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Abstract

This thesis deals with the theoretical investigation and characterization of

systems formed by hexagonal boron nitride on top of the (111) surfaces of

nickel, rhodium and platinum.

The h-BN/Ni(111) system was studied to carry out simulations of NEXAFS

spectra for the B-K and N-K edge and to investigate the bonding properties

in detail.

The h-BN/Rh(111) and h-BN/Pt(111) systems form a selfassembled struc-

ture called nanomesh and are investigated using the software package OpenMX,

which is an order-N DFT method that is less demanding than other schemes

with respect to computational resources. The results obtained are compared

with both experimental data and results calculated with WIEN2k.

In the last part of this work a possible reaction path for the formation of

the h-BN layer on the Rh(111) surface is studied by theory.
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Kurzfassung der Arbeit

Diese Arbeit beschäftigt sich mit der theoretischen Untersuchung von Ober-

flächensystemen, die auf der Bildung einer Monolage hexagonalen Bornitrides

auf den (111)-Oberflächen von Nickel, Rhodium und Platin basiert.

Für das h-BN/Ni(111)-System wurden sowohl NEXAFS-Spektren für die

B-K und N-K Absorptionskanten simuliert, als auch die genaue elektronische

Struktur zur detaillierten Aufklärung der Bindungseigenschaften berechnet.

Die Bildung von hexagonalem Bornitrid auf Rhodium und Platin führt

zu selbstgeordneten regelmäßigen Strukturen (genannt Nanomesh), welche

eine sehr große Einheitszelle aufweisen und daher mit der Software OpenMX

untersucht wurden, da diese DFT Berechnungen ermöglicht hat, welche nur

linear mit der Anzahl der Atome skalieren. Die erhaltenen Ergebnisse wurden

mit experimentellen Daten sowie Berechnungen mit dem ProgrammWIEN2k

verglichen.

Im dritten Teil wird aufgrund theoretischer Überlegungen ein möglicher

Reaktionsweg entwickelt, welcher die Bildung von hexagonalem Bornitrid aus

Borazin auf der Rh(111)-Oberfläche beschreibt.
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Research Objectives
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This thesis focuses on the theoretical characterization and investigation of

surface systems consisting of h-BN formed on metal surfaces with (111) ori-

entation and the study of a possible reaction path that describes how these

systems are formed.

The following steps were carried out:

• The detailed characterization of the h-BN/Ni(111) system, especially

– a simulation of the NEXAFS spectra for the B-K and N-K ab-

sorption edge and the

– investigation of bonding properties between the metal substrate

and the h-BN layer using the WIEN2k software.

• An investigation of the possibility and accuracy of the geometry opti-

mization with OpenMX (an order-N DFT software) for the single layer

models of

– h-BN on Rh(111) and

– h-BN on Pt(111) with

– Comparison of the obtained results with both experiment and

WIEN2k calculations.

• A theoretical investigation of a possible reaction path for the formation

of h-BN on Rh(111).
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Chapter 1

Boron Nitride Nanomesh on

Rh(111)

1.1 Discovery

The formation of hexagonal boron nitride (h-BN) layers on metal surfaces

gained increasing attention in recent years. Hexagonal boron nitride is

isostructural and isoelectronic to graphite and thus has many similar prop-

erties. However, in contrast to the carbon-carbon bonding, with the well

known delocalized π electron system, boron and nitrogen have a different

electronegativity resulting in a partial ionic bonding forming an insulator.

Besides the interest in basic research those well ordered layer structures on

metal surfaces may offer a manifold of technical applications. Some of these

structures like the h-BN/Ni(111) are already well investigated by experi-

ment [2, 3] and theory [4]. In the case of Ni(111) the interface metal layer

has nearly the same in-plane lattice parameter as a simple h-BN layer and

thus a well defined epitaxial structure is formed. In 2004 a completely differ-

ent type of system was found when boron nitride was depostied on a Rh(111)
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Figure 1.1: STM image of the h-BN nanomesh on Rh(111) [5]

surface [5]. First investigations using scanning tunneling microscopy (STM)

did not show the expected homogenous epitaxial surface, but a pattern of a

honeycomb like structure, as can be seen in figure 1.1. The structure is well

ordered but shows a periodicity of approximately 3.2 nm, which was called

’nanomesh’. This completely different behavior of h-BN on the rhodium sur-

face comes most likely from the large lattice mismatch between Rh(111) and

h-BN of 6.7 percent, which would lead to a highly strained structure when

epitaxially grown. In contrast to rhodium the mismatch for h-BN/Ni(111)

is only 0.4 percent.

1.2 Synthesis

The h-BN nanomesh was prepared [5] by exposing the clean Rh(111) surface

to borazine vapor at a temperature of 1070 K. The reaction was carried out

13



Figure 1.2: STM image of the h-BN nanomes on Rh(111) with higher reso-

lution and height profile along the line [5].
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in an ultrahigh vacuum chamber with a vapor pressure of 3 · 10−7 mbar and

a total exposure of 40 Langmuir (1 Langmuir is 10−6 Torr·s and 1 Torr is

1.332 · 10−3 bar). Consecutively the sample is cooled down to room temper-

ature forming the mesh as shown in figure 1.1.

1.3 Proposed Structure

The experimental group investigated the structure applying scanning tunnel-

ing microscopy (STM), low-energy electron diffraction (LEED) and ultravi-

olet photoelectron spectroscopy (UPS) [5]. According to the LEED pattern

shown in figure 1.3 an in-plane lattice constant of 2.69 Å is found for the

Rh(111) surface. A single layer of hexagonal boron nitride would have a

lattice parameter of 2.48 (± 0.05) Å, which already indicates that (due to

the lattice mismatch) boron nitride does not grow epitaxially on top of the

rhodium layer in contrast to nickel [2] on which it does. The LEED pat-

tern shows additional spots indicating a super lattice with a periodicity of

32 (± 1) Å, which corresponds to a 12×12 Rh unit cell that matches a 13×13

h-BN unit cell. According to the STM images (figure 1.1 and 1.2), which

- as we know now - obviously suffered from some artefacts that could not

be reproduced [6], a double layer model was proposed, according to which

one layer forms an incomplete honeycomb structure on top of the rhodium

surface followed by a second layer with additional holes leading to a partial

double layer as shown in figure 1.4. This model explained in priniciple the

image found in the STM experiments as well as the result of UPS (figure

1.5), which shows a splitting of the h-BN σ-bands (in contrast to the nickel

case) into a σ1 and a σ2 contribution indicating two types of h-BN.

However, the proposed two layers model is unrealistic, since many broken

15



Figure 1.3: LEED pattern of the h-BN nanomesh on Rh(111) [5]

B-N bonds, which are energetically very unfavorable, would occur in the par-

tial boron nitride layer. According to our DFT calculations [7] such broken

bonds would only be stable if saturated e.g. with hydrogen atoms. Infrared

spectroscopy (IR) could not detect any hydrogen atoms on the surface, but

this does not exclude the presence of hydrogen because of the low sensitivity

of this experiment. An additional problem with the two layer model is the

corrugation derived from STM experiments, which is in the range from 0.5 to

1 Å (figure 1.2), a value much smaller than the interlayer distance of h-BN

of 3.3 Å.

Such considerations led us to question the proposed two layer model. Con-

sequently an alternative single layer model was introduced [7] which consists

of only one - but highly corrugated - complete single layer (figure 1.6). The

periodicity of the system contains a 12×12 Rh cell (as in the originally pro-

posed double layer model), but on top of this layer a single h-BN layer is

formed that consists of 13×13 h-BN unit cells. Due to the lattice mismatch

between the rhodium surface and the h-BN layer the local topology (between

16



Figure 1.4: First proposed structure model of BN nanomesh on Rh(111)

[5]. In the three dimensional image (A) the large blue balls represent the

Rh(111) surface and the orange and green balls boron and nitrogen. The

images show the two partial h-BN layers resulting in a corrugation of the

surface, that still has areas of uncovered Rh(111). In the schematic top view

(B) the first h-BN layer is illustrated, with the rhodium atoms as blue circles

and boron and nitrogen as red and green dots. Additionally the geometric

situation of boron and nitrogen with respect to the metal surface is indicated

by the large colored circles. (See appendix A.2 for details.) In the third

image (C) the second layer is shown additionally.
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Figure 1.5: UPS spectum of the h-BN nanomesh on Rh(111) (thick solid

line). For comparison also the spectra of the uncovered Ni(111) surface

(dashed line) and h-BN/Ni(111) (thin solid line) are shown. The signals

in the energy range from 0 to 4 eV come from the metal d bands, at about

5 eV from the h-BN σ bands and at approximately 10 eV from the h-BN π

states. Additionally the inset shows in detail the splitting of the σ band of

h-BN/Rh(111) in a σ1 and a σ2 contribution [5].
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boron nitride and rhodium) changes continuously throughout the supercell

resulting in different bonding situations between boron nitride and rhodium

in the two layers, which causes a large corrugation of the system. This model

is more favorable according to energetic considerations since neither broken

bonds are present in h-BN nor hydrogen atoms are needed to saturate the

dangling bonds. The geometry of this proposed single layer nanomesh model

was first derived by an ab initio generated force field method [7]. The large

size of this system made it necessary to make severe simplifications, so that

this model may suffer from various approximations, which had to be done

in order to reduce the computational effort. For example all force constants

were derived from small unit cells, in which the h-BN layer was stressed to

match the underlying Rh(111) surface. Another simplification was that the

relaxation of the h-BN layer could only be evaluated with respect to the

fixed rhodium surface. Therefore an influence of a relaxation of the rhodium

interface could not be investigated.

The main goal of this thesis was to apply full DFT calculations to the

proposed single layer model including relaxation of the top rhodium substrate

layer.

Due to the large size of the system, conventional DFT calculations were

not feasible at the beginning of this thesis and thus simpler schemes were nec-

essary. After some search the software package OpenMX [8] was found, an

order-N method, i.e the computational effort increases linearly with respect

to the number of atoms. Other tested software packages were DFTB (Den-

sity Functional based Tight Binding) [9] and SIESTA (Spanish Initiative for

Electronic Simulations with Thousands of Atoms) [10]. In order to carry out

calculations with DFTB a proper set of parameter files has to be generated,

which turned out to be problematic for the systems discussed in this work.
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Figure 1.6: Newly proposed structure of the h-BN nanomesh on Rh(111) [7].

The first image (a) shows the corrugation of the system (with the rhombus

indicating the unit cell). The second image shows the unit cell consisting of

12×12 Rh (gray balls) and 13×13 B-N cells. The boron atoms are colored

in blue, with positons close to the metal in lightblue and positions with a

large spacing in darkblue. The nitrogen atoms are colored from yellow for

low positions to red for high positions.
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The SIESTA program is also an order-N DFT code - like OpenMX - but is

not capable of treating long range interactions as they occur in metals.

In comparison to the other software packages the main advantage of

OpenMX is that it is capable to calculate large metallic systems within rea-

sonable time, in contrast to conventional DFT calculations for which the

effort increases with the third power of the system size (atoms or basis func-

tions). At the end of this thesis it became possible to achieve a geometry

relaxation also with WIEN2k [1, 11], due to a newly implemented iterative

diagonalization scheme and greatly improved parallelization, which signifi-

cantly reduced the computing time. These new results can now be compared

with the still much faster (but less accurate) OpenMX calculations.

Although the simplified force field method mentioned above could be

verified by the full DFT calculations for the h-BN nanomesh on Rh(111),

preliminary results indicate that it failes for the nanomesh formed on Pt(111),

which has an even larger lattice mismatch of 10.8 %. In the latter case the

forces derived from a highly expanded h-BN (to match Pt(111)) are not

transferable to unstrained h-BN. Therefore the platinum system has been

investigated by both types of DFT calculations (OpenMX and WIEN2k)

and the relaxation of the topmost interface layer was studied.
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Chapter 2

Density Functional Theory

Within this chapter a short introduction of the applied methods and the

fundamental physics will be given. The first part discusses the general basics

of density functional theory (DFT). The second part gives a brief overview

about the methods used in the two software packages WIEN2k and OpenMX

used in this work. The fundamental concepts of the order-N scaling method

will be described since OpenMX falls into this category.

2.1 General Introduction

2.1.1 The Schrödinger Equation

The Schrödinger equation is the fundamental equation of quantum mechanics

as it describes the dependence of a quantum mechanical system in time and

space. It is an axiom (just as the three Newton’s laws) and was proposed in

1926 by Erwin Schrödinger (equation 2.1).

( −h2
8π2m

∇2 + V

)
Ψ(�r, t) =

ı̂h

2π

∂Ψ(�r, t)

∂t
(2.1)
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The drawback of this equation is that it can only be solved exactly for very

simple systems, like the hydrogen atom. To be able to calculate more complex

systems different approximations including numerical methods have to be

introduced.

In general a solution for the ground state is desired which results in a

time invariant problem. This leads to the time independent Schrödinger

Equation (equation 2.2) which is the basis for most quantum mechanical ab

initio calculations.

− �

2m
∇2ψ(�r) + V (�r)ψ(�r) = Eψ(�r) (2.2)

A crucial point, which is difficult to handle, is the potential V (�r) which con-

tains both, the classic Coulomb interaction between electrons and the nuclei

and the electron electron interaction. The current state of the art method

that handles these effects in an approximate but sufficiently accurate way

is Density Functional Theory (DFT). As already indicated in the name this

theory is based on the electron density of a system and not on its electronic

wave functions ψ(�r), which is a complicated object depending on 3 · n vari-

ables in a system with n electrons. DFT is the method of choice for the

calculations carried out in this thesis and thus a general overview about the

approach and the implementation within large scale O(N) methods will be

given in the next sections.

