
DISSERTATION

Cashflow: a virtual currency system for

mobile ad hoc networks

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

O.Univ.Prof. Dipl.-Ing. Dr.techn. Harmen R. van As

E388 � Institut für Breitbandkommunikation

Technische Universität Wien

und

Univ.Prof. Mag. Dr.techn. Schahram Dustdar

E184 � Institut für Informationssysteme

Technische Universität Wien

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Mag. Lukas Wallentin

Matr.-Nr. 0104725

Wien, im November 2010

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 





Abstract

The concept of mobile ad hoc networks allows connecting mobile nodes
without the need of additional infrastructure. In such networks, every node
acts as router, forwarding packets on behalf of other nodes. Therefore,
mobile ad hoc networks possess no single point of failure, which makes them
interesting for military usage, where mobile ad hoc networks have been an
active research �eld for more than 30 years. Another traditional area for the
usage of mobile ad hoc networks are emergency scenarios, where networks
need to be deployed but no infrastructure is available.
Today, since mobile devices like smart phones and laptops are nearly ubiq-
uitous, the concept of mobile ad hoc networks can be used to connect these
mobile devices to extend the range of infrastructure and to provide the bases
for new applications. However, new issues have to be solved if nodes belong
to multiple authorities and not to a single one like in military or emergency
scenarios. One of these issues is how to motivate nodes to participate in
these networks and forward packets on behalf of other nodes. Generally,
nodes belonging to di�erent authorities have no motivation to participate
and provide services to other nodes without getting rewards.
Focusing on this issue, we present and evaluate in this thesis Cash�ow, a
virtual currency system to motivate nodes to participate in mobile ad hoc
networks. The basic idea is that nodes pay other nodes for provided services.
This concept motivates nodes to participate and prevents free riders, which
use services of the network without providing services for other nodes. In
contrast to other virtual currency systems, Cash�ow is a market-based and
channel-oriented virtual currency system. We show in this thesis that the
usage of supply and demand as basis for pricing in combination with virtual
channels provides a number of bene�ts compared to other virtual currency
systems, which in most cases use auction or �xed price schemes for pricing.
These bene�ts include besides other the inclusion of the nodes context into
pricing, implicit load balancing, reduction of payment overhead, the ability
of the user to control his participation degree, and the ability to reschedule
transmission if the current pricing level is high. Additionally it allows an
easy integration of the mobile ad hoc network into the Internet, which is not
considered by other virtual currency systems. Further, the market concept
allows the development of route discovery algorithms using fee information
for routing decisions. Such an algorithm has been developed and integrated
into Cash�ow, allowing nodes to use the cheapest routes to other nodes.
Therefore, Cash�ow solves in contrast to other virtual currency systems not



only the problems how to pay and how much to pay, but also how to �nd
the most cost e�ective route. Since payment functionality in networks could
be interesting for a number of business scenarios, Cash�ow provides open
interfaces to enable the usage of its payment and route search functionality
for applications. Therefore, Cash�ow can be used as platform to develop
business applications in ad hoc networks.



Zusammenfassung

Das Konzept von mobilen ad hoc Netzen erlaubt es ohne Einsatz von In-
frastruktur mobile Knoten zu verbinden. In einem solchen Netz agiert je-
der Knoten als Router und leitet Pakete für andere Knoten weiter. Daher
besitzen mobile ad hoc Netze keinen einzelnen Fehlerpunkt, was sie für An-
wendungen im militärischen Bereich interessant macht, wo seit mehr als
30 Jahren aktiv an mobilen ad hoc Netz geforscht wird. Ein weiterer ur-
sprünglicher Einsatzbereich von mobilen ad hoc Netzen sind Katastrophen-
Szenarien wo Netze zur Kommunikation benötigt werden aber keine Infra-
struktur vorhanden ist.
Heutzutage, da mobile Geräte wie Smartphones und Laptops beinahe allge-
genwärtig sind, kann das Konzept der mobilen ad hoc Netze dafür verwendet
werden, die vorhandenen mobilen Geräte zu vernetzen, um die Reichweite
von der vorhandenen Infrastruktur zu erhöhen und um die Grundlage von
neuen Anwendungen zu scha�en. Allerdings müssen neue Problemstellungen
gelöst werden, wenn die Knoten verschiedenen Besitzern und nicht einem
einzelnen, wie das bei militärischen oder notfalls Szenarien der Fall ist, ge-
hören. Eine dieser neuen Problemstellungen ist die Frage, wie man Knoten
dazu motiviert an einem solchen Netz teilzunehmen und Pakete für ande-
re Knoten weiterzuleiten. Grundsätzlich haben Knoten von verschiedenen
Besitzern keine Motivation an so einem Netz teilzunehmen und Services
anderen Konten zur Verfügung zu stellen ohne dafür eine Entlohnung zu
erhalten.
Im Hinblick auf diese Problemstellung präsentieren und evaluieren wir in
dieser Dissertation Cash�ow, ein virtuelles Währungssystem für mobile ad
hoc Netze um Knoten zur Teilnahme an solchen Netzen zu motivieren. Die
grundsätzliche Idee dieses Systems ist, dass Knoten andere Knoten für ge-
leistete Services bezahlen. Das motiviert Knoten an dem Netz teilzunehmen
und verhindert sogenannte free rider, also Knoten, die Services von anderen
Knoten nutzen, ohne selbst Services anzubieten. Im Gegensatz zu anderen
virtuellen Währungssystemen für mobile ad hoc Netze basiert Cash�ow auf
einem Marktsystem und ist kanalorientiert. In dieser Arbeit wird gezeigt,
dass die Verwendung von Angebot und Nachfrage als Grundlage der Preis-
berechnung in Kombination mit einem virtuellen Kanalsystem eine Reihe
von Vorteilen gegenüber anderen virtuellen Währungssystemen bringt, die
meist Fixpreis oder Auktionsmechanismen zur Preisfestsetzung verwenden.
So erlaubt das Preisfestsetzungssystem von Cash�ow unter anderem den
Kontext des Knotens mit einzubeziehen, verfügt über einen implizierten



Lastverteilungsmechanismus, reduziert den Overhead der durch das Bezah-
len erzeugt wird, gibt dem Benutzer die Möglichkeit selbst zu bestimmen
zu welchen Grad er an einem Netz teilnimmt und erlaubt es den Knoten,
Übertragungen zu verzögern, falls das aktuelle Preisniveau hoch ist. Au-
ÿerdem erlauben diese Konzepte eine einfache Intergration von mobilen ad
hoc Netzen in das Internet, was von anderen virtuellen Währungssystemen
nicht unterstützt wird. Weiters ermöglicht das Marktkonzept die Entwick-
lung von Routingalgorithmen, die den günstigsten Pfad zwischen Knoten
�nden. Ein solcher Routingalgorithmus wurde entwickelt und in Cash�ow
integriert. Daher löst Cash�ow im Gegensatz zu anderen virtuellen Wäh-
rungssystemen nicht nur das Problem wie und wie viel für die Services der
anderen Knoten zu zahlen ist, sondern auch wie die Konten die kostenef-
fektivste Route �nden. Da die Zahlungsfunktionalität auch für eine Rei-
he von Geschäftsszenarien interessant sein könnte, bietet Cash�ow o�ene
Schnittstellen um die Bezahl- und Routensuchfunktionalität Anwendungen
zur Verfügung zu stellen. Daher kann Cash�ow auch als Plattform für die
Entwicklung von Bezahlservices in ad hoc Netzen verwendet werden.
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Chapter 1

Introduction

Mobile ad hoc networks have been an active research �eld for more than
30 years. Traditionally, mobile ad hoc networks were developed for mili-
tary usage [Ephremides02] where communication between mobile units in
the battle�eld is crucial. The mobile ad hoc concept allows deploying net-
works without the need of additional infrastructure and, which is even more
important from the military point of view, it possesses no single point of
failure. A typical military scenario for the usage of ad hoc networks would
be a tank division, where each tank is equipped with a radio communica-
tion system and a router to provide forwarding services to other tanks. In
this scenario, the deployed mobile ad hoc network provides a robust com-
munication system without the need of infrastructure, which additionally
tolerates the loss of participants.

Besides military usage, emergency situations are also typical usage scenarios
for mobile ad hoc networks. In emergencies like earthquakes, communica-
tion is of high importance for rescue forces. If existing infrastructure is not
available, mobile ad hoc networks allow the fast deployment of alternative
communication systems.

A third classical usage area of mobile ad hoc networks is the area of sensor
networks. The idea is to equip hundreds of sensors with radio transmitters
and drop them on the area, which should be observed. An example would
be a chemical accident where an area has been contaminated. To get a
detailed analysis about the contamination degree, sensors can be dropped
from a low-�ying plane on the contaminated area. The sensor nodes build
an ad hoc network to forward the measurement results to the emergency
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forces. This scenario di�ers from the previous two, since energy is in sensor
networks of much greater importance. In the previous scenarios, the energy
consumption of the radio and routing equipment is relatively small, com-
pared to the energy needs of a tank or a car. However, in many cases sensor
nodes rely on batteries as energy resource, making energy the limiting factor
for node's lifetime. [Perkins08]

Advantages in wireless communication and computer technology have ex-
panded possible applications and usage scenarios for mobile ad hoc net-
works. For instance, the mobile ad hoc network concept can be used to
connect cars to build so called vehicular ad hoc networks. By using vehicu-
lar ad hoc networks, cars could exchange automatically information about
tra�c, local conditions like ice on the road or accidents.

Since mobile devises like laptop computers and smart-phones are already
ubiquitous today, also these devises could be used to establish ad hoc net-
works as platform for new applications. However, these new applications
result in a number of new issues, which have to be solved. One of these
issues is the problem how to motivate nodes to participate in an ad hoc
network, when nodes belong to distinctive authorities. Nodes belonging to
distinctive authorities have no motivation to forward packets on behalf of
other nodes. However, cooperation is essential for the establishing of mobile
ad hoc networks.

Currently there are two concepts to prevent sel�sh behavior and stimulate
cooperation in ad hoc networks: reputation systems and virtual currency
systems [Nahrstedt09]. Reputation systems enforce fair behavior by ex-
cluding sel�sh nodes from the network. Additionally reputation systems
stimulate cooperation since nodes can rely on other nodes service as com-
pensation for own contributions. Virtual currency systems on the other
hand adapt the �pay for service�-concept to ad hoc networks. Nodes com-
pensate for other nodes services by paying a fee using credits. Nodes can
either earn credits by providing services to other nodes, or buy them from
outside of the system. It is worth noting that virtual currency systems not
only stimulate cooperation between nodes, but also additionally could raise
interest in ad hoc networks for a number of business applications.

Virtual currency systems proposed in literature mainly focus on how to pay
and on how much to pay for data transmission along a given path. As
pricing function, in most cases auctions or �xed price schemes, based on
game theoretical considerations, are used. These schemes do not consider
the context of nodes nor adapt to user's needs. However, we argue that the
consideration of node's context and the user's ability to control the degree
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of participation in networks is crucial for the acceptance of virtual currency
systems as enabler for ubiquitous ad hoc networks.

Focusing on these issues, we present Cash�ow, a virtual currency system
to motivate nodes to participate in ad hoc networks and to prevent sel�sh-
ness. This system distinguishes itself from other virtual currency systems
by using a channel concept for data transmission as well as a market system
for pricing. The combination of channel and market concept results in a
number of positive system characteristics. It gives users control over their
participation degree, allows Cash�ow to consider the context of nodes, and
provides implicit load balancing and access control functionality.

1.1 Motivation

Besides the fact, that virtual currency systems in mobile ad hoc networks are
still a relatively new and active research �eld with a number of open issues
to solve, there exist two causes, which make this research area especially
interesting.

First, mobile ad hoc networks, when connected to other networks and de-
ployed using equipment belonging to di�erent authorities like smart phones
or laptop computers, provide the basis for a number of potential applica-
tions. For instance, the combination of mobile ad hoc networks with cellular
networks could be used to extend cell coverage. Additionally, if single cells
are high loaded, tra�c could be routed to other cells with lower tra�c
[Cavalcanti05]. Besides the usage of mobile ad hoc networks for normal
data exchange, these networks could be used to distribute local information
automatically. For example, cars connected over a mobile ad hoc network
could warn other cars about accidents or ice on the road. Further emer-
gency warnings could be distributed to users, which are not connected to
other networks.

The combination of mobile ad hoc networks and virtual currency system
provides the basis for commercial applications. To give an example, the in-
tegration of WLAN access points in mobile ad hoc networks using a virtual
currency system would allow users to access the Internet over all partici-
pating access points. The owners of the access point would pro�t from this
concept since they could earn money using already available equipment by
selling unused bandwidth to other users. The users of this service might
pro�t by lower prices compared to Internet access over today's cellular net-
works or faster internet connection.

The commercial factor leads to the second cause, which motivates research
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in the area of virtual currency systems in mobile ad hoc networks. The
deep integration of a payment system in mobile ad hoc networks provides
the potential for a number of business scenarios not directly related to mo-
bile ad hoc networks. For instance, it allows transferring credits using any
equipment implementing the virtual currency system. With other words,
each mobile node implements the functionality of a credit card. With re-
spect to this capacity of virtual currency systems, Cash�ow was designed
so that it can be used as basis for commercial applications. It provides
payment functionality, which can be used by commercial applications, and
search functionality, which allows applications to �nd not network relevant
services in the surrounding area.

1.2 Main contributions

The main contributions of this thesis are:

1. The architecture of the virtual currency system Cash�ow. Using a
modular approach, di�erent functionalities are encapsulated in di�er-
ent modules. This concept allows adapting and extending parts of the
system without interfering with other parts. For instance, one mod-
ule categorizes links depending on their signal quality. If the radio
interface provides special functionality for link assessment, a special
statistic module could be written to use the additional functionality
without altering other modules.

2. The development of a special routing algorithm, which �ts the needs
of virtual currency system. In contrast to other algorithms, which in
most cases are optimized to �nd the shortest route between nodes, this
algorithm allows to �nd the cheapest route between nodes under the
consideration of quality requirements. The algorithm was optimized
by using arti�cial delaying to change racing conditions, which leads
to an decrease of routing overhead.

3. The development of a new kind of pricing system which uses demand
and supply to determine the fee nodes charge for packet forwarding.
Additionally, the pricing algorithm includes the node's context and the
preferences of the user. This allows the make the forwarding services
of nodes more or less attractive for other nodes. The result is that
for instance nodes, running low of battery, only participate minimally
to the network compared to nodes where energy is not an issue. By
including the user's preferences into pricing, Cash�ow allows users to
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regulate their participation degree, which is important for the user's
acceptance of the system.

4. The introduction of the channel concept into virtual currency systems.
The channel concept allows informing nodes about the fee they have
to pay for data transmission to another node before the actual trans-
mission starts. This is again important for the acceptance of the
virtual currency system. Additionally it allows nodes to reschedule
data transmissions in situations where the price for data transmission
is high. Further, the channel concept allows to reduce the payment
overhead, since nodes could pay for packet forwarding in bulk and
have not to pay for every singly packet separately.

5. The introduction of implicit load balancing functionality as part of the
virtual currency system. The combination of the pricing function,
which includes the nodes context into the fee calculation, the channel
concept, and the routing algorithm, optimized for virtual currency
systems, acts as load balancing system. With an increase of the load,
the ratio between supply and demand changes resulting in a higher
price. Since nodes could use the route discovery algorithm of Cash-
�ow, they can avoid high price areas of the network and consequently
avoid highly loaded network parts. This results in a load balancing
e�ect, which will be analyzed in detail in the evaluation part of this
thesis.

6. The integration of mobile ad hoc networks using Cashfow as virtual
currency system within the Internet. To the best knowledge of the
author, Cash�ow is the �rst virtual currency system, which allows
connecting mobile ad hoc networks to the Internet. Other virtual
currency systems focus on payment within a mobile ad hoc network.
Using a newly developed concept, Cash�ow allows nodes within mo-
bile ad hoc networks to search for nodes connected to the Internet and
negotiate a fee for the usage of the Internet connection. Additionally
Cash�ow provides payment functionality to pay for the used Inter-
net service. Further Cash�ow adapts the mobile IP concept to allow
nodes to be available over the Internet even if they are connected over
a mobile ad hoc network. The possibility to connect to the Internet
over a mobile ad hoc network is again an important factor for the user
acceptance and for a number of applications.

7. The search for nodes providing internet access is realized in a generic
way with the result that Cash�ow can be used as platform to integrate
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additional pay-services into the mobile ad hoc network. Therefore,
Cash�ow makes mobile ad hoc networks interesting for a number of
business scenarios.

8. A prototypical implementation of Cash�ow in IBKSim. This implemen-
tation allows developing and evaluating new modules and applications
for Cash�ow using thousands of virtual nodes.

9. The last contribution of this thesis is the evaluation of Cash�ow includ-
ing the proposed algorithms.

Parts of these concepts and results have been published in several scienti�c
papers, including [Wallentin10a] and [Wallentin10b]

1.3 Structure of this thesis

The remainder of this theses is structured as follows: Chapter 2 presents
a short introduction on mobile ad hoc networks and gives an overview over
routing protocols in mobile ad hoc networks. Further, it provides a short
introduction into the IEEE 802.11 standard, which is important for the un-
derstanding of the arti�cial delay's in�uence on the quality of route search.
Additionally this chapter presents current solutions to prevent sel�shness
in mobile ad hoc networks and to motivate node's participation.

Chapter 3 presents Cash�ow. It starts with a requirement analysis followed
by a presentation of Cash�ow's core concepts. The next part presents the
architecture of Cash�ow in detail and proposes algorithms for the di�erent
modules of Cash�ow. After the presentation of the architecture, di�erent
attacks on Cash�ow are discussed and how they are prevented. The chapter
continues with a solution to integrate Cash�ow into the Internet before
it concludes with a comparison of Cash�ow with other virtual currency
systems.

Chapter 4 focuses on the evaluation of Cash�ow. It presents a detailed
analysis of the presented routing protocol including an evaluation of the
arti�cial delays in�uence on several parameters. Additionally this chap-
ter includes an analysis of the proposed pricing function. The last part
of Chapter 4 focuses on the e�ect of Cash�ow's implicit load balancing
functionality.

Chapter 5 concludes this thesis with a summary and gives an outlook of
potential further work, followed by Annex A, which presents additional
diagrams belonging to the evaluation of the route discovery protocol.



Chapter 2

Related work

This chapter gives a short overview over related work. It starts with a
short description of the IEEE 802.11 MAC protocol, since for the evalu-
ation of the system this standard is used for communication. Therefore,
basic knowledge about this protocol is needed to understand the interplay
between the virtual currency system Cash�ow and the MAC protocol. The
next section of this chapter introduces the concept of mobile ad hoc net-
works. The last two sections focus on two speci�c mechanisms of mobile ad
hoc networks: on routing mechanisms and on concepts stimulating cooper-
ation. As part of this theses, a new routing algorithm especially designed
for the requirements of virtual currency systems was developed which will
be presented in Chapter 3. Therefore, the section on routing algorithms
provides an overview over basic routing concepts in mobile ad hoc networks.
The section about cooperation in mobile ad hoc networks gives an overview
over other virtual currency systems, as well as over other mechanisms to
prevent sel�shness in mobile ad hoc networks and stimulate cooperation.
A more detailed overview over mobile ad hoc networks including the topics
presented in this chapter can be found in [Nahrstedt09]

2.1 Introduction to the IEEE 802.11 family

The IEEE 802.11 [IEEE99] [IEEE07] standard speci�es layer 1 and 2 of
the OSI model [OSI84] for wireless communication in local area networks.
Besides the original standard, a number of extensions have been standard-
ized. These extensions de�ne for instance additional coding and transmis-
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sion schemes to gain higher throughput [IEEE00] [IEEE03] [IEEE09],
new security schemes [IEEE04] or support for quality of service [IEEE05].
However, this section focuses only on the MAC protocol as speci�ed in
[IEEE99], since this protocol is relevant for this thesis to understand the
interplay between Cash�ow and the MAC protocol as it is presented in
Chapter 4, where the simulation results are discussed.

The IEEE 802.11 standard speci�es two methods for accessing the shared
medium. The �rst method is the distributed coordinator function, which is
mandatory for all devices using the IEEE 802.11 standard. This distributed
access method can be used by nodes of a mobile ad hoc network to access
the shared medium. Therefore, it will be discussed in this section in detail.
The other method is the point coordinator function, which is an optional
method for accessing the shared medium. This method is used by access
points to coordinate the client nodes access to the shared medium. However,
since this method is of minor importance for mobile ad hoc networks, it will
not be discussed any further.

Figure 2.1 visualizes the basic access scheme of the distributed coordinator
function using a time line. Before a node transmits data over the shared
medium, it senses if the shared medium is free for a certain time span.
This period of time is called DIFS, which stands for distributed coordinator
function interframe space. If the medium is not free during the whole time,
the transmission is deferred until the medium is free for the required time
period. When the medium was free for the duration of the distributed co-
ordinator function interframe space, the node sends data. The transmission
time is marked with Busy medium in Figure 2.1. During this period all
nodes, while sensing that the shared medium is busy, defer their access to
avoid a disruption of the transmission. After the transmission, the node,
which has used the shared medium, cannot directly transmit additional
data over the shared medium. If the node would only wait again until the
distributed coordinator function interframe space has passed before it trans-
mits again data, other nodes, which have deferred their access because of
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the node's transmission, would also start to transmit data at the same time.
This is the case since they would also have sensed that the shared medium
was free during the complete distributed coordinator function interframe
space. Since this behavior would lead to collisions, the so-called back-o� al-
gorithm as to be performed by nodes after they have transmitted data over
the shared medium. After the transmission, the node randomly chooses a
back-o� time. After the pass of distributed coordinator function interframe
space, the node also has to wait additionally until the back-o� time has
passed, before it is allowed to transmit data again. If during the back o�
time the shared medium is used by another node, the node stops its back
o� timer and continues to run the timer if the medium was free again for
the period of the distributed coordinator function interframe space. Since
the value of the back-o� timer is randomly chosen, the probability that two
or more nodes access the medium at the same time decreases. However,
it is not completely excluded that multiple nodes choose the same back-o�
time and therefore try to access the shared medium simultaneously, which
leads to collisions as described before. If collisions occur, nodes learn about
them because of an acknowledge scheme de�ned in the standard, which will
be explain later in this section. When nodes learn that a frame was lost,
they calculate a new back-o� time before they retransmit the frame using
a larger range of possible back-o� timer values. This decreases the proba-
bility, that again two or more nodes choose the same back-o� value. The
time, when all nodes are waiting until their back-o� time passes, is called
contention window. As soon as the back-o� time of a node has passed, the
node is allowed to transmit over the shared medium before it calculates a
new back-o� time.

In Figure 2.1, besides the distributed coordinator function interframe space,
also the short interframe space is plotted. This interframe space is used by
the acknowledgment scheme of the IEEE 802.11 protocol to send acknowl-
edge frames with high priority back to the transmission's source. Since
nodes, wanting to transmit data, have to wait at least for the duration
of the distributed coordinator function interframe space, the acknowledge
frames, send after the short interframe space, are transmitted earlier.

Figure 2.2 visualizes the acknowledge scheme speci�ed in the IEEE 802.11
standard. As described before, if a node wants to transmit data using the
shared medium, it has to wait until the shared medium has been free for
the duration of the distributed coordinator function interframe space, and
optionally until the back-o� time has passed. If the node has already waited
until the back-o� time has passed, but did not had any data to transmit,
the node can immediately transmit data after the distributed coordinator
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Figure 2.2: Acknowledge mechanism of IEEE 802.11

function interframe space has passed as shown in this �gure. When the
node starts its data transmission, other nodes defer their transmission until
the medium is free again. After the transmission, the target node returns an
acknowledge frame back to the source after the time of the short interframe
space has passed. When the source receives the acknowledge frame, it has
the veri�cation that the destination node has received the frame correctly.
Otherwise, if the source node receives no acknowledge frame after the sort
interframe space, a frame loss has occurred. To be speci�c, this means that
the destination node has not received the frame, the frame has not been
transmitted correctly, or that the acknowledge frame was lost or invalid.
As reaction on these events, the source node retransmits the frame. To
do so, it chooses a new back-o� time from an increased value range and
tries to retransmit the frame again after the back-o� time has passed. If
also the retransmission fails multiple times, the frame gets discarded, since
the source node assumes in this case that there is no connection to the
destination node.

This scheme avoids collisions if all nodes of a network could sense the trans-
mission of all other nodes. However, in many cases this is not given. It
could happen that a node is only in the range of the source or the desti-
nation node and therefore could not detect all transmissions. For instance,
a node, which is only in the range of the destination node and not of the
source node and wants to send a frame itself to the destination node, will
not sense the transmission from the source to the destination node. There-
fore, it will start its own transmission to the destination node, which results
in a collision of the two simultaneous transmissions. The result is that the
destination node receives none of both transmissions and both frames have
to be transmitted again. This problem is known as hidden station problem
[Tobagi75].
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Figure 2.3: Request to send / clear to send mechanism of IEEE 802.11

Since this problem is especially serious if the frames are large, an additional
virtual carrier sense mechanism was introduced by the IEEE 802.11 stan-
dard. The mechanism, known as request to send / clear to send (RTS/CTS)
mechanism, is visualized in Figure 2.3. In contrast to the acknowledge
scheme described before, two additional messages are exchanged before the
actual data transmission is performed. The �rst frame is the request to
send frame, transmitted by the source node to the destination node. This
frame includes information how long the complete transmission will take.
All node receiving this frame set their network allocation vector (NAV) ac-
cordingly, which can be seen a kind of counter or timer preventing nodes
to access the shared medium if set. The destination node returns after the
short interframe space a clear to send frame, including again information
about the duration of the remainder transmission. Again, nodes receiving
this frame set their network allocation vector accordingly. Using this mech-
anism, hidden stations learn about the transmission and consequently will
not interrupt it. However, during the exchange of the request to send and
clear to send frames, the hidden station problem is still an issue. Neverthe-
less, if the data frame is relatively large compared to the request to send and
clear to send frames, the probability that the request to send or the clear to
send frames get interrupted is smaller compared to the scenario, where the
data frame is send directly. On the other hand, if the data frame is small, a
transmission without the request to send / clear to send mechanism could
be more e�cient, especially if there is only low tra�c in the network.

