Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Voice over IP Integration in
Service Component Architecture

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing

eingereicht von

Michael Pickelbauer
Matrikelnummer 0425061

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung
Betreuer: O. Univ. Prof. DI Dr.techn. Dietmar Dietrich

Wien, 27.9.2011

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at



Erklarung

Michael Pickelbauer
Schulstrasse 21
7304 Grofwarasdorf

Hiermit erklare ich, dass ich diese Arbeit selbstandig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit
- einschlieflich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle

als Entlehnung kenntlich gemacht habe.

Wien, 27.9.2011

Michael Pickelbauer



Kurzfassung

Das Paradigma der Service-oriented Architecture (SOA) fand in den letzten Jahren eine
weite Verbreitung. Diese wurde durch die Vorziige bei der Interoperabilitat und Erweit-
erbarkeit vorangetrieben. Ebenso hat sich Voice over IP (VoIP) zur Ubertragung von

Multimedia iiber Computernetzwerke wie das Internet etabliert.

Die vorliegende Arbeit beschéftigt sich mit der Integration von Sprachdiensten iiber pake-
torientierte Netzwerke in einem, auf einer SOA-basierenden, System. Ziel ist es, Infor-
mationen iiber VoIP-Anrufe den Diensten eines SOA-basierenden Systems bereitzustellen.
Durch die Integration sollen die Vorteile und Moglichkeiten wie die Wiederverwendbarkeit

oder die Komposition von Diensten eines SOA-basierenden Systems geniitzt werden.

Mit der vorliegenden Arbeit wird eine ressourcensparende Losung angestrebt. Deshalb wird
als Implementierung einer SOA das Framework Service Component Architecture (SCA)
verwendet. Das weit verbreitete Session Initiation Protocol (SIP) wird zur Signalisierung
fiir VoIP eingesetzt. Zum Auffangen und Abéndern der Signalisierungsnachrichten wird
ein Back-To-Back User Agent als Grundlage verwendet. Mit folgender Methode wird in der
vorliegenden Arbeit vorgegangen: Zu Begin wird der Stand von Wissenschaft und Technik
untersucht. Darauf aufbauend werden unterschiedliche Ansétze entwickelt, wie Informa-
tionen tiber einen Anruf einer SCA bereitgestellt werden kann. Die vielversprechendste

Losung wird gewahlt, um einen Prototypen zu erstellen.

Der Prototyp ist SIP-konform und wird als ein SCA-Service realisiert. Es werden Beispielan-
wendungen mit dem Prototypen umgesetzt, die den einfachen Zugriff auf die Anrufinforma-
tionen sowie die durch SCA bereitgestellten Moglichkeiten, wie die Wiederverwendbarkeit,
zeigen. Bei den Lasttests wurden wie erwartet Leistungseinbuflen gegeniiber spezialisierten
SIP-Systemen gemessen, jedoch reicht bereits die erreichte Arbeitsgeschwindigkeit aus, um

die Anforderungen an die Leistung zu erfiillen.

IT



Abstract

The paradigm of Service-oriented Architecture (SOA) has gained ever increasing popularity
due to its interoperability and extensibility. Similarly, Voice over IP (VoIP) has established

for the transfer of media over computer networks, like the Internet.

The present thesis examines the integration of information from Voice over IP calls into
a system based on SOA as well as the manipulation of these call information. The aim is
to unveil whether services can access the call information in the same way as they would

access information from commonplace services.

The focus of this work is to create a lightweight system. Therefore, Service Component
Architecture (SCA) is chosen as an implementation of SOA. On the Voice over IP side the
widely used Session Initiation Protocol (SIP) is chosen as the signaling protocol to interact
with SCA. The interaction is based on a Back-To-Back User Agent as this type of SIP
server is most flexible and offers numerous interaction opportunities. Various approaches
regarding how the information of a call can be inserted into SCA are developed and the

most promising option is implemented as a prototype.

The prototype follows the SIP standard and is implemented as a service in SCA. With the
prototype, sample applications are built which show the expected improvement in devel-
opment speed and re-usability of the created services. Compared to implementations not
using SCA, the prototype reveals drawbacks in performance. The achieved performance,

however, is already sufficient to fulfill the requirements.

ITI



Table of Contents

1 Introduction

1.1 Motivation . . . . . . . . ..
1.2 Scopeof Work . . . . . . . ..
1.3 Methodology . . . . . . . ..

2 State of the Art

2.1 Voiceover IP . . . . . ..
2.1.1  Session Initiation Protocol . . . . . . . .. ... ... ...
2.1.2 Signaling . . . . . . ...
2.1.3 Messages . . . . ..o
2.1.4 Routing Information . . . . .. ... ...

2.2 Service-oriented Architecture . . . . . . .. ..o
221 Concepts. . . . . . . . e
2.2.2  Service-oriented Architecture Ingredients . . . . . . . .. ... ...
2.2.3  Orchestration and Choreography . . . . . ... .. ... ... ...
224 Web Service . . . . . ..
2.2.5  Service Component Architecture. . . . . . . ... .. ... ... ..

2.3 Integration of Voice over IP in Systems Based on Service-oriented

Architectures . . . . . .

3 Concept and Model

3.1 Analysis . . . .
3.2 Design . . . ..o
3.2.1 Session Initiation Protocol Message Interception . . . . . . . . . ..
3.2.2  Physical Architecture . . . . . . ... oo
3.2.3 Integration in Service Component Architecture. . . . . . . . . . ..
3.3 Proposed Solution . . . . . . . ...

I N T

> O

10
13
16
17
18
20
21
21
24

26



3.3.1 Infrastructure . . . . . . . . ..

3.3.2 Message Processing . . . . . . . ... oo oL

4 Proof of Concept

4.1 TImplementation . . . . . . . . ... L
4.1.1 Used Components by the Prototype . . . . . . ... ... ... ...
4.1.2  Structure . . . . . ...

4.2 Simulation and Results . . . . . . . .. ... o L o
4.2.1 Test Scenarios and Metrics . . . . . . . ... .. ... L.
4.2.2 Test Casesand Setup . . . . . . . ... ...
4.2.3 Test Results . . . . . . . . . .

4.3 Discussion . . . . . ... e

5 Conclusion and Outlook

5.1 Conclusion . . . . . . .
5.2 Outlook . . . .

Appendix: SDO Definition
Appendix: SIPp Scenarios

Literature

54
o4
o4
o7
63
63
66
68
72

78
78
80

82

85

94



Abbreviations

3GPP 3rd Generation Partnership Project
ALG Application Layer Gateway

API Application Programming Interface
AS Application Server

ATM Air Traffic Management

B2BUA Back-to-Back User Agent

BPEL Business Process Execution Language
BPM Business Process Modeling

CPU Central Processing Unit

DCCP Datagram Congestion Control Protocol
DNS Domain Name System

CR SCA Requirement

DTLS Datagram Transport Layer Security
ESB Enterprise Service Bus

GNU GNU’s Not Unix!

GPL General Public License

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure
IETF Internet Engineering Task Force

IMS IP Multimedia Subsystem

1P Internet Protocol

ISDN Integrated Services Digital Network
ISO International Organization for Standardization
LI Lawful Interception

MDSD Model-driven Software Development
MGCP Media Gateway Control Protocol

NAT Network Address Translation

NR Non-functional Requirement

OASIS Organization for the Advancement of Structured Information Standards
OSGi Open Services Gateway initiative

OSI Open Systems Interconnection

OSOA Open Service-oriented Architecture
PC Personal Computer

PSTN Public Switched Telephone Network
RFC Request For Comments

RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol

SCA Service Component Architecture
SCTP Stream Control Transmission Protocol

VI



SDO Service Data Object

SDP Session Description Protocol

SIP Session Initiation Protocol

SIPS Session Initiation Protocol Secure

SMTP Simple Mail Transfer Protocol

SOA Service-oriented Architecture

SR SIP Requirement

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDDI Universal Description Discovery and Integration
UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication System
URI Universal Resource Identifier

ITU-T Telecommunication Standardization Sector of the International Telecommunication Union
VoIP Voice over Internet Protocol

W3C World Wide Web Consortium

WSDL Web Service Description Language

WS Web Service

WWW World Wide Web

XML Extensible Markup Language

VII



1 Introduction

In an attempt to modernize air traffic control, various research has been done to utilize
Voice over IP (VoIP). The air traffic control consists of heterogeneous computer systems,
thus the idea is picked up to introduce the paradigm of Service-oriented Architecture
(SOA). As with VoIP, the voice communication is an additional computer system, the
benefits of SOA should also be facilitated. In the following, the motivation to merge these
technologies and the scope of work will be defined.

1.1 Motivation

Since its introduction, the telephone system has been a circuit switched system. In such
a system an end-to-end path between the participants of a phone call is set up [SPS04,
p. 22]. This path is exclusively used by the participants and offers a reliable connection
with guaranteed bandwidth. Hence, the telephone system is basically a closed system and
does not share its capacities or wires with other systems.

With the growing number of users and increasing bandwidth, the Internet adapted in the
capability in carrying video and audio transmission on a broad base. Around the millen-
nium development in VoIP started to emerge. VolP is the name for a technology used
to transfer media like video, audio or text via an Internet Protocol (IP) network. Trans-
ferring media over a packet-switched network, such as the IP network, is a more complex
challenge than using a traditional circuit-switched network. Due to the packetization of
the data and the way how those packets are routed over a packet-switched network, the
arrival for each individual package can not be predicted [SPS04, p. 23]. Therefore, the
transmission of media in a reliable and qualitative manner over a network which is build
for transferring data is a complex engineering challenge. It offers, however, various oppor-
tunities for computer systems, network infrastructure and the overall interaction with the
telephone system. With VoIP every computer is able to work as a phone agent and every
server can be a switch for VoIP calls. This enables the development of applications which
are enhanced with VoIP to offer new possibilities and experiences.



Introduction

The basic purpose of Air Traffic Management (ATM) is to operate aircrafts in the sky
and on the ground. To enable safe and efficient operation, ATM defines the interplay
of systems, people and procedures. The way how ATM is carried out has not changed
since the sixties, though technology has improved. With improvements in technology, like
increased resolution of the radar, the increasing air traffic is overcome. To modernize ATM
researches in all areas is carried out. One target of the modernization is to harmonize the
systems of ATM among countries and organizations.

The air traffic control is one part of ATM and is responsible for safely separating and
guiding the aircrafts from and to airports. It consists of different systems, which together
enable an efficient operation. In course of the modernization the idea is picked up to
apply the paradigms of SOA to the computer systems involved in the air traffic control.
SOA [PvdHO7, pp. 389-391] is not an architecture, which can be applied directly to a
project. It is just a paradigm which describes what the concepts of SOA are and which
paradigms have to be followed in order to successfully build a system based on SOA. The
very basic idea behind SOA is to create services that provide functionality. It can be used
by other services or programs or these services can be orchestrated/choreographed (see
Subsection 2.2.3) to accomplish a more complex task. Using VoIP as a service in such a
system based on SOA would enable a variety of opportunities that increase flexibility to
a computer system. The re-usability and orchestration/choreography possibilities of SOA
could be applied to these created VoIP services. By enriching a VoIP call with information
gathered in a system based on SOA the client application would not need to use a separate
channel to query these parameters, e.g. by querying a database server. Current VoIP
server only offer limited possibilities to influence the information carried in a call or the
call itself. Often, the server can be influenced by settings or some even offer to create
simple scripts. However, a query to a database or other systems is not possible with these
scripts. In contrast the usage of application server [TWO07, pp. 229-236] is rather tedious
and complex as well it does not offer the flexibility and re-usability of a SOA based solution.

There are already attempts to add VoIP to systems based on SOA [LCLLO04, HZ04,
ESST09], but there is no suitable implementation for the environment in which this thesis is
dealing with. This environment requires a reliable implementation which is capable to per-
form on a system with comparatively weak hardware configuration to nowadays computer
systems as described closer in the next section.

1.2 Scope of Work

In air traffic control different systems are used to safely maintain an efficient air traffic.
The most important systems are still the radar system and the radio system to com-
municate with pilots as well as with the neighboring air traffic controls. Usually, these
system landscapes grew historically, thus legacy systems are still in use and they consist
of products from different manufacturers. The variety of systems and technologies make
the interconnection of these systems a complex and tedious task. In the past, primary
individual systems were improved to overcome the increasing requirements and challenges.



Introduction

For example the radar systems resolution was increasingly improved, as a result of which
routes of airplanes could be made more compact without any reduction in safety. However,
it could also be desirable to see a feedback on the radar screen to which plane the air traffic
manager is talking to, and this requires the collaboration of different systems.

This thesis is written in the course of the research to modernize air traffic control. One
subproject is addressing the heterogeneity of the systems. In the course of the project the
appliance of the paradigm of SOA is evaluated.

The communication in air traffic control is an important service. One of its crucial roles
the system has is to communicate with the pilots cruising through their territory giving
them instructions for the route, weather conditions and further information that might be
necessary. In the course of the present thesis the voice communication system should also
be integrated in a system based on SOA.

The aim of the present thesis is to find a solution how to realize an integration of the
communication system into SOA. For this reason, a proper VolIP protocol need be found
as well as an implementation of SOA. Central questions of the thesis are, if the integration
is possible and how it can be realized. Also, how far the added abstraction layer of a system
based on SOA is limiting the performance of the system.

For the air traffic controlling ordinary computer systems cannot be used due to the re-
quirements in safety and availability [ED109a, pp. 59-65]. Therefore, special hardware
was developed which fulfills these requirements. A drawback of the hardware is the weak
performance compared to modern computer systems. Commonly those system’s memory
is less than 256 Mbyte and the size of the hard drive does not exceed 50 Mbyte. This
hardware has been certified which takes a certain amount of time and thus changes are
rather tedious. All applications developed for the air traffic control run on this hardware
and thus the question need to be answered, if the system being developed is capable to run
on this hardware with an acceptable performance, too.

To meet the requirements for safety and availability also the software needs to be certified.
To verify an operating system, the used libraries and the developed application takes a
lot of time. If a virtual machine would be used for executing the application, like with
Java [GJSBO05] or .NET [Pro02], it also needs to be verified. The complexity of a virtual
machine would add a significant amount of time to the verification process. Also a virtual
machine consumes notable resources, which are considered to be limited for the addressed
system. Thus, implementations using a virtual machine should be avoided. Finding a
considerable implementation to meet the limitations in hardware is part a of the problem
covered by the present thesis.

With the integration of VoIP in a system based on SOA several tasks should be accom-
plished. Therefore, the information of a call should be used by services of a system based
on SOA. This could reach from simple logging of calls, error or fault detection, statis-
tics to more sophisticated tasks like displaying additional information to the air traffic
controller up to mission critical decisions, like escalation of an unanswered call. But the
system should not be restricted to passive reception of information. It should be possible
to actively manipulate call information. In this way, call information could be enriched



Introduction

with additional data like flight number, origin of the flight, current flight sector. But also
applications should be enabled to change the destination of the call depending on different
features like geographic position or internal state of other systems. Thus the integration
of the VoIP should be done at a state, where most information of the call can be extracted
but where the call still can be unrestrictedly influenced. Further, information extraction
and manipulation of the call should be possible over the hole duration of the call.

VoIP is being used for some time and a lot of software and hardware was developed, tested
and proved the functionality and reliability in the field. To be able to use the present
hardware and software, the interaction should be done in a standard conform manner.
This means that the developed system needs to comply to the VoIP protocol in every
aspect without the need to introduce any changes to the protocol. This, not only saves the
investments already made, but it also preserves the extendability of the solution.

In the past, different efforts to integrate VoIP in a system based on SOA were undertaken,
see Section 2.3. The majority of these solution are designed for large scale applications and
most are implemented using the programing language Java. Also, these solutions depend
on technologies and products which are are not suitable for the target environment of this
work.

The aim of this work is to find a way to intercept VoIP communication in a transparent
way for all participants. This means that the solution has to be compatible with present
standards. It should also enable the alternation of the intercepted information. The limited
resources have to be considered for all decisions made in this work.

It is obvious and thus expected that the integration of VoIP in a system based on SOA
will affect the performance compared to a stand alone VoIP system. But the designated
area of application does not need a high performance system. However, a processing speed
of 100 calls per second is required.

1.3 Methodology

Initially, the problem domain is introduced and described. The motivation for the on-
handed work is explained and the area of research is defined as well as the addressed
problems and expected results. It also gives a brief outlook of the direction in which the
solution is inclining.

For an overview of current research and products, a state of the art analysis is done.
As two technologies should be integrated, each technology is examined on its own. The
start marks VoIP where different important implementations are briefly described. The
Session Initiation Protocol (SIP) is further described with all details which are needed for
an integration into a system based on SOA. Next, SOA is introduced with all important
aspects. As SOA is only a paradigm, concrete architectures are presented. One of the
implementation of SOA will be chosen to be used in the on-handed thesis. Finally, related
work in integrating VoIP into systems based on SOA is discussed. Additionally, related



Introduction

work is examined on how messages of the chosen VoIP protocol can be intercepted and
changed. The results of the state of the art analysis can be found in Section 2.

Based on the problem description and the state of the art analysis, technical requirements
are going to be defined and the design of the system will be worked out. The related work
is analyzed if a present solution or product can fulfill all requirements. Subsequent the
system will be developed in three steps:

1. Entire SIP message interception
2. Physical architecture

3. Integration in a system based on SOA

First, the issue on how the signaling messages can be intercepted and changed without vio-
lating the standard is addressed. For this purpose, different server defined by the protocol
standard are analyzed if they are suitable for this task. Then, the physical architecture of
the system and the needed parameters of the environment are defined. In the last step,
different ways will be worked out how the developed server can be integrated into a system
based on SOA and hand the collected information in an effective manner to the services.
The concept and model can be found in Section 3.

To test the concept and model, a prototype needs to be developed and tested, see Section 4.
Details on the implementation cover the used components, the structure of the prototype
and faced problems. Subsequently, the capabilities and features of the prototype will be
tested by implementing sample applications. Different performance tests will be conducted
using two test scenarios. Next to the prototype, two additional systems are tested for
reference. Finally, the prototype, the test results and the design are discussed.

With the conclusion and outlook in Section 5 the on-handed thesis is concluded and an
outlook in the area as well as further development of the system is given.



2 State of the Art

SIP is one of the most used signaling protocols for VoIP. Therefore, it is contemplated
to be used in the present work. An overview of major VolP protocols will be given and
the SIP protocol will be examined. The areas of application will be discussed followed by
the concepts and functionality of SIP. Next to SIP, the paradigm of SOA are introduced.
Giving a brief outline how SOA was established, the concepts and ideas are described.
Subsequently, work will be discussed which already examined the integration of SIP in
systems of SOA.

2.1 Voice over IP

VoIP is a technology to transfer audio or other media via an IP based network. The IP
network is a packed-switched network. Data over the network is transfered in packets and
thus the media has to be divided in pieces to be transfered on this network [SPS04, p. 23].
In contrast to circuit-switched networks [Bad09, pp. 4-6]), transmission of media over a
packed-switched network pose different challenges.

In a circuit-switched network a channel has to be established to the target before any
communication can happen. This channel persists for the complete session and can just
be exclusively used by the participants. The main purpose of this kind of network was to
deliver voice.

In packet-switched networks all data is transfered in packets and packets from different
applications use the same network at the same time. The fact that different kind of data
can be transfered at the same time can be seen as an advantage of a packed-switched
network in contrast to a circuit-switched network as the available bandwidth can be used
more efficient. For the transfer of voice or other media this fact is rather a burden. Media
transfered over the network should be delivered without a noticeable delay for the users.
The sharing of the bandwidth and the impossibility to directly influence the transfer of
other data on the network is a challenge for VolP.



State of the Art

To establish and to release a call signaling is necessary. In circuit-switched networks the
signaling could be handled via the same channel where the voice is transfered, called in-
band signaling, or via an own channel, called out-of-band signaling. Out-of-band signaling
is used e.g. by ISDN with the D-Channel [Bad09, pp. 4-9].

In VoIP signaling is responsible for managing a media session. This includes the estab-
lishment of sessions, the negotiation of the media transport as well as modification and
termination of sessions. The actual media is transfered by the media transport. It streams
constantly the voice or other media between the participants. Signaling and media stream
are independently transfered in VoIP and use different protocols. Therefore, VoIP is using
out-of-band signaling although the same network is used.

In course of the modernization of the air traffic controlling, research is done in the area
of the utilization of VoIP for ATM voice service [EK10, pp. C8-1 - C8-3]. The trend of
major telecom provider, to converge voice and data into one network for better scalability
at reduced costs, is picked up by the research teams. Air traffic control is responsible for
organizing aircrafts on the ground and in the sky to safely and efficiently separate and
guide the aircrafts to and from airports as well as the flow of traffic along airways. For this
purpose, the air traffic controller use radar screens, radiotelephony systems and telephones.
The radiotelephony system is used to communicate with the pilots of the aircrafts. This
kind of communication is called ground to air communication. The telephones are mainly
used for communication with other control centers, called ground to ground communication.
In a first step the research is focused on the ground to ground communication to change it
to VoIP, in a second step the research is expanded to ground to air communication. The
EUROCAE workgroup 67 specified SIP to be used as the VoIP protocol [ED109a, ED109b,
ED109c].

In the following, major VoIP protocols are introduced to give an overview. For the media
transport itself the Real-time Transport Protocol (RTP) [SCFJ03] is widely used and is a
de facto standard. For VoIP following major signaling protocols exist:

H.323: This signaling protocol [H3209] uses a binary message encoding similar to the
ISDN signaling. It relies on the protocols H.225 [H2209] and H.245 [H2409] for call
setup and management. As media transport RTCP [SCFJ03] is used. H.323 is a rec-
ommendation of the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU-T).

SIP: A text based signaling protocol is SIP [RSCT02]. In 2002 the latest version was
standardized by the Internet Engineering Task Force (IETF). The protocol is char-

acterized by the comparative simple architecture and extendability [RS02b, RS02c,
RS02a, Roa02].

MGCP: The Media Gateway Control Protocol (MGCP) [AF03] is a master /slave-protocol.
All endpoints are slaves and the media gateway itself is controlling them as the master
(Media Gateway Controller) [TWO07, p. 35]. This results in a strong position of the
carrier and no peer-to-peer communication is possible without including the master
and thus accounting is easily possible. A drawback is that services to customers can
only be offered on a gateway level.



State of the Art

As SIP was developed by IETF it is an open standard. Therefore, several open source
SIP implementations are available as well as SIP servers and softphones. Compared to
the other introduced protocols, SIP addresses only the signaling issues without defining
any other codec or additional protocols. SIP uses standardized codecs and protocols in-
stead. Therefore, and because of the similar syntax to the Simple Mail Transfer Protocol
(SMTP) [Kle08], the SIP protocol is relatively simple to use and to understand. The 3rd
Generation Partnership Project (3GPP) chose SIP as the signaling protocol in the Univer-
sal Mobile Telecommunication System (UMTS) [TWO07, pp. 405-406]. As UMTS is widely
spread, but not only therefore, SIP has evolved to a quasi standard.

