
Merging of Biomedical
Decision Diagrams

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Dipl.-Ing. Christoph Redl, BSc.
Matrikelnummer 0525250

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: O.Univ.Prof. Dipl.-Ing. Dr. techn. Thomas Eiter
Mitwirkung: Dipl.-Ing. Thomas Krennwallner

Wien, 13. Oktober 2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Christoph Redl
Kieslingstraße 9
3500 Krems

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 13. Oktober 2010
(Unterschrift Verfasser)

Abstract

Decision diagrams are an important decision aid in medical applications. One of their main
advantages compared with other formalisms like production rules is that they are intuitively
understandable by clinicians, health care and administration personal. It is not necessary to be
an expert in information systems to act according to a diagram.

Possible application scenarios are medical screening tests, classification of DNA or multidi-
mensional data structures. In screening tests, we usually collect certain chunks of information
about the patient. This includes current disorders (if any), blood values, the medical history
and data about the personal life style. In certain cases, additional results from image processing
techniques like computer tomography can be added. Then we need to decide if this patient shows
evidence for the disease in question or not. If this is the case, a medical expert will take a closer
look at the patient and request further tests. This procedure can elegantly be represented as
decision tree or diagram. The inner nodes refer to some data about the patient and the leaf
nodes deliver the answer “yes” or “no”.

Another scenario is the classification of DNA in molecular biology. Today, the procedures for
automatically sequencing the DNA of organisms have reached remarkable performance. There-
fore the next task is to divide the useful subsequences, which encode for proteins from the rest,
called junk DNA. This can be done by statistical features that are computed for a given sequence,
and which vary significantly between coding and non-coding DNA.

These two examples show the relevance of decision diagrams in biomedicine. In this thesis
it will be argued, that not only standalone diagrams are of importance, but that we can find
scenarios where several similar but not equivalent diagrams have to be merged into a single
one. It is highly desirable to have an automatic or semi-automatic procedure that supports this
process in order to take the burden of routine tasks from the user.

Therefore it will be shown how such a tool can be implemented. Technically we will use
dlvhex, an open-source reasoner for hex programs. A plugin for dlvhex will be developed, that
adds support for decision diagram processing in general and merging in particular. The actual
merging step is strongly application dependent, i.e., there does not exist one correct result. This
problem will be regarded by providing different merging algorithms, where the user can select
an appropriate one.

The strength of the plugin and the actual benefit for the user is the possibility to try out
different merging algorithms quickly, which makes it possible to focus on the most interesting

3

4

tasks like algorithm optimization and result evaluation, whereas routine tasks are performed
by the plugin. Finally this tool will be demonstrated when we take a closer look at the DNA
classification example.

Zusammenfassung

Entscheidungsdiagramme sind ein beliebtes und wichtiges Hilfsmittel in medizinischen Anwen-
dungen. Einer ihrer Hauptvorteile im Vergleich zu anderen Formalismen, wie etwa Regelsyste-
men, ist ihre intuitive Verständlichkeit. Dies gilt nicht nur für technische Fachkräfte sondern
auch für Mediziner und administratives Personal.

Anwendungsszenarien finden sich unter anderem in der Durchführung von Screening-Tests,
bei der Klassifizierung von DNA oder in mehrdimensionalen Datenstrukturen. Bei Screening-
Tests werden üblicherweise zuerst verschiedene Informationen über den Patienten erhoben. Dazu
zählen beispielsweise Blutwerte, Daten aus der Krankengeschichte und Informationen über die
Lebensführung und gegebenenfalls Daten aus bildgebenden Verfahren. Anschließend gilt es zu
entscheiden, ob der Patient Symptome für das Vorhandensein einer bestimmten Krankheit zeigt.
Ist das der Fall, so ist eine genauere Untersuchung durch einen Arzt angebracht. Die Entschei-
dungsprozedur bis zu diesem Ergebnis lässt sich elegant als Entscheidungsbaum oder -diagramm
darstellen, wie das auch in vielen medizinischen Leitlinien gemacht wird. Die inneren Knoten
fragen Patientendaten ab, an den Blattknoten ist schließlich die ja/nein-Entscheidung abzulesen.

Ein weiteres Anwendungsbeispiel ist die Klassifizierung von DNA-Sequenzen in der Moleku-
larbiologie. Heutzutage werden riesige Mengen an DNA automatisch sequenziert und die Per-
formance der eingesetzten Verfahren hat beeindruckende Ausmaße angenommen. Der nächste
Schritt ist es, aus diesen Sequenzen nützliche und nutzlose Teilsequenzen, sogenannte junk-DNA,
herauszufiltern und eine Einteilung vorzunehmen. Dazu können Sets von statistischen Features
angewendet werden, die sich für jede beliebige Basenfolge berechnen lassen. Von einigen Features
weiß man, dass sie sich signifikant zwischen codierender und nicht-codierender DNA unterschei-
den und daher für die Klassifikation geeignet sind.

Diese beiden Beispiele demonstrieren die Relevanz von Entscheidungsdiagrammen in der
Biomedizin. In dieser Arbeit wird weiters argumentiert, dass manchmal nicht nur einzelne Di-
agramme von Bedeutung sind, sondern mehrere, die einander zwar ähnlich aber nicht völlig
äquivalent sind. Dies kann beispielsweise daher kommen, dass sie von unterschiedlichen Autoren
stammen, die in ihren Studien zu ähnlichen Ergebnissen gekommen sind, die sich aber aufgrund
statistischer Schwankungen geringfügig unterscheiden. In diesem Fall ist es wünschenswert ein
automatisiertes System für die Vereinigung der Diagramme zur Verfügung zu haben. Dadurch
wird der Benutzer von der Notwendigkeit für manuelle Zusammenführung befreit.

Deshalb ist es Ziel dieser Arbeit, eine derartige Prozedur zu entwickeln. Im technischen

5

6

Teil wird der Open-Source-Reasoner dlvhex verwendet, für den ein Plugin entwickelt wird, das es
zuerst ermöglicht überhaupt Entscheidungsdiagramme verarbeiten zu können, um diese schließlich
in einem späteren Schritt zu vereinen. Das Vereinen selbst ist natürlich stark applikationsab-
hängig, das heißt es gibt nicht einen besten Algorithmus der in jedem Fall zum Ziel führt. Aus
diesem Grund werden unterschiedliche Varianten implementiert die eine möglichst breite Palette
von Szenarien abdecken.

Nutzen und Stärke des Plugins ist die Möglichkeit, ohne manuelles Zusammenführen unter-
schiedliche Strategien ausprobieren zu können. Wie man aus Erkenntnissen des BereichsMachine
Learning weiß, ist die Qualität des Endergebnisses stark von den Trainingssets, den Trainingsal-
gorithmen und - im Falle von Multi-Classifier-Systemen - den Aggregatprozeduren abhängig. Das
Testen und Evaluieren der Möglichkeiten wird in der vorliegenden Arbeit teilautomatisiert und
daher wesentlich vereinfacht. Die Software wird schließlich demonstriert, indem wir das Beispiel
der DNA-Klassifizierung im Detail betrachten.

Contents

Abstract 2

Contents 7

List of Tables 9

List of Figures 10

1 Introduction 13
1.1 Existing Approaches . 14
1.2 Going Beyond . 14
1.3 Intention of the Approach . 15
1.4 Applications and Experimental Results . 15

2 Preliminaries 17
2.1 Answer-Set Programming . 17
2.2 Intoduction to hex programs and dlvhex . 20
2.3 Intoduction to the mergingplugin . 21

3 Decision Diagrams in Biomedicine 25
3.1 Formal Definition of Decision Diagrams . 26
3.2 Query Language . 28

4 Task Definition and Variants 33
4.1 General Definition . 33
4.2 Task Variants . 34
4.3 Contradicting Diagrams . 36
4.4 Summary . 36

5 Formal Operator Definition 39
5.1 Unary Modification Operators . 39

7

8 CONTENTS

5.2 Merging Operators . 48
5.3 Simplifying Diagrams . 58
5.4 Solving different Task Variants . 61

6 Using dlvhex for
Decision Diagram Merging 63
6.1 Representation Formats for Decision Diagrams 63
6.2 Architectural Overview . 66
6.3 Operator Implementation . 68
6.4 Demonstration . 70
6.5 Framework Benefits . 72

7 Case Studies 75
7.1 DNA Classification . 75
7.2 Multidimensional Indices . 81
7.3 Aggregation of Hypothesis in Fault Diagnosis Tasks 84

8 Conclusion and Outlook 87
8.1 Problem Statement . 87
8.2 Solution . 87
8.3 Future Issues . 88

A The dot File Format 91

B Command-Line Tool graphconverter 93
B.1 Conversion . 95

Bibliography 97

List of Tables

3.1 Classification of scales . 29

4.1 Task attributes . 36

5.1 Task variants . 62

6.1 Types of necessary operators . 68

7.1 DNA classification tree 1 . 79
7.2 DNA classification tree 2 . 79
7.3 DNA classification tree 3 . 79
7.4 Merged DNA classification tree . 80

A.1 Syntax of the dot file format . 91

9

10 LIST OF FIGURES

List of Figures

4.1 Comparison of notations . 35
4.2 Comparision of ordered and unordered trees . 38
4.3 Conflicting trees . 38

5.1 Decision diagram with node sharing . 40
5.2 Decision diagram from Figure 5.1 without node sharing 40
5.3 An n-ary tree . 42
5.4 Binary version of the tree in Figure 5.3 . 42
5.5 An unordered decision tree . 44
5.6 Ordered version of the tree in Figure 5.5 . 45
5.7 Illustration of the operator from Definition 5.4 . 47
5.8 Class partition of the trees shown in Figures 4.3(a) and 4.3(b) (of Example 4.3) and

the averaged diagram . 53
5.9 Result of ◦avg applied on the diagram from Example 4.3 54
5.10 Mean computation is impossible . 54
5.11 Mean computation . 55
5.12 The partitions of the merged classifier contain a region that contradicts both inputs 56
5.13 Demonstation of operator ◦maj . 58
5.14 Diagram containing two equivalent subtrees . 59
5.15 Diagram from Figure 5.14 after common subtrees were eliminated 59
5.16 Elimination of irrelevant branches . 60

6.1 Example decision diagram . 64
6.2 Used data formats and conversions between them . 67
6.3 Internal decision diagram representation . 68
6.4 A decision diagram with node sharing . 70
6.5 Decision diagram from Figure 6.4 unfolded . 72

7.1 Individual source classifiers . 78
7.2 Instantiation of the abstract schema for DNA classification 79
7.3 Merged decision tree . 80
7.4 Two-dimensional data . 82
7.5 R-Tree . 82
7.6 Partitioning by a k-d-tree . 83

B.1 Graphical representation of a decision diagram . 94

Danksagungen

An dieser Stelle möchte ich mich bei jenen Menschen bedanken, die zum raschen Abschließen
dieser Arbeit beigetragen haben.

Mein Dank gilt vor allem meinem Betreuer Prof. Thomas Eiter, der sich in zahlreichen
Meetings die Zeit nahm, mir beratend zur Seite zu stehen, wertvolle Verbesserungsvorschläge zu
geben und meine Fragen zu beantworten. Ebenfalls mitgewirkt hat Thomas Krennwallner, der
bei implementierungstechnischen Fragen stets kompetente Auskunft erteilen konnte.

Dem FWF (Fonds zur Förderung der wissenschaftlichen Forschung1) danke ich für die fre-
undliche finanzielle Unterstützung des Projektes Modular HEX-Programs (P20841), sowie dem
WWTF (Wiener Wissenschafts-, Forschungs- und Technologiefonds2) für die Förderung des Pro-
jektes Inconsistency Management for Knowledge Integration Systems (ICT 08-020), in deren
Umfeld ich diese Arbeit schreiben durfte. Dadurch wurde es mir erst ermöglicht an diesem
interessanten Thema zu arbeiten.

Weiters haben auch alle weiteren Mitglieder der Arbeitsgruppe für wissensbasierte Systeme
ihren Teil dazu beigetragen, mein Interesse auf Logik und logikorientierte Programmierung zu
lenken. Dies gilt vor allem für Uwe Egly, Hans Tompits und Michael Fink, deren spannende
und kurzweilige Lehrveranstaltungen in den letzten Jahren für mich der Anlass waren, meine
Abschlussarbeit letztendlich in diesem Arbeitsbereich zu schreiben.

Einen Beitrag haben auch meine Studienkollegen geleistet. Jeder auf seine Art und Weise. Sei
es, indem sie mich durch ihren Ehrgeiz angespornt haben die Ziele hoch zu stecken und Schritt
halten zu wollen, oder weil sie in vielen belanglosen Gesprächen für Spaß gesorgt und so das
Studentenleben lockerer gemacht haben.

Nicht zuletzt bedanke ich mich natürlich auch bei meiner Familie, die es ertragen hat dass
ich in den letzten Jahren trotz körperlicher Anwesenheit oft mit meinen eigenen Gedanken
beschäftigt war. Vor allem gilt dieser Dank meinen lieben Eltern, Karl und Anita Redl, die
mich während meiner Studienzeit sowohl finanziell wie auch moralisch unterstützt haben und
ohne die der Weg weitaus beschwerlicher gewesen wäre.

1http://www.fwf.ac.at
2http://www.wwtf.at

11

http://www.fwf.ac.at
http://www.wwtf.at

More people are killed every year
by pigs than by sharks, which
shows you how good we are at
evaluating risk.

Bruce Schneier

Chapter 1
Introduction

Many medical decisions are based on decision diagrams. For now we informally define them as
acyclic graphs, where the inner nodes check some conditions and the leaves contain a proposal
for the decision to make if we end in this node. They are often developed by expert groups after
extensive studies and are published in clinical guidelines. Since they summarize the current state
of the art of science, they are a great tool for medical doctors and health care personal.

Applications include the determination of the best medicine or intervention for a patient
depending on his or her medical history and results of examinations. Another scenario is the
computation of possible diagnosis for a patient given his or her symptoms as part of computer
supported decision systems. For instance, [Mair et al., 1995] present a decision tree for early
diagnosis of myocardial infarctions.

A very common use case, that is often implemented in clinical protocols, is the quantification
of the degree of severity depending on the patient’s condition. For instance, the TNM system
classifies tumor diseases with respect to the size of the primary tumor and the spread of metastasis
[Sobin et al., 2009]. The suggested kind of treatment depends on the stage.

Decision diagrams are not only relevant in clinical practice. They have also become popular in
more basic forms of life sciences in the last decades. One example is presented in [Salzberg, 1995],
where decision trees are used to decide whether a given DNA sequence is protein coding or
non-coding. As input they use certain features that can be computed for sequences of bases
which incorporate knowledge from molecular biology. For instance, certain triplets are known
to be more frequent in coding sequences than in non-coding ones. If such a set of features has
been computed, one can apply machine-learning algorithms to train classifiers for automatic
classification.

However, decision diagrams are not only used in medicine and natural sciences. Applications
in other fields can easily be found, for instance in economy and psychology. An economic appli-
cation is the rating of a company’s or country’s liquidity depending on certain financial ratios,
which is usually done by rating agencies. In psychology, typical tests for diagnosis of personality
disorders or mental diseases can easily be organized as decision trees or diagrams. For some more
applications see [Bahar et al., 1993].

In many cases there exist multiple decision diagrams for the same purpose. This occurs due
to different institutes working on similar projects, similar but not equivalent meanings about
correct decisions, statistical impreciseness or simply human errors. If one does not have any

13

14 CHAPTER 1. INTRODUCTION

preferences about the trustability of the different decision diagram providers, it is necessary to
combine them somehow into one compact and coherent diagram.

As the main contribution of this thesis, we will develop and implement a tool which supports
this process, i.e., the semi-automatic incorporation of multiple diagrams into a single one. This
takes the burden of performing routine tasks from the user. Since we are going to use logic
programming for the implementation, we first need to find a way to turn decision diagrams into
“objects” which are accessible from the logic program. As we will see, this can be done by a
straightforward encoding.

1.1 Existing Approaches

The incorporation of several classifiers, which is a generalization of decision diagrams, is called
ensemble learning and comes from the field of machine learning. It has already been studied and
well working methods have been developed. Two of the most successful strategies are boosting
and bagging. For an overview about ensemble learning methods see for instance [Dietterich, 2000],
[Maclin and Opitz, 1997] or, for a quick introduction, [Polikar, 2009].

We will shortly describe boosting and bagging. In bagging (bootstrap aggregating), n different
classifiers are trained independently. The underlying annotated training set is used to randomly
draw a subset for each of the training passes. Thus, the classifiers will be trained on partially
overlapping and partially differing training sets. After training has been done and a new element
needs to be classified, this is first done independently by each classifier. Then the results are
combined by a simple majority voting rule.

Bagging is very similar. The only difference concerns the selection of the training set for the
individual classifiers. While bagging draws them randomly from the overall training set, boosting
makes sure that when classifier Ci is trained, half of its training samples are correctly and half
of them are incorrectly classified by Ci−1. Informally this strategy tries to select interesting
samples, namely those where the results of existing classifiers are moderate and leave room for
improvement.

1.2 Going Beyond

All of the methods presented in Section 1.1 have some underlying assumptions that we will put
into question. First of all, in most cases the merging algorithms assume that the underlying
data, which was used when the input decision diagrams were created, is still available. But this
may be not the case because of different reasons like business secrets or privacy. But even if the
original training set is still available, it is sometimes simply undesired to train a new classifier.
Maybe one prefers to combine some of the most successful and well-tested diagrams directly.

Additionally, many approaches do not actually merge decision diagrams into a standalone one.
Instead they create a decision procedure which refers to the source diagrams and summarizes the
results, e.g., by applying a majority voting rule as we have seen before. In clinical practice this
solution would not be acceptable since a decision aid must be intuitively understandable and
easily applicable. Users will in general not be knowledge engineers that are used to work with a
variety of sources they need to combine.

A further difference to our approach is that most merging algorithms convert decision dia-
grams into rule-based systems before they are combined. We will directly work with diagrams
and skip this intermediate representation formalism.

To summarize, this thesis is intended to develop a procedure which actually creates a stan-
dalone decision diagram from multiple ones. It will be based on an extended version of answer

1.3. INTENTION OF THE APPROACH 15

set programming using dlvhex, which is another essential difference to existing approaches that
are mainly based on machine learning techniques rather than logic programming. We are not
going to develop one specific merging algorithm, but a fairly flexible framework, which can be
parameterized depending on the needs of a certain application.

1.3 Intention of the Approach

The merging of decision diagrams can also be done by hand. So what is the advantage of
using a merging framework? In many settings it is not clear from the beginning which merging
strategy or which combination of strategies gives the best result. Thus, one has to try out several
operations and measure the performance of the result. This is suboptimal since the user has to
deal with routine tasks instead of the optimization of the merging strategy.

Therefore, a framework that allows the declarative specification of merging plans is highly
desirable. Then the user can spend more efforts in the development and improvement of merging
operators while the technical details of the merging process are managed automatically.

The framework is useful even if the merging strategy is already fixed. It is well-known that
the performance of classifiers strongly depends on the selected training data and the correct
selection of parameters. Modified start conditions will lead to classifiers that behave differently.
It is tedious if the merging has to be done repeatedly each time one of the source classifiers is
modified or exchanged.

Consequently, the intention of the proposed decision diagram merging procedure is to ease
the process of finding appropriate parameters by performing routine tasks automatically and
give the user the chance to focus on the interesting aspects of the procedure.

1.4 Applications and Experimental Results

We will apply our framework and its implementation on some practical applications of life sci-
ences. Our most detailed case study deals with the classification of DNA sequences as being
protein-coding or non-coding. This can be done by computing statistical features of the se-
quences of an annotated set, and training a decision diagram upon them. Subsequently this
diagram can be used to classify new sequences.

As we will see, training multiple different diagrams and merging them in a post-processing
step has several advantages over the training of a single classifier. The results of our experiments
show, that combining classifiers trained by different algorithms may increase the accuracy; this
reminds on the principle of recombination in nature. We could also observe that the total size of
the training set which is necessary to reach a certain accuracy seems to decrease when multiple
diagrams are trained and merged.

Clearly, the quality of the final diagram depends on the quality of the training set, the selection
of the training algorithms and the merging procedure in use. Some combinations increase the
quality, while others have no influence or even decrease it. But this exactly shows why our
framework is useful. Instead of wasting time by manually incorporating diagrams after each
change of parameters, the user may focus on the evaluation of the result, while the technical
details of the merging are managed automatically.

Other applications of our framework include medical screening tests, which can elegantly be
represented by a decision diagram, or, more technically, multidimensional index structures in
database systems. A classical application of medical informatics are decision support systems,
which may also be based on decision diagrams.

Ah! That is a beautiful
assumption; it explains many
things.

Pierre-Simon Laplace

Chapter 2
Preliminaries

This chapter summarizes the preliminaries for the work in later chapters. A more detailed de-
scription of many topics of this chapter is given in [Redl, 2010]. We first give a short introduction
to logic programming under the answer-set semantics. This is a modern declarative formalism
that has been widely accepted and used. Nevertheless it is by far not the only one developed.

We then continue with hex programs as an extension of this semantics since this will be the
formalism we work with in this thesis. The reasoner in use will be dlvhex1 which uses DLV2 in
the background and extends it with new features.

Finally we give a short introduction into the mergingplugin which is an extension of dlvhex
and has been developed as part of another master’s thesis [Redl, 2010] since we build upon this
plugin and extend it further.

2.1 Answer-Set Programming

The very beginnings of logic programming were dominated by resolution-based methods, see for
instance [Kowalski, 1974]. But because of several drawbacks, where the most obvious one is the
lack of a possibility to derive negative information, completely new semantics were developed
subsequently. This includes the least fixed point semantics [Fitting, 1999] and the stable-model
semantics [Gelfond and Lifschitz, 1988]. The latter one was finally extended to the answer-set
semantics [Gelfond and Lifschitz, 1991].

In the following sections we will restrict our discussion to aspects which are relevant with
respect to the answer set semantics. In particular, we are going to skip historical methods
like resolution-based reasoning and the stable model semantics. A more detailed and stepwise
introduction of the answer set semantics is given in [Redl, 2010] or the underlying literature.