The acknowledgment scheme, as well as the request to send /clear to send
mechanism is only used for direct communication. To broadcast frames,
only the basic access scheme is used, meaning that a node broadcasts a
frame as soon as is senses that the shared medium is free for the distributed
coordinator function interframe space. Since no acknowledgment mecha-
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nisms is used, the source node does not know which nodes have received a
broadcast and which not. As it will be described later, many routing proto-
cols of mobile ad hoc networks use broadcasts to �ood networks with route
requests. The �ooding in combination with the hidden station problem
could lead to quality problems of the route search, since potential routes
might not get considered due to frame losses, as described in [Ni99]. There-
fore, for the development of route discovery algorithms for mobile ad hoc
networks, the interplay between MAC-protocol and route discovery algo-
rithm has to be considered.

2.2 Mobile ad hoc networks

A mobile ad hoc network is a mesh network, which is spontaneous formed by
so-called nodes. Nodes are platforms equipped with wireless communication
technology, a router and one or more hosts. All these components might be
integrated into one single device. For instance, a node could be a special
equipped sensor platform, a smart-phone, laptop computer, a car, or an
airplane. Nodes, which are free to move around, act as router and forward
packets on behalf of other nodes. This concept allows to form wireless mesh
networks without the need of additional infrastructure. [Macker98]. Addi-
tionally, such networks possess no single point of failure and can therefore
tolerate the loss of nodes.

Due to the dynamic nature of mobile ad hoc networks, routing in these
networks is challenging. As result, there exist a number of di�erent rout-
ing strategies with di�erent assets and drawbacks. External factors like
the mobility degree in�uence the e�ciency of the protocols. For instance,
proactive routing protocols �ood information about topology changes over
the whole network, independent if this information is currently needed or
not. Therefore, this category of routing protocols have a relative small
route discovery overhead, compared to reactive routing protocols, in net-
works where nodes show sporadic movement. Reactive routing protocols
only perform route discovery when needed by nodes. Therefore, if nodes
show a sporadic mobility pattern, the route discovery overhead is greater,
compared to proactive routing protocols, since each node has to perform
route discovery for the �rst data transmission to another node. However,
if nodes show a very active mobility pattern, proactive routing protocols,
which try to keep topology information up to date, show ongoing route dis-
covering activity. This is especially contra productive in scenarios, where
nodes exchange data sporadically. In these scenarios, reactive routing pro-
tocols have a lower overhead, since they perform only for actual transmis-
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sion route discovery. Another issue for mobile ad hoc networks, which is
also related to the routing, is scalability. Targeting this issue, a number of
routing protocols have been developed, which divides networks into clus-
ters, introduce hierarchies, or use location information to optimize routing
and increase scalability. Since also applications and services like Cash�ow,
which are incorporated in mobile ad hoc networks, have speci�c needs on
routing, resulting in new issues and challenges, the next section discusses
routing in mobile ad hoc networks in more detail.

Nevertheless, routing is not the only challenge for mobile ad hoc networks.
Like in other networks, security is an important issue. The wireless nature
of mobile ad hoc network and the fact, that nodes forward data of other
nodes and could therefore intercept communication, aggravates the security
issue. Another important issue is the energy consumption of nodes. Because
of the mobile nature of nodes, in many scenarios, nodes are battery powered
with the consequence that energy supply is limited. Therefore, especially in
sensor networks, which, depending on the usage scenario, should work up
to months or years, the energy consumption has to be considered.

As stated before, the usage of the mobile ad hoc network concept to connect
mobile o�ce equipment belonging to di�erent users requires a rewarding
scheme to motivate users to participate on the one hand, and, on the other
hand, to prevent sel�sh behavior. Since this thesis focuses on this issue,
similar mechanisms are also presented in this chapter. However, the usage
of mobile o�ce equipment leads additionally to other challenges. One of
these challenges is the integration of mobile ad hoc networks, build out of
mobile o�ce equipment, into other networks like the Internet or cellular
networks. In this scenario, the nature of mobile ad hoc networks changes
from an isolated, self-su�cient network to an extension of other networks,
leading to a number of issues. An overview over open issues in integrating
mobile ad hoc networks into other networks is given in [Cavalcanti05].

Summarizing, the mobile ad hoc network concept has the potential to make
the step from a niche technology to a technology, included in every mobile
equipment, to extend the coverage of existing infrastructure and provide ad
hoc connection between multiple participants. This also re�ects in current
initiatives to establish standards for mobile ad hoc networks allowing to
connect equipment form di�erent manufacturers [IEEE08] [Macker10].
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2.3 Routing in mobile ad hoc networks

In mobile ad hoc networks, routing protocols are needed for forwarding
packets between network nodes, which are outside of each others broadcast
range. In consequence, intermediate nodes are required to act as routers
to forward packets. Optimal routing is one of the key factors to provide
high performing mobile ad hoc networks. Therefore routing is one of the
major research �elds since the beginning of the concept of mobile ad hoc
networks. The huge number of routing protocols proposed in literature
can be classi�ed depending on their route determination strategy as shown
in Figure 2.4. Reactive or on-demand routing protocols perform a route
search only when required, whereas proactive protocols maintain routing
information so that every node in the network always knows the complete
topology and consequently can transmit packets immediately to any node
of the network, without performing extra route search. Additionally, there
exist a number of protocols, so called hybrid protocols, which combine these
two classes.

In mobile ad hoc networks using proactive routing protocols, network nodes
continually monitor their environment. When a node detects a change in
his environment, it informs other nodes about this event. Typically, this
is done using some kind of �ooding, whereas �ooding overhead is reduced
using known information about the network. As mentioned before, the use
of proactive protocols has the bene�t that packet transmissions can start
immediately, without performing extra route search. However, this bene�t
comes at the cost of scalability problems, caused by the size of routing
tables respectively due to caching of topology data. Additionally, frequent
topology changes can cause high costs to keep the topology information
up to date, which is especially problematic, if network activity is low and
consequently updated information is not always used.

The Dynamic Destination-Sequenced Distance-Vector Routing Protocol (
DSDV) [Perkins94], which is based on Bellman-Ford routing [Cheng89],
and the Global State Routing (GSR) protocol [Chen98] are examples for
early generation proactive routing protocols, developed on basis of routing
concepts, originally designed for wired networks. Both protocols are �at
protocols, meaning that every node has exactly the same functionality. In
Dynamic Destination-Sequenced Distance-Vector Routing, if a node detects
a topology change it broadcasts an update message, which could include
either incremental update information or a complete routing table. Nodes
that receive such a message update their routing table and accordingly
broadcast the changes. The disadvantage of this blind �ooding strategy is
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Figure 2.4: Overview over routing protocols in mobile ad hoc networks

that it can lead to broadcast storms [Ni99].

In Global State Routing, nodes broadcasts link state information period-
ically and not event triggered. This has the advantage that information
about short disconnections between nodes is not propagated over the com-
plete network. However, again every node broadcasts an update message if
it has changed its routing table.

The Fisheye State Routing (FSR) [Pei00] protocol, which is based on Global
State Routing, tries to reduce the �ooding overhead by broadcasting up-
date information from distant nodes more seldom than from nearer nodes.
Hence, nodes have an exact knowledge about the topology of their neigh-
borhood, but their knowledge about the complete network is not always
complete. Other protocols like the Optimized Link State Routing Protocol
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(OLSR) [Jacquet01] and Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF) [Bellur99] tries to optimize �ooding in dense net-
works by reducing the number of re-broadcasting nodes. In Optimized Link
State Routing Protocol this is done by calculating for every node the mini-
mum set of nodes needed to �ood a message to all two-hop neighbors. Just
the selected nodes, so called multipoint distribution relays, generate and
re-broadcast topology control messages, whereby the �ooding overhead is
reduced. Hierarchic protocols like Cluster-head Gateway Switch Routing
[Chiang97] builds clusters, where it is up to a speci�c node in the cluster,
the cluster head, to exchange routing information with other clusters. This
leads to a much better usage of the resources then blind �ooding.

Reactive routing protocols try to reduce the routing overhead by searching
for a route only when required. Especially in scenarios with high mobil-
ity and low communication activity networks can pro�t from this strategy.
Dynamic Source Routing (DSR) [Johnson96] and Ad Hoc On-Demand Dis-
tance Vector Routing (AODV) [Perkins99] are typical examples for reac-
tive routing protocol. Both protocols use blind �ooding as route discovery
strategy. When a route to a speci�c node is needed, and there is no cached
routing information from a previous search to the target node, a route re-
quest packet is �ooded though the network. When the packet eventually
reaches the destination node, this node will send a route reply packet back
to the source of the route request. In Ad Hoc On-Demand Distance Vector
Routing the intermediate nodes learn during the route discovery to which
neighbor node they have to forward a packet to reach a certain node. In
Dynamic Source Routing, the intermediate nodes make their routing deci-
sions based on the routing information included in every packet. To reduce
the number of route requests, both protocols uses caching techniques.

Cluster-Based Routing Protocol (CBRP) [Jiang98] reduces the �ooding
overhead by introducing a hierarchy. It forms clusters where the cluster head
is responsible for forwarding and exchange of route requests. An alternative
procedure to reduce the routing overhead is by using additional information
like the location of the nodes if available. Location Aided Routing (LAR)
[Ko98] calculates an area using the positions of source and target nodes.
Only nodes within this zone are allowed to forward route request packets,
by what the �ooding is reduced to the proximate direction of the target
node. All of these protocols have in common that they tend to prefer the
shortest path between two nodes. The Signal Stability-Based Adaptive
Routing Protocol (SSA) [Dube97] follows another strategy: The aim of
Signal Stability-BasedAdaptive Routing is to establish stable routes through
a wireless network. Every node monitors the signal strength of the neighbor
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nodes and classi�es connections as weak and strong. Route requests are only
forwarded along strong connections, which results in more stable routes than
using just the shortest path. The drawback of this solution is that if there
exist just paths with at least one weak connection between a source and a
destination node, the protocol will not �nd any route to the target node.

Hybrid routing protocols combine reactive and proactive routing techniques.
Generally, reactive techniques are used within a limited region around a
node and proactive techniques for nodes farther away. This approach can re-
duce the routing overhead and can increase the performance, if nearby nodes
are more likely to collaborate. Examples for hybrid routing protocols are the
Zone Routing Protocol (ZRP) [Haas99] and SHARP [Ramasubramanian03].

2.4 Cooperation in mobile ad hoc networks

Participation of nodes in mobile ad hoc networks cannot be taken for
granted if the nodes belong to di�erent authorities like private users and
companies. Generally, nodes have no interest to participate in network wide
tasks like forwarding packets on behalf of other nodes voluntarily, without
any reward. Hence, mechanisms are needed to stimulate cooperation be-
tween nodes. Current research focuses on two ways to achieve this task.
Reputation systems try to stimulate fair behavior by excluding sel�sh nodes
from the network. The motivation of nodes to participate in networks us-
ing reputation systems is that they can expect support of other nodes as
compensation for provides services. Several systems have been proposed to
perform this task, including OCEAN [Bansal03], CORE [Michiardi02] and
CONFIDENT [Buchegger02a] [Buchegger02b].

Virtual currency systems use (sometimes virtual) money as reward for pro-
vided services to motivate nodes to cooperate. The basic idea is that the
sender of a packet pays the relaying nodes a fee for forwarding packets. This
is the case in the packet purse model in Nuglets [Buttyan01]. The source of
a packet adds a number of nuglets, the virtual currency of the system, to the
packet it wants to transmit to a target node. Each forwarding node removes
some nuglets from the packet to compensate its forwarding costs. If there
are not enough nuglets left in the packet, it gets discarded. The problem for
the source of the packet is to estimate, how many nuglets should be included
in a packet. It has to overestimate the needed amount to reach the target
node, but the higher the overestimation, the higher the loss for a node, if
the packet gets lost for instance due to transmission failures. The other
model proposed in [Buttyan01] [Buttyan00] is the packet trade model. In
contrast to the packet purse model, the receiver pays for packets. Each



18 Related work

intermediate node buys packets from the previous node in the path and
tries to sell it for a higher price to the next node. Consequently, the target
node pays e�ectively for the complete transmission. A combination of both
modes is possible. As pricing strategy an auction scheme or alternatively a
�xed price scheme is used.

To prevent fraud, Nuglets needs tamper-proof hardware. Otherwise, it
would be possible for nodes to extract more nuglets from passing packets
than entitled to. The need of special hardware makes the usage of Nuglets
in scenarios, where node consists out of mobile o�ce equipment, di�cult.
In Nuglets it is additionally possible to lose money by losing or discarding
packets, which lead to a decrease of available nuglets in the system over
time. Therefore a type of compensation system for lost nuglets is needed,
which is however not indented by the system.

To overcome the issues of Nuglets, the virtual currency system Sprite, pre-
sented in [Zhong03], proposes a credit system for payment instead of a
virtual hard currency. A credit clearance service is introduced to determine
the charges. When a node forwards a packet, it keeps a receipt and later
sends the collected receipts to the credit clearance service, which compen-
sates the node for provided services. Using this concept, no tamper-proof
hardware is required, which allows to deploy this system using no special
hardware. Additionally the loss of a packet does not result in the loss of
the virtual currency. In Sprite, the credit clearance service is also used to
prevent fraud by using game theory. The reward for a forwarded packet
depends if the packet was received by the target and in the case the packet
was not received by the target, the reward additionally depends if the next
hop along a path has received the packet or not. Using this conditional re-
warding scheme, no motivation for malign behavior, like dropping a packet
but claim to have forwarded it, is given.

Both virtual currency systems are not interconnected with the routing func-
tionality of the network. They solve the problem how to pay for packet
forwarding along a path, but they do not provide a general mechanism how
to transmit a packet using the cheapest path. An exception is the �x price
scheme of Nuglets, where the shortest path is compulsorily the cheapest
path. Using the auction scheme in Nuglets, if there is more than one route
to the target node, the intermediate node chooses the route where the next
hop provides the cheapest service. Again, this does not have to be the
optimal choice from a global view.

Commit [Eidenbenz05], which is based on Ad hoc-VCG [Anderegg03],
bridges the gap between route discovery and auction for pricing. In Ad
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hoc-VCG, when a source node needs a route to another node, it broad-
casts a route request. Every time a node receives a route request, it checks
whether the packet contains new topology information. If so, it adds infor-
mation about the link over which it has received the request, for instance
the transmission power, to the packet and rebroadcasts the request. Using
this technique, the destination node �nally learns the complete topology
including the additional parameters and can use this information to cal-
culate the best route. It is worth noting, that using this route discovery
technique, every node has to forward up to n2 route requests per route
search in comparison to 1 like in other protocols. Additionally, the complete
route selection is done by the target node, which could lead to trust and
security issues. In COMMIT the overhead of the discovery phase for every
node is reduced by forwarding just information about new links a node has
learned. Additionally, an upper limit that the sender is willing to pay is
included in the request. Therefore, the forwarding nodes can decide during
the route discovery phase, whether the forwarding of information about a
new received path is feasible or not, and react correspondingly.

Another virtual currency system is iPass [Chen04a], which di�ers from
other virtual currency systems by the way it determines the fee for packet
forwarding. In contrast to the other virtual currency systems presented in
this section, it uses a �ow-oriented scheme for pricing. In iPass, each node
represents an auction market where �ows passing through are bidding for
the limited bandwidth. Each packet contains four �elds relevant for pricing:
the request rate, which determines the preferred size of the �ow in bytes per
second, the current rate, which corresponds to the actual size of the �ow
in bytes per second, the bid for bandwidth and the actual charge for the
packet, which is initiated to zero and gets decreased whenever the packet
is forwarded by a node. Since the bandwidth is limited, �ows are assigned
bandwidth depending on their bid. For instance, when each of three �ows
request 40% of the bandwidth of a node, only the two �ows with the highest
bid become 40% assigned. The third �ow, which is the �ow with the lowest
bid, becomes only 20% assigned. Therefore, the current rate �eld of packets
belonging to the third bidder is set correspondingly to 20%, so that over
a feedback mechanisms the source node learns that it has to increase its
bid to get the requested 40% of bandwidth. The actual fee nodes pay for
packet forwarding depends on the bids of �ows, which did not receive all
the bandwidth they requested. In the given scenario, the price per byte
corresponds to the bid of the third �ow, which got only assigned 20% of the
bandwidth. If there would exist an additional fourth �ow which would also
request 40% of the bandwidth, the price would be the sum of one third of
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the bid from �ow three and two thirds of the forth �ow's bid. In contrast
to other virtual currency systems, iPass prevents overload of single paths
by coupling the pricing function with the availability of bandwidth.

Even if there exist solutions to integrate payment into mobile ad hoc net-
works to motivate nodes to participate, a number of issues remain unsolved.
Among others, these issues include the user's possibility to control the par-
ticipation degree of nodes, the e�cient coupling of virtual currency systems
with routing mechanisms to allow nodes to use the cheapest route to a
target and the inclusion of node's context.



Chapter 3

Architecture of Cash�ow

This chapter 1 presents Cash�ow, a �ow oriented virtual currency system
designed to prevent sel�sh behavior in mobile ad hoc networks and to mo-
tivate nodes to participate. The �rst part of this chapter speci�es usage
scenario for Cash�ow. These scenarios are used to formulate requirements
and assumptions leading to the di�erent concepts Cash�ow is based on.
After the description of the concepts, Section 3.3 presents the architecture
of Cash�ow in detail, including all its modules and algorithms. The follow-
ing section discusses possible attacks on Cash�ow and describes how these
attacks are prevented. Section 3.5 extends the usage scenarios of Cash-
�ow by describing how Cash�ow can be integrated in hybrid and Internet
connected networks. The chapter concludes with a comparison of Cash�ow
with other virtual currency systems.

3.1 Usage scenarios of Cash�ow

Cash�ow was designed to encourage nodes belonging to di�erent authorities
to participate in a common wireless network. For the development, the focus
laid on scenarios like a shared o�ce building, where the communication
infrastructure is temporarily not available, or, to give another example, a
hotel, where members of a traveler party, accommodated in di�erent rooms,
what to exchange pictures using their mobile equipment without leaving
their room.

In both described scenarios, communication between di�erent nodes is pos-
sible, provided that intermediate nodes, equipped with wireless communi-
cation technology, are willed to join a common wireless network and provide

1Parts of this chapter have been published in [Wallentin10b] and [Wallentin10a]



22 Architecture of Cash�ow

services like routing and forwarding for other network nodes. Additionally,
it can be assumed that in most cases not all nodes are moving at the same
time. Taking the o�ce example, a user might use a laptop at his o�ce
for some time, than he brings his laptop to a meeting where the laptop
stays again at nearly the same time during the whole meeting, and after
the meeting he takes the laptop back to his o�ce. So this laptop would
show a nomadic mobility pattern during a normal work day.

Besides location, also the context of this laptop changes over time. During
the usage in the user's o�ce, the laptop might run on AC power, while
during the meeting, the internal battery is used as power source. While
running on battery, the energy consummation is a much more important
issue, compared to the time while running on AC power. Therefore, during
the time running on battery, the user might not be interested to provide
the same services for the network as while running on AC. The energy
source might not be the only parameter in�uencing the user's willingness
to provide services. Since routing needs resources from the computer, like
processing time and memory, users running resource-intensive applications
like games, 3D rendering applications or simulations, and therefore needing
their computer resources for themselves, might not be interested to provide
larger parts of their resources for network services. Therefore it was assumed
for the design of Cash�ow that it is important to consider the context of
the node for compensation.

The described scenarios allow making expectations concerning the tra�c.
Because of the size of images and other digital documents, it is assumed that
in many cases a data transmission between nodes will include a number of
packets and not just a single one. Additionally, protocols like TCP require
a number of packet exchanges for the transmission of even a single data bit.
Consequently, for the development of Cash�ow, a speci�c tra�c pattern
was assumed which is di�erent compared to typical tra�c pattern of other
wireless networks like sensor or vehicular networks.

Naturally, scenarios, where no infrastructure exists, are not very common
today. Especially the scenario, describing a shared o�ce with no telecom-
munication infrastructure, might be an extreme example. Never the less,
for the development of the virtual currency system, scenarios with no in-
frastructures were assumed, since from the system's point of view, an infras-
tructure device, like a wireless access point, can be seen as a normal node
with some special parameters. However, even if infrastructure devices are
not explicitly considered as special nodes for the description of Cash�ow,
Section 3.5 of this chapter discusses the usage of Cash�ow in hybrid and



3.1 Usage scenarios of Cash�ow 23

Internet connected networks in detail.

Summarizing, Cash�ow was developed focusing on scenarios where the fol-
lowing assumptions are ful�lled:

1. Network nodes are equipped with wireless communication technology.

2. There exists at least one direct or indirect connection between every
node.

3. There exists no additional infrastructure or the existing infrastructure
cannot be used.

4. Network nodes belong to di�erent authorities.

5. Nodes can be motivated to provide services to other nodes by using
some kind of compensation.

6. Network nodes consists of mobile o�ce equipment like laptops, smart-
phones, and personal digital assistant.

7. Nodes are free to move, but most networks nodes show a nomadic
behavior, meaning that not all nodes are moving all the time.

8. In most cases, nodes want to transmit a number of packets to other
nodes, not just single packets.

9. Nodes are willing to pay a certain maximum fee for services of other
nodes.

10. Nodes want to pay as little as possible for the service of other nodes.

11. All nodes have sporadic access to the internet, but it is not required
that nodes have internet access during their participation in a wireless
network.

Additionally it was assumed that some of the following characteristics of
nodes might be true:

12. Nodes have di�erent preferences regarding to their participation in
networks, independent from the reward they receive for their services.

13. The node's context has an in�uence on its willingness to participate
in wireless networks.
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All these assumptions provided a framework for the development of Cash-
�ow. Some assumptions, like 1 to 3, are essential in all ad hoc networks,
since otherwise the deployment of a mobile ad hoc network is not possi-
ble or makes no sense. Other assumptions, like 4 and 5, are essential for
integration of virtual currency systems, because if all nodes would belong
to one single authority, cooperation would not be an issue and therefore a
system like Cash�ow would be obsolete in such kind of network. This is
also true in the case that nods cannot be motivated to participate using
rewarding schemes. All the rest of the assumptions de�ne real life scenar-
ios. Some of these assumptions result in restrictions in the system others
provide optimization potential. For example, the usage of regular mobile
o�ce equipment like laptops and smart-phones in such a network results in
the requirement that the system should not rely on special hardware like
tamper-proof hardware, which would simplify the integration of a virtual
currency system from the viewpoint of security. On the other hand, the
assumption of a speci�c mobility and tra�c pattern allows optimizing the
routing as well as the data transfer for these speci�c scenarios. All these
assumptions lead to a system, which is optimized for a special type of sce-
nario. Naturally, Cash�ow can also be used in scenarios, where some of the
assumptions are not true. In this case, some functions of Cash�ow might
not be used or there is an additionally overhead. For example, in the case
that Cash�ow is used in scenarios where tamper-proof hardware is given,
other payment strategies might perform better than the standard payment
system integrated in Cash�ow. However, because of the modular the de-
sign of Cash�ow, which will be described in Section 3.3, by changing some
modules of the system, it can be optimized to �t speci�c scenarios without
changing the complete system.

3.2 Basic concepts of Cash�ow

To consider all mentioned assumptions, Cash�ow is based on three con-
cepts: a channel concept for data transmission, a market concept as pricing
strategy and a credit system for payment. The channel concept as well as
the market concept is unique compared to other virtual currency systems
for mobile ad hoc networks. The following paragraphs will describe the
di�erent concepts and their correlations. However, the actual realization of
the proposed concepts will be described in Section 3.3, while discussing the
nodes architecture.
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3.2.1 Channel concept

The channel concept of Cash�ow considers the assumption that in many
cases nodes want to exchange a number of packets consecutively and not
just sporadically single packets. The basic idea of the channel concept is
that if a node wants to transmit a number of packets to another node,
it opens a channel to the destination node. It is important to note that
channels in Cash�ow are bidirectional, meaning that the source node, the
initiator of the channel, can transmit data to the destination node and vice
versa. A channel is characterized by two parameters. The �rst parameter
is the duration. A channel is open for a certain time during which the
source and the destination node can exchange data. After the expiration
of the duration time, the channel is closed and the source node has to
open a new channel if it wants to communicate with the destination node
again. However, the source node, and only the source node, can request an
extension of the duration time, which might be granted by the intermediate
nodes.

