |001101〉+ |010111〉+ |011010〉

+|100110〉+ |101011〉+ |110001〉+ |111100〉
)

+|Φ−〉 1√
2

(

|000000〉 − |001101〉 − |010111〉+ |011010〉

−|100110〉+ |101011〉+ |110001〉 − |111100〉
)

+|Ψ+〉 1√
2

(

|000100〉+ |001001〉+ |010011〉+ |011110〉

+|100010〉+ |101111〉+ |110101〉+ |111000〉
)

−|Ψ−〉 1√
2

(

|000100〉 − |001001〉 − |010011〉+ |011110〉

−|100010〉+ |101111〉+ |110101〉 − |111000〉
)

)

.

(7.30)

Therefore, Eve is again able to correct the state back to |δ〉 regardless of the result

of her measurement. She performs the σz operation this time on qubits 3 and 5 if

she obtains |Φ−〉 and the σx operation on qubits 3 and 6 if she obtains |Ψ+〉. For

her result |Ψ−〉 she first applies a σx operation on qubits 3 and 6 and further a

σz operation on qubits 3 and 5, whereas for the result |Φ+〉 she already obtained

the state |δ〉. Hence, we showed that Eve is always able to distribute her state

|δ〉 between Alice and Bob to simulate the correlations although her entanglement

swapping provides random results.

The first question that may arise is whether the correlation is still preserved if

Alice and Bob use different initial states than |Φ+〉. In this case the correlation for

all possible initial states is given in table 2.1 in section 2.5.3 above. Using the state

|δ〉 the correlation is automatically preserved for every possible initial state. For
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example, we suppose that Alice prepares the state |Ψ−〉12 and Bob prepares |Φ−〉34.
Alice sends the second qubit of her state to Bob but Eve intercepts this qubit and

performs a Bell state measurement on it together with the first qubit of |δ〉P−U .

We will assume that Eve obtains |Φ−〉2P from this measurement, which leaves the

remaining qubits in the state

− 1√
2

(

|000110〉+ |001011〉+ |010001〉+ |011100〉

+|100000〉+ |101101〉+ |110111〉+ |111010〉
)

1Q−U .

(7.31)

As already mentioned in the previous section Eve is able to correct the state as

if she would have obtained |Φ+〉2P instead of |Φ−〉2P . Therefore, she applies a σy

operation onto qubits S and U which changes the overall state into

1√
2

(

|000110〉+ |001011〉+ |010001〉+ |011100〉

−|100000〉 − |101101〉 − |110111〉 − |111010〉
)

1Q−U .

(7.32)

Afterwards, Eve sends qubit Q of her state to Bob and intercepts qubit 3 of Bob’s

initial state |Φ−〉34, which he intends to send to Alice. Eve again performs a Bell

state measurement on the intercepted qubit and qubit S in her possession leading

to the state

− 1√
2

(

|000010〉 − |001111〉 − |010101〉+ |011000〉

|100100〉 − |101001〉 − |110011〉+ |111110〉
)

1QR4TU

(7.33)

assuming that Eve obtains |Ψ+〉3S. Based on her result she correct the state to

− 1√
2

(

|000110〉 − |001011〉 − |010001〉+ |011100〉

+|100000〉 − |101101〉 − |110111〉+ |111010〉
)

1QR4TU
.

(7.34)

performing a σx onto qubits R and U . Eve sends qubit R to Alice impersonating

Bob’s qubit. We can immediately derive from the equations above that after Alice’s

Bell state measurement on qubits 1 and R also Bob’s qubits Q and 4 as well as

Eve’s qubits T and U collapse into a Bell state. Further, if Alice obtained |Φ+〉1R
then Bob obtains |Ψ+〉Q4 and Eve obtains |Ψ−〉TU (cf. table 7.4 for a total overview

on the correlations). Hence, we see that the correlation for the initial states |Ψ−〉12
and |Φ−〉34 as given in table 2.1 is also preserved using the state |δ〉.
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Alice Bob Eve

|Φ+〉1R |Ψ+〉Q4 |Ψ−〉TU
|Φ−〉1R |Ψ−〉Q4 |Ψ+〉TU
|Ψ+〉1R |Φ+〉Q4 |Φ−〉TU
|Ψ−〉1R |Φ−〉Q4 |Φ+〉TU

Table 7.4: Correlation between Alice’s, Bob’s and Eve’s measurement results after

entanglement swapping using the initial states |Ψ−〉12 and |Φ−〉34.

Although Eve does no longer obtain the same result as Alice and Bob her state

is nevertheless completely correlated to the states at Alice’s and Bob’s laboratory.

Based on the initial states she is able to compute Alice’s and Bob’s secret results

using Pauli operations. Since Alice’s initial state is |Ψ−〉12 = σy|Φ+〉12 Eve knows

that Alice’s secret result is σy|ψ〉 where |ψ〉 ∈ {|Φ±〉, |Ψ±〉} is the state of Eve’s

qubits Tand U . Similarly, Eve knows that Bob’s secret result is σz|ψ〉 since Bob

prepared |Φ−〉34 = σz|Φ+〉34.
An important implication from this fact is that even if Alice and Bob choose their

initial states at random Eve is still able to preserve the correlations given in table

2.1 using the state |δ〉 for eavesdropping. At some point during the protocol Alice

and Bob have to announce their initial states and at this time, as pointed out in the

previous paragraph, Eve also has full information about their secret measurement

results based on the two qubits in Eve’s possession.

In sections 8.1 to 8.4 we are going to show that this strategy is a generalization of

the ZLG attack by describing the respective attack scenarios on the protocols for key

distribution and secret sharing by Cabello [27, 26]. Further, we are going to present

some other protocols which are also open to this attack and involve the simulation of

operations at Alice’s and Bob’s side as they are described in the following sections.

7.2.2 Simulating Rotation Operations

Many quantum cryptographic protocols involve some operations to alter their initial

states in a way only the legitimate parties are aware of. For example, in a protocol

presented by Li et al. [91] Alice applies one of the four Pauli operations onto one
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of her qubits to transmit more information to Bob (for details see section 8.1).

As discussed in the previous section the correlations between Alice’s and Bob’s

results are preserved by the state |δ〉 even if the initial states are changed due to

the application of a Pauli operation. Therefore, Pauli operations do not have any

relevance regarding the security of the protocol.

To be more general we are looking at arbitrary rotation operations by an angle

θ about the X-, Y - and Z-axis, respectively. These rotations have already been

described in eq. (4.28) in section 4.2.2 above and are denoted as Rx(θ), Ry(θ) and

Rz(θ). Using eq. (4.29) from above we directly see that the Pauli operations are

special versions of these rotation operations for θ = π. We are looking at first at

the entanglement swapping between Alice and Bob without Eve’s presence to show

how the basic correlation changes. Afterwards we discuss Eve’s application of |δ〉 in
detail.

The rotation operations Rx(θ), Ry(θ) and Rz(θ) change the state |Φ+〉12 when

applied onto qubit 1 (cf. (2) in figure 7.7) into

Rx

(

θ
)

|Φ+〉12 = cos
θ

2
|Φ+〉12 − i sin

θ

2
|Ψ+〉12

Ry

(

θ
)

|Φ+〉12 = cos
θ

2
|Φ+〉12 − sin

θ

2
|Ψ−〉12

Rz

(

θ
)

|Φ+〉12 = cos
θ

2
|Φ+〉12 − i sin

θ

2
|Φ−〉12

(7.35)

This can be understood as applying the 1 operation with probability cos2 θ
2
and

applying the respective Pauli operation with probability sin2 θ
2
. Assuming the ro-

tation operations are applied only on Alice’s side and Bob’s state is |Φ+〉34 the

entanglement swapping between Alice and Bob changes into

Rx(θ)|Φ+〉12|Φ+〉34 =
1

2

(

|Φ+〉13
[

cos
θ

2
|Φ+〉24 − i sin

θ

2
|Ψ+〉24

]

+|Φ−〉13
[

cos
θ

2
|Φ−〉24 − i sin

θ

2
|Ψ−〉24

]

+|Ψ+〉13
[

cos
θ

2
|Ψ+〉24 − i sin

θ

2
|Φ+〉24

]

+|Ψ−〉13
[

cos
θ

2
|Ψ−〉24 − i sin

θ

2
|Φ−〉24

])

.

(7.36)

if Rx(θ) is used. Similarly, if Alice applies the Ry(θ) operation the entanglement
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Alice Bob

|Φ+〉

|Φ+〉

1 2

3 4

(1)

Alice Bob

Rx(θ) (2)

Alice Bob

Rx(−θ) (3)

Alice Bob

|Φ+〉 |Φ+〉

(4)

Figure 7.7: Illustration of a simple QKD protocol using a rotation by an angle θ

about the X-axis.

swapping changes into

Ry(θ)|Φ+〉12|Φ+〉34 =
1

2

(

|Φ+〉13
[

cos
θ

2
|Φ+〉24 − sin

θ

2
|Ψ−〉24

]

+|Φ−〉13
[

cos
θ

2
|Φ−〉24 − sin

θ

2
|Ψ+〉24

]

+|Ψ+〉13
[

cos
θ

2
|Ψ+〉24 − sin

θ

2
|Φ−〉24

]

+|Ψ−〉13
[

cos
θ

2
|Ψ−〉24 − sin

θ

2
|Φ+〉24

])

.

(7.37)

At last, using the rotation Rz(θ) about the Z axis the entanglement swapping

changes into

Rz(θ)|Φ+〉12|Φ+〉34 =
1

2

(

|Φ+〉13
[

cos
θ

2
|Φ+〉24 − i sin

θ

2
|Φ−〉24

]

+|Φ−〉13
[

cos
θ

2
|Φ−〉24 − i sin

θ

2
|Φ+〉24

]

+|Ψ+〉13
[

cos
θ

2
|Ψ+〉24 − i sin

θ

2
|Ψ−〉24

]

+|Ψ−〉13
[

cos
θ

2
|Ψ−〉24 − i sin

θ

2
|Ψ+〉24

])

.

(7.38)

We see that in all three cases Bob obtains a correlated result as it would be expected

from table 2.1 only with probability cos2 θ
2
. Otherwise, he obtains a result which

differs from Alice’s result by a σx, σy or σz operation, respectively, i.e Bob obtains
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Alice Eve Bob

|δ〉

T

1 Q

R 4

U

(1)

Alice Eve Bob

Rx(θ)

|δ〉

(2)

Alice Eve Bob

Rx(−θ)

|δ〉

(3)

Alice Eve Bob

|Φ+〉
|Φ+〉

|Φ+〉

(4)

Figure 7.8: (Simulating rotation operations) Illustration of a successful application

of the simulation attack on a simple QKD protocol using a rotation by an angle θ

about the X-axis. Here, Eve already intercepted the qubits in transit and performed

the entanglement swapping.

|Ψ+〉24 with probability sin2 θ
2
whenever Alice obtains |Φ+〉13 after the rotation about

the X-axis and so forth. That becomes a problem because Bob is no longer able

to compute Alice’s state based on his result and vice versa. Nevertheless, Bob can

resolve this problem by rotating the state back into its original form. In the present

scenario where Alice performs the rotation on qubit 1 he achieves that by applying

the rotation operation Rx(−θ), Ry(−θ) or Rz(−θ), respectively, on qubit 2 of his

state (cf. (3) in figure 7.7). This is a rotation by an angle −θ which leads to

Rx

(

−θ
)

(

cos
θ

2
|Φ+〉24 − i sin

θ

2
|Ψ+〉24

)

= |Φ+〉24

Ry

(

−θ
)

(

cos
θ

2
|Φ+〉24 − sin

θ

2
|Ψ−〉24

)

= |Φ+〉24

Rz

(

−θ
)

(

cos
θ

2
|Φ+〉24 − i sin

θ

2
|Φ−〉24

)

= |Φ+〉24

(7.39)

and re-establishes the perfect correlation between Alice’s and Bob’s measurement

result in all three cases (cf. (4) in figure 7.7).

In the following paragraphs we discuss Eve’s intervention in the entanglement

swapping using the state |δ〉. We will assume that Alice and Bob prepared the
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initial states |Φ+〉12 and |Φ+〉34 as described above to make calculations easier since

we already showed that different initial states do not change the effect of Eve’s

strategy. Further, we assume that Alice applies the Rx(θ) operation on qubit 1 (cf.

(2) in figure 7.8). The calculations and argumentation for the other rotations Ry(θ)

and Rz(θ) are carried out accordingly.

When performing the entanglement swapping between |δ〉P−U and Rx(θ)|Φ+〉12
we realize that after Eve’s corrections the qubits are in the state

Rx

(

θ
)

|δ〉1Q−U =
1

2
√
2

(

cos
θ

2
|000000〉 − i sin

θ

2
|000110〉 − i sin

θ

2
|001011〉

+cos
θ

2
|001101〉 − i sin

θ

2
|010001〉+ cos

θ

2
|010111〉

+cos
θ

2
|011010〉 − i sin

θ

2
|011100〉 − i sin

θ

2
|100000〉

+cos
θ

2
|100110〉+ cos

θ

2
|101011〉 − i sin

θ

2
|101101〉

+cos
θ

2
|110001〉 − i sin

θ

2
|110111〉 − i sin

θ

2
|111010〉

+cos
θ

2
|111100〉

)

1Q−U

(7.40)

Hence, also after the entanglement swapping between Eve’s state |δ〉1Q−U and Bob’s

state |Φ+〉34 the resulting state is similar to the one in eq. (7.40) above with the

only difference that qubit 4 is now part of the state (cf. eq. (7.34)). After a little

algebra we get to the result that the state Rx(θ)|δ〉1QR4TU can be written as

Rx

(

θ
)

|δ〉 = 1

2

(

|Φ+〉1R
[

cos
θ

2
|Φ+〉Q4|Φ+〉TU + i sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

]

+|Φ−〉1R
[

cos
θ

2
|Φ−〉Q4|Φ−〉TU − i sin

θ

2
|Ψ−〉Q4|Ψ−〉TU

]

+|Ψ+〉1R
[

cos
θ

2
|Ψ+〉Q4|Ψ+〉TU + i sin

θ

2
|Φ+〉Q4|Φ+〉TU

]

+|Ψ−〉1R
[

cos
θ

2
|Ψ−〉Q4|Ψ−〉TU − i sin

θ

2
|Φ−〉Q4|Φ−〉TU

])

.

(7.41)

Thus, if Alice performs a Bell state measurement on qubits 1 and R (cf. (3) in figure

7.8) she obtains each result with equal probability of 0.25 as expected. Furthermore,

after the measurement qubits Q and 4 are either in the same state as Alice’s result

with probability cos2 θ
2
or in another state with probability sin2 θ

2
. Comparing eq.

(7.41) and eq. (7.36) we see that the state of qubits Q and 4 is very similar to

the state of qubits 3 and 4. Nevertheless, if Bob performs the Rx(−θ) operation to



7.2. The Simulation Attack 155

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Θ0.0

0.1

0.2

0.3

0.4

0.5

Pe=

HsinΘL2

2

Figure 7.9: (Error probability) Eve’s probability Pe to introduce an error depending

on the angle θ.

rotate the state back into its original form (cf. (3) in figure 7.8) this brings qubits

Q, 4, T and U into the state

Rx

(

−θ
)

(

cos
θ

2
|Φ+〉Q4|Φ+〉TU + i sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

)

=

cos2
θ

2
|Φ+〉Q4|Φ+〉TU + sin2 θ

2
|Φ+〉Q4|Ψ+〉TU

+
i sin θ

2
|Ψ+〉Q4|Φ+〉TU − i sin θ

2
|Ψ+〉Q4|Ψ+〉TU

(7.42)

for Alice’s result |Φ+〉1R and accordingly for the other results. Therefore, Bob ob-

tains the correlated state |Φ+〉Q4 only with probability (3 + cos(2θ))/4 due to Eve’s

intervention. Accordingly, his measurement gives the result |Ψ+〉Q4 with probability

(sin2 θ)/2. Figure 7.9 describes the error probability Pe = (sin2 θ)/2 and we can see

that it is 0 for a full rotation by π, as expected, and maximal for an angle θ = π/2.

Hence, Alice and Bob will detect Eve’s presence with a high probability when they

choose θ = π/2 and compare some of their measurement results as described in

detail below.

Furthermore, Eve obtains the correlated result |Φ+〉TU with probability (1 +

cos(θ))2/(3+ cos(2θ)) from her measurement if Bob obtains |Φ+〉Q4 and she obtains

|Ψ+〉TU otherwise. This is the collision probability Pc for Eve and it is – as we can

see from figure 7.10 – larger than 0.9 for θ < π/3 which is rather high. In contrary, if
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Figure 7.10: (Collision probability) Eve’s probability Pc to obtain the same result

as Bob depending on the angle θ.

Bob obtains the incorrect result |Ψ+〉Q4 Eve obtains |Φ+〉TU and |Ψ+〉TU with equal

probability of 1/2. This means, if Bob obtains a result correlated to Alice’s outcome,

Eve’s information about Bob’s measurement outcome is still based on the angle θ.

Her information becomes larger the small the difference |π − θ| is. Therefore, also

in this case the optimal choice for θ = π/2. If Bob obtains the uncorrelated result,

Eve has no information about Bob’s measurement outcome.

When we look at the rotation about the Y - and the Z-axis we get very similar

results. After Eve’s Bell state measurements on qubits 2 and 3 coming from Alice

and Bob, respectively, the overall state Ry(θ)|δ〉1QR4TU can be written as

Ry

(

θ
)

|δ〉 = 1

2

(

|Φ+〉1R
[

cos
θ

2
|Φ+〉Q4|Φ+〉TU + sin

θ

2
|Ψ−〉Q4|Ψ−〉TU

]

+|Φ−〉1R
[

cos
θ

2
|Φ−〉Q4|Φ−〉TU − sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

]

+|Ψ+〉1R
[

cos
θ

2
|Ψ+〉Q4|Ψ+〉TU + sin

θ

2
|Φ−〉Q4|Φ−〉TU

]

+|Ψ−〉1R
[

cos
θ

2
|Ψ−〉Q4|Ψ−〉TU − sin

θ

2
|Φ+〉Q4|Φ+〉TU

])

.

(7.43)

If Alice applies the Rz(θ) operation on qubit 1, the overall state Rz(θ)|δ〉1QR4TU can
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then be written as

Rz

(

θ
)

|δ〉 = 1

2

(

|Φ+〉1R
[

cos
θ

2
|Φ+〉Q4|Φ+〉TU − i sin

θ

2
|Φ−〉Q4|Φ−〉TU

]

+|Φ−〉1R
[

cos
θ

2
|Φ−〉Q4|Φ−〉TU − i sin

θ

2
|Φ+〉Q4|Φ+〉TU

]

+|Ψ+〉1R
[

cos
θ

2
|Ψ+〉Q4|Ψ+〉TU − i sin

θ

2
|Ψ−〉Q4|Ψ−〉TU

]

+|Ψ−〉1R
[

cos
θ

2
|Ψ−〉Q4|Ψ−〉TU − i sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

])

.

(7.44)

Bob’s application of the reverse rotation operation on qubit 4 in his possession

changes the state of qubits Q, 4, T and U similar to eq. (7.42) above into either

Ry

(

−θ
)

(

cos
θ

2
|Φ+〉Q4|Φ+〉TU + sin

θ

2
|Ψ−〉Q4|Ψ−〉TU

)

=

cos2
θ

2
|Φ+〉Q4|Φ+〉TU + sin2 θ

2
|Φ+〉Q4|Ψ−〉TU

−sin θ

2
|Ψ−〉Q4|Φ+〉TU +

sin θ

2
|Ψ−〉Q4|Ψ−〉TU

(7.45)

for the application of Ry(−θ) and into

Rz

(

−θ
)

(

cos
θ

2
|Φ+〉Q4|Φ+〉TU + i sin

θ

2
|Φ−〉Q4|Φ−〉TU

)

=

cos2
θ

2
|Φ+〉Q4|Φ+〉TU + sin2 θ

2
|Φ+〉Q4|Φ−〉TU

+
sin θ

2
|Φ−〉Q4|Φ+〉TU − sin θ

2
|Φ−〉Q4|Φ−〉TU .

(7.46)

for the application of Rz(−θ), respectively. Therefore, Bob again obtains the corre-

lated state |Φ+〉Q4 also in these two cases only with probability (3 + cos(2θ))/4 and

with probability (sin2 θ)/2 the correlation is violated.

The main goal for Alice and Bob is to maximize Eve’s probability to introduce

an error and to minimize her information about their measurement results. As we

have already seen in the previous section a rotation by an angle θ = π such that

Rx(π) = σx, Ry(π) = σy and Rz(π) = σz leaves the protocol completely insecure.

Looking at the plot of (sin2 θ)/2 in figure 7.9 we see that the error Pe is maximal if

θ = π/2. Hence, a rotation by π/2 leads to the states

Rx

(π

2

)

|Φ+〉12 =
1√
2

(

|Φ+〉12 − i|Ψ+〉12
)

Ry

(π

2

)

|Φ+〉12 =
1√
2

(

|Φ+〉12 − |Ψ−〉12
)

Rz

(π

2

)

|Φ+〉12 =
1√
2

(

|Φ+〉12 − i|Φ−〉12
)

.

