

Evaluation Criteria for Security

Testing Tools

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Jasmin Adamer, BSc.

Matrikelnummer 0325259

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: Thomas Grechenig

Wien, 20.09.2011

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

.

Evaluation Criteria for Security

Testing Tools

MASTER THESIS

for the obtainment of the academic degree

Diplom-Ingenieur/in

in

Software Engineering/Internet Computing

by

Jasmin Adamer, BSc.

Registration Number 0325259

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Thomas Grechenig

Vienna, 20.09.2011

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Evaluation Criteria for Security

Testing Tools

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Jasmin Adamer, BSc.

0325259

ausgeführt am

Institut für Rechnergestützte Automation

Forschungsgruppe Industrial Software

der Fakultät für Informatik der Technischen Universität Wien

Betreuung:

Betreuer: Thomas Grechenig

Wien, 20.09.2011

Thesis Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institution. Information derived

from the published or unpublished work of others has been acknowledged in the text

and a list of references is given.

Vienna, 20.09.2011 --

 Jasmin Adamer

i

Development managers, the story goes, can save time, money, and aggrava-
tion by replacing pesky testers with these tools. These myths are spread by
tool vendors, by executives who dont understand testing, and even by testers
and test managers who should (and sometimes do) know better.

Cem Kaner

Contents

1 Introduction 5

2 Testing and its Benefits 7

2.1 Testing in General . 7
2.1.1 Testing Guidelines . 9
2.1.2 Testing Strategy . 14

2.2 Manual vs. Automated Testing 17
2.3 Benefits of Testing . 19
2.4 Test Process and its Place in the Software Development Cycle 21

2.4.1 The Place of Testing 22
2.4.2 Test Process . 22

3 Security Testing Tools 29

3.1 Fuzz Testing . 29
3.1.1 Fuzzing Types . 31
3.1.2 Fields of Application of Fuzzing 32

3.2 Presentation of Security Testing Tools 35
3.2.1 Fuzzolution . 35
3.2.2 JBroFuzz . 35
3.2.3 Peach . 36
3.2.4 Fuzzware . 39

4 Definition of Evaluation Criteria 41

4.1 General Criteria . 43
4.2 Vulnerability Detection Criteria 48
4.3 Prioritization of Criteria . 57

5 Results of Security Testing Tools Evaluation 59

5.1 Evaluation Process . 59
5.2 Evaluation of Tools . 61

5.2.1 Fuzzolution . 61
5.2.2 JBroFuzz . 62
5.2.3 Peach . 65
5.2.4 Fuzzware . 67

ii

CONTENTS 1

5.2.5 Evaluation of the Criterion SQL Injection and Blind
SQL Injection . 69

5.3 Comparison of Results . 75

6 Conclusio 79

7 Terms and Abbreviations 81

Abstract

Software testing is needed to assure quality of software, especially security.
Lots of automated tools exist to ease the work of testers to find security vul-
nerabilities but there is no guide how to evaluate and select an appropriate
tool. Every tool is supporting different features by which a random choice
might not represent the most fitting tool for the software to test. Therefore,
a kind of measurement to ease the selection is needed. In this thesis, evalu-
ation criteria were defined which are based on common criteria published in
scientific papers. On the basis of this, an evaluation process is worked out
to support testers to find an optimal testing tool. The design of the process
guarantees short training periods for the tester. The focus is on security
testing tools which are specialised in fuzz testing. Fuzz testing uses invalid
or wrong input to cause wrong behaviour or a crash of the application in
order to reveal security vulnerabilities. Furthermore, a huge amount of ran-
dom data is produced and needed for executing fuzz testing. In most cases
the generation of input data is done automatically by tools. Automation is
an important requirement as tools shall be able to create and execute test
cases as well as compare results autonomous.

The criteria are described in detail so that they are comprehensible. In
addition, for each criterion a statement how to verify its fulfillment is given.
The solution is also checked out practically on the basis of four security
testing tools to show how the process works. The practical part is done
on Windows XP Professional. With the described evaluation criteria, every
tester should be in the position to elect a suitable testing tool for successful
security testing. Besides, the conducted evaluation shows that none of the
selected tools is completely automated as manual input is needed to com-
pare test results.

Keywords: Evaluation Criteria, Security Testing Tools, Evaluation Process

2

Zusammenfassung

Testen von Software ist heutzutage essentiell, um den Sicherheitsgrad von
Software-Produkten möglichst hoch zu halten. Dafür stehen bereits diverse
automatisierte Testwerkzeuge zur Verfügung, wobei jedes Stärken in bes-
timmten Bereichen aufweist. Durch die Vielzahl an angebotenen Werkzeu-
gen ist es allerdings schwierig, einen Überblick über die unterschiedlichen
Funktionalitäten zu erhalten. Daher wurde zunächst ein Kriterienkatalog er-
arbeitet, der auf definierten und in der Community publizierten Auswahlkri-
terien für Sicherheitswerkzeuge aufbaut. Darauf basierend wird ein Aus-
wahlverfahren erarbeitet, das den Tester bei der Auswahl eines optimal
geeigneten Testwerkzeugs unterstützt, um Sicherheitslücken rasch und ef-
fizient aufzudecken. Bei dem in der vorliegenden Arbeit konzipierten Ver-
fahren wurde großer Wert auf kurze Einarbeitungszeiten für Tester und
rasche Umsetzbarkeit der Auswahlkriterien gelegt. Der Schwerpunkt wurde
auf Sicherheitswerkzeuge gesetzt, die auf fuzz testing spezialisiert sind. Beim
fuzz testing werden ungültige, unerwartete oder falsche Eingabewerte ver-
wendet und es wird eine große Menge an zufälligen Testdaten produziert.
Ziel ist es, ein Fehlverhalten der Applikation beziehungsweise einen Sys-
temabsturz zu verursachen, um Sicherheitsschwachstellen aufzudecken. Die
Generierung der Daten wird meist von Sicherheitswerkzeugen automatisch
vorgenommen. Weiters spielt der Punkt Automatisierung eine wichtige
Rolle, da die Werkezuge im Stande sein sollen, sowohl die Testfälle selb-
stständig zu erstellen und durchzuführen als auch die Ergebnisse zu analy-
sieren und vergleichen.

Die Evaluierungskriterien werden ausführlich beschrieben, um Nachvoll-
ziehbarkeit zu erreichen. Weiters wird für jedes Kriterium angegeben, wie
auf dessen Erfüllbarkeit überprüft werden kann. Der Prozess wird an vier
verschiedenen Werkzeugen angewandt, um beispielhaft dessen Verwendung
darzustellen. Der praktische Teil der Evaluierung wird auf dem Betriebssys-
temWindows XP Professional durchgeführt. Mit Hilfe der vorgestellten Kri-
terien soll es jedem Tester möglich sein, Sicherheitswerkzeuge zu vergleichen
und ein für die bevorstehenden Tests geeignetes Werkzeug auszuwählen.
Außerdem konnte gezeigt werden, daß keines der gewählten Sicherheitswerk-
zeuge vollautomatisiert ist, da stets manueller Eingriff notwendig ist, um die
Testresultate mit den gewünschten Ergebnissen zu vergleichen.

3

Acknowledgements

It is with immense gratitude that I acknowledge the support of my Professor
Thomas Grechenig.

This thesis would not have been possible without the support and pa-
tience of my mother, Martina Adamer, my father, Christian Adamer and
my grandmother, Brigitta Hatzl. I owe my deepest gratitude to them.

I owe my thanks to my colleague, Frank Peter, who has made available
his support in a number of ways.

I would also like to thank my advisor, Christian Schanes, for the help
during this work.

4

Chapter 1

Introduction

Nowadays, computers are part of everyone’s life. They are needed not only
for work but also for private issues. Computer programs try more and more
to ease daily life which longs for more or less complex software. Misuse,
attacks or errors in software programs can lead to insecurity. The growth
of software, for example web applications, gives even more possibilities for
security attacks which is dangerous for sensible data of humans. The reason
is that the more complex a software is, the more security leaks can exist. This
is a problem which becomes more and more serious and must be handled
properly somehow.

One important part of many steps to secure a system is appropriate test-
ing. Although testing is still seen as useless and time-consuming, it makes an
essential contribution to the software development process. Testing is one
possibility to improve security and therefore make software useable with
little risk. Successful testing means finding errors. This is especially for
developers a fact which is not always accepted. Therefore a part of this
thesis tries to show how important testing is by giving an overview of dif-
ferent testing techniques and guidelines concluding in demonstrating what
advantages proper testing offers.

As soon as people accept that testing must be part of every software
cycle, the question which kind of testing meets all requirements must be
answered. Fuzz testing is an approach which can serve as a good starting
point to detect different vulnerabilities. The goal is to reveal security leaks
by testing with random and invalid data. This technique can be used in
different fields of application. Four fuzzing tools, namely Fuzzolution, JBro-
Fuzz, Peach and Fuzzware are presented in this context and evaluated in a
following step.

The main contribution of this thesis is the presented evaluation criteria.
To evaluate testing tools, certain criteria should be chosen to make a com-
parison possible. Criteria depend on what the tester wants to test and which
software paradigm shall be tested. For this work, the aim was to test secu-

5

CHAPTER 1. INTRODUCTION 6

rity testing tools which can deal with Extensible Markup Language (XML)
based web applications. Therefore, some general criteria were described,
like usability, SUT (software under test) access requirements and automa-
tion, which are a kind of prerequisites that must be fulfilled to put a certain
tool on the shortlist. The other category, vulnerability detection criteria,
are used to evaluate if the testing tool can reveal certain vulnerabilities, like
SQL(Structured Query Language) Injection and cross-site scripting(XSS) in
web applications.

When the user has decided which criteria must be fulfilled by a tool, the
evaluation can be performed. The evaluation in this work is mainly done
theoretically based on documentation and Internet research. One criterion,
namely the detection of SQL Injection vulnerabilities, was evaluated using
a vulnerable web application. It shall show how to deal with evaluation
criteria and how to execute the evaluation. All of the four presented tools
are rated and compared to figure out which security testing tool is the most
suitable for web applications.

The work is structured as follows: Section 2 gives an overview of testing,
explaining what it is, presenting some guidelines, showing why it is im-
portant including its advantages and shortly presenting the testing process.
Chapter 3 introduces fuzz testing and presents the chosen security testing
tools, Fuzzolution, JBroFuzz, Peach and Fuzzware. In Section 4 the crite-
ria which are the basis for the evaluation are described whereas in Chapter
5 the evaluation is conducted and results are analyzed. Finally, Section 6
represents the conclusion.

Chapter 2

Testing and its Benefits

This Chapter will give an overview of testing and also explains why testing
is important. Therefore, various scientific papers and books were consulted.
It also includes some testing guidelines, different testing strategies which
will be introduced and an overview of the test process. The main purpose
of this chapter is to give a feeling of what testing is and why it is absolutely
needed in every software development process.

2.1 Testing in General

Testing is part of every software development process in different measures.
It gets more and more important as it is responsible for more than half
of the costs of software as also stated by Jones and Chatmon [1]. Most
companies have separate internal or external testing departments or at least
some testers in the development team to cover this effort. In general, testing
sounds easier than it is in reality. To show the complexity of the process of
testing, a definition of what testing is and what the test process includes is
needed.

Boris Beizer [2] defined testing as follows: ”Testing is the act of exe-
cuting tests. Tests are designed and then executed to demonstrate corre-
spondence between an element and its specification”. Therefore, testing is
useful and definitely needed for every software program. The need of testing
is approved in ”Software Test Automation - Effective Use of Test Execution
Tools” [3] where the authors emphasize that testing must be both, efficient
and effective. The goal is to detect vulnerabilities fast and to convince the
user to trust the software. This means that the goal of testing is to detect as
many security gaps as possible. In ”Testing in the ’small’” [4] the target of
testing is defined more precise by stating that verification and validation are
the main parts of it. So testing turns out to be extremely time consuming
and thus is often declared as a useless, expensive task.

Summarised, testing is basically a process to identify errors or wrong

7

CHAPTER 2. TESTING AND ITS BENEFITS 8

behaviour of software. Thus, the process of testing is an indispensable con-
tribution to the quality of software as also written by Antonia Bertolino [5]
for whom testing should fulfil two tasks:

• Fixing of errors

• Quality assurance, like reliability and usability

Another significant goal of testing is to ensure security. As the size of
software projects grows, and also the purpose changes a lot, it is not easy to
ensure secure programs. Nevertheless, security issues must be emphasized
especially for software projects which handle sensitive data or are suited to
jeopardize human life. This can be realized through security testing which
stands for the following: ”The phrases security testing, penetration testing,
and red-teaming have traditionally referred to executing a suite of scripted
tests that represent known exploits.” [6]. The fact that lots of different secu-
rity attacks with diverse complexity exist nowadays makes security testing
difficult and challenging as also stated by Herbert H. Thompson in ”Why
Security Testing Is Hard” [6] where he compares the work of testers to the
work of detectives. In Figure 2.1 the circle demonstrates how the software
should work. In contrast, the shapeless part shows the implemented func-
tionality. Lots of vulnerabilities can be found in the red part of the Figure
as side effects [6].

Figure 2.1: How software should work and how it works in reality [6]

CHAPTER 2. TESTING AND ITS BENEFITS 9

Thus, the author tried to find a suitable testing technique to solve this
problem with the result that there is no technique at the moment which
is able to reveal a huge amount of security issues. So the question how to
test for it remains [6]. This leads to the fact that security testing needs
extremely efficient tools which are able to deal with the characteristics of
security leaks as noticed by Herbert H. Thompson [6].

Consequently, security testers must meet various conditions to be quali-
fied for their job. This is shown in Figure 2.2 by Matthew Nicolas Kreeger
[7] who also stated that a security tester needs experience in:

• Programming

• Test creation

• Security

• Cryptography

Figure 2.2: Capabilities which a software tester should have [7]

2.1.1 Testing Guidelines

Basic suggestions are existing which shall be kept in mind when testing soft-
ware to offer efficient testing. Depending on the type of software paradigm,
there are even more precise ones. Some of the best practices which can be
found in every software process literature are presented here [2] [5] [8] [9]
[10] [11] [12] [13] [14] [15] [16]:

CHAPTER 2. TESTING AND ITS BENEFITS 10

• Testing means showing that there are errors

Every tester and also all other people involved in the development
process must keep in mind that testing means proving that errors ex-
ist. A good tester is a person who identifies a wrong behaviour of
the software and not one who proves that there are no errors. The
more malfunctions found, the better it is. This is also stated by Boris
Beizer: ”Not only are all known approaches to absolute demonstra-
tion of program correctness impractical, but they are impossible as
well. Therefore, the objective of testing must shift from an absolute
proof to a suitably convincing demonstration; from a deduction to a se-
duction; to the creation of warm feeling in everybody’s tummy instead
of heartburn. What constitutes a ”suitable” demonstration depends
on context.” [2]. Even more concrete is the statement of Pamela R.
Pfau [15] who says that although testing is needed to show that a
product works as it is specified, the testing technique itself needs to
lead to a wrong behaviour of the software. This would then be put
on a level with success. Otherwise, if everything works perfectly, the
tester might not have been successful or at least will not have a sense
of achievement.

• Do not test your own code - one role per person

No developer should test his or her own code and no tester should
programme which means nobody should have both, the role of the
developer and the role of the tester. The reason for this is quite simple:
Everybody believes in oneself and is convinced, that he or she does not
blunder. This stands in conflict with the purpose of the tester role.
If someone feels confident that his or her work is accurate, the person
will hardly find errors as objectivity is not given. Boris Beizer states
furthermore that there should be also a clear separation between the
test designer and the test executor, meaning that the persons who
design the test cases should not be the same as those who execute it.
In addition, a test designer should do his work with such a quality
that every competent person is able to execute the tests. The test
executer should execute tests autonomously which means without the
help of the designer. This reveals discrepancies in test design and
documentation [2].

Not only dispassion but also the fact that it is always easier to reveal
mistakes of other people than those made by oneself leads to the rec-
ommendation of different persons per role. Another point is that two
heads are better than one. It is impossible to think of every potential
input or action a future user can do, but the more persons that are
involved, the more different scenarios will be thought of. In addition,
it is more effective to concentrate on one role. In contrast, Tim A.

CHAPTER 2. TESTING AND ITS BENEFITS 11

Majchrzak [12] stated that it is not absolutely necessary that a person
fulfils only one role. The point is that a person needs to concentrate
only on one role and its duties at a time. This does not preclude being
both, developer and tester.

• Testers must be involved through the whole software life cycle

To guarantee efficient and complete testing, testers must be integrated
from the beginning to the end of the software process. This is the
only way to make sure that testers know which functionalities the
software shall feature. This best practice is also mentioned by Elfriede
Dustin [9] who says that testers have to be part of the project’s life
cycle from scratch to be able to understand the software and test
properly. Furthermore, it eases testing if a tester can communicate
with stakeholders for establishing requirements.

• There is no bug-free code

People make mistakes and also developers, no matter how experienced
and educated they are, are not safe from errors. So although it is
a wish of every programmer, code is never bug-free. This indicates
also that, no matter how huge the application is and how good and
qualified the tester is, the software will contain errors after roll-out at
the client. This point is closely linked to the fact that every individual
has a different perception and as a result the way software is used varies
which might lead to an untested behaviour of the program. That bug-
free code is an illusion is also stated by Boris Beizer when he says that
the goal of showing that software is bug-free is simply practically and
theoretically impossible [2].

• Testing is part of the whole development process

Testing is not a single phase which can be done at the end of the
development process only. Instead, testing is an iterative process which
must be included from the beginning of the software cycle as also
described in ”Testing E-Commerce Systems: A Practical Guide” [10]
where the author states that testing has an important role in the whole
development process. Lots of arguments for such a strategy exist:

Time An error, which is found at the end of the development process,
costs a lot of time because it is hard to find the responsible lines
of code in a huge amount of classes. Antonia Bertolino stated
in ”Software testing research and practice” [5] that with testing
failures can be detected. Nevertheless, analysis which might be
cost-intensive because of the size of software is needed to find the
source of those failures. Furthermore, even a small change of a

CHAPTER 2. TESTING AND ITS BENEFITS 12

part of the code might affect the rest of the program and lead
to side effects. If the complete software is based on an error-
prone foundation, the project is at risk. This fact is confirmed in
”Testing E-Commerce Systems: A Practical Guide” [10] where
the author comes to the conclusion that huge defects which are
found during the late phases of the process lead to time pressure
regarding finding a solution for the problem.

