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Kurzfassung

Die Gödellogik erster Ordnung über [, ] ist eine äußerst prominente
Logik, da sie einerseits eine intermediäre Logik ist, d. h. sie ist stärker als die
intuitionistische, aber schwächer als die klassische Logik, und andererseits
ist sie einer der drei Hauptvertreter der t-Norm-basierten Fuzzylogiken
(siehe Hájek []). Sie teilt mit der klassischen Logik viele Eigenschaften
wie z. B. die Idempotenz der Junktoren ∧, ∨, das Äquivalenzschema, die
gleiche Komplexitätsklasse und den Abwärts-Löwenheim-Skolem-Satz, was
sie zu einem idealen Ausgangspunkt für Verallgemeinerungen von gut ver-
standenen Erweiterungen der klassischen Logik macht, wie z. B. modale
Operatoren []. Mit der intuitionistischen Logik teilt sie eine Kripke-
Semantik; das Beweissystem von Horn [] für die Gödellogik erster Ord-
nung umfasst die intuitionistische Logik erster Ordnung, das Axiom der
Linearität und eine Quantorenvertauschungsregel. Die Semantik der Gödel-
logik gibt Anlass zu vielen Varianten [], da sich Belegungen auf nicht-
triviale Teilmengen von [, ] einschränken lassen und eine Reihe neuer
Logiken erzeugen.

Die Hauptresultate dieser Dissertation sind einerseits der Nachweis der
Axiomatisierbarkeit der gültigen Formeln des propositionellen Fragments
einer Erweiterung der Gödellogik um einen addierenden Operator durch
einen hilbertschen Kalkül mit endlich vielen Schemata und andererseits der
Beweis der Vermutung, dass sich die gültigen prädikatenlogischen Formeln
derselben Erweiterung nicht rekursiv aufzählen lassen und sie daher kein
berechenbarer Kalkül charakterisieren kann. Diese Dissertation enthält
auch Ergebnisse wie z. B. die Nichtkompaktheit der Folgerungsrelation
im propositionellen Fragment sowie eine Variante des Hebelemmas und
die Komplexitätsklasse der propositionellen Erfüllbarkeit. Die Motivation,
diese Erweiterung der Gödellogik zu untersuchen, war folgende:

Gödellogik und Łukasiewiczlogik sind gemeinsam mit der Produktlogik
die Hauptvertreter der t-Norm-basierten Fuzzylogiken. Die Gültigkeit von
Formeln in den propositionellen Fragmenten dieser Logiken kann genau
durch Kalküle beschrieben werden, von denen jeder durch die Hinzunah-
me nur eines Axioms zum hájekschen Kalkül der Basislogik entsteht. Für
die prädikatenlogischen Fragmente tritt hingegen das Phänomen ein, dass
zwar die Gödellogik dank ihrem ordnungstheoretischen Hintergrund eine
Charakterisierung der gültigen Formeln durch einen Kalkül zulässt, dass
aber ein solcher Kalkül nach einem Resultat von Scarpellini [] für die
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Łukasiewiczlogik unmöglich ist. Nach Ragaz [] ist die Łukasiewiczlogik
sogar Π2-vollständig. Zwischen Gödellogik und Łukasiewiczlogik ergibt
sich daher ein im weiermannschen [, ] Sinne aufgefasster Phasenüber-
gang. Diese Dissertation trägt zum besseren Verständnis bei, was diesen
Übergang ausmacht: Die Komplexitätsklasse der Gültigkeit von Formeln
in der Gödellogik wird durch die Eigenschaft des betrachteten Operators,
eine Distanz von Wahrheitswerten auszudrücken, gehoben.





Abstract

First-order Gödel logic on [, ] is a prominent logic as it is—on one
hand—an intermediate logic, i. e. it is stronger than intuitionistic logic, but
weaker than classical logic, and—on the other—it is one of the three main
t-norm-based fuzzy logics (see []). With classical logic, it shares properties
like idempotency of the connectives ∧, ∨, the equivalence scheme, the
same complexity class and the downward Löwenheim-Skolem theorem.
It is therefore a good starting point for the generalisation of well-known
extensions of classical logic like, e. g. modal operators []. With intuition-
istic logic, it shares a Kripke semantics; the proof system of Horn []
for first-order Gödel logic encompasses first-order intuitionistic logic, the
axiom of linearity and a quantifier shift rule. The semantic of Gödel logic
gives rise to many variants [], as the possibility to restrict interpretations
to non-trivial subsets of [, ] creates a number of new logics.

The main results of this thesis are () a proof that a Hilbert-style calculus
with finitely many axioms axiomatises the valid formulae of the proposi-
tional fragment of an extension of Gödel logic by an adding operator and
() the demonstration of the conjecture that the valid formulae of the first-
order fragment of the considered logic cannot be recursively enumerable
so that, in particular, no recursive calculus for them can exist. The thesis
includes also smaller results like the non-compactness of entailment in
the propositional fragment as well as a variant of the lifting lemma and
the complexity class of propositional satisfiability. In the following, the
motivation to investigate this extension of Gödel logic will be sketched:

Gödel logic and Łukasiewicz logic are, together with product logic,
the three main t-norm-based fuzzy logics. The validity of formulae in
the propositional fragments of these logics can be exactly characterised
by calculi that result from Hájek’s basic logic by adjunction of a single
axiom scheme. For first-order logic, however, we see the phenomenon that
Gödel logics admits such a characterisation of the valid formulae thanks
to its order-theoretic nature but that Łukasiewicz logic cannot have such
a calculus due to a result by Scarpellini []. In fact, Ragaz [] proved
Łukasiewicz logic to be Π2-complete. In the sense of Weiermann [, ],
this leads to a phase transition between Gödel logic and Łukasiewicz logic.
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This thesis contributes to a better understanding what constitutes this
transition: The ability of the considered operator to express distances of
truth values is the feature that increases the complexity class of the valid
formulae in Gödel logic.
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Chapter 

Preface

§. Introduction

The semantics of Gödel logic gives rise to a number of variants and ex-
tensions of the logic presented by Gödel []. The original propositional
variant, built on the truth value set N, answers Hahn’s question negatively
whether propositional intuitionistic logic has a characteristic finite matrix.
Dummett [] gave a sound and complete proof system for propositional
Gödel logic by adjunction of the linearity axiom

(A⊃ B)∨ (B ⊃A)
to the intuitionistic calculus. Therefore Gödel logic is often called Gödel-
Dummett logic, or LC as Dummett calls it. The interpretation of the
connectives allowed Gödel to consider the restriction of this logic to a
sequence of finite sets, whose valid formulae LCn form a strictly decreasing
tower. Classical logic contains all these LCn, and LC is the intersection of all
LCn. The fact that Gödel logic is in between intuitionistic logic and classical
logic makes it a so-called intermediate logic. Thomas [] and Kubin []
give proof systems for these restricted logics LCn by adding to LC an axiom
that expresses that only n truth values are available.

In Gödel’s and Dummett’s original formulation, the logic appears to be
‘discrete’ in a certain sense because the truth value set is taken to be N; it
also somewhat peculiar that ∧ must be defined as the maximum, and ∨
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Preface §

as minimum. A more natural presentation can be obtained by taking (a
countable subset of ) [0, 1] as the truth value set; see §.. for the according
definitions. For propositional Gödel logics, this difference in presentation
is neglectable, but it creates a rich structure for first-order logic. This way,
Gödel logic can be understood also as a t-norm based fuzzy logic.

Gödel’s interpretation of the implication agrees with the definition of the
implication in t-norm based fuzzy logics on [0, 1] as residuation. While
∧ and ∨ correspond to continuous functions on the truth value set, this
amounts to a non-continuous function for implication. On one hand, this
feature is sometimes avoided in applications because similar inputs should
yield similar outputs, but on the other it enables to crisply distinguish truth
values (except at value 1) from each other: The criterion here is the ordering
of truth values alone, not the distance. In short, Gödel logics is the logics of
comparison; this formulation is supported by completeness w. r. t. linearly
ordered Heyting algebras [].

Hájek [] showed that his proof system Basic Logic, which is sound and
complete for t-norm fuzzy logics, plus the axiom of idempotency yields
another sound and complete proof system for propositional Gödel logic.
Idempotency causes Gödel logics to appear rather classical in many respects,
e. g.: Contraction of ∧, ∨ allows us to bring a conjunctive normal form
into a disjunctive normal form and vice versa; The equivalence schema

(a↔ b )⊃ (E[a]↔ E[b])
also holds so that substitutions can be made ‘in depth’. (For other t-norms,
the antecedent in the implication would need to be raised to a higher
power.) Indeed, the two mentioned properties are corner stones in the
proof of Dummett. Further shared properties are the deduction theorem,
and the downward Löwenheim-Skolem theorem in the first-order fragment.
This almost classical behaviour makes Gödel logic an ideal starting point
for trying generalisations of extensions out that are well-understood for
classical logic, e. g., extension by modal operators; see, e. g., [], or []
and the references contained therein. For the link between Gödel logic and
Kripke semantics, see e. g. []. For connections to relevance logic see [].
Beside the proof systems of Dummett and Hájek, a third way to axiomatise
validity in Gödel logics was given by Avron []. His hypersequent calculus
shows that also the analytical proof system LKprop of classical logic has a
counterpart for Gödel logics.

The main motivation for the research in this thesis has been the ques-
tion whether it is possible to transfer results on complexity of the validity
problem between first-order Gödel logic and Łukasiewicz logic. First-order





Preface §

Łukasiewicz logic is one of the oldest logics based on an infinite truth
value set: In older literature, it is called just the infinite predicate calculus.
Together with Gödel logic and product logic, it is one of the three major
t-norm based fuzzy logics and it features connectives that induce continu-
ous functions on the truth value set. Hájek’s proof system Basic Logic
constitutes a framework to uniformly handle the propositional fragments of
Łukasiewicz logic, Gödel logic and product logic because the valid formulae
in these fragments can be characterised by proof systems that arise from Ba-
sic Logic by adjunction of a single axiom scheme for the respective logic [].
This gives a certain insight into the relation between them. However, for
the first-order fragments, the valid formulae of Gödel logic are recursively
enumerable, i. e. Σ1, while for Łukasiewicz logics they are not [], in fact
they are Π2-complete []. Due to their common background as t-norms,
a phase transition in the sense of Weiermann [, ] can be observed and
the question arises which (semantical) property is decisive for that phe-
nomenon to appear. This thesis shows that the key to this phase transition
is the ability to express an absolute distance. The adjunction of an adding
operator to Gödel logic proved to provide the required semantical strength,
but it can also be understood as an example of Gödel logic extended by
a modal operator l. We show that validity of the propositional fragment
of Gödel logic extended by such an adding operator can be characterised
by a sound and complete proof system, and that the valid formulae of the
corresponding first-order fragment are not recursively enumerable. For the
proof of the latter, we will use a translation between classical logic and the
extended Gödel logic. Unfortunately, this translation involves a binary
predicate symbol so that the complexity of the monadic fragment of the
extended Gödel logic remains an open question. It is therefore unclear
if there is a connection between this monadic fragment and the one of
Łukasiewicz logic, where the problem on the decidability status of validity
is also open.

In [], Hájek investigates a very general setting and he considers a
subdiagonal interpretation of the ring operator, i. e. I(lA)≤ I(A). Hájek’s
starting point is the system of Basic Logic together with the axioms lA⊃
A, l(A ⊃ B) ⊃ (lA ⊃ lB), l(A∨ B) ⊃ (lA∨ lB) and the rule A

lA.
The system we will use for propositional logic is of similar size but does
not involve a rule beside modus ponens. We will consider the converse
equality I(A)≤ I(lA) but a generalisation of the method presented in this
thesis to almost order-preserving interpretations of the l-operator seems
to be possible for the propositional fragment, i. e., both I(lA)< I(A) and





Preface §

without4 with4
number of predicate symbols     

VAL











finite V 3 3 3 3 3

VAL(V↑) 3 ? ? 3 7

infinite V except VAL(V↑) ? 7 7 ? 7

infinite V witnessed ? 7 7 ? 7

SAT































finite V 3 3 3 3 3

witnessed 3 3 3 ? 7

prenex 3 3 3 ? 7

0 isolated in V 3 3 3 ? 7

SAT(V↓) 3 ? ? 3 7

all other cases ? ? 7 ? 7

Legend: 3. . . decidable, 7. . . undecidable, ?. . . unknown

Figure .: Decidability status

I(B)< I(lB) may occur for propositional variables A and B , for the same
interpretation I; cf. §..

In contrast to the other two main t-norm fuzzy logics, Łukasiewicz
logic and product logic, the semantic of Gödel logics allows us to consider
nontrivial restrictions of the truth value set: For a detailed analysis on
validity and entailment, see, e. g., [] and []. Table §. is meant to give
an impression of the diversity of open questions left; there, VAL means
validity, SAT satisfiability, V↑ := {1} ∪ {1− 1

n ; n ≥ 1}, and V↓ := {0} ∪ { 1
n ;

n ≥ 1}. This topic goes beyond this thesis, but preliminary results of the
adding operator on a finite set have been obtained and further research
on it is planned. Table §. can also serve as a starting point for many
other ‘combinatorial’ questions, i. e., one can ask for the complexity class of
validity or satisfiability, given a restricted truth value set and an operator
that does not add (which would yield values that are not contained in the
truth value set) but skips a given number of truth values etc.

§. Technical remarks

Although I have written this thesis alone, I shall adopt the usual academic
habit of using the majestic plural.

We will work in ZFC exclusively. The set N of natural numbers includes
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Preface §

0. If x is a list x0, . . . , xn−1 of bound variables, let ∀x and ∃x abbreviate
∀x0 . . .∀xn−1 and ∃x0 . . .∃xn−1. Propositional variables are denoted by Var;
Free variables by FrVar, and bounded ones by BdVar. However, we often
will not strictly distinguish free and bounded ones.

§.. Convention. We will tacitly apply the standard practice to re-use
a meta variable ranging in the domain of a first-order interpretation as a
constant, which is to be interpreted by itself; e. g., in an expression like
infx∈|I|A(x), where A is a context with a term gap. We will proceed similarly
with lists or vectors of meta variables. We will only occasionally write A(x)
to emphasise that we deal with a constant. §

For philosophical reasons, we will avoid the term “tautology” and instead
speak of valid formulae, of course, this depends on a given semantics.

§. Overview on the contents

In §, we will present Scarpellini’s theorem in a way that allows us to
generalise his theorem for our purposes. In §, we will introduce an
extension of Gödel logic by an operator that carries out a limited form of
addition (§..), discuss entailment relations (§..), show that a theorem
analogue to the one of Scarpellini holds for the first-order prenex fragment
of this logic, and prove the soundness and completeness of propositional
logic (§..) w. r. t. a proof system that extends Dummett’s original proof
system for Gödel logic. Likewise, Hájek’s Basic Logic can be used. We
generalise this result to the fragment that contains the Baaz-Takeuti-Titani
4-operator (§..). We briefly discuss satisfiability in the propositional
fragment (§..).





Chapter 

Scarpellini’s theorem revisited

§. Introduction

Although it is an established result of Scarpellini that the first-order formulae
valid w. r. t. Łukasiewicz semantics are not recursively enumerable, his
method of proof is not widely known, apparently because his article []
was published in German. Since we will transfer this method to Gödel logic
with ring, we will present it here in a way that fits our needs and we will
repeat all major steps. Note carefully that the content of §..–§.. is
contained in [], sometimes only implicitly and with a deviating notation.

Scarpellini’s idea rests on a reduction of validity in Łukasiewicz semantics
to classical validity in finite models by specifying an effective translation of
formulae. As §.. will show, the classical values 0 and 1 correspond to
closed intervals S0 and S1 in the truth value set [0,1] of Łukasiewicz logics.
As Trakhtenbrot’s theorem [] says that classical validity in finite models
is not recursively enumerable, we conclude that validity in Łukasiewicz
semantics is it also.

Scarpellini’s idea does not give an answer whether the monadic fragment
of Łukasiewicz logic is decidable because the full fragment of classical logic
is embedded to Łukasiewicz logic. This problem is still open.

Many aspects of Łukasiewicz logic are covered in []. We give here only
the definition of the syntax and the semantics of Łukasiewicz logic.





Scarpellini’s theorem revisited §

§.. Definition (Łukasiewicz logic). LetL ′
Ł

be the first-order language
with connectives ⊃/2 and ⊥/0, with a quantifier ∀, without equality,
without function symbols, without constants, but with predicate symbols
of any arity, including nullary predicates. Fm′

Ł
denotes the set of formulae

in L ′
Ł
. Other connectives are introduced as abbreviations: ¬A := A⊃⊥,

> := ⊥ ⊃ ⊥, A∧ B := ¬(A⊃ ¬B), A∨ B := ¬A⊃ B , A .− B := A∧¬B ,
A ↑ B := (A⊃ B)⊃ B , A ↓ B := A∧ (A⊃ B), dist(A,B) := (A .− B) ↑ (B .−
A), ⇓n

i=1 Ai :=A1 ↓ (A2 ↓ (. . . ↓An)), and ∃xA := ¬∀x¬A.
A Łukasiewicz interpretation I consists () of a non-empty domain |I|,

() of an interpretation of predicate symbols I(P ) : |I|n → [0,1] for each
n-ary predicate symbol P , () of an interpretation I: FrVar→ |I|, () of an
interpretation I: Fm′

Ł
→ [0,1] such that I(⊥) = 0, I(A⊃ B) =min{1,1−

I(A)+ I(B)}, I(∀xA(x)) = infx∈|I| I(A(x)), cf. §... It is immediately clear
that the interpretation I(A) of any formula A without free variables does
not depend on (). §

§.. Proposition. With the notation from above, the following hold:
I(¬A) = 1− I(A),
I(>) = 1,
I(A∧B) =max{0,I(A)+ I(B)− 1},
I(A∨B) =min{1,I(A)+ I(B)},
I(A .−B) =max{0,I(A)− I(B)},
I(A ↑ B) =max{I(A), I(B)},
I(A ↓ B) =min{I(A), I(B)},
I(dist(A,B)) = |I(A)− I(B)|,
I(⇓n

i=1 Ai ) =minn
i=1 I(Ai ),

I(∃xP (x)) = supx∈|I| I(A(x)). §

We omit the elementary proof. The above proposition justifies that our
approach of defining ∧ and ∨ as abbreviations is semantically equivalent
to the introduction of ∧ and ∨ as connectives in their own right and with
their own semantics. We neglect the fact that this approach changes proof-
theoretic properties like the length of proofs because we are not interested
in these in the following. We will save parentheses in expressions like
A1∧A2∧A3, A1∨A2∨A3, A1 ↑A2 ↑A3, and A1 ↓A2 ↓A3 since §.. shows
immediately that parenthesisation is irrelevant.

