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Abstract

The programmer usually initiates a debugging process because of a failureand
his goal is to find the defect. The defect is always executed before the failure oc-
curs, so it is natural to start at the failure and move backwards in a program to find
the defect. However this procedure is usually not supported by actual debuggers.

There are two different methods of implementing a reversible debugger, i.e.,a
debugger which can run the program forwards and backwards. Thefirst one is the
logging-based approach, which records the state of the program afterevery instruc-
tion and allows inspection after the program has finished running. The second one
is the replay-based approach, where the debugger runs the debuggee interactively.
For this purpose it makes periodic snapshots. The debugger runs the debuggee
backwards by restoring a previous snapshot and then running the program forward
until it reaches the desired position.

In this thesis, I show that it is possible to implement a reversible debugger by
continuous snapshotting of the program state. There are indeed some challenges
with using such a feature. For example, there are non-deterministic instructions,
which execute differently each instance the interpreter executes them, e.g.,a func-
tion, which returns the system time. Another example of this is when instructions
change some external state like a file on the hard drive, which the debugger does
not save when it makes a snapshot. Another problem is that some instructions do
something different each time the debugger executes them.

Therefore I present some methods of treating these problems. Accompanying
this thesis, I have developed a proof-of-concept implementation of a reversible
debugger called epdb for the Python programming language, which solvesmost of
the problems of reversible debugging.

In order to support reversible debugging of programs which have non-deter-
ministic instructions in it, I introduce the new concept of timelines. With timelines,
the user can decide which execution path he wants to take. I also introduce stateful
resource management to support the management of the external state. This allows
the user to investigate the environment corresponding to the actual position inside
the program, when he executes the program backwards.
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Zusammenfassung

Programmierer beginnen mit der Fehlersuche, weil sie ein falsches Verhalten
des Programmes feststellen. Das Ziel der Fehlersuche ist festzustellen woim Pro-
gramm der Defekt ist, also der Teil des Programmes, welcher für das falsche Ver-
halten verantwortlich ist. Der Defekt wird jedoch ausgeführt bevor ein falsches
Verhalten sichtbar ist. Daher wäre es sinnvoll in einem Debugger das Programm
am Ort, wo der Fehler sichtbar ist, zu beginnen und von dort weg das Programm
schrittweise rückwärts auszuführen bis man zum Defekt gelangt. Diesesrückwärts
Ausführen wird jedoch von vielen gängigen Debuggern nicht unterstützt.

Es gibt zwei grundsätzliche Strategien um einen rückwärtsausführenden De-
bugger zu implementieren, das heißt einen Debugger der das Vorwärts- und Rück-
wärtsausführen unterstützt. Die erste Variante ist die des Log-basierenden Debug-
gers. Ein Log-basierender Debugger speichert den Programm State nach jeder aus-
geführten Instruktion. Nachdem das Programm fertig ausgeführt worden ist kann
der Anwender das Programm anhand des Logdatei erneut abspielen und den State
zu jedem beliebigen Zeitpunkt im Programm abspielen. Die zweite Variante ist die
Snapshot & Replay Strategie. Hierbei erlaubt der Debugger interaktive Steuerung
des Programmes. Beim Vorwärtsausführen werden hierbei regelmäßig Snapshots
vom State gemacht. Um das Programm rückwärts auszuführen wird ein vorheriger
Snapshot aktiviert und das Programm solange erneut ausgeführt bis die gewünsch-
te Position erreicht ist.

In dieser Diplomarbeit möchte ich zeigen, dass es möglich ist einen rückwärts-
ausführenden Debugger zu schreiben, welcher regelmäßig Snapshots macht und
diese nutzt um Rückwärtsausführen zu ermöglichen. Es gibt einige Probleme die
beim Rückwärtsausführen auftreten. Zum Beispiel gibt es nichtdeterministische In-
struktionen, welche der Interpreter jedes Mal anders ausführt, beispielsweise eine
Funktion, die die Systemzeit zurück gibt. Ein weiteres Problem sind Instruktionen
mit Seiteneffekten. Diese ändern einen Teil States vom Programm, welcher nicht
mittels Snapshots gespeichert wird, wie zum Beispiel eine Funktion die auf die
Festplatte schreibt.

Daher möchte ich in dieser Arbeit Methoden vorstellen, die mit diesen Pro-
blemen umgehen können. Außerdem habe ich zum Nachweis der Machbarkeit
einen Rückwärtsausführenden Debuggers für die Programmiersprache Python ent-
wickelt, welcher die meisten Probleme der Rückwärtsausführung löst.

Um die Rückwärtsausführung von Programmen mit nichtdeterministischen In-
struktionen zu ermöglichen, habe ich das neue Konzept der Zeitlinien eingeführt.
Mit Zeitlinien kann der Benutzer entscheiden, welchen Ausführungspfad er wäh-
len möchte, wenn er auf nichtdeterministische Instruktionen trifft. Außerdemhabe
ich das Konzept des zustandsorientierten Ressourcen Managements entwickelt, da-
mit der Debugger auch den externen Zustand verwalten kann. Der Benutzer kann
somit auch die der aktuellen Position entsprechende Umgebung des Programmes
ansehen, wenn er das Programm rückwärts ausführt.
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CHAPTER 1
Introduction

Most debuggers out there are traditional debuggers, i.e., debuggers that can only run the
program forward. Reversible debuggers, i.e., debuggers that can run the program back-
wards too, can make debugging easier. Most users of debuggers have experienced the
situation, where they overshot the position in the program,where they wanted to exam-
ine the value of some variables. With a traditional debuggerthey would have to restart
the program and go through the tedious initialization step.With a reversible debugger,
they could accomplish this much faster by running the program backwards. Reversible
debuggers have certainly advantages over traditional ones. However, most debuggers
are traditional ones because reverse execution requires some kind of simulation, be-
cause machine instructions are usually not reversibly executable. Sometimes reverse
execution is straight forward, but it can be ambiguous, e.g., when sending a message to
another computer.

So alongside this thesis, I have developed the reversible debuggerepdb for the
Python programming language. I have chosen a dynamic programming language, be-
cause it is easier to direct[Sos95], i.e., to monitor and control the execution, than in a
statically typed programming language. Epdb does not only allow reverse execution,
but is also able to deal with ambiguous situations by providing a framework to work in,
while allowing the user to control the forward and reverse execution in such situations.

1.1 Motivation for Better Debugging Tools

Debugging can cost a lot of time and money. For example Hailpern states:

"In a typical commercial development organization, the costof providing
this assurance via appropriate debugging, verification andtesting activities
can easily range from 50% to 75% of the total development cost." [HS02]

1
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This includes verification and testing activities, but it shows that debugging is an im-
portant part of the software development process, that costs lots of time. Many of the
problems that occur during debugging are because of inadequate debugging tools. The
National Institute of Standards and Technology[Tas03] estimated that based on inter-
views, that software engineers spent 35 percent of their time on debugging and correct-
ing errors.

The computer science community has largely ignored the debugging problem and
so debugging is still more an art than a technique. Thereforethis thesis proposes a
new debugger called epdb. Epdb extends a traditional debugger with reverse execution
capabilities. So it is possible to step through or run a program not only forwards but also
backwards. Using this technique I hope to make debugging easier and more straight
forward. Eisenstadt[Eis97] shows that many bugs are difficult to trap, because of the
cause/effect chasm, i.e., bugs that materialize far away from where they were spawned.
Debugging such bugs using a reversible debugger is easier, because the programmer
doesn’t have to restart the program every he they skipped over the defect.

1.2 Family of Bugs and Related Terms

Book writers and researchers in the area of fault-tolerant systems and dependability
often use the terms error, defect, failure, fault, etc. and give each of them a distinctive
meaning. However, if you look in different papers you often see different meaning for
each of these terms. For example, Laprie[Lap92] defines failure as "deviation of the
delivered service from compliance with the specification", but Chillarege[Chi96] notes
that in the world of software there aren’t well-defined specifications for most products.

For the area of debugging, a smaller subset of these terms is sufficient. In this paper I
will stick to the terminology given by Zeller[Zel09]. He distinguishes between defects,
infections and failures. Adefect is an incorrect piece of code. Aninfection is an
incorrect programming state and afailure is an observable incorrect program behavior.
He also uses the termflaw to mean defects which cannot be tracked down to a specific
location. Abug can be an incorrect program code, state or program execution.

To illustrate the meaning of the terms I will give an example.In a typical error-fixing
scenario a user reports a bug, because of a failure, i.e. an observable incorrect program
behavior. To fix the bug, the programmer tries to locate the defect in the program code
to provide a patch. He may use a debugger to locate the defect,or in case it is flawed
he may use it to understand what is wrong with the program in order to create a new
architecture for the revised version of the program. To locate the bug, he first tries to find
the state of the program that is infected. The infection is found after the execution of the
defect. With a traditional debugger he will start at some non-infected part of the program
and navigate forward in the program until he reaches an infected one. When its state
switches from non-infected to infected he has found the defect. However, an infection
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is usually not easily observable and it is likely that the programmer will step too far.
In this case he has to restart the program. With a reversible debugger the programmer
can start at a point where the program shows an observable wrong behavior. This state
is obviously infected and the programmer can start from there to run backwards until
he finds a non-infected state. If he runs too far he can then runforward again. With a
reversible debugger he could use some binary search algorithm to quickly track down
the bug. This is especially helpful if there is a big cause/effect-chasm, i.e., the start of
the infection is far away from the point of failure, in terms of instructions executed.

1.3 Methods of Debugging

There are quite a few debugging methods programmers use. Thesimplest isprint &
peruse[Eis97]. Using print & peruse, the programmer typically inserts someprint()-
functions. It doesn’t have to be justprint()-functions, but it can also be some more
sophisticated logger. This approach has the advantage thatit is almost always available
and can be used, even with no additional software installed.This is very useful, if your
architecture doesn’t support debugging, for instance, in embedded systems. It is also
easy to understand and the technique is usable in any other programming environment
or programming language. Therefore, programmers don’t need to learn a new tool.

Of course there are some disadvantages to debugging by inserting print() function
calls. For example, the users have to modify the code and after that, they have to undo
the changes. By using a more sophisticated logger, which can turn the output off, this
avoids the need to undo the changes. However, with a logger the developers have to
maintain the logging statements. Too many lines of debugging output would make
perusing the information confusing, while with too few lines, the programmer may miss
some important hint to a bug. Multiple log levels may improvethe situation, but may
also raise the maintenance costs. The print or log statements are tightly coupled to
the rest of the program and therefore it is not clean softwareengineering practice. A
bigger problem of print & peruse is, that the programmer has to guess where to insert
theprint() functions. If he guesses wrong, he has to restart the whole program. This can
be annoying, if the program has to run for quite a long time until it reaches the defect.
Guessing good locations for theprint() functions also requires experience, which cannot
be easily taught. For example, someone posted the piece of code shown in Listing 1.1
into the comp.lang.python mailing list, because he couldn’t find the bug. This piece of
program computes the greatest common divisor. After running it one will see that the
print() functions give exactly the output one would expect. However, one will also get
a ZeroDivisonError at the end. Theprint() functions were not much help here, at least
if you arrange them like in the example.

Using atraditional debugger would help in the previous situation. I started pdb,
the Python debugger that comes with most Python distributions and stepped through the
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Listing 1.1: gcd.py
a = 12345
b = 54321
m = 1
whi le m != 0 :

i f b > a :
n = b / a
m = b % a
p r i n t b , " : " , a , " = " , n , " \ t m i s " , m

i f a < b : # use e l i f he re
n = a / b
m = a % b
p r i n t a , " : " , b , " = " , m
a = m

program. I discovered in the first run, that the body of both ifstatements were executed
in one iteration, which obviously shouldn’t be. A debugger has the advantage here, that
the user doesn’t need to guess the location of the defect before he starts the program, but
he can just start stepping through the program. If he finds something suspicious, he can
set a breakpoint there. In contrast toprint() functions, the debugger is independent of
the code, because there is no need to change it. However, there is still some dependence,
because using a traditional debugger for longer running programs usually means using
breakpoints, which refer to a line of code. Therefore if the program code changes,
the breakpoints are lost. Depending on your debugger and debugger configuration, the
breakpoints can be even lost after a restart of the program. There is another problem
with a traditional debugger. If you have stepped too far and forgot to peruse some part
of the program state, you have to restart your application and run forward again. In
larger programs, it is often not appropriate to step throughthe whole program and so it
is best to use breakpoints. However, here one needs to carefully guess where to set one’s
breakpoint. If one guesses wrong, it may be necessary to restart the program again.

A reversible debuggersolves some of the shortcomings of a traditional debugger.
It eliminates the need to restart the program as it is always possible to go backwards.
The users don’t need to guess breakpoint locations, becauseit is usually obvious where
the program should break: at the position where it gets the first uncaught exception. A
reversible debugger achieves more independence by not using breakpoints. Instead the
debugger breaks at an exception, which is runtime information, and therefore does not
rely on information of the source code. Therefore using a reversible debugger can make
things easier.
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Listing 1.2: gcd.py
p r i n t ( "Name : " )
n = i n p u t ( )
p r i n t ( " He l l o " , n )

n=input() #Alice input() #Bob

print("Name:")

print("Hello",n) #Alice print("Hello",n) #Bob

Figure 1.1: Timeline example

1.4 Epdb

The Extended Python Debugger, epdb for short, is a reversible debugger developed
alongside this thesis. In this section, I want to give a very brief description of its fea-
tures. Epdb is based on pdb, but because it is a reversible debugger, it is considerable
different. Nevertheless, reusing the code of pdb speeds up the development time of the
new debugger. Like pdb, epdb supports the commandsstep, nextandcontinueto nav-
igate through the program and supports breakpoints by thebreakcommand. Because
epdb is a reversible debugger, it also supports the reverse program flow commands,
which are calledrstep, rnext andrcontinue. Epdb also allows another kind of naviga-
tion, namely activating a snapshot. It is possible to createa snapshot at an arbitrary
position in the timeline with thesnapshotcommand and later restore to it by using the
activate_snapshotcommand.

The Python debugger supportspost-mortemdebugging, which means the program-
mer can inspect the program state in case the program has finished because of an un-
caught exception. Epdb extends this behavior. It does not only allow inspection at
program termination, but also allows the programmer to stepbackwards and inspect
previous states of the program. This makes post-mortem debugging more powerful.

The principal architecture to achieve reversible debugging is snapshot & replay,
i.e., the debugger makes continuous snapshots. To navigatebackwards, the debugger
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activates a previous snapshot and runs the program forward again. To create a snapshot,
epdb uses the system callfork(), which makes a copy of the current process.

Timelines

Going back and forth in the program can lead to ambiguous situations. For example,
Listing 1.2 shows a program that can have a different output every time the user executes
it. Assuming the user has executed the program until the end and has typed the name
‘Alice’ when the program asked him for a name. If the user now goes backwards to
the position where the program asked him for a name and runs forward from there, the
debugger has two possibilities to deal with this situation.It could either assume that the
user has entered the name ‘Alice’ and therefore the program could greet ‘Alice’ again,
or it could ask the user for a new name and greet the user with the new name.

To resolve this ambiguous situations, epdb introduces timelines. A timeline is a
possible execution path through the program. By default, epdb would execute thein-
put()-function the same way as in the first run, i.e., in the previous example the program
would greet ‘Alice’ again. However, if the user wants to enter a new name, he could
create a new timeline and then enter a new name in this timeline, e.g. ‘Bob’. In this
case, these two timelines would coexist and the user can switch between them. Figure
1.1 shows the two timelines for the described scenario.

In order to implement timelines the debugger uses differentexecution modes. It
needs them to distinguish, whether the program has already executed the instruction in
the current timeline or not. In case it has executed it, the debugger would simulate the
previous execution behavior of this instruction. Otherwise, it can execute it as usual.

Another point to consider with timelines is that simulatingprevious instruction be-
havior requires the debugger to change the behavior of instructions. Therefore, epdb
introducesinstruction patching in order to change the behavior of instructions. The
instruction patching mechanism of epdb is extensible, so that programmers can add new
patched instructions. These patched instructions work differently in each mode and can
therefore simulate the previous execution behavior of an instruction.

