
GQBF and Proof Complexity

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Peter Haberl
Matrikelnummer 0525517

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao. Univ-Prof. Dr. Uwe Egly

Wien, 11.05.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Peter Haberl

Römerstrasse 3,
3361 Aschbach Markt

“Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe,
dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben
habe und dass ich die Stellen der Arbeit — einschliesslich Tabellen,
Karten und Abbildungen —, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.”

Wien, 11.05.2011
Unterschrift

i

Kurzfassung Das Erfüllbarkeitsproblem für quantifizierte boolesche Formeln
— das ist, zu entscheiden ob alle existentiell quantifizierten Variablen einer
geschlossenen quantifizierten boolschen Formel in einer Form belegt werden
können, so dass die Formel damit wahr wird — ist von besonderem beweis-
theoretischen und komplexitätstheoretischen Interesse. Es generalisiert das aus-
sagenlogische Erfüllbarkeitsproblem und bietet für jede Stufe der polynomiellen
Hierarchie prototypische Probleme. Weiters lassen sich viele Probleme der
künstlichen Intelligenz und der Spieltheorie als Erfüllbarkeitsproblem für quan-
tifizierte boolesche Formeln kodieren.

Derzeit existieren mehrere Beweiser für dieses Problem, basierend auf einer
Vielzahl unterschiedlicher Lösungsansätze. Ein kürzlich vorgestellter Beweiser
konstruiert Beweise mit Hilfe eines Sequenzkalküls. In diesem Papier unter-
suchen wir die Fähigkeiten dieses Kalküls kurze Beweise erzeugen zu können
und vergleichen verschiedene Konstruktionsmerkmale des Kalküls diesbezüglich.
Wir vergleichen diesen Kalkül weiters mit einem weit verbreiteten Resolution-
skalkül und untersuchen die Auswirkungen von Pränexierung auf die Länge von
Beweisen.

Wir zeigen, dass eine strenge Ordnung von Sequenzkalkülen existiert was ihre
Fähigkeit betrifft, kurze Beweise erzeugen zu können. Manipulationen im In-
neren von Formeln — zusätzlich zu Manipulationen die streng der Struktur
von Formeln folgen — können Beweise exponentiell verkürzen. Beweise in Form
eines gerichteten, azyklischen Graphen können expontiell kürzer sein als Beweise
in Baumform. Weiters zeigen wir obere und untere Schranken für Fähigkeiten,
die ein Sequenzkalkül besitzen muss, um ebenso kurze Beweise erzeugen zu
können wie Resolutionskalküle. Das Papier beweist auch, dass eine gute Pränex-
ierungsstrategie essentiell ist, um kurze Beweise erzeugen zu können.

ii

Abstact The evaluation problem for quantified boolean formulas — deciding
if a truth value can be assigned to each existentially quantified variable of a ded-
icated quantified boolean formula in a way that the formula evaluates to true
— is especially interesting from a proof theoretical and complexity theoretical
viewpoint. It generalizes the propositional satisfiability problem and provides
natural problems for any level of the polynomial hierarchy. From a more practi-
cal perspective, many problems from the field of artificial intelligence and game
theory can be encoded as evaluation problems for quantified boolean formulas.

Currently there exists a wide range of solvers for the evaluation problem for
quantified boolean formulas, using a variety of different evaluation strategies.
A solver presented recently uses a sequent-style calculus to construct proofs for
quantified boolean formulas. We research the capabilities of this sequent-style
calculus and compare different features of the calculus amongst each other with
respect to their power to generate short proofs. We also compare sequent-style
calculi to a widely used version of a resolution-like calculus and examine the
impact of prenexing on proof size.

In this thesis we establish a strict hierarchy of sequent-style calculi that or-
ders them with respect to their power of creating short proofs. It is proven
that adding rules that operate within sub-formulas instead of operating on the
outermost connective, respectively quantifier, can exponentially shorten proofs.
So can allowing proofs to form directed acyclic graphs rather than trees. We
establish an upper and an lower bound of features that are needed for a sequent
calculus to generate proofs as short as resolution can. It is also shown that a
good choice of prenexing strategy is essential to construct short proofs.

iii

Contents

I. Introduction 1

1. Introduction 3

1.1. Problem Description . 6

1.2. Results . 6

1.3. Systematic Approach . 7

1.4. State-Of-The-Art . 7

1.5. A Guide Through Consecutive Parts 7

II. Preliminaries 9

2. Quantified Boolean Formulas 11

2.1. Syntax . 11

2.2. Simple Syntactic Operations on Formulas 12

2.3. Semantics . 15

2.4. The Polynomial Hierarchy . 17

3. Notational Conventions 19

III. GQBF 21

4. A Sequent Calculus for Quantified Boolean Formulas 23

4.1. The Calculus . 23

5. Adding Simplification Rules 29

5.1. The Calculus . 30

5.2. Soundness and Completeness of Full GQBF 31

6. From Trees to Directed Acyclic Graphs 33

6.1. The Calculus . 33

7. Refuting Formulas 37

v

Contents

IV. Proof Size 39

8. Features and Proof Size 41
8.1. The Power of Simplification Rules 41
8.2. The Power of Reusing Sub-Proofs 45

9. Transformations and Proof Size 51
9.1. Equivalent Replacement . 51
9.2. Normal Forms . 56
9.3. GQBF-Proofs and Prenexing . 60

V. Q-resolution 71

10.Resolution for Quantified Boolean Formulas 73
10.1. The Calculus . 73

VI. Simulation 79

11.Simulation 81
11.1. A Hierarchy for Sequent-Style Calculi 82
11.2. Simulation between GQBF and Q-resolution 86
11.3. Simulation between GQBF and 2-PCNF-Evaluation 94

VII.Conclusion 99

12.Conclusion 101

vi

Part I.

Introduction

1

1. Introduction

Subsequently we will present an informal introduction to the notions of quan-
tified boolean formulas and the evaluation problem for these formulas. Moti-
vations for dealing with the evaluation problem for quantified boolean formulas
will be presented as well as why we are interested in proofs for them. The
informal introduction is succeeded by a small summary of the problem that
is discussed in this thesis, the results gathered, the systematic approach taken
and the state-of-the art. Formal discussion will be presented in part II and all
consecutive parts.

The Boolean Satisfiability Problem Evaluating logical formulas has a long
tradition in computer science. Most notably, the boolean satisfiability problem
is one of the most studied problems in the area of theoretical computer science.
Propositional formulas are partitioned into two disjoint classes via the boolean
satisfiability problem: into the class of satisfiable formulas and the class of
unsatisfiable formulas. Papadimitriou defines satisfiable formulas this way [14]:
“We say that a Boolean expression φ is satisfiable if there is a truth assignment
T appropriate to it such that T |= φ”. It is unsatisfiable otherwise. A truth
assignment T is a model of a formula φ (T |= φ) if it assigns a truth value to
each atomic part of the formula such that the formula as a whole is logically
equivalent to true. Formal definitions of syntax and semantics will be given in
Part II. Further, we call a formula valid if all truth assignments appropriate to
it are also models of it.

In general, deciding if a propositional formula is satisfiable is not an easy
problem. The Cook-Levin theorem [5] proves that the boolean satisfiability
problem is NP-complete. That is, a non-deterministic Turing machine can decide
in polynomially many steps — with respect to the size of a formula — if there
exists a truth assignment for the formula that is a model of it. From a more
mechanical perspective, there is no deterministic algorithm known that solves
the problem in polynomially many steps. It is moreover highly doubted that
such an algorithm may exists anyhow [7].

The Evaluation Problem for Quantified Boolean Formulas If the language
that is used to construct formulas is enriched, e.g. with means to quantify over
truth values, complexity rises even higher. In this thesis we will mostly deal
with quantified boolean formulas. As the name of this class of formulas already
tells, a certain form of quantification is allowed in the construction of formulas.

3

1. Introduction

Propositional formulas are constructed from atomic variables — say from a set
V of variable symbols — by using connectives to form complex formulas. When
a propositional formula is then evaluated, a truth value — true, respectively 1
or false, respectively 0 — is assigned to each variable symbol appearing in the
formula. The semantics of the connectives used to construct the formula then
decide on the basis of the truth values assigned to the formulas atomic parts
about the truth value of the formula as a whole. As truth values can be assigned
freely to variable symbols, such variables symbols are called free variables.

Quantified boolean formulas may now, in addition to free variables, contain
so called bound variables. Each bound variable is bound by either an existential
or an universal quantifier. Evaluating formulas that contain bound variables
cannot be done as if all variables were free: it is no longer allowed to freely
assign a truth value to bound variables during evaluation. We informally1 define
evaluating formulas with quantifiers the following way: (1) If a formula contains
free variables only, it is evaluated as if it would be a propositional formula. (2)
If a formula is of the form ∀xφ, i.e. x is a universally quantified variable symbol,
then the formula evaluates to true if φ evaluates to true having x assigned to true
as well as having x assigned to false. The formula evaluates to false otherwise.
(3) If a formula is of the form ∃xφ then it evaluates to true if φ evaluates to true
having x assigned to true or having x assigned to false. It is false otherwise.

From this evaluation process we can deduce that a formula that only con-
tains bound variables can either be valid or unsatisfiable. If it is satisfiable it
is valid too. We call quantified boolean formulas that contain no free variables
closed. Deciding whether a closed formula is valid is called evaluation problem
for quantified boolean formulas. Assume that φ is closed quantified boolean for-
mula that is valid. Then for each existentially quantified variable symbol there
exists at least one truth value that guarantees that the corresponding formula
can evaluate to true. The collection of these pairings, between variable sym-
bol and truth value, can be seen as a witness for the validity of the formula.
Dually, if φ was unsatisfiable, there is a collection of pairings, between univer-
sally quantified variable symbol and truth value, that can bear witness for the
unsatisfiability of the formula.

To solve the evaluation problem for quantified boolean formulas, such wit-
nesses have to be searched and provided. Thus effective means for search and
representation of such witnesses are desirable.

The Polynomial Hierarchy For further analysis of the complexity of closed
quantified boolean formulas, we define certain subsets of them: Σq

i be the set of
quantified boolean formulas that have i alternating blocks of quantifies, begin-
ning with a block of existential quantifiers, and a propositional core such that
all free variables of the propositional core are bound by the surrounding quan-

1A formal definition of the syntax and semantics for quantified boolean formulas follows in
part II.

4

tifiers. Πq
i be the counterpart having a universal quantifier block as outermost

quantifier block. ∀x1 ∀x2 ∃y1 ∀z1 ∀z2 ∀z3 φ(x1, x2, y1, z1, z2, z3) is an example for
a formula from Πq

3.

Each formula of these classes corresponds to a complexity class. It is proven
that the evaluation problem for formulas from Σq

i is ΣP
i -complete [22]. Simi-

larly, evaluation of Πq
i -formulas is ΠP

i -complete. Thus the evaluation problem for
quantified boolean formulas offers natural problems for each level of the poly-
nomal hierarchy PH. The generic evaluation problem for quantified boolean
formulas is PSPACE-complete [19].

Reducing Problems to the Evaluation Problem for Quantified Boolean For-
mulas As mentioned before, the evaluation problem for quantified boolean
formulas offers a natural problem that is PSPACE-complete. The authors of [8]
stress that a “vast number of problems can succinctly be formulated in QBF”:

• finite two-player games

• AI planing problems

• modal logic problems

• (un)bounded model checking for finite-state systems

• formal verification problems

These problem are reduced to the evaluation problem for quantified boolean
formulas, because it seems easier to solve the original problem via this encod-
ing. Often there do not exist implementations or algorithms that are capable
of solving the original problem in an efficient manner. Examples are default
reasoning and nested counterfactuals. Hence a fast solver that decides the eval-
uation problem can provide improvements to many fields of theoretical computer
science.

New solvers are developed and tested steadily [15]. Existing solvers use a
variety of different evaluation strategies. These strategies are often based on
DPLL, BDD, CDCL, resolution and combinations thereof, many times extended
by Skolemization. However [8] states that “state-of-the-art QBF solvers are not
yet reliable enough.” They say, referencing [13], that majority votes had to be
used to decide the validity of hard instances as solvers often disagreed about
it. This urges to search for certificates that allow to check the correctness of
results delivered by a solver in an easy and fast way. In the search of such a
unified proof format, the authors of [8] presents a proposal based on extensions
— using fresh variables to generate certification code. But as the authors put
it, “a purely resolution based proof calculus is not powerful enough to trace the
most efficient solvers”.

5

1. Introduction

1.1. Problem Description

In the following, the authors of [6] present a sequent-style calculus that allows to
prove the validity of quantified boolean formulas. The calculus used in [6] will be
the topic of main interest of this thesis. We will look into the capabilities of the
sequent calculus presented and identify its main features. These features will
be compared amongst each others, especially their capability to generate short
proofs. As Egly, Seidl and Woltran show in [6], the choice of a good prenexing
strategy is crucial for finding proofs fast. It also has a dramatic impact on the
search space that has to be covered by the solver. Thus prenexing strategies
will be a topic of interest in this work too.

1.2. Results

We establish a hierarchy of calculi with respect to their power to produce short
proofs. We also establish polynomial simulations and exponential separations
of the calculi researched: GQBF, GQBF+, GQBF+

3, G and Q-resolution. These
results can be seen in Figure 1.1. It is also shown that good prenexing strategies
are essential for generating short proofs.

GQBF

GQBF+

GQBF+
3

G

Q-resolution

A B
A p-simulates B

A B
A cannot p-simulate B

A B
A effectively p-simulates B

A B A cannot effectively p-simulate B

Figure 1.1.: Polynomial simulation results.

6

1.3. Systematic Approach

1.3. Systematic Approach

The sequent-style quantified boolean calculus presented in [6], is based on six
principal derivation rules that operate on the outermost connective or quantifier
and several simplification rules that allow manipulations inside formulas. The
principal rules resemble the inductive way quantified boolean formulas can be
defined while the simplification rules correspond to “tricks” applied in proof
search to prune the search space. The authors of [6] prove that the six principal
rules suffice to get a sound and complete calculus. This modularity of the
calculus allows us to compare various versions of the calculus amongst each
other as well as to Q-resolution and G. We show that adding features like
the simplification rules to the minimal version of the calculus (built from the
six principal rules only) increases the power of GQBF in a way such that it
can produce exponentially smaller proofs. Adding further features like directed
acyclic graph structured proofs can make proofs even shorter. This thesis step by
step adds features to GQBF and researches their capability to generate shorter
proofs.

1.4. State-Of-The-Art

Proof theoretic analysis, especially for propositional and first order calculi, has
a long tradition and the notion of polynomial simulation is well established.
Recently [16] introduced the notion of effectively polynomial simulation and
researched simulation relations between calculi of their choice, including various
forms of resolution. As the evaluation problem for quantified boolean formulas
currently seems to be a topic of special interest [15], there are many calculi
that are not covered by [16] or alternative works. Many of the newer calculi
defect from input formulas in prenex conjunctive normal form [9, 6, 12], some
are based on negation normal form. GQBF is one of them. We currently have
no knowledge of any deeper proof theoretic analysis of GQBF, especially with
respect to (effectively) polynomial simulation.

1.5. A Guide Through Consecutive Parts

This thesis is basically split into seven parts. The first part contains a short
and informal introduction to the topics covered and will end with this guide.
What follows is a formal discussion of the main questions: How do features
of sequent-style calculi and classes of formulas effect proof size? Part II gives
formal definitions of the terms used throughout this thesis. The Parts III and
V present various calculi used. IV and VI deal with the power of the calculi
presented and the problems that arise with certain families of formulas. Finally
VII collects the most important results gathered and presents a final conclusion.

7

Part II.

Preliminaries

9

2. Quantified Boolean Formulas

2.1. Syntax

In following we almost exclusively deal with formulas from two languages: for-
mulas from the language of propositional logic and formulas from the language
of quantified boolean logic. Thus, before diving deeper into the matter, we first
present definitions of these two languages.

Propositional Formula Let V be a countable set of variable symbols and C =
{>,⊥} be a set of constant symbols. In Addition, let ¬

/
1 (negation), ∧

/
2

(conjunction), ∨
/

2 (disjunction) be connectives, ∀ (universal) and ∃ (existential)
be quantifiers and (and) be parentheses. Then we define PL, the set of well-
formed propositional formulas, inductively as follows:

1. C ⊆ PL

2. V ⊆ PL

3. If ϕ ∈ PL, then (¬ϕ) ∈ PL

4. If {ϕ,ψ} ⊆ PL and ◦ ∈ {∧,∨}, then (ϕ ◦ ψ) ∈ PL

Quantified Boolean Formula Let V be a countable set of variable symbols and
C = {>,⊥} be a set of constant symbols. In Addition, let ¬

/
1 (negation), ∧

/
2

(conjunction), ∨
/

2 (disjunction) be connectives, ∀ (universal) and ∃ (existential)
be quantifiers and (and) be parentheses. Then we define QBF , the set of well-
formed quantified boolean formulas, inductively as follows:

1. C ⊆ QBF

2. V ⊆ QBF

3. If ϕ ∈ QBF , then (¬ϕ) ∈ QBF

4. If {ϕ,ψ} ⊆ QBF and ◦ ∈ {∧,∨}, then (ϕ ◦ ψ) ∈ QBF

5. If ϕ ∈ QBF , Q ∈ {∃, ∀} and x ∈ V, then (Qxϕ) ∈ QBF .

From the construction of the sets PL andQBF it can be seen that PL ⊂ QBF
and thus each propositional formula is a quantified boolean formula. A formula

11

2. Quantified Boolean Formulas

ϕ is called quantified boolean formula if ϕ ∈ QBF and it is called propositional
formula if ϕ ∈ PL and ϕ /∈ QBF .

We need further notational conventions to be able to fully describe the for-
mulas we use: If x ∈ V is a variable symbol then x and (¬x) are called literals of
x. Having the fifth rule of the inductive construction of the quantified boolean
formulas in mind we call, with respect to the formula (Qxϕ), ϕ the scope of
the quantifier occurrence Qx. A variable occurrence y is called “free” if it is not
in the scope of a quantifier Qy. With respect to (Qxϕ), Qx is the quantifier
occurrence binding all free occurrences of x in ϕ. We will provide a precise and
purely syntactic characterization of free variables in the following.

Free Variables of a Formula Let ϕ ∈ QBF . Then the set of free variables of
ϕ, free(ϕ), is defined as follows:

• If ϕ = c with c ∈ C, then free(ϕ) := ∅.

• If ϕ = x with x ∈ V, then free(ϕ) := {x}.

• If ϕ = (¬ψ), then free(ϕ) := free(ψ).

• If ϕ = (ϕ1 ◦ ϕ2) with ◦ ∈ {∧,∨}, then free(ϕ) := free(ϕ1) ∪ free(ϕ2).

• If ϕ = (Qxψ) with Q ∈ {∃, ∀}, then free(ϕ) := free(ψ) \ {x}.

Closed Formulas We call a formula ϕ ∈ QBF closed if free(ϕ) = ∅.
Most of the time we are not interested in formulas that have free variables.

Thus we use the term QBF , if not mentioned otherwise, to refer to the following
set of formulas: {ϕ ∈ QBF | ϕ is closed}.

Unitary Formulas We call a quantified boolean formula ϕ unitary if no two
quantifier occurrences in ϕ bind the same variable symbol and no variable that
occurs bound in ϕ also occurs free in ϕ.

Note that for each ϕ ∈ QBF , there exists a ϕu ∈ QBF (obtained by renaming
bound variables) that is unitary and isomorphic to ϕ. We thus define the set
of unitary formulas QBFu := {ϕ ∈ QBF | ϕ is unitary}. We generally assume,
if not mentioned otherwise, using a unitary representation instead of the actual
formula.

2.2. Simple Syntactic Operations on Formulas

Throughout this thesis we make heavy use of simple syntactic transformations
and operations on propositional as well as on quantified boolean formulas. The
next few paragraphs describe the most commonly used operations and transfor-
mations.

12

2.2. Simple Syntactic Operations on Formulas

Size of a Formula Let ϕ ∈ QBF . Then we define |ϕ|, the size of the quantified
boolean formula ϕ as follows:

1. If ϕ = x with x ∈ (C ∪ V), then |ϕ| := 1

2. If ϕ = (¬ψ), then |ϕ| := 1 + |ψ|

3. If ϕ = (ϕ1 ◦ ϕ2), with ◦ ∈ {∧,∨}, then |ϕ| := 1 + |ϕ1|+ |ϕ2|

4. If ϕ = (Qxψ), with Q ∈ {∃, ∀}, then |ϕ| := 2 + |ψ|

Cleansed Formulas We use the definition of [6] and thus call a formula ϕ ∈
QBF cleansed if none of the below simplifications can be applied to ϕ:

(¬⊥) 7−→ >
(> ∧ ψ) 7−→ ψ

(⊥ ∧ ψ) 7−→ ⊥
(> ∨ ψ) 7−→ >
(⊥ ∨ ψ) 7−→ ψ

(∀xψ) 7−→ ψ, if x /∈ free(ψ)

(¬>) 7−→ ⊥
(ψ ∧ >) 7−→ ψ

(ψ ∧ ⊥) 7−→ ⊥
(ψ ∨ >) 7−→ >
(ψ ∨ ⊥) 7−→ ψ

(∃xψ) 7−→ ψ, if x /∈ free(ψ)

A cleansed formula thus does not contain truth constants (unless it has size
1 and consist of a truth constant only) and no quantifier that binds a variable
symbol that does not appear in its scope.

The Instantiation Operator Let ϕ ∈ QBFu be a quantified boolean formula,
x ∈ V and ξ ∈ QBF a quantified boolean formula. Then ϕ[x\ξ] is defined as
follows:

• If ϕ = x, then ϕ[x\ξ] := ξ.

• If ϕ = y with y ∈ (C ∪ V) and y 6= x, then ϕ[x\ξ] := y.

• If ϕ = (¬ψ), then ϕ[x\ξ] := (¬ψ[x\ξ]).

• If ϕ = (ϕ1 ◦ ϕ2) with ◦ ∈ {∧,∨}, then ϕ[x\ξ] := (ϕ1[x\ξ] ◦ ϕ2[x\ξ]).

• If ϕ = (Qxψ) with Q ∈ {∃,∀}, then ϕ[x\ξ] := ψ[x\ξ].

• If ϕ = (Qy ψ) with y 6= x, Q ∈ {∃,∀}, then ϕ[x\ξ] := (Qy ψ[x\ξ]).

It is noteworthy that ϕ[x\ξ] ∈ QBF independent of the choices of ϕ, x and ξ.
However, if ϕ is a closed and unitary quantified boolean formula and ξ ∈ C —
this will be the most widely used kind of instantiation — ϕ[x\ξ] is closed and
unitary too. In general these properties are not preserved.

13

2. Quantified Boolean Formulas

The Structure Tree of a Formula As the set of quantified boolean formulas is
created over a ranked alphabet1, each quantified boolean formula can easily be
treated as a tree. An n-ary symbol constitutes an n-ary node in the structure
tree of a formula. The nodes name is the symbol itself, its children are the
symbols arguments.

Consider ϕ = (∀x (x ∧ (∃y ((¬z) ∨ y)))) as an example. Then the structure
tree of ϕ is the following:

∀x

∧

∃y

∨

y¬

z

x

Note that for each quantified boolean formula there is a unique structure tree
and that for each structure tree there is a unique quantified boolean formula.