2.1.2 The Hohenberg-Kohn Theorems

According to the first Hohenberg and Kohn theorem [12] the ground state

electron density ρ(�r) is a functional of an external potential Vext(�r). Further-

more it can be shown that Vext(�r) is - apart from a simple additive constant -

uniquely defined by ρ(�r). This direct interrelation has the consequence that
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an expectation value of an observable A is also a unique functional of the

electron density of the ground state.

< Φ|Â|Φ >= A[ρ] (2.3)

This implies that all characteristics of a system that could be revealed from

the electron wave functions can also be obtained from the electron density

without any loss of information.

The second theorem states that the energy of an interacting inhomo-

geneous electron gas in the presence of an external potential Vext(�r) is a

functional of the electron density ρ(�r).

EVext [ρ] =

∫
Vext(�r)ρ(�r)d�r + FHK[ρ] (2.4)

The Hohenberg-Kohn density functional FHK[ρ] is a universal functional that

is valid for any number of electrons and any external potential provided by

the nuclei. It can be shown that the energy EVext [ρ] reaches its minimum

for the ground state density corresponding to Vext(�r), which implies that it

is possible to use the variational principle of Rayleigh and Ritz to find the

ground state energy. The variational principle states that the ground state

energy E0 is less or equal to the energy of the systems derived by a trial

electron density ρ̃. Both energies would be equal if the trial electron density

is identical to the density of the exact solution.

E0 ≤ EV [ρ̃] (2.5)

2.1.3 The Kohn-Sham equations

The Kohn-Sham equations [13] describe how a many-body system can be

mapped to an one-electron reference system that leads to the same density
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and thus energy as the real system,

EVext [ρ] = T0[ρ] +

∫
ρ(�r)Vext(�r)d�r +

1

2

∫∫
ρ(�r)ρ(�r′)

|�r − �r′| d�rd
�r′ + Exc[ρ] (2.6)

where T0[ρ] is the functional for the kinetic energy of a non-interacting elec-

tron gas, the second term is the nucleus-electron Coulomb interaction, the

third one is the Hartree contribution and the last Exc[ρ] is the exchange

correlation energy. Resulting from the variational principle the Kohn-Sham

theorem can now be expressed as an eigenvalue problem

{−1

2
∇2 + Vext + VC(ρ(�r)) + Vxc(ρ(�r))}Φi(�r) = εiΦi(�r) (2.7)

with an exchange correlation potential

Vxc(ρ(�r)) =
∂Exc(ρ(�r))

∂ρ(�r)
(2.8)

or in short

ĤKSΦi = εiΦi (2.9)

where εi are Lagrange multipliers resulting from the boundary condition of

the orthogonality of the Kohn-Sham orbitals Φi. It has to be mentioned

that the single particle wave functions Φi do not describe real electron wave

functions and have no strict physical meaning. Nevertheless the density

resulting from the sum of these single electron wave functions is equal to the

electron density of the real (interacting) system. As a further consequence

the energies εi are - strictly speaking - just Lagrange parameters but not

equal to electron excitation energies, for which they are often used as a first

approximation.

2.1.4 Exchange Correlation Energies and Potentials

While the equations 2.4 to 2.9 are still exact, Exc[ρ] is unknown. There

are two main approaches to approximate this unknown exchange correlation
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functional Exc[ρ] mentioned above, which should include correction terms for

the kinetic energy of independend particles and the corresponding self inter-

action from the Hartree term. The first is the so called local density approach

(LDA)[14] (equation 2.10) which expresses the exchange correlation energy

Exc by an integration over the xc-energy density εxc of a free homogeneous

electron gas, which depends only on the local density ρ(�r).

ELDA
xc =

∫
ρ(�r)εxc (ρ(�r)) d�r (2.10)

The LDA potential (in equation 2.7) V LDA
xc = ∂Exc

∂ρ
is widely used and

gives good results in systems with a slowly varying electron density ρ(�r) but

it is known to overestimate bonding in general.

The second commonly applied way to treat the exchange correlation en-

ergy is the generalized gradient approximation GGA which additionally takes

the changes of the electron density ρ(�r) around a point �r into account by in-

cluding the gradient of the electron density ∇ρ(�r).

EGGA
xc =

∫
f(ρ(�r),∇ρ(�r))d�r (2.11)

Due to the additional gradient term GGA often shows improvements over

LDA but it tends to underestimate binding. Within this thesis the GGA

exchange correlation potential by Perdew, Burke and Ernzerhof [15] is used

exclusively. Therefore other DFT functionals are not discussed here.

2.2 Applied Methods

Within this work two different software packages were applied, which are

both based on DFT but differ in the construction and type of wave functions

leading to different advantages and drawbacks. The first software that is used

26



here is WIEN2k [16], which is a full potential DFT code that uses augmented

plane waves as basis functions. It is a highly accurate program that allows

to compute many different properties and carry out simulations of several

spectroscopics. Especially for core level spectroscopies (where a core electron

is excited into an unoccupied state) like the simulation of NEXAFS (Near

Edge X-ray Absorption Fine Structure) it is necessary to include core states in

the calculations and thus pseudopotential based methods cannot be applied

(for details see chapter 3.1). The factor determining the computational effort

is proportional to the third power of the number of atoms in the unit cell (or

basis functions). Although this code is numerically highly efficient (with the

recent improvements like fast iterative diagonalization schemes) the system

size of the boron nitride nanomesh, containing at least about one thousand

atoms is a real challenge for geometry optimization, requiring large computer

time and memory.

Therefore in this thesis another software package OpenMX [8] was used

which allows to optimize the geometry of such a large structure in reasonable

time. The program belongs to the so called order-N methods, whose compu-

tational effort and the necessary memory scales linearly with the number of

atoms in the unit cell. This package is based on pseudopotentials and uses a

linear combination of pseudo atomic orbitals (LCPAO).

2.2.1 WIEN2k basis sets (LAPW and APW+lo)[1]

2.2.1.1 Plane Waves (PW)

According to Bloch’s theorem the eigenfunctions for a Hamiltonian with lat-

tice periodicity can be written as the product of a function un�k(�r) that has

the periodicity of the lattice and a phase factor eı̂
�k·�r with �k being a vector
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in the first Brillouin zone

ψn
�k
(�r) = un�k(�r)e

ı̂�k·�r (2.12)

where n labels the band index. Within this equation the Bloch factor eı̂
�k·�r

is known but the undetermined part un�k(�r) has the periodicity of the lattice.

Therefore the wave function ψn
�k
(�r) can be written (according to a Fourier

series) as the sum over plane waves of the same periodicity, which includes

a sum of (all) reciprocal lattice vectors �K.

ψn
�k
(�r) =

∑
�K

cn,
�k

�K
eı̂(

�k+ �K)·�r (2.13)

In order to find the wave function the coefficients cn,
�k

�K
must be determined.

This basis set is complete and has the advantage of being unbiased and trans-

ferable but unfortunately it is very inefficient, since almost an infinite number

of plane waves would be needed to properly describe the wavefunctions near

the nucleus. Even for relative simple systems this would require a basis set

of 108 plane waves, leading to a matrix size of 108 × 108 that would have to

be diagonalized. This is a size that cannot be handled at all with present

computer systems.

2.2.1.2 Linearized Augmented Plane Waves (LAPW)

The problem of the core like region in the wave function can be overcome

by pseudopotentials and by an augmentation of the plane waves basis set.

The idea behind the LAPW basis set is to avoid the introduction of pseu-

dopotentials which simplify the calculations but looses information about the

region near to the nucleus. The latter is of importance for example if one

is interested in hyperfine fields or core level excitations. Since plane waves

alone (chapter 2.2.1.1) would be by far too expensive, Slater suggested the
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augmented plane waves (APW) method [17]. It partitions the unit cell into

two types of regions: One part consists of atomic spheres Sα placed around

each atom α and the other of the so called interstitial region I. These atomic

spheres are also often called muffin tin spheres. Crystal wave functions are

expanded into APW basis functions as

ψn
�k
(�r, E) =

∑
�K

cn,
�k

�K
· φ�k�K(�r, E) (2.14)

where φ
�k
�K
(�r, E) are defined as

φ
�k
�K
(�r, E) =

⎧⎪⎨
⎪⎩

1√
V
eı̂(

�k+ �K)·�r �r ∈ I∑
�,m

Aα,�k+ �K
�,m uα� (r

′, E)Y�,m(ϑ(�r ′), ϕ(�r ′)) �r ∈ Sα

(2.15)

r := ‖�r‖ (2.16)

with �K beeing a vector of the reciprocal lattice and V the volume of the unit

cell. The position inside the sphere α is given by the vector �r ′ = �r− �rα where

�rα is the position of the corresponding atom. The problem of this basis set

lies in the energy dependence of uα� which are the solutions of the radial part

of the Schrödinger equation in a given potential V for an atom α at energy

E. This makes the basis set energy depended. When E equals the eigenvalue

εn�k of this state the (numerically) “exact” solution is found. However E is not

known when searching for eigenvalues. Mathematically this is a non-linear

eigenvalue problem, which makes the APW method extremely demanding in

computational terms.

To overcome this problem the energy dependence of the APW basis set

has been linearized and thus the linearized augmented plane wave[18] method

was introduced. The trick is to expand uα� (r
′, E) into a sort of Taylor series

around a fixed energy E�, which is chosen near the center of the corresponding
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band. This allows to approximate uα� (r
′, E) when E is near E�.

uα� (r
′, E) = uα� (r

′, E�) + (E − E�)
∂uα� (r

′, E)
∂E

|E=E�︸ ︷︷ ︸
u̇α
� (r

′,E�)

+ . . . (2.17)

Substituting uα� (r
′, E) in the APW basis set with the first two terms of the

Taylor series the resulting basis set has the form

φ
�k
�K
(�r) =

⎧⎪⎨
⎪⎩

1√
V
eı̂(

�k+ �K)·�r �r ∈ I∑
�,m

(
Aα,�k+ �K

�,m uα� (r
′, E�) +Bα,�k+ �K

�,m u̇α� (r
′, E�)

)
Y�,m(r̂) �r ∈ Sα

(2.18)

with the spherical harmonics

Y�,m(r̂) = Y�,m(ϑ(�r
′), ϕ(�r ′)) (2.19)

Now one has two parameters Aα,�k+ �K
�,m and Bα,�k+ �K

�,m , that need to be deter-

mined by requiring that the atomic functions inside the spheres match the

corresponding plane waves in value and slope at the sphere boundary. This

linearized augmented plane wave (LAPW) scheme leads to a linear eigenvalue

problem (that can be solved by a standard diagonalization). Unfortunately

the LAPWs are less efficient than the APWs leading to a slower convergence

of equation 2.14 than APW with the same number of �K vectors. In practice

the different E� values are chosen according to the center of gravity of each

� state (s,p,d,f) of each atom.

2.2.1.3 Augmented Plane Waves and Local Orbitals (APW+lo)

As mentioned above the LAPW method needs more �K vectors than the

APW method and thus the latter would be favored but has the drawback

of the energy dependence of the basis set. This led to a new formulation of

the APW method [16] by adding local orbitals (lo) with two types of basis
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functions which are combined for APW+lo. The first one are APWs but

now with fixed energies Eα
1,�

φ
�k
�K
(�r) =

⎧⎪⎨
⎪⎩

1√
V
eı̂(

�k+ �K)·�r �r ∈ I∑
�,m

Aα,�k+ �K
�,m uα� (r

′, Eα
1,�)Y�,m(r̂) �r ∈ Sα

(2.20)

and the other ones are the local orbitals of the form

φ�,m
α,lo(�r) =

⎧⎨
⎩

0 �r /∈ Sα(
Aα,lo

�,mu
α
� (r

′, Eα
1,�) +Bα,lo

�,m u̇
α
� (r

′, Eα
1,�)

)
Y�,m(r̂) �r ∈ Sα

(2.21)

Note that within the APW and the lo basis the same set of energies Eα
1,� are

used. The two coefficients Aα,lo
�,m and Bα,lo

�,m are determined by requiring that

the local orbitals have zero value at the sphere boundary and are normalized

to 1. This allows the determination of all eigenvalues with a basis set size of

the APW method but using a simple diagonalization.

2.2.1.4 Mixed LAPW/APW+lo Basis Set

Within the LAPW method it is more difficult to describe systems with va-

lence d and f states (of atoms with relatively small muffin tin sphere) than

with APW+lo using a certain number of plane waves. Therefore it is ad-

vantageous to use APW+lo only for those (difficult) states but use LAPW

for all others. This combined basis set leads to accurate results but needs a

significant smaller basis set (often half the size) which directly improves both

the computational time and memory consumption. This mixed basis set was

used in this thesis in all calculations carried out with WIEN2k.

2.2.2 OpenMX basis set and the (O)N Method

The software package OpenMX [8] is used within this thesis to run full DFT

calculations with a linear scaling of the computational effort with respect to
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the system size (number of atoms). This allowed the first DFT calculations

of the nanomesh systems, which will be discussed later and is the main topic

of this thesis. Therefore the following sections will give a short introduction

about the principles to achieve linear scaling within DFT calculations.

2.2.2.1 LCPAO Basis Set

The theoretical approach within the software package OpenMX is different

to the method discussed before. In WIEN2k the basis set is mainly based

on plane waves, which is the common method for many solid state calcula-

tions, whereas OpenMX uses the linear combination of pseudoatomic orbitals

(LCPAO) [19]. The pseudo atomic orbitals φiα are centered at the atomic

sites �ri which lead to the Kohn-Sham Bloch functions ψ
�k
σμ

ψ
�k
σμ(�r) =

1√
N

N∑
n

eı̂·
�Rn·�k

∑
iα

c
�k
σμ,iαφiα(�r − �ri − �Rn) (2.22)

with i the site index, c the expansion coefficient, the spin index σ and

α ≡ (p, �,m) the orbital index. The values within the orbital index α de-

termine the multiplicity index p (number of eigenstates for same � and m),

the angular momentum quantum number � and the magnetic quantum num-

ber m.