Resource Management

Epdb usesfork() to create snapshots and to save the program state. However,fork()
does not save the whole state of the program, e.g., it does notsave files on the disk.
Therefore, the debugger needs to manage the state, which is not saved byfork(), in
some other way. Epdb usesresource managersto control the external state, i.e., the
state whichfork() does not copy. For epdb there exists a resource manager classfor
files, but it would also be possible to implement resource manager for other resources
like databases. It allows the users to extend the debugger with newresource managers
to provide resource management for their own resources. Theresource manager work
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Figure 1.2: gepdb

in conjunction with instruction patching. When an instruction changes some external
state, the patched instruction would call the resource manager in order to save the state.

1.5 Gepdb

Epdb is a command line debugger like pdb. However debugging is often easier in a
graphical user interface. Therefore I developed gepdb. Gepdb is a graphical front end
for epdb. Gepdb has the advantage that it always shows the information a programmer
usually needs like the source code, the actual variables, and actual timelines.

Figure 1.2 shows a screenshot of the graphical frontend for the debugger. Gepdb
lists all timelines that the program has in this debugging session and allows the user
to create new timelines. Each timeline has its own resourcesand snapshots which the
screenshot shows at the right side. In the resource window, gepdb lists each resource
along with its history, i.e., it shows at which instruction count a change to the state of the
resource occurred. At the bottom right side, the user interface lists the snapshots of the
current timeline with theirid and theirinstruction count. At the left side, the user has
the ability to monitor variables, which the user interfacesupdates, when the program
state changes, e.g., by stepping forward. At the bottom window, the debugger shows the
output of the program which typically goes to the console, and it has an entry to do user
input, which gets only activated when the program expects some input. The tool bar at
the top allows one to navigate forwards and backwards. The source code is highlighted
and when the user right clicks right beside the line number, apop-up menu shows up
and allows the user to set a breakpoint. The status bar at the bottom shows the current
instruction count and the current mode.
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1.6 Challenges of Reversible Debugging

Reversible debugging has not been widely accepted yet. I believe that reverse debugging
has some intrinsic problems, which were not challenged by most actual reverse debug-
gers. It is easy to simulate reverse execution for a program,which actually only does
some computation and some control structures such as ‘if’ and ‘while’. However, real-
world programs are usually much more complex than that. Theyinteract with the op-
erating system using system calls. Consequently they can execute in a non-predictable
way, i.e., one can’t determine the state of the program at a position by just looking at
the source code, because the wholeenvironment, in which the program executes, in-
fluences the program execution. So we can define two differentkind of program states.
The internal state is the state of the program without looking at the environment, i.e.,
the internal state typically consists of the process memoryand registers. Theexternal
state is the state of the part of the environment, which affects theprogram execution, at
a given time in the program.

As Python is an interpreted language, the system calls are not directly visible. In-
stead, a program consists of functions which may be implemented as a native code
module. If functions are implemented in native code, they are able to execute system
calls, either directly or by using another library. However, with a Python debugger you
can’t step into such functions, i.e., they areatomic in respect of debugging. In case of
functions which are not atomic, I am referring to these functions ascompositefunc-
tions.

Determinism

If we look at atomic instructions, we have to distinguish between deterministic and
non-deterministic instructions. In this paper, a functionis said to bedeterministic if
the outcome of the function is determined by the internal state only. So for example,
a function that increments a variable is deterministic, because there is no influence of
the environment. Look for example at an atomic function thatreturns the system time.
The program cannot calculate the system time by running an algorithm. Therefore there
is a system clock built in the computer and the operating system provides some means
to access the clock. The system clock is part of the environment and therefore, the
execution of the function is influenced by the external state. Therefore, the function
which returns the system time is anon-deterministic function.

A deterministic atomic function is easy to handle for a reversible debugger, because
it just has to keep track of the internal state, but for a non-deterministic function, tracking
the internal state is not sufficient, because the external state also affects the program and
may change when the debugger replays a function execution. In fact, it is even more
complicated than that. When the user replays a non-deterministic function, he can have
either of one two reasonable expectations. He could expect to have the same execution
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as in the first run or he could expect to run with the new environment. Both views make
sense and an interactive reversible debugger should consider both of them.

Side effects

While the execution of non-deterministic functions is influenced by the environment,
functions with side effects change their environment. A function which writes some-
thing to the hard-drive is such a function, because it changes the information on the disk,
which is not part of the internal state, but of the environment.

If someone debugs a program, and makes heavy usage of the environment, he is
usually not only interested in the internal state, but also in the environment. Take for ex-
ample an external sorting algorithm. If one wants to find a bug, he is not only interested
in the variables during program execution, but also in the state of the file, which contains
the data the program should sort. Therefore a reversible debugger should provide some
way to manage the external state.

Bookkeeping

A reversible debugger must be able to recover previous states. Therefore it has to save
theexecution path historyand thedata change history[CFC01]. Epdb however does
not save this history directly. It saves the data change history by making continuous
snapshots, but it also keeps a history of the execution path.Thus, epdb needs to calculate
the target position in the program when it replays an execution. For a snapshot & replay
debugger, which uses multiple processes, it has to exchangethis recorded information
with the other snapshot processes.

Breakpoints

As a traditional debugger, a reversible debugger should support breakpoints and they
should also work when the program runs backwards. The challenge here is especially
for a snapshot & replay debugger, because a snapshot & replaydebugger has multiple
processes. When the user makes a breakpoint in one process, heshould see them in
other processes too.

Deterministic and Non-deterministic execution

Since the user can navigate through the program backwards and forwards, the debugger
can execute instructions for the first time or it can execute instructions which it has
executed before. If the debugger executes instructions it has executed before, I am
referring to this execution as execution inredo mode.
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When the debugger is in redo mode, it has two possibilities to execute non-de-
terministic instructions. It could either execute them like in the first execution, or it
could execute them independently from the first execution. In other words, the debug-
ger could choose to use the environment from the first execution1 or it could use the
actual environment. I am referring to the execution of instructions with an old envi-
ronment asdeterministic execution, because executing an instruction deterministically
would change the internal state the same way as in a previous run. In the case of ex-
ecuting instructions with the actual environment, I am referring this execution asnon-
deterministic execution, because the internal state, which results from the execution of
this non-deterministic instruction, is usually not the same as any other previous state.

Non-deterministic and deterministic execution is a challenge for reversible debug-
gers because they have to decide which type of execution theychoose. Most reversible
debuggers usually support only one mode of execution, whichis usually deterministic
execution. However, epdb supports both types of execution by using timelines.

Extensibility

In a real world program, the program execution can be influenced by almost everything
which exists in the real world. For example, if the program controls a device, which
measures the temperature, the actual temperature becomes an important part of the en-
vironment of the program. There are almost infinitely many possibilities to influence the
program execution, and thus the programmers of a reversibledebugger can’t imagine ev-
ery case which may become important for the users of a reversible debugger. Therefore
a sophisticated reversible debugger should allow the user to extend the debugger so that
he is able to debug all the devices, which he uses for his application.

1.7 Contribution

Although there already exist a few reversible debuggers, none of them tackle the prob-
lem that some instructions can execute differently each time the debugger executes them
at the same position. Therefore, the program could execute in multiple different ways.
Another problem is that the program may also change the external state, which can be
an important source of information for the user, when he debugs the program.

The main contributions of this thesis to solve these problems are timelines and re-
source management. With timelines users have the choice to replay code either de-
terministically or non-deterministically. Consequently,users can decide if they want
to reproduce the state in which they have been before, or if they want to execute the

1In the case an instruction has been executed multiple times,it could also execute the instruction with
the environment of the second, third, any later execution
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program in a possibly new way. Therefore, users have more control over the program
execution.

With resource management, the debugger provides a new way todeal with side ef-
fects. A traditional debugger doesn’t need resource management, because the program
will change external resources when the execution proceeds. A reversible debugger
does not change the external state when it runs backwards. Therefore, without resource
management the external state of the program would not be in sync with the internal
state. Epdb allows to manage the different states of each resource while debugging the
program. For this purpose it uses resource managers. A resource manager tracks the
different states of some part of the external state, and it isable to restore a previous
state of the resource. The debugger interrelates the state of the resource with the corre-
sponding instruction count. This system allows to manage the external state, it is easily
extensible, and it also has good performance, because the debugger only has to reset the
resources when it actually stops the execution.





CHAPTER 2
Prerequisites

Writing a debugger is quite different from writing other applications. In this section, I
want to provide some information on how debuggers generallywork. Python already
ships with a traditional debugger pdb, which epdb depends on. Pdb makes use of the
infrastructure Python provides to implement tools like debuggers, profilers, coverage
tools and the like. Therefore I want to explain this infrastructure here too.

2.1 Python Versions

At the time of this writing, there are multiple different versions of Python around, which
also work a little differently. For the prototype version ofthe debugger developed along-
side this paper, I had to choose one to work with. First, thereare different types of
implementation, which target different architectures, e.g., Jython, IronPython, PyPy or
CPython. Although many of them are in use, the most important is CPython. The other
implementations should work the same as CPython, but may lackone or another fea-
ture. A more important distinction is between Python 2.x andPython 3.x. At the time of
this writing, Python 2.x is the most used, while Python 3.x isthe newer one. Python 3.x
has some major changes to the syntax, most visible is the change from theprint state-
ment to a function. It is difficult to develop a program which works with both versions,
and therefore I decided to go for Python 3.x only. Dealing with functions instead of
statements, has the advantage that they are easier to patch,a feature which epdb uses to
support reversible debugging.

13
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2.2 Types of Debuggers

There exists a whole bunch of different kinds of debuggers, each with their own different
purpose. The kind of problem, programming language, programming environment or
system affects the requirements to a debugger. I want to givean overview of some types
of debuggers in order to position epdb in the world of debuggers.

Machine Level Debuggers

Machine or low-level debuggers operate on machine code. People use them for pro-
grams written in assembler, or to debug the code a compiler has generated, or to reverse
engineer a program where the source is not available.

One of the main properties of a debugger is the ability to haltthe process. The
debugger does this halting when it reaches a breakpoint. To achieve halting there are
two principle options for the developers. Either they couldexecute it on a virtual ma-
chine which allows directing the program, or they make use ofthe operating system or
hardware support. So a machine level debugger uses the option of hardware or operat-
ing system support. For the x86-architecture[Sei09], there is support for two kinds of
breakpoints —soft breakpointsandhardware breakpoints.

Soft breakpoints are machine code which the debugger injects into the program code
at run time. For the x86 architecture, this is the machine code for the interrupt number
3, or INT 3 for short. In fact, the debugger does not inject in the sense of adding new
code, but by changing a byte of the opcode. This works, because the opcode ofINT 3
is very short, i.e., only one byte long. When the CPU hits theINT 3 instruction, it stops
the execution and triggers an interrupt, which the debuggerhandles. Before continuing
the execution, the debugger has to restore the old instruction, that it overwrote before
with theINT 3opcode.

As you can see, soft breakpoints change the program code, which the program loader
has loaded into the memory. This has some implications when the user tries to use a
debugger to look for malware, because malware often checks the CRC sum of the code
and will kill itself, if it changes. Consequently, malware developers can hinder the use
of soft breakpoints to debug their malicious code.

Hardware breakpoints solve this problem by offering debug registers. These regis-
ters hold the address where the program should be halted. Additionally, there are some
flags, which allow creating breakpoints for three conditions: break when the particular
address is executed, break when the particular address is written, break when the partic-
ular address is read or written. Before an instruction is executed, the CPU first checks
if a hardware breakpoint is set. Consequently, it is possibleto debug a native program
without modifying it, but it is difficult to get around the limited number of registers for
general purpose debuggers.
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Source Level Debugger

A source level or symbolic debugger maps the source code directly to the application’s
machine code. A compiler transforms source code into machine code that executes on
the hardware platform. The source level debugger’s job is tomap the machine instruc-
tions back to the original source code. This is usually not trivial, because the transfor-
mation done by the debugger doesn’t need to be bijective, injective or surjective, and
therefore the reverse transformation may not be unambiguous. However debuggers typ-
ically solve this by compiling some additional informationabout the mapping into the
compiled version. This is the reason, why users should use the “-g” switch for gcc if
they intend to debug their program afterwards.

Usually, the users of a high-level programming language prefer a source level de-
bugger, because they usually “think” in their programming language instead of thinking
in machine code. However, sometimes the source to code mapping is not available, e.g.,
when the software vendor only ships a binary version, and in this case, the programmer
has to fall back on a machine level debugger.

Interactive vs. Logging Debugger

Program execution is usually much faster than humans can perceive and understand the
changes to the state the program has performed. Therefore a debugger should have
some means to make them understandable to the user. Aninteractive debuggerdoes
this by allowing the user to stop the program and continue theexecution from there
on. Stopping here means, that the debugger shows the user some kind of prompt or
waits for some other action from the user. It usually supports breakpoints and typically
the running commandsstep, nextandcontinue. The user can inspect variables or the
stack at any point of the program and they may even modify the program execution by
inserting some instructions or modifying variables.

A logging debuggeron the other hand executes the program without halting. It does
however log important information from the execution, but there is no user interaction.
After the execution has finished, the user can inspect the logfile. On top of the log
file, the debugger could present a user interface, which would allow the user to navigate
through the different states of the program. Therefore, it could almost feel like the
program is running, while it is in fact, only replayed from the log. As the debugger has
to do some logging, the program is still somewhat slower thanin normal execution.

There are three ways to achieve logging of the programming state while running.
The program could run on a virtual machine (see 2.2) which does the logging, or it
could have some support from the interpreter of the programming language (see 2.2),
or it could use program instrumentation. With program instrumentation the debugger
would actually change the code when the program loads. For native code, the debugger
would have to change the machine code, but for object-oriented code which executes on
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virtual machine like the Java Virtual Machine, the debuggercould overwrite the class
loading mechanism[LB98].

Debugger for Interpreted Languages

Interpreted languages don’t compile to machine code and therefore a machine level
debugger would only debug the interpreter itself and not theprogram written in the
interpreted language. Most interpreted languages providehowever some means to im-
plement a debugger. For example, the interpreter could callsome debugging routine
before executing some line of code. The developers of a debugger for an interpreted
language have the advantage, that they only need to use one programming language and
don’t need to understand machine code at all.

Virtual Machine Based Debuggers

One problem of using program directing using the mechanism built-in the hardware or
operating system is that they have to change the code. Becausethey usually operate in
user mode, they may also have problems to access code, which they don’t have access
to, for example code, in the kernel of the operating system[KNM06].

One way to implement a debugger instead of using soft or hardware breakpoints for
directing is to execute the program on a virtual machine. Thevirtual machine can emit
events to the debugging process, which gathers the information to present it to the user.
One can also implement a virtual machine[DF04] [KTD05], so that it stops executing
further instructions on special events. This would represent a break in a program similar
to a software or hardware breakpoint, but without modifyingany registers or code in the
memory.

Reversible Debugger

A reversible debugger is a debugger that allows the user to navigate through the program
in reverse. There are multiple ways to achieve this. The debugger could be a logging
debugger, which logs the program execution and allows to examine every state of the
program after it ends. Using this way, it is however not possible to inject some piece
of code into the program flow. Another strategy would be to record the changes of
every instruction and when running backwards, undo the changes using the recorded
information. A further one is to make continuous snapshots in the program and when
going backwards the debugger could recover a previous snapshot and replay the program
from there until it reaches the desired position in the program.

Epdb is an interactive reversible debugger. It actually executes instructions and halts
the process to give the user live interaction. To simulate reverse execution it uses the
snapshot & replay mechanism.
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2.3 Python and Debugging

Python comes with a debugger calledpdb. Pdb makes use of another module calledbdb.
The purpose ofbdb is to provide a basis for other debuggers. It uses thesys.settrace()
function to intercept the program execution. Although it issufficient to have a hook-
ing function likesys.settrace()to implement a full featured debugger, lots of organizing
work has to be done, e.g., keeping track of breakpoints, resetting the trace function and
so on.Bdbbuilds some framework aroundsys.settraceand provides a higher level inter-
face to develop a debugger. Thepdbmodule, which usesbdbas a basis, adds function-
ality such as a user interface and higher level debugging features. The whole debugger
is written in pure Python, while only thesys.settrace()function is implemented in C.
It doesn’t seem useful to reimplement all those features thedebugger already supports.
The prototype accompanying this thesis is based on pdb and extends it with all reversible
debugging capabilities. This is feasible because all the code is open source.

Python Low-Level Dispatching

The sysmodule, which is part of the Python standard library, provides the function
sys.settrace(). This function takes one argument — the trace function. When the pro-
gram sets the trace function, the interpreter calls it whenever one of the following events
happen:

call The interpreter calls a function.

line The interpreter executes a line of code.

return A function is about to return.

exception A function throws an exception.

c_call Similar to call, but used when a C function is called.

c_return Similar to return except that it works for C function.

c_exception A C function throws an exception.