Structural Sub-Formulas Let ϕ ∈ QBF be a quantified boolean formula. Then
ξ is called structural sub-formula of ϕ if one of the following conditions holds:

• ϕ = ξ

• ϕ = (¬ψ) and ξ is a sub-formula of ψ.

• ϕ = (ϕ1 ◦ ϕ2) with ◦ ∈ {∧,∨} and ξ is a sub-formula of ϕ1 or ϕ2.

• ϕ = (Qxψ) with Q ∈ {∃, ∀} and ξ is a sub-formula of ψ.

Note that the structural sub-formulas of ϕ correspond to sub-trees in the
structure tree of ϕ.

1An arity can be assigned to each symbol: e.g. ∧ is a binary functions, constant symbols
have arity zero, quantifiers are unary functions.

14

2.3. Semantics

Sub-Formulas We also want to define sub-formulas. We say that ξ is a sub-
formula of a quantified boolean formula ϕ if it is a structural sub-formula of a
substitution instance of ϕ. Thus, ξ is called structural sub-formula of ϕ if there
exists n ∈ N, x ⊆ V and c ⊆ C such that |x| = |c| = n and ξ is a structural
sub-formula of ϕ[x1\c1][. . .][xn\cn].

Consider the following example: Let ϕ = ((∀x ∃y (z ∨ (x ∧ y))) ∧ z) be a
quantified boolean formula. Then (∃y (z ∨ (x ∧ y))) is a structural sub-formula
of ϕ while (∃y (⊥∨(>∧y))) is a sub-formula of ϕ. The formula (∃y (z∨(x∨y)))
is neither a structural sub-formula nor a sub-formula of ϕ.

2.3. Semantics

As stated above, we are mostly interested in closed (unitary) quantified boolean
formulas. For this subset of the quantified boolean formulas we can define a
very simple semantics function: the evaluation function ν. For the general
case (arbitrary quantified boolean formulas) we have to provide an additional
assignment that prescribes to what value a free variable evaluates to. The set
of propositional formulas is a proper subset of the set of quantified boolean
formulas. This inclusion enables us to evaluate propositional formulas using the
general evaluation function νf with adding a proper variable assignment f .

In the following 1 denotes true, 0 false and B = {1,0}.

• inv : B→ B returns 1 on input 0 and vice versa

• min : B2 → B returns 1 on input (1,1), 0 otherwise

• max : B2 → B returns 0 on input (0,0), 1 otherwise

The Special Evaluation Function ν We define the evaluation function ν : {ϕ ∈
QBFu | ϕ is closed} → B as follows:

• ν(>) = 1

• ν(⊥) = 0

• ν(¬ψ) = inv(ν(ψ))

• ν(ϕ1 ∧ ϕ2) = min(ν(ϕ1), ν(ϕ2))

• ν(ϕ1 ∨ ϕ2) = max (ν(ϕ1), ν(ϕ2))

• ν(∃xψ) = max (ν(ψ[x\>]), ν(ψ[x\⊥]))

• ν(∀xψ) = min(ν(ψ[x\>]), ν(ψ[x\⊥]))

15

2. Quantified Boolean Formulas

As a function ν gets a closed (unitary) quantified boolean formula as only
input and outputs the formulas truth value. In contrast to the general evalua-
tion function presented in the following, there is no additional input — in the
form of an predefined truth assignment to free variables — needed. It follows
that a closed quantified boolean formula can either be true or false, valid or
unsatisfiable respectively.

We use the symbol≡ to denote the truth value of a quantified boolean formula.
Let ϕ ∈ QBF be a closed quantified boolean formula. Then we write ϕ ≡ 1 to
denote that ν(ϕ) = 1 and ϕ ≡ 0 to denote that ν(ϕ) = 0. Moreover, we write
ϕ ≡ ψ to express that ϕ and ψ evaluate to the same truth value (i.e., ϕ and ψ
are logically equivalent).

The General Evaluation Function νf Let ϕ ∈ QBFu, f : V → B be a partial
function assigning a truth value to each free variable symbol of ϕ (dom(f) =
free(ϕ)). Then we define the evaluation function νf : QBF → B as follows:

• νf (>) = 1

• νf (⊥) = 0

• νf (x) = f(x)

• νf (¬ψ) = inv((νf (ψ)))

• νf (ϕ1 ∧ ϕ2) = min(νf (ϕ1), νf (ϕ2))

• νf (ϕ1 ∨ ϕ2) = max (νf (ϕ1), νf (ϕ2))

• νf (∃xψ) = max (ν⊕f,x(ψ), ν	f,x(ψ))

• νf (∀xψ) = min(ν⊕f,x(ψ), ν	f,x(ψ))

where ⊕ and 	 are functionals that extend truth-assigning functions:
⊕ : (V → B)→ (V → (V → B))

⊕f,x(y) :=

{
f(y), y ∈ dom(f)

1, y = x

	 : (V → B)→ (V → (V → B))

	f,x(y) :=

{
f(y), y ∈ dom(f)

0, y = x

The following example demonstrates the use of the general evaluation func-
tion. Let ϕ = (∀x (x∧ (∃y (¬z ∨ y)))) and f = {(z,1)}. Then ϕ is evaluated the
following way:

16

2.4. The Polynomial Hierarchy

νf (ϕ) = min(νf∪{(x,1)}(x ∧ (∃y (¬z ∨ y))), νf∪{(x,0)}(x ∧ (∃y (¬z ∨ y))))
νf∪{(x,1)}(x ∧ (∃y ((¬z) ∨ y))) = min(νf∪{(x,1)}(x), νf∪{(x,1)}(∃y (¬z ∨ y))))
νf∪{(x,1)}(x) = 1
νf∪{(x,1)}(∃y (¬z∨y))) = max (νf∪{(x,1),(y,1)}(¬z∨y), νf∪{(x,1),(y,0)}(¬z∨y))
νf∪{(x,1),(y,1)}(¬z ∨ y) = max (νf∪{(x,1),(y,1)}(¬z), νf∪{(x,1),(y,1)}(y))
νf∪{(x,1),(y,1)}(¬z) = inv(νf∪{(x,1),(y,1)}(z))
νf∪{(x,1),(y,1)}(z) = 1

νf∪{(x,1),(y,1)}(¬z) = inv(1) = 0
νf∪{(x,1),(y,1)}(y) = 1

νf∪{(x,1),(y,1)}(¬z ∨ y) = max (0,1) = 1
νf∪{(x,1)}(∃y (¬z ∨ y))) = max (1, ?) = 1

νf∪{(x,1)}(x ∧ (∃y (¬z ∨ y))) = min(1,1) = 1
νf∪{(x,0)}(x ∧ (∃y (¬z ∨ y))) = min(νf∪{(x,0)}(x), νf∪{(x,0)}(∃y (¬z ∨ y))))
νf∪{(x,0)}(x) = 0

νf∪{(x,0)}(x ∧ (∃y (¬z ∨ y))) = min(0, ?) = 0
νf (ϕ) = min(1,0) = 0

Thus ϕ ≡ 0 holds.

2.4. The Polynomial Hierarchy

In the following we will present a very brief introduction to the polynomial
hierarchy and its connection to the evaluation problem for quantified boolean
formulas. A basic understanding of complexity theory is assumed. A thorough
discussion of the notions introduced can be found amongst others in [14].

Let Σq
i and Πq

i be countably infinite sets of quantified boolean formulas defined
inductively the following way:

• Σq
0 = Πq

0 = PL

• Σq
i = {∃x1 ∃x2 . . . ∃xn ϕ | n ∈ N, ϕ ∈ Πq

n−1}

• Πq
i = {∀x1 ∀x2 . . . ∀xn ϕ | n ∈ N, ϕ ∈ Σq

n−1}

Thus Σq
i is a set of quantified boolean formulas with i alternating quantifier

blocks where the outermost quantifier block is existential. Similarly, Πq
i is a set

of quantified boolean formulas with i alternating quantifier blocks where the
outermost quantifier block is universal.

Furthermore we define the classes of the polynomial hierarchy, ∆P
i , ΣP

i and
ΠP
i , inductively as follows:

• ∆P
0 = ΣP

0 = ΠP
0 = P

17

2. Quantified Boolean Formulas

• ∆P
i = PΣPi−1

• ΣP
i = NPΣPi−1

• ΠP
i = co-NPΣPi−1

Then the problem of deciding whether it holds for a closed quantified boolean
formula ϕ ∈ Σq

1 that ν(ϕ) = 1 is in ΣP
1 = NP. It is called propositional satisfia-

bility problem. Deciding for a closed quantified boolean formula ϕ ∈ Πq
1 whether

ν(ϕ) = 1 is a problem from the class ΠP
1 = co-NP. It is called propositional

validity problem. In general, deciding for a closed ϕ ∈ Σq
i whether ν(ϕ) = 1 is

ΣP
i -complete. Similarly, deciding for a closed quantified boolean formula ϕ from

Πq
i whether ν(ϕ) = 1 is ΠP

i -complete. In other words, the evaluation problem
for quantified boolean formulas that are bounded by k alternations of quantifier
blocks is either ΣP

k -complete or ΠP
k -complete. The outermost quantifier decides

to which class the problem belongs. The unbounded evaluation problem for
quantified boolean formulas is PSPACE-complete.

18

3. Notational Conventions

If not defined otherwise, we may use:

• a, b, c, . . . , x1, x2, . . . to denote propositional variables / constants.

• a,b, c, . . . ,x1,x2, . . . to denote vectors of propositional variables / con-
stants.

• α, β, γ, . . . , ϕ1, ϕ2, . . . to denote quantified boolean formulas (respectively
propositional formulas).

For the ease of notation, we may use the following abbreviations:

• We allow to skip unnecessary parentheses as well as to add additional ones:
ϕ ∨ ψ as well as ((ϕ ∨ ψ)) represent (ϕ ∨ ψ).

• (ϕ ⊃ ψ) is an abbreviation of ((¬ϕ) ∨ ψ).

• ∧,∨ (and thus ⊃) are treated as right-associative operators: (ϕ1 ⊃ ϕ2 ⊃
ϕ3) is an abbreviation of (ϕ1 ⊃ (ϕ2 ⊃ ϕ3)).

• ¬ takes precedence over ∧ which itself takes precedence over ∨: (ϕ1 ∨
¬ϕ2 ∧ ϕ3) is an abbreviation of (ϕ1 ∨ ((¬ϕ2) ∧ ϕ3)).

• ∃ and ∀ are preceded by all operators mentioned before: (∃xϕ ⊃ ∀y ψ) is
an abbreviation of (∃x (ϕ ⊃ (∀y ψ))).

• (Qxϕ) with Q ∈ {∃,∀} and x = (x1, x2, . . . , xn) is an abbreviation of the
formula (Qx1 (Qx2 (. . . (Qxn ϕ) . . .))).

• We will use the abbreviation [∀∃]∗x to represent arbitrary quantifier se-
quences. As an example [∀∃]∗x may stand for ∃x1 ∀x2 ∀x3 . . . ∀xn, or
∀x1 ∀x2 ∃x3 ∃x4 . . . ∃xm or any other finite quantifier sequence of arbi-
trary length.

•
∧k
i=j ϕi abbreviates (ϕj ∧ ϕj+1 ∧ . . . ∧ ϕk) if j < k. If j > k then

∧k
i=j ϕi

abbreviates (ϕj ∧ ϕj−1 ∧ . . . ∧ ϕk). Otherwise
∧k
i=j ϕi denotes >.

•
∨k
i=j ϕi abbreviates (ϕj ∨ ϕj+1 ∨ . . . ∨ ϕk) if j < k. If j > k then

∨k
i=j ϕi

abbreviates (ϕj ∨ ϕj−1 ∨ . . . ∨ ϕk). Otherwise
∨k
i=j ϕi denotes ⊥.

We use the following sets:

19

3. Notational Conventions

• N = {0, 1, 2, . . .} are the natural numbers.

• B = {1,0} is the set of truth values.

• P[N] is the set of polynomials over the natural numbers.

• V is a countable set of variable symbols.

• C is a countable set of constant symbols (mostly {>,⊥}).

• PL is the set of propositional formulas.

• QBF is the set of quantified boolean formulas.

Further notation will be introduced when they are needed.

20

Part III.

GQBF

21

4. A Sequent Calculus for Quantified
Boolean Formulas

In this chapter, we present a sequent calculus for quantified boolean formulas
that is introduced in [6]. First we will present a basic, minimal sequent calcu-
lus that is able to prove the validity of any true quantified boolean formula in
negation normal form. This minimal calculus is then extended by additional
simplification rules. In the later sections of this chapter we will ease the con-
straints on the structure of proofs and will allow proofs in the form of directed
acyclic graphs.

4.1. The Calculus

As said in the introductory part of this chapter, the authors of [6] present a
sequent-style calculus called GQBF which operates on closed quantified boolean
formulas in negation normal form. This means that GQBF cannot prove the
validity of arbitrary quantified boolean formulas but of a subset of the quantified
boolean formulas.

Negation Normal Form Let ϕ ∈ QBF be a quantified boolean formula. Then
we say that ϕ is in negation normal form if none of the below transformations
can be applied to ϕ (respectively its sub-formulas) any more:

¬¬ψ 7−→ ψ (4.1)

¬(ϕ1 ∧ ϕ2) 7−→ ¬ϕ1 ∨ ¬ϕ2 (4.2)

¬(ϕ1 ∨ ϕ2) 7−→ ¬ϕ1 ∧ ¬ϕ2 (4.3)

¬(∀xψ) 7−→ ∃x¬ψ (4.4)

¬(∃xψ) 7−→ ∀x¬ψ (4.5)

Note that as soon as none of the above transformations can be applied any
more, negation does only occur on the atomic level (i.e., within literals). Fur-
thermore it is noteworthy that each of these transformation rules preserves the
truth value of the formula. Consequently ϕ ≡ nnf (ϕ) holds.

Now let ψ ∈ QBF be an arbitrary quantified boolean formula. Applying the
above transformations top down on ψ as long as possible results in a quantified
boolean formula ψ′ = nnf (ψ) which is in negation normal form. At most linearly
many (with respect to the size of ψ) transformation steps are performed. All

23

4. A Sequent Calculus for Quantified Boolean Formulas

of them can be done in constant time. Hence the negation normal form of a
formula can be calculated in a time polynomial in the size of the source formula.
Also note that the rules (3.1) to (3.5) define a canonical rewrite system. Thus,
every possible application order of the rules yields the very same irreducible
result in negation normal form. Further discussion of this transformation, and
of similar ones, can be found in [11]. We denote this transformation by nnf (·).

In the introductory part of this section we stated that GQBF operates on
quantified boolean formulas in negation normal form only and that this restricts
the calculus to just a subset of all quantified boolean formulas. With the nnf
function we get on the other hand a very efficient procedure to create an input
formula for GQBF. If we want to decide if an arbitrary quantified boolean
formula is valid, we just compute its negation normal form and then apply the
rules of the GQBF calculus to decide whether the negation normal form is valid.
As nnf preservers the truth value we can deduce the truth value of the source
formula when we know the truth value of the normal form. This step by step
procedure allows us to determine the validity respectively unsatisfiability of any
arbitrary, closed quantified boolean formula.

Indexing The original calculus [6] includes an indexing of the truth constants
(> and ⊥) as well as of variable symbols and formulas. Indices are added
(bottom up) throughout the derivation process to annotate and track actions
performed “in the past”. While stemming from a practical point of view —
these annotations are used to prune the search space during proof search —
these indices may make proofs more readable for human viewers. This is enough
reason for us to keep them (in a limited form) and use them for the best. We
will employ indices to track truth constants introduced by quantifier elimination
rules from their “birth place” upwards, towards the axioms in the proof tree.

A further motivation to keep and use indices is that they enable us to identify
the set of variables that, in a way, decide the truth value of a formula. This will
be described further later on. As in [6], we will refer to and manipulate indices
in a string-like fashion. Also note that some calculi used in later chapters that
may produce proofs in directed acyclic graph form cannot use such indices. This
is due to the fact that in a directed acyclic graph there may exists many distinct
paths from a node to a parent node.

Principal Derivation Rules The minimal sequent-style calculus GQBF con-
tains two axioms and six derivation rules. Derivation rules (inference rules)
consist of two parts, namely one or more premises and a single conclusion.
Premises as well as conclusions are sequents ` ϕ where ϕ is a closed quanti-
fied boolean formula in negation normal form. Depending on the number of
premises, we partition the rules into unary and binary derivation rules. Unary
rules derive a conclusion from a single premise while binary rules derive a conclu-
sion from two premises. The rules ∨1, ∨2, ∃⊥ and ∃> are thus unary derivation

24

4.1. The Calculus

rules, while ∧ and ∀ are binary inference rules. The derivation rules are depicted
in Figure 4.1.

GQBF is cut-free, sound and complete. A proof of soundness and complete-
ness can be found in the paper introducing GQBF [6]. More general proofs can
be found in [20].

Axioms:
` >σ ` ¬⊥σ

Derivation Rules:
` ϕ
` ϕ ∨ ψ ∨1

` ψ
` ϕ ∨ ψ ∨2

` ϕ ` ψ
` ϕ ∧ ψ ∧

` ϕ[x\⊥x]
` ∃xϕ ∃⊥

` ϕ[x\>x]
` ∃xϕ ∃>

` ϕ[x\⊥x] ` ϕ[x\>x]
` ∀xϕ ∀

Whereas ϕ ∈ QBF and ψ ∈ QBF are closed (uni-
tary) quantified boolean formulas in negation nor-
mal form.

Figure 4.1.: The axioms and derivation rules of GQBF.

Application To prove that a closed (unitary) quantified boolean formula ϕ is
valid, the following procedure has to be applied:

1. Calculate the negation normal form nnf (ϕ) of ϕ.

2. Use ` nnf (ϕ) as root of a new GQBF proof.

3. Depending on the outermost quantifier respectively connective of nnf (ϕ),
apply a corresponding derivation rule. The application yields a new se-
quent respectively two new sequents.

4. For each new sequent (open branch), iterate step 3.

5. A branch is closed and not operated on any more if its top-level sequent
is an axiom. Note that it may happen that a branch ends in a sequent
that cannot be simplified further but is not an axiom. In such a case
backtracking to the last “non-deterministic” derivation takes place. When

25

4. A Sequent Calculus for Quantified Boolean Formulas

a sequent contains ∨ (∃) as outermost connective (quantifier), the prover
has to decide whether to continue with the rule ∨1 or ∨2 (∃> or ∃⊥). If
the choice does not yield closed branches only, it may have to be revised
to construct a valid proof. This need for backtracking is one of the main
sources of the exponential complexity of proof search. Even very short
proofs can thus be very hard to find.

6. If all branches end in an axiom, nnf (ϕ) is proven to be valid. Consequently,
the validity of ϕ is proven. Note that proofs may be exponential in the size
of the input formula. This is due to the ∀-rule. Each application doubles
the number of sequents to be proven. This will be proven formally in
subsequent chapters.

When applying the above procedure, either a GQBF proof in form of a tree
is constructed or no GQBF proof can be found. If a proof is found, its root
(` nnf (ϕ)) is called end-sequent. Note that the structure of a proof of a formula
is strongly dependent on the structure of the formula. This is due to the fact that
derivation rules can only be applied to the outermost connective or quantifier.
Each trace through a GQBF proof (from the root to an axiom) corresponds
to a trace through the structure tree of the end-sequent. The ∀-and ∧-rules
are deterministic while the ∨- and ∃-rules leave the choice of how to continue
upwards in the proof tree to the prover. Note that the premises of the inference
rules as presented in Figure 4.1 are always (structural) sub-formulas of their
conclusions. Thus Theorem 6.3 from [20] can easily be transferred from LK to
GQBF: In a proof in GQBF all the formulas which occur in it are sub-formulas
of the formula in the end-sequent.

We write π: `G ϕ to state that π is a GQBF proof of ϕ and `G ϕ to state
that there exists a π such that π: `G ϕ.

An Example Derivation Let ϕ ∈ QBF with ϕ = ∃x ∀y (∃z y∨ z)∧ (x∨ (∀v y∧
¬v)) be a closed quantified boolean formula in negation normal form. Moreover,
it can be shown by semantic evaluation that ϕ ≡ 1 holds. Then we can construct
a GQBF proof of ϕ as follows:

` >y
` >y ∨ ⊥z

∨1

` ∃z>y ∨ z
∃⊥

` >x
` >x ∨ (∀v>y ∧ ¬v)

∨1

` (∃z>y ∨ z) ∧ (>x ∨ (∀v>y ∧ ¬v))
∧

` >z
` ⊥y ∨ >z

∨2

` ∃z⊥y ∨ z
∃>

` >x
` >x ∨ (∀v⊥y ∧ ¬v)

∨1

` (∃z⊥y ∨ z) ∧ (>x ∨ (∀v⊥y ∧ ¬v))
∧

` ∀y (∃z y ∨ z) ∧ (>x ∨ (∀v y ∧ ¬v))

` ∃x ∀y (∃z y ∨ z) ∧ (x ∨ (∀v y ∧ ¬v))
∃>

∀

Note that the indices of the truth constants > and ⊥ are just “eye-candy”.
They should make proofs more readable. Thus it holds that ϕσ = ϕ for any
formula ϕ and any index σ. Contrary to the authors of [6], which introduce
them to optimize proof search, we use indices to increase legibility only.

26

4.1. The Calculus

Size of a GQBF Proof Let ϕ ∈ QBF be a closed quantified boolean formula
in negation normal form and π: `G ϕ a GQBF of ϕ. Then we define the size
of a proof π, denoted by |π|, inductively as follows:

1. ϕ is an axiom: |π| := 1

2. π is a proof

τ....

` ϕ
of ` ϕ ending at a unary inference rule. Let moreover

τ denote the proof of the rule’s premise. Then |π| := 1 + |τ |.

3. π is a proof

τ1....

τ2....

` ϕ
of ` ϕ ending at a binary inference rule and let τ1

and τ2 denote the proofs of the rule’s premises. Then |π| := 1 + |τ1|+ |τ2|.

Defined this way, the size of a GQBF proof corresponds to the number of
sequents occurring in the proof. It is important to remark that this does not
necessary correspond to the number of distinct sequents: Various branches of the
proof may contain the same sequent while each branch contains strictly distinct
sequents only. This may not be the case for some of the calculi introduced
subsequently.

27

5. Adding Simplification Rules

The previous chapter presented a sound and complete minimal sequent calculus
called GQBF which operates on closed quantified boolean formulas. GQBF
thus provides a sufficient tool to prove the validity of any possible quantified
boolean formula. On one hand GQBF is easy to handle and to implement as
the order in which inference rules are applied bottom-up in a branch of a proof
strongly depends on the structure tree of the formula to be proven. GQBF
always eliminates the outermost quantifier or connective while an inference rule’s
premises are always (structural) sub-formulas of the conclusion. On the other
hand this strict dependency on the structure of the formula to be proven may
produce extremely large proofs1 which have to be searched for in a huge search
space [6] — that moreover is hard to search because of the need for iterated
backtracking.