Effort Searching through thousand lines of code leads to enormous
effort on the developer’s side. He or she has to figure out the
root of the fault and, additionally, the tester has to repeat all
tests resting upon the defective code which might be the complete
software.

Money Both, the time and the effort factor result in a lack of money.
Testing in general, searching for and fixing problems and also
repeating tests afterwards is at great cost as also stated in ”Au-
tomated testing from specifications” [8]. The authors point out
that especially for safety-critical software the verification and val-
idation part is the main contribution to costs. The more code to
be analyzed and the more testing cases to be recapped, the more
dearly it is. This can have fatal consequences, particularly a
considerable loss of money or even a business with a deficit, re-
spectively a stop of the project in all. Figure 2.3 shows that costs
are closely related to time as the expense of a bug multiplies in
later phases.

Figure 2.3: Increase in cost of bugs during different phases in the devel-
opment process as illustrated by B. Littlewood [14] in Software Reliability:
Achievement and Assessment(as cited in [9], 2002, p. 4)

All in all, testing must be part of every step of the software develop-
ment process and should start as soon as possible, for example starting
test specification during the elaboration phase and testing every class

CHAPTER 2. TESTING AND ITS BENEFITS 13

Figure 2.4: How the V-Model looks like [11]

or module immediately, even if it will be extended later. The earlier a
defect is detected, the better it is for the project. Therefore, Londes-
brough integrated different testing phases into the V model as can be
seen in Figure 2.4 whereby the diamonds epitomise deliverables and
milestones, like test cases generated in each phase [11].

Furthermore, testing needs to be planned like every other field of the
development process as also stated by Londesbrough [11] who showed
that a proper, coordinated test process which attend the whole project
from the beginning to the end is needed for the success of the software.
It makes no sense to test software uncoordinated.

• Be as precise as possible

To facilitate the reproducibility of test cases with a different outcome
as expected, the tester must record the test case as also commented in
”Workshop Report: Software Testing and Test Documentation” [13]
where it is stated that the decided testing method is not linked to the
need of documentation of tests. The description must be clear and
include all necessary details, like environment, list of actions, inputs,
real and expected outcome, to give the developer the possibility to
duplicate the incident immediately without that asking for additional
information is needed. This saves a lot of time and effort when fixing
bugs.

• Documentation of the test process

The whole testing process must be recorded. Efficient testing of the
application shall be the intention. The documentation must at least
include the name of the tester(s), dates, application name, testing
strategy, test cases including id, name, performer, expected and ac-
tual result. The tracing of the whole test process has to be possible.

CHAPTER 2. TESTING AND ITS BENEFITS 14

E. Miller [13] explained the importance of documentation. The author
explained that documentation is needed to have some written agree-
ment on the different opinions of developers, testers and users. This
has nothing to do with the chosen test technique. For software which
might jeopardize human life it is even more important to have the test-
ing process documented as this is needed for the regulatory agencies.
Furthermore, it serves as basis for the judgement of such agencies.

• Keep track of requirements

Requirements succumb changes constantly during the software devel-
opment process. Hence, it must be ensured that they are throughout
up-to-date. A good way to keep track of requirements is to save them
in a database as it facilitates updates. Another possibility is to create
a matrix such as Figure 2.5 whereby ”1” stands for fulfilled and ”0”
for not fulfilled. This approach makes sure that the test cases cover
all requirements.

Figure 2.5: Possible illustration of the relation between requirements and
test cases

Of course, it should be attempted that the information which test case
fulfils which requirement is also in the database. This best practice
is explained in ”Increasing Understanding of the Modern Testing Per-
spective in Software Product Development Projects” [16] where it is
handled under the point ”traceability and maintainability”: ”Trace-
ability and maintainability includes ways of connecting testing to re-
quirements as well as considerations on the ability to maintain and
grow the tests. Test cases should be grouped into test suites of differ-
ent priorities, different functionalities and different uses (e.g. smoke
test, regression test) to facilitate control. A traceability matrix be-
tween the test cases and requirements should be kept up-to-date in
order to know if tests need to be updated, as well as what tests need
to be updated, to the changing requirements.”.

2.1.2 Testing Strategy

Different strategies of how to test software exist whereas some of them need
more details about the program than others. A combination of all test levels

CHAPTER 2. TESTING AND ITS BENEFITS 15

is necessary to guarantee a good quality at all layers.

Black box vs. White box vs. Grey box

One possibility to divide testing is to split it up into black box and white box
testing. Black box testing means simple input - output testing to guarantee
the satisfaction of functional requirements whereas the code is irrelevant
for the tests and therefore the tester does not need to have access to it.
In ”Coverage metrics for requirements-based testing” [17] black box tests
are defined as tests where the implementation details are not interesting at
all. Instead, the requirements are taken as basis for establishing the tests.
The fact that the output, or more precise the behaviour of the software, is
most important leads to the need of a complete and accurate requirements
specification. Otherwise black box testing is useless.

The opposite is white box testing where tests are based on the code. In
”Reliability-oriented Software Engineering: Design, Testing and Evaluation
Techniques” [18] this test strategy is described in more detail. The author
describes white box testing which is also called coverage testing as a tech-
nique to evaluate the testing quality on the basis of the structure. White
box testing is only possible if the tester has full access to the code.

Summarized, the authors of ”Software unit test coverage and adequacy”
[19] define the difference between the two testing strategies whereby for black
box testing no information about the source code is necessary. In contrast,
white box testing is based on implementation details which must be available
to the tester.

Grey box testing is situated in-between and kind of a mix of black box
and white box testing. Grey box testing becomes more and more popular as
testing strategy. For this strategy, some information about the implementa-
tion of the software is needed as stated by Baharom and Shukur in ”Module
Documentation Based Testing using Grey-Box Approach” [20]. So, parts of
the code need to be accessible by the tester for the grey box testing strategy.

Levels of Testing

Testing can take place on different levels according to the presented V-model
which leads to a split of testing strategies, for example into unit testing,
integration testing, system testing, acceptance testing and regression testing.

Unit testing means that a single unit of the program is tested. Antonia
Bertolino [21] states that unit testing is one of the most important test
phase for quality assurance as it is able to find errors which are deeply-
hidden. Those faults might not be detected in system testing. Additionally,
Boris Beizer [2] explains that ”unit testing is a rite of passage in which the
unit is transformed from the private to the public domain.”.

CHAPTER 2. TESTING AND ITS BENEFITS 16

The integration test is important to guarantee that all parts of the sys-
tems are compatible, as also described by Antonia Bertolino [5] in ”Software
testing research and practice”. The author states that with integration test-
ing the cooperation between subsystems is examined.

Regression tests consider side effects and compare the result with the
outcome of previous tests. Antonia Bertolino [5] defines regression tests as
”test execution and re-execution”. Sami Beydeda and Volker Gruhn [22] de-
fine regression testing as tests where changes are checked if they correspond
to the requirements. Furthermore, it must be examined if the changes have
negative effects of other software parts.

The system test is one of the last huge tests which must be done to
ensure that the software meets the requirements. The author of ”Building
awareness of system testing issues” explains that system tests have the duty
to find problems which were not taken into account during development
testing. After the system test, those problems should be solved and the
software should be better than before the test. With this test, the unwanted
surprises on user’s side shall be narrowed [23].

The system test includes, according to Boris Beizer [2], various tests,
like stress testing, load and performance testing and configuration testing,
although besides system-level functional testing, formal acceptance testing
and stress testing not all of them are needed for every system. This indi-
cates, that system tests are enormously time-consuming, but due to their
importance imperative.

The acceptance test is the final test where the client is involved and
decides whether to accept the software or not. Antonia Bertolino states in
”Software Testing Research: Achievements, Challenges, Dreams” [21] that
acceptance tests are used for validating large software products on client’s
side.

In one of the standards of the Institute of Electrical and Electronics
Engineers(IEEE) which gives guidelines to conform to Portable Operating
System Interface for Unix(POSIX(R)), namely the ”IEEE Standard for In-
formation Technology Requirements and Guidelines for Test Methods Spec-
ifications and Test Method Implementations for Measuring Conformance to
POSIX(R) Standards” [24], a different allocation of testing levels is given.
According to the standard, testing can be divided in exhaustive, thorough
and identification testing.

• Exhaustive testing: Exhaustive testing is defined as testing the atti-
tude of each aspect that an element exhibits whereby all permutations
must be taken into account. This means that exhaustive testing in-
cludes testing with no input string, one single digit and so on when
testing an input field which accepts up to three digits at once [24].

• Thorough testing: A bit different is thorough testing. Basically, it is

CHAPTER 2. TESTING AND ITS BENEFITS 17

completely the same as exhaustive testing with the restriction that not
all permutations are taken into consideration [24].

• Identification testing: In contrast to this stands identification testing
where the goal is to test for certain characteristics of the test element.
These tests do not go into detail as only the minimal functionality
should be approved [24].

All in all, this distinction of testing levels plays an important role con-
sidering the necessary time for performing tests as more tests are more time-
consuming. In general, the testing level is important regarding the choice of
testing tools as different preconditions must be given, for example for white
box testing or code-based testing it is indispensable to have access to the
code.

2.2 Manual vs. Automated Testing

Manual testing means that the tester is executing each test case manually.
In ”Reconciling Manual and Automated Testing: The AutoTest Experience”
[25] the authors state that this is customary technique where testers estab-
lish test cases which will best fit to the execution of the program in their
opinion. Basically, manual testing is splitted into ”Code based testing” and
”Specification based testing” according to Srinivasan and Leveson [8]. In
Figure 2.6 of ”Automated testing from specifications” [8] the difference is
shown graphically.

• Code based testing

Code based testing is code orientated which means the tester needs access
to the internal structure and the code is already existing, developed on basis
of a given specification [8].

• Specification based testing

Specification based means that the test cases are generated by the speci-
fication which presupposes a complete and clear specification. In the Figure,
it can be seen that tests, program and pass/fail criteria are based on the
specification. If the specification is executable, its outcome can be collated
with the results of the tests which were executed on the program [8].

Nowadays, it is nearly impossible to guarantee quality with manual test-
ing only as applications are too comprehensive and manual written test
cases can simply not cover all problem areas, as also stated by the au-
thors of ”Predictive testing: amplifying the effectiveness of software testing”

CHAPTER 2. TESTING AND ITS BENEFITS 18

Figure 2.6: Structure of manual testing types [8]

[26]:”Unfortunately, testing using manually generated test inputs often re-
sults in poor coverage and fails to find many corner case bugs and security
vulnerabilities resulting from buffer overflows, integer overflows, etc.”.

Furthermore, executing each test case manually is extremely time-consuming.
This leads to a need for a suitable automated testing tool. The author of
”Improving Effectiveness of Automated Software Testing in the Absence of
Specifications” [27] comments the derived demand for such tools with the
reason that manual testing is quite tedious. Therefore, automated testing
tools can be used by testers to at least ease some of the parts of testing. The
authors of ”Observations and lessons learned from automated testing” [28]
share this opinion. They state that for keeping the effectiveness of testing
automated testing tools need to be applied which execute substantial tests
like load and performance tests. Nevertheless, automated testing has chal-
lenges for testers too, those are ”generate test inputs effectively” and ”verify
test executions effectively” according to Tao Xie in ”Improving Effectiveness
of Automated Software Testing in the Absence of Specifications” [27]. This
shows, that despite testing tools, human testers are needed although often
declared as useless as explained by Cem Kaner in ”Pitfalls and Strategies
in Automated Testing” [29]: ”Development managers, the story goes, can
save time, money, and aggravation by replacing pesky testers with these
tools. These myths are spread by tool vendors, by executives who don’t
understand testing, and even by testers and test managers who should (and
sometimes do) know better.”

A good comparison of manual and automated testing can be found in
”Reconciling Manual and Automated Testing: The AutoTest Experience”

CHAPTER 2. TESTING AND ITS BENEFITS 19

[25]. For testing in the deep manual tests are more suitable than automated
ones. On the other side, to reach a good coverage, automated tests are
needed as the huge amount of test cases cannot be handled manually. In
”Reconciling Manual and Automated Testing: The AutoTest Experience”
[25] the authors also explain why manual testing is not dispensable. This is
for the simple reason that humans are more efficient at unit testing because
of generating test cases which might be more suitable to detect errors. In
addition, testers are better at constructing sophisticated input.

All in all, a good testing process includes both, manual and automated
testing to exhibit a satisfactory result.

2.3 Benefits of Testing

Testing provides a lot of advantages which are often not considered at all
and is able to reduce risks. Thus, it is indispensable regardless of the size
of a software project. Nevertheless, testing is often considered as useless,
time consuming and expensive, as also stated by Boris Beizer in ”Software
System Testing and Quality Assurance” [2]: ”Testing is often conducted as
a meaningless, objectionable ritual that proves nothing, demonstrates less,
and is more likely to create dissension than quality.”. In reality, a huge
variety of leverages can be gained through testing. Main benefits are among
other things:

• Time, Cost and Effort: Although testing brings a lot of effort, time
and cost consumption with it, it also reduces the time exposure, ex-
penditure and effort of searching bugs in the whole code at the end
by exposing errors early in the test process. This benefit is also out-
lined by Amitabh Srivastava and Jay Thiagarajan [30] who see the
main duty of testing in find errors whereby if this happens early in
the process, the effort for the factors time and resource is reduced.
Nevertheless, testing causes high costs.

• Quality: Each project must offer a certain quality otherwise it will
not be accepted by the customer. Poor quality leads to claims and
additional work for the company. Besides, it influences the reputation
of the enterprise and therefore the order position might suffer. Proper
and extensive testing according to a defined test process is the only
way to assure the quality of software. That testing is essential for this
issue is known for many years now as can be seen in the statement from
Pamela R. Pfau [15] of 1978. The author says that quality assurance
has the duty to judge software with the aid of macroscopic testing.
How macroscopic testing looks can be seen in Figure 2.7.

• Meeting of the requirements: Every project has risks. Testing can re-
duce some of them, especially the risk of not meeting the requirements

CHAPTER 2. TESTING AND ITS BENEFITS 20

Figure 2.7: Process of macroscopic testing [15]

CHAPTER 2. TESTING AND ITS BENEFITS 21

as explained in ”The Testing Process - A Decision Based Approach”
[31]. In this paper, the authors state that testing is needed to find out
if the software meets the requirements. This is important as nowadays
the desired functionality grows more and more with simultaneous re-
duction of time and resources. So it is easy to figure out if the software
satisfies the needs of the customer by testing on the basis of the speci-
fication. Testing is needed to make sure that the scheme complies with
the client’s standard.

• Satisfaction of clients: The most important goal of a company should
be the satisfaction of clients as they are responsible for the success
of the enterprise. If software does not meet the requirements or is
extremely error-prone, the customer will not accept it which leads to
a huge loss for the company. Furthermore, the customer will search
other contractors for their projects. To satisfy clients, not only price
and time is important but also the quality must be extremely good. So
testing can give another valuable input to the software development
process by assuring quality and showing customers via user acceptance
tests that requirements are met.

• Security: With the increase in applications which deal with confiden-
tial data, security must be guaranteed. This can be realized through
proper testing. How important testing in the context of security is,
is stated in ”Guidelines for secure software development” [32]. The
authors confirm that a good security strategy must incorporate test-
ing. Additionally, it is necessary that developers stick to standards
to implement less security gaps and that the test process uses testing
standards and best practices.

So with the correct testing approach, security issues can be revealed
and fixed by the developers without any risk.

Summarized, testing is important as it is a way to achieve and verify
quality. If the customer feels that the product offers bad quality, a takeover
of the software will not take place and this will result in a huge loss for a
company and a bad reputation. Such a scenario can be prevented by proper
testing. Unfortunately, the acceptance of testing is still missing although
the advantages have been clear for years.

2.4 Test Process and its Place in the Software De-

velopment Cycle

This Section shall give an overview of the test process and also explain where
testing is situated within the software development process.

CHAPTER 2. TESTING AND ITS BENEFITS 22

2.4.1 The Place of Testing

As testing is part of every development process, it is important to know
where it is situated in the project life cycle. A common procedure model is
the waterfall model where testing starts at the end of the project as can be
seen in Figure 2.8.

Figure 2.8: The place of testing in the waterfall model [33]

In contrast, the V-model exists which should be used nowadays as it fits
more the requirements for modern software life cycles. Testing is part of
the whole process in the V-model as shown in Figure 2.9. Graham Davis
[33] sees the advantages of this model as follows whereby effectiveness comes
before efficiency:

• Effective implementation because of the early existence of test cases

• More efficient testing as automated tools can be fielded

2.4.2 Test Process

Testing is needed to guarantee quality but useless if it is not executed within
a certain process. To perform prosperous testing, specific measures must be

CHAPTER 2. TESTING AND ITS BENEFITS 23

Figure 2.9: The place of testing in the V-model [33]

adopted. A test process which requires documents, plans and other issues
has to be established. In Figure 2.10 an example of a test process can be
seen.

The process has to be iterative as testing against requirements can only
take place if the requirements are kept up-to-date during the whole life
cycle. In conclusion, retesting is also necessary. Furthermore, not all tests
will give the desired result or test cases will be wrong formulated by which
the responsible people have to step back to an earlier phase of the process
or restart it from the beginning.

The aim of the testing process is described by Anne Mette and Jonassen
Hass [34] as offering information which is needed to keep the quality of
products, decisions and processes in the next testing employment.

Every good test process consists of basic inputs, activities and outputs
[34] whereby the inputs are the following:

• Strategy for testing

• Project plan

• Master Test Plan (MTP)

• Details about the test progress

The activities include several tasks as listed below:

CHAPTER 2. TESTING AND ITS BENEFITS 24

Figure 2.10: Example of an iterative generic test process [34]

• Planning the test at the beginning

• Monitoring, controlling and new planning

• Designing and implementing of tests

• Performing the tests

• Analysis of the test and corresponding reporting

• Close-down activities

The results of the test process are in form of the following outputs:

• Specific plan for testing

• Specification of the test

• Specification of the environment for the test

• Current test environment and test cases

• Logs of the test

CHAPTER 2. TESTING AND ITS BENEFITS 25

• Reports showing the progress

• Report that summarises the test

• Report that describes the experience during the test

Some of the necessary inputs, activities and outputs will be shortly ex-
plained to give a brief glimpse into the testing process.