2.1.1 Session Initiation Protocol

SIP is, as the name already suggests, a protocol to initialize sessions for multimedia over IP.
With the help of SIP audio, video, text and pictures can be exchanged over an IP network.
SIP is being developed by IETF and thus is an open standard. The first version of the SIP
standard was released in 1999 as Request For Comments (RFC) 2543 [HSSR99]. The main
purpose of this version was originally to establish, maintain and terminate multimedia
sessions for two or more participants over IP [HSSR99, pp. 7-8]. In this release multimedia
sessions with more than two participants such as conference calls was also payed attention.
With the latest version of the SIP standard in the year 2002 the main focus changed to
two-party unicast sessions. It was published as RFC 3261 [RSCT02].

The SIP standard does not cover all necessary aspects to establish a media session [RSC102,
pp. 9-10]. An application realizing VoIP with SIP consists in general of three components,
which can also be seen in Figure 2.1:

Signaling: With the signaling a session is established, modified and terminated. For this
purpose, SIP is used.

Session Description: To describe and negotiate the parameter of the audio or video
communication, the session description is needed.

Media Transport: The recorded audio or video is encoded and transfered to the receiver
by the third component.

SIP was originally designed to take minimal assumption on the underlaying transport pro-
tocol [HSSR99, pp. 18-20] and thus easily new protocols can be introduced. The SIP
standard supports reliable, connection-oriented protocols like Transmission Control Pro-
tocol (TCP) [Pos81] or unreliable, connectionless protocols like User Datagram Protocol
(UDP) [Pos80]. Due to the support of unreliable protocols, simple methods for commit-
ting and retransmission of messages are included. In latest SIP standard four transport
protocols are defined [RSCT02, pp. 179-180]:



State of the Art

e UDP
o TCP

Transport Layer Security (TLS) [DROS§]

Stream Control Transmission Protocol (SCTP) [SXM™00]

Note, TLS means TLS over TCP. As mentioned, UDP is a connectionless protocol where
TCP and SCTP are connection-oriented transport protocols. For securing SIP connections
TLS is used. TLS itself can be used on different transport protocols, but in the SIP
standard, TLS means TLS over TCP. Figure 2.1 shows SIP in the ISO OSI layer with the
defined transport protocols. The support for TCP and UDP need to be implemented by
all SIP applications [RSC*02, p. 142], however, additional protocols defined within the
RFC 3261 or other RFCs can be implemented. UDP is the preferred protocol for SIP,
because it offers more control to the application for the transmission and retransmission
of messages as well as it enables multicast messages.

VolIP Application
-[ Signaling ]—[ Session Description with SDP ]—[ Audio, Video ]-»

Layer 5 S 1P -Session Initation Protocol RTP
Layer 4 SCTP | TCP | UDP
Layer 3 IP - Internet Protocol

Layers 1-2 Transmitting Networks

Figure 2.1: SIP in the ISO OSI layer model with different transport protocols. The component

names printed in bold are in focus of the on-handed thesis.

Additional RFCs add support for more transport protocols [Bad09, pp. 274-276]. RFC
4168 [RSCO05] enables SIP to use TLS on over SCTP. With the release of the Datagram
Congestion Control Protocol (DCCP) [KHF06] a draft for using SIP over DCCP [JMO7]
was proposed in October 2007, but at the time of writing it was not approved as a standard.
This draft also adds the possibility to secure the connectionless protocols UDP and DCCP
with the use of Datagram TLS (DTLS) [RMO06].

As mentioned the multimedia session itself cannot be described with SIP. To describe the
session an additional protocol is necessary and most commonly the Session Description
Protocol (SDP) [HJ98] is used to negotiate and describe the multimedia session. This
splitting can also be seen in Figure 2.1. The session description via SDP is embedded in
the SIP message when a session is initialized.

The last component also displayed in Figure 2.1 to successfully establish a session with
SIP is the media transport. As mentioned at the beginning of this Section, RTP [SCFJ03]



State of the Art

is widely used to transport media between the parties. The parameters of the multimedia
session like encoding and network port information are exchanged using SDP.

Despite just the establishment of multimedia sessions is described in the standard, SIP
is designed to be easily extended. Lots of extensions already exist, like instant messag-
ing [CRST02], user presence [Ros04] or conferencing [Ros06].

2.1.2 Signaling

SIP is a text based protocol similar to SMTP [Kle08] or the HyperText Transfer Protocol
(HTTP) [FGM™99] and uses a request/response model. A message consists of a start-
line, one ore more header fields and a content [Bad09, p. 307]. The content can be any
arbitrary text, e.g. at the call setup it contains an SDP or if an instant message is sent, it
contains the message. The structure and type of SIP messages will be briefly described in
Subsection 2.1.3.

In SIP an user is identified with a SIP address [Goo02, p.1507]. A SIP address is an
Universal Resource Identifier (URI) which is used to address a logical destination. An URI
consists at least of three parts:

e Protocol
e Address

e Name

This three parts are necessary to uniquely identify and access a specific resource. Additional
to those, various optional parts can be added to an URI. The protocol part names the
network protocol that must be used to access the resource. The address shows the network
location of the resource and the name uniquely identifies the resource within the network
location.

An example for a SIP address is sip:bob@biloxi.example.com. sip indicates that SIP is
needed as the communication protocol. The colon is following the name of the resource, in
this example bob. In SIP the resource name is the user name. The user name can as well
be the telephone number of a Public Switched Telephone Network (PSTN). In this way,
PSTN numbers can be addressed within SIP. biloxi.example.com represents the network
location. This can be either the network location of the user or the location of the domain
where the user is registered. The use of the domain location in SIP addresses enables
location transparency. Due to this, the SIP user can roam inside or even outside of the
domain (hence having each time a different network address) but still be reachable via the
same SIP address.

With SIP it is possible to establish a peer-to-peer connection directly between two SIP
clients, but in a typical SIP scenario the clients do not know the current network location
of each other. To find the current network location of a SIP user, a SIP proxy server

10



State of the Art

is used. The location part of the SIP location points the client to the SIP proxy which
knows the current temporary network location of the user. When a request is received
by the SIP proxy, the current network location of the user is looked up and the request
will be forwarded. Such a proxy is called inbound prory. Through this procedure location
transparency is achieved.

Usually, there is one more proxy between the caller and the inbound proxy of the calling
domain, called outbound proxy. This kind of setup is called SIP trapezoid and a common
call setup scenario with SIP.

INVITE sip:bob@bilxoy.com (2)
200 OK (5)

<
-¢

atlanta.com bilxoy.com
SIP proxy SIP proxy

ACK sip:bob@192.0.2.4 (7)

< Media Transport (TRP) (8)

Alice’s
SIP UA

Figure 2.2: SIP session setup example with SIP trapezoid [RSCT02, p. 12]

Figure 2.2 shows a SIP trapezoid with an example of a message flow to establish a session.
The SIP user Alice is initiating a session by sending an INVITE message to the corre-
sponding outbound proxy atlanta.com (1). This proxy is discovering the inbound proxy of
the called user and forwards the message to the proxy (2). The inbound proxy bilxoy.com
resolves the current network address of the called user Bob and forwards the INVITE mes-
sage to the SIP User Agent (UA) (3). As can be seen in the figure, the destination SIP
address of the message changed, as the real address of the user is now known. The phone
of Bob is ringing and when the phone is picked up, the SIP UA sends a 200 OK response
message to the inbound proxy server biloxy.com (4). This is done as in SIP all response
messages have to travel the same path to the sender as the request used. The inbound
proxy bilxoy.com sends the 200 OK message to the outbound proxy atlanta.com (5) and
finally the message is delivered to the sender Alice (6). To confirm the receipt of the 200
OK message the UA of Alice sends a ACK message directly to Bob, as his current network
address is now known by the sender too. After the ACK message, the media session is

established (8).

The SIP standard defines next to endpoints, called UA, (like a softphone on a PC or a SIP
phone) different types of servers, those are [RSC*02, pp. 20-26]:

11



State of the Art

Registrar

Location Service

Proxy Server

o Stateful Proxy
o Stateless Proxy

Redirect Server

Back-to-Back User Agent (B2BUA)

The listed servers are in the following shortly introduced, a detailed description and dis-
cussion of the differences is done in the course of the design, see Subsection 3.2.1.

A registrar accepts REGISTER requests of his domain and forwards the information of
those requests to the location service [TWO07, pp. 181-183].

The main purpose of a location service is to store the current location of the SIP user of the
domain [TWO07, pp. 191-192]. The standard does not define how the current location of a
user is stored or how the proxy or redirect server can query a location service. Nevertheless,
the standard defines how bindings can be created and deleted with the REGISTER method.

The prozy server in the SIP standard has similar responsibilities like the namesakes in
other protocols and standards. The main purpose is to take a message of a client and
forward it to an entity closer to the target [TWO07, pp. 183-189]. The SIP standard further
distinguishes between a stateful and a stateless proxy server. A stateful proxy maintains
the transaction of the forwarded requests during the processing [TWO07, pp. 183-189]. Due
to the knowledge of the state of a request the stateful proxy server can generate responses.
The other kind of proxy is the stateless prozy [TWO07, pp. 183-189]. It forwards each
request without maintaining any information of the state or transaction of the request.
Received requests are forwarded directly downstream and received responses upstream.

A redirect server is a server which is responding to a received message with a notice that the
target is moved to an other network location and thus is not reachable at the used network
location [TWO07, pp. 189-191]. A set of alternate locations of the target is provided in the
response.

A B2BUA is a special kind of SIP proxy server [TWO07, pp. 209-210]. In contrary to the
SIP proxies defined by the standard, it can also generate request messages next to response
messages and it can alter messages in any way before they are being forwarded.

Beside to the described types of SIP servers, additional types exist. One worth to mention
is the Application Server (AS) [Bad09, pp. 35-41]. An application server is a server which is
hosting applications that can be accessed via the Internet or Intranet. It offers frameworks,
utilities and a platform for execution to the applications. With the provided Application
Programming Interfaces (API) telecommunication networks can be accessed.

12



© 00 J O U = W N =

e e e e e o e
O I O U i W N~ O

State of the Art

2.1.3 Messages

The SIP standard and the available extensions define a fair amount of different SIP message
types. SIP messages can be categorized in request and response messages [Bad09, pp.
303-313]. A message exchange is initiated by sending the initial request message. The
communication partner will answer with an appropriate response message. As this behavior
is similar to those of a server and a client, the logical parts of the SIP system which are
sending requests are called User Agent Client (UAC) [RSC*02, p. 26] and the parts which
receive requests and generate responses are called User Agent Server (UAS) [RSCT02,
p. 26].

SIP messages are text-based and line oriented. The structure can be grouped into three
parts [Bad09, p. 307]:

e Start-line
e Header fields

e Body (optional)

An example of an INVITE message containing all three parts is shown in Listing 2.1.

INVITE sip:bob@biloxi.example.com SIP/2.0

Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=29hG4bK74bf9
Max—Forwards: 70

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

To: Bob <sip:bob@biloxi.example.com>

Call—ID: 3848276298220188511@atlanta.example.com

CSeq: 1 INVITE

Contact: <sip:alice@client.atlanta.example.com;transport=tcp>
Content—Type: application/sdp

Content—Length: 151

v=0

o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com
a—

c=IN IP4 192.0.2.101

t=0 0

m=audio 49172 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Listing 2.1: Example of a SIP message for establishing a call

The first line is the start-line. It contains either the name of the SIP method or the response
code. This line is used to identify the message type. Basically, the structure of all SIP
messages are the same, only the format of the start-line will differ depending if the message

13



State of the Art

is a request or response. In the lines 2 to 10 are the header fields of the message. A header
field consists at least of the name of the header and a value separated by a semicolon.
E.g. in line 10 the header field Content-Length contains the value 151, it indicates the size
of the body. A body is optional and is added after the header fields. The body and the
header fields are separated by an empty line. In this example a body is present ranging
from line 12 to 18.

Start-Line

The first word in the start-line of request messages is the name of the request, followed by
the target SIP address and the SIP version. RFC 3261 defines six request messages [Bad09,
pp. 303-304]:

e REGISTER

e INVITE

e BYE

OPTIONS

CANCEL

e ACK

The REGISTER message is used to register, unregister or update user information. With
the INVITE message a session establishment is being started. It is the first message of
the message flow and it contains information of the target user and already information to
negotiate the media session. The BYFE message is used to initialize a closing of a running
session. The OPTIONS message is used to query an user agent or a proxy for capabilities.
With the CANCEL message a running transaction can be canceled. Finally the ACK
message confirms responses if required.

The start-line of response messages begins with the SIP version, followed by the Status-
Code and the Reason-Phrase [Bad09, pp. 309-310]. The Status-Code is a number which is
identifying the message like the responses in HTTP. The response messages are grouped
into six response classes which can be distinguished by the first number [Bad09, pp. 306-
307]:

e 1Ixx: Provisional Responses

e 2xx: Success Responses

e 3xx: Redirection Responses

e 4xx: Client Error Responses

14



State of the Art

e 5xx: Server Error Responses

e 6xx: Global Failure Responses

The 1zx Provisional Responses inform a client of the processing of the received request,
e.g. 180 Ringing. The class of 2zx Success Responses are used to signal the successful
reception or acceptation of a request, e.g. 200 OK. With the 3zz Redirection Responses
the requester is advised that further actions are needed to complete the request, e.g. 302
Moved Temporarily. 4zz Client Error Responses are used to give notice to the client of a
faulty message or that the server cannot execute the message, e.g. 401 Unauthorized. If
the SIP server cannot process an apparently valid request, a dxx Server Error Responses
is generated, e.g. 500 Internal Server Error and a 6zz Global Failure Responses is used to
signal that the request cannot be processed on any SIP Server, e.g. 600 Busy Everywhere.

Header Fields

The header fields contain different information of the STP message and can differ depending
on the message type [Bad09, p. 308]. Like new message types also new header fields can
be introduced by extending standards. Header fields can depend on the message type or
can be optional, but every SIP message has to contain the following mandatory header

fields [Bad09, p. 313]:
e Via
o Max-Forwards
e To
e From

Call-1ID

CSeq

The field Via is important for routing purposes. Every entity creating or forwarding
requests on its way to the destination enters the own address in a Via field. The response
message will then travel according to this list of entered addresses back to the issuer
of the request. There are other fields for routing purposes, which will be described in
Subsection 2.1.4. The Max-Forwards field defines the number of times the message is
allowed to be forwarded and is decreased on every hop. This is used to identify loops in
the routing. The To and From field state the receiver and the sender contact, respectively.
The Call-ID is a unique number and identifies the call and CSeq is used to identify and
order transactions.

15



State of the Art

2.1.4 Routing Information

SIP offers different possibilities to influence the route (on SIP protocol level) of a message
while traveling to the destination. For this purpose, a SIP message can carry different
header fields containing information of the route:

e Via
e Route

e Record-Route

In this context, the influence of the fields From, To and the SIP address in the start-line
of request messages is also discussed.

As already described in Subsection 2.1.3, the Via header field [RSC*02, pp. 39-40] contains
information on the route the message has taken to get to the examining entity. Before
sending or forwarding a message, a Via header field has to be inserted with the own
location. Different header field parameter can be added, e.g. the branch parameter contains
the transaction ID of the location. This information is needed to send the response via
the exact same entities back to the requester, as each entity might maintain a transaction
state.

While the Via header field shows a history which entities has been passed, the Route
header field lists to which entities this message has to be sent next on the route to the
destination [RSC*02, p. 177]. As the opposite of the Via header field, the own location has
to be removed from the Record header field before the message is forwarded. This list of
entities can be either set by the sender, e.g. to ensure the message is passing an outbound
proxy or it can be requested by previous SIP messages of this dialog.

A proxy server passed on the way to a destination can ensure to receive all messages of the
dialog by inserting a Record-Route header field [RSCT02, p. 17]. This field is accumulated
on the way to the destination. The UA of the destination saves the Record-Route header
in a Record-Route set. This Record-Route set will be inserted as Route fields in any future
messages sent within this dialog. In this way, the entities which entered a Record-Route
header will receive the message, too. Because both participating clients need to know
the list of entities which has to be passed in this dialog, the Record-Route list is being
added to the response message where the sender also saves the Record-Route header in a
Record-Route set.

The header fields From and To contain the name of the sending user and the user who is
addressed respectively [RSCT02, pp. 36-37]. As this values contain the original full and
unresolved SIP address, they are not used for the routing of the message. When sending a
request, the SIP address of the destination is being placed in the start-line after the type
of the request. This address can be altered on the way to the destination, e.g. when an
inbound proxy resolves the current location of the client. Replies do not have a SIP address
in the start-line and it is not needed, because the Via fields are used to send the message
back to the requester.

16



State of the Art

2.2 Service-oriented Architecture

In recent years, the term SOA was used in many ways to promote products, systems
and technologies. Even webhoster advertised to have a SOA. But in most cases it was
inappropriate to use the term SOA to describe their products, but it shows how popular
SOA got in the past years.

A definition of SOA cannot be found easily, because there are many aspects connected to
SOA. Also, as many manufacturer use SOA in association with their products, they define
SOA in their own way. The term SOA was introduced by Gartner analysts and their first
reports of SOA are published by Schulte and Natis [SN96].

In a paper published by Gartner SOA is described as [Nat03, p. 2]:

7... SOA 1is a software architecture that starts with an interface definition and
builds the entire application topology as a topology of interfaces, interface imple-
mentations and interface calls. SOA would be better-named "interface-oriented
architecture.” SOA is a relationship of services and service consumers, both
software modules large enough to represent a complete business function.”

Thomas Erls wrote a couple of well-cited books of SOA and he defines it as follows [Erl05,
p. 54]:

"SOA is a form of technology architecture that adheres to the principles of
service-orientation. When realized through the Web services technology plat-
form, SOA establishes the potential to support and promote these principles
throughout the business process and automation domains of an enterprise.”

An other definition is given by Nicolai Josuttis [Jos08, p. 24]:

"SOA is an architectural paradigm for dealing with business processes dis-
tributed over a large landscape of existing and new heterogeneous systems that
are under the control of different owners.”

And finally a definition formed by more than one person on the Wikipedia in 2011 [Wik]:

” Service-oriented architecture (SOA) is a flexible set of design principles used
during the phases of systems development and integration in computing. A
system based on SOA will package functionality as a suite of interoperable ser-
vices that can be used within multiple separate systems from several business
domains.”

17



State of the Art

These definitions show that SOA is something abstract that can be interpreted differently.
But most of the definitions contain the fact that SOA uses well defined interfaces to provide
services. Important, and therefore also mentioned in some definitions, is that the access to
the services need to be in an interoperable way. This makes the utilization of the services
possible by different systems and platforms in a heterogeneous system. The definition
given by Garner is taken as a basis in the on-handed thesis. In the following all important
aspects of SOA are described closer.

The most important fact about SOA is that it is a paradigm. Therefore SOA is not a
concrete tool, framework or even a concrete architecture. It is a mind set, concept, draft
or approach for building a practical software architecture to solve a given problem. This
implies, that SOA cannot be bought as a tool or a blueprint, which just has to be applied to
achieve the benefits of SOA. The paradigm of SOA has to be applied for concrete situations
to make concrete decisions under certain circumstances.

Another important case of SOA is, that it is meant for large distributed software sys-
tems [Jos08, pp. 3-5]. When a company is growing, more systems and interactions with
other companies are added, which have to be integrated. SOA is prepared for handling
complex distributed systems, it easies the way to find and access entities which offer certain
functionalities.

In large distributed software systems there are usually more than one owner of the indi-
vidual systems and services. They can be owned by different departments or even services
can be used from different companies. SOA is designed to cope with different owners and
contains processes and practices to handle it.

The last issue of large distributed software systems is heterogeneity. When software systems
grow and the time passes by, different technologies and types of systems are used. In the
past, it was tried to leverage the heterogeneity by harmonizing the systems. Unfortunately,
large systems cannot be completely harmonized. SOA accepts that fact and works with
the heterogeneity. This approach to accept heterogeneity instead of trying to fight it, is
one of the qualities of SOA and can change the way how large distributed software systems
are looked at.

SOA does not have to be build from the scratch. It could be build on existing systems by
adapting and wrapping applications into services [PvdH07, p. 390]. But not all existing
applications can be used in services. The legacy programs still have to fulfill the require-
ments to services in SOA. When those applications not fulfill the requirements on services,
they need to be adopted. If the adoption of all legacy applications is too time-consuming
or cost-intensive, they can be recreated from the scratch as services. Of course SOA can
be build from the scratch or it could be a combination of both.

2.2.1 Concepts
SOA is based on three technical concepts which help to fulfill the targets [Jos08, pp. 21-23]:
e Services

18



State of the Art

e Interoperability

e Loose Coupling and Seclusiveness

In software development, addressed problems are abstracted and transformed into rules. In
this way, the reality is implemented as a software system. An abstraction can be done using
different views on the problem. SOA focuses on the business aspects of the problem when
the abstraction is done. The solutions for these problems are provided in Services [Jos08,
pp. 33-45] and this fact gives also the name to SOA. The target of SOA is to build large
distributed software systems in abstracting business functions and rules. In this way, clear
structures are created where business aspects are put in the spotlight and the technical
realization is being hidden. The hole system gets service oriented.

To establish connections between distributed systems is very crucial. The faster and easier
this can be done, the better, because it is possible to quicker complete an application.
Interoperability [Jos08, pp. 21-22] reflects the fact, that connections between distributed
systems can be established easily. The desire for interoperability is not new with SOA,
but here it is a very essential point. It is used to build principles to interconnect various
distributed systems quickly and easily to accomplish business tasks. How interoperability is
achieved depends on the implementing system. However, the usage of established standards
is a way to implement interoperability.

Today, lot of different systems are used which get integrated with each other. Processes
get increasingly automated over their hole life span and the systems are more globalized.
If many systems work under such a condition together, there is the possibility that a small
error can break the hole system and so bring the business to a stop. Also one change in a
specific part could affect unexpectedly other parts in different systems. For these reasons,
fault tolerance [Jos08, p. 47] is important for large distributed systems. But not just fault
tolerance is important, flexibility and scalability are also very desired in such systems.