Thetracefunction takes three arguments: The stack frame, event and arg. The stack
frame is the top stack frame of the code that raises the trace event. The arg depends
on the event type. At the ‘return’ event it is the return value; at the ‘exception’ event
it is the tuple (exception, value, traceback); at the ‘c_call’ event it is the function to be
called. The other events have the argNone.

When the trace function finishes, the interpreter uses the return value to reset the
trace function. This means that the function should return itself to keep the trace func-
tion active or otherwise when it returnsNone, the trace function gets deactivated.
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Bdb

The main part of thebdb module is theBdb class. This class provides four func-
tions — user_line(), user_call(), user_return(), anduser_exception(). These are tem-
plate methods[GHJV94] which pdb implements. Bdb calls them when the trace func-
tion trace_dispatch()receives an event of the type ’line’, ’call’ or ’return’. Bdb calls
these methods not directly in thetrace_dispatch()function. Instead, the trace func-
tion calls one of the methodsdispatch_line(), dispatch_call(), dispatch_return()or dis-
patch_exception()first. These methods do some breakpoint checking before actually
calling theuser_*()methods. Thetrace_dispatch()function anddispatch_*()take care
of resetting the trace function. Bdb only resets the trace function if there is a breakpoint
in the code of the current stack frame or some other reason to stop inside the function.
Using these optimizations Bdb reduces the number of calls to the trace function.

user_line()

If the trace dispatch function is set,user_line()gets called every time before the inter-
preter executes a line of code. Bdb usually calls this template method when there is a
trace-dispatch event of type ‘line’, but does some additional work. It checks for break-
points or other stop information and only callsuser_line()if a reason to stop exists. So
Bdb doesn’t guarantee to calluser_line(), but epdb needs to stop at every atomic in-
struction to implement instruction counting. In order to achieve this, epdb always sets
some stop information to make bdb calluser_line()on every atomic instruction.

user_call()

Every time before the interpreter executes a function call,it sends a ’call’-event to the
trace function, if it is set. Bdb does some preprocessing before it calls the template
methoduser_call(). It checks if there is some possibility to stop in this function either
by a breakpoint or another reason, as if the user has used the step command. For epdb,
theuser_call()method gets always called for composite functions, becauseeach of the
navigation commands work internally like a repeatedstepcommand to allow instruction
counting. The epdb implementation ofuser_call()increments the actual frame count,
as every function call also increases the number of stack frames by one.

user_return()

The methoddispatch_return()calls the template methoduser_return()when there is
either a step over the return of a function or the user used thereturn command. Epdb
doesn’t support thereturncommand yet, but as it simulates every command as repeated
step, user_return()always gets called when the function returns. Epdb also decrements
the actual frame count.
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user_exception()

Similar to the previous methods,user_exception()gets called if there is the possibility
to break at the exception, either because of a breakpoint or because of a step command.
However epdb uses repeatedstep, and souser_exception()gets called at every thrown
exception in a composite function.

Pdb

The Pdb class inherits from Bdb and Cmd. Bdb provides the basis for debugging the
program while the Cmd class handles the user interaction likeshowing a prompt or
parsing user input.Pdbalso overwrites theuser_*-methods ofBdb. Epdb reimplements
these methods. However, pdb implements some other methods which are important in
conjunction with epdb.

interaction()

The interaction method shows a prompt and shows the user input. This is a method
which epdb calls when it stops the program flow, e.g., by reaching breakpoint.

do_*()

The do_*-methods are part of the command dispatch pattern[Boo03] of the base class
Cmd. These methods are called when the user enters some input, e.g., when the user
entersstep, the methoddo_stepgets called. Epdb overwrites some of the commands,
especiallystep, nextandcontinue, and it also adds some new ones, notablyrnext, rstep
andrcontinue.





CHAPTER 3
Reverse Execution

Epdb does reverse execution by restoring a previous snapshot and executing as many
instructions as needed to reach the current instruction minus one. If all executed instruc-
tions are deterministic, the process will exactly stop one instruction before the current
instruction. The debugger has then to count the instructions, which it does by using the
trace function, but one has to be careful that pdb has some optimization, which turns the
trace function off, if there are no breakpoints. So this optimization has to be switched
off.

3.1 Execution Modes

Epdb distinguishes three different execution modes. It uses normal mode when the pro-
grammer asks to run or step forward over instructions the first time. To simulate back-
ward running, it activates a previous snapshot and runs the program in replay mode.
As it is possible to navigate back and forth, it is possible torun an instruction in the
same environment more than once. To allow implementation ofdeterministic execu-
tion behavior, the debugger uses redo mode to execute non-deterministic instructions
deterministically. The debugger uses different executionmodes to allow controlling
instructions differently, depending on its current state.

Normal Mode

Normal execution doesn’t differ much from a traditional debugger. One difference is
that epdb needs to count the instructions, which pdb doesn’tdo. For non-deterministic
instructions, it also has to record the external state whichaffects the execution behavior.
For instructions with side effects it has to record the external state before the instruction
changes it, in order to restore it when the user runs the program backwards, later on.

21
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replay redo

current position max. positionSnapshot

Instruction

Figure 3.1: Redo and replay modes

Replay Mode

After restoring to an earlier snapshot, the debugger tries to recover a future state from
that point on. It does this recovery in replay mode. In the simplest case, it executes
the statements as in forward execution. This works for deterministic statements without
side effects, e.g., the line:

i = i + 1

is such a statement. It neither changes the external state, nor does it depend on it. How-
ever, there are statements which are dependent on some external state, i.e., they have side
effects. Let’s look at the example of writing something to disk, usingwrite(). When the
debugger executes thewrite() instruction in replay mode, the instruction would write
something to the disk again. This behavior is usually not wanted. Therefore the debug-
ger has to use a patched version of thewrite() instruction, which actually doesn’t write
anything to disk in replay mode.

In the write()-example, there is another problem to consider, because thewrite()
function call returns the number of bytes written. Therefore it has not only side effects,
but it is also non-deterministic. So replaying thewrite() call should return the number
of bytes written in the original run. So the debugger has to record the return value in
normal mode and reuse it in replay mode.

Redo Mode

Redo mode is similar to replay mode. Like replay mode, epdb uses redo mode when
the instruction counter is at a position in the program, which was already executed
before in the actual timeline1. Epdb uses replay mode when it simulates backward
running. The part of the code executed in replay mode is always code which the user
would not expect to get executed at all. In redo mode, the debugger actually executes
code which the user would expect to get executed, but which also has been executed

1You may want to read about timelines in section 3.4 before continuing
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before. Replay mode is usually not visible to the user becausewhen the debugger has
finished replaying instructions, it switches into redo or normal mode before it interacts
with the user. So when the user sends the debugger a command torun the program
backwards, the debugger executes code in replay mode, but when he sends a command
to run forward, the debugger executes the code in redo or normal mode.

Figure 3.1 shows the difference between redo and replay modein the view of the
actual timeline. Each timeline has a current and maximum instruction count. Epdb exe-
cutes everything after the maximum instruction count in normal mode, but also sets the
new maximum instruction count after executing something innormal mode. Everything
after the current instruction count until the maximum instruction gets executed in redo
mode. To step some instructions back, the debugger activates a previous snapshot and
runs forward until it reaches the desired position. While it runs forward to the desired
position the debugger sets itself to replay mode. After it reaches the target position, it
switches either to redo or normal mode, depending on whetherthe current instruction is
on the maximum position of the timeline or not. Instruction execution in redo mode and
replay mode is usually very similar and most of the time patched instructions execute
the same way in redo and replay mode.

Undo Mode

Undo mode was the first model to implement side effect management, however it is now
replaced by the resources concept. I will describe the undo mode here, because I also
want to document the the reasons for the decisions I made, while developing epdb for
the sake of completeness. If you want to know how epdb does side effect management
now, read Section 3.7.

Undo mode was not really a mode, but in the case of running instructions with side
effects backwards, the debugger should undo those side effects. The design was that the
debugger keeps a list of all instructions that were executedand which have side effects,
together with their instruction count and some additional information for undoing them,
which it gathered in normal mode. When the debugger runs backwards, it would look
up the list to find the instructions that it has to undo and runsthem in a special undo
mode.

As it turned out the undo mode approach wasn’t very practical, especially because
epdb supports timeline switching. With timeline switching, it would be very complex to
find which instructions to run in undo mode and after that, which to run in redo mode. It
would also not be very efficient if the resource would supportrestoring previous states
as some databases do.
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3.2 Snapshots

Snapshotting can be a very convenient feature, even withoutbeing able to run a program
backwards. For example, take a program, which has a long initialization phase, that
requires the user to enter a lot of input from the keyboard. Ifthe defect in the program is
at the end, every time the user restarts the application, he has to go through the tedious
initialization step. With snapshots, he could have set one snapshot after the initialization
and instead of restarting, he could have restored the snapshot then.

Snapshotting was the first feature implemented to achieve the goal of reversible de-
bugging. The technique I have chosen for implementing snapshots was using the system
call fork(). Fork() creates a new process by duplicating the calling process. The deci-
sion to usefork() has some implications. One of the most important is that the operating
system must support this system call, which is the case for Unix-like operating systems,
but for example, not for Microsoft Windows. The advantage ofthis approach is that it
is simple and independent of the programming language used and so, the implementa-
tion approach could be easily applied to a debugger for another programming language
as well. Creating a process withfork() is very efficient, because it uses copy-on-write.
With copy-on-write the operating system doesn’t copy the memory of the process, but
instead sets a bit for each memory page that the newly createdshares with the old
process[Bac86]. If one of the processes writes to a shared page the operating system
then copies the page. Therefore, creating a snapshot usingfork() is extremely fast.

There are two different strategies to create snapshots; I call them local and global
snapshot creation.Local means that the current executing process knows only about the
inherited snapshots, and therefore cannot activate later snapshots, i.e., snapshots which
are taken at a higher instruction count. Let’s take the example in Figure 3.2, which
illustrates an example where local snapshots fail. The typeof diagram is an adapted
UML sequence diagram. The adaption concerns especially thetime of lifelines, which
in this diagram, is not time measured in seconds, but instead, measured as the number of
instructions executed, i.e., the time in the lifeline is measured in the current instruction
count (ic). Therefore the processes can send messages backwards, because the processes
can have different instruction counts at the same real time.The diagram indicates this
backward sending by giving theactivate()messages an additional upward or downward
direction. It also models the history of a snapshot, which result from thefork(), by
branching the lifelines. This should mean that the snapshothas copied the creating
process along with all its variables. In this diagram, a process makes two snapshots,
one after the first and another after the second instruction.After the third instruction,
it activates the first snapshot. This snapshot wants to activate the second snapshot, but
this fails because there was never an assignment to the variables2 in the diagram. Keep
in mind that the diagram is very much simplified, in order to keep it neat. In fact, a
snapshot wouldn’t start running, but instead would create another process usingfork(),
which then runs as the new activated snapshot.
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Figure 3.2: Local snapshot fails activating a snapshot

With theglobal strategy, this kind of forward snapshot activation would work, be-
cause the debugger would save the state independent of the actual snapshot process.
This behavior seems to be more desired. However, it is more difficult to implement,
because there needs to be an independent process, which administrates the snapshots,
by registering and activating them. As these drawbacks don’t seem to be much of a
problem compared to the benefits of global snapshots, I choseto implement the global
snapshot approach.

Making Snapshots

There are two reasons why the debugger makes a snapshot. Either the debugger makes
it to save the internal state after a non-deterministic function, or it makes it to make
replaying instructions faster.

Non-deterministic functions depend on the environment. Therefore, the changes
to the internal state are not predictable for the debugger without the knowledge of the
environment at the time of the execution. One way to get around this problem is to
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Listing 3.1: sleep() example.py
import t ime

t ime . s l e e p ( 3 )

p r i n t ( " S l e e p i n g done " )

make a snapshot after the non-deterministic instruction. When the debugger encounters
the instruction again in redo mode, it then can activate the next snapshot, instead of
executing the instruction. As a result of this, the debuggerrestores the internal state,
not by executing instructions, but by restoring a snapshot.This makes it easy to handle
non-deterministic instructions correctly, even without knowing the details of how they
work.

If the user debugs a longer running program, the replaying ofcode could take a lot of
time, because the debugger has to recover from a snapshot from long ago. The debugger
can reduce the time it needs to replay instructions, by making continuous snapshots
when debugging forward. Then it can use a snapshot in the morerecent past and start
replaying from there. Epdb has a timer variable, which the debugger increases with the
time it needs to execute each instruction. When this variableexceeds the time of one
second, the debugger makes a snapshot of this position and resets the timer variable.
Consequently, replaying will always take less than one second, assuming the execution
speed of the program is the same as in the first run. This is because the debugger would
never execute the last instruction, because it uses forwardactivation of snapshots (see
Section 3.4).

In the example in Listing 3.1, thetime.sleep()function waits for 3 seconds. When the
debugger replays this instruction, it would actually wait for 3 seconds again. However,
epdb makes a snapshot after thetime.sleep(3), because the timer variable would exceed
the one second limit (in fact it would reach a value of slightly above 3 seconds). There-
fore the debugger wouldn’t replay this instruction, but would use the snapshot after the
time.sleep()instead. When the user however steps in redo mode over thetime.sleep(),
the debugger would use forward activation and restore the next snapshot, which is im-
mediately after thetime.sleep(). Therefore, in redo mode the simulation of the execution
of thetime.sleep()function would be much faster than in normal mode.

Reasons for Using fork()-Snapshots

Using fork() for making snapshots has some drawbacks, most notably the operating
system has to manage a lot more processes, which may affect the overall performance.
Therefore, one can think of implementing snapshots withoutusingfork(). The Python
programming language stores all its global variables in a publicly accessible dictionary
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calledglobals, and the local variables in a publicly accessible dictionary calledlocals.
One might try to make a deep copy of these dictionaries, save them and use them to re-
store them later on. However, this doesn’t always work, because some information isn’t
easily accessible within the Python interpreter, especially if a function is implemented
in C instead of Python, which is quite common. Let’s look at the standard implemen-
tation for file access. The standard library makes use of the standard C implementation
of file access. This makes the interpreter portable among allplatforms that support C.
This implementation allows one to write to a buffer, which isusually not written imme-
diately, but rather when the program callsflush()or close()on the file descriptor. The
Python interpreter however, has no access to the buffer and therefore can’t change it,
which is necessary in case of going backwards. Usingfork() allows the debugger to
create a complete copy of the process, including the buffer for I/O.

Another advantage of usingfork() in conjunction with files is that the operating
system makes a copy of the file descriptor. Therefore, the filedescriptor in the process
is open regardless if another process closes it later on. If one tries to implement a process
copy on the user side, he would need to take care of that. He would also have to take
care of the correct initialization of the registers of the CPU.

An additional advantage offork() is that the operating system uses copy-on-write,
which makes creating a copy of a process extremely fast as discussed in Section 5.2.

3.3 Instruction Counting

In order to step an arbitrary number of instructions backwards, it is necessary to count
the instructions. In order for the user to step one instruction backwards, the debugger
would restore the last snapshot, and then would run the number of instructions to its
original location, minus one. Therefore the debugger has tocount the number of exe-
cuted atomic instructions. Epdb doesn’t work on bytecode, but uses the trace function
to implement a debugger, which Python provides. With this approach, the length of one
instruction is usually one line of code. One exception to this are function calls. In case
of function calls, the debugger also executes the lines of code inside this function before
finishing the line of code where the function call occurred.

The easiest way to implement instruction counting is to set the trace function for
every instruction and then to increment an instruction counting variable every time an
instruction is executed. Compared to a traditional debugger, this may results in some
performance loss. The reason is that in traditional debugging the debugger can set the
trace function only for execution frames that contain at least one breakpoint or in one
of its succeeding frames. This approach allows optimization in many cases, because
usually only very few breakpoints are used compared to the size of the code.
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Listing 3.2: rnd.py
import random

random . seed ( )
r = random . r a n d i n t ( 0 , 1 0 )
p r i n t ( r )

3.4 Timelines

If the user runs a program backwards and later decides to go forward again, the debugger
has two reasonable ways to execute the instructions. First,it could execute them as
they are (non-deterministic execution), or it could make them work the same way as
they worked in the first run (deterministic execution). The difference of the two ways
emerges when we look at non-deterministic instructions which may change the internal
state of the program in a different way each time they get executed. Take for example
a program which generates a true random number as you see in Listing 3.2. Let’s say
the user has debugged towards the end of the program and the itprints the number
4. Then the user decides to step backwards to theseed()instruction and after that he
goes forward using the step command twice. Now the debugger could either generate a
completely new random number or it could show the old one, which is 4.