The second parameter is the throughput. It speci�es how many packets will
be transmitted per second over the channel. Since packets have a de�ned
maximum size, intermediate node can estimate the maximum bandwidth
a channel needs. Consequently, nodes can reject channel requests if the
needed bandwidth exceeds the available one and therefore avoid overload
situations. Besides the avoidance of overload situations, by using the chan-
nel concept, nodes can regulate their maximum throughput depending on
their current situation. This regards the needs of assumptions 12 and 13.
But not only intermediate nodes pro�t from the channel concept. As soon
as a node has successfully opened a channel, it can be con�dent that the con-
nection to the destination node will not get interrupted abruptly because of
upcoming tra�c of other nodes. In other virtual currency systems it might
happen that an intermediate node stops to forward packets on behalf of
a node, because another node requests its services and is willing to pay a
higher fee than the other node is currently paying. Even if the node whose
transmission has been interrupted continues its transmission by interrupt-
ing the interrupters tra�c likewise, still some packets have been dropped as
consequence of the interruption. Besides the additional delay, caused by the
retransmission of the dropped packet by the source node, the source node
has to pay the intermediate nodes along the path to the node, which has
dropped the packet, even if the packet has never reached the destination
node. The reason for this is that these intermediate nodes have forwarded
the packet and therefore earned a reward, even if the packet did not reach
the target. (Compare with [Zhong03] and [Buttyan01]) Therefore, it is in
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the interest of the user, if such abrupt interruptions are prevented by the
system.

3.2.2 Market concept

The channel concept has in�uenced the way nodes determine their service
fees. Cash�ow uses a market concept to calculate the fees charged by nodes
for forwarding packets. The basic idea of this concept is that nodes contin-
uously adapt the fee they charge for the so called standard channel depend-
ing on supply and demand. The standard channel is a channel with a �xed
throughput and duration value known to every node. Based on the price of
the standard channel a node can derive the price of any other channel with
any parameterization. When a node wants to open a channel along a given
path, it sends a channel request message, including parameter information
about the channel, along the path to the destination. The destination node
replies with a channel response message. The intermediate nodes include
the value of the fee they would charge for the requested channel into the
response message, so that the original source nodes �nally gets the infor-
mation how much the channel would cost. Based on the fee of the channel
and the price the source node is willing to pay, it can either accept this
o�er and open the channel or reject it. By adjusting the price, nodes can
make themselves, respectively their routing service, more or less attractive
for other nodes. Another point of view would be that nodes can express by
the fee they charge their willingness to provide additional channels. Given
that each node has a certain preferred throughput value. If the current
throughput is signi�cantly higher than the preferred throughput, the node
could increases the fee with the result that some of the open channels might
not be extended by the channels source node after the duration time expi-
ration. Additional the probability increases that nodes requesting a channel
reject the channel after receiving the o�er because of the price. Therefore,
by increasing the fee for channels, nodes can reduce the throughput. The
opposite is true when a node decreases its fee. In this case, channels run-
ning over this node become cheaper and therefore more attractive to other
nodes.

Cash�ow additionally uses the fee as instrument for load balancing. Since
nodes increases their prices in high load situations, channels through high
loaded parts of a network are more costly than through parts with low
load. Assuming it is in many cases in the interest of nodes to get a service
for the lowest possible fee, nodes are interested to open channels using
the cheapest path to the destination and consequently avoid high loaded
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parts of a network if possible. This functionality requires a route discovery
protocol, able to �nd the cheapest route from a source to a destination
node. Such a protocol has been developed as part of Cash�ow and will
be presented in Section 3.3.3. However, Cash�ow can also be used in
combination with other routing protocols, but such a combination might
result in a performance penalty of the load balancing functionality.

Besides load balancing, the combination of the channel with the market
concept can also be used to prevent local overload situations. When nodes
receive a channel request, they estimate the additional usage of the shared
medium based on the channels parameters. If the additional usage would
cause an overload, they charge an in�nite high price, which corresponds
to a reject. Additionally, the node increases the fee it would charge for
a standard channel, since such a reject indicates an imbalance of supply
and demand. Similar to this overload detection, Cash�ow allows each node
to de�ne a maximum throughput. If a node receives a channel request
and its parameters indicate that the additional throughput caused by this
channel would exceed the maximum throughput, again the node can reject
the request by charging a in�nite high fee. As it will be described in detail
in Section 3.3.7, parameters, like the preferred and maximum throughput,
the minimum price a node charges, and the maximum usage of the shared
medium, are used by Cash�ow to allow users to in�uence their participation
degree. Additionally, these parameters can be used to react on the node's
context.

3.2.3 Credit concept

For the actual payment, Cash�ow uses a credit based system where nodes
use a kind of virtual credit card to pay rewards for used services. This
concept has two advantages compared to other systems: First it can be
implemented completely in software and therefore the systems does not rely
on tamper-proof hardware like used in Nuglets [Buttyan01]. As mentioned
before, it is assumed that Cash�ow is used in scenarios, where network nodes
are mobile o�ce devices like smart-phones or laptop computers, which are
in most cases not tamper-proof. Therefore, the requirement of tamper-proof
hardware would hamper the usage of Cash�ow. The second bene�t is the
�exibility in the payment amount's size, compared to real world money or
micropayment systems using hash chains [Tewari03b], [Tewari03a]. Using
a credit system, it is possible for nodes charging fees worth a fraction of
a credit unit, with the consequence that no node has to pay an overhead
caused by rounding to the next amount of money supported by the system.
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Figure 3.1: Credit system of Cash�ow

It is worth noting that the usage of a credit system has also a downside
concerning the users privacy. As it will be described later, credit systems
uses banks or credit clearance services for accounting and payment. Using
payment information, the bank or credit clearance service provider could
reconstruct connections between nodes and might use this information to
estimate correlations between nodes. However, the bank additionally gets
detailed information about the intermediate nodes used for forwarding pack-
ets. Therefore, the bank or credit clearance service can be used for fraud
detection and also for the exclusion of misbehaving nodes from the network
by freezing their accounts.

Due to the bene�ts of credit systems, similar concepts are also used by other
rewarding systems like Sprite [Zhong03] and iPass [Chen04b]. However, the
credit system used by Cash�ow is optimized for the usage in combination
with channels, resulting in a reduction of the payment overhead compared
to Sprite and iPass.

The credit system used by Cash�ow is based on public key infrastructure
[Katz08]. As pictured in Figure 3.1, the system distinguishes between three
roles: bank, user, and node. A node is an actual physical device, which is
equipped with wireless communication technology and can therefore par-
ticipated in wireless as hoc networks. Each node possesses a unique key
pair: a public and a private key. Every node belongs to at least one user.
In this context a user could be a real person using the node, which could
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be a for instance a laptop. A more abstract kind of user could be a com-
pany. From the system's point of view, a user is somebody who wants to
use a node to use services of a network or to provide services to a network
to earn a reward. Each user possesses a unique key pair and additionally
at least one account at a credit clearance authority, which in this context
is called bank. It is assumed that nodes and their users have exchanged
their public keys in a secure way, so that user and node could rely on the
keys for authentication. Therefore, mutual trust exists between nodes and
their users, as pictured in Figure 3.1. Mutual trust also exists between
users and banks. Banks also possess key pairs, which are not only used for
authentication, but also for issuing credit certi�cates used by the nodes for
payment. Besides the issuing of credit certi�cates, banks provide accounts
for users. A user can transfer money to the account to use this money to
pay for used network services. On the other hand, when a node belonging to
a user has earned a reward for provided services, the bank transfers money
from the account of other users to the user account. When a user provides
more services than he uses, the bank can disburse the money to the user.
In short, an account in this credit system is similar to a bank account.

When a node needs a credit certi�cate it sends a request to its current user
as pictured a step 1 in Figure 3.1. Now the user can request a new certi�cate
for the node at the bank (step 2). The request includes the following �elds:

{userAccount, nodePublicKey}sigUser (3.1)

An overview over the meaning of the �elds is given in Table 3.1. As
mentioned before, it is assumed that the user and they node have already
exchanged their public keys, so the node does not have to send its public key
again. By allowing the user to include the account number in the request, it
is possible that a user has multiple accounts at the same bank. For example
a user could have a private account and additionally a business account.

Assuming that the user has no outstanding debts at the bank, the account
number included in the request belongs to the user, and the signature indi-
cates that the message was not altered, the bank issues a credit certi�cate,
which includes the following �elds:

{accountNr, nodePublicKey, expirationDate}sigBank (3.2)

This certi�cate states that the bank accepts invoices until the expiration
date, signed by the node to which the public key in the certi�cate belongs
and that the account included in the certi�cate will be debit. The bank
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Field meaning

{· · · }sigUser user's signature
{· · · }sigBank bank's signature
{· · · }sigSN signature of a channel's source node
{· · · }sigIntNodeX signature of intermediate node X of a

channel
nodePublicKey public key of a node
bankPublicKey bank's public key
SNPublicKey source node's public key
accountNr account number
accountNrSN account number of a channel's source

node
accountNrINX account number of intermediate node

X of a channel
expirationDate expiration date of a certi�cate
channelParameters channel parameters, compare with

section 3.3.5
RH Hash value of a channel request
channelId unique ID of a channel
feeIntNodeX fee intermediate node X of a channel

charges
statisticChannelIdX statistic data of channel X
nodeListChannelIdX nodelist of channel X

Table 3.1: Description of data �elds

keeps a copy of the request and the issued certi�cate, and, as step 3, it
transmits the credit certi�cate back to the user. The user forwards in step
4 the certi�cate together with the public key of the bank in a signed message
to the node. The complete message includes the following �elds:

{{accountNr, nodePublicKey, expirationDate}sigBank,

bankPublicKey}sigUser (3.3)

By verifying the user's signature, the node can prove that the message was
not altered. Additionally it proves that the node has the permission from
the user to use the account quoted in the credit certi�cate for payments.
Additionally the node is allowed to accept invoices from nodes having a
credit certi�cate signed by the bank to which the public key in the message
belongs. In the basic version it is assumed, that there is only one bank in
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the system. However, if there are more banks in the system, the user needs
a list of the public keys from the other banks, signed by the user's bank,
and additionally needs to forward this list to the nodes belonging to the
users.

After all nodes have performed this initial phase, every node possesses a
valid credit certi�cate, the permission of the user to use this certi�cate, and
the public key of the bank so that it can accept certi�cates issued from this
bank. It is worth noting, that a node can accept certi�cates signed by the
bank as long as the user has not explicitly forbidden to accept certi�cates
issued by this bank. Therefore, if the credit certi�cate of the node has
expired, the node can nevertheless provide services to the network. Other-
wise, even if a certi�cate is not expired, nodes might reject it if it will expire
within a short time period. That is because the expiry date in the certi�cate
states the latest moment when the bank will accept invoices signed by the
node holding the certi�cate. Therefore, if the certi�cate will expire within
a short period, nodes might reject the certi�cate, because they might have
no possibility to transfer the singed invoice in the period left to the bank.
It is important to note that nodes does not need to have a connection to a
bank all the time. For instance, if a node's credit certi�cate is valid three
months and nodes only accept credit certi�cate which expire in more than a
month in the future, node only have to communicate with the bank once a
month. Assuming the bank is reachable over the Internet, this means that
nodes only need sporadic Internet access, as stated in assumption 11.

When a node requests a channel to another node, it includes the certi�cate
into the signed request as pictured in step 5. Therefore a request has the
following structure:

{{accountNrSN, SNPublicKey, expirationDate}sigBank,

channelParameters}sigSN (3.4)

Each intermediate node can verify that the credit certi�cate is valid by the
signature of the bank. Additionally each intermediate receives the public
key of the requesting node and its account number. Using the public key in
the certi�cate, intermediate nodes can also verify that the request belongs to
the owner of the certi�cate. After verifying the request, each node calculates
a hash value RH (request hash) out the request using a cryptographic hash
function like SHA-512/384 [FIP02]:

{{accountNrSN, SNPublicKey, expirationDate}sigBank,

channelParameters}sigSN ⇒ RH (3.5)



32 Architecture of Cash�ow

When the request reaches the destination, the destination answers to the
request by sending a response message (step 6). Each intermediate node
inserts a signed �eld, including the hash value of the credit certi�cate, the
account number of the source node, the unique channel ID, which is part of
the channel's parameters, and the fee it charges for the requested channel.
Consequently, the source node receives a message containing the following
information:

{RH, accountNrSN, channelId, feeIntNode1}sigIntNode1,

{RH, accountNrSN, channelId, feeIntNode2}sigIntNode2,

{RH, accountNrSN, channelId, feeIntNode3}sigIntNode3,

· · · (3.6)

The source node can now compute the total cost of the channel by summing
up all the fees included in the response. By using the hash value RH, the
source node can verify that the fee corresponds to the original request. The
replacement of the original request by the hash value is done to reduce the
amount of data, which has to be transferred to open a channel. The source
node cannot verify all the signatures of the intermediate nodes, but this is
not required. The signatures of the nodes are required, when nodes transmit
invoices to the bank, to verify that nodes only book invoices belonging to
them. The response message can be seen as o�er. The source node can now
reject the o�er by dropping it or accept it. To accept it, it has to sign the
o�er of every node, resulting in the following structure:

{{RH, accountNrSN, channelId, feeIntNode1}sigIntNode1}sigSN,

{{RH, accountNrSN, channelId, feeIntNode2}sigIntNode2}sigSN,

{{RH, accountNrSN, channelId, feeIntNode3}sigIntNode3}sigSN,

· · · (3.7)

This information is send back to the destination node, as it is pictured as
step 7 in Figure 3.1. Each intermediate node extracts its signed o�er, which
can now be seen as contract between source and intermediate node or as
invoice. Intermediate nodes can verify that the invoice is valid by using the
source nodes signature and the public key form the corresponding credit
certi�cate. Additionally they can prove that the original o�er has not been
modi�ed by checking their signature. After the veri�cation of the invoice,
it is stored until there is a connection to the bank. Additionally, after the
channel has been closed, nodes store the number of forwarded packets along
the channel as statistic.
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As soon as there is a connection to the bank, nodes transmit in a signed
message their invoices together with the corresponding statistical data and
their account number (step 8). If a node has opened a channel, it addition-
ally sends the list of involved intermediate nodes to the bank. The statistical
data and the list of intermediate nodes are used for fraud detection. Since
it is not directly required for payment, even if a node, which has opened
channels, refuses to transmit the node list, the intermediate nodes receive
their earned reward. However, it is in the interest of each innocent node to
detect malicious nodes and therefore nodes are motivated to provide this
data to the bank.

In short, the bank receives messages from nodes with the following �elds,
in this example from the intermediate node 1:

{
{{RH1, accountNrSN, channelId1, feeIntNode1}sigIntNode1}sigSN,

statisticChannelId1,
{{RH2, accountNrSN, channelId2, feeIntNode1}sigIntNode1}sigSN,

statisticChannelId2,
· · ·

channelId9, nodeListChannelId9,
· · ·

accountNrIN1
}sigIntNode1 (3.8)

In this example, the message includes invoices and statistical data of two
channels from the same source. Additionally it includes the node list from
one channel opened by the node itself. When the bank receives a signed
message containing an invoice it �rst veri�es that the message has not been
manipulated by checking the signature. This can be done since the bank
has received the public keys of the nodes when it issued credit certi�cates.
As mentioned before, the bank keeps copies of issued credit certi�cates and
therefore can verify that it has issued a credit certi�cate to IntNode1 with
the account number accountNrIN1. Since it is possible that a bank has
issued a number of credit certi�cates to the same node with di�erent account
numbers, the number of the account, to which the bank should book the
earned fee, has to be included in this message. Then the bank extracts
the statistical data and uses the channel IDs to relate the statistical data
to a channel until all nodes have transmitted their invoices related to the
channel.
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For the actual payment, the bank veri�es that the invoice, the request hash
value, the account number used by the source node, and the fee, has been
signed by both, source and intermediate node. If this is the case and the
invoice has not been handed in before, the bank transfers the fee form the
source nodes account, accountNrSN , to the account of the intermediate
node, accountNrIN1. Therewith the payment transaction is �nished.

Summarizing the credit systems provides a �exible way to perform the pay-
ment. Users could have multiple accounts and could use multiple nodes. It
is also possible that a number of di�erent users use a node. In the described
system, only one bank is assumed. However, the system can be extended
to support multiple banks. This could be done by implementing a web of
thrust between the banks and by providing the public keys of all banks to
the nodes. Like in other payment systems, security is an important issue.
Therefore, this topic is discussed together with other security considerations
in Section 3.4 after the detailed description of Cash�ow's node architecture.

3.2.4 Combining the concepts

After the description of the di�erent concepts used by Cash�ow, this section
brie�y introduces the interplay between all the components by providing an
usage scenario. To enable nodes to participate in ad hoc networks using
Cash�ow, they �rst must acquire a certi�cate from the bank. As soon as
the bank has issued the certi�cate, nodes can participate in ad hoc networks
without having a connection to the bank, until their certi�cates expire. All
nodes within an ad hoc network periodically update the basic fee they charge
for forwarding, based on supply and demand. Additionally, they monitor
the quality of wireless links to other nodes.

When a node needs to transmit data to another node, which is not a direct
neighbor, it might have to perform a route search to �nd the cheapest route
to the target node, whereby restrictions concerning link quality must be
considered. For the detection of the cheapest route, the route discovery
algorithm not only considers the basic fee nodes charge but also penalties
caused by the context of intermediate nodes. Provided the target node is
part of the network, the route search results in at least one path to the
target node. Additionally, the node receives information about the price
level of di�erent nodes along discovered routes, which they can compare
with prices received from previous route discoveries.

Using routing information, a node can request channels along discovered
paths. The request results in an o�er for the channel or a reject, if the
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channel would overload nodes along the path. The requesting node can
decide to either accept the channel or reject it, if the fee is too high. When
the channel is open, the source node can exchange data with the target
node until the channel expires. However, the source node can request an
extension of the channel, if it wants to continue to exchange data. For
charging, intermediate nodes keep receipts of the channels. As soon as a
node can connect to the bank server, it transmits its receipts to transfer the
earned fees to its account. Additionally it transmits statistical data, which
is used for the detection of malign nodes. Depending on the balance of
the bank account, the user might have to transfer money from an external
source to the bank account, or the bank disburses the money to the user.
This is important, since the bank will not issue new certi�cates to user's
nodes after the expiration of old certi�cates, if the user's account has been
overdrawn.

3.3 Node architecture

The following section describes the node architecture in detail, including
the interfaces and functionality of the di�erent modules, and provides a
number of algorithms for the realization of the modules.

3.3.1 Overview

The core functionality of Cash�ow is implemented into the nodes. Nodes
implement Cash�ow's route discovery algorithm, forwarding and pricing
functionality, collect statistical information, assess links, handle payment,
and provide interfaces for users and applications. To realize all the described
functionality, Cash�ow uses a modular architecture, where the di�erent
functions are realized in di�erent modules. The bene�t of this modular
design lies in its �exibility, since single modules can be exchanged without
altering others. Therefore, it is for instance possible that if a node's radio
interface already provides link assessment functionality, Cash�ow can use
it by using a statistic module, optimized for the speci�c radio interface.
Another example would be the pricing strategy. By exchanging the pric-
ing module, a node can use di�erent pricing strategies, depending on its
situation or preferences.

Figure 3.2 gives an overview over the architecture and visualizes a number
of other components Cash�ow interacts with. From the viewpoint of exter-
nal applications, Cash�ow's functionality is wrapped in the shell module.
The main purpose of the shell module is to provide interfaces between Cash-
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�ow's modules and external applications and functions. Therefore, it can be
seen as a kind of container, containing all the other modules of Cash�ow.
The shell module includes six other modules: Pricing module, safe mod-
ule, statistics module, controller module, routing module, and scheduling
module.

The pricing module provides the pricing functionality. As stated before, by
exchanging this module, the pricing strategy can be altered. This module
calculates the fee a node charges for a speci�c channel request and keeps
the basic fee up to date.

The safe module does the local accounting, including the collection of re-
ceipts, balancing, and communication with the bank. The safe module also
stores the node's credit certi�cate, the node's keys, and foreign public keys.
It is also used for signing messages. Therefore, the safe module implements
all safety critical functionality needed for payment.

The statistics module assesses the link quality to other nodes. It categorizes
links based on signal strength, error rate, and duration. This statistical in-
formation is used by the routing algorithm as well as by the pricing function.

The controller module provides functionality to open channels to other
nodes and handles channel requests from other nodes. For each channel,
the controller module starts a channel controller instance, which handles
and maintains a single channel.

To provide the needed routing functionality, the routing module was in-
troduced into the shell. It performs and handles route requests and stores
routing information. Additionally it transmits control data along paths
outside of channels. This functionality is needed for the establishing of
channels.

The last module is the forwarder module. It is used for data forwarding
along channels. Since data is not immediately forwarded but delayed in the
case that a node tries to transmit more data along a channel than the chan-
nel is able to transport, this module includes also scheduling functionality.

As stated before, the shell module needs to communicate with a number
of external modules and components, and therefore provides a number of
interfaces for these modules. The �rst external component is the con�gura-
tion application. The con�guration application provides an interface for the
user for con�guring Cash�ow. The next external component considered by
Cash�ow is the control application. The main functionality of the control
application is to request channels with speci�c parameters from Cash�ow
to other nodes and forward data over these channels. Besides the size and
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Figure 3.2: Overview of Cash�ow's node architecture

the target node of a channel, the parameter includes also information about
the maximum fee Cash�ow is allowed to pay for the requested channel. The
control application itself gets the data from higher layers. An example of
such a control application is described in Subsection 4.3.1

The next external component is the node's energy supply. To include energy
information into the pricing process, Cash�ow needs data about the energy
source and in the case that a �nite source, like a battery, is used, also the
charging level of the source. Another external component is the node's radio
interface. From the radio interface, Cash�ow can obtain information about
the signal quality of a link, as well as the used transmission speed. The last
external component in the given con�guration is the MAC-interface. Using
information provided by the MAC-layer, Cash�ow estimates the usage of the
shared medium. Additionally, Cash�ow forwards frames to the MAC-layer
for transmission because in the given con�guration Cash�ow is implemented
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directly in layer 2. If a layer 3 implementation in combination with IP would
be used, Cash�ow additionally would has to interact with the IP-layer.

As pictured in Figure 3.3, Cash�ow could operate at layer 3 or layer 2. A
layer 3 implementation could for instance be realized, by extending the IP-
protocol by Cash�ow's functionality. This approach would be similar to the
approach presented in RFC4728 [Johnson07] for dynamic source routing.
Using this approach, it is assumed, that to every node of the network an
unique IP-address has been assigned. The routing protocol provides in this
scenario the IP-address of the next node, which then gets translated for
forwarding to the MAC-address of the next-hop node.

Using an implementation on layer 2, nodes would not act as router but
as virtual switch. In this case, the routing algorithm provides the MAC-
address of the next-hop node directly. From the view point of layer 3,
all nodes of the network appear link-local and therefore the switching is
completely transparent to layer 3. The bene�t of this approach is, that
every layer 3 protocol could directly use such a network. Additionally,
there is no need for address translation, like from IP- to MAC- addresses,
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at every node. Because of these bene�ts, the newest version of the routing
protocol B.A.T.M.A.N [Johnson08] will be implemented in layer 2. Also
for the design of Cash�ow, a realization of layer 2 was assumed. Besides
the already given bene�ts of a layer 2 realization, this approach allows an
e�ective implementation of virtual channels by using label switching, as it
will be described later.

Whether Cash�ow is realized on layer 2 or 3 has mainly an in�uence on the
interfaces of the shell module. Only some internal modules might have to
be altered for optimization. However, the basic algorithms, like the route
discovery process, stay the same. Hence, for the description and explanation
of the routing process, the nomenclature of layer 3 is used. This is done
due to didactical reasons, since most routing algorithms for mobile ad hoc
networks are described using the layer 3 nomenclature.

To provide its routing and forwarding functionality, Cash�ow inserts and
additional header into frames, as pictured in Figure 3.4. In the top part of
the �gure an IEEE802.11 frame is shown using LLC in combination with
SNAP for encapsulation packets of layer 3. Cash�ow adds an additional
header directly before the LLC protocol data unit for forwarding packets
of higher layers. Additionally, there exist a number of frames for internal
functions like route discovery and channel control. These frames will be
explained together with the modules using them.

The basic protocol data unit of Cash�ow is shown in Figure 3.5. It con-
sists of a 1 bit sized type �eld and a data �eld carrying ether a routing
or forwarding protocol data unit. The bit in the type �eld signalizes, if
the protocol data unit included in the data �eld is of the type routing or
forwarding protocol unit, and therefore should be handled either by the
routing or the forwarding module.

3.3.2 Shell module

The shell module works as wrapper in Cash�ow. It provides interfaces
for external applications to use Cash�ow's services and hides its internal
structure. Additionally, it provides interfaces for internal modules to use
functionality provided by external sources. This allows to adapt Cash�ow to
di�erent environments, without changing internal modules. Only the shell
module has to be adapted to the interfaces provided by external sources.
For instance, the interface providing the batteries charging level might di�er
depending on the equipment manufacturer. Therefore, the shell has to
be adapted to be compatible with di�erent equipment. Since the internal
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modules request the needed information directly from the shell module, no
adaption is needed. Consequently, the main functionality of the shell is to
forward function calls from external to internal functions and vice versa.

Figure 3.6 gives an overview of the interfaces and functions the shell mod-
ule implements. For every module, the shell provides a function, which
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Figure 3.6: Interfaces implemented by the shell module

returns a reference to the module. This is done so that every one of the
six modules can get a reference to every other module to communicate
directly. For external applications, the shell o�ers two interfaces, namely
externalCon�gurationApplication and externalClientApplication. The inter-
face externalCon�gurationApplication was introduced to allow the develop-
ment of external con�guration applications. Using such an application, the
user can control the behavior of the local Cash�ow system, can de�ne its
participation degree, and get feedback from the system. By implementing
additionally the con�gEventListener interface the con�guration application
can react on events triggered by Cash�ow. The other external interface,
externalClientApplication, is used for the development of applications using
Cash�ow. These applications request channels from Cash�ow and transmit
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data over these channels. They de�ne the size and the price Cash�ow is
allowed to spend for speci�c channels. By providing sockets, these appli-
cations enable higher layers to use Cash�ow. For example, an application
providing a socket might receive an LLC-frame from the LLC-layer, opens a
channel to the target node and transmits the frame. When the application
receives frames to the same target continuously, it might opens additional
channels to handle the load. The client application needs to implement an
additional interface, the clientEventListener interface. Using the observer
pattern [Gamma95] the shell uses this interface to inform applications about
events like the reception of LLC-frames, the establishment of channels, or
connection failures.