The key to achieve these goals is loose coupling and seclusiveness [Jos08, pp. 47-62].
Loose coupling is a concept to minimize dependencies. The reduction of dependences
to a minimum ensures that changes or faulty behavior in parts of the system does not
affect other parts. In this way, loose coupling and seclusivness brings fault tolerance and
flexibility. Additionally, loose coupling improves scalability as tasks can be more easily
parallelized. For large distributed software systems, loose coupling is not just important
for technical aspects, but for organizational aspects, too. This means, that the system
should enable the expertise to decide how decentralized it wants to be. Decentralization
could also be a form of loose coupling. But those systems need to have a certain common
base to be able to interact with each other. Loose coupling has many facets and it shows
that SOA is just a paradigm and does not provide a prefabricated solution. Loose coupling
is needed for SOA, but the degree and implementation depends on the decision made for
concrete problems which are then reflected in the concrete architecture.

19



State of the Art

2.2.2 Service-oriented Architecture Ingredients

For a successful SOA it is not enough to implement the proposed technical concepts, more
is needed. As in the introduction shortly noted, in large distributed software systems pro-
cesses have to be introduced to regulate different aspects and responsibilities. Depending
if SOA is build on top of a existing system or a new one, the technical concepts of SOA
have to be introduced appropriately. This means that the introduction has to be done in
the right speed and the right scale. Also the right size of centralism has to be determined
as well as the corresponding processes have to be introduced. Important aspects covered
by SOA are [Jos08, pp. 23-27]:

e Infrastructure
e Architecture
e Processes

e (Governance

The infrastructure is the technical part of SOA which enables interoperability. Mostly, the
infrastructure is based on the Enterprise-Service-Bus (ESB) [Jos08, pp. 63-79]. Basically
the responsibility of the ESB is to enable server calls between heterogeneous systems. This
also includes additional tasks like data transformation, routing, handling of security and re-
liability, service-management, monitoring and logging. All tasks done by the infrastructure
have to follow the principle of loose coupling.

The concepts and standards of SOA give a lot of room for decisions. When developing
a concrete architecture a lot of such decisions have to be made based on the concrete
requirements and general conditions. Also, these decisions have to be harmonized with
each other. Some decisions might be:

e (Classification of the kinds of services

Degree of loose coupling

Allowed data types at interfaces

Definition of policies, rules and patterns

Clarification of roles and responsibilities of persons and systems

e Decision on infrastructure, used standards and the used versions

These are just some examples and a lot more decisions have to be made until the final
concrete architecture is set up.

All large systems have processes for accomplishing certain tasks. For example, a process
can be the deployment of a new software version. The processes might be introduced

20



State of the Art

explicitly or they might develop without being obvious to the participants. Changes at
applications have to pass a lot of persons, teams and departments until they end up in
production. In SOA following processes can be differentiated.

In Business Process Modeling (BPM) [Jos08, pp. 103-124], a business process is divided
into smaller activities or tasks. Those activities or tasks can then be implemented into
services.

For the lifecycle of a service [JosO8, pp. 169-177] a own process is defined. It starts at
the identification of services and covers the states over the lifetime. This covers design,
implementation, deployment and defines how services have to be removed from production
at the end of their lifetime.

Governance [Jos08, pp. 324-330] is a special kind of process. It is a metaprocess to control
all processes in SOA and the SOA strategy itself. This process is also used to introduce SOA
and the associated processes. It is usually executed in a centralized team which takes care
of the infrastructure, architecture and the processes. Also, this team works on developing
a common understanding of SOA among all participants in SOA. As already noted this
participants can be different persons, teams, departments or even external companies. This
team needs support of the management, because it takes time, resources and courage to
manifest SOA in the organization.

2.2.3 Orchestration and Choreography

Orchestration is a concept for a system where a centrally controlled set of workflow logic
enables the interoperation between various different applications [Erl05, pp. 200-207]. The
main benefit of orchestration is to be able to merge large business processes and so connect
different processes through a defined workflow. This workflow can contain rules, conditions
and events. With the use of orchestration a change in the workflow does not need a change
of the participating application. Also the orchestration enables interoperability between
application e.g. by transforming data. In a service-oriented environment, services are
predestined to be used in a workflow, also the orchestration is usually again represented
as a service.

Choreography is an other way how services or applications can be composed to fulfill a
more complex function. But other than orchestration, there is no single entity which is
responsible and controlling the execution [Erl05, pp. 208-215], e.g. Business-to-Business
interaction. It acts as a community interchange pattern for collaborative purposes, whereas
a orchestration is usually a organization-specific workflow.

2.2.4 Web Service

Web Service is the most common technology to build SOA. This is because it implements
a lot of SOA principles, but simply the usage of Web Services does not make a system to
a SOA.

21



State of the Art

Haas et al discusses in [HB04] a Web Service as a software system which supports inter-
operable machine-to-machine communication over a network. The interface is described
in a machine readable format (most commonly using the Web Service Description Lan-
guage (WSDL) [CWMRO0T7]) and the interaction with a Web Service happens in a manner
described by the interface using SOAP! [GHM'07] messages.

Web Services are very popular and a lot of manufacturers support them. The main reason
is because Web Services are built on Internet standards and itself is being standardized by
the World Wide Web Consortium (W3C). The used standards [PvdHO07, p. 390] are:

e WSDL
e SOAP

e Universal Description Discovery and Integration (UDDI) [CHvRRO05]

These standards build on HTTP and Extensible Markup Language (XML) [BPM*08]. For
almost any common computer language a library for calling and building Web Services
exist, this enables every environment to use and build Web Services. With the existing
tool support for a lot of development tools (e.g. Apache Axis2 Tools [Axi]), development
of Web Services is even simpler and quicker.

Chinnic et al. specifies in [CWMRO07] WSDL as a XML format which is used to describe
interfaces in an abstract way which is neutral to implementing technologies and systems.
For loose coupling it is important to have a service description which is independent to the
service implementation in a way that it hides details on the implementation. The service
description and the service implementation build a pair, where the service implementation
can be changed without changing the exposed service description.

A WSDL consists of two parts, an abstract and a concrete description [Erl05, pp. 133-136].
In the abstract description, the interface characteristics are described without any reference
to technologies used to host the service or how the the services can be accessed. It contains
a list of operations which are grouped to an interface. Each of this operations define
input and output messages, e.g. parameters and return values, respectively. To be able
to access a service described in WSDL, information on concrete technologies and location
is needed. The concrete description part contains this information. It consist of binding,
endpoint and service. The binding defines the requirements to establish a connection to
the service. In this way, the required transport technology to invoke the service for this
binding is specified. It is possible to define different bindings using different transport
technologies to access the same service. A binding can be defined for the entire interface or
for a specific operation. The physical address to access the service via a binding is defined
in an endpoint. The separation of bindings and endpoints enables to change the location
information independent to the binding. In terms of WSDL, service is referred to a group
of endpoints.

L As of version 1.2 of the SOAP specification, the word SOAP is no longer an acronym that stands for

Simple Object Access Protocol. It is now considered a standalone term.

22



State of the Art

To invoke Web Services SOAP [GHM™07] is used. SOAP is a standardized, flexible spec-
ification of a transport protocol for sending messages. The transfered messages are XML
documents over an underlaying transport protocol, which in principle can be any protocol
as long as a binding is defined. The most common are:

o HTTP [FGM*99]
e HTTPS [Res00]
o SMTP [Kle0S]

To lighten the coupling in SOA, the pattern of service registry (also known as service
broker) can be used [PvdHO07, p. 392|, see Figure 2.3. A service registry maintains an
index of available services. Each service provider registers itself at the service broker (1).
When a service consumer (also known as service requester) needs to invoke a service, it
does not keep information on the binding and thus on the physical location of the service.
Instead it queries a service registry to find a concrete service implementation (2). The
registry returns a binding of the desired service and the service consumer can invoke the

service (3).
Service
Registry

Service
Consumer

Service
Provider

Figure 2.3: Service broker [PvdHO07, p. 392]

UDDI [CHvRRO5] is a specification for a service registry to implement such a functionality
for Web Services [PvdH07, p. 392]. UDDI is based on a set of industry standards such as
HTTP [FGM™99], XML [BPM*08], XML Schema [WF04] and SOAP [GHM*07]. A Web
Service provider registers itself at a UDDI by submitting the WSDL interface description.
The UDDI keeps the description and could add additional information about the service.
This can be information on reliability, trustworthiness, quality of service, to name a few.
When a service consumer queries the broker it receives a WSDL file which contains the
physical endpoint of the service provider. The benefit of the usage of a service registry
is, that the service provider can change the physical binding without breaking deployed
service consumer and it can hold additional information about the service provider.

23



State of the Art

2.2.5 Service Component Architecture

Service Component Architecture (SCA) (pronounced scar) [SCA] is a specification for a
model to build applications and systems using SOA. The development has been started
by Open SOA (OSOA) [OSO], it is a vendor group of big players in the industry like
IBM, Oracle, SAP, just to name a few. With the version 1.0 of the specification published
in March 2007, the work on the formal standardization within the Organization for the
Advancement of Structured Information Standards (OASIS) [OAS] began. With the work
on the SCA specification, the Open SOA group also worked on the Service Data Objects
(SDO) [SDO] specification. SDO are designed to simplify the way how data is handled
from heterogeneous sources, e.g., relational databases or Web Services. SDO provide also
additional values like the ability to track changes on data. SDO is the preferred way how
complex data structures are transfered between services in a SCA.

In SCA components are used to build an application [Cha07, pp. 3-5]. The components
in SCA can be understood as services in terms of SOA. These components can be built
in any computer-language like Java, C++ or even with technologies like Business Process
Execution Language (BPEL) [BPE] or the Spring Framework [Spr|. SCA uses a common
assembly model to combine these components and build in this way applications or services
which can be hosted as Web Services.

Elements of SCA are:

e Component
e Service

Reference

Composite

o Wire

Binding

Policy Framework

As already mentioned the component contains one piece of business logic and is the smallest
unit in SCA [Cha07, pp. 7-8]. The visual representation with all parts of a composite can
be seen in Figure 2.4. A component can offer services defined by an interface, which can
be used by other components. If a component requires a service, it is called reference. A
component can also have one or more properties. These properties are data values and can
be configured externally to influence the behavior of the component.

In SCA components can be grouped logically together. This group of components is called
composite (called module in earlier versions of SCA) [BBB105, pp. 9-12]. Composites
can again be grouped together and so a well-defined set of abstractions can be established
with which an application can be realized. The components and composites grouped in

24



State of the Art

Service

I
1
I
\J

References
Figure 2.4: SCA Component [BBB'05, p. 10]

a composite can run in the same process, in different processes on the same machine or
on different systems. Figure 2.5 shows how components and composites can be grouped
together.

One reference of a component is connected to a service of an other component using a
wire [BBBT07, pp. 36-43]. The exact communication between the components can be
different. It depends on the specific runtime used, which bindings are specified and within
these parameters, the wire can be configured. If no explicit wire is defined, the components
are connected using the auto-wire. In this case, the runtime decides how the communication
is established. Services or references defined by a component inside a composite can be
made accessible from outside, this is called promotion. Wires and promotion can also be
seen in Figure 2.5.

Service Reference
- Java interface - Java interface
- WSDL PortType ~e«——— Properties - WSDL PortType

Binding Binding )
Web Service Web Service
SCA SCA
JCA JCA
JMS JMS

SLSB SLSB

Figure 2.5: SCA Composite [BBB107, p. 10]

25



State of the Art

When services or references are exposed to the outside world, a binding is used [Cha07,
p. 9]. A binding specifies a particular protocol how it can be accessed. The definition of
the used protocol is done independently of the definition of the service or reference. In this
way, the implementation needs not to care about the protocol via which it is going to be
reachable. The protocol used for the binding depends on the specific runtime.

SCA defines a own policy framework [BBCT07] so developers can let the container know
what they intended. The framework defines two categories of policies. The interaction
policies can be applied to services and references. They affect the way how the interaction
between service provider and service client take place. For example, a policy ensures that
the messages exchanged are confidential and thus have to be encrypted. The second kind of
policies defined in the policy framework of SCA affects the way how components themselves
behave. This kind of policy is called implementation policies.

A policy realization is dependent on the runtime container for the implementation policies
and on the binding for the interaction policies [Cha07, pp. 18-19]. This makes it possible
to realize policies as an inherent part of the container or binding. For example, a binding
using HTTPS [Res00] will always send messages encrypted and thus implement the policy
for confidential messaging. Other policies may be implemented by the container or the
binding, or they might even be incapable to provide certain policies at all.

SCA is a new way to build SOA. It implements a lot of SOA concepts and offers a lot of
possibilities to integrate into common SOA technologies. The most important difference
to current SOA technologies like Web Services is, that SCA does not use a service bus like
ESB. This makes this specification also interesting to be used for smaller scale projects
and applications. Also the fact that it specifies a C/C++ implementation of a runtime is
one of the major reasons to use SCA in the solution of the present thesis.

2.3 Integration of Voice over IP in Systems Based on

Service-oriented Architectures

In the past decade, SIP was topic for a wast amount of research and development. The re-
sults can be seen in the various extensions of SIP like messaging [CRST02], presence [Ros04],
conferencing [CJ08, JL06, RSL06] and as well as the effort to integrate VoIP or in particular
SIP into existing structures, e.g. the IP Multimedia Subsystem (IMS) [Bad09, pp. 41-47]
or a Web Service based framework for VoIP [HZ04].

One way how concepts of SOA are used in combination with SIP or overall with VoIP is
to abstract the implementing VoIP protocols or even the used infrastructure. Elsholz et
al. [ESST09] propose a framework based on Open Services Gateway initiative (OSGi) [Osg07]
to hide implementation details of the communication. The framework addresses client ap-
plications and defines abstracted interface for the access of VoIP functionality. Not until
the runtime an appropriate protocol and implementing component is selected to perform
the call. The advantage of the abstraction is the easier and faster development. Also differ-
ent VoIP protocols can be supported without the need of detailed knowledge on the specific

26



State of the Art

protocols. A subsequent advantage is that new or updated protocols can be introduced by
changing only small amounts of the application code.

Hillenbrand and Zhang [HZ04] introduce a framework for back-end applications to abstract
VoIP protocols as well as the used infrastructure. This is accomplished with Web Services
which could be hosted either in the own network, if the VoIP infrastructure is also run
in-house, or at a VoIP provider. With the use of Web Services the VoIP infrastructure can
be changed to/from a VoIP provider or a VoIP provider can be easily swapped. Also the
used VoIP protocol can be changed without the need to change the application which is
using the VoIP infrastructure. The further advantage is the simplification in development
of VoIP back-end applications.

Where Hillenbrand and Zhang [HZ04] propose a complete substitution of the usage of VoIP
protocols with Web Services, researches in extending VolP protocols like SIP with WS are
done, too. Chou et al. [CLLO06] and Liu et al. [LCLLO04] propose a dual stack solution where
SIP is extended with Web Services to offer broader functionality. The dual stack approach
supports regular communication via SIP. This enables present products and applications
to be used straightaway with the solution. A call can also be established via Web Services,
but the main purpose of them is to offer discovery, maintenance, monitoring and updating
of SIP endpoints.

Different possibilities exist to intercept or interact with SIP messages. An approach to work
with SIP requests in Java exists with SIP Servlets [CK08]. They offer a similar handling of
SIP requests like HT'TP servlets. Such SIP Servlets run within an application server which
offers a framework for processing SIP requests. With this framework the development of
applications can be done in a well known manner as it uses known concepts of Servlets. It
offers also the flexibility to use all facets of the SIP standard. With such a SIP Servlet a
SIP endpoint can be implemented, which is processing and answering incoming requests.
Also the realization of a stateful proxy or a B2BUA is possible. As the SIP Servlet is
running within an application server, it can also use all the advantages and features the
application server offers like persistency or centralized logging.

An Application Layer Gateway (ALG) [SH99, p. 6] is usually found in routers or firewalls.
An ALG is needed when Network Address Translation (NAT) is being applied. NAT is used
to translate a network address from one network realm to an other. This is needed, when
network addresses of a local network are not valid in an outside network. Usually, Internet
applications will work without problems, but some applications face problems when NAT is
applied. This happens especially when IP addresses or port information are included in the
payload. For applications which cannot pass NAT cleanly, an ALG may still enable correct
operation of the application. An ALG applies different, application specific operations on
each message passing NAT in both directions. This operations may include modifying the
payload of the message, open a port for incoming messages or what ever necessary to make
the application successfully pass through NAT. SIP is an application which needs an ALG
to pass a NAT [HHPT06, pp. 1650-1651]. This is because the protocol stores IP addresses
and port information in the payload of the message. With such an ALG SIP messages
can also be intercepted and changed for other purposes than to make the application work
between two network realms.

27



State of the Art

Milanovic et al. [MSR*03] and Karpagavinayagam et al. [KSF07] describe how Lawful In-
terception (LI) can be accomplished in a VoIP infrastructure. Milanovic et al. [MSR03]
introduce a distributed system which shows how LI can be implemented independent to
specific protocols. It is a distributed hierarchical system where different interception meth-
ods can be used at multiple points in the network to intercept VoIP messages and the media
transport. For one interception method a module for a SIP proxy is proposed which al-
ters the message during the call establishment so that all subsequent messages and media
transmissions pass a device which can record the messages and the media. Also, a device
is introduced which uses a network card in promiscuous mode to record the network traffic
related to VoIP communication and media transmission. Karpagavinayagam et al. [KSF07]
also introduce a system for LI but it is designed for the usage in an infrastructure which
is based on SIP. The interception consists of three parts. The first is a module in the SIP
server which changes the SDP data to redirect the media. The RTP Mediator Module is
relaying the redirected packets and will thus act as a man in the middle. To collect finally
the redirected media, a packet sniffer is used.

Acharya et al. [AWWO7| describe a programmable message classification engine for SIP
for the purpose of overload control. Overload control might be needed when suddenly the
amount of messages unexpectedly increase to a point where the SIP server is overloaded.
This may happen due to flash crowds, emergencies or denial-of-service attacks. In such
situations it is important to prioritize messages and if necessary drop messages. The
described implementation is not dependent on a specific SIP server as it is realized as
a Linux kernel module. The code for classification and prioritization of the messages is
inserted after the message is read from the network and before it is forwarded to the
application. The advantage of a Linux module is, as already mentioned, the independency
of the SIP server and a higher performance as the classifier does not have to change to the
user mode while classifying the message and thus can completely be run in kernel mode.

28



3 Concept and Model

After the necessary aspects for this thesis are introduced in the previous chapters, this
chapter will face the analysis and design for the implementation of the prototype. First,
the requirements to the system are defined, then the related work is analyzed based on the
gathered requirements. Subsequently, the partial problems of the systems are discussed
and a final design is elaborated.

3.1 Analysis

The breakdown of the problem will be based on the problem description in Section 1. In
combination with the insight from the state of the art analysis the requirements to the
system are defined. The following vision describes briefly what the system is expected to
accomplish:

Develop a system which redirects all SIP messages sent within a network to a
SCA where the message can be read and changed.

This vision expresses the central idea of the developed system. Based on the vision and
the problems described in Section 1 the requirements are defined. The requirements are
grouped into three categories:

e SIP requirements
e SCA requirements

e Non-functional requirements

The SIP related requirements are grouped by the SIP requirements and are abbreviated
by SR whereas the SCA specific requirements are grouped by the SCA requirements and
are abbreviated by CR. The non-functional requirements address the whole system and
are grouped in the non-functional requirements, abbreviated by NR.

29



Concept and Model

SIP requirements

SR1: SIP should be used as the VoIP protocol to initialize audio sessions. This standard
should be used due to its popularity and extensibility, for more reasons to this decision
see Section 2.1.

SR2: SIP messages are of interest which are sent to or from a SIP UA within the local SIP
domain.

SR3: The system being developed should intercept SIP messages sent from a SIP UA before
they arrive at the targeted UA. This includes request messages as well as response
messages.

SR4: Incoming request and response messages of a SIP UA should be caught before they
arrive at the UA.

SR5: All SIP messages sent and received by a SIP UA of the local SIP domain should
be intercepted. This includes the initial message and all subsequent messages sent
within as well as outside of transactions in terms of SIP.

SR6: All mentioned requirements also apply to SIP messages sent to and from an external
SIP domain.

SR7: SIP messages sent within two UAs of the domain should only be intercepted once.

SR8: Intercepted SIP messages should be able to be changed freely. This includes the
body as well as the header values.

SR9: The network location of he next SIP node should be able to be altered.

SR10: The system being developed should adhere to the SIP standard. Present SIP prod-
ucts and solutions should be able to be used in combination with the system being
developed.

SR11: Unknown message types or header fields should be processed by the system as
required by the standard.

SCA requirements

CR1: As a concrete SOA, SCA should be used. The reasons for this architecture are
explained in Subsection 2.2.5.

CR2: All intercepted SIP messages should be handed over to a defined SCA service.

CR3: The defined SCA service should be able to read the entire SIP message. This includes,
but is not restricted to, the header fields, the body if present, the message type and
the network address of the SIP node where the SIP message is intended to be sent.

30



Concept and Model

CR4: The SIP message should be able to be changed by the SCA service. Changes to the
SIP message should not be restricted.

CRb5: The altering of the SIP node to which the message is going to be forwarded should
be possible.

CR6: The defined SCA service should be able to forward the SIP message to other services.
These services should have the same interaction possibilities with the SIP message as
the defined SCA service has. This includes reading and changing of the SIP message.

CR7: SCA services which process the SIP message should be able to be orchestrated.

CR8: When passing the SIP message from service A to service B, changes made by service
A should be available in service B. At the same time changes made by service B
to the SIP message should be able to be returned to service A after finishing the
processing.

Non-functional requirements

NR1: A virtual machine, interpretor for scripts, just-in-time compiler or similar should not
be used by the system being developed.

NR2: It should be possible to run multiple instances of the developed system in parallel, in
different subnetworks or in sequence where one system is forwarding the SIP message
to an other system. As the system does not have an influence on the services that
run within SCA, it is the duty of the service developer to assure the service can be
run on different systems at the same time.

NR3: Services developed to work with the SIP messages forwarded to SCA should be able
to read and change the message in a simple way. In this way, the development of such
services should be easy and fast. The services should not need to deal with details
and organizational needs of SIP, like maintaining transaction state or similar.

NR4: The system being developed needs to provide a processing speed of 100 calls per

second.

After the requirements to the system are defined, following related work introduced in
Section 2.3 is analyzed if they can be used to build the required system:

e Application Layer Gateway

e Sniffing messages

e Message classification engine

e SIP Servlet

31



Concept and Model

Due to the nature of an Application Layer Gateway (ALG) all sent SIP messages between
two network realms are intercepted by the system. Also, the basic purpose of an ALG
is to change SIP messages on the way to their destination. But as an ALG is part of
the Network Address Translation (NAT) process, it only works between network realms.
Thus, SIP messages sent within the same network realm need not to pass the NAT and
thus not the ALG too. Although solutions for building an ALG for SIP exist [HHP*06]
the usage of an ALG is always troublesome. For example an ALG is not aware of the
existence of a client until the client sends a message which passes the ALG. Until then,
the ALG cannot forward incoming SIP messages to the client, like session invitation. Also
the usage of IP security bears troubles [SH99, p. 2] as it is intended to protect end to
end communication. Security techniques protect the sending and destination address from
modification, where modification is actually the fundamental functionality of a NAT and
ALG. For these reasons an ALG is not applicable for the in the on-handed thesis examined
problem.