Least Fixed Point Semantics

To overcome the problems of resolution-based methods, a completely new semantics, named
the least fixed point semantics, for logic programs has been introduced. We are going to follow

1http://www.kr.tuwien.ac.at/research/systems/dlvhex
2http://www.dbai.tuwien.ac.at/proj/dlv

17

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.dbai.tuwien.ac.at/proj/dlv

18 CHAPTER 2. PRELIMINARIES

[Fitting, 1999] and keep working with programs of the following type for now.

Definition 2.1. A classical logic program P is a set of Horn rules, where a Horn rule r is of the
form

r = H ← B1, . . . , Bn.

with Bi (1 ≤ i ≤ n) being atoms and H being an atom or empty.

Intuitively the evaluation procedure can be described as follows. The facts (a rule with n = 0)
are initially true since they have no premises. Then a rule H ← B1, . . . , Bn. enforces us to set H
to true whenever all of Bi are true. Thus, the set of true variables is continuously expanded.
The procedure is repeated until no more atoms can be added. Then we say that the least fixed
point is reached.

Formally we define the operator Γ(P,A), where P is a positive logic program and A a set of
atoms.

Definition 2.2. The semantics of Γ(P,A) is another set of atoms A′, s.t. H ∈ A′ iff there exists
a ground instance of a rule H ← B1, . . . , Bn. in P and Bi ∈ A ∀1 ≤ i ≤ n. The semantics of a
program P is the least fixed point of this operator, i.e., lfp(Γ(P, ∅)).

Example 2.1. Consider the program

P = {a.
b ← a.

c ← a, b.}

Obviously lfp(Γ(P, ∅)) = {a, b, c}.

Note that these definitions basically remain the same when we allow the use of literals (atoms
or strongly negated atoms) instead of atoms. We will presuppose corresponding definitions in
the following subsections.

Grounding

In the remaining part of this chapter we will further assume that all programs are free of variables.
This happens without loss of generality, since programs with variables can be easily transformed
into a variable-free version by a procedure called grounding. That is, a variable occurring in
a rule is simply treated as shortcut for all the rules that can be constructed by replacing the
variable by arbitrary domain elements, see Definition 2.4 and 2.5. Note that for function symbols,
the grounding is possibly infinite. However, this is not relevant for our purposes since DLV and
dlvhex do not support function symbols. For an illustration of grounding see Example 2.2.

Definition 2.3. A first-order signature Σ = 〈Σv,Σp,Σc〉 consists of a set of variables Σv, a set
of predicate symbols Σp and a set of constant symbols Σc from a first-order vocabulary φ.

The set of terms over Σ is denoted as T .

Definition 2.4. A term t ∈ T is called ground iff it contains no variables.

Definition 2.5. The grounding of a ground term (a ground program) is the term (the program)
itself. The grounding of an arbitrary term t ∈ T , denoted as ground(t) (an arbitrary program P ,
denoted as ground(P)), is the set of all variable-free versions that can be obtained by replacing
variables by arbitrary ground terms.

2.1. ANSWER-SET PROGRAMMING 19

Example 2.2. Let’s consider the non-ground program

P = {f(a).

g(b).

f(X) ← g(X).}

Then the according grounded program is

Pgrounded = {f(a).

g(b).

f(a) ← g(a).

f(b) ← g(b).}

Answer-Set Semantics

Before we can discuss the answer set semantics we need to introduce some preliminary definitions.

Definition 2.6. The Herbrand universe of a program P , denoted as HU (P), is the set of all
ground terms occurring in P .

Definition 2.7. The Herbrand base HB(P) of a program P is the set of all ground atoms over
the Herbrand universe and the predicate symbols in P .

Definition 2.8. A Herbrand interpretation I ⊆ HB(P) is any subset of the Herbrand base.

Definition 2.9. A literal L is either an atom A or a strongly-negated atom ¬A.

The following definition will introduce the syntax of the kind of logic programs we are going
to use in later chapters.

Definition 2.10. An extended logic program P consists of rules of the form

H1 ∨ · · · ∨Hk ← B1, . . . , Bn,notBn+1, . . .notBm.

where Hi is the possibly empty set of head literals and Bi are the body literals.

In contrast to the stable model semantics, the answer set semantics uses two types of nega-
tion. We will use the symbol ¬ for classical (strong) and “not” for default negation (negation
as failure). Further we will denote the set of default-negated body literals {Bn+1, . . . , Bm}
of a rule r as B−(r) and the set of non-default-negated (but possibly strongly negated) liter-
als {B1, . . . , Bn} as B+(r).

The semantics of extended logic programs is called the answer-set semantics, which is an
extension of the stable model semantics. In the stable model semantics, strong negation does
neither occur in the program nor in the answer of the program, i.e., the answer of a program is
expected to be a set of ground atoms.

In contrast to that, extended logic programs evaluate to sets of ground literals, called answer
sets [Gelfond and Lifschitz, 1991].

Formally we can define answer sets as follows.

Definition 2.11. Let P be an extended logic program and M ⊆ HB(P) be a Herbrand inter-
pretation. Then the reduct PM is the program obtained from P by

• discarding all rules r with B−(r) ∩M 6= ∅

20 CHAPTER 2. PRELIMINARIES

• removing all default-negated literals from the bodies of the remaining rules

If the unique minimal Herbrand model of PM coincides with M , it is an answer set of P .

Note that this definition allows us to use disjunction in the rule heads. So called disjunctive
logic programs were first described by [Przymusinski, 1991] under the stable model semantics
and then adopted by Gelfond and Lifschitz for the answer-set semantics.

Example 2.3. The program

P = {p ← not q.

q ← not p.

¬r ← p.}

has two answer sets, namely AS1 = {p,¬r} and M2 = {q} because AS1 is the (unique) least
model of PAS1 = {p., ¬r ← p.} and AS2 the least model of PAS2 = {q., ¬r ← p.}. In
contrast, M3 = ∅ is not an answer set of the program since it does not coincide with the least
model of P ∅ = {p., q., ¬r ← p.}, which is {p, q,¬r}.

2.2 Intoduction to hex programs and dlvhex

The open-source software dlvhex is a reasoner for a generalization of logic programs under the
answer-set semantics called hex programs. The latter generalize extended logic programs in the
following two ways.

First they bring support for higher-order atoms. In contrast to first-order atoms, the predicate
name is not necessarily a constant but can also be a variable. For instance, X(a, Y) is a higher-
order atom since X is a variable whereas z(a, Y) is an ordinary atom. In general a higher order
atom is of form

Y0(Y1, . . . , Yn)

which can also be written as n + 1-ary tuple (Y0, Y1, . . . , Yn). HO-atoms collapse to first-order
atoms after grounding, therefore the semantics is equivalent to extended logic programs.

The second enhancement, which is more important in our context, is the support of external
atoms. They allow a bidirectional communication between the hex program and an external
source of computation. In this section we explain them with focus on practical usage, for a
theoretic discussion we refer to the above literature.

An external atom &g is of the form

&g [A1, . . . , Am](O1, . . . , On),

where A1, . . . , Am are the input parameters (we use A for arguments instead of I to avoid confu-
sions with interpretations) and O1, . . . , On are the output parameters, Ai can either be a constant
or a predicate name that needs to be passed to the external source. In case of a constant, it is
passed just as is. In case of a predicate name, all atoms in the current interpretation that a built
upon this predicate are passed. This is called restricted interpretation. Then the source is called,
which needs to compute a set O of n-ary output tuples (based on the input parameters). Finally
the computation of the logic program continues where &g [A1, . . . , Am](O1, . . . , On) evaluates to
true iff (O1, . . . , On) ∈ O.

In practice, external atoms are implemented in form of C++ classes that are compiled as
shared object libraries and placed in the plugin directory of dlvhex. There they can be found
and loaded on startup such that the atom can evaluated as needed.

2.3. INTODUCTION TO THE MERGINGPLUGIN 21

Example 2.4. The program

P = {s(“hello ”).

s(“dlvhex ”).

result(Z) ← s(X), s(Y),&concat [X,Y](Z).}

has an answer set with 4 atoms over result , namely:

AS1 = { result(“hello hello ”), result(“dlvhex dlvhex ”), result(“hello dlvhex ”),

result(“dlvhex hello ”), s(“hello ”), s(“dlvhex ”)}

The external atom &concat is implemented in the string plugin and computes the concate-
nation as usual.

For a more detailed and formal introduction of hex programs see [Redl, 2010] or directly the
underlying basic literature, e.g., [Eiter et al., 2006].

2.3 Intoduction to the mergingplugin

The mergingplugin is a plugin for dlvhex which was developed as part of the master’s thesis
[Redl, 2010]. Basically it consists of two components: a set of external atoms and the command-
line tool mpcompiler.

Nested hex Programs

The external atoms implemented in the mergingplugin allow hex programs to call other hex
programs, let them compute their result independently from the calling program, and continue
computation in the host program afterwards. This is best explained with an example.

Example 2.5. In [Eiter et al., 2005] a logic program P for demonstrating the new features of
hex programs in comparison to extended logic programs under the answer-set semantics is shown.
It computes a randomly selected group of two or three persons among John’s relatives and invites
them. Let’s assume that P returns atoms over the binary predicate invites, for instance

invites(john, sue)

to represent that sue is invited. Each answer set of the program will contain exactly one possible
selection of relatives, i.e., two or three atoms of the given form.

Now suppose that we are not interested in the invited persons themselves, but only in the
number of possible selections. This combinatorial problem cannot be solved in pure hex pro-
grams because it is not possible to count the number of answer sets, since at each point during
reasoning, we can only “see” the contents of the currently computed answer set. What we need
is a mechanism for calling sub-programs, i.e., reasoning on the level of sets of answer sets. But
this is not possible without special external atoms.

The mergingplugin implements exactly such external atoms, namely:

• &hex [Prog ,Args](A)
This executes a program (given as string literal Prog) with certain command-line options
(Args). The result is an integer value A that serves as handle3.

3A handle is similar to a pointer: the numeric value is irrelevant, but it can be used to access this answer
later on.

22 CHAPTER 2. PRELIMINARIES

• &hexfile[File,Args](A)
This executes a program stored in the file with name File (a string literal) with certain
command-line options Args. The result is again a handle A.

• &answersets[H](AS)
This atom takes the handle H to a program’s answer and returns zero or more handles AS
to the answer sets contained in this answer.

• &predicates[H,AS](Pred ,Arity)
&predicates takes the handle AS to an answer set within a program’s answer H. Its result
is a list of predicates occurring in this answer set (Pred) paired with their arities (Arity).

• &arguments[H,AS ,Pred](I ,ArgIndex ,Value)
&arguments takes the handle AS to an answer set within a program’s answer H as well
as some predicate name Pred . Its result is a list of triples of the following form. The first
element I is a running index that states with triples belong together (namely all with the
same index). The second and third argument state the Value of the argument with index
ArgIndex in the I-th occurrence of the given predicate.
The special index s for ArgIndex denotes the sign of the atom, where the possible values
are 0 (for positive) and 1 (for strongly negated).

This is demonstrated with an example which was taken from the end-user documentation
of the mergingplugin. For more details see the cited thesis, which includes the user guide in its
appendix.

Example 2.6. The program

P = {val(Pred , I,ArgIndex ,Value) ← &hex [“p(a, b). ¬p(x, y). q(f).”, “”](H),

&answersets[H](AS),

&predicates[A,AS](Pred ,Arity),

&arguments[A,AS ,Pred]

(I,ArgIndex ,Value).}

will have one answer set, namely

{val(p, 0, s, 0), val(p, 0, 0, a), val(p, 0, 1, b),

val(p, 1, s, 1), val(p, 1, 0, x), val(p, 1, 1, y),

val(q, 0, s, 0), val(q, 0, 0, f)}

The inner (nested) program obviously has just one answer set, namely {p(a, b),¬p(x, y), q(f)}.
The result of the outer program (host program) expresses that in the 0-th occurrence of p, the
sign is positive (0), the 0-th parameter is a and the 1-st parameter is b.

Similar for the 1-st occurrence of p, where the sign is negative (1), the 0-th argument is x
and the 1-st one is y.

q occurs only once (positively) and has just one parameter which is f .

Example 2.7. The following example solves the problem of counting the number of answer sets
returned by program “invitations.hex” (continuation of Example 2.5).

P = {as(AH) ← &hexfile[“invitations.hex”, “”](HP),

&answersets[PH](AH).

number(D) ← as(C), D = C + 1,not as(D).}

2.3. INTODUCTION TO THE MERGINGPLUGIN 23

If just figures out the highest value D such that D− 1 is a valid handle to an answer set and
D is not.4 Or in other words, we compute D such that it is the number of answer sets of P .

Operator Applications

The mergingplugin allows the specification of so called merging operators. Formally, an n-ary
operator maps n sets of answer sets over some signature Σ plus m additional parameters to a
new set of answer sets.

Definition 2.12. An n-ary operator with m additional arguments of types Di (0 ≤ i < m) is a
function

◦n,m :
(

2A(Σ)
)n

︸ ︷︷ ︸
belief bases

× D0 × . . .×Dm︸ ︷︷ ︸
additional parameters

→ 2A(Σ)

where A(Σ) = 2LitΣ .

The implementation of operators is done via an external atom of the following form:

&operator : String ×A× P → N

Its input is a string literal that selects the operator to apply, a sequence A = 〈a1, . . . , an〉 , ai ∈
N of answers to be passed to the operator, and m additional parameters of kind key-value pairs,
given as sequence P = {(k1, v1), . . . , (km, vm)} , ki, vi ∈ String .

Operators are in general user-defined (even though the mergingplugin comes with a few pre-
defined ones). They need to be implemented in form of a shared object library that provides a
function with the following signature:

extern "C" std::vector<dlvhex::merging::IOperator*> OPERATORIMPORTFUNCTION()
This function must return a vector containing pointers to all operators provided by this

library, where each operator is a class that implements the interface IOperator defined in the
mergingplugin. Such a shared object library can either be installed into the dlvhex plugin direc-
tory, where it is automatically found on startup, or in a user defined directory that is explicitly
added to the search path using the command-line option --operatorpath.

This informs the plugin about the existence of certain operators. Later on, they can be used
within merging plans, which is the topic of the following section.

Merging Plans

Merging plans generalize the concept of merging operators by organizing them hierarchically.
This means that the result of an operator application can be passed as argument to a further
operator. This gives a tree-like structure that is similar to syntax trees for arithmetic expressions,
where the leaf nodes are formed by knowledge bases and the inner nodes by merging operators.

Example 2.8. The following snippet shows a merging plan that is intuitively readable. The
knowledge bases kb2 and kb3 are first unioned and finally subtracted from kb1 (using set minus
operation).
[merging plan]
{

operator : setminus ;
{

bb1

4Handles start with value 0.

24 CHAPTER 2. PRELIMINARIES

} ;
{

operator : union ;
{

bb2
} ;
{

bb3
} ;

} ;
}

Without going into detail and explaining how this works, a merging plan like this can be
translated into a semantically equivalent hex program by the use of the command-line tool
mpcompiler5 that is installed as part of the mergingplugin. The resulting program can then be
executed by dlvhex, which will give the result of the topmost operator application of the merging
plan. In the example, this would be the result of setminus.

This concludes our introduction to the mergingplugin. For more information see [Redl, 2010]
where this plugin is developed step by step. We now take a closer look at decision diagrams and
their applications in medicine. In Chapter 4 we come back to merging plans and use them for
diagram merging.

5merging plan compiler

A weak man has doubts before a
decision; a strong man has them
afterwards.

Karl Kraus

Chapter 3
Decision Diagrams in Biomedicine

Decision diagrams and especially decision trees are an important means for decision making in
clinical practice. [Shortliffe et al., 1979] introduces clinical algorithms in form of flowcharts. Even
though they may consult human experts in cases with exceptional circumstances, such protocols
are an important tool as basis for efficient patient handling. Medical personal can simply follow
the description in standard cases and concentrate on the few cases that need special attention.

Since then, many clinical guidelines were published that contained decision diagrams, and
some of them were implemented in clinical expert systems. For instance, [Mair et al., 1995]
present a decision tree that supports the early diagnosis of myocardial infarctions under certain
circumstances.

An interesting approach is presented in [Althoff et al., 1998]. It is called INRECA approach
with the well-known underlying idea that a current medical case can be solved (that is, an
accurate medication or therapy is selected) by comparing it to past cases. Past cases consist of
symptoms and the therapy that finally has lead to success. If a the actual case is similar to a
certain past case, it is very probable that a similar therapy will do the job.

But how can medical cases be compared? For that purpose they introduce a new data
structure called the Inreca-tree, which is essentially a decision tree. In its inner nodes, certain
parameters like blood values are queried, where there is an outgoing edge for each possible result
plus the special value unknown. The existence of such an else branch in each node makes sure
that the tree can deal with incomplete knowledge. The leaf nodes are references to past cases
that are similar to the current one. Thus, something like a decision tree is used to quickly find
cases that are of interest for the current patient (even though the Inreca-tree finally leads to a
class of cases rather than a single classification as in case of pure decision trees).

A further application of decision trees comes from the field of tumor staging. The TNM
system [Sobin et al., 2009] classifies tumor diseases into 4 stages, depending on the size of the
primary tumor (T), the number of lymph node metastasis (N) and the existence or absence
of metastasis in non-lymph organs (M). The distinction has direct influence on the suggested
therapy. This system has been established as generic appraisal tool for determining the severity,
where the details depend on the type of cancer. For instance, [Mountain, 1986] investigate certain
types of lung cancer.

Even though most medical papers contain decision tables rather than decision trees (and
sometimes redundancy), they can be easily converted into a tree. In case of the TNM system

25

26 CHAPTER 3. DECISION DIAGRAMS IN BIOMEDICINE

this would even be the more natural representation formalism since not all combinations of values
for T, N, and M are relevant. Some queries depend on prior answers. For instance, in case of
existence of metastasis in non-lymph tissue (M), the final result will be stage 4 (most serious),
independent of the values of T and N.

3.1 Formal Definition of Decision Diagrams

After this informal description of decision diagrams we need to define them mathematically now.
We talk about nothing more than an algorithmic representation of a discrete decision function,
which assigns a class to each element of a certain domain. In detail we characterize decision
diagrams similar to [Moret et al., 1980]. However, note that they consider decision trees whereas
we consider decision diagrams, but the concept can easily be generalized. We will come back to
the difference in later sections.

Definition 3.1. Let D be a domain and C a set of classes, i.e., sets of arbitrary elements
which serve as domain elements resp. classes. Then a classification function c (classify) has the
signature c : D → C and can be represented as decision diagram

D = 〈V,E, lc, le〉 ,

where V is the set of nodes and E ⊆ V ×V the set of directed edges such that (V,E) is a directed
acyclic graph and D has a unique root node rD, i.e., ∃n ∈ V s.t.

d−(rD) = 0 and d−(n) = 0⇒ n = rD

(there is exactly one node with no ingoing edges)
The function

leaves(V) := {v ∈ V | @ : (v, u) ∈ E}

denotes the set of leaf nodes in V . Then, the function

lc : leaves(V)→ C

assigns a class to each leaf node and
le : E → 2D

a subset of the domain to each edge.

Informally, le(e) represents any condition that can either be satisfied or violated by a domain
element. When the classification of a certain domain element x needs to be determined and a
certain node v is reached, we follow the (unique) edge e = (v, u) with x ∈ le(e).

This is formalized by the recursive Algorithm 1. We will write D(d) to denote the application
of this algorithm to domain element d and the root element of decision diagram D.

In order to guarantee that the algorithm is deterministic and the result is unique, we need
the following extra requirements:

(a)
⋃

(v,u)∈E
le((v, u)) = In(v), for all v ∈ V \ ({root} ∪ leaves(V))

where In(v) =
⋃

(p,v)∈E
le((p, v)) and root = v ∈ V s.t. @p ∈ V : (p, v) ∈ E

This states that at any point during the execution of Algorithm 1, if a node is reached for
element d, there must be an outgoing edge for this element, i.e., computation can always
continue.

3.1. FORMAL DEFINITION OF DECISION DIAGRAMS 27

Algorithm 1: classify(d, root)
Input: d ∈ D, root ∈ V
Output: c ∈ C
if d ∈ leaves(V) then

return lc(d)
else

for u : (root, u) ∈ E do
if d ∈ le((root, u)) then

return classify(d, u)

/* This point is never reached due to requirements (a) and (b) */

(b)
⋃

(root,v)∈E
le((root, v)) = D

We need a similar condition for the root node. The root must have an outgoing edge for
each domain element.
Together with the previous requirement, this one guarantees that the decision tree can
classify all domain elements.

(c) ∀v ∈ V ∀e1 = (v, u) ∈ E ∀e2 = (v, w) ∈ E : le(e1) ∩ l2(e2) 6= ∅ ⇒ u = w
Successors of decision tree nodes must be unique at any point of computation. Thus the
conditions of the edges must be pairwise disjoint.

These abstract definitions are illustrated with the following example.

Example 3.1. Assume a domain:

D = {1, 2, . . . , 15}

and classes:
C = {prime,not prime}

Then a possible decision diagram is:

D = 〈{r, p, n}, {(r, p), (r, n)}, lc, le〉

with leaf classes
lc(p) = prime, lc(n) = not prime

and conditions

le((r, p)) = {2, 3, 5, 7, 9, 11, 13}, le((r, n)) = {1, 4, 6, 8, 10, 12, 14, 15}

If an element needs to be classified, e.g., e = 7, we start at node r and check whether e ∈ le((r, p))
or e ∈ le((r, n)). In this case e ∈ le((r, p)) holds, which directs us to leaf node p. Therefore the
classification for e = 7 = lc(p) = prime.

Since we are not going to talk about decision diagram evaluation but about decision diagram
merging, we will have to deal with arbitrary diagrams over a certain signature in the later
chapters. Thus we need one more definition that allows us to specify the necessary operators.

Definition 3.2. The set of all decision diagrams over domain D and classes C is denoted as kD,C .

This concludes the basic definition of decision diagrams. Even though the remaining part of
this chapter will not lead to gain in expressiveness, it simplifies upcoming definitions.