§. Scarpellini’s proof

§.. Definition. It is assumed that Q will always denote a nullary pre-
dicate symbol in the remainder. For eA := A∨ A, the parentheses are





Scarpellini’s theorem revisited §

omitted for the sake of brevity. For every n-ary predicate symbol P , define
Γ (Q; P ) := ∀x(P (x) ↓ (eQ .− P (x)) ↓ dist(P (x),Q))

for a fresh list x of n bound variables. For all predicates P1, . . . , Pm, let
Λ(Q; P1, . . . , Pm) :=Q ↓ ¬eQ ↓ Γ (Q; P1) ↓ . . . ↓ Γ (Q; Pm). §

§.. Proposition. Suppose I is a Łukasiewicz interpretation, P1, . . . ,
Pm are predicate symbols and Q is a nullary predicate symbol such that

0<δ ≤ I(Λ(Q; P1, . . . , Pm)).
If Pi , i < m, is an n-ary predicate symbol, then

δ ≤ I(Q)−δ < I(Q)+δ ≤ 2 · I(Q)−δ < 2 · I(Q)+δ ≤ 1
and

∀x ∈ |I|n. I(Pi )(x) ∈ [δ, I(Q)−δ]∪ [I(Q)+δ, 2 · I(Q)−δ]. §

Proof. Since
0<δ ≤ I(Λ(Q; P1, . . . , Pm)) =
= I(Q ↓ ¬eQ ↓ Γ (Q; P1) ↓ . . . ↓ Γ (Q; Pm)) =
=min{I(Q), 1−min{1,2 · I(Q)}, I(Γ (Q; P1)), . . . , I(Γ (Q; Pm))},

we have δ ≤ I(Q), 0<δ ≤max{0,1−2 ·I(Q)} and δ ≤ I(Pi (x)), 0<δ ≤
max{0,min{1,2 · I(Q)} − I(Pi (x))}, δ ≤ |I(Pi (x))− I(Q)| for all x ∈ |I|n.
We conclude the following for every x ∈ |I|n: δ ≤ I(Q), δ ≤ 1− 2 · I(Q),
δ ≤ I(Pi (x)), δ ≤ min{1,2 · I(Q)} − I(Pi (x)), and moreover, () δ ≤
I(Q)− I(Pi (x)) or () δ ≤ I(Pi (x))− I(Q). We clearly have 2 · I(Q)−δ <
2 · I(Q) + δ ≤ 1. In case (), we find δ ≤ I(Pi (x)) ≤ I(Q)− δ so that
then δ ≤ I(Q)− δ and I(Q) + δ ≤ 2 · I(Q)− δ. In case (), we see
I(Q)+δ ≤ I(Pi (x))≤min{1,2 · I(Q)}−δ ≤ 2 · I(Q)−δ so that also now
we obtain I(Q)+δ ≤ 2 · I(Q)−δ and thus δ ≤ I(Q)−δ. This proves all
the claimed inequalities since |I| 6= ;. ♦

§.. Definition. The variantL ′
CL

of the language of classical first-order
logic is generated by ⊥/0, ¬/1, ∧/2, ∀. The set of formulae is denoted by
Fm′

CL
and the set of semi formulae by SFm′

CL
. It is needless to introduce

the semantics of L ′
CL

. We use the abbreviations A∨ B := ¬(¬A∧ ¬B),
A⊃ B := ¬(A∧¬B), A↔ B := ¬(¬(A∧B)∧¬(¬A∧¬B)), and > := ¬⊥.

Define a transformation αQ : SFm′
CL
→ SFm′

Ł
recursively as follows:

αQ(P ) := P for any atom P , αQ(¬A) := eQ .− αQ(A), αQ(A∧ B) :=
αQ(A) ↓ αQ(B), αQ(∀xA) := ∀xαQ(A). Since ∧ in L ′

CL
and ↓ in L ′

Ł
are

both associative w. r. t. semantics, we will neglectfully write αQ(A∧B∧C ) =
αQ(A) ↓ αQ(B) ↓ αQ(C ) as we are not interested in proof-theoretic proper-
ties. §

Next, we will prove that αQ(A) embeds classical logic into Łukasiewicz
logic.
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§.. Proposition. Suppose I is a Łukasiewicz interpretation, Q is a nul-
lary predicate symbol, P1, . . . , Pm are predicate symbols such that

0<δ ≤ I(Λ(Q; P0, . . . , Pm))
for some δ. Define S0 := [δ, I(Q)−δ], S1 := [I(Q)+δ, 2 ·I(Q)−δ], and
S := S0 ∪ S1. Let A, B ∈ Fm′

Ł
(P1, . . . , Pm), and suppose C (·) is a context in

Fm′
Ł
(P1, . . . , Pm) with a gap to be filled by an unbound variable or constant.

Then the following hold:
(a) If I(αQ(A)) ∈ Si , i ∈ {0,1}, then I(αQ(¬A)) ∈ S1−i .
(b) If I(αQ(A)) ∈ Si and I(αQ(B)) ∈ S j , then I(αQ(A∧B)) ∈ Smin{i , j }.
(c) If I(αQ(A)) ∈ Si and I(αQ(B)) ∈ S j , then I(αQ(A∨B)) ∈ Smax{i , j }.
(d) If I(αQ(C (x))) ∈ Si(x) for all x ∈ |I|, then I(αQ(∀xC (x))) ∈ Smin{i(x); x∈|I|}.
(e) I(αQ(A)) ∈ S.
(f ) Moreover, if I′ is a classical interpretation such that |I|= |I′|, I′(a) = I(a)
for all free variables a, and

I′(Pi )(d1, . . . , dn) =

(

1 if I(Pi )(d1, . . . , dn) ∈ S1
0 if I(Pi )(d1, . . . , dn) ∈ S0,

then I(αQ(A)) ∈ SI′(A). §

Proof. By §.., we have δ ≤ I(Q)− δ < I(Q) + δ ≤ 2 · I(Q)− δ <
2 · I(Q)< 2 · I(Q) +δ ≤ 1 and ∀x ∈ |I|ni . I(Pi )(x) ∈ S for all i < m; here
ni is the arity of Pi . In particular, S1 ∩ S2 = ;.

For item (a), observe I(eQ .− F ) = max{0,min{1,2 · I(Q)} − I(F )} =
max{0,2 · I(Q)− I(F )}. If I(F ) ∈ S0, i. e. δ ≤ I(F ) ≤ I(Q)−δ, it follows
I(Q) + δ = 2 · I(Q)− (I(Q)− δ) ≤ 2 · I(Q)− I(F ) ≤ 2 · I(Q)− δ, i. e.
I(eQ .− F ) ∈ S1. If I(F ) ∈ S1, i. e. I(Q)+δ ≤ I(F )≤ 2 · I(Q)−δ, it follows
δ = 2·I(Q)−(2·I(Q)−δ)≤ 2·I(Q)−I(F )≤ 2·I(Q)−(I(Q)+δ) = I(Q)−δ,
i. e. I(eQ .− F ) ∈ S0.

Item (b) follows immediately from I(F ↓ G) = min{I(F ), I(G)}. Item
(c) follows from (a) and (b). Item (d) follows from I(αQ(∀xC (x))) =
I(∀xαQ(C (x))) = infx∈|I| I(αQ(C (x))) and from the fact that both S0 and
S1 are closed and disjoint. Item (e) follows by induction on the complexity
of (semi) formulae: The case of atoms was dealt with in §.., and the
induction steps are explained in (a), (b), (c). Observe that the case of atoms
is trivial for (e); the result follows then by induction and (a), (b), (c). ♦

The formula ΦCL(P,a, b ) in the following definition will help us to
factorise an infinite model to a finite one by identifying elements in the
model that behave in the same way for all predicate symbols.
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§.. Definition. For any (n+ 1)-ary predicate symbol P and variables
a, b , we define the following formula inL ′

CL
ΦCL(P,a, b ) := ∀x1 . . .∀xn((P (a, x1, . . . , xn)↔ P (b , x1, . . . , xn))∧

∧ (P (x1,a, x2, . . . , xn)↔ P (x1, b , x2, . . . , xn))∧
∧ . . .∧ (P (x1, x2, . . . , xn,a)↔ P (x1, x2, . . . , xn, b ))).

For any nullary predicate symbol P , define ΦCL(P,a, b ) :=>. §

The easy proof of the following proposition is omitted.

§.. Proposition. Let P be a predicate symbol and I′ be a classical inter-
pretation. Then ΦCL induces an equivalence relation on |I′| in the following
sense: I′(ΦCL(P,a,a)) = 1; I′(ΦCL(P,a, b )) = I′(ΦCL(P, b ,a)); moreover,
I′(ΦCL(P,a, b )) = I′(ΦCL(P, b , c)) = 1 implies I′(ΦCL(P,a, c)) = 1. §

§.. Definition. For any predicate symbol P and semiterms r, s , let
Φ(Q; P, r, s) denote the L ′

Ł
-formula αQ(ΦCL(P, r, s)). For all predicate

symbols P1, . . . , PM , and every unary predicate symbol G, define theL ′
Ł
-

formula
Ψ (Q;G, P1, . . . , PM ) := ∀x∀y

(dist(G(x),G(y)) ↑ ((⇓m≤M Φ(Q; Pm, x, y)) .−Q)).
InL ′

Ł
, let
Ξ(Q;A,B) :=

eQ .− (eQ .− (A ↓ B) ↓ eQ .− ((eQ .−A) ↓ (eQ .−B))). §

It is easy to see that then Φ(Q; P, r, s) is

∀x1 . . .∀xn(Ξ(Q; P (a, x1, . . . , xn), P (b , x1, . . . , xn)) ↓
↓Ξ(Q; P (x1,a, x2, . . . , xn), P (x1, b , x2, . . . , xn)) ↓
↓ . . . ↓Ξ(Q; P (x1, x2, . . . , xn,a), P (x1, x2, . . . , xn, b ))).

§.. Theorem. Let P1, . . . , PM be predicate symbols, and suppose we
have A ∈ Fm′

CL
(P1, . . . , PM ), let Q be a fresh nullary predicate symbol,

and G a fresh unary predicate symbol. Then the following statements are
equivalent:
() There is a classical interpretation with finite domain that satisfies A.
() There is a Łukasiewicz interpretation I such that

0< I((αQ(A)
.−Q) ↓Λ(Q; P1, . . . , PM ) ↓ Ψ (Q;G, P1, . . . , PM )). §

Proof. ()→(): Let I′ be a classical interpretation with finite domain B :=
{b1, . . . , bN} such that I′(A) = 1. We define a Łukasiewicz interpretation I
as follows: Let I have the domain B ; interpret free variables as in I′; take
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I(G(bi )) :=
i

5N , I(Q) := 2
5 , and take

I(Pm(d1, . . . , dn)) :=
3
5 if I′(Pm(d1, . . . , dn)) = 1

and
I(Pm(d1, . . . , dn)) :=

1
5 if I′(Pm(d1, . . . , dn)) = 0

for all d j ∈ B and m ∈ {1, . . . , M}.
In order to establish I(αQ(A)) =

3
5 , we prove I(αQ(C )) =

3
5 whenever

I′(C ) = 1, and I(αQ(C )) =
1
5 whenever I′(C ) = 0 by induction on the

complexity of the formula C inL ′
CL

. The claim is true for atomic formulae
by definition. Suppose the claim already holds for formulae E and F . If
I(E) = 1

5 , then I(eQ .− E) =max{0, min{1, 2
5+

2
5}−I(C )}= 3

5 ; if I(E) = 3
5 ,

we similarly find I(eQ .− E) = 1
5 . Thus the claim is true also for ¬E . Clearly,

we have I(αQ(E ∨ F )) = I(αQ(E) ↑ αQ(E)) = max{I(αQ(E)), I(αQ(F ))}
so that the claim is true for E ∨ F . Suppose the claim holds for all in-
stances E(c), c ∈ |I |, of a formula E(·) with a term gap. In particular,
we have I(αQ(E(c))) ∈ {

1
5 , 3

5}. Now I(αQ(∀xE(x))) = I(∀x.αQ(E(x))) =
infx∈B I(αQ(E(x))) =minx∈B I(αQ(E(x))) establishes the claim also for the
quantifier.

Since I(αQ(A)) =
3
5 , we find I(αQ(A)

.− Q) = max{0, 3
5 −

2
5} =

1
5 and

I(¬eQ) =max{0,1−min{1,2 · I(Q)}}= 1
5 . If Pm has arity d , we have

I(Γ (Q; Pm)) =minx∈B d min
{I(Pm)(x), max{0,min{1,2 · 25}−I(Pm)(x)}, |I(Pm)(x)−

2
5 |}

so that I(Γ (Q; Pm))≥min{1
5 , 4

5 −
3
5 , 1

5} ≥
1
5 . Thus I(Λ(Q; P1, . . . , PM )) =

1
5 .

Observe that 1≤ i < j ≤N implies I(dist(G(bi ),G(b j ))) = |I(G(bi ))−

I(G(b j ))|= |
i

5N −
j

5N | ≥
1

5N . If F is a formula such that I(F ) ∈ {1
5 , 3

5}, then

it is easy to verify that I(Ξ(Q; F , F )) = max{I(eQ .− F ), I(eQ .− (eQ .−
F ))}=max{I(F ), 0, 4

5−I(F )}= 3
5 ; in particular, if F is Pm(x1, . . . , xk−1, a,

xk , . . . , xn), where a ∈ B , x ∈ B n, m ∈ {1, . . . , M}, and 1≤ k ≤ n. There-
fore I((⇓m≤M Φ(Q; Pm,a,a)) .−Q) =max{0, (minm≤M I(Φ(Q; Pm,a,a)))−
I(Q)} = max{0, 3

5 −
2
5} =

1
5 for all a ∈ B . Thus I(Ψ (Q;G, P1, . . . , PM )) ≥

1
5N > 0. This proves the claim.

()→(): Let I be a Łukasiewicz interpretation and δ ∈R such that
0<δ < I((αQ(A)

.−Q) ↓Λ(Q; P1, . . . , PM ) ↓ Ψ (Q;G, P1, . . . , PM )).
From δ < I(Λ(Q; P1, . . . , PM )) and §.., we obtain δ ≤ I(Q)− δ <
I(Q) +δ ≤ 2 · I(Q)−δ < 2 · I(Q) +δ ≤ 1 and I(αQ(A)) ∈ S := S0 ∪ S1,
where S0 := [δ, I(Q)−δ] and S1 := [I(Q)+δ, 2·I(Q)−δ]. Since 0<δ <
I(αQ(A)

.−Q) =max{0,I(αQ(A))− I(Q)}, we find δ < I(αQ(A))− I(Q) so
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that I(αQ(A)) ∈ S1. Since δ < I(Ψ (Q;G, P1, . . . , PM )), we find for each pair
p, q ∈ |I| that

δ ≤max{|I(G(p))−I(G(q))|, max{0, (minm≤M I(Φ(Q; Pm, p, q)))−
I(Q)}},
so that

δ ≤ |I(G(p))− I(G(q))| ∨δ + I(Q)≤minm≤M I(Φ(Q; Pm, p, q)).
The relation ∼ on |I| defined by

p ∼ q :⇔ I(αQ(
∧

m≤M ΦCL(Pm, p, q))) ∈ S1 .
is an equivalence relation as can easily be seen by §.. and, §..(f ).

By §..(c), we have p 6∼ q if and only if I(αQ(ΦCL(Pm, p, q))) ∈ S0 for
some m ≤M ; in particular, p 6∼ q implies I(Φ(Q; Pm, p, q))≤ I(Q)−δ for
some m ≤ M , and thus δ ≤ |I(G(p))− I(G(q))| by the above. It follows
immediately that we have only a finite number of equivalence classes for
otherwise {I(G(pi ))}i ⊆ [0,1] were infinite and thus had an accumulation
point, which is absurd.

Let I′ be the classical interpretation from §..(f ) so that we obtain
I′(A) = 1 from I(αQ(A)) ∈ S1, I(αQ(A)) ∈ SI′(A) and S0 ∩ S1 = ;. Let I′0 be
the classical interpretation with |I′′| := |I′|/∼ and I′′(Pi )([d1], . . . ,[dn]) :=
I′(Pi )(d1, . . . , dn), where [d] denotes the equivalence class of d w. r. t.∼; this
is well-defined since p1 ∼ q1, . . . , pn ∼ qn implies I(αQ(ΦCL(Pi , pk , qk))) ∈
S1 and thus I′(ΦCL(Pi , pk , qk)) = 1 for all k by §..(f ), which implies
I′(Pi )(p1, . . . , pn) = I′(Pi )(q1, . . . , qn) in turn. By induction on the complex-
ity of a formula, it is easily seen that I′′(B) = I′(B) holds for all formulae B ,
in particular, we find I′′(A) = I′(A) = 1. This completes the proof since I′′

has a finite domain. ♦

We recall that a formula is closed if it does not contain free variables.

§.. Theorem. The set of all closed valid first-order formulae in
Łukasiewicz logics is not recursively enumerable. §

Proof. Choosing a fixed ordering among all predicate symbols in Fm′
CL

,
one obtains a computable function β : Fm′

CL
→ Fm′

Ł
, A 7→ (αQ(A)

.−
Q) ↓ Λ(Q; P1, . . . , PM ) ↓ Ψ (Q;G, P1, . . . , PM ), where P1, . . . , PM are all the
predicate symbols appearing in A, Q is a fresh nullary predicate symbol,
and G is a fresh unary predicate symbol. For any closed A∈ Fm′

CL
, we find

that the following statements are equivalent:
∀I, classical interpretation with finite domain: I(A) = 1
¬∃I, classical interpretation with finite domain: I(A) = 0
¬∃I, classical interpretation with finite domain: I(¬A) = 1
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¬∃I, Łukasiewicz interpretation: I(β(¬A))> 0; by §..
∀I, Łukasiewicz interpretation: I(β(¬A)) = 0
∀I, Łukasiewicz interpretation: I(¬β(¬A)) = 1; by §..

Thus, if the set of all closed valid first-order formulae in Łukasiewicz logics
was recursively enumerable, then also the classical formulae valid in all finite
domains would be, contradicting Trakhtenbrot’s theorem. ♦

§.. Remark. Let V be the set of formulae that are valid in Łukasiewicz
logics. The result §.. just says that V is not in Σ1: V contains a Π1-set
(via the embedding, this is the set of formulae that are valid in all finite
classical models). Ragaz [] proved that V is actually Π2-complete; see [,
p. ff, ..–..] for further complexity results on Gödel, Łukasiewicz
and product logic and other classes. §
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Chapter 

Gödel logics with ring

§. Introduction

In §., we will introduce all underlying arithmetics of Gödel logic (§..),
the languages we will use, and the semantics of Gödel logic. We will define
validity and we will also show that the entailment relation is not compact,
even for the propositional fragment. Already in §., we will start with
predicate logic and transfer Scarpellini’s result to an operator extension of
Gödel logic. We postpone propositional logic to §. because the definitions
of the proof systems we will work with consume a large space and the proof
of the main result is rather long, though not difficult. We will conclude
with some results on satisfiability.

§. Syntax and semantics of Gödel logics

§.. Definition. It will be convenient to make the following definitions
for all x, y ∈R:

x ⊕ y :=min{1, x + y},

x Å y :=

(

1 if x ≤ y
y if x > y
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x Ã y :=

(

1 if x < y
y if x ≥ y

x ./ y :=

(

1 if x = y
min{x, y} if x 6= y

π0(x) :=

(

1 if x > 0
0 if x ≤ 0

π1(x) :=

(

1 if x ≥ 1
0 if x < 1

It is immediately clear that⊕, Å, Ã, ./ induce functions [0,1]×[0,1]→
[0,1], and π0 and π1 induce functions [0,1]→ [0,1]. §

§.. Proposition. Let k ∈ Nr {0} and x, y, z, r1, . . . , rk ∈ [0,1].
Then the following holds:

(A) 1⊕ x = 1
(A) 0⊕ x = x
(A) x ≤ r ⊕ x ≤ 1
(A) x ⊕ y = y ⊕ x
(A) (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)
(A) r1⊕ . . .⊕ rk ⊕ x = (r1+ · · ·+ rk)⊕ x
(A) (r ⊕ x)Å (r ⊕ y) = r ⊕ (x Å y)
(A) (r ⊕ x)Ã (r ⊕ y) = r ⊕ (x Ã y)

(A) max{(r ⊕ x)Ã y, (r ⊕ y)Ã x}=
(

1 |x − y| ≥ r
max{x, y} |x − y|< r

(A) We have y ≤ x Å y
(A) We have x Ã y < 1 if and only if y ≤ x and y < 1
(A) We have x Ã y = 1 if and only if x < y or x = y = 1
(A) We have y < x Å y if and only if x ≤ y < 1
(A) We have y < x Ã y if and only if x < y < 1
(A) We have x < x Ã y if and only if x < y
(A) We have 1= x Å y if and only if x ≤ y
(A) We have 1= x ./ y if and only if x = y
(A) 1−π0(1−π0(x)) =π0(x) §

The proof is routine and can be done by case distinctions. For later
use, observe that (A) is an expression that allows us to measure a distance
(when x < 1 and y < 1 therein).
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(MP)
A A⊃ B

B
(IPL) ⊥⊃A
(IPL) (A∧B)⊃A
(IPL) (A∧B)⊃ B
(IPL) A⊃ B ⊃ (A∧B)
(IPL) A⊃ (A∨B)
(IPL) B ⊃ (A∨B)
(IPL) (A⊃C )⊃ (B ⊃C )⊃ (A∨B)⊃C
(IPL) A⊃ B ⊃A
(IPL) (A⊃ B ⊃C )⊃ (A⊃ B)⊃ (A⊃C )

Figure .: Proof system IPL

§.. Definition (Languages). We will indicate by R/n that a logical
connective, a predicate symbol or a predicate R has arity n ∈N.