(7.47)



158 Chapter 7. Security of Multi-Qubit Protocols

In this case the probability Pe that Alice and Bob obtain uncorrelated results from

their measurements is 0.5 (cf. figure 7.9). Additionally, Eve’s probability to obtain

the same result as Bob, i.e. the collision probability Pc, is also brought to 0.5 (cf.

figure 7.10). Therefore, θ = π/2 is the optimal choice for the angle of the rotation

about any of the three axis in terms of the error Eve introduces into the protocol

and the information she has about Alice’s and Bob’s measurement results.

We have to stress that a combined rotation Rx(θ) by Alice and Bob leaves the

protocol again insecure against Eve performing the simulation attack strategy. If

both Alice and Bob apply a rotation about the same axis and by the same angle

on qubits 1 and 4, respectively, these operations neutralize each other during the

entanglement swapping. The initial states R
(1)
x (θ)|Φ+〉12 and R

(4)
x (θ)|Φ+〉34 change

after Eve’s entanglement swapping into R
(1)
x (θ)R

(4)
x (θ)|δ〉1QR4TU similar to eq. 7.40

above. Here, the superscript (α) denotes that the operation is applied on the qubit

α. After receiving qubits Q and R Alice and Bob apply the operation Rx(−θ) on

the received qubits which alters the overall state into

R(1)
x

(

θ
)

R(Q)
x

(

−θ
)

R(R)
x

(

−θ
)

R(4)
x

(

θ
)

|δ〉1QR4TU (7.48)

Alice’s measurement on qubits 1 and R swaps the rotation operations onto qubits

Q and 4 neutralizing the effect of the previously applied operations. Hence, the

correlations given by the state |δ〉 are re-established such that Bob obtains a perfectly

correlated result. Additionally, the qubits Tand U are in the same state as Bob’s

qubits Q and 4 which gives Eve full information. This scenario works accordingly

for rotations about the Y - and Z-axis. Therefore, this scenario has to be avoided

by the legitimate parties.

As we have seen in the previous paragraphs Eve has no chance to stay undetected

while using the state |δ〉 if either Alice or Bob performs a bilateral rotation by some

angle θ on one of their initial states around the X-, Y -, or Z-axis as long as θ 6= π.

Nevertheless, Eve is able to simulate the rotation on her state |δ〉 to anticipate

Alice’s and Bob’s actions. Therefore, she applies Rx(−θ) on qubit P and Rx(θ) on

qubit S before she entangles herself with Alice and Bob. This changes Eve’s initial

state into

|δx〉P−U = R(P )
x (−θ)R(S)

x (θ)|δ〉P−U . (7.49)

After Eve’s Bell state measurement and her correction operations the overall state is

still |δx〉1QR4TU . When Alice applies her rotation Rx(θ) on qubit 1 the state changes
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to
R(1)
x (θ)|δx〉1QR4TU = R(1)

x (θ)R(1)
x (−θ)R(4)

x (θ)|δ〉1QR4TU
= R(4)

x (θ)|δ〉1QR4TU
(7.50)

which means that Alice’s rotation inverts Eve’s initial rotation on qubit P . The

same happens when Bob applies Rx(−θ) on qubit 4 and the qubits Q, 4, T , U

end up in the combined state |Φ+〉Q4|Φ+〉TU . Hence, Alice and Bob always obtain

correlated results and Eve has full information about their secret results.

Eve is able to simulate also the rotation Ry(θ) about the Y -axis and Rz(θ) about

the Z-axis in the same way as long as she knows the exact angle θ. Therefore,

there remain two options for Alice and Bob to detect Eve’s intervention: first, they

can secretly agree upon the angle θ before the protocol starts and then alter one of

the initial states in every round of the protocol. To do so they have to share this

information beforehand in some way using a preshared secret. This is not a very

good attempt since it depends on the fact that Alice and Bob have to meet some

time in the past to agree on θ. Furthermore, if Eve somehow manages to spy out

θ the whole communication becomes insecure without Alice and Bob noticing it. A

better option for them is to publicly agree on some θ and some direction (X , Y or

Z) of the rotation and then to choose randomly between applying the predefined

rotation and doing nothing.

As we have seen in the previous paragraphs Eve is able to prepare a state for each

of these events individually to obtain full information about Alice’s and Bob’s secret

results without being detected. Nevertheless, she is not able to find a state which

achieves that for a random combination of the two events as we will show in detail

in the applications of the simulation attack starting with section 8.1. Therefore,

the best strategy for Eve is also to randomly choose between the preparation of

|δ〉 and |δx〉. Half of the time Eve obtains full information, i.e. when Eve chooses

|δ〉 and Alice does not use the rotation operation and when Eve chooses |δx〉 and

Alice does use the rotation operation. The remaining time Eve introduces an error

Pe = (sin2 θ)/2 as described above. This leads to the expected error rate

〈

Pe
〉

=
1

4

(

0 +
sin2 θ

2
+

sin2 θ

2
+ 0

)

=
sin2 θ

4
(7.51)

for the entire protocol. As already pointed out this term reaches its maximum of

1/4 for θ = π/2. Looking at the collision probability Pc, i.e. the probability that

Eve obtains the same result as Bob, we have also perfect correlation between Eve’s
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and Bob’s result whenever she prepares |δ〉 and Alice does nothing or Eve prepares

|δx〉 and Alice applies Rx(θ). Otherwise, Pc = (1+cos(θ))2/(3+cos(2θ)) which leads

to the expected collision probability

〈

Pc
〉

=
1

4

(

0 +
(1 + cos(θ))2

3 + cos(2θ)
+

(1 + cos(θ))2

3 + cos(2θ)
+ 0

)

=
(1 + cos(θ))2

2(3 + cos(2θ)
(7.52)

for the entire protocol. Again,
〈

Pc
〉

reaches its maximum of 1/4 for θ = π/2.

7.2.3 Simulating Basis Transformations

Another option for Alice and Bob to alter their initial states is to transform them into

another basis. The most intuitive choice for an alternative basis is the X-basis with

the states {|x+〉, |x−〉}. The transformation into this basis is done by the Hadamard

operation H as already described in section 7.1.1 above and the transformation is

simply described as

H|0〉 = |x+〉 H|1〉 = |x−〉. (7.53)

The Hadamard operation applied on the first qubit of the Bell states |Φ±〉 and |Ψ±〉
has the effect to change them into the states |ω±〉 and |χ±〉, respectively (cf. eq.

(7.4)). As in the application of rotation operations described above Alice applies

the H operation onto the first qubit of her Bell state and performs the entanglement

swapping. Assuming again that Alice and Bob prepare the states |Φ+〉12 and |Φ+〉34
the application of the H operator changes the process of entanglement swapping

into

|ω+〉12|Φ+〉34 =
1

2

(

|Φ+〉13|ω+〉24 + |Φ−〉13|ω−〉24

+|Ψ+〉13|χ+〉24 + |Φ−〉13|χ−〉24
)

.
(7.54)

To obtain the correct result Bob also has to apply a H operation onto qubit 2 to

reverse the effect of Alice’s operation. It is also possible to apply the H operation

onto qubit 4 but in this case |ω−〉24 is transformed to |Ψ+〉24 instead of |Φ−〉24 and

|χ+〉24 is transformed into |Φ−〉24. Bob has to be aware of that to alter his table of

correlations accordingly.

In general, a transformation T from the Z-basis into the X- or Y -basis can be

described as a rotation about the X- or Y -axis, respectively, by some angle θ, i.e.

Tx
(

θ
)

= eiφRz

(

φ
)

Rx

(

θ
)

Rz

(

φ
)

=

(

cos θ
2

−ieiφ sin θ
2

−ieiφ sin θ
2

e2iφ cos θ
2

)

(7.55)
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Figure 7.11: Illustration of a simple QKD protocol using a basis transformation

from the Z- into the X-basis by an angle θ.

and

Ty
(

θ
)

= eiφRz

(

φ
)

Ry

(

θ
)

Rz

(

φ
)

=

(

cos θ
2

−eiφ sin θ
2

−eiφ sin θ
2

e2iφ cos θ
2

)

. (7.56)

The general transformations from the X-basis into the Z- or Y -basis as well as

from the Y -basis into the X- or Z-basis are defined accordingly. For our further

discussions we will limit ourselves to transformations from the Z- into the X- or

Y -basis and choose φ = π/2 since we only want to rotate the state according to the

axes. This gives the matrix representation for Tx(θ) and Ty(θ) as

Tx
(

θ
)

=

(

cos θ
2

sin θ
2

sin θ
2

− cos θ
2

)

Ty
(

θ
)

=

(

cos θ
2

−i sin θ
2

i sin θ
2

− cos θ
2

)

. (7.57)

From the equation above we immediately see that the Hadamard operation H is

just the special case where θ = π/2, which is, as we will see later on, the optimal

choice for θ. Under the application of the basis transformations Tx(θ) and Ty(θ)

onto qubit 1 the Bell state |Φ+〉 changes it into (cf. (2) in figure 7.11)

Tx
(

θ
)

|Φ+〉12 = cos
θ

2
|Φ−〉12 − sin

θ

2
|Ψ+〉12

Ty
(

θ
)

|Φ+〉12 = cos
θ

2
|Φ−〉12 − i sin

θ

2
|Ψ−〉12

(7.58)

and accordingly for the other Bell states. As a consequence, the application of Tx

or Ty in the entanglement swapping changes the results according to the angle θ, as
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we have already seen above. In detail, we have

Tx
(

θ
)

|Φ+〉12|Φ+〉34 =
1

2

(

|Φ+〉13
[

cos
θ

2
|Φ−〉24 + sin

θ

2
|Ψ+〉24

]

+|Φ−〉13
[

cos
θ

2
|Φ+〉24 − sin

θ

2
|Ψ−〉24

]

+|Ψ+〉13
[

cos
θ

2
|Ψ−〉24 + sin

θ

2
|Φ+〉24

]

+|Ψ−〉13
[

cos
θ

2
|Ψ+〉24 − sin

θ

2
|Φ−〉24

])

(7.59)

for a transformation into the X-basis and similarly for a transformation into the

Y -basis

Ty
(

θ
)

|Φ+〉12|Φ+〉34 =
1

2

(

|Φ+〉13
[

cos
θ

2
|Φ−〉24 + i sin

θ

2
|Ψ−〉24

]

+|Φ−〉13
[

cos
θ

2
|Φ+〉24 − i sin

θ

2
|Ψ+〉24

]

+|Ψ+〉13
[

cos
θ

2
|Ψ−〉24 + i sin

θ

2
|Φ−〉24

]

+|Ψ−〉13
[

cos
θ

2
|Ψ+〉24 − i sin

θ

2
|Φ+〉24

])

(7.60)

Comparing eq. (7.59) and eq. (7.60) with the application of Rx(θ) and Ry(θ) in

eq. (7.36) and eq. (7.37) from above we see that for the basis transformation Bob

never obtains a correlated result but |Φ−〉24 with probability cos2 θ
2
for Alice’s result

|Φ+〉13 and |Ψ+〉24 or |Ψ−〉24, otherwise, depending on the transformation Tx(θ) or

Ty(θ). Therefore, Bob has to compensate the basis transformation by Alice and

applies a Tx or Ty operation, respectively, by himself on the corresponding qubit in

his possession. Contrary to eq. (7.39) where the reversion of rotation operations is

described Bob has to choose in this case θ for his operation to transform the state

of his qubits back into the desired Bell state, i.e. (cf. (3) in figure 7.11)

Tx
(

θ
)

[

cos
θ

2
|Φ−〉24 − sin

θ

2
|Ψ+〉24

]

= |Φ+〉24

Ty
(

θ
)

[

cos
θ

2
|Φ−〉24 − i sin

θ

2
|Ψ−〉24

]

= |Φ+〉24.
(7.61)

Next, we are going to look at Eve’s intervention using the state |δ〉. Also in

this case the application of Alice’s operation alters the outcomes of the entangle-

ment swapping similar to the scenario with the general rotation operations above.

Assuming Alice uses the Tx(θ) operation to transform her state into the X-basis
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this alters the state of the 6 qubits 1, Q, R, 4, T and U after Eve’s entanglement

swapping with Bob’s qubit 3

Tx
(

θ
)

|δ〉1Q−U =
1

2
√
2

(

cos
θ

2
|000000〉+ sin

θ

2
|000110〉+ sin

θ

2
|001011〉

+cos
θ

2
|001101〉+ sin

θ

2
|010001〉+ cos

θ

2
|010111〉

+cos
θ

2
|011010〉+ sin

θ

2
|011100〉+ sin

θ

2
|100000〉

− cos
θ

2
|100110〉 − cos

θ

2
|101011〉+ sin

θ

2
|101101〉

− cos
θ

2
|110001〉+ sin

θ

2
|110111〉+ sin

θ

2
|111010〉

− cos
θ

2
|111100〉

)

1QR4TU

(7.62)

This state can be rewritten in the Bell basis as

Tx
(

θ
)

|δ〉 = 1

2

(

|Φ+〉1R
[

cos
θ

2
|Φ−〉Q4|Φ−〉TU + sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

]

+|Φ−〉1R
[

cos
θ

2
|Φ+〉Q4|Φ+〉TU − sin

θ

2
|Ψ−〉Q4|Ψ−〉TU

]

+|Ψ+〉1R
[

cos
θ

2
|Ψ+〉Q4|Ψ−〉TU + sin

θ

2
|Φ+〉Q4|Φ+〉TU

]

+|Ψ−〉1R
[

cos
θ

2
|Ψ−〉Q4|Ψ+〉TU − sin

θ

2
|Φ−〉Q4|Φ−〉TU

])

.

(7.63)

Looking at eq. (7.41) we see that the state looks very similar to the equation

above involving Tx(θ) which leads to the assumption that also in this case Bob’s

transformation back into the Z-basis does not re-establish the correlations between

Alice and Bob properly. Performing the calculations we see that Bob’s operation

Tx(θ) brings qubits Q, 4, T and U into the form

Tx
(

θ
)

(

cos
θ

2
|Φ−〉Q4|Φ−〉TU + sin

θ

2
|Ψ+〉Q4|Ψ+〉TU

)

=

cos2
θ

2
|Φ+〉Q4|Φ−〉TU + sin2 θ

2
|Φ+〉Q4|Ψ+〉TU

−sin θ

2
|Ψ−〉Q4|Φ−〉TU +

sin θ

2
|Ψ−〉Q4|Ψ+〉TU

(7.64)

provided that Alice obtains |Φ+〉1R. For Alice’s other three possible results the state
changes accordingly. From eq. (7.64) we see that Bob obtains either the correlated

result |Φ+〉Q4 with probability (3 + cos(2θ))/4 or |Ψ−〉Q4, otherwise. This is the
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Alice Eve Bob

|δ〉

T

1 Q

R 4

U

(1)

Alice Eve Bob

Tx(θ)

|δ〉

(2)

Alice Eve Bob

Tx(θ)

|δ〉

(3)

Alice Eve Bob

|Φ+〉
|Φ+〉

|Φ+〉

(4)

Figure 7.12: (Simulating transformation operations) Illustration of a successful ap-

plication of the simulation attack on a simple QKD protocol using a basis transfor-

mation from the Z- into the X-basis by an angle θ. Here, Eve already intercepted the

qubits in transit and performed the entanglement swapping.

same probability as above when Alice and Bob used simple rotation operations and

thus Eve introduces an error with probability Pe = (sin2 θ)/2. The only difference

is that Eve no longer obtains the same result as Bob but either |Φ−〉TU or |Ψ+〉TU .
Nevertheless, the results are at least correlated as long as Bob obtains the correct

result from his measurement. In this case Eve obtains |Φ−〉TU with probability

Pc = (1 + cos(θ))2/(3 + cos(2θ)) and knows that Bob obtained |Φ+〉Q4. Whenever

Eve obtains |Ψ+〉TU she has no information about Bob’s state. Looking at figure 7.9

and the argumentation in the previous section we see that the optimal angle for a

basis transformation is also π/2 since in this case both Pe and Pc become 1/2.

From the previous section we already know that a bilateral application of the

same rotation operation gives Eve again full information about Alice’s and Bob’s

measurement results. Accordingly, also a bilateral transformation in the same basis

by Alice and Bob gives Eve again full information about their measurement results.

Similar to the argumentation above the initial states T
(1)
x (θ)|Φ+〉12 and T (4)

x (θ)|Φ+〉34
are brought into the state T

(1)
x (θ)T

(4)
x (θ)|δ〉1QR4TU after Eve’s entanglement swap-

ping. Alice’s and Bob’s application of T
(1)
x (θ) onto qubits Q and R, respectively,
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leaves the 6 qubits in the overall state

T (1)
x

(

θ
)

T (Q)
x

(

θ
)

T (R)
x

(

θ
)

T (4)
x

(

θ
)

|δ〉1QR4TU (7.65)

Alice’s Bells state measurement on qubits 1 and R swaps the basis transformations

onto Bob’s qubits Q and 4 and neutralizes the effect of the previously applied oper-

ations. Thus, Bob measurement results are perfectly correlated to Alice’s results as

well as to the state of Eve’s qubits. Therefore, also in relation with basis transfor-

mations a bilateral application of the same transformation has to be avoided.

From our argumentation we understand that also in this case Eve in not able to

stay undetected when she uses the state |δ〉 to eavesdrop the protocol. This is also

the intuitive assumption taking into account that the basis transformation can be

described by a series of rotation operations as pointed out above. Nevertheless, we

showed above that Eve is able to simulate rotation operations on the state |δ〉 as

long as they are performed deterministically and the angle θ is known. Therefore,

Eve is also able to simulate the basis transformations Tx(θ) and Ty(θ) on |δ〉. She

has to apply Tx(θ) onto qubit P and Tx(θ) onto qubit Q which alters the initial state

to

|δx〉P−U = T (P )
x (θ)T (Q)

x (θ)|δ〉P−U (7.66)

After Eve entangled herself with Alice and Bob using entanglement swapping the

overall state is |δx〉1RQ4TU due to Eve’s corrections. Hence, Alice’s application of

Tx(θ) reverses Eve’s operation on qubit 1, i.e.

T (1)
x (θ)|δx〉1QR4TU = T (1)

x (θ)T (1)
x (θ)T (Q)

x (θ)|δ〉1QR4TU
= T (Q)

x (θ)|δ〉1QR4TU
(7.67)

Similarly, Bob’s application of Tx(θ) on qubit Q (which impersonates qubit 2 origi-

nally coming from Alice) reverses the effect of Eve’s second operation and thus the

original correlation between Alice’s and Bob’s results is re-established. Further, Eve

has full information about Alice’s and Bob’s result due to the remaining two qubits

in her possession.

When dealing with the rotation operations we defined two possible solutions for

Alice and Bob which are of course also applicable here. The first one is to keep the

angle θ of the transformation secret between Alice and Bob such that Eve can not

revert its effect. The major drawback to this method is that Eve will be able to

obtain full information about the secret should she somehow be able to get to know
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θ. Further, Alice and Bob have to secretly distribute the angle θ between them

which poses another problem. Therefore, a better solution is for Alice to randomly

choose between the application of Tx(θ) and 1 before she performs her Bells state

measurement. She publicly announces her choice after all the qubits are exchanged

and Bob can correct the transformation where necessary. In this case Eve is not

able to prepare a state that simulates the application of 1 and Tx(θ) at the same

time such that she introduces a certain error rate and thus can be detected.

7.2.4 Simulating Unitary Operations

In the previous sections we focused on how Eve is able to simulate rotation operations

and basis transformations with the help of |δ〉. These two classes of operations are

the most commonly used methods to secure quantum cryptographic protocols as we

will see in the following sections. We also pointed out that basis transformations

can be expressed by rotation operations which is intuitively understandable when

looking at the Bloch sphere as a representation for quantum states. Moreover, every

unitary operation U can be represented using the basis rotation about the X-, Y -

and Z-axis. In detail, for an arbitrary unitary operation U there exist real numbers

α, β, γ and δ such that

U = eiαRz

(

β
)

Ry

(

γ
)

Rz

(

δ
)

. (7.68)

This is called the Z−Y decomposition and is described, for example, in [109], where

also a proof is given. Briefly, due to the fact that U is unitary the rows and columns

are orthonormal. Therefore, U can be written as

U =

(

ei(α−β/2−δ/2) cos γ
2

−ei(α−β/2+δ/2) sin γ
2

ei(α+β/2−δ/2) sin γ
2

ei(α+β/2+δ/2) cos γ
2

)

(7.69)

Using this representation we get, for example, the Hadamard operation for α =

β = γ = δ = π/2. In general we can say that, based on the argumentation in

the previous two sections Eve is able to simulate the deterministic application of

an arbitrary unitary operation U using |δ〉. Therefore, she just applies U on the

respective qubits when preparing |δ〉 such that the respective application of U at

Alice’s or Bob’s side is neutralized. The correlation between Alice’s and Bob’s

measurement results is then preserved by |δ〉.
Nevertheless, a random application of a unitary U can only be compensated in

special cases, as we have seen for Pauli operations. In general Eve is not able to
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prepare a state that preserves the correlation between the legitimate parties although

one of them makes a random choice between 1 and an arbitrary unitary operation

U .

7.3 Security Arguments for Multi-Qubit Proto-

cols

In the previous section we presented an attack strategy allowing an adversary Eve

to perfectly simulate the correlations of an entanglement swapping based protocol.