28 CHAPTER 3. DECISION DIAGRAMS IN BIOMEDICINE

3.2 Query Language

In Section 3.1 we defined decision diagrams as quadruple containing in one component:

le : E → 2D

Edges are assigned sets of domain elements, such that Algorithm 1 can decide in a top-down
manner which way to go.

Observe that in practice it is cumbersome to construct a decision diagram this way, since one
would need to decide for each domain element if is shall be included in an edge’s label or not. It
is much more convenient to use a query language.

Thus we insert an intermediate formalism “between” edge labels and sets of domain elements.
Formally, this means that we change the definition of a decision diagram with

D = 〈V,E, lc, le〉

and
le : E → 2D

Definition 3.3. A decision diagram under a query language Q is a quintuple

D = 〈V,E, lc, le,MQ〉

with V , E and lc as usual and
le : E → ΣQ

and
MQ : ΣQ → 2D,

where ΣQ is the set of syntactically correct queries over an application-specific query language.
A query can be evaluated using the meaning functionMQ, which maps syntactic expressions to
sets of domain elements, namely those that satisfy the expression.

All concepts from above remain valid. The only modifications affect the access of edge
labels, which changes from le(e) toM (le(e)) and gives the developer of a certain application the
freedom to design a query language which is suitable for a specific use case. Note that in fact
this is nothing more than syntactic sugar, since the only thing that changes is that the domain
elements assigned to edges are now given implicitly by the query rather than explicitly.

Using a first-order like query language called F , we could rewrite the decision diagram from
example 3.1 as follows.

Example 3.2. Let
D = {1, 2, . . . , 15}, C = {prime,not prime},

and
DF = 〈{r, p, n}, {(r, p), (r, n), }, lc, le,MF 〉

with
lc(p) = prime, lc(n) = not prime

and
le((r, p)) = f1 = @x, y : x > 1 ∧ y > 1 ∧ x · y = z

le((r, n)) = f2 = ∃x, y : x > 1 ∧ y > 1 ∧ x · y = z

with the meaning functionMF (f) = {n ∈ D : In(f) = true} where In is a first-order interpre-
tation with In(z) = n.

3.2. QUERY LANGUAGE 29

The meaning functionMF (f) is applied to one of the edge conditions f . Then this function
constructs a first-order interpretation I, that maps the free variable z of the conditions to a
domain element that shall be classified. The function will return the set of all domain elements
which satisfy the condition.

Observe that

MF (f1) = {2, 3, 5, 7, 9, 11, 13} = D \MF (f2)

which is equivalent to our initial version of the decision diagram. However, this does not need
to be explicitly defined now but is hidden in the definition of the meaning function and the
semantics of first-order logic.

Designing a Query Language

In principal it would be possible to design an application specific language for each decision
diagram. However, this is a lot of work and additionally introduces a lot of problems when
diagrams shall be merged in Chapter 4. It is more reasonable to design one language that is
expressive enough for a large variety of applications.

The design of the following language is greatly inspired by typical if-then statements in well-
known programming languages. Basically there are four types of scales: nominal scales, ordinal
scales, interval scales and ratio scales. This classification was introduced in [Stevens, 1946] and
since then cited many times.

Table 3.2 summarizes the main properties of these types as described by Stevens.

Type Allowed operations Examples
nominal testing for equality colors, employees
ordinal additionally: testing for <, > marks in school
interval additionally: computing differences dates
ratio additionally: computing quotients temperatures, durations

Table 3.1: Classification of scales

Nominal values can only be tested for equality. For instance, if X and Y are colors, we can
clearly check if they are equal. But it makes no sense to say that one of them is greater than the
other one.

This is only possible with ordinal scales. Marks in school are a classical example. Compa-
rability is the underlying idea of all grading schemes. Thus it is possible to say that mark 2 is
better than mark 4, but it is still useless to compute the difference between two marks. Even
though some grading schemes try to incorporate this possibility to some extent (for instance,
in the United States grade F is failed and thus much worse than D, which is expressed by the
missing grade E), there is in general no defined unit for expressing differences.

Using interval scales overcome this restriction. In case of dates this is clearly possible. Ex-
pressions like “one week later” or “10 days before Christmas” are used everyday. But there is still
no absolute zero point and, consequently, ratios are meaningless.

Finally, ratio values are the most general scale. They allow for all the operations we considered
and additionally computing quotients. Thus they allow for statements like “This project lasts
twice as long as the last one”.

We now come back to the design principles of a reasonable query language. If we think about
usual programming languages, the scale types of interest are clearly nominal and ordinal values.

30 CHAPTER 3. DECISION DIAGRAMS IN BIOMEDICINE

In conditional blocks we normally check whether a variable has a certain value or whether it is
greater or smaller than another one.

Also the other two scales are of interest sometimes. Consider for instance the following
snippet:
i f (x < 2 · y){

. . .
}

Such an expression is only reasonable if x and y encode ratio values. However, this observation
is a consequence of a semantic analysis of the program. On the syntactic level there are basically
two terms, namely x and 2 · y, that are compared.

Another example, that demonstrates the use of nominal values, is given by the following
snippet:
i f (weather = “rainy”){

. . .
}

The allowed operations are just = and 6=. As demonstrated by these examples, all our query
language needs to support is comparing two terms using an operator

◦ ∈ {=, 6=, <,≤, >,≥}

plus a special query of type else. We can further restrict this definition to a comparison of single
values (variables or constants) rather than terms, since each term can be stored in a temporary
variable before the condition is evaluated.

We come to the conclusion that each condition can be represented as triplet consisting of two
values and one operator. This observation was already made by [Quinlan, 1987].

Definition 3.4. A query q consists of two values that are compared using an operator ◦:

q = (V1, ◦, V2)

with ◦ ∈ {=, 6=, <,≤, >,≥} or is of kind:

q = else

We call such conditions cmp queries (comparison) and the set of all valid queries, i.e., the query
language, Σcmp (according to Definition 3.3).

Expressiveness of Σcmp

Note that until now we have completely ignored that conditions can be composed of several sub-
conditions that are connected by propositional operators like ∧ and ∨. Consider the following
example:

Example 3.3. A program with a composed query using an ∧ connective:
i f (weather = “rainy” ∧ cinema = “closed”){

go_to_bed() ;
}

However, it can be easily argued that our query language that allows only triplets of the
form introduced above is completely sufficient even for composed queries. The snippet can be
rewritten such that only queries ∈ Σcmp occur:

3.2. QUERY LANGUAGE 31

i f (weather = “rainy”)
i f (cinema = “closed”){

go_to_bed() ;
}

}

A similar rewriting is possible for negations and disjunctions.

Example 3.4. A program with a composed query using ¬ and ∨ connectives:
i f (leg_broken ∨ weather 6= “sunny”){

stay_at_home() ;
} else {

go_to_beach() ;
}

It is equivalent to:
i f (leg_broken){

stay_at_home() ;
} else {

i f (weather = “sunny”){
go_to_beach() ;

} else {
stay_at_home() ;

}
}

Clearly, since ∧ and ¬ as well as ∨ and ¬ are functional complete (i.e., they are sufficient to
express any propositional formula), this is also true for all three connectives, and we can rewrite
any conditions such that Σcmp suffices. Therefore we will use exactly this query language in the
remaining part of the thesis, even though other languages could be designed that are possibly
more user-friendly depending on the concrete application scenario.

This concludes our formal introduction of decision diagrams and we come to the point where
we formally define the merging task.

Mathematics may be defined as
the subject in which we never
know what we are talking about,
nor whether what we are saying
is true.

Bertrand Russell

Chapter 4
Task Definition and Variants

In the last section we have introduced decision diagrams and gave some motivating examples.
Now we come to the task of merging multiple diagrams.

In the biomedical literature often several decision trees or diagrams for basically the same
purpose are given. Probably the suggestions from different sources will coincide in most cases if
serious scientific methods and studies have been applied. But there can be differences in detail.

If one has no further information or preferences about the level of trust of the information
providers, it is necessary to decide how to merge the belief bases, which we call knowledge
sources from now on. In general, multiple bases will partially coincide, complement one another
or contradict each other. The generation of one consistent decision diagram out of this variety
of inputs is the informal description of what we understand under decision diagram merging.

4.1 General Definition

Formally we define our merging problem as follows. Let D1, D2, . . . , Dn be decision diagrams
over domain D and classes C as shown in Section 3.1. All n decision diagrams should represent
the same underlying reference classification cref : D → C. However, due to different results from
different research groups, modifications of existing decision trees, measurement errors, rounding
errors or simply human errors, decision diagrams can differ in practice.

We defined kD,C to be the set of all possible decision diagrams over domain D and set of
classes C. At the end of the day, an n-ary merging operator is required that combines all Di into
a single Dm (merged).

Definition 4.1. An n-ary decision diagram merging operator

◦n : kD,C × kD,C × · · · × kD,C︸ ︷︷ ︸
n times

→ kD,C

maps n input classifiers (over D and C) to a new diagram.

Observe that this definition does not yet predetermine how the operator actually works, i.e.,
how it decides which part to take from what diagram. Clearly there can be a large variety of

33

34 CHAPTER 4. TASK DEFINITION AND VARIANTS

different properties we desire depending on the application scenario. An intuitively reasonable
requirement is:

∀d ∈ D,∀c ∈ C : (∀iDi(d) = c)⇒ ◦n(D1, D2, . . . , Dn)(d) = c

Informally, this expression states that if all decision diagrams agree upon the classification of an
element d, then this classification should be unchanged after the merging process.

Note that this is not a hard requirement, but just one of many possible properties that a
merging operator can have. One could also argue that a more powerful optimization is possible
only if the requirement is dropped and the final diagram may deliver a different answer for a
certain element, even if the input classifiers agree upon its class.

4.2 Task Variants

The previous sections introduced the task definition for the most general problem, namely the
merging of decision diagrams without any further assumptions. If the problem is investigated
in detail, several different but related tasks appear. Now we want to look closer at the problem
and formally define the possible variations of the task.

Trees versus Diagrams

First of all, when reading related biomedical literature, one soon recognizes that many authors
talk about decision trees rather decision diagrams (e.g., [Mair et al., 1995] or [Althoff et al., 1998]).
Even though diagrams are more general, since trees are a special case of diagrams, it seems intu-
itively plausible that the work with trees is somehow simpler than with diagrams. To illustrate
this, one supporting argument is that many graph algorithms are much easier to apply on trees,
or graphs that are almost trees, than on general graphs. This is what the term treewidth is used
for, see for instance [Bodlaender, 1993].

However, not only the algorithmic runtime is important. Since medical guidelines are often
made for humans, they are preferred over diagrams since they are simply easier to read and
understand.

If we restrict the merging task to trees, the formal definition given in Section 4.1 essentially
remains the same with the only difference that the arguments and the return value of an operator
will now come from the set of all trees over D and C rather than from the set of general directed
acyclic graphs. Formally, let

◦n : TD,C × . . .× TD,C︸ ︷︷ ︸
n times

→ TD,C

be the operator, where TD,C is the set of all decision trees over domain D and classes C.
This idea can even be refined. We can define operators that take arbitrary diagrams as

input but ensure that the result is a tree. In this case, the operator would include a kind of
simplification procedure. Or the other way round, they require the inputs to be trees, but
deliver general diagrams.

Node Degrees

Sometimes it is desirable to restrict the maximum number of outgoing edges for inner nodes.
This makes the implementation of many algorithms much easier, as we will see in Chapter 6.
Additionally such trees are in general easier to understand.

4.2. TASK VARIANTS 35

(a) Official notation

root

A

C D

Y ≥ 20 else
B

E F

Y ≥ 15 else

X < 10 else

(b) Simplified notation for binary trees

X < 10

Y ≥ 20

C D

y n
Y ≥ 15

E F

y n

y n

Figure 4.1: Comparison of notations

A straightforward restriction is therefore to work only with binary trees (i.e., each node has
at most two children). Especially if one additionally assumes that each node has exactly one
conditional outgoing edge (the other one is an else edge), it is obvious that the alternatives are
disjoint and exhaustive.

Ordering

Now we consider a criterion that cannot be checked by looking at individual nodes or edges, but
which concerns a path from the root to a leaf. Further assume that we work with binary trees
only, where each inner node has one conditional and one else edge as discussed above.

Then we can say that in each inner node one certain variable is queried, though strictly
speaking, the conditions belong to the edges rather than the nodes (see Definition 3.3). In this
case the edges are labeled with yes or no. This is illustrated with the following example.

Example 4.1. The binary tree in Figure 4.1(a) can also be drawn as in 4.1(b). This is against
our official definition, but this point of view simplifies the explanation below.

When the queries are thought of as node labels one can talk about the order in which the
variables are queried on a certain path through the tree. In the above example, on the path
root → A→ D the variables are evaluated in order X → Y .

Now a very natural requirement is that the variables are requested in a predefined order on
every path through the diagram. If this condition is satisfied by a diagram we call it ordered,
otherwise it is unordered. This is similar to Ordered Binary Decision Diagrams (OBDDs) (see
[Bryant, 1992]), which may simplify the merging later on but enlarges the tree in general.

Consider Example 4.2 where X needs to be queried prior to Y on every path through the
tree (if it is evaluated at all). The diagram in Figure 4.2(a) is unordered. Figure 4.2(b) shows a
semantically equivalent but ordered decision tree.

Example 4.2. Figure 4.2(a) shows an unordered tree that is transformed into an equivalent
ordered one in Figure 4.2(b). The variable ordering is X → Y .

Each non-ordered tree can be converted into an semantically equivalent ordered one (see for
instance [Fujita et al., 1991] for an overview about ordering algorithms). While in the previous
example the size of the tree stayed the same, note that in general reordering to a given variable
ordering enlarges the tree exponentially since subtrees may need to be copied. Is is again stressed
that this is true for the case that a predefined variable ordering must be achieved (as this is the
case if one wants to make the ordering in two trees equivalent). There also exists an optimal
ordering for each tree with respect to it’s size, and of course the tree will get smaller or stays

36 CHAPTER 4. TASK DEFINITION AND VARIANTS

equivalent if a transformation to this ordering is made (however, finding the optimal ordering is
NP-complete [Bollig and Wegener, 1996]).

We will come back to this point in the next chapter where a formal operator is defined that
implements a reordering algorithm.

4.3 Contradicting Diagrams

In the general part of this chapter we said that a merging operator maps n input decision
diagrams onto a new one. The only requirement on this operator until now was that the output
diagram should deliver the same classification of a domain element, if the input diagrams agree
upon its class (and even this was not an absolutely necessary condition, as we said).

We illustrated conflicting diagrams in the example in the last subsection. But what we
skipped so far is a formal definition of conflicts.

Example 4.3 shows a typical conflict situation. The trees are obviously similar but not equal.
Domain element (X = 8, Y = 12) is classified as C2 by the tree in Figure 4.3(a) and as C1 by
the one in 4.3(b). And this is exactly the characterization of conflicts, namely domain elements
that get different classifications, depending on the diagram in usage.

Example 4.3. The decision diagrams in Figures 4.3(a) and 4.3(b) are contradicting for all input
tuples

{(X,Y) ∈ R2 | X < 10 ∧ 10 < Y ≤ 15}

We will refer to this first example during the sections in the next chapter to illustrate the
semantics of the proposed operators.

Definition 4.2. Two diagrams Di and Dj over domain D and classes C are said to be contra-
dicting iff

∃d ∈ D : Di(d) 6= Dj(d)

Definition 4.3. A set of diagrams {D1, . . . , Dn} is contradicting, iff it contains at least two
contradicting diagrams.

Definition 4.4. The conflict set of a set of diagrams ∆ = {D1, . . . , Dn} is defined as

γ(∆) = {d ∈ D | ∃i, j : Di(d) 6= Dj(d)}

4.4 Summary

Table 4.4 shows the attributes introduced in the previous sections. In theory, all combinations
(and probably much more variants) of these attributes are possible, even if some of them are
either unimportant in practice or difficult to realize.

Input graph type general directed acyclic graph, tree
Output graph type general directed acyclic graph, tree
Input node ordering arbitrary, ordered
Output node ordering arbitrary, ordered

Table 4.1: Task attributes

4.4. SUMMARY 37

Observe that it would be necessary to implement merging operators suitable for the most
general task version in order to solve all attribute combinations. That is, we have to implement
the merging operators for arbitrarily ordered decision diagrams. This can be very tough since we
cannot make any restricting assumptions about the input. Therefore it seems easier to solve the
problem stepwise.

Instead of solving very general and complicated variants, it might be easier to reduce tricky
instances to simpler ones. For instance, we could translate decision diagrams into decision trees
(which is possible, as we will see) and merge them. This requires two operators to be applied in
sequence. First we apply a unary unfolding operator on the input diagrams, then we use a n-ary
merging operator to incorporate the resulting trees.

The same idea can be applied to the case of unordered decision trees. We could introduce a
unary operator for ordering. Subsequently we can safely assume that all input diagrams are not
only trees but are additionally ordered. If this is not the case, we can convert them using the
unary operators.

This concludes the the formal basics we are going to use later on. We will shortly come back
to the characterization of different task variants at the end of the next chapter where we will
see that all variants can be solved by the proposed set of operators. Now we are going to take a
closer look at the operators and introduce conflict resolution strategies.

38 CHAPTER 4. TASK DEFINITION AND VARIANTS

(a) Unordered tree

X < 10

Y > 15

C1 C2

y n
Y < 20

C1 X > 5

C2 C1

y n

y n

y n

(b) Ordered tree

X < 10

Y > 15

C1 C2

y n
X > 5

Y < 20

C1 C2

y n
C1

y n

y n

Figure 4.2: Comparision of ordered and unordered trees

(a) Tree 1

X < 10

Y > 10

C1 C2

y n
C2

y n

(b) Tree 2

X < 10

Y > 15

C1 C2

y n
C2

y n

Figure 4.3: Conflicting trees

I mean the word proof not in the
sense of the lawyers, who set two
half proofs equal to a whole one,
but in the sense of a
mathematician, where half a
proof is zero, and it is demanded
for proof that every doubt
becomes impossible.

Carl Friedrich Gauß Chapter 5
Formal Operator Definition

In the previous chapter we argued that there exist several versions of the initially presented task
description. The differences concerned the assumptions about the input diagrams. We further
have defined conflicts formally, but what we have not discussed until now is what to do in case
of disagreement.

In Example 4.3, all elements in the conflict set {(X < 10, 10 < Y ≤ 15)} can essentially be
arbitrarily classified by the merged tree. However, in a certain use case there may be a desired
solution other than random classification.

Maybe one has more trust in one of the two trees and gives precedence to it. For instance,
one could imagine that a more restrictive condition is more trustful than a general one, since
the original author may had better evidence if a special case was investigated rather then if
the diagram comes from a fairly general study, where the class could be simply the result of a
classification-as-failure.

Another idea is that one wants to use some kind of average operation, such that each tree can
assert its classification in half of the cases. This is discussed in detail in Section 5.2. Thus, the
next task and the topic of this chapter is the evaluation of possible conflict resolution strategies.

Preliminary remark : The operators in discussion are intended for showing the potentials of
the framework and serve only as examples. Therefore they will not always be implemented in
detail. It is up to the user to select among these operators and adapt them or implement new
ones that satisfy the individual needs. Thus, some of the assumptions that will be made can
and should be put into question, depending on the application in mind. We will show some
application scenarios in Chapter 7.

5.1 Unary Modification Operators

We are now going to introduce a few unary operators that do not merge several but only modify
single diagrams. They will simplify the work for the second main section of this chapter, where
actual merging operators will be shown.

39

40 CHAPTER 5. FORMAL OPERATOR DEFINITION

X < 10

Y > 15

C1

y

Z < 20

C3 C4

y n

X > 5

C2

n

y n

Figure 5.1: Decision diagram with node sharing

X < 10

Y > 15

C1 Z < 20

C3 C4

y n

y
y

X > 5

Z < 20

C3 C4

y n
C2

y
y

y n

Figure 5.2: Decision diagram from Figure 5.1 without node sharing

Making Trees out of Diagrams

It is intuitively plausible that working with trees is easier than with diagrams. Therefore we
introduce a unary operator for this purpose and call it ◦uf (unfold). The idea of unfolding
decision diagrams can best be explained with Example 5.1.

Example 5.1. The input diagram in Figure 5.1 contains two nodes Y > 15 and X > 5 that
share a common subnode Z < 20.

In the unfolded diagram in Figure 5.2, the common subnode needs to be duplicated such that
each parent gets its own copy.

It is straight forward to convert this diagram into a tree. We “simply” have to duplicate
the common subtree. The nodes that shared a successor node got separate copies of it (gray
background). This procedure needs to be applied recursively because common subtrees can
contain nodes that are again involved in another node sharing. Of course this may lead to an
exponential overhead in the worst case.

Definition 5.1. The unary unfolding operator ◦uf is defined as follows.

◦uf (D)(d) = D(d) ∀d ∈ D and ◦uf (D) is a tree.

5.1. UNARY MODIFICATION OPERATORS 41

Input: D ∈ kD,C with root node r ∈ V
Output: D′ ∈ kD,C with D(d) = D′(d) ∀d ∈ D and D′ is a tree
if r ∈ leaves(V) then

return new Node(r.classification)
else

/* make a copy of r */
rnew = r;
/* for all outgoing edges e */
for e = (c, r, subnode) do

/* recursively unfold the diagram */
subnodenew = unfold(subnode);
add edge from rnew to subnode with condition c;

Algorithm 2: Computation of operator ◦uf

Proposition 1. ◦uf can be computed by Algorithm 2, which runs in O(δ|V |) where δ is the
maximum out-degree and |V | the number of nodes in the input diagram.

Proof sketch. Correctness. It can be easily seen that the algorithm basically performs a depth-
first search (DFS), bundled with a copying of the graph. Since each visit of a node is copied
separately, it is clear that the resulting graph does not contain any shared nodes, i.e., it is a tree.

The semantic equivalence of the input and the output diagram is obvious.
Termination. The only loop in the algorithm iterates over the edges, which is a finite set. Thus
the algorithm terminates for sure.
Complexity. Proof by induction on the number of nodes in the diagram. If our diagram is a
single leaf node, the runtime is obviously restricted by O(δ|V |) = O(1).