These deficiencies in mind, the authors of [6] propose to add additional deriva-
tion rules to their minimal calculus. They augmented their minimal GQBF
calculus with 19 simplification rules. In contrast to the six principal deriva-
tion rules, these simplification rules do not operate necessarily on the outermost
connective (respectively quantifier) of the formula to be proven but may apply
equivalence-preserving transformations within its sub-formulas. We will call a
calculus containing the six principal rules together with the 19 simplification
rules GQBF+ or full GQBF.

The main motivation for introducing these 19 simplification rules is to reduce
the space that needs to be searched to find proofs. They basically represent
“short-cuts” that allow to eliminate dispensable parts of sequents or simplify
unnecessary complex sequents. If such parts are not eliminated but stay in the
sequent, they may exponentially lengthen proofs. This will be proven in later
chapters. Simplification rules can be applied in a fast manner as modifications
to formulas are mostly small and local. GQBF+ is still cut-free.

As the minimal calculus is already sound and complete the additional rules of
GQBF+ are fully redundant. In [6], Lemma 2, it is shown that whenever there
is a GQBF+ proof of a formula, there exists a GQBF proof of the same formula:
If π is a proof of ϕ with simplifications then there exists a proof τ for ϕ without
simplifications.

1We will come back to this topic in Part IV and Part VI.

29

5. Adding Simplification Rules

5.1. The Calculus

The Simplification Rules GQBF+ contains two axioms, six principal deriva-
tion rules and 19 additional simplification rules2 The latter ones are presented in
Figure 5.1. The axioms and principal derivation rules are carried over from the
minimal calculus. Note that for the additional simplification rules, it also holds
that the size of their premise — they are all unary inferences — is smaller than
the size of their conclusion. The rules are chosen in a way to avoid Ping-Pong
effects3: The four LU -rules and the four GU -rules keep the size of the sequent
constant and cannot be “undone” by subsequent rule applications. Thus no
circular derivations ` ϕ . . . ` ϕ are possible. For all remaining rules it
holds that their premise is strictly smaller than their conclusion. No circular
derivations are possible.

Application GQBF+ is applied in the same way as the minimal calculus is.
If the formula to be proven is not in negation normal form, process the input
formula to get an equivalent negation normal form. The formula to be proven
(respectively the equivalent negation normal form) is taken as end-sequent and
thus root of the derivation tree. One of the applicable rules is applied — ei-
ther one of the newly added simplification rules or the principal derivation rule
matching the outermost quantifier or connective. If all branches of the deriva-
tion tree can be closed (i.e., end in an axiom), the input formula is proven to be
valid.

We write π: `G+ ϕ to state that π is a GQBF+ proof of ϕ and `G+ ϕ to state
that there exists a π such that π: `G+ ϕ.

An Example Derivation Let ϕ ∈ QBF with ϕ = ∃x ∀y (∃z y∨ z)∧ (x∨ (∀v y∧
¬v)) be a quantified boolean formula in negation normal form. Moreover ϕ ≡ 1.
Then we can construct a GQBF+ proof of ϕ as follows:

` >z
` ∀y>z

S4

` ∀y (y ∨ >z)
S3a

` ∀y (∃z y ∨ z) P1a

` ∀y (∃z y ∨ z) ∧ >x
S2a

` ∀y (∃z y ∨ z) ∧ (>x ∨ (∀v y ∧ ¬v))
S3a

` ∃x ∀y (∃z y ∨ z) ∧ (x ∨ (∀v y ∧ ¬v))
∃>

2We do not present the commutative “twins” of the simplification rules explicitly. We use
them in proofs nevertheless. When used, they are named after the twin presented in Figure
5.1. As an example, we may use two commutative “versions” of S3a: ` ϕ(>σ ∨ ψ)
` ϕ(>σ) and ` ϕ(ψ ∨ >σ) ` ϕ(>σ).

3It is nevertheless possible to create arbitrary deep branches using the LU -rules. An example
can be found in the proof of Lemma 8.1.2. These cases on the other hand are easy to avoid
in practical implementations and do not occur in short proofs.

30

5.2. Soundness and Completeness of Full GQBF

Size of a Proof We define the size of a GQBF+ proof in a manner we de-
fined the size of GQBF proofs. We count the number of sequents that appear
throughout the derivation tree. An inductive definition can already be found in
the definition of the size of GQBF proofs. Again, it is important to stress that
the number of sequents in a proof might be much higher than the number of
distinct sequents as various branches might contain the very same sequent.

5.2. Soundness and Completeness of Full GQBF

Soundness There are two ways to prove the soundness of GQBF+: The first
one is to prove the correctness of the additional rules. The second way is to use
Lemma 2 from [6] to prove soundness. Lemma 2 states that for each GQBF+

proof that uses simplification rules, there exists a GQBF+ proof that uses no
simplification rules. A GQBF+ proof without simplification rules is a GQBF
proof by definition. On the other hand the elimination of the simplification
rules does not come for free. It will be shown in subsequent chapters that the
elimination of simplification rules may exponentially increase the proof size.

GQBF+ is sound.

Proof. Let π be a GQBF+ proof of a closed quantified boolean formula in nega-
tion normal form ϕ. Now assume that ϕ is not valid.

Then, by Lemma 2 from [6], we get from the existence of π a GQBF+ proof τ
of ϕ that does not contain any simplification rule inferences. As τ does contain
the six principal inference rules only, it is GQBF proof. From the soundness of
GQBF and the existence of τ it follows that ϕ is valid. Clearly, this contradicts
the assumption.

Completeness Completeness can be proven via GQBF too:

GQBF+ is complete.

Proof. Let ϕ be a closed quantified boolean formula in negation normal form
such that ϕ is valid. Now assume that there does not exists any GQBF+ proof
of ϕ.

As ϕ is valid and GQBF is complete, there exists a GQBF proof π of ϕ. Each
GQBF proof is a GQBF+ proof by definition. Thus there exists a GQBF+ proof
of ϕ. This contradicts the assumption.

31

5. Adding Simplification Rules

` ϕ(⊥σ)

` ϕ(¬>σ)
S1a

` ϕ(>σ)

` ϕ(¬⊥σ)
S1b

` ϕ(ψσ)

` ϕ(>σ ∧ ψ)
S2a

` ϕ(⊥σ)

` ϕ(⊥σ ∧ ψ)
S2b

` ϕ(>σ)

` ϕ(>σ ∨ ψ)
S3a

` ϕ(ψσ)

` ϕ(⊥σ ∨ ψ)
S3b

` ϕ(ψ)

` ϕ(Qxψ)
S4 (Guard: no occurrence of xσ in ψ)

` ϕ(xσ ∧ ψ[xσ′\>σσ′x])

` ϕ(xσ ∧ ψ)
LU1a

` ϕ(¬xσ ∧ ψ[xσ′\⊥σσ′x])

` ϕ(¬xσ ∧ ψ)
LU1b

` ϕ(xσ ∨ ψ[xσ′\⊥σσ′x])

` ϕ(xσ ∨ ψ)
LU2a

` ϕ(¬xσ ∨ ψ[xσ′\>σσ′x])

` ϕ(¬xσ ∨ ψ)
LU2b

` ϕ((xσ ◦ ψ)[xσ′\>σ′x])

` ϕ(∃x (xσ ◦ ψ))
GU1a

` ϕ((¬xσ ◦ ψ)[xσ′\⊥σ′x])

` ϕ(∃x (¬xσ ◦ ψ))
GU1b

` ϕ((xσ ◦ ψ)[xσ′\⊥σ′x])

` ϕ(∀x (xσ ◦ ψ))
GU2a

` ϕ((¬xσ ◦ ψ)[xσ′\>σ′x])

` ϕ(∀x (¬xσ ◦ ψ))
GU2b

` ϕ(ψ[xσ\>σx])
` ϕ(∃xψ)

P1a (Guard: no negative occurrence of xσ′ in ψ)

` ϕ(ψ[xσ\⊥σx])
` ϕ(∃xψ)

P1b (Guard: no positive occurrence of xσ′ in ψ)

` ϕ(ψ[xσ\⊥σx])
` ϕ(∀xψ)

P2a (Guard: no negative occurrence of xσ′ in ψ)

` ϕ(ψ[xσ\>σx])
` ϕ(∀xψ)

P2b (Guard: no positive occurrence of xσ′ in ψ)

Figure 5.1.: Simplification rules augmenting GQBF.

32

6. From Trees to Directed Acyclic
Graphs

6.1. The Calculus

So far, we only allowed GQBF and GQBF+ proofs that have a structure in the
form of a tree. In other words: every derivation started with an end-sequent in
its root and kept branching with each branch eventually ending in an axiom.
When talking about the size of a proof we concluded that the number of sequents
in a proof can be much higher than the number of distinct sequents. From a
human prover point of view, this reveals an unpleasant redundancy: If, in a
closed proof tree, a sequent (which is not an axiom) appears more than once
it means that it is proven several times. In such a case it would be preferable
to “reuse” an already existing proof when the very same sequent appears once
again.

From a mechanical point of view, “reuse” may not come without additional
effort. Checking whether a specific sequent already appeared during proof search
requires storing and retrieving representations of many sequents. If proof search
is performed in a depth-first manner, it requires to store nearly all sequents
of all branches closed so far. Storing sequents may have exponential space
requirements as proofs may have exponential size.1 This is in contrast to the
fact that the evaluation problem for quantified boolean formulas is the canonical
PSPACE problem. Breadth-first does not perform better.

From a proof-theoretical perspective, we can allow the reuse of proofs by
easing the restrictions on the form of GQBF+ proofs. Instead of demanding
proofs to form a tree we impose a less restrictive constraint on the structure of
proofs: they are allowed to be directed acyclic graphs. The following example
will demonstrate that allowing proofs to be in directed acyclic graph form instead
of tree form can reduce proof size:

A Derivation Example Let ϕ = (∃xx ∨ ¬x), ψ1 ∈ QBF and ψ2 ∈ QBF be
closed quantified boolean formulas in negation normal form such that ψ1 ≡ ψ2 ≡
0. Then we can prove the formula (ϕ∨ψ1)∧ (ψ2 ∨ϕ) using GQBF+ as follows:

1See Part IV for further details.

33

6. From Trees to Directed Acyclic Graphs

` >x
` (>x ∨ ¬>x)

∨1

` ϕ ∃>

` ϕ ∨ ψ1
∨1

` >x
` (>x ∨ ¬>x)

∨1

` ϕ ∃>

` ψ2 ∨ ϕ
∨2

` (ϕ ∨ ψ1) ∧ (ψ2 ∨ ϕ)
∧

The size of the proof is nine. But each of the two branches contains the very
same sequent ` ϕ. Moreover both branches contain exactly the same proof for
` ϕ. By reusing the proof of ` ϕ, it is possible to construct a shorter proof of
this formula, a directed acyclic graph with six nodes. Two ways to annotate a
proof in directed acyclic graph form are presented: Directly as a directed acyclic
graph or in linear form using a table. Note that in the table, III appears twice
as antecedent.

` >

` > ∨ ¬>

` ϕ

` ϕ ∨ ¬ϕ ` ¬ϕ ∨ ϕ

` (ϕ ∨ ¬ϕ) ∧ (¬ϕ ∨ ϕ)

∨1

∃>

∨1 ∨2

∧

ID Rule Ant. Consequent

I - - ` >
II ∨1 I ` > ∨ ¬>
III ∃> II ` ϕ
IV ∨1 III ` ϕ ∨ ¬ϕ
V ∨2 III ` ¬ϕ ∨ ϕ
VI ∧ IV, V ` (ϕ ∨ ¬ϕ) ∧ (¬ϕ ∨ ϕ)

Application A calculus that contains all derivation rules of GQBF+ and allows
proofs to be in directed acyclic graph form is called GQBF+

3. It is applied in
the same way as the other GQBF calculi. If the formula to be proven is not in
negation normal form, process the input formula to get an equivalent negation
normal form. A sequent corresponding to the input formula (respectively the
equivalent negation normal form) is taken as the root of the derivation tree.
One of the applicable rules is applied. If in a branch a sequent is reached that
has already been seen in some other location during proof search, we do not
continue this specific branch. Instead we close it with a reference to the first
occurrence of the same sequent. If all branches of the derivation graph can be
closed (i.e., end in an axiom or a reference) the input formula is proven to be
valid.

We write π: `G+
3
ϕ to state that π is a GQBF+

3 proof of ϕ and `G+
3
ϕ to state

that there exists a π such that π: `G+
3
ϕ.

34

6.1. The Calculus

Size of a Proof We cane define the size of a GQBF+
3 proof in the same manner

we defined the size of GQBF+ proofs. We count the number of sequents that
appear throughout the derivation graph.

Let ϕ ∈ QBF be a closed quantified boolean formula in negation normal form
and π: `G+

3
ϕ be a GQBF+

3 proof of ϕ. Then we define the size of π inductively
as follows:

1. ϕ is an axiom: |π| := 1

2. π is a proof
R
` ϕ of ` ϕ ending at a unary inference rule. Let moreover

R denote a reference to an arbitrary sequent. Then |π| := 1.

3. π is a proof
R1 R2

` ϕ of ` ϕ ending at a binary inference rule. Let R1

and R2 denote references to arbitrary sequents. Then |π| := 1.

4. π is a proof

τ....

` ϕ
of ` ϕ ending at a unary inference rule. Let moreover

τ denote the proof of the rule’s premise. Then |π| := 1 + |τ |.

5. π is a proof

τ.... R
` ϕ

of ` ϕ ending at a binary inference rule. Let τ

denote the proof of the rule’s first premise and R denote a reference to an
arbitrary sequent. Then |π| := 1 + |τ |.

6. π is a proof R

τ....

` ϕ
of ` ϕ ending at a binary inference rule. Let τ denote

the proof of the rule’s second premise and R denote a reference to an
arbitrary sequent. Then |π| := 1 + |τ |.

7. π is a proof

τ1....

τ2....

` ϕ
of ` ϕ ending at a binary inference rule and let τ1

and τ2 denote the proofs of the rule’s premises. Then |π| := 1 + |τ1|+ |τ2|.

While in each previous definition of proof size we pointed out the fact that
the size of a proof is not necessary equal to the number of distinct sequents in
the proofs, we want to point out here that for GQBF+

3 proofs these two numbers
are identical. The number of distinct sequents in a proof is the size of the proof.

Soundness and Completeness of Directed Acyclic Graph GQBF GQBF+
3 is

sound and complete. Completeness can be proven trivially as each GQBF+

proof is a GQBF+
3 proof per definition and GQBF+ is complete. A proof of the

soundness can be constructed easily as follows:

35

6. From Trees to Directed Acyclic Graphs

Assume we have a GQBF+
3 proof π of a formula ϕ. If π is already in tree

form we are finished as it is GQBF+ proof which itself is a sound and complete
calculus. If not, we start bottom up to find the first position in π where two
branches are re-joined. At least one such re-join exists as π is not a tree. At
the re-join there is a branch that “normally” continues the proof and at least
another one that references the continuation of the normal proof. We replace
each reference by a copy of the sub-proof referenced. Clearly, such duplications
can drastically increase the size of a proof since we stepwise expand a directed
acyclic graph to a tree. If the resulting proof is a tree we are finished. Otherwise
we search bottom up for the next join. Finally we end up in a tree proof.

36

7. Refuting Formulas

Motivation As described in this chapter and the previous chapters, the calculi
GQBF, GQBF+ and GQBF+

3 can only prove the validity of formulas directly.
Invalidity can be proven indirectly: If a formula is not invalid, there does not
exist any GQBF (GQBF+, GQBF+

3) proof for it. As we want to compare GQBF
and its extensions to Q-resolution with respect to proof size in the following,
this non-constructive approach is not very helpful. While Q-resolution proofs
of invalidity have a well-defined size, GQBF proofs of invalidity are purely ex-
istential. Hence we further extend GQBF, GQBF+ and GQBF+

3 to be able to
produce material proofs of the unsatisfiability of formulas. Such proofs can also
be used as certificates for the unsatisfiability of a formula.

The following rule extends the known calculi:

` nnf (¬ϕ)

ϕ ` ¬

Note that this rule cannot introduce Ping-Pong effects as it can only be applied
once: If we want to prove the invalidity of a formula ϕ, we start bottom-up to
prove it. ϕ ` be the end-sequent. Such an end-sequent does only allow to apply
the ¬-rule. This results (bottom-up) in a sequent ` ϕ′. As there is no rule to
rule in our calculi to infer ` ψ from ψ′ `, the ¬-rule cannot be applied any more.
Thus it can only appear in the very root of a proof and it can be applied at most
once. We will add +¬ to the name of a calculus to state that it is augmented
with the ¬-rule. A GQBF+¬, GQBF++¬ or GQBF+

3+¬ proof tree (directed
acyclic graph) ending in an end-sequent ϕ ` is a proof of the invalidity of ϕ.

Correctness of the ¬-Rule Assume the ¬-rule appears in a proof and its
premise is ` nnf (¬ϕ). Then it follows from the soundness of the base cal-
culus (i.e., GQBF, GQBF+ or GQBF+

3) that nnf (¬ϕ) ≡ 1. It can be show
semantically that nnf (¬ϕ) ≡ ¬ϕ and thus ϕ ≡ 0. Henceforth the invalidity of
ϕ can safely be derived: ϕ `.

An Example Derivation Let ϕ = ∀x (x ∧ ¬x) be a closed quantified boolean
formula in negation normal form. It can be semantically shown that ϕ ≡ 0.
This can also be proven using GQBF+¬:

` >x
` ¬>x ∨ x

∨2

` ∃x (¬x ∨ x)
∃>

∀x (x ∧ ¬x) `
¬

37

7. Refuting Formulas

Size of a Proof The sizes of GQBF+¬ and GQBF++¬ proofs are calculated
the same way as the size of GQBF proofs are while GQBF+

3+¬ proofs are
measured the same way GQBF+

3 proofs are.

38

Part IV.

Proof Size

39

8. Features and Proof Size

In the last chapter, we presented three different versions of a sequent calculus
for quantified boolean formulas. It starts with presenting a minimal calculus
that is already been sound and complete. In the following we introduced a
calculus that augments the minimal calculus with 19 additional simplification
rules. Two example derivations, one with GQBF, the other with GQBF+ of the
same formula already hints that GQBF+ can produce shorter proofs than its
minimal predecessor. In this chapter we will show that proofs can even be expo-
nentially shorter. We will continue with proving that the third calculus, which
allows proofs in the form of directed acyclic graphs instead of trees, can even
produce proofs that are exponentially shorter than GQBF+ proofs. Eventually
we will show that GQBF+

3 is not capable of proving all tautologies polynomially.
We want to remind the reader of the fact that all calculi that are derived from
GQBF are cut-free.

8.1. The Power of Simplification Rules

We will start by showing that there is an infinite family of quantified boolean
formulas in negation normal form such that no formula from this family can be
proven polynomially using GQBF.

Lemma 8.1.1. Closed quantified boolean formulas that are structured in the
form of [∀∃]∗y ∀x1 ∀x2 . . . ∀xn [∀∃]∗z ψ, n ≥ 1, ({x1, x2, . . . xn} ∪ y ∪ z) = free(ψ),
cannot have a GQBF proof of a size smaller than 2n+1 − 1.

Proof. Let n ≥ 1, ϕn = ([∀∃]∗y ∀x1 ∀x2 . . . ∀xn [∀∃]∗z ψ) ∈ QBF be a closed
quantified boolean formula in negation normal form and let π: `G ϕ be the
shortest proof of ϕn.

• A proof of ∀a1 ∀a2 . . . ∀an ψ′, {a1, a2, . . . an} = free(ψ′), has at least size
2n: the bottom part of the proof tree1 contains 2n−1 ∀-rules. Each of the
2n branches that stem from the bottom part of the tree have at least size 1
as ψ′ contains all ai. Thus at least one connective has to be “eliminated”
in a proof of ψ′[a1\c1][. . .][an\cn]. We get a minimum size of 2n+1 − 1.

• The quantifier prefix of ϕ is of a form [∀∃]∗∀n[∀∃]∗. The idea presented
above can be used to prove that each formula with a quantifier prefix of

1When speaking about the bottom part of a proof we refer to the root of the proof tree, the
nodes that are connected to the root and all other nodes of a low depth.

41

8. Features and Proof Size

the form ∀n[∀∃]∗ cannot have a GQBF proof of a size polynomial in n:
Simply move the “inner” prefix part into the ψ′-part of the formula.

• The outermost quantifiers ([∀∃]∗y) cannot reduce proof size either. 1) As-
sume the innermost quantifier of this group is a universal one. Then,
again, it is just “swallowed” by the above idea and we can iterate with the
next one. 2) The innermost quantifier is existential. In this case we know
from the first bullet that each proof of ∀a1 ∀a2 . . . ∀an ψ′[y\>] as well as of
∀a1 ∀a2 . . . ∀an ψ′[y\⊥] has to have at least size 2n+1− 1. Thus, a proof of
∃y ∀a1 ∀a2 . . . ∀an ψ′ has at least this size too. We can iterate again and
eventually prove that a GQBF proof has at least a size of 2n+1 − 1.

Thus the shortest proof of ϕn has a size greater or equal to 2n+1 − 1.

Corollary 8.1.1. There are formulas of length p(n), p ∈ P[N], for which the
smallest GQBF proof has a size exponential in n.

Proof. Let

ϕn = ∃a∀x1 ∀x2 . . . ∀xn ∃b ((x1 ∨ a∨ b)∧ (x2 ∨ a∨ b)∧ . . .∧ (xn ∨ a∨ b)) (8.1)

be a closed quantified boolean formula in negation normal form. Then ϕn has a
length of (8n+ 3) which is polynomial in n. From Theorem 8.1.1 it follows that
the smallest GQBF proof for ϕn has at least size 2n+1−1 and thus is exponential
in n.

Knowing that there is an infinite family of formulas that cannot be proven
polynomially with GQBF, it will be shown now that a special sub-family that
is still infinite can be proven polynomially using GQBF+.

Theorem 8.1.1. Let ϕn be Formula (8.1) from Corollary 8.1.1. Then there is
a p ∈ P[N] such that there is a GQBF+ proof of length p(n) of ϕn. Moreover
there is no GQBF proof of a length polynomial in n.

Proof. Let ϕn be Formula (8.1) from Corollary 8.1.1. Then π: `G+ ϕn, a
GQBF+ proof of ϕn can be constructed as follows:

` >a
` >a ∧ >a ∧ . . . ∧ >a

S2a ((n− 1) times)

` ∀x1 ∀x2 . . . ∀xn ∃b (>a ∧ >a ∧ . . . ∧ >a)
S4 ((n+ 1) times)

` ∀x1 ∀x2 . . . ∀xn ∃b ((x1 ∨ >a ∨ b) ∧ (x2 ∨ >a ∨ b) ∧ . . . ∧ (xn ∨ >a ∨ b))
S3a (2n t.)

` ∃a ∀x1 ∀x2 . . . ∀xn ∃b ((x1 ∨ a ∨ b) ∧ (x2 ∨ a ∨ b) ∧ . . . ∧ (xn ∨ a ∨ b))
∃>

Constructed this way, |π| = 4n + 1 holds. By Corollary 8.1.1 we know that
there can be no GQBF proof for ϕn of a size less than 2n+1 − 1.