The corresponding pseudo atomic functions φiα are a product of a real

spherical harmonics Y�m and the numerical radial wave function Rp�

φiα(�r) = Y�m(ϑ(�r), ϕ(�r)) · Rp�(r) (2.23)

which are eigenstates of an atomic Kohn-Sham equation. The pseudo atomic

wave functions are determined by two parameters, the cutoff radius and the

number of orbitals (eigenstates).

Additionally pseudopotentials are introduced which allow to replace the

actual (real) deep core potentials with more shallow ones with the same slope
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and value as the all electron potential at a defined distance from the atom

center. This allows a much smaller basis set. The mandatory charge density

nσ(�r) associated with the spin component σ is defined by the charge density

operator n̂σ

n̂σ(�r) =
1

VBZ

∫
BZ

dk3
occ∑
μ

|ψ�k
σμ〉〈ψ�k

σμ| (2.24)

with
∫
BZ

the integration over the first Brillouin zone with volume VBZ and
occ∑
μ

stands for the summation over all occupied states. By applying the operator

the corresponding charge density nσ(�r) is obtained

n(σ)(�r) = 〈�r|n̂σ|�r〉 (2.25)

=
1

VBZ

∫
BZ

dk3
occ∑
μ

〈�r|ψ�k
σμ〉〈ψ�k

σμ|�r〉 (2.26)

=
1

VBZ

∫
BZ

dk3
N∑
n

∑
iα,jβ

occ∑
μ

eı̂·
�Rn·�kc

�k 	
σμ,iαc

�k
σμ,jβφj,β(�r − �rj)φi,α(�r − �ri − �Rn)

(2.27)

=

N∑
n

∑
iα,jβ

ρ
�Rn
σ,iα,jβφi,α(�r − �ri)φj,β(�r − �rj − �Rn) (2.28)

with the density matrix defined as

ρ
�Rn

σ,iα,jβ =
1

VBZ

∫
BZ

dk3
occ∑
μ

eı̂·
�Rn·�kc

�k 	
σμ,iαc

�k
σμ,jβ (2.29)

Furthermore a difference charge density δnσ(�r) is introduced

δnσ(�r) = nσ(�r)− n(a)
σ (�r) (2.30)

δnσ(�r) = nσ(�r)−
∑
i

n
(a)
i,σ (�r) (2.31)

with n
(a)
σ (�r) the atomic charge density derived from an isolated atom asso-

ciated with site i. This is important for the linear scaling algorithm as will
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be discussed in the next section. It has to be noted that the overall atomic

charge density n
(a)
σ (�r) is just the sum of its atomic contributions n

(a)
i,σ (�r) re-

sulting from the pseudo atomic orbitals φ and the atomic density matrix ρ

defined in equation 2.44:

n(a)
σ (�r) =

∑
iα,jβ

φiα(�r)φjβ(�r)ρ
(σ)
iα,jβ (2.32)

=
∑
i

n
(a)
i,σ (�r) (2.33)

The total energy Etot determined for the calculated system is the sum of

the kinetic energy Ekin, the electron-core Coulomb energy Eec, the electron-

electron Coulomb energy Eee, the exchange correlation energy Exc and the

core-core Coulomb energy Ecc

Etot = Ekin + Eec + Eee + Exc + Ecc (2.34)

with the kinetic energy given by the kinetic energy operator T̂

Ekin =
1

VBZ

∫
BZ

dk3
∑
σ

occ∑
μ

〈ψ�k
σμ|T̂ |ψ�k

σμ〉 (2.35)

Due to the use of pseudopotentials the electron-core Coulomb energy Eec

consists of two different contributions E
(L)
ec and E

(NL)
ec , which are either re-

lated to the local or to the non-local parts of the pseudopotentials (for details

see [20]). The electron-electron Coulomb energy Eee is obtained by

Eee =
1

2

∫∫
dr3dr′ 3

n(�r)n(�r′)

|�r − �r′| (2.36)

=
1

2

∫
dr3n(�r)VH(�r) (2.37)

=
1

2

∫
dr3n(�r)

(
V

(a)
H (�r) + δVH(�r)

)
(2.38)

with VH split into two parts V
(a)
H and δVH, which are a result of the atomic

charge densities n(a)(�r) and the difference charge density δn(�r) (the index σ
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for the spin is omitted, since the total electron contribution is considered)

defined by

V
(a)
H =

∑
i

∫
dr′ 3

n
(a)
i (�r)

�r − �r′
(2.39)

=
∑
i

V
(a)
H,i (�r − �ri) (2.40)

δVH(�r) =

∫
dr′ 3

δn(�r)

�r − �r′
(2.41)

The exchange correlation energy Exc is defined by the GGA functional [15]

and the core-core Coulomb energy Ecc is derived by the repulsive Coulomb

forces resulting from the effective core charges Zi determined in the generated

pseudopotential by

Ecc =
1

2

∑
i,j

ZiZj

�ri − �rj
(2.42)

While most of the energy contributions can be reduced to two center integrals

by applying a projector expansion [21], the long range contribution of the

electron-electron Coulomb energy and the exchange-correlation energy are

evaluated on a real regular mesh. The fineness (i.e. the number of grid points)

of this mesh is determined by a plane waves cutoff energy Ecut.

To be able to relax the geometric structure the atomic forces have to

be evaluated. The forces on an atom i with respect to its position �ri are

calculated by

�Fi = −∂Etot

∂�ri
(2.43)

where ∂Etot

∂�ri
can be determined by calculating the partial derivatives of the

energies contributing to the total energy Etot [20].

2.2.2.2 Linear Scaling Algorithm

In order to solve large systems a new approach is introduced in which the

computational effort scales linearly with system size; in short O(N). In con-
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ventional DFT calculations the charge density is derived from the quasi par-

ticle wave functions. But in contrast the implemented O(N) algorithm in

OpenMX reveals the density matrix with the help of Green’s functions. The

so called O(N) Krylov-subspace method [22] applied in this software package

is a combination of the divide-and-conquer (DC) method [23, 24, 25] and the

recursion method [26, 27, 28, 29, 30] based on the Lanczos algorithm [31].

The benefit of the DC method is that it provides a rapid convergence but only

for covalent systems like biological molecules. The reason for this limitation

is that the local density matrix cannot handle the long range interaction as

it occurs in metallic systems [32]. In contrast to that scheme the recursion

method is an appropriate method for calculating metals, but it is unstable

when applied to an SCF iteration. The Krylov-subspace method described

in this chapter combines the advantages of both approaches and thus allows

fast SCF calculation of large metallic systems.

The concept of Green’s functions results from the approach to describe

quantum mechanical systems not in terms of wave functions, like it is done

when using Schrödingers equation, but using scattering theory [33]. The

density matrix can be expressed in terms of Green’s functions G(σ)
iα,jβ by

ρ
(σ)
iα,jβ = −1

π
Im

∫
G(σ)
iα,jβ(E + ı̂ξ) f

(
E − μ

kBT

)
dE (2.44)

with the Fermi function f(x),

f(x) :=
1

1 + exp (x)
(2.45)

an infinitesimal small positive ξ

ξ := lim
k→∞

1

k
k ∈ R (2.46)

and the chemical potential μ. The advantage of this type of functions is that

the common function, which is necessary for evaluating the overall density
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site i site j

Figure 2.1: Schematic view of truncated clusters [22]

of a system, can easily be constructed as the sum of parts of functions. This

possibility of using a patchwork of Green’s functions allows to split a large

system in smaller parts that are combined afterwards as applied in the DC

algorithm [23, 24, 34], with the assumption that the total density of states

can be approximated by the sum of local density of states of the central atom

in each site. This is the mandatory step which makes linear scaling possible.

In more detail the whole (large) system is truncated into clusters around

each site as shown in figure 2.1 [22], where the clusters are allowed to largely

overlap. Fur a further improvement OpenMX does not apply the common

method of the physical truncation where all atoms within a defined range

around the central site are taken into account but selects the atoms in a

more sophisticated way. They are determined using the logical truncation

scheme by considering the distance of atoms which are regarded of forming a
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(a) (b)

Figure 2.2: Comparison between the (a) physically and (b) logically trun-

cated clusters of a regular square lattice. For the physical truncation all

atoms within a sphere of a given radius are selected. The logical truncation

scheme selects all atoms in a shorter - bond like - range and proceeds from

these atoms in the same way until a defined depth is reached.

bond. To select the atoms within the cluster all atoms within a certain bond

range (hopping range) around the central site are included and afterwards

one proceeds in the same way until a defined depth is reached (number of

hoppings). A schematic view comparing the two different methods is shown

in figure 2.2. For each of this generated smaller systems (with the central

site i) both the local Hamiltonian Ĥ(i) and the local overlap matrix S(i) are

constructed.

By diagonalization of the local eigenvalue problem

Ĥ(i)c(i)μ = ε(i)μ S
(i)c(i)μ (2.47)

the resulting eigenvalues and eigenstates allow the simple construction of the
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local Green’s function as described in equation 2.48 (due to easier notation

the index (σ) is omitted)

Giα,jβ(Z) =
∑
μ

cμ,iαc
∗
μ,jβ

Z − εμ
(2.48)

with the complex number Z resulting in poles of Giα,jβ(Z) if equal to the

eigenvalues εμ.

In order to achieve a further reduction in computational effort not a

direct diagonalization is carried out but an iterative diagonalization scheme is

applied as it is done in the approach of the recursion method. By performing

a two-sided Lanczos algorithm the matrix is mapped to a Krylov subspace

UK

UK = span
{|e〉, A|e〉, A2|e〉, . . . , Aq|e〉} (2.49)

with A := (S(i))−1Ĥ(i), q the recursion depth of the Lanczos transformation

and |e〉 = (|e1〉, |e2〉, . . . , |eMi
〉) with the basis orbitals |iα〉 at site i having

Mi basis functions. This is a significant improvement since the dimension of

the resulting matrix, which is necessary to achieve sufficient accuracy, is in

general much smaller than that of the full matrix of the truncated cluster.

This has a large effect to the computational effort, since the diagonalization

still scales with the third power of the matrix size.

Furthermore the truncated cluster is divided into a core and a buffer re-

gion. The core region is defined by those sites which have an overlap of χiαχjβ

that is non zero with the center site i. Due to a orthogonal transformation,

which assures that U†
KSUK = I [22], the generalized eigenvalue problem

Ĥcμ = εμScμ (2.50)

can be transformed to a standard eigenvalue problem

ĤKbμ = εμbμ (2.51)
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with

ĤK = U†
KĤUK (2.52)

= u†cĤcuc + u†cĤcbub + u†bĤ
†
cbuc + u†cĤbub (2.53)

= ĤK
s + ĤK

l (2.54)

with Hc, Hb and Hcb the Hamiltonian matrices for the core region, the buffer

region and the region between core and buffer. Thus the Krylov subspace

is split into a core and a buffer region U†
K = (u†c; u

†
b) and therefore also the

Hamiltonian ĤK is decomposed in two parts consisting of a short range ĤK
s

and a long range ĤK
l contribution.

To achieve sufficient accuracy - especially for metallic systems - the long

range contribution ĤK
l is calculated at the first SCF step and kept fixed

during the further iteration and updated after self consistency. For the other

SCF steps the standard eigenvalue problem is diagonalized with an updated

ĤK
s and the fixed ĤK

l . Thus a detailed short range contribution is derived

by taking an effective correction by the long range contribution into account.

According to equation 2.33 the elements with non zero overlap at site i

contribute to the charge density and the corresponding matrix elements can

easily be obtained by the back transformation

cμ = ucbμ (2.55)

In the next step a common chemical potential for all truncated clusters of

the system is found. This is done by representing the Green’s functions in

terms of Mulliken populations

Gi(Z) =
∑
α,jβ

Giα,jβ(Z)Sjβ,iα =
∑
μ

κ
(i)
ν

Z − ε
(i)
μ

(2.56)

with

κ(i)ν =
∑
α,jβ

cμ,iαc
∗
μ,jβSjβ,iα (2.57)
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allowing an exchange of electrons between the truncated clusters. In the last

step the charge density of the whole system is determined by equation 2.33

and the Hartree potential is evaluated by solving Poisson’s equation using a

fast Fourier transformation.

2.2.2.3 Implementation

This section describes how the previously discussed models are implemented

in the software package and how calculations are carried out [22]. It has to

be mentioned that only in the first SCF cycle the logical truncation of the

system is determined (step 1) and the Krylov subspace (step 3) is generated.

They are kept fixed until self consistency.

1. Logical Truncation of the System

The large system is split up into smaller subsystems using the logical

truncation scheme by a defined number and range of hoppings. (See

the previous section for details.)

2. Construction of the local Hamiltonian

For each of the smaller sub systems the local Hamiltonian and overlap

matrix is generated. This is done as in conventional DFT calculations

but additionally the Hartree potential of the large system is included

in the local configuration. Therefore an isolation of the sub system and

thus the neglect of long range Coulomb contributions is omitted.

3. Generation of the Krylov Subspace

The Krylov Subspace UK is generated once using the two sided Lanczos

algorithm and is stored until selfconsistency is reached. This step is

necessary in order to avoid the numerical fluctuations during the SCF
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cycle, which would occur applying only the recursion method to an

iterative scheme.

4. Construction of the effective Hamiltonian

The effective Hamiltonian of each subsystem is constructed taking the

long range contributions (of the whole system) into account.

5. Check for Selfconsistency

The eigenvalue problem with the effective Hamiltonian is diagonalized

resulting in a set of components of eigenvectors, which allows to cal-

culate the necessary overall charge density and the common chemical

potential.

2.2.3 Geometry Optimization with OpenMX

In this section the different algorithms for geometry optimization will be

discussed, which were used in this work to relax the geometric structure with

the software package OpenMX [35].