Hence, on the one hand Eve is able to stay undetected when Alice and Bob check

their correlations to detect the presence of an eavesdropper. On the other hand she

is able to obtain full information about the key shared by Alice and Bob. In sections

7.2.2, 7.2.3 and 7.2.4 we showed that the attack strategy also allows Eve simulate

a rotation of an arbitrary angle θ – not necessarily known to Eve – as long as it is

performed deterministically by Alice and Bob.

From these facts we can directly identify a basic strategy to secure a protocol

against the simulation attack: Alice and Bob agree on some rotation or basis trans-

formation U(θ) about some angle θ and Alice applies it on one or both of her qubits

at random. After all qubits are exchanged between Alice and Bob, Alice performs

the entanglement swapping and she announces whether she applied the operation

U or not. Accordingly, Bob uses U−1 to undo Alice’s rotation or transformation

and performs his Bell state measurement afterwards. As pointed out above, Eve is

not able to perfectly compensate a random application of U . From sections 7.2.2

and 7.2.3 we know that the amount of information Eve is able to obtain from her

attack strongly depends on the angle θ. As we described in the previous sections the

optimal choice for the angle is θ = π/2 such that Eve’s information is minimized.

Although Alice and Bob are able to minimize Eve’s information on the secret key

and detect her presence due to the error she introduces they can not be sure whether

there is still an adversary entangled with them. Therefore, there is another, more

rigorous way to secure such protocols: similar to the Ekert protocol [51] Alice and

Bob try to violate the CHSH inequalities using some of their Bell states. As already

pointed out this is a little more difficult than comparing some of their measurement

results in public but it has the advantage that if the inequalities are violated Alice

and Bob can be sure that no third party is entangled with them. Consequently, no
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adversary can extract information from an entanglement with Alice or Bob.

In a recent paper [128] we described a generalization of this strategy to the multi-

qubit case. The idea is again that an attack strategy based on auxiliary qubits like

the simulation attack does not work if the parties can verify that they share a gen-

uinely entangled n-qubit state. To achieve that a series of inequalities presented by

the research group of Hiesmayr [79, 55, 80] is applied to test for genuine multipar-

tite entanglement and for k-separability for any multipartite qudit system. These

Bell-like inequalities are experimentally implementable as only local observables are

needed. The intervention of an adversary changes the overall state and this can

be detected by performing certain additional setups and evaluating the inequalities

given in eq. (7.70) below.

In [128] we derived a new security argument for the HBB protocol [68] based on

these inequalities (cf. section 5.3.2 for details on the HBB protocol). Starting from

[79, 80] the inequalities can be rewritten and linearized in terms of local observable

as

I1 :
1

8
(σxσxσx − σyσyσx − σyσxσy − σxσyσy)

− 1

16
(3× 111− σzσz1− σz1σz − 1σzσz) ≤ 0

I2 :
1

8
(σyσyσy − σxσxσy − σxσyσx − σyσxσx)

− 1

16
(3× 111− σzσz1− σz1σz − 1σzσz) ≤ 0.

(7.70)

Regarding the HBB protocol the first inequality uses combinations of local observ-

ables which are needed in the original scheme to form the secret key whereas the

second inequality uses combinations which are discarded in the original protocol.

Unfortunately, the latter one can only be applied if the initial state is the ”imagi-

nary” GHZ state

|P+
i00〉 =

1√
2
(|000〉+ i|111〉). (7.71)

Nevertheless, using both inequalities Alice and Bob are able to test for genuine 3-

partite entanglement. If the inequalities are maximally violated they can be sure

that no additional systems are connected with them. As we will see below, there

are other protocols for quantum secret sharing which use 3-qubit GHZ states, too

(cf. eg. [26]). In this case the legitimate parties are also able to test for genuine

3-partite entanglement using the inequalities from eq. (7.70) to detect an adversary

performing a simulation attack.
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Another advantage of these inequalities is that they can be extended to the multi-

qubit case, as presented in [128]. Using the framework in [79, 80] inequalities for n

qubits can be derived straight forward from the 3-qubit case (eq. 7.70) and the 4-

qubit case also discussed in [128]. Hence, the check for adversaries can be performed

in the same way as described above for any number of qubits. Altogether, the check

for genuine entanglement between two or several parties is a much stronger security

argument than the random application of rotation or transformation operations

described above.





Chapter 8

Applications of the Simulation

Attack

In the previous chapter we introduced a new attack strategy for multi-qubit protocols

– the simulation attack. We showed that using this attack it is possible to simulate

not only the correlations coming from the entanglement swapping performed by

Alice and Bob but also an arbitrary unitary operation applied by Alice or Bob.

In this chapter we discuss how the simulation attack works in detail on several

protocols [91, 138, 28, 26]. We demonstrate in particular how an adversary is able to

simulate rotations [91] as well as basis transformations [138]. Further, we show that

the simulation attack is an extension to and more powerful than the ZLG attack by

applying it onto Cabello’s protocols [28, 26].

8.1 Application on the QKD Protocol by Li et al.

In 2006 Li et al. presented a QKD protocol [91] based on entanglement where they

argued that the protocol not only produces 2 random key bits but also 2 certain key

bits. This is achieved by introducing a secret Pauli operation in the entanglement

swapping process. As it is shown in [91] this protocol is secure against a intercept-

resend attack as well as a basic collective attack. Nevertheless, we will show how the

simulation attack provides an adversary with full information about the key shared

between the two parties.
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Figure 8.1: Illustration of the protocol presented in [91].

8.1.1 Protocol Description

Alice creates 2 EPR pairs each in a Bell state, e.g. |Φ+〉12 and |Φ+〉34 for each round

of the protocol. In [91] Li et al. start the protocol with preshared entangled states

which is too strong an assumption since the qubits have to be shared somehow

between the two parties. Furthermore, in their security analysis an adversary Eve

is granted the possibility to interact with the Bell states such that we can conclude

that the qubits of the Bell states are in transit between Alice and Bob.

There are two possible ways to share the Bell states between the legitimate parties:

either one party, e.g. Alice, prepares both Bell states and sends one qubit of each

state to the other party or both parties prepare one Bell state and they exchange one

qubit of their respective states. It is easy to show that the first scenario is insecure

against a simple intercept-resend attack: If Alice prepares the Bell states |Φ+〉12 and
|Φ+〉34 and sends qubits 2 and 4 to Bob Eve can intercept these qubits and perform

a Bell state measurement on them. According to entanglement swapping this will

bring qubits 1 and 3 also into a Bell state which is known to Eve. Then she forwards

qubits 2 and 4 to Bob who again performs a Bell state measurement on these two

qubits giving him the same result as Eve. In the meantime, Alice performed a Bell

state measurement on qubits 1 and 3 and obtains the results predefined by Eve’s

measurement. Thus, Eve does not introduce any error into the correlation between

Alice’s and Bob’s results and has full information about their secret measurement

results.
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Therefore, we will assume that Alice prepares |Φ+〉12 and Bob prepares |Φ+〉34
and that they exchange the qubits 2 and 3. Before Alice performs her Bell state

measurement she chooses an operation σ
(α)
A ∈ {I, σx, σy, σz} and applies it to qubit

1 (cf. (2) in figure 8.1). Here the superscript (α) denotes again that the operation

is applied on qubit α. As we already know from section 7.2.1 the application of

a Pauli operation changes the initial state (cf. (3) in figure 8.1). In this case

the entanglement swapping due to Alice’s measurement on qubits 1 and 3 can be

described as

σ
(1)
A |Φ+〉12|Φ+〉34 =

1

2

(

|Φ+〉13σ(2)
A |Φ+〉24 + |Φ−〉13σ(2)

A |Φ−〉24

+|Ψ+〉13σ(2)
A |Ψ+〉24 + |Ψ−〉13σ(2)

A |Ψ−〉24
)

.
(8.1)

Based on her result Alice can determine the state of qubits 2 and 4 in Bob’s pos-

session after her Bell state measurement, i.e. assuming Alice chose σx and obtained

|Ψ−〉13 Bob’s qubits are in the state |Φ−〉24 (cf. (3) in figure 8.1). Additionally,

Alice is also able to compute in which the state qubits 1 and 3 would be, if she did

not apply any operation on qubit 1. From eq. (8.1) we can see that if Alice did

nothing (i.e. performed the 1 on qubit 1) the result corresponding to |Φ−〉24 would

be |Φ−〉13. Alice publicly announces that she made the Bell state measurement but

keeps her exact result by herself.

To infer Alice’s result Bob jointly measures qubits 2 and 4 in his possession. Since

he does not know yet which operation Alice applied and in which state qubits 1 and

2 have been before the measurement he does not know the exact state of qubits 1

and 3. Due to the correlations in eq. (8.1) he can at least determine that qubits 1

and 3 should be in the state |Φ−〉13 if Alice did not apply any operation on qubit

1. To get the correct state of qubits 1 and 3 Bob asks Alice about her result but

keeps his own result secret. Using the information about Alice’s and his own result

Bob can infer the initial state before Alice’s measurement and thus which Pauli

operation Alice applied. Therefore, Alice and Bob share information about Alice’s

secret operation σA (the certain bits) and the result Bob obtained (the random bits).

They use these two pieces of information to extract a classical raw key using some

mapping of Bell states onto classical 2-bit strings, e.g.

|Φ+〉 −→ 00 |Φ−〉 −→ 01 |Ψ+〉 −→ 10 |Ψ−〉 −→ 11 (8.2)

as well as of Pauli operations onto classical 2-bit strings, i.e.

1 −→ 00 σx −→ 01 σy −→ 10 σz −→ 11 (8.3)
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Alice and Bob repeat these steps for all n rounds of the protocol and thus end up

with 4n classical raw key bits. In the end they publicly compare a certain number

of these raw key bits to estimate the error rate and to detect an eavesdropper. Since

Li. et al. assumed that there are perfect channels between Alice and Bob they have

to restart the protocol whenever an error occurs [91].

8.1.2 Attack Strategy and Security

In their article Li et al. present an argument for the security of their protocol against

an eavesdropper performing an intercept-resend attack [91]. The security against

such an attack is rather obvious since Eve destroys the correlation between Alice’s

and Bob’s result by any measurement she performs onto the qubits in transit. Even

a joint measurement on both qubits does not give her any advantage because that

would entangle qubits 1 and 4, both Bell state measurements at Alice’s as well as

Bob’s side give random results. The probability that Eve stays undetected using

this attack strategy can be made arbitrarily small when Alice and Bob compare a

sufficiently large set of their measurement results.

Further, an attack strategy involving entanglement is described in [91] where

Eve establishes separate keys with Alice and Bob at the same time. Due to the

randomness of the results of the Bell measurements one bit of the key between Alice

and Eve matches the corresponding bit of the key between Eve and Bob only with

probability of 1/4. Hence, Eve’s intervention is detected again when Alice and Bob

compare some of their bits. A collective attack is described in the article where Eve

intervenes with the source and entangles an auxiliary state to the Bell states of Alice

and Bob. In this case Eve obtains the same result as Bob half of the time but Bob

also obtains an uncorrelated result half of the time. Hence, Eve is again detected

by Alice and Bob.

Nevertheless, when Eve uses the simulation attack as her strategy she is able to

perfectly eavesdrop the raw key without being detected. As described in detail in

the sections above, the state |δ〉 preserves the correlation between Alice’s and Bob’s

result even if the initial states are changed by a Pauli operation (cf. section 7.2.1).

Therefore, Eve strategy is to prepare |δ〉P−U and intercept the qubits 2 and 3 flying

from Alice to Bob and vice versa. She entangles herself with Alice and Bob by the

help of entanglement swapping such that qubits 1, Q, R, 4, T and U are in the state

|δ〉 (cf. (1) in figure 8.2). Then, Eve forwards qubits R to Alice and Q to Bob.
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Figure 8.2: (Simulation attack) Illustration of the simulation attack strategy on the

QKD protocol by Li et al. [91]. Here, Eve already intercepted the qubits in transit

and performed the entanglement swapping.

Alice’s secret Pauli operation σA changes the overall state into

σ
(1)
A |δ〉 = 1

2

(

σ
(1)
A |Φ+〉1R|Φ+〉Q4|Φ+〉TU + σ

(1)
A |Φ−〉1R|Φ−〉Q4|Φ−〉TU

+σ
(1)
A |Ψ+〉1R|Ψ+〉Q4|Ψ+〉TU + σ

(1)
A |Ψ−〉1R|Ψ−〉Q4|Ψ−〉TU

)

.
(8.4)

From that equation we can see that Eve’s qubits T and U are always in the same

state as Bob’s qubits Q and 4 no matter which operation σA she applied. Therefore,

Eve has full information about Bob’s result and in further consequence about Alice’s

result and her secret operation σA.

In detail, assuming Alice chose σA = σx and obtains |Ψ−〉1R Bob’s qubits are

in the state |Φ−〉Q4 as in the original protocol (cf. (4) in figure 8.2). Thus, the

correlation is preserved and when Alice announces her measurement result Bob is

able to determine σx as Alice’s secret operation. But at this time also Eve’s qubits T

and U are in the state |Φ−〉TU such that also she knows the Alice’s secret operation

based on the public announcement of her measurement result. Hence, Eve has full

information about the raw key but introduces no error since the correlation between

Alice and Bob is preserved.
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8.1.3 Revised Protocol

As pointed out in section 7.2.2 and 7.2.3 above a good method to secure the protocol

is to randomly apply either a rotation or a basis transformation by an angle θ = π/2

on qubit 1 before the secret Pauli operation. The rotation or transformation can not

be simulated by Eve using the state |δ〉 and Eve can not eavesdrop the secret key

without introducing a certain error rate. Since it does not matter from a security

point of view whether a rotation or transformation is applied we are going to use

the Hadamard operation H in the following paragraphs.

Due to the use of the additional Hadamard operation it is not important any

more whether Alice prepares both Bell states or each party prepares a Bell state

by its own. To stay consistent with the above descriptions of the protocol and the

attack we will discuss the scenario where Alice prepares the state |Φ+〉12 and Bob

prepares |Φ+〉34 in each round of the protocol. Alice sends out qubit 2 to Bob and he

sends qubit 3 to Alice. When she receives Bob’s qubit she randomly applies either

the identity operator I or the Hadamard operator H on qubit 1. As described in

eq. (7.4) above this alters the state into |ω+〉12. Then, Alice applies her secret Pauli
operation σA on qubit 1 and performs a Bell state measurement on qubits 1 and 3.

This Bell state measurement can be described as

σ
(1)
A |ω+〉12 ⊗ |Φ+〉34 =

1

2

(

σ
(1)
A |Φ+〉13 ⊗ |ω+〉24 + σ

(1)
A |Φ−〉13 ⊗ |ω−〉24

+σ
(1)
A |Ψ+〉13 ⊗ |χ+〉24 + σ

(1)
A |Ψ−〉13 ⊗ |χ−〉24

)

.
(8.5)

When Bob received Alice’s qubit he publicly informs Alice and she announces

whether she applied the Hadamard operation or not together with her measure-

ment result. If she did so, Bob applies the H operation on qubit 2 and otherwise

he does nothing. As we have see in section 7.2.3 a repeated application of the

Hadamard operator eliminates the superposition and the correlation from the orig-

inal Bell state measurement is re-established. In the end Bob follows the original

protocol and performs a Bell measurement on qubits 2 and 4. He determines Alice’s

secret operation based on her actual result and computes the four classical bits of

the raw key. After n rounds Alice and Bob publicly announce some of their results

to estimate the error rate.
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8.1.4 Attack Strategy and Security of the Revised Protocol

Since the application of the Hadamard operation is just a minor change of the

original protocol, the modified version is also secure against an intercept/resend

attack as well as a collective attack, as described in [91]. Therefore, we will just

inspect Eve’s probability to stay undetected and her information about the raw key

if she follows the simulation attack strategy.

The trivial case is when Alice does not apply the Hadamard operator. As we

already pointed out above Eve’s attack is successful, i.e. she does not introduce any

error and obtains full information about the key. If Alice performs the Hadamard

operation on qubit 1 we have discussed in section 7.2.3 that Bob does obtain a

correlated result only with probability (3+cos(2θ))/4. For the Hadamard operation

θ = π/2 Bob’s probability to obtain the correlated result is 1/2 or in other words Eve

introduces an error with probability 1/2 per each round. In the end the expected

error probability
〈

Pe
〉

is 1/2 whenever Alice applied the Hadamard operation and 0

otherwise, i.e.
〈

Pe
〉

=
1

2
× 0 +

1

2
× 1

2
=

1

4
. (8.6)

Accordingly, the probability of detecting Eve is 1 −
〈

Pe
〉r

when Alice and Bob

publicly compare r of their results during sifting. Hence, the probability to detect

Eve can be brought arbitrarily close to 1. Eve’s collision probability is, using similar

argumentation,
〈

Pc
〉

= 3/4. Besides the error probability the most interesting value

is the amount of information Eve is able to obtain from her attack. It can be easily

computed that the Shannon entropy H(S|M) = 1/2 and thus Eve’s information is

IAE = 1−H
(

S|M
)

=
1

2
. (8.7)

It is also pointed out in section 7.2.3 that Eve is able to prepare a state |δx〉 to
simulate the application of H . Nevertheless, this introduces an error whenever Alice

does not apply H such that Alice and Bob end up with the same probability to

detect Eve. In both cases the error is very unbiased. If Eve uses |δ〉 all the error

occurs when Alice applies the Hadamard operation. If Eve uses |δx〉 all the error

occurs when Alice applies 1, i.e. when she does nothing. To overcome this fact

Eve randomly chooses between preparing |δ〉 and |δx〉. Half of the time Eve uses

the correct state and is able to eavesdrop perfectly. The other time she chooses |δ〉
when Alice applies H and |δx〉 when Alice applies 1, such that the expected error
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probability is the same
〈

Pe
〉

=
1

2
× 1

4
+

1

2
× 1

4
=

1

4
. (8.8)

Accordingly, the collision probability and Shannon entropy are the same as described

in the previous paragraph.

8.2 Application on the QKD Protocol by Song

In 2004 Song published a QKD scheme based on entanglement swapping which is

also supposed to spare alternative measurements [138]. In this scheme Song uses a

rather unusual basis transformation with θ = 2π/3 whereas in most protocols the

basis transformation is the Hadamard operation. This makes this protocol a good

example to evaluate how the simulation attack works on such protocols and how

much information can be extracted by Eve

8.2.1 Protocol Description

In each round of the protocol Alice and Bob prepare two qubits in their laboratories

which are either in the Bell basis or in a transformed basis. The transformation is

done by the operation T = Tx(2π/3) which is denoted in matrix form as

T =
1

2

(

1
√
3√

3 −1

)

(8.9)

Alice and Bob prepare random Bell states and then randomly choose between ap-

plying 1 or T onto qubit 2 and 4, respectively, in their possession. The application

of T changes |Φ±〉 to |η±〉 and |Ψ±〉 to |ν±〉 where the state in the alternative basis

are denoted as

|η±〉 = 1

2
|Φ∓〉+

√
3

2
|Ψ±〉 |ν±〉 =

√
3

2
|Φ±〉 − 1

2
|Ψ∓〉. (8.10)

For our further discussion suppose that Alice prepares |Ψ+〉12 and Bob prepares

|Φ−〉34. Additionally, Bob applies T onto qubit 4 such that |Φ−〉34 is changed into

|η−〉34 (cf. (1) and (2) in figure 8.3). The two parties exchange qubits 2 and 4

and publicly confirm the arrival of the respective qubit. Before measuring, Alice

and Bob announce publicly whether they applied the basis transformation T or
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Alice Bob

T

|Ψ+〉|Φ−〉

1

2

4

3

(1)

Alice Bob

T

|Ψ+〉

|η−〉

(2)

Alice Bob

|Ψ+〉

|Φ−〉

(3)

Alice Bob

|Φ−〉 |Ψ+〉

(4)

Figure 8.3: Illustration of the protocol presented in [138]. Here, only Bob applies

the basis transformation onto his qubit.

not. If one party performed the basis transformation the other party reverses the

transformation by applying T on the received qubit again. In our case Alice applies

T on qubit 4 because Bob prepared |Φ−〉34 in the alternative basis (cf. (2) in figure

8.3). Then, both parties perform Bell state measurements on the qubits in their

possession. Although Alice performs her Bell state measurement onto qubit 1 and

4 instead of 1 and 3 the correlation is still the same as in table 2.1 (up to a global

phase). Hence, both parties can compute each other’s result based on their own

outcome of the Bell state measurement and agree upon two classical bits. Following

our example, if Alice obtains |Φ−〉14 Bob obtains |Ψ+〉23 and they agree on the

classical bit string 01 (cf. table 8.1).

These steps are repeated for all n rounds of the protocol such that Alice and Bob

end up with a classical raw key of 2n bits. They publicly compare some of their

measurement results and the corresponding initial states to estimate the error rate.

Furthermore, in this protocol the channels between Alice and Bob are assumed to

be perfect such that any error indicates the presence of an eavesdropper and Alice

and Bob have to restart the protocol whenever they detect any error.