Induction step: Our diagram consists of |V | nodes with a root r. Each of the root’s child
nodes is the root of a sub-diagram consisting of at most |V | − 1 nodes. A recursive call of
the algorithm on one of these sub-diagrams is possible in O(δ|V |−1) by induction hypothesis.
Since the maximum out-degree of r is δ, we have at most δ such calls, leading to complexity
O(δ · δ|V |−1) = O(δ|V |). �

Basically the algorithm works as follows. If a leaf node is observed we just make a flat copy
since it is unfolded anyway, i.e., it is already a legal tree. In case of inner nodes we recursively
call the method for each child.

Note that there are several possibilities for implementing ◦uf . The given algorithm is just
one of them, but it is a straightforward solution.

Binary Decision Trees

At this point we are able to translate each general decision diagram into a tree. Now we make
another simplification. A tree that has nodes of arbitrary out-degree is still very inconvenient for
later sections. Thus we will show now how we can convert an arbitrary tree into a binary one.

The underlying idea is simple. In a general tree we can have a case distinction with up to n
outcomes in each inner node. To reduce this number to two, we simply just check one of them
and redirect the else edge to a new intermediate node, where the next condition is checked. This
process reduces the number of cases by 1 in each iteration. It is continued recursively until we
finally have checked all conditions. This needs n steps (we further assume that each node must
have one conditional and one else edge; if the last node is allowed to have two conditional edges,
n− 1 steps are sufficient).

The procedure is illustrated by Example 5.2.

42 CHAPTER 5. FORMAL OPERATOR DEFINITION

root

subtree 1 subtree 2

. . .

subtree n

c1 c2 c...
cn

Figure 5.3: An n-ary tree

root

subtree 1

subtree 2

subtree . . .

subtree n− 1 subtree n

cn−1 else

. . . else

c2 else

c1 else

Figure 5.4: Binary version of the tree in Figure 5.3

Example 5.2. The n-ary decision tree in Figure 5.3 can be converted into the binary one in
Figure 5.4

This leads to the following formal definition.

Definition 5.2. The unary operator ◦tb (to binary) is defined as:

◦tb(D)(d) = D(d) ∀d ∈ D and ◦tb(D) is binary decision tree, i.e., its maximum node degree is 2.

Remark: Clearly, one could design algorithms for creating of balanced decision trees, which are
computationally advantageous. But since our operator serves only as example anyway we skip
this.

Proposition 2. ◦tb can be computed in O(|V |+ |E|) by Algorithm 3.

Proof sketch. Correctness. We show that Algorithm 3 indeed generates a binary decision tree
from a general one. The proof is done by induction on the depth of a tree.

Induction basis: Leaf nodes, which are processed in the outer if-block, are trivially binary
trees.

Induction step: All sub-trees of an arbitrary inner node v have a depth which is smaller
than the depth of the tree with root v, denoted as T . Therefore they are binary trees after the
recursive application of the algorithm by induction hypothesis.

5.1. UNARY MODIFICATION OPERATORS 43

Input: T ∈ TD,C with root node r ∈ V
Output: T ′ ∈ TD,C with D(d) = D′(d) ∀d ∈ D and T ′ is a binary tree
if r ∈ leaves(V) then

return r
else

if r has more than two subtrees then
Let s1 be r’s first subtree with condition c1;
s2 = toBinary(T \ s1 with root r);
return new Node(c1, s1, s2)

else
return r

Algorithm 3: Computation of operator ◦tb

We need to show that also T is a binary tree after the algorithm was applied. We have two
cases: (i) T was a binary tree even prior to the execution and (ii) T has out-degree greater than
2.

(i) The algorithm will execute the else-branch within the outer else-block, where the node is
returned unmodified. Thus it still has degree ≤ 2 after the run.

(ii) The only case that requires modifications concerns inner nodes with more than 2 sub-
nodes. In this case, the input diagram simultaneously checks conditions c1, . . . , cn. We first check
only condition c1 and redirect the else-branch of the node to a new intermediate node v′, where
the other conditions c2, . . . , cn are checked.

Note that v′ is the root of a tree T ′ with the same depth as T , but the degree of v′ is smaller
by 1 than of v. If this algorithm is applied recursively on v′, it is easy to see that we will finally
end up in one of the trivial cases, i.e., either the induction hypothesis (leaf node) or in (i).

Now we show that the resulting diagram is semantically equivalent to the input diagram.
Suppose we end up in sub-tree n in our input tree for some element e. Then e satisfies only
cn but none of ci with i 6= n by our precondition in Section 3.1 that forces a unique result for
all domain elements. But then we end up in the same sub-tree in the modified diagram, since
all ci with i < n are unsatisfied, which makes us following the else-edges. This can be seen in
Figure 5.4.
Termination. The algorithm does not contain any loops, the recursion will eventually end since
the degree of a newly introduced node is always smaller than of the original node. Therefore the
algorithm will always terminate.
Complexity. Obviously, each node which was already contained in the input diagram is visited
exactly once (DFS). Since each newly generated node decreases a (formerly too high) node degree
by 1, its number is bounded by the sum of the node degrees exceeding 2. Thus, O(|V | + |E|)
suffices in the worst case. �

Leaf nodes and inner nodes with up to two sub-nodes (actually exactly two for a reasonable
diagram) do not need to be modified. In case of more than two conditions, the algorithm
recursively splits off one after the other by introduction of intermediate nodes.

As in the definition of the unfolding operator, the algorithm does not need to be part of the
definition since there exist other strategies that will also produce binary trees. Even though this
is probably one of the most straightforward ones, it may be more desired to make the procedure
deterministically, i.e., eliminating the random selection of the first condition to test. More about
such technical details are depicted in Section 6.

44 CHAPTER 5. FORMAL OPERATOR DEFINITION

X < 10

Y > 15

C1 C2

y n
Y < 20

C1 X > 5

C2 C1

y n

y n

y n

Figure 5.5: An unordered decision tree

Ordering Trees

Next we will consider how we can order arbitrarily ordered decision trees. We assume the input
to be a binary tree. The presented approach is similar to [Fujita et al., 1991] in the sense that
the global ordering is obtained by local exchanges of two neighbored variables. But in contrast
to the algorithm in [Fujita et al., 1991], we will not distinct several cases depending on the local
structure of the diagram (e.g., the number of children of the exchanged nodes). This makes the
exchange procedure a bit more complicated, but calling it recursively becomes simpler.

First we define ordered decision trees formally.

Definition 5.3. Let T = 〈V,E,C, lc, le〉 be a binary decision tree with root r ∈ V and let
[v] = x denote the (unique) variable x that is queried in inner node v ∈ V . Then the tree is
called ordered, iff for each path from the root to a leaf node r, v1, . . . , vn (vn ∈ leaves(V)), the
following holds:

[r] <l [v1] <l · · · <l [vn−1]

where <l denotes the lexical ordering of the variables.

Example 5.3. Figure 5.5 shows an example where variable Y is queried prior to X on a path
through the tree. Thus the tree is not ordered. A semantically equivalent ordered tree is depicted
in Figure 5.6. Gray elements show parts of the original (unordered) tree that have been removed.
Dotted arrows show where certain parts of the final tree come from.

If we want to order a tree, we clearly have to change the variable query order somehow.
But a simple node exchange without redirecting affected incident edges is not possible. Look at
Figure 5.6.

On the path from the root towards the leaf nodes we first simply skip the node that queries
variable Y . This means, the new no-child of the root is the node X > 5. However, after this
query has been evaluated, we can not simply return one of the classes C1 or C2 since we ignored
that variable Y is involved in the decision. We have to keep in mind that the result of this node
is C2 (in the yes subtree) or C1 (in the no subtree) provided that Y < 20 evaluates to no (which
has been skipped). Let’s call this the conditional result of X > 5.

Therefore we need to catch up the formerly skipped query before a final decision can be made.
The node that queries Y including its yes subtree needs to be inserted into both branches. In
case that this condition evaluates to no (which was the precondition for our conditional result)
we finally can fix and return the conditional result. In case that this condition evaluates to yes,
our conditional result is irrelevant since X > 5 would have never been evaluated in the original
tree and we can safely return C1 in both subtrees.

5.1. UNARY MODIFICATION OPERATORS 45

y n

Y < 20

C1 C2

Y > 15

X < 10

X > 5C1

C2 C1

y
n

n

y n

y n

Y < 20

C1 C2

y n

Y < 20

C1 C1

y n

n

y

Figure 5.6: Ordered version of the tree in Figure 5.5

Note that the skipped node Y < 20 and its yes subtree needs to be copied for each branch
of the node X > 5 in order to make sure that the tree actually remains a tree rather than a
diagram. This, of course, again leads to an exponential increase in size in the worst case.

The two algorithms referenced in Definition 5.4 show a procedure that orders a tree according
to the lexical ordering of the variables. Figure 5.7 shows an illustration of this algorithms.

Definition 5.4. The unary order operator ◦ord (node ordering) is defined as:

◦ord(T)(d) = T (d) ∀d ∈ D and ◦ord(T) = 〈V,E,C, lc, le〉 with root r s.t.
[r] <l [v1] <l · · · <l [vn−1] ∀paths r, v1, · · · , vn (vn ∈ leaves(v))

Proposition 3. ◦ord can be computed by calling the procedure shown in Algorithm 4 and its
sub procedure in Algorithm 5. The complexity is O(2n).

Proof sketch. Correctness. We show that Algorithm 4 orders the nodes of the diagram according
to their lexicographic ordering. Suppose the nodes are not ordered after the execution of the
algorithm. Then there exists a node v and a sub-node w s.t. [w] <l [v]. But in this case,
the algorithm would have exchanged the two nodes during sinking of v, which shows that the
situation cannot occur.

The semantic equivalence of the input and the output diagram can be shown as follows. Let
v be an arbitrary leaf node of the input diagram and C = {c1, . . . , cn} the set of conditions
that need to be satisfied to end up in node v. It can be easily verified by looking at Figure 5.7

46 CHAPTER 5. FORMAL OPERATOR DEFINITION

Input: T ∈ TD,C with root node R ∈ V
Output: T ′ ∈ TD,C with T (d) = T ′(d) ∀d ∈ D and T ′ is an ordered tree
if R 6∈ leaves(V) then

/* R is an inner node, iterate through all child nodes */
for (R, u) ∈ E do

remove edge (R, u);
order(T with root u), let u′ be its new root;
add edge (R, u′) with the same condition as before;

sink(T with root R), let R′ be its result;
return R′

Algorithm 4: order

Input: T ∈ TD,C with root node r ∈ V
Output: T ′ ∈ TD,C with T (d) = T ′(d) ∀d ∈ D and T ′ is an ordered tree
if R needs to be exchanged with one of its children then

Let exchange be the child with the lexically smallest variable queried (condition: cex)
and sibling the other child (condition: csib); let further resttree1 and resttree2 be the
subtrees of exchange (with conditions crest1 and crest2 respectively);
newroot = exchange;
remove all edges from root (old root) to its successors and predecessors;
remove all outgoing edges from exchange;
make copies of sibling and root, denoted with primes(′);
connect newroot to root and root′ with conditions crest1 and crest2;
connect root to sibling and resttree1 with conditions csib and cex;
connect root′ to sibling′ and resttree2 with conditions csib and cex;
rootsuccessor1 = sink(T with root);
rootsuccessor2 = sink(T with root′);
connect newroot with rootsuccessor1 and rootsuccessor2;
return n

else
return R

Algorithm 5: sink (see reference Figure 5.7)

that the satisfaction of the same conditions in the output diagram will lead to a leaf node with
the same label, independently from the (possibly unnecessarily checked) additional conditions.
This is true for all leaf nodes v. Therefore a single exchange of neighbors does not modify the
semantics of the diagram.

By induction, which corresponds to the recursive calls in the algorithm, it can be proved that
the algorithm as a whole does not change the semantics either.
Termination. Algorithm 5 implicitly contains a loop that iterates over the children of a node,
but this number is clearly finite. Algorithm 4 iterates both over the edges and the nodes of the
diagram, but this obviously terminates as well.
Complexity.

Lemma 1. Procedure sink has complexity O(2|V |+L) where L is the length of the longest variable
name used in the decision diagram.

Proof of Lemma 1. We first prove that subprocedure sink has complexity O(2|V |+L). This is
done by induction on the number of nodes. Clearly, for a leaf node (|V | = 1) the procedure

5.1. UNARY MODIFICATION OPERATORS 47

resttree1 resttree2

sibling

resttree1 resttree2sibling
sibling’
(copy)

csib cex

crest1 crest2

crest1 crest2

csib csibcex cex

root

exchange

exchange
(new root)

root
(old root)

root’
(root copy)

Figure 5.7: Illustration of the operator from Definition 5.4

immediately terminates (induction basis).
In case of an inner node we need to determine the lexicographically smallest of its two child

nodes, which is possible in time O(L). We further make copies of some subgraphs, which runs
in O(|V |) (actually O(|V |+ |E|), but all node degrees are equal to 2 by assumption, restricting
the number of edges to O(|V |)).

The algorithm calls itself recursively on the child nodes of the root, which have at most
|V |−1 nodes. The complexity of those two calls is in O(2 ·2(|V |−1)+L) = O(2|V |+L) by induction
hypothesis.

Therefore sink has an overall complexity of O(L) +O(|V |) +O(2|V |+L) = O(2|V |+L).

The proof of the complexity of the ordering algorithm is again done by induction on the
number of nodes in the diagram. For the induction basis (|V | = 1), the diagram consists of a
single leaf node. Then the complexity is clearly restricted by O(2|V |+L) = O(1).

Induction step: Our diagram consisting of |V | nodes has root r with two sub-diagrams S1 and
S2. First, the algorithm removes an edge (constant time), before it calls itself recursively within
the for loop. Clearly the number of nodes of S1 and S2 is at most |V | − 1. Thus, by induction
hypothesis, the application of the algorithm on those diagrams is bounded by O(2 · 2(|V |−1)+L).
The insertion of the new edge is again possible in constant time. The loop runs exactly 2 times
by assumption that the input tree is binary.

Finally, the algorithm makes another call of sink . This requires O(2|V |+L) by Lemma 1.
Therefore the overall complexity is O(2|V |+L). �

Remark. In real world applications L is usually constant. If the decision diagram is trained by
machine-learning algorithms, the dimensionality of the feature vector is fixed a-priory. But then
we can also assign fixed variable names to the dimensions. Consequently, also the maximum
length of variable names, L, is constant.

Eventually it boils down to a reordering of the nodes such that conditions crest1 and crest2
are always (on every path) evaluated before csib and cex. As demonstrated in Figure 5.5, we
simply skip csib and cex first and go directly to the evaluation of crest1 and crest2. This brings
us either to node root or to root′ (a copy of root). At this point we have the conditional result
resttree1 in root and the conditional result resttree2 in root′. Both results are only correct if
cex evaluates to true. Thus, in order to compute the final result, we need to check this condition

48 CHAPTER 5. FORMAL OPERATOR DEFINITION

now. Then we either go into the according rest tree or forget the conditional result and evaluate
sibling (in this case the interpretation of the conditions crest1 or crest2 was unnecessary).

Since the output tree is exponential in the input, there is no hope for an efficient (polynomial)
algorithm. Nevertheless there have been algorithms developed that are at least polynomial in
the product of the input and the output size [Bern et al., 1996], [Tani and Imai, 1994]. Some
of them work by local exchanges of variables (like the algorithm above), others use a global
rebuilding strategy.

Note the similarity of this algorithm with Heap-sort which was presented in [Williams, 1964].
And in fact, the idea of sinking inner nodes in reverse order until they have no “larger” child
(according to the variable in the condition) has been inspired by this sorting algorithm. However,
the runtime is very different. While Heap-sort has a worst-case complexity of O(n · log(n)), the
suggested procedure for tree ordering is exponential. This comes from the fact that subtrees
have to be duplicated during node exchange in order to keep the semantics equivalent. This is
the crucial difference to Heap-sort.

5.2 Merging Operators

After these simplifications steps we come to the actual merging operators. While some of them
can be applied to any decision diagrams, advanced operators like average are much easier to
implement if we assume that the input diagrams are ordered binary trees. If this is not the case,
the unary operators from the previous section are applied first to satisfy these preconditions.

User-Preferences

One merging approach that was already shortly mentioned and that is very simple from a pro-
grammers point of view is the usage of user preferences. In this case, not the algorithm but the
user decides what to do in case of inconsistency. This is inspired by the field of social choice the-
ory [Dasgupta et al., 1979], though a difference is that we assume that the user specifies globally
valid preferences rules rather than a separate set for each agent.

The underlying idea is simple. In many applications, not all wrong decisions are likewise
serious. One wrong decision can cause higher or lower costs than another one. For instance, in
medical screening tests, a false positive is usually much less serious than a false negative. While
in the former case, a second and more precise (and more expensive) test will just reveal that the
patient is in fact healthy, the latter will have the consequence that a disease is undiscovered for
a longer period of time and can progress in the meantime.

In such cases it is easy to argue that one of the possible decisions is preferred over the other
one in case of doubt. In the context of decision diagram merging, this means that the algorithm
will chose the preferred classification if the sources are inconsistent. This is demonstrated in
Example 5.4.

Example 5.4. Imagine there are two possible classifications C1 and C2 and two classifiers D1

and D2 s.t. D1(d) = C1 and D2(d) = C2 for some domain element d. The final decision will
depend on the user ranking of classes C1 and C2. So for instance if C1 > C2 (our notation for “C1

is preferred over C2”), the final decision will be C1.

We can push this idea further. Let’s assume that a third belief source D3 with D3(d) = C2

is added to the last example. Then we still have a contradiction and we still prefer C1 over C2.
However, the number of votes for the different classes have changed. While we had 1 : 1 with
two belief bases, we now have 1 : 2, and thus it has become more probable that C2 is the correct
decision. This could be an additional criterion to check.

5.2. MERGING OPERATORS 49

In general we can say that some classification Ci is preferred over another one Cj , if the
voting difference is equal or higher than some treshold n:

Ci > Cj if |Ci| − |Cj | ≥ n,

where |C| is our notation for the number of votes for a class C. We will denote such a user
preference condition as follows:

Ci>
nCj

The previously introduced idea of preferring Ci over Cj in any case will be denoted as:

Ci � Cj

Definition 5.5. A user preference condition over classes C is a tuple

Ci � Cj

or a triple
Ci>

nCj

with n ∈ N and Ci, Cj ∈ C

Such a definition seems natural, but the implementation and evaluation can be tricky. First,
we have to make sure that the user preferences are consistent in all cases. For instance, the set
of conditions

{C1 � C2, C2 � C3, C3 � C1}

is obviously inconsistent in all cases where we have votes for at least two different classes. Because
of cycles in this set, each choice is inferior to some other possibility and thus there does not exist
a “best” classification. The second problem is somehow the contrary of inconsistent preference
rules. While contradicting rules are “too strong” since they kill all possible classifications, we can
also construct examples where more than one possibility survives. For instance

{C2 � C1, C3 � C1}

will not deliver a unique result in case of |C1| = |C2| = |C3| = 1. We just know that either C2

or C3 should be selected, but not which of them. One could easily construct other, less obvious
contradicting examples. Especially conditional preference rules can quickly become confusing.

Both phenomena introduce new troubles. This problem is somehow related to common prob-
lems of voting systems. For instance, the Condorcet paradox is an example where several vot-
ers, each delivering a consistent set of preference rules, lead to cyclic preferences when united
[Gabbay et al., 2009]. (The connection to to our problem can be seen if we assume each of our
preference rules to come from a different voter.)

To avoid problems like these, and to keep things simple for now, a straightforward solution
(which was chosen by us) is to use sequences of rules rather than sets. This is also very natural
from a programmer’s point of view since it is an algorithmic formalism. We just start with the
lexically smallest of all possible classifications (which is as good as any other startup criterion)
and then evaluate one of the user’s preference rules after the other, where each overwrites the
result of the previous one iff it is applicable. This works similar to the way like access control lists
(for instance in file systems or computer networks) are processed. The procedure is illustrated
by example 5.5.

50 CHAPTER 5. FORMAL OPERATOR DEFINITION

Example 5.5. Let

R = 〈C2 � C1, C3>
2C2, C4 � C2〉

be our sequence of rules. Assume the voting results are

|C1| = 2, |C2| = 1, |C3| = 2, |C4| = 0

Then the algorithm starts with the smallest of the classifications of C1, C2 and C3 (C4 is discarded
since there are no votes for this class), which is C1. The first rule is applicable since C2 is
always preferred over C1 (also in case that the total number of votes is smaller), changing
the intermediate result. The next rule, C3>

2C2 is not applicable, since the voting difference
between C3 and C2 is 1 and thus less than 2. Also the last rule, C4 � C2 is not applicable. C4

would be preferred over C2, but none of the classifiers voted for this class.

This leads to the following formal definition.

Definition 5.6. The operator ◦up (user preferences) is defined as

◦up : (kD,C)
n ×R→ kD,C

where R is a sequence of preference rules of form

R = 〈r1, . . . rk〉

with ri ∈ C × {{�} ∪ {>n | n ∈ N}} × C.

The result of an operator application

◦up(D1, . . . , Dn) = Dup

is a new decision diagram Dup s.t. its classifications correspond to the result of Algorithm 7.

Input: source classifiers D1, . . . , Dn ∈ kD,C , rule sequence R, domain element d ∈ D
Output: classification Dup(d) ∈ C
let c be the lexically smallest c ∈ C s.t. ∃i : Di(d) = c;
for r ∈ R do

if c = Cj ∧ r = Ci � Cj or r = Ci>
nCj ∧ |Ci| − |Cj | ≥ n then

c = Ci;

return c
Algorithm 6: Definition of operator ◦uf

Note that this procedure describes only one of the possibilities how we could implement a
user-preference operator. Many details, like the syntax and semantics of the preference rules
could be discussed and modified. But this is strongly application dependent (the same is true
for the other operators that will be described). This chapter is intended to show the possibilities
and demonstrate them with examples.