Both ways to go forward again make sense and can be useful sometimes. Take for
a example a program which makes Monte Carlo experiments, and for some reason the
program provides a wrong result. If the programmer wants to examine the program
in order to understand whats happening, he would most likelyuse the deterministic
version to execute the program. If however he wants to modifythe configuration of
some variables and sees if the algorithm still returns a wrong result, he would prefer
the non-deterministic version. Thus, a reversible debugger should support deterministic
and non-deterministic running. Note that logging debuggers like odb1 only support the
deterministic version. However, simply adding two commands to step forward, called
for example dstep (deterministic step) and nstep (non-deterministic step), introduces
another problem. If the user debugs in reverse, then steps forward using nstep, and then
debugs in reverse again and then uses dstep, there would be two ways to go forward
again. Either the program can show the output of the first run or of the second run.

To solve these issues, epdb introduces timelines. A timeline is a deterministic way
through the program, which can also go only through a part of the program. For this
purpose, each timeline has a current and a maximum instruction count. Thecurrent
instruction count is the position inside the timeline where the next instruction, which
the debugger should execute, is located. Themaximum instruction count is the latest

1see Section 7.1
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Figure 3.3: New timeline

position inside the timeline the user has already executed.
Everystep/next/continuecommand in redo mode runs the program deterministically

like dstep. For non-deterministic execution, epdb can create a new timeline by copy-
ing the current timeline up to the current execution point. In the new timeline, the
programmer is in normal mode and therefore the debugger executes every instruction
non-deterministically from there on. By creating a new timeline, the user can debug
every instruction non-deterministically, because when creating a new timeline, the de-
bugger sets the maximum instruction count to the current instruction count. therefore
the debugger is in normal mode, which always executes non-deterministically. Figure
3.3 shows the operation of creating a new timeline. The new timeline is a copy of the
old timeline up to the current execution point. Epdb avoids copying snapshots later than
the current execution point and sets the maximum instruction count of the new timeline
to the current instruction count. Consequently the execution mode is normal.

Every timeline in epdb has a name and it is possible to switch between them. This
allows the user to make different runs of the program and to compare those two, without
needing to restart the whole program. Inside a timeline, everything is in redo mode and
therefore deterministic, but if the user wants non-deterministic execution he could create
a new timeline, which switches to normal mode and executes non-deterministically from
there on until the user gives a command to run the program backwards.

Reference Counting

A timeline consists of a number snapshots and each snapshot can belong to multiple
timelines. A snapshot can have two different uses. Either itis part of the timeline and
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therefore epdb uses it for snapshot & replay, or the user can use it to set the program
to an earlier state by manually restoring a previous snapshot. Having many snapshots
may have an impact on the performance, because each snapshothas its own process.
Therefore, the debugger wants to keep the number of snapshots to a minimum, but
some snapshots are needed because they are part of the timeline. Making a timeline with
few or even no snapshots may also have an impact on the performance, because every
reverse navigation command would need to reset a very old snapshot or even restart the
program. However, it would be advantageous to delete unneeded snapshots. A timeline
does not need a snapshot, if the snapshot is not part of this timeline. However, it does
need it, if it is part of the timeline. Epdb uses reference counting on snapshots. For each
snapshot, there is a count to how many timelines it belongs. The users can only remove
snapshots, which don’t belong to any timeline. If they want to remove a snapshot that
still belongs to a timeline, they have to delete the timelines the snapshot belongs to
first. Every time epdb creates a new timeline, it increments the reference count on every
snapshot that belongs to the new timeline by one, and every time epdb deletes a timeline,
the reference count on every snapshot of this timeline gets decremented. Epdb doesn’t
support removing snapshots from timelines (except by deletion), because snapshots can
be used to replay non-deterministic behavior.

Forward Activation

Let’s consider an example in redo mode where the actual position is one instruction
before a snapshot and the user steps forward. The debugger has two ways to react.
Either it can activate the new snapshot or it can execute the next instruction. Both ways
should usually result in the same internal state in case of a deterministic instruction,
and because of the resource management, external resourcesshould be in the same
desired state in both cases. Consequently the debugger should provide some means to
simulate deterministic execution for non-deterministic instructions. One way to achieve
a correct replay of a non-deterministic function is to make asnapshot immediately after
the instruction. Then, when the debugger runs the program forwards in redo mode, it
activates the new snapshot instead of executing the instruction. I call this activation
of snapshots, while running forward,forward activation . The advantage of forward
activation is that it makes it easier to patch non-deterministic instructions. The patched
instruction can request the debugger to make a snapshot after its execution in normal
mode. When the debugger executes the instruction later on, itdoesn’t execute it, but
instead recovers the snapshot and thus recovers the correctinternal state. Therefore,
the only code a patched version of a non-deterministic function without contains is an
additional request in normal mode for the debugger to make a snapshot.

Forward activation also has the advantage that it restores the correct internal state,
even if an earlier patched instruction was defective and ledto the wrong program state.
Another advantage is that the deterministic execution can be a lot faster, because the
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debugger doesn’t need to execute every instruction, but instead activates a later snapshot
and runs the program just from there. Epdb therefore always uses forward activation
and guarantees this to the user, so that he can rely on this property to write his own
patched versions for his instructions. There is, however, the small disadvantage that
there is no guarantee to the user that all instructions will get executed in redo mode when
the user runs the program forward, which can make a difference when the user wants
to do something special in the patched instruction, such as doing some visualization.
However, I think this shouldn’t be much of a problem most of the time, because the
state of the program is usually more important than the execution of instructions, and
epdb emphasizes the importance of the program state even more by introducing stateful
resource management1.

3.5 Dealing with Non-Determinism

As stated in Section 3.4, there are two ways to execute a non-deterministic instruction.
Executing an instruction non-deterministically is usually simple, because the debugger
just has to execute it without further directing. However, for deterministic execution
though, it has to do additional work. It has to use the information which it recorded
from the previous run to simulate the running behavior of theprevious run. As epdb
does non-deterministic execution with the use of timelines, I want to concentrate on
deterministic execution here.

To execute instructions deterministically, epdb has to logthe effects of atomic non-
deterministic instructions. Epdb considers all functionsof the standard library as atomic
functions. If one treats the effects of all atomic non-deterministic functions correctly,
one implicitly treats all composite non-deterministic functions, because the non-deter-
minism always results from some external state, which can only be accessed by func-
tions that escape the interpreter in some way. These functions have to be atomic for
a source level debugger. Composite functions may have non-deterministic behavior
because they depend on some non-deterministic functions either directly or indirectly
(i.e., by calling other functions in between), but there areno other sources of non-
determinism. So if one fixes all atomic non-deterministic functions by simulating a
deterministic behavior, all composite non-deterministicfunctions will be simulated cor-
rectly too.

To simulate deterministic behavior, the debugger therefore needs to record the non-
deterministic behavior when the function is executed in thefirst debugging run, i.e.,
when it executes in normal mode. There are two different approaches for recording
non-deterministic behavior. The debugger could make a snapshot after the instruction
in normal mode and then rely on the forward activation property as described in Section
3.4. The other approach is to save the data from the environment which changes the

1see Section 3.7
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internal state. When the function is replayed in replay or redo mode, it is not executed,
but the recorded behavior is looked up and simulated. Typically, a non-deterministic
function manifests by having a non-deterministic return value. In this case, the debugger
would store the return value with the corresponding instruction count where the function
was called. Epdb stores this key/value pair in a shared dictionary callednde (non-
deterministic effects). When the debugger replays the function, it would look up the
behavior and simulate it.

I want to illustrate this with an example. Assuming the debugger executes the func-
tion time(), which returns the actual time. Then the patched function would save the
actual time in thendedictionary at the current instruction count, before it returns. The
debugger later executes it in redo mode, e.g., because the user stepped back and then
stepped forth. Then the the patched function would return the value of the dictionarynde
at the position of the current instruction count. Since the instruction count is the same
as it was when the debugger has executed the instruction in normal mode, it would
therefore return the same value as in the first run.

There is a caveat with multiple processes and their synchronization. The process
which runs the function first is different one than the one which replays it, and thefork()
of the processes is done before they are executed. Thereforethe record of the behavior
should be done in some data structure, which is independent of the process, e.g., a
shared memory as described in Section 4.3.

3.6 Dealing with Side Effects

Atomic functions with side effects may change the external state of the program. When
redoing or replaying some piece of code, the debugger shouldrestore the external state
of the program. A function which has side effects can be either deterministic or non-
deterministic. A deterministic function with side effectsdoes change the external state,
but the internal state is not affected from the environment.Therefore the debugger can
ignore the effects of the environment to the execution in this case. If the function is
however non-deterministic, the debugger can use the same approach as mentioned in
Section 3.5.

Side effects don’t affect the internal state, and if the programmer is only interested
in the internal state, the debugger can even ignore them. However, ignoring them may
completely mess up the environment, so that when the debugger switches to normal
mode, either by creating a new timeline or by running over themaximum instruction
count of the timeline, the state of the environment may be inconsistent. Therefore, it
makes sense that the debugger also manages the external state, i.e., it should log changes
to the environment and restore the state when it executes instructions in replay or redo
mode, or switches to another timeline. The debugger, however, can reduce the amount
of external state recoveries by using the fact that side effects don’t change the internal
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Figure 3.4: A process and its resources

state. Since the user only examines the state when the program breaks, i.e., the debugger
shows the user a command prompt, the debugger doesn’t have torestore the state when
it is replaying multiple instructions, but only before it interacts with the user, or when
it switches from replay or redo to normal mode. The debugger does only one restore
of the external state after the user sends it one navigation command. This is fortunate,
because restoring the external state could take quite a lot of time. However, as it has to
do the restoring only once, the user may not even notice the time the recovery needs if
it takes less than about 100ms, which is about the time an eye needs to blink.

The debugger has to manage the external state. The external state is only the subset
of the program that affects the program execution or is affected by it. However not
every instruction changes the whole external state, but rather only parts of it, e.g., an
instruction that writes something to disk only changes the state of the file, but does
not change the text on the terminal. Consequently, it makes sense to further divide the
external state intoresources. For example, a file which the program uses is such a
resource.

3.7 Resources

Epdb allows controlling external resources like databases, files or other processes. A
resource is some part of the external state. Figure 3.4 illustrates a debugger with four
different resources. When using epdb, the debugger does not have its own process but
is part of the program which the debugger executes1. The memory, which the process
and the debugger use, represent the internal state which epdb saves when it makes a
snapshot. The state of the database, the mail server, standard output and config file
represent the external state of the program, and each of these components is a separate
resource.

1In debuggers which would work on native code, the debugger would typically have its own process
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Some operations on resources do not allow reversible debugging. For example, one
usually can’t undo the deletion of a file. However, if the debugger saves the content of a
file before it deletes it, the debugger can undo the deletion.To restore the content, epdb
doesn’t try to undo the deletion, but instead it saves the state of the file before it gets
deleted. Then, when running to the instruction count beforethe file deletion, it restores
the file.

Epdb supports an abstraction to implement such additional actions like saving and
restoring state of resources to make operations reversible. For every kind of resource the
program uses, epdb needs aresource manager. There exists, for example, a resource
manager to deal with files and another for databases. Every resource has a state, which
the resource manager labels with an identifier. The identifier should be unique and
therefore a UUID[LMS05] offers some reasonable implementation. When an instruc-
tion changes a resource, the patched version of this instruction calls thesave()method
of the corresponding resource manager after it has changed the resource. The resource
manager then returns the identifier of its state, which epdb manages. The resource man-
ager also has arestore()method, which epdb uses to restore to some previously saved
state of the resource. As the resource managers should persist switching snapshots and
therefore switching processes, it is necessary to make themdistributed, and therefore
pickleable[Bea09], in order to serialize the object. A resource manager should also im-
plement the magic__reduce__()method. Listing 3.3 shows the skeleton of a resource
manager.

This design of resources isn’t arbitrary, but inspired by how some modern databases
deal with their data. For example, the Oracle database supports a technology called
flashback[MAA+10]. With flashback, the user is able to restore the database to any pre-
vious state. Every state of the database gets an ID, which theuser can use to identify
a state. Some NoSQL databases provide similar version control of data. For exam-
ple, CouchDB[ALS10] keeps the history of each piece of data andprovides a unique
identifier for each version. Making a resource manager for such a database should
be straightforward. For files, it should be possible to implement a file system which
allows restoring old versions of the files by never deleting them. Using such a file sys-
tem would allow the debugger to transparently implement reversible debuggable files.
NILFS[Lay09], for example, has many such properties required for a file system for
reversible debugging.

Managing Resources

The resource managers offer a simple interface to save and restore the external state.
However, they just assign the different states some identifier and thus there is no re-
lation between the identifier for the state and the instruction count to which the state
belongs. This relation is necessary for the debugger, because it has to restore the ex-
ternal state for a given instruction count. For example, if the debugger stops in redo
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Listing 3.3: Skeleton Manager
c l a s s Ske le tonManager :

def _ _ i n i t _ _ ( s e l f ) :
" I n i t i a l i z e t h e manager "

def save ( s e l f ) :
" Save t h e a c t u a l r e s o u r c e and r e t u r n an ID "
re turn i d

def r e s t o r e ( s e l f , i d ) :
" R e s t o r e t h e s t a t e from an ID "

def __reduce__ ( s e l f ) :
"Make t h e manager s e r i a l i z a b l e "
re turn ( Ske le tonManager , ( ) )

mode at instruction count 10 after an instruction, which hasprinted something to the
screen, then it has to restore the state of the screen for instruction count 10. However,
the resource manager doesn’t know anything about instruction counts. Therefore, the
debugger has to manage the identifiers it receives from saving resources. Epdb estab-
lishes the relation between state identifiers and instruction counts by using a distributed
dictionaries for each resource the program uses. This dictionary has at each instruction
count, where the resource changes, the corresponding stateidentifier. The debugger up-
dates this dictionary when the resource manager saves the state of its resource. Then, it
uses the current instruction count as key for the new entry inthe dictionary and the state
identifier, which the resource manager returns, as value. When the debugger needs to
restore a resource, it can look up state identifier for the highest instruction count in the
dictionary, which is lower then the current instruction. This state identifier it can then
send to the resource manager to restore the desired state of the resource.

Each timeline may have different external states at the sameinstruction count num-
ber. Therefore, each timeline needs to keep its own dictionaries for the resources. When
the user creates a new timeline, the debugger has to copy the resource dictionaries, so
each timeline has its own. If the current position in the timeline is not at the end of
the timeline, the debugger generates only reduced copies ofthe dictionaries. These
reduced copies only contain instruction numbers up to the current instruction count.
Newly created timelines only describe the execution up to the current instruction count,
and therefore, its resources only need the state for instruction counts up to the timelines
maximum instruction count, which is equal to the current instruction count.

The resource dictionaries have to be distributed between processes. Each timeline
can consist of multiple snapshots. The debugger may activate any of these snapshots
and in this case, the process associated with the activated snapshot needs access to the
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resource dictionaries.

3.8 Instruction Patching

Epdb has three modes of execution: normal, replay and redo. While replay and redo
almost always work the same, there is very often a differencebetween normal and re-
play/redo mode. Take for example thewrite() function, which writes some bytes to
disk. In normal mode, it should actually write something to disk, but in replay mode,
it wouldn’t be advisable, because the bytes would already have been written to disk by
the first execution in normal mode, and writing to disk again would change the file to
some wrong state. In replay and redo mode, the file shouldn’t be changed at all, because
managing the state of the file is the job of the resource manager. In fact,write() should
do nothing, except returning the number of bytes written in the first run.

The debugger knows how many bytes were written in the first runby using a mod-
ified version ofwrite(), which actually stores the number of bytes written in some de-
bugger internal variable. Epdb supports the shared dictionary nde, which thewrite()-
function of a patch module can use to store information the function needs to implement
deterministic execution behavior.