2.2.3.1 Newton Method

In order to find the optimum geometry of a system, the total energy Etot is

expanded into a Taylor series with respect to the atomic positions �ri near the

calculated energy E0, which is related to the coordinates �ri0 . The resulting

equation is

E = E0 +
3N∑
i

(
∂E
∂�ri

)
0
(�ri − �ri0)+

+1
2

3N∑
i,j

(
∂2E

∂�ri∂�rj

)
0
(�ri − �ri0)(�rj − �rj0) + . . .

(2.58)

with N the number of atoms and ()0 indicating the partial derivatives at

the coordinates �ri0. Differentiating equation 2.58 with respect to the atomic
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positions �rk and - taking into account only the terms up to the second order

- gives

∂E

∂�rk
=

(
∂E

∂�rk

)
0

+

3N∑
i

(
∂2E

∂�rk∂�ri

)
0

(�ri − �ri0) (2.59)

with the derivative ∂E
∂�rk

determining the force on the atom (equation 2.43). If

the atomic positions �rk are in a local minimum, the resulting force is 0 and

thus the derivative ∂E
∂�rk

becomes 0. According to this the following equation

can be set up:⎛
⎜⎜⎜⎝

(
∂2E

∂�r1∂�r1

)
0

(
∂2E

∂�r1∂�r2

)
0
. . .(

∂2E
∂�r2∂�r1

)
0

(
∂2E

∂�r2∂�r2

)
0
. . .

. . . . . . . . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(�r1 − �r10)

(�r2 − �r20)

. . .

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

(
∂E
∂�r1

)
(

∂E
∂�r2

)
. . .

⎞
⎟⎟⎟⎠ (2.60)

which can be written in short form as

HΔ�r = −�g (2.61)

with H the Hessian matrix consisting of the second derivatives. The differ-

ences in atomic positions Δ�r between two geometry optimization steps can

be expressed as

Δ�r = �r(n+1) − �r(n) (2.62)

and thus the next geometric position can be determined by

�r(n+1) = �r(n) −H−1
(n)�g(n) (2.63)

The Newton method is a very robust scheme but has the disadvantage that

convergence is rather slow, resulting in a large number of geometry optimiza-

tion steps, which are necessary to achieve a sufficient relaxation.

2.2.3.2 RMM-DIIS

To achieve an improvement with respect to the necessary geometry optimiza-

tion steps the Newton algorithm discussed above is expanded. The residual
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minimization method in the direct inversion of iterative subspace (RMM-

DIIS) [36, 37] introduces a tuning parameter α to equation 2.63 and gives

�r(n+1) = �r(n) − αH−1
(n)�g(n) (2.64)

which allows to accelerate convergence. Within the RMM-DIIS algorithm

�g(n) is determined by a linear combination of the p previous gradients derived

by the Newton method �gN(n)

�g(n) =

n∑
m=n−(p−1)

am�gN(m) (2.65)

The factors am are determined by minimizing 〈�g(n)|�g(n)〉 and constraining

n∑
m=n−(p−1)

am = 1 (2.66)

Computationally this is done by the Lagrange’s multipliers method solving

the function F defined by

F = 〈�g(n)|�g(n)〉 − λ

⎛
⎝1−

n∑
m=n−(p−1)

am

⎞
⎠ (2.67)

With the derived coefficients am an optimum choice for �r(n) is obtained:

�r(n) =
n∑

m=n−(p−1)

am�r(m) (2.68)

The Hessian matrix H in equation 2.64 is approximated by the unit matrix

I and thus the next atomic positions can be derived by

�r(n+1) = �r(n) − α�g(n) (2.69)

This method showed to be an advantage for optimizing the geometry of

molecules like borazin, which was calculated in this work applying the RMM-

DIIS scheme. But for large structures like the nanomesh formed on Rh(111)

and Pt(111) it tends to over-correct the next atomic positions which resulted

in the occasional destruction of the structure.
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2.2.3.3 Eigenvector Following Method

The Eigenvector following method is based on the RMM-DIIS scheme but

in this case the Hessian H in equation 2.64 is not roughly approximated by

the unit matrix I but by the method of Broyden-Fletcher-Goldfarb-Shanno

(BFGS) [38, 39, 40, 41] and the rational function (RF) algorithm [42]

H(n) = H(n−1) +
|Δ�g(n)〉〈Δ�g(n)|
〈Δ�r(n)|Δ�g(n)〉 − H(n−1)|Δ�r(n)〉〈Δ�r(n)|H(n−1)

〈Δ�r(n)|H(n−1)|Δ�r(n)〉 (2.70)

with

Δ�g(n) = �g(n) − �g(n−1) (2.71)

Δ�r(n) = �r(n) − �r(n−1) (2.72)

which suffers from the ill-conditioned approximated inverse of the Hessian

matrix H(n) having negative eigenvalues. To overcome this problem first the

actual eigenvalues of the resulting Hessian are calculated

E(n) = VT
(n)H(n)V(n) (2.73)

with E(n) being the diagonal matrix with the eigenvalues of H(n) and the

potential V(n). To improve the Hessian H(n) all eigenvalues below a specific

threshold (for OpenMX calculations 0.02 a.u.) are set to the thresholds value.

With this modified eigenvalue matrix E′
(n) a corrected Hessian is calculated

H′ −1
(n) = V(n)E

′−1
(n) V

T
(n) (2.74)

which will be used for updating the atomic position in equation 2.64. This

scheme showed to be a robust but still rather fast method and thus was

mainly used in this work.
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Chapter 3

Simulation of NEXAFS Spectra

3.1 NEXAFS Spectroscopy

NEXAFS (Near Edge X-ray Absorption Fine Structure) is an electron spec-

troscopy, that is element specific and allows to probe the amount, orientation

and chemical bonding of various atoms in molecules, surfaces and bulk ma-

terials.

The underlying principle of NEXAFS spectroscopy is the excitation of

a core electron into an unoccupied state according to dipol selection rules.

A schematic drawing of this method is shown in figure 3.1. A photon of

X-ray energy (h ·ν) is absorbed and excites a core electron (e−) with angular

momentum � into an unoccupied state with � ± 1 - between the Fermi level

(EF) and the ionization potential (EIP). The part of the spectrum containing

this specific form of transition is located near of the absorption edge with a

range of about 50 eV. The resulting core hole is filled quickly by relaxation

of an electron from a higher level by emission of either a fluorescent photon

or an Auger electron. The absorption edge is characteristic for a specific

element and the shell from which the electron is excited. Within this thesis

46



h.ν

e−

1s

EF

EIP

DOS

E

2p−DOS

Figure 3.1: Schematic drawing of the excitation in NEXAFS spectroscopy

only spectra resulting from the excitation of an 1s core electron into empty

2p states will be discussed, especially for the atoms boron and nitrogen. The

resulting notation of the absorption edges are therefore B-K and N-K.

3.2 Theoretical Method

For the derivation of B-K and N-K NEXAFS spectra the final state rule

[43] is used. It states that the electronic states after the transition into

the unbound states determine the spectrum, i.e. when the states are allowed

to feel the influcence of the core hole. Therefore a self consistend DFT

calculation is performed for a system (often within a bigger supercell), in

which an atom with a core hole is present, because the core electron has

been excited into the conduction band. The use of supercells is necessary
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since in reality only a very low fraction of atoms is excited simultaneously

during such experiments. According to Slater’s transition state rule [44, 45]

the best results are expected for calculations with half a core hole, since the

excitation energy for an electron is approximately equal to the eigenvalue of

the relaxed state of its half occupied orbital (equation 3.1).

ΔEα|rel ≈ εα(
1

2
) (3.1)

Based on such an electron configuration and the corresponding densities of

states the intensity of the theoretical absorption spectrum [46] is calculated

according to Fermi’s golden rule using equation 3.2.

I ∝ ν3
⏐⏐〈Ψval

A,l±1 |r|Ψcore
A,n,l

〉⏐⏐2
χA
l±1 (ε) δ (ε− Ecore, hν) (3.2)

It shows that the absorption is proportional to the third power of the photon

frequency ν, the square of the dipole matrix element involving the dipole

operator r, the core and the conducting band wave functions and the proper

partial density of states χ of the corresponding atom A. The last term ex-

presses the energy conservation. Furthermore the dipole selection rules allow

only transitions between states with a difference in the azimuthal quantum

number Δ� of ±1. Due to the involvement of the core sates in the dipole

matrix element the absorption becomes site specific, which allows to probe

specifically the electronic structure of the excited atom.
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Part IV

Results and Discussion
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Chapter 4

Simulation of NEXAFS spectra

4.1 Computational Setup

For the simulation of NEXAFS spectra density functional self consistent field

calculations were carried out using the WIEN2k [16] software package, which

was already discussed in detail in the previous sections. The applied exchange

correlation functional is the generalized gradient approximation (GGA) by

Perdew, Burke and Ernzerhof (PBE) [15]. For the LAPW basis set R ·Kmax

was set to 6.0, which gives a corresponding plane wave cutoff energy of

19.8 Ry. The atomic sphere radii were set to 1.35 a.u. (0.714 Å) for boron

and nitrogen and to 2.3 a.u. (1.217 Å) for nickel. For a proper simulation of a

core hole the periodic cell of the h-BN/Ni(111) was expanded to a 2×2×1 su-

percell. By this scheme the atom with the core hole is surrounded by several

atoms in the ground state so that hole-hole interactions are negligable and

screening is also possible. In experimental NEXAFS spectroscopy on average

only one of thousand atoms is excited during the experiment. The simulated

cell contains boron nitride attached on both sides of a 19 layer nickel slab

and a vacuum of approximately 30 a.u. (15.9 Å). The inversion symmetric
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Figure 4.1: Ball and stick representation of the inversion symmetric part of

the 2×2×1 h-BN/Ni(111) supercell with 19 nickel layers.

part of the cell is shown in figure 4.1. The presence of an inversion center

reduces the computational effort since matrix elements become real instead

of complex numbers, which leads to less memory consumption and requires

less CPU time.

The geometric structure of a single layer h-BN grown on Ni(111) (for

experiments see [47, 48, 49, 50]) was determined by DFT simulations [4],

which showed that the nitrogen atoms are located directly on top of the nickel

atoms of the last metal layer and the boron atoms are at the fcc hollow sites

(appendix A.2 on page 106). The layer of h-BN is slightly buckled, with the

boron atoms approximately 0.1 Å closer to the metal surface.
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4.2 Spectra

4.2.1 Investigation of the core hole effect

For an accurate simulation of the X-ray absorption spectra it is necessary

to investigate the influence of a core hole on the resulting spectra. Accord-

ing to Slater’s transition state theory [44, 51] the best results are expected

with calculations containing half a core hole. To carry out these simulations

the occupation of the 1s orbitals of one of the boron or nitrogen atoms of

the super cell was decreased by a half or one electron. The number of va-

lence electrons was increased accordingly. For comparison also a calculation

without a core hole was carried out. With these setups self consistend DFT

calculations were performed and the corresponding spectra were simulated.

The resulting spectra are shown in figure 4.2 for the B-K (a) and the

N-K (b) edge for the three different occupation numbers. The upper most

curve shows the result for a full core hole, the middle one is obtained with

half a core hole and the bottom curve without a core hole. It can be seen

that the variation of the occupation number influences the resulting spectra

especially in the region of lower photon energy (near the edge onset), where

it has a significant effect on the relative intensity of the absorption maxima

and their magnitude. For higher photon energies the effects get smaller but

an influence remains. For boron the most significant effects appear between

190 eV and 202 eV. The first absorption maximum is strongly underestimated

for the spectrum neglecting the core hole effect, whereas in the case of the

full core hole additional features appear. From a direct comparison between

the calculated and experimental spectra (figure 4.3) it can be seen that the

simulations carried out with half a core hole show the best agreement, as was

expected. Therefore all further simulations of NEXAFS spectra were carried
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Figure 4.2: Simulation of core hole effects of X-ray absorption spectra of

h-BN/Ni(111) for the B-K (a) and N-K (b) edge. The upper curve corre-

sponds to a full core hole, the middle curve to half a core hole and the buttom

curve shows the spectrum for no core hole.
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out with this electronic configuration.

4.2.2 Simulation of Spectra

Simulations of NEXAFS spectra were carried out for the h-BN/Ni(111) and

additionally for bulk h-BN to study the influence of the metal substrate and

to gather information about bonding properties of the investigated system.

In figure 4.3 a direct comparison of the simulated spectra with experimental

data [3] is shown for bulk h-BN and the h-BN monolayer grown on the nickel

surface. The solid lines represent the result of the calculations and the dashed

lines the experimental spectra.

In both cases, the bulk and the surface system, the simulated spectra

are in very good agreement with the experiment. The spectrum for the B-K

edge (figure 4.3.a) shows a small discrepancy in the intensities for the first

absorption maximum. However, different experimental data for h-BN bulk

structures [52, 53, 54, 55, 56, 57, 58, 59] show that the observed intensities are

very sensitive to the experimental setup. Especially the angle of incidence

and the type of filtering yield large variations in the observed intensities.

Additionally the broadening of the simulated spectra modifies sensitively the

spectra particular at energies close to the absorption edge. Overall one can

say that the experimental and simulated data are in quite good agreement.

Besides the differences in the derived intensities just discussed, the energies of

the absorption maxima and all other significant characteristics of the spectra

can be reproduced.

The comparison between the bulk h-BN and the h-BN/Ni(111) spectra

(figure 4.3.a) shows a significant difference, since in the latter case an addi-

tional small ’pre-peak’ appears at approximately 191 eV as a result of the

bonding to the Ni(111) surface. This additional absorption maximum is even
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Figure 4.3: NEXAFS spectra of the B-K (a) and N-K (b) edge for the com-

putationally derived data (solid line) assuming half a core hole in comparison

with experimentally obtained spectra[3] (dashed lines).
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more pronaunced for the N-K edge (figure 4.3.b) at approximately 398 eV,

whereas the rest of the spectra is very similar.