5.2. MERGING OPERATORS 51

Observe that Algorithm 6 only defines the user-preferences operator. It is applied when a
domain element d needs to be classified. But it does not provide a procedure that actually
computes the resulting diagram Dup = ◦up(D1, . . . , Dn). This is done by Algorithm 7.

Input: source classifiers D1, . . . , Dn ∈ kD,C , rule sequence R
Output: result of ◦up when applied on D1, . . . , Dn

S = {D1, . . . , Dn};
while |S| > 1 do

Insert S.D|S| into each leaf node of S.D|S|−1;
S = S \ {D|S|};

R = S.D1;
for all leaf nodes vl in R do

Let P = (v1, . . . , vl) be the path from the root to vl;
for each class label ci ∈ C, count the number of votes |ci| for ci along P ;
let c be the lexically smallest ci s.t. |ci| > 0;
for r ∈ R do

if c = Cj ∧ r = Ci � Cj or r = Ci>
nCj ∧ |Ci| − |Cj | ≥ n then

c = Ci;

Set the class label of vl to c;
Algorithm 7: Computation of operator ◦uf

Proposition 4. Algorithm 7 computes a diagram Dup that corresponds to the result of operator

◦up according to Definition 5.6. It runs in time O(
n∏

i=1

|Vi|) where |Vi| is the number of nodes of

diagram Di.

Proof sketch. Correctness. Obviously the algorithm produces a single diagram Dout, since the
while loop runs as long as at least two classifiers exist. We have to show that for all domain ele-
ments d, Dout(d) = (◦up(D1, . . . , Dn))(d) in order to prove that the algorithm actually computes
the proposed operator.

Let d ∈ D be an arbitrary domain element and let cexp be the expected class label returned
by Algorithm 6.

By inserting S.D|S| into each leaf node of S.D|S|−1 until a single diagram remains, we obvi-
ously generate one leaf for each combination of individual results. When the resulting diagram is
used to classify d, we end up with a path P = v1, . . . , vl that exactly encodes the set of satisfied
conditions, including the classifications from the input diagrams. The algorithm uses these values
to set the class label of this leaf node. But as one can see, the computation of this label (the
inner for loop) is equivalent to our definition of the operator. Therefore the diagram computed
by Algorithm 7 classifies d exactly as Algorithm 6 does. Since this is true for all d ∈ D, our
algorithm for computing Dup is correct.
Termination. In each iteration the number of diagrams is decremented by 1 by fusing two of
them. Since this can only be done a finite number of times, the while loop eventually terminates.
The outer for loop iterates over the finite set of leaf nodes and the inner one over the finite set
of preference rules, thus they terminate as well.
Complexity. We show by induction on the number of diagrams that the incorporation is possible

in time O(
n∏
1
|Vi|).

Induction base (n = 2): Clearly, for inserting D2 into each leaf of D1 we need to make a
number of copies that is restricted by O(|V1|) (since the number of leaves in a binary tree is
approximately half of the total number of nodes, as one can show by induction). This is possible

52 CHAPTER 5. FORMAL OPERATOR DEFINITION

in time O(|V1| · |V2|) = O(
n∏
1
|Vi|) and results in a number of leaves that is restricted by the same

upper bound.

Induction step: The incorporation of diagrams D1, . . . , Dn−1 is possible in time O(
n−1∏

1
|Vi|)

by induction hypothesis. This results in a single diagram, which can be fused with Dn in time

O((
n−1∏

1
|Vi|) · |Vn|) = O(

n∏
1
|Vi|) by induction hypothesis (since 2 < n). �

Average

Another solution is not to completely trust one of the classifiers, but give some credibility to
each of them. That is, we want to compute some kind of average operation. This operator is
mainly inspired by [Hall et al., 1998]. First we summarize the results of this paper.

Existing Approach for Parallel Learning

Despite the fact that Hall et al. had another application scenario than belief merging in mind, the
procedure is well-suited as merging operator. Instead of learning one decision tree from a large
data set, multiple trees are learned from random subsets of the training data due to complexity
reasons. Then the individual results are combined. First they transform the decision trees into
sets of production rules (a step that we are going to skip), where each leaf node gets assigned
one rule. Then the sets of rules are merged into one set, where conflicts (i.e., a domain element
is classified differently by different rule sets) are basically resolved using two strategies.

First, rules that query more variables are preferred to rules that incorporate less. In terms of
trees this means that the path from the root to the leaf is longer in one tree than in the other.
The idea behind this is that a more specific case is considered to be more trustful since it applies
to special cases, whereas general rules can more easily result in a default classification because
of the lack of better evidence.

Their second strategy merges conflicting rules that use the same number of variables. In this
case they will contain at least one contradicting condition X ≤ c1 vs. X ≤ c2 with c1 6= c2
(otherwise the rules were equivalent). Then they use the greater of the two values in the final
rule set, while they use the smaller one in case of a > comparison.

Semantics of a Belief Merging Operator

We will implement their second strategy but adopt it such that the average is used rather than
one of the two comparison values. A similar approach was developed in [Williams, 1990], but
with the difference that Williams works with examples from a training set for computing the
averaged decision boundary. That is, he computes the mean value of the element nearest to the
first classification boundary and the element nearest to the second. We will rather work with the
numeric comparison values in the decision tree since we assume that we have no training set.

Of course the idea could even be expanded such that the user can specify all the details
about which decision boundary to select in an additional operator parameter, but since it is only
thought to be a demonstrating example, a simple version of Hall’s rule is sufficient.

As a motivating example, consider Example 5.6. It is intuitively clear how the result should
look like. Since one diagram queries Y > 10, and the other one Y > 15, the merged one contains
the condition Y > 12, 5. This shows our understanding of the term average. Not the final
classifications are averaged (which is not possible, since we work with discrete class labels), but

5.2. MERGING OPERATORS 53

the conditions within the diagram. Formally this means that the conflict set (as introduced
in Definition 4.4) is equally partitioned, such that each of the input diagrams can assert its
classification in half of the cases. This is illustrated in Figure 5.8.

Example 5.6. The merged version of the trees from Example 4.3 after application of ◦avg is
shown in Figure 5.9.

(a) Source partitioning 1

C1

C2

5

10

15

5 10 15

(b) Source partitioning 2

C1

C2

5

10

15

5 10 15

(c) Merged partitioning

C1

C2
contradicts (a)

5

10

15

12,5

5 10 15

contradicts (b)

Figure 5.8: Class partition of the trees shown in Figures 4.3(a) and 4.3(b) (of Example 4.3) and
the averaged diagram

The conflict set (shaded region) is partitioned such that for half of the cases, source 4.3(a) is
considered to be correct and source 4.3(b) as false and vice versa.

It is tricky to formally define the concept of an average diagram. Consider for instance two
diagrams that reason over completely different sets of variables. In this case, it is not trivial to
see what average means. Or even more obvious, consider two trees that both consist only of one
leaf node but with different labels. How can we compute the average in such cases?

54 CHAPTER 5. FORMAL OPERATOR DEFINITION

X < 10

Y > 12, 5

C1 C2

y n
C2

y n

Figure 5.9: Result of ◦avg applied on the diagram from Example 4.3

(a)

C1

(b)

C2

(c)

X < 10

C1 C2

y n

(d)

X > 10

C1 C2

y n

Figure 5.10: Mean computation is impossible

What actually happened in Example 5.6 is that the mean of the conditions in the inner
nodes was computed. This is of course only possible if both conditions query the same variable.
Example 5.7 shows several situations where it is impossible to compute a mean value.

Example 5.7. The two pairs of trees shown in Figure 5.10 (5.10(a) and 5.10(b) as well as 5.10(c)
and 5.10(d)) show situations where the computation of a mean value is impossible.

In case 5.10(a)/5.10(b) the sources come to a different classification. In 5.10(c)/5.10(d) the
comparison operator is different.

Now consider Example 5.8. At first glance we could mean that this situation is similar to (2)
since different variables are queried. However, in this case it is actually possible to take the union
of the diagrams. It is even not required to compute something like a mean value since the sources
can be perfectly integrated. We simply insert 5.11(a) into every leaf node of 5.11(b). That is,
we first classify by 5.11(b) and after it has come to a conclusion, we start 5.11(a). Then, if both
diagrams agree, the final result is fixed. Otherwise they are contradicting (labeled with question
marks).

Example 5.8. In case of the two trees shown in Figure 5.11(a) and 5.11(b), mean computation
is possible and results in the tree in Figure 5.11(c).

Now the formal definition of this operator needs to be given. We will assume that the
input diagrams are ordered trees. That is, the variables are requested in a predefined ordering
X1 < X2 < . . . < Xn.

5.2. MERGING OPERATORS 55

(a) Source diagram 1

X < 10

C1 C2

y n

(b) Source diagram 2

Y < 10

C1 C2

y n

(c) Result

Y < 10

X < 10

C1 ?

y n
X < 10

? C2

y n

y n

Figure 5.11: Mean computation

Definition 5.7. Let D1 and D2 be two decision diagrams with root nodes R1 and R2. Let
us further denote an inner node N with condition X < V and subnodes Sl and Sr as N(X <
V, Sl, Sr). Then the diagram Davg = ◦avg(D1, D2) (average) is computed by Algorithm 9.

Input: source classifiers D1, D2 ∈ kD,C with roots R1 and R2

Output: diagram Davg

if R1 and R2 are leaves then
if R1 and R2 both encode the same class then

/* just carry over this classification */
return R1

else
/* two leaves contradict each other */
return contradiction

else
/* if both nodes query the same variable, merge the conditions */
if R1 and R2 are both inner nodes which query the same variable then

R1 = (X < c1, s1l, s1r);
R2 = (Y < c2, s2l, s2r);
/* merge the subtrees */
sml = average(s1l, s2l);
smr = average(s1r, s2r);
return new Node(X < c1+c2

2 , sml, smr)

else
/* otherwise: just merge R2 with both subtrees of R1 recursively */
Let R1 be the inner node; if both are inner nodes, let R1 query the lexically
smaller variable (exchange trees if necessary);
return new Node(X < c1,merge(s1l, R2),merge(s1r, R2))

Computation of operator ◦avg

Informally, this definition states that two leaf nodes are merged directly. If they have the
same label, the resulting node in the merged diagram will carry over this label. Otherwise we

56 CHAPTER 5. FORMAL OPERATOR DEFINITION

discovered a contradiction and the result is undefined.
In case of an inner node, we first check whether both conditions query the same variable. If this

is the case we simply average the comparison value and apply the recursive algorithm on the left
and right subtree. If the conditions contain different variables we take the condition containing
the smaller variable (according to the given total ordering) and pass the other condition (with
the greater variable) recursively into both subtrees.

Note that, in contrast to the previous operators, this one is defined by providing an algorithm
that actually computes it. Therefore we do not need to prove the correctness since the output
of the algorithm is equivalent to the operator’s result by definition.

Remember our initial requirement from Section 4.1 stating that if all input classifiers agree, we
carry over its result into the merged diagram. Observe that ◦avg does not fulfill this requirement,
as illustrated by Figure 5.12.

(a) Source partitioning 1

C1

C25

10

15

5 10 15

(b) Source partitioning 2

C1

C2

5

10

15

5 10 15

(c) Merged partitioning

C1

contradicts (4)

contradicts (4')

C2

5

10

15

12,5

5 10 15

(4')

(4),

(4')

(4)

Figure 5.12: The partitions of the merged classifier contain a region that contradicts both inputs

In fact the merging procedure computes the average boundary independently for each dimen-
sion. Therefore there will in general emerge regions that contradict multiple input classifiers.

Solving this problem is possible but beyond the scope of this chapter. It is up to the developer

5.2. MERGING OPERATORS 57

of a certain application to select appropriate operators, adjust them and define them in detail.
Nevertheless we give some ideas how a solution could look like:

• Add an additional check and apply the average diagram only in cases where the input
diagrams differ.

• Use an advanced algorithm for computing the decision regions. This is a task from the
field of machine learning and beyond the scope of this thesis. For a survey of the topic see
[Zhu, 2005] or [Dietterich, 2000].

Majority Voting

A very natural kind of merging is majority voting. That is, for domain element d we let it be
classified by each of the input decision procedures. Then we count the number of procedures
that returned class ci for each ci ∈ C. We will call this the number of votes for a certain class.
The merged diagram Dmaj will return the ci with the highest number of votes. This procedure
was inspired by boosting [Breiman, 1996].

This leads to the following formal definition.

Definition 5.8. The n-ary operator ◦maj (majority voting) is given by

◦maj(D1, . . . , Dn)(d) = arg(max
c∈C
{|Di : Di(d) = c|})

where arg returns the c that accounts for the according maximum value. In order to get a unique
class even in cases where we have multiple maximum values, we define formally:

arg(max
c∈C
{S}) = ci s.t. ci = max

c∈C
{S} ∧ @j < i : cj = max

c∈C
{S}

That is, if we have several classes with the same number of supporting decision diagrams, ci has
a higher priority than cj iff i < j.

Note that this defines only the properties of the resulting diagram. But in contrast to the
previously defined operators, it includes no procedure to actually compute them. This has no
special reason except that it was simply easier to define the other operators algorithmically. The
implementation of ◦maj is fairly straightforward.

Example 5.9. Consider three decision diagrams in Figures 5.13(a), 5.13(b) and 5.13(c). After
application of operator ◦maj we get the result shown in Figure 5.13(d).

Breiman came to the conclusion that this method is an easy way to gain increased ac-
curacy. Enhancements of the methods include weights for the source classifiers. They al-
low the user to incorporate the trustability of the different classifiers into the final decision
[Kolter and Maloof, 2003]. We will use an extended version of this operator in our case studies
in Chapter 7.

The implementation of an algorithm for computing the result of ◦maj is very similar to
Algorithm 7. Once more, we fuse diagrams to a single one by inserting the latter into each
leaf of the former one. The only difference concerns the computation of the class labels of the
leaf nodes. Instead of evaluating the sequence of preference rules, we just compare the absolute
values of the number of votes for the different classes. Hence, the algorithm is even simpler. The
idea of the correctness proof is the same as we had it for Proposition 4.

58 CHAPTER 5. FORMAL OPERATOR DEFINITION

(a) Source diagram 1

X < 10

C1 C2

y n

(b) Source diagram 2

Y > 15

C1 C2

y n

(c) Source diagram 3

Z = 20

C1 C2

y n

(d) Merged diagram

X < 10

Y > 15

Z = 20

C1 (3:0) C1 (2:1)

y n
Z = 20

C1 (2:1) C2 (1:2)

y n

y n
Y > 15

Z = 20

C1 (2:1) C2 (1:2)

y n
Z = 20

C2 (1:2) C2 (0:3)

y n

y n

y n

Figure 5.13: Demonstation of operator ◦maj

5.3 Simplifying Diagrams

We have developed operators for unfolding diagrams, converting them into binary trees and
ordering the nodes with respect to the queried variables. This makes working with the diagrams
easier in the sense that the actual merging operators are simpler since they can make more
assumptions about their input.

But all of these procedures make the diagrams themselves more complicated. It has been
shown that their application will in general lead to an exponential blow-up. This is not only an
algorithmic problem, but it makes interpreting and using them also very inconvenient for people.
Thus it is desired that we reduce the diagram again in a final step after actual merging was
completed.

Note that there exist many different methods how a tree can be simplified. Most of them use
a kind of pruning. That is, sub-trees are cut off and are replaced by leaf nodes if this introduces
only few false classifications while reducing the number of conditions to be checked enormously.
Some methods for such strategies are depicted in [Quinlan, 1987]. In contrast, we will stick with
equivalence preserving simplification techniques that modify only the structure of the diagram
without any consequences for the classifications. For this purpose we introduce the operator
◦simp.

Basically we apply two strategies for simplification that were proposed in a similar way by
[Bryant and Bryant, 1992] for binary decision diagrams (actually they defined three reduction
rules since they defined the rule for unifying common subtrees separately for terminal nodes, we
will make just one definition that considers inner and leaf nodes).

Unifying Common Subtrees

We defined the unfolding operator (Section 5.1) in order to guarantee that the input is a tree
rather than a diagram. This procedure duplicated subtrees in order to avoid node sharing. In

5.3. SIMPLIFYING DIAGRAMS 59

X < 10

Y > 15

C1 Z < 20

C3 C4

y n

y
y

X > 5

Z < 20

C3 C4

y n
C2

y
y

y n

Figure 5.14: Diagram containing two equivalent subtrees

X < 10

Y > 15

C1

y

Z < 20

C3 C4

y n

X > 5

C2

n

y n

Figure 5.15: Diagram from Figure 5.14 after common subtrees were eliminated

the final result, this kind of redundancy is highly undesired since it makes diagrams look more
complicated than they actually are.

Thus we need to unify common subtrees. This step is obviously equivalence preserving and
somehow the contrary of unfolding. To demonstrate this, we revisit Example 5.1. All that needs
to be changed is that we read it in reverse order.

Example 5.10. We are given the diagram in Figure 5.14. Obviously it contains equivalent
subtrees (shaded nodes). One of these subtrees can be eliminated if we redirect its ingoing edge
to the other one. The result is shown in Figure 5.15.

Eliminating Branches

After merging tasks were performed or as a result of the previous simplification step we will
sometimes end up with a node that has only one distinct successor. Therefore the next state is
fixed as soon as this node is entered. Consequently, querying a variable and checking conditions
is completely unnecessary. In such cases we can simply cut out the node and redirect its ingoing
edge directly to the appropriate child. Let us revisit Example 5.11.

Example 5.11. We are given the diagram in Figure 5.16(a). Since both edges from the node
with condition C ≤ 20 lead to the same successor, the node can be eliminated as shown in
Figure 5.16(b).

60 CHAPTER 5. FORMAL OPERATOR DEFINITION

(a) Irrelevant branches

A ≥ 10

B < 5

C1 C ≤ 20

C2

y n
C3

y n

y n

(b) Simplified diagram

A ≥ 10

B < 5

C1 C2

y n
C3

y n

Figure 5.16: Elimination of irrelevant branches

Clearly this strategy can be applied iteratively. Thus, if a subtree uses only one kind of leaf
node, the final decision is fixed as soon as the subtree is entered and none of the branches will
have an effect. By iterative application of the previous and this simplification rule, this subtree
will eventually collapse to a single leaf node.

Operator Definition

We come to the formal definition of this operator.

Definition 5.9. The unary operator ◦simp (diagram simplification) is defined as:

◦simp(D)(d) = D(d) ∀d ∈ D and @D′, D′′ ⊂ ◦simp(D) s.t. D′ 6= D′′ and D′(d) = D′′(d) ∀d ∈ D.

Informally, this states that there do not exist any common subdiagrams that represent the
same classifier.

We will again suggest an algorithm that implements this operators, namely Algorithm 10.

Proposition 5. ◦simp is computed by Algorithm 10 in time O(|V |4 + |V |3 · |E|).

Proof sketch. Correctness. We first prove that the output diagram is semantically equivalent to
the input. If we can show that this is an invariant of the while loop, it clearly follows that the
statement is also true for the whole algorithm.

Let I be an arbitrary input diagram and let I ′ be the diagram after execution of the first
if block. If the condition is not satisfied, I = I ′. Otherwise there exists a node v in I which
was removed from I ′. But then, for each edge (w, v) that leads to node v in I, there will be an
edge (w, v′) in I ′ s.t. v and v′ are the roots of semantically equivalent diagrams (otherwise the
if condition would not be satisfied). Therefore the final result will be the same.

Let I ′′ be the result after execution of the second if block. Again, if the condition is not
satisfied, I ′ = I ′′. Otherwise there will be a node v in I ′ which was removed from I ′′. But
then wi = wj for all conditional edges (v, wi, ci), (v, wj , cj) in I ′, otherwise the if condition was
not satisfied. We denote the unique successor of v as w. But then we will end up in node w
independently from the satisfaction of the conditions. Since v was removed from I ′′, and all
input edges were redirected to w, the final result will obviously be the same in all cases.

5.4. SOLVING DIFFERENT TASK VARIANTS 61

Input: Input: D ∈ kD,C with root node R ∈ V
Output: Output: D′ ∈ kD,C with D(d) = D′(d) ∀d ∈ D and D′ does not contain common

subtrees
Dnew = D;
while changes do

/* unify common subtrees */
if ∃D′, D′′ ⊂ Dnew s.t. D′(d) = D′′(d) ∀d ∈ D then

let r′ and r′′ be the roots of D′ resp. D′′;
replace all edges (v, r′′) by (v, r′);
delete D′′ \D′;

/* remove nodes with only one distinct successor s */
if ∃n, s ∈ Dnew.V s.t. (∀v)(n, v) ∈ Dnew.E ⇒ v = s then

replace all edges (v, n) by (v, s);
remove node n;

return Dneu
Algorithm 10: simplify

No more simplifications are possible. Suppose there would be another simplification according
to our proposed strategies which was not performed by the algorithm. This is impossible, because
in this case one of the if conditions was satisfied and the algorithm would not have terminated.
Termination. We have shown that none of the if blocks changes the semantics of the diagram,
therefore this is an invariant of the loop. Observe that both if blocks reduce the number of nodes
in the diagram. This can clearly be done only a finite number of times, which guarantees that
the algorithm will terminate.

Complexity. The first simplification strategy runs in time O(|V |3 + |V |2 · |E|). For the detection
of equivalent sub-diagrams we first need to iterate through all pairs of nodes v/w which are the
roots of possibly equivalent sub-diagrams. This runs in time O(|V |2). Checking for equality is
possible in time O(|V |+ |E|), leading to a total complexity of O(|V |3 + |V |2 · |E|).

The second simplification strategy is much simpler. Obviously, detecting nodes with unique
successors, as well as removing them, is possible in O(|V |+ |E|).

Therefore the complexity of one iteration is dominated by O(|V |3 + |V |2 · |E|). Since the
whole algorithms runs as long as changes were made, and each modification eliminates at least
one node, the overall complexity of the algorithm is O(|V |·(|V |3+|V |2 ·|E|)) = O(|V |4+|V |3 ·|E|).
�

This operator will reduce much of the blow-up that was caused as a preparation step. This
was empirically discovered during the experiments that are documented in Section 7. However,
there is no claim for optimality. This operator is just a demonstration of the possibilities that
arise when using the developed framework and a starting point for experimenting and including
further algorithms. Decision diagram optimization is a different and complex field of research
and practical approaches are mostly heuristics since the problem is NP-complete [Bennett, 1994].
For an approach with genetic algorithms see [Lenders and Baier, 2005].