As we see, a reversible debugger requires a different implementation of a function
in replay/redo than in normal mode. Consequently, it needs a way to patch the func-
tion, but this patching shouldn’t change the execution while the program runs without a
debugger. The patching has to be done at runtime or when the program loads. For dy-
namic languages, patching the function at runtime seems to be the cleaner way. Patching
a function at runtime is often calledmonkey patching[Zia08]. Monkey patching is of-
ten used in conjunction with software testing. There, it is used to inject a fake or mock
object into the the runtime environment, instead of the object itself. It may also be used
to fix a bug in a running server, which shouldn’t reboot to fix the bug. As I believe that
patching of instructions has nothing to do with primates, I want to use the more generic
term instruction patching in this paper. It is more generic, because it does not nec-
essarily mean that the patching is done at runtime. It may also be done using program
instrumentation at class loading for a statically typed language like Java. If I empha-
size that the patching takes place at runtime, I will use the termdynamic instruction
patching. The name instruction patching also has the advantage that it emphasizes that
the debugger replaces atomic instructions which also have some time context.

With dynamic instruction patching, the function or object is simply replaced at
runtime with another one. As functions, objects, and classes are first-class objects in
Python, the patching can be done using simple assignments. Using instruction patch-
ing, the debugger can use a different version of a function, which distinguishes between
normal, redo and replay mode.

Epdb uses instruction patching to implement patched versions of functions and ob-
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jects, but it is still unclear when the patching takes place and how the code is organized
to provide patched versions. Epdb distinguishes between the builtins module and nor-
mal modules. Thebuiltins module is loaded even without animport statement, so the
debugger patchesbuiltins at the start of the program. For the rest of the modules epdb
overwrites the import mechanism, to patch them at import time. Python allows this by
overwriting the__import__()function.

The code for the patched versions of the functions is locatedin their own module
which has the same name as the original module, but has two additional underscores
at the beginning. To patch therandom.py module, the programmer would write a
__random.py module with the patched code. When the program imports a module
under debugger control, epdb merges the module with the patch module. It looks for a
symbol in the original module and if it finds it, it looks in thepatch module to find it
there and in that case overwrites the original one. In this case, the module provides the
original symbol with prefix__orig__, in order to allow the patched implementation to
access the original implementation. If the patched module doesn’t provide the symbol
of the original one, the original implementation is used. Ifa patch module provides a
symbol, which does not exist in the original module, it will be ignored and not accessible
by the program. Such symbols can be used by the patch module touse patch module
locale variables, which are not accessible from the programitself.

Listing 3.4: ex.py

def foo ( ) :
re turn 1

def bar ( ) :
re turn

Listing 3.5: __ex.py

def foo ( ) :
re turn 2

def baz ( ) :
re turn

Listing 3.6: view

def __o r i g__ foo ( ) :
re turn 1

def foo ( ) :
re turn 2

def bar ( ) :
re turn

Listing 3.4, 3.5 and 3.6 show an example of merging two modules. The module in
Listing 3.5 overwrites the functionfoo(), but keeps a copy__orig__foo(), which works
the same as in figure 3.4. Since the__ex.py doesn’t overwrite the functionbar(), it
looks the same after merging as inex.py. Thebaz() function has no corresponding
function in Listing 3.4, and therefore it is only local to the__ex.py module.

3.9 Atomicity

How far can a programmer step into an instruction? The answerto this question very
much depends on the programming language and the debugger. Python is an interpreted
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language and it doesn’t seem to make sense to debug the interpreter itself using a Python
debugger. The CPython interpreter isn’t even written in Python itself, but in C. If a
user wants to debug the interpreter, he better chooses a debugger for C code such as
gdb. Even if we ignore the interpreter itself, we may still encounter C code, because
a module for Python can be written in C. The Python debugger pdbstops here and
ignores stepping into functions in modules written in C, however, it allows stepping into
modules of the standard library. This is helpful for people who develop the standard
library, but is usually annoying for programmers who don’t.Many of the standard
library modules do some wrapping, before actually calling some module written in C.
Therefore, most of the time a user doesn’t get a lot of insightjust by stepping into a
standard library module. If they jump into such a module by accident, they often try
to come out as fast as possible. If the debugger allows stepping into a standard library
function, jumping into the standard library code is sometimes unavoidable by the person
doing the debugging. For example, if a function call, which the user is interested to
debug, is on the same line as a call to a standard library function, but the debugger
would execute the standard library function first, then a step at this line would access
the standard library function before the user defined function.

Epdb avoids stepping into standard library functions. One reason is that it is of-
ten more annoying than useful. Another is that it makes it easier to count instructions
correctly, because the library function might have non-deterministic parts in it. If epdb
would step into the standard library function, the implementer of reverse debugging ca-
pabilities would need to make those function calls inside the standard library work in
reverse. Those are often very poorly documented, if some documentation even exists.
The standard library itself however has very good documentation, and therefore it is
usually easier to implement reverse debugging for a standard library call.

One could argue that implementing reversible debugging forprimitive functions is
preferable to implementing reversible debugging for more complex ones, because the
complex ones consist of primitive functions, and programmers would only have to im-
plement a few primitive ones. However, it is often not possible to implement reverse de-
bugging for primitive operations, while it is possible to undo more complex ones. Let’s
take for example a program which sends a message to another process which shows the
message on the screen. A primitive operation would be, in this case, the sending of the
message. There is no way a program can undo that. When the message is sent, it gets on
the wire, the other process receives it, and does its actionsand then the debugger has no
information what the other process has done. However, if we look at the more complex
function “send a message to the other process to write something on the screen”, the
debugger has suddenly much more knowledge of what is happening. For example, to
undo this action, it could send a message “undo the effects ofthe last message I sent
you” and the other process could restore the previous state.Of course, designers of such
a system need to pay close attention to such requirements.



CHAPTER 4
Epdb Internals

Up to now, I have presented the overall architecture for a reversible debugger. Epdb is
a fully working prototype and therefore I had to do many more specific decisions and
detailed design. I want to present them in this section.

4.1 Snapshot Processes

Epdb has three kinds of snapshot processes. There is onecontroller process, onede-
buggeeprocess, but multiplesnapshotprocesses, i.e., as many as there are snapshots.

Epdb uses the controller process to manage the communication between the snap-
shots. If there wouldn’t be a controller process, every process would need to know about
every other process, because every process may activate anyother snapshot and this
snapshot may activate any other snapshot again. The decision would be between a full
mesh or a star topology, but a full mesh topology would require a lot of work to keep the
connections alive and a lot of connections between the processes, i.e.,n(n−1)/2, where
n is the number of snapshots. A star topology requires onlyn connections. However, it
requires one additional process, the controller process. Epdb uses a star topology like in
Figure 4.1. This communication topology always routes messages between a snapshot
and the debuggee process through the controller process.

Beside the snapshot and the controller process, there is alsothe debuggee process.
The debuggee process is the one that does the debugging at themoment, by interacting
with the user. It is the process which actually does work, while the others are just waiting
most of the time. There is only one debuggee process, becauseotherwise the two or
more processes would confuse each other. When the debuggee activates a snapshot, this
snapshot initiates a new debuggee and the previous debuggeeprocess terminates, so that
there is only one debuggee at any time.

39
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Figure 4.1: Star topology

Epdb implements each snapshot as a process. When the debuggeemakes a snapshot,
it calls the system callfork(), which creates an exact copy of the process, except for some
details like the process id. The newly created snapshot process registers itself with
the controller and then waits until it gets theactivation message from the controller.
When it gets an activation message, it spawns a new process using fork() again, because
otherwise the snapshot would get lost, if it would start running without making a copy
of itself. The newly created process then becomes the debuggee. Theend message is
another message the controller sends to the snapshot processes. This message instructs
the processes to terminate. The controller uses this message to delete a snapshot, either
when the user requests to delete it, or when the debugger ends, every snapshot process
gets an end message in order to make them terminate. The controller does this form of
closing in order to be able to use the system callwait() on them, to prevent them from
becoming zombie processes.

The debuggee uses the controller to activate snapshots. It does so by sending the
controller anactivation message. In this message, it also sends theid of the snapshot
to activate. The controller then looks theid up and sends an activation message to
the addressed snapshot, which spawns a new debuggee. There are two other types of
messages the debuggee may send to the controller. One is thelist message, which
makes the controller process list all snapshots, and the other is thequit message. This
message makes the controller send the end message to every snapshot, waiting for their
termination, and then terminating itself.

Snapshot Communication

As there are multiple processes which depend on each other, there must be some sort of
communication between them. Python supports some of them out of the box, namely
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signals, queue, shared memory and sockets. There are also third party modules for inter-
process communication, for example, POSIX or System V queues. The requirements
for the communication system don’t seem very high. There arenot so many messages
going around, but it is necessary that two process, which arenot in a parent/child re-
lationship, can easily establish a connection. I tried quite a few forms of interprocess
communication solutions, before I decided to go for sockets.

Signals

Signals are a very simple form of communication. The Python standard library has sup-
port for them. Useful for implementing them is thesignal.pause()function. This makes
the process stop until it receives a signal. Signals seem to be an adequate solution, if
you have only local snapshots. For global snapshots, there is much more communica-
tion between the processes and signals, so there don’t seem to be a sufficient solution to
it. Signals also suffer from portability issues.

Queue/Pipes

Python comes with amultiprocessingmodule. This module contains the classesQueue
andPipe. Although they are used differently, they share almost the same advantages
and disadvantages. One big advantage is that they are not only bundled with Python,
but also implemented portably and work on almost every platform. However, they have
a problem: it is not easy to create a Pipe or Queue between two process, which do not
know about each other (i.e. for example in a parent-child relationship). This makes it
very difficult to establish communication, especially for global snapshots.

Shared Memory

There is support for shared memory in Python. Python supports a Managerobject.
This object is a separate subprocess. Using shared memory this way wouldn’t save
any processes. It would be possible to save the data related to snapshots in the shared
objects. Consequently, every process would have access to all snapshot data, but shared
memory doesn’t solve the synchronization problems. These could be resolved using
locks, but this would be more complicated than necessary.

POSIX/System V Queues/Pipes

As the Python Queue/Pipes had some shortcomings with respect to establishing com-
munication, I looked at POSIX and System V queues and pipes. These are not part of
the standard Python distribution, but there are third partymodules supporting them. As
it turned out, the problem of establishing a connection between two foreign processes
isn’t well supported.
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Sockets

Python supports programming using sockets, so one can startwith them without prepa-
ration. They also solve the problem of establishing a connection between two foreign
processes since there is the functionbind(), which gave the socket a name. As sockets
are usually used for network programming, there are of course some security concerns,
such as ensuring, that no one on the Internet is able to control another user’s machine.
Luckily, there are Unix Domain Sockets, which do not work over TCP or UDP, but over
a local file. There are still portability problems here, because they are not well supported
under Microsoft Windows, but as I broke compatibility before, this shouldn’t matter.

Snapshot Activation Modes

The snapshot implementation of epdb supports three different modes of snapshot acti-
vation. The type of snapshot activation is transparent to the users, i.e., they will not see
which activation mode the debugger uses. The reason for different activation modes is
that the debugger usually doesn’t stop after it activates a snapshot, but goes some steps
ahead. The most often used snapshot activation mode iscounting activation, but epdb
usesframe count activation andcontinue activation in some special cases.

Counting Activation

With counting activation, the debugger activates the snapshot and instructs it to run
forward until it reaches a given instruction count. Then thedebugger interrupts the
execution and calls theinteraction()method. Epdb uses counting activation, if it knows
in advance at which instruction count it has to break. This isalways the case withrstep,
rnext, rcontinueandstepand often, but not always withnextandcontinue.

Frame Count Activation

Epdb uses frame count activation in a special case, where counting activation doesn’t
work, due to the fact that the debugger doesn’t know at which instruction count to stop
when it activates the snapshot.

In Figure 4.2, the program is inside the functionfoo() and calls the functionbar().
The user also has executed thebar() function partially in normal mode and after that,
has run the program backwards up to the invocation of the function bar(). The current
instruction count of the timeline is at the position immediately before the invocation
of bar(), and the maximum instruction count is inside the functionbar(). Inside the
functionbar(), the debugger has also made a snapshot, either because the timer variable
exceeded its limit, or a patched function requested to make asnapshot for determinis-
tic execution. When the user initiatesnext, the debugger has no information at which
instruction count it should stop, because the target location at the position wherebar()
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Figure 4.2: Frame count activation example

returns was never executed before, and therefore the debugger hasn’t saved any execu-
tion path information at that location yet.

The debugger also can not runnextas in normal mode, because there is a snapshot
which it has to activate to guarantee the forward activationproperty. In this case, epdb
uses frame count activation. Before it calls the function, itsaves the number of stack
frames it actually has. Then it activates the latest snapshot inside the function and passes
it its actual frame count. Then the activated snapshot runs the program until it reaches
this frame count or less. Consequently, the debugger precisely stops at the position at
which the function returns. The “or less” condition is necessary to support exceptions
which may leave the function at a lower frame count.

Continue Activation

Continue activation is similar to frame count activation, but used in conjunction with
thecontinuecommand. Consider an example where no future breakpoint in redo mode
exists, but the debugger has made a snapshot, which it shouldactivate. Figure 4.3
illustrates this. In this case, the debugger has to activatethe latest snapshot and execute
it over the maximum instruction count of the timeline. At this point, it has to switch
to normal mode and run it until it finds a breakpoint in normal mode. As the debugger
has no information at which instruction count the breakpoints occur1, it has to switch

1breakpoints reside on lines in source code, not instructioncounts
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Figure 4.3: Continue activation example

in order to run the program until it reaches a breakpoint. At the snapshot activation, it
has to instruct the new process to run until it reaches a new breakpoint. I call this type
of snapshot activation —continue activation, because it makes the new process run in
continue mode after it gets activated.

4.2 Bookkeeping in Epdb

Epdb records the data change history with the use of snapshots, but it also has to record
the execution path history. It does this by counting instructions. This works for therstep
command, becausersteponly requires to activate a previous snapshot and then to run
from there until it reaches the number of instructions minusone. However, forrnext
andrcontinue, this isn’t sufficient. With just the instruction count, there is no way to
predict at which instruction number a breakpoint resides orwhere the debugger called
the corresponding function. In order to makernext andrcontinuework, the debugger
has to track additional information.

First, the debugger needs to stop at a breakpoint when the user initiates a reverse ex-
ecution command. The user is able to set a breakpoint after ithas executed all the code
and then can run the program backwards to this breakpoint. Therefore, the debugger
can’t simply save the instruction counts with the breakpoints when it encounters one,
while running the program forward, because the breakpointsmay not exist yet. Conse-
quently, the debugger has to save the instruction counts forevery line of code, which it
executes. Epdb does this in a dictionary, thecontinue_dict. It uses a tuple containing
the filename and the line number as key. This information specifies exactly one line
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of code. As a value it uses a list of instruction counts, whichare executed on this line
of code. Using this dictionary, it is possible to calculate the position of the breakpoint
when running multiple instructions backwards or when running forwards in redo mode.

For rnext to work, the information saved in thecontinue_dictis not enough, be-
cause the debugger needs to know on which instruction countsthe functions have re-
turned. It keeps another dictionary, thernext_dict. Every time the debugger encounters
a user_return(), it adds an entry to the dictionary with the current instruction count as
the key and the instruction count of the correspondinguser_return()as the value. Con-
sequently, it is possible to calculate the position in the program where arnext should
stop the program execution.

There is another situation where the debugger needs additional information and that
is in case of anextcommand, when the debugger is in redo mode. There are maybe
snapshots inside the function and therefore epdb must activate the latest snapshot inside
the function, because of the forward activation property. Epdb keeps another dictionary,
the next_dict, which is the reverse form of thernext_dict, i.e., it has the instruction
count from the correspondinguser_call()as the key and the instruction count at the
user_return()as the value. Using this dictionary, the debugger can calculate the nearest
snapshot to the target position and therefore is able to guarantee forward activation.

With next_dictandcontinue_dict, there is the problem that the information the de-
bugger saves may be used by a snapshot made earlier. As this earlier snapshot hasn’t
recorded the information ofnext_dictand continue_dictfor later instruction counts,
it wouldn’t have this information. Therefore epdb must use ashared dictionary for
next_dictandcontinue_dictto make this information available to all snapshot processes.
This shared dictionary should belong to a timeline, i.e., each timeline should have its
own version ofcontinue_dictandnext_dict.

With rnext_dict, the situation is a little different. It is only needed for information
in the past. Therefore, the debugger doesn’t need to share the dictionary with other
processes, because each process can track the information it needs.