The next examined related work is about sniffing messages directly from the network. This
technique is used by the introduced LI in Section 2.3 and also at the health monitoring
system. By sniffing messages from the network, all SIP messages sent in a network can
be read by the system. The integration of this technique in an existing infrastructure is
rather simple as it just has to be connected to the network and the SIP infrastructure does
not have to be configured to explicitly include the network sniffer. As the sniffer is not
an active node in the SIP infrastructure, no overhead or delay is added. The drawback
of the sniffing is that it can only read messages and thus changing of SIP messages is not
possible. The message sniffing also might require a redirection of SIP massages to the same
network domain where the sniffing device is listening to, if the client is located in a different
network domain. As sniffing of messages from the network is usually used to intrude the
network, security mechanism are implemented in the network structure to suppress sniffing.
Therefore, these security mechanism need to be disabled to allow network sniffing.

Acharya et al. [AWWO07] introduce in their work a Linux kernel module which is developed
to intercept and classify SIP messages. With the module it is not just possible to read a SIP
message, it can also alter it. Due to the way how the Linux kernel module is implemented
it is working independently to a specific SIP server. A drawback of this solution is, that the
interception and the SIP server are running on the same machine and thus they share the
resources. Further it is not guaranteed that a SIP proxy will receive all SIP messages, see
example in [RSCT02, pp. 12-17]. Usually, a SIP proxy only receives the initial request and
the subsequent response, the remaining messages of the dialog are sent directly between
the partners. Further, the proposed module makes changes to the Linux kernel necessary.
Therefore, these security mechanism need to be disabled to allow network sniffing.

A SIP Serviet [CKO08] is a component which is running within an application server or
a Servlet container. With a SIP Servlet, a variety of applications can be realized as the
container of the SIP message provides a rich and flexible set on interfaces. Therefore,
development of applications is easy but still flexible. With a Servlet, applications like
an endpoint for SIP requests or a SIP server can be realized. Also a SIP proxy can be
implemented and all received SIP messages can be read and changed. An advantage of a
SIP Servelt is that it can utilize the rich features brought by application server, for example

32



Concept and Model

persistency or even a SCA runtime (e.g. IBM Websphere 7.0 [IBM]). The drawback of
the SIP Servlet is the need of vast resources to run the application server or the Servlet
container. Also the SIP Servlet is running within a virtual machine and cannot be run
natively on the machine.

The described related work can fulfill basic requirements, but non of them can satisfy all
requirements. The SIP Servlet comes closest to the specified requirements and can also
offer different additional features, but fails in the essential requirement to be able to run
on a system with limited resources. For this reason, a new approach is developed which
meets all defined requirements.

3.2 Design

The defined requirements can be separated into two sub problems. The first one is primarily
dealing solely in the area of SIP. This covers the ability to receive all SIP messages sent
from the clients on the way to the destination, parse, change and finally forward them,
see Subsection 3.2.1. The Subsection 3.2.2 is dealing with the physical architecture and
the required settings in the environment. After solving the problem of intercepting SIP
messages, the second subproblem deals in Subsection 3.2.3 with the procedure how to
forward and receive the SIP message to and from SCA.

3.2.1 Session Initiation Protocol Message Interception

The subproblem of providing a system to intercept and change SIP messages is based on
the requirements defined in the SIP requirements group.

A central requirement is to behave SIP conform. To comply with this, first a look at the
SIP standard is taken if it already describes a kind of server on which the system could be
build on. By using a kind of server which is described in the standard the system will meet
the standard. In Subsection 2.1.2 the SIP servers introduced by the standard are briefly
mentioned. Following servers are subsequently discussed in detail relating to a possible
solution for intercepting SIP messages:

e Registrar

Location Service

Stateless Proxy

Stateful Proxy

Redirect Server

B2BUA

33



Concept and Model

Registrar

A registrar is a special kind of SIP server which handles REGISTER messages. It uses a
location service to store the information of the REGISTER messages. A registrar may be
co-located in a proxy server or be implemented as a stand-alone server. As the registrar
only handles one type of SIP messages, it is not suitable for message interception.

Location Service

A location service stores the current location of all registered SIP user of the SIP domain.
It is used by the registrar and proxy server to maintain the users state and resolves the
destination for the routing respectively. As the location service is not directly involved
in the processing of SIP messages, the location service is not suitable for SIP message
interception.

Stateless Proxy

A SIP proxy routes SIP messages to their destination, this may be done via several other
SIP proxies. The decision where the message is forwarded can be based on a rule set and
can include information retrieved from a location service. The proxy can also be used to
enforce certain policies to the users (e.g. if the user is allowed to make the call). A received
message is being examined by the proxy and parts of the message can be rewritten before
the message is forwarded.

A stateless proxy acts as a simple forwarding element without maintaining and being
aware of the state of a SIP message [RSCT02, pp. 91-92, pp. 116-118]. Information about
a message is discarded when it has been forwarded, also no SIP messages are generated by
a stateless proxy server

The stateless proxy server is suitable to receive a SIP message on the way to the destination,
when it is included in the routing path of the SIP message. This can be achieved by
configuring an outgoing proxy server at the client or configuring other SIP proxy server.
A typical example for a message flow involving a stateless proxy can be seen in Figure 3.1.

To establish a session an INVITE message is sent by the SIP User Agent (UA) of Alice to
the stateless SIP proxy (1). The server calculates the next hop e.g. by querying a registrar
server and then forwards the INVITE message to the SIP user Bob (2). The SIP client of
Bob could confirm the receipt of the INVITE message with a 100 Trying reply as originally
displayed in the example of Trick and Weber [TWO07, p. 195], but as provisional responses
are only informational [RSCT02, pp. 182-183] a 180 Ringing could be sent immediately by
the SIP client back to the stateless server (3). This message is forwarded by the server
upstream to the SIP client of Alice (4). When the phone is picked up by Bob, the 200 OK
message is sent to the stateless SIP proxy (5). The 200 OK response is again forwarded
to the SIP UA of Alice (6). As by default, only the request and responses as well as
provisional responses are sent via a proxy server, the final ACK message is sent directly

34



Concept and Model

Stateless
SIP Proxy

I I
. INVITE (1) o
l > INVITE (2)

T
' 1
I I . .
i 180 Ringing (4) E< 180 Ringing (3)
r !
i I 200 OK (5)
' o 200 OK (6) e
P |
I
: ACK (7)
1
I
1
I
I

< Media Session (8)
1

Figure 3.1: Invite message flow via a stateless proxy [TWO07, p. 195]

from the SIP UA of Alice to the SIP UA of Bob (7). With the receipt of the ACK message
the media session is established (8).

The stateless proxy server would be able to fulfill the first requirement in receiving at least
the first message and the corresponding response of each session initiation. Future messages
sent between the participants will usually bypass the proxy if no Record-Route header is
added. The behavior of Record-Route header is described in Subsection 2.1.4. The stateless
proxy needs to change parts of the message before the message can be forwarded. As no
information of received messages are stored retransmitted messages cannot be recognized.
Therefore, the stateless proxy has to assure that the exactly same changes to a message are
applied to all retransmitted messages, too. The next SIP node is calculated by the proxy
and thus can be influenced. But again as retransmitted messages cannot be recognized,
the chosen destination has to be the same for each retransmitted message.

Stateful Proxy

In contrast to the stateless proxy, the stateful proxy maintains the transaction state of
a incoming message. With this the stateful proxy is able to recognize re-transmitted
messages, fork messages or generate a 100 Trying response [RSCT02, pp. 92-93]. Otherwise
the duties and overall behavior is similar to a stateless proxy as can be seen in the typical
message flow in Figure 3.2.

By sending a INVITE request to the stateful SIP proxy (1) a session initialization is
triggered. As the stateful SIP proxy maintains the state of transactions it can generate
provisional responses. By immediately replying with 100 Trying (2) the receipt of a mes-
sage is confirmed and a retransmission by the client is avoided. Subsequently, the proxy

35



Concept and Model

Stateful
SIP Proxy
I I
: INVITE (1) !
i i
100 Trying (2)
- 2 : INVITE (3)
l l
! ! 180 Ringing (4)
| 180 Ringing (5) - In9
I I 200 OK (6)
L 200 OK (7) i
o 1
I
l ACK (8)
i
I
I

< Media Session (9)

Figure 3.2: Invite message flow via a stateful proxy [RSCT02, p. 12]

calculates the next hop e.g. by using a registrar service and then forwards the INVITE
request to the SIP client of Bob (3). The SIP UA of Bob is responding with a 180 Ringing
message to the proxy indicating the receipt of the request (4). The proxy will forward the
180 Ringing response to the UA of Alice (5). When the call is accepted by Bob a 200 OK
message is sent to the proxy server by the SIP UA of Bob (6) which is again forwarded to
the UA of Alice (7). The UA of Alice is confirming the receipt of the response by sending
a ACK message directly to the UA of Bob (8). After this message the media session is
established (9).

The first requirement to receive a SIP message sent by a SIP client can be fulfilled by the
stateful proxy server. Also, responses to requests are received by the stateful proxy. To
receive further SIP messages than the initial request and response message, the stateful
proxy server has to add a Record-Route header, for details see Subsection 2.1.4. With the
use of a Record-Route header all subsequent messages between the participants of the SIP
dialog will be received also by the SIP proxy. Before a message can be forwarded, changes
have to be applied to the received message. As transaction state is maintained by the
proxy, retransmitted messages can be recognized. Also, the requirement to choose the SIP
node where the message is going to be forwarded can be fulfilled by the stateful proxy, as
the next node has to be calculated by the proxy.

Redirect Server

The redirect server is a simple server that responses each request with a Sxx Redirection
Response. This kind of server is used to redirect a request to the temporary address of a

36



Concept and Model

SIP user e.g. when the called SIP user sets up a call forwarding. The information from the
response is used by the requesting SIP client as new destination to send the initial request.
In Figure 3.3 a typical message flow involving a redirect server is shown.

Redirect Server

INVITE (1)

»
|

100 Trying (2)

302 Moved Temporarily (3)

A

ACK (4)

»
\

INVITE (5)

»
Ll

180 Ringing (6)

A

200 OK (7)

A

ACK (8)

< Media Session (9) >
| |

Y

Figure 3.3: Invite message flow via a redirect server [JDST03, p. 54]

For establishing a session using a redirect server the INVITE message from the SIP UA
of Alice is received by the redirect server (1). Immediately, a 100 Trying response is sent
back as confirmation of delivery (2). The server looks up the current location of the user
and forwards this information with a 302 Moved Temporarily message to the UA of Alice
(3). An ACK message is replied for confirmation by the SIP UA of Alice (4). With the
information received from the redirect server, the SIP UA of Alice is sending an INVITE
message directly to the UA of Bob (5). A 180 Ringing message (6) followed by a 200 OK
message (7) when the phone is picked up is replied by the UA of Bob. The UA of Alice
confirms with an ACK message (8) and a media session is established (9).

The redirect server fulfills the first requirement in receiving the request of a SIP client,
but as the SIP client resends the request to the temporary location the response as well
as any further SIP messages will not be received by the redirect server. The alternation
of the SIP message is not possible, as a 3xx message is generated. Also, the next hop of
the SIP message cannot be influenced but the final destination of the initial request can
be changed with the redirect message.

37



Concept and Model

B2BUA

The B2BUA is a special kind of SIP proxy server, which is mentioned in the SIP standard
but not further standardized. From the outside the B2BUA behaves similar to a proxy,
but internally it is different. It consists of a user agent server to receive requests and a
user agent client to forward the message, see Figure 3.4.

Back-to-Back User Agent

UA | ua
Server ~| Client N

VolP Phone VolP Phone

Figure 3.4: Structure of a B2BUA

Due to this the B2BUA is an active node in the message flow and will terminate SIP
transactions between the calling and the called client. This makes it possible to change
the messages freely and generate response as well as request messages. A typical message
flow involving a B2BUA can be seen in Figure 3.5.

Back-to-Back

User Agent
1
INVITE (1) !
]
1
100 Trying (2) '
AL : INVITE (3)
1
1
L 180 Ringing (4)
180 Ringing (5) ~
P 200 OK (6)
200 OK (7) -
1
! ACK (8)
ACK (9) i
-

Figure 3.5: Invite message flow via a B2BUA

38



Concept and Model

To establish a session between Alice and Bob, an INVITE message is sent by the SIP UA
of Alice to the B2BUA (1). Like a stateful SIP proxy the B2BUA answers the request with
a 100 Trying message (2). Then an INVITE message is generated and sent to the SIP UA
of Bob (3). The UA of Bob replies with a 180 Ringing message (4). Again, the B2BUA
generates a 180 Ringing message and sends to the SIP UA of Alice (5). When the phone
is picked up by Bob, the 200 OK message is sent to the B2BUA (6). A 200 OK message
is generated by the B2BUA and sent to the UA of Alice (7). Now, in most cases, the UA
of Alice would send a ACK message directly to the SIP UA of Bob. As the B2BUA is
a active node, it will immediately send a ACK message to the UA of Bob (8) after the
200 OK message is forwarded to the UA of Alice (7). The UA of Alice is sending a ACK
message to the B2BUA (9). Finally a media session is established between the UA of Alice
and the B2BUA (10) and a separate media session is established between the B2BUA and
the UA of Bob (11).

Like a SIP proxy server, the B2BUA has to be included in the routing path of the SIP
message. In this way, the first requirement is met to receive the first message. As the
B2BUA is terminating the SIP transaction, all subsequent messages from the requester
and the destination will be sent to the B2BUA. The messages sent by the B2BUA can be
altered freely and the destination of the SIP message can be changed, too. The B2BUA
itself is not standardized but it is acting standard conform. It is being used in production
and can be found most likely in a working SIP infrastructure.

From the analyzed alternatives, the stateful proxy and the B2BUA look most promising.
The stateful proxy lacks in receiving all messages of a session out of the box. But when
adding a Record-Route header entry (see Subsection 2.1.4) this behavior can be achieved.
Also, the standard defines rules which parts of a SIP message need to be changed and the
procedure how e.g. the new values are determined [RSCT02, pp. 91-118]. Some freedom is
granted to the proxy, for example it can decide to add a Record-Route header or additional
header fields. Further changes in addition to those described by the standard might result
in an unexpected or faulty behavior of other SIP nodes involved.

The B2BUA is more complicated to implement than a stateful proxy, but it supports most
of the requirements already out of the box. Further, the B2BUA offers the possibility to
generate requests which cannot be done by the stateful proxy. This is not an requirement,
but it can be useful for further extensions.

A stateful proxy server can fulfill a wide range of requirements, but does not completely
support the unrestricted changing of messages. The B2BUA fulfills lot of the requirements
out of the box and offers additional capabilities, e.g. the generation of requests, which can
be used in future extensions. Therefore, a B2BUA will be used to intercept and forward
SIP messages.

3.2.2 Physical Architecture

After a suitable concept was chosen to intercept, process and forward a SIP message, the
physical architecture and configuration of the participating SIP nodes are discussed in this
section.

39



Concept and Model

To ensure all messages are sent via the B2BUA, three scenarios on the initial request have
to be be considered:

1. Requests sent within the network
2. Outgoing requests sent to a node outside of the network

3. Incoming requests received from outside of the network

The scenarios for sending requests within the network and for outgoing requests to a node
outside of the local network can be grouped together and addressed at once by figuring
out how outgoing requests can be redirected to the B2BUA. Usually, the SIP client tries
to resolve the domain part of the SIP address and send the request directly there. When
the SIP address is managed by a foreign domain, the request is going to be sent directly
to the foreign SIP server like illustrated in Figure 3.6.

>
S
T
c
>
a
Local Back-to-Back x Foreign Targetted
SIP Client User Agent 2 SIP Proxy SIP Client
I 1 E; I I
| | z | |
I 1 I I
I 1 I I
I 1 I I
! Request >: |
I 1 I I
| ! ! Request >:
| | | |
! ! ! !

Figure 3.6: Request message without a configured outgoing proxy

To get the client to sent the SIP message to a proxy in the local domain instead of sending
it directly to the foreign proxy server, an outgoing prozy has to be configured. In this way,
all STP messages are forwarded to the configured outgoing proxy instead of trying to find
the destination on their own, see Figure 3.7.

The solution to receive all requests within the network as well all requests addressing SIP
addresses in foreign network, is to configure an outgoing proxy at all clients of the local
network, where the SIP messages should be intercepted. The configured address for the
outgoing proxy should be the network address of the B2BUA.

To ensure that the B2BUA retrieves all incoming messages, it should be ensured that the
B2BUA is contacted first from a foreign client or proxy. The foreign client or proxy server
determines with the help of the Domain Name Service (DNS) where the SIP message should
be sent.

40



Concept and Model

Fa

©

©

c

>

o

o

Local Back-to-Back << Foreign Targetted
SIP Client User Agent S SIP Proxy SIP Client

| | z | |
I 1 I I
I 1 I I
] Request ] ] ]
; ! 1 1
I 1 I I
] ] Request ] ]
I I | I
I 1 I I
] ] ] Request ]
1 1 t i
I 1 I I
I 1 I I
I 1 I I
1 1 1 1

Figure 3.7: Request message with a configured outgoing proxy

The following DNS records are used to find the network location of a foreign SIP do-
main [RS02¢, p. 2J:

e NAPTR [MDO0]
e SRV [GVEO0]

The first entry is the NAPTR field. This entry provides a mapping of the supported SIP
protocol (e.g. SIP via UDP, SIP via TCP, SIPS via TCP, and other) to a SRV entry of
the domain. The SRV entry contains a list of server including port information. In this
way, first the desired protocol is selected in the NAPTR entry and then the list of server
which support the desired protocol is retrieved.

To assure that all incoming messages are sent at first to the B2BUA, the NAPTR and SRV
entries have to be configured to point to the B2BUA.

With this described measures the B2BUA will receive all incoming and outgoing SIP mes-
sages at first. Usually, the first message is accepted by a SIP proxy and using a location
service the message would be forwarded to the corresponding user or in case of an outgoing
SIP message the DNS system would be queried to find the SIP proxy server in charge. In
many cases the location service is also implemented by the SIP proxy.

The implementation of these functionalities are not trivial but necessary for a working SIP
infrastructure but they are out of the scope of this thesis. Therefore, an existing SIP proxy
server is going to be added to facilitate the necessary functionality. In particular, the most
important tasks are to process and store the user registration, maintain user state, routing
of SIP messages to foreign domains, which includes the lookup of DNS entries as described
above, and resolving of the temporary network address of local SIP users using a location
server. Using a SIP proxy, the B2BUA can focus on the requirements and hand over these

41



Concept and Model

tasks to the SIP proxy server. Taking the additional SIP proxy server into account, the
simplest physical architecture consist of the caller, the callee, the B2BUA and an existing
SIP proxy server.

The inclusion of the SIP proxy server in the SIP message flow can be realized in different
ways:

1. Placing the proxy server before the B2BUA
2. Placing the proxy server after the B2BUA

3. Intermediate proxy server

Placing the proxy server before the B2BUA

In the first option, shown in Figure 3.8, the client sends the SIP message first to the proxy
server (1). Then, the proxy is processing the message and instead of sending the message
to the next computed target, like the usual behavior of the proxy would be, the proxy
sends the message to the B2BUA (2). The B2BUA can then send the SIP message to SCA
and forward the processed message to the computed target of the SIP proxy (3).

Back-to-Back User Agent

VolP Phone
VolP Phone SIP Proxy

Figure 3.8: Routing option where SIP proxy is placed before the B2BUA (The numbers repre-

sent the chronological order)

With this configuration the B2BUA, and so the SIP message forwarded to SCA, will have
all possible information which the proxy might add to the SIP message initially sent by
the SIP client. Information the proxy adds could be the temporary address of a user, if the
user state is maintained by the proxy, or information of the next hop, when the message is
sent to a foreign domain. Also, a SIP message is sent to the B2BUA only once compared
to the third option, which saves resources.

42



Concept and Model

A drawback of this configuration is that the proxy server needs a special configuration to
change the default behavior, to not send the message to the next computed SIP node than
to send it in any case to the SIP component. This needs also a proxy server which allows
the adjustment of the routing behavior. Especially for messages which would terminate at
the proxy server, like REGISTER messages, pose a problem. With this configuration, the
terminating messages have to be processed but then be forwarded to the B2BUA so that all
messages of the client are forwarded to SCA. Those messages can also not be influence by
the B2BUA as they have been already processed by the proxy server. An other drawback
is that the B2BUA cannot control which proxy server will be used. This is because the
outgoing proxy is configured at each SIP client and can usually only be changed by hand.

Placing the proxy server after the B2BUA

As shown in Figure 3.9, in the second option the B2BUA will receive the SIP message
initially (1), send it to SCA and then forward it to the proxy server (2). The proxy server
will process the message, calculate the next hop and send it to the target (3). This behavior
of the proxy server is the same like usually SIP proxy server behave and therefore no special
configuration of the routing is needed. In this configuration also terminating messages at
the proxy server like REGISTER messages do not need a special treatment. A drawback
of this configuration is that the information are missing which the proxy server adds to the
message, like the next hop or the temporary address of a SIP user.

Back-to-Back User Agent

¥
1
2
Z
;
—_—
VolP Phone :
SIP Proxy VolIP Phone

Figure 3.9: Routing option where SIP proxy is placed after the B2BUA (The numbers represent

the chronological order)

Intermediate proxy server

The third option is the most complex and laborious one. It tries to consolidate the advan-
tages of the other two options. The procedure of this option is shown in Figure 3.10. Like

43



Concept and Model

in the second configuration the SIP client first sends the SIP message to the B2BUA (1).
This forwards the message to SCA. The returned message by SCA is forwarded to the SIP
proxy (2) where the message is processed. The SIP proxy determines the next hop and like
in the first option, the SIP proxy server does not forward the computed message directly
to the next hop, it returns the message to the B2BUA (3). This forwards the processed
SIP message a second time to SCA and forwards the result to the next hop (4) calculated
by the SIP proxy server.

Back-to-Back User Agent

VolIP Phone VolIP Phone
SIP Proxy

Figure 3.10: Routing option with intermediate proxy server (The numbers represent the chrono-

logical order)

This solution overcomes most shortcomings of the other options by delivering the SIP
message twice to the B2BUA. In this way, the system can decide to which proxy server
the message is forwarded and it receives also all altered and added information of the SIP
proxy server.