Master Test Plan

A master test plan is the basis for a structured test process and is therefore
crucial for every software process. According to the IEEE Standard 829-2008
[35] the Master Test Plan(MTP) fulfils several tasks:

• Offering a document containing a test plan

• Offering a document containing a test management

It includes activities like defining goals and correlations, establishing as-
signments and documentation guidelines and much more as described in
detail by the IEEE standard [35]. The IEEE Standard also gives an exem-
plarily structure, shown in Figure 2.11 and Figure 2.12, which the master
test plan should follow.

Besides the master test plan other test plans for every testing phase
like for the User Acceptance Test(UAT) exist. Those are of special interest
for the user as stated in ”Generating User Acceptance Test Plans from Test
Cases” [36]. A UAT test plan is needed to show that the implemented system
correspond to the requirements. Essential scenarios should be considered in
such plans.

In general, the effort for creating a test plan should not be underesti-
mated as it grows with the progress of technology. This progress is also
responsible for the demand for extended and adapted test plans as noticed
by the authors of ”Building a verification test plan: trading brute force for
finesse” [37]. All in all test plans are needed to ensure effective and efficient
testing.

Test Design and Development

This is the essential part of the test process as within this activity the test
cases are written. The aim of this ”phase” is as described by Anne Mette
and Jonassen Hass [34] the designing and writing of test cases. Those test
cases need to offer high coverage. In addition, exact information about the
test environment must be provided. Still the question what a test case is
exactly is open. This is answered by Mike Smith and Neil Thompson [38]
who define test cases as follows:

CHAPTER 2. TESTING AND ITS BENEFITS 26

Figure 2.11: Possible structure of a master test plan - part 1 [35]

CHAPTER 2. TESTING AND ITS BENEFITS 27

Figure 2.12: Possible structure of a master test plan - part 2 [35]

• include the what and how

• describe data and conditions

• Can include information about requirements for the environment and
procedure and the test objective

Monitoring, Control, and Re-planning

Monitoring and Controlling the test process is important and needed to
check if everything is done as supposed. Besides, this is the only way to
be able to react on unpredictable incidents in time. Re-planning might be
necessary to keep the process up-to-date, especially if the time plan or re-
quirements change which is in nearly every project the case. The controlling
task is quite challenging as described in ”Modeling and controlling the soft-
ware test process” [39] where the author states that most of the times a
development process is more a creative than a physical issue which leads to
an attitude of software that cannot be forecasted.

Test Logs

Test logs are necessary to make test runs comprehensible for others. Such a
test log must according to Graham Davis [33] at least consist of:

• Time designation: when did the execution take place?

CHAPTER 2. TESTING AND ITS BENEFITS 28

• Success story: did the script pass or fail?

• Information about the further course of action: must the script be
executed again?

• References: where can the problem reports be found?

With this information, everyone should be able to judge tests and fol-
low them up. It also eases the work of fixing problems for developers. In
addition, members of the testing team might change during the project life
cycle which makes test logs indispensable to correctly proceed with the test
process. Testing is only worthwhile if a process is followed so that tasks are
clear and applicable results arise. This approach is needed to ensure quality
and give a good feeling at the customer.

Chapter 3

Security Testing Tools

This Chapter gives an overview of a certain type of testing called fuzz test-
ing. The purpose is to explain what fuzzing is and present some exemplary
approaches for fuzzing tools. Furthermore, it introduces the chosen security
testing tools which will be used for evaluation in a later chapter.

3.1 Fuzz Testing

Testing is essential for web services as also stated by the authors of ”Test-
Data Generation for Web Services Based on Contract Mutation” [40] who
state that testing is amongst other techniques needed to enable reusability
and reliability of web services. The quality of those services is from their
point of view the key for successful web services. Therefore, it is necessary
to use sufficient testing techniques and tools to guarantee good quality. One
possible approach to ease especially security testing for web services is to use
fuzz testing. Fuzz testing is a testing technique which shows similarities with
robustness testing and negative testing. With the fuzz approach, testers
try to figure out the quality of a system by giving wrong or unexpected
input. This kind of input is often forgotten when developing a system.
Thus, the fuzz testing approach is useful to show how the system reacts on
malformed input data. The authors of ”TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic Software Vulnerability Detection” [41]
explain the simplicity of the fuzzing process:

1. Create invalid, malicious or malformed input

2. Give the input to the application

3. Monitor the applications’ behaviour

4. A crashed or a hanging application might indicate a vulnerability

29

CHAPTER 3. SECURITY TESTING TOOLS 30

One reason which stands for the fuzz approach is stated by Patrice Gode-
froid. He mentions that this technique is effective for revealing security
gaps [42]. Still the question when a fuzzer can be defined as useful is open.
Robert Brummayer and Matti Järvisalo answered this question with the
simple statement that fuzzers are useful if they are able to generate a huge
amount of various data. This will lead to inputs which are able to detect a
lot of vulnerabilities in software [43]. The principle of fuzz testing is based
on random data. Random data means that the inputs are generated arbi-
trary. There is no system behind the generation, the inputs are independent
of each other. Random data does not follow a certain order. The success
of fuzz testing is amongst other things ascribed to the way how test data is
generated. That the creation of input data plays an important role for web
services is also noticed by Y. Jiang, Y. Li, S. Hou and L. Zhang [40] as ac-
cording to the authors the quality of such data is linked to effectiveness and
costs. As a consequence, the authors even used random data for creating
input for web services. Contract-based mutation testing serves as basis for
their approach to automatically create data [40]. Basically, there are two
approaches for generating test data for the fuzz technique, mutation-based
and generation-based.

• Mutation-based Fuzzing

According to the authors of ”TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection” [41] mutation-
based fuzzing alters test cases which consist of correct test data. This will
lead to problems as soon as checksum checks are implemented.

• Generation-based Fuzzing

Generation-based fuzzing is fuzzing based on format specifications. Those
specifications are used to generate data. This technique can be cost-intensive
if the needed production rules must be generated based on badly documented
specifications or without access to the source code [41].

This distinction can also be found in the book ”Fuzzing: Brute Force
Vulnerability Discovery” where the main difference between those two meth-
ods is stated as the fact that for mutation-based fuzzing existing data is
manipulated and for generation-based fuzzing new input is generated [44].

Fuzzing has a big advantage when it comes to false positives. This
special aspect of the fuzzing technique is described by Noam Rathaus and
Gadi Evron. The authors state that fuzzers do not find false positives as
every error which occurs is either a security vulnerability or jeopardizes the
software stability [45].

All in all, fuzzing seems to be an excellent alternative to traditional test-
ing methods for revealing vulnerabilities in software programs. Especially in
the field of security testing can the fuzzing technique reach excellent results.

CHAPTER 3. SECURITY TESTING TOOLS 31

3.1.1 Fuzzing Types

Black box fuzzing is the original fuzzing technique where inputs are taken
and randomly altered to get new test data. It is possible to take application-
specific grammar into account and even add test heuristics through the usage
of grammars for generating input as stated by P. Godefroid [42]. Another
interesting point is that for black box fuzzing no access to the code is needed.
This means that the tester does not have knowledge about the internal
structure of the program.

In white box fuzzing, tests are generated dynamically. The authors of
”Grammar-based whitebox fuzzing” [46] describe white box fuzzing as a
process consisting of the following steps:

1. Using a concretely and symbolically correct input for the first run of
the program

2. Symbolic execution construct constraints during this run which show
how the application deals with input

3. Every constraint is negated to obtain new input data

4. The process is reprised with the new data

5. As a result, lots of control paths shall be passed to find vulnerabilities

For white box fuzzing, access to the source code is needed. The chosen
fuzz type depends on the situation meaning which kind of software needs to
be tested as well as on the access rights of the tester.

Besides the main types, black box and white box fuzzing, several exten-
sions of the basic types exist. S. Sparks, S. Embleton, R. Cunningham and
C. Zou, for example, extended the black box fuzzing approach based on Dy-
namic Markov Model fitness heuristic to enable testing for vulnerabilities at
certain points in the control flow graph. Therefore, the transition behaviour
of the input data is seen as roughed and on the basis of this an absorbing
Markov process which is a probability model is created [47]. The probability
values are estimated on the basis of tested inputs representing examples of
the Markov model. Furthermore, a context-free grammar is used to define
the input structure and a special genetic algorithm, grammatical evolution,
is needed to produce strings. This creation is handled by a genome whereby
a genome stands for a possible solution of a problem in a genetic algorithm
[47]. This approach was implemented and tested with the result that it is
much more successful than other random fuzzers [47]. Nevertheless, it still
shows some weak points which can be also found at other black box tools
like ensuring a specific percentage of coverage.

Another approach can be found in the paper ”Grammar-based Whitebox
Fuzzing” where the authors extend the white box fuzzing technique to make

CHAPTER 3. SECURITY TESTING TOOLS 32

testing of applications with highly-structured inputs like compilers possible.
The goal is to get deeper into the application, meaning to overcome the early
stages. To generate test inputs, the white box fuzzing approach is extended.
A grammar is needed which depicts valid inputs so that they are accepted
in the language. Furthermore, tokens are marked as symbolic which are
associated with variables. This leads to the possibility to comprehend the
influence of tokens on control paths. The grammatical acceptance brings
according to the authors [46] the following advantages:

• Reduction of the search tree based on invalid inputs

• Transforming satisfiable token constraints into valid inputs immedi-
ately

For testing purposes the JavaScript interpreter of the Internet Explorer 7
was used with the following outcome that grammar-based white box fuzzing
has a higher degree of code coverage with less tests than black box fuzzing
[46].

The presented approaches expand the basic types of fuzzing tools. De-
pending on the access rights of the tester, they can be used to overcome
some difficult parts of testing, like code coverage.

3.1.2 Fields of Application of Fuzzing

The fuzzing technique can be used in different areas of computer sciences to
successfully detect vulnerabilities. Good results have been achieved when
using this approach for testing standard software, but it is also applicable
for examining complex programs like CPU (Central Processing Unit) emu-
lators or malware. For such a usage, various tools are needed which support
additional functions to be suitable for more difficult areas. Tools need to be
able to overcome checksum points or similar security measurements without
causing errors to be able to search for vulnerabilities near the core function,
deep within the software. Especially CPU emulators are hard to test as
it is because of the complexity of a CPU not possible to test every single
function.

An example of a fuzzer used for CPU emulators is EmuFuzzer. Emu-
Fuzzer can handle process emulators and whole-system emulators. The
fuzzer is used to prove that CPU emulators represent the CPU correctly.
As it is not possible to test every scenario, the goal of the fuzzer is to
show that the emulator does not satisfactorily emulate the CPU. The Emu-
Fuzzer exhibit the restriction that at the moment it can only be executed in
user-space completely. This means that the correctness of the emulation of
unprivileged instructions can be proved, but for privileged instructions only
the correctness of the prohibition can be verified [48].

CHAPTER 3. SECURITY TESTING TOOLS 33

Random and CPU-assisted test case generation were adopted to create
test cases whereas in both cases the data is generated randomly. The defi-
nition of test cases is different in this paper than normally as test cases are
not tests with a certain input but states instead during the test execution
instead [48]. The algorithm used for generating test cases runs on both
CPUs and works as follows [48]:

• All sequences are checked and those which do not stand for valid code
will be thrown away

• The CPU act as oracle, it decides if such a sequence represents a valid
instruction whereby those which evoke illegal instruction exceptions
are not valid

• In the end, the results are compared whereby those cases where one
CPU accepted the sequence and the other not are of special interest.

Testing of EmuFuzzer showed that it is possible to find defects with it but
there are some limitations like instructions with pre-fixes are not supported.
Therefore, further development is needed.

Another tool is FuzzASP which is a fuzzer for testing answer set solvers.
The reason for its development is simple: The production of lots of different
answer set programmes is necessary for grammar-based fuzzing in the field
of answer set solvers according to the authors of ”Testing and debugging
techniques for answer set solver development” [43]. The authors point out
that FuzzASP is able to create lots of different types of arbitrary program
instances on the basis of huge program classes which makes it possible to
offer an enormous amount of rule construct combinations. Those combi-
nations can be equipped with choice, cardinality and weight atoms or the
rules can be negated [43]. FuzzASP works as follows: Normal rules with
empty bodies are created by taking each head from a set of normal atoms
randomly. Furthermore, normal rules with non-empty bodies and different
lengths are also established randomly. Then, each body atom and each atom
is default negated with probability. Further steps depend on whether estab-
lishing a weight constraint program or a disjunctive program. Besides the
fact that FuzzASP is configurable, it is also implemented in a way so that
the generated programs are neither easy nor difficult to solve. To guarantee
various severities, parameters are randomly chosen by the fuzzer whereby
a minimum and maximum value for each one exist as explained by Robert
Brummayer and Matti Järvisalo [43]. FuzzASP was tested with normal pro-
grams (NLP), weight constraint programs (WCP) and disjunctive programs
(DLP), using the platform Ubuntu Linux [43]. The tests were successful
finding defects like aborts and invalid answer sets.

Fuzzers can also be used to test malware. BitFuzz is a tool implemented
for x86 binaries that tries to find errors in bad software. This is of special

CHAPTER 3. SECURITY TESTING TOOLS 34

interest as normally only good software is covered in a research. With the
used approach, BitFuzz is able to find vulnerabilities deep within the code of
the program. This is possible because it is able to overcome basic integrity
checks on the surface as described in ”Input generation via decomposition
and re-stitching: finding bugs in Malware” [49]. The approach is based on
stitched dynamic symbolic execution which is used to make input generation
possible if encoding functions are given. Firstly, encoding functions are rec-
ognized via trace-based dependency analysis during execution of a program.
Afterwards, the investigation is augmented with the help of dynamic sym-
bolic execution. Therefore, decomposition and re-stitching [49] is appended
which works as follows:

• Decomposing is used to get the constraints which are needed for en-
coding, the others are handed on to a solver

• Re-stitching is used to generate new inputs consisting of a combina-
tion of the constraints and the values of the concrete execution of the
encoded parts and their inverses

BitFuzz was tested on four different malwares which use complex encod-
ing functions with the result that the approach was able to find bugs.

Fuzzing tools can also be adapted to reach insecure or possible attack
points deeper in the software by getting over checksum points or encryption
methods. TaintScope, for example, is an automated directed fuzzing tool
which deals with checksums. The goal is to take checksums into account
which do not fulfill a protection duty to prevent attacks on purpose but
those checksums which should defend against accidental errors [41].

The goal is to overcome checksum-based integrity checks and the tool
uses symbolic and concrete execution to be able to repair checksum fields
in produced test cases. TaintScope consists of four phases. Firstly, an
execution monitor is used for dynamic taint tracing, where it is recorded
how programs deal with input data. Afterwards, a checksum detector is
implemented to find checksum check points. Now, the phase ”direct fuzzing”
starts. There, the program gets contorted data as input which was created
by a fuzzer module. This is only done if no bypass rules are established by
the checksum detector. If rules exist, the fuzzer instead deliver the data to an
instrumented program and changes the execution traces on the basis of the
rules [41]. For generating test cases hot bytes information is modified that
are those input bytes which contaminate function arguments, as described
in ”TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic
Software Vulnerability Detection” [41]. Finally, the replayer is used to repair
crashed samples meaning the tool fixes checksum fields which are the only
value bytes seen as symbolic values. TaintScope was tested on different
famous applications like Microsoft Paint and turned out to be effective in
finding vulnerabilities.

CHAPTER 3. SECURITY TESTING TOOLS 35

Summarized, a huge amount of fuzzing tools for different types of soft-
ware exists. The presented tools are specialized in various areas and seem
to be quite useful. Nevertheless, they will not be taken into account for
the evaluation in this thesis as most of them are not available for publicity.
Besides, comprehensive testing of the fuzzing tools did not take place. The
list of the tools shows that the fuzzing technique can be used for testing
complex domains. As it is quite powerful, the fuzzing strategy is ideally
suited for the field of security testing. Thus, for the practical evaluation in
Chapter 5 security tools which work with the fuzzing approach were chosen
to obtain advantages in revealing security vulnerabilities.

3.2 Presentation of Security Testing Tools

No matter if manual or automated testing is chosen, a wide variety of tools
to ease and support the work of the tester exist. In this chapter, four fuzzing
tools will be presented which shall be evaluated in a later step according to
criteria which will be specified in Chapter 4. The tools were chosen by the
author based on the condition that they shall be able to test web services.
Furthermore, it must be tools which are classified as fuzzing tools. The
testing tools have to be already implemented and tested, meaning not only
an approach shall exist.

3.2.1 Fuzzolution

The fuzzer framework which was developed at Vienna University of Tech-
nology is a generic framework which supports different software paradigm
like web applications and Voice over Internet Protocol(VoIP) via plugins.
It pursues the goal to create a tool which traces errors. Fuzzolution is able
to detect security vulnerabilities where different attacks such as denial of
service(DoS) and cross-site scripting could be executed. In Figure 3.1 Fuz-
zolution within a test environment and the according communication for
VoIP testing is illustrated for example.

The developers tested Fuzzolution based on two different softphones,
namely QuteCom which is realized in Python, C and C++ and Session
Initiation Protocol(SIP) Communicator, written in Java. The results of the
tests were very satisfying because a huge amount of security vulnerabilities
were found. Therefore, Fuzzolution is a good example for the evaluation
conducted in the next chapter.