To allow Cash�ow's internal modules to read con�guration parameters pro-
vided over the externalCon�gurationApplication interface by external ap-
plications, the shell implements the internalCon�gurationApplication inter-
face. Further three additional interfaces exist for the interaction with exter-
nal systems. TheinternalBatteryStatus interface allows modules to request
the power source type and its charging level. To react on sudden source
changes, modules can implement the sourceSwitchListener interface. The
internalRadioInterfaceStatus interface allows modules to register frameIn-
foListener listeners to gain information about the quality of received radio
signals. The last interface is the internalMacInterface interface, which al-
lows modules to interact with the MAC-layer. Additionally, it allows the
registration of three types of listeners, to react on routing and forwarding
frames, and to receive statistical data. These listeners are forwardListener,
routingListener, and staticticsListener.

Figure 3.7 provides an overview over the externalCon�gurationApplication
interface. As described before, this interface is used for the con�guration of
di�erent parameters of the system, as well as for monitoring the system's
state. Most of the functions provided by this interface are used for stor-
ing values of parameters and read them back. By using other interfaces,
internal modules can request these parameters. Other functions, providing
status information, forward status requests to the responsible modules. The
following list speci�es the interface's functions:

setPrefThroughput(throughput)

Using this function, a user can specify the preferred throughput rate
for the node. This value is used for the price calculation, to adapt the
node's fee according to the di�erence of preferred and actual through-
put.
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Figure 3.7: Diagram of the externalCon�gurationApplication interface
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getPrefThroughput()

This function returns the value set by setPrefThroughput(throughput).

setMaxThroughput(throughput)

This function is used to set the maximum throughput rate. If a node
receives a channel request, which would results in an overpass of the
maximum throughput, the system rejects the request.

getMaxThroughput()

This function returns the value set by setMaxThroughput(throughput).

setThroughputVariance(variance)

The value set by this function is used by the pricing function. It is
used to de�ne the variance of the throughput the pricing function
accepts without adapting the fee.

getThroughputVariance()

This function returns the value set by getThroughputVariance(through-
put).

setMaxSharedMediumUsage(usage)

Using this function, the user can de�ne the maximum usage of the
shared medium. The system estimates the impact of every requested
channel on the shared medium's usage. If a requested channel would
result in an usage of the shared medium exceeding the usage ratio de-
�ned through this function, the channel gets rejected by the system.
This is done to prevent overload situations. Additionally, a channel
reject event in�uences the pricing.

getMaxSharedMediumUsage()

This function returns the value set by setMaxSharedMediumUsage(usage).

setBasePrice(price)

With this function, the user can specify the minimum fee a node
charges for packet forwarding.

getBasePrice()

This function returns the value set by setBasePrice(price).

setSmallPriceStep(price)

The value provided by this function de�nes the adaption rate of the
fee if the throughput over or underpasses the preferred throughput.

getSmallPriceStep()

This function returns the value set by getSmallPriceStep(price).
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setLargePriceStep(price)

This function is used to de�ne the adaption rate of the fee if an over-
load situation occurs.

getLargePriceStep()

This function returns the value set by setLargePriceStep(price).

setMinBatteryPenalty(price)

This function de�nes the minimum penalty added if the node runs on
battery.

getMinBatteryPenalty()

This function returns the value of the minimum penalty charged if the
node runs on battery.

setMaxBatteryPenalty(price)

Using this function, the user can de�ne the maximum penalty charged
if the node runs on battery.

getMaxBatteryPenalty()

This function returns the maximum penalty a node charges if it runs
on battery.

setMinTransSpeedPenalty(price)

Using this function, the user can specify the minimum penalty charged
if a link to a neighbor node uses a slow transmission rate compared
to other links.

getMinTransSpeedPenalty()

This function is used to read the minimum penalty for transmission
speed back.

setMaxTransSpeedPenalty(price)

This function is used for the setting of the maximum penalty charged
for links with a slow transmission rate.

getMaxTransSpeedPenalty()

This function allows to read back the value set by setMaxTransSpeed-
Penalty(price).

setPrimaryDelay(delay)

The parameter set by this function is used for the route discovery
process to change the racing conditions depending on the fee nodes
charge or the quality of links.
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getPrimaryDelay()

This function allows to read back the value of the delay set by setPri-
maryDelay(delay).

setSecondaryDelay(delay)

Using this function, the user can specify the secondary delay param-
eter, used by the routing algorithm.

getSecondaryDelay ()

This function returns the value of the secondary delay parameter.

getRoutingTableSize()

This function requests the size of the routing table from the routing
module and returns the value.

dropRoutingTable()

Using this function, a user can enforce a reset of the routing table in
the routing module. The shell module calls the corresponding function
of the routing module.

addNodeToBlackList(MacAddr)

This function is forwarded from the shell to the routing module. It is
used to add nodes to the blacklist managed by the routing modules.
Cash�ow avoids routing over nodes listed in the blacklist.

removeNodeFromBlackList(MacAddr)

This function is used to remove an entry from the blacklist. The actual
functionality is implemented by the routing module.

getBlackList()

This functions returns the current blacklist stored in the routing mod-
ule.

getNrOfActiveChannles()

This function returns the number of active channels from the con-
troller module.

getOpex()

This function returns the current operation costs of the open channels
from the controller module.

getOpexLimit()

This function returns the value of the maximum fee the system is
allowed to spend for currently open channels.
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setMaxOpex(price)

With this function, the user can specify the maximum fee Cash�ow is
allowed to spend for channels per time unit.

getMaxOpex()

This function returns the value set by setMaxOpex(price).

setBankingFeeLimit(price)

Using this function, the user can specify the maximum price a node is
allowed to spend for connections to the bank. If there is a connection
the bank available, but the channels fee overpasses the limit set by
this function, the transmission to the bank is rescheduled.

getBankingFeeLimit()

This function returns the value set by setBankingFeeLimit(price).

getLatestBalance()

This function returns information about the balance of the bank ac-
count from the moment, when the node had the last connection to
the bank. The safe module implements the actual functionality.

getCurrentBalance()

This function returns the extrapolated account balance including changes
since the last connection to the bank. The actual functionality is im-
plemented into the safe module.

getEarnedFee()

This function returns the fee earned since the last connection to the
bank. The actual functionality is implemented by the safe module.

getSpendedFee()

This function returns the fee spent by the node since the last connec-
tion to the bank. The actual functionality is implemented by the safe
module.

storeForeignPublicKey(ownerId, publicKey)

This function allows to store of a public keys. The keys are managed
by the safe module.

verifySignature(signedData)

This function allows to verify the validity of signatures using the cor-
responding function of the safe module.

generateKeyPair()

This function causes a new generation of a key pair by the safe module.
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startBanking()

This function enforces the safe module to open a connection to the
bank and to perform banking.

getPublicKey()

This function returns the public key managed by the safe module.

getCreditCerti�cateElapse()

This function requests the time until the node's current credit certi�-
cate elapses from the safe module.

setDefAppEventListener(clientEventListener)

Using this function, the controller module can register a client module
as default application listener. When a channel is remotely opened
due to a channel request of another node, Cash�ow informs this lis-
tener about the new channel and additionally forwards received data
to it. However, using the shell's externalClientApplication interface,
the client application can register other listeners to handle channels.

storeOwnCreditCerti�cate(certi�cate)

Using this function, the controller module can pass a new credit certi�-
cate to Cash�ow, which get internally forwarded to the safe module.

registerCon�gEventListener(con�gEventListener)

With this function, it is possible to register con�guration event listen-
ers. Using these listeners, Cash�ow can actively inform the control
application about relevant events.

Figure 3.7 additionally presents the con�gEventListener interface. This
interface only possesses one function, certRequest(pubKey). Using this func-
tion, Cash�ow's safe module can request a new credit certi�cate from the
con�guration application. Using the public key passed to the function, the
con�guration application can request the credit certi�cate from the bank
and afterwards pass it back to Cash�ow using the storeOwnCreditCerti�cate
function.

The second external interface implemented by the shell module is the exter-
nalClientApplication interface. Figure 3.8 gives an overview over the func-
tions it provides. It is assumed that client application using this interface
implement additionally the applicationEventListener, interface, pictured in
the same �gure, to react on channel and routing events. The functions pro-
vided by the externalClientApplication interface can be divided into three
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Figure 3.8: Diagram of the externalClientApplication interface
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categories. The �rst class of functions is for interactions with the rout-
ing module. The shell module forwards calls for these functions directly
to the corresponding functions of the routing module. These functions al-
low triggering of route searches as well as for route selection. The second
class of functions interacts with the controller module. Consequently, func-
tions belonging to this category are internally executed by the same named
functions of the controller module. These functions allow the opening and
closing of channels as well as the transmission of data over open channels.
The last class of functions is the class of status functions. Again, the actual
functionality of these functions is not implemented by the shell module, but
by di�erent internal modules. These functions allows to request informa-
tion about the number of open channels, price relevant information, like
the maximum price allowed to spend by the system, and information about
the fee currently spend by Cash�ow for open channels. The following list
describes the functions provided by the interface:

doRouteSearch(targetNodeId,applicationEventListener,

searchType,minMaxLinkClass)) With this function, client appli-
cation modules trigger route search to a given target node. Since it
is assumed that Cash�ow is implemented in layer 2, the target node
will be speci�ed by its MAC-address. However, also other address-
ing schemes could be used. The search type speci�es, if the routing
algorithm should prefer stable over cheap routes or vice versa. The
last parameter speci�es the maximal relevant stability if the search
type indicates the search of stable paths. Links, belonging to more
stable classes than indicated by this factor, are threaded as if they
belong to the indicated stability class. If the function is used for the
detection of the cheapest path, the last parameter is used to indicate
the minimum link quality the route search should consider meaning
that the algorithm tries to �nd the cheapest path including only links
belonging to the same or a better link class. If a route to the target
node is found, the object passed as listener will get informed using
a call of the handleNewRouteEvent(targetNode) function, which will
be described later in more detail. Like for other functions in the con-
text of the routing, the function-call is forwarded to the corresponding
function of the routing module by the shell module.

getBestRouteTo(targetNodeId)

This function is used to request the best route to the speci�ed target
node from the routing table, managed by the routing module. In this
context, the best route is de�ned as the cheapest route that ful�lls
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certain stability criteria.

getCheapestRouteTo(targetNodeId)

This function returns the cheapest route to a target node as known
to the node, without considering stability.

getStabilestRouteTo(targetNodeId)

This function returns the most stabile route to a target node as known
to the node.

getBestRouteWithout(targetNodeId,nodeToAvoid)

This function returns the best route, as known to the node, to a target
node, whereby the stated node is not part of the path.

getCheapestRouteWithout(targetNodeId,nodeToAvoid)

This function returns the cheapest route, as known to the node, to a
target node, whereby the stated node is not included in the path.

getStabilestRouteWithout(targetNodeId,nodeToAvoid)

This function returns the most stable route, as known to the node, to
a target node, whereby the stated node is not part of the path.

getBestAlternativeRoute(targetNodeId,routeId)

This function returns the best route, as known to the node, to a target
node, whereby no node from the other route is part of the path. This
functionality is needed to build channels along braided paths.

getCheapestWithoutRoute(targetNodeId,routeId)

This function returns the cheapest route to the target node, whereby
no node belongs also to the given route.

getStabilestWithoutRoute(targetNodeId,routeId)

This function returns the most stabile route to the target node, whereby
no node of the path belongs also to the given route.

getAllRoutesTo(targetNodeId)

This function returns a list with all known routes to a target node.

getAllRoutes()

This function returns the complete routing list as stored in the routing
module.

getRouteInfo(routeId)

Using this function, a client application module can request detailed
information about a speci�c route.
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getOpex()

This function returns the operation-costs for all currently open chan-
nels. This function corresponds to the same named function as spec-
i�ed in the externalCon�gurationApplication interface.

getOpex(channelId)

This function returns the current operation costs of a speci�c channel.

getMaxOpex()

This function returns the maximum price the system is allowed to
spend for to communication. This function corresponds to the same
function of the externalCon�gurationApplication interface.

getOpexLimit()

This function returns the maximum price the system is allowed to
spend for maintaining the currently open channels. This function
corresponds to the same function of the externalCon�gurationAppli-
cation interface.

getOpexLimit(channelId)

This function returns the maximum fee the system is allowed to spend
for the speci�ed channel.

getNrOfActiveChannles()

This function returns the number of channels currently open.

openChannel(applicationEventListener, size, price, routeId,

duration, autoExtend)With this function, a client application can
open a channel. It has to specify a channel listener for the channel,
which is in most cases the client application itself, provided if it imple-
ments the applicationEventListener interface. The listener is needed
to react on channel events. With the parameter size the client spec-
i�es the number of packets the channel forwards per second, which
corresponds to the channel's maximum throughput. The parameter
price speci�es the maximum price the system is allowed to spend for
the channel. If the channel's fee overpasses this value, the channel
will be close after it elapses. However, in most cases the e�ective fee
a node spends for a channel will lie beneath this maximum fee. The
parameter routeId speci�es the route, along which the channel should
be established. Since a route de�nes a speci�c path between the node
and a target node, the target node is given implicitly. With the pa-
rameter duration it is possible to specify the channel's duration. The
duration can vary between 1 and 256 seconds. The last parameter,
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autoExtend, states, if Cash�ow should extend a channel after its dura-
tion time has passed automatically. Otherwise the channel gets closed
after the elapse of the duration time.

closeChannel(channelId)

With this function it is possible to signalize the system to close the
given channel after the elapse of the duration time.

releaseChannel(channelId)

This function closes a channel immediately, even if the node has al-
ready paid for a longer channel duration period.

extendChannel(channelId)

With this function it is possible to activate Cash�ow's functionality
to extend the duration of the channel automatically, if the duration
time of the channel elapsed. The same behavior of the system can
be achieved by setting the corresponding �ag during the channel's set
up.

sendOverchannel(channelId, LLCFrame)

Using this function, the client application can transmit data like LLC-
frames along the channel. However, for Cash�ow it makes no di�er-
ence what kind of data gets transmitted. Therefore, every data type
can be transmitted using this function.

getChannelInfo(channelId)

This function returns detailed information about the speci�ed chan-
nel.

getLinkClasses()

This function returns the di�erent link classes used by the statistics
module to characterize the quality of links. The link classes are needed
by the route discovery algorithm for route selection and arti�cial de-
laying.

addListener(applicationEventListener,channelId)

Using this function, it is possible to bind additional applicationEventLis-
teners to a given channel. This function is needed by the client mod-
ule, working as default application listener, to start and register ad-
ditional application listeners to handle remotely opened channels.

removeListener(applicationEventListener,channelId)

With this function a client module can unsubscribe applicationEventLis-
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teners. Again, this function is used by the default application listener
to unsubscribe itself after registering other listeners.

As already stated before, the observer pattern is used to inform client ap-
plication about events. Therefore, the client application has to register
an object, implementing the clientEventListener interface, as pictured in
Figure 3.8, with the following functions:

handleNewRouteEvent(targetNode)

This function is called by the routing module, if a new path to a node
was discovered.

handleNewChannelEvent(channelId)

This function is called by the controller module, if a new channel as
successfully been established.

handleChannelBuildFailEvent(channelId,cause)

This function is called by the shell module, if it was not possible to
open a channel. The parameter cause indicates the cause of the fail-
ure, for instance, if the received o�er overpasses the price the client
application is willing to pay.

handleChannelCloseEvent(channelId)

This function is called, if a channel was closed.

handleChannelExpirationEvent(channelId)

This function is called a short time before the channel expires so that
the client application is prepared for channel closing.

handleChannelResumeEvent(channelId)

The call of this function indicates that the duration of the channel has
successfully been expanded.

handleDataReceivedEvent(channeld,LLCFrame)

This function is used to pass received frames to the client application.

Besides the external interfaces, the shell module implements a number of
internal interfaces to allow modules to interact with external components
or access con�guration data. To access con�guration variables, as set by
the con�guration application over the externalCon�gurationApplication in-
terface, internal modules can use the internalCon�gurationApplication in-
terface. Figure 3.9 gives an overview over the functions provided by this
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«interface»
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+handleSourceSwitchEvent(newSource)

uses

Neighboursystem

Figure 3.9: Diagram of the internalCon�gurationApplication and internalBatteryStatus
interface

interface. Since each of these functions is also speci�ed in the corresponding
external interface, all these functions have already been described before.
Therefore, they will not be described separately.

Figure 3.9 also visualizes the internalBatteryStatus interface. This inter-
face is used by internal modules to gain information about the power source
and the battery's charging level. The function getBatteryLoad() returns a
�oat value between 0 and 1 re�ecting the battery's load. The pricing mod-
ule uses this information to add an additional penalty to the fee depending
on battery's charging state. This penalty gets only added, if the node uses
the battery as energy source. If the node is running on AC power, no
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penalty is added. To determine the power source, the interface provides
the function getPowerSource(). Additionally, internal modules implement-
ing the sourceSwitchListener interface can register them-self as listener,
by using the registerSourceSwitchListener(sourceSwitchListener) function.
If the source changes from battery to AC power or vice versa, the tex-
titsourceSwitchListener's handleSourceSwitchEvent(newSource) function is
called by the shell module to inform internal modules about the occurred
source switch event. The parameter newSource of the handling function
provides information about the new power source.

Figure 3.10 pictures the internalRadioInterfaceStatus interface and the in-
ternalMacInterface interface implemented by the shell module. Using the
internalRadioInterfaceStatus interface, internal modules can gain informa-
tion about the physical radio interface, by calling the function getInfor-
mation. In addition, internal modules implementing the frameInfoListener
interface can register them self as listener using the function registerFrame-
InfoListerner(frameInfoListener). When the physical interface receives a
frame, if calls the handleFrameInfoEvent(sourceMac,Info) function of the
listener. The parameters passed to this function include the MAC-address
of the transmission source as well as additional informations, like signal
strength and transmission speed. The statistics module uses this informa-
tion to classify links to other nodes.

The second interface shown in Figure 3.10 is the internalMacInterface inter-
face. This interface provides access to the MAC-layer for internal modules.
In contrast to the other presented interfaces, which forward function-calls
to other functions or stores variables, the implementation of the MAC-
interface provides more functionality. The interface provides two functions
for sending frames, namely sendRoutingFrame(routingFrame, targetMac)
and sendForwarderFrame(forwarderFrame, targetMac). With these func-
tions, modules are able to transmit routing- or forwarder-frames using the
node's radio interface. However, these frames are not forwarded directly to
the MAC-layer, but are encapsulated into Cash�ow-frames, as pictured in
Figure 3.5, before the Cash�ow-frames are encapsulated into MAC-frames.
The type �eld of the Cash�ow-frame is set depending on the encapsulated
frame: 0 for routing-frames and 1 for forwarder-frames.

When the MAC-layer forwards a received frame to the shell, the shell
can use the type �eld of the Chash�ow-frame to identify the encapsu-
lated frame type. The shell extracts the encapsulated frame and passes it
to the handleForwarderEvent(forwarderFrame,sourceMac) or the handleR-
outingEvent(routingFrame,sourceMac) function of the corresponding regis-
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Figure 3.10: Diagram of the internalRadioInterfaceStatus interface and internalMacIn-
terface

tered listeners, depending on the frame type. The same is done for frames
returned by the MAC-layer to Cash�ow, because of an occurred error. Such
an error could for instance be caused by frame-loss due to transmission fail-
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ures. Again, the shell analyses the type of the encapsulated frame and
passes it to the handleForwarderFailure(forwarderFrame,targetMac) or the
handleRoutingFailure(routingFrame,targetMac) function.

The internalMacInterface interface allows the registration of three di�er-
ent listener-types by the functions registerRoutingListener(routingListener),
registerForwarderListener(forwarderListener), and registerStatisticsListener(
statisticsListener). The routingListener is used to handle received routing-
frames or failure events caused by the transmission of routing-frames. Sim-
ilar the forwarderListener, which is called by the shell module, if forwarder-
frames have been received or have not been transmitted due to transmission
failures. The handleMacInfoEvent(sourceMac, Info) of the statisticsLis-
tener is called by the shell after sending or receiving frames, to provide
MAC-layer related statistical data like the number of retries needed for
frame transmission.

Since the main purpose of the shell module is to act as a wrapper, no
additional functionality is implemented into it. This module only provides
a number of interfaces to allow Cash�ow's modules to use functionality of
external components on the one hand and, on the other hand, to hide the
internal structure of Cash�ow from external applications using the Cash�ow
system. The actual functionality provided by Chash�ow is realized by the
inner modules.

3.3.3 Routing module

The main purpose of the routing module is to maintain routing informa-
tion needed for data transmission through multi-hop networks. It provides
functionality to discover routes to nodes and to transmit data using routing
information gained by route discovery. Besides maintaining routing infor-
mation, the module also keeps records of malign nodes in a blacklist. Nodes
stored in the black lists are not used by the routing module for data for-
warding and no service will be provided to these nodes. This functionality
allows to exclude malign nodes from the network and consequently works
as motivator to prevent malign behavior.

Every routing algorithm for mobile ad hoc networks can be implemented by
the routing module. However, regular routing algorithms are not designed
to incorporate speci�c user requirements caused by the use of virtual cur-
rency systems in ad hoc networks. As stated in Section 3.1, it is assumed
that users are interested to pay as little as possible for data transmission.
Therefore, the routing algorithm is required to �nd the cheapest route to
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Figure 3.11: Overview over the routing module

a target node. Most routing algorithms are optimized to �nd the short-
est route, which however might not be the cheapest one. Targeting this
issue, a special reactive routing algorithm was designed to �t the needs of
virtual currency systems in mobile ad hoc networks. This algorithm will
be presented in this section, after the description of the routing module's
functionality and interfaces.

Figure 3.11 gives an overview over the functions implemented by the rout-
ing module. With the exception of the last two functions listed in the rout-
ing module class, all functions are called by the same named functions of
the externalCon�gurationApplication or the externalClientApplication in-
terface and have therefore been explained before. In short, the function
doRouteSearch( targetNodeId, applicationEventListener, searchType, min-
MaxLinkClass) triggers a route search. The parameters de�ne the target
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node and the listener, whose handleNewRouteEvent(targetNode) function is
called as soon as the routing protocol detects a new route to the speci�ed
target node. The last two parameters state if the routing algorithm should
consider link quality or fee as criteria for route search and de�ne restrictions
concerning link quality. The following eleven functions shown in Figure 3.11
are used to request routes from the routing list. The function getRouteInfo(
routeId) allows to receive detailed information for a speci�c route, while
removeRoute( routeId) allows to remove routes from the routing table. If
the complete routing table should be deleted, dropRoutingTable() provides
the needed functionality. The functions addNodeToBlackList( MACAddy),
removeNodeFromBlackList( MACAddy) and getBlackList() allow to manip-
ulate the black list.

All these functions are called by external applications using the correspond-
ing interfaces. This is not true for the last two functions. The functions
sendOverRoute( routeId, ControllFrame) and setPriceForRoute( routeId)
are only available for Cash�ow's internal modules. The �rst function is
used by the controller module to transmit frames to other nodes to estab-
lish channels. This function encapsulates the given frame into a routing
frame and forwards it along the speci�ed path to another node. The shell
module of the target node receives the routing frame and forwards it to the
routing module using the handleRoutingEvent( routingFrame, sourceMac)
function of the routing listener implemented by the routing module. If the
transmission fails, the handleRoutingFailure( routingFrame, targetMac) of
the routing listener is called, to inform the routing module about the event.
The routing module reacts on this event by forwarding this information to
the controller module.

The last function of the routing module, setPriceForRoute( routeId, new-
Price), is also used by the controller module. It is used to update the routing
table if the controller module detects a change of the route's price.

As stated before, a special routing algorithm was designed, able to �nd
the cheapest route between two nodes, whereas it considers restrictions on
link stability. The algorithm belongs to the class of reactive routing al-
gorithms. This means that the routing algorithm only searches for routes
to other nodes when required. This has the drawback compared to proac-
tive routing algorithm, that route discovery has to be performed before
data transmission, if the source node knows no route to the target node.
However, proactive routing protocols maintain routing-tables by �ooding
routing information, as soon as changes in the network topology occur. If
used in mobile ad hoc networks using virtual currency systems, besides
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topology information also the fees nodes charge have to be �ooded, to allow
nodes to use the cheapest route. Since this has to be done for every fee
change, which occurs regularly, proactive routing schemed would cause a
large overhead. Therefore, the reactive routing concept was chosen, since
routing information is only collected if it is really needed, which results in
a smaller overhead compared to proactive routing schemes.

The reactive routing algorithm, designed to �nd the cheapest route through
the network, uses the following concept: When a node wants to communi-
cate with another node, it broadcasts a route request packet. When re-
ceiving the request, every node except the source and the destination node,
analyses if the request contains information about a new path, which is
more preferable than the best path the node has learned about before. If
this is the case, the node calculates a delay for the packet. The packet is
broadcasted after the delay, if during the delay time no additional route
request has been received with information about a more preferable route.
If a routing packet including a more preferable route has been received, the
delayed route request packet will be discarded and the new route request
packet will be delayed accordingly. Otherwise, if the received route request
contains no information about a better route, it will be discarded immedi-
ately. When the destination node receives a route request, it answers the
request by sending a route reply packet immediately without any arti�cial
delay. If the target node learns about a better route, it sends an additional
route reply packet, which is the functional equivalent to the re-broadcasting
function of intermediate nodes.