This option shares the drawback of the specially configured SIP proxy server of the first
option. But, as in this configuration the B2BUA can decide to which proxy server the
message is forwarded, all proxy server have to be configured to send the message back
to the B2BUA. As a result, the SIP proxy server can only be used with the B2BUA as
they will send all received messages to the B2BUA after processing or a more complicated
routing algorithm has to be installed. As an other drawback of this configuration can
be seen, that the same message is going to be forwarded twice to SCA by the B2BUA.
Although SCA receives more information in this way, all services run within SCA have to
be aware of this behavior and consider it in the implementation. Additionally, the double
reception of the same SIP message doubles the processing effort and reduce significantly
the amount of messages that can be processed.

After considering all advantages and disadvantages of all options, the second configuration
seems to be the best choice. It offers the flexibility in altering the message before it is sent
to the SIP proxy server as well as the possibility of choosing the used proxy server. As the

44



Concept and Model

routing behavior of the proxy server does not need to be altered, like in the other options,
the requirements to the used proxy server are less restrictive. Finally, the added and altered
information by the proxy server does not contain crucial or important information and in
consideration of the advantages the missed information is to be disregarded.

3.2.3 Integration in Service Component Architecture

The previous Subsections 3.2.1 and 3.2.2 focused on the SIP part of the examined problem.
The second subproblem is dealing with the question how the intercepted SIP message can
be forwarded to SCA and there efficiently processed by the services. Changes to the
message should be reflected to the SIP message which is then sent to the next target by
the system.

The SCA requirements group is covered in this section. Additionally, following non-
functional requirements are addressed: NR2, NR3

Until now, the B2BUA was assumed to run as a own process. SCA offers different ways
to interact with their services. External interfaces, like Web Services or Java Messaging
Services, can be used. An other option is to use internal interfaces. For this option, the
B2BUA needs to be implemented as a SCA service. The later one offers various advantages.
In this way, the call of SCA services is very simple and can be done in a known way. Also
in this way the B2BUA service can be easily reused and composed with other services.
This is fully compliant to the idea of SOA. Figure 3.11 shows the B2BUA as a service of
a SCA and the changes in the structures of the B2BUA to forward the messages to SCA
services.

SCA Runtime

Back-to-Back User Agent

Component

UA UA

/Server\ ['cnent\
g

a B Business Logic

Component 1
N
VolP Phone i} VolIP Phone
Component n 3%

Figure 3.11: B2BUA implementation as a service

The SIP component containing the B2BUA needs to be initialized to be able to accept SIP
messages. After a message is received by the user agent server of the SIP component, the
message should be processed and prepared to be forwarded to the next SIP hop.

45



Concept and Model

All necessary changes should be applied to the message before it is forwarded to the SCA
services. In this way, the computed information like the next SIP node or changed header
fields are available to the SCA services. This prepared message is forwarded to the SCA
components. These can read and change the SIP message. Also, the SIP message can be
forwarded to other SCA components and thus the SIP message can pass multiple compo-
nents which all can change the message.

When the SIP message is returned to the SIP component it can be sent right away. To send
the fully processed SIP message to the SCA services also prevents possible lost changes
made by SCA components, if the B2BUA would compute and apply the necessary changes
to the SIP message after it was returned by the SCA components.

To forward a SIP message to other SCA services, the message has to be serialized so it
can be passed via method parameters. Different methods where developed how the SIP
message can be serialized:

1. Serialize the whole SIP message as text
2. Pass each important header as a own method parameter

3. As a complex SDO object

In the first method, the SIP message is serialized by the SIP component to a text stream
and stored in a string. This string has the same format as the SIP message sent via the
network. This has the advantage, that the message can be read from the network and
directly forwarded to the SCA services. Also, existing SIP parser can be used to parse the
message and create a response, see Figure 3.12.

SCA Runtime
SIP Component Random Component
e En Dﬂ /—Z>
i
: SIP Parser SIP Composer
I
| +
vy L d
& ’ '
Process message |
VolIP Phone 6
Plane SIP Message &7 parsed SIP Message

Figure 3.12: Serializing option: Whole SIP message as text

46



Concept and Model

As the message is transfered as it is received from the network, all information and headers
of the message will be preserved when it is transfered to the SCA services. In this way,
no changes need to be done at the SIP component when additional headers are needed
by the services or if a SIP extension should be supported. The needed information can
be extracted directly by the services. An other advantage of this method is that the SIP
message could be read from the network by the SIP component and directly forwarded to
the SCA services without parsing it. This would make the implementation of the SCA
component simple and at the same time flexible to changes. But as the message has to be
changed by the SIP component before it can be forwarded, the message has to be parsed
anyway.

A drawback of this method is that each service has to parse the SIP message on their own,
as can be seen at the Random Component in Figure 3.12. This is not a trivial task and
will usually need tool support. As well the support for particular SIP extensions need to
be implemented in all services. This adds an additional layer of complexity to each service,
which is not the idea of SOA.

SCA Runtime
SIP Component Random Component
SIP Parser ’ Process message }
VolIP Phone
Plane SIP Message &7 parsed SIP Message E Selected Header

Figure 3.13: Serializing option: Pass each important header as a own method parameter

As the SIP message has to be parsed by the B2BUA anyway, an other method is devel-
oped where the most important header fields are passed as method parameter to the SCA
services, see Figure 3.13. In this way, the services receive the header messages in a clean
and structured way.

The SIP standard defines 44 different header fields where 17 out of them are mandatory
in at least one message type [RSCT02, pp. 159-163]. Header fields can also occur more
than once in a SIP message, for example a VIA header field has to be added to the SIP
message at each hop, see explanation in Subsection 2.1.4. Due to the amount of different
SIP header and the possibility for multiple header values, the approach to pass SIP header
as separate method parameter is not a promising approach.

By continuing the thought of the second idea, this third method was developed. In the
third method, see Figure 3.14, the SIP message itself is stored in a complex structure.

47



Concept and Model

This structure is passed to other services via a method parameter. When a SIP message
is received by the SIP component, the message is parsed, needed changes are applied and
finally all values of the SIP message are stored in the structure. In this structure, each
header value and the content is stored in an own field. This structure is passed to SCA
services which can read and change the values of the STP message easily by simply accessing
the fields in the structure. The altered structure can then be passed to other SCA services
before it is returned to the SIP component. At the end of the processing the SIP component
receives the structure from the SCA services and composes a SIP message based on the
values of the structure.

SCA Runtime
SIP Component = Random Component
oy (v SDO Converter ——— > E DTE E(—Z>
SIP Parser ) Process message |
VolP Phone
Plane SIP Message &7 Pparsed SIP Message EJ spoobject

Figure 3.14: Serializing option: As a complex SDO object

SCA is designed to work with different programming languages. This requires to define for
each component a language natural interface. Where primitive types like integer and string
can be mapped in each language, each programming language has its own way to handle
complex structures. Due to this a direct mapping of a complex structure, like a class to
a complex structure in an other programming language, is not possible. Therefore, the
developer of SCA introduced with SDO [SDO] a standard to handle complex structures.
With SDO it is possible to pass complex structures between services.

With this solution the SIP component and the structure of the SDO object has to be
changed each time a new header field should be supported. But due to the structure
and the way how SDO objects are implemented, changes in the SDO structure does not
necessarily mean the SCA services consuming the SDO object need to be changed, too.
This is only necessary if changed or removed fields in the SDO structure are used by the
service.

For the implementation developed within this thesis, the decision is made to not implement
all existing SIP header fields. The first reason is simply to reduce the implementation effort
and the second reason is to reduce processing and network resource consumption to create

the SDO object.

48



Concept and Model

Header field ACK BYE CAN INV OPT REG
Accept r r r r
Accept-Encoding r r r r
Accept-Language r r r r
Allow T T r r
Call-1D T T T r r r
Contact r
Content-Length r r T r T r
Content-Type r r r r r
CSeq r r r r r r
From r r T T T r
Max-Forwards T T T r T r
Min-Expires r
(Proxy-Authenticate) r r r r
Require r T r r
Route r r r T T T
Supported i i

To T r r T T r
Unsupported r T r r
Via T r T r T r
(WWW-Authenticate) r r r r

Table 3.1: Listing of header fields which are required in at least one situation, distinct by
method (r: required, i: header field should be included, but not mandatory, ACK:
ACKNOWLEDGMENT, CAN: CANCEL, INV: INVITE, OPT: OPTIONS, REG:
REGISTER)

The decision on which fields are going to be used is made on the importance of the header
fields. Therefore, all header fields which are not defined as optional by the SIP stan-
dard [RSC*02, pp. 159-163] are included in the SDO object. Table 3.1 contains the list of
header fields which are transfered to the SCA services. The table also contains information
about the header field in relation to SIP methods. A field is seen as required by a method
if there is at least one situation where the field is mandatory.

Despite the header fields Proxy-Authenticate and WWW-Authenticate are not optional,
they are not included in the structure as they are used for authentication. Authentication
is not in the scope of the prototype, therefore these fields are excluded.

Additionally to those 18 header fields, the message type, the address of the calculated next
SIP node and the body of the message are included in the SDO object.

49



Concept and Model

3.3 Proposed Solution

All parts of the problem have been discussed earlier in this chapter, different options are
proposed and finally the most promising is chosen to be used. In the following the proposed
solutions of the discussed subproblems are put together to formed an overall design for the
addressed problem.

3.3.1 Infrastructure

It is assumed that the SIP domain is run within a company or organization which is also
responsible for the maintenance of the VoIP system. This VoIP system is supposed to be
used mainly for internal calls but the reception of voice calls from outside of the domain
should be possible and considered. This does not necessarily mean that a connection to the
PSTN network or the Internet with public SIP provider will be present. But it is assumed
that the network can be organized in multiple SIP domains.

SIP clients using the SIP domain are expected to be standard conform. A differentiation
between softphone and hardware phone clients is not made. The only requirements to the
clients, next to the compliance with the standard, is the ability to configure an outgoing
SIP proxy.

For the system to work, one SCA server running the SIP component and at least one SIP
proxy server is necessary. It is assumed that the proxy server can handle all needed SIP
functionality of a domain like registrar or location server. If the proxy cannot cover all
required SIP functions, additional server have to be added to provide the missing function-
ality. Like defined in the requirements, more SCA server running a SIP component can be
installed as well as multiple SIP server, if needed. A network topology with the essential
SIP components the system needs is displayed in Figure 3.15.

3.3.2 Message Processing

To describe the exact interplay of the solutions introduced in Section 3.2 exemplary a
SIP message is observed while being processed by the system, visualized in Figure 3.16.
Examined is a SIP message sent by a SIP client of the local domain to an other SIP client
of the same local domain.

As mentioned in Subsection 3.2.2, an outgoing proxy server has to be configured at each
SIP client of the domain. As the outgoing proxy server, the network address of the server
running the SIP component in the SCA runtime has to be used. Due to this configuration
every initial request message sent by the clients of the domain will be first sent to the server
running the SIP/SCA component. This is visualized in the Figure 3.16 with the message
named request (1).

The addressed server runs a SCA runtime where the SIP/SCA component is running as
a service. The SIP component listens directly on the network for incoming SIP messages

20



Concept and Model

)

SCA Runtime with
SIP Component SIP Proxy

Firewall

& &

SIP Client SIP Client SIP Client

Figure 3.15: Required components by the system

and does not use any functionality a SCA environment might offer for the reception of the
SIP messages from the network. The SIP/SCA component is separated into two subcom-
ponents:

e SIP/SCA proxy
e SIP/SCA wrapper

The SIP/SCA proxy is handling the SIP responsibilities and the SIP/SCA wrapper is
responsible for the SCA specific functionality.

The request sent by the SIP client is accepted within the SIP/SCA proxy subcomponent.
This subcomponent implements the B2BUA which handles the processing of SIP messages
as required by the SIP standard. The processing includes the needed changes of the
message and the calculation of the SIP node to which the message should be forwarded
(2). After finishing all processing, the SIP message ready for delivery is handed to the
SIP/SCA wrapper subcomponent (3). This subcomponent handles the SCA specific part.
It transforms the SIP message into a SDO object. This SDO object is being forwarded to
the reference defined by the SIP/SCA component (4).

The SCA runtime invokes the service wired up with the reference of the SIP/SCA compo-
nent. This service can use the SDO object containing the values of the SIP message and
process it. Other services can be used to support the service (5, 6). The SDO object can
also be passed to other services where it can also be altered. At the end of the processing,
the changed SDO object is returned to the SIP/SCA component (7).

o1



Concept and Model

: response (6)

altered SDO msg (7) e

unwrap msg (8) :6 ”””””” !
% ,,,,,,,,,,,,, |

SCA Runtime
Caller SIP/SCA Proxy SIP/SCA Wrapper Business Logic SCA Comp SIP Proxy Callee
| | | | |
| | | | |
| | | | |
: request (1) : : : :
| | | | |
| | |
: process msg: 2) : :
: forward msg (3) i i i
r » I I
: : SDO msg (4) : :
: ;——p: query (5) :
| I » |
| |
| |
| |
| |
| |
| |
|
|
|
|

|

|
forward to proxy (9)

|

| deliver msg (10) |

i |

|

|

e e ___

|
|
|
|
|
| N
: response (11) !
! ! —
L forward to SCA/SIP component (12) |
h i i |
| | | |
| | |
| process msg (13) | |
| | |
| forward msg (14) | | |
L }l | |
| | SDOmsg(15) | |
| L %‘ |
| | | query (16) |
| | i |
| | | |
| | | respones (17) |
| | [ !
: :altered SDO msg (18): :
| unwrap msg (19) :6 ffffffffffff ! :
K I I I
deliver msg (20) | | : |
[ e R | | |
| | | |
SIP Component My SIP/SCA Component My SCA Component

Figure 3.16: SIP message flow through the system

The returned SDO object is received by the SIP/SCA wrapper which unpacks the SDO
objects. The changes to the SDO object made by the SCA services are applied to the SIP
message and the altered SIP message is returned to the SIP /SCA proxy subcomponent (8).
It is forwarding the message processed by the SCA services to the address defined in the
STP message (9). If the temporary address of the calling SIP user could not be resolved, the
message has to be forwarded to a proxy server capable of resolving the temporary address
of the calling SIP user or to a SIP server which is able to find such a proxy server. SCA
services changing the forwarding address of the message have to be aware of this. Usually,
the destination of the message will be a SIP proxy server of the domain.

52



Concept and Model

The SIP proxy server processes the message and the decision is made to which SIP node
the message is going to be forwarded. For the calculation the location service might be
facilitated to find the temporary address of the called SIP client. Finally the SIP message
is forwarded by the SIP proxy and is accepted by the targeted SIP client (10).

The response message is traveling the same way backwards through the system like a or-
dinary SIP response. The SIP client sends the response message to the SIP proxy (11)
and the proxy forwards the message to the SIP/SCA component (12). There the SIP/SCA
proxy subcomponent receives and processes the message (13). As all messages are for-
warded to SCA, also this response is forwarded to the SIP/SCA wrapper subcomponent
(14), same as initially the request message. The response message is converted to a SDO
object and is forwarded to the wired SCA service (15).

The SCA service is the same as which is used at the request. Thus, the services connected
to the SIP/SCA component need to be aware which kind of SIP message they receive.
The service processes the SDO object and queries an other SCA service (16, 17). After
the service is finished it returns the altered SDO object again to the SIP/SCA wrapper
subcomponent (18).

The SDO object is converted to a SIP message and passed to the SIP/SCA proxy sub-
component (19) which is forwarding the message to the calling SIP client (20). As also
the reply can be freely changed by the SCA services, the SIP message does not need to be
delivered to the calling SIP client. The SIP/SCA proxy will forward the message to the
address defined as the forwarding address. But not delivering the response message to the
sending client would make the client to retransmit the request message. When the SCA
services change the SDO object, they must be aware to comply to the SIP standard so
that the participating SIP components like proxy servers and SIP clients work properly.

As can be seen in Figure 3.16, the SIP message is spending a significant amount of time
within SCA. So the SIP message is not just being processed by the B2BUA residing in the
SIP/SCA component, also the message is passed to SCA services which on their own take
some time to execute. Because the message is being processed by the B2BUA and the SCA
services, it is expected that the performance of the system is going to be worse than if an
usual proxy would be used in place of the SIP/SCA component. The final performance also
depends on the time each called SCA services takes to process the message. The expected
drawback in performance is accepted as this system offers various advantages compared to
an ordinary SIP system.

23



4 Proof of Concept

Based on the analysis and the chosen design a prototype is implemented. The libraries
and applications used by the prototype are discussed. To evaluate the prototype different
tests are made. The performance of the prototype is measured by conducting load tests.
The evaluation compares the performance of the prototype with conventional SIP systems.
Subsequently, the results of the tests are discussed as well as the prototype in general.

4.1 Implementation

In Section 3 different components are identified to build the system. The implementations
of these required components need to fulfill the requirements raised at the beginning of
the previous section. Subsequently, the implementation of the required components for the
prototype is discussed.

The aim of the prototype is to prove the functionality. It should show that the designed
system can be implemented and provide all functionalities as required. By implementing
sample applications the expected advantages for application development should be proven.
The prototype is examined for optimizations, but building a high-performance system is
not the primary target of the work.

As defined in Section 3.1, the application should run natively on the system and thus should
not use interpreters or virtual machines. Due to this, the system should be developed in
the computer language C/C++. As it is planed to use an embedded Linux, the Ubuntu
Linux [Ubu]| distribution is chosen as the development platform.

4.1.1 Used Components by the Prototype

For each required component a suitable implementation is needed. Existing products can
be used for some components like the additional SIP proxy. Also for the components which
need to be implemented, libraries are used to ease and accelerate the development. In the
following, different alternatives to each component are described as well as the reasoning
for selecting one of these components.

o4



Proof of Concept

Service Component Architecture Implementation

As described in Subsection 2.2.5, SCA is a concrete implementation of SOA. For this
concrete implementation, different realizations are available. A lot of those realizations base
on Java but there are also some developed with C/C++. The implementations of SCA can
be categorized into stand-alone solutions and integrated solutions. Stand-alone solutions
are designed to run on its own and does not need any other components to work. These
solutions suit best for fields of applications where only the SCA environment is needed.
Integrated solutions have SCA integrated into other products or components. In this way,
SCA can be provided within a Java application server or similar. This is useful in situations
where next to SCA different other technologies and products are used. Additionally the
implementations can be grouped into commercial implementations like IBM WebSphere
Application Server V7.0 Feature Pack for SCA [IBM] or Oracle SOA Suite [Ora] and open
source implementations like Fabic3 [Fab], SCOrWare [SCO] or Apache Tuscany [Tus].

Apache Tuscany was chosen for the prototype as it is a stand-alone implementation and
it offers two different versions. Omne version is implemented in Java and the other one
in C++, referred as native. For the prototype the native implementation of Tuscany is
taken. Apache Tuscany is open source and licensed under the Apache License in the version
2.0 [Apa]. The native version supports SCA components which are implemented either in
C++ or Python.

Session Initiation Protocol Library

SIP is a quite complex protocol and every aspect is defined to the least detail. This reaches
from the overall structure of messages down to the possible options of a parameter, the exact
spelling and the meaning of it. SIP also offers some freedom in generating SIP messages
like the order of the SIP header is free or the implementation can decide if multiple header
values are generated as multiple header each containing one value or as a list of header
values in a single header. To correctly implement the SIP specification all aspects need to
be implemented according to the defined rules and thus the correct parsing, interpretation
and generation of a SIP message is laborious and error prone. Therefore, a library should
be used to create and parse SIP messages and so support the developer in obeying the
rules defined by the SIP standard.

Requirements to the library are as follows:

e The library has to be implemented in C/C++.

e As the target operating system will be Linux it has to be a library for that operating
system.

e It has to be reliable and proven. Thus, it should already be used in applications
which are in use. It is also desirable that the development is still in progress and
thus the library will be maintained in case of found errors or bugs.

25



Proof of Concept

e The processing of SIP messages by a SIP server is different than by a SIP client,
therefore server functionality should also be supported by the library.

e Finally, due to the limited resources a library with a minor need of resources should
be preferred.

The decision for the library used in this work is made between PJSIP [PJSa] and eX-
osip2 [eXoa].

eXosip2 is a library which offers a high-level Application Programming Interfaces (API)
for SIP. This library is build using osip [OSI], a SIP library from the same author which
offers a low-level API. With the high-level API of eXosip2 common SIP interactions can
be realized in a simple way, but it does not allow to have an influence on the exact message
creation. With the second low-level API influence to all aspects of the SIP communication
is possible. With this API also server can be realized. The eXosip2 library can be licensed
with the GNU’s Not Unix! (GNU) General Public License (GPL) version 2 [GPL] or with
a commercial license. Dual-licensing is preferred for this work as it provides the freedom
to decide in a later stage to either use the GNU GPL and publish the source code or to
purchase a commercial license where the source code does not need to be published.

The eXosip2 library does not provide a special interface for creating servers, although a
server can be built by the low-level API. But using this approach all aspects of the SIP
server need to be implemented by the developer and thus, no support for obeying the SIP
standard is given. Additionally, the library does not assure that the received SIP message
is completely valid according to the SIP standard [eXob]. Some check still have to be done
by the developer.

The second library, PJSIP, is a rich SIP library which has a small footprint but offers
functionality for SIP UAs and SIP servers. It is a portable library so it is available for
different operating systems as well as various mobile systems. The library is offering
different APIs representing different level of abstraction, as displayed in Figure 4.1

The API offering the highest abstraction is PJSUA-LIB and full functional SIP clients
can be build easily with some method calls. Different APIs with decreasing abstraction
(PJSIP-UA, PJSIP-SIMPLE, PJSIP, PJLIB-UTIL) are also available. The PJLIB API
represents the base framework on which all other APIs of this library base. Support for
media negotiation, media stack (PJMEDIA) and different codecs (PJMEDIA-CODEC) is
also offered by the library.

A rich documentation is offered by this library and also server functionality via APIs on a
higher level is supported. For this purpose, mainly the PJSIP API can be used, but also
some functionality from the PJLIB-UTIL and PJLIB API is needed. The usage of higher
level APIs does not require the developer to do the error prone implementation of the SIP
server behavior according to the SIP standard. Additionally, the library is available via a
GPL license or optional via a commercial license.

Due to the support of server functionality via an API and the better validation of the SIP
messages PJSIP was selected to be used.

o6



Proof of Concept

APPLICATION

pjsua

PJSUA-LIB
High Layer User Agent Library integrating SIP, Media and NAT Traversal

PJSIP-UA
SIP user agent library

w PJMEDIA-CODEC PJSIP-SIMPLE
E Codec Integration library SIP Presence and Instant Messaging
=
&
o PJMEDIA PJSIP
2 SDP, SDP negotiation and Media Stack Core SIP library
g
o PJNATH
g NAT traversal library
F PJLIB-UTIL

Utilities library

PJLIB

0S Ab tion and Base F k

Operating System / Platform Dependent

Figure 4.1: Architecture of PJSIP with different APIs [PJSb]

Session Initiation Protocol Proxy Server

As described in Subsection 3.2.2, an additional SIP proxy server is required for the system
to handle the registrations of the SIP user and to find routes for the SIP messages.