3.2.2 JBroFuzz

JBroFuzz is a fuzz testing tool of Open Web Application Security Project
(OWASP) based on Java. OWASP is a non-profit organization which offers
a huge amount of projects focusing on security. OWASP explains the aim

CHAPTER 3. SECURITY TESTING TOOLS 36

Figure 3.1: Fuzzolution within a test environment [50]

of this tool as establishing a fuzzer which is able to fuzz web protocols [51].
JBroFuzz is easy to learn and use. The only information needed to execute
fuzzing is the Uniform Resource Locator(URL) and the request message.
Until now, several releases exist whereas JBroFuzz 2.4 is the current one.
According to the website [51] JBroFuzz executes requests and outputs the
responses whereby the tester has to do further analysis to reveal possible
weak spots. In the Frequently Asked Questions(FAQ) section [51] of the
homepage of JBroFuzz readers can also find the hint that the tool does not
do all the work for the tester, meaning basic background knowledge like
definition of HyperText Transfer Protocol(HTTP) and HyperText Transfer
Protocol Secure(HTTPS) is needed. JBroFuzz consists of five components,
namely fuzzing, graphing, payloads, headers and system [51]. The fuzzing
tab is the most important one as requests are established there. Additionally,
the payloads are chosen on this tab according to the vulnerability which
should be revealed. The diverse payloads are listed in the payloads tab
as can be seen in Figure 3.2. They are sorted by popularly genera like
SQL (Structured Query Language) Injection. By clicking on an attack type,
further subtypes are at choice. The strings with which the application will
be tested in the end are shown by selecting one of the subtypes.

3.2.3 Peach

Peach is a SmartFuzzer developed by Michael Eddington of Deja Vu Security.
The current available version is Peach v2.3.8. On the website [52] Peach is
described as a tool which masters both types of fuzzing, generation and

CHAPTER 3. SECURITY TESTING TOOLS 37

Figure 3.2: Payloads of JBroFuzz [51]

CHAPTER 3. SECURITY TESTING TOOLS 38

mutation based fuzzing. Furthermore, the word ”SmartFuzzer” is explained
as a fuzzer which has information about data types and their state for data
which is changed during the fuzzing [52].

In the case of Peach, even more information is illustrated, like check-
sums and static transformations. Peach offers a good customer service as
they provide developers who help users if they have problems with the tool or
they assist them in developing or using Peach [52]. Additionally, trainings
at conferences and onsite are offered to become familiar with the Smart-
Fuzzer. To use Peach, XML (Extensible Markup Language) knowledge is
required since the user needs to create Peach Pit files [52] to be able to start
fuzzing. Peach Pit files are XML files which consists of several definitions,
for example for data model, state model, agents and monitors. Furthermore,
configuration details are added to the file. The tester can also set up a test
case in this file. Mutators can be defined which shall be used during the
execution of this test.

The Peach Pit files can be validated with the testing tool, either via
command-line or via a graphical user interface as shown in Figure 3.3.

Figure 3.3: Snippet of the validator of Peach [52]

The website of Peach [52] also states that in the beginning the tool used a
top-down sequential method called SequencialMutationStrategy which leads
to the fact that every element is considered at each test. Nowadays, also
different mutation strategies are possible to use, whereas the standard by
default is RandomDeterministicMutationStrategy, a mutator which fuzzes

CHAPTER 3. SECURITY TESTING TOOLS 39

every element with all existing mutators. It is important to know that this
technique is not the same as true random strategies as for each mutation
only one single field is taken into account. As soon as every field has been
fuzzed, the work of the fuzzer is done [52].

3.2.4 Fuzzware

Fuzzware is a generic fuzzing framework which specializes in web services
whereby test cases are designed and executed automatically. The current
version is 1.5. Fuzzware offers according to its website some specialities like
the fact that it is able to convert different data formats which shall be con-
sidered for fuzzing into XML without human aid [53]. Additionally, data,
data format and fuzzing information are not mixed in one single file but
different files for each of the three points exist. Besides, no extra language
was created to use Fuzzware. Instead it works with XML and XML Schema
Definition(XSD) files. Lots of other features exist which are described at
the website of Fuzzware [53] like the tool can be extended by the user, users
can perform various actions on outputs, choose from 21 fuzzing types and
it offers configurable fuzzing values. The tool includes event logs and a
debugger. It is stateful and a possibility to examine configurations exists.
The fact that fuzzware can deal with XML files but also transform non-
XML files so that they can be used for fuzzing with this tool is of special
interest as it makes the tool more flexible. The tool provides file fuzzing,
packet fuzzing and interface fuzzing as can be seen in Figure 3.4. Further-
more, fuzzware is able to deal with custom .Net DLL inputs whereby DLL
stands for Dynamic Link Library. As a prerequisite, it must implement
Fuzzware.Extensible.IUserInputHandler. Fuzzware offers a lot of possibili-
ties and features for testers who like to use fuzzing for ensuring quality of
software.

CHAPTER 3. SECURITY TESTING TOOLS 40

Figure 3.4: Choosing what shall be fuzzed in Fuzzware [53]

Chapter 4

Definition of Evaluation

Criteria

This chapter introduces criteria which are used for the evaluation process
in the next chapter. The criteria are described together with information
when they are considered to be fulfilled. Finally, priorities will be assigned
to them. The requirements are chosen based on the goal to evaluate security
testing tools which can be used for testing security aspects in XML-based
web applications. This restriction does not allow to analyze every possible
vulnerability because of the complexity of web sites as shown in Figure 4.1
whereby the first part indicates how simple the structure of web sites could
be and the other one illustrates how complicated web sites are in reality [54].

The evaluation criteria presented in this thesis are a possible selection
of requirements which could serve as evaluation basis. It is not a complete
list of all usable criteria as then it would go beyond of the scope of this
thesis. The criteria will be splitted in two groups as shown in Table 4.1
whereby the first group represents general criteria which can be used as
selection basis for tools independent of the architecture paradigm. General
criteria were selected by the author through searching of features which are
absolutely needed for an automated testing tool to make it worth evaluating
it independent of its use. The general criteria can be seen as pre-requisitions
which must be fulfilled to shortlist and evaluate a tool. The other group
will contain more specific requirements to ensure security, especially in web
applications based on XML.

41

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 42

Figure 4.1: Desired and real web site structure [54]

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 43

General Criteria Vulnerability Detection Criteria

Automation XPath Injection

Usability Support of XML generation based on schema

SUT Access Requirements XML Manipulation

Platform SQL Injection

Authentication Cross-site Scripting

Interoperability Denial of Service

Session Handling Buffer Overflow

Presentation of Results

Table 4.1: Classification of criteria

The criteria were selected based on common general web attacks which
are described in different scientific papers [55] [56] [57], namely XPath injec-
tion, SQL injection, cross-site scripting, buffer overflow and denial of service
attacks. In addition, some specific criteria which are useful for XML-based
web applications, namely XML manipulation and support of XML genera-
tion based on schema were added. The general criteria, like usability, plat-
form and interoperability were chosen from a scientific paper which handles
test tool evaluation [58]. Furthermore, as the requirements are for auto-
mated test tools, automation, SUT access requirements and presentation of
results were added by the author. Authentication and session handling are
also taken into account as in relevant literature for web applications those
criteria are often mentioned.

Together with a detailed description of all criteria, the way how it can be
verified will be specified. This is necessary for the evaluation as a decision-
making basis must be defined to be able to decide if the criterion is fulfilled.
Nevertheless, the presented verifications are not the only possibility to check
if a tool fulfils a criterion or not, there might be other ways for some of the
criteria.

4.1 General Criteria

The following requirements which are also listed in Table 4.1 can be evalu-
ated for every testing tool independent of the focused usage.

Automation Testing tools need to offer automation meaning that the ex-
ecution of tests and also the comparison of test results must be done
without the aid of the tester. During execution and result analysis,
no manual input shall be necessary. In addition, the tool must save
executed tests and results to offer the possibility to repeat tests and
compare results. Automation of testing tools is especially interesting
for tests where lots of transactions have to be done simultaneously like

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 44

performance and stress tests as manual execution of such tests is not
possible. This is also stated by Rudolf Ramler and Klaus Wolfmaier
[59]. Additionally, the criterion can be extended to also include the
need of an automated configuration so that no manual adaptions are
needed. In this case, the configuration behaviour is irrelevant and will
not be taken into account during the evaluation. The automation cri-
terion is fulfilled when the tool executes tests and decides if the tests
passed or failed without manual input.

Usability A tester has to have a certain degree of knowledge to use a test-
ing tool depending on how easy or difficult it is conceived. This can
lead to bad usability. Additionally, it might be quite time-consuming
to install and use a complicated testing tool. Usability means also
that the software works properly without errors and that users are
satisfied with it. Basically, a testing tool shall ease and precipitate the
testing process and thus no additional learning shall be needed. The
term usability possesses a wider meaning which can be looked up in
the general agreement from the standards boards American National
Standards Institute(ANSI) 2001 [60] and International Standards Or-
ganisation(ISO) 9241 pt.11 [61] as also stated by Jeff Sauro and Erika
Kindlund [62]. In the standards, the scope of usability as well as lots
of criteria to measure it are described. As stated in ”Usability Inspec-
tion Methods after 15 Years of Research and Practice” [63], diverse
methods for testing usability exist like the following:

• Empirical usability testing

• Usability inspection methods

Which one to use is at the tester’s discretion. Those techniques are
beyond the scope of this thesis, so the criterion usability for evaluating
testing tools will simply cover how easy or difficult the tool is to install
and use, based on the impression of the author. As this is a subjective
issue, usability is difficult to rate. Besides the experience of the tester
also his or her personal preferences play an important role. Some might
favour a tool which has a graphical user interface whereas others would
appreciate a command line basis. It is also interesting in this case if
a help page or something like that is available. Consequently, this
criterion will only be described but not valued.

SUT Access Requirements The need of a certain level of access rights
can be a prerequirement for the use of a tool. This depends also on
the level of testing supported by the tool and required by the tester.
Access rights can exist for different parts, for example for XML docu-
ments, databases or operating systems. Sometimes, the tester does not

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 45

have access to the internal structure and code of the software, to the
database or to the logfiles which might lead to a problem with a testing
tool. Especially if the system under test is connected to a database,
access to the database might be needed by the tool. The question is
then, if read access is enough as for certain test cases it might be cru-
cial to add or change data which would require write access. In some
cases an exact copy of the data and structure of the database used
in production might be useful to avoid an unwanted manipulation of
production data by the tool. Additionally, the available degree of sys-
tem access is important for the tester. For black box testing, it is not
necessary for the tool to have access to the source code. In contrast,
this is crucial if the tool can and shall execute white box testing as
therefore code access is indispensable. Even more access rights like a
login on the host might be needed. The more access is available, the
more information is taken into account for the vulnerability detection.
Besides, full access on all levels has the advantage that monitoring in
more detail is possible. In addition, false positives can be reduced. To
test this point, it is important to know if the tool supports black box
testing, white box testing or both. This will give information about
the needed access requirements. Furthermore, it is interesting to know
if the testing tool can be used for testing production software or if it
can only be used in special test environments. Again, this criterion
is hard to rate as supporting only black box testing might be enough
depending on the program to test. In contrast, white box testing is
not possible without corresponding access rights, impartial of the tool.
Nevertheless, a good testing tool should offer both to give the tester
the choice and also make the use of the tool possible for testers who
do not have extended access rights. The criterion is fulfilled if black
box testing is possible so that no special access rights are needed.

Platform For the tester it is important to know on which platform the
testing tool can run as sometimes the possibility to work on different
platforms is not given due to security policies of a company. Supple-
mentary, it is interesting which additional requirements for the envi-
ronment must be fulfilled, for example which Java version is needed.
Current versions are most of the time supported, but it is convenient if
also older ones can be used to run the testing tool as companies might
not update to the latest versions immediately because of special mea-
sures which must be captured before to guarantee impeccable support.
This is especially with new database versions the case. Which versions
are needed to fulfil the criterion depend on the test environment which
the tester can use. The platform criterion cannot be evaluated because
it is an individual criterion. Therefore, within the evaluation, it will
only be described which platforms are supported by the tool and which

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 46

further environment requirements must be given.

Authentication Authentication is the process of verifying the other par-
ties. Different authentication methods exist, like passwords, public key
cryptography and digital signatures. Passwords are one of the most
common authentication methods where the user verifies itself with a
password. This entails a lot of security risks, for example it can be
guessed. Public key cryptography is a method where a public and
a private key are used for authentication. For digital signatures, the
message is hashed and a private key is then used on the hash value.
With the public key, the identity can be checked. This criterion is of
special interest when evaluating testing tools as lots of tools are not
able to handle basic authentication methods which make them useless.
The tool fulfils the authentication criterion if it is able to overcome the
login method of web applications.

Interoperability Interoperability must be guaranteed to make both, soft-
ware and testing tools useful. Interoperability states if systems or com-
ponents can communicate with each other. Mark Grechanik shows an
example of how interoperability works on the basis of XML in his paper
”Finding Errors in Interoperating Components” [64]. He explained it
with the aid of Figure 4.2 whereby Figure 4.2a) shows the Java part,
Figure 4.2d) the C++ part of components which communicate via
XML data as shown in Figure 4.2b-c). The arrows represent the data
flow. Such a scenario is often seen in open source and commercial soft-
ware. To test interoperability of testing tools it is important to check
if there is a function, for example a button, which tests interoperabil-
ity with the test objects. The tool should show if communication with
certain objects is possible or not. This must be clear within a short
period of time as it makes no sense if the tool indicates it two days
later when the tests have already started or are even finished. It would
result in a loss of time and wrong test outcomes. The goal is not to be
interoperable with all test objects but to show if it is possible or not
to communicate with them. If such a function exists, the tool fulfils
the criterion.

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 47

Figure 4.2: Example of Interoperability on the basis of XML data between
different coding languages [64]

Session Handling Session handling is another crucial criterion to improve
security. Proper session handling is important to prevent attacks, such
as session hijacking, and resulting misuse of personal data. For correct
session handling, a session ID is needed which is used to distinguish
between users. Different possibilities how to transfer the session ID
exist, like via the URL or via cookies. As normally several clients are
using an application coincident, more than one unique session ID is

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 48

needed. So if the tool is able to deal with different session IDs, the
criterion is fulfilled.

Presentation of Results Another evaluation point is the presentation of
results. It is desirable that test case results are displayed in a way so
that it is immediately visible if the test passed or failed. Also the real
output of the test might be shown. To search for various outcomes of
the testing process exacerbates the work of the tester. For example,
showing a list of test cases where successful tests are highlighted in
green and failed ones in red would be a possible solution as illustrated
in Figure 4.3.

Figure 4.3: An example of how test results can be presented

Additionally, some kind of filter would be conceivable to select only
failed test cases for instances and a possibility to change the ordering of
the results. Another desirable attribute would be detailed information,
meaning the tester can have additional information about the test case
and its execution by, for example, clicking on it. An experienced tester
will be able to work with results which are not highlighted in different
colours and without additional features like the described ones but
nevertheless, a good presentation of results might ease the work and
even accelerate it. The presentation of results will only be described
but not valued as every tester has a different preference regarding this
point.

4.2 Vulnerability Detection Criteria

The following criteria are important for the evaluation of testing tools for
XML-based web applications. It is necessary to determine which criteria
a tool fulfils to be able to combine testing tools if there is no suitable one
which meets every criterion. In this thesis, tools will be evaluated on the
basis of the criteria listed in Table 4.1. For the evaluation, it is important to
verify which criteria are implemented, meaning for example SQL injection is
only important, if the application uses a database, proper session handling
is crucial if sessions are used and XPath injection attacks can only be done

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 49

if XML documents are browsed. The choice of evaluation criteria depends
on the functionality which shall be tested.

XPath Injection An XPath injection attack, which could be compared to
SQL injection attacks, is simple but dangerous, as the attacker has the
possibility to get information out of all XML documents and hence can
access personal data. XPath injection means that the attacker out-
wits the XPath expression by using malformed input. The resulting
XPath query might be malicious in the sense of revealing information
which should not be accessible for the attacker. For an XPath injec-
tion attack, strings like ”or 1 = 1 or” or ”//*” can be used. Such
attacks can be prevented easily by validating every user input. Listing
4.1 shows an example of XPath injection and Listing 4.2 represents
the appropriate code snippet where an XPath injection attack would
not be possible. XPath is not only used for searching data in XML
documents, but also for XQuery which is an XML language used for
XML documents and databases to retrieve and alter data [65]. To
satisfy this requisition, a tool must be able to create test cases with
such insecure inputs or at least give the possibility to run such tests.

S t r ing e = ”/ us e r s [@name=’” + name + ” ’ and ” +
”@password=’” + password + ” ’] ” ;
f a c t o r y . newXPath () . eva luate (e , doc) ;

XPath in Java : XPath i n j e c t i o n

Listing 4.1: Bad example of embedding XPath in Java [66]

XPath e = {− / us e r s [@name=${name} and
@password=${password }] −};
f a c t o r y . newXPath () . eva luate (e . t oS t r i ng () , doc) ;

XPath in Java

Listing 4.2: Good example of embedding XPath in Java [66]

Support of XML generation based on schema Every XML item must
be validated against the chosen schema to guarantee that the code can
be used. The grammar is especially important because if it does not
match the rules, the XML document is useless. The validation of
XML which was generated based on schema is also significant to pre-
vent XML injection. Furthermore, valid XML is a good starting point

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 50

to make interoperability possible, although components might not re-
act on invalid XML. Whereas a parser would recognise XML which is
not based on schema, interoperating components may not. The rea-
son is that they do not always have to use the same data elements as
explained by Mark Grechanik [64]. Besides, validation of XML items
does not always guarantee interoperability as also described by Mark
Grechanik [67] on the basis of Figure 4.4. If Application Programming
Interface(API) calls are used for changing XML data, the data is not
known early enough to use schema validators for proving the correct-
ness of the data. Therefore, if the data does not correspond to the
schema, a runtime error will occur in component J or in component C
when runtime validation is executed or when API calls are executed.
Regardless of the point of time, an error will occur for sure in this
example independent of the schema validation.

Figure 4.4: Interaction between components [67]

This shows that although the support of XML generation based on
schema is important, it does not protect from every possible error
occurring on the basis of invalid XML. A testing tool needs to be able
to create XML based on a schema given by the tester to fulfil this
criterion.

XML Manipulation Important for this criterion is the meaning of well-
formed XML. In the book ”Beginning XML” [68] the authors list the
requirements respectively the rules which must be met to generate
well-formed XML documents. The following six rules exist:

• Start-tags must have appropriate end-tags

• Tags are not able to interleave

• There is only one root element allowed per XML document

• XML naming conventions must be kept in mind for every element
name

• XML distinguishes between the use of capital and small initial
letters

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 51

• White space is not replaced by XML

Most of those rules are clear, like the fact that every start-tag must
have an end-tag. Furthermore, it is important to close firstly the child
elements and afterwards the parent elements, meaning the order must
be kept. There must be always a root element, no matter if a content
is given or not, for example the XML code in Listing 4.3 taken from
the book ”Beginning XML” [68]

<name>John</name>
<name>Jane</name>

Listing 4.3: Invalid XML code without root element [68]

must be changed to contain a root element like shown in Listing 4.4
[68] so that it is valid.