The main idea behind this algorithm is to delay the route request packets
depending on the fee the intermediate node charges and on link quality pa-
rameters. Therefore, route request are forwarded faster along better paths,
in terms of price and link quality, than along expensive or instable paths.
This concept reduces the route discovery overhead. From the point of view
of an intermediate node, by broadcasting a route request packet, it makes
an o�er to the successive nodes, to route over it, for delivering packets be-
tween source and destination node. Depending on the network topology,
some intermediate nodes will receive route request packets for the same
route request over di�erent paths. When an intermediate node gets a route
request packet over a cheaper or more stable path, this can be seen as a bet-
ter o�er, depending on the path selection criteria, from his precedent nodes.
As consequence, the node can reproduce the o�er it made to its successive
nodes, by sending again a route request packet. It is the interest of the
node and of the entire network, to reduce the number of reproduced o�ers,
since previously broadcasted route request packets become irrelevant once
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a reproduced o�er was sent. As stated before, by delaying route request
packets depending on the o�er, better o�ers are forwarded faster, which
decreases the probability that o�ers have to be reproduced. This leads to
an increase of the route discovery performance.

This route discovery algorithm can be realized using concepts from di�er-
ent reactive routing protocols. However, the following realization of the
routing protocol is based on source routing similar to the DSR-protocol
[Johnson96]. Figure 3.12 gives an overview over the frames de�ned for
Cash�ow's routing module. These frames present also Cash�ow's packet
format if realized in layer 3 and not in layer 2 as in the presented in this
thesis. For the route discovery process the request and response frames
are of interest, which correspond to request and response packet format if
implemented in layer 3. The routing data unit contains a subtype �eld, in-
dicating the type of the routing frame. Frames used for route discovery are
indicated by a subtype �eld set to 100 or 101. The last bit of the subtype
�eld indicates, if the route discovery algorithm should prefer cheap routes
over stabile routes or vice versa. The target node �eld holds the MAC-
address of the target node, followed by the min/max quality �eld, which
contains information about link quality constrains. The sequence number
�eld is used together with the address of the route request's source as iden-
ti�cation feature, to di�erentiate between concurrently route requests. The
fee parameter �eld is used to store the cumulative fee the nodes along a
route charge. Similar, the quality parameter stores information about the
link quality between nodes along a path. The node counter is used for hop
counting implicitly indicating the size of the node list. The last �eld holds
all MAC-addresses of the path the frame has been forwarded along.

To perform route search, a node broadcasts a route discovery frame. At the
�rst broadcast, the fee and the quality �eld is set to 0, the node count �eld
to 1, and the node list of the frame holds the source node's MAC-address.
Therefore, each node receiving a route discovery frame can determine the
source, using the �rst MAC-address of the node list. By combining the se-
quence number and the source's MAC-address, each node receiving a route
request can make a new entry in its route discovery table or relate the re-
quest to a previously made entry. Figure 3.13 gives an overview over the
�elds of the route discovery table. The �rst column contains the MAC-
address of the route request's source. Together with the second column,
holding the sequence ID of the route request, this tuple is used for the
identi�cation of the route request. The next two columns store the price
and the quality parameters of the best route discovered during the route
discovery process so far. The following �eld might contains a pointer to a
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Figure 3.13: Visualization of the route discovery table

route discovery frame, if the transmission of a route discovery frame is cur-
rently suspended by the arti�cial delay functionality. The last �eld contains
the timestamp of the scheduled transmission time of the frame the pointer
points to. The routing module implements a function, which is activated
when a timestamp in the route discovery table matches the current time.
This function broadcasts the route request frame to which the pointer of the
corresponding entry refers. Afterwards it deletes the pointer. Additionally
it deletes entries of the route discovery table where the timestamp is older
than a certain value. This is done to prevent a continuous growth of the
table and additionally it allows reusing sequence IDs.

When a node receives a route discovery frame, and the node is not the
target node, it performs the algorithm depictured in Figure 3.14. After the
reception of the frame in step 1, the algorithm searches the node list included
in the route discovery frame for the own MAC-address, which would indicate
that the node has already processed the currently received route discovery
frame. This is done to exclude cyclic paths during route discovery. If the
node has received the current route request frame before, the frame gets
dropped as indicated in step 5 of the �gure. If the received route discovery
frame is new to the node, meaning that the frame has been forwarded along
a new path to the node, the node checks in step 3, if its route discovery
table already posses an entry for the route search the fame belongs to. This
is done by searching for a corresponding source MAC-address and sequence
ID tuple, indicating that the node has already received a route discovery
frame belonging to the same route discovery process. If such an entry does
not exist, the node performs step 8 of the algorithm, which will be explained
later. Otherwise, is such an entry exists, the algorithm compares the fee and
link quality parameters included in the route discovery frame to the values
of the corresponding entry in the route discovery table, as shown in step 4.
Based on these parameters, the type of route search, as indicated by the
subtype �eld of the route discovery frame, and the link quality restrictions,
the algorithm decides if the new route is better than the best previously
found route. When the route search type indicates that the most stabile
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route to a target is needed, a route is considered as better compared to a
previously found route if the new route is more stable or if it is as stabile
as the previous route but cheaper. Additional the quality restriction is
considered. This is done by treating links belonging to a higher link class
as indicated by the min/max quality �eld as if they would belong to the
indicated class. If the cheapest route is preferred, a route is considered as
better if it is cheaper, or, if the price is the same than the previous best
route, if the stability is higher, provided that the route meets the minimum
quality restrictions as indicated by the min/max �eld. This means that
even if a route is cheaper compared to a previous found route, the previous
route is kept if the cheaper route's quality is insu�cient.

If the algorithm has come to the conclusion, that the new discovered route
is not as good as the best route previously found, the route discovery frame
gets dropped as pictured in step 4. If however the received route discovery
frame includes a more preferable route, the route discovery algorithm ver-
i�es in step 6, if in the corresponding entry of the route discovery table a
pointer to another route discovery frame exists. The existence of a pointer
means that currently a route discovery frame is scheduled for broadcast in
the future but the newly received frame contains a more preferable path.
Therefore, if such a frame is scheduled, it has to be deleted as pictured in
step 7 before the algorithm continues with step 8. If no such frame exists,
the algorithm can directly continue with step 8.

df(f) =



DmaxFee if f > Fmax

(f − Fmin)×DmaxFee

Fmax − Fmin
if Fmin < f ≤ Fmax

0 if f ≤ Fmin

(3.9)

dc(c) =


DmaxClass × 10(c−1)

10(Cmax−1)
if c > 1

0 if c ≤ 1
(3.10)

d(f, c) = df(f) + dc(c) (3.11)

In step 8, the system prepares the rebroadcast of the route discovery frame.
The algorithm appends the node's MAC-address to the node list the frame
contains, increments the node counter �eld, and updates the fee and signal
quality �elds. After the preparation of the frame, the node has to calculate
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the delay for scheduling the rebroadcast. Formula 3.9 to 3.11 describe the
calculation of the route discovery delay suggested for the implementation of
Cash�ow. Formula 3.9 is used for the calculation of the delay caused by the
fee the node charge. The parameter DmaxFee represents the maximum delay,
which can be caused due to the fee f . If the route discovery frame indicates
that the fee is the main route selection criteria, the route discovery protocol
uses the function getPrimaryDelay() from the internalCon�gurationAppli-
cation interface, implemented by the shell module, to determine the value
of DmaxFee. Otherwise, if stability is the main route selection criteria, the
value of the function getSecondaryDelay() of the same interface is used. As
mentioned in Section 3.3.2, these functions are used for accessind the user
con�guration. The parameters Fmin and Fmax in Formular 3.9 are used to
determine the range of fees. In other words, they are use to di�erentiate
between high and low fees. To gain values for these parameters, the rout-
ing module calls the functions getMinHopFee() and getMaxHopFee() from
the controller module. These functions return the value of the minimum
and the maximum fee other nodes charge. Using all those parameters, the
algorithm calculates a delay based on the fee nodes charge.

To calculate the link-quality depending delay, Formula 3.10 is used. The
parameter DmaxClass is similar to the DmaxFee parameter of Formula 3.9.
It determinates the maximum delay than can be caused due to the link
quality. If the main routing decision parameter is the link quality, the
value of DmaxClass is the response value of the getPrimaryDelay() function
of the shell module, or the value of getSecondaryDelay(), if the fee is the
main routing criteria. The parameter Cmax holds the number of classes
used by the system. The statistic module, which is used for the classi�-
cation of links, provides the number on available classes over the function
getMaxLinkClasses(). Based on the class c of the current link, the system
can calculate the link quality dependent delay. The sum of the fee and the
link quality dependent delay, as pictured in Formula 3.11, is the delay used
for the scheduling of the frame's broadcast. It is worth noting that this is
only an example for the calculation of the delay. The only requirement for
the calculation of the delay is, that frames or packets, depending on the
implementation layer, are delayed longer if it is expected that there exists
better routes than the route included.

Using the computed delay, the algorithm calculates the moment when the
frame should be broadcasted, by adding the delay to the current time.
To schedule the broadcast of the frame, this timestamp is inserted into
the route discovery table together with a pointer to the frame. As stated
before, as soon as the current time matches a timestamp from the route
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discovery table the corresponding frame gets broadcasted by the routing
module. Additionally, the �elds of the best price and the best link quality
of the corresponding entry in the route discovery table gets updated. Then
the algorithm �nishes.

As mentioned before, the described algorithm is only used if the node is not
the target node of a received route request frame. If the node is the target,
a slightly di�erent algorithm is used. Most of the algorithm corresponds to
the algorithm shown in Figure 3.14. Only step 8 is di�erent. In step 8 the
target node generates a response frame using the information included in
the received request frame. Instead of broadcasting the request frame like
intermediate nodes do, the response frame is scheduled for transmission
along the path the request frame has taken. After the generation of the
response frame, the target node discards the request frame. Similar to
intermediate nodes, which might broadcast route discovery frames for the
same route discovery procedure multiple times each time including a better
path, the target node might transmit multiple response frames, including
di�erent routes, back to the source node.

The structure of the response frame is shown in Figure 3.12. Like every
other routing frame, the response frame possesses a sub type �eld, indicating
that the frame is a response frame and additionally, if it is a response to
a route request focusing on cheap or stable routes. The next �eld is the
sequence number to identify to which speci�c route request the response
frame belongs. The two following �eld include information about the fee
and the quality of the links along the path. The last two �elds store the
number of hops of the path and a node list with all nodes along the path.
For forwarding this type of frame, the node list is used. When a node
receives a response frame, it searches for its own MAC-address in the node
list and forwards the frame to the node with the MAC-address, which is
stored next to the nodes own MAC-address. This mechanism is basically
the same source routing mechanism as used by DSR [Johnson96]. When
the route response frame �nally reaches its target, the source of the route
request, the information the frame contains is stored in the source node's
routing table.

Figure 3.15 shows an example of a routing table. Each route entry possesses
an unique ID. The ID of each route is used as return value for route request
functions like getBestRouteTo(targetNodeId). Additionally, the routing ta-
ble contains �elds indicating the target node of a route as well as fee and
link quality parameters. These parameters are used to select the cheapest,
the most stable, or the best route to a target, whereas in this context the
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Figure 3.15: Visualization of the routing table managed by the routing module
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best route is de�ned as the cheapest route ful�lling certain quality criteria.
The next three �elds contain timestamps, marking the moment of route
discovery, the last update of the entry, and the last usage of the route. The
update �eld marks the moment when either the route's fee was updated by
the channel module using the setPriceForRoute function, or when the same
route was discovered again during a later route discovery process. The last
�eld contains the actual routing information, a list of all nodes of a path.

Using the routing tables information, the routing module can forward frames
for the controller module to any node of a network. This is done by using
the forward-frame as pictured in Figure 3.12. This frame consists of a
subtype �eld to identify itself as forwarder frame. Additionally, the frame
includes the list of nodes of the path the frame should be forwarded along,
and a �eld with the actual number of nodes in the node list. Since the
number of nodes vary for each path, the number of nodes included in the
path �eld is needed to determine the end of the node list and the begin of the
encapsulated data. Since in Cash�ow only the controller module is allowed
to use this forwarding mechanism, the encapsulated data always belongs to
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the controller module. It is important to note that routing modules from
intermediate nodes does not directly forward forward-frames. They extract
for every hop the encapsulated control frame, forwards the received frames
together with information about the source and the target node of the frame,
as well as information about the next and previous hop, to the controller
module, by calling the controller module's handleControllInfoOutlineEvent
function. The controller module returns an altered version of the controller
frame, which is encapsulated again into the forward-frame before it gets
transmitted to the next node. Only when the routing module detects that
it is the target of a forward-frame, it extracts the included controller packet
and passes it to the controller module without information about the next
hop, since there exists no next hop. In this case, the controller module does
not return a controller frame. Using this mechanism, channel modules of
intermediate nodes can read and edit bypassing channel frames as visualized
in Figure 3.16.

Because of the dynamic nature of mobile ad hoc networks, detected paths
might break. When the routing module tries to transmit a routing frame
along a broken path, the path's intermediate nodes forward the frame un-
til it reaches a node, which is not able to forward the frame to the next
hop. Using the error frame presented in Figure 3.12, the intermediate node
informs the source node about the broken route. The corresponding mech-
anism is pictured in detail in Figure 3.17. In this picture, the controller
module of the source node calls the sendOverRoute function of the rout-
ing module, passing a frame and the ID of the route. To keep the picture
simple, parameters past to functions are not always pictured in the �gure.
The routing module embeds the control-frame into a forward-routing-frame
and transmits it to the next node using the MAC-layer. The MAC-layer
of the intermediate node receives the routing frame and forwards it to the
node's routing module using the handleRoutingEvent function. The rout-
ing module extracts the control-frame out of the forward routing-frame and
passes it to the controller module, which returns the frame after analyzing
it. The routing module embeds the control-frame into a routing-frame and
tries to forward it to the next hop, which in this case is the target node.
In this scenario, it is assumed that the target node has moved out of the
range of the intermediate node, with the consequence that the transmission
is not possible. After several retries the MAC-layer gives up and returns the
routing-frame to the routing module, using the handleRoutingFailure func-
tion to indicate that the transmission was unsuccessful. The routing module
informs the controller module about this event and additionally transmits
an error frame to the previous node, which in this scenario is also the source
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Figure 3.17: Flow diagram describing the broken route handling
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node. When the MAC-layer of the source node receives the error frame, it
forwards it to the routing module of the node. The routing module informs
the controller module about the event and removes all routes running over
the broken link from the routing table. The information, which link is bro-
ken, can be extracted from the node list of the error frame, since as the
error frame's source the node, which could not be reached, is registered in
the node list.

The described functionality is needed for the usage of Cash�ow in mobile
ad hoc networks. However, as pictured in Figure 3.12, two subtypes of
routing-frames are reserved. These frames can be used to extend Cash�ow,
for instance to integrate it into the Internet, as it will be discussed in Section
3.5.

3.3.4 Forwarder module

The purpose of the forwarder module is to forward frames along channels
with speci�c rates. It provides functionality to manage channels and forward
frames along them. It implements label switching functionality. When
receiving a frame, it uses the channel ID stored in the frame to identify the
frame's next hop using a routing list. Additionally it implements a scheduler
to limit the throughput along channels to previously negotiated values.

Figure 3.18 gives an overview over the functions provided by the forwarder
module. The function registerChannel( channelId, nextHop, lastHop, size)
allows to register a new channel. The channel ID is used to identify channels.
It consists of the source node's ID and a channel number. The next and
the last hop specify the next and the previous hop along the channels path
as seen from the source node, relatively to the local node. If the local node
is the source node, the previous hop value is NULL. Correspondingly, the
next hop value is set to NULL at the target node. The size speci�es the
throughput over a channel in terms of frames per second.

If the registerChannel function is called, the forwarder module makes a
new entry in its channel list, as pictured in Figure 3.19. It stores the ID of
the channel, which consists of the channel's source and the channel number.
Additionally it stores the next and the previous hop of the channel from the
source node's viewpoint, and the channel's size. Using the size parameter,
the module can calculate the next transmission time, as pictured in the
�gure, which will be explained later in detail. Additionally the module
allocates two queues for the channel. These queues are used to bu�er frames
depending on their type, before they are transmitted to the next hop.
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After a channel is registered at the forwarder module, the channel can
be used for frame forwarding using the function sendOverChannel( frame,
channelId, direction, isControlFrame). The parameter frame holds the
frame which should be forwarded along a channel. The channelId speci-
�es the channel, which should be used for forwarding. Using the parameter
direction, it is possible to specify the direction in which a frame should be
transmitted. If the source of a channel wants to transmit a frame to the
target node, it needs to send the frame in the forward direction, meaning
that the forwarder module will pass the encapsulated frame to the node,
which is stored as next hop in the channel list. The target node however
needs to transmit frame in the backward direction to reach the source node.
In this case, the forwarder module uses the node stored as previous hop in
the channel list as next hop. The last parameter indicates what type of
frame should be forwarded. The forwarder module distinguishes between
data and control frames. The frametype in�uences the frame's handling.
Data frames, which in the proposed solution are LLC-frames from applica-
tions using Cash�ow, are embedded in forward frames, in contrast to frames
of the type control, which are embedded into control frames.

Figure 3.20 gives an overview over the di�erent kind of frames used by the
forwarder module. Besides of the already mentioned forward- and control-

Neighboursystem

forwarderModule
+sendOverChannel(frame, channelId, direction, isControllFrame)
+registerChannel(channelId, nextHop, lastHop, size)
+closeChannel(channelId)
+closeAllChannels()
+terminateChannel(channelId)
+terminateAllChannel()
+getThroughput(channelId)
+getOverallThroughput()
+getStatusInfo(channelId)
+getOverallStatusInfo()

«interface»
forwarderListener

+handleForwarderEvent(MACFrame)
+handleForwardeFailure(MACFrame)

Figure 3.18: Diagram of the forwarder module's interfaces
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Figure 3.19: Overview over the channel list

frames, the exists also a failure-frame which is used to signalize broken
channel events to the nodes involved in the channel. The �rst �eld of each
forwarder frame is the subtype �eld. This two-bit-sized �eld de�nes the type
of the forwarder frame: 00 for forward frames, 01 for failure frames, and 10
for control frames. The combination 11 is not used. The next two �elds
of each frame specify the ID of the channel, followed by a �eld specifying
the direction. Using this information, the forwarder can relate frames to
channels and consequently can determine, under the consideration of the
direction �eld, the frame's next hop. In forward frames, the data �eld
follows the direction �eld, containing a frame from an application using
Cash�ow. Consequently, if Cash�ow is implemented in layer 2, in most
cases a LLC-frame will be embedded in forward frames. The failure frame
contains no additional �eld to encapsulate other frames, in contrast to the
control frame, which possesses a �eld to embed other frames, since control
frames are used by the controller module for the transmission of controller
frames containing information for channel management.

After the sendOverChannel function has embedded the delivered frame into
the correct forwarder frame, the forwarder frame is bu�ered in one of the
channel's queues. Each channel possesses two queues: a priority queue,
which is used for the transmission of control frames, and a default queue for
the transmission of forward frames. Additionally, each channel possesses
a scheduling process, which periodically removes frames from the queues,
looks up the address of the next hop using the channel list, and transmits
the forwarder frame using the sendForwarderFrame function, implemented
by the shell module. The time between the periodic transmissions is de-
termined by the size of the channel. For instance, given a channel has a
size of ten. This means that the channel has a throughput of ten frames
per second. After the transmission of a frame, the channel's scheduler cal-
culates the next transmission time by adding a tenth of a second to the
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Figure 3.20: Overview over the forwarder frames

current time, and stores the calculated timestamp in the corresponding col-
umn of the channel list. If the moment stored in the channel list occurs,
the scheduler removes the next frame from one of the queues and transmits
it. However, if there is no frame in any of the two queues, the transmission
process is delayed until the arrival of a new frame in one of the queues,
which is then transmitted instantly. The scheduler transmits only frames
from the normal queue if there is no frame in the priority queue left.

Using the function closeChannel(channelId), it is possible to mark a channel
for deletion by the scheduler. If the deletion mark is set, the scheduler
deletes the channel's queues and its entry in the channel list as soon as there
is no frame left in any of the channel's queues. Afterwards, the scheduler
instance of the channel terminates itself. The function closeAllChannels()
triggers the closeChannel function on every channel. This is useful if a node
quits its participation in a shared wireless network.
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Figure 3.21: Overview over the handleevent function of the forwarder module
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This is not the only way to close a channel. Also the function terminat-
eChannel(channelId) can be used to delete a channel. The call of this
function results in an instant deletion of a channel. The frames in the chan-
nel's queues get dropped before the queues are deleted. Additionally the
function removes the corresponding entry from the channel list and deletes
the channel's scheduler. Again, to perform this function on all channels,
the function terminateAllChannels() can be used.

The last four functions shown in Figure 3.18 are used to gain additional
information about channels. The function getThroughput(channelId) re-
turns information about the size of the channel and the real throughput
the channel causes. The real throughput might lies beneath the size of the
channel, because the channel's source node might note use the complete
capacity of the channel, or because of lost frames. The function getOver-
allThroughput() returns the same information for all open channels. To gain
further statistical information, the functions getStatusInfo(channelId) and
getOverallStatusInfo() can be used. They return information like the num-
ber of frames transmitted along a channel, the direction of frames, meaning
how many frames are transmitted from the source node to the target node
and vice versa, and the ratio between control frames and forwarder frames.
The di�erence between this function is that getOverallStatusInfo() returns
the information for active channels and not only for one like getStatus-
Info(channelId).

The forwarder module also implements the forwarderListener interface. Af-
ter start up, the forwarder module registers itself as listener at the shell
module, using the shell's registerForwarderListener function. When the
shell module receives a forwarder frame, it calls the handleForwarderEvent
function, passing the received frame and the address of the physical sender
of the frame. Figure 3.21 visualizes the functionality of the handleFor-
warderEvent function. After receiving the frame in step 1, in step 2 the
function veri�es that the frame belongs to an active channel. If this is not
the case, as shown in step 3, an error has occurred, meaning that a node
tried to transmit a packet along a non-existing channel. This could be
caused for instance due to an abrupt channel deletion as result of a con-
nectivity loss. The function veri�es if the error has already occurred before
by searching for the channel ID in the error list. If no entry exists for the
channel, it adds the channel to the error list and sends a failure frame to
the previous node, to inform the node about the non-existing channel. Ad-
ditionally it drops the received frame as shown in step 5. However, if the
channel is already on the error list, as pictured in step 4, the module does
not send a failure frame but erases the entry from the error list. This means
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that if the node receives a frame for the same non-existing channel a third
time, the node will transmit a failure frame again. This mechanism was
introduced to avoid a loop, which could occur if multiple link errors along
a path occur nearly simultaneous. In this case, a failure frame could result
in another failure frame, resulting again in a failure frame and so on, which
is avoided by this algorithm.

If the frame belongs to a channel, the handle function analyses the type
of the frame. If the frame is of the type failure-frame, indicating that
the corresponding channel is broken, the function calls the handleBroken-
ChannelEvent function of the controller module in step 7. This allows the
controller module to react on broken channel events. If the frame is of the
type control, the function calls the handleControlInfoInlineEvent function
of the controller module in step 9 and passes the encapsulated control frame
to the module. The controller returns another control frame, which is en-
capsulated in a forwarder frame of the type control. Afterwards the control
frame is inserted in the priority queue, so that the scheduler can transmit
it to the channel's next hop.

If the received frame is neither a failure frame nor a control frame, the frame
has to be a forwarder frame of the type forward containing an LLC frame.
The function checks if the local node is the �nal target of the frame, meaning
that the channel ends in the local node. If so, the LLC frame is encapsulated
and forwarded to the controller module using the handleDataEvent function.
If the node is not the target of the frame, the frame gets inserted in the
default queue for transmission to the next hop.

The second listener function the forwarder module implements is the handle-
ForwarderFailure function. The shell calls this function, if the MAC-layer
was not able to transmit a forwarder frame. This can be seen as a local
broken channel event. Therefore, the forwarder module reacts similarly as
if it receives a forwarder frame of the type failure. It forwards the event to
the controller module by calling its handleBrokenChannelEvent function.

Summarizing, the forwarder module manages the forwarding process of the
channels. High-level management of channels is provided by the control
module, which will be discussed in the next section.

3.3.5 Controller and channel controller module

The task of the controller module is to manage and maintain channels. It
implements protocols needed to negotiate channel properties, to set chan-
nels up and to operate them. It assigns to each channel a speci�c channel



3.3 Node architecture 79

Controller PDU

Init node Size
Channel 

Nr
Duration

48 bit 16 bit

Channel ID

Certificate

Controller PDU

Type List of Offerst

2 bit

00
(Offer)

R
eq

u
es

t

Controller PDU

Type List of Signed Offers

2 bit

01
(Accept)

Controller PDU

Type

2 bit

10
(End)

Controller PDU

Type

2 bit

11
(Error)

8 bit 8 bit

O
ff

er
Er

ro
r

A
cc

ep
t

En
d

In
se

rt
ed

 in
to

 r
o

u
ti

n
g 

fr
am

e
In

se
rt

ed
 in

to
 f

o
rw

ar
d

in
g 

fr
am

e

Signature

Figure 3.22: Overview over controller frames.

controller, which is responsible for the management of a single channel.
The control module and the channel controller module are tightly coupled
and therefore presented together. Additionally only the controller mod-
ule communicates directly with instances of the channel controller module.
Therefore, other architectures within the controller module are possible,
where no speci�c channel controllers are used. However, the usage of chan-
nel controller modules for channel management allows better structuring of
the system.