8.2.2 Attack Strategy and Security

Song discussed a basic version of the ZLG attack in his article [138] and showed in

principle that the protocol is secure against this kind of attack. Nevertheless, he
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1 σz σx σy

00 |Φ+〉14|Φ+〉23 |Ψ−〉14|Ψ+〉23 |Φ−〉14|Ψ−〉23 |Ψ+〉14|Φ−〉23
01 |Ψ−〉14|Ψ−〉23 |Φ+〉14|Φ−〉23 |Ψ+〉14|Φ+〉23 |Φ−〉14|Ψ+〉23
10 |Ψ+〉14|Ψ+〉23 |Φ−〉14|Φ+〉23 |Ψ−〉14|Φ−〉23 |Φ+〉14|Ψ−〉23
11 |Φ−〉14|Φ−〉23 |Ψ+〉14|Ψ−〉23 |Φ+〉14|Ψ+〉23 |Ψ−〉14|Φ+〉23

Table 8.1: Mapping from measurement results onto classical bits (adapted from

[138]). The Pauli operations denote the relation between the initial states.

gave no expected error rate or collision probability for Eve which is of great interest

since the operation T is a basis transformation by an angle of 2π/3 and not π/2

as, for example, in the revised Cabello protocol [28]. Hence, we are going to look

at it in detail in the next paragraph. Previously, we just want to point out that

the protocol is also secure against an intercept-resend attack as well as a collective

attack based on the same argumentation as in the revised Cabello protocol [28].

We can immediately show that Song’s protocol is completely open to the simu-

lation attack when Alice does not apply the transformation T . In this case Alice

and Bob just perform the entanglement swapping and Eve can intercept qubits 2

and 4 in transit. As it is described in detail above Eve entangles herself with Alice

and Bob using |δ〉 using entanglement swapping and sends qubits Q to Bob and S

to Alice, respectively (cf. (1) in figure 8.4). When Alice and Bob perform their Bell

state measurements the correlation between their results is preserved by the state

|δ〉 although both parties kept their initial state secret (cf. the remark at the end

of section 7.2.2). When Alice and Bob publicly announce their initial states Eve is

able to obtain full information about Alice’s and Bob’s secret measurement based

on the state of qubits T and U in her possession.

When either Alice or Bob performs the transformation T we have the scenario

described in section 7.2.3. Eve is not able to compensate the random application

of the transformation while still preserving the correlation when T is not applied.

Hence, Eve’s intervention introduces an error, i.e. the parties do not obtain corre-

lated results all of the time. Taking the example from above, Bob applies T onto

qubit 4 and therefore Alice also applies T onto qubit S she receives from Eve (cf. (2)

in figure 8.4). When Alice obtains |Φ−〉1S from her measurement Bob obtains the
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Alice Eve Bob

T

|δ〉

T

1 Q

S 4

U

(1)

Alice Eve Bob

V

(2)

Alice Eve Bob

(3)

Alice Eve Bob

|Φ−〉
|Ψ+〉

|Φ−〉

(4)

Figure 8.4: (Simulation attack) Illustration of the simulation attack strategy on the

protocol presented in [138]. Here, only Bob applies the basis transformation onto his

qubit.

correlated result |Ψ+〉23 only with probability 5/8. In other words, Eve introduces

an error with probability 3/8 which leads to an expected error probability for this

scenario of
〈

Pe
〉

=
1

2
× 0 +

1

2
× 3

8
=

3

16
(8.11)

which is significantly lower than 1/4. Hence, Eve has a better opportunity to eaves-

drop the key in this protocol than, for example, in the revised version of the Cabello

protocol [28] or the protocol by Li et al [91]. Due to the fact that the transformation

T maps onto an unbiased superposition of states (cf. eq. (8.10) above) Eve is able to

extract more information than usual from her attack strategy. The Shannon entropy

for the simulation attack on Song’s protocol is H(S|M) ≃ 0.406 which leads to

IAE = 1−H
(

S|M
)

≃ 0.594 (8.12)

Assuming that both parties perform the basis transformation T the protocol

becomes insecure again. Due to Eve’s entanglement swapping the operation T is

brought from qubits 2 and 4 onto qubits 1 and 3, which leads to the state

T (1)T (3)|δ〉1Q3STU (8.13)
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When Alice and Bob apply the basis transformation T on qubits Q and S they

receive from Eve, the state changes again into

T (1)T (Q)T (3)T (S)|δ〉1Q3STU (8.14)

When Alice performs her Bell state measurement onto qubits 1 and S it has the

effect that the operations T (1) and T (S) are swapped onto qubits Q and 3 thus

reverting the effect of T at Bob’s side and re-establishing the state |δ〉. Hence,

Bob’s measurement on qubits Q and 3 results into a state completely correlated

to Alice’s result. Further, Eve’s qubits T and U are also correlated to Bob’s result

such that she has full information about the key when Alice and Bob announce their

initial states.

As already pointed out in the previous section Eve’s attempt to eavesdrop can

be identified rather easily if she only uses |δ〉. In this case the occurrence of errors

is unbiased, i.e. error appear only if one of the two parties applies the operation

T . Therefore, Eve prepares another state |δv〉 where she applies T onto qubits P

and Q to simulate Alice’s actions (cf. |δx〉 in section 7.2.3). When Alice chooses to

use the transformation, Bob and herself perform T on qubits Q and 1, respectively,

such that the effect of Eve’s operations is reversed and the original correlations are

re-established. If Bob chooses to use the transformation, T is applied on qubits S

and 3 due to entanglement swapping. Thus, T effects all four qubits 1, Q, 3 and

S which brings us to the scenario just discussed in the previous paragraph. The

four instances of T neutralize each other and the original correlations are no longer

violated. Hence, Eve randomly chooses between |δ〉 and |δv〉 to distribute her error

over all possible cases. The expected error
〈

Pe
〉

in this case is again

〈

Pe
〉

=
1

4
× 0 +

1

4
× 3

8
+

1

4
× 3

8
+

1

4
× 0 =

3

16
. (8.15)

8.2.3 Revised Protocol

We have just showed that the protocol presented by Song [138] per se is secure

against the simulation attack. The main reason for security is the random appli-

cation of the basis transformation T which can not be simulated by Eve using |δ〉.
Nevertheless, we suggest to replace T by the Hadamard operation H as an improve-

ment to security. We are going to explain in detail why this is an advantage in the

next section.
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The replacement by the Hadamard operation does not change the overall process

of the protocol. Alice and Bob still choose at random their initial states and indi-

vidually choose whether to apply H onto qubit 2 and 4, respectively. Then, they

exchange qubits 2 and 4 and upon notice of arrival at the communication partner

they announce publicly their choice regarding the application of H . If necessary,

Alice and Bob reverse the effect of the Hadamard operation by applying it again

on the received qubits. Afterwards, Alice performs the Bell state measurement on

qubits 1 and 4 and Bob does the same on qubits 2 and 3 in his possession. They

publicly announce their measurement bases and based on that information are able

to share two classical raw key bits according to table 8.1.

8.2.4 Attack Strategy and Security of the Revised Protocol

The reason to replace the transformation T by the Hadamard operation is the choice

of the angle θ defining T . As pointed out at the beginning of the protocol description

T = Tx(2π/3), i.e. θ = 2π/3. This transforms

|0〉 7−→ 1

2
|0〉+

√
3

2
|1〉 and |1〉 7−→

√
3

2
|0〉 − 1

2
|1〉 (8.16)

which is an unbiased superposition of the basis states |0〉 and |1〉. In other words a

measurement of T |0〉 in the Z-basis is more likely to result in |1〉 than in |0〉. This is
also true for the states |η±〉 and |ν±〉 which are superpositions of Bell states where

one state is always in favor. Hence, the optimal choice of the angle θ is π/2 such

that T becomes the Hadamard operation H and both states in the superposition

are equally likely.

With the Hadamard operation instead of T the sequence of Eve’s attack using

the simulation approach is completely the same. Using the state |δ〉 she is able to

perfectly eavesdrop whenever nobody or both parties apply H . Further, Eve is able

to perfectly eavesdrop if she uses the state |δx〉 from section 7.2.3 above whenever

either Alice or Bob chooses to apply H on the initial state. In every other case the

probability for Eve to introduce an error is 1/2. Thus, the optimal strategy for Eve

is to randomly choose between |δ〉 and |δx〉 for her attack to distribute the error she

introduces equally as pointed out above. This leads to an expected error probability

of
〈

Pe
〉

=
1

4
× 0 +

1

4
× 1

2
+

1

4
× 1

2
+

1

4
× 0 =

1

4
. (8.17)
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Comparing eq. (8.15) and eq. (8.17) we see that due to the application of H Eve

introduces a much higher error rate and therefore is more likely to be detected.

Additionally, also the Shannon entropy increases from H(S|M) = 0.406 in the

original version to H(S|M) = 0.5 in the revised version such that Eve’s information

decreases to

IAE = 1−H
(

S|M
)

=
1

2
(8.18)

for the revised version.

8.3 Application on the Cabello QKD Protocol

As already presented in section 7.1.1 Cabello published a QKD protocol based on

entanglement swapping in 2000 [27]. His idea was also to spear the additional

measurement in another basis to increase the efficiency of the protocol. It has been

shown by Zhang et al. [170] that the protocol is open to a special kind of attack where

Eve entangles herself with the legitimate parties. The detailed protocol description

as well as the description of the ZLG attack can be found in section 7.1.1 above.

In the following paragraphs we are going to show how the simulation attack works

on the protocol by Cabello and the revised protocol [28]. We want to demonstrate

that the simulation attack is a generalized version of the ZLG attack since it is as

powerful as the ZLG attack but is also applicable on other protocols, as we have

already seen.

8.3.1 Attack Strategy and Security

It has been shown in [170] that the protocol by Cabello is not secure. We can observe

the same result when applying the simulation attack strategy onto the protocol. In

this case, Eve prepares the state |δ〉P−U and intercepts qubit 2 of the state |Φ−〉12
coming from Alice. Eve performs a Bell state measurement on qubits 2 and P

and afterwards her state changes to σ
(1)
z |δ〉1Q−U . Then, Eve sends qubit Q to Bob

impersonating the qubit coming from Alice. Meanwhile, Alice performs her Bell

state measurement on qubits 1 and 3 in her possession leaving qubits 5, Q − U in

the state σ
(5)
A σ

(5)
z |δ〉5Q−U where σA|Φ+〉 is Alice’s secret result. If we take |Ψ−〉13 as
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Alice’s secret result (cf. (1) and (2) in figure 8.5) qubits 5, Q− U are in the state

|δ′〉5Q−U =
1

2

(

|Φ+〉5R|Ψ+〉QS|Ψ+〉TU + |Φ−〉5R|Ψ−〉QS|Ψ−〉TU

+|Ψ+〉5R|Φ+〉QS|Φ+〉TU + |Ψ−〉5R|Φ−〉QS|Φ−〉TU
)

(8.19)

When Bob receives qubit Q he performs his Bell state measurement on qubits Q

and 4 thus entangling qubit 6 with Eve. Hence, the overall state changes into

σ
(5)
A σ

(5)
z σ

(6)
B |δ〉56R−U with σB |Φ+〉 Bob’s secret result (cf. (1) and (2) in figure 8.5).

Assuming Bob obtains |Φ+〉Q4 the state |δ′〉5Q−U does not change at all. Afterwards

Bob sends qubit 6 to Alice and Eve intercepts it. Eve then performs a Bell state

measurement on qubits T and U giving her a random result as it is described in eq.

(8.19). Further, she measures qubits 6 and S and compares the outcome with the

state of qubits T and U . It is shown in eq. (8.19) that these two results differ only

by a Pauli operation – in this case 1 – describing Bob’s secret result (cf. (3) in figure

8.5). Therefore, Eve has full information about Bob’s result and the information to

correct the state of qubits 5 and R to preserve the correlation given in table 7.1.

Next, Eve sends qubit R to Alice who performs her measurement on qubits 5 and

R and publicly announces the result, in this case |Ψ+〉5R (cf. (4) in figure 8.5). Due

to Eve’s Pauli operation both parties always have a valid correlation of their results

and they have no chance to detect Eve. Further, Eve obtains full information about

Alice’s and Bob’s result from the state of her qubits 6 and S (cf. (4) in figure 8.5).

There is a little overhead when using the simulation attack since the qubits T and

U are of minor interest for the attack on this special protocol since the initial states

are publicly known. Eve is still able to obtain full information about Bob’s secret

result if these two qubits are excluded. But, as we have presented in the previous

section, they are of essential value when looking at other protocols [91, 138] where

they give full information about Bob’s result.

8.3.2 Attack Strategy and Security of the Revised Protocol

Cabello published an addendum to his protocol where he introduced a version which

is secure against the ZLG attack [28]. This is achieved by the random application of

a Hadamard operation on qubit 3 in Alice’s possession (cf. section 7.1.1 for details).

In this case the correlation between Alice’s and Bob’s measurement is violated with

probability 1/2. This error introduced by Eve’s intervention can be detected with

an arbitrary high probability.
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Figure 8.5: (Simulation attack) Illustration of the simulation attack strategy on the

protocol presented in [27].

As pointed out in section 7.2.3 a random application of the Hadamard operation

is also the optimal strategy to secure a protocol against the simulation attack. Eve

is not able to prepare a state which preserves the correlation between Alice’s and

Bob’s results for the application of 1 and H , simultaneously. Nevertheless, Eve

has an advantage using the simulation attack compared to the ZLG attack. As we

have seen above, when performing the ZLG attack the expected error probability
〈

Pe
〉

= 1/2 but an error occurs only when Alice uses the Hadamard operation.

Otherwise, Eve does not introduce any error. This fact makes it even easier to

detect Eve’s presence because a natural error is very unlikely to occur only on

specific occasions.

Using |δ〉 on the revised protocol, Eve intercepts qubits 2 and 6 coming from Alice

and Bob, respectively, and performs Bell state measurements on them together with

qubits P and S. Due to her corrections Eve obtains the state σ
(1)
z |δ〉1QR4TU after

her measurements with σz coming from Alice’s initial state |Φ−〉12. Then, Eve sends
qubits Q to Bob and R to Alice. In the meantime, Alice applies the Hadamard

operation on qubit 3 and performs a Bell state measurement on qubits 1 and 3

which swaps the Hadamard operation onto qubit 5. Let’s assume for our further

discussion that Alice obtains |Ψ−〉13 as in the original protocol which brings the
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remaining qubits into the state

|δ′〉5QR4TU =
1

2

(

|ω+〉5R|Ψ+〉Q4|Ψ+〉TU

+|ω−〉5R|Ψ−〉Q4|Ψ−〉TU
+|χ+〉5R|Φ+〉Q4|Φ+〉TU
+|χ−〉5R|Φ−〉Q4|Φ−〉TU

)

(8.20)

Further, Alice performs a Bell state measurement on qubits 5 and R bringing qubits

Q, 4, T and U in the state

1√
2

(

|Ψ+〉Q4|Ψ+〉TU − |Φ−〉Q4|Φ−〉TU
)

(8.21)

for Alice’s result |Ψ+〉53. She announces her result and whether she used the

Hadamard operation or not. On the other side, Bob applies the Hadamard opera-

tion onto qubit 4 and his measurement on qubits Q and 4 results either in |Φ+〉Q4 or

|Ψ−〉Q4. It follows from table 7.2 that only |Ψ−〉Q4 correlates with Alice’s secret and

public result and that Bob identifies an error whenever he measures |Φ+〉Q4. Thus,

Alice and Bob detect an error when publicly comparing some of their results with

probability 1/2 for each result they compare.

Eve’s qubits T and U are in the state |ω+〉TU for Bob’s result |Ψ−〉Q4 and |χ−〉TU
for Bob’s result |Φ+〉Q4. Therefore, Eve applies a Hadamard operation on qubit T

to rotate the state back into the Z basis and performs a Bell state measurement

afterwards. In general, whenever Bob obtains a correct result, Eve’s qubits T and

U are in the same state as qubits Q and 4 such that Eve has full information

about Bob’s result with probability 1/2. Otherwise Eve has no information about

the outcome of Bob’s measurement. Nevertheless, if Eve obtains either |Φ−〉TU or

|Ψ−〉TU she knows that Bob’s result is not correlated to Alice’s results.

As already discussed in section 7.2.3 the optimal strategy for Eve using the sim-

ulation attack is to randomly prepare either the state |δ〉 or |δv〉 where she applied

the Hadamard operation on qubits P and Q. This gives Eve full information about

Alice’s and Bob’s results whenever she chooses |δ〉 and Alice uses 1 as well as when

she chooses |δv〉 and Alice uses H . For the other cases Eve introduces an error with

probability 1/2 which gives us the expected error probability

〈

Pe
〉

=
1

4
× 0 +

1

4
× 1

2
+

1

4
× 1

2
+

1

4
× 0 =

1

4
(8.22)
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As pointed out, this is equal to the expected error probability using the ZLG attack

but the error is equally distributed over all possible cases. Regarding the collision

probability the simulation attack is equal to the ZLG attack since Eve also has no

information about Bob’s secret whenever she prepares the incorrect state. That

gives for
〈

Pc
〉

the equation

〈

Pc
〉

=
1

4
× 1 +

1

4
× 1

2
+

1

4
× 1

2
+

1

4
× 1 =

3

4
. (8.23)

For the overall scenario the Shannon entropy H(S|M) = 1/2 such that Eve’s infor-

mation about the secret is then

IAE = 1−H
(

S|M
)

=
1

2
(8.24)

which is equal to the information Eve obtains when using the ZLG attack (cf. eq.

(7.10) above). Hence, Eve obtains the same amount of information when using the

simulation attack but introduces a smaller error rate such that it is more difficult

to detect her.

8.4 Application on the Cabello QSS Protocol

In section 7.1.2 another protocol by Cabello is described where he presents a quan-

tum secret sharing protocol based on entanglement swapping [26]. The idea is to

share a key between two parties, Bob and Charlie, such that they can communicate

with Alice only if they collaborate and bring their shares together. The entangle-

ment between the three parties is realized using a GHZ state. We have already

pointed out that the protocol is open to a kind of ZLG attack [90] where Eve en-

tangles herself with Alice, Bob and Charlie and is able to eavesdrop the secret. In

the following paragraphs we are going to describe how the simulation attack works

on this protocol to stress the fact that it is a generalization of the ZLG attack and

as an example that it is also applicable on QSS protocols.

8.4.1 Attack Strategy and Security

As discussed in [90] the protocol by Cabello [26] is not secure against a ZLG-type

attack strategy. The idea is that Eve has to find a state which simulates the corre-

lations given in table 7.3 and provides her with additional information about Bob’s
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measurement results. The version of the state |δ〉 given in eq. (7.28) would be a

possible choice, but not a very good one. A better version for |δ〉 is

|δ〉 = 1

2

(

|Φ+〉|Φ+〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P+
00〉+ |Φ−〉|Φ−〉|P−

00〉

+|Ψ+〉|Ψ+〉|P+
01〉+ |Ψ−〉|Ψ−〉|P−

01〉
)

+|Φ−〉|Φ−〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P−
00〉+ |Φ−〉|Φ−〉|P+

00〉

+|Ψ+〉|Ψ+〉|P−
01〉+ |Ψ−〉|Ψ−〉|P+

01〉
)

+|Ψ+〉|Ψ+〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P+
10〉+ |Φ−〉|Φ−〉|P−

10〉

+|Ψ+〉|Ψ+〉|P+
11〉+ |Ψ−〉|Ψ−〉|P−

11〉
)

+|Ψ−〉|Ψ−〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P−
10〉+ |Φ−〉|Φ−〉|P+

10〉

+|Ψ+〉|Ψ+〉|P−
11〉+ |Ψ−〉|Ψ−〉|P+

11〉
)

)

E1−E11

(8.25)

It can be immediately verified that this state simulates all possible correlations from

table 7.3 and that the qubit pairs E3, E4 and E7, E8 can be used to obtain full

information about Bob’s and Charlie’s measurement results. We already showed

that an adversary from the inside is much more powerful than an eavesdropper

from the outside. Hence, we are going to focus first on the scenario of an external

adversary Eve and then on a dishonest Charlie both using the simulation attack to

get as much information about the secret as possible.

In the first scenario the adversary Eve intercepts the qubits A and B coming from

Alice and performs a GHZ state measurement on them together with qubit E9 of

the state |δ〉. As we have already seen in the general description of the simulation

attack in section 7.2 above Eve is able to correct the resulting state such that she now

shares |δ〉 with Alice. Eve sends qubits E2 to Bob and E6 to Charlie impersonating

qubits A and B (cf. (1) in figure 8.6). Following the protocol both parties perform

their respective Bell state measurements and return qubits C and D to Alice. In

the meantime, Alice performed her Bell state measurement on qubits 2 and 3 which

entangles qubit 1 with the state |δ〉. Eve intercepts the qubits coming from Bob

and Charlie and performs Bell state measurements on the pairs E1, C and E3, E4

(cf. (2) in figure 8.6). From the definition of the state |δ〉 we see that the result

of Eve’s first measurement is random but the result of the second measurement

gives her a reference to determine Bob’s secret result. In detail, if Bob obtained
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|Φ−〉4E2
and Eve’s first result is |Φ−〉E1C the state of qubits E3 and E4 is |Φ+〉E3E4

.

The difference between these two states is a σz operation which defines Bob’s secret

result. Similarly, Eve measures the qubit pairs E5, D and E7E8 which gives her

full information about Charlie’s secret result. Further, she knows from eq. (8.25)

in which state the last three qubits 1, E10 and E11 are and based on her results

from the measurements on qubits E1, C and E5, D which Pauli operations to apply

on qubits E10 and E11 to preserve the correlations between the legitimate parties.

Assuming Eve obtained |Φ+〉E5D and |Ψ+〉E7E8
from her remaining measurements

she applies a σx on qubit E11. In the end, Eve sends qubits E10 and E11 to Alice

who performs a GHZ state measurement on them and publicly announces the result.