<names>
<name>John</name>
<name>Jane</name>
</names>

Listing 4.4: Valid XML code with root element [68]

To create names of elements, again some rules must be followed as de-
scribed in ”Beginning XML” [68], like names cannot start with num-
bers or other special characters than , they are not allowed to start
with ”XML” in any combination and colon should be avoided.

Nevertheless, there are no reserved words which cannot be used. Case-
sensitivity is especially important as otherwise the XML parser is not
able to match the start-tags and end-tags properly. It makes a differ-
ence if the tag is spelled <Names>, <NAMES> or <names>. In addition,
white spaces are not ignored in XML, no matter how much are con-
secutively.

One possibility of manipulating XML is XML injection which means
that an attacker tries to attack the program by using malformed XML
documents. The result can be both, well-formed and not well-formed
XML. M. Jensen, N. Gruschka, R. Herkenhner and N. Luttenberger
[69] explain XML injection as an attack where the attacker makes use
of not properly defined tags, meaning the characters ”<” and ”>”
are not correctly set. This enables the attacker to plant content and
in further consequence to change the structure of an XML document
which is then considered as part of the document. An example of
insecure code can be found in Listing 4.5, a secure one in Listing 4.6.
In the first Figure, an XML injection is executed which leads to a server
error. This means that users cannot see the desired information. To

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 52

avoid such problems, attacks must be prevented and not only detected
as shown in Listing 4.6 where the attack is not successful at all [66].
Easy ways to prevent the success of XML injection attacks exist, like
proper schema and data type validation [69].

S t r ing t op i c = getParam (” top i c ”) ;
S t r ing query = ”SELECT body FROM comments ” +
”WHERE top i c = ’ ” + top i c + ” ’ ” ;
Resu l tSet r e s u l t s = executeQuery (query) ;
f o r each (S t r ing body : r e s u l t s)
p r i n t l n (”<tr><td>” + body + ”</td></tr>”) ;

XML and SQL in Java : XSS vu l n e r a b i l i t y

Listing 4.5: Bad example of XML and SQL embedded in Java Code [66]

S t r ing t op i c = getParam (” top i c ”) ;
SQL query = <| SELECT body FROM comments
WHERE top i c = ${ t op i c } |> ;
Resu l tSet r e s u l t s = executeQuery (query . t oS t r i ng ()) ;
f o r each (S t r ing body : r e s u l t s)
p r i n t l n (”<tr><td>${body}</td></tr>” . t oS t r i ng ()) ;

XML and SQL in Java

Listing 4.6: Good example of XML and SQL embedded in Java Code [66]

So XML Manipulation covers different possibilities like XML injection
which can result in well-formed code, manipulation of XML which can
result in not well-formed code or in general creating invalid messages.
For this evaluation, the tool must either be able to generate invalid
XML or to execute XML injection attacks to fulfil this criterion.

SQL Injection Many web applications need SQL to provide information
from and save details to the database. Unfortunately, it is possible to
manipulate the queries so that data is revealed which should not be
public. This can be done by inserting certain strings such like the ones
shown in Figure 4.5. Especially through input fields, for example, it
is possible to outwit authentication methods or manipulate data, as
also stated in ”Trustworthy Web Services Based on Testing” [70]. The
authors pointed out that SQL injection can be used to get data if user
input is not validated properly when used in SQL queries.

Blind SQL injection is basically the same as SQL injection with the
only difference that it is more difficult for an attacker to exploit such

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 53

a vulnerability as the server does not answer with an error message
containing useful information. Nevertheless, experienced attackers are
able to execute such attacks.

If a tool can create test cases which contain SQL injection attacks,
meaning offer inputs which manipulate the queries or at least give the
possibility to run such tests, then it meets the requirement.

Figure 4.5: Examples of possible input which can lead to SQL injection
attacks [57]

Cross-site Scripting Cross-site scripting (XSS) is a very popular security
vulnerability. For an XSS attack, the attacker tries to manipulate
the application by putting malicious data in input fields so that this
information is used on the client’s side without changes. If the XSS
attack is successful, malicious code can be executed on the side of
the client. This can only be prevented if data is checked properly or
encoded and the application does not trust every information it gets.
Three different kinds of XSS attacks exist, namely stored XSS attacks,
reflected XSS attacks and Document Object Model(DOM) based XSS
attacks. If the data which is used for statements that generate Hyper-
Text Markup Language(HTML) is not properly checked, a potential
attacker has the possibility to execute malicious code on the client’s
side [71]. Reasons why cross-site scripting attacks are widely spread
are given in ”Static detection of cross-site scripting vulnerabilities”
[72] like the fact that it is enough if the web application shows un-
trusty input without validation. Another reason is that programming
languages hand on such input to the user without executing checks by
default. So it is shown to the user exactly like it was given to the web
application. Figure 4.6 shows a generic implementation of a guestbook
in Active Server Pages(ASP). A possible XSS attack to the guestbook
is presented in ”Identifying Cross Site Scripting Vulnerabilities in web

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 54

applications” [73] whereby only the string like shown in Figure 4.7 is
needed to get the information of user cookies.

Figure 4.6: Example of a web application [73]

Figure 4.7: Example of a cross-site scripting attack [73]

In general, cross-site scripting is not difficult to correct but might
get problematic in certain situations as stated in ”Regular expressions
considered harmful in client-side XSS filters” [74]. The authors com-
pare the degree of severity of fixing XSS vulnerabilities to fixing buffer
overflows. Nevertheless, the bigger a web site is, the more complicated
it gets. Lots of web sites are not able to realise the fixing task com-
pletely. Additionally, repositories exist which list unpatched cross-site
scripting vulnerabilities including the sites. This makes it even easier
for attackers.

If a tool can generate test cases that could execute an XSS attack or
at least give the possibility to run such tests, then it accomplishes this

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 55

aspect.

Denial of Service Denial of service(DoS) is an attack where the raider
tries to stop the service of the system which among other things harms
the reputation of the provider. Various ways to reach this goal exist,
for example creating an XML bomb with the aid of nested entities or
the attacker simply takes away the key from a package which belongs
to someone else and as a result is in the position to see the content of
the document as explained in ”Secure and selective dissemination of
XML documents [75].

There are different kinds of denial of service attacks, like XML denial
of service (XDoS) and distributed denial of service (DDoS) attacks.

• XML Denial of Service

XML denial of service(XDoS) attacks are based on XML. The
attacker is using XML to create lots of messages which consume
than the parser completely until it cannot handle the load any-
more. XDoS attacks are also explained in ”Vulnerabilities Lead-
ing to Denial of Services Attacks in Grid Computing Systems: a
Survey” [76] as attacks where the attacker sends a lot of requests
to overcharge the parser and as a result the client cannot use the
service anymore. The supported complex nested representation
can be exploited by the attacker by increasing the nesting level
so that the parser is not capable of handling the payloads and in
further consequence crashes. According to the authors [76] it is
also possible to send an enormous amount of messages.

• Distributed Denial of Service

For a distributed denial of service(DDoS) attack, the attacker
is flooding the application not only from one machine but from
various machines at the same time. This is where the term dis-
tributed comes from. In ”A Practical Method to Counteract De-
nial of Service Attacks” [77] DDoS is described as an attack where
the attacker makes use of several hosts which are often zombies.
Zombies are compromised computers which exhibit defects. Most
of them are not secured properly. With the aid of zombies, at-
tacks can be executed on the client’s machine.

A further aspect is the robustness of software programs which is wed-
ded to DoS. Robustness is an important criterion to measure systems,
especially large ones which deal with secure data, as it shows how
much load they can handle and how reliable they are. M. Schillo, H.-J.
Bürckert, K. Fischer and M. Klusch explained robustness as a criterion
which can be evaluated by defining a certain benchmark, for example

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 56

five percent random drop-outs, and then comparing the performance
before and after it. With such explicit statements, robustness can be
qualitatively measured [78]. If the software is not robust, it can quickly
lead to a denial of service.

Error Handling is another interesting issue regarding denial of service
attacks. This specific point is important for all software applications,
no matter what they deal with. Correct error handling is necessary
to classify the software as usable. Every single user makes mistakes,
for example putting a number into an input field where an alphabetic
character is required. In this case, the reaction of the software is
important, as it should be able to deal with errors without crashing.
Another reason why this is especially interesting for web services is
given in ”Experimenting with Exception Propagation Mechanisms in
Service-Oriented Architecture” [79], namely the fact that web services
might not be able to execute a rollback which leads to a need of proper
exception handling as this is a way to make fault tolerance possible.
For fulfilling this criterion, the testing tool has to be able to send XML
messages which overcharge the parser.

Buffer Overflow A buffer overflow is a common vulnerability which oc-
curs when the amount of data is huger than the available place in a
buffer. In ”Detection and prevention of stack buffer overflow attacks”
[80] buffer overflows are defined as vulnerabilities which are caused by
putting too much data into a fixed-size buffer. The memory next to
the buffer is then overwritten and this might influence the program be-
haviour. For buffer overflows, a stack must be utilized during program
execution. The dangerousness of this security issue has been reasoned
by F.-H. Hsu, F. Guo and T. Chiueh [81] with the argument that lots
of worms use buffer overflow attacks to broadcast. More general is the
explanation of this attack in ”Exploiting a buffer overflow using metas-
ploit framework” [82] where buffer overflows are mentioned as one of
the most widespread attacks. Buffer overflows also serve as basis for
lots of other attacks. For a buffer overflow attack, the attacker gets
remote access by detecting and using weak points of systems which
are not coded properly. With the remote access, the attacker is in the
position to abuse the system. Mustapha Refai [82] also stated that
the attacker tries to get root privilege to do diverse harmful actions or
even ruin the scheme. An example of a vulnerability is illustrated in
Figure 4.8. In the first part, an external string is copied to a fixed-size
buffer whereby the size was specified by the length of the external in-
put. This is dangerous as a useable buffer overflow may result if the
input is longer than the buffer. It would have been much more secure
to use the size of the internal buffer as restriction as shown at the
lower part in the Figure [83].

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 57

Figure 4.8: Example of buffer overflow and how to prevent it [83]

Different types of buffer overflow exist, described in ”Scalable Network-
based Buffer Overflow Attack Detection” [81], namely code-injection
(CI) attacks and return to libc (RTL) attacks. For code-injection
attacks, the attacker uses the address space of the application by in-
cluding corrupt code. The application’s control is afterwards routed
to this code. For return to libc attacks, the control is immediately
navigated to a function which does already exist in the address space.

Buffer overflow is a very common method to acquire a denial of ser-
vice. This attack can be easily executed which makes it even more
dangerous. The buffer overflow criterion is fulfilled when the tool is
able to generate huge input data.

4.3 Prioritization of Criteria

Depending on the target group, not every criterion is of high priority. The
thesis focuses on users who are adept in testing. Therefore usability is
not that important. Furthermore, the subject of testing are XML-based
web applications where all the described attacks could happen, meaning the
application is using all technical issues, like databases, sessions and XPath.
The prioritization in Table 4.2 is just an example of how the criteria could
be valued if the test object would be XML-based web applications. The
prioritization is needed if more than one testing tool fulfils the criteria to
have a decision basis whereby priority 1 stands for high priority (essential), 2
stands for medium priority (would be required) and 3 stands for low priority
(nice to have but not absolutely needed). Usability is 3 as it does not
influence the test results and does most likely not deter an experienced user
from using a tool, if other significant requirements are met. Criteria like
database and access rights get a 2 as they are decisive for the usability
of the tool, but they can be influenced by the tester through requesting
additional access rights for example. Automation is rated with 1 as the
tool makes no sense if it cannot execute test cases without manual input.
Criteria which directly affect the quality and results of the testing process,
like SQL injection or denial of service get priority 1.

It is clear that a testing tool which fulfils more criteria with high priorities

CHAPTER 4. DEFINITION OF EVALUATION CRITERIA 58

Criterion Priority

Automation 1

Usability 3

SUT Access Requirements 2

Platform 2

Authentication 1

Interoperability 1

Session Handling 1

Presentation of Results 3

XPath Injection 1

Support of XML generation based on schema 1

XML Manipulation 1

SQL Injection 1

Cross-site Scripting 1

Denial of Service 1

Buffer Overflow 1

Table 4.2: Prioritization of criteria

is more useful than others, for example a tool which meets all priority 1
criteria and some of the priority 2 requirements is more suitable than one
which complies all priority 2 and priority 3 criteria. This categorization is
just an example of how the criteria can be weighted on the supposition that
the tester is experienced. It must be adapted according to the needs and
experience of the person doing the testing and the application that shall be
tested.

Chapter 5

Results of Security Testing

Tools Evaluation

In Chapter five the author will accomplish an evaluation, record the results
and determine if the testing tools meet each criterion. This exemplary eval-
uation shall show that the nominated criteria are useful and that they can
be examined.

5.1 Evaluation Process

The tools will be evaluated by a combination of using the provided documen-
tation and executing the tools. For this evaluation, all criteria described in
the previous chapter will be taken into account. Afterwards, the documenta-
tion will be used to learn about which criteria are supported. Additionally,
there will be a search on the Internet for publications and evaluations of
the chosen tools to get information about which additional criteria are pro-
moted. It is assumed that the information in the documentation and also
from other sources mentioned is correct and therefore no additional tests for
those criteria will be made. The whole evaluation process is illustrated in
Figure 5.1.

59

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION60

Figure 5.1: Overview of the evaluation process

For SQL injection and blind SQL injection, a manual evaluation will
be done to show how testing tools can be valued without documentation.
This means, the tool will be executed and tested against the criteria. The
evaluation itself is kept short as it should only serve as an example and is
not the focus of this thesis. Some criteria are evaluated together in one step
if it makes sense. Furthermore, tools will be categorised for each criterion
whereby ”yes” stands for outstanding fulfilled, ”partly” stands for partial
fulfilled and ”no” stands for not fulfilled/bad. Some of the criteria cannot
be graded as the judgment is subjective, like usability. Nevertheless, in
the comparison at the end, there will be subjective values for those criteria
to make it clearer. The results of the evaluation of those criteria will be
described in detail to show how the tools implement them. SQL injection
will be evaluated practically to show how an evaluation can be done with a
given list of needed requirements. Such an assessment shall be the basis for
the tool decision. Additionally, it is interesting to know if the tool supports
the criterion out of the box or if it can be added via plugins. For the
author, a tool which can support a criterion with little additional effort, like
changing the configuration, fulfills the requirement completely. If, instead,

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION61

a huge workaround or even building a complex own fuzzer is necessary, the
tool only partly fulfills the criterion.

5.2 Evaluation of Tools

This section shows the detailed results of the evaluated fuzz testing tools
described in Section 3.2.

5.2.1 Fuzzolution

Fuzzolution is a tool which provides several plugins like VoIP or web service
fuzzing.

Automation The tool is semi-automated and therefore partly fulfils the
automation criterion. Several points are configurable but in general,
generation of data, execution of the test cases, monitoring and analysis
are automated.

Usability There is no graphical user interface, the tool is based on text
files. Additionally, no syntax checks are done. The tool fulfils this
criterion only partly. An advanced user might prefer the command-
line based approach as used here as there are more possibilities to work
with the tool, for example it can be easily included in scripts.

SUT Access Requirements This criterion is completely fulfilled. There
are different variants, starting from black box approaches where less
monitoring is done to white box attempts where logfiles and CPU
workloads are monitored. As a result, the tool can be used by any
tester no matter how much access to different levels like code and
database is given.

Platform Fuzzolution is based on Java which means it can be used every-
where where Java is installed. Specific parts run only on Linux.

Authentication Authentication is out of the box supported by the tool
for web applications. It can be extended for other applications, like
Windows login. As web applications are the focus here, Fuzzolution
fulfils the criterion.

Interoperability Fuzzolution is able to check if it is possible to communi-
cate with the test object and gives feedback within a short period of
time. As a result, the tool fulfils the criterion.

Session Handling The tool supports session handling and can hence be
valued with yes regarding this point.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION62

Presentation of Results There is no graphical support for the presenta-
tion of results which might make the tool a bit less intuitive. For expe-
rienced users it should be no problem to deal with the presentation of
results of Fuzzolution. One possibility is to use text files. In the files,
the evaluation information is logged, for example high CPU workload
which results in the assumption that an error occurred. Nevertheless,
if there is nothing stated in the logfiles, no error will be listed in this
case. The second opportunity is to check the results in a database.
There the user can see the test results in tabular form together with
the probability that an error occurred. This is an issue which should
not be categorised but as of missing graphical representation the tool
partly fulfils the requirement.

Support of XML generation based on schema Fuzzolution supports the
generation of XML items based on schemes or Data Definition Lan-
guage(DDL). The XML items can be valid or invalid. Therefore, Fuz-
zolution completely fulfils this criterion.

XML Manipulation The tool can generate XML items which are not
valid, meaning not well-formed. This can be on the basis of schemes
or DDLs. Thus, Fuzzolution obtains a yes for this issue.

Cross-site Scripting Fuzzolution can execute XSS attacks via predefined
attack lists or vectors. This leads to a complete fulfilment of the
criterion.

XPath Injection All kinds of injections are supported by the tool via at-
tack vectors. This functionality is given from the beginning and must
only be configured depending if the tester wants them or not. Addi-
tionally, extensions through plugins or lists are possible. This means
that a wide variety of attacks can be simulated and Fuzzolution fulfils
the criterion.

Denial of Service Denial of service attacks are supported by Fuzzolution
through XML bombs for example. The tester can then also check the
CPU workload to realize such attacks. So memory usage is supported.
The criterion is fulfilled.

Buffer Overflow It is possible to produce lots of huge and long strings via
generators which can lead to buffer overflows. Therefore, the tool gets
a yes for this criterion.