Additionally a simulation of angle resolved spectra was carried out. This

allows further insight how bonding occurs. Simulating an angle of incidence of

0 degrees corresponds to the z-oriented p orbitals, while an angle of 90 degrees

envolves the x- and y-oriented p orbitals. Experimentally only spectra at an

angle of incidence of 20 and 90 degrees are available. The resulting spectra

are shown in figure 4.4.a for the B-K edge and figure 4.4.b for the N-K edge.

The solid lines represent the simulated spectra and the dashed lines the

experimental data [3]. Also in this case all spectra can be well reproduced

and show that the characteristics in the lower energy region (190 eV to 196 eV

for boron and 398 eV to 403 eV for nitrogen) derive from the transition of

the 1s core electron to the pz orbitals (π
	-bands), whereas at higher energies

the transitions to the px and py orbitals (σ	-bands) are dominant. Some

deviations in the low angle spectra can be explained by the 20 degree angle

in the experimental setup.

4.3 Bonding Properties of h-BN/Ni(111)

In order to obtain a deeper understanding of the bonding properties between

the h-BN layer and the Ni(111) surface the partial density of states (DOS) of

the nitrogen p and the nickel dz2 orbitals were analyzed, since these are the

responsible orbitals for bonding. Due to the magnetic moment of the nickel

surface a spin splitting occurs for the h-BN system. As shown in figure 4.5

there are two main regions for each spin, where a significant overlap of the

corresponding partial DOS occurs. A part of the interaction takes place in

the energy range marked in light blue from −7.90 eV up to −4.10 eV for spin
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Figure 4.4: Angle dependency of NEXAFS spectra for the B-K (a) and N-K

(b) edge for h-BN/Ni(111). Computational derived data are represented by

the solid line and experimental data [3] by the dashed line.
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Figure 4.5: Partial DOS of N(p) and Ni(dz2) for h-BN/Ni(111). The colored

areas show the regions of significant overlap of the N(p) and Ni(dz2) states.

up and −3.77 eV for spin down. The other overlap is present in the range

from −1.30 eV to −0.25 eV for spin up and from −0.67 eV to 0.50 eV for spin

down (marked in light green). For these energy ranges the electron densities

are calculated within the Ni-B-N plane. The resulting electron densities of

all four regions are shown in figure 4.6. The density plots for the low energy

regions are very similar for spin up (a) and spin down (b) and differ only

little. The scaling of the contour lines is exponentially with a factor of
√
2.

As expected there is a high electron density between the Ni atoms due

to the metallic character. Furthermore a high density - indicating strong

bonding character - is present between the nickel and the nitrogen atoms

and the nitrogen and the boron atoms (N-B σ bonds) respectively. This

situation changes for the region of higher energies. In this case a significant

difference is found between the corresponding densities for spin up and spin

down electrons. What both densities have in common is the fact that -

in contrast to the densities of the low energy regions - a very low density

between nickel and nitrogen is present, which can be explained as an anti-
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bonding interaction between nickel and nitrogen, where the corresponding

wave functions have a node. The repulsion of the electrons can be well

seen from the distortion of the nitrogen pz orbitals which have a far shorter

extension towards the nickel atom as in the opposite direction (vacuum).

Also in both cases a significant interaction of the boron p orbitals with the

nickel surface is present, which is still bonding (nodeless). The electron

density plot for spin up shows a four center bonding (between three nickel

and one boron atom) indicated by symmetry and the increase in electron

density below boron with the contour line marked with 4.53 e·Å−3.

It should be mentioned that for spin up electrons the electron density

shown for both regions belong to states below the Fermi level and thus are

occupied whereas for spin down electrons the states of the high energy region

are mainly unoccupied. The increased density between boron and three nickel

below is still present (figure 4.6.d) but smaller (contour 1.60 e·Å−3), the

corresponding electron density between the nickel atoms is also smaller. The

electron density distribution between boron and nickel is only present in

direction to the nearest (three) nickel atoms resulting in a distortion of the

nickel states. These observations explain the observed buckling of the h-

BN layer on the nickel surface, where the boron atoms are closer to the

metal. On the one hand the sp2 character of the h-BN is weakened due to

bonding to the metal interface. On the other hand nitrogen shows bonding

and anti-bonding states that are both occupied resulting in a weakening of

the nitrogen nickel bond. For boron, however, mainly the bonding states are

occupied which reveals - according to the electronic behavior discussed above

- that the main bonding of the h-BN layer comes from the four center bond

of boron in the fcc sites of the nickel surface.
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Figure 4.6: Electron densities in the Ni-B-N plane perpendicular to the Ni

surface of the four energy regions shown in figure 4.5. The first row shows the

electron density for spin up (a) and spin down (b) of the low energy regions

whereas the second rows shows the density for spin up (c) and spin down (d)

in the high energy regions. (Unit of contour values is e·Å−3)
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Chapter 5

h-BN/Rh(111)

5.1 Computational Setup

The simulations of the h-BN/Rh(111) system were carried out using the soft-

ware package OpenMX [8] which is based on pseudopotentials and capable of

O(N)-DFT calculations that allow a geometry optimization in a convenient

time. In contrast to other software packages like SIESTA or CPMD it has

the great advantage to be able to handle metallic systems, which is manda-

tory for the present case. In detail all calculations were carried out using an

O(N)-DFT calculation based on a Krylov subspace algorithm [60, 22, 61].

For the exchange correlation potential the generalized gradient approxima-

tion (GGA) by Perdew, Burke and Ernzerhof (PBE) [15] was applied. The

plane waves cutoff energy is set to 100 Hartree (200 Rydberg) and the ba-

sis sets consists of s2p2d1 for Rh and s2p2 for B and N (defining type and

number of basis functions). The size of the truncated clusters within the

O(N) scheme is defined by a hopping range of 15 Å and a hopping number

of 2 (see chapter 2.2.2.2 on page 37 for details). The starting geometry for

the structure optimization is a 12×12 Rh(111) super cell consisting of three
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layers to simulate the metal substrate on which a 13×13 flat hexagonal boron

nitride was placed (on one side). This leads to a hexagonal unit cell with a

total of 770 atoms and unit cell vectors of 32.16 Å in x- and y-direction and

37.04 Å in the z-direction. The geometry of the Rh slab is taken from the

optimized structure of Rh bulk obtained by DFT calculations with WIEN2k.

The initial geometry is shown in figure 5.1. To avoid any interaction of the

h-BN/Rh(111) with its periodic image (due to the periodic boundary condi-

tions) a vacuum of approximately 30 Å is introduced, which causes the large

lattice spacing along the z direction. For a stable solution of the self con-

sistent calculation, which is crucial for metallic systems, the mixing scheme

by Kerker [62] is applied. The pseudopotentials [19, 63] are taken from the

OpenMX homepage [8] without modifications. The bulk metal substrate

had to be approximated by just three layers, since this is the maximum that

can be handled by the available computational resources. The geometry of

the first two rhodium layers is kept fixed and only the third rhodium layer,

which is in contact with h-BN and the boron nitride layer itself is allowed

to relax. For further details the input file of the calculation is listed in the

appendix B.1.1 on page 108. The computational resources used for this cal-

culation were 32 dual CPU nodes (Sun X4100, 2 dual core AMD Opteron

275 2.4 GHz, 8 GB RAM and 70 GB HDD) connected via Fast Ethernet and

low-latency Infiniband for MPI calculations. Due to the demand of memory

(about 6 GB per MPI job) only one CPU per node could be used. With

the described setup the complete geometry relaxation took about 40 days of

computing time.
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Figure 5.1: The initial structure of the hexagonal supercell consisting of

three layers of 12×12 Rh(111) and one layer of 13×13 h-BN. The blue balls

represent the rhodium atoms and the red and green balls boron and nitrogen

respectively.

5.2 Geometric Structure

5.2.1 Relaxation of the h-BN Layer

The geometry of the initial cell (figure 5.1) was relaxed till the resulting

forces were below a threshold (0.01 Hartree/Bohr) and thus the positions

of all atoms did not change significantly between the optimization steps.

The optimization resulted in a corrugation of the h-BN layer of up to 0.85 Å

around an average distance to the topmost Rh layer of 2.46 Å (table 5.1). The

topology of the relaxed structure is shown in figure 5.2. The relative height of

h-BN above the top Rh layer (i.e. the z-coordinate) is shown by color coding

(blue to magenta: low ; red to yellow: high). An approximately spherical low

region (i.e. a short rhodium boron-nitride distance) is surrounded by wires

(high regions) with a much larger rhodium boron-nitrogen distance.
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Figure 5.2: Corrugation of the h-BN layer on the Rh(111) surface forming

a nanomesh. The Rh atoms beneath the h-BN layer are shown in gray, the

lower regions of boron and nitrogen are marked in blue, violent and magenta,

whereas the atoms in the higher positions are colored in red, orange and

yellow.
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The low region (for a detailed view see figure 5.3) has a diameter of ap-

proximately 20 Å and forms an additional threefold “flower” like corrugation,

which is rather small in comparison to the overall corrugation. This region

also clearly shows the buckling of boron and nitrogen atoms similar to the

epitaxial structure of h-BN/Ni(111) with the boron atoms closer to the metal

than the nitrogen atoms. As discussed in the previous section this indicates

that also in this system the bonding between metal and the h-BN layer is

dominated by boron-metal multi-center bonds. This is also confirmed by the

geometric situation. In the low regions the boron atoms are situated in or

near to the fcc position (appendix A.2 on site 106) with respect to the metal

slab but nitrogen atoms are at or near to the on-top position of the metal

layer.

At the border of the low region the boron-nitrogen height changes rather

abruptly and leads to regions that are further away from the metal (high

regions). The highest part (shown in yellow) has a threefold symmetry (figure

5.4) and is rather flat. A more detailed investigation of this high region shows

its highest positions at its vertices with a small well in the middle. In the

three highest positions the boron atoms are situated near to the highest

rhodium atoms while nitrogen is above the metal atoms of the second layer,

which seems to be the driving force for the high spacing. In the well (which is

just marginally closer to the metal) that is in the middle of the three maxima

the three boron atoms are exactly in the hcp and the three nitrogen atoms

in the fcc sites with respect to the metal surface. Although the bonding

situation is much weaker the buckling of boron and nitrogen can still be

observed.

The third region to mention is again a high region (figure 5.5). In com-

parison to the other high regions already described above it is smaller with
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Figure 5.3: Detailed h-BN/Rh(111) nanomesh topology of the low region.

This area is indicated by the blue to red coloring of the h-BN layer, with the

nearly flat triangle in the middle that also shows the buckling of the layer.

In this energetically favourable situation the boron atoms are close to the fcc

and the nitrogen atoms to the on-top positions.

66



Figure 5.4: Detailed h-BN/Rh(111) nanomesh topology of the high region

1. It shows a triangular shape with the boron atoms in or near hcp and the

nitrogen atoms in fcc position.
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Figure 5.5: Detailed h-BN/Rh(111) nanomesh topology of the high region 2.

Here the are the boron atoms in on-top position and the nitrogen atoms in

hcp position.

68



about 6 Å in diameter. Here the highest position is reached where one boron

atom is in the on-top position of rhodium and nitrogens are at the hcp sites.

In combination the higher positions form a honeycomb like structure with

the low region as the hole in the middle. This is qualitatively in good accord

with the STM images [5] shown in figure 1.1 on page 13. Also the experimen-

tally derived corrugation of approximately 0.1 nm is in very good agreement

with the theoretical value of 0.085 nm. The calculated relaxed structure

yields an average buckling of h-BN, where the boron atoms are in average

0.15 Å closer to the metal surface than the nitrogen atoms. This is in good

agreement with the results obtained for h-BN/Ni(111) where a buckling of

0.1 Å was observed [4].

In the meantime the structure was also investigated using the WIEN2k

package [64, 65], which became feasible due to a newly implemented itera-

tive diagonalization algorithm. The structure obtained by the first WIEN2k

calculations [64] is shown in figure 5.6. A comparison of the geometry opti-

mizations by OpenMX and WIEN2k show the same characteristics besides

a few small differences. Note that OpenMX uses PBE, but WIEN2k the

new exchange correlation functional by Wu and Cohen [66], which may be

responsible for this deviation.

The main differences to the structure obtained with OpenMX are that

the low region, which is larger in the calculation with WIEN2k, has a nearly

hexagonal (instead of trigonal) form and the high regions which are split into

an intermediate region and high spots. The first high region discussed for the

OpenMX calculation (figure 5.4) is rather flat and about 0.2 Å lower than the

highest region, which correspond to the high region 2 from OpenMX (figure

5.5). The spacing between metal and the boron nitride layer is approximately

the same for both high regions. Other small differences between the two
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Figure 5.6: h-BN/Rh(111) nanomesh topology calculated with WIEN2k [64].