Due to Eve’s Pauli operations Alice’s result of the GHZ state measurement always

corresponds to Bob’s and Charlie’s results as given in table 7.3 and Eve’s presence

is not detected.

If we are dealing with a dishonest Charlie the process of the attack is almost the

same as just described for an external adversary Eve. Charlie prepares the state |δ〉
from eq. (8.25) above instead of |Φ+〉5D and intercepts the qubit flying from Alice to

Bob. Charlie forwards qubit E2 to Bob and performs his Bell state measurement on

qubits E5 and E6. As described in the attack in the previous paragraph Bob’s Bell

state measurement on qubits 4 and E2 entangles qubit C with |δ〉. Charlie intercepts
qubit C coming from Bob and measures it together with qubit E1. The result of

this measurement compared with the result of the measurement on qubits E3 and

E4 gives him full information about Bob’s secret result and also defines the Pauli

operation he has to apply on qubit E10. In detail, if Charlie obtained |Φ−〉E1C and

|Ψ−〉E3E4
he can infer that Bob’s secret result is |Ψ+〉4E2

. Regarding the state of the

remaining 3 qubits Charlie knows that he has to apply in this case a σx operation

onto qubit E10 to reestablish the correlation between the legitimate parties. When

he returns qubits E10 and E11 to Alice she performs a GHZ state measurement on

these two qubits together with qubit 1 and announce her result. Since the correlation

is still valid, Alice and Bob do not discover Charlie’s intervention and he is able to

obtain Alice’s secret without Bob’s help.

A small remark on the application of the simulation attack in this scenario is that

it seems like an overkill because it uses much more qubits than the ZLG attack. But

we will show in the next paragraphs that the simulation attack using the state |δ〉 is
more effective than the ZLG attack when looking at the revised version of Cabello’s
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protocol [90].

8.4.2 Attack Strategy and Security of the Revised Protocol

In the revised version of this protocol [90] presented by Lee et al. it is suggested

that Alice, Bob and Charlie make use of the quantum Fourier transformation (QFT).

The QFT simplifies in our case to the Hadamard operation as described in detail

in section 7.1.2 above. First, Bob and Charlie randomly choose whether to apply

the Hadamard operation or the identity 1 on their qubits 4 and 5, respectively.

Additionally, Alice, Bob and Charlie exchange all necessary qubits before performing

any measurement. As we have seen above, this forces an external adversary Eve as

well as a dishonest Charlie to introduce a rather large error rate into the protocol

since in both cases the actions of the legitimate parties can not be anticipated. When

using the simulation attack in either scenario the error rate is lower compared to

the ZLG attack which makes it more effective for an eavesdropper.

In the first scenario where Eve interferes with the protocol she is able to fully en-

tangle herself with all three parties since they exchange all qubits before performing

any measurements. This means, Eve prepares the state |δ〉 from eq. (8.25) and in-

tercepts qubits A and B coming from Alice and performs a GHZ state measurement

on them together with qubit E9. Further, she intercepts qubits C and D coming

from Bob and Charlie, respectively, and performs Bell state measurement on the

pairs E1, C as well as E5, D. After that Eve sends qubits E2 to Bob, E6 to Charlie

and qubits E10 and E11 to Alice such that the state |δ〉 is now distributed over all

4 parties. The definition of |δ〉 indicates that Bob’s and Charlie’s measurements on

the qubits in their possession yield random results but the respective qubits still in

Eve’s possession are in the same state, afterwards. Additionally, the three qubits

3, E10 and E11 at Alice’s laboratory are always in a correlated state to Bob’s and

Charlie’s results. Assuming again that Bob obtained |Ψ+〉4E2
and Charlie obtained

|Φ−〉5E6
then qubits 3, E10 and E11 are in the state |P−

10〉 which corresponds to the

state Alice expects to find if she obtains |Φ+〉23 (cf. table 7.3). Also Alice’s secret

measurement on qubits 2 and 3 does not leave these three qubits in a state violating

the expected correlation since her measurement changes the GHZ state accordingly.

In the revised version of Cabello’s protocol Bob and Charlie randomly apply

a Hadamard operation on one qubit in their possession which is not taken into

account in the considerations above. Assuming that only Bob applied the Hadamard
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|Φ+〉

|δ〉

1

2

3

E10E4

E3

E1

E11 E8

E7

E5

E2

4

C

E6

5

D

(1)

Alice

Eve

Bob Charlie

|Φ+〉
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|P−
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Figure 8.6: (Simulation attack) Illustration of the simulation attack strategy on the

protocol presented in [26].
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operation the overall state changes into

1√
2

(

|Φ+〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P+
00〉+ |Φ−〉|Φ−〉|P−

00〉

+|Ψ+〉|Ψ+〉|P+
01〉+ |Ψ−〉|Ψ−〉|P−

01〉
)

+|Ψ−〉 ⊗ 1

2

(

|Φ+〉|Φ+〉|P−
10〉+ |Φ−〉|Φ−〉|P+

10〉

+|Ψ+〉|Ψ+〉|P−
11〉+ |Ψ−〉|Ψ−〉|P+

11〉
)

)

(8.26)

if Bob’s result is |Ψ+〉4E2
. Hence, at this time Eve obtains from a measurement on

qubits E3 and E4 either |Φ+〉E3E4
or |Ψ−〉E3E4

but both do not correspond to Bob’s

result. Thus, the best strategy for Eve is to delay her measurement until she knows

whether Bob applied the Hadamard operation or not, as described below. Similarly,

if just Charlie applies the Hadamard operation the overall state is

|Ψ+〉 ⊗ 1

2

(

|ω+〉|Φ+〉|P+
10〉+ |ω−〉|Φ−〉|P−

10〉

+|χ+〉|Ψ+〉|P+
11〉+ |χ−〉|Ψ−〉|P−

11〉
)

(8.27)

after Bob’s result |Ψ+〉4E2
. In this case Eve obtains the same result as Bob but

further on her measurement on qubits E7E8 yields a result uncorrelated to Char-

lie’s measurement outcome due to his Hadamard operation. In the last case where

both Bob and Charlie apply the Hadamard operation the overall state after both

measurements changes to

1√
2

(

|Φ+〉 ⊗ 1√
2

(

|Φ+〉|P+
00〉 − |Ψ−〉|P−

01〉
)

+|Ψ−〉 ⊗ 1√
2

(

|Φ+〉|P−
10〉 − |Ψ−〉|P+

11〉
)

) (8.28)

assuming Bob and Charlie obtain |Ψ+〉4E2
and |Φ−〉5E6

, respectively. As we can

see, Eve’s results are completely uncorrelated to the two secret results of Bob and

Charlie. Thus, the optimal strategy for Eve is to delay her measurements on qubits

E3E4 and E7E8 until Bob and Charlie publicly announce their choice regarding

the application of the Hadamard operation. Having that information Eve is able

to perform a Hadamard operation herself on qubits E3 and E7, respectively, and

perform her measurement afterwards. Half of the time this gives Eve full information

about Bob’s result.

In all possible cases, Alice applies a Hadamard operation on qubits E10 and E11,

respectively, if Bob or Charlie tell her to do so. This changes the GHZ state similar to
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eq. (7.15) and (7.16) above into a superposition of GHZ states. Hence, she obtains

a GHZ state corresponding to Bob’s and Charlie’s secrets only half of the time.

Following our example where only Bob used the Hadamard operation as described

in eq. (8.26) we see after a little calculation that for Charlie’s result |Φ−〉5E6
the

state of the remaining qubits is

1√
2

(

|P+
00〉1E10E11

|χ+〉E3E4
|Φ−〉E7E8

+ |P−
10〉1E10E11

|ω−〉E3E4
|Φ−〉E7E8

)

(8.29)

after Alice’s application of the Hadamard operation on qubit E10. Alice’s measure-

ment on qubits 1, E10 and E11 projects qubits E3E4 in Eve’s possession into one

of the two possible states. In case Alice obtains |P−
10〉, which is the expected result

for this combination, Eve’s Hadamard operation turns |ω−〉 into |Φ−〉. In this case

her result gives Eve no information about Bob’s secret. Nevertheless, taking, for

example, |Φ+〉4E2
as Bob’s result and assuming Alice obtains |P−

00〉 Eve’s measure-

ment always yields the perfectly correlated result |Φ+〉E3E4
and thus gives her full

information about Bob’s state.

Further, if both parties applied the Hadamard operation, it is given in eq. (8.28)

that the GHZ state in Alice’s possession is either |P+
00〉, |P−

01〉, |P−
10〉 or |P+

11〉. Alice’s
application of the Hadamard operation on both qubit E10 and E11 alters these states

accordingly into

H(2)H(3)|P+
00〉 =

1

2

(

|P+
00〉+ |P−

01〉+ |P−
10〉+ |P+

11〉
)

H(2)H(3)|P−
01〉 =

1

2

(

|P+
00〉 − |P−

01〉+ |P−
10〉 − |P+

11〉
)

H(2)H(3)|P−
10〉 =

1

2

(

|P+
00〉+ |P−

01〉 − |P−
10〉 − |P+

11〉
)

H(2)H(3)|P+
11〉 =

1

2

(

|P+
00〉 − |P−

01〉 − |P−
10〉+ |P+

11〉
)

.

(8.30)

For each of these resulting superpositions of GHZ states Alice’s probability to ob-

tain |P−
10〉 is only 1/4 due to the fact that the two Hadamard operations alter the

initial GHZ states massively. Consequently, whenever Alice obtains a result corre-

sponding to Bob’s and Charlie’s secret Eve has full information about Bob’s and

Charlie’s respective secrets only with probability 1/4. Otherwise, she can not infer

any information from her measurement results .

Taking all considerations into account this leads to an expected error probability

for all four possible choices of Hadamard operations

〈

Pe
〉

=
1

4
× 0 +

1

4
× 1

2
+

1

4
× 1

2
+

1

4
× 3

4
=

7

16
(8.31)
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which is equal to the expected error probability of the ZLG attack (cf. eq. (7.19)).

Accordingly, the expected collision probability is also equal to the one in the ZLG

attack (cf. eq. (7.20)), i.e.
〈

Pc
〉

=
7

8
(8.32)

due to the same reasons already discussed above. Hence, also the Shannon entropy

is H(S|M) = 1/4 such that Eve’s information is IAE = 1−H(S|M) = 3/4.

The second scenario dealing with an adversary from the inside, i.e. Charlie, is

more important for a QSS protocol. Here, Charlie also prepares the state |δ〉 from
eq. (8.25) instead of his Bell state and intercepts the qubits coming from Alice and

Bob. He performs a GHZ state measurement on A, B and E9 as well as a Bell

state measurement on E1 and C to entangle himself with Alice and Bob. Then, he

forwards qubits E10, E11 to Alice and E2 to Bob and jointly measures his qubits E5

and E6. We have to remark that in this case where the adversary comes from the

inside qubits E7 and E8 of the state |δ〉 can be ignored since Charlie is, of course,

fully aware of his own secret measurement result. Whenever Bob does not use

the Hadamard operation we have already seen that qubits E3 and E4 in Charlie’s

possession are perfectly correlated to Bob’s result giving Charlie full information

about Bob’s result. We already showed that based on the structure of the state |δ〉
the three qubits in Alice’s possession are always in a GHZ state corresponding to

Bob’s and Charlie’s secret results.

Whenever Bob chooses to use the Hadamard operation the exact state of the

remaining qubits is of the form described in eg. (8.26) (if he obtained |Ψ+〉4E2
the

remaining qubits are exactly in the state described in that equation). As pointed

out above, the best strategy for Charlie is to wait with the measurement of qubits E3

and E4 until Bob publicly announces that he applied the Hadamard operation. As

we already showed, after Alice’s application of the Hadamard operation onto qubit

E10 the overall state of the remaining qubits is given in eq. (8.29). Therefore, her

measurement projects qubits E3 and E4 either onto the state |ω−〉E3E4
or |χ+〉E3E4

.

In this case Charlie also applies a Hadamard operation on qubit E3 and measures

qubits E3 and E4. As already seen above, this measurement yields a result correlated

to Bob’s result only with probability 1/2. We want to stress that in case Charlie

wants to perform a Hadamard operation he has to apply it on qubit E11 of his

initial state |δ〉 to anticipate Alice’s Hadamard operation later on and preserve the

correlation.
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The expected error probability for both cases – Bob using the Hadamard opera-

tion or doing nothing – is then

〈

Pe
〉

=
1

2
× 0 +

1

2
× 1

2
=

1

4
(8.33)

and the expected collision probability is

〈

Pc
〉

= 1 (8.34)

Again, these are the same results as for the ZLG attack (cf. eq. (7.22) and (7.23)

above). Following the same argumentation as in section 7.1.2 Eve’s information

about Alice’s secret key is

IAE = 1−H
(

S|M
)

= 1 (8.35)

because H(S|M) = 0 as already discussed above. Due to the fact that Charlie

has full information about Bob’s result, too, when he applies the simulation attack

he has the opportunity to reduce the error rate to 0. Based on his measurement

results Charlie is always able to tell whether Bob’s and his result describe a valid

combination together with Alice’s secret and public result. This is trivial whenever

Bob chooses not to use the Hadamard operation because in this case Alice, Bob and

Charlie always obtain correlated results due to the special property of the state |δ〉
described in eq. (8.25). Alternatively, if Bob applies the Hadamard operation we see

immediately that all three parties obtain correlated results whenever Charlie obtains

|Φ±〉E3E4
. During the error estimation phase Charlie knows Alice’s public result and

is able to infer Alice’s and Bob’s secret result based on his measurement outcomes.

Looking at the valid correlations (e.g. table 7.3) Charlie figures out which state he

has to announce such that no error is detected.

To give an example we assume that Alice obtains |Φ+〉23 as her secret result and

Bob as well as Charlie obtain |Ψ+〉4E2
and |Ψ+〉E5E6

, respectively, as their secret

results. Further we assume that Bob applied the Hadamard operation and therefore

Alice’s public GHZ state is |P−
01〉1E10E11

. From table 7.3 we see that the GHZ state

does not correlate to the secret results of Alice, Bob and Charlie. As pointed out in

the previous paragraph, Charlie is aware of that fact before Alice and Bob check for

errors. Therefore, Charlie checks table 7.3 and recognizes that |Φ−〉 is the expected

result. Thus, when Alice asks Bob and Charlie for their results, Charlie announces

|Φ−〉 instead of his original result and Alice and Bob do not detect any error.
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Following this argumentation we can conclude that the simulation attack is much

more effective on this protocol than the ZLG attack. Although both attack strategies

provide a dishonest party with the full information about Alice’s secret Charlie is

able to stay completely undetected when using the simulation attack due to the

additional information he obtains.





Chapter 9

Security in Noisy Environments

The protocols discussed in the previous chapter are all settled in a perfect environ-

ment. The main reason for this is that most of the quantum cryptographic protocols

based on multiple qubits have not been implemented due to physical limitations and

thus their security has not been evaluated in a realistic environment.

In this chapter we are going to look at the security of the protocols discussed in

chapter 7 in connection with a noisy quantum channel. Based on the model of a

depolarizing channel introduced in chapter 8 the effect of the noise onto the basic

building block of the discussed protocols – the entanglement swapping – is described.

Further, threshold values on the fidelity of the entanglement are given above which

a secure communication is possible.

9.1 The Noisy Channel Model

9.1.1 Depolarizing Channels and Werner States

The most common way to characterize a noisy quantum channel is to use the de-

polarizing channel [15, 54] described in section 4.1. This model takes the bit flip

and phase flip errors on the qubit in transit into account and is described by the

application of all three Pauli operations σx, σy and σz. If the qubit transmitted over

the noisy channel is part of an entangled state the whole system is affected by the

noisy channel. In case of a Bell state, e.g. |Φ+〉, the system of the two qubits after

the the effect of the depolarizing channel can be described by a Werner state

WF = F|Φ+〉〈Φ+|+ 1− F

3

(

|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|
)

(9.1)
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with fidelity 〈Φ+|WF |Φ+〉 = F . A more common way to look at the Werner state is

to describe it in connection with white noise, i.e.

ρ = p|Φ+〉〈Φ+|+ (1− p)
1

4
(9.2)

where p is the probability that the state |Φ+〉〈Φ+| is transmitted perfectly over the

noisy channel (cf. also eq. (4.25) and eq. (4.26)). In this case the fidelity can be

easily computed as F = (1 + 3p)/4.

As a consequence of the transmission of qubits over a noisy channel the opera-

tions on that qubits are affected, too. In the protocols already discussed the most

interesting operation is entanglement swapping. Following our previous discussions

of entanglement swapping in section 2.5.3 we assume Alice prepares the Bell state

|Φ+〉〈Φ+|12 and Bob prepares |Φ+〉〈Φ+|34 in their respective laboratories. They send

qubits 2 and 3 to the other party over a depolarizing channel such that the overall

system is described by WF ⊗WF . After Alice’s Bell state measurement on qubits

1 and 3 in her possession the system of qubits 2 and 4 is (assuming Alice obtains

|Φ+〉〈Φ+|13)

ρ24 =
4F2 − 2F + 1

3
|Φ+〉〈Φ+|24

+
2F− 4F2 + 2

9

(

|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|
)

24

(9.3)

which is again a Werner state. Comparing this equation with eq. (2.41) describing

entanglement swapping with pure states we directly see that Alice and Bob obtain

correlated results only with probability

Pcorr =
1− 2F + 4F2

3
=

1 + 3p2

4
(9.4)

since F = (1+3p)/4. Bob’s measurement yields an arbitrary state not correlated to

Alice’s measurement with probability

Perr =
2 + 2F− 4F2

3
=

3(1− p2)

4
(9.5)

For QKD protocols based on entanglement swapping this means that an error occurs

in the communication between Alice and Bob as described in the protocols in section

9.2 below. Considering figure 9.1 we see that performing entanglement swapping over

a noisy channel gives reasonable results, i.e. it is more likely to obtain correlated
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Figure 9.1: (Noisy Channels) The probabilities Pcorr (dashed line) and Perr (solid

line) from entanglement swapping in a setting with noisy channels.

results than uncorrelated, only if p > 1/
√
3 which corresponds to a fidelity of the

initial states of F = 0.683.

As we have already seen there are many protocols using multi-qubit entanglement

to connect three or more parties. If one or several qubits of such a multi-qubit

entangled state are transmitted over a depolarizing channel the overall state is also

tempered by the effect of noise. Looking, for example, at the GHZ state |P+
00〉〈P+

00|123,
sending only qubit 1 over the depolarizing channel the state changes into

ϑ123 =
1 + 3p

4
|P+

00〉〈P+
00|+

1− p

4

(

σ(1)
x |P+

00〉〈P+
00|σ(1)

x

+σ(1)
y |P+

00〉〈P+
00|σ(1)

y + σ(1)
z |P+

00〉〈P+
00|σ(1)

z

)

=
1 + 3p

4
|P+

00〉〈P+
00|+

1− p

4

(

|P−
00〉〈P−

00|+ |P+
11〉〈P+

11| − |P−
11〉〈P−

11|
)

(9.6)

Since the noise of the polarizing channel affects only one qubit of the GHZ state the

resulting state is not a mixture of all 8 GHZ states possible but only of four states

|P±
00〉〈P±

00| and |P±
11〉〈P±

11|. Similarly, if only qubit 2 or qubit 3 is sent over the noisy

channel the resulting state is a mixture of the states |P±
00〉〈P±

00| and |P±
10〉〈P±

10| as
well as |P±

00〉〈P±
00| and |P±

01〉〈P±
01|, respectively. Nevertheless, the resulting state has a

fidelity F = 〈P+
00|ϑ|P+

00〉 = (1+3p)/4, i.e. the probability to obtain the original state

after the transmission of the qubit is (1 + 3p)/4 and the other 3 states are equally

probable. If a second qubit, e.g qubit 2, is going through the depolarizing channel
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the overall state of the three qubits changes to

ϑ′123 =
1 + 3p

4
ϑ123 +

1− p

4

(

σ(2)
x ϑ123σ

(2)
x + σ(2)

y ϑ123σ
(2)
y + σ(2)

z ϑ123σ
(2)
z

)

=
1 + 2p+ 5p2

8
|P+

00〉〈P+
00|+

1 + 2p− 3p2

8
|P−

00〉〈P−
00|

+
(1− p)2

8
|P+

01〉〈P+
01|+

(1− p)2

8
|P−

01〉〈P−
01|

+
1− p2

8
|P+

10〉〈P+
10|+

1− p2

8
|P−

10〉〈P−
10|

+
1− p2

8
|P+

11〉〈P+
11|+

1− p2

8
|P−

11〉〈P−
11|

(9.7)

In this case the resulting state is a mixture of all possible GHZ states but of a

different form compared to the state in eq. (9.6). The terms not equal to the initial

state |P+
00〉〈P+

00| are not equally probable any more as it is the case in eq. (9.6) above.

In detail, the original state |P+
00〉〈P+

00| still has the highest probability with P|P+

00
〉 =

(1+2p+5p2)/8. Next, the state |P−
00〉〈P−

00|, which differs only by a σz operation from

the original state, occurs with probability P|P−
00
〉 = (1 + 2p− 3p2)/8. The remaining

states have the probability P|P±
01
〉 = (1 − p)2/8 and P|P±

10
〉 = P|P±

11
〉 = (1 − p2)/8.