For the additional SIP proxy server, Kamailio [Kam] will be used. Kamailio is a well-cited
open source SIP proxy for Linux/Unix platforms. It is a high-performance SIP proxy with
a lot of features. The server can act as a registrar and supports dynamic routing. Finally,
the proxy is implemented in C and thus complies to the requirements to the system.

4.1.2 Structure

The structure of the implementation is rather simple as the used SIP library took off a lot
of development effort. The class diagram of the prototype can be seen in Figure 4.2, where
the classes with green background belong to the developed system. The remaining classes
are stubs which are necessary to run the system. Those stubs will be replaced by an own
implementation of the user of the system.

The SipProxyClientApp is the application which uses the developed SIP/SCA component.
As the server part of the component can not be started and stopped directly by the frame-
work, the SipProxyClientApp is needed to take over those tasks. This application is only
a stub and the accomplished tasks would be implemented by the user of the system. For
starting and stopping the server a method startServer respectively stopServer is provided
by the interface. This small application simply starts the server when the application is
loaded and stops the server after a random user input. This simple behavior is sufficient

o7



Proof of Concept

SCA
«interface»
S——— SipCi t
SipProxyClientApp lpromponen
startServer()
stopServer()
VAN
pjsip::pjlib-
util
«interface»
pro%SipComponentlmplI BusinessLogic
sipMessage(in sipMsg)
AN
pjsip::pjlib BusinessLogiclmpl
extractSipToSDO| | insertSDOtoSip |
SDO
pisip::pjsip
I:I Class ——  Association
I:I Class of the developed system % Association with usage indicator
Library Qﬁ Inheritance

Figure 4.2: Class diagram of the implementation

for the prototype. To retrieve an instance of the SipComponent and invoke the start and
stop operations the SCA library is needed.

To pass the SIP message to other SCA components, subsequently referred as business logic,
the SIP message has to be converted to an SDO. As the PJSIP library already provides a
clean data structure for the SIP message, this structure is taken as a pattern to define the
structure of SDO. The SDO definition following the design decisions in Subsection 3.2.3
can be found in the Appendix: SDO Definition.

SipComponent is the interface which is exposed to the framework and through which the
component can be used. This interface is defined by the developed system and is imple-
mented by SipComponentImpl. This component is the core of the system. It implements

o8



1

1
2
3

4
)
6
7
8
9
0

Proof of Concept

the functionality of the B2BUA and communicates with the business logic. The SipCom-
ponentImpl is realized as a SCA component, in Listing 4.1 the composite definition is
shown.

<?7xml version="1.0" encoding="UTF-8"7>
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0">
<service name="SipComponentService'">
<interface.cpp header="SipComponent.h"/>
</service>
<reference name="BusinessLogicService">
<interface.cpp header="BusinessLogic.h"/>
</reference>
</componentType>

Listing 4.1: SCA component definition of the developed SipComponent

The component definition offers a service called SipComponentService. The interface of this
service is defined as a C++ header file and the name of the file is called SipComponent.h.
This referenced interface is the SipComponent interface in the class diagram. After the
service, a reference is defined with the name BusinessLogicService. This reference is used
to forward the SIP message to an other SCA component. The interface is again defined as
a C++ header file and can be found in the BusinessLogic.h file. In the class diagram this
interface is named BusinessLogic.

The PJSIP library provides different hooks where applications can register methods. These
registered methods will be executed on the occurrence of certain events. This functionality
is used by the SipComponent to process the SIP message, forward it to the business logic
and finally send it. Following hooks are used:

e on._rx._request
® ON_TIX _response

e on_tsx_state

The first hook on_rz_request is executed when a request is received. This is the usual
entry point for a SIP server, as clients direct their initial request message to a SIP proxy.
This request is processed within the method and if necessary a transaction is initialized.
The on_rz_response hook is used to receive response messages which are not sent within a
transaction. On changes in the transaction state the on_tsx_state hook is called. Changes
may be triggered by receiving responses, requests or other state changes like a timeout.
In every hook, the SIP message is forwarded to the business logic after the message is
processed and before the message is sent.

The SipComponentImpl component uses pjlib and pjsip from the PJSIP library as well
as the SCA library. The pjsip library is used mainly for the SIP part where also some

29



Proof of Concept

functionality from the pjlib library is needed. The SCA library is needed for SCA related
functionality.

To accomplish the described tasks of the SipComponentImpl component following helper
classes are used:

® DProxy
e extractSipToSDO
e insertSDOtoSIP

The proxy class contains functionality for the SIP server. It is used as a collection of
utilities to support the SipComponentImpl e.g. verification of a message or initialization
of the SIP stack. This class uses pjlib, pjlib-util and pjsip from the PJSIP library.

The conversion of a SIP message to a SDO as well as the reverse operation to convert
a SDO object to a SIP message are encapsulated in the classes extractSipToSDO and
nsertSDOtoSIP, respectively. These utility classes are used by the SipComponentImpl.
The generated SDO object is forwarded to the business logic and with the returned SDO
object the insertSDOtoSIP class updates the SIP messages. Both classes use the SDO
library to build the SDO object as well as the pjlib and pjsip from the PJSIP library to
process the SIP message structure.

The BusinessLogic defines an interface to the SCA framework. This interface is used as a
SCA reference for the SipComponentImpl. Using this SCA reference the SDO containing
the SIP message is sent via the sipMessage method. This interface is defined by the
developed system and has to be implemented by the business logic to receive the SIP
messages.

The BusinessLogicImpl class realizes the business logic. It is an own SCA component which
implements the BusinessLogic interface. This class is not part of the developed system
and will be created by the user of the system. Different business logic implementations are
realized in the course of the prototype to test the capabilities of the system and confirm
the non-functional requirements to the system. As the BusinessLogicImpl class is a SCA
component, it needs the SCA library and for the processing of the passed SDO object the
SDO library is needed. In Listing 4.2, the composite definition of the BusinessLogic is
shown.

1 <?xml version="1.0" encoding="UTF-8"7>

2 <componentType xmlns="http://www.osoa.org/xmlns/sca/1.0">

3
4
5)

<service name="BusinessLogicService">
<interface.cpp header="BusinessLogic.h"/>

</service>

6 </componentType>

Listing 4.2: SCA component definition of the BusinessLogic

60



1
2
3

© 00 N S U

10
11
12
13
14
15

Proof of Concept

This is a rather simple composite with only one service definition, named BusinessLogic-
Service. The interface definition of this service is found in the file BusinessLogic.h which
is a C++ header file.

The two SCA components defined in the prototype, the SipComponent and the Business-
Logic component, need to be combined to a composite to wire up the reference of the
SipComponent and tell the SCA framework to invoke the service at the developed Busi-
nessLogic. The composite definition is displayed in Listing 4.3.

<?xml version="1.0" encoding="UTF-8"7>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="SipServer">
<component name="SipComponentComponent">
<implementation.cpp library="SipComponent"
header="SipComponentImpl.h" />
<reference name="businessLogicService">
BusinessLogicComponent /BusinessLogicService
</reference>

</component>

<component name="BusinessLogicComponent">
<implementation.cpp library="BusinessLogic"
header="BusinessLogicImpl.h" />
</component>
</composite>

Listing 4.3: SCA composite definition of the SipComponent and BusinessLogic

The name SipServer is given to the composite and following to that the components are
listed which are part of the composite. The first component is named SipComponentCom-
ponent and it refers to the developed SIP/SCA component. The following line defines
that the implementation is done in C++ and can be found in the library SipCompo-
nent. The definition of the implementation language is necessary as in the SCA system
components can be implemented using different programming languages, as mentioned in
Subsection 4.1.1. As the implementation of this component is compiled to a Linux library,
the file has to be named SipComponent.so. Subsequently, the name of the header file of the
implementation is mentioned: SipComponentImpl.h. This header file should not be mixed
up with the header file of the interface, compare Listing 4.1. Subsequently, the reference of
the component is wired up with the service within the business logic component. The sec-
ond composite defined is named BusinessLogicComponent and defines the BusinessLogic
component. The implementation is realized in C++ and can be found in the library named

BusinessLogic. The header file of the implementation is located in the BusinessLogicImpl.h
file.

This composite is used by the SipProxyClientApp class and is like the class not part of the
developed system. It will be defined by the user of the system and can involve more than

61



Proof of Concept

the two displayed components. The composite definition in Listing 4.3 is the minimum
configuration necessary for the system.

Encountered Problems

At the development of the prototype a notable problem appeared. Usually, the invocation
of a reference from a SCA component does not require the creation of an own context, but
with the prototype this is not possible. This is because the PJSIP library uses different
worker threads to handle the incoming messages. Within these threads, the context for
invoking the reference is not present.

This problem is solved in the prototype by creating a new context, retrieving the SCA com-
ponent and invoking a dedicated method which forwards the SIP message to the business
logic. This procedure adds additional cost to the execution as the retrieving of a context
is rather laborious. In the course of the prototype, no other solution could be found, but
as can be seen in Subsection 4.2.3, this solution works quite well and the measured per-
formance of the developed solution meets the requirements. As the primary target of the
prototype is the proof of functionality, no further in-deep inspections are carried out.

Optimizations

Due to the low performance measured at the beginning of the test process, the prototype
is analyzed for optimization opportunities. For this purpose, the SIP/SCA component is
profiled by separating the application into chunks and measuring the execution time of
each chunk. Due to this, it is noted that the creation of the SDO from the SIP message
is consuming a significant amount of time in the magnitude of 1 to 5 ms. By analyzing
the method for creating a SDO, it turned out that the instantiation of the needed helper
classes used most of the time. Further investigation shows that the creation of the helper
classes does not need to be done each time a message is converted.

As an optimization, these helper classes are made static and are only instanced the first
time a SIP message is converted. This optimization can also be seen in the test results as
a peak in the response time at the beginning of the test, see Subsection 4.2.3.

Example Business Logic Implementation

For the demonstration of the capabilities of the system an business logic is implemented
which addresses a real-life problem.

The example implementation deals with the problem of finding a free air controller when
a pilot is contacting the tower. A scenario is assumed where couple of air controller are
working in a tower but the number can change during the day. The business logic should
keep track of all logged in air controller as well as their status. If a pilot is contacting the
tower, a free air controller should be selected and connected with the pilot.

62



Proof of Concept

The business logic is designed that way, that it keeps track of all REGISTER messages.
Those are used to determine which air controller is logged in at the system and which
logged off again. When a pilot wants to contact the tower he uses a well-known user name,
e.g. tower. When the business logic receives an INVITE message with the well-known
user name tower, it looks up the next free air controller in the list of logged in users.
The original contacted user name tower is replaced in the INVITE message by the user
name of the free air controller and the altered SIP message is sent back to the SIP/SCA
component. Also, the used air controller is marked as busy. When the call is terminated,
the BYE messages is recorded and the air controller is marked as free again.

This kind of use case is a very common problem and can also be found in other areas like
a call center. This example shows how easy the interplay of the SIP message with the
service is. This presented business logic was implemented within one hour and has been
successfully tested with existing unaltered SIP clients. Changing values of the message is
as easy as changing a value in a data structure. In a future development this service can be
taken and orchestrated with an other services. After processing the changed SIP message
would be handed to the other service which could enrich the SIP message with further
informations from the radar system. The presented service does not need to be changed,
not even recompiled.

4.2 Simulation and Results

As mentioned in Subsection 3.3.2, it is expected that the performance of the prototype will
be worse than the performance of a SIP system with a common configuration. To seize the
difference in performance the following tests focus on the measurement of the performance
of the prototype. Two additional SIP scenarios are tested along with the prototype to act
as a referee.

4.2.1 Test Scenarios and Metrics

To measure the performance of the prototype, different SIP load tests are conducted. SIP
load tests are chosen as the overall purpose of the developed system is to handle SIP
messages and the system as a whole is being tested with these SIP load tests. During the
load tests, different parameters are monitored which are used to determine the performance
of the system.

For the SIP load tests two different test scenarios are defined:

1. Transaction oriented test scenario

2. User registration oriented test scenario

63



Proof of Concept

The transaction oriented test scenario focus on the capability of the system to process
SIP transactions. Transactions are used in SIP when multiple SIP messages are exchanged
between caller and callee within the same context. Intermediate SIP nodes like the de-
veloped system need to maintain the transaction state efficiently to be able to process a
high amount of SIP messages between different callers and callees. Multiple SIP messages
within the same context occur at the most used method of SIP, the initialization of a ses-
sion. At the same time, this is the core method of SIP. Therefore the transaction oriented
test scenario uses the scenario of establishing a session.

The wuser registration oriented test scenario focuses on the capability of the system to
maintain the registration of users. SIP user need to register its current location at the
location service to be able to receive calls by other SIP user. If the location of the user
changes or the user logs off the system, the registration has to be updated. To allow
a quick adding, querying and updating of user information, the system has to store the
user registrations in an efficient way. In the user registration oriented test scenario, the
registration of SIP users is tested. This will highlight the performance of the registrar and
the location server of the system.

To measure the performance of the system two test metrics are used:

1. Throughput

2. Message Delay

The throughput metric shows how many messages can be processed by the system within
a certain amount of time. This is an indicator to see how many user or rather calls the
system can handle at the same time. The unit of throughput is messages per second.

The message delay metric indicates how long a message takes to be processed and thus
shows how fast the system can process a request. Specifically, it shows how long it takes
to receive a response on a sent request. This also means, it measures the delay of the

overall system including network latency as well as processing speed of each intermediate
SIP node.

To measure the actual performance of the developed system, external influence on the
system is reduced. E.g. the test infrastructure uses exclusively a high-speed local network
to reduce the network latency. The unit of message delay is millisecond.

The test procedure how the introduced test metrics are collected is the same for each test
scenario:

1. Find the maximum throughput.

2. Measure the message delay.

To find the maximum throughput, the rate of sent messages per second is increased until the
system is overloaded. To indicate when the system is overloaded, the number of processed

64



Proof of Concept

messages per second is monitored. When the rate of processed messages drop although the
number of sent requests is increased the system is overloaded.

All tests started with the same message per second rate of 50. The rate is increased every
10 seconds by 5 messages per second. When a rate of 1000 messages per second is passed,
the rate is increased by 50 messages per second each step. The average amount of processed
messages per second over a 10 second interval is logged to a file. The maximum throughput
is defined as the highest value of processed messages per second found in the log file.

During the execution of the tests, a problem occurred when conducting the user registration
oriented test scenario in a specific test case. The setup of the test case was so fast that
the system could process a huge amount of requests without any problem. But as a fact
that in this test scenario all requests have to be stored the system seemed to have issues
in storing the user registration information. Due to this, the responses generated by the
system varied very much starting from a certain rate. This resulted in varying transfer
rates where the transfer rate could drop, as seen in an overloading system, but then recover
and increase again. As a result, repeated executions of the test resulted in significantly
different results. Thus, the determination of the maximum throughput was not possible
with the above defined rules. Due to this problem a rule was added where the delay of
99% of all messages must be below 50 ms. 50 ms was choosen as in all other test cases this
response time was never exceeded.

For the second metric, the message delay, results from two situations are of interest. Once
when the system is under load to show how the performance is at the limit. The second
situation of interest, is with the same transfer rate for all test cases. This is to make the
test results equally comparable between all test cases.

As results get significantly worse when the system is overloaded, this state should be
avoided during the tests as the results are skewed. To be sure the system is not going to
be overloaded but still under load, the message rate for gathering the message delay of the
first situation will be 90% of the measured maximum throughput. In this way, the response
time of the system is being tested while being under load but the state of overloading is
being avoided.

For all test cases in the second situation, the message rate will be 90% of the worst measured
maximum throughput per test scenario.

The message delay is measured over a period of 2 minutes. Before a test is started all used
applications and components are terminated. 10 seconds before the test is starting all used
applications are started. In this way, all tests are conducted under the same conditions.
During the tests, the delay between the sending of a request and the corresponding response
is measured and logged as message delay into a file.

During all tests additionally the Central Processing Unit (CPU) and memory load of each
participating computer is logged. This information gives a clue which component is the
limiting part of the system. Additionally, it shows how much memory is needed by the
system.

65



Proof of Concept

4.2.2 Test Cases and Setup

In the previous section the test scenarios and the measured metrics are defined. In this
section, the test setup is described by defining the used hardware as well as software and
description of the used test cases.

The tests are conducted in the lab of the Institute of Computer Technology at Vienna
University of Technology [ICT]. For the tests, three computers with equal configurations
are used exclusively. Also, a dedicated private network prevents tempering of the test
results by third party traffic.

The configuration of the computers is as follows:

e Ubuntu Linux 10.04 [Ubu| as operating system

e Intel Core 2 Duo processor at 2.80 GHz with two cores
e 1 Gbyte memory

e 100 Mbit dedicated network

For the test four components are needed:

Caller

Callee

SIP/SCA component

Kamailio [Kam] as SIP proxy server

As only three computers are available for testing, all components can not be run on a
dedicated machine. As the caller and callee do not use very much resources and are also
not topic of measurement, the same computer is used for those two components. For the
SIP/SCA component as well as the SIP proxy server a dedicated machine is used. As in
Subsection 4.1.1 decided, Kamailio is used as a SIP proxy server.

For the generation of the requests, SIPp [SIP] is used. SIPp is a flexible traffic generator
for the SIP protocol. With this tool custom scenarios can be defined and the statistics
of the tests are dumped into files. For the statistics the response message of each request
is analyzed. With the dumped statistics, the metrics of the tests are calculated. The
definitions of the tests used for the test scenarios can be found in Appendix: SIPp Scenarios.
An example of a test execution is shown here:

sipp -r 196 -m 23520 -fd 1s -recv_timeout 5000 -sf uac_register_v1.0.xml -inf
sip_user300k.txt -i 172.16.1.2 -rsa 172.16.1.5:5065 172.16.1.1:5060 -trace_rtt -
trace_screen -trace_stat

66



Proof of Concept

The most important parameter will be explained here, for a detailed description refer to
the technical documentation of SIPp. With the -r parameter the message rate is defined,
in this case 196 messages per second. The -m parameter defines the amount of messages
which are going to be sent in total. The -sf parameter points to the file where the scenario
is defined. With -trace_rtt, -trace_screen and -trace_stat the recording of statistics and the
dump to a file is activated.

In the registration oriented test scenarios, no callee is needed as at the registration only the
client and the server is involved. For the transaction oriented test scenarios, an additional
Kamailio SIP proxy is used to simulate the called client. It is configured to answer all
INVITE requests with a 200 OK message, indicating to accept the call initialization or the
call tear down.

Three different test cases are used to compare the performance of the prototype with
present SIP systems:

1. One SIP proxy
2. One SIP proxy and one PJSIP server

3. The SIP/SCA component with one SIP proxy

The first test case represents a common SIP setup. Like shown in Figure 4.3, this test
case consists of an ordinary SIP proxy, the Kamailio server, and two SIP clients. As this
test case does not contain any self developed components and the used components are
fully grown and high-performance products, the results of this test case can be seen as the
best value which can be reached with the used hardware. The purpose of this test case is
to give a reference to the performance of a conventional SIP setup. Because in the other
test cases an additional SIP node is added and self developed components are used, it is
expected that the results of those test cases are worse than the results of this test case.

Caller (SIPp) SIP Proxy Callee (Kamailio)

Figure 4.3: Test Case Kamailio

Figure 4.4 shows the second test case. It consists of total four components, namely the two
SIP clients, the Kamailio SIP proxy server and an additional SIP server implemented with
the PJSIP SIP library. The setup of this case is similar to the system setup of the prototype,
but instead of the developed SIP/SCA component, a self-implemented SIP server is used.
The implementation of the SIP server is similar to the SIP/SCA component, but does not
contain any SCA functionality.

67



Proof of Concept

N s

Caller (SIPp) PJSIP Proxy SIP Proxy Callee (Kamailio)

Figure 4.4: Test case PJSIP

This test case is used to show the reduction in performance compared to the first test case
when an additional SIP node is added to the call low. Also, the performance of the PJSIP
library compared to the Kamailio proxy server can be seen. It also gives a clue of the
impact the SCA library has on the overall performance.

In the third test case, the developed prototype is tested in the configuration as described
in Section 3.2.2, see Figure 4.5. It consists of two SIP clients, the Kamailio SIP proxy and
the developed SIP/SCA component. For the tests, a dummy business logic is used. As the
business logic can contain any kind of code the actual runtime can vary depending on the
implementation. This can reach from a couple lines of code until complex calculation where
different services and/or a database is queried. As no assumptions on the business logic
and thus the amount of time spent in business logic can be made, the dummy logic does
not perform any calculation at all and immediately returns to the SIP/SCA component.
Therefore, it has to be kept in mind, that the delay caused by the calculations in the
business logic has to be added to the results of the tests.

iz

Caller (SIPp) SIP/SCA Component SIP Proxy Callee (Kamailio)

Figure 4.5: Test case SCA SIP Proxy

4.2.3 Test Results

The following test results base on the definition described in the Subsections 4.2.1 and
4.2.2. During the execution of the tests, issues occurred which required the adoption of
the test sequence.

Test Case with One SIP Proxy
The measured maximum throughputs of the Kamailio SIP proxy can be seen in Figure 4.6.

This results already respect the adopted test procedure, where less than 1% of the test
messages can have a response time over 50 ms.

68



Proof of Concept

4500

4000

3500

w
o
o
o

Calls per Second

3879

1749

Transaction Oriented
Test Scenario

Test case

User Registraion Oriented
Test Scenario

Figure 4.6: Maximum measured throughput of the Kamailio server

Figure 4.7 depicts the measured message delays.

14

\ ’ —— User Registration
'l

Oriented Test
W Scenario
—— Transaction

Oriented Test
Scenario

12

& 10

E

o

g 8

F=

o

w

£ | A AAAAA A A

w

o

(3
4 /J L 74 vyt L] '
2 W\/\/wwww
N o o o © o o o o I N
s § § & & & &S

Elapsed time [minutes]

Figure 4.7: Message response time of the Kamailio server under load

As mentioned in Subsection 4.2.1 problems occurred during the user registration oriented
test scenario while running this test case. When measuring the maximum throughput the
behavior of the server was unexpected. The test procedure stipulates that the data rate is
gradually increased until the rate of the processed responses drop again due to overloading

69



Proof of Concept

of the system. In the state of overloading, the response rate should never raise again,
but exactly this happened. Further investigations hypothesized that the way how the user
registrations are management is the reasons for this behavior. But at this point it need
to be mentioned that about 700.000 registrations within two minutes are used to get the
described behavior. At this message rate also the response messages got more unreliable,
this resulted in significant amounts of requests being dropped or the response delay was
very high. Therefore, the additional rule is added where not more than 1% of the messages
are allowed to have a response time over 50 ms.