4.3 Shared Memory

As described in 3.5, the debugger has to record the behavior of non-deterministic func-
tions and exchange the recorded data with other processes. Section 3.7 showed that
epdb makes use of resource managers, which must be synchronized among all pro-
cesses. Section 4.4 shows that breakpoints need to be distributed. Epdb also has to keep
track of the execution path history which should be available to all snapshots, and last,
but not least, it has to keep information of timelines synchronized over all processes.

To synchronize all the data, epdb uses its own server process, which it starts at its
own startup. Most of the data can be handled in a shared dictionary, but the breakpoint
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implementation1 makes some usage of lists. Therefore, the implementation should sup-
port lists as well. Epdb does not need synchronization, i.e., locking before accessing
data, which most shared data implementations provide, because only one process is
active at the same time.

In order to implement a shared dictionary, I needed some communication technol-
ogy. I first considered using themultiprocessing-module. There exists aManageror
alternativelyBaseManagerclasses, which would allow implementing a shared dictio-
nary easily. As it turned out, the module wasn’t well designed for using it withfork(),
but instead, with aProcess-data structure which doesn’t guarantee the use offork().
Using fork() in conjunction with theManager, I ran into some nasty race conditions
which I wasn’t able to fix due to the complex implementation that does much more than
I actually needed.

Therefore, I decided to implement a simple shared dictionary on my own. This isn’t
very complex, as Python provides the well implementedpickle module, which allows
serialization of objects. For inter-process communication, I decided to go for Unix do-
main sockets for the reasons discussed in Section 4.1. At thestart of the debugger,
epdb launches a process which manages the dictionary and listens for incoming con-
nections. All other processes connect to the managing process at their start. To access
the dictionary, the client sends a tuple of three elements containing the method name,
the positional arguments and the named arguments. The server executes the method
with the arguments and returns a tuple of two elements. The first element indicates
whether the method was successfully executed or if an exception was thrown. The sec-
ond contains the return value or the exception. I also added aproxy[GHJV94] at the
client side for more transparent usage of the dictionary. This implementation also has
the advantage that it works with complex objects like resource managers, as long as they
are pickleable. However, this can be easily achieved by implementing the__reduce__
method of the class.

This implementation works well for what it is intended for, but also has some limi-
tations. For example, it is not possible to receive an iterator of the dictionary, because
iterators are not pickleable. However these limitations are no problem in the described
case.

Figure 4.4 shows how the shared objects are arranged. First,there exists a timelines
object, which is a dictionary that holds all timelines. A timeline is a more complex
object, which consists of dictionaries for non-deterministic effects, resources, managers
and, the execution path history information stored in the dictionariesnext_dictandcon-
tinue_dict. Epdb stores the information of breakpoints independentlyfrom the timeline.

1the breakpoint implementation is almost copied from pdb, except that epdb stores breakpoint data
on the distributing server
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Figure 4.4: Organization of shared data

4.4 Breakpoints

There are different processes communicating with the user.Therefore breakpoints
should appear to the user in the same way regardless which process is currently the de-
buggee. Without changing the bdb implementation, every process would handle break-
points separately. This means that after restoring a snapshot, the user would probably
see fewer or different breakpoints. Therefore, I decided toimplement a distributed
version using the shared memory approach. As it turned out, Icould reuse the imple-
mentation of breakpoints from bdb and pdb, but I had to replace the data structures,
which store the breakpoint information, with shared data structures, i.e., remote prox-
ies, which forward the function calls to the shared memory server. For the breakpoint
implementation, I needed a shared dictionary and a shared list, because bdb uses those
data structures to index the breakpoints in different ways.

For the implementation of shared breakpoints, there are tworeasonable ways to
implement them. They could either belong to a timeline, or they could be global. If they
belong to a timeline, the users would see different breakpoints for each timeline. In the
global approach, the users would see the same breakpoints when they switch to another
timeline. I decided to go for the global approach, because breakpoints belong to some
line in the source code. As the source code doesn’t change when the timeline changes,
this seemed more reasonable to me. However, the timeline approach has advantages
too. For example, the user may want to search for a different bug in two different
timelines and therefore would need different breakpoints in each timeline. Therefore, a
full-featured implementation of a reversible debugger might implement both.
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4.5 Implementation of Debugging Commands

Although pdb provides an implementation for the standard debugging commandsstep,
nextandcontinue, their implementation doesn’t combine well with instruction counting.
The reason is that pdb doesn’t call a trace function on every instruction executed, but
only on those, which are located in frames, that have a breakpoint in it. This optimiza-
tion makes debugging faster, but doesn’t allow applying instruction counting. Therefore,
it is necessary to rewrite those functions.

Step

The stepcommand in epdb works similarly to the one in pdb, as it only steps one in-
struction forward. Therefore, it doesn’t interfere with instruction counting, because
instruction counting requires the debugger to stop after each atomic instruction. Step
goes exactly one atomic instruction ahead, and stops exactly where the instruction count
mechanism increments its instruction count. Therefore thestop mechanism is the same
as in pdb in normal mode, but epdb also supports the redo mode.In redo mode, epdb
first checks if there is a snapshot at the next instruction forthe current timeline. If it is
the case, it activates the snapshot instead of stepping one instruction forward, to guar-
antee the forward activation property of the debugger. After a successful step in redo
mode, epdb has to restore all resources to their state for theactual instruction count.

Next

Nextworks similar tostep, except when the current line contains at least one function
call. Then theuser_call()method is called beforeuser_line(). In the pdb implemen-
tation, the_stop_frameis set to the current frame. This means that the debugger only
stops when it returns from the function call to the current frame. It also means that the
instruction count would only be increased by one, because the trace function would only
be called once. This is undesirable because epdb would confuse the instruction counts
in replay mode, because there, it would step into the function.

To fix this issue, epdb implementsnextsimilar tostepin that it calls the trace func-
tion on every call, but doesn’t always calls theinteraction()method. If the debugger runs
over a function call, it calls theuser_call()method beforehand and theuser_return()
method afterwards. Before callingnextthe debugger stores the number of stack frames
which the debuggee currently has. When it steps into the function, the function call sets
up a new stack frame and increases the number of frames. When itleaves the function,
it deletes a stack frame and decrements the number of frames.The debuggee may create
additional frames by calling other functions, but when it equals the number of frames it
stored previously, it has returned from the function. If it is less than this number, then
it has left the function via an exception, and therefore has reached the position where
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the next command should present the user a command prompt. Furthermore, the next
command should also consider breakpoints. A breakpoint check in user_line()solves
this.

Like step, nexthas to treat normal and redo modes differently. In redo mode,epdb
tries to find an appropriate snapshot, and then activates it.In contrast tostep, next
requires two different activation modes. First, a snapshotactivation, combined with
going a number of steps forward (see counting activation in Section 4.1), and second,
a snapshot activation until the stack depth reaches a given number (see frame count
activation in Section 4.1). Asstep, nexthas to restore the resources before the debugger
shows the command prompt.

Continue

Continuesuffers from the same problem asnext, in conjunction with instruction count-
ing. The epdb version ofcontinuecalls the trace function on every line of code. In the
user_line()method, it checks if the actual line is a breakpoint, and in this case, provides
a command prompt. In redo mode,continuecalculates the halting position using the
continue_dictand tries to find the best positioned snapshot to reach it. However, if the
next breakpoint is after the maximum instruction count of the timeline or doesn’t ex-
ist (in this case it is the end of the program), epdb uses the snapshot with the highest
instruction count from the timeline and activates it until it finds a breakpoint, or the pro-
gram ends. This type of activation is called continue activation as described in Section
4.1

Rstep

There is is no implementation for all the reverse debugging commands in pdb. There-
fore, I had to implement them in epdb from scratch. For reverse execution, epdb ignores
the external state at first and does replaying by activating aprevious snapshot. Then,
it does counting activation until it reaches the current instruction count minus one. It
replays some instructions in replay mode, and before it shows the command prompt
to signal that reverse stepping has finished, it switches to redo mode, and thus sets the
resources to their state at this instruction count in the actual timeline. Consequently, the
debugger doesn’t need to reset the state after every replayed instruction, but only once
per initiated user command.

Rnext

A rnext means to avoid stepping into a function that returned to the actual position in
the program. In epdb,rnextdoes the opposite of a precedingnext. If the user has sent
a next, and afterwards arnext command, then he is at the same position in the source
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code as before. The only thing that may change is the mode, i.e., if the debugger was
previously in normal mode, it is after arnextalways in redo mode.

However, without additional tracked information, the debugger doesn’t know which
function to step in and which to skip while it is replaying. Arnext can mean to step
only one instruction backwards, or it can mean to step multiple instructions backwards
depending on if the last instruction was a function call or not. To solve this problem,
I decided to track every instruction count at a function callwith the correspondent in-
struction count at the return of the function. Epdb stores this information in a dictionary
rnext_dict1, with the return instruction count as the key. Then, the debugger can look
up the corresponding call instruction count. If it does not exist, it can simply step one
step backwards. If it exists, it can step back until it reaches the call instruction count.
Both of these types of stepping backwards only require counting activation.

Like rstep, rnextsets the resources to their appropriate state only before itshows a
command prompt.Rstepalways ends in redo mode.

Rcontinue

Similar tornext, for rcontinueto work, the debugger has to track additional information.
Without this information, the debugger wouldn’t know at which breakpoint to stop. It
could be that it has to stop at the first line with a breakpoint it encounters, or at the
second or any following.

Epdb keeps a dictionarycontinue_dictwith a tuple, that contains the filename and
line number as the key, and a list of instruction counts as thevalue. If the programmer
navigates backwards, epdb can iterate through every breakpoint and check if there is an
instruction count in the dictionary. Then, it takes the highest instruction count and uses
it to calculate the steps to run forward. When it reaches its goal, it sets the resources and
then switches to redo mode asrnextandrstepalways do.

In principle, it is possible to implement this dictionary locally for each process,
because the program can reproduce it while running forward and it is usually not used
to jump forward. However, since epdb allows timeline switching, the corresponding
continue dictionary is not available if the user is in a different timeline, and therefore
can’t switch to another timeline. Thus I made thecontinue_dictshared, because I feel it
is the cleanest solution.

4.6 Example Patch Modules

I implemented a simple patch module set, which illustrates the principle of dealing with
non-determinism and side effects. For non-determinism, I chose thetime()-function of

1see Section 4.2
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the time module. For functions which also have side effects, I chose the built-in file
editing functionsopen(), read(), write(), close().

Time

The time.time()function is a typical example of a non-deterministic function. It returns
the actual time as a floating point number. This number represents the numbers of
seconds passed since January 1st 1970, at 0:00. Thetime.time()function does not have
side effects, because it doesn’t actively change the time.

There are two ways to implementtime.time(). The patched function could either
store the return value in a stored dictionary or it could instruct the debugger to make a
snapshot after the instruction.

Implementation with a Shared Dictionary

In order to create an patched version of thetimemodule, the debugger needs a__time
module. If this module exists, the debugger then merges these two modules. Listing 4.1
shows an implementation for the__timemodule.

One tricky aspect in the implementation of thetimemodule is that the module name
is the same as the function name. Since the function needs to access the original module,
it needs to import the originaltimemodule. However, this module has the same name as
the function and therefore every reference totimewould reference the function instead
of the module. Thus, the module should import thetimemodule as a different name. In
the example, thetimemodule is imported astimemod.

The implementation of thetimefunction distinguishes between normal and redo/re-
play mode. In normal mode it first uses the original implementation to get the system
time. It then saves the time in the shared dictionary at the actual instruction count and
after that it returns the time value. In redo and replay mode it looks up the value in the
dictionary and returns it. By this means the function always returns the same time value
in redo mode as it returned it in normal mode, when the debugger executed it the first
time.

Implementation with Snapshots

The alternative implementation of__time instructs the debugger to make a snapshot
after the instruction. Listing 4.2 shows an implementationof time using the snapshot
approach. The dbg module provides the objectsnapshottingcontrolwith a method,
which allows to do exactly this. In normal mode, the implementation calls this method
and then returns the system time using the original function. There is no implementation
for redo or replay mode, because the debugger never executesthe function in redo or
replay mode, but instead activates the snapshot after the instruction.
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Listing 4.1: __time.py
import t ime as timemod
import dbg

def t ime ( ) :
i f dbg . mode == ’ normal ’ :

va l ue = timemod . __o r i g__ t i m e ( )
dbg . nde [ dbg . i c ] = va l ue
re turn va l ue

e l i f dbg . mode == ’ redo ’ or dbg . mode == ’ r e p l a y ’ :
re turn dbg . nde [ dbg . i c ]

Listing 4.2: Alternative implementation of __time.py
import t ime as timemod
import dbg

def t ime ( ) :
i f dbg . mode == ’ normal ’ :

dbg . s n a p s h o t t i n g c o n t r o l . se t_make_snapsho t ( )
re turn t imemod . __o r i g__ t i m e ( a )

The advantage of this approach is, that it is very straight forward. For every non-
deterministic function without side-effects, the implementation with snapshots looks
almost the same, even for more complicated situations, e.g., a function which changes
a referenced object. It also seems feasible to automate the process of patching such
instructions. However, this approach also has a disadvantage, because the debugger
always makes a snapshot, when it reaches such an instruction, which could reduce the
system performance.

File Handling

Implementing reversible debuggable file handling is much more complex than atime()-
function. First, the file handling functions are not only non-deterministic, but also have
side effects. Moreover, they interact with each other, so they cannot be considered inde-
pendently. To simplify the matter, I only considered the core functions of file handling
which areopen(), read(), write() andclose(), and ignored others likeseek()or trunk().

It is important to note, that simulating file access very muchdepends on the file
and therefore it is clearly impossible to give one "best solution". For instance, the file
could be a special file like/dev/null or /dev/random, which works completely
different than a regular file. Therefore, a simulation for accessing a/dev/random file
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Listing 4.3: __builtins.py: open
def open ( f i l e , mode=" r " , b u f f e r i n g =−1 , encod ing =None ,

e r r o r s =None , new l ine =None , c l o s e f d =True ) :
i f dbg . i s _ d b g _ c a l l e e ( ) :

re turn b u i l t i n s . __or ig__open ( f i l e , mode ,
b u f f e r i n g , encoding , e r r o r s , newl ine , c l o s e f d )

fd = b u i l t i n s . __or ig__open ( f i l e , mode , b u f f e r i n g ,
encoding , e r r o r s , newl ine , c l o s e f d )

a r g s = ( f i l e , mode , b u f f e r i n g , encoding ,
e r r o r s , newl ine , c l o s e f d )

fp = F i l e P r o x y ( fd , a r g s )
re turn fp

would be different than one for a regular file. The file can alsobe accessed by another
process and therefore it may be necessary to take this into account.

One can use the code of the example with epdb to explore the typical flushing be-
havior of the function calls (i.e., the buffer is only written to disk onclose()or flush()
calls). To make the implementation quite simple, but nevertheless of practical value, I
made the following assumptions to how the file is accessed:

• Only regular files are considered

• It is assumed that no other process deletes the file

• The type of the file object returned by open isn’t used

• The implementation of the file does not expose it’s buffer

• The implementation of the file only flushes in case of aflush()or close()call

Open

Theopen()function is a factory function which returns a file object of some type. The
type depends on the mode in which the file is opened. For instance, it can beBuffere-
dRandomor TextIOWrapperdepending on the opening mode. In the simulating exam-
ple, the patched open call returns aFileProxy object. This object supports theread(),
write() andclose()method. The proxy passes the calls to thebuiltins file object.

I used a proxy in this example, because it is not easily possible to access the buffer of
the file object. This means that it is not possible to change the buffer of the file, which
is written when the process ends, for example: the programmer steps over awrite()
call and then decides to step back. This means that the debugger restores a previous
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Listing 4.4: __builtins.py: FileProxy
c l a s s F i l e P r o x y :

def _ _ i n i t _ _ ( s e l f , f i l e , a r g s ) :
s e l f . _ _ f i l e _ _ = f i l e
s e l f . _a r gs = a r g s
s e l f . fn = fn = a r g s [ 0 ]
r e s o u r c e = dbg . c u r r e n t _ t i m e l i n e . \

new_resource ( ’ f i l e ’ , fn )
rm = r e s o u r c e s . F i l eResourceManager ( s e l f . fn )
s e l f . _ f i l e r e s o u r c e m a n a g e r = dbg . c u r r e n t _ t i m e l i n e . \

c rea te_manage r ( ( ’ f i l e ’ , fn ) , rm )
i d = s e l f . _ f i l e r e s o u r c e m a n a g e r . save ( )
i f not dbg . i c i n r e s o u r c e :

r e s o u r c e [ dbg . i c ] = i d

def w r i t e ( s e l f , b ) : " . . . "
def r ead ( s e l f , n =−1): " . . . "
def c l o s e ( s e l f ) : " . . . "

snapshot and terminates the previous debuggee. This means that all changes to the
buffer are flushed out, which should be considered by the activated process.