The logics we want consider here are based on the languageL p of propos-
itional formulae generated by a countably infinite set Var of propositional
variables and the connectives ⊥/0, ⊃ /2, ∧/2, ∨/2; ⊃ is understood to be
written right-associatively. We understand ¬A as an abbreviation for A⊃⊥,
A↔ B for (A⊃ B)∧ (B ⊃A), > for ⊥⊃⊥, and A≺ B for (B ⊃A)⊃ B .

The language L of first-order formulae contains quantifiers ∀ and ∃
and is constructed in the usual way fromL p with the following features:
For each arity n, the set of function symbols and the set of predicate
symbols has to be denumerable. Functions of arity 0 will be called constants.
We will distinguish free and bound variables, and we assume that both
form denumerable sets. In proofs, we will occasionally drop the formal
distinction between the two sorts of variables. A first-order formula is closed
if no free variable occurs in it.

The Hilbert-style proof systems IPL and IL of intuitionistic propositional
and predicate logic are given in Figures . and ..

Let l and4 be two new unary connectives, which we will call operators
for simplicity. In this chapter, we will consider only the language extensions
L p

l
,L p

4,L p

l,4,Ll,L4 andLl,4 that arise from adding l and4. For

n ∈N, we define l0A :=A and ln+1A :=l(lnA). §

§.. Definition (Semantics of Gödel logics). A Gödel interpretation of
L p is a mapping I: Var → [0,1] that is extended to all formulae by ()
I(⊥) := 0, () I(A∧ B) :=min{I(A), I(B)}, () I(A∨ B) :=max{I(A), I(B)}
and () I(A⊃ B) := I(A)Å I(B). In an extension ofL p where4 is present,
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(MP), (IPL)–(IPL) and (IL)–(IL), where

(IL)
B ⊃A(a)

B ⊃∀xA(x)
, where a is not free in B

(IL)
A(a)⊃ B

∃xA(x)⊃ B
, where a is not free in B

(IL) ∀xA(x)⊃A(t )
(IL) A(t )⊃ ∃xA(x)

Figure .: Proof system IL

we put () I(4(A)) := π1(I(A)). In presence of l, we require that there
exists some rI ∈ [0,1] such that I(lA) = rI⊕ I(A) for every formula A; in
this case, we speak also of a Gödel rI-interpretation. It is immediately clear
that all formulae are assigned a value in [0,1].

A Gödel interpretation I of (an extension of )L consists of () a nonempty
set |I|, the domain of I, () a function P I : |I|k → [0,1] for each k-ary predic-
ate symbol P , () a function f I : |I|k → |I| for each k-ary predicate symbol
f , () a value vI ∈ |I| for each free variable v , and () a mapping I from the
set of formulae to [0,1] such that () I(∀xA(x)) = inf{I(A(u)) : u ∈ |I|}, ()
I(∃xA(x)) = sup{I(A(u)) : u ∈ |I|} and () ⊥, ⊃, ∧, ∨ (and4, l if present)
are interpreted like inL p. Throughout this paper we will, as usual, apply
the notational convention that an occurrence of a domain element u ∈ |I|
in a formula stands for a fresh constant u that is to be interpreted as u. This
means that we will also speak of r -interpretations, for r ∈ [0,1], when the
languages under consideration areLl andLl,4. A classical interpretation
of a language without ring is a Gödel interpretation that takes only values 0
and 1; the connectives and quantifiers clearly agree with the usual notion if
0 is understood as false and 1 as true.

§.. Proposition. If I is a Gödel interpretation, where l does not have
to be in the language, and A and B are formulae, we have:

(B) I(>) = 1,
(B) I(¬A) = 1−π0(I(A)),
(B) I(¬¬A) =π0(I(A)),
(B) I(A≺ B) = I(A)Ã I(B),
(B) I(A↔ B) = I(A) ./ I(B)

If I is a Gödel r -interpretation where l is in the language, A and B are
formulae, and k ∈N, we have:
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(B) I(A⊃lA) = 1,
(B) I(lkA) = (k · r )⊕ I(A),
(B) I(lA⊃lB) = r ⊕ (I(A)Å I(B)) = I(l(A⊃ B)),
(B) I(lA≺lB) = r ⊕ (I(A)Ã I(B)) = I(l(A≺ B))

(B) I((lA⊃ B)∨(lB ⊃A)) =

(

1 if |I(A)− I(B)| ≥ r
max{I(A), I(B)} if |I(A)− I(B)|< r.

. §

Proof. For (B), use (A) and (A) to obtain I(A ⊃ lA) = I(A) Å (r ⊕
I(A)) = 1. The other cases follow easily from §... ♦

§.. Proposition. (a) There is no formula F (A) inL p

4 such that I(F (A))
= I(lA) for all Gödel interpretations I inL p

4. (b) There is no formula F (A)
inL p

l
such that I(F (A)) = I(4A). for all Gödel interpretations I inL p

l
. §

Proof. (a) Suppose F (A) were a formula inL p

4 such that I(F (A)) = I(lA)
for every Gödel interpretation I in L p

4, in particular, for every Gödel

interpretation I such that I(A) = I(B) for every propositional variable B .
(Clearly, such interpretations exist.) We may thus assume that A is the
only propositional variable that occurs in F (A). Observe that {0,1} is
closed under any application of the functions π1, (x, y) 7→ min{x, y},
(x, y) 7→ max{x, y}, (x, y) 7→ x Å y, x 7→ 1 and x 7→ 0. Thus, we have
I(F (A)) ∈ {0,1} for the interpretation I with I(A) := 0 and rI := 1

2 . This
contradicts I(F (A)) = I(lA) = 1

2 ⊕ I(A) = 1
2 .

(b) Suppose F (A) were a formula in L p
l

such that I(F (A)) = I(4A)
for every Gödel interpretation I in L p

l
, in particular, for every Gödel

interpretation I such that I(A) = I(B) for every propositional variable B
and rI = 0. Thus there is some formula G(A) in L p such that A is the
only propositional variable in G and such that I(G(A)) = I(4A) for every
Gödel interpretation I inL p. Moreover, suppose w. l. o. g. that G(A) is the
shortest formula with this property.

We write C ∼ D in this proof whenever I(C ) = I(D) for every Gödel
interpretation I inL p.

If A is the only propositional variable of a formula H with three con-
nectives, it is easy to show by a lengthy case distinction that there is a
formula K such that K ∼ H , K has ≤ 2 connectives and A is the only
propositional variable in K . Thus G has at most 2 connectives. Again, by
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case distinction, one sees that we must have H ∼⊥, or H ∼ (⊥⊃⊥), or
H ∼ A, or H ∼ (⊥ ⊃ A), or H ∼ (⊥ ⊃ (⊥ ⊃ A)), or H ∼ A∨ (⊥ ⊃ A).
Then it is easy to find interpretations I that evaluate 4A and the above
formulae to different values. ♦

§.. Definition (Validity). If I(A) = 1 holds for all Gödel interpreta-
tions in a language, we write |=G A and say that the formula A is valid
w. r. t. Gödel semantics in that language.

Although, strictly speaking, this amounts to different definitions depend-
ing on the presence of4 or l, it is immediately clear that a formula in the
intersection of two of the considered languages is valid w. r. t. to the first if
and only if it is valid w. r. t. to the second definition. For the sake for clarity,
we remark that the above validity definition of a formula A inLl exactly
says that I(A) = 1 must hold for all r -interpretations I, for all r ∈ [0,1]. §

§.. Definition (Entailment). Let A be a formula and Γ be a set of
formulae from the same language L, and let I be a Gödel interpretation
w. r. t. L; in case L is first-order, we suppose that no formula has a free
variable.

If inf{I(B) : B ∈ Γ } ≤ I(A), we write Γ �I
G A and say Γ entails A under I

(w. r. t. Gödel semantics in L). We write Γ �G A if Γ �I
G A holds for every

Gödel interpretation I. If I(A) = 1 holds for every interpretation I such that
I(B) = 1 for all B ∈ Γ , we write Γ �1

G A and say Γ one-entails A (w. r. t.
Gödel semantics in L).

Let R be relation between a set of formulae and a formula, e. g. �G or
�1

G. We say R is compact if ΓRA implies that there is a finite Γ ′ ⊆ Γ with
Γ ′RA. §

While entailment for propositional Gödel logics (without restrictions on
the truth value set) is compact, see Theorem . in [], the semantics of the
l-operator destroys this property:

§.. Proposition. None of the entailment relations � and �1 between
propositional formulae is compact for Gödel semantics if l is present. §

Proof. The following construction will show that it suffices to consider the
languageL p

l
. We have to show that there are Γ and A such that Γ �A but

there is no finite subset Π ⊆ Γ such that Π �A; likewise for �1. We will
prove that Γ := {lk x ⊃ y; k ∈ N} and A := y ∨¬l⊥ have the required
properties.
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Suppose Γ �A would not hold so that there is an r -interpretation I such
that I(A) < inf{I(B) : B ∈ Γ }. From 1−π0(r ) ≤ max{I(y), 1−π0(r )} <
((r k)⊕ I(x))Å I(y)≤ 1 for all k ∈N, we obtain r > 0 and 1= π0(r ). By
(A), the resulting I(y)< ((r k)⊕ I(x))Å I(y) yields (r k)⊕ I(x)≤ I(y)< 1
for all k ∈N. This contradicts the fact that for all integer k > 1

r , we have
(r k)⊕ I(x) = 1. Hence we must have Γ �A.

Suppose Γ �1 A would not hold so that there is an r -interpretation I
such that I(lk x ⊃ y) = 1 for all k ∈N but max{I(y), I(¬l⊥)}< 1. Since
1> I(¬l⊥) = 1−π0(⊥), we have r > 0. By (A), I(lk x ⊃ y) = 1 yields
I(lk x)≤ I (y) so that (r k)⊕I(x) = I(lk x)≤ I (y)< 1 for all k ∈N, which
is absurd because r k ⊕ I(x) = 1 for all integer k > 1

r . Hence we must have
Γ �1 A.

Now, consider a finite Π ⊆ Γ so that there is K ∈ N such that Π ⊆
{lk x ⊃ y; k ≤K}. If one takes r := 1

K+2 and defines an r -interpretation by
I(x) := 0, I(y) := K+2

K+3 , we obtain I(y ∨¬l⊥) = K+2
K+3 < 1 and inf{I(B) : B ∈

Π} ≥ min{I(lk x ⊃ y) : k ≤ K} = min{(k 1
K+2 ⊕ 0) Å K+2

K+3 ; k ≤ K} = 1
since 0

K+2 <
1

K+2 <
2

K+2 < . . . < K
K+2 <

K+2
K+3 . Thus neither Π � A nor

Π �1 A, as required. ♦

§.. Remark. An important consequence of §.. is that the usual
‘algebraic-abstract’ way of proving completeness of some axiom system for
the propositional fragment cannot succeed because the associated algebra
of formulae would have to be compact, which it is not. §

We will come back to the propositional fragment in §..

§. Predicate logic

By a result of Horn [], see also §.., it is well-known that the valid
formulae inLl w. r. t. Gödel semantics are recursively enumerable. We will
prove that this is not the case for the valid prenex formulae in Ll w. r. t.
Gödel semantics. The method of this proof will follow Scarpellini’s ideas he
used in [] and that we have presented in §. Like Scarpellini, we define
a translation of formulae from classical predicate logic to Ll; this will
be done in §... Another important tool in the paper is Trakhtenbrot’s
theorem [].

We start with the preparation of some propositions we will use later.

§.. Definition. Let A∗ denote the result from replacing every atom
P ( t̄ ), except ⊥, by ¬¬P ( t̄ ) in a first-order formula A. §
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§.. Proposition. Let I be a Gödel interpretation for L , and form
I′ from I by changing the evaluation of every atom P (x) to I′(P )(x) :=
π0(I(P )(x)). Then I′ is a classical interpretation, and I′(A) = I(A∗) holds
for all formulae in L . In particular, if A and B are classically equivalent
formulae inL , then A∗ and B∗ are equivalent w. r. t. Gödel semantics. §

Proof. The interpretation of ⊥ is retained since I′(⊥) =π0(I(P )) =π0(0) =
0. Since π0(x) ∈ {0,1} for all x ∈R, induction on the formula complexity
yields that all formulae evaluate to 0 or to 1 under I′; thus I′ is classical.

By (B), we have I(P ∗) = I(¬¬P ) = π0(I(P )) = I′(P ) ∈ {0,1} for all
atoms P . Observe for the following that every classical interpretation is
also a Gödel interpretation. Suppose we have formulae A and B such
that I′(A) = I(A∗) and I′(B) = I(B∗). Then I′(A∨B) =max{I′(A), I′(B)}=
max{I(A∗), I′(B∗)}= I(A∗∨B∗) = I((A∨B)∗), I′(A∧B) =min{I′(A), I′(B)}=
min{I(A∗), I′(B∗)} = I(A∗ ∧ B∗) = I((A∧ B)∗), I′(A⊃ B) = I′(A) Å I′(B) =
I(A∗) Å I(B∗) = I(A∗ ⊃ B∗) = I((A ⊃ B)∗). Suppose we have I′(A(u)) =
I((A(u))∗) for all u ∈ |I |, then

I′(∀xA(x)) = infu∈|I | I
′(A(u)) = infu∈|I | I((A(u))

∗) = I(∀x(A(x))∗)
and

I′(∃xA(x)) = supu∈|I | I
′(A(u)) = supu∈|I | I((A(u))

∗) = I(∃x(A(x))∗).
The first part of the proposition now follows by induction on the formula
complexity.

For the second part, let I′′(A) = I′′(B) for all classical interpretations
I′′, and let I be a Gödel interpretation. By the above, there is a classical
interpretation I′ such that I′(A) = I(A∗) and I′(B) = I(B∗), but now I′(A) =
I′(B) yields I(A∗) = I(B∗), as claimed. ♦

In the following definition, the predicate symbol I is always used either
negated or double-negated. The double-negation translation of intuition-
istic logic works also here to simulate a classical behaviour of I . The purpose
of I will be to model an equivalence relation.

§.. Definition. Given a formula A in L , define the formula α(A) in
Ll recursively as follows. Let (Pk)k<K denote all the predicate symbols
that occur in A, and let R be a fresh unary predicate symbol and I a fresh
binary predicate symbol. For each k <K , define

Ek := ∀a1, b1, . . . ,an, bn.
((¬¬I (a1, b1)∧ . . .∧¬¬I (an, bn))⊃
⊃ (¬¬Pk(a1, . . . ,an)↔¬¬Pk(b1, . . . , bn)))

if Pk has some positive arity n, otherwise define Ek :=>.
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Let
C1 := ∀x¬¬I (x, x),
C2 := ∀x∀y(¬¬I (x, y)⊃¬¬I (y, x)),
C3 := ∀x∀y∀z((¬¬I (x, y)∧¬¬I (y, z))⊃¬¬I (x, z)),
C4 :=

∧

k<K Ek ,
C5 := ¬¬l⊥,
C6 := ∀x∀y(¬I (x, y)⊃ ((lR(x)⊃ R(y))∨ (lR(y)⊃ R(x)))).

Eventually, we define
α(A) := (C1 ∧C2 ∧C3 ∧C4 ∧C5 ∧C6)⊃ (A∗ ∨∃xR(x)). §

§.. Lemma. Let A be a formula inL without free variables. Then the
following conditions are equivalent:

(a) There is r ∈ [0,1] and a Gödel r -interpretation I
such that I(α(A))< 1.

(b) There is a classical interpretation I′ such that I′(A) = 0 and
|I′| is finite. §

Proof. We will use the notation from §.. in this proof.
(b)→(a): Suppose I′ is a classical interpretation such that I′(A) = 0 and

|I′| 6= ; is finite. Let d0, . . . , dN be an enumeration of |I′|. Take r := 1
N+2

and define an r -interpretation I by taking the same domain as I′ and by
I(I )(x, y) := 1 if x = y, and I(I )(x, y) := 0 if x 6= y, I(R)(di ) := i

N+1 , and
I(Pk)(x) := I′(Pk)(x) ∈ {0,1} for all predicate symbols Pk that occur in A.
It remains to show I(α(A))< 1.

We have π0(I(Pk)(x)) =π0(I
′(Pk)(x)) = I′(Pk)(x) for all k <K , neither

R nor I occurs in A, and A is ring-free. Thus, it follows I(A∗) = I′(A) = 0
by §... We obtain I(∃xR(x)) =max{ 0

N+1 , 1
N+1 , . . . , N

N+1}=
N

N+1 , I(C1) =
I(∀x¬¬I (x, x)) = inf{π0(I (u, u)) : u ∈ |I |} = 1 and in a similar manner
also 1 = I(C2) = I(C3) = I(C4) = I(C5). Since for all di , d j ∈ |I | with

I(I )(di , d j ) = 0 we have |I(R)(di )−I(R)(d j )|=
|i− j |

N ≥ 1
N >

1
N+1 = r , we see

I(¬I (u, v)⊃ ((lR(u)⊃ R(v))∨ (lR(v)⊃ R(u)))) = 1 for all u, v ∈ |I| by
(B). Thus I(C6) = 1 and hence I(α(A)) = 1Åmax{0, N

N+1}=
N

N+1 < 1.
(a)→(b): Suppose r ∈ [0,1] and I is a Gödel r -interpretation with

I(α(A)) < 1 so that max{I(A∗), I(∃xR(x))} < min1≤i≤6 I(Ci ) by (A).
Since every atom is put under double negation in A∗ and in every Ci ,
1≤ i ≤ 5, we see that I(A∗) and I(Ci ), 1≤ i ≤ 5, can take only the values 0
or 1. Thus I(A∗) = 0 and 1= I(Ci ) whenever 1≤ i ≤ 5. We obtain r > 0
from I(C5) = 1.

For later use, we prove for all a, b ∈ |I| that I(I )(a, b ) = 0 implies
|I(R)(a)− I(R)(b )| ≥ r .
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Suppose not, then there are a, b ∈ |I| such that I(I )(a, b ) = 0 but
|I(R)(a)− I(R)(b )| < r .

We apply the above convention that domain members in formulae stand
for their associated constants. By definition of C6, we have I(C6) ≤
I(¬I (a, b )⊃ ((lR(a)⊃ R(b ))∨ (lR(b )⊃ R(a)))). By (B), we conclude
from I(I )(a, b ) = 0 and |I(R)(a)−I(R)(b )|< r that I(¬I (a, b )⊃ ((lR(a)⊃
R(b ))∨ (lR(b ) ⊃ R(a)))) = 1 Å max{I(R)(a), I(R)(b )} = max{I(R)(a),
I(R)(b )} ≤ sup{I(R)(u) : u ∈ |I|} = I(∃xR(x)) ≤ max{I(A∗), I(∃xR(x))}
< min1≤i≤6 I(Ci ) ≤ I(C6), which is a contradiction.

For all a, b ∈ |I|, put a ∼ b :⇔ I(I )(a, b ) > 0. This is an equivalence
relation but we only prove transitivity here as symmetry and reflexivity can
be similarly dealt with by I(C1) = I(C2) = 1. Suppose we had a ∼ b ∼ c but
a 6∼ c so that I(I )(a, b )> 0, I(I )(b , c)> 0 and I(I )(a, c) = 0. We conclude
1 = I(C3) ≤ I((¬¬I (a, b )∧¬¬I (b , c))⊃¬¬I (a, c)) = max{π0(I(I )(a, b )),
π0(I(I )(b , c))} Å π0(I(I )(a, c)) = max{1,1} Å 0 = 0, which is absurd.

We will now prove that there are only finitely many equivalence classes
w. r. t. ∼. Suppose not, then we can find (xi )i∈N such that xi ∼ x j if and
only if i = j . For all i 6= j , we have I(I )(xi , x j ) = 0 by definition of ∼, and
|I(R)(xi )− I(R)(x j )| ≥ r by the above. Due to {I(R)(xi ); i ∈ N} ⊆ [0,1],
this would be only possible if r = 0 but this contradicts the earlier proved
fact that r > 0.

Given equivalent elements a1 ∼ b1, . . . , an ∼ bn in |I|, we will prove
π0(I(Pk)(a1, . . . ,an)) = π0(I(Pk)(b1, . . . , bn))

for later use. By assumption, we have I(I )(ai , bi )> 0 for all i , thus
I(¬¬I (ai , bi )) = π0(I(I )(ai , bi )) = 1.