5.2.2 JBroFuzz

JBroFuzz is a fuzzer designed especially for web applications. The tool offers
lots of possibilities for fuzzing.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION63

Automation JBroFuzz is a semi-automated tool where the user can choose
between different payloads which are later used for fuzzing. The re-
sults of the tests are written into files. Although, it is possible to see
immediately if the request was accepted or not, the test results itself
are not analysed by the tool. The tester has to check every single file
and decide if a vulnerability exists or not.

Usability The version 2.4 offers both, command-line and graphical user
interface. This means that the tool is comfortable and can be used by
novice and experienced users as the graphical user interface is self-
explanatory and visceral to use. Tutorials, FAQs and installation
guides are available to help every tester to get started. Addition-
ally, different tabs which provide various functions are available, like
the ”Graphing” tab. This would categorise the fuzzer as yes regarding
usability.

SUT Access Requirements Basically, JBroFuzz is used for black box
testing which means no special access rights are needed. Neverthe-
less, it is possible to write an own fuzzer and include JBroFuzz as
library to also enable grey box and white box testing. This means the
tool does not need any special access requirements to run properly, but
it can be extended which would then require additional access rights.
Therefore, the criterion is fulfilled.

Platform This criterion is fulfilled as the tool runs on different platforms,
like Win 32, Mac OSX or Backtrack 3 [51]. Furthermore, Java 1.6 or
greater is required.

Authentication Authentication is supported by JBroFuzz. In the tutorial
section of the OWASP website [51], examples are described, explaining
how fuzzing with this tool works regarding generic proxies. Some of
those proxies need user authentication. Therefore, the authentication
requirement is fulfilled as basic authentication is promoted. More com-
plex ones are not in the scope of the tool at the moment and deductive
the tool gets a partly.

Interoperability In general, it is possible to see if the tool is able to com-
municate with a test object as basic results of tests are immediately
visible. With human analysis regarding the details of the result, the
user can see if something went wrong with the communication, for
example it can be seen that there was no communication because of a
missing Internet connection. This leads to the fact that the criterion
is fulfilled.

Session Handling When fuzzing with JBroFuzz, the desired URL can be
denoted. As the URL can include the session ID to enable proper

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION64

session handling, the tool fulfils the criterion.

Presentation of Results Within the graphical user interface, the results
are represented in tabular form. By clicking on one of the entries, the
user gets further details about the test and its result. Although no
special colours are used for the representation, the tool gives a good
and intuitive overview of results. Additionally, the user has the pos-
sibility to face a graphical representation of results in the appropriate
tab. Nevertheless, the tool does not state if a vulnerability is given on
a specific site or not. For such information, further human analysis
of the results is needed. As JBroFuzz gives several opportunities to
view test results which are also easy to understand for novices but still
manual analysis is needed, the tool partly discharges this criterion in
the opinion of the author.

XPath Injection In ”OWASP JBroFuzz Tutorial”, some examples of how
to use JBroFuzz are explained step by step. Also the fact that XPath
injection is supported can be found here [51]. Besides this, JBroFuzz
can be used as fuzzing library. There are core fuzzing APIs which
can be utilized to build own fuzzers. With this option, everything is
possible and even if not out of the box supported, all injection attacks
can be tested with JBroFuzz with a bit developing effort. Therefore,
the tool gets a yes in this case.

Support of XML generation based on schema There is no support to
generate XML based on schema, at least it is not mentioned on the
OWASP Website for JBroFuzz [51]. Nevertheless, it is possible to add
a new fuzzer which creates such XML. This is a lot of effort and as a
result JBroFuzz gets only a partly for this criterion.

XML Manipulation The generation of not well-formed XML is not con-
cretely mentioned but with an easy workaround it would be possible
to fuzz with such XML items. Recursive fuzzers can be used to re-
place entries with different characters, alphabetical, numerical or spe-
cial characters. This leads to not well-formed XML and therefore the
tool accomplishes this point partly.

Cross-site Scripting Cross-site scripting is supported by the testing tool.
It offers several different fuzzers, like replacive fuzzers, double fuzzers
and power fuzzers, from which the tester can choose from. With them,
cross-site scripting is possible as also stated in the ”Payloads and
Fuzzers” section of the Website [51]. Different variants of cross-site
scripting attacks are delivered with the tool. Again, it is possible to
create own fuzzers which support more complex attacks, therefore, the
tool fulfils the criterion.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION65

Denial of Service In JBroFuzz, no own payload for this criterion exist.
Nevertheless, taking the payload ”Long Strings of aaa’s” which consists
only of a’s with a payload length of 65,537 should be sufficient to lead
to a denial of service. Therefore, the criterion is fulfilled.

Buffer Overflow JBroFuzz supports buffer overflows. A variety of own
payloads for this kind of attack exist. So buffer overflow attacks can
be executed and the tool accomplishes the requirement completely.

5.2.3 Peach

Peach is a tool which comes with several features. It is extensible which
makes it usable for advanced fuzzing [52]. This means also that the tool can
fulfil a lot of criteria with creating own fuzzers but not out of the box.

Automation Peach is a semi-automated tool. It can generate data with
mutators, provides a file system logger and offers monitoring for ex-
ample to trace crashes or to gather network traffic. Furthermore, own
monitors can be written by the tester [52]. Nevertheless, Peach does
not offer automatic comparison of results meaning human analysis is
needed which leads to the fact that the tool only partly fulfils the
requirement.

Usability Peach is command-line based. With the next release, it is planned
to provide a graphical user interface for at least simple file and net-
work fuzzing. This tool is quite complex which makes it difficult to use
especially for novices. With the current release, there is a graphical
user interface for some parts available but still most of the functional-
ity works only command-line based. Therefore, the tool accomplishes
this point partly.

SUT Access Requirements There are no special prerequisites to use Peach.
As the tester has to write Peach Pit Files at least a basic development
environment is needed. Additionally, to write own fuzzers and XML
files it might be necessary to have access to source code and database
so that special information, like details about data model and structure
can be received. As a result, the tool is evaluated with partly.

Platform Peach supports Windows, Unix and OS X [52]. Additionally,
Python is required [52]. This means that Peach can run on a wide
variety of platforms and therefore it completely fulfils the criterion.

Authentication Authentication is not supported out of box. Neverthe-
less, it is possible to build an own fuzzer which can overcome any
authentication methods. An example of how the authentication part
of the fuzzer could look like can also be found in the tutorial section

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION66

of the Website of Peach [52]. The tool is valued with partly for this
requirement.

Interoperability Peach is based on Pit Files which must be created by
the user to use the tool. No button or similar function is available
which checks interoperability with the test object but it is suggested
to validate Pit Files and their data, no matter which type of fuzzer is
created. The first mutator does by default not fuzz any data. This is
used to check if interoperability between the fuzzer and the target is
given [52]. So the user can with the given tool examine interoperability
but this process is not automated. Instead, human analysis is needed
which leads to partly for this criterion.

Session Handling With peach, it is possible to put the session ID into the
URL which means the tool can deal with session handling. Therefore,
the criterion is fulfilled.

Presentation of Results The results of test cases are saved in a file [52].
Additionally, logging is possible [52]. This means that there is the
opportunity to monitor and check the results of test cases. However,
the tester has to open every file to see the results, there is no possibility
to immediately see if it passed or failed. In addition, there is no
graphical representation which justifies for the author a not fulfilled
for this criterion.

XPath Injection and Cross-site Scripting Peach does not support such
attacks out of the box. As it is more a framework to build own fuzzers
than an all inclusive fuzzer ready to use, the possibility exists to de-
velop a fuzzer which is able to execute such attacks. Despite the tool
offers different kinds of mutators like StringMutator or PathMutator
which can be used to generate mutated data. This will help to realize
such attacks with a small workaround and little development effort
but to completely test XPath injection and cross-site scripting more
realistic attacks must be depicted and hence the tester has to design
a complete new fuzzer with own mutators. The tool gets a partly for
those criteria as it is possible to generate fuzzers which satisfy the
requirements for such attacks.

Support of XML generation based on schema The generation of XML
based on schema is supported by Peach. The user has to build his or
her own Peach Pit Files where the schema can be designed which shall
be the basis for the creation of XML and fuzzing process. The tool is
scored with yes here.

XML Manipulation The user needs to give a data model to Peach so that
the tool is able to mutate data. Depending on how the data model

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION67

is described, not well-formed XML can be created and used for test
cases with Peach. As there is no function where the user only has to
copy the data model and the tool does the rest, Peach is valued with
partly in this case.

Denial of Service As Peach is a fuzzer framework, it should be possible
to write an own fuzzer and own mutators or maybe even use given
mutators which are able to execute denial of service attacks. The
criterion is consequently partly fulfilled.

Buffer Overflow Again, a fuzzer which can fuzz for buffer overflows can be
designed by the user as well as all other types of fuzzers. The criterion
is partly accomplished as there is no mutator which is specialised in
buffer overflows but using other existing mutators might be sufficient.

5.2.4 Fuzzware

Fuzzware can test files, network packets or calls to interfaces. It can be used
to fuzz web services.

Automation Fuzzware is a framework which automatically creates and
executes test cases. Again, the tester has to check the results, the tool
does not automatically analyse them, but there is the possibility to
check for certain words in the event log. This leads to partly fulfilled
for this criterion.

Usability Fuzzware comes with a user interface for its configuration. In
the user interface, the tester can choose the type which shall be used
for fuzzing, for example file fuzzing or network fuzzing. Unfortunately,
the user interface does not support XML document creation [53]. Nev-
ertheless, over the user interface, the user can choose input and output
source, configure the fuzzing, monitoring, testing and executing. Re-
garding usability, the tool fulfils the requirement.

SUT Access Requirements There was no information published about
required access rights. Therefore, it is assumed that it is not a prereq-
uisite to have special access rights when using the tool. Fuzzware gets
a yes regarding SUT access requirements.

Platform Fuzzware is only for Windows available.

Authentication Authentication methods are supported by Fuzzware. The
tool requires a Web Services Description Language(WSDL) file includ-
ing among other things methods to fuzz web services. The tester can
then state the methods which should be initially called to influence
the order of the invoke of those methods [53]. As this is supported,
the tool completely accomplishes the criterion.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION68

Interoperability Fuzzware offers a test mode which can be switched on
and off in the user interface. If the test mode is on, no fuzzing will be
done. This is to check the configuration which shows also if commu-
nication between components work [53]. It is possible to define a file
which shall be compared with the test mode result. Furthermore, the
tool is able to convert non-XML data format to XML to make them
fuzzable. The tool fulfils the criterion.

Session Handling Fuzzware can handle different session IDs via the URL.
The tool gets a yes for this criterion.

Presentation of Results Different ways for presenting results of test cases
exist. Firstly, a command prompt appears during execution as any
output is monitored to stdout/stderr. With the current release, this
output text is now also coloured. Additionally, a log file is available
and another file which is named like the state of the test case containing
the results whereby the user can configure the output directory and
file extensions [53]. Fuzzware offers diverse possibilities for presenting
testing results but to find out if the test case was successful or not,
every file has to be opened which means there is no possibility to see
the results immediately. Therefore the tool fulfils the criterion partly
regarding the requirements of the author.

Support of XML generation based on schema This criterion is com-
pletely fulfilled by Fuzzware. For executing fuzzing, an XML and an
XSD file is needed whereby the XML file comprises data and the XSD
file is used for defining types and structure. Fuzzware can use the
information of the XSD file for creating test cases [53]. As a result,
the tool is valued with yes.

XML Manipulation The generation of not well-formed XML is a bit
tricky in Fuzzware as the tool sticks to the schema. So it is better
to not define the format too exactly as this enables more possibilities
for fuzzing. Fuzzware suggests to define the elements more exactly
than the types of them [53]. When defining the schema a bit different
then it should be, a generation of not well-formed XML is possible.
Fuzzware is valued with yes in this case.

XPath Injection Based on methods created by the user which include
XPath expressions, the tool can offer support for such vulnerabili-
ties. However, Fuzzware just mutates the input data according to the
available fuzzing techniques so there might be no complicated XPath
injection attacks if the user does not generate XPath expressions with
certain logic behind it. So Fuzzware partly fulfils the criterion.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION69

Cross-site Scripting Fuzzware offers no special function for XSS attacks.
The user can only create them self. Nevertheless, it is at least possible
to execute them. There is no out of the box support and in the end
the user has to generate the attack by himself which leads to a partly
fulfilled criterion in this case.

Denial of Service Denial of service attacks can be realized with Fuzzware
and the tester has also the opportunity to add own values for fuzzing
easily. This leads to fulfilled criterion in this case.

Buffer Overflow It is possible to evoke a buffer overflow through replacing
certain data with long strings. Hence, Fuzzware completely accom-
plishes the buffer overflow requirement.

5.2.5 Evaluation of the Criterion SQL Injection and Blind

SQL Injection

SQL injection and blind SQL injection will be tested with the help of an ap-
plication called ”Damn Vulnerable Web App (DVWA)” [84]. DVWA is based
on PHP: Hypertext Preprocessor(PHP)/MySQL and has targets which cor-
respond to the purpose of evaluating security testing tools. The application
was created to help security professionals, developers, teachers and students
to teach, understand and test security knowledge and tools [84]. The current
version is v1.0.7. DVWA offers several security leaks like XSS, SQL injection
and file inclusion. A web server, PHP and MySQL is needed to run DVWA
properly. The most convenient way is to use XAMPP as it combines all in
one. The user can choose if the vulnerability is easy, medium or difficult to
reveal. Additionally, it is possible to view the source code and a help page
for every weakness.

Test Environment

For the evaluation of the tools, SQL injection and blind SQL injection with
low security level was used. The goal is to find a way to get username and
password of five users which are identified by numerical IDs from ”1” to
”5” in the database. A possible solution is to use the string ”’ or ’a’=’a”
for SQL injection and the string ”1’ or ’1’ = ’1” for blind SQL injection to
get all values out of the database. The tests were done on a Windows XP
Professional machine. To use DVWA, a login is needed. As login methods
are not part of the tests, DVWA was manipulated by switching off the
login directly in the code. Furthermore, the difficulty level was set to low
permanently in the source code to ease the test process.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION70

JBroFuzz

For evaluating JBroFuzz the current version 2.4 was used. After starting the
test tool, the target must be put in which is in this case ”http://localhost”.
Then, the request field has to be filled as shown in Listing 5.1.

GET /dvwa/ v u l n e r a b i l i t i e s / s q l i b l i n d
/? id=z&Submit=a&l e v e l=0
HTTP/1 .1
Host : l o c a l h o s t
User−Agent : Moz i l l a /5 .0 (Windows ; U; Windows NT 6 . 0 ;
en−GB;
rv : 1 . 9 . 0 . 1 0) Gecko/2009042316 F i r e f ox /3 . 0 . 1 0
(.NET CLR 3 . 5 . 3 0729)
/2 .5
Accept : t ex t /html , app l i c a t i o n /xhtml+xml , app l i c a t i o n
/xml ; q=0.9 ,
∗/∗ ; q=0.8
Accept−Language : en−gb , en ; q=0.5
Accept−Charset : ISO−8859−1, u t f −8;q=0.7 ,∗ ; q=0.7

Listing 5.1: Request in JBroFuzz

It is not necessary to do this manually, there is also the possibility to click
on File/Open Location and put into the URL field the URL, for example
"http://localhost/dvwa/vulnerabilities/sqli_blind/?id=z&Submit

=a&level=0 HTTP/1.1" for blind SQL injection attacks. By clicking on
”OK” the fields will be set automatically. Now, the value which should be
fuzzed has to be marked which is the ”z” for this test. By right-clicking on
it and choosing ”Add” the desired fuzzers can be added. The author chose
MS SQL Injection i, MySQL Injection 101 and MySQL Injection (Blind)
from the category SQL Injection. For every fuzzer, the encoder URL UTF-8
is set because otherwise the website could not be called. Finally, the fuzzing
can start by clicking on Panel/Start. In the ”Output” tab, an overview
of the used payloads and appropriate results can be seen. Unfortunately,
there is only the status code shown which means the tester knows then if
the request got to the website but not if the attack shows any results. To
figure this out, every single entry must be right-clicked and opened in the
browser. If a user wants to fuzz with a huge amount of values, this can
be a very time-consuming and exhausting work. So the tool is only semi-
automated as the interpretation of the test results has to be done manually.
JBroFuzz was able to conduct successful attacks for the SQL injection and
the blind SQL injection section of DVWA. Therefore the tool fulfils the
criterion completely.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION71

Peach

For evaluating Peach version v2.3.8 was installed into the test environment.
The example HTTP.xml [52] served as basis for the test. Firstly, the Peach
Pit file has to be adapted which will serve as a fuzzer in the end. A data
model has to be defined as illustrated in Listing 5.2. The code shows snippets
of the example for the blind SQL injection attack.

<!−−Create a s imple data template conta in ing a
s i n g l e s t r i ng−−>
<DataModel name=”HttpRequest”>

<!−− The HTTP reque s t l i n e : GET http : // foo . com
HTTP/1.0 −−>
<Block name=”RequestLine ”>

<!−− Defau l t s can be op t i o n a l l y s p e c i f i e d v ia the
value a t t r i b u t e −−>
<St r ing name=”Method” mutable=” f a l s e ”/>
<St r ing value=”GET http :// l o c a l h o s t /dvwa/
v u l n e r a b i l i t i e s /
s q l i b l i n d /? id=”
type=” char ” mutable=” f a l s e ”/>
<St r ing name=”RequestUri ” mutable=” f a l s e ”/>
<St r ing value=” ” />
<St r ing name=”HttpVersion ” mutable=” f a l s e ”/>
<St r ing value=”HTTP/1.1\ r \n” mutable=” f a l s e ” />
</Block>

<!−− This b lock uses the Header block as a base
and ov e r r i d e s one f i e l d −−>
<Block name=”HeaderHost” r e f=”Header”>
<St r ing name=”Header”
value=”http :// l o c a l h o s t ” i s S t a t i c=” true ”/>
</Block>

Listing 5.2: Example of data model definition for Peach

Furthermore, a publisher has to be defined which determines how data
is sent and retrieved as can be seen in Listing 5.3.