42

8.1. The Power of Simplification Rules

So far we have shown that there are formulas that cannot proven polynomi-
ally using GQBF. We “defused” some of these formulas by adding simplification
rules to our calculus: There are certain formulas that cannot proven polynomi-
ally in GQBF but in GQBF+. Subsequently we will prove that there is still an
infinite family of quantified boolean formulas that cannot be proven polynomi-
ally in GQBF+.

Lemma 8.1.2. Let

ϕn = ∀x1 ∃y1 . . . ∀xn ∃yn (ψ(x1, y1) ∧ . . . ∧ ψ(xn, yn)) (8.2)

with ψ(x, y) = ((x ⊃ y) ∧ (y ⊃ x)) be a closed quantified boolean formula in
negation normal form of size (12n− 1). Then there exists no GQBF+ proof of
ϕn of a size polynomial in n.

Proof. A proof of ϕn is built bottom up. Assume that ϕn is provable, then the
last inference step of the proof has to look like this:

` ϕ′n
` ∀x1 ∃y1 . . . ∀xn ∃yn (ψ(x1, y1) ∧ . . . ∧ ψ(xn, yn))

?

` ϕn is the end-sequent to be proven. Either a principal derivation rule or
one of the simplification rules has to be applied to continue the proof. The rule
chosen fully defines the antecedent ` ϕ′n.

We now determine which rules can be applied, having ` ϕn as consequent and
how ϕ′n has to look like. The additional rules that will be first looked upon at
are as follows:

• S1a, S1b, S2a, S2b, S3a, S3b: These rules cannot be applied since they con-
tain some variant of the truth constants in their consequent. However, ϕn
does not contain any.

• S4: This rule cannot be applied too. There is no quantifier in ϕn whose
bound variable does not occur in the matrix of ϕn.

• LU1a as well as LU1b cannot be applied since ϕn has no sub-formula of
the form (` ∧∆), with ` being a literal and ∆ ∈ QBF .

• LU2a as well as LU2b can be applied as ϕn contains sub-formulas (¬xi∨yi)
and (xi ∨ ¬yi). But if we use one of these two rules, the antecedent has
to be ϕn again as the applied substitution yields an identical result. Take
this as an example:

` ∆(xi ∨ (¬yi)[xi\⊥xi
])

` ∆(xi ∨ ¬yi)
LU2a

Thus these rule applications are redundant and will not appear in the
shortest proofs possible.

43

8. Features and Proof Size

• GU1a,GU1b,GU2a,GU2b cannot be applied since ϕn, being in prenex
normal form2, has no sub-formula of the form Qx (` ◦∆), with ` being a
literal of x, Q ∈ {∃, ∀}, ◦ ∈ {∨,∧} and ∆ ∈ QBF .

• P1a, P1b, P2a, P2b cannot be applied since ϕn is in prenex normal form
and the matrix always contains both polarities of a variable.

Because none of the additional rules can be applied, we have to use the ∀-
rule and thus get the following inference steps at the root of the proof tree (Q
abbreviates ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn):

?
S1 : ` Q (ψ(>x1 , y1) ∧ . . . ∧ ψ(xn, yn))

?
?

S2 : ` Q (ψ(⊥x1 , y1) ∧ . . . ∧ ψ(xn, yn))
?

` ∀x1 ∃y1 . . . ∀xn ∃yn (ψ(x1, y1) ∧ . . . ∧ ψ(xn, yn))
∀

As the right ending with S2, is just symmetrical to the left one ending with
S1, we will concentrate on the left branch. Repeating the above evaluation of
the simplification rules, we conclude for the left branch that we can continue
the proof with these (useful) sequences of rule applications only:

• (S3a, S2a, P1a or ∃>, S3a, S2a)

• (S3a, P1a or ∃>, S2a, S3a, S2a)

• (S3a, P1a or ∃>, S3a, S2a, S2a)

• (∃>, S3a, S2a, S3a, S2a)

• (∃>, S3a, S3a, S2a, S2a)

Other sequences of rule applications are either not applicable or result, unnec-
essary increases of proof length (e.g. multiple LU2a and LU2b rule applications
that do not change the sequent at all) or do not yield a provable sequent (e.g.
∃⊥)). Since all the above sequences of rule applications have the same length,
we use the latter as it has the most straight forward structure. This results in
the following inference steps:

` ϕn−1

` ∀x2 ∃y2 . . . ∀xn ∃yn (>y1 ∧
∧n
i=2 ψ(xi, yi))

S2a

` ∀x2 ∃y2 . . . ∀xn ∃yn (>y1 ∧ >x1 ∧
∧n
i=2 ψ(xi, yi))

S2a

` ∀x2 ∃y2 . . . ∀xn ∃yn ((¬>x1 ∨ >y1) ∧ >x1 ∧
∧n
i=2 ψ(xi, yi))

S3a

` ∀x2 ∃y2 . . . ∀xn ∃yn ((¬>x1 ∨ >y1) ∧ (>x1 ∨ ¬>y1) ∧
∧n
i=2 ψ(xi, yi))

S3a

` ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ((¬>x1 ∨ y1) ∧ (>x1 ∨ ¬y1) ∧
∧n
i=2 ψ(xi, yi))

∃>

2See Section 9.2 for further details.

44

8.2. The Power of Reusing Sub-Proofs

Thus, applying this sequence of rules, we get in the left branch a smaller
instance of ϕn, ϕn−1 = ∀x2 ∃y2 . . . ∀xn ∃yn (ψ(x2, y2) ∧ . . . ∧ ψ(xn, yn)), as the
formula to be proven. For the right open branch we apply a similar procedure
and end in ` ϕn−1 as open sequent too. We can now iterate the above inference
steps in both open branches.

In the end we get 2n open branches. Each of them can be closed with a short
proof. Henceforth we conclude that the minimal proof size is at least 2n and
thus exponential in n.

Note that although no formula from the family (8.2) can be proven polynomi-
ally in n using GQBF+, each such formula can in general be evaluated in a time
linear in n. A linear-time algorithm for testing the truth of closed quantified
boolean formulas in 2-PCNF can be found in [2]. It will also be presented in
Section 11.3.

8.2. The Power of Reusing Sub-Proofs

We established an infinite family of formulas that is not provable polynomially
with GQBF+ in Lemma 8.1.2. In the following it is proven that formulas of this
family can be proven polynomially using GQBF+

3.

Theorem 8.2.1. Let

ϕn = ∀xn ∃yn . . . ∀x1 ∃y1 (ψ(xn, yn) ∧ . . . ∧ ψ(x1, y1)) (8.3)

with ψ(x, y) = ((x ⊃ y) ∧ (y ⊃ x)) be a closed quantified boolean formula in
negation normal form of size (12n− 1).3

Then there is a GQBF+
3 proof of ϕn with a length of (11n−1) but there exists

no GQBF+ proof of ϕn with a length polynomial in n.

Proof. We prove by induction on n that there exists a GQBF+
3 proof of ϕn of a

size polynomial in n. Thereby we use the following abbreviations:

• Qn is used to abbreviate ∃yn ∀xn−1 ∃yn−1 . . . ∀x1 ∃y1.

• Q′n is used to abbreviate ∀xn ∃yn . . . ∀x1 ∃y1.

• ∆n is used to abbreviate
2∧
i=n

((xi ⊃ yi) ∧ (yi ⊃ xi)).

Base Case: Then n = 1 and ϕ1 = ∀x1 ∃y1 ((¬x1 ∨ y1)∧ (¬y1 ∨ x1)) is a closed
quantified boolean formula in negation normal form. A GQBF+

3 proof π1 of ϕ1

can be constructed as follows:

3ϕn is identical to Formula (8.2).

45

8. Features and Proof Size

` >
` > ∧ > S2a

` (¬> ∨ >) ∧ > S3a

` (¬> ∨ >) ∧ (¬> ∨ >)
S3a

` ∃y1 ((¬> ∨ y1) ∧ (¬y1 ∨ >))
∃>

` >
` > ∧ > S3a

` > ∧ (> ∨⊥)
S3a

` (> ∨⊥) ∧ (> ∨⊥)
S1b

` (¬⊥ ∨ ⊥) ∧ (¬⊥ ∨ ⊥)
S1b

` ∃y1 ((¬⊥ ∨ y1) ∧ (¬y1 ∨ ⊥))
∃⊥

` ∀x1 ∃y1 ((¬x1 ∨ y1) ∧ (¬y1 ∨ x1))
∀

The size of π1 is constant, i.e. |π1| = 10. Note that the sequents ` > ∧ >
and ` > are shared by both branches and thus only counted once. They are
displayed two times just for a matter of presentation.

Induction hypothesis: Let n > 0 and ϕn be Formula (8.2) Then there is a
GQBF+

3 proof of ϕn with a length of (11n− 1).

Induction step ((n− 1)→ n): Then ϕn is Formula (8.2) and a proof πn of ϕn
can be constructed as follows:

πn−1....
` ϕn−1

` Q′n (> ∧∆n)
S2a

` Q′n (> ∧> ∧∆n)
S2a

` Q′n ((¬> ∨ >) ∧ > ∧∆n)
S3a

` Q′n ((¬> ∨ >) ∧ (> ∨ ¬>) ∧∆n)
S3a

` Qn ((¬> ∨ yn) ∧ (> ∨ ¬yn) ∧∆n)
∃>

πn−1....
` ϕn−1

` Q′n (> ∧∆n)
S2a

` Q′n (> ∧> ∧∆n)
S2a

` Q′n ((> ∨⊥) ∧ > ∧∆n)
S3a

` Q′n ((> ∨⊥) ∧ (⊥ ∨>) ∧∆n)
S3a

` Q′n ((> ∨⊥) ∧ (⊥ ∨ ¬⊥) ∧∆n)
S1b

` Q′n ((¬⊥ ∨ ⊥) ∧ (⊥ ∨ ¬⊥) ∧∆n)
S1b

` Qn ((¬⊥ ∨ yn) ∧ (⊥ ∨ ¬yn) ∧∆n)
∃⊥

` ϕn
∀

The sequents ` Q′n(>∧>∧∆n), ` Q′n(>∧∆n) and ` ϕn−1 appear in both
branches. As we allow proof to be in the form of directed acyclic graphs, such
duplicate sequents refer to the same node of the proof graph and are thus only
counted once when the size of πn is calculated. The size of πn is calculated from
the size of the inference displayed above and the size of the sub-proof πn−1.
Henceforth |πn| = |πn−1| + 11. The sequent ` ϕn−1 is not counted as it is al-
ready in the size of πn−1. From the induction hypothesis, we know that |πn−1|
is (11(n− 1)− 1). Thus |πn| = ((11(n− 1)− 1) + 11) = (11n− 1).

A graph that shows the structure of a proof of ϕn as a whole can be found in
Figure 8.1. The GQBF+

3 proof has a size of (11n−1) which is clearly polynomial
in n. As outlined by Lemma 8.1.2, there does not exist a GQBF+ proof of ϕn
with a size polynomial in n.

46

8.2. The Power of Reusing Sub-Proofs

Still, there is a infinite class of formulas that cannot be proven polynomially
using GQBF+

3.

Lemma 8.2.1. Let

ϕn = ∀x1 ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ∃z1 ∃z′1 ∃z2 ∃z′2 . . . ∃zn ∃z′n
n∧
i=1

ψi (8.4)

be a quantified boolean formula in negation normal form with

ψi = (¬xi∨yi)∧(¬yi∨xi)∧(xi∨zi∨z′i)∧(¬xi∨¬zi∨¬z′i)∧(zi∨z′i)∧(¬zi∨¬z′i).

Then there is no GQBF+
3 proof of ϕn with a size polynomial in n.

Proof. The idea of this proof is very similar to the ideas used in the proof of
Theorem 8.1.2: It is shown that no simplification rule can be applied to ϕn.
Thus the only possibility to start a GQBF+

3 proof is to apply the ∀-rule. This
splits the proof into two separate branches. Now it shown that the two branches
are not identical and that no sequence of rule applications (that does not contain
the ∀-rule) can make their sequents identical. Hence two branches remain open.
Each of them then has to be split again using the ∀-rule. After some iterations
of the same procedure we end up in exponentially many open branches. Now,
with eliminating the existential quantifiers, all branches can be re-merged and
closed.

We will present the above idea in more details in the following:

1. No simplification rule is applicable. The rules S[123][ab] are not applicable
as the formula does not contain any truth constants. The rule S4 cannot
be applied since there is no quantifier that binds no variable occurrence.
There are many variable occurrences that are locally unit. But each of
them is locally unit in a trivial context4 only. So LU [12][ab] will not occur
in the shortest proof. No variable occurrence is globally unit. The rules
GU [12][ab] cannot be applied. As all variables do appear in both polarities,
none of the P [12][ab]-rules can be used.

2. Thus the ∀-rule has to be applied and the proof is split into two open
branches.

• The positive branch: In this branch x1 is replaced by >. Changes
in the sequent appear only in the term ψ1. We apply ∃> and a
sequence of simplification rules to eliminate the first two conjuncts of

4We call a variable occurrence trivially unit if applying a LU [12][ab]-rule to it will not change
the formula at all. This happens if the formula it is connected to via ∨ or ∧ does not contain
any occurrences of the variable symbol. This can be demonstrated with the following
example: Let ξ(x ∨ (a ∧ b)) be a quantified boolean formula. Then x is locally unit in
the disjunction (x ∨ (a ∧ b)). But x does not appear in the second disjunct (a ∧ b). Thus
applying LU2a will yield the same formula ξ(x ∨ (a ∧ b)) as (a ∨ b)[x\⊥] = (a ∨ b).

47

8. Features and Proof Size

ψ1. Simplification rules are used also to eliminate the truth constants
from the third and fourth conjunct. Thus, three conjuncts of ψ1

remain: (¬z1 ∨ ¬z′1), (z1 ∨ z′1) and (¬z1 ∨ ¬z′1).

• The negative branch: We proceed the same way as in the positive
branch: ∃⊥ and simplification rules trim ψ1 to a conjunction of the
following three disjuncts: (z1 ∨ z′1), (z1 ∨ z′1) and (¬z1 ∨ ¬z′1).

3. The remainder of ψ1 cannot be simplified further in neither branch. The
remainder of ψ1 does not contain truth constants, no non-trivial locally
unit variable occurrences and no globally unit variable occurrences. All
its variables are present in both polarities and the formula as a whole does
not contain “unnecessary” quantifiers. Hence no simplification rule can
be applied in neither branch. The left and the right branch are strictly
different. Thus they cannot be merged too. Two branches remain open.

4. The ∀-rule has to be applied in each branch to eliminate the second uni-
versal quantifier. Again, changes are local only and are limited to ψ2. The
above argumentation can be reused and the procedure can be iterated in
every open branch.

5. After applying the ∀-rule n times (in each open branch), 2n branches are
open. Each one can be closed with a short proof.

This formula family demonstrates that, although proofs can get exponen-
tially shorter through eliminating duplicate sequents with directed acyclic graph
proofs, duplicate sub-formulas in sequents can still exponentially enlarge proofs.

We have now established a kind of hierarchy between the three GQBF calculi.
The findings of this chapter will be used later on in the Chapter 9 and Part VI.
Chapter 9 will investigate in more detail where the complexity of certain families
of formulas stems from and whether there are efficient means to reduce it. Part
VI will deal with the relations between different calculi in more detail.

At the end of this chapter we want to stress that we speak about proof sizes
when we talk about proof complexity. Furthermore we are always interested
in the shortest proof possible for an actual formula (with respect to a specific
calculus). In general, given a formula ϕ of size n, a calculus A, and the smallest
A-proof of ϕ with a size of f (n), the run-time complexity of searching a proof for
ϕ in A is Ω(f (n)). Note that additional optimization strategies that are widely
used in proof search (like dependency-directed backtracking [6]) can be used to
keep the search complexity as close as possible to the lower bound.

48

8.2. The Power of Reusing Sub-Proofs

` ∀xn ∃yn . . . ∀x1 ∃y1 (ψ(xn, yn) ∧ . . . ∧ ψ(x1, y1))

` . . . ` . . .

` ∀xn−1 ∃yn−1 . . . ∀x1 ∃y1 (ψ(xn−1, yn−1) ∧ . . . ∧ ψ(x1, y1))

` . . . ` . . .

` ∀xn−2 ∃yn−2 . . . ∀x1 ∃y1 (ψ(xn−2, yn−2) ∧ . . . ∧ ψ(x1, y1))

` ∀x2 ∃y2 ∀x1 ∃y1 (ψ(x2, y2) ∧ ψ(x1, y1))

` . . . ` . . .

` ∀x1 ∃y1 ψ(x1, y1)

` . . . ` . . .

` >

Figure 8.1.: The Structure of the GQBF+
3 Proof.

49

9. Transformations and Proof Size

In this part we will discuss how a change within a formula affects the size of
its smallest GQBF (GQBF+, GQBF+

3) proof. We will show amongst others
that prenexing — i.e., moving quantifiers up in the structure tree of a formula
— can exponentially enlarge GQBF proofs. We start with an introduction of
additional normal forms used in this part and in Part V.

9.1. Equivalent Replacement

Theorem 9.1.1 (Equivalent replacement for quantified boolean formulas). Let
ϕ1, ϕ2 be two quantified boolean formulas such that ϕ1 ≡ ϕ2 holds. Furthermore
let ω(ϕ1) be a quantified boolean formula1 and ω(ϕ2) be a copy of ω(ϕ1) where
each sub-formula occurrence of ϕ1 is replaced by ϕ2. Then it holds that ω(ϕ1) ≡
ω(ϕ2).

Proof. Let ϕ1, ϕ2, ω(ϕ1) and ω(ϕ2) be quantified boolean formulas such that
ϕ1 ≡ ϕ2 holds. Then we prove by induction that ω(ϕ1) ≡ ω(ϕ2).

Induction Base:

• If ω(ϕ1) = x with x ∈ (C ∪V), then ω(ϕ2) = x. Thus ω(ϕ1) ≡ ω(ϕ2) holds
as x ≡ x holds.

• If ω(ϕ1) = ϕ1, then ω(ϕ2) = ϕ2. Hence ω(ϕ1) ≡ ω(ϕ2) holds as ϕ1 ≡ ϕ2

holds.

Induction Hypothesis: Let ϕ1, ϕ2, ω(ϕ1) and ω(ϕ2) be quantified boolean for-
mulas such that ϕ1 ≡ ϕ2 holds. Then ω(ϕ1) ≡ ω(ϕ2) holds.

Induction Step:

• If ω(ϕ1) = ¬ψ(ϕ1), then ω(ϕ2) = ¬ψ(ϕ2). By the induction hypothesis
ψ(ϕ1) ≡ ψ(ϕ2) holds. Thus ¬ψ(ϕ1) ≡ ¬ψ(ϕ2) and ω(ϕ1) ≡ ω(ϕ2) hold
too.

• If ω(ϕ1) = ψ1(ϕ1)∨ ψ2(ϕ1), then ω(ϕ2) = ψ1(ϕ2)∨ ψ2(ϕ2). We apply the
induction hypothesis twice and get ψ1(ϕ1) ≡ ψ1(ϕ2) and ψ2(ϕ1) ≡ ψ2(ϕ2).
It follows that (ψ1(ϕ1)∨ψ2(ϕ1)) ≡ (ψ1(ϕ2)∨ψ2(ϕ2)) holds and thus that
ω(ϕ1) ≡ ω(ϕ2) is true.

1It is assumed that (ω(>) ∨ ϕ1) and (ω(>) ∨ ϕ2) are both unitary formulas.

51

9. Transformations and Proof Size

• If ω(ϕ1) = ψ1(ϕ1)∧ ψ2(ϕ1), then ω(ϕ2) = ψ1(ϕ2)∧ ψ2(ϕ2). We apply the
induction hypothesis twice and get ψ1(ϕ1) ≡ ψ1(ϕ2) and ψ2(ϕ1) ≡ ψ2(ϕ2).
It follows that (ψ1(ϕ1)∧ψ2(ϕ1)) ≡ (ψ1(ϕ2)∧ψ2(ϕ2)) holds and thus that
ω(ϕ1) ≡ ω(ϕ2) is true.

• If ω(ϕ1) = ∃xψ(ϕ1) then ω(ϕ2) = ∃xψ(ϕ2). We know that ϕ1[x\ξ] = ϕ1

and that ϕ2[x\ξ] = ϕ2 for any ξ as x does neither occur in ϕ1 nor in ϕ2. The
induction hypothesis is applied twice and we get ψ[x\c](ϕ1) ≡ ψ[x\c](ϕ2)
for c ∈ C. It follows that (∃xψ(ϕ1)) ≡ (∃xψ(ϕ2)) and thus ω(ϕ1) ≡ ω(ϕ2)
holds.

• If ω(ϕ1) = ∀xψ(ϕ1) then ω(ϕ2) = ∀xψ(ϕ2). We know that ϕ1[x\ξ] = ϕ1

and that ϕ2[x\ξ] = ϕ2 for any ξ as x does neither occur in ϕ1 nor in ϕ2. The
induction hypothesis is applied twice and we get ψ[x\c](ϕ1) ≡ ψ[x\c](ϕ2)
for c ∈ C. It follows that (∀xψ(ϕ1)) ≡ (∀xψ(ϕ2)) and thus ω(ϕ1) ≡ ω(ϕ2)
holds.

What happens if we exchange a sub-formula of a quantified boolean formula
with another one with a proof of the original formula? Before presenting normal
forms, we will have a short look in the impact of exchanging sub-formulas on
proofs. The following example shall present an introduction to the matter that
follows.

Example Let ω(ψ) = ∃x (ϕ1 ∧ ψ) ∨ ϕ2) be a valid quantified boolean formula.
Moreover let ψ′ be a quantified boolean formula such that ψ′ is logically equiv-
alent to ψ. Let ω(ψ′) be the formula resulting by replacing ψ by ψ′ in ω(ψ).

∃x

∨

ϕ2∧

ψϕ1

7−→

∃x

∨

ϕ2∧

ψ′ϕ1

Let π be the following GQBF-proof of ω(ψ) where c is a truth constant:

πϕ1....
` ϕ1[x\c]

πψ....
` ψ[x\c]

` ϕ1[x\c] ∧ ψ[x\c] ∧

` (ϕ1[x\c] ∧ ψ[x\c]) ∨ ϕ2[x\c]
∨1

` ∃x (ϕ1 ∧ ψ) ∨ ϕ2)
∃c

52

9.1. Equivalent Replacement

How can a proof of ω(ψ′) be constructed when a proof of ω(ψ) is given? A
proof π′ of ω(ψ′) can be constructed with a structure identical with the structure
of π. However, π and π′ will differ structurally at places where πψ, a sub-proof
of π, is replaced by πψ′ , a proof of ψ′. These replacements will appear in π at
each occurrence of the sequent ` ψ[x\c]. π′ can now constructed as follows:

πϕ1....
` ϕ1[x\c]

πψ′....
` ψ′[x\c]

` ϕ1[x\c] ∧ ψ′[x\c] ∧

` (ϕ1[x\c] ∧ ψ′[x\c]) ∨ ϕ2[x\c]
∨1

` ∃x (ϕ1 ∧ ψ′) ∨ ϕ2)
∃c

From the equivalent replacement theorem for quantified boolean formulas and
the soundness and the completeness of GQBF if follows that for every GQBF
proof π of a closed quantified boolean formula ϕ(ψ) in negation normal form
there exists a GQBF proof π′ of ϕ(ψ′) if ψ ≡ ψ′ holds, ψ′ is closed and in
negation normal form.