By I(C4) = 1 and (B), we see
1 = I(¬¬Pk(a1, . . . ,an)↔¬¬Pk(b1, . . . , bn)) =
= π0(I(Pk)(a1, . . . ,an)) ./ π0(I(Pk)(b1, . . . , bn)).

The claim now follows from (A).
The property just proved allows us to define a classical interpretation

I′ as follows: Let its domain |I′| consist of the finitely many equivalence
classes w. r. t. ∼ and put I′(Pk)([x1], . . . ,[xn]) := π0(I(Pk)(x1, . . . , xn)) for
any predicate symbol Pk with some arity n; here [xi] denotes the equival-
ence class containing xi . Interpret any free variable v by I′(v) := [I(v)].
We leave the easy task to the reader to repeat the proof of §.. in the
situation of I and I′ to obtain that I′(B([x1], . . . ,[xn])) = I(B∗(x1, . . . , xn))
holds whenever x1, . . . , xn ∈ |I| and B(b1, . . . , bn) is a formula in L with
free variables b1, . . . , bn. In particular, it follows I′(A) = I(A∗) = 0, which
completes the proof. ♦
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By the tools proved above, we can already show that the valid formulae
w. r. t. Gödel semantics in Ll is not r. e.: By §.., a formula A in L
without free variables is () classically valid in all finite domains if and only
if () α(A) is valid w.r.t. Gödel semantics in Ll. The statement follows
since the formulae obeying () are not r. e. by Trakhtenbrot’s theorem [].
We proceed to sharpen the result to the prenex fragment ofLl.

§.. Proposition. Let a0, b0, . . . , an, bn, c0, d0, . . . , cm, dm be lists of
bound variables, none of them necessarily of positive length, such that their
concatenation lists each variable only once. Let

K =K(a0, b0, . . . ,an, bn)
and

L= L(c0, d0, . . . , cm, dm)
be semiformulae such that the indicated variables comprise all occurrences
of bound variables not bound by a quantifier; the formulae are allowed
to contain all free variables as well as bound variables that are bound by
a quantifier. Let U and V be two fresh unary predicate symbols. Then,
w. r. t. Gödel semantics,

() (∃a0∀b0 . . .∃an∀bnK)⊃ ∃c0∀d0 . . .∃cm∀dmL is valid
if and only if

() ∀a0∃b0 . . .∀an∃bn∃c0∀d0 . . .∃cm∀dm
((K ⊃U )∨ (U ⊃V )∨ (V ⊃ L)) is valid. §

Proof. Validity and interpretations will always relate to Gödel semantics
in this proof. The symbols ai , bi , ci , di will, by abuse of language, also
represent domain elements u ∈ |I|; we remind the reader that an occurrence
of u ∈ |I| in a formula stands for a fresh constant u to be interpreted as u.
The proof merely unwinds the definitions and uses elementary properties
of R. We split it into several parts because of its length.

(a) Definition: If c is a list of bound variables c1, . . . , cn, let ∀c and ∃c
denote ∀c1 . . .∀cn and ∃c1 . . .∃cn. If c is a list of |I|-elements c1, . . . , cn,
let infc t and supc t denote infc1

. . . infcn
t and supc1

. . . supcn
t ; if c is the

empty list and the term t takes only values in [0,1], we put infc t := 1 and
supc t := 0.

(b) It is well-known that for every set X , every function f : X → [0,1] and
every d ∈ [0,1], the following equivalences hold:
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() d < infx f (x)
⇔∃C ∈ [0,1]. ∀x ∈X . d <C < f (x)

() d < supx f (x)
⇔∃C ∈ [0,1]. ∃x ∈X . d <C < f (x)
⇔∃x ∈X . d < f (x)

() infx f (x)< d
⇔∃C ∈ [0,1]. ∃x ∈X . f (x)<C < d
⇔∃x ∈X . f (x)< d

() supx f (x)< d
⇔∃C ∈ [0,1]. ∀x ∈X . f (x)<C < d

(c) Under the conditions stated in the proposition, we claim, for every
e ∈ [0,1] and every interpretation I, that

e < I(∃a0∀b0 . . .∃an∀bnK(a0, b0, . . . ,an, bn))
if and only if
(∗1): ∃r ∈R ∃a0∀b0 . . .∃an∀bn e < r < I(K(a0, b0, . . . ,an, bn)),
where ai , bi , ci , di ∈ |I| in the latter condition.

Proof: Clearly,
e < I(∃a0∀b0 . . .∃an∀bnK)

is equivalent to
e < supa0

infb0
. . . supan

infbn
I(K).

After 2(n+ 1) applications of (b), we see that this is equivalent to
∃a0∃r0∀b0(e < r0 ∧

∧∃a1∃r1∀b1(r0 < r1 ∧
∧∃a2∃r2∀b2(r1 < r2 ∧

. . .
∧∃an−1∃rn−1∀bn−1(rn−2 < rn−1 ∧

∧∃an∃rn∀bn(rn−1 < rn < I(K))) . . .)).
By classical quantifier shift laws, we obtain after swapping two existential
quantifiers that this is equivalent to
(∗2): ∃r0∃a0∀b0∃a1∃r1∀b1 . . .∃an∃rn∀bn.

e < r0 < r1 < . . .< rn < I(K).
This clearly implies (∗1) by taking r := r0. Conversely, if (∗1) holds,
we have e < r and thus we can choose constants r0, . . . , rn such that
e < r0 < r1 < . . .< rn < r ; this implies (∗2). This completes the proof of
the claim.

(d) Under the conditions stated in the proposition, we claim, for every
e ∈ [0,1] and every interpretation I, that
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I(∃c0∀d0 . . .∃cm∀dm L(c0, d0, . . . , cm, dm))< e
if and only if

∃r ∈R ∀c0∃d0 . . .∀cm∃dm I(L(c0, d0, . . . , cm, dm))< r < e ,
where ai , bi , ci , di ∈ |I| in the latter condition. (Observe that the quantifiers
are now dualised.) The proof is completely analogous to the proof of (c).

(e) For every e ∈ [0,1], every interpretation I and all atoms A, B , C , D , we
claim that we have

I((A⊃ B)∨ (B ⊃C )∨ (C ⊃D))< e
if and only if

I(D)< I(C )< I(B)< I(A)∧ I(B)< e .

Proof: By definition, we have I((A⊃ B)∨(B ⊃C )∨(C ⊃D)) =max{I(A)Å
I(B), I(B) Å I(C ), I(C ) Å I(D)}. If I(D) < I(C ) < I(B) < I(A) ∧ I(B) < e ,
then I((A⊃ B)∨ (B ⊃C )∨ (C ⊃D)) =max{I(B), I(C ), I(D)}= I(B)< e ,
as required. Conversely, suppose that I((A⊃ B)∨ (B ⊃ C )∨ (C ⊃ D))<
e ≤ 1. Thus I(C ⊃D)< e ≤ 1, I(B ⊃C )< e ≤ 1 and I(B)≤ I(A)Å I(B) =
I(A ⊃ B) < e ≤ 1. Hence I(B) < e and, by (A), we find I(B) < I(A),
I(C )< I(B) and I(D)< I(C ), as claimed. This completes the proof.

(f ) We can now prove the proposition. By (A), condition () of the pro-
position is false if and only if there is some interpretation I such that

I(∃c0∀d0 . . .∃cm∀dmL)< I(∃a0∀b0 . . .∃an∀bnK),
i. e. if and only if

∃e ∈ [0,1]. I(∃c0∀d0 . . .∃cm∀dmL)< e < I(∃a0∀b0 . . .∃an∀bnK).
By (c) and (d), this is the case if and only if

∃e ∈ [0,1]. ((∃s ∈ R ∀c0∃d0 . . .∀cm∃dm I(L(c0, d0, . . . , cm, dm)) <
s < e) ∧ (∃r ∈R ∃a0∀b0 . . .∃an∀bn e < r < I(K(a0, b0, . . . ,an, bn)))).
After shifting quantifiers and eliminating e , it follows that this is in turn
equivalent to
(∗3): ∃r, s ∈R ∃a0∀b0 . . .∃an∀bn∀c0∃d0 . . .∀cm∃dm.

I(L)< s < r < I(K).
Condition () of the proposition is false if and only if there is some inter-
pretation I′ such that

I′(∀a0∃b0 . . .∀an∃bn∃c0∀d0 . . .∃cm∀dm.
((K ⊃U )∨ (U ⊃V )∨ (V ⊃ L)))< 1.

An instance of (d) shows that this is equivalent to
∃e ∈R ∃a0∀b0 . . .∃an∀bn∀c0∃d0 . . .∀cm∃dm.

I′((K ⊃U )∨ (U ⊃V )∨ (V ⊃ L))< e < 1.
By (e), this is equivalent to
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(∗4): ∃e ∈R ∃a0∀b0 . . .∃an∀bn∀c0∃d0 . . .∀cm∃dm.
I′(L)< I′(V )< I′(U )< I′(K)∧ I′(U )< e < 1.

Observe that (∗4) implies (∗3) because we can put s := I′(V ), r := I′(U )
and I := I′. Conversely, suppose now that (∗3) holds. In particular, we have
s < r < 1 so that r < e < 1 for e := r+1

2 . Since U and V do not occur in
K and L, we can define an interpretation I′ that has the same universe as I
and that agrees with I on all atoms except U and V , where I′(U ) := r and
I′(V ) := s . This implies (∗4) as we have I′(U )< e < 1 and as every formula
that neither contains U nor V receives the same value under I and I′.

This proves the equivalence. ♦

§.. Lemma. Let A be a formula in L without free variables. Then
there is a recursive translation β fromL toLl such that β(A) is prenex
for all A inL and such that, w. r. t. Gödel semantics, α(A) is valid if and
only if β(A) is valid. §

Proof. We transform A into a classically equivalent prenex formula K by
applying all classically valid quantifier shift rules. Thus K∗ has the form

Q1w1 . . .QM wM U (w1, . . . , wM ),
where Qi ∈ {∀,∃}, the wi are bound variables and U is quantifier free.
We take the symbols R, I , C1, . . . , C6 and (Pk)k<K from §... Let N be
the maximum of 1 and of all arities of the Pk . Let F denote the following
formula

∀x, y, z,a1, b1, . . . ,aN , bN .
((¬¬I (x, x))∧
∧ (¬¬I (x, y)⊃¬¬I (y, x))∧
∧ ((¬¬I (x, y)∧¬¬I (y, z))⊃¬¬I (x, z))∧
∧
∧

k<K (¬¬I (a1, b1)∧ . . .∧¬¬I (an, bn))⊃
⊃ (¬¬Pk(a1, . . . ,an)↔¬¬Pk(b1, . . . , bn))∧

∧¬¬l⊥∧
∧ (¬I (x, y)⊃ ((lR(x)⊃ R(y))∨ (lR(y)⊃ R(x))))),

and put
D := F ⊃ ∃xQ1w1 . . .QM wM (U (w1, . . . , wM )∨R(x)).

Out next step is to prove I(D) = I(α(A)) for every interpretation I ofLl. It
is easy to check that all quantifier shift rules for ∧ and ∨ are valid in Gödel
logics. (However, some quantifier shift rules fail for ⊃, but we do not need
to shift ⊃.) In particular, we find

I(∃xQ1w1 . . .QM wM (U (w1, . . . , wM )∨R(x))) =
= I(∃x(Q1w1 . . .QM wM U (w1, . . . , wM ))∨R(x)) =
= I((Q1w1 . . .QM wM U (w1, . . . , wM ))∨∃xR(x)) =
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= I(K∗ ∨∃xR(x)).
Since A and K are classically equivalent, we have I(A∗) = I(K∗) by §...
Since we clearly have I(F ) = I(C1∧C2∧C3∧C4∧C5∧C6), the above equa-
tions yield I(D) = I(α(A)), as claimed. Therefore, w. r. t. Gödel semantics,
D is valid if and only if α(A) is valid.

Since D has the form that is required in condition () of §.., we can
define β(A) to be the corresponding formula instance in condition ();
thus β(A) is valid w. r. t. Gödel semantics if and only if D is valid, i. e. if
and only if α(A) is valid. This completes the proof since all steps in the
construction of β were effective. ♦

§.. Theorem. The set of valid prenex formulae w. r. t. Gödel semantics
inLl is not r. e. §

Proof. By §.. and §.., the following conditions are equivalent for
any formula A in L without free variables: () A is classically valid in all
finite domains, () α(A) is valid w. r. t. Gödel semantics inLl, () β(A) is
valid w. r. t. Gödel semantics inLl. By Trakhtenbrot’s theorem [], the
formulae obeying () are not r. e. Hence the theorem follows. ♦

§.. Remark. As the above construction involves a binary predicate I ,
this method of proof does not imply a statement on the decidability of
validity in the monadic fragment of Ll. This problem is also open for
monadic Łukasiewicz logic. As we have transferred Scarpellini’s method
from Łukasiewicz logic to Ll, we also expect a connection between the
problems for their monadic fragments.—Another open question is the exact
complexity class in the arithmetical hierarchy of the validity problem for
prenex formulae: We think that it has the same complexity as in Łukasiewicz
logic, i. e. Π2-complete. §

§. Propositional proof systems

First, we introduce the proof system whose completeness w.r.t. Gödel
semantics forL p

l
we will establish. The method of proof will be described

in detail in §...

§.. Definition (Proof systems). Let G be the proof system resulting
from extending IPL by the linearity axiom

(LIN) (A⊃ B)∨ (B ⊃A).
Let H be the proof system resulting from extending IL by (LIN) and by the
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quantifier shift
(QS) ∀x(B ∨A(x))⊃ (B ∨∀xA(x)),

where x is not free in B . §

§.. Proposition. G is sound and complete for L p w. r. t. Gödel se-
mantics. H is sound and complete forL w. r. t. Gödel semantics. §

Proof. The first theorem is due to Dummett [], the latter is due to Horn
[]. Indeed, from Dummett’s paper one can easily read off an algorithm
that either yields a G-proof or a countermodel for a given formula. ♦

§.. Proposition. Let E[·] denote an L p-context, and let A, B , C be
formulae inL p. Then G proves the following:

(G) A≺>
(G) (⊥≺A)∨ (⊥↔A)
(G) (A≺ B)∨ (A↔ B)∨ (B ≺A)
(G) (A↔ B)⊃ (E[A]↔ E[B])
(G) (A�B)⊃ (E[A∧B]↔ E[A]) for � ∈ {≺,↔}
(G) (A�B)⊃ (E[A∨B]↔ E[B]) for � ∈ {≺,↔}
(G) (A�B)⊃ (E[A⊃ B]↔ E[>]) for � ∈ {≺,↔}
(G) (A≺ B)⊃ (E[B ⊃A]↔ E[A])
(G) E[A�A]↔ E[A] for � ∈ {∧,∨}

(G) E[A�B]↔ E[B �A] for � ∈ {∧,∨,↔}
(G) E[(A�B)�C ]↔ E[A� (B �C )] for � ∈ {∧,∨}
(G) E[A� (B ◊C )]↔ E[(A�B) ◊ (A�C )] for �,◊ ∈ {∧,∨}
(G) (A≺A)↔ ((A↔A)∧ (A↔>))
(G) A⊃A
(G) ((A≺ B)∧ (B �A))↔ ((A↔ B)∧ (B↔>)) for � ∈ {⊃,≺,↔}
(G) ((A�B)∧(B ◊C )∧(C ≺A))↔ ((A↔ B)∧(B↔C )∧(C ↔>))

for �,◊ ∈ {↔,≺}
(G) E[>∨A]↔ E[>]
(G) E[⊥∨A]↔ E[A]
(G) E[⊥∧A]↔ E[⊥]
(G) E[A≺⊥]↔ E[⊥]
(G) (>≺A)↔ (>↔A)
(G) (D ∨ E)↔ (((A↔A)∧D)∨ E)
(G) (((A↔ B)∧D)∨ E)↔ (((A↔ B)∧ (B↔A)∧D)∨ E)
(G) (((A≺⊥)∧D)∨ E)↔ E
(G) (A⊃ (B↔C ))⊃ ((A∧ (B ≺C ))↔ (A∧ (B↔C )∧ (C ↔>)))
(G) (A⊃ (B ≺C ))⊃ ((A∧ (C ≺ B))↔ (A∧ (B↔C )∧ (C ↔>)))
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(G) (A⊃ (B ≺C ))⊃
⊃ ((A∧ (B↔C )∧ (C ≺>))↔ (A∧ (B↔C )∧ (C ↔>)))

(G) (B ⊃C )⊃ ((C ≺ B)↔ ((B↔C )∧ (C ↔>)))

Consider the proof system G in the languageL p. Then:

(G) The deduction theorem holds for G.
(G) The rule A⊃B B⊃C

A⊃C is admissible. §

Proof. The reader easily verifies the validity of the claims (G)–(G). Then
§.. establishes (effective) provability. For (G), see also [, Lemma ] or
[, Proposition .].

For a proof of (G) see, e. g., [, p. ]; this can easily be done by
induction on the length of the proof. For (G), the reader readily checks
the validity of (A⊃ B) ⊃ (B ⊃ C ) ⊃ (A⊃ C ), applies §.. to obtain a
proof thereof, and then uses (MP) twice. ♦

§.. Definition. Let Gl denote the proof system resulting from extend-
ing G by the following axiom schemata:

(R) (⊥≺l⊥)⊃ (A≺lA),
(R) (⊥↔l⊥)⊃ (A↔lA),
(R) l(A⊃ B)↔ (lA⊃lB),

where A and B are any formulae fromL p
l

. If A is Gl-derivable, we write
Gl `A. §

For our purposes, it does not matter if G is taken to be Hájek’s Basic
Logic plus Idempotency, or if it is Intuitionistic Logic plus Linearity. We
will consider mere provability, but not proof-theoretic properties like the
length of a proof.

While the next lemma establishes the soundness of Gl, the remainder of
this section will be devoted to its completeness.

§.. Lemma. Gl is sound w. r. t. Gödel semantics inL p
l

. §

Proof. This routine proof runs by induction on formula complexity. Clearly,
allL p

l
-instances of (MP), (LIN) and (IPL)–(IPL) are sound, and (R) is

established by (B), (A) and (B).
In order to prove (R), suppose it was not valid so that I((⊥ ≺ l⊥) ⊃

(A ≺ lA)) < 1 for some r -interpretation I, r ∈ [0,1]. From (A), we
obtain I(A≺ lA) < I(⊥ ≺ l⊥). We have r > 0 for otherwise 0 ≤ I(A≺
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lA) < I(⊥ ≺ l⊥) = 0 Ã (r ⊕ 0) = 0 Ã r = 0 Ã 0 = 0. We must have
I(A)< 1 for otherwise 1= 1Ã 1= 1Ã (r ⊕ 1) = I(A)Ã (r ⊕ I(A)) = I(A≺
lA)< I(⊥≺l⊥), which was absurd. Together with r > 0, we conclude
I(A)< r ⊕ I(A), thus 1= I(A)Ã (r ⊕ I(A)) = I(A≺lA)< I(⊥≺l⊥)≤ 1,
which is absurd. Hence (R) holds.

In order to prove (R), suppose it was not valid so that I((⊥↔l⊥)⊃
(A↔ lA)) < 1 for some r -interpretation I, r ∈ [0,1]. From (A), we
obtain I(A↔ lA) < I(⊥↔ l⊥). We must have 0 = r for otherwise
0 ≤ I(A↔ lA) < I(⊥↔ l⊥) = 0 ./ (r ⊕ 0) = 0 ./ r = 0. But now
1 = I(A) ./ I(A) = I(A) ./ (r ⊕ I(A)) = I(A↔ lA) < I(⊥↔ l⊥) ≤ 1,
which is absurd. Hence (R) holds. ♦

§.. Remark. When we will need to give a formal derivation of a for-
mula in a proof system, say, e. g. in Gl, we will often only indicate how
to construct sub-derivations instead of writing them down in full detail:
Usually, we will merely state the provability of anL p-formula A in G and
leave to the reader the inexpensive task of checking its validity in Gödel
semantics and of applying §.. to effectively obtain a G-proof Π of A.
Since the language, the axiom schemata and the rule of G are contained
in the ones of Gl, it is readily proved that a substitution of propositional
variables inΠ by formulae inL p

l
is a Gl-derivation (that neither uses (R),

(R) nor (R)), thus, any L p
l

-instance of A is Gl-provable. We will use
this substitutivity property often tacitly in the remainder. §

The next proposition is already an example of the technique in the above
remark.