Since the source of a GHZ state or any multi-qubit state is usually located in the

laboratory of one of the communication parties it is sufficient to just look at the

scenarios where one or two qubits are transmitted over a noisy channel. For the

sake of completeness we will shortly describe how the GHZ state changes if all three

qubits are affected by noise. The state ϑ′123 changes into

ρ123 =
1 + 3p

4
ϑ′123 +

1− p

4

(

σ(3)
x ϑ′123σ

(3)
x + σ(3)

y ϑ′123σ
(3)
y + σ(3)

z ϑ′123σ
(3)
z

)

=
1 + 3p2 + 4p3

8
|P+

00〉〈P+
00|+

1 + 3p2 − 4p3

8
|P−

00〉〈P−
00|

+
1− p2

8
|P+

01〉〈P+
01|+

1− p2

8
|P−

01〉〈P−
01|

+
1− p2

8
|P+

10〉〈P+
10|+

1− p2

8
|P−

10〉〈P−
10|

+
1− p2

8
|P+

11〉〈P+
11|+

1− p2

8
|P−

11〉〈P−
11|

(9.8)

if also qubit 3 is sent over a depolarizing channel. This state is already rather close

to a Werner form but, as it is shown in eq. (9.8), only the states |P±
01〉〈P±

01|, |P±
10〉〈P±

10|
and |P±

11〉〈P±
11| occur with the same probability, i.e.

P|P±
01
〉 = P|P±

10
〉 = P|P±

11
〉 =

1− p2

8
(9.9)
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The state |P−
00〉〈P−

00| has a probability of P|P−
00
〉 = (1+3p2−4p3)/8 and the probability

to obtain the original state is P|P+

00
〉 = (1 + 3p2 + 4p3)/8.

In some protocols entanglement swapping not only between Bell states but also

between Bell states and GHZ states is used to distribute information between several

parties (cf. for example [26]). We assume Alice prepares the Bell state |Φ+〉〈Φ+|12
and Bob the GHZ state |P+

00〉〈P+
00|345 and they exchange qubits 2 and 3 over a

depolarizing channel. This changes the initial states into ρ12 and ϑ345 as defined in

the previous paragraphs. If we further assume that Alice obtains |Φ+〉〈Φ+|13 from

her measurement the state of Bob’s qubits after the entanglement swapping is then

described as

ρ245 =
1 + 3p2

4
|P+

00〉〈P+
00|245

+
1− p2

4

(

|P−
00〉〈P−

00|245 + |P+
11〉〈P+

11|245 + |P−
11〉〈P−

11|245
)

(9.10)

and similarly for Alice’s other possible results. Hence, Bob obtains a correlated

result with probability

Pcorr =
1 + 3p2

4
(9.11)

and his measurement yields an arbitrary state not correlated to Alice’s measurement

with probability

Perr =
3(1− p2)

4
(9.12)

as it is the case for entanglement swapping with two Bell states (cf. eq. (9.4) and eq.

(9.5) above). Looking at the case where two qubits of the GHZ state are sent over a

depolarizing channel (e.g. to two different parties) and the entanglement swapping is

performed afterwards Bob’s probability to obtain correlated results becomes smaller

since the GHZ state is more affected by the noise. Taking ϑ′345 as Bob’s initial state

and again |Φ+〉〈Φ+|13 as Alice’s result the state of Bob’s qubits is described as

ρ245 =
1 + p+ p2 + 5p3

8
|P+

00〉〈P+
00|245 +

1 + p+ p2 − 3p3

8
|P−

00〉〈P−
00|245

+
(1− p)2(1 + p)

8
|P+

01〉〈P+
01|245 +

(1− p)2(1 + p)

8
|P−

01〉〈P−
01|245

+
1− p+ p2 − p3

8
|P+

10〉〈P+
10|245 +

1− p+ p2 − p3

8
|P−

10〉〈P−
10|245

+
(1− p)(1 + p)2

8
|P+

11〉〈P+
11|245 +

(1− p)(1 + p)2

8
|P−

11〉〈P−
11|245

(9.13)

In this case Bob obtains a correlated result only with probability
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Figure 9.2: (Correlation Probabilities) The solid line represents Pcorr for the scenario

where only one qubit of the GHZ state is tempered (cf. eq. (9.11)) by the quantum

channel. The dashed line represents Pcorr for the scenario where two qubits of the

GHZ state are transmitted over the quantum channel (cf. eq. (9.14)).

Pcorr =
1 + p+ p2 + 5p3

8
(9.14)

which is much lower compared to the scenario where only one qubit of the GHZ

state is sent over the noisy channel (cf. figure 9.2). Additionally, instead of just

4 there are 8 possible outcomes for Bob’s measurement. These two facts together

result in a much higher probability Perr for Alice and Bob to obtain an error during

their measurements (cf. figure 9.3), i.e

Perr =
7− p− p2 − 5p3

8
(9.15)

9.1.2 Adaption of the Attack Strategy

To guarantee perfect security in quantum cryptography all noise – introduced natu-

rally or by an adversary – is treated as it is caused by an eavesdropping attempt. This

leads especially to the rather paranoid but very useful assumption that Eve is able

to exchange the noisy channel between Alice and Bob by a perfect quantum channel,

i.e. a lossless channel where the polarization and phase are preserved. Hence, Eve

can use the error Alice and Bob expect to come from their noisy channel to disguise
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Figure 9.3: (Error Probabilities) The solid line represents Perr for the scenario where

only one qubit of the GHZ state is tempered by the quantum channel (cf. eq. (9.12)).

The dashed line represents Perr for the scenario where two qubits of the GHZ state

are transmitted over the quantum channel (cf. eq. (9.15)).

her eavesdropping attempt. Such an premise is useful when dealing with the security

of a protocol since no assumptions about Eve’s hardware or computational power

is made. As already pointed out in section 6.2.2, regarding physical implementa-

tions of QKD protocols it is also assumed that Eve is able to control characteristics

of Bob’s hardware like the detector efficiency, which is even a stronger assumption

[126]. Since we are just dealing with a theoretical model of the noisy quantum

channel we can neglect the errors coming from the physical implementations.

The first direct consequence for Alice and Bob when using noisy channels is that

they can not allow an error rate larger than the error usually introduced by an

adversary. For example, as we have seen in sections 6.2, 6.3, 7.1 and chapter 8 in

most of the protocols the error rate due to Eve’s intervention is 25%. If the natural

error caused by the depolarizing channel is equal or larger than 25% Alice and Bob

will not detected Eve’s presence. From eq. (9.5) we know that Alice and Bob expect

an error rate Perr = 3(1−p2)/4 from entanglement swapping in a noisy channel such

that at least p > 0.8165. This means, for a fidelity of the initial states F > 0.8624

the natural error introduced by the noisy channel is always smaller than 25%, i.e.

the error introduced by Eve.

As discussed in detail in the following paragraphs Eve has the opportunity to
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attack only a fraction of all qubits in transit between Alice and Bob. This reduces

the error rate coming from her intervention but leaves Eve also with a smaller amount

of information about the sifted key. To react on this threat Alice and Bob perform

error correction and privacy amplification. A basic idea on how these two building

blocks of quantum cryptography work and which methods are involved therein has

already been given in section 5.2.3. We just want to stress once more that using

these two primitives Eve’s information about the key can be reduced to an arbitrary

small amount. Furthermore, as pointed out in section 5.2.3 to successfully perform

error correction and privacy amplification based on one-way classical communication

for BB84-like protocols a maximal error rate of

PEC =
1− 1√

2

2
≃ 0.1465 (9.16)

is possible [126]. Since the error correction still leaks some information to an ad-

versary the upper bound on the error rate actually used in such protocols is ≃ 0.11

[135, 87]. Therefore, we define lower bounds on the fidelity of the initial states for

these two thresholds of the error rate.

Considering again entanglement swapping in a noisy channel, we get the corre-

sponding lower bounds on p and F for an error rate of 0.1465 using eq. (9.5) from

above (cf. also figure 9.3)

pEC ≃ 0.8971 FEC ≃ 0.9228. (9.17)

As we can see the fidelity of the initial states has to be over 92% to make one-way

error correction. The final bounds p0 and F0 are then

p0 ≃ 0.9238 F0 ≃ 0.9428. (9.18)

i.e. the fidelity has to be an additional 2% higher compared to eq. (9.17) to achieve

the maximal tolerable error rate of ≃ 11%.

In the previous section not only entanglement swapping between two Bell states

has been discussed but also between a Bell state and a GHZ state and it has been

shown that the error rate increases in the latter case. In this context, two main

scenarios are considered where one or two qubits of the GHZ state are tempered by

the noisy channel. If one qubit is subject to noise we already showed in eq. (9.12)

that the error rate is the same as for the entanglement swapping between two Bell

states. If two qubits are affected by the noisy channel the error probability is higher
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(cf. figure 9.3 and eq. (9.15) above) such that at least p > 0.8757 and F > 0.8912

to achieve an error rate less than 0.25. The more interesting lower bounds are then

pEC ≃ 0.9307 FEC ≃ 0.9394 (9.19)

and

p0 ≃ 0.9488 F0 ≃ 0.9552 (9.20)

which do not differ that much from eq. (9.17) and eq. (9.18). Nevertheless, the

thresholds from eq. (9.17) to (9.20) make high demands on the fidelity of the

quantum channel.

Eve herself is well aware of the fidelity F of the noisy channel and the thresholds

for security based on that fidelity. Her strategy is, as already mentioned, to replace

the noisy channel by a perfect one and to introduce just as much error from her

attack as expected by Alice and Bob. We discussed in the previous paragraphs that

Alice and Bob ideally just accept a noisy channel with a fidelity F > F0 to make sure

that Eve is not able to gain too much information from her eavesdropping attempt.

Therefore, Eve’s approach is to attack only a fraction q of the qubits coming from

Alice to stay beneath the threshold of the legitimate parties. In general, this means

if Eve attacks each qubit she introduces on average an error rate of 0.25. Depending

on the error Perr Alice and Bob are going to accept due to the noisy channel Eve

attacks only the fraction q = Perr/0.25 = 4Perr. Going back to the scenario where

Alice and Bob perform an entanglement swapping over the noisy channel Eve’s

fraction q is defined as

q = 4Perr = 4
3(1− p2)

4
= 3
(

1− p2
)

=
8(1 + F− 2F2)

3
(9.21)

using Perr from eq. (9.5) above. Consequently, for F = FEC – the minimal require-

ment for error correction – q = 0.5858, and for the more rigorous bound F = F0

Eve’s fraction q = 0.44. This means, if Eve attacks 58.58% of the qubits in transit

between Alice and Bob error correction is still possible. Further, if she eavesdrops

on 44% of the qubits her presence is not detected at all. Nevertheless, Eve can not

gain anything from this result, because, as pointed out above, for an error rate of

≃ 11% or lower Alice and Bob are able to reduce Eve’s information on the final

secret key to less than one bit using privacy amplification.

Looking at the other scenarios where the legitimate communication parties per-

form entanglement swapping between a Bell state and a GHZ state Eve’s fraction q
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is defined as

q = 4
7− p− p2 − 5p3

8
=

7− p− p2 − 5p3

2

=
8(153− 25F + 32F2 − 160F3)

343

(9.22)

if two qubits of the GHZ state are affected (as for example in the QSS protocol by

Cabello [26]). This alternative definition of q does not change the exact values of

q for FEC and F0, which are again 0.5858 and 0.44, respectively, since the lower

bounds FEC and F0 on the fidelity are higher (as described in eq. (9.19) and eq.

(9.20) above).

9.2 Multi-Qubit Protocols in a Noisy Environ-

ment

In the following paragraphs we want to review the security of the protocols discussed

in sections 8.1 - 8.4 in connection with noisy channels. Therefore, the threshold

values FEC and F0 for the fidelity of the initial states are computed for each protocol.

Further, we compare the information IAE Eve has on the sifted key with the results

coming from sections 8.1 - 8.4.

9.2.1 The QKD Protocol by Li et al.

Li et al. presented a protocol where they used Pauli operations to obtain two ad-

ditional raw key bits per round [91]. As we have shown in section 8.1 this protocol

in its original version is open to the simulation attack. In the revised version Al-

ice randomly applies a Hadamard operation on qubit 1 additionally to the Pauli

operation.

The noisy channel between Alice and Bob changes the initial states |Φ+〉12 and

|Φ+〉34 to the Werner states

ρ12 = p|Φ+〉〈Φ+|+
(

1− p
)

1

ρ34 = p|Φ+〉〈Φ+|+
(

1− p
)

1

(9.23)

After the application of Alice’s secret Pauli operation in qubit 1 – we assume that

Alice chooses the σx operation to be consistent with section 8.1 – the state ρ12

changes to

ρ12 = p|Ψ+〉〈Ψ+|+
(

1− p
)

1. (9.24)
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When Alice performs her Bell state measurement she obtains one of the four Bell

states with equal probability, e.g. |Ψ−〉13, but leaves the qubits 2 and 4 in Bob’s

laboratory in the state

1

4

(

1 + p2
)

|00〉〈00| − p2

2
|00〉〈11|+ 1

4

(

1− p2
)

|01〉〈01|

+
1

4

(

1− p2
)

|10〉〈10| − p2

2
|11〉〈00|+ 1

4

(

1 + p2
)

|11〉〈11|.
(9.25)

When looking at eq. (9.4) from the previous section we see that Bob obtains the

correlated result |Φ−〉24 only with probability (1 + 3p2)/4. Thus, Bob obtains an

uncorrelated result with probability 3(1−p2)/4 which he later on identifies as error.

Hence, Alice and Bob have to be aware of this natural error rate and take it into

account when checking for eavesdroppers.

The application of the Hadamard operation does not affect the error rate caused

by the noisy quantum channel. Looking at the initial state ρ12 the application of

the Hadamard operation on qubit 1 changes it into

Hρ12H
† = p|ω+〉〈ω+|+

(

1− p
)

1. (9.26)

Due to entanglement swapping the H operation is swapped onto qubit 2 after Alice’s

measurement and its effect is reversed by Bob’s application ofH onto qubit 2. Hence,

Bob’s qubits 2 and 4 are again in the state described in eq. (9.25) and Bob obtains

a correlated result with probability (1 + 3p2)/4.

In section 8.1 we already showed that the protocol in its original version is open

to the simulation attack and in the revised version an eavesdropper introduces an

error rate of 1/4. Taking the noisy channel into account Alice and Bob need a

fidelity of at least FEC = 0.9228 to guarantee privacy amplification and F0 = 0.9428

to achieve not more than 11% of natural error. As already discussed Eve attacks

58.58% and 44% of the qubits in transit, respectively, to stay undetected. Hence,

her information about the secret decreases from 1/2 if she attacks each qubit (cf.

eq. (8.7)) to IAE = 0.2929 and IAE = 0.22, respectively.

9.2.2 The QKD Protocol by Song

In the protocol presented by Song [138] Alice and Bob use a basis transformation T to

secure the protocol. As already pointed out in section 8.2 T is a basis transformation

of 2π/3 around the X-axis and maps the Bell states |Φ±〉, |Ψ±〉 onto the states |η±〉,
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|ν±〉 (cf. eq. (8.10)). The application of the transformation is chosen at random by

Alice and Bob which is the main argument for the security of the protocol.

At first, we will look at the scenario, where Alice and Bob do not apply T onto

their respective qubits. In this case the initial states |Φ−〉12 and |Ψ+〉34 change into

ρ12 = p|Φ−〉〈Φ−|+
(

1− p
)

1

ρ34 = p|Ψ+〉〈Ψ+|+
(

1− p
)

1

(9.27)

after going through the noisy channel. Assuming the result of her Bell state mea-

surement is |Φ−〉13 this leaves the qubits 2 and 4 at Bob’s side in the state

1

4

(

1− p2
)

|00〉〈00|+ 1

4

(

1 + p2
)

|01〉〈01|+ p2

2
|01〉〈10|

+
p2

2
|10〉〈01|+ 1

4

(

1 + p2
)

|10〉〈10|+ 1

4

(

1− p2
)

|11〉〈11|
(9.28)

Hence, when Bob performs his Bell state measurement on qubits 2 and 4 he obtains

the correlated result |Ψ+〉24 with probability Pcorr = (1 + 3p2)/4 coming from eq.

(9.4). Accordingly, the overall error probability is Perr = 3(1− p2)/4 (cf. eq. (9.5)).

The random application of the basis transformation T does not effect the error

probability Perr but nevertheless is crucial when dealing with an eavesdropper as we

have already discussed in section 8.2. The transformation T applied on qubit 2 or

4, respectively, changes the initial states into |η−〉12 and |ν+〉34 which leads to the

states
Tρ12T

−1 = p|η−〉〈η−|+
(

1− p
)

1

Tρ34T
−1 = p|ν+〉〈ν+|+

(

1− p
)

1

(9.29)

after qubits 2 and 4 are transmitted over the noisy channel. Since Alice and Bob

announce whether they used the transformation T or not before their respective Bell

state measurements they are able to reverse the effect of the transformation, i.e.

T−1
(

Tρ12T
−1
)

T = ρ12

T−1
(

Tρ34T
−1
)

T = ρ34.
(9.30)

Therefore, Alice and Bob use the same states as described above in their Bell state

measurements which leads to the same error probability Perr.

From the security analysis in section 8.2 we know that the protocol becomes

completely insecure if the error rate is larger than 3/16. In this case Eve is able to

obtain full information about the secret key using the simulation attack strategy.

Hence, we can calculate that in this case p ≃ 0.8660 which leads to a lower bound
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on fidelity F > 0.8995. Nevertheless, 3/16 > 0.1465 such that FEC and F0 from

eq. (9.17) and eq. (9.18) are the important lower bounds. Due to the fact that Eve

introduces only an error of 3/16 in a perfect setup the fraction q of the qubits she

can attack is defined as

q =
32(1 + F− 2F2)

9
. (9.31)

Thus, Eve is able to attack a fraction of q ≃ 0.7810 while introducing an error of

≃ 0.1465 and q ≃ 0.58.67 while introducing an error of ≃ 0.11, respectively, which

is much higher than compared to the protocol by Li et al. described in the previous

section. Accordingly, Eve’s information about the secret decreases from 0.594 (cf.

8.12) to IAE ≃ 0.4639 and IAE ≃ 0.3485 for her fractions q = 0.7810 and q = 0.5867,

respectively. Hence, Eve has a big advantage compared, for example, to the BB84

protocol due to the unbiased basis transformation T .

Regarding the revised version of the protocol we suggested in section 8.2 the

Hadamard operation H is used instead of the transformation T to reduce Eve’s

chance to stay undetected. As pointed out, Eve introduces the usual error rate of

1/4 which gives the same lower bounds FEC and F0 as in the original protocol. Due

to the higher error rate Eve’s fraction q and her information about the secret is

much lower compared to the original protocol, i.e. IAE = 0.2929 and IAE = 0.22 for

q ≃ 0.5858 and q ≃ 0.44, respectively.

9.2.3 The Cabello QKD Protocol

In the revised version of Cabello’s QKD protocol [28] Alice also uses a random

application of the Hadamard operation to counter Eve’s eavesdropping attempt. As

described in section 8.3 they use three entangled qubit pairs instead of two as in the

QKD protocols by Li et al. and Song, respectively.

When Alice and Bob exchange their qubits 2 and 6 the initial states |Φ−〉12 and

|Φ+〉46 change into

ρ12 = p|Φ−〉〈Φ−|+
(

1− p
)

1

ρ46 = p|Φ+〉〈Ψ+|+
(

1− p
)

1

(9.32)

due to the noisy channel. In case Alice does not apply the H operation onto qubit

3 her Bell state measurement on qubits 2 and 3 of ρ12 and ρ35 = |Φ+〉〈Φ+| leaves
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the remaining 2 qubits in the state

1

4

(

1− p
)

|00〉〈00|+ 1

4

(

1 + p
)

|01〉〈01|+ p

2
|01〉〈10|

+
p

2
|10〉〈01|+ 1

4

(

1 + p
)

|10〉〈10|+ 1

4

(

1− p
)

|11〉〈11|
(9.33)

if Alice’s result is |Ψ−〉23. Next, she measures qubits 5 and 6 to obtain her public

result. Assuming she obtains |Ψ+〉 qubits 2 and 4 at Bob’s laboratory are now in

the state

1

4

(

1 + p2
)

|00〉〈00|+ p2

2
|00〉〈11|+ 1

4

(

1− p2
)

|01〉〈01|

+
1

4

(

1− p2
)

|10〉〈10|+ p2

2
|11〉〈00|+ 1

4

(

1 + p2
)

|11〉〈11|
(9.34)

which is very similar to the state of Bob’s qubits in Song’s QKD protocol discussed

in eq. (9.28) above. Hence, Bob obtains the expected result |Φ+〉24 with the same

probability given in eq. (9.4), i.e. Pcorr = (1 + 3p2)/4 which gives an overall error

probability of Perr = 3(1− p2)/4.

As already seen in section 9.2.2 the application of the Hadamard operation does

not effect the error rate introduced by the noisy environment but it effects the

correlations between Alice and Bob. Instead of using the correlations given in table

7.1 the two parties have to use table 7.2. If Alice uses the Hadamard operation

previously to her Bell state measurement the state ρ35 changes to |ω+〉〈ω+|. In the

course of Alice’s Bell state measurements the H operation is swapped onto qubit

1 and later on onto qubit 2 as discussed in section 7.1.1. Bob’s application of the

H operation changes |ω+〉 and |χ−〉 back to |Φ+〉 and |Ψ−〉, respectively, whereas
|ω−〉 is brought to |Ψ+〉 and |χ+〉 to |Φ−〉. Nevertheless, the error rate Perr and the

probability to obtain correlated results Pcorr given above do not change.