We will prove in the forthcoming paragraphs that equivalent replacement in
formulas will correspond to strictly local changes (i.e., sub-proofs are replaced
by others) in their GQBF proofs. Furthermore we will prove that if a formula is
replaced by a formula that can be proven at least as short as the replaced one,
the size of the proof cannot increase.

Theorem 9.1.2. Let ϕx ∈ QBF and ϕy ∈ QBF be two valid closed quantified
boolean formulas in negation normal form. Moreover let πx be the shortest
GQBF proof of ϕx and πy be the shortest GQBF proof of ϕy. Let ω(ϕx) be
a closed quantified boolean formula in negation normal formula having ϕx as
sub-formula, πωx the shortest GQBF proof of ω(ϕx) and k the number of ` ϕx
sequents in πωx .

Then a GQBF proof of ω(ϕy) exists. Furthermore, the shortest proof GQBF
proof πωy of ω(ϕy) — a duplicate of ω(ϕx) having all occurrences of ϕx replaced
by ϕy — has a at most a length of |πωx |+ k(|πy| − |πx|).

Proof. The existence of πωy follows from the soundness and completeness of
GQBF. The size of πωy is proven by induction on the structure of πωx . We
will show the base case and some exemplary steps. The remaining cases are
very similar.

Induction Base:

• πωx is a proof of a formula that does not contain ϕx at all. Then k = 0
and πωy is identical to πωx . As k = 0, |πωy | = |πωx |+ 0 = |πωx |+ k(|πy| − |πx|)
holds.

53

9. Transformations and Proof Size

• πωx is a proof of ϕx. Then ω(ϕx) = ϕx and k = 1. We choose πωy to be
identical to πωx . Again, |πωy | = |πy| = |πx|+ (|πy| − |πx|) = |πωx |+ k(|πy| −
|πx|) holds.

Induction Hypothesis:

• Let ϕx, ϕy, ω(ϕx) and ω(ϕy) be valid, closed quantified boolean formulas
in negation normal form.

• Let πx: `G ϕx, πy: `G ϕy and πωx : `G ω(ϕx) be minimal proofs.

• Let k be the number of ` ϕx sequents in πωx .

. Then a GQBF proof of ω(ϕy) exists with |πωy | ≤ |πωx |+ k(|πy| − |πx|).

Induction Step (Expemplary):

• The very last rule applied in πωx is a ∨i-rule and ` ϕx appears k′ times in
πωx .

τωx....
` ωi(ϕx)

` ω1(ϕx) ∨ ω2(ϕx)
∨i

7−→

τωy....
` ωi(ϕy)

` ω1(ϕy) ∨ ω2(ϕy)
∨i

By the induction hypothesis we get that there exists a proof τωy of ωi(ϕy)
such that the size of τωy is at most |τωx |+k′(|πy|− |πx|). The application of
the ∨i does not add additional instances of ` ϕx and thus k = k′ holds. The
size of πωx is 1+|τωx |. It holds that |πωy | = |τωy |+1 = |τωx |+k′(|πy|−|πx|)+1 =
|πωx | + k(|πy| − |πx|). Note that even though τωx may be a minimal proof
of ` ω1(ϕx)∨ω2(ϕx), there may exist a proof of ` ω1(ϕy)∨ω2(ϕy) that is
even shorter than τωy . Nevertheless |πωy | ≤ |πωx |+ k(|πy| − |πx|) holds.

• The very last rule applied in πωx is a ∀-rule and ` ϕx appears k′ times in
πωx .

τω
′

x,>....
` ω′[a\>](ϕx)

τω
′

x,⊥....
` ω′[a\⊥](ϕx)

` ∀aω′(ϕx)
∀

As ϕx is a closed formula, ϕx = ϕx[a\c] for c ∈ C (assumed that ω(ϕx)
is unitary). Without loss of generality, assume that k′ = (k> + k⊥), that
` ϕx occurs k> times in τωx,> and that ` ϕx occurs k⊥ times in τωx,⊥. We
apply the induction hypothesis two times:

54

9.1. Equivalent Replacement

– τω
′

y,> is a proof of ω[a\>](ϕy) with |τω′y,>| = |τω
′

x,>|+ k>(|πy| − |πx|).

– τω
′

y,⊥ is a proof of ω[a\⊥](ϕy) with |τω′y,⊥| = |τω
′

x,⊥|+ k⊥(|πy| − |πx|).

The ∀-rule does not add new instances of ` ϕx and thus k = k′ = k>+k⊥.
We now construct πωy as follows:

τω
′

y,>....
` ω′[a\>](ϕy)

τω
′

y,⊥....
` ω′[a\⊥](ϕy)

` ∀aω′(ϕy)
∀

The size of πωy is 1 + |τω′y,>|+ |τω
′

y,⊥| = 1 + |τω′x,>|+ k>(|πy| − |πx|) + |τω′x,⊥|+
k⊥(|πy| − |πx|) = |πωx |+ k(|πy| − |πx|).

Note that we demanded that ϕx and ϕy are valid. It is easy to extend the
above theorem and ease the ϕx ≡ ϕy ≡ 1 condition to ϕx and ϕy being logically
equivalent only. This results in two cases. In the first one where both formulas
are valid the above theorem can be used to prove that a proof of ω(ϕy) of the
size specified in Theorem 9.1.2 indeed exists. In the second case where both
formulas are invalid, the sequent ` ϕx cannot appear in πωx anyway and thus
k = 0. Consequently, |πωy | = |πωx | holds. We can also extend the theorem to
allow free variables in formulas:

Theorem 9.1.3. Let

• Let n ∈ N be an integer.

• Let ϕx ∈ QBF and ϕy ∈ QBF be two logically equivalent quantified
boolean formulas in negation normal form with free(ϕx) = free(ϕy) = F
and |F| = n such that for every function e : F → B holds that νe(ϕx) =
νe(ϕy).

• Let ω(ϕx) be a closed quantified boolean formula in negation normal for-
mula having ϕx as sub-formula.

• Let πωx the shortest GQBF proof of ω(ϕx).

• Let sx : Cn → N be a (partial) function that maps an instantiation vec-
tor (c1, c2, . . . , cn) to the size of the shortest GQBF proof of the formula
ϕx[f1\c1][f2\c2][. . .][fn\cn], whereas {fi | 1 ≤ i ≤ n} = F . The value of sx
is only defined for valid instances.

55

9. Transformations and Proof Size

• Let sy : Cn → N be a (partial) function that maps an instantiation vec-
tor (c1, c2, . . . , cn) to the size of the shortest GQBF proof of the formula
ϕy[f1\c1][f2\c2][. . .][fn\cn], whereas {fi | 1 ≤ i ≤ n} = F . The value of sy
is only defined for valid instances.

• k : Cn → N be a (total) function that maps an n-dimensional instanti-
ation vector (c1, c2, . . . , cn) to the number of occurrences of the sequent
` ϕx[f1\c1][f2\c2][. . .][fn\cn] in πωx . Again, {fi | 1 ≤ i ≤ n} be F .

• ω(ϕy) be a copy of ω(ϕx) having all occurrences of ϕx replaced by ϕy.

Then a GQBF proof of ω(ϕy) exists. Furthermore, the shortest proof GQBF

proof πωy of ω(ϕy) has a length equal or less to |πωx |+
∑
c∈Cn

k(c)
(
sx(c)− sy(c)

)
.

Proof. Analog to the proof of Theorem 9.1.2.

Note that if we use Theorem 9.1.2 (Theorem 9.1.3) to replace sub-formulas
by sub-formulas that (thats instances) can be proven in an equivalently short
manner, then it holds that |πωy | = |πωx |. We can prove this by applying Theorem
9.1.2 (Theorem 9.1.3) two times. The first time we use it to proven that |πωy | ≤
|πωx |. Then we swap the two formulas and prove |πωx | ≤ |πωy |.

9.2. Normal Forms

When we add quantifiers to the language of propositional logic, we get — de-
pending on the type of quantifiers added — either quantified boolean logic, first
order logic or even higher (ramified) types when adding several different types
of quantifiers. For first order logic it is well known that for each formula of first
order logic there exists a logically equivalent formula in prenex normal form
(see, e.g., Theorem 5.2 in [14]). Prenex normal forms are used to establish the
arithmetical as well as the analytical hierarchy. Also some proof calculi for first
order logics depend on an input in prenex normal form. Similarly, some proof
calculi for quantified boolean logics require their input to be in prenex normal
form. One of them, Q-resolution will be presented in subsequent chapters.

Prenex Normal Form A quantified boolean formula ϕ is in prenex normal
form if it is, for some n, isomorphic to a formula Fn,p ∈ QBF from the following
family:

Fn,p := Q1x1Q2x2 . . . Qnxn ϕp

where ϕp ∈ PL, Qi ∈ {∃,∀}, 1 ≤ i ≤ n. We call ϕp the propositional core
(or matrix) of ϕ and the sequence of Qis the quantifier prefix of ϕ. Note that
for each quantified boolean formula, there exists at least one equivalent formula
in prenex normal form. In general there may be even more such normal forms

56

9.2. Normal Forms

for one formula. We can use the algorithm pnf to transform formulas into
equivalent prenex normal form.

Let ϕ ∈ QBF be a quantified boolean formula. Then pnf (ϕ) is defined
through the rules (1) to (5) below. These rules are actually equivalences which
are directed. They are applied to ϕ and its sub-formulas until no rule can be
applied any more.

¬∃xψ 7−→ ∀x¬ψ (1)

¬∀xψ 7−→ ∃x¬ψ (2)

(Qxψ) ◦ ψ∗ 7−→ Qx (ψ ◦ ψ∗) (3)

ψ∗ ◦ (Qxψ) 7−→ Qx (ψ∗ ◦ ψ) (4)

Qxψ∗ 7−→ ψ∗ (5)

In the rules (1) to (5), x /∈ free(ψ∗), Q ∈ {∃, ∀} and ◦ ∈ {∧,∨} hold. Note that
there is some don’t-care-indeterminism introduced by the rules (3) and (4). As
an example, the formula (∀pϕ) ∧ (∃q ψ) has two distinct prenex normal forms,
depending on the application order of the rules (3) and (4): The order (3)(4)
yields ∀p∃q ϕ ∧ ψ whereas the order (4)(3) yields ∃q ∀pϕ ∧ ψ. Nevertheless, we
mostly use pnf as if it were an actual function pnf : QBF → QBF . Each of
the rules (1) to (5) is strictly equivalence preserving. In other words, 7−→ can
be replaced by ≡ in the definitions of the rules (1) to (5). Thus applications
of the rules (1) to (5) can be seen as equivalent replacements. A consequence
of this is that ϕ ≡ pnf (ϕ) holds for any quantified boolean formula. Moreover,
if the replacements are directed (performed from left to right), pnf (ϕ) can be
calculated in a time polynomial in the size of ϕ.

We may also want to add additional rules that allow to “contract” quantifiers:

∀x1 ∀x2

(
ψ1(x1) ∧ ψ2(x2)

)
7−→ ∀x

(
ψ1(x) ∧ ψ2(x)

)
(6)

∃x1 ∃x2

(
ψ1(x1) ∨ ψ2(x2)

)
7−→ ∃x

(
ψ1(x) ∨ ψ2(x)

)
(7)

Again, x1 /∈ free(ψ2) and x2 /∈ free(ψ1). Transformations containing the rules
(1) to (5) as well as the rules (6) to (7) will be called pnf +. The formula pnf +(ϕ)
can still be calculated in a time polynomial in the size of ϕ.

Keep in mind that, e.g., ∀x1 ∀x2

(
ψ1(x1)∨ψ2(x2)

)
is generally not equivalent

to ∀x
(
ψ1(x) ∨ ψ2(x)

)
, which is demonstrated in the following example:

⊥ ≡ ∃y
(
∀x (x ⊃ y ∧ y ⊃ x)

)
∨
(
∀x (¬x ⊃ y ∧ y ⊃ ¬x)

)
6≡

> ≡ ∃y ∀x (x ⊃ y ∧ y ⊃ x) ∨ (¬x ⊃ y ∧ y ⊃ ¬x)

Conjunctive Normal Form A propositional formula ϕ ∈ PL is in conjunctive
normal form if it is a conjunction of disjunctions of literals. That is, if it is of a
form ((`1,1∨`1,2∨. . .∨`1,k1)∧(`2,1∨`2,2∨. . .∨`2,k2)∧. . .∧(`n,1∨`n,2∨. . .∨`n,kn))
where `i,j denotes a literal.

57

9. Transformations and Proof Size

There are three principle ways to transform a formula into a corresponding
conjunctive normal form. Each transformations has advantages as well as dis-
advantages. We will present them in the following.

1. Transform ϕ to a formula ψ that is equivalent to ϕ, i.e., ϕ ≡ ψ holds.
This procedure does not change the set of variables of ϕ. Generally this
transformation can be implemented in two steps: First bring ϕ to a cor-
responding negation normal form and then iteratively apply distributivity
laws to nnf (ϕ):

(ϕ1 ∧ ϕ2) ∨ ϕ3 7−→ (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3) (9.1)

ϕ1 ∨ (ϕ2 ∧ ϕ3) 7−→ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3) (9.2)

Note that the application of these rules duplicates the formula ϕ3 (respec-
tively ϕ1). Thus the resulting formula cnf (ϕ) may be exponentially larger
in size than the source formula ϕ. It follows that cnf , though being easily
mechanizable, is not guaranteed to terminate in a time polynomial in the
size of the input formula.

2. There is a way to conquer the exponential blow up of the first transfor-
mation. The idea is to introduce globally new variables that “encode”
the structure of the input formula. With introducing new variables log-
ical equivalence cannot preserved any more. ϕ is thus transformed to a

formula ψ such that ϕ
sat≡ ψ holds. Again this can be done in two steps.

First bring ϕ to negation normal form, then iteratively apply the following
rewrite rules to nnf (ϕ):

(ϕ1 ∧ ϕ2) ∨ ϕ3 7−→ (ϕ1 ∨ x) ∧ (ϕ2 ∨ x) ∧ (ϕ3 ∨ ¬x) (9.3)

ϕ1 ∨ (ϕ2 ∧ ϕ3) 7−→ (ϕ1 ∨ ¬x) ∧ (ϕ2 ∨ x) ∧ (ϕ3 ∨ x) (9.4)

Clearly, the resulting formula is satisfiable if and only if the input formula
is. A satisfying assignment to the input can easily be extended to a sat-
isfying assignment to the resulting formula in conjunctive normal form.
While the first transformation can be applied to quantified boolean for-
mulas without any problem, the second one has to be treated carefully.
It introduces new variables that are free by definition. They are globally
new and no new quantifier is introduced. Henceforth the second procedure
cannot be applied without changes to closed quantified boolean formulas
if there is the condition that the result has to be closed too.

3. A third method is to introduce a label for each sub-formula of ϕ and encode
the structure of ϕ using the new labels [21, 17]. This technique has two
advantages: First, the structure of the original can be restored fully from
the informations stored in the labels and their relations in the conjunctive
normal form formula. Further, the resulting formula is at polynomial

58

9.2. Normal Forms

(linear) in the size of the input formula. As new labels are introduced,
cnf (ϕ) is not logically equivalent to ϕ. Still, it can be shown that indeed
each model of cnf (ϕ) does also satisfy ϕ. Note that this approach can be
applied to any propositional formula whereas approach number 2 depends
on its input formula to already be in negation normal form.

The transformation can formally be defined the following way:

• Let S be the set of all structural sub-formulas of ϕ.

• Let L = {dξ | ξ ∈ S} be a set of variable symbols that do not occur in
ϕ (L ⊆ V, L ∩ free(ϕ) = ∅). dξ is used as a label for the sub-formula
ξ of ϕ.

• Then cnf (ϕ) :=
∧
ψ∈S

(⊕(ψ) ∧ 	(ψ)).

• ⊕(ψ) and 	(ψ) are defined as follows:

– If ψ = p with p ∈ (C ∪ V) then ⊕(ψ) = (dψ ∨ ¬p) and 	(ψ) =
(¬dψ ∨ p).

– If ψ = ¬ψ′ then ⊕(ψ) = (dψ ∨ dψ′) and 	(ψ) = (¬dψ ∨ ¬dψ′).
– If ψ = (ψ1 ∧ ψ2) then ⊕(ψ) = (dψ ∨ ¬dψ1 ∨ ¬dψ2) and 	(ψ) =

((¬dψ ∨ dψ1) ∧ (¬dψ ∨ dψ2)).

– If ψ = (ψ1 ∨ ψ2) then ⊕(ψ) = ((dψ ∨ ¬dψ1) ∧ (dψ ∨ ¬dψ2)) and
	(ψ) = (¬dψ ∨ dψ1 ∨ dψ2).

Special care has to be taken when this transformation is applied to quanti-
fied boolean formulas. As in transformation 2, new labels are introduced.
These labels correspond to free variables. Thus additional quantifiers have
to be added.

There are various improvements to this transformation:

• Do not use fresh labels for atomic formulas. Use atomic formulas as
labels for themselves instead.

• Do not use labels for negated sub-formulas.

• Use the same label for identical sub-formulas.

Clause Notation We also write formulas in conjunctive normal form as clause
sets:

{{`1,1, `1,2, . . . , `1,k1}, {`2,1, `2,2, . . . , `2,k2}, . . . , {`n,1, `n,2, . . . , `n,kn}}

is the clause form of

((`1,1 ∨ `1,2 ∨ . . .∨ `1,k1)∧ (`2,1 ∨ `2,2 ∨ . . .∨ `2,k2)∧ . . .∧ (`n,1 ∨ `n,2 ∨ . . .∨ `n,kn))

59

9. Transformations and Proof Size

Prenex Conjunctive Normal Form A quantified boolean formula ϕ ∈ QBF
is in prenex conjunctive normal form if it is in prenex normal form and its
propositional core (core(ϕ)) is in conjunctive normal form. It can be calculated
in two steps: Bring the source formula into prenex normal form and then apply
a transformation to conjunctive normal to its core that is suitable. Keep in
mind that indeterminism is introduced through prenexing and size (computation
time) hazards are hidden in the transformation of the core. The impacts of these
transformations on proofs are discussed in the following.

9.3. GQBF-Proofs and Prenexing

Subsequently we will have a look into the complexity of prenexing, with a special
focus on proof transformations. In other words, we will examine the impact of
prenexing operations on the structure of GQBF proofs.

For the next part, assume we have a GQBF proof π of a closed quantified
boolean formula ϕ ∈ QBF that is not in prenex normal form but in negation
normal form. As quantifiers and connectives are eliminated from the outermost
to the innermost one, each trace through the proof tree of π resembles a trace
through the structure tree of ϕ.

Now imagine that we perform a prenexing operation on ϕ, e.g., moving a
quantifier up one level towards the root) in the structure tree of ϕ. Clearly, π
does not prove the adapted formula ϕ′. But there is an easy way to adapt π
such that it is a proof of the new ϕ′: The rule that treated the quantifier shifted
upwards in ϕ′ is also shifted upwards (towards the root) in π. Transformations
on proofs that resemble prenexing operations on formulas will be discussed in
the following.

To be more precise, we use the following mechanical procedure to transform
a proof of ϕ into a proof of pnf (ϕ):

1. If ϕ is in prenex normal form: Stop.

2. On the formula level: Move the outermost quantifier up one level. Use
one of the seven prenexing rules for it. If there is more than one quantifier
on the outermost non-prenex level, choose one according to the quantifier
prefix that should be reached eventually. A thorough discussion of the
impact of different prenexing strategies can be found in [3].

3. On the proof level: Locally adapt the proof to prove the new formula. In
general this means to bubble a quantifier rule up over another rule.

4. Continue with 1.

Prenexing was defined as an inductive operation on the input formula and its
sub-formulas. We make use of the very same induction on the structure of ϕ,
to fully describe the impact of prenexing to a proof.

60

9.3. GQBF-Proofs and Prenexing

1. ¬∃xψ 7−→ ∀x¬ψ and ¬∀xψ 7−→ ∃x¬ψ.
As π is a proof of ϕ, ϕ has to be in negation normal form. These cases
cannot emerge.

2. (∃xψ) ◦ ψ∗ 7−→ ∃x (ψ ◦ ψ∗) where x does not occur in ψ∗.
Here we distinguish two cases: The first one is that x /∈ free(ψ). This case
just reduces to case 5. The second case where x ∈ free(ψ) is the more
interesting one and will be discussed in the following.

Assume that ◦ is ∧. Then π, the proof of ϕ, starts with ` ϕ as end-
sequent. The root of the proof may, depending on the structure of ϕ, split
into various branches. Some of them do not contain ` (∃xψ) ◦ ψ∗ while
others do. We use the Equivalent Replacement Theorem to transform π
to a proof τ of ϕ′. By using Theorem 9.1.3 (for replacing (∃xψ) ◦ ψ∗ by
∃x (ψ ◦ψ∗)), we can calculate a maximal size for the new proof. The most
interesting changes occur as soon as we reach ` (∃xψ) ◦ ψ∗ in a branch:

π′....
` ψ[x\c]
` ∃xψ ∃c

π′′....
` ψ∗

` (∃xψ) ∧ ψ∗ ∧
....
` ϕ

7−→

π′....
` ψ[x\c]

π′′....
` ψ∗

` ψ[x\c] ∧ ψ∗ ∧

` ∃x (ψ ∧ ψ∗) ∃c
....
` ϕ′

The size of the branch stays constant. In other words: We replace sub-
proofs by new sub-proofs of an equal size. Let sx denote the size of the
sub-proof to be replaced, sy the size of the replacement and k the number
of occurrences of the sub-proof to be replaced. Then the maximal size of τ
is |π|+ k(sx− sy). As sx is equal to sy, |τ | is at most |π|. As stated in the
paragraph below the proof of Theorem 9.1.3, it even holds that |π| = |τ |.

Similarly, we construct proof for the cases where ◦ is ∨i. If i is one we get
the following schema:

π′....
` ψ[x\c]
` ∃xψ ∃c

` (∃xψ) ∨ ψ∗
∨1

....
` ϕ

7−→

π′....
` ψ[x\c]

` ψ[x\c] ∨ ψ∗
∨1

` ∃x (ψ ∨ ψ∗) ∃c
....
` ϕ′

If i is two, we get the following:

61

9. Transformations and Proof Size

π′....
` ψ∗

` (∃xψ) ∨ ψ∗
∨2

....
` ϕ

7−→

π′....
` ψ∗

` ψ[x\c] ∨ ψ∗
∨2

` ∃x (ψ ∨ ψ∗) ∃c
....
` ϕ′

Again, let k denote the number of occurrences of the sub-proof to be
replaced in π. In the first case (∨1), we replace sub-proofs by sub-proofs
of equivalent sizes. Thus, by Theorem 9.1.3, τ is exactly as big as π is.
In the second case (∨2), sub-proofs are replaced by bigger sub-proofs. We
get a maximal size of τ of |π|+ k.