To perform its tasks, the controller module uses a number of frames, which
are sent to controller modules of other nodes, using the routing or the
forwarder module, depending on the tasks. Figure 3.22 gives an overview
over the �ve frames used by the controller module grouped depending on
the used transmission module. The �rst pictured frame is the request frame
of the controller module, which is exclusively transmitted using the routing
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module. Consequently, the only frame type the controller module receives
from the routing module is the request frame. Therefore, this frame is
the only frame which does not need a speci�c �eld to mark its type. The
request frame is used to establish channels. The �rst two �elds carry the
ID of the channel, which should be established. As already stated before,
the channel ID consists of the source's MAC-address and a 16 bit large
channel number. The next two �elds carry channel parameters. The �rst
parameter is the size of the channel. The size states the number of frames,
which should be transmitted over the channel per second. Due to the �eld
size of 8 bit, the maximum throughput of each channel is limited to 256
frames per second. The second parameter �eld is the duration �eld. The
value of this �eld states the duration of the requested channel in seconds.
Again, due to the �eld size of 8 bit, the maximum duration of a channel is
limited to 256 seconds. This means, in Cash�ow up to 65536 frames can
be charged in a single step, in contrast to other virtual currency system,
where each frame is charged separately. The �eld before the last �eld of the
frame holds the credit certi�cate, which was discussed in detail in Section
3.2.3. The credit certi�cate is used to prove the node's credit-worthiness.
The last �eld is used to sign the channel parameters as well as the credit
certi�cate, as already described in Formula 3.4 in Section 3.2.3

All other frames pictured in Figure 3.22 are transmitted over the forwarder
module using a channel. To distinguish between the di�erent frames, the
�rst �eld of each �eld is used as type �eld, specifying the frame's identity.
Frames with the type �eld set to 00 represent o�er frames. When a node
receives a request frame as target node, it sends an o�er frame back to the
source using a temporary established channel. While passing intermediate
nodes, each intermediate node includes its o�er in the frame. Therefore, the
frame contains a �eld for the inclusion of the o�ers into the frame. Finally,
the source of the route request receives the o�er frame and might decides
to accept the o�er. If so, the source node transmits an accept frame along
the temporary channel. The type �eld of the accept frame is set to 01 for
identi�cation. The accept frame possesses a second �eld carrying the signed
o�ers. With the reception of the signed o�ers, nodes change the status of
the channel from temporary to active. The o�er and accept frames are also
used for the extension of the channel's duration, as it will be described later.

The frames presented so far are used for the establishment and extension
of channels. If a node wants to close a channel before it elapses, the node
can use an end frame to perform this task. The end frame consists solely
of a type �eld, set to 10 to indicate its type.
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Figure 3.23: Flow chart of the channel establishment.

The only frame left is the error frame. This frame is used to indicate that
the channel is broken. Similar to the end frame, it only consist out of a
type �eld, set to 11 for type indication.

Figure 3.23 visualizes the establishment of a channel. The source node
transmits a channel request over the intermediate node to the target node.
The target node responses with an o�er frame, which is transmitted back
over the intermediate node to the source node. The source node receives
the o�er and decides to accept it by transmitting an accept frame. After
the establishment of the channel, the source and the target node can ex-
change multiple frames. A short time before the channel's contract ends,
the target node sends a new o�er to the source node for an extension of
the channel with, the same characteristics like the original one. Again, the
intermediate node inserts its o�er and the source node receives an o�er for
channel extension. If the source node is not interested in an extension of
the channel, it can drop the o�er. Otherwise, the source node can accept
the o�er by sending an accept frame and thereupon continues to transmit
data along the channel.

Figure 3.24 visualizes the path of frames through the di�erent modules dur-
ing channel establishment. As stated before, the controller module starts
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Figure 3.24: Path of control frames.

the establishment of a channel by transmitting a request frame along a given
route through the network, including the node's credit certi�cate and the
channel parameters. The line marked with 1 visualizes the request frame's
path through the di�erent modules. Besides transmitting the frame, the
controller module additionally starts an instance of the channel controller,
which manages the channel. One of the �rst things the channel controller
does is to provoke the establishment of a channel at the forwarder module.
The request frame is transmitted using the routing module's sendOverRoute
function and reaches, after the physical transmission, the routing module
of the next hop, which is in the given example an intermediate node. The
routing module passes the route request frame to the controller module,
which starts a new instance of the channel module, which provokes the es-
tablishment of a channel by the forwarder module after verifying that the
content of the frame was not altered. This is done by checking the signature
included in the frame. Additionally the module safes the credit certi�cate
included in the request and veri�es its validity. Then the controller mod-
ule passes the request back to the node's routing module, which transmits
the request frame to the next hop of the path, which in this case is the
target of the request. The target node starts an instance of the channel
controller module, which now has to perform a number of tasks. Like the
other channel controllers before, it registers a new channel at the forwarder
module after verifying the frame was not altered. Additionally it veri�es
and stores the included credit certi�cate using the safe module's storeCer-
ti�cate function. Then it requests the fee the node charges for the channel



3.3 Node architecture 83

by calling the getPriceForChannel function of the pricing module. As next
step, it generates an o�er frame and calculates its entry for the o�er list.
The calculation of this entry has been discussed in Section 3.2.3 and can
be seen in Formular 3.6. In short, it is a signed quadruple, consisting out
of a hash value, calculated out of the request, the node's account number,
the channel ID and the calculated fee.

After inserting the o�er into the frame's o�er list, the frame gets transmit-
ted back to the source node. The line marked as 2 in Figure 3.24 visualizes
the path of the o�er frame. In contrast to the request frame, the o�er
frame is transmitted by the forwarder module, using the newly established
channel. By setting the isControlFrame parameter of the forwarder mod-
ule's sendOverChannel function, the frame gets transmitted within a control
frame. When the control frame, which includes the o�er frame, reaches the
forwarder of the next hop, the forwarder can identify the included frame
as frame belonging to the control module and therefore forwards the o�er
frame over the controller module to the channel controller by calling the
controller module's handleControlInfoInlineEvent function. Like the target
node, the channel controller of the intermediate node calculates an o�er for
the requested channel, adds the o�er to the frame's o�er list, and transmits
it to the next hop, which is in this scenario the source node of the channel.

The source node's channel controller, belonging to the current channel,
receives the o�er and evaluates it. If the fee of the channel is too high, the
channel controller module drops the o�er frame. Additionally, it informs the
forwarder module that it should delete the channel. The channel controllers,
belonging to the requested channel and running on other nodes, wait for
the accept frame for a certain time. If they do not receive the accept frame
within the time span, they assume that the source node has rejected the
o�er and delete the corresponding channel within the forwarder module.

If the source node accepts the o�er, it calls the handleNewChannelEvent
function of the registered application listener to inform it about the new
channel. Additionally it signs all the o�ers included in the o�er list and
sends an accept frame, which includes all the signed o�ers, to the target
node. The corresponding line is marked as 3 in Figure 3.24. This frame is
again transmitted by the forwarder module, using the corresponding channel
so that it reaches the intermediate node. The channel controller of the
intermediate node extracts the included o�er, which is now signed also by
the source node, and deletes the timer, which would cause the deletion of
the channel in the case that the o�er has not been accepted by the source
node. Then the accept frame is again forwarded to the next hop, which in
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this scenario is the target node.

The target node extracts the signed o�er. Additionally, it calls the shell's
getDefAppEventListener function to call the listener's handleNewChannelEvent
function. With this call, the external application gets informed that there
exists a new channel, which could be used for data transmission. To auto-
matically send a new o�er before the channel is closed, a timer is started
by the target node's channel controller.

After the establishment of the channel, the applications, running on the
source and the target node, can use the controller's sendOverChannel func-
tion to exchange data. The path of the corresponding frame is visualized as
line 4 in Figure 3.24. It is important to node, that the frames are directly
routed using the forwarder and not over the controllers of intermediate
nodes.

A short time before the channel life time elapses, the target node transmits
a new o�er to the source node, based on the parameters of the original
channel. To distinguish the o�er from the original one, the signed o�er gets
extended by an additional extension number, resulting in the following o�er
format: (compare with Formula 3.6)

{RH, accountNrSN, channelId, feeIntNode1, extensionNr}sigIntNode1

(3.12)

Again, intermediate nodes insert their o�ers into the o�er list of the o�er-
frame. When the source node receives the o�er, it can again decide to
accept it, by sending an accept frame as pictured in Figure 3.25, or reject
it, by dropping the frame. If the source node does not extend the channel,
all nodes involved in the channel close the channel, after the pass of the
channel's duration, by deleting the channel from the forwarder module.
Independent if the channel gets extended or not, as soon as the regular end
of the channel is reached, all nodes transmit the stored o�ers, which they had
received during the channel's establishment, to the safe module, together
with statistical information about the channel. Finally, if the source node
did not extend the channel, the controllers belonging to the deleted channel
terminate themselves.

Besides the reject of an o�er, there are additional events, which lead to a
channel's closing. As pictured in Figure 3.25, a link failure can lead to an
abrupt end of channels. When the forwarder module detects a link failure,
it informs the controller module about the event, which forwards the event
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Figure 3.25: Extending a channel by sending a new o�er.

to the corresponding channel controller. The channel controller reacts on
this event with the transmission of an error frame, to inform the other nodes
involved in the channel that the channel has been broken. Alternatively,
if the broken channel event has occurred at the source or the target node,
the application listener gets informed about the event, but no failure frame
is send, since this would make no sense. Afterwards the channel controller
informs the forwarder that the channel can be deleted and terminates itself.
The channel controller shows the same reaction if it receives an error frame.

The last alternative of a channel's ending is pictured in Figure 3.26. In
this scenario the source node wants to terminate the channel before its
duration time elapsed. When channel controllers receive an end-frame, they
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Figure 3.26: Visualization of a premature channel ending.

immediately discard the corresponding channel, store statistical data about
the channel into the safe module, and terminate themselves.

To interact with other modules, the controller and the channel controller
module provide a number of functions, as pictured in Figures 3.27 and 3.28.
Most of the functions of the controller module are used indirectly by exter-
nal applications, using the corresponding interfaces of the shell module. The
�rst function of the controller module, the function getOpex, is an example
of a function used by external applications. It returns the sum of the current
operation costs of all active channels. This is done by calling the function
getOpex(channelId) for each open channel and sum up all return values. The
getOpex(channelId) function returns the operation cost of a single channel
by calling the getOpex function of the channel controller associated with
the corresponding channel. Similar the function getOpexLimit, which re-
turns the maximum costs all current open channels could cause. Again this
function is realized by calling the getOpexLimit(channelId) for each open
channel, which calls again the getOpexLimit function of the corresponding
channel controller. The function getNrOfActiveChannels() counts all active



3.3 Node architecture 87

Neighboursystem

controllerModule
+getOpex()
+getOpex(channelId)
+getOpexLimit()
+getOpexLimit(channelId)
+getNrOfActiveChannels()
+handleBrokenChannelEvent(channelId, direction)
+handleDataEvent(channelId,LLCFrame)
+handleControlInfoInlineEvent(channelId,ControlFrame) 
+handleControlInfoOutlineEvent(ControlFrame, sourceMac, targetMac, lastHop, nextHop) 
+openChannel(applicationEventListener, size, price, duration, route, autoExtend)
+closeChannel(channelId)
+releaseChannel(channelId)
+extendChannel(channelId)
+sendOverchannel(channelId, LLCFrame)
+getChannelInfo(channelId)
+getMinHopFee()
+getMaxHopFee()
+addListener(applicationEventListener,channelId)
+removeListener(applicationEventListener,channelId)

Figure 3.27: Interfaces of the controller module
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channelControllerModule
«constructor» channelControllerModule(master, target, channelId, duration, size,
creditCertificate, sourceMac, targetMac, lastHop, nextHop, price,
applicationEventListener, routeId, autoExtend)
+handleBrokenChannelEvent(direction)
+handleDataEvent(LLCFrame) 
+handleControlInfoInlineEvent(ControlFrame) 
+closeChannel()
+releaseChannel()
+extendChannel()
+getOpex()
+getOpexLimit()
+getChannelInfo()
+addListener(applicationEventListener)
+removeListener(applicationEventListener)

Figure 3.28: Interfaces of the channel controller module

channel controllers. The number of active channel controllers corresponds to
the number of open channels, since each controller is responsible for exactly
one channel and each channel possesses exactly one channel controller.
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The functions handleBrokenChannelEvent, handleDataEvent, and handle-
ControlInfoInlineEvent are used by the routing and forwarding modules to
inform the controller about di�erent events. Since these events belong to
speci�c channels, it is the task of the corresponding channel controllers to
react on these events. Therefore, these functions only forward the function
calls to the same named functions of the channel controllers.

The function handleControlInfoOutlineEvent is used by the routing module
to pass newly received control frames to the controller module. The included
control frame is always of the type request, since the controller module is
only allowed to use the routing module to forward controller frames of this
type. As stated before, request frames are used to initialize the channel's
establishment. Using the parameters passed to the function and the infor-
mation included in the frame, the controller module starts a new instance
of the channel controller by calling the channel controller's constructor. In
Figure 3.28 all parameters of the constructor can be seen. The �rst param-
eter speci�es, if the controller should act as master of the channel, meaning
that the controller is responsible for the initialization of the channel. Since
this is not the case if the channel controller is created as reaction of a channel
request, this parameter is set to false in the given case. The next parameter
states if the current node is the target of the channel, which is the case if
the parameter nextHop of the event function was set to NULL. If so, the
parameter is set to true. Otherwise, if there exists a next hop, the value of
the target parameter is set to false. The parameters channelId, duration,
size and creditCerti�cate are extracted from the request frame. The pa-
rameters sourceMac, targetMac, lastHop and nextHop, are passed through
from the call of the handleControlInfoOutlineEvent function. The rest of
the parameters are only relevant if the controller acts as master. Therefore
all these parameters are set to NULL in the given case. Besides starting
a new instance of the channel controller, the controller module veri�es the
included credit certi�cate and passes the included public key of the source
node to the safe module.

Simmilar to the handleControlInfoOutlineEvent function, the function open-
Channel results in the creation of a channel controller. This function can
be called indirectly by external applications using the same named function
provided by the shell module. In this case, the channel controller acts as
master, therefore the master parameter is set to true and the target pa-
rameter to false, since the channel's source node cannot be also the target
of the same channel at the same time. The channel ID is created by the
controller module. The controller module keeps a list of the channel num-
bers of the currently open channels and creates a channel ID for the new
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channel, by combining its own MAC-address with an unused channel num-
ber. The values of the size and duration parameter are passed through from
the openChannel 's call. With the creditCerti�cate parameter, the function
passes the node's credit certi�cate, which is stored at the safe module, to
the new instance of the channel controller. The parameter sourceMac holds
the MAC-address of the current node. Using the route ID passed with the
call of the openChannel function, the controller can request the target of
the channel as well as the address of the next hop to set the corresponding
parameters of the channel controller's constructor accordingly. The value
of the parameter lastHop is NULL, since in this case there exists no previ-
ous hop. The values of the rest of the parameters are also passed through
from the call of the openChannel function to the constructor. The price pa-
rameter states the maximum fee the channel controller is allowed to spend
to open the channel. If the channel is more expensive, the controller has
to reject the o�er. The value of this parameter is also the return value of
the getOpexLimit function of the controller. Using the applicationEventLis-
tener parameter of the constructor, the application requesting the channel
can register itself as listener. The routeId parameter is used to update the
price �eld of the corresponding entry in the routing table managed by the
routing module. The last parameter of the constructor states, if the chan-
nel controller should try to extend the channel if the duration time of the
channel has passed.

The following functions which follows in Figure 3.27 are all directly for-
warded to the corresponding functions of the channel controller module.
They are used to close channels immediately, to release the channel after
the duration time has passed, to activate the automatic channel extension
if the corresponding parameter was not set when the channel was opened,
to send data over a channel, and to request detailed information about a
channel.

The functions getMinHopFee and getMaxHopFee are needed by the routing
module for the calculation of the fee depending arti�cial delay. These two
functions return the minimum and the maximum fee nodes in the network
have o�ered in the last time for data forwarding.

The last two functions are again directly forwarded to the corresponding
functions of the channel controller module. Using these functions, external
applications can register additional event listener or remove them. These
functions are needed by the default application to hand over channels to
other applications.

The functions of the channel controller module are pictured in Figure 3.28.
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The controller module of each node involved in a channel creates a new in-
stance of the channel controller to manage the channel. Using the channel
controllers constructor, the properties of the controller are de�ned. The �rst
two parameters de�ne the functionality of the controller along the channel.
A controller could act as master or target of a channel, or as intermediate
node. The behavior of the channel controller depends on its role in the
channel. If a channel controller is initialized as channel master, it requests
an o�er by transmitting a request frame along the given route and initializes
the channel at the forwarder module. Channel controllers running on inter-
mediate nodes only have to initializes the channel at the forwarder module
after their creation. The controller acting as channel target creates like all
other controllers the channel at the forwarder module but additionally cre-
ates a response frame including the fee the node charges for the channel, as
calculated by the pricing function.

The next parameter, the duration, is needed by all channel controllers along
the channel to trigger the elapse of the channel. Additionally the target
channel controller uses this time value to calculate the moment when it
transmits the o�er for channel extension to the source node. The size pa-
rameter is needed for the creation of the channel at the forwarder module,
since this module needs the size value to schedule the data transmission
along the channel. The credit certi�cate is needed for the extension of
the channel, since the channel controller module is not allowed to generate
an extension o�er if the validity of the certi�cate has past. Additionally,
the credit certi�cate is needed by the channel controller acting as master,
since it is needed for the creation of the request frame. The parameters
sourceMac, targetMac, lastHop and nextHop are needed for the channel
con�guration at the forwarder module. As stated before, the remainder
parameters are only relevant if the channel controller is acting as channel
master. The price parameter is needed to decide if the controller is able to
accept an o�er for a channel or if it has to reject it because the fee of the
channel surpasses the value of the price parameter, stating the maximum
fee the controller is allowed to spend. The application listener is needed by
potential receivers of data from Cash�ow's viewpoint, which are the source
and the target node, since the channel controller passes received data to the
listener using the listeners handleDataReceivedEvent function. The routeId
parameter is needed to update information about the fee and last usage of
the corresponding entry in the route list, managed by the routing module.
The last parameter is used to activate automatic channel extension. This
can be also done by calling the extendChannel function.

The next function of the channel controller module as shown in Figure
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3.28 is the handleBrokenChannelEvent function. This function is called
indirectly by the forwarder module, if it is not possible to transmit a frame
to the next hop because of lost connection. To react on the broken channel
event, the channel controller builds an error frame and sends it back in
the opposite direction as stated by the direction parameter of the function
call, to inform other nodes about this event. Then the controller deletes
the channel at the forwarder module using the modules terminateChannel
function. If the channel controller is acting as target channel controller,
it informs the registered application listeners about the occurrence of the
event. This is also done by the controller acting as channel master, which
additionally calls the removeRoute function of the routing module, to delete
the broken route from the list of detected routes. After these tasks have
been ful�lled, the involved channel controllers delete themselves.

The handleDataEvent function is called by the forwarder module, again in-
directly using the corresponding function of the controller module, to pass
received data frames to the channel controller. Since data is always trans-
ferred from one end of the channel to the other, this function as only called
if the channel controller acts as master or target of a channel. The con-
troller passes the received data to all registered application event listeners
by using their handleDataReceivedEvent function.

The handleControlInfoInlineEvent function is the most complex function of
the channel controller module. Figure 3.29 and 3.30 visualize its function-
ality. As pictured in Figure 3.29, the function has to handle four di�erent
control frame types. After the function's call in step 1, the function checks
if the frame is of the type o�er. If this is the case, the function performs
in step 3 the o�ering procedure as pictured separately in Figure 3.30. If
the control frame is not of the type o�er, the function checks in step 4 if it
is of the type accept. Such a frame signalizes that the source of a channel
has accepted the received o�er. As pictured in step 5, a channel controller
receiving such a frame starts or updates a timer for the channel, depending
if the accept frame is related to the �rst o�er or to an extension of the chan-
nel, which gets active when the channel time has elapsed. The timer itself
is used to trigger the deletion of the channel. At the target node, the timer
is additionally used to trigger the generatrion of a new o�er for channel
extension, shortly before the channel elapses. Additionally, in step 5, the
o�er is extracted from the accept frame and stored locally for accounting
after channel's end. Depending if the channel controller acts as target of
a channel or not, which in this context could only mean that the channel
controller acts as intermediate node, since a channel controller acting as
master never receives an accept frame, the functionality varies. If the chan-
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Figure 3.29: Diagram of the channel controller module's handleControlInfoInlineEvent.

nel controller acts as target as pictured in step 8, the channel controller
informs the default listener, which he can access using the corresponding
function of the shell module, about the new channel. Otherwise, if the chan-
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Figure 3.30: Diagram of the o�er functionality of the handleControlInfoInlineEvent func-
tion

nel controller is located in an intermediate node of the channel, as pictured
in step 7, it forwards the accept frame to the next hop by returning it to the
function's caller, which in this case is the forwarder module. Independent
of the channel controller's type the function �nishes in the next step.

If the function as received an error frame, as pictured in step 9, the func-
tionality depends if the channel controller is acting as intermediate node
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of the channel or if it handles an end of the channel, meaning it has the
role of the channel's master or target. If the channel controller is located
on an intermediate node of the channel, it has to forward the error frame.
Otherwise, it has to inform the registered channel listeners that the chan-
nel no longer exists. Additionally it procures the deletion of the route the
channel has used from the routing module's routing list using the route
ID the channel controller has received during its creation. Independent of
the channel controller's role, the controller additionally deletes the channel
from the forwarder module, passes the stored receipt together with statisti-
cal information to the safe module, using the safe's storeReceiped function
or, if the channel controller was the channel's master, the storeStatistics
function. As last step, the channel controller terminates itself.

In step 14, the function checks if the frame is of the type end. If this
is not the case, the frame is of an unknown type, resulting in the end of
the function. Otherwise, if it is of the type end the behavior depends if
the channel controller is acting as target or not. If the channel controller is
running on the target node of the channel, it informs the registered listeners
that the channel has been closed, using the corresponding function of the
application listener interface. Otherwise, the channel controller forwards
the frame. As pictured in step 18, independent of the channel controller's
role, the channel controller deletes the channel from the forwarder module,
performs the accounting with the safe module, and terminates itself.

Figure 3.30 visualizes the functions behavior if the passed controller frame
is of the type o�er. Again, the behavior depends on the channel controller's
role. If the channel controller is not acting as master, which consequently
means that the channel controller has the roller of an intermediate con-
troller, the function veri�es in step 3 if the certi�cate received during the
channels request is valid. If so, the channel controller inserts its o�er into
the frame using the pricing module's getPriceForChannel function and for-
wards the frame. Otherwise, if the certi�cate is not valid, the frame gets
dropped.

If the channel controller is acting as master, it informs the routing module
about the fee the nodes charge for data transmission along the given path,
as pictured in step 4. Additionally, it analyses the fees the intermediate
node charges for data forwarding to update the information about the min-
imal and maximal fee currently charged in the system. The next operations
depend if the o�er is the answer to a channel request or if the o�er was sent
automatically by the channels target to extend the channel. If the o�er
is the answer to a request, the function veri�es in step 8 that the o�er is
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smaller than the maximum price the channel controller is allowed to spend
for the channel. In step 9, the function veri�es that the current operation
costs of all open channels, together with the costs caused by the new chan-
nel, lies beneath the maximum costs the system is allowed to spend. If this
test results in the conclusion that the new channel is not a�ordable, the
o�er frame gets dropped as pictured in step 10. Additionally, the channel
controller deletes the corresponding channel from the forwarder module, in-
forms the registered application listener that it was not possible to open a
channel by using the listener's channelBuildFailEvent function, and �nally
terminates itself. Otherwise, if the fee is acceptable, the channel controller
informs the application listener that a new channel is available using the
listener's newChannelEvent function, as pictured in step 11. Additionally,
the channel controller generates and transmits an accept frame, which in-
cludes the signed o�ers, which were encapsulated in the received o�er frame.
As last step, the channel controller starts a timer, which is used to trigger
the application listener's handleChannelExpirationEvent and the function
performing the channel's deletion, if the channel's duration has elapsed and
no new o�er for extension has been received. This might happens if the
o�er, sent by the target node shortly before the channel elapses, gets lost.
In this case, the system behaves as if the channel controller has received an
una�ordable o�er.

If step 7 results in the conclusion that the received o�er was sent by the tar-
get node because of the imminent channel's ending, the function checks in
step 12, if an extension of the channel is in the node's interest, which is the
case if the auto extension �ag is set. As stated before, this can be done di-
rectly at the request of a channel or later, by calling the channel controller's
extendChannel function. If it is in the node's interest to extend the channel,
the function veri�es in step 14 and 15 that the channel is a�ordable. If the
channel is not a�ordable or if it is not in the node's interest to extend the
channel, the o�er frame gets dropped, as pictured in step 16. Addition-
ally, the channel gets deleted from the forwarder module and the registered
application listeners gets informed about the channel's closing, using their
closeChannelEvent function, before the channel controller terminates itself.
Otherwise, if it is in the interest of the node to extend the channel and the
channel's price is a�ordable for the node, the function informs the registered
application listeners about the resume of the channel, as pictured in step
17. Additionally the function generates a new accept frame including the
signed o�ers and transmits it along the channel. As last step the timer gets
reset to trigger the application listener's channelExpirationEvent function.