<Publ i sher class=”tcp . Tcp”>
<Param name=”host ” value=” 1 2 7 . 0 . 0 . 1 ” />
<Param name=”port ” value=”80” />

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION72

</Pub l i she r >

Listing 5.3: Example of publisher for Peach

The tester can decide where test results shall be put whereby it can be
chosen between various opportunities like putting results into a file or to
stdout. Unfortunately, the output does not really give much information
besides the used mutator and the input values, if set up. In the error.log file
of the web server much more information can be found, like the used URL
with the fuzzed values and the HTTP status code which at least let the user
know if the request was successful or not and which error occurred. Peach
itself does not offer an error.log file. The author changed the low.php file of
DVWA so that the output of the request is written into an .html file. This
eases the review of the test results.

Additionally, a test has to be set up where also the mutators are defined
as shown in Listign 5.4.

<!−− Create a s imple t e s t to run −−>
<Test name=”HttpGetRequestTest ”
d e s c r i p t i o n=”HTTP Request GET Test ”>
<StateModel r e f=” State1 ”/>

<Mutator class=” s t r i n g . Str ingMutator ” />

<Publ i sher class=” proce s s . DebuggerLauncher”
name=” launch”/>

</Test>

Listing 5.4: Example of a test case for Peach

As the goal is to fuzz the value of the id which is of the data type string,
the StringMutator was used. There are even more details which can be
defined in the Peach Pit files, the presented one shall just give an overview
of the most interesting ones. After all needed values are set, the file can be
validated to see if parsing errors exists. This is done through the command
defined in Listing 5.5.

C:\ peach>peach −t HTTP. xml

Listing 5.5: Command for validating Peach Pit files

If the file is OK, the fuzzing can start. If only one iteration is needed
than the command illustrated in Listing 5.6 can be used. It is also possible
to give a range as argument so that several test numbers are done as shown
in Listing 5.7.

C:\ peach>peach −1 HTTP. xml

Listing 5.6: Command for Peach to run one interation

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION73

range :C:\ peach>peach −−range 1 8 HTTP. xml

Listing 5.7: Command for Peach to run several tests

With the chosen StringMutator, the results were not satisfying. There
was no list where values can be chosen which shall be taken into account for
fuzzing. As only the predefined strings are used, neither the SQL injection
attack nor the blind SQL injection attack was successful in revealing all
database entries. This is because the mutator does not offer complex string
inputs. The StringMutator would however be successful if a buffer overflow
attack would have been the goal as it mutates the given values with long
strings. This does not mean that Peach cannot be used for SQL injection
attacks but it is necessary for such attacks to write an own mutator with
appropriate string values and combinations for fuzzing the id. For this, the
user needs knowledge of Phyton. Besides, more effort than for the other
presented tools is needed to get Peach running as it requires more detailed
information. Therefore, the tool gets only a partly here.

Although Peach is a powerful framework, it is more suitable for attack
types which shall be tested in detail and recommended for experienced users
only as much more time and effort is needed to get familiar with it than for
other presented tools. The tool is semi-automated as the fuzzing is done
automatically but test results have to be analysed manually.

Fuzzware

For testing Fuzzware version 1.5 was used. The first step was to adapt the
example file HTTPPostParams.xml [53] as this example was used as a basis
for the test. In the header part the URL was set as shown in Listing 5.8
for blind SQL injection attacks and as illustrated in Listing 5.9 for SQL
injection attacks.

/dvwa/ v u l n e r a b i l i t i e s / s q l i b l i n d / HTTP/1 .1

Listing 5.8: Definiton of URL for blind SQL injection in Fuzzware

/dvwa/ v u l n e r a b i l i t i e s / s q l i / HTTP/1 .1

Listing 5.9: Definiton of URL for SQL injection in Fuzzware

The HeaderField looked than as depicted in Listing 5.10.

<http :HTTPHeader>
<http : HeaderField>

< ! [CDATA[POST /dvwa/ v u l n e r a b i l i t i e s / s q l i b l i n d /
HTTP/1.1]] >

</http : HeaderField>

Listing 5.10: Definition of HeaderField for blind SQL injection test

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION74

Furthermore, the parameter ”id” which shall be fuzzed in a later step
was set. By changing ”dontFuzz” from true to false, the tool is told to fuzz
the id and not run only one test case with the hardcoded values as illustrated
in Listing 5.11.

<?Schemer Id=”Body”?>
<http :HTTPBody>

<?Schemer dontFuzz=” f a l s e ”?>
<pp : PostParams>

<pp :ParamName>id</pp :ParamName>
<pp : Equals>=</pp : Equals>
<pp : ParamValue>1</pp : ParamValue>

</pp : PostParams>
</http :HTTPBody>

Listing 5.11: Setting the ID in Fuzzware

In the corresponding configuration.xml file, the input files are declared
as shown in Listing 5.12.

<XMLFileInput>
<XMLPathAndFilename>HTTPPostParams . xml</XMLPathAndFilename>
<XSDPathAndFilename> . .\HTTP. xsd</XSDPathAndFilename>
<XSDPathAndFilename>PostParams . xsd</XSDPathAndFilename>
</XMLFileInput>

Listing 5.12: Definition of input files for Fuzzware

Now the fuzzing can start. As soon as a new project is set up, the point
”Fuzz an XML file” is chosen. Under ”Configure and Run fuzzer” the Test
Mode must be set to off to enable fuzzing. By clicking on ”Options for
fuzzing data types” a screen is shown where the data types can be chosen
which shall be fuzzed. The tester can choose between Strings, Integers,
Decimals and Bytes type fuzzers whereby combinations of some of them or
using all fuzzers is possible. Additionally, own values for fuzzing can be
added or even a whole set of them by clicking on the button ”Add custom
fuzzing values”. In this case, only the string values were taken into account,
all other data types were set to off. The reason was that only string values
are interesting for this specific test and using all fuzzers would need a long
time to execute and bring no advantage here. During the fuzzing, all given
String values were adapted, meaning not only the values itself for the id
or the host but also the name ”id” for example. The replacements were
combined in different orders whereby not always all strings were substituted
for every test case. The tests were positive as both, SQL injection attacks
and blind SQL injection attacks were successful. All database entries were
shown. The test results were written into an XML file. Therefore, an own
programme was written by the author to change those files to .html files

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION75

which makes the visualisation of the results more readable. The name of
the files shows the tester which test was executed, for example the name
of the file ”pp-PostParams-0-Occurrence-2.txt” means that all params were
combined two times consecutively. The file ”OutputWithoutFuzzing.txt”
shows the results for the hardcoded values. Unfortunately, a check of each
file was needed to find out which input gives the desired output. Once
the functionality of Fuzzware is clear, it is quite easy to use and successful
in testing SQL injection and blind SQL injection attacks which leads to a
fulfilled requirement.

Fuzzolution

Fuzzolution possesses predefined attack vectors. Those can be used for SQL
injection and blind SQL injection. Furthermore, it supports HTTP requests
whereby it was possible to execute the tests. The tool is a framework and can
be extended easily. In this case, the needed components for executing the
tests have already been in place. For the generation of the test cases, attack
vectors were used. The tests showed that the tool is automatized as it detects
errors without manual input. This is realised through different analyser
implementations. To find out if the tests were successful, the response of
the server is analysed. The tool checks if there are discrepancies between the
response for valid requests and the responses it gets from test cases. The
tests were successful as both, the SQL injection and blind SQL injection
vulnerability were found by Fuzzolution.

Nevertheless, the quality of the error detection depends on the config-
uration. As no support for the configuration is offered by the tool, it can
easily come to wrong configuration which leads to the fact that the tool is
not successful anymore. Another important point is the duration of the test
execution. In this case, the test cases were executed fast as only a few attack
vectors were used and one field of the HTTP request was specifically tested.
Normally, several fields need to be fuzzed with a lot of different variants to
execute proper security tests. This influences the duration and can lead to
an execution time of some hours or even days. The duration depends also
on the possible speed of requests through the SUT.

All in all, Fuzzolution is able to detect SQL injections and therefore
completely fulfils the criterion. Although it has some disadvantages or rather
inconveniences, the tool is suited for executing security tests.

5.3 Comparison of Results

In general, it is not easy to compare tools just on the basis of documentation
because for the chosen tools the documentation was incomplete and there
was nearly no information about them on the Internet. This leads to the
fact that for a detailed evaluation, every tool must be executed and tested

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION76

on the basis of every single criterion. A time-consuming task, as it is not
enough to execute the tools with simple examples. Instead there must be
complex ones which are bound up with huge efforts to guarantee that the
tool satisfies the requirements of the tester. Depending on the amount of
criteria, this can be an endless process. On the other side, tools with good
documentation exist which would then make a comparison much easier and
faster.

The tools evaluated have all advantages and disadvantages. The suit-
ability of them for testing certain architecture paradigms depends heavily
on the knowledge of the user and the attacks which shall be executed. All
in all, Fuzzolution shows the best results for this evaluation. The fact that
it is highly configurable makes it even more attractive for testers. Neverthe-
less, the tester must have some experience in the field of fuzzing to use it
appropriately. Peach got the worst results which can be also traced to the
fact that it is more a framework for building own fuzzers than a ready-to-use
fuzzer. This tool might be most interesting for advanced and experienced
testers as it is quite powerful. It is possible to use it for complex testing
but due to difficulty level of its usage compared to the other tools, it will
take much more time in the sense of prework to get excellent results with it.
JBroFuzz was especially designed for web applications and is easy to use. It
has the advantage, that no further knowledge is needed to execute some low
level tests quickly. Therefore, it is a good security testing tool for novices.
On the other side, it does not fulfil all of the chosen criteria which concludes
that it is not so powerful in revealing deeply hidden security vulnerabilities.
Fuzzware can also be used to test web applications but it is limited to Win-
dows machines and needs more development from tester’s side. In contrast,
it is easy to add own fuzzing values for this tool. This fact is very important
as the allocated values are often not enough.

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION77

Criterion Fuzzolution JBroFuzz Peach Fuzzware

Automation partly partly partly partly

Usability partly yes partly yes

SUT Access
Requirements

yes yes partly yes

Platform Java Java Python Windows

Authentication yes partly partly yes

Interoperability yes yes partly yes

Session Handling yes yes yes yes

Presentation of Results partly partly no partly

XPath Injection yes yes partly partly

Support of XML gener-
ation based on schema

yes partly yes yes

XML Manipulation yes partly partly yes

SQL Injection yes yes partly yes

Cross-site Scripting yes yes partly partly

Denial of Service yes yes partly yes

Buffer Overflow yes yes partly yes

Table 5.1: Comparison of evaluation results

In Table 5.1 an overview of the evaluation results can be found. It shows
which tool fulfils which criteria completely, partly or not at all to ease the
decision of the tester. This presentation is not mandatory but it gives a
good summary to quickly decide for a security testing tool. Alternatively
the prioritization of each criterion could also be added to an extra column.
Although Fuzzolution seems to be the clear winner at a first glance, this is
only partly true. From the perspective of a novice who wants to execute some
basic security tests quickly JBroFuzz might be more appropriate. Experts,
in contrast, will most likely prone to Peach. Furthermore the importance
of every single requirement must be taken into account. According to the
prioritization done in the previous chapter, the decision for Fuzzolution is
clear. With other priorities, this fact might change. In addition, the author
wanted a tool which can be used for XML-based web applications and is
able to detect a long list of security attacks. Again, with different criteria
other evaluation results might have been achieved. This shows also that
the evaluation process is adaptable so that it can be used by every tester
regardless of the purpose. In the end, the final decision which security
testing tool to use must be taken by the tester depending on knowledge,
experience, time and willingness to learn. The evaluation results can only
lead as an assistance for the choice by giving an overview of criteria fulfilled
by the tools. In some cases it might be more efficient to combine some tools
to get the desired results of testing.

The evaluation process is successful as it is possible to evaluate security

CHAPTER 5. RESULTS OF SECURITY TESTING TOOLS EVALUATION78

testing tools with it. The fact that the documentation for the chosen tools
was not useful for all criteria is not taken into account here as it is not nec-
essary that every requirement is explicitly mentioned. Experienced testers
will quickly find out if a criterion is supported or not by using their knowl-
edge. In addition, with a detailed research, it is possible to get the necessary
information. Furthermore, enough tools with better documentation exist.
Of course, the convenience of using a tool cannot be evaluated with the pro-
cess for the simple reasons that this is individual, strongly dependent on the
preference of the tester, and to get a feel for any security testing tool it must
be practically tested. Nevertheless, the goal to find out quickly which tool
fulfils the selected criteria is reached by the presented evaluation process.

Chapter 6

Conclusio

Testing is essential for software development processes as one step in a pro-
cess to improve software quality. Successful testing is only possible if a
certain process is followed from project start until the end of the develop-
ment process. Automated test tools exist to ease the work of the tester and
make certain tests possible, like load tests even for huge programs.

Different test strategies exist, one of it is called fuzz testing where test
data is invalid or unexpected and randomly chosen. An enormous amount
of tools which concentrate on fuzzing are available. For this thesis four
tools, namely Fuzzolution, JBroFuzz, Peach and Fuzzware were chosen and
described whereby all of them have different strengths and weaknesses. All
of them can be used to test XML-based web applications. The tools were
evaluated on the basis of the presented evaluation process.

The evaluation process was kept easy to enable a quick and proper assess-
ment as it is not the goal to lose plenty of time when choosing an appropriate
tool. It works on the basis of evaluation criteria. Those requirements are
used to make a decision. The suggested criteria are just examples, they must
be extended or exchanged depending on the software type to test. Every
criterion should have a priority to make a comparison of the tools possible.

The evaluation showed that all selected tools are efficient if XML-based
web applications are tested. Nevertheless, none of the tools was able to
fulfil all criteria. Especially the requirement ”Automation” was only partly
accomplished because no selected tool was in the position to analyse the
results. Instead, further human analysis is needed. For this evaluation, Fuz-
zolution offered the best results as it fulfilled most of the chosen criteria
completely. Peach satisfies most of the criteria only partly. Nevertheless, it
is a useful tool as it is highly expandable but only for experienced testers
who possess a huge developping knowledge. For novices, Peach is too com-
plex and a long period of time is needed to be able to deal with it. The
author prefers JBroFuzz as the way how it works is easy to understand and
everybody can start fuzzing with it quickly without additional effort. Al-

79

CHAPTER 6. CONCLUSIO 80

together, the final choice should be made by the tester depending on the
experience and preferences of him or her.

The evaluation process turned out to be useful for testers. It functions as
a guide for selecting the appropriate testing tool. Some of the tools needed
further development to be able to find all the attacks described. This can
lead to additional education effort. All in all, the choice of appropriate
testing tools needs some time if a tool satisfying all needs shall be found.
Besides, tools must be analysed in detail, meaning reading only the help
pages is often not enough to make the right decision. They differ a lot
especially in handling and offered features. In the end it is still the personal
preference which will be the decisive factor for the decision. Nevertheless,
for a quick decision the process can be a huge help, especially in cases where
testing must start in a short period of time and no further development
effort is desired.

Chapter 7

Terms and Abbreviations

• XML Extensible Markup Language

• SUT Software Under Test

• SQL Structured Query Language

• IEEE Institute of Electrical and Electronics Engineers

• POSIX(R) Portable Operating System Interface for Unix

• MTP Master Test Plan

• UAT User Acceptance Test

• CPU Central Processing Unit

• NLP Normal Programs

• WCP Weight Constraint Programs

• DLP Disjunctive Programs

• VoIP Voice over Internet Protocol

• SIP Session Initiation Protocol

• OWASP Open Web Application Security Project

• URL Uniform Resource Locator

• FAQ Frequently Asked Questions

• HTTP Hypertext Transfer Protocol

81

CHAPTER 7. TERMS AND ABBREVIATIONS 82

• HTTPS HyperText Transfer Protocol Secure

• XSD XML Schema Definition

• DLL Dynamic Link Library

• ANSI American National Standards Institute

• ISO International Standards Organisation

• API Application Programming Interface

• XSS Cross-site Scripting

• DOM Document Object Model

• HTML HyperText Markup Language

• ASP Active Server Pages

• DoS Denial of Service

• XDoS XML Denial of Service

• DDoS Distributed Denial of Service

• CI Attack Code-Injection Attack

• RTL Attack Return To Libc Attack

• DDL Data Definition Language

• DVWA Damn Vulnerable Web App

• WSDL Web Services Description Language

• PHP PHP: Hypertext Preprocessor

List of Tables

4.1 Classification of criteria . 43
4.2 Prioritization of criteria . 58

5.1 Comparison of evaluation results 77

83

List of Figures

2.1 How software should work and how it works in reality [6] . . 8
2.2 Capabilities which a software tester should have [7] 9
2.3 Increase in cost of bugs during different phases in the devel-

opment process as illustrated by B. Littlewood [14] in Soft-
ware Reliability: Achievement and Assessment(as cited in [9],
2002, p. 4) . 12

2.4 How the V-Model looks like [11] 13
2.5 Possible illustration of the relation between requirements and

test cases . 14
2.6 Structure of manual testing types [8] 18
2.7 Process of macroscopic testing [15] 20
2.8 The place of testing in the waterfall model [33] 22
2.9 The place of testing in the V-model [33] 23
2.10 Example of an iterative generic test process [34] 24
2.11 Possible structure of a master test plan - part 1 [35] 26
2.12 Possible structure of a master test plan - part 2 [35] 27

3.1 Fuzzolution within a test environment [50] 36
3.2 Payloads of JBroFuzz [51] . 37
3.3 Snippet of the validator of Peach [52] 38
3.4 Choosing what shall be fuzzed in Fuzzware [53] 40

4.1 Desired and real web site structure [54] 42
4.2 Example of Interoperability on the basis of XML data be-

tween different coding languages [64] 47
4.3 An example of how test results can be presented 48
4.4 Interaction between components [67] 50
4.5 Examples of possible input which can lead to SQL injection

attacks [57] . 53
4.6 Example of a web application [73] 54
4.7 Example of a cross-site scripting attack [73] 54
4.8 Example of buffer overflow and how to prevent it [83] 57

5.1 Overview of the evaluation process 60

84

Listings

4.1 Bad example of embedding XPath in Java [66] 49
4.2 Good example of embedding XPath in Java [66] 49
4.3 Invalid XML code without root element [68] 51
4.4 Valid XML code with root element [68] 51
4.5 Bad example of XML and SQL embedded in Java Code [66] . 52
4.6 Good example of XML and SQL embedded in Java Code [66] 52
5.1 Request in JBroFuzz . 70
5.2 Example of data model definition for Peach 71
5.3 Example of publisher for Peach 71
5.4 Example of a test case for Peach 72
5.5 Command for validating Peach Pit files 72
5.6 Command for Peach to run one interation 72
5.7 Command for Peach to run several tests 73
5.8 Definiton of URL for blind SQL injection in Fuzzware 73
5.9 Definiton of URL for SQL injection in Fuzzware 73
5.10 Definition of HeaderField for blind SQL injection test 73
5.11 Setting the ID in Fuzzware 74
5.12 Definition of input files for Fuzzware 74

85

Bibliography

[1] E. L. Jones and Ch. L. Chatmon. A perspective on teaching software
testing. In Proceedings of the seventh annual consortium for computing
in small colleges central plains conference on The journal of computing
in small colleges, pages 92–100, , USA, 2001. Consortium for Computing
Sciences in Colleges.