When looking at the results of the message delays during the server is under load, peaks can
still be seen for the user registration oriented test scenario. In the first 30 s the response
time is at the same level as the transaction oriented test scenario. Starting from this
moment, the response times get worse until the end of the test. The transaction oriented
test scenario, in contrast, show reliable and constant response times with a low latency
below 2 ms.

Test Case with One SIP Proxy and One PJSIP Server

In the second test case, no problems are encountered. The measured calls per second are
reasonable as can be seen in Figure 4.8.

4000
3644

3500

3000

N
%
o
]

N
o
[=]
]

1700

Calls per Second

-
[
(=]
o

1000

500

Transaction Oriented User Registraion Oriented
Test Scenario Test Scenario

Test case

Figure 4.8: Maximum measured throughput of the second test case

The message rate of this test case is almost as high as the test case with the full grown
SIP server. Taking into account that this test case has one more entity than the previous
one, the performance of the SIP library is respectable.

70



Proof of Concept

Figure 4.9 shows the message delay under load.

20

18

16

@ 14
E
v 12
£
£ ) .
g 10 —— User Registration
§_ g , Oriented Test
2 A Scenario
x 6 = Transaction

I\ I i A Oriented Test

Scenario

o
4

SR S S ® S
S B PP L LSS
NN SR\

Elapsed time [minutes]

Figure 4.9: Message response time of the second test case under load

Overall the message delay is constant with low delay, only in the user registration oriented
test scenario peaks can be seen. The reason for the peaks can be found in the Kamalio
SIP server which processes the registrations. For a closer discussion see Section 4.3.

Test Case with the Designed SIP/SCA Component

Figure 4.10 shows the measured calls per second of the developed system.

250

200

218

150

100

Calls per Second

50 -

Transaction Oriented
Test Scenario

User Registraion Oriented
Test Scenario

Test case

Figure 4.10: Maximum measured throughput of the developed system

71



Proof of Concept

The calls per second show that the developed system is slower than the comparing test
scenarios. But at least a rate of 100 calls per second was reached in any test scenario.

In Figure 4.11 the message delay is depicted.

30

25

i
E 2
(]
£
g 15 User Registration
s Oriented Test
§ 10 Scenario
e —— Transaction
Oriented Test
5 Scenario

© S o o S S o o o S S S o
IV, S I S I N S S S SN
& & & §F&F §F F P P K

Elapsed time [minutes]

Figure 4.11: Message response time of the developed system under load

The message delay under load shows a constant delay without any spikes. This shows that
the system is still responding well and in a predictable manner although it is under heavy
load.

Notable is the peak at the beginning of the test at minute 0:00. This peak comes from
optimization efforts described in Subsection 4.1.2. For the generation of an SDO object,
a factory class needs to be loaded with the XML definition of the SDO object. This
load takes a significant amount of time. Compared to other instructions executed during
the processing of a SIP message, parsing XML data is an expensive operation. As an
optimization the XML definition is loaded only once and then cached for later creations
of an SDO object. The load of the XML definition is happening at the reception of the
first SIP message, therefore the processing of this request will take longer. Future requests
does not need to undergo the mentioned initializations and therefore the requests will be
processed faster. Due to this, a peak can be seen in each test of the message delay at the
beginning.

4.3 Discussion

The implemented prototype shows that the proposed design in Section 3 is realizable. In
particular, the prototype shows that the interception and changing of SIP messages can be

72



Proof of Concept

realized without violating the standard and thus, the system is compatible with existing
SIP clients. Also it proves that the anticipated benefits of faster and easier development
and re-usability of services can be achieved.

During development and functional tests, available SIP clients are used to prove the ca-
pability of the system to work with existing SIP components. Different clients running on
different operating systems worked without problems. From the point of functionality, the
prototype meets all desired requirements to its fullest.

To meet the requirements related to the limited hardware it is achieved that every aspect
of the prototype is implemented using the programming language C/C++. So the used
SIP library is implemented in C/C++ as well as the chosen SCA implementation. The file
size of the SIP/SCA component is only 892 KByte, which is very small. But this is only
the size of the complied Linux library. The business logic, client application for starting
the component as well as other services have to be added. Additionally, sizes of the PJSIP
library, SCA and SDO need to be added. The compiled Linux library of the used PJSIP
APIs are in total 2.5 MByte, the deployed SCA system has roughly 11 MByte and the
SDO 5.5 MByte.

In Figure 4.12 the transfer rates of all test cases are displayed of the user registration test
scenario.

2000

1800 1749

1600 -

1400 -

1200 -

1000 -

Calls per Second

800 -

600 -

400 -

finy
[N
(=]

200 -

Kamailio PJSIP SIP/SCA Component
Test case

Figure 4.12: Transfer rate of all test cases at the transaction oriented test scenario

The performance of the prototype fulfills the requirements, but compared to existing so-
lutions it can only process a fraction of requests. It shows that the prototype could only
achieve 5.6% of the performance of the Kamailio SIP server.

A similar picture is shown in the user registration test scenario, compare Figure 4.13. The
performance of the prototype is at 6.3% of the Kamailio SIP server. Impressive is the
performance of the PJSIP library. In both test cases, the performance of the library is
close to the Kamailio SIP server.

73



Proof of Concept

4500

4000 3879

3644

3500 -

3000 -

2500 -

2000 -

Calls per Second

1500 -

1000 -

500 218

Kamailio PJSIP SIP/SCA Component
Test case

Figure 4.13: Transfer rate of all test cases at the user registration test scenario

In Figure 4.14 the measured message delay recorded under load shows similar results of
the transfer rates at the transaction oriented test scenario.

30

25

o
£E
o 20
£
B
2 15
g L_/\.M_/\—\NW\__.—\/\.’—/ —Kamailio
Qo
é —PISIP
10 ——SIP/SCA Component

¢ : : K S SR S\, I SN Y B
S FFFFFEF P PP PV

Elapsed time [minutes]
Figure 4.14: Response times of the transaction oriented test scenario under load

The Kamailio SIP server has slightly shorter response times than the test case with PJSIP.
Respectable performance of the PJSIP library, specially if the fact is recalled, that the
message has to pass in total two SIP server in the test case with the PJSIP server and only
one SIP server in the test case involving only the Kamailio SIP server.

The test case of the prototype shows at the beginning the peak which is already discussed
in Subsection 4.2.3. Compared to the other test cases the performance is in average 6,5
times slower than the test case involving only the Kamailio SIP server.

74



Proof of Concept

The results of the message delay with constant transfer rates for all test cases, depicted
in Figure 4.15, do not show very different results compared to the results of the message
delay where the systems are under load. The measured message delays are in about the
same. This shows that the systems responsiveness is not reduced when getting under load
in this test scenario.

35

30

'

€ 25

o

£

B 20 -

()]

2

] — Kamailio
o 15

g —PJsIP
[~

SIP/SCA Component

=
o

O O N ® & & O O N © & O
IS S (I S N S SN . S S S
S & & FFF PP P

Elapsed time [minutes]

Figure 4.15: Response times of the transaction oriented test scenario with a constant transfer

rate of 98 calls per second

In Figure 4.16 the measured message delay of the user registration test scenario is shown.

25

20 H

=
E

o 15

E

B

§ —— Kamailio
g 10 - i —— —PISIP

(7]

(]

-4

: A /\/A yvan AA/\AAAA/ SIP/SCA Component

VUVIVVVY WVVVAVV,\VV

0 T T T T T T T

O O O S O S ® O D S S ®
S B D P PSS P S R DS
S & FF PP PP Y

Elapsed time [minutes]

Figure 4.16: Response times of the user registration test scenario under load

The measured message delay of the wuser registration test scenario does not show such
constant response rate for all test cases as in the transaction oriented test scenario. For

75



Proof of Concept

the test case involving only the Kamailio SIP server the reasons of the peaks have been
discussed in Subsection 4.2.3.

The reason for the peaks in the test case involving the PJSIP server can also be found
in the Kamailio SIP server. Looking at the transfer rates of the test case involving the
PJSIP server and the test case involving only the Kamailio SIP server, only a rather small
difference between those two test cases can be measured. This can also be seen as the cause
for the peaks in the test scenario involving the PJSIP server. The reason for the message
delays not being so scattered as the test case involving only the Kamailio SIP server lies
in the still lower transfer rates of the test case.

As the test case of the prototype is run with a fraction of the transfer rate of the test case
involving the Kamailio SIP server, the Kamailio SIP server does not have any influence on
the message delays.

Running this test scenario with the same transfer rate for all test cases shows a different
picture, see Figure 4.17.

35

30

)

g 2

[

£

5 2

[

@ ..

S — Kamailio
15

g — PISIP

SIP/SCA Component
10

5

0

O O A © & & O O 0 O &
INIRRS RN SR TR S SN S SN SN S SR

S N S S\ A A A\ N R\

Elapsed time [minutes]

Figure 4.17: Response times of the user registration test scenario with a constant transfer rate

of 196 calls per second

Compared to before, the response times of the test case involving the Kamailio server as
well as the test case involving the PJSIP server are constantly low. The reason lies in the
rather low transfer rate of 196 calls per second for each test case. The response times of
the prototype are similar to before.

Overall, the performance of the prototype is far beneath the performance of the compared
systems. The comparison to the PJSIP server shows that the SCA runtime is consuming
a fair amount of processing time. At the test configuration, this delay is caused by the
framework and the developed code to convert the SIP message for SCA. When viewing at
the results, it need to be borne in mind, that the used business logic does not consume any
processing time which in a productive use will not be the case.

76



Proof of Concept

Nevertheless, the measured message delay as well as the message rate meet the require-
ments.

Also, the SCA implementation of Tuscany is still under development. The used SCA version
is only a development version and cannot be seen as a finalized version. Improvements in
the performance might be possible as well as the implementation of the prototype bear
potential to improve performance.

An other option to gain a higher performance is to install multiple computer with the
SIP/SCA component. This is possible as the system is designed to support multiple in-
stances. A SIP load balancer needs to be prepended to equally distribute the requests
among the instances.

7



5 Conclusion and Outlook

A system was developed in the present thesis which integrates a SIP server into a system
based on SOA, respecting the defined environment of limited hardware. The chapter gives
a summary on the reasons for the development, the important steps for the design and all
important results of this work. Subsequently, an outlook to future development is given.

5.1 Conclusion

In an attempt to modernize the systems of air traffic controls, the idea to build a system
based on the paradigm of SOA is picked up. In the course of this modernization, the voice
communication, which is mainly held between the air traffic controller and the pilot, is
changed to be based on VoIP. The integration of those two technologies is a consequential
step.

By the usage of VoIP, savings in the cost of infrastructure can be achieved as the same
network as for the computers can be used. Also, VoIP can be easier and more cost efficient
integrated into computer systems.

The rationales to build a system based on SOA lie in various reasons. One is that legacy
systems are still in use and the paradigm of SOA offers a way to preserve them and use
them in new applications. An other reason is the re-usability of services which a system
based on SOA abets. Due to this, developed services can be reused in later projects and
so save effort as well as accelerate development.

By integrating VoIP in a system of SOA, the usage of VoIP should be eased and the
advantages of services should be also applied. This means, the re-usability of the developed
modules should be increased as well as the ability to be orchestrated.

Safety critical systems - like the controlling of air traffic - need to be highly reliable and must
undergo different verification processes. Due to this, the hardware for the present thesis
is predefined. This hardware underwent different verification and certification processes
which makes the hardware development laborious and thus, updates are done more seldom.

78



Conclusion and Outlook

Therefore, the predefined hardware can be seen limited compared to modern computer
systems which is why a lightweight solution is needed.

Not only the hardware, but also the software needs to be certified. Not different than
the hardware, the process is laborious. By using a programming language which base on a
virtual machine or an interpreter, those parts also need to be examined which are generally
complex. To reduce the effort and in respect to the limited hardware a solution producing
native code is desired.

Different approaches and systems were already engineered to integrate or partly integrate
those two technologies, as described in Section 2.3. But existing solutions do not satisfy all
defined requirements to the system, therefore a system is developed in the present thesis
to fulfill all requirements, see Section 3.1.

As a first step, a suitable VoIP protocol and system of SOA is selected in Section 2.1
respectively Section 2.2. SIP is chosen for the VoIP protocol as it is wide spread. As an
realization of SOA, SCA is chosen as it offers an implementation in C++ and is a lightweight
system of SOA. Therefore, SCA does not implement a service bus, see Subsection 2.2.5.
SCA uses a different approach to interconnect the services and so avoids the implementation
of a expensive service bus, as described by the SOA paradigm.

Next, the problem to intercept SIP messages is addressed in Subsection 3.2.1. The related
work from Section 2.3 is analyzed if it can be used for solving the described problem or
parts of the problem. As a result, it turned out that no described work is suitable and
therefore, an own solution is being developed. Subsequently, all SIP server described in the
standard are examined if they are suitable for intercepting SIP messages. An appropriate
solution for this subproblem can be found with a B2BUA.

In the third step, an appropriative configuration of the physical architecture is discussed
in Subsection 3.2.2. It also covers the necessary configuration of the SIP clients as well as
the DNS system. An additional SIP server is added to the system to process and maintain
the registrations of the SIP user and the final routing of messages. Due to this, different
scenarios are explained in which order a SIP message can pass the nodes of the system.
The decision is made to first pass the SIP message to the SIP/SCA component and then
to the additional SIP server. This offers the most benefits for the least cost in terms of
performance expenses and complexity.

Finally, methods are described in Subsection 3.2.3 how the developed SIP server can be
integrated into SCA. It is decided to run the SIP server within the SCA runtime as a
service. This represents the idea of SOA best. Different ways to pass the information of
a SIP message to other SCA services are discussed. Thereby, a focus is given on the easy
handling of the submitted data by the user defined services. As a result, the SIP message
is transformed to a SDO which is then passed to the user defined services.

To prove the concept and model, a prototype is developed, as described in Section 4.1.
With the prototype, different services are implemented to show the possibilities as well as
the fast and easy development of the system.

SIP load tests are conducted, as described in Section 4.2, and subsequently the results are
presented. The prototype is compared with a SIP reference system and a system involving

79



Conclusion and Outlook

a server built similar to the prototype but not including any SCA. It shows that the
performance of the prototype is only at 5.6% or rather 6.3% of the reference SIP system.
More interesting are the results of the test case involving the SIP server build with the
PJSIP library. As this SIP server and the prototype only differ in the usage of SCA, it
points out how much performance the SCA consumes. The difference in the results are
significant too and let asume that the SCA system uses a majority of the resources.

Although the performance of the prototype is far behind the reference systems it fulfills the
requirements. Especially when taking into account the different optimization potentials of
the prototype pointed out in Section 4.3 and the fact, that the used SCA implementation
of Tuscany is a development preview and thus, the performance can increase in future
versions.

The present thesis shows one way how SIP as a VoIP protocol can be integrated in a SCA
as a system of SOA. This solution is due to special requirements developed in a lightweight
manner. The prototype shows the feasibility and that the services using SIP can be handled
as any other SCA service. It also reveals that the performance is significantly slower than
existing SIP systems. As proving performance is not a primary goal of the prototype,
less effort is spent on optimizations. Nonetheless, the achieved working speed is already
sufficient to fulfill the requirements.

5.2 Outlook

VoIP is an emerging technology and it is slowly replacing the traditional telephone system.
With the raising popularity also more development effort is invested in this area. Similar
to traditional software development, the need of re-usable software packets rise. With this
re-usable software packets, shorter development cycles can be realized and less error prone
applications can be released.

The present thesis proposes a way to integrate a system based on SOA with SIP. The
developed prototype proves the feasibility and confirms the ease of use and re-usability,
but it also shows different drawbacks.

A reduction in performance was expected and the performance of the prototype is only a
fraction of existing SIP systems. But the system has potential for different improvements.
As the SCA part of the prototype seem to consume a fair amount of processing time, the
transition of the SIP message into a SDO object and the invoking of the SCA services need
to be investigated for optimization possibilities. Also the usage of multiple processor cores
would significantly improve the performance of the system, as the developed prototype
only uses one core.

A future improvement would be to add capabilities to review the returned SDO for cor-
rectness. Currently, the prototype relies on the services to alter the SIP message correctly.
Invalid changes by the services are not detected by the prototype and lead to an invalid
SIP message. Other functionalities could be added to ease the handling of SDO by the
services. E.g. the calculation of the Content-Length header field could be done by the

80



Conclusion and Outlook

prototype so that the services could change the body of the message freely without caring
to update the header field.

For specific application scenarios, investigations on the need for all header messages or SIP
messages can be undergone. In some cases, only the REGISTER messages might be of
interest and by ignoring other messages, the performance can be significantly improved.
Also some type of SIP messages could not be useful for the services, e.g. 100 Trying or
180 Ringing. By similarly selecting only needed header fields the conversion of the SIP
message to a SDO could be accelerated. It is thinkable that header fields like Via, Route
or CSeq are in some cases not used by the services.

Currently, only SIP messages and header fields are supported which are defined in the SIP
standard [RSCT02]. A future development might integrate SIP extensions and so broad the
functionality of the developed system. Different interesting and meaningful applications
could be realized. For example, the support of third party call control [RPSCO04] could
improve the speed of reaction in the air traffic control. In case of an impend collision of
two airplanes the radar subsystem could notice this and notify the responsible air traffic
controller. At the same time, the system could automatically initiate a voice call between
the controller and the pilot. In this way, crucial time can be saved in suddenly developing
dangerous situations.

An other future development might be to enable the system to be the sender and receiver
of SIP messages. Until now, the designed system can only receive and forward messages,
but it cannot initiate and thus terminate a communication. This functionality could also
be used for developing clients for the air traffic controller to communicate with the pilots.
Also, those clients could use a system based on SOA to use the introduced advantages.

The simple usage and the re-usability of the services enable a new way to develop SIP
functionality. The services implemented in the course of the present thesis only deliver a
small insight to the possibilities of the system. To be able to add information directly to
calls or manipulate messages on the way to the receiver, enables the development of new
system architectures. By enriching a call with all needed information, the client application
can use them straight away and does not need to gather these data via a second channel,
as it is mostly done with present systems.

81



Appendix: SDO Definition

1 <xsd:schema

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:sdo="commonj.sdo"
xmlns:sdoxml="commonj.sdo/xml"
xmlns:company="SipMessageNS"
targetNamespace="SipMessageNS">

<xsd:element name="SipMessage" type="SipMessageType" />
<xsd:complexType name="SipMessageType">

<xsd:element name="method" type="xsd:string"/>

<xsd:element name="targetURI" type="xsd:string"/>

<xsd:element name="body" type="SipBody"/>

<xsd:sequence>

<xsd:element name="sipHDR" type="SipHeader" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="cs" type="sdo:ChangeSummaryType" />
</xsd:complexType>

<xsd:complexType name="SipBody">

<xsd:element name="Content-Type" type="content_type"/>
<xsd:element name="length" type="xsd:integer"/>
<xsd:element name="data" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="SipHeader">

<xsd:attribute name="SipHeaderType" />

<xsd:choice>
<xsd:element name="From" type="fromto"/>
<xsd:element name="To" type="fromto"/>
<xsd:element name="Accept" type="generic_array_hdr"/>

<xsd:element name="Accept-Encoding" type="generic_string_hdr"/>

82



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Conclusion and Outlook

<xsd:element name="Accept-Language" type="generic_string_hdr"/>
<xsd:element name="Allow" type="generic_array_hdr"/>
<xsd:element name="Call-ID" type="generic_string_hdr"/>
<xsd:element name="Contact" type="contact"/>

<!— not used here, see the body complex type!
<xsd:element name="Content-Length" type="generic_integer_hdr"/>
<xsd:element name="Content-Type" type="content_type"/>

—>
<xsd:element name="CSeq" type="generic_integer_hdr"/>
<xsd:element name="Max-Forwards" type="generic_integer_hdr"/>
<xsd:element name="Min-Expires" type="generic_integer_hdr"/>
<xsd:element name="Require" type="generic_array_hdr"/>
<xsd:element name="Route" type="routing"/>
<xsd:element name="Supported" type="generic_array_hdr"/>
<xsd:element name="Unsupported" type="generic_array_hdr"/>
<xsd:element name="Via" type="via'"/>

</xsd:choice>

</xsd:complexType>

<!— Start of header type definitions —>

<xsd:complexType name="generic_array_hdr'">

<xsd:element name="count" type="xsd:integer"/>

<xsd:sequence>
<xsd:element name="value" type="xsd:string" maxOccurs="32"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="generic_string_hdr">

<xsd:element name="value" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="generic_integer_hdr">

<xsd:element name="ivalue" type="xsd:integer"/>

</xsd:complexType>

<xsd:complexType name="fromto">

<xsd:element name="uri" type="xsd:string"/>

<xsd:element name="tag" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="contact">

<xsd:element name="star" type="xsd:integer"/>

<xsd:element name="uri" type="xsd:string"/>

<xsd:element name="q1000" type="xsd:integer"/>

<xsd:element name="expires" type="xsd:integer"/>

83



7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106

Conclusion and Outlook

</xsd:complexType>

<xsd:complexType name="content_type">

<xsd:element name="type" type="xsd:string"/>

<xsd:element name="subtype" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="route">

<xsd:element name="type" type="xsd:string"/>

<xsd:element name="subtype" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="routing">

<xsd:element name="display" type="xsd:string"/>

<xsd:element name="uri" type="xsd:string"/>

</xsd:complexType>

<!— http://www. pjsip.org/pjsip/docs/html/structpjsip__via__hdr . htm#—
aab73da4bb1327b94d99ca93f9da71lbc3 —>

<xsd:complexType name="via'">

<xsd:element name="transport" type="xsd:string"/>

<xsd:element name="sent_by_host" type="xsd:string"/>

<xsd:element name="sent_by_port" type="xsd:integer"/>

<xsd:element name="ttl_param" type="xsd:integer"/>

<xsd:element name="rport_param" type="xsd:integer"/>

<xsd:element name="maddr_param" type="xsd:string"/>

<xsd:element name="recvd_param" type="xsd:string"/>

<xsd:element name="branch_param" type="xsd:string"/>

<xsd:element name="comment" type="xsd:string"/>

</xsd:complexType>

107 </xsd:schema>

Listing 1: SDO definition

84



Appendix: SIPp Scenarios

1 <?xml version="1.0" encoding="IS0-8859-1" 7>
2 <!DOCTYPE scenario SYSTEM "sipp.dtd">