It has been discussed in section 8.3 that the protocol in its original version [27]

is open to the simulation attack and in the revised version [28] Eve introduces an

error of 1/4 for a perfect environment. Considering noisy channels we again have the

lower bounds FEC and F0 from eq. (9.17) and eq. (9.18) on the fidelity of the initial

states. Hence, Eve attacks only 58.58% and 44%, respectively, of the qubits to stay

below these bounds which reduces her information about the secret to IAE = 0.2929

and IAE = 0.22 (cf. eq. (8.24)).
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9.2.4 The Cabello QSS Protocol

In difference to the QKD protocols discussed in the previous paragraphs the QSS

scheme presented by Cabello [28] also makes use of an GHZ state. The depolariz-

ing channel has a greater effect on the GHZ state such that a higher error rate is

introduced into the protocol as it is shown in the following paragraphs.

In the beginning Bob and Charlie send qubits C and D of their respective Bell

states to Alice which brings the initial states |Φ+〉4C and |Φ+〉5D into the mixed

states

ρ4C = p|Φ−〉〈Φ−|+
(

1− p
)

1

ρ5D = p|Φ+〉〈Ψ+|+
(

1− p
)

1

(9.35)

as already seen in the previous protocol discussions. At the same time Alice sends

qubits A and B of her GHZ state to Bob and Charlie, respectively. The effect of the

noisy channel on the GHZ state can not be described just by adding some white noise

as it is done for Bob’s and Charlie’s Bell state in the equation above. It has to be

taken into account that the two qubits are effected individually by the depolarizing

channel as pointed out in section 9.1.1. In detail, when Alice sends qubit A to Bob

and qubit B to Charlie, the noisy channel changes the GHZ state into ρ3AB from

eq. (9.7) above. Hence, this changes the probability of Alice, Bob and Charlie to

obtain correlated results. Following the protocol Alice measures qubits 2 and 3 and

assuming she obtains |Φ+〉23 the state of qubits 1, A and B is the same as in eq.

(9.7). Further, Bob’s and Charlie’s measurements on the qubit pairs 4, A and 5, B,

respectively, alter the remaining qubits 1, C and D such that

ρ1CD =
1− p4

8
|000〉〈000|+ 1 + 2p3 + p4

8
|001〉〈001| − p5

2
|001〉〈110|

+
1− 2p3 + p4

8
|010〉〈010|+ 1− p4

8
|011〉〈011|+ 1− p4

8
|100〉〈100|

+
1− 2p3 + p4

8
|101〉〈101| − p2

2
|110〉〈001|+ 1 + 2p3 + p4

8
|111〉〈000|

+
1− p4

8
|111〉〈111|

(9.36)

assuming Bob obtains |Φ−〉4A and Charlie obtains |Ψ+〉5B from their respective mea-

surements (as given in the examples in section 7.1.2 and 8.4). When Alice performs a

GHZ state measurement on qubits 1, C and D she obtains expected result |P−
01〉1CD,

i.e. the result correlating with Bob’s and Charlie’s result as well as the result of her
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secret measurement, with probability

Pcorr =
1

8

(

1 + 2p3 + p4 + 4p5
)

. (9.37)

With also a rather large probability of (1 + 2p3 + p4 − 4p5)/8 Alice’s resulting state

is |P+
01〉1CD. Further, she obtains |P±

00〉 and |P±
11〉 each with probability (1 − p4)/8

which is not that significant. The most unlikely result for this scenario is |P±
10〉

with a probability of (1− 2p3 + p4)/8. The overall probability for Eve to obtain an

uncorrelated result is then

Perr =
1

8

(

7− 2p3 − p4 − 4p5
)

(9.38)

which is much higher compared to the protocols discussed in the previous para-

graphs.

In section 8.4 we already showed that the original version as well as the revised

version of the protocol is completely open to the simulation attack if it is performed

by a dishonest party. Therefore, we are going to look at the information of an

outside adversary. The fraction q of all qubits in transit Eve can attack and still

stay undetected is

q = 2

(

1− 7(1− 8F )− 98(1− 8F )3 − 4(1− 8F )5

76

)

(9.39)

because the error introduced by her is 7/16. Based on the error probability coming

from the noisy channel the lower bounds on the fidelity are FEC ≃ 0.9633 and

F0 ≃ 0.9729 which is much higher compared to the previously discussed protocols.

Nevertheless, due to the high error rate introduced by her intervention Eve can

only intercept a small amount of all qubits in transit, i.e. q = 0.3347 for FEC

and q = 0.2514 for F0. This leads to Eve’s overall information about the secret of

IAE = 0.2510 and IAE = 0.1885 which is much smaller compared to the protocols

presented above.

9.3 Influence of Physical Limitations

As pointed out above, a noisy quantum channel influences the fidelity of the initial

states. In our model, a Bell state, e.g. |Φ+〉, becomes the Werner state ρ from eq.

(9.1). Further, we already described in section 4.4 that in a realistic environment

the fidelity decreases exponentially with the length of the channel (cf. eq. (4.62) and
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Bell-States lc = 10 km lc = 30 km lc = 50 km

FEC = 0.9228 1.64 km 4.92 km 8.20 km

F0 = 0.9428 1.19 km 3.59 km 5.98 km

GHZ-States lc = 10 km lc = 30 km lc = 50 km

FEC = 0.9394 1.27 km 3.81 km 6.35 km

F0 = 0.9552 0.93 km 2.78 km 4.64 km

Table 9.1: Comparison of the distances where error correction and secure communi-

cation is still possible using different values for the coherence length lc.

figure 4.5). This has a huge impact on the security of the QKD and QSS protocols

based on entanglement swapping discussed in sections 8.1 - 8.4 above. As we showed

in section 9.1.2 Alice and Bob need a fidelity of at least FEC = 0.9228 to perform

error correction and a fidelity F0 = 0.9428 to reduce the error rate to 0.11 when

dealing with two Bell states.

In figure 4.5 we used three different values for the coherence length lc: 10 km,

30 km and 50 km. As we can directly see from figure 4.5 a higher coherence length

results in a smaller decrease of the fidelity. Combining our results from the previous

section with eq. (4.62) we can directly see that in a quantum channel with coher-

ence length lc = 10 km FEC limits the length of the quantum channel to 1.64 km.

Moreover, to guarantee a fidelity F0 the length of the channel has to be at most 1.19

km (cf. table 9.1). Taking a higher coherence length of lc = 30 km the distance

over which error correction is still possible increases to 4.92 km and the distance

for secure communication increases to 3.59 km. In the third scenario where we take

lc = 50 km we still get the fidelity FEC at a distance of 8.20 km and the fidelity F0

at a distance of 5.98 km.

The restrictions on the length of a channel are even stronger when we take GHZ

states into account. Here, FEC = 0.9394 and F0 = 0.9552 which leads to correspond-

ing lengths of 1.27 km and 0.93 km for lc = 10 km. For a higher lc = 30 km we can

enlarge the distances again to 3.81 km and 2.78 km for FEC and F0, respectively.

Going to a coherence length of 50 km the fidelity of the states in transit is still higher

than FEC and F0 after a maximum distance of 6.35 km and 4.64 km, respectively.
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These distances are still very low and of no practical value for quantum com-

munication. Hence, Alice and Bob have to increase the fidelity of their entangled

states before they can perform entanglement swapping, i.e. start the actual protocol.

This is achieved using entanglement purification and nested purification protocols,

as described in sections 4.3 and 4.4. How the entanglement purification affects the

eavesdropping attempts of an adversary is described in further detail in section 9.5

below.

9.4 Cost of Entanglement Purification

In the previous sections we showed that the distance over which a secure commu-

nication is possible, is limited due to the exponential decrease of the fidelity in the

length of the quantum channel by about 1.19 km, 3.59 km or 5.98 km depending on

the coherence length (cf. also table 9.1). Such distances are of course of no practical

value for real communication. To enlarge the distance entanglement purification

protocols and a quantum repeater setup are used, as presented in sections 4.3 and

4.4. These protocols demand a high number of initially shared entangled states

between several hops to establish an entangled state over a large distance. In the

following paragraphs we will look at the cost of 2 scenarios for distances of 24 km

and 128 km using the recurrence method (cf. section 4.3.1) and nested purification

(cf. section 4.4). Therefore, the overall number S(l, N,F) of states required to es-

tablish one entangled state between Alice and Bob is calculated based on eq. (4.63)

for a constant F = F0 = 0.9428. The results are lower bounds since we assume

for reasons of simplicity that every purification round is perfect, i.e. no additional

entangled states are discarded.

9.4.1 Scenario 1: Overcoming 24 km

In the first scenario, Alice and Bob want to overcome a distance of 24 km, which is a

distance often found in a so-called ”metro network” [118]. For reasons of simplicity,

the number of segments are powers of 2 such that we use 8 segments of 3 km,

4 segments of 6 km and, if possible, 2 segments of 12 km. Over a distance of 3

km an entangled state with a fidelity Fseg ≃ 0.8656 can be established between the

respective hops using a channel with coherence length lc = 10 km (cf. eq. (4.62) and

figure 4.5). Following the nested purification protocol, at the first level the fidelity is
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reduced due to the entanglement swapping to Fswap ≃ 0.7552. After three iterations

of the recurrence method consuming 8 entangled states the fidelity is approximately

brought to the initial amount Fseg. This is recursively done for level 2 and 3 as well

until Alice and Bob share one state of at least initial fidelity Fseg over the whole

distance of 24 km. To bring Fseg to F0 three additional iterations of entanglement

purification are needed such that the overall number of required states is at least

S10

(

3, 8
)

= 23 × 83 × 23 = 85 = 32768. (9.40)

Using only 4 segments and two levels of nesting the fidelity Fseg decreases to ≃ 0.7576

and is further reduced by entanglement swapping to Fswap ≃ 0.5936. Therefore, 6

iterations of the recurrence method are necessary to bring the fidelity of the state

to Fseg which consumes 64 entangled states. Due to the increased segment length

Alice and Bob only need 2 nesting levels to establish a state over the whole distance

of 24 km. Nevertheless, the number of required states is much higher due to the

lower fidelity of each segment, i.e.

S10

(

6, 4
)

= 22 × 46 × 26 = 410 = 1.04858× 106. (9.41)

If we consider the same scenario using a quantum channel with a coherence length

lc = 30 km the number of required states is reduced drastically. After 3 km the

fidelity Fseq ≃ 0.9518 (cf. figure 4.5) and is reduced by entanglement swapping to

Fswap ≃ 0.9067. Hence, using 8 segments of length 3 km we still need 3 nesting levels

but then the fidelity of the state shared by Alice and Bob is already good enough to

perform secure communication since Fseg > F0. Therefore, the number of required

states is

S30

(

3, 8
)

= 23 × 83 × 20 = 84 = 4096. (9.42)

When Alice and Bob reduce the number of segments by half such that each segment

is 6 km long the fidelity Fseg ≃ 0.9071. After entanglement swapping this fidelity

decreases to Fswap = 0.8257 and three iterations of the recurrence method are needed

to bring it back to Fseg. In the end, Alice and Bob perform two additional iterations

to bring Fseg to F0. Nevertheless, the number of required states is reduced compared

to S30(3, 8), i.e.

S30

(

6, 4
)

= 22 × 43 × 22 = 45 = 1024. (9.43)

With a coherence length of 10 km the longest possible segment was 6 km but with a

coherence length of 30 km the whole distance can be divided into just two segments
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of 12 km. The fidelity Fseg ≃ 0.8269 is still rather good and is decreased due to

entanglement swapping to Fswap ≃ 0.6938. In contrary to the scenario with lc = 10

km entanglement purification is possible at this distance such that Alice and Bob

only need one level of nesting but 4 iterations of entanglement purification. This

additionally reduces the number of required states to the amount

S30

(

12, 2
)

= 21 × 24 × 24 = 29 = 512 (9.44)

which is the best value so far.

Enlarging the coherence length to 50 km the number of required states can be

further decreased. As already seen in the previous paragraph the fidelity after 3 km

is very high, i.e. Fseg ≃ 0.9707 (cf. figure 4.5), and entanglement swapping reduces

the fidelity to Fswap ≃ 0.9424 which is very close to F0 = 0.9428. Alice and Bob

only have to use 2 iterations during entanglement purification such that the overall

number of required states is

S50

(

3, 8
)

= 23 × 82 × 20 = 83 = 512 (9.45)

Considering segments of 6 km the fidelity for each segment Fseg ≃ 0.9426 is very close

to F0 such that in the end Alice and Bob just have to perform one additional iteration

of entanglement purification. To bring Fswap ≃ 0.8896 to Fseg three iterations are

required for each nesting level. This leads again to

S50

(

6, 4
)

= 22 × 43 × 21 = 29 = 512 (9.46)

such that Alice and Bob do not gain any advantage from enlarging the distance to

6 km. When going to 12 km for each segment Alice and Bob remain with only one

level of nesting and the fidelities Fseg ≃ 0.8901 and Fswap ≃ 0.7963. Therefore, they

need three iterations of entanglement purification for each level and three iterations

in the end such that

S50

(

12, 2
)

= 21 × 23 × 23 = 27 = 128. (9.47)

With a coherence length of 50 km the fidelity after 24 km is Fseq ≃ 0.7980 and

purification is immediately possible. Hence, Alice and Bob only have to perform 5

iterations of entanglement purification which requires 32 states, i.e.

S50

(

24, 1
)

= 20 × 10 × 25 = 25 = 32. (9.48)
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l = 3 km l = 6 km l = 12 km l = 24 km

lc = 10 km 32768 1048576

lc = 30 km 4096 1024 512

lc = 50 km 512 512 128 32

Table 9.2: Comparison of the amount of entangled states required to overcome a

distance of 24 km using different numbers of segments and different values for the

coherence length lc.

9.4.2 Scenario 2: Overcoming 128 km

In the second scenario, Alice and Bob want to communicate over a distance of 128 km

which is rather large also for single-qubit QKD protocols. Again, Alice and Bob use

powers of 2 for the number of segments: 64 segments of length 2 km, 32 segments of

length 4 km each, 16 segments of length 8 km and, if possible 8 segments of length 16

km as well as 4 segments of length 32 km. Using a quantum channel with coherence

length lc = 10 km the first case is the most favorable since the fidelity after 2 km is

Fseg ≃ 0.9071 and is reduced by entanglement swapping to Fswap ≃ 0.8257 such that

three iterations of the entanglement purification are necessary for each nesting level.

To bring Fseg to F0 two additional steps are performed in the end. This results in

S10

(

2, 64
)

= 26 × 643 × 22 = 6.71089× 107 (9.49)

which is huge compared to the results in the previous section since the number scales

exponentially (cf. eq. (4.63)). In this case the large number results from the high

nesting level (64 segments = 6 nesting levels). Nevertheless, reducing the number

of nesting levels does not improve the costs in this case because the fidelity Fseg

decreases at larger distances. In case Alice and Bob use segments of 4 km they

obtain Fseg ≃ 0.8269 and Fswap ≃ 0.6983 such that four iterations of purification are

necessary. This leads to an amount of required states

S10

(

4, 32
)

= 25 × 324 × 24 = 5.36871× 108. (9.50)

This number becomes even worse when using 16 segments of length 8 km. At this

length the initial fidelity of each state is Fseg ≃ 0.6975 and after entanglement

swapping Fswap ≃ 0.5170. Fswap is already rather close to 0.5, i.e. the limit below
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which purification with the recurrence method is not possible any more (cf. section

4.3.1) such that a large number of 14 iterations are necessary to bring Fswap to Fseg

again. Hence, we obtain

S10

(

8, 16
)

= 24 × 1614 × 28 = 2.95148× 1020. (9.51)

With a higher coherence length the amount of required states can be decreased

drastically since the fidelity of the entangled states of each segment is much higher.

Considering lc = 30 km we obtain the fidelities Fseg ≃ 0.9675 and Fswap ≃ 0.9364 for

the first case (64 segments of length 2 km). Hence, only two iterations of purification

are necessary and Alice and Bob need no additional purification steps in the end

since Fseq > F0. Therefore, the overall number of entangled states necessary is

S30

(

2, 64
)

= 26 × 642 × 20 = 2.62144× 105 (9.52)

which is already two orders of magnitude smaller compared to S10(2, 64). When we

also compute the other values we see that for a length of 4 km for each segment the

number of required states increases to

S30

(

4, 32
)

= 25 × 323 × 21 = 2.09715× 106. (9.53)

because three iterations of the recurrence method are necessary to bring Fswap ≃
0.8785 to Fseg ≃ 0.9366 and one additional purification step is needed in the end.

Enlarging the length of a segment to 8 km reduces the fidelities Fswap ≃ 0.7776 and

Fseg ≃ 0.8791 but positively affects the number of required states, i.e.

S30

(

8, 16
)

= 24 × 163 × 23 = 5.24288× 105. (9.54)

S30(8, 16) < S30(4, 32) due to the fact that the number of iterations stays the same

but the number of segments is reduced. With a coherence length of 30 km Alice and

Bob are able to use 8 segments of length 16 km but this gives the highest number

of overall states

S30

(

16, 8
)

= 23 × 85 × 26 = 1.67772× 107 (9.55)

because Fseg ≃ 0.7796 is rather low.

In the last scenario we have a coherence length lc = 50 km such that the fidelity

of the entangled states is very close to 1 for small distances. Considering the first

case where each segment is 2 km long the initial fidelity of the entangled states
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Fseg ≃ 0.9803 is reduced to Fswap ≃ 0.9611. This gives for the amount of required

states

S50

(

2, 64
)

= 26 × 642 × 20 = 2.62144× 105. (9.56)

Here we have the special case that Fswap is already larger than F0 such that Alice

and Bob are able to save the cost for the last nesting level as well such that S50(2, 64)

can be further reduced to 65536. Choosing a segment length of 4 km is the most

efficient way because Alice and Bob need the smallest amount of entangled states,

i.e.

S50

(

4, 32
)

= 25 × 322 × 20 = 3.2768× 104. (9.57)

Here, fewer segments are needed and the fidelity Fseg ≃ 0.9612 is still larger than

F0. Compared to S30(4, 32) the number of required states for lc = 50 km is about

two orders of magnitude lower. Going to segments of length 8 km Alice and Bob

have to perform additional purification steps at the end to reach at the fidelity F0.

Further, three iterations at each nesting level are required such that

S50

(

8, 16
)

= 24 × 163 × 21 = 1.31072× 105 (9.58)

which is 1/4 of S30(8, 16). When Alice and Bob further increase the length of the

segments, also the number of required states grows. For segments of 16 km they

need

S50

(

16, 8
)

= 23 × 84 × 24 = 5.24288× 105 (9.59)

entangled states, since the fidelities Fseg ≃ 0.8576 and Fswap ≃ 0.7422 are signifi-

cantly lower compared to the scenario with segment length of 8 km discussed above.

The coherence length of 50 km makes it possible for Alice and Bob to use also

segments of 32 km resulting in fewer hops and a smaller number of nesting levels.

In this case the fidelity of each state after 32 km is Fseg ≃ 0.7449 and is further

decreased due to entanglement swapping to Fswap ≃ 0.5766. Hence, Alice and Bob

need 7 iterations for entanglement purification for each nesting level and 7 additional

iterations at the end to achieve the fidelity F0 such that

S50

(

32, 4
)

= 22 × 47 × 27 = 8.38861× 106. (9.60)

9.4.3 Analysis

From the analysis of these two scenarios we see that for a small coherence length like

10 km the segment length is much more important than the number of segments.
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l = 2 km l = 4 km l = 8 km l = 16 km l = 32 km

lc = 10 km 6.71× 107 5.37× 108 2.95× 1020

lc = 30 km 2.62× 105 2.10× 106 5.24× 105 1.68× 107

lc = 50 km 6.55× 104 3.28× 104 1.31× 105 5.24× 105 8.39× 106

Table 9.3: Comparison of the amount of entangled states required to overcome a

distance of 128 km using different numbers of segments and different values for the

coherence length lc.

Tables 9.2 and 9.3 show that in both scenarios the number of required states increases

for longer segments. When looking at table 9.2 we also see that this fact is reversed

in the scenario of 24 km when using a higher coherence length. For both lc = 30

km and lc = 50 km the number of required states decreases the longer each segment

is. A higher coherence length also leaves a margin for the length of a segment,

as described in table 9.3. For lc = 30 km the minimal number of required states

is S30(2, 64) = 2.62144 × 105, but for segment length of l = 8 km S30(8, 16) =

2S30(2, 64) whereas the number of hops between Alice and Bob is reduced by 75%.

We have a similar scenario for lc = 50 km where a segment length of l = 4 km is

more efficient than l = 2. Hence, a lot of optimization can be done here.