Another problem with open file descriptors is their behaviorin conjunction with
fork(). Let’s consider a program which opens a file and writes to it. After that, it forks
another process and then both processes close the file. This would actually mean that
the stream would be written twice, which is probably not intended. Epdb solves this
problem by using resources, which have a state. If the debugger closes a process, e.g.,
because the user deletes a snapshot, it can recover the external state by resetting the file
resource to its actual state.

The implementation of theopen()function can be seen in Listing 4.3. The first thing
this implementation checks is if the callee is some debuggerrelated module, because
the debugger usesopen()as well. In this case, the debugger does not use the patched
version ofopen(), but the original one. The implementation ofopen()works the same
in redo, replay or normal mode, becauseopen()is a deterministic1 function with side
effects. Instead of returning aFile object, the patched version ofopen()returns a proxy
to it, i.e., theFileProxy. This proxy provides its own implementation ofread(), write()
andclose()methods.
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Listing 4.5: __builtins.py: read()
def r ead ( s e l f , n =−1):

i f dbg . mode == ’ normal ’ :
dbg . s n a p s h o t t i n g c o n t r o l . se t_make_snapsho t ( )
va l ue = s e l f . _ _ f i l e _ _ . read ( n )
re turn va l ue

FileProxy

As shown in Listing 4.4, theFileProxydoes not only provide patched versions ofread(),
write() and close(), but also manages the file resource manager. It generates a new
resource and a resource manager. Then it saves the actual state and stores theid in the
shared resources dictionary. Keep in mind, that the currenttimeline can change between
the FileProxy initialization and its method calls (e.g., by creating a newtimeline) and
therefore, the resource dictionary should not be stored as amember variable for using it
in other method calls.

Read

The read() method is a non-deterministic function without side effects. It is non-
deterministic, because the debugger doesn’t know what the method is going to return.
The read()-method relies on an external state, the file. However, it doesn’t change the
external state and so it has no side effects. These considerations allow one to implement
the read()method using snapshots. The implementation shown in Listing 4.5 achieves
this by calling theset_make_snapshot()method of thesnapshotcontrolin normal mode.
There is no implementation ofread() in replay or redo mode. This is because epdb
would never callread() in replay or redo mode, but would instead activate the next
snapshot, because of forward activation. This snapshot hasthe correct internal state
after theread()call in normal mode.

Write

Thewrite() method is a non-deterministic function with side effects. The side effects are
obvious, because it changes an external state, the file. It isalso non-deterministic, be-
cause thewrite() method also returns the number of bytes written and this number does
not have to be the same as the number of characters in the argument. A possible im-
plementation ofwrite() may look similar to Listing 4.6. Aswrite() is non-deterministic,
it is easiest to just let the debugger do all the work and then to tell it to make a new

1at least if we consider the internals ofopen()such as the integer descriptor, as being of no particular
interest
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Listing 4.6: __builtins.py: write()
def w r i t e ( s e l f , b ) :

va l ue = s e l f . _ _ f i l e _ _ . w r i t e ( b )
i d = s e l f . _ f i l e r e s o u r c e m a n a g e r . save ( )
dbg . c u r r e n t _ t i m e l i n e . \

g e t _ r e s o u r c e ( ’ f i l e ’ , s e l f . fn ) [ dbg . i c +1] = i d
dbg . s n a p s h o t t i n g c o n t r o l . se t_make_snapsho t ( )
re turn va l ue

snapshot after the write call, as was done in theread()example. However,write() also
changes the external state and therefore it should also tellthe resource manager to save
the state and to put the state identifier into the resource dictionary, so that the debugger
can restore the state of the file later on. Similar toread() the implementation ofwrite()
doesn’t need an implementation for replay or redo mode because epdb uses forward
activation.

Close

The close()method is an example of a deterministic function with side effects. An
implementation may look similar to the code in Listing 4.7. As it is deterministic, it is
not necessary to make a snapshot after this function call. However, it is necessary to
save the state of the file resource afterclose(), becauseclose()flushes the buffer. As
the patchedclose()method does not instruct the debugger to make a snapshot after its
return, it is possible that the debugger calls theclose()function in redo or replay mode.
The implementation also proxies theclose()method in these modes as opposed to the
non-deterministicread()andwrite() methods.

I do not consider this implementation of file handling a pretty one, but more of a
hack. However, I think this example shows the power of the framework, that it can be
used to simulate even such complex operations like file handling quite easily. A better
solution to this problem, in my opinion, would be to use a special file system for the files
the application uses. This file system should not delete or change files, but instead save
a new version of the old file and it should allow the restoration of old versions of the
files. This is similar to the way some databases with Multi Version Concurrency Control
(MVCC) save their data. The file system in user space (FUSE) technology allows to
implement such a file system entirely in user space. Using a special file system would
also allow a way to deal with some special files like/dev/random. The file system
could store old versions of the number generator. However, implementing such a file
system is out of the scope of this thesis.
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Listing 4.7: __builtins.py: close()
def c l o s e ( s e l f ) :

i f dbg . mode == ’ normal ’ :
s e l f . _ _ f i l e _ _ . c l o s e ( )
i d = s e l f . _ f i l e r e s o u r c e m a n a g e r . save ( )
s e l f . _ r e s o u r c e [ dbg . i c +1] = i d

e l i f dbg . mode == ’ r e p l a y ’ or dbg . mode == ’ redo ’ :
s e l f . _ _ f i l e _ _ . c l o s e ( )
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4.7 Modules of the Standard Python Library

In this section, I want to give an idea, how much work it would be to enable reversible
debugging for a program. The amount of implementation modules a program needs,
very much depend on the program. If it is a program, which onlydoes some calcula-
tions, the program may not need any implementation modules at all. However, for a
program, which makes heavy usage of multiple resources and system calls, it can be-
come a very complex task. Some modules don’t need any patching at all. For example,
the modulemathhas 35 functions, which are all deterministic and without side effects.
The modulerandomhas only 2 non-deterministic functions and non with side effects.
On the other hand, most of the functions of theosmodule are non-detrministic or have
side effects. Figure 4.5-4.7 show the number of different kinds of functions for three
modules.





CHAPTER 5
Performance

Lienhard[LGN08] notes that the snapshot & replay approach is slow, because the debug-
ger has to re-execute the program partly. I don’t agree, because replaying can be even
faster than in logging-based debuggers, e.g., when the userwants to recover a position
where the debugger has made a snapshot. In this case, it has toclose its actual process
and create a new process from the snapshot, which becomes thedebuggee. Creating a
new processes with copy-on-write is so fast, that it takes usually less than 1ms. On the
other hand, the seek time of a hard drive takes typically a fewmilliseconds for spinning
hard drives or about 0.1ms for SSDs. The replaying time in thebest case is much lower
than most users are able to perceive, which is about 100-200ms.

In the worst case, the performance of an execution command should end after a
certain amount of time and therefore, the debugger should give some upper bound on the
execution time of the command. If this time is less than the user is able to perceive, then
there is at least no performance reason to avoid using a reversible debugger. The purpose
of this section is to show that it is in principle possible to achieve this performance goal.
However, I don’t want to give benchmarks on epdb, because thereal execution time
depends so much on the hardware and epdb isn’t performance optimized yet.

Epdb distinguishes two modes, which are visible to the user,the normal and the
redo mode. So we have to look at the performance of the debugger in each mode. In
normal mode, the debugger has a lot of overhead. Most important is the additional work
it needs to count the number of instructions, since epdb implements this in pure Python.
This slows down the execution. Then, there is some overhead to save non-deterministic
effects and to make snapshots and to track the execution pathhistory. A reversible
debugger is slower in this respect. However, the execution is slowed down by some
constant1 extra time per instruction.

1I haven’t added the time for the resource management here, because this time is very application
dependent
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In the situation in redo mode, assuming the timeline has beenexecuted until the
program has finished and every instruction is executed in redo mode, the debugger only
has to restore a snapshot and run some instructions forward.Therefore, the activation
time of the new process takes some constant amount of time, but running forward an ar-
bitrary number of instructions in redo mode takes constant time too! This is because the
debugger makes a snapshot every time the execution time counter passes one second.
The debugger never executes the last instruction which exceeds the one second limit in
redo mode, but instead activates the next snapshot. The execution time in redo mode
is always below one second plus the time needed to activate the snapshot. Of course
there is some additional overhead to recover the external state, but in the special case of
a program, which doesn’t make use of external resources, theexecution time of every
navigation command in redo mode is constant or in other wordsO(1). The execution
time of a program in redo mode can be even faster than the program execution of a pro-
gram without a debugger. The constant execution time in redomode assumes however,
that there is no overhead by having multiple snapshots, which is unfortunately not the
case. However, it is in principle possible to limit the number of processes by saving the
snapshots to disk and restoring them from there, but epdb does not implement snapshots
like that.

5.1 Instruction Counting

Python does not count the instructions by default. To do this, I implemented instruc-
tion counting using the trace function. Every time an instruction is executed, the trace
function is called, which increments the instruction counter by one. Consequently, it
is possible to add instruction counting without changing the source code of the Python
interpreter. However, it has significant influence on the execution time. To estimate
the performance impact of instruction counting, I implemented a program that does
nothing else than executing a Python script with instruction counting with the above
described approach. Then, I ran the microbenchmark programpybench, that comes
with the Python interpreter, with and without instruction counting. The tests were run
on a AMD Athlon(tm) 7550 Dual-Core 64bit - Processor with 2.5 GHz. The Python
interpreter used was 3.1.1+ on an Ubuntu Karmic Koala.

The tests inpybenchwere repeated multiple times. Figure 5.1 shows the relation
between the average execution time with instruction counting and without instruction
counting. As you can see from the diagram, with instruction counting the tests run most
of the time about 15 times slower. For one extreme example it runs even 110 times
slower.
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Figure 5.1: Average time used relation between with and without instruction counting

5.2 Snapshot Performance

Unix and similar systems use a method calledcopy-on-write[Bac86] for process cre-
ation, which reduces the memory the newly created process uses. Whenfork() creates a
new process using copy-on-write, the new process uses the same memory. This works
because the memory of the parent and the child process is initially the same. However,
if one of those processes writes to a memory page, this memorypage is then different
for the child and parent process. Therefore, the operating system copies this page to
another place, so that each process has now its own memory page.

Smith and Maquire[SJ88] did some experiments on how much a process changes
during its whole lifetime and came to the conclusion that about 50 percent of the pages
kept the same. As most snapshots in epdb don’t span across thewhole lifetime of the
process, I expect that snapshots in epdb do a little bit better.
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Copy-on-write process creation is really fast and typicallytakes less than 1 ms.
Waiting for a process to finish takes a bit longer, but is usually done in less than 10 ms.

More interesting than the speed of the execution offork() is the amount of processes
the system can handle simultaneously. It is well-known thata fork bomb, like in Listing
5.1, will make a system completely unresponsive. I tried to estimate how many simulta-
neously processes the operating system could handle with the program shown in Listing
5.2. This program measures how much time per created processit takes if the program
creates a bunch of processes. Figure 5.2 shows the result of this measurement. As one
can see, the number of processes the program creates hardly affects the process creation
time of a process, at least at these numbers of simultaneous created child processes.

The program also measures how much extra time it takes to not only create the pro-
cesses, but also to wait for them afterwards. In order to do this, each process keeps itself
long enough alive so that the parent process has time to create all processes, before the
subprocesses finish. The child processes accomplish this waiting by usingtime.sleep(5)
to stop the process for 5 seconds. After the parent process has created all child pro-
cesses, it then waits for all of them to finish and measure the time up to this point. As
each process waits 5 seconds, it therefore subtracts this amount of time to get the ad-
ditional time the process needs to create all processes and to wait for their termination.
Figure 5.3 visualizes the result of this measurement. The experiment was executed on
an AMD Athlon(tm) 7550 Dual-Core Processor with 2.5 GHz and 4 GB of RAM and an
Ubuntu Lucid Lynx Linux Distribution. As one can see from thediagram, the overhead
explodes at some number of processes. This is where the machine typically becomes
completely unresponsive and the only way to recover it, is toreboot the computer. From
the diagram we, can extract an estimate of how many snapshotsthe debugger can han-
dle. I tried to debug a program with epdb which made about 1000snapshots and was
still able to work and debug reasonably well on my computer. As the program makes
about one snapshot per second1, it is possible to debug programs which require about
16 minutes of execution time. This is enough for many applications, e.g., a program
which handles a page request of a web server should typicallyrespond in a second or
even less. However some longer running programs such as server programs, may need a
much longer execution time. There is still some work required to handle bigger numbers
of snapshots. One approach would be to swap the processes to disk, and then afterwards
to terminate them, and then only reactivate the process whenit gets activated. The op-
erating system does swapping, but it doesn’t kill the process, which means that it has to
continuously swap in and swap out, and this takes a lot of time.

1this is at least the case if the debugger does not make snapshots to handle non-determinism
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Listing 5.1: forkbomb.py
import os

whi le True :
os . f o r k ( )

Listing 5.2: maxfork.py
f o r maxnoproc i n range ( 1 0 0 , 1 0 0 0 , 1 0 0 ) :

s t a r t t i m e = t ime . t ime ( )
f o r i i n range ( maxnoproc ) :

i d = os . f o r k ( )
i f i d == 0 :

t ime . s l e e p ( 5 )
break

e l s e:
f i n i s h t i m e = t ime . t ime ( )
c r e a t e t i m e = ( f i n i s h t i m e− s t a r t t i m e ) / maxnoproc )
f o r i i n range ( maxnoproc ) :

os . wa i t ( )
w a i t f i n i s h t i m e = t ime . t ime ( )
overhead = ( w a i t f i n i s h t i m e− s t a r t t i m e−5) / maxnoproc
p r i n t ( " C r e a t e t ime : " , c r e a t e t i m e )
p r i n t ( " Overhead : " , overhead )
con t inue

break

5.3 Epdb Performance

The performance of epdb is dependant on many factors. I compared execution time and
memory usage, when the program is run inside the debugger andwhen it is executed
without the debugger. I chose two benchmarks –fankuch.pyandnbody.py– from the
computer language benchmark game[CLB11]. The benchmarkgcd.pycalculates the
greatest common divisor for two very large integers using Euclidean algorithm. These
three tests should measure typical programs.

The benchmarkcall_snap.pyillustrates the case, when a program repeatedly calls a
non-deterministic function. The program calls a patched function in a for-loop for 500
times, which instructs the debugger to make a snapshot. Therefore, running the program
without a debugger has not much overhead. However, when running it with epdb, the
debugger has to make a snapshot every time it encounters the function call.

The programcreate_array.pycreates a very large list of integers. It is an example
where debugger execution almost performs as well as native execution. To show, that it
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Figure 5.2: process creation

also performs well with snapshots, the program also makes a snapshot before and after
the creation of the list.

For all programs I measured execution time and memory usage and the number of
snapshots made when run under the debugger. For measuring execution time, I used
the timecommand to run the programs and took the real execution time.The reason I
chose real time over user time is that it is better comparablewith the measurement when
the debugger runs the program. Thetime command doesn’t work in conjunction with
epdb, because epdb doesn’t terminate after it has executed every instruction. Therefore,
I implemented time measuring for epdb. In normal mode, epdb always measures the
time it needs to runstep, nextor continuecommands. Thus, I started the program with
epdb, issued thecontinuecommand and then took the time epdb put out.

To measure the memory usage I usedfreecommand, which shows the actual mem-
ory usage of the whole system. I measured the memory usage before I started the
program and before it ends and took the difference. To achieve measuring the memory
usage before the end of the program, I injected an additionalinput() command which
halts the program until the user presses the return key. Thismakes it possible to measure
the memory usage again and then subtract the initial memory usage from it to receive
the memory usage of the program. Measuring the memory usage with debugger works
similarly, although I didn’t need to inject aninput() statement, because the debugger
doesn’t terminate the program when it finishes. Although using freemeasures the mem-
ory used by the whole system, it allows to factor in that epdb uses multiple processes,



5.3. EPDB PERFORMANCE 65

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  500

 1000

 1500

 2000

 2500

 3000

m
ill

is
ec

on
ds

/p
ro

ce
ss

 c
re

at
io

n

number of processes created

Figure 5.3: fork() overhead

which share memory pages. The problem that the measurement is susceptible by other
processes can be reduced by executing the tests multiple times.