The next function pictured in Figure 3.28 is the closeChannel function.
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This function triggers the transmission of an end frame along the path,
resulting in an immediate closing of the channel. After the frames trans-
mission, the function stores statistical information about the channel at the
safe module, deletes the channel from the forwarder module, and terminates
the channel controller module.

The functions releaseChannel and extendChannel are used to set or reset
the auto extension �ag, resulting if set in an extension of the channel before
the channel elapses. The next two functions, getOpex and getOpexLimit,
return the current fee the node spends for the channel and the maximum
fee the channel controller module is allowed to spend to keep the channel
active. The getChannelInfo function returns informations about the chan-
nel, including throughput, the moment the channel was opened, the time
until the channel elapses, and the channel's fee. The last two functions,
addListener and removeListener, allows to register and to delete applica-
tion listeners, which get informed by the channel controller about channel
related events like data reception.

Summarizing, the controller module implements together with the channel
controller module the protocols needed to establish and manage channels.
For each channel an own instance of the channel controller is created, whose
functionality depends if the channel begins or ends in the current node, or
if the channel passes the node.

3.3.6 Safe module

The task of the safe module is to provide functionality for the public key
infrastructure. Additionally it implements functionality to perform the ac-
counting and the interaction with the bank. To perform the communication
with the bank, the module implements the applicationEventListener inter-
face. Using this interface, the module could use Cash�ow to open a channel
to the bank node and transfer data along the channel like any other appli-
cation.

Figure 3.31 gives an overview over the functions provided by the safe mod-
ule. The functions of the listener interface have already been described in
Section 3.3.2 and will therefore not be described in this section. The �rst
function of this module is the getLatestBalance function. This function re-
turns the balance of the bank account as it was at the moment, when the
node had the last contact to the bank. The function getCurrentBalance
returns an estimated balance, based on the balance of the bank account at
the moment of the last contact to the bank, less the fees spent since the last
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Figure 3.31: Overview over the safe module's functions

contact to the bank, plus the fees earned due to forwarding of other node's
frames. If a user uses an account exclusively for one node, this value is rela-
tively accurate. In this case, di�erences only occur if the user has externally
added or removed credits form the account. However, if several nodes share
the same account, the estimated value does not necessarily correspond to
the actual balance. The next function, getEarnedFee, returns information
about the credits earned by providing services to other nodes. This infor-
mation includes the credits earned within certain time intervals, like the
last hour or day, and additional information about the credits earned since
the last connection to the bank node. Similar to this function, the function
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getSpentFee returns information about the amount of credits spent. These
four functions are accessible by the con�guration application using the con-
�guration application interface. Therefore the node's user can control the
costs caused by the system.

Using the function generateKeyPair, it is possible to initiate the generation
of a new key pair needed for the credit system. With the function getPub-
licKey it is possible to access the public key of the local node. A direct
access to the private key is not foreseen in the current architecture due to
security reasons. Instead, the safe module provides two functions for sign-
ing. The function signO�er allows signing o�ers received from other nodes.
This function returns the signed o�ers and additionally adapts the current
balance based on the fees included in the o�ers. The second signing function
is the function sign which can be used to sign any type of data. To verify
signatures, the function verifySignature can be used, which returns true or
false depending on the outcome of the signature check. To gain access to
the locally stored credit certi�cate of the node, the function getCreditCer-
ti�cate can be used. If a function is only interested in the moment when
the credit certi�cate elapse, the function getCreditCerti�cateElapse returns
the corresponding timestamp. The shell provides the same function over an
interface to the con�guration application. Internally the shell forwards the
function call to the safe module. The shell module forwards also the call of
the function storeOwnCreditCerti�cate from the con�guration application
to the safe module. With this function, it is possible to store a credit cer-
ti�cate to the safe module, which is used by Cash�ow to pay for the services
of other nodes.

The following �ve functions shown in the �gure are used by the controller
module to handle payment. When the controller module receives a credit
certi�cate as part of a channel request, it stores the certi�cate into the
safe module using the storeForeignCreditCerti�cate function. When this
function is called, the safe module safes the certi�cate and deletes previously
stored certi�cates belonging to the same node. If a node has accepted the
o�er for a channel, it has to transmit an accept frame including the signed
o�ers which so become receipts. When the controller receives the accept
frame it extracts the signed receipt belonging to it, validates the certi�cate
using the safe module's verifySignature function, and opens the channel.
When the channel has elapsed, the controller module stores the receipt
together with statistical data to the safe module using the storeReceipt
function. The safe module uses the stored information to transfer the earned
credits from the source node's, to the local node's account. Additionally the
current balance is updated by adding the earned fee.
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When a channel elapses, not only the intermediate and target nodes store
information at their safe module. Also the source node stores statistical
information at the safe module using the storeStatistics function. Similar
to the receipts, this information is transmitted to the bank, since it is useful
for fraud detection.

The storeForeignPublicKey function allows storing public keys of other
nodes into the safe module. The safe module uses these keys to verify
the signature of signed data. By using the function nodeHasCredit, the
controller module can check if the safe module possesses a valid credit cer-
ti�cate of a node. This is important since Cash�ow possesses a mechanism
to extend the duration of channels, but it is not in the interest of the lo-
cal node to extend the channel in the case that the source node's credit
certi�cate has expired meanwhile.

Using the startBanking function, the control application can trigger Cash-
�ow's banking mechanism, using the corresponding function of the shell
module, if there is a connection to the bank. If this function is called,
the safe module performs the banking independent if the fee the banking
causes exceeds the limit set by the setBankingFeeLimit function over the
shell module.

The safe module cyclically tries to perform banking. It veri�es that there
exists a connection to the bank and that the fee for the connection is below
the limit set for banking. To connect to the bank, the safe module imple-
ments the application event listener. Therefore, the safe module acts as if
it would be an application using the Cash�ow system. After establishing
a channel to the bank, the safe module transmits the collected receipts to-
gether with statistical data to the bank. The bank moves the earned fees
from the di�erent accounts to the node's account. Then, the bank sends
the new balance to the safe module, which makes it available to other mod-
ule by its getLatestBalance function. Additionally the bank node transmits
update information for the black list to the safe module, which informs the
routing module about the IDs of nodes, which are new on the black list.

The last function the safe module implements is the registerCon�gEventLis-
tener function. Using this function, the control application can register itself
as event listener using the same named function of the shell module. This
event listener is used by the safe module to request a credit certi�cate in
the case that it possesses no certi�cate, or the current certi�cate is not valid
anymore, because it has expired or because the public key of the node has
changed. After the control application has received a new certi�cate for the
node, it uses the already described storeOwnCreditCerti�cate function to
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pass the certi�cate to the safe module.

3.3.7 Pricing module

The purpose of the pricing module is to calculate o�ers for channel requests.
As described in Section 3.2.2, a market concept is used for price calculation.
So, the fee is basically based on supply and demand. However, a number of
parameters in�uence the node's fee, which are discussed in this section.

One source of input for fee calculation is the node's user. The user can set
a number of pricing relevant parameters by using functions provided by the
shell for the control application. He can de�ne the minimum fee a node
charges for forwarding frames, the preferred and the maximum throughput,
as well as the allowed variance of the throughput before the pricing function
adapts the so-called base price. Moreover, the node's user can con�gure
the maximum usage of the shared medium using the setMaxThroughput
function provided by the shell module. The last two parameters the user
can specify are the so-called minimum and maximum battery penalty. A
battery penalty is added to the fee whenever the node is running on battery.
The actual amount of the penalty depends on the battery's charging level.
If the battery is fully charged, the minimum battery penalty is added to
the fee. As the charge of the battery decreases, the penalty increases until
it reaches the maximum penalty when the battery is nearly empty.

To realize such a charge dependent penalty, the pricing function needs to
use the energy source as input. The result of the integration of the energy
source as parameter in the fee calculation is that nodes using battery are less
attractive as relay nodes for other nodes, especially if the battery penalty
is high because of low charge, compared to AC powered nodes.

Concerning the network stack, the physical layer is another input source. It
provides information about the transmission speed of links, which is used by
the pricing function. An additional input source is the MAC layer. By col-
lecting information about the shared channels usage [Davis04] [Davis05],
the pricing function can react, if the preferred usage rate is in average ex-
ceeded for a certain time. If the average usage lies above the maximum usage
of the shared medium, as de�ned by the user, the pricing function increases
its fee. Additionally, a node can use this information to reject channel re-
quests if it is expected that the additional load caused by the requested
channel would result in an overload of the shared medium. Therefore, the
usage of the information provided by the MAC layer results in an overload
protection, since nodes in high load areas of a network tent to increase their
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fee, with the consequence that routes through high load areas become less
attractive.

The last input source is Cash�ow itself. As stated before, the node's user
can con�gure the preferred and the maximum throughput, as well as the
tolerated throughput variance. Cash�ow provides information about the
number of currently open channels, as well as the resulting throughput to
the pricing function. Using this information, the pricing function adapts the
fee according to the di�erence between preferred and actual throughput.

These are the parameters used for pricing in the current version of Cash-
�ow. However, also additional sources could be integrated into the pricing
function if needed.

The fee itself is internally calculated by two functions. The �rst function
calculates the basic fee a node charges. The basic fee re�ects the current
price level and gets adapt periodically depending on the current through-
put and the shared medium's usage. Using this basic fee, the function
getPriceForChannel calculates the fee a node charges for speci�c channels,
depending on channel parameters and the node's context.

Figure 3.32 visualizes the algorithm for basic fee calculation. After the start
of this function, in step 2 it initializes the variable basicFee to the minimum
fee the user wants to charge for forwarding frames along a channel. This
minimum price is set by the user, using the con�guration application, and
is accessible for the pricing module over the shell's getBasePrice function.
Then the function enters a loop. After waiting for 1000 milliseconds in step
3, the function starts to update the fee. In step 4 and 6, the function checks
if the current throughput lies above or beneath the preferred throughput,
including the accepted variance, and increases or decreases the value of the
basic fee accordingly in step 5 and 7. The nodes user de�nes the step size
for the price change. The price module uses the shell's getSmallPriceStep
function to gain the corresponding parameter, set by the user.

In step 8, the function checks if a request for a channel was rejected be-
cause the additional load would have exceeded the maximum throughput.
If so, the basic fee is increase by the value the user has de�ne over the
shell's setLargePriceStep function. To gain information if a channel request
was rejected because of the throughput, the pricing module possesses the
function eventChannelReject, which is called by the controller module if the
corresponding event occurs. The function sets a �ag so that the occurrence
of this event can be included in the calculation of the basic fee.

In step 10, the algorithm veri�es that the current usage of the shared
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Figure 3.32: Visualization of the basic fee's calculation

medium is below the maximum usage preferred by the user. If the us-
age is higher, the fee is increased by the same value as if a channel has
been rejected. After all these modi�cations on the basic fee, the algorithm
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veri�es in step 12 that the new fee is not smaller than the minimum fee.
This can happen if there is a low load situation over a long time in the
network. If the new fee would undercut the base price set by the user, it is
set to the value of the base price. Summarizing, the algorithm pictured in
Figure 3.32 adapts the fee depending on supply and demand.

The function getPriceForChannel uses the basic fee to calculate o�ers for
concrete channel request. The o�ering function receives four parameters:
the throughput in terms of frames per second, the duration of the channel
in seconds, and the IDs of the next and the previous node. Figure 3.33
visualized the algorithm implemented by the getPriceForChannel function.

After the call of the function in step 1, the fee for the requested channel is
calculated, depending on its size in terms of frames per second, its duration,
and the basic fee. The variable basicfee contains the value for the basic fee
calculated by the previous presented basicFeeCalculation function.

The remainder of the function adds additional penalties to the fee. The
�rst penalty is the battery penalty, which is added if the node is running on
battery. In step 3, the function veri�es if such a penalty has to be added. If
this is the case, in step 4 the penalty is added. The battery penalty consists
out of a minimum penalty, which is added to the fee independent of the
battery's charging level. Additionally a charge depended penalty is added,
so that nodes running on low batteries charge more than nodes with full
batteries. The actual amount of the penalty depends on two user variables
stored in the shell module, which are accessible for the pricing module using
the functions getMinBatteryPenalty and getMaxBatteryPenalty

In step 5 the function checks the speed of the incoming and outgoing links.
If both links are classi�ed by the statistics module as slow, the function adds
the maximum transmission speed penalty as shown in step 6. This would
be the case for instance, if a node supports the IEEE802.11g standard but
both neighbor nodes, which represent the previous and the next hop, are
equipped with IEEE802.11b technology. If only one of both links, which is
veri�ed in step 7, is slow, the minimum transmission speed penalty is added
in step 8.

In step 9, the function estimates the cumulative throughput of existing and
the requested channel, and veri�es that the result lies beneath the maximum
preferred throughput as con�gured by the user. If the estimated through-
put exceeds the preferred one, the node rejects the request by setting the
channels fee to in�nite. Additionally it signalizes to the function calculating
the basic fee that a request has been rejected by calling the pricing module's
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Figure 3.33: Visualization of the channel's fee calculation

eventChannelReject function, resulting in an increase of the basic fee on its
next update. The algorithm likewise attempts to estimate the impact of
the requested channel on the shared mediums usage in step 11. If the new
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Figure 3.34: Overview over the pricing module's functions

channel would cause a local overload situation, the channel gets rejected.
After adding all additional penalties to the fee, the function returns the fee.

It is worth noting that even if these two algorithms are used the evaluation of
Cash�ow, together they are only one example for pricing. The calculation
of the basic fee re�ects together with the calculation of concrete fees for
channels the node's price policy. By adapting the pricing module, it is
possible to implement di�erent pricing strategies. Since the exploration of
the optimal pricing strategy in marked based mobile ad hoc networks is not
the focus of this thesis, only a simple algorithm was chosen as example,
how the fee can be calculated in a way that it re�ects the ratio between
supply and demand, and additionally includes the nodes context as well as
the user's preferences.

To complete the picture, Figure 3.34 gives an overview of the functions pro-
vided by the pricing module. The function getBasePrice returns the current
value of the node's basic fee. The next function, getPriceForChannel, which
has been discussed in details before, returns the price for a speci�c channel.
This function is also used by the routing module to receive the fee for the so-
called standard channel, a channel with �xed parameters, which are known
to all network nodes. The fee for the standard channel is needed for the dis-
covery of the cheapest route through the network. The last function of the
pricing module is the eventChannelReject function, which is called to inform
the module that a channel request has been reject. This information gets
included in the periodical update of the basic fee. Besides these functions,
the pricing module implements a sourceSwitchListener interface, which pro-
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Figure 3.35: Overview over the statistics module's functions and interfaces

vides the function handleSourceSwitchEvent. Therefore, the pricing module
can register itself as listener using the shell's registerSourceSwitchListener
function, to get instantly informed by the shell module if the energy source
changes.

3.3.8 Statistics module

The statistics module of Cash�ow collects statistical data concerning links
and the shared medium. Additionally it uses this information to classify
links dependent on their stability and duration. The classi�cation of the
links is needed by the routing algorithm, which uses this information to �nd
routes through the network ful�lling certain stability criterias.

Figure 3.35 gives an overview over the statistics module's interfaces. The
statistics module implements the frameInfoListener interface, as well as
the statisticsListener interface, to collect statistical information from the
physical radio interface and the MAC-layer. Therefore, the statistics mod-
ule registers itself as listener using the registerStatisticsListerner function of
the MAC layer interface, implemented by the shell module, and the register-
FrameInfoListerner function of the radio interface. Both interfaces posses a
handle-event function, so that the radio and MAC layer interface can push
information to the statistics module.

The statistics module itself mainly provides functionality to access collected
statistical information. One exception is the �rst function of the module
shown in Figure 3.35, the reset function. This function can be used by
other modules to reset the statistics module, which means that all collected
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information gets deleted. The next function, getLinkClass returns infor-
mation about the quality of links to other nodes. As stated before, the
statistics module classi�es links depending on signal strength and duration.
In the current version of Cash�ow, three di�erent classes are supported.
When a new link to a node is detected, this link starts as link of class 3, the
worst class. If the signal strength lies for a short time, in the current version
of Cash�ow this time is set to one second, above a certain radio interface
dependent signal strength level, the link is promoted to class 2. However,
if the signal strength level drops under a certain lower border, the link is
downgraded to class 3 again. To become a class 1 link, which is the best
link class supported by the system, the signal strength has to stay above the
level needed to become class 2 for several minutes. Therefore, class 1 links
refer to links between node, which have nearly no relative movement, and
therefore re�ects to the assumption that nodes show a nomadic mobility
pattern. By preferring class 1 links over class 2 and 3 links, the routing
algorithm tries to �nd routes over non moving nodes, which leads to a bet-
ter stability of routes. If the function getLinkClass is called for information
about a non-existing link, it returns 0 as link class. Like in other modules,
this is only an example of a classi�cation algorithm. To support other clas-
si�cation algorithms which might use more than three di�erent classes, the
function getLinkClasses was introduces. This function returns the number
of link classes supported by the statistics module, whereas it is assumed
that the class with the highest number re�ects to the worst class and that
class 1 is always used for the most stable links. Using the getLinkClasses
function, the routing algorithm can adapt itself dependent on the number
of classes supported by the statistics module.

The function getLinkStrength returns the current link signal strength for
a given link. By using the function getLinkDuration other modules can
request information about how long a link to another node exists. The
getLinkSpeed function provides information about the speed of a link. This
information is used by the pricing module to charge additional penalties
for communication along slow links, since communication over slow links
blocks the shared medium for a longer time compared to faster links. The
next function shown in Figure 3.35 is the function getLastLinkActivity,
which returns the moment of the last data reception over a link. The func-
tions getDropRate and getRetryRate return information about the number
of dropped frames and the average number of retries needed by the MAC
protocol for the transmission of a data frame. The last function the statistics
module implements is the getSharedMediumUsage function. This function
returns information about the current usage of the shared medium. This
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information is needed by the pricing module, which increases the basic fee if
the shared medium's usage succeeds a user given value, and additionally by
the control module, which drops route requests if the assumed cumulative
usage of the current usage of the shared medium and the additional usage
by the requested channel succeeds a certain value.

3.4 Attacks on Cash�ow

Security is an important issue for ad hoc networks, especially because of
their usage of an open shared medium. When payment is involved, secu-
rity becomes even more important. However, a complete analysis of several
possible attacks would go beyond the scope of this thesis. Therefore, this
section focuses only on those attacks, which might bring an attacker �-
nancial advantages. Other attacks on mobile ad hoc networks, which are
not related to Cash�ow, have been discussed comprehensively in literature
[Nahrstedt09], [Wu07].

3.4.1 Certi�cate misuse

To receive services from ad hoc networks using Cash�ow without paying for
it, a user might try to misuse credit certi�cates. Possible attacks belonging
to this category includes forging and stealing of credit certi�cates, as well
as the usage of elapsed certi�cates, and the acquisition of credit certi�cates
from the bank by false pretenses. All these attacks are prevented by Cash-
�ow using a cryptographic system. As discussed in Section 3.2.3, each node,
each user, and the bank posses a public and a private key. Additionally it is
assumed that there exists mutual thrust between users and the bank as well
as between user and nodes belonging to the user. We argue that under the
assumptions that no private key gets stolen, that the mutual thrust is not
misused, and that the cryptographic system is save, the described attacks
are not leading to the desired results of gaining free services.

There are two possible targets for an attacker to acquire a credit certi�cate
by false pretenses. First, he could try to fake the identity of a node to
persuade the user the node belongs to, to request a credit certi�cate from the
bank for the attacker's node. If this attack would be successful, the attacker
could use the credit certi�cate to pay for used services and the victim user
would have to pay for the services the attacker has used. However, a node
requesting a credit certi�cate from the user it belongs to, signs the request.
Therefore, the user can verify that the request has not been altered and
that the node is really the node it claims to be. To fake the signature the



3.4 Attacks on Cash�ow 109

attacker has to steal the nodes private key or has to break the cryptographic
system. However, each node is responsible for the security of its private key
and, as stated before, it is assumed that the used cryptographic system �ts
the state of art and is therefore not breakable in reasonable time. Second,
an attacker could try to fake the identity of a user to persuade the bank
to issue a credit certi�cate. Again, similar to the fake of a node's identity,
the attacker would have to steal the user's key or break the cryptographic
system. Again, this is prevented, because the user signs the request. The
signature is used by the bank to verify the originality of the request and the
identity of the user.

Another possible attack of a malign node is to steal and use the credit
certi�cate of another node. Basically, a malign node does not even have to
steal a credit certi�cate, since when a node requests a channel, it passes its
credit certi�cate along the path of the channel. From the attacker's point
of view the problem is reduced to the question, how to use the certi�cate
of another node. The certi�cate includes the node's public key and the
channel request, which includes the credit certi�cate, is signed by the node
the credit certi�cate belongs to. Using the signature, each node receiving a
channel request can verify that the request comes from the node to which
the included certi�cate belongs. Therefore, to use the certi�cate of another
node, the attacker has to fake the signature, which is not possible without
stealing the victim node's private key or by breaking the cryptographic
system.

The usage of elapsed certi�cates is prevented by a timestamp within the
credit certi�cate. Since each certi�cate is signed by the bank, and each
node in the system, which accepts the credit certi�cates signed by the bank,
possesses the bank's public key, the time stamp cannot be altered without
making the credit certi�cate invalid. The only way to alter the time stamp
and keep the certi�cate valid is by faking the bank's signature, which could
not be done without breaking the cryptographic system or stealing the
bank's private key. The same is true for faking a complete credit certi�cate
or alter another node's certi�cate. Without the private key of the bank, it is
not possible for an attacker to sign the faked certi�cate. And a certi�cate,
which is not correctly signed, is worthless for the attacker, because no node
accepts such an certi�cate.

3.4.2 Channel misuse

Malign nodes might try to misuse channels of other nodes to gain �nancial
bene�ts. To save resources, a node providing a channel might drop pack-



110 Architecture of Cash�ow

source node malign node intermediate node malign node target node

dropped traffic 
from source node

inserted of traffic 
from malign node

dummy traffic to 
hide fraud

Figure 3.36: Visualization of a packet insertion attack on a channel

ets transmitted over the channel instead of forwarding them. Using this
strategy, the node would earn a reward for the channel without actually
providing a service. To prevent this fraudulent behavior, all nodes involved
in a channel transmit statistical data, including the number of received
packets, to the bank node together with the earned receipts. Using the
statistical information, the bank detects fraudulent behavior and punishes
malign nodes by blacklisting them. Since the blacklist managed by the bank
is distributed to all nodes of the network, after some time all nodes refuse
to provide services for the detected malign nodes. An alternative approach
to prevent this kind of behavior would be to pay suspicious nodes only part
of their reward, depending on the number of packets received by neighbor
nodes. This concept has been discussed extensively in [Zhong03], where it
was proven that from a game theoretical point of view, this concept prevents
the drop of packets to gain �nancial bene�ts.

If there exists a number malign nodes in the network, which want to com-
municate with each other, they might try to take over channels form other
nodes, which coincidental connect two or more malign nodes. Figure 3.36
visualizes this kind of attack. The source node, which is located on the left
side of the �gure, has opened a channel to the node of the right side of the
�gure, passing two malign nodes. When the malign node on the left side
receives a packet from the source, it might drop the packet and replace it
by another packet including data, which the malign node wants to transmit
to the other malign node. The second malign node receives the packet over
the intermediate node. To hide the fraud, the second malign node replaces
the packets sent by the �rst malign node by other packets including dummy
data.

The di�culty of this scenario is to detect, which nodes act malign and
which do not. One way to solve this problem would be that the source node
signs every packet and intermediate nodes forward only packets with valid
signatures. However, this would increase the packet size and additionally
would be computational expensive. As alternative, every node keeps a copy
of a certain number of packets forwarded lately. If the source node has
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the suspicion that his channel gets misused, it transmits a command to all
nodes along the channel to generate a hash value out of the stored copies
of the transmitted packets. When nodes have connection to the bank, the
nodes transmit the hash values as part of the statistical data to the bank,
which can use this information to detect the malign nodes because of the
di�erences in the hash values. Consequently, the bank blacklists malign
nodes, making this kind of fraud unattractive.

3.4.3 Routing manipulation

A node might not be willing to participate in route search, since this is a
free service in Cash�ow, and therefore the node does not receive a direct
reward for participating in route discovery. However, in long term it is
not pro�table for a node to boycott other node's route discovery processes,
since nodes would not �nd routes running over the uncooperative node. As
consequence, no node establishes a channel over the uncooperative node.
Therefore, by boycotting the route discovery process, the node drains the
source for channels and consequently its revenue sources.

To transmit data to another node in the network without charging for this
service, a node might try to append additional data to a route discovery
packet, so that during route discovery the data gets transmitted to the tar-
get node. However, Cash�ow prevents this attack, since for route discovery
a strict and to all nodes known packet format is used. Therefore, nodes can
detect suspicious route discovery packets and drop them.

Besides these presented attacks, there exist a number of additional attacks
targeting the route discovery process, which are not speci�c to Cash�ow.
For instance, denial of service attacks and the altering of routing information
in the route discovery packets are issues. However, a number of solutions for
these attacks have been proposed in literature, which can be found besides
other in [Hu05] and [Yang04].

3.4.4 Receipt misuse

The receipts used for charging provides an additional attack point for malign
nodes. Malign nodes might try to fake or manipulate receipts to gain credits,
or encash receipts multiple times. To fake or manipulate receipts, a malign
node needs to fake the signature of another node, which can only be done by
breaking the cryptographic system or by stealing the private key of another
node. As stated before, it is assumed that nodes store their private keys
safely and that the cryptographic system cannot be broken in reasonable
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time. Additionally, a faked receipt would become suspicious for the bank,
since in Cash�ow all nodes involved in a channel transmit their receipts
to the bank as soon as there exists a connection. Therefore, it would be
suspicious, if no other node encashs a receipt belonging to the same channel
as the faked receipt. A similar mechanism prevents that nodes encash the
same receipt multiple times. Even if the probability that two receipts are the
same is nearly zero and therefore the retransmission of a previous encashed
receipt can be detected by the bank by comparing old receipts with the
new one, the absence of other node's receipts belonging to the same channel
indicates the fraud.