3. (∀xψ) ◦ ψ∗ 7−→ ∀x (ψ ◦ ψ∗)
The case where x /∈ free(ψ) reduces to case 5. The case where x appears
free in ψ again splits into three distinct cases. Note that if ψ∗ contains a
universal quantifier, case 6 can be used in subsequent prenexing steps to
undo previous increases in proof size.

π′....
` ψ[x\>]

π′′....
` ψ[x\⊥]

` ∀xψ ∀

` (∀xψ) ∨ ψ∗
∨1

....
` ϕ

7−→

π′....
` ψ[x\>]

` ψ[x\>] ∨ ψ∗
∨1

π′′....
` ψ[x\>]

` ψ[x\⊥] ∨ ψ∗
∨1

` ∀x (ψ ∨ ψ∗) ∀
....
` ϕ′

If the connective (◦) is ∨ and ∨1 was used to produce the minimal proof
π, sub-proofs are replaced by sub-proofs of a bigger size. The ∨1 rule has
to be applied twice in τ .

π′....
ψ∗

` (∀xψ) ∨ ψ∗
∨2

....
` ϕ

7−→

π′....
` ψ∗

` ψ[x\>] ∨ ψ∗
∨2

π′....
` ψ∗

` ψ[x\⊥] ∨ ψ∗
∨2

` ∀x (ψ ∨ ψ∗) ∀
....
` ϕ′

If the connective (◦) is ∨ and ∨2 was used to produce the minimal proof π,
sub-proofs are replaced by sub-proofs of a bigger size. The ∨2 rule has to be
applied two times in τ . Additionally, the sub-proof π′ appears two times in

62

9.3. GQBF-Proofs and Prenexing

each replacement, whereas only one instance is found in each replaced sub-
proof. This can dramatically increase the size of the proof. The maximal
size increase thus depends on the size of π′: |τ | ≤ |π|+ k(1 + |π′|) whereas
k is the number of occurrences of the sequent ` (∀xψ)∨ψ∗ in π. Note that
proofs in directed acyclic graph form can help to reduce the increase in
proof size. Subsequent chapters will discuss this in more detail. Also note
that the increased complexity of the proof may not be relevant in proof
search. Implementations like [6] may avoid to fully traverse both branches
during proof search with the use of dependency directed backtracking.

π′....
` ψ[x\>]

π′′....
` ψ[x\⊥]

` ∀xψ ∀

π′′′....
` ψ∗

` (∀xψ) ∧ ψ∗ ∧
....
` ϕ

7−→

π′....
` ψ[x\>]

π′′′....
` ψ∗

` ψ[x\>] ∧ ψ∗ ∧

π′′....
` ψ[x\⊥]

π′′′....
` ψ∗

` ψ[x\⊥] ∧ ψ∗ ∧

` ∀x (ψ ∧ ψ∗) ∀
....
` ϕ′

As with the previous case, a sub-proof has to be copied. The size of τ is
a most |π|+ k(1 + |π′′′|).

4. ψ∗ ◦ (∃xψ) 7−→ ∃x (ψ∗ ◦ ψ)
Symmetric to cases 2.

5. ψ∗ ◦ (∀xψ) 7−→ ∀x (ψ∗ ◦ ψ)
Symmetric to cases 3.

6. Qxψ∗ 7−→ ψ∗ where x does not appear in ψ∗.

π′....
` ψ∗[x\>]

π′′....
` ψ∗[x\⊥]

` ∀xψ∗ ∀
....
` ϕ

7−→

π′′′....
` ψ∗....
` ϕ′

63

9. Transformations and Proof Size

Choose π′′′ as the shorter one of π′ and π′′ and let c := > if π′′′ = π′ or
c := ⊥ otherwise. Note that ψ∗[x\ξ] = ψ∗ for arbitrary ξ ∈ QBF . By
Theorem 9.1.3 we know that the size of τ is at most |π| + k(|π′′′| − (1 +
|π′|+ |π′′|)) ≤ |π|. Again, k be the number of occurrences of ` ∀xψ∗ in π.

7. ∀x1 ∀x2

(
ψ1(x1) ∧ ψ2(x2)

)
7−→ ∀x

(
ψ1(x) ∧ ψ2(x)

)
whereas x2 does not

appear in ψ1 and x1 does not appear in ψ2.
The resulting proof is strictly shorter than the source proof.

π′1....
` ψ1(>) ∧ ψ2(>)

π′2....
` ψ1(>) ∧ ψ2(⊥)

` ∀x2 ψ1(>) ∧ ψ2(x2)
∀

π′′1....
` ψ1(⊥) ∧ ψ2(>)

π′′2....
` ψ1(⊥) ∧ ψ2(⊥)

` ∀x2 ψ1(⊥) ∧ ψ2(x2)
∀

` ∀x1 ∀x2 ψ1(x1) ∧ ψ2(x2)
∀

....
` ϕ

is transformed into:

π′1....
` ψ1(>) ∧ ψ2(>)

π′′2....
` ψ1(⊥) ∧ ψ2(⊥)

` ∀xψ1(x) ∧ ψ2(x)
∀

....
` ϕ′

Thus, |τ | is at most |π|+ k((π′1 + π′′2)− (1 + π′1 + π′2 + π′′1 + π′′2)) ≤ |π|.

8. ∃x1 ∃x2

(
ψ1(x1) ∨ ψ2(x2)

)
7−→ ∃x

(
ψ1(x) ∨ ψ2(x)

)
whereas x2 does not

appear in ψ1 and x1 does not appear in ψ2.
The resulting proof is strictly shorter than the source proof.

π′i....
` ψi(ci)

` ψ1(c1) ∨ ψ2(c2)
∨i

` ∃x2 ψ1(c1) ∨ ψ2(x2)
∃c2

` ∃x1 ∃x2 ψ1(x1) ∨ ψ2(x2)
∃c1

....
` ϕ

7−→

π′i....
` ψi(ci)

` ψ1(ci) ∨ ψ2(ci)
∨i

` ∃xψ1(x) ∨ ψ2(x)
∃ci

....
` ϕ′

Hence |τ | is at most |π| − k ≤ |π|.

64

9.3. GQBF-Proofs and Prenexing

On basis of the findings about prenexing we can formulate and prove the
following theorem:

Theorem 9.3.1. [Prenexing can exponentially enlarge GQBF proofs] Let ϕn ∈
QBF be a closed quantifed boolean formula in negation normal form defined
recursively as follows:

• ψ(x, y) = (x ∨ ¬y) ∧ (¬x ∨ y)

• ϕ1 = ∀x1 ∃y1 ψ(x1, y1)

• ϕn = ∀xn ∃yn (ψ(xn, yn) ∨ ϕn−1)

Then there is a GQBF proof π: `G ϕn with |π| = 11 whereas there is no GQBF
proof τ such that τ is a proof of a prenexed form of ϕn with a size polynomial
in n.

Proof. See Figure 9.1 for the structure tree of ϕn.

Surely, there exists a short GQBF proof of ϕn with |ϕn| = 11:

` >xn
` >xn ∨ ¬>yn

∨1
` >yn

` ¬>xn ∨ >yn
∨2

` (>xn ∨ ¬>yn) ∧ (¬>xn ∨ >yn)
∧

` ψ(>xn ,>yn) ∨ ϕn−1
∨1

` ∃yn (ψ(>xn , yn) ∨ ϕn−1)
∃>

` ¬⊥yn
` ⊥xn ∨ ¬⊥yn

∨2
` ¬⊥xn

` ¬⊥xn ∨ ⊥yn
∨1

` (⊥xn ∨ ¬⊥yn) ∧ (¬⊥xn ∨ ⊥yn)
∧

` ψ(⊥xn ,⊥yn) ∨ ϕn−1
∨1

` ∃yn (ψ(⊥xn , yn) ∨ ϕn−1)
∃⊥

` ∀xn ∃yn (ψ(xn, yn) ∨ ∀xn−1 ∃yn−1 (ψ(xn−1, yn−1) ∨ ϕn−2))
∀

The prenex normal form of ϕn is unique: It is the quantified bollean formula
ϕpnfn = ∀xn ∃yn . . . ∀x1 ∃y1 (ψ(xn, yn) ∨ . . . ∨ ψ(x1, y1)). A proof of ϕpnfn starts
in its root with an application of the ∀-rule, splitting the proof in two subproofs.
Each of them starts with an ∃-rule assigning the value from the previous ∀-rule
to its variable. The next ∀-rule starts the very process again. After elimination
all quantifiers, the proof has 2n open branches, each of them already containing
2n rule applications. Each of these branches can be closed using 3 steps, similar
to the branches of the proof of ϕn. Thus, the size of a proof for ϕpnfn is far
beyond 2n.

Formulas like ϕpnfn are used in game theory to describe certain characteristics
of games. A formula with a similar structure is used in [1] to describe mutual
exclusion patterns for the Evader/Persuer game.

We can provide a slightly weaker theorem for GQBF+:

Theorem 9.3.2. [Prenexing can exponentially enlarge GQBF+ proofs] Let ϕn
be a closed quantified boolean formula in negation normal form defined induc-
tively as follows:

65

9. Transformations and Proof Size

• ψ(x, y) = (x ∨ ¬y) ∧ (¬x ∨ y)

• ϕ1 = ∀x1 ∃y1 ψ(x1, y1)

• ϕn = (∀xn ∃yn (ψ(xn, yn)) ∧ (ϕn−1)

Then there is a GQBF+ proof π: `G ϕn of a size polynomial in n whereas
there exists na prenexed from of ϕn which cannot be proven polynomially using
GQBF+. GQBF+ proof.

Proof. A polynomially sized GQBF+ proof πn of ϕn can be constructed as fol-
lows:

τ>....
` ψ(>xn ,>yn)

` ∃yn ψ(>xn , yn)
∃>

τ⊥....
` ψ(⊥xn ,⊥yn)

` ∃yn ψ(⊥xn , yn)
∃⊥

` ∀xn ∃yn ψ(xn, yn)
∀

πn−1....
` ϕn−1

` ϕn
∧

The proof πn first (bottom-up) applies the ∧ rule to split ϕn into two parts.
The first part with the end-sequent ` ∀xn ∃yn ψ(xn, yn) can be proven with a
short polynomimal proof. As there exist proofs τ> and τ⊥ with |τ>| = 5 and
|τ⊥| = 7, ∀xn ∃yn ψ(xn, yn) can be proven with a short GQBF+ proof of size of
15. In the right branch ` ϕn−1 remains to be proven. A GQBF+ proof of ϕn−1

can be constructed the same way as a the above proof of ϕn is. The size of πn
is thus 16n− 1.

As prenex form of ϕn we choose ϕpnfn = ∀xn ∃yn . . . ∀x1 ∃y1 (ψ(xn, yn)∧ . . .∧
ψ(x1, y1)). Then we know from Lemma 8.1.2 that no polynomial GQBF+ proof

of ϕpnfn exists.

It is noteworthy that ϕpnfn can be evaluated in a time linear in n using al-
gortihms presented in [2]. From theorem 9.3.2 we conclude that the choice of
the prenexing strategy is essentially a proof size (and thus proof search) issue.
It is easy to find “better” prenex forms for ϕn that can provide exponentially
shorter proofs. A better prenex normal form can be constructed this way: 1)
Move all universal quantifiers up to the topmost level using the prenexing rules
(4) and (5). This yields ∀xn . . . ∀x1

∧1
i=n ∃yi ψ(xi, yi). Now rule (6) is applied

(n−1) times to get ∀x
∧1
i=n ∃yi ψ(x, yi) which has a polynomial GQBF+ proof.

Experimental results with a reference implementation of a GQBF+ solver from
[6] underline this point.

In the analysis presented in the very beginning of this section we concluded
that there is one main factor that drives the enlargement of proofs when a prenex
form is required: the duplication of sub-proofs. Apart from that, there only
appear constant increases in proof size. It is thus tempting to think that GQBF+

3

66

9.3. GQBF-Proofs and Prenexing

is only affected polynomially by prenexing as duplication can be eliminated
effectively. But there is a hazard that contradict this assumption: Deferring
“decisions” might drastically increase proof size. This hazard is used to prove
the following theorem:

Theorem 9.3.3. [Prenexing can exponentially enlarge GQBF+
3 proofs]

Let ψshort = ∃a1 ∃a2((a1 ∨ a2) ∧ (¬a1 ∨ ¬a2)) and

ψlongn = ∀x1 ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ∃z1 ∃z′1 ∃z2 ∃z′2 . . . ∃zn ∃z′n
n∧
i=1

ωi

be closed quantified boolean formula in negation normal form with

ωi = (¬xi∨yi)∧(¬yi∨xi)∧(xi∨zi∨z′i)∧(¬xi∨¬zi∨¬z′i)∧(zi∨z′i)∧(¬zi∨¬z′i).

Moreover let ϕn = ψshort ∨ ψlongn be a closed quantified boolean formula in
negation normal form. Then there is a GQBF+

3 proof π: `G ϕn of a size
polynomial in n whereas there exists a prenexed from of ϕn for which there is
no GQBF+

3 proof polynomial in n.

Proof. See figure 9.2 for the structure tree of ϕn. As ψlongn is formula (8.4), we

know from Lemma 8.2.1 that there is no polynomial GQBF+
3-proof of ψlongn . On

the other hand ψshort can be proven polynomially with GQBF+
3 (e.g., with a

simple GQBF+
3 proof of size 7).

Clearly, there is a polynomial GQBF+
3 proof of ϕn: Apply (bottom-up) ∨1 to

get a single open branch with the sequent ` ϕshort which can be proven with a
GQBF+

3 proof of size 7.
As prenex form ϕpnfn we choose the formula

ϕpnfn = ∀x1 ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ∃z1 ∃z′1 ∃z2 ∃z′2 . . . ∃zn ∃z′n ∃a1 ∃a2

(((a1 ∨ a2) ∧ (¬a1 ∨ ¬a2)) ∨ (ωi ∧ ωi ∧ . . . ∧ ωi)).

Then a proof nearly identical to the proof of Lemma 8.2.1 suffices to prove that
there cannot exist any polynomial GQBF+

3-proof of ϕpnfn : As the existential
quantifiers for a1 and a2 cannot be elimintated using a simplification rule (a1

and a2 both occur in both polarities and do not occur globally unit), all quan-
tifiers that precede them have to be eliminated before they can be elimintated
themselves. When all preceding quantifiers are eliminated, the proof is already
exponential in n as Lemma 8.2.1 proves.

67

9. Transformations and Proof Size

∀xn

∃yn

∨

∀xn−1

∃yn−1

∨

...

∀x2

∃y−2

∨

∀x1

∃y1

ψ(x1, y1)

ψ(x2, y2)

ψ(xn−1, yn−1)

ψ(xn, yn)

Figure 9.1.: The Structure of ϕn from the proof of Theorem 9.3.1.

68

9.3. GQBF-Proofs and Prenexing

∨

∀x1

∃y1

...

∀xn

∃yn

∃z1

∃z′1

...

∃zn

∃z′n

∧

∧

∧

...

∧

ωnωn−1

ω2

ω1

∃a1

∃a2

∨

∨

¬

a2

¬

a1

∨

a2a1

Figure 9.2.: The Structure of ϕn from the proof of Theorem 9.3.3.

69

Part V.

Q-resolution

71

10. Resolution for Quantified Boolean
Formulas

In this chapter, we describe a resolution-style proof system for quantified boolean
formulas that has been first presented in [4]. As for GQBF, we will first provide
a firm definition of the calculus called Q-resolution and will provide further
details and findings in the subsequent chapters.

10.1. The Calculus

Q-resolution is a sound and complete resolution-like calculus for quantified
boolean formulas. In contrast to GQBF, Q-resolution cannot operate on quanti-
fied boolean formulas in negation normal form. Like resolution for propositional
logic, it applies to formulas in conjunctive normal form. As quantified boolean
formulas contain quantifiers, they have to be treated specially. They are shifted
as far as possible “outwards” yielding input formulas in prenex normal form.
Formulas that are not in prenex conjunctive normal form have to be brought into
an equivalent normal form before being operated on by Q-resolution. Various
impacts of this necessity are discussed in Chapter 9 and in Part VI. Through-
out this chapter — and in the following ones — we will use both, formula and
clause notation for quantified boolean formulas in prenex conjunctive normal
form synonymously. Thereby we may use clause notation for the propositional
core of formulas and annotate the quantifier prefix separately. For a short re-
minder on clause forms, see Section 9.2. Before we describe the derivation rules
of Q-resolution, we introduce some notational forms.

Formulas in Prenex Conjunctive Normal From As Clauses Q-resolution op-
erates on input formulas in prenex conjunctive normal form only. The order of
literals inside a clause is of no relevance in general as such formulas that differ
in the ordering of their variables only are isomorphic. For the sake of simpler
definitions, Q-resolution imposes a ordering constraint on its input formulas. It
will be presented in the following:

Let ϕ ∈ QBFu be a quantified boolean formula in prenex conjunctive normal
form and V = free(core(ϕ)) be the free variables of the propositinal core of
ϕ. Then we define the relation <ϕ : V × V → B as follows: (x, y) is in the
relation <ϕ if and only if x precedes y in the quantifier prefix of ϕ. In other
words: x <ϕ y if Qy appears within a sub-tree of Qx in the structure tree of ϕ.

73

10. Resolution for Quantified Boolean Formulas

Without loss of generality, we always choose a clause notation for a disjunction
such that the order within the clause respects the <ϕ relation.

Let us consider an example: Let ϕ = ∀a ∃b∀c∀d (b ∨ c ∨ a) ∧ (¬a ∨ c ∨ d) ∨
(b ∨ ¬d) be a closed quantified boolean formula in prenex conjunctive normal
form. Then ϕ induces the clauses {a, b, c}, {¬a, c, d} and {b,¬d}. The clause
{a, b, c} corresponds to the disjunction (b∨ c∨a) whereas the following ordering
constraints — derived from the quantifier prefix of ϕ — are satisfied within the
clause: a <ϕ b <ϕ c. The set {¬a, c, d} corresponds to (¬a ∨ c ∨ d) and the set
{b,¬d} represents (b ∨ ¬d).

As one can see in the example, the three clauses do not describe the formula
entirely — it cannot be deduced from the clauses if a certain variable is uni-
versally or existentially quantified. To deal with this deficiency we introduce
a function quan

/
1 that returns the quantifier type for a variable symbol. To

continue the example: quan(a) = quan(c) = quan(d) = ∀, and quan(b) = ∃.
We implicitly treat clauses as sets. If a clause contains multiple copies of a

literal, they are contracted immediately, i.e. {a, a, a, b,¬c,¬c, d, d,¬d} is con-
tracted to {a, b, c, d,¬d}. This has impacts on the calculation of proof sizes and
will be discussed in more detail subsequently.

Pure Clauses The authors of [4] define a pure ∀-clause as “a non-tautological
clause consisting exclusively of ∀-literals.” Note that the empty clause ∅ thus
is a pure ∀-clause.

Derivation Rules Q-resolution has two principal derivation rules.

• Trailing Universals Elimination:

{`1, `2, . . . , `n, `n+1, `n+2, . . . , `n+m}
{`1, `2, . . . , `n}

p

The rule may only be applied if {`n+1, `n+2, . . . , `n+m} is a non-tautological
and pure ∀-clause and if `1 to `n are either existentially or universally
quantified. It thus removes all universally quantified literals that do not
precede any existentially quantified literals occurring in the clause. Note
that the literals with the clauses are ordered with respect the quantifier
prefix of the formula to be proven! We call the set {`1, `2, . . . , `n} conse-
quent of the p-rule and we call the set {`1, `2, . . . , `n, `n+1, `n+2, . . . , `n+m}
antecedent of the p-rule.

• Resolution:

A1 : {`1, . . . , `n, x, `n+1, . . . , `n+m} A2 : {`′1, . . . , `′n′ ,¬x, `′n′+1, . . . , `
′
n′+m′}

C : {`1, . . . , `n, `n+1, . . . , `n+m, `
′
1, . . . , `

′
n′ , `n′+1, . . . , `n′+m′}

r

74

10.1. The Calculus

In the above instance of the r-rule, the set C is called consequent while
the sets A1 and A2 are called antecedents. The resolution rule may only
be applied if the following three conditions are satisfied.

1. Rule p is not applicable to neither of the antecedents.

2. quan(x) = quan(¬x) = ∃.

3. The antecedents do not contain complementary literals (other than
x).

Implicit Assumptions Q-resolution as presented above has very strong rules.
They implicitly involve the following derivations and assumptions:

• Clauses are treated as sets: Multiple occurrences of literals in a clause
are impossible. Literals are contracted to a single literal if they appear
more than one time in the same polarity within a clause. Also a literal
cannot appear in both polarities in a clause as non-tautological clauses are
allowed only.

• It is important to note that the authors of the original paper [4] do not
use the p-rule directly and explicitly. Instead they use it as a kind of pre-
processing stage for the r-rule. That change in notation does not change
the set of formulas that can be proved but the calculation of proof sizes
might differ. While we incoorporate each application of the p-rule explic-
itly in the caluluation of proof sizes, [4] does not. Thus, proof sizes stated
in [4] have to be treated as lower bounds rather than exact values when
compared to proof sizes calculated for e.g. GQBF.

Application We use Q-resolution to prove the invalidity of quantified boolean
formulas. As been stated before, Q-resolution relies on the formula to be refuted
to be in prenex conjunctive normal form. If the formala to be worked with is not,
it has to be translated into a corresponding prenex conjunctive normal form. It
is then represented as a set of clauses and a global quantifier prefix.

A Q-resolution is a derivation in form of a directed acylic graph whereas the
consequents of r-rules are called Q-resolvents and the consequents of p rules are
called clean Q-resolvents. If we refer to clauses, we refer to Q-resolvents as well
as clean Q-resolvents. The axioms of such a Q-resolution proof are the clauses
that represent the formula to be refuted. In the course of the proof, new clauses
are derived, first from the axioms, then from the axioms and previously derived
clauses. If a Q-resolution proof derives the empty clause ∅, then the formula
that provided the axioms is said to be disproved or refuted.

We write π: `R ¬ϕ to state that π is a Q-resolution proof of the invalidity of
ϕ. Hence, π a proof of the validity of ¬ϕ. Furthermore we write `R ¬ϕ to state
that there exists a Q-resolution proof π of the in validity of ¬ϕ.

75

10. Resolution for Quantified Boolean Formulas

Q-resolution is sound and complete. A proof can be found in the paper
introducing Q-resolution [4]. A quantified boolean formula is false if and only if
the empty clause can be derived from the formula via Q-resolution.

A Derivation Example Let ϕ = ∀x1 ∀x2 ∃y1 ∃y2 ∀x3((x1 ∨ ¬x2 ∨ ¬y1¬ ∨ ¬y2 ∨
x3)∧(¬x2∨y2)∧(y1∨x3) be a quantified boolean formulas in prenex conjunctive
normal form that is unsatisfiable. Then there exists a Q-resolution proof π of
the invalidity of ϕ. It can be constructed the following way:

{x1,¬x2,¬y1,¬y2, x3}
{x1,¬x2,¬y1,¬y2}

p
{¬x2, y2}

{x1,¬x2,¬y1}
r
{y1, x3}
{y1}

p

{x1,¬x2}
r

∅ p

Size of Q-resolution Proofs Let ϕ ∈ QBF be a quantified boolean formulas
in prenex conjunctive normal form and π: `R ¬ϕ be a Q-resolution proof of
the invalidity of ϕ. Then we define the size of the refuation π, denoted |π|
inductively as follows:

1. π is an axiom (i.e.: a clause from ϕ): |π| := 1

2. π is a proof
R
` ϕ

p of ` ϕ ending at a p-inference. Let moreover R denote

a reference to a clause. Then |π| := 1.