§.. Proposition. The rule A⊃B B⊃C
A⊃C is admissible in Gl. §

Proof. Since G proves (A⊃ B)⊃ ((B ⊃ C )⊃ (A⊃ C )), also Gl proves it
for all formulae A, B , C inL p

l
. Using (MP) twice for the given proofs of

A⊃ B and B ⊃C , we obtain A⊃C as claimed. ♦

We will prove two well-known variants of the deduction theorem in the
next paragraph. However, we will not use it in the sequel because we like to
generalise our results to the situation of §.., where it does not hold.

§.. Proposition. (a) Let X ∪{A} be a set of formulae inL p
l

; here we
allow X to be infinite. Then Gl+X+A` B if and only if Gl+X `A⊃ B .
In fact, a proof of A⊃ B can be constructed from a proof of B in Gl+X+A,
and also vice versa.
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(b) The deduction theorem holds for Gl: Suppose X ∪{A,B0, . . . ,BN−1}
is a set of formulae inL p

l
, and let

∧

B stand for the conjunction of the Bi ,
with an arbitrary parenthesisation. Then Gl+X +B0+ . . .+BN−1 `A if
and only if Gl+X ` (

∧

B)⊃A. §

Proof. (a) Let Gl+X `A⊃ B , then, by monotonicity, Gl+X+A`A⊃ B .
Since we clearly have Gl+X +A` A, we conclude Gl+X +A` B by
(MP).

The converse direction is showed by induction on length on derivation.
To establish the induction base, we need to show Gl+X `A⊃ B if B has
an Gl+X +A-derivation of length 1, i. e. if () A= B or () B ∈X or ()
B is axiom of Gl. In case (), we use (G) to obtain Gl ` B ⊃ B , thus
Gl+X ` B ⊃ B , as required. In cases () and (), we have Gl+X ` B so
that Gl+X `A⊃ B by (IPL) and (MP).

Let Π be a Gl+X +A-derivation of B of length n and suppose that we
have Gl+X `A⊃ B ′ whenever B ′ has a Gl+X +A-derivation of length
< n. If (MP) is not the last line of Π , then B has in fact a Gl+X +A-
derivation of length 1 since Gl+X +A does not have a rule other than
(MP). The induction base then yields Gl +X ` A ⊃ B , as desired. If
(MP) is the last line of Π , Π contains subderivations Gl+X +A`C and
Gl+X +A`C ⊃ B for some C . Since both subderivations have length
< n we can construct proofs Gl+X `A⊃C and Gl+X `A⊃ (C ⊃ B)
by the induction hypotheses. By (IPL), we find Gl +X ` A ⊃ B , as
required. This completes the proof of (a).

(b) This follows from (a) and from the fact that G ` (B0 ⊃ B1 ⊃ . . . ⊃
BN−1 ⊃A)↔ ((

∧

B)⊃A), for any parenthesisation of
∧

B . ♦

Next, we will give some background information on the proof of com-
pleteness.

§.. Remark. As we have remarked in §.., the completeness of
Gl cannot be shown in a typically ‘algebraic’ way; however, it would be
elucidating—for all Gödel logics, not only for Gl—to find a method that
is as close as possible to the ‘algebraic’ one. Therefore we had to go back
to a refined method of Dummett’s original idea of evaluating the formula:
Whether a formula receives the value 1 under an interpretation depends only
on the order of the values that are assigned to the propositional variables. As
a formula contains only a finite number of variables, there are only finitely
many orderings we need to consider. These orderings are called chains.
Given a fixed chain, it is clear how to evaluate a formula semantically: We
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repeatedly simplify some (in principle) innermost formula to a variable,
until we are left with >, ⊥, or a variable. This is, of course, only possible
because the equivalence scheme for formula contexts holds. Each step in
this semantical evaluation can be turned into a proof of an implication
where the antecedent is a formula expressing the chain and the consequent
is the equivalence of the previous and the current formula in the loop. If
the formula A reduces to >, we join the subproofs of A under all chains by
a repeated application of the linearity axiom into a proof of A. If A reduces
to ⊥ or a propositional variable v (and where v is not equal to > w. r. t.
the given ordering), it is easy to find an interpretation such that A receives
a value less than 1; the formula A thus cannot be valid. Although it is
clear that propositional Gödel logics is decidable (validity and satisfiability
both can be translated, e. g., to formulae in the decidable language of the
algebraically closed field R), the above method provides a proof-theoretic
way of determining validity (and also of satisfiability).

The above procedure can be understood as a generalisation of the effective
method in classical propositional logic where a formula is evaluated under
all 2n interpretations of n variables to establish validity (or satisfiability).

The possibility of testing the validity of a formula in Gödel logic by
evaluating a formula under only finitely many chains is of proof-theoretical
significance: It enables, e. g., interpolation, see [].

For Gl, the proof of completeness is more involved: First, we have to
prove the properties we mentioned in the paragraph about Gödel logics
without l: In §.., we will prove, e. g., the equivalence scheme that
allows us to substitute formulae ‘in depth’. (This feature is remarkable
because only a weaker version holds for t-norm based logics.) We will prove
also in §.. that l commutes with all binary connectives so that we are
able to find a provably equivalent normal form of any formula where l

occurs only in front of variables and of ⊥. This allows us in some steps of
the proof to treat these ring-powers li v as if they were indexed variables
v(i). A case where this approach alone works, is presented in [].

However, there are two important differences to Gödel logics without l:
() Not all chains over v(i) need to be considered, e. g., if v(i) precedes w( j )
in the chain, then w( j+1) cannot precede v(i+1) (in particular, equality in
the ordering is possible). If A is a formula that is not valid, say, it reduces
to a variable v under a chain C , we need to build a ‘countermodel’ I of
v under C , i. e., such that I(C ⊃ v) < 1. () The construction of this
‘countermodel’ is technically difficult and takes much more space than in
the situation of Gödel logics without l. However, the geometric intuition
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behind it is quite simple. Let n be the maximal nesting level of l in A. (In
particular, n is bounded by the length of A.) Shifted copies of {0, . . . , n}
in R have to be arranged such that the shifted copies of 0 fulfil the same
ordering as the variables in C . This is done essentially in §... A problem
here is that the ordering in C does not necessarily force a unique model,
which would have allowed just to copy the variable ordering from C to the
countermodel. In fact, there is some freedom in arranging the variables
and so some effort has to be put into this construction; still, the copies can
be arranged sequentially by stepping through the ring powers in C from
left to right with a certain anticipation to the next ring power v(i+1) when
working at v(i). Finally, in §.., we will scale these shifted copies by a
factor that corresponds to r , i. e. the value that l adds, and then we need
to cut off all points in R that exceed a certain value that corresponds to
1 in the truth-value set of the countermodel. This cutting off is typical
for Gödel logics in contrast to, say, Łukasiewicz logics, where—roughly
said—all the constructions have to be done inside of [0,1]. The lifting
lemma and the lack of the expressibility of4 suggest that Gödel logics is
not capable of exactly localising the truth value 1. In the proof of §..,
one can see that the choice of r and of this cutting point is to some extent
arbitrary. §

§.. Proposition. Let E[·] denote anL p
l

-context, and let A, B , C be
formulae inL p

l
. Then Gl proves the following formulae:

(S) A⊃lA
(S) l(A�B)↔ (lA�lB) for � ∈ {≺,∧,∨,↔}
(S) (A↔ B)⊃ (E[A]↔ E[B]) §

Proof. (S): Since G proves ((⊥≺X )⊃ (Y ≺ Z))⊃ (((⊥↔X )⊃ (Y ↔
Z)) ⊃ (Y ⊃ Z)), Gl proves ((⊥ ≺ l⊥) ⊃ (A≺ lA)) ⊃ (((⊥↔ l⊥) ⊃
(A↔ lA)) ⊃ (A⊃ lA)). From (MP) together with (R) and (R), we
obtain (S).

(S)(≺): Due to (R), we have Gl ` l((B ⊃ A)⊃ B)↔ (l(B ⊃ A)⊃
lB) and Gl ` l(B ⊃ A)↔ (lB ⊃ lA). Since G proves (C ↔ (D ⊃
E)) ⊃ (D ↔ F ) ⊃ (C ↔ (F ⊃ E)), it follows Gl ` l((B ⊃ A) ⊃ B)↔
((lB ⊃lA)⊃lB), i. e. (S).

(S)(∧): G proves
�

((C ∧ D) ⊃ C ) ⊃ P
�

⊃
�

((E ∧ F ) ⊃ F ) ⊃ Q
�

⊃
�

(G ⊃ (H ⊃ (G ∧H ))) ⊃ R
�

⊃
�

P ↔ (K ⊃ N )
�

⊃
�

Q ↔ (K ⊃ M )
�

⊃
�

R ↔ (N ⊃ S)
�

⊃
�

S ↔ (M ⊃ K)
�

⊃
�

K ↔ (N ∧ M )
�

. We apply
(MP) to an appropriate instance of this formula and the (S)-instances
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((A∧ B) ⊃ A) ⊃ l((A∧ B) ⊃ A), ((A∧ B) ⊃ B) ⊃ l((A∧ B) ⊃ B), (A⊃
(B ⊃ (A∧B)))⊃l(A⊃ (B ⊃ (A∧B))) and the (R)-instances l((A∧B)⊃
A)↔ (l(A∧B)⊃lA), l((A∧B)⊃ B)↔ (l(A∧B)⊃lB), l(A⊃ (B ⊃
(A∧B)))↔ (lA⊃l(B ⊃ (A∧B))), l(B ⊃ (A∧B))↔ (lB ⊃l(A∧B))
to obtain l(A∧B)↔ (lA∧lB).

(S)(∨): G proves
�

((U ∨V ) ⊃ V ) ⊃ P
�

⊃
�

((U ∨V ) ⊃ U ) ⊃ Q
�

⊃
�

(C ⊃ (C ∨D))⊃ R
�

⊃
�

(E ⊃ (E∨F ))⊃ S
�

⊃
�

P ↔ (G ⊃ E)
�

⊃
�

Q↔
(G ⊃ F )

�

⊃
�

R↔ (E ⊃ G)
�

⊃
�

S ↔ (F ⊃ G)
�

⊃
�

G↔ (E ∨ F )
�

. We
apply (MP) to an appropriate instance of this formula and the (S)-instances
((A∨B)⊃A)⊃l((A∨B)⊃A), ((A∨B)⊃ B)⊃l((A∨B)⊃ B), (A⊃ (A∨
B))⊃l(A⊃ (A∨B)), (B ⊃ (A∨B))⊃l(B ⊃ (A∨B)), the (R)-instance
l((A∨B)⊃A)↔ (l(A∨B)⊃lA), l((A∨B)⊃ B)↔ (l(A∨B)⊃lB),
l(A⊃ (A∨B))↔ (lA⊃l(A∨B)), l(B ⊃ (A∨B))↔ (lB ⊃l(A∨B))
to obtain l(A∨B)↔ (lA∨lB).

(S)(↔): G proves
�

G↔ (E ∧ F )
�

⊃
�

E↔ (C ⊃D)
�

⊃
�

F ↔ (D ⊃
C )
�

⊃
�

G↔ (C ↔ D)
�

. We apply (MP) to an appropriate instance of
this formula and the (S)(∧)-instance l((A⊃ B)∧ (B ⊃ A))↔ (l(A⊃
B) ∧l(B ⊃ A)) and the (R)-instances l(A ⊃ B)↔ (lA ⊃ lB) and
l(B ⊃ A)↔ (lB ⊃ lA) to obtain l((A ⊃ B) ∧ (B ⊃ A))↔ ((lA ⊃
lB)∧ (lB ⊃lA)), i. e. l(A↔ B)↔ (lA↔lB) as required.

For later use, apply (IPL) to the last formula to obtain l(A↔ B) ⊃
(lA↔ lB) so that, from the (S)-instance (A↔ B) ⊃ l(A↔ B), we
now see Gl proves (A↔ B)⊃ (lA↔lB).

(S) is proved by induction on the formula complexity of E[·]: Clearly,
Gl proves (A↔ B) ⊃ (A↔ B) and (A↔ B) ⊃ (C ↔ C ) since G
does. If a Gl-proof of (A↔ B)⊃ (E[A]↔ E[B]) is given, we use Gl `
(E[A]↔ E[B]) ⊃ (lE[A]↔ lE[B]) from the preceding remark and
conclude Gl ` (A↔ B) ⊃ (lE[A]↔ lE[B]) as required. Given Gl-
proofs of (A↔ B) ⊃ (E[A]↔ E[B]) and (A↔ B) ⊃ (F [A]↔ F [B]),
it is easy to obtain proofs of (A↔ B)⊃ ((E[A]�F [A])↔ (E[B]�F [B]))
for any� ∈ {∧,∨,⊃} since G proves (X ⊃ (P ↔Q))⊃ (X ⊃ (R↔ S))⊃
(X ⊃ ((P �R)↔ (Q � S))). This establishes (S). ♦

Our next goal is §.., which constructs a Gödel r -interpretation I
with I(A)< 1 for non-valid formulae A of a particular syntactic form.

§.. Definition (Grid). Let X be a finite, non-empty set. We call
(Y,!,∼) a grid over X if Y = {(x, n); x ∈ X , n ≤ N (x)} for some N :
X →N such that ∼ is an reflexive, symmetric and transitive relation on Y ,
and ! is a transitive relation on Y , and for all a, b , c ∈ Y we have
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(T) either a ! b or a ∼ b or b ! a;
(T) a ∼ b ! c ⊃ a ! c ,
(T) a ! b ∼ c ⊃ a ! c ,
(T) a+ 1 ∈ Y ⊃ a ! a+ 1,
(T) (a+ 1 ∈ Y ∧ b + 1 ∈ Y )⊃ (a ! b ⇔ a+ 1 ! b + 1),
(T) (a+ 1 ∈ Y ∧ b + 1 ∈ Y )⊃ (a ∼ b ⇔ a+ 1∼ b + 1),

here (x, n)+ k := (x, n+ k) for all n, k ∈N and x ∈X . X can be thought
of as being a subset of Y by virtue of x 7→ (x, 0). We put !∼ :=!∪∼. §

§.. Lemma. Let C = (Y,!,∼) be a grid over X . Then there is an
algorithm to construct a grid C∗ = (Y∗,!∗,=) over X and an σ : Y → Y∗
such that

∀y, y ′ ∈ Y . (y ∼ y ′⇔ σ(y) = σ(y ′)),
∀y, y ′ ∈ Y . (y ! y ′⇔ σ(y)!∗ σ(y ′)),
∀y ∈ Y . (y + 1 ∈ Y ⊃ σ(y + 1) = σ(y)+ 1 ∈ Y∗) §

Proof. It suffices to prove the following statement: For every grid C =
(Y,!,∼) and p, q ∈ Y such that p ∼ q , we can specify a grid C ′ =
(Y∗,!∗,∼∗) and t : Y → Y∗ such that t (p) = t (q) and for all y, y∗ ∈ Y
holds: () y ∼ y∗ if and only if t (y) ∼∗ t (y∗), () y ! y∗ if and only if
t (y)!∗ t (y∗), and () t (y + 1)∼∗ t (y)+ 1 ∈ Y∗ whenever y ∈ Y such that
y + 1 ∈ Y ; observe that this properly reduces the number of equivalence
classes if p 6= q . The claim of the lemma now follows by eliminating all
the finitely many equivalence of Y classes iteratively; σ is obtained by
concatenating the obtained t ’s.

Thus, let C = (Y,!,∼) and p, q ∈ Y such that p ∼ q . Then there are
a, b ∈ X and n, m ∈ N such that p = (a, n) ∼ q = (b , m). W. l. o. g. we
assume that n ≥ m. Thus, by (T), a+K ∼ b for K := n−m ∈N. Define
N ′(x) :=N (x) for all x ∈ X r {a, b} and let N ′(a) :=max{N (a),N (b ) +
K}. Put Y∗ := {(x, i); x ∈X r {b}, i <N ′(x)} and define t : Y → Y∗ by
t (b , i) := (a, i +K) and t (x, i) := (x, i) for all x ∈X r {b}.

For all (x, n), (x ′, n′) ∈ Y , we will see by distinguishing four cases that
t (x, n) = t (x ′, n′) implies (x, n) ∼ (x ′, n′): If both x, x ′ ∈ X r {b} then
(x, n) = t (x, n) = t (x ′, n′) = (x ′, n′). If x = b = x ′ then (a, n + K) =
t (x, n) = t (x ′, n′) = (a, n′+K) so that n = n′ and thus (x, n) ∼ (x ′, n′).
If x = b and x ′ ∈ X r {b} then (x, n) = (b , n) ∼ (a, n +K) = t (x, n) =
t (x ′, n′) = (x ′, n′). If x ′ = b and x ∈ X r {b} then (x, n) = t (x, n) =
t (x ′, n′) = (a, n′+K)∼ (b , n′) = (x ′, n′).
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Since t is surjective, the property just proved enables us to define two
relations !∗ and ∼∗ on Y∗ by t (c)!∗ t (d ) :⇔ c ! d and by t (c)∼∗ t (d )
:⇔ c ∼ d . This establishes properties () and (). Clearly, t (b , i + 1) =
(a, i+K+1) = t (b , i)+1 and t (x, i+1) = (x, i+1) = (x, i)+1= t (x, i)+1
for all x ∈X r {b}. Thus property () holds, and so it easy to check that
(Y∗,!∗,∼∗) is indeed a grid. We also have t (q) = t (b , m) = (a, m+K) =
(a, n) = t (a, n) = t (p). ♦

Observe that, if (Y,!,∼) is a grid, every subset Z of Y has a !∼ -minimal
element in the sense that there is u ∈ Z such that u ′ !∼ u for all u ′ ∈ Z ;
likewise there is a !∼ -maximal element U ∈ Z . It follows that any subset
of a grid (Y,!,=), with identity as equivalence relation, has a unique
!-minimal and a unique !-maximal element.

§.. Lemma. Let (Y,!,=) be a finite grid over X and let s be the
!-minimal element of Y . Then we can construct f : Y → [0,∞)∩Q such
that

f (s) = 0,
∀y, y ′ ∈ Y. (y ! y ′ ⊃ f (y)< f (y ′)), and
∀y ∈ Y. (y + 1 ∈ Y ⊃ f (y + 1) = f (y)+ 1). §

Proof. We will use the following definitions in the slightly involved iterative
construction of f . Let S be the !-maximal element of Y , cf. the remark
before the statement of the lemma. Take ! :=!∪ idY , which is obviously a
reflexive and transitive relation on Y . Let E(a, f ) abbreviate the condition
that a ∈ Y and f is a function from {y ∈ Y ; y ! a} to [0,∞)∩Q such that

() ∀y, y ′ ∈ Y
�

y ! y ′! a ⊃ f (y)< f (y ′)
�

,
() ∀y ∈ Y

�

(y + 1 ∈ Y ∧ y + 1 ! a) ⊃ f (y + 1) = f (y)+ 1
�

,
() ∀y ∈ Y

�

(y + 1 ∈ Y ∧ y ! a ! y + 1) ⊃ f (a)< f (y)+ 1
�

.

We start the construction by putting f0(s) := 0; it is easy to check that
indeed E(s , f0). In the remainder of the proof, we will prove for any given
a ∈ Y and f such that a ! S and E(a, f ) that we can construct a∗ ∈ Y and
f∗ such that a ! a∗ and E(a∗, f ), in particular a 6= a∗ then. This clearly
suffices to construct an f such that E(S, f ) holds; hence this f is total on
Y and conditions () and () establish the claim of the lemma.

Now let a ∈ Y and f be given such that a ! S and E(a, f ) hold. We will
distinguish two cases.
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In the first case, we suppose that ; 6= B := {b ∈ Y ; b ! a ! b + 1} holds.
Let b be !-minimal in B . By definition of B , we have b + 1 ∈ Y . By ()
and (), we see f (b )≤ f (a)< f (b )+ 1, thus 0< f (b )+ 1− f (a)≤ 1.

For C := {c ∈ Y ; a ! c ! b + 1}, we have C ⊆ X for otherwise
a ! c ! b + 1 for some c ∈ Y r X ; the latter means that c = d + 1 for
some d ∈ Y , but then a ! d + 1 ! b + 1 implies d ! b by (T), which
contradicts the minimality of b .