Comparing our results to the estimation of resources done by Dür et al. [45] we

see that the amount of resources differs from our results. Nevertheless, we see that

the number of copies as given by Dür et al. is given as

M = 2It(Fswap,Fseg) (9.61)

where It(Fin,Fout) describes the number of iterations of the purification protocol (in

this case the recurrence method) to bring Fin to Fout (cf. also eq. (4.63)). Further,

L = 2 such that

R = N1+log2M = N It(Fswap,Fseg)+1 (9.62)

as we already described in the definition of S(l, N,F) in eq. (4.63). Hence, we used

the same approach for calculating the resources of the recurrence method. While

we focused on the overall number of entangled states required for purification, Dür

et al. calculated the resources per segment, i.e.

Rseg =M log2N = N It(Fswap,Fseg) (9.63)
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Furthermore, Dür et al. used noisy operations in addition to the noisy channel

which further alters the overall number of required states. The main difference

to the model by Dür et al. is that they used segments of length of 10 km and a

coherence length lc = 10 km. Due to our model of an photonic channel described in

section 4.4 the fidelity decreases much faster such that a fidelity of 0.96 over 10 km

corresponds to a coherence length lc ≃ 120 km. Therefore, it is not possible in our

scenarios to overcome such distances as presented in [45] with the same amount of

resources. Comparing only the number of segments N we obtain similar results, as

just pointed out above.

We want to stress again that the number of required states S(l, N) calculated for

these scenarios are lower bounds with regards to the recurrence method because the

errors occurring in the purification protocol are not taken into account. Nevertheless,

it gives a good approximation for the order of magnitude of S(l, N). To use the

recurrence method as purification protocol is not the optimal choice as discussed by

Dür et al. [45] since the recurrence method is the most inefficient protocol compared

to the quantum privacy amplification and the procedure introduced by Dür et al.

(cf. section 4.3.2 for details). These two protocols make additional assumptions on

the shape of the entangled states which makes the use of the recurrence method

much more descriptive. However, we want to point out that the scheme presented

by Dür et al. is the most efficient regarding the number of initially shared entangled

states [45].

Overall, we see that the number of segments is essential to efficiently perform en-

tanglement purification. There can always be found an optimal number of segments

which usually becomes rather high for large distances. Besides the large amount

of entangled states that have to be created this is the second major drawback to

entanglement purification. Putting aside the physical limitations in an implementa-

tion of the scenarios presented here the financial and logistical overhead of running

maybe a large number of control centers and establishing quantum links between

them has to be considered. Nevertheless, these scenarios presented above show that

it is possible to create a number of entangled states at a reasonable fidelity of at

least F0 over a practical distance to perform secure communication.
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9.5 Simulating Entanglement Purification

As we have seen in section 9.2, the fidelity of the entanglement between the legitimate

communication parties after the qubits passed a noisy channel is important for the

security of the protocol. Additionally, the fidelity decreases exponentially in the

length of the quantum channel thus resulting in maximal distances of approximately

1.19 km up to 5.98 km for secure communication. We already discussed in chapter

4 entanglement purification protocols which allow Alice and Bob to increase the

fidelity of the Bell states they share by sacrificing a certain amount of those states.

In the previous section we showed that a large number of initial states have to be

shared to enlarge the distance of secure communication.

When Alice and Bob use entanglement purification protocols it is not that easy

any more for Eve to entangle herself with them due to the additional operations

coming from the purification procedure. Therefore, her goal is to overcome the

effects of entanglement purification to remain undetected. To achieve that Eve uses

the simulation approach presented in section 7.2 and extends the attack strategy to

simulate also the purification as described in the following paragraphs.

We are going to focus on the recurrence method [12] and quantum privacy am-

plification [42] since these two are also the most important purification methods in

the context of quantum repeaters [45].

9.5.1 Simulating a Single Purification Step

An entanglement purification protocol recurrently cited in literature is the recurrence

method presented by Deutsch et al. [12], which is described in detail in section 4.3.1

and has also been used, for example, in the quantum repeater scheme by Dür et al.

[45]. The idea is that Alice and Bob use bilateral CNOT and rotation operations

to combine pairs of entangled states. Further, they sacrifice approximately half of

their states during measurements to bring the remaining states into an entangled

state of higher fidelity (cf. section 4.3.1 for further details).

As pointed out above, although Alice and Bob perform the entanglement pu-

rification an adversary Eve has the possibility to connect a system to the shared

qubit pairs and keep it entangled during the purification procedure by simulating

all operations of the purification. In detail, Eve starts with the basic state from the
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simulation attack strategy

|δ〉 = 1

2

(

|Φ+〉|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉|Φ−〉

+|Ψ+〉|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉|Ψ−〉
)

E1−E6

,

(9.64)

which provides – as we have seen in section 7.2 – an effective tool for an adversary

to eavesdrop on the secret key established between Alice and Bob. Certainly, for

other protocols a different initial state might be useful. Additionally to |δ〉E1−E6
,

Eve generates two Bell states |Φ+〉E7,E8
and |Φ+〉E9,E10

which will later on simulate

the target qubits of the BCNOT operations in the QPA protocol. Thus, the qubits

are in the state (c.f. also part (1) in figure 9.4)

|ϑ〉E1−E10
= |δ〉E2,E3,E8,E9,E5,E6

⊗ |Φ+〉E1,E7
⊗ |Φ+〉E4,E10

(9.65)

As pointed out above, Eve’s main intention is to simulate the actions Alice and

Bob perform during the purification protocol on the state |ϑ〉 in reverse order. There-

fore, Eve first simulates the application of the twirl operation U (cf. eq. (4.35) above)

and it’s inverse performed by Alice and Bob at the end of the purification procedure.

Eve knows exactly on which qubits the twirl operation is applied, i.e. only on the

resulting qubits of a successful purification. Hence, she is able to perform the inverse

rotation also on the respective qubits E2, E3, E8 and E9 of |ϑ〉 (c.f. (1) in figure

9.4). This leads to the state

|ϕ′〉 =
(

U−1
)(E2)(U−1

)(E3)U (E8)U (E9)|ϑ〉E1−E10
(9.66)

Next, Eve performs BCNOT operations on her state |ϕ′〉 to simulate the appli-

cation of the BCNOT operation applied by Alice and Bob. Thus, Eve applies 2

BCNOT operations on qubits E2, E8, E1, E7 as wells as qubits E3, E9, E4, E10 from

the state |ϑ〉 (c.f. (2) in figure 9.4). Recall from the definition of the BCNOT oper-

ation from eq. (4.38) that the first two qubits are the source qubits and the second

two are the target qubits. Hence, the qubits from the state |δ〉 are the control qubits
and the two Bell states are the targets of the CNOT operations. This changes the

state |ϕ′〉 to the state

|ϕ〉 = BCNOTE3,E9,E4,E10
BCNOTE2,E8,E1,E7

|ϕ′〉 (9.67)

When performing their CNOT operations later on Alice and Bob reverse Eve’s

actions and they end up with the state |ϕ′〉 again. Further, based on the special
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(1)

Eve

(2)

Eve

(3)

Eve

U

UU−1

U−1

Figure 9.4: (Eve’s initial state) Eve’s preparation of the initial state for the simula-

tion of entanglement purification. The dashed line indicates a CNOT operation.

design of the state |ϕ′〉 (and consequently |ϑ〉) they will always obtain the same

results from the measurement of their target qubits E1 and E7 as well as E4 and

E10.

Next, Eve distributes the state |ϕ〉 between Alice and Bob (c.f. picture (1) of

figure 9.5). As it is pointed out in [42] it can be assumed that Eve is able to prepare

all the states for Alice and Bob, which in that case will be qubits of the state |ϕ〉.
On the other hand Eve is also able to distribute |ϕ〉 by interacting with the qubits in

transit between Alice and Bob using entanglement swapping. Following the protocol

Alice and Bob perform the bilateral CNOT operations on their qubits changing the

state |ϕ〉 back to |ϕ′〉 (c.f. picture (1) in figure 9.5). Then, both parties perform local

measurements in the computational basis on qubits E1, E7 and E4, E10, respectively,

(c.f. picture (2) in figure 9.5) which always leaves them with correlated results since

the qubits are part of the Bell state |Φ+〉. In the end Alice and Bob apply the twirl

operation U and U−1 on the qubits E2, E3 and E8, E9 of |ϕ′〉, respectively (c.f.

picture (3) in figure 9.5). This cancels out the rotations from eq. (9.66) and brings

|ϕ′〉 back to |δ〉 (c.f. picture (4) in figure 9.5). Hence, Eve’s state |ϕ〉 perfectly

simulates the entanglement purification procedure such that Alice and Bob always

obtain positive results from their measurements on qubits E1 and E7 as well as E4

and E10, respectively. Further, they share Eve’s initial state |δ〉 instead of two Bell

states after they executed the entanglement purification.

When looking at the quantum privacy amplification [42] described in further

detail in section 4.3.2 we see that it is very similar to the recurrence method. The

main difference is that Alice and Bob use the Bx instead of the U operation. Hence,

Eve follows the same strategy as defined in the previous paragraphs to simulate
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Alice Bob Alice Bob

(1) (2)

(4)

Alice Bob

(3)

Alice Bob

Eve

Eve
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|0〉

|1〉

|0〉

|1〉

U

U

U−1

U−1
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b b

|0〉

|1〉

|0〉

|1〉

Figure 9.5: (Simulating entanglement purification) Eve’s simulation of the entangle-

ment purification using her initial state.

the quantum privacy amplification. Regarding the preparation she only exchanges

the application of U with the application of Bx (cf. picture (1) in figure 9.4). The

actions performed by Alice and Bob cancel out Eve’s operations performed during

the operation such that Alice and Bob end up with the state |δ〉.

9.5.2 Simulating the Entire Purification Protocol

Taking the state |ϕ〉 Eve can simulate the purification protocol from [12] only for

the case where Alice and Bob obtain the same results from their measurement of

the target qubits. In fact, these are the important cases, since Alice and Bob will

use only these qubits for further computations (c.f. section 4.3.1). Nevertheless,

sometimes they also obtain different results from their measurements of the target

qubits due to the BCNOT operations. This makes it necessary for Eve to simulate

also the case where Alice and Bob obtain different results from their measurement

to stay undetected. This is rather easy to accomplish with Eve preparing the state

|ψ′〉 = |Φ+〉E1,E2
|Ψ−〉E3,E4

. (9.68)
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Contrary to the previous paragraphs she just has to apply the BCNOT operation

on |ψ′〉, resulting in the state

|ψ〉 = BCNOTE1,E2,E3,E4
|ψ′〉E1−E4

(9.69)

using the state |Ψ−〉3,4 as the target for the BCNOT operation. Afterwards, Eve

distributes the state |ψ〉 between Alice and Bob. Hence, when Alice and Bob reverse

Eve’s action by applying their own BCNOT operation on qubits E1 - E4 they always

obtain different results from their measurements on the target qubits E3 and E4 and

therefore discard qubits E1 and E2. Thus, an error introduced by the channel is

simulated using the state |ψ〉1−4. We can immediately see that the state of qubits

E1 and E2 is not relevant and Eve does not need to keep any qubits entangled with

|ψ〉 for any further steps since these qubits are discarded. The state of qubits E1

and E2 is assumed to be |Φ+〉E1,E2
for reasons of simplicity.

To simulate the full process of the entanglement purification protocol in a noisy

channel Eve prepares the states |ϕ〉 and |ψ〉, alternatively. Therefore, she uses an

unbiased coin which lands heads with probability F and tails with probability 1−F.

Here, F is the fidelity of the noisy channel, i.e. the probability that a state is not

affected by noise (cf. also eq. (9.1)). Whenever Eve obtains a tail, she prepares the

state |ψ〉 and whenever she obtains two heads in a row, she prepares |ϕ〉, i.e.

|hh〉1−10 = |ϕ〉E1−E10
and |t〉1−4 = |ψ〉E1−E4

. (9.70)

We take the two consecutive heads, i.e. the state |hh〉1−10, as the important scenario

because our focus lies on protocols based on entanglement swapping two Bell states

(cf. the protocols described in sections 8.1, 8.2 and 8.3). For other protocols the

scenario might be different.

Of course, Eve does not always obtain two consecutive heads and therefore has

to prepare additional states for the other cases of her coin toss. In case she obtains

{heads, tails, heads} from her unbiased coin Eve prepares a combination of |ϕ〉 and
|ψ〉, i.e.

|hth〉1,2,11,13,3−8,12,14,9,10 = |ϕ〉1−10|ψ〉11−14. (9.71)

She distributes qubits 1-4, 11 and 13 to Alice and qubits 7-10, 12 and 14 to Bob

such that Alice and Bob perform BCNOT operations on qubits 2, 8, 1, 7 as well

as 11, 12, 13, 14 and 3, 9, 4, 10. Hence, they obtain a positive result from their

first target pair 1, 7, a negative result from 13, 14 (based on which qubits 11 and
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12 are discarded) and again a positive result from the pair 4 and 10 such that they

end up again with the state |δ〉. In general, Eve has to prepare states |htnh〉 for

the sequences {heads,(tails)n,heads} similarly to |hth〉. It is easy to see that the

larger n the more unlikely the state |htnh〉 becomes. For example, the state |hth〉
occurs with probability F 2(1 − F ) and in general |htnh〉 occurs with probability

F 2(1 − F )n. Following this mechanism Eve is able to prepare a state for every

possible case simulating the purification protocol over a noisy channel. Due to the

fact that Eve prepared the state |hh〉 such that Alice and Bob always detect the same

result and included also the error rate using the state |t〉 she does not introduce any
irregularity in the error rate of the protocol and thus the legitimate communication

parties can not detect her intervention.

As pointed out above, the differences between the quantum privacy amplification

and the recurrence method are very small (application of Bx instead of U). Hence,

simulating the iterations of the purification protocol is not affected by these differ-

ences. Therefore, Eve is able to simulate the whole quantum privacy amplification

protocol by the strategy described in this section, too.





Chapter 10

Conclusion

Summary

In this thesis we discussed the security of quantum key distribution and quantum

secret sharing protocols based on entanglement swapping. Above all we focused

primarily on collective attacks where an adversary Eve entangles herself with the

states shared between the legitimate communication parties, Alice and Bob. For

this scenario a specific attack strategy was presented, the simulation attack. Using

this attack strategy the amount of information an adversary is able to obtain was

analyzed. Additionally, we also addressed the information gain of an adversary in a

noisy environment.

To introduce entanglement, which is the main resource of the quantum crypto-

graphic protocols discussed in this thesis, we described in detail in chapters 2 and 3

the basic definitions of entanglement in the 2-qubit and multi qubit case as well as

basic applications like entanglement swapping. Further, we sketched some methods

to quantify the amount of entanglement between two or more particles. In chapter

4 we identified entanglement purification as the process to establish entanglement

between two or more parties over large distances. The protocols discussed in this

chapter are of major interest when looking at noisy channels later on in chapter 9.

The basic protocols for quantum key distribution and quantum secret sharing

were addressed in detail in chapter 5. In the course of that we presented the central

ideas of quantum cryptography and which special properties of quantum mechanics

are used to secure the communication between two or several parties. The funda-

mental security arguments of these protocols are discussed in chapter 6. We focused

231
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especially on the security of the sifted key and skipped the detailed analysis of the

error correction and the finite key because this would go beyond the scope of this

thesis. Nevertheless, we identified error rates of ∼15% and 11% as two important

boundaries on the quantum bit error rate to successfully perform error correction

and to guarantee the security of the protocol, respectively. These two boundaries

are subsequently used in the security discussions in chapters 8 and 9 as well.

In chapter 7 the main idea of the simulation attack was introduced, which is – as

its name implies – to simulate the correlations between Alice and Bob coming from

the results of the entanglement swapping on the respective qubits. These correla-

tions are used to identify the presence of an adversary which makes it important for

Eve to preserve these correlations to stay undetected. We defined a state consisting

of 6 qubits which implements this property for all protocols based on entanglement

swapping between two Bell states. Further, the 6-qubit state allows Eve to simu-

late all unitary operations performed deterministically by Alice and Bob on their

respective qubits.

Results

The basis of the simulation attack was originally inspired by the attack strategy

presented by Zhang et al. [170]. In their article the authors showed that the entan-

glement swapping between two parties leaks information to an adversary. Based on

that our main question is whether an adversary can find a state to extract as much

information as possible from the communication between two or more parties. The

ZLG attack is very specific and just defined on two protocols [27, 28]. However, we

showed that the simulation attack is not only a generalization of the ZLG attack but

also an extension to it. For one thing the simulation attack is applicable on a larger

group of protocols and for another thing it provides Eve with more information than

the ZLG attack on some specific protocols.

Contrary to the ZLG attack we demonstrate in section 7.2 how the adversary

is able to overcome the deterministic application of rotation operations and ba-

sis transformations by the legitimate communication parties using the simulation

attack. Moreover, we show that the random application of a rotation or basis trans-

formation, respectively, by an angle of π/2 is the optimal choice for Alice and Bob

to counter the simulation attack. Whereas Eve is able to prepare another initial



233

LWWS06 Son04 Cab01 Cab00 (Ex) Cab00 (Int)
〈

Pe
〉

0.25 0.25 0.25 0.4375 0.25
〈

Pc
〉

0.75 0.75 0.75 0.875 1

IAE 0.5 0.5 0.5 0.75 1

Table 10.1: Comparison of the error probability and information gain using the

simulation attack on the revised versions of the discussed protocols [91, 138, 27, 26].

state to overcome a deterministic application of the respective operations she is not

able to overcome a random application.

Further, we describe how much information Eve has about the sifted key if Alice

and Bob use the random application of a rotation or basis transformation. We find

that Eve is able to obtain the same amount of information as in the individual

attacks on single qubit QKD protocols. The simulation attack is applied on four

different protocols [91, 138, 27, 26] in section 8 and the results are compared to an

application of the ZLG attack where possible.

As a result from this analysis we showed that an adversary is able to gain a

significant advantage when using the simulation attack. For three out of the four

discussed protocols the simulation attack gives full information about the sifted key.

We presented revised versions for all four protocols where the adversary introduces

the same error rate and obtains the same amount of information compared to a

single-qubit QKD scheme (cf. table 10.1). Only the revised version of the quantum

secret sharing protocol [26] is still completely open to a simulation attack applied

by a dishonest party.

A major topic not addressed in any protocol involving entanglement swapping

are noisy channels. Usually, the protocols discussed in the literature do not take

noisy channels into account although entanglement swapping needs perfect quan-

tum channels to provide perfect correlations. Therefore, we discussed this topic in

chapter 9 and analyzed the security of the protocols discussed in section 8 in a noisy

environment. To model the noisy channel we used the depolarizing channel and fur-

ther combined it with the exponential decrease of the fidelity over the length of the

channel. This results in different threshold values for the fidelity and consequently

for the length of the quantum channel above which the security is guaranteed.
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LWWS06 Son04 Cab01 Cab00 (Ex)

FEC 0.9228 0.9228 0.9228 0.9633

lEC 1.64 km 1.64 km 1.64 km 1.27 km

IAE 0.2929 0.2929 0.2929 0.2510

q 0.5858 0.5858 0.5858 0.3347

LWWS06 Son04 Cab01 Cab00 (Ex)

F0 0.9428 0.9428 0.9428 0.9729

l0 1.2 km 1.2 km 1.2 km 0.93 km

IAE 0.22 0.22 0.22 0.1885

q 0.44 0.44 0.44 0.2514

Table 10.2: Comparison of the threshold values for the revised versions of the dis-

cussed protocols [91, 138, 27, 28].

For protocols using two Bell states we obtained FEC = 0.9228 as a lower bound

on the fidelity to make error correction possible. To achieve an error rate of ∼
11% as in the individual attacks the lower bound on the fidelity is F0 = 0.9428. In

table 10.2 the threshold values coming from section 9.2 for revised versions of all the

protocols discussed in chapter 8 are given. IAE is Eve’s information on the sifted

key if she attacks only the fraction q of the signals to stay below the respective error

rate.

In section 9.3 we analyzed the decrease of the fidelity over the length of the

quantum channel and found upper bounds for the fidelities FEC and F0. In table

9.1 we showed that depending on the coherence length lc the upper bounds on the

length of the channel to successfully perform error correction are lEC = 1.64 km

for lc = 10 km, lEC = 4.92 km for lc = 30 km and lEC = 8.20 km for lc = 50 km.

Considering secure communication, i.e. a maximal error rate of ∼ 11%, the upper

bounds reduce to l0 = 1.19 km for a coherence length of 10 km, l0 = 3.59 km for a

coherence length of 30 km and l0 = 5.98 km for a coherence length of 50 km. Since

the requirements on the fidelity are much higher for protocols using GHZ states, also

the respective upper bounds on the length of a quantum channel are more restrictive

as presented in table 9.1.
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To extend these upper bounds entanglement purification protocols and quantum

repeaters can be used as described in section 9.4. A drawback of the application of a

nested purification scheme is the large number of entangled states that is required.

We discussed two scenarios, for distances of 24 km and 128 km, where a nested

purification scheme as suggested by Dür et al. [45] is applied. Here we showed that

between 105 and 104 entangled states are required for a coherence length of 30 km

and 50 km, respectively, to establish one entangled state at a fidelity larger than

F0 = 0.9428 over 128 km.

The results obtained from chapter 9 can be brought even closer to a realistic setup

when taking imperfect local operations and measurements into account, which would

go beyond the scope of this thesis. Nevertheless, as pointed out, for example, in [45]

the unitary operations performed by the various parties involved in the protocols

can be noisy, too. This affects entanglement swapping and consequently the security

thresholds as well as the efficiency of the entanglement purification protocols. Hence,

this is a possible starting point for further research.
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