5.4 Solving different Task Variants

Finally we can continue our discussion of different task variants from Section 4.4.

62 CHAPTER 5. FORMAL OPERATOR DEFINITION

Input graph type Output graph type Node ordering Conflict reso-
lution

Operators
needed

decision tree decision tree arbitrary user prefer-
ences

user prefer-
ence merging
operator

decision tree decision tree ordered majority vot-
ing

majority vot-
ing operator

decision diagram decision diagram ordered average unfolding, av-
erage merging
operator

decision diagram decision diagram arbitrary majority vot-
ing

unfolding,
ordering, ma-
jority merging
operator

Table 5.1: Task variants

Table 5.1 shows some of the most important combinations of tasks from the last chapter,
paired with certain conflict resolution strategies from above. The last column lists the operators
that are needed for certain variants.

Observe that despite the fact that we never defined an average operator for decision diagrams,
we can solve this task by operator composition. Thus it is sufficient to provide a merging operator
for a special case and offer additional unary operators for conversion of diagrams into trees. In
other words, the merging step is the core of the problem and can be preceded or followed by an
ordering or a graph to tree unfolding algorithm. This shows that a relatively small set of operators
can be used for a large variety of different application scenarios. Before practical examples are
shown in Chapter 7, we now discuss the implementation of the framework for dlvhex.

Theory is when you know
something, but it doesn’t work.
Practice is when something
works, but you don’t know why.
Programmers combine theory
and practice: Nothing works and
they don’t know why.

Anoymous Chapter 6
Using dlvhex for

Decision Diagram Merging

In the previous two chapters we have formally defined the task of merging decision diagrams.
We further have seen that a set of few operators is sufficient to solve all of the suggested task
variants by composition.

This chapter puts focus on the actual implementation. We will see how the merging software
can be realized using dlvhex and the mergingplugin developed in [Redl, 2010]. The modules
explained in the following sections will be summarized in another plugin for dlvhex, named the
decisiondiagramplugin. Basically it consists of the operators and a tool for converting decision
diagrams between several file formats, especially between human and a machine-readable ones.

6.1 Representation Formats for Decision Diagrams

When decision diagrams are implemented, the first task is to select a suitable representation
formalism. It is intuitively clear that some hierarchical data structure will be necessary.

Have a look at the diagram in Figure 6.1. Listing 6.1 shows a possible implementation, though
the formal syntax would need to be defined before it can actually be used.

{
i f (A < 10){

i f (B < 10){
<ClassA>

}
e l s e {

<ClassB>
}

}
i f (A > 20) {

i f (B < 16){
<ClassA>

}
e l s e {

<ClassB>
}

63

64
CHAPTER 6. USING DLVHEX FOR

DECISION DIAGRAM MERGING

root

case1

ClassA ClassB

B < 10 else
case2

ClassA ClassB

B < 16 else
ClassC

A < 10

A > 20

else

Figure 6.1: Example decision diagram

}
e l s e {

<ClassC>
}

}

Listing 6.1: Example implementation of decision diagrams in Figure 6.1

Observe that this format is well-suited for humans. It is straightforward to interpret the
definition even though we have not formally defined the syntax. But this definition cannot
directly be parsed by dlvhex. A reasoner expects a logic program consisting of rules and facts.
It should be clear that this is, on the other hand, difficult to read for humans.

Thus, whatever input format we will finally use, we have to provide a formal counterpart and
a conversion mechanism between the two formats.

Representing Graphs Formally

Recall the formal definition of decision diagrams from Section 3.1. We need to represent nodes,
directed edges (with or without conditions) and classifications for the leaf nodes. Conditions
consist of two values and a comparison operator (we have argued that this is sufficient for all
scale types presented in Section 3.2). We further need to store a reference to the (unique)
root node of the diagram. This leads to a straight forward implementation. What we need is
summarized by the following list.

• a unary predicate for storing the entry point

rootnode(Node)

• a unary predicate to define inner nodes

innernode(Node)

• a binary predicate for defining leaf nodes with assigned class labels

leaf (Node,Class)

• a 5-ary predicate to define conditional edges

conditionaledge(Parent ,Child ,Operand1 ,ComparisonOperator ,Operand2)

where Operand1 and Operand2 are alphanumeric strings, and ComparisonOperator is one
of “ < ”, “ <= ”, “ = ”, “ > ”, “ >= ”

6.1. REPRESENTATION FORMATS FOR DECISION DIAGRAMS 65

• a binary predicate for else edges

elsechild(Parent ,Child)

Using these predicates, our motivating example can easily be converted into the formal defi-
nition in Listing 6.2.

innernode (root) .
rootnode (root) .

% Leve l 1
cond i t i ona l edge (root , case1 , " A " , " < " , " 10 ") .
cond i t i ona l edge (root , case2 , " A " , " > " , " 20 ") .
e l s e edg e (root , e l s e c a s e) .

% Leve l 2
cond i t i ona l edge (case1 , case1a , " B " , " < " , " 10 ") .
e l s e edg e (case1 , case1b) .

cond i t i ona l edge (case2 , case2a , " B " , " < " , " 16 ") .
e l s e edg e (case2 , case2b) .

e l s e edg e (root , case3) .

% Leaf nodes
l e a f (case1a , " C lassA ") .
l e a f (case1b , " C lassB ") .
l e a f (case2a , " C lassA ") .
l e a f (case2b , " C lassB ") .
l e a f (case3 , " ClassC ") .

Listing 6.2: Formalized decision diagram

This format is suitable for being processed by dlvhex. But it is obviously difficult to read for
humans. This is in contrast to the dot file format introduced in the following section.

The dot File Format

In principle a file format like the one presented in Listing 6.1 or XML could be used as input
format for the specification of decision diagrams, even though some details remain that need to be
worked out first. For instance, the hierarchical structure from above is easy to use for decision
trees. But if one works with general acyclic graphs, where two nodes may share a common
subgraph, it becomes tricky to incorporate this in the syntax. One would need to provide an
additional means for explicit edge definitions.

Another format that is appropriate for this task is the well-known dot format, see for instance
[Koutsoos et al., 1993]. This is an open graph format with the major advantage that we have
a direct possibility to visualize the resulting graphs using the dot tools1. Listing 6.3 shows the
above example in the very intuitive dot format.

digraph G {
root −> case1 [" A<10 "] ;
root −> case2 [" A>20 "] ;
root −> e l s e c a s e [" e l s e "] ;
root −> case3 [" e l s e "] ;
case1 −> case1a [" B<10 "] ;
case1 −> case1b [" e l s e "] ;

1http://www.graphviz.org/

http://www.graphviz.org/

66
CHAPTER 6. USING DLVHEX FOR

DECISION DIAGRAM MERGING

case2 −> case2a [" B<16 "] ;
case2 −> case2b [" e l s e "] ;
case1a [" C lassA "] ;
case1b [" C lassB "] ;
case2a [" C lassA "] ;
case2b [" C lassB "] ;
case3 [" ClassC "] ;

}

Listing 6.3: Decision diagram 6.2 in dot format

Note that nodes are mostly defined implicitly by simply using them as endpoints for edges.
This is common in dot graphs. Nevertheless one can also explicitly define them if this is necessary
because one wants to set additional attributes like node labels (for instance for attaching class
labels to leaf nodes).

Die formal syntax of the dot format is given in Appendix A. In the following we develop a
converter from dot to our internal formal representation and vice versa.

Converting from and to dot

The graphconverter is a tool that was developed as part of the decisiondiagramplugin. It is a
simple command-line application that is installed together with the plugin library.

If we assume that Program 6.2 is stored in the file “graph.hex”, we can easily convert it into
the dot format by calling:

graphconverter hex dot <graph.hex

The first parameter states the source format, the second one the desired destination format. In
the other direction the call looks like this:

graphconverter dot hex <graph.dot

For details about the graphconverter we refer to the included online-help that can be read by
entering:

graphconverter -help

Appendix B contains the user guide of this tool.

6.2 Architectural Overview

We have shown how the mergingplugin can be extended with custom merging operators (see
Section 2.3). This feature will now be exploited for implementing the operators. The function-
ality was embedded in the decisiondiagramplugin that already contains the graphconverter from
Section 6.1. This allows us to pack all the features that are necessary for the work with decision
diagrams into a single package which is very user-friendly.

Interpreting the Input Diagram

At the beginning of this chapter, we have discussed that decision diagrams need to be converted
from a human-readable data format into a pure hex program consisting of facts over certain
predicates. This allows dlvhex to read the input. However, after the input was parsed and
converted into an instance of the class AtomSet2 internally, it is very inconvenient to work with

2http://www.kr.tuwien.ac.at/research/systems/dlvhex/doc/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/doc/

6.2. ARCHITECTURAL OVERVIEW 67

this representation. A set of facts is a flat data format, and even though it can be used to store
the hierarchical structure of diagrams, this is far from optimal. The solution was only selected
due to the fact that it is simply the only format that dlvhex can interpret.

A much better solution is to convert the AtomSet into an internal graph structure after dlvhex
has parsed the input. In C++, objects and pointers can be elegantly used for representing
tree-like structures. A good data structure simplifies the implementation of merging operators
enormously. But it is clear that a back-conversion must be done after the operators were applied
since dlvhex eventually must return an answer set rather than arbitrary C++ structures.

To summarize, we will work with three different data formats. The human-readable source
format is dot. Using the graphconverter we translate it into sets of facts for the only reason
that dlvhex expects its input to be a logic program. But due to the fact that a set of literals is
inconvenient if one wants to write operators that work with diagrams, another conversion is done
as soon as the decisiondiagramplugin comes into play. Before the actual operator implementation
is called, the plugin will create C++ data structures for storing the diagram and eventually pass
the diagrams in form of a pointer to this kind of representation to the operator.

dot files

graphconverter

dot hex

set of facts

dlvhex

merging

operator

<<calling>>

<<returning>>

{AS}

answer-set

graphconverter

as dot

dot file

C++ object

C++ object

.hex

decisiondiagram

plugin

Figure 6.2: Used data formats and conversions between them

Then the result of the operator must be translated into an answer set representation before it
can be output by dlvhex. After dlvhex has terminated, its console output can finally be directed
through graphconverter once more to generate a human-readable diagram in form of a dot file.
Figure 6.2 illustrates the process.

Internal Representation of Diagrams

Figure 6.3 shows the internal representation of decision diagrams. This is the format that is
finally used to pass the input diagrams to the merging operators.

68
CHAPTER 6. USING DLVHEX FOR

DECISION DIAGRAM MERGING

Node

-label : string

Edge

-condition : Condition

ElseEdge

Condition

-operand1 : string

-operand2 : string

-operator : CmpOp

LeafNode

-classification : string

-vertices

2

-adjacent edges

0..* 1 1

Decision Diagram

1

*

1

*

CmpOp

-=

-!=

-<

-<=

->

->=

«uses»

Figure 6.3: Internal decision diagram representation

In fact, the classes DecisionDiagram, Node and Edge additionally implement many well-known
graph algorithms (like cycle detection) that simplify the work with the framework for users who
write their own merging operators. But since these are technical details which do not change
anything in theory, they were not shown in the diagram to keep things simple.

6.3 Operator Implementation

Recall the list of operators given in Chapter 5. We have already given algorithmic definitions
for most of them, thus the actual implementation is straightforward and it is not necessary to
discuss it separately for each operator. Nevertheless the principles will be explained.

Arity Operation
1 ordering of decision diagrams
1 unfolding of decision diagrams into trees
1 converting arbitrary into binary decision diagrams
1 simplifying of binary decision diagrams by redundancy reduction
2 merging of ordered binary diagrams using range average
2 merging of ordered binary diagrams using majority voting
2 merging of ordered binary diagrams using user preferences

Table 6.1: Types of necessary operators

First look at the code snippet in Listing 6.4. It shows the implementation of a typical operator
in the decisiondiagramplugin. The apply method first checks the arity. The operator simplify is

6.3. OPERATOR IMPLEMENTATION 69

unary and expects a set that contains exactly one answer set.

s t r i n g OpSimplify : : getName (){
return " s imp l i f y " ;

}

HexAnswer OpSimplify : : apply (int ar i ty , vector<HexAnswer∗>& answers ,
OperatorArguments& parameters) throw

(OperatorException){

try{
// Check a r i t y
i f (a r i t y != 1 | | (∗ answers [0]) . s i z e () != 1){

// error hand l ing
}

HexAnswer output ;

// Convert the AtomSet in to an ins tance
// o f DecisionDiagram
DecisionDiagram dd ((∗ answers [0]) [0]) ;

// computation on dd
. . .

// back−convers ion in to an answer s e t
output . push_back (s imp l i f y (dd) . toAnswerSet ()) ;

return output ;
}catch (Inva l idDec i s ionDiagram ide){

// error hand l ing
}

}

Listing 6.4: Implementation of a typical merging operator

Before the actual operator semantics is implemented, the atom set is converted into the
internal diagram representation as discussed in Section 6.2. This is done by the constructor of
class DecisionDiagram. After the computation, the diagram is back-converted into an atom set
since this is the only format that can be returned by dlvhex.

This implements a merging operator as C++ class. But before it can finally be used we need
to implement the operator import function. This method is expected to return a vector of all
operators which are provided by the library (see Section 2.3). It is shown in Listing 6.5.

OpUnfold unfo ld ;
. . .
OpSimplify s imp l i f y ;

extern "C"
vector<IOperator∗>
OPERATORIMPORTFUNCTION()
{

vector<IOperator∗> opera to r s ;
ope ra to r s . push_back(&unfo ld) ;
. . .
ope ra to r s . push_back(& s imp l i f y) ;
return ope ra to r s ;

}

Listing 6.5: Operator import function of the decisiondiagramplugin

70
CHAPTER 6. USING DLVHEX FOR

DECISION DIAGRAM MERGING

root

v1

leaf 1 [class1]

z < w

v2

leaf 2 [class2]

else

x < y else

else z < w

Figure 6.4: A decision diagram with node sharing

Note that the developed plugin does in fact not provide any external atoms for dlvhex but
only merging operators. Nevertheless it is a normal dlvhex plugin that is installed in the system
plugin directory. The mergingplugin will check for all libraries in this directory if an operator
import function is found, and if this is the case, it is called. For more details see [Redl, 2010].

6.4 Demonstration

To conclude this chapter the implemented framework will be demonstrated with a simple exam-
ple. More advanced and practical application scenarios will be discussed in the next chapter.

Assume we have the decision diagram shown in Figure 6.4. It needs to be unfolded, i.e., we
need a decision tree:

The diagram is first encoded in human-readable dot file “input.dot”, which looks as follows:
digraph {

root [l a b e l=" r o o t "] ;
v1 [l a b e l=" v1 "] ;
v2 [l a b e l=" v2 "] ;
l e a f 1 [l a b e l=" l e a f 1 [c l a s s 1] "] ;
l e a f 2 [l a b e l=" l e a f 2 [c l a s s 2] "] ;
v1 −> l e a f 1 [l a b e l=" z <w"] ;
v1 −> l e a f 2 [l a b e l=" e l s e "] ;
v2 −> l e a f 1 [l a b e l=" z <w"] ;
v2 −> l e a f 2 [l a b e l=" e l s e "] ;

}

The dot file can either be written by hand, which is not very complicated, or by the use of a
graphical user interface like the one provided by the X11 tool dot. Then we can use the command

graphconverter dot hex < input.dot > input.hex

to get the following hex program:
root (root) . innernode (root) . innernode (v1) . innernode (v2) .
l e a fnode (l e a f 1 , c l a s s 1) . l e a fnode (l e a f 2 , c l a s s 2) .
cond i t i ona l edge (root , v1 , x , " < " , y) . e l s e edg e (root , v2) .
cond i t i ona l edge (v1 , l e a f 1 , z , " < " , w) . e l s e edg e (v1 , l e a f 2) .
cond i t i ona l edge (v2 , l e a f 1 , z , " < " , w) . e l s e edg e (v2 , l e a f 2) .

Of course one could also write this program by hand, but this is not suggested since the
flat file structure can quickly become confusing. Finally we need to write our merging plan
“graph_to_tree.mp” before the merging procedure can be started:
[common s i gna tu r e]
pr ed i c a t e : root /1 ;
p r ed i c a t e : innernode /1 ;
p r ed i c a t e : l e a fnode /2 ;

6.4. DEMONSTRATION 71

pr ed i c a t e : c ond i t i ona l edge /5 ;
p r ed i c a t e : e l s e edg e /2 ;

[b e l i e f base]
name : kb1 ;
source : " i n p u t . hex " ;

[merging plan]
{

operator : unfo ld ;
{kb1 } ;

}

Basically, we load the input graph from file “input.hex" and call this belief base kb1. Then we
just apply the unfold operator. The common signature is fixed for all decision diagrams. This
merging plan file is passed through the merging plan compiler. Its output is a long hex program
that uses several external atoms and is therefore rather confusing. Thus we omit it and refer to
[Redl, 2010]. The only thing of interest is that this hex program will finally compute the desired
result when we pass it to dlvhex:

mpcompiler graph_to_tree.mp |
dlvhex --silent --filter=root,innernode,leafnode,conditionaledge,elseedge --
> result.as

The filter is again a technical detail that is discussed in the cited thesis and can be ignored
for now. But note that dlvhex is called in silent mode to restrict the output to the actual answer
set (otherwise it would print some “about" information). This is necessary to make the output
compatible with the expected input format of the graphconverter.

The result of dlvhex will be the final decision diagram, but in the rather confusing format of
an answer set:
{ root (root) , innernode (root) , innernode (v1) , innernode (v2) ,
l e a fnode (l e a f 1 , c l a s s 1) , l e a fnode (l e a f 2 , c l a s s 2) ,
l e a fnode (l ea f1_1 , c l a s s 1) , l e a fnode (l ea f2_1 , c l a s s 2) ,
cond i t i ona l edge (root , v1 , x , " < " , y) , e l s e edg e (root , v2) ,
cond i t i ona l edge (v1 , l ea f1_1 , z , " < " , w) , e l s e edg e (v1 , l ea f2_1) ,
cond i t i ona l edge (v2 , l e a f 1 , z , " < " , w) , e l s e edg e (v2 , l e a f 2)}

Therefore we add a final call of the graphconverter to get a readable output diagram:

graphconverter as dot < result.as > result.dot

The output is in the intuitively readable dot format:
digraph {

v2 −> l e a f 2 [l a b e l=" e l s e "] ;
v1 −> leaf2_1 [l a b e l=" e l s e "] ;
root −> v2 [l a b e l=" e l s e "] ;
v2 −> l e a f 1 [l a b e l=" z <w"] ;
v1 −> leaf1_1 [l a b e l=" z <w"] ;
root −> v1 [l a b e l=" x <y "] ;
l ea f2_1 [l a b e l=" l e a f 2 [c l a s s 2] "] ;
l ea f1_1 [l a b e l=" l e a f 1 [c l a s s 1] "] ;
l e a f 2 [l a b e l=" l e a f 2 [c l a s s 2] "] ;
l e a f 1 [l a b e l=" l e a f 1 [c l a s s 1] "] ;
v2 [l a b e l=" v2 "] ;
v1 [l a b e l=" v1 "] ;
root [l a b e l=" r o o t "] ;

}

72
CHAPTER 6. USING DLVHEX FOR

DECISION DIAGRAM MERGING

root

v1

leaf 1 [class1] leaf 2 [class2]

z < w else
v2

leaf 1 [class1] leaf 2 [class2]

z < w else

x < y else

Figure 6.5: Decision diagram from Figure 6.4 unfolded

This can be visualized with the dot tools (dotty, dot, etc.) and looks like shown by Figure 6.5,
which is just like expected.

Of course, this example shows only unfolding rather than merging. This was done to keep
things simple. Merging works exactly in the same way in principle. The only difference regards
the merging plan, where we need to define multiple belief bases and apply an n-ary operator
rather than a unary one.

[b e l i e f base]
name : kb1 ;
source : " i n p u t 1 . hex " ;

[b e l i e f base]
name : kb2 ;
source : " i n p u t 2 . hex " ;

[merging plan]
{

operator : ma jo r i tyvot ing ;
{kb1 } ;
{kb2 } ;

}

This concludes our demonstration of the capabilities. In the following chapter we consider more
sophisticated applications. But prior to this we summarize the main benefits of the proposed
plugin.

6.5 Framework Benefits

Clearly, decision diagrams can also be merged by hand, therefore there must be advantages that
justify the personal training overhead that arises when the plugin is introduced. As we have
seen in Chapter 5, there exists a large variety of merging strategies and even more could be
implemented if this is reasonable for a certain application.

It is often the case that we do not know right from the beginning which of the operators will
behave best. Additionally we may want to experiment with different decision diagrams in the
leaves of the merging plan. To perform the merging task manually each time when we wish to
modify our setting this is a tedious waste of time. Therefore the actual benefit of the framework
is the reduction of such routine tasks. It offers a set of merging operators that were proposed
in the literature and leaves it up to the user to make case studies and finally select the merging
strategy that delivers the desired result.

The plugin developed in this thesis is considered as an extension to [Redl, 2010]. Whereas
the cited thesis shows the implementation of a general belief merging framework, where the
sources can be of arbitrary type, this document assumes the inputs to be decision diagrams. We

6.5. FRAMEWORK BENEFITS 73

have shown that the general belief merging framework can also be used for decision diagram
merging in particular. This requires not only the implementation of appropriate operators, that
are beyond general merging operators, but also pre- and post-processing steps in order to encode
diagrams such that they can be processed by dlvhex.

If your result needs a statistician
then you should design a better
experiment.

Ernest Rutherford

Chapter 7
Case Studies

In this chapter we are going to use the developed framework to solve practice-orientated tasks.
First we will consider biomedical problems from the fields of molecular biology, health care and
administration. At the end of the chapter we go a step beyond and show that the framework
can also fruitfully be used for non-medical applications.