[2] B. Beizer. Software System Testing and Quality Assurance. Van Nos-
trand Reinhold, 1984.

[3] M. Fewster and D. Graham. Software Test Automation - Effective Use
of Test Execution Tools. Addison-Wesley, 1999.

[4] J. A. Rosiene and C. Pe Rosiene. Testing in the ’small’. J. Comput.
Small Coll., 19(2):314–318, 2003.

[5] A. Bertolino. Software testing research and practice. In ASM’03: Pro-
ceedings of the abstract state machines 10th international conference on
Advances in theory and practice, pages 1–21, Berlin, Heidelberg, 2003.
Springer-Verlag.

[6] H. H. Thompson. Why security testing is hard. IEEE Security and
Privacy, 1(4):83–86, 2003.

[7] M. N. Kreeger. Security testing: mind the knowledge gap. SIGCSE
Bull., 41(2):99–102, 2009.

[8] J. Srinivasan and N. Leveson. Automated testing from specifica-
tions. Digital Avionics Systems Conference, 2002. Proceedings. The
21st, 1:6A2–1 – 6A2–8, 2002.

[9] E. Dustin. Effective software testing: 50 specific ways to improve your
testing. Addison-Wesley, 2002.

[10] W. Lam. Testing e-commerce systems: A practical guide. IT Profes-
sional, 3(2):19–27, 2001.

86

BIBLIOGRAPHY 87

[11] I. Londesbrough. A test process for all lifecycles. In ICSTW ’08: Pro-
ceedings of the 2008 IEEE International Conference on Software Test-
ing Verification and Validation Workshop, pages 327–331, Washington,
DC, USA, 2008. IEEE Computer Society.

[12] T. A. Majchrzak. Best practices for the organizational implementation
of software testing. In Proceedings of the 2010 43rd Hawaii International
Conference on System Sciences, HICSS ’10, pages 1–10, Washington,
DC, USA, 2010. IEEE Computer Society.

[13] E. Miller. Workshop report: Software testing and test documentation.
Computer, 12:98–107, 1979.

[14] B. Littlewood, editor. Software reliability: achievement and assessment.
Blackwell Scientific Publications, Ltd., Oxford, UK, UK, 1987.

[15] P. R. Pfau. Applied quality assurance methodology. SIGSOFT Softw.
Eng. Notes, 3:1–8, January 1978.

[16] M. Pyhäjärvi, K. Rautiainen, and J. Itkonen. Increasing understand-
ing of the modern testing perspective in software product development
projects. In Proceedings of the 36th Annual Hawaii International Con-
ference on System Sciences (HICSS’03) - Track 8 - Volume 8, HICSS
’03, pages 250.2–, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[17] M. W. Whalen, A. Rajan, M. P. E. Heimdahl, and S. P. Miller. Cover-
age metrics for requirements-based testing. In ISSTA ’06: Proceedings
of the 2006 international symposium on Software testing and analysis,
pages 25–36, New York, NY, USA, 2006. ACM.

[18] M. R. Lyu. Reliability-oriented software engineering: Design, testing
and evaluation techniques. Software, IEE Proceedings -, 145:191 – 197,
1998.

[19] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

[20] S. Baharom and Z. Shukur. Module documentation based testing using
grey-box approach. International Symposium on Information Technol-
ogy, 2008, 2:1 – 6, 2008.

[21] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In FOSE ’07: 2007 Future of Software Engineering, pages
85–103, Washington, DC, USA, 2007. IEEE Computer Society.

[22] S. Beydeda and V. Gruhn. Integrating white- and black-box techniques
for class-level regression testing. Computer Software and Applications
Conference, 25th Annual International, 0:357 – 362, 2001.

BIBLIOGRAPHY 88

[23] N. H. Petschenik. Building awareness of system testing issues. In ICSE
’85: Proceedings of the 8th international conference on Software engi-
neering, pages 182–188, Los Alamitos, CA, USA, 1985. IEEE Computer
Society Press.

[24] IEEE Computer Society. Ieee standard for information technology -
requirements and guidelines for test methods specifications and test
method implementations for measuring conformance to posix(r) stan-
dards. 1998.

[25] A. Leitner, I. Ciupa, B. Meyer, and M. Howard. Reconciling manual
and automated testing: The autotest experience. 40th Annual Hawaii
International Conference on System Sciences, 0:261a, 2007.

[26] P. Joshi, K. Sen, and M. Shlimovich. Predictive testing: amplifying the
effectiveness of software testing. In ESEC-FSE ’07: Proceedings of the
the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 561–564, New York, NY, USA, 2007. ACM.

[27] T. Xie. Improving effectiveness of automated software testing in the
absence of specifications. Software Maintenance, IEEE International
Conference on, 0:355–359, 2006.

[28] S. Berner, R. Weber, and R. K. Keller. Observations and lessons learned
from automated testing. In ICSE ’05: Proceedings of the 27th interna-
tional conference on Software engineering, pages 571–579, New York,
NY, USA, 2005. ACM.

[29] C. Kaner. Pitfalls and strategies in automated testing. Computer,
30:114–116, 1997.

[30] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in de-
velopment environment. SIGSOFT Softw. Eng. Notes, 27:97–106, July
2002.

[31] L. Borner, T. Illes-Seifert, and B. Paech. The testing process - a de-
cision based approach. In Proceedings of the International Conference
on Software Engineering Advances, pages 41–, Washington, DC, USA,
2007. IEEE Computer Society.

[32] L. Futcher and R. von Solms. Guidelines for secure software devel-
opment. In Proceedings of the 2008 annual research conference of the
South African Institute of Computer Scientists and Information Tech-
nologists on IT research in developing countries: riding the wave of
technology, SAICSIT ’08, pages 56–65, New York, NY, USA, 2008.
ACM.

BIBLIOGRAPHY 89

[33] G. Davis. Managing the test process. In Proceedings of the Inter-
national Conference on software Methods and Tools (SMT’00), pages
119–, Washington, DC, USA, 2000. IEEE Computer Society.

[34] A. Mette and J. Hass. Testing processes. In Proceedings of the 2008
IEEE International Conference on Software Testing Verification and
Validation Workshop, pages 321–327, Washington, DC, USA, 2008.
IEEE Computer Society.

[35] IEEE Computer Society. 829-2008 ieee standard for software and sys-
tem test documentation. 2008.

[36] K. R. P. H. Leung and W. L. Yeung. Generating user acceptance test
plans from test cases. In Proceedings of the 31st Annual International
Computer Software and Applications Conference - Volume 02, COMP-
SAC ’07, pages 737–742, Washington, DC, USA, 2007. IEEE Computer
Society.

[37] J. Bergeron, H. Foster, A. Piziali, R. S. Mitra, C. Ahlschlager, and
D. Stein. Building a verification test plan: trading brute force for
finesse. In Proceedings of the 43rd annual Design Automation Confer-
ence, DAC ’06, pages 805–806, New York, NY, USA, 2006. ACM.

[38] M. Smith and N. Thompson. The keystone to support a generic test
process: Separating the ”what” from the ”how”. In Proceedings of the
2008 IEEE International Conference on Software Testing Verification
and Validation Workshop, pages 342–353, Washington, DC, USA, 2008.
IEEE Computer Society.

[39] J. W. Cangussu. Modeling and controlling the software test process.
In Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE ’01, pages 787–788, Washington, DC, USA, 2001. IEEE
Computer Society.

[40] Y. Jiang, Y. Li, S. Hou, and L. Zhang. Test-data generation for web
services based on contract mutation. In SSIRI ’09: Proceedings of the
2009 Third IEEE International Conference on Secure Software Inte-
gration and Reliability Improvement, pages 281–286, Washington, DC,
USA, 2009. IEEE Computer Society.

[41] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy,
pages 497–512, Washington, DC, USA, 2010. IEEE Computer Society.

[42] P. Godefroid. Random testing for security: blackbox vs. whitebox
fuzzing. In Proceedings of the 2nd international workshop on Random

BIBLIOGRAPHY 90

testing: co-located with the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), pages 1–1, New York,
NY, USA, 2007. ACM.

[43] R. Brummayer and M. Järvisalo. Testing and debugging techniques for
answer set solver development. Theory Pract. Log. Program., 10:741–
758.

[44] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007.

[45] N. Rathaus and G. Evron. Open Source Fuzzing Tools. Syngress Pub-
lishing, 2007.

[46] P. Godefroid, A. Kiežun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 206–215, 2008.

[47] S. Sparks, S. Embleton, R. Cunningham, and C. Zou. Automated
vulnerability analysis: Leveraging control flow for evolutionary input
crafting. pages 477 – 486, 2007.

[48] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing cpu
emulators. In Proceedings of the eighteenth international symposium on
Software testing and analysis, pages 261–272. ACM, 2009.

[49] J. Caballero, P. Poosankam, S. McCamant, D. Babić, and D. Song.
Input generation via decomposition and re-stitching: finding bugs in
malware. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 413–425. ACM, 2010.

[50] S. Taber, Ch. Schanes, C. Hlauschek, F. Fankhauser, and T. Grechenig.
Automated security test approach for sip-based voip softphones. In Pro-
ceedings of the 2010 Second International Conference on Advances in
System Testing and Validation Lifecycle, pages 114–119. IEEE Com-
puter Society, 2010.

[51] OWASP. Jbrofuzz. http://www.owasp.org/index.php/JBroFuzz.
Last accessed on 2011-09-20.

[52] M. Eddington. Peach. http://peachfuzzer.com/. Last accessed on
2011-09-20.

[53] Fuzzware. http://www.fuzzware.net/. Last accessed on 2011-09-20.

[54] M. Curphey and R. Araujo. Web application security assessment tools.
IEEE Security and Privacy, 4(4):32–41, 2006.

http://www.owasp.org/index.php/JBroFuzz
http://peachfuzzer.com/
http://www.fuzzware.net/

BIBLIOGRAPHY 91

[55] S. Kals, E. Kirda, Ch. Kruegel, and N. Jovanovic. Secubat: a web vul-
nerability scanner. In Proceedings of the 15th international conference
on World Wide Web, WWW ’06, pages 247–256, 2006.

[56] N. Kabbani, S. Tilley, and L. Pearson. Towards an evaluation frame-
work for soa security testing tools. 2010 IEEE International Systems
Conference, pages 438 – 443, 2010.

[57] N. Antunes, N. Laranjeiro, M. Vieira, and H. Madeira. Effective de-
tection of sql/xpath injection vulnerabilities in web services. In SCC
’09: Proceedings of the 2009 IEEE International Conference on Ser-
vices Computing, pages 260–267, Washington, DC, USA, 2009. IEEE
Computer Society.

[58] R. M. Poston and M. P. Sexton. Evaluating and selecting testing tools.
IEEE Softw., 9:33–42, May 1992.

[59] R. Ramler and K. Wolfmaier. Economic perspectives in test automa-
tion: balancing automated and manual testing with opportunity cost.
In AST ’06: Proceedings of the 2006 international workshop on Au-
tomation of software test, pages 85–91, New York, NY, USA, 2006.
ACM.

[60] ANSI (2001). Common industry format for usability test reports (ansi-
ncits 354-2001). American National Standards Institute.

[61] ISO (1998). Ergonomic requirements for office work with visual display
terminals (vdts) part 11: Guidance on usability (iso 9241-11:1998(e)).

[62] J. Sauro and E. Kindlund. A method to standardize usability metrics
into a single score. In CHI ’05: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 401–409, New York,
NY, USA, 2005. ACM.

[63] T. Hollingsed and D. G. Novick. Usability inspection methods after
15 years of research and practice. In SIGDOC ’07: Proceedings of the
25th annual ACM international conference on Design of communica-
tion, pages 249–255, New York, NY, USA, 2007. ACM.

[64] M. Grechanik. Finding errors in interoperating components. In IWICSS
’07: Proceedings of the Second International Workshop on Incorpo-
rating COTS Software into Software Systems: Tools and Techniques,
page 3, Washington, DC, USA, 2007. IEEE Computer Society.

[65] J. Robie. Xml processing and data integration with xquery. IEEE
Internet Computing, 11:62–67, July 2007.

BIBLIOGRAPHY 92

[66] M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection at-
tacks with syntax embeddings - a host and guest language independent
approach. In Proceedings of the 6th international conference on Gener-
ative programming and component engineering, GPCE ’07, pages 3–12,
New York, NY, USA, 2007.

[67] M. Grechanik. Finding errors in components that exchange xml data. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 264–273, 2007.

[68] K. Cagle, N. Ozu, J. Pinnock, D. Gibbons, and D. Hunter. Beginning
XML. Wrox Press Ltd., Birmingham, UK, UK, 2000.

[69] M. Jensen, N. Gruschka, R. Herkenhöner, and N. Luttenberger. Soa
and web services: New technologies, new standards - new attacks. In
ECOWS ’07: Proceedings of the Fifth European Conference on Web
Services, pages 35–44, Washington, DC, USA, 2007. IEEE Computer
Society.

[70] W. D. Yu, P. Supthaweesuk, and D. Aravind. Trustworthy web services
based on testing. In SOSE ’05: Proceedings of the IEEE International
Workshop, pages 167–177, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[71] A. Kiežun, Ph. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic
creation of sql injection and cross-site scripting attacks. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09,
pages 199–209, Washington, DC, USA, 2009. IEEE Computer Society.

[72] G. Wassermann and Z. Su. Static detection of cross-site scripting vul-
nerabilities. In Proceedings of the 30th international conference on Soft-
ware engineering, ICSE ’08, pages 171–180, New York, NY, USA, 2008.
ACM.

[73] G. A. Di Lucca, A. R. Fasolino, M. Mastroianni, and P. Tramontana.
Identifying cross site scripting vulnerabilities in web applications. In
Proceedings of the Web Site Evolution, Sixth IEEE International Work-
shop, pages 71–80, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[74] D. Bates, A. Barth, and C. Jackson. Regular expressions considered
harmful in client-side xss filters. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 91–100, New York,
NY, USA, 2010. ACM.

[75] E. Bertino and E. Ferrari. Secure and selective dissemination of xml
documents. ACM Trans. Inf. Syst. Secur., 5(3):290–331, 2002.

BIBLIOGRAPHY 93

[76] W. Lee, A. Squicciarini, and E. Bertino. Vulnerabilities leading to denial
of services attacks in grid computing systems: a survey. In CSIIRW
’10: Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research, pages 1–3, New York, NY, USA,
2010. ACM.

[77] U. K. Tupakula and V. Varadharajan. A practical method to coun-
teract denial of service attacks. In ACSC ’03: Proceedings of the 26th
Australasian computer science conference, pages 275–284, Darlinghurst,
Australia, Australia, 2003. Australian Computer Society, Inc.

[78] M. Schillo, H.-J. Bürckert, K. Fischer, and M. Klusch. Towards a def-
inition of robustness for market-style open multi-agent systems. In
AGENTS ’01: Proceedings of the fifth international conference on Au-
tonomous agents, pages 75–76, New York, NY, USA, 2001. ACM.

[79] A. Gorbenko, A. Romanovsky, V. Kharchenko, and A. Mikhaylichenko.
Experimenting with exception propagation mechanisms in service-
oriented architecture. In WEH ’08: Proceedings of the 4th international
workshop on Exception handling, pages 1–7, New York, NY, USA, 2008.
ACM.

[80] B. A. Kuperman, C. E. Brodleyd, H. Ozdoganoglu, T. N. Vijaykumar,
and A. Jalote. Detection and prevention of stack buffer overflow attacks.
Commun. ACM, 48(11):50–56, 2005.

[81] F.-H. Hsu, F. Guo, and T. Chiueh. Scalable network-based buffer
overflow attack detection. In ANCS ’06: Proceedings of the 2006
ACM/IEEE symposium on Architecture for networking and commu-
nications systems, pages 163–172, New York, NY, USA, 2006. ACM.

[82] M. Refai. Exploiting a buffer overflow using metasploit framework. In
PST ’06: Proceedings of the 2006 International Conference on Privacy,
Security and Trust, pages 1–4, New York, NY, USA, 2006. ACM.

[83] G. Tóth, G. Kőszegi, and Z. Hornák. Case study: automated security
testing on the trusted computing platform. In EUROSEC ’08: Proceed-
ings of the 1st European Workshop on System Security, pages 35–39,
New York, NY, USA, 2008. ACM.

[84] Damn vulnerable web app. http://www.dvwa.co.uk/. Last accessed
on 2011-09-20.

http://www.dvwa.co.uk/

	Introduction
	Testing and its Benefits
	Testing in General
	Testing Guidelines
	Testing Strategy

	Manual vs. Automated Testing
	Benefits of Testing
	Test Process and its Place in the Software Development Cycle
	The Place of Testing
	Test Process

	Security Testing Tools
	Fuzz Testing
	Fuzzing Types
	Fields of Application of Fuzzing

	Presentation of Security Testing Tools
	Fuzzolution
	JBroFuzz
	Peach
	Fuzzware

	Definition of Evaluation Criteria
	General Criteria
	Vulnerability Detection Criteria
	Prioritization of Criteria

	Results of Security Testing Tools Evaluation
	Evaluation Process
	Evaluation of Tools
	Fuzzolution
	JBroFuzz
	Peach
	Fuzzware
	Evaluation of the Criterion SQL Injection and Blind SQL Injection

	Comparison of Results

	Conclusio
	Terms and Abbreviations