Table 5.1 shows the averaged results of the measurements, where I executed each
benchamrk five times. In the case offankuch.py, nbody.py, gcd.pythe execution time us-
ing epdb is higher – approximately 1000 times. The additional memory these programs
need is about 10-20 times higher. The programcall_snap.pydoesn’t take particularly
long to execute, i.e., it is about 300 times slower, which is low compared to the other
measurements. However, the debugger makes a snapshot in every iteration of the loop.
Therefore, epdb has to make a snapshot in every iteration, and thus it needs lots of
additional memory, i.e., it is about 300 times higher. On theother hand, the program
create_array.pydoesn’t have a lot of overhead at all, when running under the debug-
ger. It is only 1.05 times slower and needs 1.02 times more memory. The reason for
the good results for execution time is, that there are only very few atomic instructions
for the debugger, which cause overhead. These instructionshave long execution time,
which increases the execution time for the execution without a debugger as well. The
memory usage of the program is very high even without using a debugger and thus the
memory usage of the debugger itself doesn’t contribute muchto the overall memory
usage compared to the memory usage without a debugger. The large list doesn’t need
more memory when running under epdb, because epdb makes use of the copy-on-write
mechanism offork(). Therefore, it doesn’t need extra memory to save the array inan-
other snapshot.
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Table 5.1: Benchmarks for epdb

benchmark parameter execution
time (s)

execution
time with
debugger (s)

number of
snapshots
made

memory
usage

memory
usage with
debugger

fankuch.py 6 0.034 37.7 13 3MB 44MB
nbody.py 500 0.051 366.4 65 3MB 106MB

gcd.py - 0.115 49.5 10 3MB 37MB
call_snap.py - 0.029 8.6 501 3MB 1010MB

create_array.py - 0.93 0.98 3 766MB 785MB

Although epdb is considerable slower than running without adebugger, there is
quite a lot of room for improvement. Especially rewriting the debugger in C should
make it much faster, because there would be no more additional Python instructions
every time the debugger encounters an atomic instruction. Especially instructions like
incrementing the instruction counter are very slow in Python, because Python uses its
own implementation for integers, which allows integers to get arbitrarily large. How-
ever, this reduces the execution time for integer operations. I think the memory usage
of epdb is reasonable. Most of the overhead comes from the additional processes epdb
uses, which doesn’t increase much, when the program runs longer.



CHAPTER 6
Applications

People, who have developed reversible debuggers have complained that nobody uses
their decent debugging tools, e.g., Lewis writes on the homepage [Lew07] of odb:

The ODB is as close to a silver bullet as you can get. Why don’t people use
it?

I don’t get it. :-(

Lieberman, a developer of ZStep, has written some text[Lie97] about people not using
good debugging tools.

I don’t want to join their complaints. Instead, I want to giveexamples of how a user
might want to use epdb. In this section, I want to risk lookingin the future, which means
that I will write about features and additional tools which are not available yet.

6.1 Web Applications

Web application development is an important branch of software engineering. There
are many tools and frameworks available for Python to ease the development of web
applications, e.g., Django, Pylons, Turbogears. Typically, these web frameworks pro-
vide their own debugging mode, where they show some debugging information when
the program fails, but usually don’t allow to control the program execution.

I think using epdb to debug web applications can work very well. Web applications
have usually a short running time, because the user expects aweb page to load fast.
Therefore the limited amount of snapshots of epdb doesn’t play a big role. They also
use a limited amount of resources; often a database and files are the only resources they
use. Some databases like Oracle or CouchDB already support accessing old versions
of the data records. If the database doesn’t allow this, it ismaybe possible to write
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an object relational mapper which accomplishes this. Object relational mappers are
very common in web applications too. File access could be implemented by using a
special file system, or the framework could add some implementation for file access to
accomplish reversible debuggable file access. Running the program with its resources in
epdb should work without any bigger problems. What remains left is the interaction with
the user, preferably with a graphical user interface. Here the framework could present
the user the interface via the browser and the use of AJAX. Whenthe user requests a
page, the web server would start the Python program under debugging control. If it runs
successfully, the web server sends the webpage to the browser to render it. Otherwise, it
sends a webpage to the browser, which contains a graphical user interface to debug the
program. This user interface would of course also allow the user to debug the program
in reverse and it would be possible to run the program either deterministically or non-
deterministically by making use of timelines. Of course, debugging a web application
using this approach should only be enabled in debug mode.

Another problem which debuggers of web applications face isthat web applications
typically use some sort of template language. Often there isa bug in a template instead
of the code itself. Therender()method of the template typically raises an exception, but
this doesn’t give the programmer much insight into what wentwrong in the program.
Thus it should be possible to inject a debugger inside the debugger, which works for the
template language. Using the patching mechanism of epdb, this should be possible to
implement.

6.2 Smart Phone Development

There are lots of small applications, which are often calledapps, for smart phones. Most
of these apps are written higher level programming framework. Developers usually test
their software on a virtual machine, before deploying it to the phone. The host machine
is usually much more powerful in terms of disk space, main memory and CPU speed.
Therefore, it is reasonably to use a virtual machine, which does some additional work
and allows reversible debugging of applications.

The developer of most apps usually use a higher programming framework, which
also allows a limited amount of API calls to access resources. Therefore it seems fea-
sible to develop reversible debuggable versions of these calls for the execution on the
virtual machine. On the virtual machine are already only simulated devices, and this
makes developing reversible debuggable resources even easier. Having a good debug-
ging framework for smart phone development may attract manydevelopers, which de-
velop lots of applications. A smart phone operating system with lots of application is
more likely to be a business success.
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6.3 Visualization of Algorithms

I believe using a debugger is a great way to get a better understanding of how a pro-
gram works and a reversible debugger makes this process evenmore enjoyable. Often
speakers want to present some algorithm and illustrate how it works. It would be nice
to visualize the data as the user steps through the program. ZStep1 focuses on visual-
ization, but epdb can visualize data too. Using its mechanism to patch instructions, it is
possible to visualize an algorithm without changing its code.

6.4 Design and Architecture

In my opinion a well-designed program is one which is easy to test and easy to debug.
Even if one doesn’t want to use a debugger, e.g., because one prefers to use test driven
development, the basic understanding of the debugging architecture of epdb helps the
programmer to design better programs. This is because epdb emphasizes the reproduc-
tion of certain states. This is important in design because abug, which is not repro-
ducible, is very difficult to fix. Therefore, the first step in fixing a bug is to reproduce
it. The remaining part is straight forward at least for an experienced programmer who
knows the code.

1see Section 7.1





CHAPTER 7
Related Work

Although reversible debugging has certainly various benefits, some authors have argued
against it. For example, Rosenberg [Ros96] argued against reversible debugging by
calling reverse execution a much-requested but dubious feature. He also believes that
this feature is so much work and still fraught with so much error that it is not worth
the engineering investment. He also gives some basic algorithm to implement reverse
execution. However, he does not mention copy-on-write optimizations

There is still a controversy between logging-based debuggers and replay-based de-
buggers. Lienhard[LGN08] argues that the disadvantage of replay-based debuggers is
that moving backwards in time can be very slow. However, I can’t confirm this, because
by using continuous snapshotting every second, the debugger can bound the amount of
time it needs to run backwards.

Feldman and Brown[FB88] give an alternative implementation of efficient snap-
shots without usingfork(). Mellor-Crummey and LeBlanc[MCL89] discuss a software
instruction counter, which usually does not have more than 10% overhead.

Pan and Linton[PL88] describe how to usefork() to create new checkpoints (i.e.
snapshots). They also describe the use of an event log, whichthe debugger uses during
replay when accessing the shared memory or when it replays system calls.

Kessler[Kes90] gives an approach to implement fast breakpoints using self-modi-
fying code. Netzer and Weaver[NW94] show an efficient adaptive tracing strategy for
logging-based debuggers. Demetrescu and Finocchi[DF04] describe the Leonardo vir-
tual machine which allows directing and checkpointing, which is useful for reversible
debugging. Nitin[KNM06] shows how the virtual machine Xen could be used to imple-
ment kernel debugging.
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Figure 7.1: Omniscient Debugger (odb)

7.1 Other Reversible Debuggers

Others already have developed reversible debuggers. However, they work differently
than epdb and target different programming languages.

Odb

The Omniscient Debugger[Lew03] [LD03] is a logging-debugger for Java, which uses
byte-code instrumentation of the classes when they are loaded. To debug a program in
odb one should first execute the program under the debugging environment until it ends
or crashes. During execution, odb creates a log file of everything that happens in the
program. Everything here refers to time stamps, local variables, the state of all objects,
and the tty output for every thread at any position in the program. After the program
ends, the debuggers graphical user interface shows up (see Figure 7.1). It allows the
programmer to examine the state of the program at any position in the program at any
time, and it also allows one to query program states. The users don’t have to examine
the log files after they have executed them, as they can also save them and examine them
later, or send them to the programmers to help them fix the observed bug.

Odb is different from epdb, in that it is a logging debugger. With epdb, you don’t
have to execute the program until it ends. Epdb allows the programmer to run the
program up to any point, then to go some steps back and then to go some steps for-
ward again, either in deterministic or non-deterministic fashion. Epdb also introduces
resource management, which odb lacks.
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Gdb

Gdb uses a technique to implement reversible debugging, which its developer name
process record & replay. As gdb is a native debugger, it has a parent process, the
debugger, and a child process which executes the program andgets directed by the
parent process. With process record & replay, the parent process logs the execution of
each machine instruction in the child process, together with each change in memory and
registers. With this execution log, the debugger can execute the program in reverse by
successively undoing each change of each logged instruction. To go forward again, it
also uses the execution log to replay the state and so it then uses deterministic forward
execution.

As odb, gdb has no resource management yet. However, it is more similar to epdb,
in that it is an interactive debugger. A problem with gdb’s approach is that running
backwards a huge amount of instructions takes a very long time, because each machine
instruction has to be undone. With epdb’s, approach the debugger activates a snapshot
which is near to the target location in the program and startsfrom there, which can save
replaying time. In gdb, there is also no concept which distinguishes between determin-
istic and non-deterministic instruction execution.

ZStep

ZStep is an interactive reversible debugger visualizationtool for Lisp, which allows
reverse execution of code. In contrast to epdb, ZStep does not work on source line level,
but on expression level, which allows the user to step over smaller pieces of code. ZStep
is also a visualization tool, which allows graphical representation of the data structures
or program execution, while the user steps through the program. However, ZStep has
no concept of non-deterministic functions and does not havean answer to side effects.
The visualization of code is something epdb supports in principle too by allowing the
user to patch instructions.

EXDAMS

The oldest reversible debugger I know of is the EXtendable Debugging and Monitoring
System, or EXDAMS[Bal69] for short. It was a debugger for the ancient Multics op-
erating system. In fact, the authors didn’t call it a reversible debugger, but debug-time
history playback. EXDAMS is a logging debugger. The debugging system augmented
the source code with additional logging statements and allowed one to view the state of
the program at any position in the program.
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IGOR

Igor [FB88] is a prototype reversible debugger for the DUNE distributed operating. It
uses a snapshot & replay approach. The authors refer to the snapshots as checkpoints.
To implement checkpoints they make a special system callpagemod, which returns the
pages that where written since the last call. With this system call the debugger can save
only those pages, which have changed since the last checkpoint. Igor also has same very
basic form of resource management, i.e., it has aprestart routine which the debugger
before executing of the program. This routine sets the stateof user supplied files before
executing the program. Although there are similarities with epdb resource management,
IGOR does not track the different states of the files while executing. It also does not
support timelines or a similar concept.

Bdb

Bdb [Boo00] is a prototype reversible debugger for C/C++ runningon Digital/Compaq
Alpha based Unix workstations. Bdb uses a snapshot & replay approach similar to epdb.
Like epdb, it uses the system callfork() to create snasphots. Bdb uses a technique called
exponential checkpoint thinning to reduce the number of checkpoints. With this tech-
nique the debugger only keeps snapshots at exponential intervals and thus the number
of snapshots grows only logarithmically. While the program execution progresses, the
debugger thins out the number of snapshots. Although it reduces the number of snap-
shots, it has the disadvantage that re-execution takes longer for code at the beginning of
the program. In contrast to epdb, Bdb does not allow multiple timelines and it does not
manage the external state.



CHAPTER 8
Further Work

In this section, I want to present interesting work which mayalso be useful for a re-
versible debugger like epdb. I also want to give a short summary of other reversible
debuggers and their differences to epdb, as well as to give some ideas for additional
research which would help reversible debugging.

8.1 Smart Snapshot Making

Usually the user is only interested in a small part of the program and therefore some
snapshots are never activated. Such snapshots would be harmful, as they consume sys-
tem resources without any need. Therefore a smart debugger could use a strategy to
avoid making such snapshots in advance, but rather only whenthe user initiates a re-
verse execution command. In this case, the debugger could make a snapshot of the
process and insert it into the timeline. When the user does a reverse execution com-
mand again, the reverse execution would be much faster because the debugger could
use a more recent snapshot. A sophisticated strategy to makesnapshots would rely on
information about how users use a reversible debugger. Therefore, one could log the
behavior of the users when they debug a program and then find a snapshot making strat-
egy which would reduce the average time the user would need towait. This approach
would be even more powerful if it is combined with persistentsnapshots, i.e., snapshots
which store the memory to disk. Therefore these snapshots don’t use a process which
reduces the system performance, but on the other hand the debugger would need more
time to create and to activate them than it needs to create andactivate snapshots, which
were created by usingfork().
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8.2 Reversible Debuggable Libraries and Other Tools

The resource management approach of epdb works well if it is easy to save and restore
the current state of the resource. Some databases already allow this, but other resources
such as files, network communication libraries, and graphical tools usually don’t support
state saving. Therefore, it would be interesting if it is practical to implement this state
saving feature into these tools and libraries. As most computers today usually have huge
amounts of free disk space, it seems that marking data as deleted instead of actually
deleting the data shouldn’t decrease the overall performance too much. I guess the
performance should be at least good enough for the debuggingmode.

8.3 Native Instruction Counting and Bookkeeping

Epdb uses the trace function to implement instruction counting and to do some book-
keeping. This has the advantage that the whole debugger is written in Python, but on
the other hand, it has less performance as a result. This is because the interpreter calls
a Python function for each line of code. Pdb can use a lot of optimizations, because
it doesn’t rely on instruction counting. Therefore pdb can only trace functions, which
have a breakpoint in their code. However it should be possible to put the instruction
counting and bookkeeping code into the interpreter itself.Consequently, this part of the
code would have to be written in C. Using this optimization, I would expect that epdb
would be much faster in its execution, especially in normal mode.



CHAPTER 9
Conclusion

In this thesis, I have shown that it is possible to develop an interactive reversible de-
bugger using the snapshot & replay approach with reasonableperformance. I have also
shown that it is possible to get around the problems of non-deterministic instructions
and instructions with side effects, by using instruction patching, timelines and resource
management. During this thesis, I have not only developed epdb, but also documented
the design for a sophisticated reversible interactive snapshot & replay debugger, which
others may use to implement reversible debuggers for their favorite programming lan-
guage.

Reversible debugging, although a very old idea, is not very widely used yet. Never-
theless, I hope that I have made reversible debugging easierto understand with the con-
cepts I have developed in this thesis, i.e., that a function can affect the program environ-
ment, or the execution of a function can be affected by the environment, as well. There-
fore, any programming instruction can have side effects or can be non-deterministic. A
function with side-effects changes the environment of the program, while the execution
of a non-deterministic function depends on it. When the user replays a non-deterministic
function, he can have either one of two different expectations. He could expect to have
the same result of the execution as in the first run (deterministic execution), or he could
expect to run the function with the new environment (non-deterministic execution).

The implementation of epdb shows that this view of reversible debugging is actually
useful. Epdb introduces timelines and therefore allows unambigous reversible debug-
ging, because it is now up to the user to decide which type of execution, deterministic or
non-deterministic, he wants to use. Epdb also introduces a new stateful resource man-
agement concept. With resource management, the user can inspect the environment of
the program which, because of resource management, always corresponds to the actual
position inside the program. The implementation of two resource managers for epdb,
one for stdoutand one for file access, shows that the resource management concept
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is actually applicable for complex resources and it is possibly useful for many other
resources as well.
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