3. π is a proof
R1 R2

` ϕ r of ` ϕ ending at a resolution step. Let R1 and

R2 denote references to clauses. Then |π| := 1.

4. π is a proof

τ....

` ϕ
p of ` ϕ ending at a p-inference. Let moreover τ denote

the proof of the rule’s antecedent. Then |π| := 1 + |τ |.

5. π is a proof

τ.... R
` ϕ r of ` ϕ ending at a resolution step. Let τ denote

the proof of the rule’s first premise and R denote a reference to a clause.
Then |π| := 1 + |τ |.

6. π is a proof R

τ....

` ϕ r of ` ϕ ending at an application of r. Let τ denote

the proof of the rule’s second premise and R denote a reference to a clause.
Then |π| := 1 + |τ |.

76

10.1. The Calculus

7. π is a proof

τ1....

τ2....

` ϕ r
of ` ϕ ending at a resolution step and let τ1 and τ2

denote the proofs of the rule’s antecedents. Then |π| := 1 + |τ1|+ |τ2|.

Thus the size of Q-resolution refutation corresponds to the number of distinct
clauses, including axioms, in it. This stems from the fact that we allow proofs
to be in directed acyclic graph form. It shall also be noted that we count
clauses created by the p-rule whereas the original paper [4] does not. Thus
proof sizes from the original paper always constitute lower bounds to our notion
of proof size. Also note that implicit contraction is used within clauses. Making
contraction explicit can further increase proof size. Again, the sizes used can be
seen as lower bounds. Also, the clauses that represents a formula can contain
duplicated clauses. Q-resolution does not take this into account. As it operates
on a set of clauses, duplicate clauses are “contracted” implicitly. Note that
contracting duplicate sub-formulas can exponentially shorten GQBF+

3 proofs.
See the proof of Theorem 8.2.1 for a demonstrating example.

77

Part VI.

Simulation

79

11. Simulation

This part deals with the notions of polynomial simulation and effectively polyno-
mial simulation. We will define these notions in detail and constitute a hierarchy
for GQBF-style calculi. Furthermore we will discuss relations between GQBF-
style calculi and Q-resolution with respect to these notions. Finally we will
compare all calculi mentioned to G0 from [10], another sequent-style calculus
for quantified boolean formulas. First we will define the notions of polynomial
simulation (p-simulation), strong polynomial simulation (strong p-simulation)
and effectively polynomial simulation (effectively p-simulation) [16]1.

Polynomial Simulation In [16] p-simulation is defined the following way.

Definition 11.0.1. Let A and B be two proof systems. Then A p-simulates B
if for all formulas ϕ, the shortest A-proof for ϕ is at most polynomially longer
than the shortest B-proof of ϕ.

Strong Polynomial Simulation Again, we use the definition given in [16]:

Definition 11.0.2. Let A and B be two proof systems. Then A strongly p-
simulates B if A p-simulates B and moreover, there is a polynomial-time com-
putable function f that transforms B-proofs of ϕ into A-proofs of ϕ.

Effectively Polynomial Simulation The authors of [16] introduce the notion
of effectively p-simulation as follows:

Definition 11.0.3. Let A and B be two proof systems. Then A effectively
p-simulates B if there is a polynomial-time in m truth-preserving transforma-
tion from (encodings of) boolean formulas to (encodings of) boolean formulas,
R(ϕ,m) such that when m is at least the size of the shortest B-proof of ϕ ,
R(ϕ,m) has an A proof of size polynomial in |ϕ| + m. If there also exists a
polynomial-time function (again polytime in |ϕ|+m) that maps B-proofs of ϕ
to A-proofs of R(ϕ,m), then we say that A strongly effectively p-simulates B.

Additionally m truth-preserving is defined that way:

Definition 11.0.4. Let R be a function QBF × N → QBF . Then R is called
polynomial-time, in m truth-preserving transformation if the following condi-
tions hold for all pairs (ϕ,m) ∈ (QBF × N):

1The authors of [16] abbreviate “effectively polynomial simulations” by the term “effectively-p
simulations”.

81

11. Simulation

• ϕ ≡ R(ϕ,m).

• R(ϕ,m) can be calculated in a time polynomial in |ϕ|+m where |ϕ| is the
number of connectives in ϕ and m is an auxiliary parameter.

Now we will discuss the relations between different calculi presented so far.
We will often use results gathered in the previous parts and chapters of this
thesis. First we will constitute a hierarchy of GQBF based calculi.

11.1. A Hierarchy for Sequent-Style Calculi

Theorem 11.1.1 (GQBF cannot p-simulate GQBF+). There is a countably
infinite family of formulas ϕ1, ϕ2, . . ., such that for members ϕi of this family
there exists a GQBF+ proof of polynomial size with respect to |ϕi| whereas
there is no GQBF proof of ϕi of polynomial size.

Proof. By Theorem 8.1.1.

Theorem 11.1.2 (GQBF+ can strongly p-simulate GQBF). There exists a
function f that is computable in polynomial time and that transform GQBF
proofs into GQBF+ proofs such that the following holds: Let π be a GQBF
proof. Then a polynomial p ∈ P[N] exists such that |f(π)| = p(|π|).

Proof. Let f be the identity function id . Choose p to be the identity function
too, regardless of π. Then we get:

|f(π)| = |id(π)| = |π| = id(|π|) = p(|π|)

Theorem 11.1.3 (GQBF+ cannot p-simulate GQBF+
3). There is a countably

infinite family of formulas such that for members of this family there exists a
GQBF+

3 proof of polynomial size whereas there is no GQBF+ proof of polyno-
mial size.

Proof. By Theorem 8.2.1.

Theorem 11.1.4 (GQBF+
3 can strongly p-simulate GQBF+). There exists

a polynomial-time computable function f that transform GQBF+ proofs into
GQBF+

3 proofs such that the following holds: Let π be a GQBF+ proof. Then
a polynomial p ∈ P[N] exists such that |f(π)| = p(|π|).

Proof. Identical to the proof of Theorem 11.1.2: Let f be the identity function
id . Choose p to be the identity function too, regardless of π. Then we get:

|f(π)| = |id(π)| = |π| = id(|π|) = p(|π|)

82

11.1. A Hierarchy for Sequent-Style Calculi

Transitivity of p-Simulation Clearly, p-simulation as defined before is a tran-
sitive relation. Assume that A p-simulates B and B p-simulates C. Take a
formula ϕ and the smallest C-proof πC of ϕ. Then a proof πB of ϕ and
a polynomial pBC exist such that |πB| = pBC(|πC |). Further a proof πA of
ϕ and a polynomial pAB exist such that |πA| = pAB(|πB|). It follows that
|πA| = pAB(|πB|) = pAB(pBC(|πC |)) = pAC(|πC |) with pAC ∈ P[N].

The same holds for strong p-simulation. If A strongly p-simulates B via
f : PB → PA and B strongly p-simulates C via g : PC → PB then A strongly
p-simulates C via h = (f ◦ g) : PC → PA.

From p-Simulation to Effectively p-Simulation Effectively p-simulation is im-
plied by p-simulation. If A p-simulates B then A effectively p-simulates B via
the polynomial-time 0 truth-preserving transformation R : QBF ×N→ QBF =
(λxy . x). In other words we do not transform the input formula as polynomial
simulation is given anyway. In the other direction, if A cannot effectively p-
simulate B then A surely cannot p-simulate B. This can be proven this way:
Let A and B be two calculi such that A cannot effectively p-simulate B. Now
assume that A can instead p-simulate B via f . Then A effectively p-simulates
B via (λxy . x) which yields a contradiction.

Transitivity can be established for effectively p-simulation in the same way as
for p-simulation and strong p-simulation.

G Can Effectively p-Simulate Directed Acyclic Graph GQBF A fully-fledged
sequent calculus for quantified boolean formulas, named G, is presented in [10].
Subsequently we will introduce this calculus and discuss its position in the hi-
erarchy of GQBF-style calculi.

The authors of [10] construct their calculus as an extension to propositional
LK from [20]. In [10] G-proofs are not restricted to trees. Instead they are
allowed to be in directed (acyclic) graph form. Thus sequents may be premisses
to multiple inferences like in GQBF+

3. Note that the sequents of G are, in
contrast to GQBF, of the form Γ → ∆ with Γ and ∆ being finite (multi-) sets
of quantified boolean formulas. The authors of [10] state that G includes the
following derivation rules:

• Initial Sequents: They correspond to axioms in GQBF-style calculi.

– x→ x, where x ∈ V is a variable symbol.

– ⊥ →
– → >

• Structural rules, cut-rule, logical rules, quantifier rules: See Figure 11.1.

The power of G to provide short proofs stems from the quantifier rules. None
of them requires to split the proof into two branches. Eigenvariables are in-
troduced instead. A eigenvariable is a variable symbol that does not occur in

83

11. Simulation

Structural Rules:

Γ→ ∆
D,Γ→ ∆

wl
Γ→ ∆

Γ→ ∆, D
wr

D,D,Γ→ ∆

D,Γ→ ∆
cl

Γ→ ∆, D,D

Γ→ ∆, D
cr

Cut:

Γ→ ∆, D D,Π→ Λ

Γ,Π→ ∆,Λ
cut

Logical Rules:

Γ→ ∆, D

¬D,Γ→ ∆
¬l

D,Γ→ ∆

Γ→ ∆,¬D
¬r

Γ→ ∆, C1 Γ→ ∆, C2

Γ→ ∆, C1 ∧ C2
∧r

C1,Γ→ ∆

C1 ∧ C2,Γ→ ∆
∧1
l

C2,Γ→ ∆

C1 ∧ C2,Γ→ ∆
∧2
l

C1,Γ→ ∆ C2,Γ→ ∆

C1 ∨ C2Γ→ ∆
∨l

Γ→ ∆, C1

Γ→ ∆, C1 ∨ C2
∨1
r

Γ→ ∆, C2

Γ→ ∆, C1 ∨ C2
∨1
r

Quantifier Rules:

ϕ[x\ψ],Γ→ ∆

∀xϕ,Γ→ ∆
∀l

Γ→ ∆, ϕ[x\e]
Γ→ ∆,∀xϕ ∀r

e is a eigenvariable.
I.e., it does not oc-
cur in the lower se-
quent.

ϕ[x\e],Γ→ ∆

∃xϕ,Γ→ ∆
∃l

Γ→ ∆, ϕ[x\ψ]

Γ→ ∆, ∃xϕ ∃r
e is a eigenvariable.
I.e., it does not oc-
cur in the lower se-
quent.

Figure 11.1.: The derivation rules of G.

any sequent of any trace from the end-sequent to the position it is introduced.
Thus, from a bottom-up perspective, eigenvariables are always fresh variable
symbols. Inroducing eigenvariables when quantifiers are eliminated allows to

84

11.1. A Hierarchy for Sequent-Style Calculi

“defer” the decision of choosing a truth value for the variable symbol that is
instantiated. Derivations that are further down the derivation tree have then
to take the eigenvariables into account. The benefit of avoiding branching is
gained at the cost of ordering constraints on the sequence of derivations. This
can be seen at the following example:

e→ t
∃xx→ t

∃l
∃xx→ ∃xx ∃r

or

e→ e
e→ ∃xx ∃r
∃xx→ ∃xx ∃l

The sequence (∃r,∃l) does not produce a proof while the sequence (∃l, ∃r) of
derivation rules yields a valid G proof of the sequent ∃xx→ ∃xx.

According to [16], Gi “is a subsystem of G obtained by restricting the cut
rule to Σq

i QBF formulas only”. In this manner, G0 is the G-style proof system
that allows cut to be used only on propositional formulas.

Now [16] gives and proves the following, quite interesting, Theorem (Theorem
3.8 in the paper):

Theorem 11.1.5 (The Effective Power of G0). For any i, G0 can effectively
p-simulate any proof system for Σq

i quantified boolean formulas.

This is quite remarkable as it basically states that there exists a calculus that
is effectively optimal. Especially as [18] proved that from the existence of an
optimal calculus for quantified boolean formulas — the existence of a calculus
that polynomially simulates all other calculi — follows that (NP ∩ co-NP) has
complete languages. Currently it is considered as highly unlikely that such
complete languages indeed exist.

As a corollary from Theorem 11.1.5 we can conclude that G can effectively
p-simulate GQBF+

3.

Corollary 11.1.1. G can effectively p-simulate GQBF+
3. By transitivity it can

also p-simulate GQBF and GQBF+ effectively.

Theorem 11.1.6 (GQBF+
3 cannot p-simulate G). There is a countably infinite

family of formulas such that for members of this family there exists a G proof
of polynomial size whereas there is no GQBF+

3 proof of polynomial size.

Proof. Let

ϕn = ∀x1 ∃y1 ∀x2 ∃y2 . . . ∀xn ∃yn ∃z1 ∃z′1 ∃z2 ∃z′2 . . . ∃zn ∃z′n
n∧
i=1

ψi

be a quantified boolean formula in negation normal form with

ψi = (¬xi∨yi)∧(¬yi∨xi)∧(xi∨zi∨z′i)∧(¬xi∨¬zi∨¬z′i)∧(zi∨z′i)∧(¬zi∨¬z′i).

Then we know by Lemma 8.2.1 that ϕn is not polynomially provable using
GQBF+

3. It remains to show that ϕn is indeed polynomially provable with G.
A cut-free proof with a mid-sequent → ω can be constructed (bottom up) as
follows:

85

11. Simulation

• Let→ ϕn be the end-sequent. We apply 4n quantifier rules (bottom up) to
construct the mid-sequent→ ω: xi is replaced by ei which always satisfies
the eigenvariable condition. yi is instantiated with ei while zi and z′i are
instantiated by >.

• All quantifiers are eliminated and→
∧n
i=1 ψi[xi\ei][yi\ei][zi\>][z′i\>] is the

mid-sequent → ω.

• Now we apply the ∧r-rule to the mid-sequent→ ω to separate the first con-
junct ψ1[x1\e1][y1\e1][z1\>][z′1\>] from the conjunction. The left branch
can be proven using a proof of constant size while the right branch contains
a strictly smaller instance of the mid-sequent.

• Iterate the above step in the left branch. Again, the newly created left
branch can be closed easily while the right contains a strictly smaller
instance.

The size of the overall proof is (19n− 1) and thus polynomial in n. Also note
that it is not even necessary to use cut or weakening and that a proof in form
of a tree suffices to constitute a proof of polynomial size.

We can thus establish a complete hierarchy of sequent-style calculi for quan-
tified boolean formulas:

GQBF

GQBF+

GQBF+
3

G

A B A p-simulates B

A B
A cannot p-simulate B

A B
A effectively p-simulates B

A B
A cannot effectively p-simulate B

11.2. Simulation between GQBF and Q-resolution

In the last section we established a hierarchy for sequent-style calculi. We now
try to augment this hierarchy by adding relations to resolution-style calculi. For
this purpose, we research the relations to Q-resolution in more detail. At the
beginning we compare Q-resolution to a weak sequent calculus and continue
with comparing it to stronger sequent calculi.

Theorem 11.2.1 (GQBF cannot p-simulate Q-resolution). For every n ≥ 1
there exists a quantified boolean formula ϕn such that there exists a Q-resolution
proof π: `R ¬ϕn with |π| ≤ 5 whereas the shortest GQBF proof τ : `G ϕn has
|τ | ≥ 2n.

86

11.2. Simulation between GQBF and Q-resolution

Proof. Let ϕn = ∃x1 ∃x2 . . . ∃xn ∀a (ψ(x1, a) ∧ ψ(x2, a) ∧ . . . ∧ ψ(xn, a)) with
ψ(x, a) := (a ∨ x) ∧ (a ∨ ¬x) ∧ (¬a ∨ x) ∧ (¬a ∨ ¬x). Clearly, |ϕn| = 14n+ 1.

Then there exists a Q-resolution proof π: `R ¬ϕn with |π| = 4:

{x1, a} {¬x1, a}
{a}

r

∅ p

A GQBF (+¬) proof τ of the invalidity of ϕn has to begin (bottom up) by
applying the ¬ rule.

τ ′....
` ∀x1 . . . ∀xn ∃a (nnf (¬ψ(x1, a)) ∨ . . . ∨ nnf (¬ψ(xn, a)))

ϕn `
¬

From Theorem 8.1.1 we know that the size of the proof τ ′ is at least 2n. Hence
the size of τ is at least 2n too. That gives us that there is no GQBF proof of
the invalidity of ϕn of a size polynomial in n.

Lemma 11.2.1 (Exponential Q-resolution proofs [4]). For every n (n ≥ 1)
there exists a formula ϕn of length 18n+ 1 which is false, and the refutation of
the empty clause requires at least 2n Q-resolution steps.

A proof can also be found in [4]. We will use this Lemma subsequently to
prove relations between certain forms of GQBF and Q-resolution.

Theorem 11.2.2 (Q-resolution cannot p-simulate GQBF+
3). For every n ≥ 1,

there is a quantified boolean formula ϕn in prenex conjunctive normal form such
that there is no Q-resolution proof of a polynomial size of the invalidity of ϕn
but there exists a GQBF+

3 (+¬) proof of polynomial size.

87

11. Simulation

Proof. Let ϕn be defined as in Theorem 3.2 in [4]:

ϕn = ∃y0 ∃y1 ∃y′1 ∀x1 ∃y2 ∃y′2 ∀x2 ∃y3 ∃y′3 . . . ∀xn−1 ∃xn ∃x′n ∀xn
∃yn+1 ∃yn+2 . . . ∃yn+n

(¬y0)∧
(y0 ∨ ¬y1 ∨ ¬y′1)∧
(y1 ∨ ¬x1 ∨ ¬y2 ∨ ¬y′2) ∧ (y′1 ∨ x1 ∨ ¬y2 ∨ ¬y′2)∧
(y2 ∨ ¬x2 ∨ ¬y3 ∨ ¬y′3) ∧ (y′2 ∨ x2 ∨ ¬y3 ∨ ¬y′3)∧
...

(yn−1 ∨ ¬xn−1 ∨ ¬yn ∨ ¬y′n) ∧ (y′n−1 ∨ xn−1 ∨ ¬yn ∨ ¬y′n)∧
(yn ∨ ¬xn ∨ ¬yn+1 ∨ ¬yn+2 ∨ . . . ∨ ¬yn+n)∧
(y′n ∨ xn ∨ ¬yn+1 ∨ ¬yn+2 ∨ . . . ∨ ¬yn+n)∧
(x1 ∨ yn+1) ∧ (x2 ∨ yn+2) ∧ . . . ∧ (xn ∨ yn+n)∧
(¬x1 ∨ yn+1) ∧ (¬x2 ∨ yn+2) ∧ . . . ∧ (¬xn ∨ yn+n)

Then we know by Lemma 11.2.1 (respectively Theorem 3.2 in [4]) that there
is no Q-resolution proof of the invalidity of ϕn of a polynomial size. As in the
proof of Theorem 11.2.1, a proof τ of the invalidity of ϕn starts with the ¬-rule.

τ ′....
` ψn
ϕn `

¬

Where ψn is the following formula:

ψn = nnf (¬ϕn) =

∀y0 ∀y1 ∀y′1 ∃x1 ∀y2 ∀y′2 ∃x2 ∀y3 ∀y′3 . . . ∃xn−1 ∀xn ∀x′n ∃xn
∀yn+1 ∀yn+2 . . . ∀yn+n

(y0)∨
(¬y0 ∧ y1 ∧ y′1)∨
(¬y1 ∧ x1 ∧ y2 ∧ y′2) ∨ (¬y′1 ∧ ¬x1 ∧ y2 ∧ y′2)∨
(¬y2 ∧ x2 ∧ y3 ∧ y′3) ∨ (¬y′2 ∧ ¬x2 ∧ y3 ∧ y′3)∨
...

(¬yn−1 ∧ xn−1 ∧ yn ∧ y′n) ∧ (¬y′n−1 ∧ ¬xn−1 ∧ yn ∧ y′n)∨
(¬yn ∧ xn ∧ yn+1 ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬y′n ∧ ¬xn ∧ yn+1 ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬x1 ∧ ¬yn+1) ∨ (¬x2 ∧ ¬yn+2) ∨ . . . ∨ (¬xn ∧ ¬yn+n)∨
(x1 ∧ ¬yn+1) ∨ (x2 ∧ ¬yn+2) ∨ . . . ∨ (xn ∧ ¬yn+n)

88

11.2. Simulation between GQBF and Q-resolution

Now the GQBF+
3 proof τ ′ of ψn (of polynomial length) is constructed bottom

up as follows:

1. Apply the ∀-rule to the end-sequent ` ψn. In the positive branch — the
branch where y0 is replaced by > — we end up in an axiom in a short
linear proof:

The sequent to be proven is ` ∀y1 . . . (> ∨ . . .). We thus apply the rule
S3a and get ` ∀y1 . . . (>). 4n applications of the rule S4 suffice to remove
all quantifiers and reach ` > which indeed is an axiom.

In the negative branch — y0 is replaced by ⊥— we get ` ∀y1 . . . (⊥∨(¬⊥∧
y1∧y′1)∨ . . .). After an application of S3b that removes the superfluous ⊥
clause, an application of S1b and one of S2a remove the superfluous ¬⊥
in the first clause. We have to find a polynomial proof for the following
formula:

ωn = ∀y1 ∀y′1 ∃x1 ∀y2 ∀y′2 ∃x2 ∀y3 ∀y′3 . . . ∃xn−1 ∀xn ∀x′n ∃xn
∀yn+1 ∀yn+2 . . . ∀yn+n

(y1 ∧ y′1)∨
(¬y1 ∧ x1 ∧ y2 ∧ y′2) ∨ (¬y′1 ∧ ¬x1 ∧ y2 ∧ y′2)∨
(¬y2 ∧ x2 ∧ y3 ∧ y′3) ∨ (¬y′2 ∧ ¬x2 ∧ y3 ∧ y′3)∨
...

(¬yn−1 ∧ xn−1 ∧ yn ∧ y′n) ∧ (¬y′n−1 ∧ ¬xn−1 ∧ yn ∧ y′n)∨
(¬yn ∧ xn ∧ yn+1 ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬y′n ∧ ¬xn ∧ yn+1 ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬x1 ∧ ¬yn+1) ∨ (¬x2 ∧ ¬yn+2) ∨ . . . ∨ (¬xn ∧ ¬yn+n)∨
(x1 ∧ ¬yn+1) ∨ (x2 ∧ ¬yn+2) ∨ . . . ∨ (xn ∧ ¬yn+n)

2. Prove ωn (by reducing it to ωn−1): Apply the ∀-rule and split over y1.
That results in two branches, in the first one y1 is replaced by > whereas
it is replaced by ⊥ in the second one.

• y1 −→ >: ` ∀y′1 . . . ((> ∧ y′1) ∨ (¬> ∧ x1 ∧ y2 ∧ y′2) ∨ . . .). The rules
S2a, S1a, S3b, LU2a, S1b and S2a are applied to get ` ∀y′1 . . . (y′1∨
(¬x1 ∧ y2 ∧ y′2) ∨ . . .). We branch over y′1. The positive branch
` ∃x1 . . . (>∨ . . .) can be closed with a short linear proof very similar
to step (1).