Let c1 ! c2 ! . . . ! cM be an enumeration of C . Extend f to f∗ by
f∗(cm) := f (a) + m

M+1( f (b ) + 1− f (a)) and f∗(b + 1) := f (b ) + 1 so that
f∗ is defined for all y ! b + 1 and f (a) = f∗(a) < f∗(c1) < f∗(c2) < · · · <
f∗(cM ) < f∗(b + 1). Thus, by the definition of C , we see f∗(a) < f∗(y) <
f∗(y

′) ≤ f∗(b + 1) whenever a ! y ! y ′ ! b + 1. Now, we will prove
E(b + 1, f∗). The statements (), (), () will refer to the conditions in
E(a, f ).

Given y, y ′ ∈ Y with y ! y ′! b +1, we need to show f∗(y)< f∗(y
′). We

may assume y ! a since a ! y implies a ! y ! y ′! b + 1 and this yields,
as proved above, f∗(y)< f∗(y

′). From y ! a, we see f∗(y) = f (y)< f (a) =
f∗(a) by (). We may assume also a ! y ′ since y ′! a implies y ! y ′! a and
then f∗(y)< f∗(y

′) by (). As observed earlier, we have f∗(a)< f∗(y
′) and

thus f∗(y)< f∗(a)< f∗(y
′), as required.

Given y ∈ Y such that y + 1 ∈ Y and y + 1 ! b + 1, we need to prove
f∗(y+ 1) = f∗(y)+ 1. We may assume y+ 1 ! b + 1 because b + 1 ! y+ 1,
together with y + 1 ! b + 1, yields b + 1 = y + 1 so that y = b and
f∗(b + 1) = f∗(b ) + 1 by definition of f∗. We may assume y + 1 ! a for
otherwise a ! y + 1 ∈ Y holds and thus y + 1 ∈ C but this contradicts
C ⊆ X and y ∈ Y . Now y ! y + 1 ! a, and so f∗(y + 1) = f (y + 1) =
f (y)+ 1= f∗(y)+ 1 by (), as required.

In the last three paragraphs, we have proved E(b + 1, f∗) under the
condition ; 6= B .

In the second case, we suppose that ; = {y ∈ Y ; y ! a ! y + 1} holds in
addition to E(a, f ) and a ! S. Due to a ! S there is some c ∈ Y that
is !-minimal among the y ∈ Y with a ! y. We must have c ∈ X for
otherwise there is y ∈ Y with a ! c = y + 1, but since y ! a ! y + 1 is
impossible, we obtain a ! y and thus a ! y ! y + 1= c , which contradicts
the minimality of c . Extend f to f∗ by f∗(c) := f (a) + ε for some ε > 0,
e. g. ε= 1. We will prove E(c , f∗).

Given y, y ′ ∈ Y such that y ! y ′ ! c , we need to prove f∗(y) < f∗(y
′).

We may assume a ! y ′ since otherwise y ′ ! a holds and then y ! y ′ ! a
implies f∗(y) = f (y)< f (y ′) = f∗(y

′) by (). From a ! y ′! c , we conclude
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y ′ = c by minimality of c . We may assume that a 6= y since a = y implies
f (y) = f (a)< f (a)+ ε= f∗(c) = f∗(y

′). We cannot have a ! y since then
a ! y ! y ′ = c contradicted the minimality of c . Thus y ! a and now
f∗(y) = f (y)< f (a)< f (a)+ ε= f∗(c) = f∗(y

′) by (), as required.
Given y ∈ Y such that y+1 ∈ Y , y+1! c , we need to prove f∗(y+1) =

f∗(y) + 1. We have y ! a since otherwise a ! y holds, which implies
a ! y ! y+1!c , but this contradicts the minimality of c . Since y!a ! y+1
is impossible, we have y + 1 ! a. By (), we find f (y + 1) = f (y) + 1, as
required.

Given y ∈ Y such that y + 1 ∈ Y , y ! c ! y + 1, we need to prove
f∗(c) < f∗(y) + 1. We must have a ! y + 1 for otherwise we obtain a
contradiction from y+1 ! a and a ! c ! y+1. Since y ! a ! y+1 cannot
hold, we must have a ! y. From y !c and the minimality of c , we conclude
that y = c . Thus f∗(c)< f∗(y)+ 1 trivially holds.

Thus E(c , f∗) holds, as claimed, also in the second case. This completes
the whole proof. ♦

§.. Definition (Chain). Let K ∈N, let X ⊆ Var be finite and choose
two distinct fresh formal symbols > and ⊥. Put Z ′ := {(x, k); x ∈X ∪{⊥},
k ≤ K}, Z := {>}∪Z ′, and (x, m)+ n := (x, m+ n) for all x ∈X ∪ {⊥},
m, n ∈N. We understand X as a subset of Z ′ by the embedding x 7→ (x, 0).
We call (Z ,≺,↔) an (X ,K)-chain if↔ is a reflexive, symmetric, transitive
relation on Z , ≺ is a transitive relation on Z such that

(U) ∀a, b , c ∈ Z . a↔ b ≺ c ⊃ a ≺ c ,
(U) ∀a, b , c ∈ Z . a ≺ b ↔ c ⊃ a ≺ c ,
(U) ∀a ∈ Z . either a ≺> or a↔>,
(U) ∀a ∈ Z . either ⊥≺ a or ⊥↔ a,
(U) ∀a, b ∈ Z . either a ≺ b or a↔ b or b ≺ a,
(U) ∀a ∈ Z ′. (a+ 1 ∈ Z ∧⊥↔⊥+ 1)⊃ a↔ a+ 1.
(U) ∀a ∈ Z ′. (a+1 ∈ Z∧⊥≺⊥+1)⊃ (a ≺ a+1∨a↔ a+1↔>),
(U) ∀a, b ∈ Z ′. (a+ 1 ∈ Z ∧ b + 1 ∈ Z ∧ a↔ b )⊃ a+ 1↔ b + 1,
(U) ∀a, b ∈ Z ′. (a+ 1 ∈ Z ∧ b + 1 ∈ Z ∧⊥≺⊥+ 1∧ a ≺ b ) ⊃

⊃ (a+ 1≺ b + 1∨ a+ 1↔ b + 1↔>), §

§.. Lemma. Let (Z ,≺,↔) be an (X ,K)-chain. Put Z ′ := Z r {>}.
Then we can construct r ∈ [0,1] and g : Z → [0,1] such that g (⊥) = 0,
g (>) = 1,

∀a, b ∈ Z . a ≺ b ⊃ g (a)< g (b ),
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∀a, b ∈ Z . a↔ b ⊃ g (a) = g (b ),
∀a ∈ Z ′. a+ 1 ∈ Z ⊃ g (a+ 1) = g (a)⊕ r . §

Proof. By (U), either ⊥ ↔ ⊥ + 1 or ⊥ ≺ ⊥ + 1 holds. In the case
⊥↔⊥+ 1, we obtain from (U) that x↔ x + 1↔ . . .↔ x +K holds
for all x ∈X ∪ {⊥} and ≺ is a total order on X ∪ {⊥,>}; thus we may put
r := 0 and it is obvious how to choose some v on X . Thus we consider
only the case ⊥≺⊥+ 1 in the remainder of the proof.

For the elements of Z ′ := Z r {>}, we can use the +-notation from
§... Note carefully that z + k with z ∈ Z , k ∈ N need not be in Z ,
however, using a notation like z ∼ w + k tacitly implies w + k ∈ Z since
∼⊆ Z ×Z .

The subsets Y0 := {z ∈ Z ; z ≺>} and Y1 := {z + 1; z ∈ Z ′, z ≺>↔
z + 1} of Z ′ are disjoint by (U). For any relation R, let RT denote the
transposed relation. By (U), the sets L0 :=≺ � (Y0×Y0), L0

T and Q0 :=
↔ � (Y0×Y0) form a pairwise disjoint partition of Y0×Y0. Employing
all properties of a chain, particularly (U), it is easily seen that the sets
L1 := {(z+1, z ′+1); z, z ′ ∈ Z ′, z ≺ z ′ ≺>↔ z+1↔ z ′+1}, L1

T and
Q1 := {(z + 1, z ′+ 1); z, z ′ ∈ Z ′, z↔ z ′ ≺>↔ z + 1↔ z ′+ 1} form a
pairwise disjoint partition of Y1×Y1. For Y := Y0∪Y1 and L2 := Y0×Y1,
we conclude therefore that the sets L0, L0

T , Q0, L1, L1
T , Q1, L2, L2

T

comprise a pairwise disjoint partition of Y×Y . In the following paragraphs,
we will prove that (Y,!,∼) is a grid over X ∪{⊥} for ! := L0∪L1∪L2 and
∼ :=Q0 ∪Q1. Since !T = L0

T ∪ L1
T ∪ L2

T , it follows that the sets !, ∼,
!T comprise a pairwise disjoint partition of Y ×Y . Thus (T) holds for Y .
Since Q0 is reflexive w. r. t. Y0 and Q1 w. r. t. Y1, also ∼ is reflexive w. r. t. Y .
Since Q0 and Q1 are symmetric, so is ∼. We see that ∼ is transitive since
a ∼ b ∼ c ∈ Y0 implies aQ0bQ0c and aQ0c , and a ∼ b ∼ c ∈ Y1 implies
aQ1bQ1c and aQ1c .

We define ≺↔ :=≺∪↔ and !∼ := !∪∼. Since !∼ = L0 ∪ L1 ∪ L2 ∪
Q0∪Q1 ⊆ (Y0×Y0)∪ (Y0×Y1)∪ (Y1×Y1), we remark for use in the next
paragraph that d !∼ e ∈ Y0 implies d ∈ Y0 and that Y1 3 d !∼ e implies
e ∈ Y1.

We will now prove that a !∼ b ! c implies a ! c . Since Y0×Y1 ⊆ !,
we only need to distinguish the case a ∈ Y1 and the case c ∈ Y0. First,
suppose c ∈ Y0 so that b ∈ Y0 and, in turn, a ∈ Y0; thus (a, b ) ∈ !∼ �
(Y0 ×Y0) = L0 ∪Q0, i. e. a ≺↔ b , and (b , c) ∈ ! � (Y0 ×Y0) = L0, i. e.
b ≺ c , and therefore a ≺ c is established by (U) or by transitivity of
≺. Second, suppose a ∈ Y1 so that b ∈ Y1 and, in turn, c ∈ Y1; thus
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(a, b ) ∈ !∼ � (Y1×Y1) = L1 ∪Q1 and (b , c) ∈ ! � (Y1×Y1) = L1; hence
there are za, zb , zc ∈ Z ′ such that a = za + 1, b = zb + 1, c = zc + 1 and
za
≺↔ zb ≺ zc ≺>↔ za + 1↔ zb + 1↔ zc + 1, which yields a ! c by

(U) or by transitivity of ≺.
In a completely symmetrical way, we can prove that a ! b !∼ c implies

a ! c . This yields that (Y,!,∼) satisfies (T) and (T) and that ! is
transitive.

We will prove for later use that any a ∈ Y such that a+ 1 ∈ Y satisfies
a ∈ Y0 and a ≺ a+ 1. Since a+ 1 ∈ Y1 implies a ≺>∼ a+ 1 and, in turn,
a ∈ Y0 and a ≺ a+1, we may assume that a+1 /∈ Y1 so that a+1 ∈ Y0, i. e.
a+ 1≺>. By (U), we have either a ≺ a+ 1 or a↔ a+ 1↔>. From
a+ 1≺> and (U), we conclude a ≺ a+ 1≺> and hence a ∈ Y0.

To prove (T), we suppose a ∈ Y such that a+ 1 ∈ Y ; we need to show
a ! a+ 1. By the above, we have a ∈ Y0 and a ≺ a+ 1. Since Y0×Y1 ⊆!,
we may assume a + 1 /∈ Y1 so that a + 1 ∈ Y0. Since L0 ⊆ !, we have
a ! a+ 1.

The next two paragraphs prepare to prove (T) and (T).
Let a, b ∈ Y such that a + 1, b + 1 ∈ Y and a ! b ; we will prove

a + 1 ! b + 1. As observed above, we have a, b ∈ Y0, thus a ≺ b by
L0 ⊆ !. From (U) and (U), we conclude that either a + 1 ≺ b + 1 or
a + 1 ∼ b + 1 ∼ >. If b + 1 ∈ Y0, then a + 1 ≺ b + 1 ≺ > so that also
a + 1 ∈ Y0 and thus (a + 1, b + 1) ∈ L0 ⊆ !. Therefore, we may assume
b + 1 ∈ Y1. If a+ 1 ∈ Y1, then (a+ 1, b + 1) ∈ L1 ⊆!. Therefore, we may
assume a+ 1 ∈ Y0. Hence (a+ 1, b + 1) ∈ Y0×Y1 ⊆! as required.

Let a, b ∈ Y such that a + 1, b + 1 ∈ Y and a ∼ b ; we will prove
a + 1 ∼ b + 1. As observed above, we have a, b ∈ Y0, thus a ↔ b by
Q0 ⊆∼ and therefore a+ 1↔ b + 1 by (U). If a+ 1 ∈ Y0 or b + 1 ∈ Y0,
then {a+ 1, b + 1} ⊆ Y0 and thus (a+ 1, b + 1) ∈Q0 ⊆∼. Thus we may
assume {a+ 1, b + 1} ⊆ Y1. Therefore (a+ 1, b + 1) ∈Q1 ⊆∼ as required.

For any a, b ∈ Y such that a+1, b+1 ∈ Y , the two preceding paragraphs
have shown the implications a ! b ⇒ a+ 1 ! b + 1 and a ∼ b ⇒ a+ 1∼
b+1 and b ! a⇒ b+1 ! a+1. By (U), we see that a+1 ! b+1 implies
that neither a ∼ b nor b ! a can hold and thus, again by (U), we must
have a ! b . Similarly, a+ 1∼ b + 1 implies that neither a ! b nor b ! a
can hold, and thus a ∼ b follows. This establishes (T) and (T).

Now, we have proved that (Y,!,∼) is indeed a grid over X ∪ {⊥}.
By §.. and §.., we can construct f : Y → [0,∞) ∩Q such that
f (⊥) = 0, ∀a, b ∈ Y

�

a ! b ⊃ f (a) < f (b )
�

, ∀a, b ∈ Y
�

a ∼ b ⊃
f (a) = f (b )

�

, and ∀a ∈ Y
�

a + 1 ∈ Y ⊃ f (a + 1) = f (a) + 1
�

. Since
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(Y,!,∼) is a grid, Y0 has a !∼ -maximal element u, i. e. u ∈ Y0 such
that a !∼ u for all a ∈ Y0, in particular, f (a) ≤ f (u). Likewise, there is
U ∈ Y1 such that U !∼ b for all b ∈ Y1, in particular f (U )≤ f (b ). Since
(u, U ) ∈ Y0 × Y1 ⊆ !, we have f (u) < f (U ). Put r := 2

f (u)+ f (U ) and
g (y) :=min{1, r · f (y)} for all y ∈ Y . Clearly, g (⊥) = 0. We observe the
two following facts: For all a ∈ Y0 and b ∈ Y1, we conclude from 0 ≤
f (a) ≤ f (u) < f (u)+ f (U )

2 = 1
r < f (U ) ≤ f (b ) that 0 ≤ g (a) < 1 = g (b ).

For all a, b ∈ Y0 such that a ≺ b , we conclude from (a, b ) ∈ L0 ⊆ ! that
0≤ f (a)< f (b )≤ f (u)< 1

r , therefore 0≤ g (a)< g (b )< 1.
We extend the domain of g from Y to Z by g (z) := 1 for all z ∈ Z r Y .

In particular, g (>) = 1. Since (Z r Y )∪Y1 ⊆ (Z r Y0)∪Y1 ⊆ {z ∈ Z ;
z↔>}, we see for every z ∈ Z that g (z)< 1 holds if and only if z ≺>.

We need to prove g (a) < g (b ) for all a, b ∈ Z with a ≺ b . If b ≺ >,
then a ≺ b ≺ >, thus a, b ∈ Y0 and, as observed earlier, g (a) < g (b ).
Thus we may assume b ↔> so that now g (b ) = 1. We have a ≺ > for
otherwise a↔>↔ b , which contradicts a ≺ b . As observed earlier, we
have g (a)< 1= g (b ), as required.

We need to prove g (a) = g (b ) for all a, b ∈ Z with a↔ b . If a ≺>, we
find b ≺> and thus (a, b ) ∈Q0 ⊆∼ so that f (a) = f (b ) and g (a) = g (b ).
Thus we may assume a↔>. Now, we see b ↔> and g (a) = 1= g (b )
as required.

We need to prove that g (a+1) =min{1, g (a)+r } for all a ∈ Z ′ such that
a+1 ∈ Z . In the case of a ≺ a+1∼>, we find a ∈ Y0 and a+1 ∈ Y1 so that
g (a)< 1= g (a+ 1) as observed earlier; since min{1, r · f (a)}= g (a)< 1
and f (a+ 1) = f (a)+ 1, we see r · f (a) = g (a) and g (a+ 1) =min{1, r ·
( f (a)+ 1)}=min{1, r · f (a)+ r }=min{1, g (a)+ r }, as required. In the
case of a ≺ a+ 1≺>, we find 0≤ g (a)< g (a+ 1)< 1 as observed earlier;
since min{1, r · f (a)}= g (a)< 1, min{1, r · f (a+ 1)}= g (a+ 1)< 1 and
f (a + 1) = f (a) + 1, we see 1 > g (a + 1) = r · f (a + 1) = r · f (a) + r =
g (a) + r , thus g (a + 1) =min{1, g (a) + r }, as required. The remaining
case is a↔>↔ a+ 1, due to (U). We now have g (a) = 1= g (a+ 1)
and thus g (a+ 1) =min{1, g (a)+ r }, as required.

This completes the proof of all claimed properties. ♦

§.. Definition. Let X ⊆ Var be finite and K ∈N. Let huv ∈ {≺,↔}
be given for all u, v ∈ Z ; here Z := {>}∪{(x, k); x ∈X∪{⊥}, k ≤K} as in
§... Let ι map Z to formulae inL p

l
by (x, k) 7→lk x, > 7→>, ⊥ 7→⊥.

Define R≺ := {(u, v); huv =≺} and R↔ := {(u, v); huv =↔}. We call an
L p

l
-conjunction

∧

u∈Z , v∈Z ι(u) huv ι(v), regardless of parenthesisation and
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order, an (X ,K)-chain formula if (Z , R≺, R↔) is an (X ,K)-chain. In this
case, we define write ι(u) ≺C ι(v) whenever huv = ≺, and ι(u)↔C ι(v)
whenever huv =↔. §

§.. Corollary. Suppose C is an (X ,K)-chain formula. Let Z∗ :=
{>}∪ {lk x; x ∈X ∪{⊥}, k ≤K}. Then there is a Gödel r -interpretation
I: Var→ [0,1] such that I(C ) = 1 and for all a, b ∈ Z∗ we have: I(a)< I(b )
whenever a ≺C b ; and I(a) = I(b ) whenever a↔C b . §

Proof. We use the notation of §... By §.., we can construct r ∈
[0,1] and g : Z→ [0,1] such that () g (⊥) = 0, () g (>) = 1, () ∀u, v ∈
Z . (huv = ≺) ⊃ g (u)< g (v), () ∀u, v ∈ Z . (huv =↔) ⊃ g (u) = g (v),
() ∀u ∈ Z ′. u + 1 ∈ Z ⊃ g (u + 1) = r ⊕ g (u).

Let I(x) := g (x) for all x ∈ X and I(x) := 0 for all x ∈ Varr X , and
extend I to all formulae inL p

l
such that I is a Gödel r -interpretation.

We claim I(ι(u)) = g (u) for all u ∈ Z . For u ∈ {⊥,>}, this follows from
() and (). It remains to check I(ι(x, k)) = I(lk x) = g (x, k) for all x ∈X
and k ≤K . We see that I(lk x) = (k · r )⊕ I(x) holds by definition of I and
by (A). Using () for k − 1 times, we find g (x + k) = (k · r )⊕ g (x) =
(k · r )⊕ I(x). This establishes the claim.

We claim I(ι(u) huv ι(v)) = 1 for all u, v ∈ Z . We have to distinguish
two cases: If (huv =≺), then I(ι(u)≺ ι(v)) = I(ι(u))Ã I(ι(v)) = 1 by (A)
and (). If (huv =↔), then I(ι(u)≺ ι(v)) = I(ι(u)) ./ I(ι(v)) = 1 by (A)
and (). This proves that I(C ) = 1.