Before we start with concrete examples, the goal of this chapter shall be pointed out. The
scenarios are intended to demonstrate the flexibility of the framework. Clearly, merging of
decision diagrams can also be done by hand. However, in many applications it is not known
right from the beginning which of the merging strategies will lead to the best result. Therefore it
would be necessary to try out several settings with different parameters. If one has to merge the
diagrams manually in each run, this is a great waste of time. The framework takes this burden
from the user.

All that needs to be done is to define the operators once. Then one can simulate several
combinations and sequences of operator applications by automatically generating the merged
decision diagram. Or in other words, the user does not have to perform routine tasks by hand
and can focus on the development and optimization of the actual merging operations.

7.1 DNA Classification

A central task in automatic or semi-automatic generation of protein databases is the recognition
of genes in DNA sequences. DNA1 is the carrier of genetic information in every known living
organism. Basically it is a huge molecule that consists of the four bases Adenine, Guanine,
Cytosine and Thymine, that are arranged in a certain order, which is unique for each organism
(except monozygotic twins).

The genetic flow of information is summarized as follows. The overall genetic information is
stored in each cell of an organism. In eukaryotes, the nucleus encapsulates it, in procaryotes the
DNA is stored as ring-shaped chromosome directly within the cytoplasm. Then, certain regions
of the DNA, called genes, are transcribed into mRNA2, which is in turn sent to cell organelles
called Ribosomes. There they are translated into proteins consisting of amino acids, where 3

1Deoxyribonucleic acid
2Messenger RNA

75

76 CHAPTER 7. CASE STUDIES

bases in sequence (called codon) are mapped onto one amino acid. Finally the resulting proteins
initiate metabolic processes in the cell.

However, only a minor part of the total DNA will ever be transcribed since most of it is so
called junk DNA. That is, it does not encode any proteins but is rather useless. This phenomenon
has different reasons, for instance that genes can become useless during evolution. In case of
humans, about 97% of the total genetic information are junk DNA and only 3% are protein
coding. Clearly, if one wants to construct a protein database like SWISSPROT, it is necessary
to classify automatically sequenced DNA into coding and non-coding samples.

Task Description

This directly leads to the formal task description. We are given a sequence s over the alphabet
A, G, C and T (for the four bases Adenine, Guanine, Cytosine and Thymine):

s ∈ D = {A,G,C, T}+

Our set of possible classifications is just coding and non-coding:

C = {coding ,non-coding}

As usual, a classifier c is a mapping from D to C:

c : D → C

DNA Features

In the literature many implementations based classifiers have been proposed. The underlying
formalisms include neural networks, support-vector machines and decision trees.

But before we can use machine learning tools to train such classifiers, we need to answer one
central question, namely what we consider as input. A straight forward approach would be to
take the DNA sequence itself, but this does not work very well. The reason for this is that the
sequence of bases varies too much from species to species, from individual to individual and from
gene to gene. Thus, the difference between sequences reflects more the differences between genes
than between the two classes coding and non-coding.

What we need is some kind of measurement that allows us to make a distinction between these
classes. This leads to so called DNA features. Features are nothing more than numeric values
that can be computed for a given sequence. They incorporate knowledge from molecular biology
that allows us to distinct between the two classes. For instance, it is known that the predominant
bases at the first codon position are purines (A and G are purines, C and T are pyrimidines),
whereas in non-coding sequences, the distribution is rather random [Peng et al., 2005].

Example 7.1. Let
s = ATTGACAGGCTCCATGCA

Then we compute the feature
f6 =

3
max
i=1

(ai + gi)

where ai (gi) is the relative frequency of Adenine (Guanine) on the first position in reading
frame i. Note that given a sequence, we cannot assume that the first codon starts with the first
character. Therefore the codon boundaries are not fixed and we have 3 possible reading frames,
namely:

s1 = ATT −GAC −AGG− CTC − CAT −GCA

7.1. DNA CLASSIFICATION 77

s2 = A− TTG−ACA−GGC − TCC −ATG− CA

s3 = AT − TGA− CAG−GCT − CCA− TGC −A

Therefore a1 = 2
6 since 2 of the 6 codons start with A and g1 = 2

6 since 2 start with G. Similarily
a2 = 2

5 , g2 = 1
5 , a3 = 0

5 ,
1
5 . Then we can compute

f6 =
3

max
i=1

(ai + gi) = a1 + g1 =
4

6

This is the numeric value of feature f6.

As the name f6 suggests, there exist numerous different features. Another one in use is the
frequency of triplet ATG , which is more common in coding than non-coding sequences.

One of the most common feature sets was proposed in [Fickett and Tung, 1992] and refined
in [Peng et al., 2005]. We will also use these features in our experiments. The DNA data in
use was extracted by Fickett and Tung in 1992 from the Human Genome Project. It can be
downloaded from http://www.fruitfly.org/sequence/human-datasets.html3.

Existing approaches

Now that we have extracted DNA features, they can be used to train a classifier using machine
learning techniques. We will follow [Salzberg et al., 1998] who implemented the MORGAN sys-
tem using decision trees.

Basically, MORGAN is based on OC1. While OC1 uses a single decision tree, MORGAN
trains multiple trees with randomization and combines the single trees as follows. The leaf nodes
do not only store the classification, but also the frequency distribution in the training set. For
instance, if 100 samples of the training set ended in a certain leaf node, where 70 where coding
(abbr. c) and 30 were non-coding (abbr. n), the classification is c with the frequency distribution
{c : 70, n : 30}.

When a new example needs to be classified, it is first put into each of the trees. Then the
final classification is computed by adding the frequency distributions and taking the class with
the highest number of training examples.

Example 7.2. Assume we have two decision trees T1 and T2 and a sequence s. The frequency
distributions delivered by the trees are:

T1(s) = {c : 70, n : 30}

T2(s) = {c : 40, n : 60}

Then the combined distribution is:

T1(s) + T2(s) = {c : 110, n : 90}

Therefore, the final classification is c (coding). In other words, T1 can insist on its classification.
This is a consequence of the fact that T1 has better evidences for c (70 : 30) than T2 has for
n (40 : 60).

Note that in the above example, both decision trees contained the same number of training
samples in the leaf nodes in question. If this is not the case, Salzberg suggests weighting of the
distributions according to the total number of samples in the node.

3visited on 2010-03-13

http://www.fruitfly.org/sequence/human-datasets.html

78 CHAPTER 7. CASE STUDIES

Implementation

We are going to use the DNA data from [Fickett and Tung, 1992], the features f1 to f20 from
[Peng et al., 2005] and the merging strategy from [Salzberg et al., 1998]. The first task when
implementing such a system is the computation of the features for the training and test data.

This is a straight forward task. Basically one has to write a collection of string functions that
count bases or triplets and perform some primitive operations. This leads to a set of annotated
sequences consisting of the base sequence, a vector of 20 numeric features and a class label
(coding or non-coding).

Next we need to construct decision trees for this set of sequences. This is best done by using
some existing machine learning software. During the experiments performed in context of this
thesis, RapidMiner4 was used. This is an open-source data mining tool that implements a large
repertoire of classification algorithms, among them decision trees.

In total, three different decision trees were trained. The variations concerned both the selected
algorithm and the training samples. Figure 7.1 shows the trees. The first one was trained
using the criterion “gain_ratio”, the second one with “information_gain” and the third one with
“gini_index”. The training set of only 10 sequences was drawn randomly from a set of 4000
sequences (2000 coding and 2000 non-coding). This very small training set basically leads to
trees that only look at the one or two most significant attributes, i.e., the attributes with the
greatest variance between coding and non-coding sequences. The selected attributes are different
depending on the training set and the selected learning technique.

Figure 7.1: Individual source classifiers

The performance of these trees was tested with 2000 test instances (1000 coding and 1000
non-coding) different from the training set. As expected, the results were very poor due to the
very small training set. Tables 7.1, 7.2 and 7.3 show the overall performance which is around
50%, or in other words, as good as random classification. An interesting observation is that the
first classifiers tends towards non-coding, the second one tends towards coding, and the third one
seems to be slightly better balanced, i.e., the ratio of false positives and false negatives is smaller.

To merge these trees, we need to export them from RapidMiner such that they can be loaded
by dlvhex and processed by the plugin developed in Chapter 6. We have already shown how we
can work with the human readable dot format. A tool for this purpose called graphconverter was
developed in 6.1.

Unfortunately, RapidMiner does not support exporting decision trees in dot format. Instead
it uses a proprietary XML format. However, the format is easy to understand. Therefore it was

4http://www.rapidminer.com

http://www.rapidminer.com

7.1. DNA CLASSIFICATION 79

accuracy: 48,05% true coding true non-coding
predicted coding 175 214
predicted non-coding 825 786

Table 7.1: DNA classification tree 1

accuracy: 48,85% true coding true non-coding
predicted coding 854 877
predicted non-coding 146 123

Table 7.2: DNA classification tree 2

accuracy: 45,80% true coding true non-coding
predicted coding 262 346
predicted non-coding 738 654

Table 7.3: DNA classification tree 3

possible to extend graphconverter such that it can read and write RapidMiner’s format by reverse
engineering. This enables us to train decision trees with RapidMiner, export them, merge them
using the decisiondiagramplugin and load the merged version again into RapidMiner. There the
performance can be evaluated. Figure 7.2 shows the adjusted architecture from Figure 6.2 using
the new capabilities of graphconverter.

decision trees

trained by

RapidMiner

graphconverter

rmxml hex

set of facts

dlvhex

graphconverter

as rmxml

.hex

new decision tree

for

RapidMiner

<xml>

 ...

</xml>

<xml>

 ...

</xml>

merging

operator

<<calling>>

<<returning>>

{AS}

answer-set

C++ object

C++ object

decisiondiagram

plugin

Figure 7.2: Instantiation of the abstract schema for DNA classification

80 CHAPTER 7. CASE STUDIES

Finally we come to the results. Figure 7.3 shows the merged decision tree according to
Salzberg’s approach.

Figure 7.3: Merged decision tree

The evaluation results are surprisingly good. The overall performance was 65,25% accuracy,
which is much better than the best result of the source classifiers (see Table 7.4). Remember
that we used only very few training examples to train the individual decision trees. This accu-
racy cannot be enhanced much by using more training samples or source classifiers. Empirical
experiments have shown that about 70% is the best one can expect. This comes from the limits
of statistical features like those we used [Peng et al., 2005].

accuracy: 65,25% true coding true non-coding
predicted coding 565 260
predicted non-coding 435 740

Table 7.4: Merged DNA classification tree

Experiments have shown that about 1000-2000 training examples are needed to reach this
accuracy with a single decision tree. Additionally, the single tree would have a depth greater
than 3 (as the merged tree). A further advantage of this approach is that it is well-suited for
parallel computing settings since the source classifiers can be trained simultaneously. Though the
actual strength of the framework is that it offers the possibility to try out several strategies and
evaluate the results in a very convenient way. For instance, if we like to check out the influences
of the rule “in doubt, classify it as coding” in order to raise sensitivity (and consequently lowering
specificity), this could easily done by using the user-preference operator instead (Section 5.2).
The updated diagram can then be computed fully automatically. This allows us to compare the
results without redoing manual merging between.

7.2. MULTIDIMENSIONAL INDICES 81

7.2 Multidimensional Indices

A common problem when working with multidimensional data is the creation and maintenance
of efficient index structures. In the one-dimensional case quite efficient strategies exist. Balanced
trees like AVL trees and B-trees enable database systems to insert and lookup arbitrary entries
in time O(log(n)) using binary search.

In the multidimensional case however, an obvious problem is that there does not exist a total
ordering of the keys, because the relations can be different in the single dimensions. Consider for
instance the tuples a = (1, 3) and b = (2, 2). Then a is greater than b in the second dimension,
but b is greater than a in the first one. The apparently simple solution of ordering the tuples
primarily by their first component, in case of equality by their second component, and so on, has
the great disadvantage that it assigns different weights the single dimensions. This ordering only
allows for an efficient binary search or answering of range queries in the first dimension, but not
in the higher dimensions.

This problem makes it impossible to implement a structure that works in O(log(n)) for any
query and insertion, even though some structures and heuristics have a quite good behavior in
average case.

Applications in Medicine

Even though multidimensional index structures are not only useful in medicine but also in general
database systems, there are special medical application scenarios. One of them comes from the
field of case-based reasoning.

Case-based reasoning can be summarized as follows. The current case is described by several
information chunks about the patient. This includes symptoms, laboratory results, health care
history as well as personal information like age, sex and life style. This results in a multidi-
mensional description of the current case. If the same procedure was applied to previous cases
and they are stored together with the applied treatment, one can be interested in those cases
that were similar to the current one. The idea is simple. If patients had similar conditions, it is
probable that also a similar treatment will lead to success.

This was studied in more detail in [Althoff et al., 1998] and [Wess et al., 1993]. We will now
discuss some existing data structures that allow such applications in principle.

Existing Index Structures

R-Trees

One of these multidimensional data structures is the R-tree [Guttman, 1984]. We are given a set
of d-dimensional objects:

S = R2d

Note that each element has not only a position in the d-dimensional space but also a size, thus
we need 2d numbers to describe it.

Example 7.3. Let d = 2 be our dimensionality. The set of elements si ∈ S is depicted in
Figure 7.4.

Then the corresponding R-tree (with at most m = 3 elements per node) is shown in Figure 7.5.

Note that even though elements belong to exactly one parent node, they may overlap with
some other node. In the example s2 is contained in R2. Nevertheless it also overlaps with R1.

82 CHAPTER 7. CASE STUDIES

s1

s2

s3

s4

s5

s6

s7

s8

R1

R2

R3

R4

Q1

Q2

Figure 7.4: Two-dimensional data

S1 S3 S2 S4 S5 S6 S7 S8

R1 R2 R4R3

Q1 Q2

Figure 7.5: R-Tree

This shows that in general we need to search in multiple subtrees when we need to lookup an
element.

A further difference to one-dimensional trees is that the structure of the tree is not unique.
It is not clear a priori which elements to group in each step. A usual heuristic is for instance,
to minimize the wasted space in each grouping step, i.e., to minimize the area enclosed by some
node where no data elements are. This is driven by the idea that we want to minimize node
dimensions in order to prevent overlappings whenever possible. This enhances the performance
because overlappings can lead to the problem that multiple subtrees need to be traversed, as
explained above.

The problem with R-trees is not only that the lookup of an element needs O(n) in the worst
case, but also that it is a static index. That is, if elements are inserted it can become unbalanced
and a reinsertion of all elements into a new tree needs to be done from time to time in order to
keep the tree balanced.

Nevertheless they have an important advantage, namely that they allow range queries. This
is a query of form:

{b1 ≤ Xi ≤ b2 | b1, b2 ∈ R, 1 ≤ i ≤ n}

Informally, we set a lower and an upper bound for each dimension and want to retrieve all
elements that are in between.

7.2. MULTIDIMENSIONAL INDICES 83

k-d Trees

k-d-trees are a direct expansion of one-dimensional binary trees. As in the one-dimensional case,
in each node one of the elements is selected such that half of them is smaller and half of them is
greater (or equal). Then the elements are equally distributed into the left and right subtree of
the node.

The difference in k-d-trees is that now we need to consider multiple dimensions. This is done
in a straightforward way. In the root, we just look at the first dimension. That means we sort
the elements by its first value and distribute them. In the next level, we only look at the second
dimension and so on. In general, at level l we look at dimension l mod n, where n is the total
dimensionality.

Figure 7.6 shows a typical partition in 2-dimensional space as represented by a k-d-tree.

Figure 7.6: Partitioning by a k-d-tree

As with R-trees, the problem is still that the tree not necessarily remains balanced when
additional elements are inserted. This leads to the last data structure we will mention.

Multidimensional Binary Trees

It turns out that the most straight forward implementation can have major advantages if im-
plemented appropriately. In [Gonzalez, 2000] one treats the multidimensional elements as one-
dimensional keys. This means, a vector of form

(v1, v2, . . . , vd)

is just interpreted as concatenation of its elements:

v1v2 · · · vd

This allows us to use a one-dimensional balanced binary tree, like an AVL-tree, to store mul-
tidimensional data. Since such a tree allows all operations to be done in time O(log(n)), the
complexity of the naive implementation of the d-dimensional version is O(d · log(n)) because we
need to compare up to d (sub)-keys in each node. In was shown that this complexity can be
reduced to O(d+ log(b)) by using a more complex algorithm which prevents sub-keys from being
compared multiple times on a path through the tree [Gonzalez, 2000].

84 CHAPTER 7. CASE STUDIES

The major disadvantage of this tree is that it does not allow range queries. Note that the
elements are primarily ordered by their value in the first dimension. Only if they are equal, they
are ordered by their second value and so on. Other strategies were proposed for the mapping of
multidimensional keys to one dimension. For instance, instead of concatenating the vi one could
also interleave them bitwise, i.e.:

v1[1]v2[1] · · · vd[1] · · · v1[2]v2[2] · · · vd[2] · · · v1[m]v2[m] · · · vd[m]

where m is the number of bits in each subkey and vi[k] denotes the k-th bit of subkey vi. This
still gives a higher priority to a dimension i than to j when i < j, but it minimizes this undesired
preference.

Merging of Case Repositories

In Section 7.2 we have already discussed the relevance of multidimensional data structures for
case-based reasoning. Now we come back to the main topic of the thesis, the merging of decision
trees.

An obvious scenario is the merging of case repositories. Imagine several health care institutes
that maintain their own databases with historical records. However, for case-based reasoning we
may increase the quality of the suggestions by merging the underlying repositories.

From the proposed data structures, multidimensional binary trees (Section 7.2) are best when
range queries are irrelevant and k-d-trees (see 7.2) if they are relevant. Multidimensional binary
trees and k-d-trees can be encoded as decision trees very easily. Each node contains only one
(composed) key and has exactly two subtrees. In contrast to that, representing R-trees as decision
diagrams leads to a lot of overhead, since we need to compare two boundaries for d dimensions
for each subnode. For instance in the root node of Example 7.3 we would need to compare
2 · 2 · 3 = 12 values. Due to the syntax of our query language (as introduced in Section 3.2),
we cannot actually put 8 comparisons into one node, but we would need to create 8 nodes in
sequence (or modify our query language).

A second reason why binary trees are suggested is the fact that insertions can be done in time
O(d + log(n)) when we implement the improved procedure from [Gonzalez, 2000]. This allows
us to merge two trees T1 and T2 with n1 and n2 elements in time O(n2 · (d+ log(n1 + n2))) by
successive insertion of elements of T2 into T1. The result will be a balanced tree.

7.3 Aggregation of Hypothesis in Fault Diagnosis Tasks

To conclude this chapter we consider an application scenario that does not deal with decision
diagrams and therefore is beyond the scope of this thesis. Nevertheless it is of medical interest,
therefore we summarize it shortly. For a detailed discussion we refer to [Redl, 2010].

Propositional abduction problems deal with the finding of explanations for observed (fault)
behavior. This is not only useful in technical systems where we deal with malfunctioning systems,
but also in medicine where possible reasons for observed symptoms shall be derived. It is rarely
the case that we have only one expert and mostly several opinions do not coincide. For instance,
if we ask several medical doctors about their hypothesis, we will possibly hear differing answers.
This comes from the fact, that different persons come with different expertise and in most
situations they will “reason” with unequal theories in mind.

In such situations it is highly desirable to combine the individual decisions into a single
consistent group decision. This aggregated judgment should be as similar to the single experts
and at the same time it must explain the observations, i.e., it must still be a solution to the
abduction problem.

7.3. AGGREGATION OF HYPOTHESIS IN FAULT DIAGNOSIS TASKS 85

More extended variants of the task deal with making rational group decisions even if the
individuals potentially behave irrational. For a detailed discussion we refer to [Redl, 2010].

The best way to predict the
future is to invent it.

Alan Kay

Chapter 8
Conclusion and Outlook

8.1 Problem Statement

Decision diagrams are an important aid for clinical decision making. This mainly comes from
the fact that they are intuitively understandable even for non-knowledge engineers.

We can even find application scenarios where we do not only deal with single decision dia-
grams but with several ones that are similar but not equivalent. As an example we considered
DNA classification, where a given sequence needs to be labeled with “coding” or “non-coding”,
depending on certain statistical features that can be computed for each sequence. In this sce-
nario, one can train several classifiers in parallel, where they differ from each other because of
randomization in the learning procedure, random selection of the training set or application of
different training algorithms. Clearly, at the end of the day we want just one diagram rather than
a set of diagrams. It is therefore interesting to take a closer look at possible merging strategies.

Many people have observed that using different classifiers has advantages over using a single
one, namely the possibility of using parallel computing architectures and accuracy enhancements.
During our experiments we could observe that the merged tree possibly deliver better results
than the individuals, if different training algorithms are combined. However, the quality of
the resulting classifier depends on several influence factors, especially the parameters of the
algorithms, the training set and the merging algorithm.

Of course, diagrams can also merged manually. But this has the serious disadvantage that
this task needs to done again each time the input classifiers or the parameters of the merging
operators are changed. Because of the fact that it is often not clear right from the beginning
which strategy will behave best, and we want to make experiments with different settings, this
can be very tedious. Therefore it is highly interesting to support this task with a tool that takes
this burden from the user.

8.2 Solution

In this thesis we have developed a procedure for the semi-automatic incorporation of multiple
decision diagrams into a single one. However, we did not hard-code one specific merging algo-
rithm, but we rather developed a fairly flexible framework. This allows the user to specify the

87

88 CHAPTER 8. CONCLUSION AND OUTLOOK

desired merging strategy declaratively by selecting appropriate merging operators from a set of
predefined ones, which can easily be extended by custom operators.

The main advantage of this flexibility is the support of rapid prototyping. This allows the
user to experiment with different merging strategies, evaluate results empirically, and change the
settings quickly. Without a tool for automatic incorporation, the merging, which is a routine
task, would have to be done by hand after each modification; clearly this makes it difficult to
focus on the interesting parts of the task.

Basically the framework consists of two parts. The first one is a utility that encodes decision
diagrams as sets of facts. This is necessary to make them accessible from dlvhex. Without this
translation mechanism, it would not be possible to compute upon an inherently hierarchical data
structure like trees or general acyclic graphs.