In the negative branch ` ∃x1 . . . (⊥ ∨ . . .) the following happens:
Apply the S3b-rule to remove the superfluous ⊥-clause, then apply
the ∃⊥-rule assigning ⊥ to x1. There are exactly three occurrences
of x1 in the formula and using simplification rules we derive:

– (¬x1 ∧ y2 ∧ y′2) −→ (y2 ∧ y′2)

89

11. Simulation

– (¬x1 ∧ ¬yn+1) −→ (¬yn+1)

– (x1 ∧ ¬yn+1) −→ ()

The formula now contains a unit clause (¬yn+1) that is on the top
level of the matrix. We useGU2b and are able to completely eliminate
(including its quantifier) this variable symbol and replace it by >.
After simplifications we get the desired result:

ωn−1 =∀y2 ∀y′2 ∃x2 ∀y3 ∀y′3 . . . ∃xn−1 ∀xn ∀x′n ∃xn ∀yn+2 . . . ∀yn+n

(y2 ∧ y′2)∨
(¬y2 ∧ x2 ∧ y3 ∧ y′3) ∨ (¬y′2 ∧ ¬x2 ∧ y3 ∧ y′3)∨
...

(¬yn−1 ∧ xn−1 ∧ yn ∧ y′n) ∧ (¬y′n−1 ∧ ¬xn−1 ∧ yn ∧ y′n)∨
(¬yn ∧ xn ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬y′n ∧ ¬xn ∧ yn+2 ∧ . . . ∧ yn+n)∨
(¬x2 ∧ ¬yn+2) ∨ . . . ∨ (¬xn ∧ ¬yn+n)∨
(x2 ∧ ¬yn+2) ∨ . . . ∨ (xn ∧ ¬yn+n)

• y1 −→ ⊥: ` ∀y′1 . . . ((⊥∧ y′1)∨ (¬⊥∧ x1 ∧ y2 ∧ y′2)∨ . . .). We apply
simplifications and derive ` ∀y′1 . . . ((x1 ∧ y2 ∧ y′2)∨ (¬y′1 ∧¬x1 ∧ y2 ∧
y2) ∨ . . .). Branching over y′1 yields two new branches:

– y′1 −→ >: ` ∃x1 . . . ((x1 ∧ y2 ∧ y′2) ∨ (¬> ∧ ¬x1 ∧ y2 ∧ y2) ∨ . . .)
Simplify and apply ∃>, assigning > to x1. The ∃-rule changes
the formula in three positions:

∗ (x1 ∧ y2 ∧ y′2) −→ (y2 ∧ y′2)

∗ (¬x1 ∧ ¬yn+1) −→ ()

∗ (x1 ∧ ¬yn+1) −→ (¬yn+1)

The procedure that follows is quite similar to the procedure in
the branch that assigned > to y1 — we apply GU2b to eliminate
the globally unit variable symbol yn+1. After simplifications we
again derive ωn−1.

– y′1 −→ >: ` ∃x1 . . . ((x1 ∧ y2 ∧ y′2) ∨ (¬⊥∧¬x1 ∧ y2 ∧ y2) ∨ . . .).
Simplify and apply ∃>, assigning > to x1. The ∃>-rule changes
the formula in four positions:

∗ (x1 ∧ y2 ∧ y′2) −→ (y2 ∧ y′2)

∗ (¬x1 ∧ y2 ∧ y′2) −→ ()

∗ (¬x1 ∧ ¬yn+1) −→ ()

∗ (x1 ∧ ¬yn+1) −→ (¬yn+1)

90

11.2. Simulation between GQBF and Q-resolution

Use the procedure already known from the previous cases: Apply
GU2b to eliminate the globally unit variable symbol yn+1. After
simplifications we get ωn−1 in the last branch.

Summarizing this step, the proof split up into four branches depending
on the values assigned to y1 and y′1. The branch that assigns > to both
of them can be closed with a short linear proof. The remaining three
branches happen to contain the same sequent after a few steps. Thus they
can be merges in the following. Figure 11.2 visualizes the proof structure
described.

ωn(y1, y
′
1)

ωn(⊥, y′1)ωn(>, y′1)

ωn(⊥,>) ωn(⊥,⊥)ωn(>,⊥)ωn(>,>)

> ωn−1(y2, y
′
2)

(4) (4) (4)(3)

(2a) (2b) (2a) (2b)

(1a) (1b)

(1a) y1 −→ >.
(1b) y1 −→ ⊥.
(2a) y′1 −→ >.
(2b) y′1 −→ ⊥.
(3) Linear in n.
(4) Derive ωn−1.

Figure 11.2.: The structure of the first reduction step

This way way we reduced ωn to ωn−1 using a polynomially sized GQBF+
3

proof. The positive branch was closed using a polynomial sub-proof. ωn−1

has been reached in polynomially many steps in the remaining branches.
That totals up to a polynomially proof size. The root of the full proof
(of ψn) was polynomial too. It thus suffices to find a polynomial proof of
ωn−1 to find a polynomial proof of ψn.

3. Iterate the procedure presented in step 2: Three of four branches — the
remaining one is linear and short — in step 2 end in ωn−1 which remains
to be proven. Thus, if we find a proof for this formula, we can use it to
close all open branches. A proof can be found easily if we re-apply the
procedure of step 2. The formula ωn−1 is thus reduced to ωn−2.

The newly added sub-proof is polynomial. The full proof (of ψn) is poly-
nomial too as we just stack polynomial proofs in a quasi linear manner.
We iterate until we reach ω1.

91

11. Simulation

ωn(y1, y
′
1)

ωn(⊥, y′1)ωn(>, y′1)

ωn(⊥,>) ωn(⊥,⊥)ωn(>,⊥)ωn(>,>)

> ωn−1(y2, y
′
2)

ωn−1(⊥, y′2)ωn−1(>, y′2)

ωn−1(⊥,>) ωn−1(⊥,⊥)ωn−1(>,⊥)ωn−1(>,>)

> ωn−2(y3, y
′
3)

Figure 11.3.: Composing Reduction Steps

4. Close the last open branch:

ω1 =∀yn ∀y′n ∃xn ∀yn+n

(yn ∧ y′n)∨
(¬yn ∧ xn ∧ yn+n)∨
(¬y′n ∧ ¬xn ∧ yn+n)∨
(¬xn ∧ ¬yn+n)∨
(xn ∧ ¬yn+n)

Clearly, if a proof for ω1 exists, it cannot exceed a size polynomial in n.
From ¬ϕn is true and the soundness and completeness of GQBF+

3 we can
deduce that a proof indeed exists. For the sake of completeness, a proof
can be constructed as follows (simplification rules are applied implicitly):

92

11.2. Simulation between GQBF and Q-resolution

` >

τ1....
` ∀yn+n (yn+n ∨ ¬yn+n)

` ∃xn ∀yn+n ((¬xn ∧ yn+n) ∨ . . .) ∃⊥

` Q(y′n ∨ (¬y′n ∧ ¬xn ∧ yn+n) ∨ . . .) ∀

τ2....

τ3....

` Q(y′n ∨ (xn ∧ yn+n) ∨ . . .) ∀

` ω1
∀

whereas τ1 is:

` > ` >
` ∀yn+n (yn+n ∨ ¬yn+n)

∀

and τ2 is:

τ1....
` ∀yn+n (yn+n ∨ ¬yn+n)

` ∃xn ∀yn+n (xn ∧ yn+n) ∨ (¬xn ∧ ¬yn+n) ∨ (xn ∧ ¬yn+n)
∃>

and τ3 is:

τ1....
` ∀yn+n (yn+n ∨ ¬yn+n)

` ∃xn ∀yn+n (xn ∧ yn+n) ∨ (¬xn ∧ yn+n) ∨ (¬xn ∧ ¬yn+n) ∨ (xn ∧ ¬yn+n)
∃>

Now we can merge all our steps and create a complete proof of ¬ϕ. Its structure
can seen in Figure 11.4. Thin lines represent branches of polynomial length
whereas thick lines represent multiple polynomially lengthened branches that
begin in a common sequent and end in another common sequent. The size of
the full proof is surely polynomial.

Theorem 11.2.3 (G can effectively p-simulate Q-resolution). There exists a
transformation R : QBF × N→ QBF such that for each Q-resolution-refutable
formula ϕ the following holds:

• π: `R ¬ϕ be the shortest Q-resolution proof of the invalidity of ϕ.

• m ≥ |π|

• R(ϕ,m) ≡ ϕ

• R runs in a time polynomial in |ϕ|+m.

• There exists a polynomial p ∈ P[N] and a G proof τ of R(ϕ,m) such that
|τ | = p(|π|).

93

11. Simulation

ϕn

nnf (¬ϕn)

> ωn

> ωn−1

> ωn−2

> . . .

ω2

> ω1

>

Figure 11.4.: A complete proof of the invalidity of ϕn.

Proof. By Theorem 11.1.5.

Equipped with this new knowledge, we can extend the hierarchy of sequent
style calculi and augment it with Q-resolution. A graph displaying the relations
can be seen in Figure 11.5.

11.3. Simulation between GQBF and 2-PCNF-Evaluation

For a special class of quantified boolean formulas there exists an algorithm that
decides the evaluation problem for them in a time linear in the size of the input
formula. This class of formulas is the set of quantified boolean formulas in
prenex conjunctive normal form that contain only dual clauses. We call a clause
dual if it contains exactly two literals. The algorithm is presented in [2]. It
works the following way:

• Create a graph representation of the input formula ϕ =
∧n
i=1 ci: For each

variable symbol x that appears in ϕ create

– a vertex named x.

– a vertex named ¬x.

– an edge (¬x, x).

94

11.3. Simulation between GQBF and 2-PCNF-Evaluation

GQBF

GQBF+

GQBF+
3

G

Q-resolution

A B
A p-simulates B

A B
A cannot p-simulate B

A B
A effectively p-simulates B

A B
A cannot effectively p-simulate B

Figure 11.5.: An extended hierarchy of polynomial simulation results.

For each clause ci = (`1 ∨ `2) of ϕ create

– an edge (¬`1, `2).

– an edge (¬`2, `2).

The formula ∀x ∃y ∀z (x∨¬y)∧(¬x∨z)∧(x∨¬z) thus yields the following
graph:

x yz

¬x ¬y¬z

• Partition the graph into its strongly connected components. This can be
done in a time liner in the size of the graph. In our example the strongly
connected components are {x, z}, {¬x,¬z}, {y} and {¬y}.

• The formula ϕ is true if and only if none of the following conditions hold
(Theorem 2 in [2]):

– An existential vertex v is in the same strong component as its com-
plement ¬v.

95

11. Simulation

– A universal vertex u is in the same strong component as an existential
vertex e and the variable symbol u is quantified within the scope of
the quantifier of e.

– There is a path from a universal vertex u1 to another universal vertex
u2 or to ¬u1.

In our example the third condition is met. There is a connection from x to
z whereas both are universally quantified variable symbols. The formula
ϕ is false.

Theorem 11.3.1 (GQBF+ cannot p-simulate 2-PCNF-Evaluation). There is a
countably infinite family of formulas such that for members of this family there
exists a 2-PCNF-Evaluation that is linear in the size of the formula but there is
no GQBF+ proof of polynomial size.

Proof. Let

ϕn = ∀x1 ∃y1 . . . ∀xn ∃yn (ψ(x1, y1) ∧ . . . ∧ ψ(xn, yn))

with ψ(x, y) = ((x ⊃ y) ∧ (y ⊃ x)) be a closed quantified boolean formula in
negation normal form of size (12n− 1). Then, by Lemma 8.1.2, there exists no
GQBF+ proof of ϕn of a size polynomial in n.

As ϕn is in prenex conjunctive normal form and each conjunct is a dual clause,
we can apply the algorithm presented above to create a proof of ϕn that is linear
in n. The following graph represents ϕn:

x1 y1 x2 y2 . . . xn yn

¬x1 ¬y1 ¬x2 ¬y2 . . . ¬xn ¬yn

Clearly, none of the three conditions if violated anywhere.

Theorem 11.3.2 (G can effectively p-simulate 2-PCNF-Eval).

Proof. By Theorem 11.1.5.

We can further extend our hierarchy of polynomial simulation results. It can
be seen in Figure 11.6.

96

11.3. Simulation between GQBF and 2-PCNF-Evaluation

GQBF

GQBF+

GQBF+
3

G

Q-resolution

2-PCNF-Eval

A B
A p-simulates B

A B
A cannot p-simulate B

A B
A effectively p-simulates B

A B
A cannot effectively p-simulate B

Figure 11.6.: A hierarchy of polynomial simulation results.

97

Part VII.

Conclusion

99

12. Conclusion

In previous parts, especially in Part IV and VI, we presented infinite families
of formulas for which some calculi can or cannot produce proofs of polynomial
size.

When we speak of polynomially provable formulas, we speak of formulas for
which a proof of polynomial length with respect to the size of the actual formula
exists. Furthermore, when speaking about polynomially provable formulas we
always refer to a specific calulus. A formula ϕ may be polynomially provable
with calculus A but not polynomially provable with calulus B. Also note that
the complexity of proof search does not always is not always tied to size of a
proof. There may exists families of formulas that have very short proofs that
are very hard to find in a huge search space. On the other hand there may exist
proofs that are large in size but can be found in a time that is nearly identical
to their size. In this thesis emphasis is mostly put on the sizes of proofs rather
than on the complexity of proof search.

Based on the families from Part IV and VI we established a complete hierar-
chy of the sequent-style calculi presented: GQBF, GQBF+, GQBF+

3 and G. It
was shown that the minimal GQBF calculus is exponentially weaker than the
full calculus having simplification rules. The full calculus itself cannot polyno-
mially simulate its exponentially stronger version that allows to construct proofs
structured as directed acyclic graphs. It was also shown that G, a sequent cal-
culus with cut and structural rules, that produces proofs in the form of directed
acylic graphs is exponentially stronger than GQBF+

3. Figure 12.1 presents this
hierarchy.

We can subdivide the set of (closed) quantified boolean formulas with respect
to their provability using sequent-style calculi. While there are infinite families
of formulas that can be proven with the minimal calulus in a short way (e.g.,
An), there are also infinite families that cannot be proven polynomially. Even
GQBF+

3 might be too weak to produce short proofs for them. In between there
is a whole hierarchy of formulas that require certain features of a calculus to be
proven in a short manner. Table 12.1 presents examples for such families for
each level of the hierarchy presented in Figure 12.1. It also provides references
to the locations within this thesis where their upper and lower bounds of proof
size with respect to a certain calculus are proven.

Like we did within the hierarchy of sequent-style calculi, we compared GQBF,
GQBF+

3 and G to Q-resolution and established exponential separations, effec-
tively p-simulation results and families of formulas that can be used to separate
Q-resolution from other calculi. It was shown that GQBF cannot polynomially

101

12. Conclusion

En

Dn

Cn

Bn

An

Polynomially Provable with GQBF

Polynomially Provable with GQBF+

Polynomially Provable with GQBF+
3

Effecively p-Provable with G

Quantified Boolean Formulas

Figure 12.1.: A Hierarchy of Sequent-Style Calculi

simulate Q-resolution whereas Q-resolution itself is exponentially weaker then
full GQBF when proofs in the form of directed acyclic graphs are permitted.
Again, a collection of these results can be seen in the Figure 12.2. Table 12.2
provides examples for separating families and references to relevant proofs.

Yn

Polynomially: GQBF

Polynomially: GQBF+
3

Polynomially: Q-resolution

Xn

Effecively p-Refutable with G

Quantified Boolean Formulas

Figure 12.2.: Relations between Sequential Calculi and Q-resolution

Altough we established a lower bound and an upper bound for the features a

102

Family Members Proof of
Complexity

An ∃x1 . . . ∃xn (x1 ∨ . . . ∨ xn) Simple

Bn ∃a ∀x1 . . . ∀xn ∃b ((x1∨a∨b)∧. . .∧(xn∨
a ∨ b))

Theorem 8.1.1

Cn ∀x1 ∃y1 . . . ∀xn ∃yn (ψ(x1, y1) ∧ . . . ∧
ψ(xn, yn))

Theorem 8.2.1

Dn ∀x1 ∃y1 . . . ∀xn ∃yn ∃z1 ∃z′1 . . . ∃zn ∃z′n Theorem 11.1.6

(ψ′(x1, y1, z1, z
′
1)∧. . .∧ψ′(xn, yn, zn, z′n))

En From [18] it is known that having an optimal calculus is
equivalent to NP ∩ co-NP having complete languages. As
the latter is considered rather unlikely, we can safely assume
the existence of an infinite family En.

ψ(x, y) = (¬x ∨ y) ∧ (¬y ∨ x)
ψ′(x, y, a, b) = ψ(x, y) ∧ (x ∨ a ∨ b) ∧ (¬x ∨ a ∨ b) ∧ (a ∨ ¬a) ∧ (b ∨ ¬b)

Table 12.1.: Formulas from various levels of the hierarchy

sequent calculus has to offer to be able to polynomially simulate Q-resolution,
the exact set of features remains an open question. While G, a full-fledged
sequent calculus with a cut rule can indeed effectively p-simulate Q-resolution,
it is not researched yet if GQBF+

3 or even GQBF+ suffice to do so too. It also
remains an open question if, in the other direction, Q-resolution can effectively
p-simulate GQBF+.

When we were concerned with effective, truth-preserving transformations on
quantified boolean formulas, we showed that moving quantifiers outwards, to the
root of the structure tree of a formula, increases proof size in general. We showed
that there are infinite families of formulas that can be proven polynomially by
GQBF while their prenexed versions have only proofs that are exponentially
bigger in size. For GQBF and GQBF+ there exist formulas that can be proven
polynomially while some of their prenexed equivlanets cannot be proven poly-
nomially with the same calulus. Thus prenexing increases proof size and makes
proof search more difficult [6]. Here remains an open questions too: Does there
exist a family of formulas for which any possible normal form is at least one
level higher than the original formula? We proved that for the lowest level of
our hierarchy that is true. No answer can currently be given for higher levels.
That implies that a good choice of prenexing strategy is essential to keep proof
size low.

103

12. Conclusion

Family Members Proof of
Complexity

Xn ∃x1 . . . ∃xn ∀a (ψ′′(x1, a) ∧ . . . ∧ ψ′′(xn, a)) Theorem 11.2.1

Yn ∃y0 ∃y1 ∃y′1 ∀x1 ∃y2 ∃y′2 ∀x2 ∃y3 ∃y′3 . . . Theorem 11.2.2

∀xn−1∃xn ∃x′n ∀xn ∃yn+1 ∃yn+2 . . . ∃yn+n

(¬y0)∧
(y0 ∨ ¬y1 ∨ ¬y′1)∧
(y1∨¬x1∨¬y2∨¬y′2)∧(y′1∨x1∨¬y2∨¬y′2)∧
(y2∨¬x2∨¬y3∨¬y′3)∧(y′2∨x2∨¬y3∨¬y′3)∧
...
(yn−1∨¬xn−1∨¬yn∨¬y′n)∧ (y′n−1∨xn−1∨
¬yn ∨ ¬y′n)∧
(yn ∨ ¬xn ∨ ¬yn+1 ∨ ¬yn+2 ∨ . . . ∨ ¬yn+n)∧
(y′n ∨ xn ∨ ¬yn+1 ∨ ¬yn+2 ∨ . . . ∨ ¬yn+n)∧
(x1∨yn+1)∧ (x2∨yn+2)∧ . . .∧ (xn∨yn+n)∧
(¬x1∨yn+1)∧(¬x2∨yn+2)∧. . .∧(¬xn∨yn+n)

ψ′′(x, a) = (a ∨ x) ∧ (a ∨ ¬x) ∧ (¬a ∨ x) ∧ (¬a ∨ ¬x)

Table 12.2.: Separating Formulas

104

Bibliography

[1] Ansótegui, C., Gomes, C. P., and Selman, B. The Achilles’ Heel of
QBF. In AAAI (2005), pp. 275–281.

[2] Aspvall, B., Plass, M. F., and Tarjan, R. E. A Linear-Time Algo-
rithm for Testing the Truth of Certain Quantified Boolean Formulas. Inf.
Process. Lett. 8, 3 (1979), 121–123.

[3] Baaz, M., and Leitsch, A. On Skolemization and Proof Complexity.
Fundam. Inform. 20, 4 (1994), 353–379.

[4] Büning, H. K., Karpinski, M., and Flögel, A. Resolution for Quan-
tified Boolean Formulas. Inf. Comput. 117, 1 (1995), 12–18.

[5] Cook, S. A. The complexity of theorem-proving procedures. In STOC
(1971), pp. 151–158.

[6] Egly, U., Seidl, M., and Woltran, S. A solver for QBFs in negation
normal form. Constraints 14, 1 (2009), 38–79.

[7] Gasarch, W. I. The P=?NP Poll. SIGACT NEWS 33, 2 (2002), 34–47.

[8] Jussila, T., Biere, A., Sinz, C., Kröning, D., and Wintersteiger,
C. M. A First Step Towards a Unified Proof Checker for QBF. In SAT
(2007), pp. 201–214.

[9] Klieber, W., Sapra, S., Gao, S., and Clarke, E. M. A Non-
prenex, Non-clausal QBF Solver with Game-State Learning. In SAT (2010),
pp. 128–142.

[10] Kraj́ıček, J., and Pudlák, P. Quantified propositional calculi and
fragments of bounded arithmetic. Zeitschr. f, math. Logik und Grundlagen
d. Math. 36, 1 (1990), 29–46.

[11] Leitsch, A. The resolution calculus. Springer, 1997.

[12] Lonsing, F., and Biere, A. Nenofex: Expanding NNF for QBF Solving.
In SAT (2008), pp. 196–210.

[13] Narizzano, M., Pulina, L., and Tacchella, A. Report of the Third
QBF Solvers Evaluation. JSAT 2, 1-4 (2006), 145–164.

[14] Papadimitriou, C. H. Computational Complexity. Addison Wesley, 1994.

105

Bibliography

[15] Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann,
O., and Lynce, I. The Seventh QBF Solvers Evaluation (QBFEVAL’10).
In SAT (2010), pp. 237–250.

[16] Pitassi, T., and Santhanam, R. Effectively polynomial simulations. In
ICS (2010), pp. 370–382.

[17] Plaisted, D. A., and Greenbaum, S. A Structure-Preserving Clause
Form Translation. J. Symb. Comput. 2, 3 (1986), 293–304.

[18] Sadowski, Z. On an Optimal Quantified Propositional Proof System and
a Complete Language for NP ∩ co-NP. In FCT (1997), pp. 423–428.

[19] Stockmeyer, L. J., and Meyer, A. R. Word Problems Requiring
Exponential Time: Preliminary Report. In STOC (1973), pp. 1–9.

[20] Takeuti, G. Proof Theory. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1975.

[21] Tseitin, G. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic (1968), 115–
125.

[22] Wrathall, C. Complete Sets and the Polynomial-Time Hierarchy. Theor.
Comput. Sci. 3, 1 (1976), 23–33.

106