3

4 <scenario name="Basic Sipstone UAC">

5 <!— In client mode, the Call-ID MUST be generated by sipp. —>
6 <!— To do so, use [call_id] keyword. —>
7 <send retrans="500" start_rtd="true" >

8 <! [CDATA|

9

10 INVITE sip: [call.number|@[remote_ip]: [remote_port] SIP /2.0
11 Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
12 From: sipp <sip:sipp@ [local_ip]|:[local_port]>;tag=[call.number ]
13 To: sut <sip:[call.number|@[remote_ip]: [remote_port]>

14 Call-ID: [call_id]

15 CSeq: 1 INVITE

16 Contact: sip:sipp@[local_ip]:[local_port |

17 Max—Forwards: 70

18 Subject: Performance Test

19 Content—Type: application/sdp

20 Content—Length: [len|]

21

22 v=0

23 o=userl 53655765 2353687637 IN IP[local_ip_type] [local_ip]
24 s=—

25 ¢=IN IP[media_ip_type] [media_ip]

26 t=0 0

27 m=audio [media_port] RTP/AVP 0

28 a=rtpmap:0 PCMU/8000

29

30 11>

31  </send>

85



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
93
o4
55
56
o7
o8
59
60
61
62
63

64
65
66
67
68
69
70
71

73
74

Conclusion and Outlook

<recv response="100"
optional="true">
</recv>

<recv response="200" >
</recv>

<send>
<! [CDATA |

ACK sip: [call_.number|@[remote_ip]: [remote_port] SIP /2.0

Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]

From: sipp <sip:sipp@ [local_ip]|:[local_port]>;tag=[call_.number ]

To: sut <sip:[call.-number|@[remote_ip]: [remote_port]>[peer_tag_param<«
]

Call-ID: [call_id]

CSeq: 1 ACK

Contact: sip:sipp@[local_ip]:[local_port |

Max—Forwards: 70

Subject: Performance Test

Content—Length: 0

[1>
</send>

<send retrans="500">
<! [CDATA|

BYE sip:[call.number|@[remote_ip]: [remote_port] SIP /2.0

Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]

From: sipp <sip:sipp@ [local_ip]:[local_port]>;tag=[call_.number ]

To: sut <sip:[call.number|@[remote_ip]: [remote_port]>[peer_tag_param+«
]

Call-ID: [call_id]

CSeq: 2 BYE

Contact: sip:sipp@[local_ip]:[local_port |

Max—Forwards: 70

Subject: Performance Test

Content—Length: 0

[1>
</send>

<recv response="200" crlf="true" rtd="true">

86



75
76
7
78
79
80

© 00 N O U e W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28

29
30
31
32
33

Conclusion and Outlook

</recv>

<!— definition of the response time repartition table (unit is ms) —>

<ResponseTimeRepartition value="5, 10, 15, 20, 25"/>

</scenario>

Listing 2: Transaction oriented test scenarios definition

<?7xml version="1.0" encoding="IS0-8859-1" 7>
<!DOCTYPE scenario SYSTEM "sipp.dtd">
<scenario name="Basic Sipstone UAC">
<!— In client mode, the Call-ID MUST be generated by sipp. —>
<!— To do so, use [call_id] keyword. —>
<send retrans="500" start_rtd="true">
<! [CDATA |

REGISTER sip: [remote_ip
Via: SIP/2.0/[transport

[remote_port] SIP /2.0

[local_ip]:[local_port ]; branch=[branch]

]:
]
From: sipp <sip:[field0]@[remote_ip]:[local_port]>;tag=[call_number]

To: sut <sip:[field0]@[remote_ip]: [remote_port]>
Call-ID: [call_id]

CSeq: 4 REGISTER

Contact: sip:[field0]@[local_ip]:[local_port]
Expires: 120

Max—Forwards: 70

Subject: Performance Test

Content—Type: application/sdp

Content—Length: [len|]
11>
</send>
<!— By adding rrs="true" (Record Route Sets), the route sets
>
<!— are saved and used for following messages sent. Useful to test
>
<!— against stateful SIP proxies/B2BUAs.
>
<recv response="400" optional="true" rtd="true">
<action>
<exec int_cmd="stop_call"/>
</action>
</recv>

87



34
35
36
37
38

39

40

41

42

43
44

Conclusion and Outlook

<recv response="200" crlf="true" rtd="true'">

</recv>

<!— This delay can be customized by the —d command—line option —
>

<!— or by adding a milliseconds = "value" option here. —
>

<!— <pause milliseconds="1"/> —>

<!l— definition of the response time repartition table (unit is ms) —
>

<ResponseTimeRepartition value="5, 10, 15, 20, 25"/>

45 </scenario>

Listing 3: Registration oriented test scenarios definition

88



Literature

[AF03]

[Apal

[AWWO7]

[Axi]
[Bad09]

[BBB+05]

[BBB+07]

[BBCT07]

[BPE]

[BPM+08]

[Cha07]

[CHVRRO5]

F. Andreasen and B. Foster. Media Gateway Control Protocol (MGCP) Version 1.0. RFC
3435, Internet Engineering Task Force, January 2003. Updated by RFC 3661.

Apache licence version 2. [Online]. http://www.apache.org/licenses/LICENSE-2.0.html
[retrieved at 15.6.2011].

A. Acharya, X. Wang, and C. Wright. A programmable message classification engine for
session initiation protocol (SIP). In Proceedings of the 8rd ACM/IEEE Symposium on Ar-
chitecture for networking and communications systems, ANCS 07, pages 185-194, New York,
NY, USA, 2007. ACM.

Apache axis2 tools. [Online]. http://axis.apache.org/axis2/java/core/tools/index.
html [retrieved at 15.6.2011].

A. Badach. Voice over IP - Die Technik. Hanser, 2009.

M. Beisiegel, H. Blohm, D. Booz, J.-J. Dubray, A. Colyer, M. Edwards, D. Ferguson, B. Flood,
M. Greenberg, D. Kearns, J. Marino, J. Mischkinsky, M. Nally, G. Pavlik, M. Rowley, K. Tam,
and C. Trieloff. SCA Whitepaper Version 0.9, November 2005.

M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller, A. Karmarkar,
A. Malhotra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple, M. Rowley,
K. Tam, S. Vorthmann, P. Walker, and L. Waterman. SCA Assembly Model Specification
Version 1.0, March 2007.

M. Beisiegel, D. Booz, C.-Y. Chao, M. Edwards, S. Ielceanu, A. Karmarkar, A. Malhotra,
E. Newcomer, S. Patil, M. Rowley, C. Sharp, and U. Yalcinalp. SCA Policy Framework
Version 1.0, March 2007.

Business process execution language version 2.0 specification. [Online]. http://docs.
oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html [retrieved at 15.6.2011].

T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0 (Fifth Edition). W3C recommendation, W3C, November 2008.

D. Chappell. Introducing SCA. White paper, Chappell & Associates, July 2007.

L. Clement, A. Hately, C. von Riegen, and T. Rogers. UDDI Spec Technical Committee
Draft, Dated 20041019, February 2005.

89


http://www.apache.org/licenses/LICENSE-2.0.html
http://axis.apache.org/axis2/java/core/tools/index.html
http://axis.apache.org/axis2/java/core/tools/index.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Literature

[CJO8]

[CKOS]

[CLLO6]

[CRS*02]

[CWMRO07]

[DROS]

[ED109a]

[ED109b)]

[ED109¢]

[EK10]

[Erl05)

[ESST09]

[eXoal]
[eXob]
[Fab)

[FGM*+99]

[GHM+07]

G. Camarillo and A. Johnston. Conference Establishment Using Request-Contained Lists in
the Session Initiation Protocol (SIP). RFC 5366, Internet Engineering Task Force, October
2008.

Y. Cosmadopoulos and M. Kulkarni. Java Specification Requests: SIP Servlet v1.1. Java
specification requests, Java Comunity Process, August 2008.

W. Chou, F. Liu, and L. Li. Web Service for Tele-Communication. In Proceedings of the
Advanced International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT-ICIW ’06), pages 88-93, February 2006.

B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Session Initiation
Protocol (SIP) Extension for Instant Messaging. RFC 3428, Internet Engineering Task Force,
December 2002.

R. Chinnici, S. Weerawarana, J.-J. Moreau, and A. Ryman. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 1: Core Language. W3C recommendation, W3C, June 2007.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246, Internet Engineering Task Force, August 2008. Updated by RFCs 5746, 5878.

Voice over the Internet Protocol (VoIP) Air Traffic Management (ATM) System Operational
and Technical Requirements. EUROCAE Working Group 67, 2009. ED-136.

Interoperability Standards for VoIP ATM Components. EUROCAE Working Group 67, 2009.
ED-137 Final Part 1 Radio, Part 2 Telephone, Part 3 Recording, Part 4 Supervision.

Network Requirements and Performances for Voice over Internet Protocol (VoIP) Air Traf-
fic Management (ATM) Systems. EUROCAE Working Group 67, 2009. Part 1: Network
Specification, Part 2: Network Design Guideline.

D. Eier and W. Kampichler. FEurocae WG-67 standards for voice-over-IP in ATM for ad-
vanced NEXTGEN conops. In Proceedings of the Integrated Communications Navigation and
Surveillance Conference (ICNS), 2010, pages C8-1 — C8-9, May 2010.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005.

J.-P. Elsholz, H. Schmidt, S. Schober, F.J. Hauck, and A. Kassler. Instant-X: Towards a
generic API for multimedia middleware. In Proceedings of the IEEE International Confer-
ence on Internet Multimedia Services Architecture and Applications (IMSAA), pages 1-6,
December 2009.

The extended osip library. [Online]. http://savannah.nongnu.org/projects/exosip/ [re-
trieved at 15.6.2011].

exosip parser. [Online]. http://www.antisip.com/doc/osip2/group__howto2__parser.
html [retrieved at 15.6.2011].

fabic3. [Online]. http://www.fabric3.org/overview.html [retrieved at 15.6.2011].

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol - HTTP/1.1. RFC 2616, Internet Engineering Task Force, June
1999.

M. Gudgin, M. Hadley, N. Mendelsohn, Y. Lafon, J.-J. Moreau, A. Karmarkar, and H. F.
Nielsen. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). W3C recommen-
dation, W3C, June 2007.

90


http://savannah.nongnu.org/projects/exosip/
http://www.antisip.com/doc/osip2/group__howto2__parser.html
http://www.antisip.com/doc/osip2/group__howto2__parser.html
http://www.fabric3.org/overview.html

Literature

[GJSBOS]

[Goo02]

[GPL]

[GVEO00]

[H2209)]

[H2409]

[H3209]

[HB04]

[HHP+06]

[HJ98]

[HSSR99]

[HZ04]

[IBM]

[1CT]

[JDS*03]

[JL06]

[IM07]

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd
Edition) (Java (Addison-Wesley)). Addison-Wesley Professional, 2005.

B. Goode. Voice over Internet protocol (VoIP). In Proceedings of the IEEE, volume 90, issue
9, pages 1495-1517, 2002.

Gnu general public license, version 2. [Online]. http://www.gnu.org/licenses/gpl-2.0.
html [retrieved at 15.6.2011].

A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of services
(DNS SRV). RFC 2782, Internet Engineering Task Force, February 2000.

H.225.0 Call signalling protocols and media stream packetization for packet-based multimedia
communication systems. Itu-t recommendation, ITU-T: Telecommunication Standardization
Sector of ITU, Place des Nations, 1211 Geneva 20, Switzerland, December 2009.

H.245 Control protocol for multimedia communication. Itu-t recommendation, ITU-T:
Telecommunication Standardization Sector of ITU, Place des Nations, 1211 Geneva 20,
Switzerland, December 2009.

H.323 Packet-based multimedia communications systems. Itu-t recommendation, ITU-T:
Telecommunication Standardization Sector of ITU, Place des Nations, 1211 Geneva 20,
Switzerland, December 2009.

H. Haas and A. Brown. Web Services Glossary. W3C note, W3C, February 2004.

J. C. Han, W. Hyun, S. O. Park, I. J. Lee, M. Y. Huh, and S. G. Kang. An application level
gateway for traversal of SIP transaction through NATSs. In Proceedings of the 8th International
Conference on Advanced Communication Technology (ICACT), volume 3, pages 1649-1652,
February 2006.

M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, Internet Engi-
neering Task Force, April 1998. Obsoleted by RFC 4566, updated by RFC 3266.

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session Initiation Protocol.
RFC 2543, Internet Engineering Task Force, March 1999. Obsoleted by RFCs 3261, 3262,
3263, 3264, 3265.

M. Hillenbrand and G. Zhang. A Web services based framework for voice over IP. In Proceed-
ings of the 30th Euromicro Conference (EUROMICRO’04), pages 258-264, August - Septem-
ber 2004.

Websphere application server v7 feature pack for service component architecture (sca).
[Online]. http://www.ibm.com/software/webservers/appserv/was/featurepacks/sca/
features/ [retrieved at 15.6.2011].

Institute of computer technology at vienna university of technology. [Online]. http://www.
ict.tuwien.ac.at/ [retrieved at 3.7.2011].

A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Summers. Session Initiation
Protocol (SIP) Basic Call Flow Examples. RFC 3665, Internet Engineering Task Force,
December 2003.

A. Johnston and O. Levin. Session Initiation Protocol (SIP) Call Control - Conferencing for
User Agents. RFC 4579, Internet Engineering Task Force, August 2006.

C. Jennings and N. Modadugu. Session Initiation Protocol (SIP) over Datagram Transport
Layer Security (DTLS). Rfc, Internet Engineering Task Force, April 2007.

91


http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.ibm.com/software/webservers/appserv/was/featurepacks/sca/features/
http://www.ibm.com/software/webservers/appserv/was/featurepacks/sca/features/
http://www.ict.tuwien.ac.at/
http://www.ict.tuwien.ac.at/

Literature

[Jos08]

[Kam]

[KHFO06]

[K1e08]

[KSFO7]

[LCLLO4]

[MDOO]

[MSRT03]

[Nat03]

[OAS]

[Ora]

[Osg07]

(0S]]

[0SO

[PJSa]
[PJSh]
[Pos80]

[Pos81]

[Pro02]

N. Josuttis. SOA in der Praxis. Dpunkt.verlag Gmbh, 2008.

Webpage of kamailio sip proxy server. [Online]. http://www.kamailio.org [retrieved at
15.6.2011].

E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP). RFC
4340, Internet Engineering Task Force, March 2006. Updated by RFCs 5595, 5596.

J. Klensin. Simple Mail Transfer Protocol. RFC 5321, Internet Engineering Task Force,
October 2008.

B. Karpagavinayagam, R. State, and O. Festor. Monitoring Architecture for Lawful Inter-
ception in VoIP Networks. In Proceedings of the Second International Conference on Internet
Monitoring and Protection (ICIMP 2007), pages 5-10, July 2007.

F. Liu, W. Chou, L. Li, and J. Li. WSIP - Web service SIP endpoint for converged multimedi-
a/multimodal communication over IP. In Proceedings of the IEEE International Conference
on Web Services (ICWS’04), pages 690-697, July 2004.

M. Mealling and R. Daniel. The Naming Authority Pointer (NAPTR) DNS Resource Record.
RFC 2915, Internet Engineering Task Force, September 2000. Obsoleted by RFCs 3401, 3402,
3403, 3404.

A. Milanovic, S. Srbljic, I. Raznjevic, D. Sladden, D. Skrobo, and I. Matosevic. Distributed
system for lawful interception in VoIP networks. In Proceedings of the IEEE Region 8 Inter-
national Conference on Computer as a Tool (EUROCON 2003), volume 1, pages 203-207,
September 2003.

Y. V. Natis. Service-Oriented Architecture Scenario. SSA Research Note AV-19-6751, Gart-
ner, April 2003.

List of technical committees within the oasis open composite services architecture (csa) mem-
ber section. [Online]. http://wuw.oasis-opencsa.org/committees [retrieved at 15.6.2011].

Oracle soa suite. [Online]. http://www.oracle.com/us/technologies/029118.pdf [re-
trieved at 15.6.2011].

OSGi Service Platform Release 4. Osgi specification, OSGi Alliance, Bishop Ranch 6, 2400
Camino Ramon, Suite 375, San Ramon, CA 94583 USA, May 2007.

The gnu osip library. [Online]. http://www.gnu.org/software/osip/ [retrieved at
15.6.2011].

Website of the open service oriented architecture collaboration. [Online]. http://www.osoa.
org [retrieved at 15.6.2011].

Pjsip - open source sip stack. [Online]. http://www.pjsip.org [retrieved at 15.6.2011].
Pjsip documentation. [Online]. http://www.pjsip.org/docs.htm [retrieved at 15.6.2011].
J. Postel. User Datagram Protocol. RFC 768, Internet Engineering Task Force, August 1980.

J. Postel. Transmission Control Protocol. RFC 793, Internet Engineering Task Force, Septem-
ber 1981. Updated by RFCs 1122, 3168.

J. Prosise. Programming Microsoft .NET (Core reference). Microsoft Press, 2002.

92


http://www.kamailio.org
http://www.oasis-opencsa.org/committees
http://www.oracle.com/us/technologies/029118.pdf
http://www.gnu.org/software/osip/
http://www.osoa.org
http://www.osoa.org
http://www.pjsip.org
http://www.pjsip.org/docs.htm

Literature

[PvdHO7]

[Res00]

[RMO6]

[Roa02]

[Ros04]

[Ros06]

[RPSCO4]

[RS02a]

[RS02b]

[RS02¢]

[RSC*02]

[RSCO5]

[RSLOG]

[SCA]

[SCFJ03]

[SCO]

[SDO]

[SHO9]

M. P. Papazoglou and W.-J. van den Heuvel. Service oriented architectures: approaches,
technologies and research issues. In the VLDB Journal, volume 16, issue 3, pages 389-415,
March 2007.

E. Rescorla. HTTP Over TLS. RFC 2818, Internet Engineering Task Force, May 2000.
Updated by RFC 5785.

E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347, Internet
Engineering Task Force, April 2006. Updated by RFC 5746.

A. B. Roach. Session Initiation Protocol (SIP)-Specific Event Notification. RFC 3265, Internet
Engineering Task Force, June 2002. Updated by RFCs 5367, 5727.

J. Rosenberg. A Presence Event Package for the Session Initiation Protocol (SIP). RFC 3856,
Internet Engineering Task Force, August 2004.

J. Rosenberg. A Framework for Conferencing with the Session Initiation Protocol (SIP). RFC
4353, Internet Engineering Task Force, February 2006.

J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo. Best Current Practices for
Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP). RFC 3725, Internet
Engineering Task Force, April 2004.

J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with Session Description Protocol
(SDP). RFC 3264, Internet Engineering Task Force, June 2002.

J. Rosenberg and H. Schulzrinne. Reliability of Provisional Responses in Session Initiation
Protocol (SIP). RFC 3262, Internet Engineering Task Force, June 2002.

J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locating SIP Servers.
RFC 3263, Internet Engineering Task Force, June 2002.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, Internet Engineering Task Force,
June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630.

J. Rosenberg, H. Schulzrinne, and G. Camarillo. The Stream Control Transmission Proto-
col (SCTP) as a Transport for the Session Initiation Protocol (SIP). RFC 4168, Internet
Engineering Task Force, October 2005.

J. Rosenberg, H. Schulzrinne, and O. Levin. A Session Initiation Protocol (SIP) Event Package
for Conference State. RFC 4575, Internet Engineering Task Force, August 2006.

Service component architecture specifications. [Ounline]. http://www.osoa.org/display/
Main/Service+Component+Architecture+Specifications [retrieved at 15.6.2011].

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, Internet Engineering Task Force, July 2003. Updated by
RFCs 5506, 5761.

Scorware. [Online]. http://www.scorware.org/projects/en [retrieved at 15.6.2011].

Service data objects specifications.  [Online].  http://www.osoa.org/display/Main/
Service+Data+Objects+Specifications [retrieved at 15.6.2011].

P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and Con-
siderations. RFC 2663, Internet Engineering Task Force, August 1999.

93


http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.scorware.org/projects/en
http://www.osoa.org/display/Main/Service+Data+Objects+Specifications
http://www.osoa.org/display/Main/Service+Data+Objects+Specifications

Literature

[SIP)]

[SN96]

[Spr]

[SPS04]

[SXMT00]

[Tus]

[TWO07]

[Ubu]

[WF04]

[Wik]

Sipp. [Ounline]. http://sipp.sourceforge.net [retrieved at 15.6.2011].

W. R. Schulte and Y. V. Natis. ”Service Oriented” Architectures, Part 1 . SSA Research
Note SPA-00-7425, Gartner, April 1996.

The spring framework. [Online]. http://www.springsource.org [retrieved at 15.6.2011].

G. Scheets, M. Parperis, and R. Singh. Voice over the internet: A tutorial discussing problems
and solutions associated with alternative transport. In IEEE Communications Surveys and
Tutorials, volume 6, issue 2, pages 22-31, Second Quarter 2004.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960, Internet Engi-
neering Task Force, October 2000. Obsoleted by RFC 4960, updated by RFC 3309.

Apache tuscany. [Online]. http://tuscany.apache.org [retrieved at 15.6.2011].

U. Trick and F. Weber. SIP, TCP/IP und Telekommunikationsnetze: Next Generation Net-
works und VoIP-konkret. Oldenbourg Wissenschaftsverlag, 2007.

Ubuntu linux. [Online]. http://www.ubuntu. com [retrieved at 15.6.2011].

P. Walmsley and D. C. Fallside. XML schema part 0: Primer second edition. W3C recom-
mendation, W3C, October 2004.

Wikipedia article of service-oriented architecture. [Online]. http://en.wikipedia.org/
wiki/Service-oriented_architecture [retrieved at 15.6.2011].

94


http://sipp.sourceforge.net
http://www.springsource.org
http://tuscany.apache.org
http://www.ubuntu.com
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture

	Titlepage
	Table of Contents
	Introduction
	Motivation
	Scope of Work
	Methodology

	State of the Art
	Voice over IP
	Session Initiation Protocol
	Signaling
	Messages
	Routing Information

	Service-oriented Architecture
	Concepts
	Service-oriented Architecture Ingredients
	Orchestration and Choreography
	Web Service
	Service Component Architecture

	Integration of Voice over IP in Systems Based on Service-oriented Architectures

	Concept and Model
	Analysis
	Design
	Session Initiation Protocol Message Interception
	Physical Architecture
	Integration in Service Component Architecture

	Proposed Solution
	Infrastructure
	Message Processing


	Proof of Concept
	Implementation
	Used Components by the Prototype
	Structure

	Simulation and Results
	Test Scenarios and Metrics
	Test Cases and Setup
	Test Results

	Discussion

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix: SDO Definition
	Appendix: SIPp Scenarios
	Literature