The large spherical low region is shown in blue and magenta. The wires are

formed by the higher regions shown in orange and yellow.

calculated structures are in the corrugation and average spacing. WIEN2k

shows - in contrast to the values from OpenMX - an overall corrugation of

0.92 Å , which is 0.08 Å larger, and an average spacing of 2.56 Å, which

is 0.10 Å larger (table 5.1) than for OpenMX. The buckling of boron and

nitrogen atoms is also present in the WIEN2k calculations and best observed

in the low region but the overall buckling with just 0.07 Å is smaller by a

factor of two.
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OpenMX WIEN2k

max. corrugation BN-layer 0.85 Å 0.92 Å

max. corrugation Rh-layer 0.21 Å 0.05 Å

max. B-Rh dist. 2.91 Å 3.02 Å

min. B-Rh dist. 2.06 Å 2.14 Å

max. N-Rh dist. 2.91 Å 3.07 Å

min. N-Rh dist. 2.15 Å 2.27 Å

avg. BN-Rh dist. 2.46 Å 2.56 Å

Table 5.1: Data of the relaxed h-BN/Rh(111) nanomesh

New results obtained with WIEN2k [65] show a considerably larger cor-

rugation of approximately 1.9 Å. Although the same ab initio approach was

used in both calculations the previous geometry optimization was stopped

after the forces had dropped below a threshold of 0.005 Hartree/bohr. It was

found that the BN-layer in the nonbonding regions appears to be extremely

flexible in the direction perpendicular to the metal surface. Thus the re-

maining small forces show a significant influence on the BN-metal distance

in those regions and therefore affect the geometry optimization significantly.

Due to the fact that the applied threshold for the OpenMX calculations was

set to 0.01 Hartree/bohr the influence of these small forces was disregarded.

5.2.2 Relaxation of the Rh Surface

A further point of interest of the geometry relaxation is the behavior of the

metal surface. The calculation with OpenMX shows that the Rh atoms are

qualitatively corrugated in the same way as the h-BN layer. This means that
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the metal atoms are “following” the relaxed h-BN surface with respect to the

z-axis, but with a much smaller value. The OpenMX calculation revealed a

corrugation for the metal layer of 0.21 Å, which is smaller by a factor of four

than the boron nitride corrugation. The results from WIEN2k yield a much

smaller displacement along the z-axis of only 0.045 Å. Experimental values

about the corrugation of the metal layers are not yet available.
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Chapter 6

h-BN/Pt(111) 9/10-Cell

6.1 Computational Setup

In analogy to the calculation of the h-BN/Rh(111) system the calculation on

Pt(111) was carried out using OpenMX with the Krylov subspace algorithm

to achieve a reasonable fast geometry optimization. The applied exchange

correlation potential was again GGA-PBE and the plane waves cutoff energy

was set to 100 Hartree (200 Rydberg). The original pseudopotentials were

used without any modifications and the basis sets were s2p2 for boron and

nitrogen and s2ps2d1 for platinum. The same procedures as in the previous

calculation were applied, which is 15 Å for the hopping range and 2 for the

hopping number. Also for this system the Kerker mixing scheme [62] was

applied.

The starting geometry for this calculation is a 9×9 Pt(111) super cell

with three layers and a flat h-BN layer that is placed on top of the platinum

slab. For this system the boron nitride layer forms a 10×10 unit cell to

match the Pt(111) lattice spacing. In this case the lattice mismatch reaches

already a value of 10.8 %. The geometric parameters of the hexagonal cell are
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therefore 25.01 Å for the a- and b-directions and 50.00 Å for the c-parameter

to introduce a large vacuum to avoid interaction with the periodic image. The

initial cell is shown in figure 6.1 and has a total number of 443 atoms. Also

in this case the structure of the Pt cell is based on the DFT optimization by

WIEN2k for the bulk system. For all details the input file for the calculation

can be found in the appendix B.1.2 on page 111.

In contrast to the simulation of the nanomesh formed on Rh(111) first

only the boron and nitrogen atoms were allowed to relax and all metal atoms

were kept fixed. After the geometry of the h-BN layer was optimized, also the

platinum layer in contact with the boron nitride was allowed to relax. The

calculation was carried out on an IBM 1350 cluster (IBM x335, 2 Pentium

Xeon IV Nocona 3.6 GHz, 4 GB RAM and 80 GB HDD) using 32 dual CPU

nodes. Again, due to the memory demand of the calculation, only one CPU

per node could be used. However, since the platinum system is smaller - in

contrast to h-BN/Rh(111) - nodes with 4 GB memory were sufficient and it

was possible to take advantage of the faster CPUs. The overall computing

time to fully relax the geometric structure was about 30 days.

6.2 Geometric Structure

6.2.1 Relaxation of the h-BN Layer

The atomic positions were optimized in two steps, first with the topmost

metal layer fixed and than relaxed together with the boron nitride till the

forces nearly vanished.

The resulting structure showed a large overall corrugation of the h-BN

layer of 1.78 Å with an average spacing to the platinum layer of 3.03 Å (ta-

ble 6.1). The obtained structure is shown in figure 6.2, where the z-positions
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Figure 6.1: The initial structure of the hexagonal supercell consisting of

three layers of 9×9 Pt(111) and one layer of 10×10 h-BN. The large blue

balls represent the platinum atoms, the red and green balls the boron and

nitrogen atoms.
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Figure 6.2: h-BN/Pt(111) nanomesh topology. The platinum layers are col-

ored in gray and for boron and nitrogen lower positions are shown in blue

and violet and high positions in red and yellow.
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Figure 6.3: h-BN/Pt(111) nanomesh topology of low region 1. The boron

atoms are close to the fcc postion and the nitrogen atoms nearly on-top.

of the atoms are color coded. In comparison to the nanomesh formed on

Rh(111) the situation has changed completely. The low region with a maxi-

mum diameter of approximately 6 Å is a little bit pear-shaped. This region,

which is shown in detail in figure 6.3, has the closest boron nitride spacing

to platinum when the boron atoms are near to the fcc sites with respect to

the Pt(111) and the nitrogen are near on-top of the metal layer. This is

exactly the configuration that was found to be most stable for h-BN/Ni(111)

and h-BN/Rh(111) and thus has again the strongest attraction between the
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metal and the boron nitride.

As a result of the large lattice mismatch of 10.8 % the geometrical situ-

ation changes rapidly from one metal atom to the next, and thus the region

of strong bonding is rather small. This results in a non flat geometry for the

low region, so the overall changes with respect to the z-coordinate are rather

smooth. A further consequence of the permanently changing geometry (and

thus bonding quality) is the large region of intermediate height. Another

region, where the geometric arrangement between h-BN and Pt is similar, is

a large area of approximately 8 Å where the boron atoms are situated in or

near the hcp sites and the nitrogens at fcc positions. Due to this energeti-

cally unfavorable (bonding) configuration a region with a high spacing to the

metal surface (figure 6.4) is formed.

The next region with a significant change in height is shown in figure 6.5.

In this situation the boron atoms are in on-top position with respect to the

highest platinum layer and the nitrogen atoms are situated at the hcp sites.

However in contrast to the expected repulsion this is one of the regions of

closest spacing. For the h-BN/Ni(111) the corresponding configuration has

been reported to be unstable [4] and in the calculation of h-BN/Rh(111) it

results in a region of large spacing (figure 5.5). It is very unlikely that this

results from different physical properties between nickel, rhodium and plat-

inum. A comparison with the optimized geometry obtained with WIEN2k

and experimental data suggest that for this system OpenMX seems to fail to

predict the proper structure.

6.2.2 Relaxation of the Pt Surface

The relaxation of the Pt surface behaves similarly to the one obtained for

h-BN/Rh(111). Also in this case the atomic positions of platinum follow the
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Figure 6.4: h-BN/Pt(111) nanomesh topology of the high region. The boron

atoms are close to hcp and the nitrogen atoms near the fcc positions.
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Figure 6.5: h-BN/Pt(111) nanomesh topology of the low region 2. Although

the boron atoms are in on-top position and the nitrogen atoms in the hcp

sites, which should be energetically unfavourable, a close spacing is obtained.
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characteristics of the h-BN layer with respect to the z-coordinate. An overall

corrugation of the top Pt(111) layer of 0.42 Å is found with OpenMX. In

comparison to the rhodium nanomesh this is twice as much. The increase

of the average spacing between the Pt(111) layers is 0.08 Å. With WIEN2k

no relaxation of the reacting Pt layer was carried out, since only very small

forces occur so that a corrugation of less than 0.05 Å is expected. Of course

this is also in contrast to the results obtained with OpenMX.

6.2.3 Comparison with Experiment and with WIEN2k

The results obtained from the calculations with OpenMX are compared to

the experimental data [67] and a DFT calculation carried out by WIEN2k.

Unfortunately the assumption that this simulation is not as accurate as for

the h-BN/Rh(111) is confirmed. The geometry relaxation carried out by

WIEN2k resulted in a much smaller corrugation for the boron nitride inter-

face of only 0.53 Å in contrast to 1.78 Å. Also the average spacing between

metal and interface is about 8 % smaller with 2.79 Å instead of 3.03 Å (ta-

ble 6.1). Not only the values for the corrugation and spacing are different

but also the topology shows other characteristics. The topology derived by

WIEN2k is shown in figure 6.6. In this case the low region has the form of a

triangle with chopped vertices with a size of approximately 10 Å in diameter.

The deepest location within this area is located near one edge and is similar

to the result obtained with OpenMX, i.e. where the boron atoms are placed

close to the fcc sites and the nitrogen atoms in on-top position. Also the

highest regions qualitatively correlate with the results from OpenMX with

boron in hcp and nitrogen in fcc position.

The questionable second low region, with boron at the on-top position

and nitrogen in hcp configuration derived by OpenMX can not be reproduced
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Figure 6.6: h-BN/Pt(111) topology calculated with WIEN2k.
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OpenMX WIEN2k

max. corrugation BN-layer 1.78 Å 0.53 Å

max. corrugation Pt-layer 0.42 Å 0.00 Å

max. B-Pt dist. 3.88 Å 2.98 Å

min. B-Pt dist. 2.12 Å 2.51 Å

max. N-Pt dist. 3.90 Å 3.04 Å

min. N-Pt dist. 2.15 Å 2.56 Å

avg. BN-Pt dist. 3.03 Å 2.79 Å

Table 6.1: Data of the relaxed h-BN/Pt(111) nanomesh

with WIEN2k. Here the region is part of a large intermediate area. Of course

this has a large effect on the topology and explains why the two structures

look qualitatively so different (figure 5.2 and 6.6).

According to experimental data obtained by Preobrajenski et al. [67] the

STM image (figure 6.7) shows a topology much more like the one derived from

WIEN2k and further suggests only a slight corrugation across the supercell

which is in contradiction to the obtained 1.78 Å and also favors the WIEN2k

result. Recent calculations carried out with WIEN2k [65], which apply a

lower threshold for the remaining forces, confirm the obtained corrugation of

0.5 Å.

6.2.4 Problems of the OpenMX Calculations

According to the previous discussion the possible reason for the inaccurate

OpenMX calculation has to be determined. An error within the program

itself is very unlikely otherwise also the calculation of the rhodium system
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Figure 6.7: STM image of the Pt(9/10) nanomesh [67]. The white rhomb

indicates the unit cell.

should have been problematic. Due to the fact that the program is based on

pseudopotentials and atomic basis sets, the change from one system to an-

other may cause problems since the quality of the potentials and the applied

basis set may be atom dependend. In contrast to OpenMX, WIEN2k is an all

electron full potential code, which does not depend on any sort of predefined

atomic data and thus makes the change from one element to another more

reliable.

The pseudopotentials used are the ones provided [19, 63] by the author of

OpenMX, who tested and further checked them against the data from NIST

[68]. Therefore the possibility that an improper pseudopotential has been

used seems to be rather unlikely. One point that has a significant influence

on the quality of the calculation is the applied basis set. For all calculations

within this thesis the minimal configuration for the metal atoms had to be
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used to reduce the memory demand and the corresponding CPU time. While

this setup was obviously sufficient for the rhodium system it failed for the

platinum system.

A small test calculation has been carried out to check this assumption.

A 1×1 cell of 7 Pt(111) layers and epitaxially h-BN layers at both sides

of the surfaces was set up. In order to eliminate any effect resulting from

the use of different exchange correlation potentials, similar calculations were

carried out using GGA-PBE for both WIEN2k and OpenMX. In the case of

the WIEN2k calculation the platinum slab (7 layers) showed an expansion of

0.05 Å in thickness with respect to the optimized bulk structure. In the case

of the OpenMX calculation a much larger increase of 1.06 Å was found. The

spacing between the metal and boron nitride of 2.46 Å for WIEN2k is also in

contrast to 3.40 Å obtained by OpenMX. Further the direct comparison of

the platinum bulk unit cell optimization shows that OpenMX leads to a 2 %

(0.08 Å) larger lattice parameter compared to WIEN2k. An enhanced basis

set for platinum (s2p2d2f1 ) for the OpenMX calculation showed an expansion

of the metal slab of 0.78 Å which is 26 % less than for the standard setup.

Since this is an indication that a larger basis set would improve the calcuation

for the h-BN/Pt(111) nanomesh the additional computational effort would

be higher than for the WIEN2k calculation and thus not resonable.

Another point that could play a role for the nanomesh structure is that

in OpenMX and WIEN2k different exchange correlation potentials were used

for the relaxation. As already mentioned OpenMX uses the generalized gradi-

ent approximation by Perdew, Burke and Ernzerhof [15] but in the WIEN2k

calculation a new GGA potential by Wu and Cohen [66] was applied. The

GGA-PBE potential is known to generally underestimate bonding charac-

teristics while the new potential by Wu and Cohen provides more accurate
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solutions [66], which might play an important role in the weak bonding that

takes place between h-BN layer and the metal.
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Chapter 7

Borazine on Rh(111)

To be able to study the formation of the nanomesh on different metal surfaces

it is important to understand the influence of the metal on the bonding

characteristics of the precursor forming the h-BN layer. The precursor, that

was mainly used to form the different meshes is borazine [5] (see chapter 7.1

for details). For the formation of the h-BN layer three possible approaches

can be considered.

The first reaction path that could form the layer is a splitting of borazine

into single B-N species which recombine on the surface afterwards. A sec-

ond possibility is that a ring opening of the precursor occurs and a reaction

between those fragements takes place. The third alternative is the direct

combination of borazine rings by hydrogen eliminiation. It should be men-

tioned that the formation of the h-BN layer could be observed also with a

chloro substitued derivative of borazine (Trichloroborazine) but it was not

yet possibe to achive the reaction with precursors without a preformed six

ring (and sp2 bonding).