The other properties are immediate consequences of () and (). ♦

§.. Example. Since the relations ≺ and ↔ of a chain must fulfil
transitivity, (U) and (U), we need not specify huv in detail. As is done
in the following example, it suffices to string the elements of a chain and
insert ≺ and↔ between them. Still, the result needs to be checked to be a
chain; but this is easy for the following ({d , e , f , g , h}, 3)-chain C given by
(⊥, 0)↔C (d , 0) ≺C (e , 0) ≺C ( f , 0) ≺C (⊥, 1)↔C (d , 1) ≺C (e , 1) ≺C
(g , 0) ≺C ( f , 1) ≺C (⊥, 2)↔C (d , 2) ≺C (h, 0) ≺C (e , 2) ≺C (g , 1) ≺C
( f , 2) ≺C (⊥, 3)↔C (d , 3) ≺C (h, 1) ≺C (e , 3) ≺C (g , 2)↔C ( f , 3)↔C
(h, 2)↔C (g , 3)↔C (h, 3)↔C >. Then §.. says that there is an
r -Gödel interpretation I such that I(C ) = 1 and 0= I(⊥) = I(d )< I(e)<
I( f ) < I(l⊥) = I(ld ) < I(le) < I(g ) < I(l f ) < I(ll⊥) = I(lld ) <
I(h) < I(lle) < I(lg ) < I(ll f ) < I(lll⊥) = I(llld ) < I(lh) <
I(llle) < I(llg ) = I(lll f ) = I(llh) = I(lllg ) = I(lllh) =
1. §
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Item (c) of the following theorem establishes the completeness of Gl for
validity inL p

l
w. r. t. Gödel l-semantics.

§.. Theorem. Suppose X ⊆ Var is finite and K ∈ N. Let Z∗ := {>}
∪ {lk x; x ∈X ∪{⊥}, k ≤K}.

(a) Then we can construct a set C of (X ,K)-chain formulae and a
Gl-proof of

∨

C∈C C .
(b) For any (X ,K)-chain C and any formula F with Var(F ) ⊆ X and

rdp(F ) ≤ K , we can construct a (not necessarily unique) z ∈ Z∗ and a
Gl-proof of C ⊃ (F ↔ z). We will say that C evaluates F to z.

(c) If F inL p
l

is valid, we can construct a Gl-proof of F ; thus F is valid
if and only if Gl ` F . §

Proof. Since the case of K = 0, i. e. without rings, is contained in [], we
will stipulate K 6= 0 to obviate trivialities. Still, a proof for K = 0 can be
easily read off from the ideas presented here.

We would like to remind the reader of §...
(a) We will tacitly treat the abbreviations ≺,↔ and > as if they were

connectives in their own right when we will match a formula against a
condition, e. g., a formula presented as a↔ b is not meant to undergo a
transformation applied to all formulae with top symbol ∧.

By (G), we have Gl ` (a ≺ b )∨ (a↔ b )∨ (b ≺ a) for all a, b ∈ Z∗.
The conjunction of these formulae is clearly Gl-provable. Applying (G)
and (S) repeatedly to it, we obtain a Gl-proof of a disjunctive normal form
∨

m C 0
m. Now, each disjunct C 0

m has the property (∗): it is a conjunction
that consists only of conjuncts a� b with a, b ∈ Z∗, � ∈ {↔,≺} and that,
moreover, contains for each pair a, b ∈ Z∗ at least one conjunct of the form
a ≺ b , a↔ b , b ↔ a or b ≺ a.

In the next paragraph, we will specify an iterative procedure that turns
∨

m C 0
m into the required disjunction of chains. We leave the easy task to

the reader to verify that any cycle of the iteration outputs a disjunctive
normal form E ′′ with property (∗) if its input has been a disjunctive normal
form E ′ with property (∗). After the introduction of the procedure, we
will indicate how to construct a Gl-proof of E ′↔ E ′′. In the rules of the
procedure, we will not care about the order or parenthesisation of formulae
in a disjunction or conjunction, since (G), (G) and (S) enable us to
provide a Gl-proof of E ′↔ E ′1 for any re-parenthesisation and re-ordering
E ′1 of E ′. We will tacitly assume that an appropriate re-parenthesisation and
re-ordering of any such input E ′ is done before each rule to allow matching
if possible at all.
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Take
∨

m C 0
m and repeatedly apply the first matching rule of the following

list until none of the rules matches:

() Contract equal conjuncts, i. e. replace e ∧ e by e .
() Contract disjuncts that are equal up to the order of their contained

conjuncts, i. e. replace C ∨C by C .
() Remove some disjunct that contains a conjunct a ≺⊥.
() Replace >≺ a by >↔ a.
() Replace a conjunct a ≺ a by (a↔ a)∧ (a↔>).
() Replace (a ≺ b )∧ (b � a), where � ∈ {↔,≺},

by (a ≺ b )∧ (b ↔>) .
() Replace (a� b )∧ (b ◊ c)∧ (c ≺ a), where �,◊ ∈ {↔,≺},

by (a↔ b )∧ (b ↔ c)∧ (c↔ a)∧ (a↔>),
() Replace (a↔ b )∧ (la ≺lb )

by (a↔ b )∧ (la↔lb )∧ (lb ↔>).
() Replace (a ≺ b )∧ (lb ≺la)

by (a ≺ b )∧ (la↔lb )∧ (lb ↔>).
() Replace (a ≺ b )∧ (la↔lb )∧ (lb ≺>)

by (a ≺ b )∧ (la↔lb )∧ (lb ↔>).
() Replace (⊥↔l⊥)∧ (a ≺la)

by (⊥↔l⊥)∧ (a↔la)∧ (la↔>).
() Replace (la ≺ a) by (a↔la)∧ (la↔>).
() Replace (⊥≺l⊥)∧ (a↔la)∧ (a ≺>)

by (⊥≺l⊥)∧ (a↔la)∧ (a↔>).
() If a disjunct does not contain the conjunct a↔ a, a ∈ Z , add it.
() If a disjunct contains the conjunct a ↔ b but not the conjunct

b ↔ a, add b ↔ a.

An inspection of all rules yields that the number of disjuncts cannot increase.
We obtain an upper bound on the number of conjuncts in a disjunct by
property (∗) in connection with the facts that any rule can increase the
number of conjuncts at most by  and that rule () immediately removes
any conjunct occurring more than once. The number of Z∗-pairs that are
joined by ≺ properly decreases in the rules ()–() and does not increase in
the other rules; thus the rules ()–() can succeed only a bounded number
of times. The system with the rules ()–() removed is easily seen to be
terminating. Hence the procedure is terminating.

Let
∨

m C 1
m denote the result of the procedure. Given a Gl-proof

of
∨

m C 0
m, we will iteratively construct a Gl-proof of

∨

m C 1
m: If rule

() transforms the disjunctive normal form E[e ∧ e] to E[e], extend the
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Gl-proof of E[e ∧ e] by the (G)-instance (e ∧ e)↔ e and the (S)-
instance ((e ∧ e)↔ e) ⊃ (E[e ∧ e]↔ E[e]) to obtain a proof of E[e].
A proof for the application of rule () is similar. For the other rules, we
just briefly indicate the derivations and we tacitly apply (S): Use (G)
for rule (), (G) for (), (G) for (), (G) for (), (G) for (). For
rule (), apply (MP) to the (S)-instance (a ↔ b ) ⊃ (la ↔ lb ) and
an appropriate instance of (G). For rule (), first use the (S)-instance
(a ≺ b ) ⊃ l(a ≺ b ) and the (S)-instance l(a ≺ b )↔ (la ≺ lb ) to
find a proof of (a ≺ b ) ⊃ (la ≺ lb ); apply (MP) to the latter and an
appropriate instance of (G). Use (G) instead of (G) for rule (); use
(R) and (G) for (); (G) for (); (R) and (G) for (); use (G)
for (); use (G) for ().

Observe that rule () never yields an empty disjunction for otherwise the
provable and hence valid input disjunction consisted only of one conjunc-
tion containing the non-satisfiable conjunct a ≺⊥. Hence there is at least
one disjunct in

∨

m C 1
m.

We will now prove that each disjunct C 1
m of

∨

m C 1
m is an (X ,K)-formula.

We use the notation of §.., in particular, Z = {>}∪{(x, k); x ∈X∪{⊥},
k ≤ K}. For u, v ∈ Z , let huv :=≺ if ι(u)≺ ι(v) is contained in C 1

m and
huv :=↔ if ι(u)↔ ι(v) is contained in C 1

m. It remains to show that
(Z , R≺, R↔) fulfills properties (U)–(U).

By construction, none of the above rules is applicable to
∨

m C 1
m. From

property (∗) and the fact that rules () and () do not apply, we see
that either huv =≺ or huv =↔ or hv u =≺ holds for any u, v ∈ Z ; this
proves property (U). In particular, hu u =≺ or hu u =↔ holds for any
u ∈ Z . Since rule () does not apply but hu u =≺ would trigger it, R↔
is reflexive. Similarly, rule () causes the symmetry of R↔. For the
transitivity of R↔, suppose we have aR↔b R↔c and hence cR↔b R↔a;
since both aR↔b R↔cR≺a and cR↔b R↔aR≺c would trigger rule (),
which is impossible, we neither have cR≺a nor aR≺c , thus aR↔c follows,
as required. In a similar way, transitivity of R≺ and properties (U), (U)
follow from (); (U) from (); (U) from (); (U) from () and (); (U)
from (), () and (); (U) from (); (U) from (), () and ().

(b) The abbreviations ≺ and↔ are meant to have been unwound in F .
In contrast, we will always treat any occurrence of ⊥ ⊃ ⊥ as the symbol
>, which is contained in Z∗. We will construct a finite sequence (Fn)n
such that the formula complexity will strictly decrease (considering > as a
nullary connective), such that Gl ` C ⊃ (F ↔ Fn) and rdp(Fn) ≤ K for
all n, and such that FN ∈ Z∗ for some N .
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Take F0 := F for the induction basis so that rdp(F0) ≤ K holds by
assumption and, clearly, we have Gl `C ⊃ (F ↔ F0). For the induction
step, assume Gl ` C ⊃ (F ↔ Fn) and rdp(Fn) ≤ K . If Fn ∈ Z∗, the
iteration is done; We may assume Fn /∈ Z∗ for otherwise the iteration is
done; in particular, Fn 6=>= (⊥⊃⊥).

We conclude Fn = E[a � b] for some context E[·], a, b ∈ Z∗ and
� ∈ {∧,∨,⊃}. For the case of � = ⊃, we distinguish three sub-cases: In
the case of b ≺C a, we use rdp(a) ≤ rdp(Fn) ≤ K , rdp(b ) ≤ rdp(Fn) ≤ K ,
(IPL) and (IPL) to obtain Gl ` C ⊃ (b ≺ a); this together with the
(G)-instance Gl ` (b ≺ a) ⊃ ((a ⊃ b )↔ b ), the (S)-instance Gl `
((a ∧ b )↔ b ) ⊃ (Fn ↔ E[b]) and the assumption Gl ` C ⊃ (F ↔
Fn) yields Gl ` C ⊃ (F ↔ E[b]); hence we put Fn+1 := E[b] then.
In the case of a ≺C b , we use Gl ` C ⊃ (a ≺ b ), the (G)-instance
Gl ` (a ≺ b ) ⊃ ((a ⊃ b )↔ >), the (S)-instance Gl ` ((a ⊃ b )↔
>) ⊃ (Fn ↔ E[>]) and the assumption Gl ` C ⊃ (F ↔ Fn) to obtain
Gl ` C ⊃ (F ↔ E[>]); hence we put Fn+1 := E[>] then. In the case
of a ↔C b , we use Gl ` (a ↔ b ) ⊃ ((a ⊃ b )↔>) to conclude in a
similar way that Gl `C ⊃ (F ↔ E[>]); hence we put Fn+1 := E[>] also
then. Therefore, we find in all sub-cases that Gl `C ⊃ (F ↔ Fn+1) and
rdp(Fn+1)≤ rdp(Fn)≤K hold and that Fn+1 has a properly lower formula
complexity than Fn, as required. The other cases of �= ∧ and �= ∨ can
be treated similarly by (G), (G) and (G).

(c) Soundness has been proved in §... For the converse direction, let
now F be valid, put X := Var(F ) and K := rdp(F ) and stipulate that C has
the properties as described in (a); we have to construct a Gl-proof of F .

First, we will construct a Gl-proof of C ⊃ F for every C ∈C . By (b),
C evaluates F to some z ∈ Z∗, i. e. Gl `C ⊃ (F ↔ z). In particular, C ⊃
(F ↔ z) is valid by soundness. If we had z ≺C >, then §.. provided a
Gödel r -interpretation I: X → [0,1] with I(C ) = 1 and I(z)< I(>) = 1 so
that I(C ⊃ (z ↔>)) = I(C ) Å (I(z) ./ 1) = 1 Å I(z) = I(z) < 1, but this
contradicts the validity of C ⊃ (F ↔ z). By (U), we conclude z↔C >
and therefore we can construct a Gl-proof of C ⊃ (z↔>) by (IPL) and
(IPL). Since G ` (U ⊃ (V ↔W ))⊃ (U ⊃W )⊃ (U ⊃V ), we conclude
from Gl `C ⊃ (F ↔ z) and Gl `C ⊃ (z↔>) that Gl `C ⊃ F .

Having constructed Gl-proofs of C ⊃ F for every C ∈C , we can join
them by multiple use of (IPL) to obtain Gl ` (

∨

C∈C C ) ⊃ F . Since
Gl `

∨

C∈C C by (a), we find Gl ` F , as claimed. ♦

As a side note, we prove a variant of the lifting lemma, which is typical
for logics with Gödel semantics.
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§.. Lemma. Let I be a Gödel r -interpretation inL p
l

, and let ϕ ≥ 1.
Define r ′ := r ·ϕ and define a Gödel r ′-interpretation by I′(A) := h(I(A))
for all variables A; here h(x) :=min{1, ϕ · x}. Then I′(A) := h(I(A)) for all
formulae A. §

Proof. Clearly, h induces a monotone function [0,1] → [0,1], i. e. we
have h(x) ≤ h(y) whenever 0 ≤ x ≤ y ≤ 1. The claim will be proved by
induction on formula complexity: For the induction beginning, we see
I′(A) = h(I(A)) for all variables A by definition, and h(I(⊥)) =min{1,ϕ ·
0}= 0= I′(⊥).

For the induction step, we first observe the following for all formulae A
and B :

r ′ ⊕ h(I(A)) = min{1, r ′ +min{1, ϕ · I(A)}} = min{1, min{r ′ + 1,
r ′ + ϕ · I(A)}} = min{1, r ′ + ϕ · I(A)}; h(I(lA)) = min{1, ϕ ·min{1,
r + I(A)}}=min{1, min{ϕ ·1, ϕ · (r + I(A))}}=min{1, ϕ · r +ϕ · I(A)}=
min{1, r ′ + ϕ · I(A)} = r ′ ⊕ h(I(A)); h(I(A∧ B)) = min{1, ϕ ·min{I(A),
I(B)}} = min{1, min{ϕ · I(A),ϕ · I(B)}} = min{min{1, ϕ · I(A)}, min{1,
ϕ · I(B)}} = min{h(I(A), h(I(B)))}; h(I(A∨ B)) = min{1, ϕ ·max{I(A),
I(B)}}=max{min{1, ϕ · I(A)}, min{1, ϕ · I(B)}}=max{h(I(A), h(I(B)))}.

By a case distinction, we will prove h(I(A⊃ B)) = h(I(A))Å h(I(B)):
Let h(I(B)) < h(I(A)). We have I(B) < I(A) for otherwise I(A) ≤ I(B)

and then h(I(A)) ≤ h(I(B)) by monotonicity of h. Thus h(I(A ⊃ B)) =
h(I(B)) = h(I(A))Å h(I(B)).—We will prove that h(I(A))≤ h(I(B)) implies
h(I(A⊃ B)) = h(I(A)) Å h(I(B)). Suppose this would not hold, then we
have h(I(A⊃ B))< 1 since h(I(A))≤ h(I(B)) implies h(I(A))Å h(I(B)) = 1.
It follows I(B) < I(A) for otherwise I(A) ≤ I(B) and then h(I(A ⊃ B)) =
h(1) = 1. We now have 1> h(I(A⊃ B)) = h(I(B)). From the monotonicity
of h, we find h(I(B)) ≤ h(I(A)) so that h(I(B)) = h(I(A)) = min{1, ϕ ·
I(B)} = min{1, ϕ · I(A)}. Since ϕ · I(B) < ϕ · I(A), we find 1 = h(I(B)),
which is absurd.

In the remainder, let A, B be formulae such that I′(A) = h(I(A)) and
I′(B) = h(I(B)) have already been established. By the above, we find
I′(A∧ B) = h(I(A∧ B)), I′(A∨ B) = h(I(A∨ B)), I′(A⊃ B) = h(I(A⊃ B)),
and I′(A) = h(I(lA)). This proves the induction step. ♦

§.. Definition. A formula F inL p
l

is 1-satisfiable if there is r ∈ [0,1]
and a Gödel r -interpretation I such that I(F ) = 1. A formula F in L p

l
is

positively satisfiable if there is r ∈ [0,1] and a Gödel r -interpretation I such
that I(F )> 0. §
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There is no need to distinguish these two notions as the following lemma
states.

§.. Lemma. A formula F in L p
l

is 1-satisfiable if and only if it is
positively satisfiable. §

Proof. If F is 1-satisfiable, it is trivially positively satisfiable. Conversely,
let F be positively satisfiable such that there is r ∈ [0,1] and a Gödel
r -interpretation I with I(F ) > 0. Put ϕ := 1/I(F ) and apply §.. to
obtain a Gödel r ′-interpretation I′ such that r ′ = r ·ϕ and I′(A) =min{1,
ϕ · I(A)}= 1. Thus A is 1-satisfiable. ♦

§.. Theorem. Suppose F is a formula in L p
l

. Obtain F ′ from F
by repeatedly replacing all formulae of the form lG, G any formula, by
>. Obtain F ′′ from F by repeatedly replacing all formulae of the form
lG, G any formula, by G. Then F is 1-satisfiable if and only if there is a
classical interpretation satisfying F ′ or F ′′. In particular, satisfiability inL p

l

is NP-complete. §

Proof. If F ′ has a satisfying classical interpretation I, then extend it to a
Gödel r -interpretation I′ by putting r := 1; clearly, I′(F ) = 1.

If F ′′ has a satisfying classical interpretation I, then extend it to a Gödel
r -interpretation I′ by putting r := 0; clearly, I′(F ) = 1.

If F has a satisfying Gödel r -interpretation I such that r > 0, take ϕ
as the maximum of 1, of 1

r and of all 1
I(A) , where A is a variable in F such

that I(A)> 0. Taking h, r ′ and I′ as in §.., we see h(0) = 0, h(x) = 1
for all x > 0, r ′ ≥ 1, I′(A) = 1 for all variables A in F such that I(A) > 0,
I′(A) = 0 for all variables A in F such that I(A) = 0. Moreover, we find
I′(lG) =min{1, r ′+ I′(G)}= 1 for all subformulae of F . It is then easy to
see that I′ is a classical interpretation satisfying F ′′.

If F has a satisfying Gödel r -interpretation I such that r = 0, then F
also satisfies F ′′ in L . The lifting lemma for Gödel logic without l, see
e. g. Lemma . in [], yields as classical interpretation for F ′′.

We now prove the statement about the complexity.
By §.., a classical formula A is satisfiable if and only if it is satisfiable

w. r. t. Gödel semantics inL p. As the evaluation of a l-free formula does
not depend on the presence of l, we see that this is the case if and only if
A is satisfiable w. r. t. Gödel semantics inL p

l
. Thus classical satisfiability is

a subproblem of satisfiability inL p
l

.
By the above, we know that F is 1-satisfiable if and only if there is a

classical interpretation satisfying F ′ or F ′′ (or both). As the Cook-Levin
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theorem says that classical satisfiability is NP-complete, we see that satis-
fiability in L p

l
is NP-complete: We can join the two non-deterministic

machines that guess an assumed interpretation for F ′ or F ′′. ♦

§.. Remark. The first-order fragment inherits the problem of the
∀-quantifier from Gödel logics without l so that the lifting lemma does
not hold in general for predicate logic. §

§. The propositional fragment with 4

The Baaz-Takeuti-Titani 4-operator has a long history and is known by
different names in different branches of research. A sound and complete
proof system for Gödel logic with4 is given by Baaz []; we will extend it
for our purposes. For further connections of the4 operator to witnessed
Gödel logic, see [].