After this has been done, we can start to merge several diagrams into a single one. For
this purpose we use the mergingplugin, which adds support for belief merging tasks to dlvhex,
and extend it with merging operators that are specialized to decision diagrams. The framework
provides both unary modification and n-ary merging operators. While the n-ary operators with
n > 1 actually support the merging process, the unary ones allow the modification and simpli-
fication of single diagrams. This allows us to first reduce complicated task instances to simple
ones, which makes the development and implementation of the merging strategies much easier.
For instance, by unfolding acyclic graphs to trees, we only need to develop merging operators for
trees, but can still process general diagrams. The framework is extensible, i.e., it is very easy to
refine the operators provided, and to implement additional, application dependent ones.

In Chapter 7 we have demonstrated the usefulness of the framework when we investigated a
problem from molecular biology which was already briefly mentioned. We have trained several
decision trees for DNA classification (“coding” or “non-coding”) and merged them subsequently.
This example has shown, that any changes in the merging strategy only requires minimal modifi-
cations in the formal task description, but no manual remerging of the underlying training data.
During experimenting with different combinations of training algorithms, we could increase the
accuracy of the final diagram. However, this strongly depends on the selected algorithms and
the training set, i.e., not all combinations necessarily increase the quality; some even decrease it.
But this exactly demonstrates the intention of the framework: one can try our different scenarios
very quickly, investigate the results, and finally select the best one.

A further advantage when training multiple classifiers that are merged afterwards is the
possibility of exploiting parallel computing. This is especially useful when working with genetic
material, which usually comes in very huge files.

8.3 Future Issues

Several operators for decision diagram merging have been developed and implemented. It has
been pointed out that they are only thought of as examples because the best suited procedure
is application dependent. Nevertheless there is room for improvements by adding additional
operators or by generalizing existing ones by introducing optional parameters.

Some of the developed operators can also be improved qualitatively. For instance, the simplifi-
cation operator currently implements two strategies for decision diagram shrinking that preserve
equivalence. One could extend this by allowing non-equivalence preserving transformations, so
called pruning strategies. These cut subtrees if they contain only very few training samples which
bears the risk of overfitting.

Further improvements concern interoperability. Currently, input decision diagrams are ex-
pected to be given in one of two supported input file formats: dot and the proprietary XML

8.3. FUTURE ISSUES 89

format of the open-source tool RapidMiner. The support of additional file formats may allow
processing of diagrams trained by other machine-learning tools.

The major benefit of the implementation of the framework is indisputably to provide a rapid
prototyping tool for knowledge engineers where experiments and evaluations with different merg-
ing plans can be done in a convenient way.

Appendix A
The dot File Format

Table A shows the syntax of the dot file format.

Source: http://www.graphviz.org/doc/info/lang.html (visited on August 27, 2010).

graph : [strict](graph|digraph)[ID]′′stmt_list′′

stmt_list : [stmt[′;′][stmtlist]]
stmt : node_stmt

|edge_stmt
|attr_stmt
|ID′ =′ ID
|subgraph

attr_stmt : (graph|node|edge)attr_list
attr_list : ′[′[a_list]′]′[attr_list]
a_list : ID[′=′ ID][′,′][a_list]
edge_stmt : (node_id|subgraph)edgeRHS[attr_list]
edgeRHS : edgeop(node_id|subgraph)[edgeRHS]
node_stmt : node_id[attr_list]
node_id : ID[port]
port : ′ :′ ID[′:′ compass_pt]

|′ :′ compass_pt
subgraph : [subgraph[ID]]′′stmt_list′′

compass_pt : (n|ne|e|se|s|sw|w|nw|c|_)

Table A.1: Syntax of the dot file format

91

http://www.graphviz.org/doc/info/lang.html

Appendix B
Command-Line Tool graphconverter

Decision diagrams can be stored in different file formats. While some of them are human-readable,
others are better for automatic processing.

Supported Formats

dot

The dot file format1 has an intuitive syntax and thus it is well-suited for humans. Additionally
it is well suited for being visualized using the dot tools.

Consider the decision diagram depicted in Figure 6.1. The snippet in Listing B.1 shows its
implementation as dot file.
digraph G {

root −> case1 [" A<10 "] ;
root −> case2 [" A>20 "] ;
root −> e l s e c a s e [" e l s e "] ;
root −> case3 [" e l s e "] ;
case1 −> case1a [" B<10 "] ;
case1 −> case1b [" e l s e "] ;
case2 −> case2a [" B<16 "] ;
case2 −> case2b [" e l s e "] ;
case1a [" C lassA "] ;
case1b [" C lassB "] ;
case2a [" C lassA "] ;
case2b [" C lassB "] ;
case3 [" C lassC "] ;

}

Listing B.1: The decision diagram in Figure 6.1 encoded in dot format

Syntactically correct decision diagrams must

• have exactly one root node (which does not need to be explicitly mentioned, but which is
implicitly identified by the fact that it has no ingoing edges)

1http://www.graphviz.org

93

http://www.graphviz.org

94 APPENDIX B. COMMAND-LINE TOOL GRAPHCONVERTER

root

case1

ClassA ClassB

B < 10 else
case2

ClassA ClassB

B < 16 else
ClassC

A < 10

A > 20

else

Figure B.1: Graphical representation of a decision diagram

• use only directed edges

• use only edges that are labeled either with

else

or with conditions of form
X ◦ Y

where X and Y can be arbitrary strings and ◦ ∈ {<,<=,=, >,>=} is an operator

• have leaf nodes that are labeled with arbitrary strings that encode the classification in this
node

Note that we talk about the expected syntax of input files to our converter. Not all convertible
diagrams necessarily satisfy the semantic validity conditions discussed in Chapter 3.

Sets of Facts

However, dlvhex cannot directly load this format because its input must be a logic program.
Thus a diagram must be represented using predicates.

We define the following predicates:

• root(X)
To define that some constant X is defined as the root node

• innernode(X)
To define some constant X to be an inner node

• leafnode(X,Y)
To define that some constant X is a leaf node with label Y

• conditionaledge(X,Y,A,C,B)
To define that a conditional edge with condition A ◦B (where the operation ◦ is given by
C) leads from node X to Y

• elseedge(X,Y)
To define that an unconditional edge goes from X to Y

The above diagram can therefore be represented as follows.

B.1. CONVERSION 95

root (root) .
innernode (root) .
innernode (case1) .
innernode (case2) .
l e a fnode (case3 , " ClassC ") .
l e a fnode (case1a , " C lassA ") .
l e a fnode (case1b , " C lassB ") .
l e a fnode (case2a , " C lassA ") .
l e a fnode (case2b , " C lassB ") .
cond i t i ona l edge (root , case1 , " A " , " < " , " 10 ") .
cond i t i ona l edge (root , case2 , " A " , " > " , " 20 ") .
e l s e edg e (root , case3) .
cond i t i ona l edge (case1 , case1a , " B " , " < " , " 10 ") .
e l s e edg e (case1 , case1b) .
cond i t i ona l edge (case2 , case2a , " B " , " < " , " 16 ") .
e l s e edg e (case2 , case2b) .

Listing B.2: The above decision diagram as hex program

Answer-Sets

A very simple and obvious translation from hex programs into answer sets is to put all the facts
simply as atoms into the answer set. The above diagram can therefore also be implemented as:
{ root (root) ,
innernode (root) ,
innernode (case1) ,
innernode (case2) ,
l e a fnode (case3 , " ClassC ") ,
l e a fnode (case1a , " C lassA ") ,
l e a fnode (case1b , " C lassB ") ,
l e a fnode (case2a , " C lassA ") ,
l e a fnode (case2b , " C lassB ") ,
cond i t i ona l edge (root , case1 , " A " , " < " , " 10 ") ,
cond i t i ona l edge (root , case2 , " A " , " > " , " 20 ") ,
e l s e edg e (root , case3) ,
cond i t i ona l edge (case1 , case1a , " B " , " < " , " 10 ") ,
e l s e edg e (case1 , case1b) ,
cond i t i ona l edge (case2 , case2a , " B " , " < " , " 16 ") ,
e l s e edg e (case2 , case2b)}

Listing B.3: the above decision diagram as answer set

RapidMiner XML Format

RapidMiner2 is an open-source data mining tool. It uses a proprietary XML file format to store
decision trees. This format is also supported by the tool introduced in B.1. The details are not
relevant for practical work and are skipped therefore. It is only important to know that the
import and export functionality for this file format is necessary to process RapidMiner classifiers
by the decisiondiagramplugin.

B.1 Conversion

For the conversion between the introduced file formats, the plugin installs a tool called graph-
converter. It can be used to translate diagrams in any of the supported file formats into se-

2http://www.rapidminer.com

http://www.rapidminer.com

96 APPENDIX B. COMMAND-LINE TOOL GRAPHCONVERTER

mantically equivalent versions in another format. Assume that the diagram is stored in the file
“mydiagram.dot”. Then the conversion into the corresponding hex program is done by entering:

graphconverter dot hex < mydiagram.dot > mydiagram.hex

The result is a set of facts that can be loaded by dlvhex. After dlvhex has done its job,
the output will be an answer set, which is ill-suited for human users. Thus the plugin also
supports conversions in the other direction. Assume that the output of dlvhex is stored in the
file “answerset.as" (using the silent mode such that the output contains the pure answer set
without any additional information about dlvhex). Then the conversion is done by:

graphconverter as dot < answerset.dot > out_diagram.dot

Between the two converter calls, the diagram is given as hex program “mydiagram.hex" that
can be processed by dlvhex. Even though one can essentially do anything with this program that
is computable, it is strongly intended to be used as part of the input for a revision task.

Note that graphconverter reads from standard input and writes to standard output. The
graphconverter expects either one or two parameters. If one parameter is passed, it can be
anything of:

• --toas
Converts a dot file into a hex program.

• --todot
Converts an answer set into a dot file.

• --help
Displays an online help message.

Note that --toas and --todot are only abbreviations for commonly used conversions. The
more general program call passes two parameters, where the first one states the source format
and the second one the desired destination format. Both parameters can be anything from the
following list.

Format Parameter name
dot graph dot
hex program hexprogram or hex
answer set answerset or as
RapidMiner XML rmxml or xml

Bibliography

[Althoff et al., 1998] Althoff, K., Bergmann, R., Wess, S., Manago, M., Auriol, E., Larichev,
O. I., Bolotov, E., Zhuravlev, Y. I., and Gurov, S. I. (1998). Case-based reasoning for medical
decision support tasks: The inreca approach. In Artificial Intelligence in Medicine 12, pages
25–41. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.9763.

[Bahar et al., 1993] Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., and
Somenzi, F. (1993). Algebraic decision diagrams and their applications. Computer-Aided
Design, 1993. ICCAD-93. Digest of Technical Papers., 1993 IEEE/ACM International Con-
ference on, pages 188 –191.

[Bennett, 1994] Bennett, K. (1994). Global tree optimization: A non-greedy decision tree algo-
rithm. In Computing Science and Statistics, pages 156–160. URL: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.7.393.

[Bern et al., 1996] Bern, J., Meinel, C., and Slobodova, A. (1996). Global rebuilding of OBDDs
avoiding memory requirement maxima. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 15(1):131 –134.

[Bodlaender, 1993] Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cyber-
netica, 11:1–23. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.
8755.

[Bollig and Wegener, 1996] Bollig, B. and Wegener, I. (1996). Improving the variable ordering
of OBDDs is np-complete. Computers, IEEE Transactions on, 45(9):993–1002. URL: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=537122.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.
URL: http://dx.doi.org/10.1007/BF00058655.

[Bryant, 1992] Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318. URL: http://portal.acm.
org/citation.cfm?id=136043.

97

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.9763
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.393
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.393
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8755
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8755
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=537122
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=537122
http://dx.doi.org/10.1007/BF00058655
http://portal.acm.org/citation.cfm?id=136043
http://portal.acm.org/citation.cfm?id=136043

98 BIBLIOGRAPHY

[Bryant and Bryant, 1992] Bryant, R. E. and Bryant, A. E. (1992). Symbolic boolean manipu-
lation with ordered binary decision diagrams. ACM Computing Surveys, 24:293–318. URL:
http://portal.acm.org/citation.cfm?id=136043.

[Dasgupta et al., 1979] Dasgupta, P. S., Hammond, P. J., and Maskin, E. S. (1979). The imple-
mentation of social choice rules: Some general results on incentive compatibility. Review of
Economic Studies, 46(2):185–216.

[Dietterich, 2000] Dietterich, T. G. (2000). Ensemble methods in machine learning. In INTER-
NATIONAL WORKSHOP ON MULTIPLE CLASSIFIER SYSTEMS, pages 1–15. Springer-
Verlag. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.4718.

[Eiter et al., 2005] Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005). A uniform
integration of higher-order reasoning and external evaluations in answer-set programming. In
In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05,
pages 90–96. Professional Book. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.128.8944.

[Eiter et al., 2006] Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2006). dlvhex: A
system for integrating multiple semantics in an answer-set programming framework. In WLP,
pages 206–210. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.
5386.

[Fickett and Tung, 1992] Fickett, J. W. and Tung, C. S. (1992). Assessment of protein coding
measures. Nucleic acids research, 20(24):6441–6450. URL: http://view.ncbi.nlm.nih.gov/
pubmed/1480466.

[Fitting, 1999] Fitting, M. (1999). Fixpoint semantics for logic programming - a survey. The-
oretical Computer Science, 278:25–51. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.7641.

[Fujita et al., 1991] Fujita, M., Matsunaga, Y., and Kakuda, T. (1991). On variable ordering of
binary decision diagrams for the application of multi-level logic synthesis. In EURO-DAC ’91:
Proceedings of the conference on European design automation, pages 50–54, Los Alamitos, CA,
USA. IEEE Computer Society Press. URL: http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=00206358.

[Gabbay et al., 2009] Gabbay, D. M., Rodrigues, O., and Pigozzi, G. (2009). Connec-
tions between belief revision, belief merging and social choice. J. Log. Comput.,
19(3):445–446. URL: http://people.stfx.ca/mimam/Stuff/Search%20Articles/October%
203%20Search/GabbayPigozziRodrigues.pdf.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model semantics
for logic programming. In Proceedings of the Fifth International Conference on Logic Program-
ming, pages 1070–1080. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.34.2912.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic
programs and disjunctive databases. New Generation Computing, 9:365–385. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7150.

[Gonzalez, 2000] Gonzalez, T. F. (2000). Simple algorithms for the on-line multidimensional
dictionary and related problems. Algorithmica, 28(2):255–267.

http://portal.acm.org/citation.cfm?id=136043
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.4718
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8944
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8944
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.5386
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.5386
http://view.ncbi.nlm.nih.gov/pubmed/1480466
http://view.ncbi.nlm.nih.gov/pubmed/1480466
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7641
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7641
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00206358
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00206358
http://people.stfx.ca/mimam/Stuff/Search%20Articles/October%203%20Search/GabbayPigozziRodrigues.pdf
http://people.stfx.ca/mimam/Stuff/Search%20Articles/October%203%20Search/GabbayPigozziRodrigues.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2912
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2912
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7150
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7150

BIBLIOGRAPHY 99

[Guttman, 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching.
In INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, pages 47–57. ACM.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.7887.

[Hall et al., 1998] Hall, L., Chawla, N., and Bowyer, K. (1998). Decision tree learning on very
large data sets. Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference
on, 3:2579 –2584 vol.3.

[Kolter and Maloof, 2003] Kolter, J. and Maloof, M. (2003). Dynamic weighted majority: a new
ensemble method for tracking concept drift. Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 123 – 130.

[Koutsoos et al., 1993] Koutsoos, E., Os, E. K., North, S. C., Compsparc, I., Sparccm, S.,
Sparcasemit, S. S., and Intnulld, I. I. (1993). Drawing graphs with dot. URL: http:
//www.graphviz.org/Documentation/dotguide.pdf (visited on August 27, 2010).

[Kowalski, 1974] Kowalski, R. (1974). Predicate logic as programming language. in Proceedings
IFIP Congress, pages 569–574. URL: http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.
pdf.

[Lenders and Baier, 2005] Lenders, W. and Baier, C. (2005). Genetic algorithms for the variable
ordering problem of binary decision diagrams. In Wright, A. H., Vose, M. D., De Jong, K. A.,
and Schmitt, L. M., editors, Foundations of Genetic Algorithms, volume 3469 of Lecture Notes
in Computer Science, pages 1–20. Springer Berlin / Heidelberg.

[Maclin and Opitz, 1997] Maclin, R. and Opitz, D. (1997). An empirical evaluation of bag-
ging and boosting. In In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 546–551. AAAI Press. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.49.8401.

[Mair et al., 1995] Mair, J., Smidt, J., Lechleitner, P., Dienstl, F., and Puschendorf, B. (1995).
A Decision Tree for the Early Diagnosis of Acute Myocardial Infarction in Nontraumatic Chest
Pain Patients at Hospital Admission. Chest, 108(6):1502–1509.

[Moret et al., 1980] Moret, B. E., , and R. C. Gonzalez, M. T. (1980). The activity of a variable
and its relation to decision trees. ACM Trans. Program. Lang. Syst., 2(4):580–595. URL:
http://portal.acm.org/citation.cfm?id=357114.357120.

[Mountain, 1986] Mountain, C. F. (1986). A New International Staging System for Lung Cancer.
Chest, 89(4 Supplement):225S–233S. URL: http://chestjournal.chestpubs.org/content/
89/4_Supplement/225S.short.

[Peng et al., 2005] Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mu-
tual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Trans. Pattern Anal. Mach. Intell., 27(8):1226–1238. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.63.5765.

[Polikar, 2009] Polikar, R. (2009). Ensemble learning. Scholarpedia, 4(1):2776.

[Przymusinski, 1991] Przymusinski, T. C. (1991). Stable semantics for disjunctive programs.
New Generation Computing, 9:401–424. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.53.1434.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.7887
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.graphviz.org/Documentation/dotguide.pdf
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
http://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.8401
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.8401
http://portal.acm.org/citation.cfm?id=357114.357120
http://chestjournal.chestpubs.org/content/89/4_Supplement/225S.short
http://chestjournal.chestpubs.org/content/89/4_Supplement/225S.short
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.5765
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.5765
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.1434
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.1434

100 BIBLIOGRAPHY

[Quinlan, 1987] Quinlan, J. R. (1987). Simplifying decision trees. Int. J. Man-Mach. Stud.,
27(3):221–234.

[Redl, 2010] Redl, C. (2010). Development of a belief merging framewerk for dlvhex. Master’s
thesis, Vienna University of Technology, Institute of Information Systems, Knowledge-Based
Systems Group, A-1040 Vienna, Karlsplatz 13.

[Salzberg, 1995] Salzberg, S. (1995). Locating protein coding regions in human dna using
a decision tree algorithm. Journal of Computational Biology, 2:473–485. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6046.

[Salzberg et al., 1998] Salzberg, S., Delcher, A. L., Fasman, K. H., and Henderson, J. (1998).
A decision tree system for finding genes in dna. Journal of Computational Biology, pages
667–680. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6908.

[Shortliffe et al., 1979] Shortliffe, E., Buchanan, B., and Feigenbaum, E. (1979). Knowledge
engineering for medical decision making: A review of computer-based clinical decision aids.
Proceedings of the IEEE, 67(9):1207 – 1224.

[Sobin et al., 2009] Sobin, L., Gospodarowicz, M., and Wittekind, C. (2009). TNM Classification
of Malign Tumors. Wiley-Liss, 7 edition. URL: http://www.uicc.org.

[Stevens, 1946] Stevens, S. S. (1946). On the theory of scales of measurement. Sci-
ence, 103(2684):677–680. URL: http://web.duke.edu/philosophy/bio/Papers/Stevens_
Measurement.pdf.

[Tani and Imai, 1994] Tani, S. and Imai, H. (1994). A reordering operation for an ordered binary
decision diagram and an extended framework for combinatorics of graph. ISAAC’94, pages
575–583.

[Wess et al., 1993] Wess, S., Althoff, K., and Derwand, G. (1993). Using k-d trees to improve the
retrieval step in case-based reasoning. In Stefan Wess, Klaus-Dieter Althoff, M. M. Richter,
pages 167–181. Springer-Verlag. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.55.5469.

[Williams, 1990] Williams, G. J. (1990). Inducing and Combining Decision Structures for Expert
Systems. PhD thesis, Australian National University, The Australian National University.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4523.

[Williams, 1964] Williams, J. W. J. (1964). Algorithm 232 heapsort. Communications of the
ACM, 7(6):347–348.

[Zhu, 2005] Zhu, X. (2005). Semi-supervised learning literature survey. Technical Report 1530,
Computer Sciences, University of Wisconsin-Madison. URL: http://pages.cs.wisc.edu/
~jerryzhu/pub/ssl_survey.pdf.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6046
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.6046
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6908
http://www.uicc.org
http://web.duke.edu/philosophy/bio/Papers/Stevens_Measurement.pdf
http://web.duke.edu/philosophy/bio/Papers/Stevens_Measurement.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5469
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.5469
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4523
http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Existing Approaches
	Going Beyond
	Intention of the Approach
	Applications and Experimental Results

	Preliminaries
	Answer-Set Programming
	Intoduction to hex programs and dlvhex
	Intoduction to the mergingplugin

	Decision Diagrams in Biomedicine
	Formal Definition of Decision Diagrams
	Query Language

	Task Definition and Variants
	General Definition
	Task Variants
	Contradicting Diagrams
	Summary

	Formal Operator Definition
	Unary Modification Operators
	Merging Operators
	Simplifying Diagrams
	Solving different Task Variants

	Using dlvhex for Decision Diagram Merging
	Representation Formats for Decision Diagrams
	Architectural Overview
	Operator Implementation
	Demonstration
	Framework Benefits

	Case Studies
	DNA Classification
	Multidimensional Indices
	Aggregation of Hypothesis in Fault Diagnosis Tasks

	Conclusion and Outlook
	Problem Statement
	Solution
	Future Issues

	The dot File Format
	Command-Line Tool graphconverter
	Conversion

	Bibliography