Within this chapter the interaction between borazine and the Rh(111)

surface will be discussed, which was the first system where the nanomesh
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was observed and which is also investigated most [5, 7].

7.1 Free Borazine Molecule

Theoretical investigations of borazine were carried out to determine the nec-

essary energy for hydrogen cleavage from the molecule, which is the manda-

tory step to enable a further - not yet fully known - recombination resulting

in the regular h-BN layer. Borazine shows very similar characteristics in

comparison to benzene. It is isostructural and also isoelectronic, except that

boron and nitrogen show different electron negativities which results in polar

character and a higher localization of the electrons. For this similarity to

benzene borazine is also called inorganic benzene. However borazine shows

a much smaller thermal stability (it decomposes easily and releases H2) and

is far more reactive due to the polarized bond between nitrogen and boron.

Ab inito calculations were carried out to determine the energies that

would be necessary to achieve a separation of a single hydrogen atom from

the molecule (in the gas phase). This was carried out by stepwise removal of

a hydrogen atom from the molecule performing a spin polarized calculation

to be able to simulate the radical. These calculations were carried out for

both cases, the cleavage of a hydrogen from a boron or a nitrogen atom,

respectively. The results for the calculation are listed in table 7.1. As shown

the cleavage of the boron-hydrogen bond is energetically more favorable than

breaking the nitrogen-hydrogen bond. Also molecular dynamics calculations

showed that the energy, which is necessary to achieve a cleavage (of an iso-

lated molecule) is very high, and so it is very unlikely that it occurs in the

gas phase at about 1000 Kelvin.

Due to the ultra high vacuum (UHV) in the experiments the interac-
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tion between two borazine molecules in gas phase is considered as negligible.

Therefore the formation of a reactive compound is expected to take place at

the interface with the metal as a catalyst lowering kinetic barriers.

7.2 Adsorbed Borazine

This section deals with the basic characteristics of borazine in contact with

the metal interface. The aim of the first part of the investigation was to

determine the position of borazine on the interface that is energetically most

stable.

Ab intio calculations were carried out on a 6×6 Rh(111) supercell con-

sisting of three metal layers and an additional single borazine molecule. The

energetically stable positions for the borazin molecule were determined by

geometry optimization. According to these calculations the most favorable

position is present when the boron atoms are placed in the fcc sites relative

to rhodium and nitrogen on top of the rhodium atoms of the uppermost in-

terface layer (figure 7.1). This is in good agreement with the structure of the

h-BN/Rh(111) nanomesh where the corresponding geometric configuration

is also the most stable one.

Furthermore the calculations showed a metastable configuration with the

boron atoms in the hcp sites. A configuration where boron is placed on

top of the rhodium is not stable and relaxes immediately to one of the two

described configurations above. This is also in agreement with the structure

of the rhodium nanomesh, since this unstable case is exactly the configuration

where the highest spacing between h-BN mesh and rhodium substrate occurs.

(For details on the h-BN/Rh(111) nanomesh see chapter 5 on page 61.)
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Figure 7.1: Most stable position of borazine on Rh(111)

7.2.1 Adsorption Energy

As discussed in the previous sections the thermal stability of borazine is still

high and therefore a decomposition of the molecule in the gas phase is very

unlikely. Due to the ultra high vacuum when the reaction is carried out, and

borazine being the only reactant, a reaction between two molecules or another

substance in the gas phase can be neglected. Following these considerations

the reaction has to take place on the metal surface. Therefore in this section

the effect of the metal on the borazine molecule and its bonding properties

are investigated.

The first interesting question is how strong borazine is bonded to the

metal surface. DFT calculations were carried out to explore the energy de-

pendence with respect to the metal molecule distance. The results are shown

in figure 7.2, with an energy minimum at the most stable distance at 2.27 Å.

It shows a bonding energy of about 256.68 kJ·mol−1. The calculations were

carried out for the optimal (lateral) positions of borazine with respect to the

metal surface. The obtained value shows the highest bonding energy at the
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Figure 7.2: Energies for adsorption of borazine

most favourable adsorption site. According to the previous section a differ-

ent position of borazine above the rhodium surface would result in reduced

bonding or even unbound states. An interesting detail that can be observed

for the bonded borazine is the result that the initially planar structure of

the free borazine gets lost. The hydrogen bonds are bent upwards (in the

z-direction), with an angle of approximately 12 degrees out of plane (0.24 Å).

Also the ring molecules shows a small corrugation of 0.06 Å, with the boron

atoms closer to the metal surface. These are significant indicators that the

bonding within the molecule is weakened and thus a cleavage of a hydrogen

atom becomes energetically more favorable.

7.2.2 Hydrogen cleavage of adsorbed borazine

In this section the necessary energy for the separation of a hydrogen atom

from the borazine molecule, which is adsorbed on the Rh(111) layer, will

be determined. In two types of calculations the hydrogen bond to either a
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Figure 7.3: Energies for cleavage of the B-H bond at the rhodium surface in

comparison to the isolated molecule.

boron or a nitrogen atom was elongated stepwise and the resulting energy was

calculated, which allowed to estimate the energy for the complete removal

of a hydrogen atom. The resulting energy curves varying the bond length in

the range of 1 to 3 Å are shown in figure 7.3 for boron and in figure 7.4 for

nitrogen. It can be seen that the presence of the metal is significant and the

energy curve is lowered with respect to the free molecule already at small

distances, especially for nitrogen. The extrapolated energies are presented

in table 7.1 with the interesting result that the metal borazine interaction

significantly reduces the nitrogen hydrogen bond to 225.59 kJ·mol−1 and the

boron hydrogen bond to 260.49 kJ·mol−1. With respect to the gas phase this

is a decrease in bonding energy of 32 percent for the boron hydrogen and

nearly 61 percent for the nigrogen hydrogen bond.
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Figure 7.4: Energies for cleavage of the N-H bond at the rhodium surface in

comparison to the isolated molecule.

ECleavage free borazine ECleavage adsorbed borazine

Bond [mH] [kJ·mol−1] [mH] [kJ·mol−1]

B-H 146.3 383.98 103.1 260.49

N-H 218.6 573.90 89.3 225.59

Table 7.1: Energies for B-H and N-H cleavages of free and adsorbed borazine.

93



7.3 Formation of the h-BN layer

The aim of this section is to develop a possible reaction path that ex-

plains how the hexagonal boron nitride mesh is formed from single borazine

molecules. In general there exist three plausible reactions that would al-

low to generate the h-BN monolayer. The first one is that the borazine

molecule decomposes completely into B-N fragments that reassemble again

on the surface and form the h-BN. Similar to this is the consideration that

a ring opening of the precursor molecule occurs and those larger fragments

recombine. What makes these approaches unlikely is that a cleavage of the

borazine ring has to take place in both cases. Even though the polarized

bonds make borazine more reactive than benzene, the ring structure is still

very stable. Preliminary molecular dynamics calculations (just for a few ps)

showed that borazine does not break quickly at temperatures up to 3000 K,

even in contact with the metal surface. In addition it seems unlikely that

highly reactive B-N fragments would form such a regular and ordered struc-

ture without any side reactions, for example forming cubic boron-nitrogen

(c-BN). Especially the latter agrument is a strong indication for the direct

reaction of borazine rings. Due to the four-fold coordination in c-BN this

modification is energetically more stable than the three-fold coordination of

h-BN. In contrast to graphene borazine is the metastable configuration.

The third reaction that could take place is a recombination of two com-

plete borazine rings by simple hydrogen elimination. This would explain how

and why such a well defined structure is formed. To initiate this step hy-

drogen has to be split off from a borazine ring which either recombines with

another borazine radical or is able to propagate a further elimination.

The calculations in the previous section showed that the cleavage of a

boron hydrogen or a nitrogen hydrogen bond is possible with moderate energy

94



−12041.40
−12041.38
−12041.36
−12041.34
−12041.32
−12041.30
−12041.28
−12041.26
−12041.24
−12041.22
−12041.20
−12041.18
−12041.16
−12041.14
−12041.12
−12041.10

  1.00  2.00  3.00  4.00  5.00  6.00

E
ne

rg
y 

[H
]

Reaction path (B−N distance) [Å]

ΔE = 6.9mH

EA = 153mH

Figure 7.5: Reaction path for the combination of two borazine rings by hy-

drogen elimination. The activation energy EA is about 135 mH and the

reaction energy is 6.9 mH.

if the borazine is in contact with the metal surface. Assuming that the

reaction takes place only if both reaction partners are on the surface the

energetic demand to overcome the kinetic barrier can be calculated by moving

the molecules continuously closer until a reaction takes place.

This calculation was carried out on a 6×6 supercell of Rh(111) consisting

of 3 layers. One borazine was placed in the optimal position and a second

molecule was constrained to move closer. The two rings were oriented in such

a way that the corners of rings move towards each other. To achieve a realistic

energy estimation only the position of one boron and one nitrogen atom were

constrained. All other positions were allowed to relax. The results of these

calculations, which are shown in figure 7.5, indicate that an energy barrier of

approximately 400 kJ·mol−1 has to be overcome to achieve a reaction. The

resulting structure of the two borazine rings connected by one boron nitrogen
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bond is only by 18 kJ·mol−1 less favorable than the two free borazines, which

is energetically nearly equal. It should be mentioned that in this calculation

the borazine rings were fully saturated and the cleavage of hydrogen was

achieved by the short distance of the reacting boron nitrogen pair. The

energy calculated by this reaction path should therefore be the maximum

energy needed to achieve such a reaction. Taking the previous section into

account one can note that the energy obtained by the absorbance of the

borazine ring on the surface is already sufficient to cause a splitting of the

nitrogen hydrogen bond and is very close to the energy for the boron hydrogen

bond.

Considering the further reactions of the eliminated hydrogen atoms, which

stay adsorbed on the surface, the necessary energy performing the hydrogen

cleavage may even be less. During geometry optimization it could be observed

that the free hydrogen atom underwent a reaction with the already combined

borazine molecules. This resulted in a hydrogen elimination (by forming

H2) and consecutively the formation of a radical position on the borazine

dimer. The energy gain for the formation of H2 on the rhodium surface is

99.7 kJ·mol−1.

Taking these facts into account the formation of the hexagonal boron

nitride layer could be a radical chain reaction. In this case the calculated

activation energy EA would only be necessary to initiate the first step. For

the progagating steps the formation of H2 is energetically favourable. Since

the reaction is carried out under vacuum the formed hydrogen molecules

are removed immediately from the equilibrium and the reaction is addition-

ally shifted towards the boron nitride layer. The energy necessary for the

desorption of the hydrogen molecule is determined to be 78.95 kJ·mol−1.
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Part V

Conclusions
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Electronic structure of

h-BN/Ni(111)

In this thesis is was possible to characterize the electronic configuration of

the epitaxially h-BN/Ni(111) system. The most stable configuration, which

was determined in a previous work [3], was calculated using the software

package WIEN2k. In accordance to Slaters final state rule the NEXAFS

spectra for this structure were simulated by introducing a core hole for the

exited atom. To avoid self-interactions of the exited atom (in reality only

a very low fraction of atoms is exited simultaniously) it was placed within

a supercell. The computated results were compared to experiment which

showed good agreement for all spectra.

Additionally the electron densities were derived for several energy ranges,

which are significant for bonding. This allowed to determine the bonding

properties. It could be shown that not the expected rhodium-nitrogen bond

but a multi-center rhodium-boron bond is responsible for the stability of the

system. The reason for the repelling forces between nickel and nitrogen are

the (partial) occupied nickel dz2 and nitrogen pz antibonding orbitals.

Due to the epitaxial growth of the h-BN mono-layer (with respect to the

metal(111) surface), this system could be calculated with high precision but

still reasonable computing time, because of the small unit cell. It showed
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to be a good reference model for the nanomesh systems, which are formed

on other transition metals like Rh(111) and Pt(111) but are much more

expensive in computational resources.
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Geometry Optimization with

OpenMX

In this work the geometry optimizations for the one layer model [7] of the

nanomeshes (h-BN/Rh(111) and h-BN/Pt(111)) were carried out using the

software package OpenMX. This program was used because of the large unit

cells, which contain almost one thousand atoms. In contrast to conventional

DFT methods it allows calculations with a linear scaling with respect to

the system size (number of atoms) and therefore a significant reduction of

computational resources.

Later during this work it became feasible to carry out these calculations

also with WIEN2k, which allowed to investigate the quality of the results

obtained by the O(N) method in detail.

9.1 h-BN/Rh(111)

For the case of the h-BN/Rh(111) system the geometry optimization resulted

in partial agreement with experiment and the WIEN2k calculations.

While the calculated corrugation showed the same characteristics as the

STM images, the maximum difference in the metal h-BN distance of 0.85 Å

is greatly underestimated. The value obtained by WIEN2k calculations is

100



1.9 Å. This is caused by the extreme flexibility of the nonbonding areas where

small forces show significant influence on the BN-metal distance. Since the

applied force threshold for geometry optimization with OpenMX was set to

0.01 Hartree/bohr this effect was disregarded. Furthermore the geometries

obtained by OpenMX and WIEN2k show differences in the shape of the h-BN

layer. The buckling of the h-BN layer, with the boron atoms in average 0.15 Å

closer to the metal surface than the nitrogen atoms, was also observed for

the WIEN2k calculation but with a smaller value of only 0.07 Å.

A further disagreement was found for the corrugation of the metal sur-

face. While OpenMX and WIEN2k showed the same characteristics, namely

that the atoms of the metal layers shift accordingly to the displacement of

the boron-nitride layer, OpenMX obtained a much (nearly five times) larger

corrugation of 0.21Å.