§.. Definition. Let Gl,4 denote the proof system of Gl extended by
the axiom schemata

(4) 4A⊃A
(4) 4A⊃44A
(4) 4A∨¬4A
(4) 4(A∨B)⊃ (4A∨4B)
(4) 4(A⊃ B)⊃4A⊃4B

and the rule (4N) A
4A. §

We will prove in §.. that Gl,4 characterises validity inL p

l,4. Clearly,

Gl,4 is substitutive, cf. §... By [, Theorem .], G4 proves all validities
inL p

4.

§.. Proposition. Gl,4 proves

(D) 4A⊃4lA,
(D) 4(A⊃ B)⊃4(lA⊃lB)
(D) (4A∧4B)↔4(A∧B)
(D) (4A∨4B)↔4(A∨B)
(D) 4(A⊃ B)⊃4(4A⊃4B)
(D) 4(A↔ B)⊃4(4A↔4B)
(D) 4(A↔ B)⊃4(E[A]↔ E[B])
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(D) 4(A↔ B)⊃ (E[A]↔ E[B])

here E[·] denotes aL p

l,4-context. §

Proof. (D) follows from Gl,4 `A⊃lA, (4N) and (4).
Apply (4N) and (4) to (R) to obtain (D).
(D): Apply (4N) and (4) to Gl,4 ` (A∧ B) ⊃ A to obtain Gl,4 `

4(A∧ B) ⊃ 4A. Similarly, Gl,4 ` 4(A∧ B) ⊃ 4B holds and thus
Gl,4 ` 4(A∧ B) ⊃ (4A∧4B). To show the converse direction, apply
(4N) and (4) to Gl,4 `A⊃ B ⊃ (A∧B) so that Gl,4 `4A⊃4(B ⊃
(A∧ B))). Since 4(B ⊃ (A∧ B)) ⊃ 4B ⊃ 4(A∧ B) by (4), we have
Gl,4 `4A⊃4B ⊃4(A∧B). Thus (D) follows.

(D): One direction is (4). Apply (4N) and (4) to A⊃ (A∨B) to
obtain Gl,4 `4A⊃4(A∨B). Similarly, Gl,4 `4B ⊃4(A∨B). Now,
(D) follows by (IPL).

(D): By (4), Gl,4 ` 4(A ⊃ B) ⊃ 4A ⊃ 4B holds. Applying
(4N) and (4), we see Gl,4 ` 44 (A ⊃ B) ⊃ 4(4A ⊃ 4B). Since
Gl,4 `4(A⊃ B)⊃44 (A⊃ B) by (4), we obtain (D).

(D) follows from instances of (D) and (D).
(D) is proved by induction on the complexity of the context. Clearly,

Gl,4 ` 4(A↔ B) ⊃ 4(A↔ B) and Gl,4 ` 4(A↔ B) ⊃ 4(C ↔
C ). Suppose we already have Gl,4 ` 4(A↔ B) ⊃ 4(E[A]↔ E[B]),
then Gl,4 ` 4(A ↔ B) ⊃ 4(4E[A]↔ 4E[B]) by (D) and also
Gl,4 ` 4(A ↔ B) ⊃ 4(lE[A] ↔ lE[B]) from instances of (D)
and (D). Suppose we already have Gl,4 ` 4(A↔ B) ⊃ 4(E[A]↔
E[B]) and Gl,4 ` 4(A↔ B) ⊃ 4(F [A]↔ F [B]); by applying (4N)
and (4) several times to G ` (E[A]↔ E[B]) ⊃ (F [A]↔ F [B]) ⊃
((E[A]� F [A])↔ (E[B]� F [B])) for any � ∈ {∧,∨,⊃} and by using
the assumptions, we find Gl,4 ` 4(A↔ B) ⊃ 4((E[A]� F [A])↔
(E[B]� F [B])).

(D) follows from (D) and (4). ♦

§.. Definition. An (X ,K)-chain formula inL p

l,4 has the form

4S ∧¬4N
where S is an (X ,K)-chain formula in L p

l
and N is a conjunction

∧

i ai

with ai ∈ Y := {lk x; x ∈ X ∪ {⊥}, k ≤ K} such that either S contains
a↔> or N contains a. §

§.. Theorem. Let F be a formula inL p

l,4. Then F is valid if and only

if Gl,4 ` F . §
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Proof. Verifying soundness is a matter of routine. We will only sketch
the proof of completeness and focus on the underlying ideas because it is
very similar to the one of §... We will use the notation of §..; put
X := Var(F ), K := rdp(F ) and Z := Y ∪{>} in addition.

The first step is to construct a set C of (X ,K)-chain formulae inL p

l,4
such that Gl,4 proves

∨

C∈C C . It is routine to show for all a, b ∈ Z that
Gl,4 proves 4(a ≺ b )∨4(a↔ b )∨4(b ≺ a) and 4(a↔>)∨¬4 a,
hence also their conjunction. Use (G) and (D) to bring this conjunction
into disjunctive normal form D. It is easy to see that each conjunction in
D contains4(a↔>) or ¬4 a or both, for each a ∈ Z . If the following
points are incorporated, the algorithm presented in the proof of part (a) of
§.. achieves the transformation of D into the required form. Due to
(4N) and (D), we can replace subformulae by provably equivalent ones,
in particular, conjunctions/disjunctions can be re-parenthesised/re-ordered
and4 can be moved across them by (D) and (D). Since Gl,4 ` (4(a↔
>)∧¬4 a)↔⊥, we are also able to eliminate all conjunctions in D that
simultaneously contain4(a↔>) and ¬4 a, as required by §...

Also part (b) of §.. straightforwardly generalises to our situation. If
C =4S ∧¬4N is a chain with S and N as in §.., we can construct
some z ∈ Z such that Gl,4 ` C ⊃ (F ↔ z) by an iteration. For the
start, we use of Gl,4 `C ⊃ (F ↔ F ). For the iteration step, we suppose
Gl,4 ` C ⊃ (F ↔ F ′) and we will replace a “small” subformula U in
F ′ = E[U ] by an even simpler one in every run; here small means that
U 6= (⊥ ⊃ ⊥) and that the head of U is the only connective different
from l and ⊥. We distinguish two cases: () If U = a� b for some
� ∈ {∧,∨,⊃} and a, b ∈ Z , then S contains either a ≺ b or a ↔ b or
b ≺ a. We will discuss only b ≺ a because a ↔ b and a ≺ b can be
treated similarly. It follows Gl,4 ` C ⊃ 4(b ≺ a). If � = ∧, we apply
(4N) and (4) to the G-provable formula (V ≺W )⊃ ((W ∧V )↔V )
to obtain Gl,4 ` 4(b ≺ a) ⊃ 4((a ∧ b )↔ b ); it follows from (D)
that Gl,4 ` C ⊃ (F ′↔ E[b]) and hence Gl,4 ` C ⊃ (F ↔ E[b]).
If � = ∨, we similarly find Gl,4 ` C ⊃ (F ↔ E[a]). If � = ⊃, we
find Gl,4 ` C ⊃ (F ↔ E[b]). Observe that E[a] and E[b] have lower
complexity than F ′. () In the remaining case, U has the form4a for some
a ∈ Z so that F ′ = E[4a]. If N contains a, we find Gl,4 `C ⊃¬4a and
thus Gl,4 ` C ⊃ (F ′↔ E[⊥]). If N does not, S contains 4(a ↔>),
thus Gl,4 ` C ⊃4a and hence Gl,4 ` C ⊃ (F ′↔ E[>]). Treating >
as a nullary connective as we have done in the proof of part (b) of §..,
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E[>] and E[⊥] also have lower complexity than F ′.
Also part (c) of §.. is easily generalised so that it suffices to prove

Gl,4 ` C ⊃ (F ↔ >) for every chain C . With the notation and
assumptions from (b), we have Gl,4 ` (4S ∧ ¬ 4 N ) ⊃ (F ↔ z),
z ∈ Z . Since S is a chain in Ll, we may use the notations z ≺S >
and z ↔S >. First, we will prove z ↔S >. Suppose not, then we have
z ≺S > so that §.. provides a Gödel r -interpretation I: X → [0,1]
such that I(S) = 1 and such that I(a)< I(b ) whenever a ≺S b , in particular,
I(z) < I(>) = 1. For all a in N , we have a 6↔S >, thus a ≺S > so that
I(a) < I(1) and therefore I(4a) = 0. Now that I(¬4N ) = 1, we find
I((4S∧¬4N )⊃ (F ↔ z)) = (max{1,1})Å (1 ./ I(z)) = I(z)< 1, contra-
dicting Gl,4 ` (4S∧¬4N )⊃ (F ↔ z). Thus we see z↔S >, as claimed.
It follows Gl `4S ⊃ (z↔>) so that Gl,4 ` (4S ∧¬4N )⊃ (F ↔>).
Therefore we have Gl,4 ` (4S ∧¬4N )⊃ F , as required. ♦

§.. Remark. It is somewhat astonishing that the axioms we added for
l and for4 do not interfere with each other. One of the reasons for this is
that the countermodels in the construction for the fragment with l alone
can be used as countermodels for the fragment with l and4. §

§.. Remark. We conclude with a remark on conservativity: In §..,
we remarked that validity (or an interpretation) of a formula F in L p

l,4
does not depend on the language in the following sense: If F is actually
contained in L p

l
, or L p

l
or L p, validity (or the interpretation) does not

change. The next statement becomes obvious by completeness:
If F is a formula in L p

l
[or L p

4, or L p] such that Gl,4 ` F , then

Gl ` F [or G4 ` F , or G ` F ]. §
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Conclusion

§. Summary

The main results are: §.. (non-compactness of entailment), §..
(completeness and soundness of Gl), §.. (completeness and soundness
of Gl,4), §.. (satisfiability in the propositional fragment).

This thesis is the basis for further research, as described below.

§. Future work

A trend in the current development in mathematical fuzzy logic is to invest-
igate the features of fuzzy logics that result from adjoining modal operators,
see e. g. [] or []. This thesis provides an example of the intractability
phenomena that can occur even when the semantics is confined to the unit
interval and Kripke semantics are excluded. However, the semantics of the
modality operator we used is not very typical for modal logics, e. g., the
‘dual’ operator ¬l¬ has the property

I(¬l¬A) =

(

1 if r = 0< I(A)
0 otherwise.

if I is a Gödel r -interpretation.
In view of the initial question for the borderline between Gödel and

Łukasiewicz logics, it was natural to investigate whether the following
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variant would show the same intractability phenomenon for validity. The
paper [], coauthored by the writer of this thesis, generalises the adding
operator to a larger class of monotone operators, i. e., we define I(lA) :=
f (I(A)), where f : [0,1] → [0,1] is a function such that ∀x ∈ [0,1].
x ≤ f (x) and ∀x, y ∈ [0,1]. x < y ⇒ ( f (x) < f (y) ∨ f (y) = 1). The
addition of a constant is obviously such a function. The validity of a formula
A is analogously defined by the property that A evaluates to 1 under all such
functions. In the propositional fragment, validity can be easily described by
a simple axiom system and it shares with Gödel logic the deduction theorem,
the lifting lemma, and the agreement of entailment and 1-entailment. In
fact, the situation there is much simpler than the one presented in this
thesis because no complicated construction of a countermodel as in §..
is needed; a mere application of Dummett’s original completeness theorem
suffices together with an a-posteriori mending of the values assigned to
ringed formulae. In the first-order fragment, however, the behaviour of
quantifiers at limit points causes difficulties so that only a partial answer
to axiomatisability was given in [] for a very restricted part of the prenex
fragment. This generalisation is unsatisfactory also for another reason,
which will be explained in the following.

It is well-known and easy to show that Gödel interpretations in the
propositional fragment commute with order-preserving functions on the
truth value set, i. e. [0, 1], that preserve 0. In general, this is referred to
as the property of Gödel logics that only the order of the truth values
assigned to the propositional variables determines the interpretation of
a formula. The lifting lemma is an extension of this principle: Given
d ∈ [0, 1], we project all truth values above a given value d to 1 by the
function hd : [0, 1]→ [0, 1], h(x) := x for x ≤ d , h(x) := 1 for x > d .
Every Gödel interpretation I commutes with hd so that I′ : [0, 1]→ [0, 1],
A 7→ hd (I(A)) is an interpretation with the property that I′(F ) = 1 holds for
any formula such that I(F ) = 1. However, there can be formulae F with
I′(F ) = 1> I(F ) so that validity is preserved only in one way. The lifting
lemma is also one of the key properties of Gödel logic because it says that
the truth value 1 cannot be crisply distinguished from values close to it,
in other words, the 4-operator is not expressible. As the exact ordering
preservation by a condition such as ∀x, y ∈ [0,1]. x < y ⇒ f (x) < f (y)
infringes the lifting property, a natural choice seems to be the condition ∀x,
y ∈ [0,1]. x < y⇒ ( f (x)< f (y)∨ f (y) = 1) chosen above. The condition
∀x ∈ [0,1]. x ≤ f (x) therefore is superfluous if one is willing to give the
deduction theorem and the equality scheme up, which do not hold in many
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modal logics anyway.
In a follow-up paper, the author of this thesis will consider the conditions

∀x, y ∈ [0,1]. x < y ⇒ ( f (x) < f (y)∨ f (y) = 1) and f (1) = 1 for the
functions that provide an interpretation for the l-operator. It is easy to
see that neither A⊃lA nor lA⊃A nor (A↔ B)⊃ (lA↔lB) can be
valid for this semantics. The deduction theorem neither holds: The rule

A
lA expresses the condition f (1) = 1. The price one has to pay for this
further generalisation is that it seems necessary to admit schemata of axiom
schemata, where the extra parameter runs through all natural numbers n
in order to express all ring powers lnA. However, in a proof of a valid
formula F only those axiom schemata are involved that have at most the
same ring depth; this constitutes a kind of compactness or uniformity w. r. t.
the l-operator. As in the case where the condition ∀x ∈ [0,1]. x ≤ f (x) is
stipulated, the behaviour of quantifiers in the first-order fragment remains
as an open question.





Bibliography

[] Arnon Avron. Hypersequents, logical consequence and intermediate
logics for concurrency. Ann. Math. Artif. Intel. , –. .

[] Matthias Baaz. Infinite-valued Gödel logics with 0-1-projections and
relativizations. Gödel ’. Lecture Notes Logic , –. .

[] Matthias Baaz, Oliver Fasching. Note on witnessed Gödel logics with
Delta. Ann. Pure Appl. Log. , –. .

[] Matthias Baaz, Oliver Fasching. Gödel logics with monotone operators.
Accepted for publication in Fuzzy Sets and Systems. .
http://dx.doi.org/10.1016/j.fss.2011.04.012

[] Matthias Baaz, Norbert Preining, Richard Zach. Characterization of
the axiomatizable prenex fragments of first-order Gödel logics. I Int.
Symp. Mult. Val. Log. , –. .

[] Matthias Baaz, Norbert Preining, Richard Zach. First-order Gödel
logics. Ann. Pure Appl. Log. , –. .

[] Matthias Baaz, Helmut Veith. Interpolation in fuzzy logic, Arch. Math.
Log. , –. .

[] Matthias Baaz, Richard Zach. Compact propositional Gödel logics.
I Int. Symp. Mult. Val. Log. , –. .



http://dx.doi.org/10.1016/j.fss.2011.04.012


[] Arnold Beckmann, Norbert Preining. Linear Kripke frames and Gödel
logics. J. Symb. Log. , –. .

[] Félix Bou, Francesc Esteva, Lluís Godo, Ricardo Oscar Rodríguez.
Characterizing fuzzy modal semantics by fuzzy multimodal systems
with crisp accessibility relations. I/E , –. .

[] Xavier Caicedo, Ricardo Oscar Rodríguez. Standard Gödel modal
logics. Studia Logica , –. .

[] Michael Dummett. A propositional calculus with denumerable matrix.
J. Symb. Log. , –. .

[] J. Michael Dunn, Robert K. Meyer. Algebraic completeness results for
Dummett’s LC and its extensions. Z. math. Logik u. Grundlagen d.
Math. , –. .

[] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. Ergebnisse eines
mathematischen Kolloquiums , –. .

[] Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer. .

[] Petr Hájek. On very true. Fuzzy sets and systems , –. .

[] Alfred Horn. Logic with truth values in a linearly ordered Heyting
algebra. J. Symb. Log. , –. .

[] Wilhelm Kubin. Eine Axiomatisierung der mehrwertigen Logiken von
Gödel. Zeitschr. f. math. Logik u. Grundlagen d. Math. , –.
.

[] Matthias Ragaz. Arithmetische Klassifikation von Formelmengen der
unendlichwertigen Logik. PhD Thesis. ETH Zürich. .

[] Bruno Scarpellini. Die Nichtaxiomatisierbarkeit des unendlichwer-
tigen Prädikatenkalküls von Łukasiewicz. J. Symb. Log. , –.
.

[] Ivo Thomas. Finite limitations on Dummett’s LC. Notre Dame J.
Formal Logic , –. .

[] Boris Trakhtenbrot. The impossibility of an algorithm for the decision
problem for finite domains. Doklady Akad. Nauk SSSR , –.
.





[] Andreas Weiermann. Phasenübergänge in Logik und Kombinatorik.
DMV-Mitteilungen /, –. .

[] Andreas Weiermann. Phase transitions in logic and combinatorics.
Expositions of current mathematics . Math. Soc. Jap. Autumn-
Meeting , –. .





Curriculum Vitae

Oliver Fasching
Born in Waidhofen a. d. Thaya, Austria, on th May 
Nationality: Austria

Education

• : Magister degree (approx. MSc) in mathematics from Univ. of
Vienna, with distinction. Diploma thesis Dynamical properties of
automorphisms of compact groups in ergodic theory, marked ‘Sehr
gut’ (= A).
• –: Semester abroad at Dept. for Mathematics

of E Zürich
• : School leaving exam in Waidhofen a. d. Thaya,

with distinction

Current affiliation

Project Assistant at Vienna University of Technology,
Institute for Discrete Mathematics and Geometry (E),
Research Unit Computational Logic (E.),
Austrian Science Fund (FWF) Project “Monadic Gödel logics” (P)





Professional experience

• –now: project assistant at Vienna University of Technology

• –: teaching contracts with Univ. of Natural Resources
and Applied Life Sciences, Vienna

• : software developer, Faculty for Math. of Univ. of Vienna

• –: ( months) ‘Scientific assistant’ at Dept. for Math. of
E

• –: ( months) placement, Dept. for Math. of E

Software knowledge

• Linux system operator

• bash, C, C++, C#, Mathematica, perl, Maple, Matlab, prolog

Teaching

Selected contracts:

• –, , –, Institute for Math. at Univ. Vienna:
Given exercises ‘Mathematics for computer scientists’,
‘Applied operating systems I’, ‘Applied operating systems II’
‘Introduction to mathematical methodology’ etc.

• , E: given and/or coordinated exercises for
Dept. Mathematics: ‘Analysis ’, ‘Math. f. biologists and chemists’
Dept. f. Inform. Technology: ‘Analysis III’, ‘Discrete mathematics’
Dept. Architecture: ‘Thinking mathematically’

• , Inst. f. Scientific Computing,
Vienna University of Technology
taught exercises for ‘Computer-aided mathematics’





Publications

• Matthias Baaz, Oliver Fasching, Note on witnessed Gödel logics
with Delta, Annals of Pure and Applied Logic ():–, .
http://dx.doi.org/10.1016/j.apal.2009.05.011

• Matthias Baaz, Oliver Fasching, Gödel logics with monotone oper-
ators, accepted for publication in Fuzzy Sets and Systems, .
http://dx.doi.org/10.1016/j.fss.2011.04.012

Miscellaneous

• Research visit in March  for two weeks to
Prof. F Dr Alan Baker,
Dept. of Pure Math. and Math. Statistics, Cambridge (U)

• Organizational Committee of Joint seminar Moscow-Vienna Work-
shop on Logic and Computation 
• Attended chess tournaments in Toruń, Poland () and Gudauta,
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