9.2 h-BN/Pt(111)

The OpenMX calculation of the h-BN/Pt(111) system failed partly. Al-

though the calculation still showed a corrugation the characteristic features

could not be reproduced, neither those of experiment nor those of theWIEN2k

calculation. While the WIEN2k calculation gave an overall corrugation of

0.53 Å, which is consistent with the experiment, a much larger result of

1.78 Å was obtained by the OpenMX calculation. Also the corrugation of

the top platinum layer was significantly overestimated with 0.42 Å, which is

expected to be smaller than 0.05 Å. The reason therefore is mainly found

in an insufficient basis set. Test calculations showed that a better basis set

would improve the results but is computationally too demanding for the large

nanomesh cell.
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9.3 Formation of the h-BN mono layer

The adsorption properties of borazine on the Rh(111) surface were inves-

tigated and a possible reaction path for the formation of the h-BN mono-

layer was studied. It could be shown that the adsorption of borazine to

the metal surface significantly reduces the stability of the boron-hydrogen

and nitrogen-hydrogen bonds. In detail the energies, which are necessary

for hydrogen elimination, were determined with 260.49 kJ·mol−1 for the

boron-hydrogen (free molecule: 573.90 kJ·mol−1) and 225.59 kJ·mol−1 for

the nitrogen-hydrogen bond (free molecule: 383.98 kJ·mol−1).

According to experimental results and theoretical considerations the for-

mation of the h-BN layer by recombination of borazine rings, with concomi-

tant hydrogen elimination, was determined as the most probable reaction

and therefore investigated in detail. The reaction of single B-N fragments

or larger molecules obtained by ring cleavage are expected to be energeti-

cally less feasible, which is supported by the fact that until now the h-BN

layer could only be formed in experiment by precursors that are borazine

derivatives.

Ab initio calculations were carried out to determine the reaction proper-

ties between two borazine rings adsorbed to the Rh(111) surface. The results

indicate that an activation energy of approximately 400 kJ·mol−1 is necessary

to achieve a reaction, which results in a structure of two borazine rings con-

nected by one boron-nitrogen bond. The resulting dimer is only 18 kJ·mol−1

less stable than the two adsorbed borazine rings but additional energy can

be gained by the formation of H2 (99.7 kJ·mol−1) on the metal surface.
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Part VI

Appendix
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Appendix A

Geometric Structure

A.1 Face Centered Cubic Geometry

There exist two possibilities to achieve a closed sphere packing, where the only

difference is in the stacking sequence. The hexagonal close packed structure

(hcp) consists of two alternating layers (along the z-axis) of the same struc-

ture that are shifted by (1
3
,2
3
) against each other. Therefore the atoms of the

third plane are exactly above the atoms of the first one (figure A.1), which

is called A-B stacking.

For the face centered cubic structure the third layer is again shifted by

(1
3
,2
3
), with respect to the previous two, resulting in a sequence of three

different planes, that is denoted as A-B-C stacking. In figure A.1 the three

different positions of the displaced layers are indicated by the use of different

colors (blue, red, green). In this case the atoms of the fourth layer (which is

not shown in the figure) are again above those of the first plane.

The layers forming the stacking correspond to the (111) planes for the fcc

structure and to the (001) planes for hcp system.
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Figure A.1: Comparison between face centered cubic (fcc) and hexagonal

closed package (hcp) structures. The fcc structure has an A-B-C stacking

(blue, red, green) and the hcp structure an A-B stacking (blue, red) of the

atomic metal layers with respect to the crystallographic (111) direction for

fcc and (001) direction for hcp geometry.
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A.2 Geometry of h-BN/Me(111)

The h-BN/Me(111) systems, which are discussed in this thesis, consist of a

hexagonal boron-nitride (h-BN) mono-layer above a (111) metal surface. The

investigated metals crystallize in the fcc structure, resultinq in sequence of

tree geometrically different layers perpendicular to the (111)-surface (A-B-C

stacking). A geometric model is shown in figure A.2.

The large balls represent the metal atoms of the first four surface layers

and the small gray balls show the optimum positions for boron (lightgray)

and nitrogen (darkgray). The A-B-C stacking of the atomic layers (in (111)

direction) of the metal is indicated by the large balls of different colors (blue,

red, green). The boron and nitrogen atoms are shown in their energetically

most favorable position with nitrogen on-top of the last metal layer (blue) and

boron above the metal atoms of the after next layer (red). With respect to

the geometry of the metal the boron atoms are in exactly the same position as

the metal atoms of an additional layer, forming a fcc like geometry and thus

the boron atoms are said to be in the fcc-position. If the vacant position

above the atoms of the second metal in the boron-nitride layer would be

occupied this would result in a hcp-like geometry (figure A.1) and therefore

defined as hcp-position.
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Figure A.2: Geometry of the h-BN/Me(111) system: The large balls repre-

sent the metal atoms of the first four surface layers and the small gray balls

show the positions for boron (lightgray) and nitrogen (darkgray). A repre-

sentative cell in side view is shown in figure (a) and the top view in figure

(b) with the different atomic positions of the h-BN layer with respect to the

metal surface.
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Appendix B

Input Files

B.1 OpenMX

B.1.1 Rh Nanomesh

# File Name

System.CurrrentDirectory ./ # default=./

System.Name rhbn_on

level.of.stdout 1 # default=1 (1-3)

level.of.fileout 1 # default=1 (0-2)

# Definition of Atomic Species

Species.Number 3

<Definition.of.Atomic.Species

Rh Rh5.0-s2p2d1 Rh_GGA

B B5.0-s2p2 B_TM_PCC

N N4.0-s2p2 N_TM_PCC

Definition.of.Atomic.Species>

# Atoms

Atoms.Number 770

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors # unit=Ang.
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27.8504694117 -16.0794760118 0.0000000000

0.0000000000 32.1589520236 0.0000000000

0.0000000000 0.0000000000 37.0423900000

Atoms.UnitVectors>

#Atom-Coordinates

#Atom# Atom xyz-Coordinates el. Configuration

<Atoms.SpeciesAndCoordinates # Unit=Ang.

1 N 0.005840 -0.003500 9.747360 2.5 2.5

2 N 0.000570 2.498310 9.760920 2.5 2.5

3 N 0.000220 4.996750 9.765410 2.5 2.5

[...]

169 N -2.158230 -1.255920 9.758220 2.5 2.5

170 B 1.442470 0.000360 9.684680 1.5 1.5

171 B 1.437210 2.496290 9.662950 1.5 1.5

[...]

338 B -0.717380 -1.254950 9.673480 1.5 1.5

339 Rh -0.056260 0.000380 7.478480 8.5 8.5

340 Rh -0.061460 2.681100 7.498010 8.5 8.5

[...]

768 Rh -0.886160 -6.697950 3.196120 8.5 8.5

769 Rh -0.886160 -4.018040 3.196120 8.5 8.5

770 Rh -0.886160 -1.338130 3.196120 8.5 8.5

Atoms.SpeciesAndCoordinates>

# SCF or Electronic System

scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE

scf.SpinPolarization Off # On|Off|NC

scf.partialCoreCorrection Off # On|Off

scf.ElectronicTemperature 2500.0 # default=300 (K)

scf.energycutoff 200 # (Ry)

scf.maxIter 2000 # default=40

scf.EigenvalueSolver Krylov # DC|GDC|Cluster|Band

scf.Kgrid 1 1 1 # means 4x4x4

scf.Mixing.Type Kerker # Rmm-Diisk

scf.Init.Mixing.Weight 0.0080 # default=0.30

scf.Min.Mixing.Weight 0.0010 # default=0.001

scf.Max.Mixing.Weight 0.0600 # default=0.40

scf.Mixing.History 5 # default=5

scf.Mixing.StartPulay 30 # default=6

scf.Kerker.factor 0.7 # default=1.0
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scf.criterion 1.0e-3 # default=1.0e-6 (Hartree)

# 1D FFT

1DFFT.NumGridK 900 # default=900

1DFFT.NumGridR 900 # default=900

1DFFT.EnergyCutoff 3000

# Orbital Optimization

orbitalOpt.Method Off # Off|Unrestricted|Restricted

# output of contracted orbitals

CntOrb.fileout off # on|off, default=off

# SCF Order-N

orderN.HoppingRanges 15.0 # default=5.0 (Ang)

orderN.NumHoppings 2 # default=2

# MD or Geometry Optimization

MD.Type DIIS # Nomd|Opt|NVE|NVT_VS|NVT_NH

MD.Fixed.XYZ On

MD.Opt.DIIS.History 2

MD.Opt.StartDIIS 5

MD.maxIter 1000 # default=1

MD.TimeStep 0.5 # default=0.5 (fs)

MD.Opt.criterion 0.001 # default=1.0e-4 (Hartree/bohr)

<MD.Fixed.XYZ

1 0 0 0

2 0 0 0

3 0 0 0

[...]

482 0 0 0

483 1 1 1

484 1 1 1

[...]

768 1 1 1

769 1 1 1

770 1 1 1

MD.Fixed.XYZ>

# MO output
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MO.fileout off # on|off

# DOS and PDOS

Dos.fileout off # on|off, default=off

B.1.2 Pt Nanomesh

#

# File Name

#

System.CurrrentDirectory ./ # default=./

System.Name ptbn_on

level.of.stdout 1 # default=1 (1-3)

level.of.fileout 1 # default=1 (0-2)

#

# Definition of Atomic Species

#

Species.Number 3

<Definition.of.Atomic.Species

Pt Pt6.0-s2p2d1 Pt_PBE

B B5.0-s2p2 B_PBE

N N4.0-s2p2 N_PBE

Definition.of.Atomic.Species>

#

# Atoms

#

Atoms.Number 443

Atoms.SpeciesAndCoordinates.Unit Ang # Ang|AU

Atoms.UnitVectors.Unit Ang # Ang|AU

<Atoms.UnitVectors # unit=Ang.

21.6614367967 -12.5062363657 0.0000000000

0.0000000000 25.0124727313 0.0000000000

0.0000000000 0.0000000000 50.0000000000

Atoms.UnitVectors>
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<Atoms.SpeciesAndCoordinates # Unit=Ang.

1 Pt 0.802280 1.389580 0.000000 9.0 9.0

2 Pt 0.802280 4.168750 0.000000 9.0 9.0

3 Pt 0.802280 6.947910 0.000000 9.0 9.0

[...]

243 Pt -2.406830 -1.389580 4.538360 9.0 9.0

244 N 0.019310 -0.005190 7.258610 2.5 2.5

245 N 0.025380 2.511880 7.157980 2.5 2.5

[...]

343 N -2.167230 -1.263030 7.094930 2.5 2.5

344 B 0.751720 1.250980 7.229610 1.5 1.5

345 B 0.758270 3.785040 7.164530 1.5 1.5

[...]

441 B -1.433750 -5.083000 6.753880 1.5 1.5

442 B -1.441440 -2.517840 6.924600 1.5 1.5

443 B -1.428630 -0.002480 7.156780 1.5 1.5

Atoms.SpeciesAndCoordinates>

#

# SCF or Electronic System

#

scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE

scf.SpinPolarization Off # On|Off|NC

scf.partialCoreCorrection Off # On|Off

scf.ElectronicTemperature 2500.0 # default=300 (K)

scf.energycutoff 200 # (Ry)

scf.maxIter 2000 # default=40

scf.EigenvalueSolver Krylov # DC|GDC|Cluster|Band

scf.Kgrid 1 1 1 # means 4x4x4

scf.Mixing.Type Kerker # Rmm-Diisk

scf.Init.Mixing.Weight 0.0080 # default=0.30

scf.Min.Mixing.Weight 0.0010 # default=0.001

scf.Max.Mixing.Weight 0.0600 # default=0.40

scf.Mixing.History 5 # default=5

scf.Mixing.StartPulay 6 # default=6

scf.Kerker.factor 0.7 # default=1.0

scf.criterion 1.0e-3 # default=1.0e-6 (Hartree)

#
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# 1D FFT

#

1DFFT.NumGridK 900 # default=900

1DFFT.NumGridR 900 # default=900

1DFFT.EnergyCutoff 3000

#

# Orbital Optimization

#

orbitalOpt.Method Off # Off|Unrestricted|Restricted

orbitalOpt.InitCoes Symmetrical # Symmetrical|Free

orbitalOpt.initPrefactor 0.1 # default=0.1

orbitalOpt.scf.maxIter 12 # default=12

orbitalOpt.MD.maxIter 5 # default=5

orbitalOpt.per.MDIter 100 # default=1000000

orbitalOpt.criterion 1.0e-4 # default=1.0e-4 (Hartree/borh)^2

#

# output of contracted orbitals

#

CntOrb.fileout off # on|off, default=off

Num.CntOrb.Atoms 1 # default=1

<Atoms.Cont.Orbitals

1

Atoms.Cont.Orbitals>

#

# SCF Order-N

#

orderN.HoppingRanges 15.0 # default=5.0 (Ang)

orderN.NumHoppings 2 # default=2

#

# MD or Geometry Optimization

#

MD.Type EF # Nomd|Opt|NVE|NVT_VS|NVT_NH

MD.Fixed.XYZ On
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#MD.Opt.DIIS.History 3

#MD.Opt.StartDIIS 5

MD.maxIter 50 # default=1

MD.TimeStep 0.5 # default=0.5 (fs)

MD.Opt.criterion 0.001 # default=1.0e-4 (Hartree/bohr)

<MD.Fixed.XYZ

1 1 1 1

2 1 1 1

3 1 1 1

[...]

162 1 1 1

163 0 0 0

164 0 0 0

[...]

441 0 0 0

442 0 0 0

443 0 0 0

MD.Fixed.XYZ>

#

# MO output

#

MO.fileout off # on|off

#

# DOS and PDOS

#

Dos.fileout off # on|off, default=off
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