3.4.5 Conclusions

The analysis of possible attacks has shown the importance of the usage of a
state of the art cryptographic system, which cannot be broken in reasonable
time. Additionally, it is important that private keys stay private. If an
attacker has stolen the private key of a node or a user, the attacker can use
services of other nodes on the victim's costs.

3.5 Cash�ow and hybrid networks

So far, Cash�ow has been described for the usage in isolated mobile ad hoc
network. It was assumed that there exists no connection to the Internet
and that only wireless technology is used for communication. However,
realistic scenarios ful�lling these assumptions are rare. Therefore, this sec-
tion presents how ad hoc networks using Cash�ow can be connected to the
Internet.

As stated in Section 3.3.5, Cash�ow uses channels for data forwarding.
A previously not mentioned bene�t of this concept is that it allows seam-
less integration into the Internet using mobile IP [Perkins02] [Perkins07]
[Johnson04]. Figure 3.37 visualizes the connection of a mobile ad hoc net-
work to the Internet. In this �gure, the light and dark blue nodes form a
mesh network. Wireless links are represented by doted lines, wired links by
solid lines. The four nodes in the gray area are connected by wired links
to give an example how hard wired mesh networks can be integrated into a
wireless network. To support wired links, only Cash�ow's statistics module
has to be altered. The previously described version of the statistics module
was designed to classify wireless links based on signal quality and duration,
where class 1 links refer to links, which have a strong radio signal and are
stable. Compared to wireless links, hardwired links are in most cases sta-
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Figure 3.37: Internet connected ad hoc network using Cash�ow and mobile IP

ble and have a relative low loss rate. Therefore, for hybrid networks, the
statistic module is altered in a way that wired links are always categorized
as class 1 links. An alternative approach would be to specify a speci�c
class for wired links, which is preferred by the routing algorithm over other
classes. For instance, the statistics module could use four classes, where
class 1 refers to wired links and class 2 to 4 refers to class 1 to 3 wireless
links of the original system. Using this approach, the routing algorithm
automatically prefers wired over wireless links without any alteration of
the algorithm. Summarizing, Cash�ow is not limited to pure wireless ad
hoc networks, but can also incorporate wired mesh networks. Even more,
Cash�ow can also be used in pure wired mesh networks.

In the scenario depictured in Figure 3.37, a wired mesh network is incorpo-
rated into the Internet-connected wireless ad hoc network. The dark blue
nodes in the �gure represent nodes using Cash�ow, which have direct ac-
cess to the Internet. For Cash�ow it makes no di�erence how these nodes
are connected to the Internet. They could have a wired connection like
DSL or wireless like GPRS or HSDPA. These nodes act as foreign agent for
mobile nodes of the network, which want to access the Internet. Alterna-
tively, the nodes marked as foreign agent act as router if a care-of-address
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Figure 3.38: Extended frame structure for route discovery

approach is used. Figure 3.37 additionally depictures the bank used for
charging by Cas�ow, which is also connected to the Internet, and a home
agent, as de�ned by the mobile IP speci�cations [Perkins02] [Perkins07]
[Johnson04].

Each mobile node has a �xed home IP-address over which the node is reach-
able, even if it is visiting a foreign network. When a mobile node is visiting
a foreign network, which is using Cash�ow, the node uses a special route
request to �nd nodes providing access to the Internet. In Section 3.3.3 the
routing protocol was described including the frame structure. As pictured
in Figure 3.12 in Section 3.3.3, frames with the subtype 110 and 111 have
been reserved for later usage, to implement functionality not needed for
traditional routing in isolated mobile ad hoc networks. These previously
reserved subtypes are now used to implement additional route discovery
functionality. Figure 3.38 visualizes the two new routing frames. The new
route request frame posses a search type �eld instead of a target �eld. In-
stead of using a speci�c MAC-address as target for route search, the search
type allows to specify other search targets like services. Additionally, the
request frame has been extended by two �elds, the max hop and the pa-
rameter �eld. The max hop �eld allows to specify the maximum number
of hops considered for route search. When a node receives a route request
frame, it decrements the max hop �eld by one before it rebroadcasts the
frame. If a node receives a route request frame where the max hop �eld is
0, it drops the frame. With this mechanism, the search area gets limited,
which is important for the scalability of Internet connected ad hoc network.
The idea behind this mechanism is to use the Internet as backbone to de-
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crease tra�c in ad hoc networks. Even from an economic point of view this
makes sense, since with an increase of the path length between two nodes
in the wireless network the probability increases that there exists a cheaper
path over the Internet. The parameter �eld allows to append search related
parameters to the route request frame. In addition, the response frame
possesses a search type �eld instead of a target �eld. Likewise, a parameter
�eld has been added.

When a mobile node is part of an ad hoc network and wants to connect
to the Internet, it uses the new request frame to search for paths to nodes
providing Internet access. For this purpose, the node sets the search type
�eld to the value 1, which has been assigned to the service Internetaccess.
Additionally, the maximum hop �eld is set for instance to the value 3, to
limit the search to nodes within a range of three hops. The search for
Internet access requires no additional parameters, therefore the parameter
�eld is kept empty. Taking the con�guration shown in Figure 3.37 as
example, the route discovery algorithm returns paths to two nodes, which
are in the range of three hops to the mobile node and posses access to
the Internet. It is worth noting that the fee �eld of the response frame
not only includes the price for a standard channel to the node providing
Internet access but also the price for Internet access with the bandwidth of
the standard channel.

So, the route discovery results in paths to nodes providing Internet access
and additionally the source node of the route request receives information
about the approximate fee of Internet access as well as the fee for the chan-
nels. To access the Internet, the mobile node opens a channel to a node
providing access to the Internet. After establishing of the channel, the mo-
bile node makes a contract with the node providing Internet access about
the usage of its Internet access. Similar to the receipts for channels, this
contract is signed by both parties, including the fee for the Internet usage
as well as information about the provided bandwidth or data volume. For
the payment, the infrastructure provided by Cash�ow can directly be used.
The next step depends on whether mobile IPv4 [Perkins02] [Perkins07] or
mobile IPv6 [Johnson04] is used and in which mode.

Figure 3.39 visualizes the usage of mobile IPv4 in combination with a
foreign agent and bidirectional tunneling. After establishing a channel to
a node providing Internet access and willing to act as foreign agent, the
mobile node binds itself to the foreign agent over path 1 as pictured in
Figure 3.39. Additionally the mobile node registers its care-of-address, in
this scenario the foreign agent care-of-address, to its home agent over path 2.
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Figure 3.39: Internet connected ad hoc network using Cash�ow and mobile IPv4

When a node, the correspondent node, sends a packet to the mobile node
using the mobile node's home IP-address, the packet reaches the mobile
node's home agent over path 3. The home agent looks up the previous
registered care-of-address of the mobile node and tunnels the packet, using
an IP-to-IP tunnel, to the foreign agent. The foreign agent encapsulates the
packet and transmits it over the established channel to the mobile node.
Since Cash�ow operates in the presented con�guration at layer two, the
mobile nodes appears link local to the foreign agent. Therefore, the routing
within the mobile ad hoc network is from the viewpoint of the IP-layer no
issue. To transmit data from the mobile node back to the corresponding
node, the mobile node transmits the packet over the channel to the foreign
agent, which tunnels the packet to the home-agent. The home-agent �nally
forwards the packet to the corresponding node over path 3.

An alternative approach is visualized in Figure 3.40, using mobile IPv6 in
combination with co-located care-of-addresses. In this scenario, the mobile
node performs a search for nodes providing Internet access in the range of
three hops like in the scenario described before. The route search results
in paths to two nodes providing Internet access and therefore acting as
gateways between the mobile ad hoc network and the Internet. The mobile
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Figure 3.40: Internet connected ad hoc network using Cash�ow and mobile IPv6

node opens a channel to each of the both gateway nodes and, in contrast to
the scenario before, requests an IP-address from each of the gateway nodes.
These addresses are used as co-located care-of-addresses, which are shown
as connection 1 and 2 in the �gure. In this scenario, also the correspondent
node is part of the same mobile ad hoc network and possesses no direct
Internet access. Therefore, this time also the correspondent node performs
a search for nodes providing Internet services within a range of two hops,
builds a channel to one of the nodes found during route search, and requests
a care of address from it. After these procedures, the mobile node possesses
three IP addresses: its �xed home IP address and two care-of-addresses. The
corresponding node possesses two addresses, its �xed home address and one
care-of-address, provided by the gate way node to which the corresponding
node has opened a channel.

The mobile node uses one of its Internet gateways to bind itself to its home
agent, by sending a binding update message, including one of its care-of-
address. The home agent uses this care of address to forward packets to
the mobile node. Even if it is not foreseen in the mobile IPv6 standard,
the mobile node might sends its second care-of-address to its home agent
as backup, if the channel to the �rst gateway breaks because of node move-
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ment.

If the correspondent node, located in the ad hoc network, wants to com-
municate with the mobile node, it �rst performs a limited route search to
verify, that the mobile node is not within a certain distance, in this scenario
within a distance of two hops. To do so, the correspondent node uses the
route request frame presented in this section, sets the search type �eld to 2,
which is assigned to the search type IPv6-address-search, sets the maximum
hop �eld to 2, to limit the route search to two hops, and places the home ad-
dress of the mobile node into the parameter �eld to indicate the target node
of the route search. If the mobile node would be in the range of two hops
to the conrespondent node, the route discovery algorithm would return at
least one path, which could be used for a direct communication within the
mobile ad hoc network without using the Internet. However, in the given
scenario the mobile node is not in the range of two hops to the correspon-
dent node. Therefore, the routing algorithm returns no path. To transmit
data to the mobile node, the correspondent node transmits packets with
the home address of the mobile node as target over the Internet. The home
agent of the mobile node receives the packets for the mobile node and for-
wards them along path 4 to the mobile node, using its care-of-address. The
mobile node uses the care-of-address of the correspondent node to transmit
packets directly to it. Additionally, to decrease the overhead, the mobile
node performs a binding update with the correspondent node over path 6,
which allows the correspondent node to send packets directly to the care-of-
address of the mobile node. This allows communication between the mobile
and the correspondent node, without using the home agent.

Summarizing, Cash�ow allows to connect mobile ad hoc networks to the
Internet using mobile IP. By allowing to be simultaneously connected to
multiple foreign networks, the system improved the availability of the mobile
nodes. Additionally, the credit infrastructure can be used to pay for Internet
service. The introduction of limited route search makes the system scalable,
if the Internet is used as backbone. Therefore, by connecting mobile ad hoc
networks to the Internet, ad hoc networks with thousands of participants
are possible. As site note, the newly introduced search frames allow in
combination with Cash�ow's credit system the introduction of a number
of commercial services. For instance, printing services could be realized by
de�ning a search class for printers, allowing to �nd printers nearby and pay
for printing services using the credit system. To allow the integration of
such services, a considerable large service type �eld is used by the newly
introduced search frames.
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3.6 Comparison of virtual currency systems

As mentioned in previous sections, Cash�ow posses a number of features
which are unique for virtual currency systems. Other features and concepts
are also used by other virtual currency systems. Therefore there exists a
number of similarities between Cash�ow and other systems. For the sake of
completeness, this section provides an overview over concepts and properties
of virtual currency systems and compares them to Cash�ow. These virtual
currency systems include iPass [Chen04a], Nuglets [Buttyan01], Sprite
[Zhong03] and Commit [Eidenbenz05].

Starting with the payment schemes, the virtual currency systems Sprite and
Nuglets specify concrete solution for payment. Nuglets uses a real virtual
currency called nuglets for payment. To pay for packet forwarding, nodes
attach nuglets to packets. Before a node forwards packets for other nodes,
it removes a certain amount of nuglets form the packet. The main bene�t
of this concept is that it needs no central instance. It adapts hard cash
directly to mobile ad hoc networks. However, like in real life, the usage of
hard cash has some disadvantaged. For instance, hard cash can be lost. In
a mobile ad hoc network using Nuglets, the loss of a packet with attached
nuglets automatically leads to the loss of the attached nuglets. Assuming
that packet losses occur from time to time, the system could lose all nuglets,
leading to a halt of the system if no compensation mechanisms are used by
the system. However, Nuglets de�nes no mechanism to compensate lost
nuglets. Another problem of this approach is that it requires tamper-proof
hardware to prevent duplication of nuglets or other malign behavior like re-
moving all nuglets from passing packets without forwarding them. The need
of tamper-proof hardware limits the usage of Nuglets in scenarios where no
special hardware is available. A further issue of this concept is that nodes
have to estimate the amount of nuglets they need to attach to packets so
that the packets receive their targets. If a packet is out of nuglets and has
not reached the target, the packet gets dropped by intermediate nodes. If,
on the other hand, the source node overestimates the needed amount, it
donates nuglets to the target node. To overcome these issues, Nuglets in-
troduced a buying scheme, where the target node pays for provided services.
However, this leads to the question about the intention of the target node
to pay for services used by the source node.

To overcome these issues, Sprite uses a credit system, which was adapted by
Cash�ow. As described in Section 3.2.3 the idea behind this system is that
nodes keep receipts when they forward packets and transmit earned receipts
to a central bank instance to get the earned reward. The drawback of this
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concept is that special bank instances are needed for payment. However, this
concept provides a number of bene�ts compared to the usage of virtual hard
cash. The most important bene�t is that this concept can be used without
special hardware. Therefore, it allows to include mobile o�ce equipment,
like laptops and smart phones, into mobile ad hoc networks using a credit
system for rewarding. Additionally, the loss of packets does not lead to
a loss of units of the virtual currency like in Nuglets. Because of these
bene�ts, Cash�ow has adapted this concept, but in contrast to Sprite it
charges for channels. This means that charging is done for a number of
packets in bulk and not for every single packet separately. This reduces the
overhead of the credit system, both in terms of transmission and calculation
time. The virtual currency systems iPass and Commit does not explicitly
propose payment schemes but they can be implemented using the credit
concept.

Another di�erence between the virtual currency systems is the way they
determine fees. Nuglets proposes two di�erent mechanisms for pricing. One
mechanism is a �xed price scheme, meaning that each node charges the
same �x fee for packet forwarding. An alternative mechanism proposed by
Nuglets uses a sealed bid second price auction to determine the next hop
and the fee the next hop earns. Potential next hop nodes send a message
including a bit to the forwarding node in a sealed way. The forwarding node
selects the winner, which is the node with the lowest bid, as next hop. The
price the winning node charges is the second lowest bid.

Sprite uses a kind of �xed pricing scheme, where the fee nodes earn for
forwarding depend on the transmission success. Nodes which successfully
have transmitted a packet, receive an fee α for packet forwarding, while if
a node has not successfully transmit a packet, it only receives β as reward,
whereby β is smaller than α. This is done due to game theoretical reasons,
which are explained in detail in [Zhong03].

In contrast to Sprite, the virtual currency system iPass uses an auction
scheme for pricing. Each node constitutes an auction market, where other
nodes can bid for bandwidth. To do so, each packet contains a �eld with
the transmission rate in bytes per second the source of the packet desires.
Other �elds hold the current rate assigned to the node and the node's bid.
Each node has only a certain maximum bandwidth available, which gets
assigned to the nodes with the highest bids. If the maximum bandwidth
desired by a node is not available, the bandwidth, which is left for the node,
gets inserted in the current rate �eld, if it is lower than the value inserted
by previous nodes into this �eld. When the packet reaches its target, the
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current rate �eld contains the rate of the bottleneck of the path. Using a
feedback mechanism, the source node learns about the current rate along
a path and, if the current rate does not match the desired rate, the source
node can increase its bid to get more bandwidth assigned. Otherwise, if the
current rate corresponds to the desired rate, the source node might reduce
its bid, since this means that the source node is bidding higher than other
nodes.

In Commit, the fee is determined by the energy used for data transmission
along a path. When a node wants to transmit packets to a target node,
a special routing algorithm is used to �nd the cheapest and the second
cheapest path to the target. The fee of the second cheapest path is the fee
the source node has to pay to transmit packets along the cheapest path to
the target node. This is done to game theoretical reasons. However, before
route search the source node de�nes the maximum fee it is willing to pay
for data transmission and commits itself to transmit packets if the price lies
beneath this value. So if the price of the second cheapest route lies above
this value, the node does not have to use the path.

All of these schemes have in common, that the node's user has no direct
in�uence on the price the node belonging to him charges for forwarding ser-
vice. As described in Section 3.2.2, this issue is solved by Cash�ow's pricing
system, which allows to de�ne a minimum fee the node has to charge for
forwarding. The concrete fee a node using Cash�ow charges gets deter-
mined using a market system, where the fee gets adapted based on supply
and demand. Additionally the node's context in�uences determination of
the fee.

The next distinctive feature is the ability of the virtual currency systems to
support nodes to discover and use the cheapest path. The virtual currency
systems Nuglets, Sprite, and iPass only allow the user to determine the price
for a given path. They include no function to �nd the cheapest path between
a source and a target node. Since it is in the interest of the user to pay
the least fee for a service, this issue is problematic for user acceptance. In
Commit the discovery of the cheapest route is part of the fee determination.
Therefore, nodes always transmit packets along the cheapest paths. Also
Cash�ow allows nodes to use the cheapest path to other nodes. This is
realized using a special routing algorithm, which additionally allows nodes
to search for the cheapest path ful�lling certain stability criteria. In contrast
to Commit, nodes are not bound to use the cheapest path. The selection of
the path is completely in control of the nodes. Cash�ow only provides the
functionality to locate the cheapest path.



122 Architecture of Cash�ow

N
ug
le
ts

Sp
ri
te

iP
as
s

C
om

m
it

C
as
h�

ow

How to pay + + +

How much to pay + + + + +

Find cheapest route + +

Reacts on network load + +

Includes external fee parameters +

variable participation degree +

Table 3.2: Overview over provided functionality of di�erent virtual currency systems

The reaction on network load is another distinctive feature. The load situa-
tion is not considered by the systems Nuglets, Sprite, and Commit. There-
fore, it can happen that single nodes or parts of the network get overloaded.
The virtual currency system iPass prevents local overload, since when a node
has no bandwidth left, it drops packets from nodes with low bids, with the
result that nodes have to increase their bid to get bandwidth. Therefore, the
occurrence of local high load leads to an increase of the price level. However,
since iPass provides no mechanism to �nd the cheapest route through the
network, the increase of the price does not lead to the usage of alternative
paths by nodes for data transmission. In Cash�ow, the local load directly
in�uences the fee nodes charge. Additionally, there exists a mechanism,
which allows nodes to use the cheapest path to a target. The combination
of these two mechanisms leads to a load balancing system, which will be
analyzed in Section 4.3.4.

Additionally to the inclusion of local load, also the ability to include other
external parameters is a distinctive feature of virtual currency systems.
For instance, the ability of virtual currency systems to charge a higher
fee if a node is running on battery. Only Cash�ow allows the inclusion
of external parameters into the fee calculation. Furthermore, because the
system supports the discovery of the cheapest route though the network,
also the routing system reacts indirectly on these external parameters.

The last characteristic, which is also unique to Cash�ow, is its ability to
allow users to decide to which degree they want to participate in the net-
work. The user can de�ne a preferred and a maximum throughput, which
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is considered by the system. In other virtual currency systems, the user is
not able to in�uence its participation degree, even if this is an important
feature for the user acceptance of virtual currency systems.

To summarize this comparison, Table 3.2 gives an overview over the dis-
cussed characteristics.

3.7 Summary

In this chapter, we have presented Cash�ow, a virtual currency system
for mobile ad hoc networks. We started with an analysis of di�erent usage
scenarios for Cash�ow by formulating assumptions and requirements. Based
on this analysis, the concepts used by Cash�ow were discussed. These
include the channel concept for data transmission, the market concept for
pricing, and the credit concept for payment. The main part of the chapter
described the architecture of Cash�ow, its modules, and its algorithms.
Worth mentioning is the algorithm proposed for the routing module, which
allows to search the cheapest path through the network considering link
quality restrictions. The algorithm was optimized using arti�cial delaying
to reduce the routing overhead. After the description of Cash�ow di�erent
relevant security considerations were discussed. Then we proposed a concept
based on mobile IP to integrate mobile ad hoc networks using Cash�ow
into the Internet. The last part of this chapter compared Cash�ow to other
virtual currency systems showing its strengths and weaknesses.
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Chapter 4

Evaluation

This chapter 1 presents the simulation based evaluation of the proposed
route discovery algorithm as well as the presented architecture. As sim-
ulation environment the IBKSIM [Wallentin10c] in combination with its
wireless network simulation library [Wallentin08] was used.

The evaluation of the route discovery strategy focuses on the in�uence of
the delay parameter on the overall performance of the algorithm. This
includes the in�uence of the parameter on the number of packets send by
network nodes during route search and on the time, the algorithm needs for
route discovery. Additionally, the impact of the density of the network and
the variance of the processing time nodes need to handle route discovery
packets will be presented.

The architecture presented in this thesis is evaluated focusing on the ef-
fects of its load balancing and access regulation mechanism on the overall
throughput of the network. Section 4.1 gives an overview over the simu-
lation environment including a description of the environment parameters
used for all simulations. Section 4.2 describes the simulation scenarios
used for the evaluation of the route discovery strategy, followed by a de-
tailed discussion of the simulation results. The architecture is evaluated in
Section 4.3. Again, the simulation scenarios are described and the outcome
of the simulations is analyzed. In Section 4.4 the chapter concludes with a
summary.

1Parts of this chapter have been published in [Wallentin10b] and [Wallentin10a]
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4.1 Simulation enviroment

For the evaluation of the route discovery algorithm as well as the proposed
architecture, the IBKSim simulation enviroment was used. This discrete
event based simulator was developed at the Institute of Broadband Com-
munications of the Vienna University of Technology as successor of the
IKNSim. The IBKSim distinguishes itself from other simulators like NS2
[Institute10] and OMNET++ [Omn10] by its usage of XML [Bray00] as
con�guration and logging language. Since XML is a textual data format,
the usage of this format allows the user to develop simple scripts to generate
and perform large simulation series, as well as to automatize the post pro-
cessing of the simulation results. The IBKSim consists of a small simulation
kernel and a number of libraries for speci�c simulation task. One of these
libraries is the wireless network simulation library [Wallentin08]. This li-
brary was especially developed for the simulation of wireless networks. It
supports the simulation of the physical environment of nodes using radio
for communication, including the simulation of mobility and radio propa-
gation. Additionally, it implements the 802.11 MAC format [IEEE99] and
the 802.11b [IEEE00] standard on the physical layer.

The proposed architecture was developed and consequently enhanced us-
ing IBKSim and the wireless library. Therefore, the complete architecture
of Cash�ow is implemented as simulation module in the simulator. As a
consequence, it is not only possible to investigate single components of the
architecture, but also to evaluate the complete architecture as a whole,
including the e�ects of the interplay between components.

In the IBKSim simulation environment, physical entities like mobile devices
are represented by nodes. A node consists of at least one simulation object,
a so-called component. The wireless library uses this concept to organize
simulation components in a layered form, whereas components might in-
clude additional modules to simulate a speci�c behavior. Within a node,
components can only communicate directly with other components repre-
senting the layer directly beneath or above of them. The simulation of the
inter node communication is handled by the wireless library.

Figure 4.1 gives an overview of the di�erent simulation components, in-
cluding their modules, used for the simulation of mobile nodes running
Cash�ow. The Wlan, Maclayer, and Shell components represent the phys-
ical, the data, link and the network layer of the OSI model [OSI84]. The
application container represents all layers above the network layer.

The main functionality of the application container in the simulation is to



4.1 Simulation enviroment 127

Maclayer module

Wlan module

Statistics 
module

Scheduling moduleRouting module

Channel controller Channel controller

Shell

Controller module

Safe modulePricing module

C
as
h
fl
o
w

Mobility 
module

Application module Application module

Application container

Mobile node

Figure 4.1: Architecture of a node in the IBKSim simulation enviroment.

start and con�gure di�erent application modules, which trigger functions of
Cash�ow for evaluation. Depending on the scenario, they triggering route
requests, request channels, or generate tra�c.

The shell component simulates the core components of Cash�ow. There-
fore, the di�erent modules included in the shell component correspond to
the modules of the node's architecture as described in Chapter 3.3. Only
the statistics module is implemented for the simulation as additional mod-
ule directly into the maclayer module, since an existing module already
provided nearly all the needed functionality. During the development of
Cash�ow, not only the �nal simulation modules have been implemented,
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Parameter Value

radio model shadowing model
sensitivity 3.98107e-11 W
transmission power 0.079432 W
antenna gain 1
system loss 1
path loss exponent 3
shadowing deviation 4dB
radio frequency 2472 MHz (Channel 13 of the 802.11b

standard)
bit rate 11 Mbit/s
transmission protocol IEEE802.11

Table 4.1: Parameters of the radio simulation

but also a number of dummy modules. These modules posses not the com-
plete functionality of the corresponding modules of Cash�ow, but are useful
for functionality testing.

The wireless library of IBKSim provides an implementation of the 802.11b
protocol as maclayer component. This component has been used for the
evaluation of the system. It was extended by an interface to allow the
inclusion of statistic modules into the maclayer module. For evaluation, the
statistic module suggested in Cash�ow was implemented.

The wlan component simulates the radio channel. The wireless library pro-
vides two implementation of this module type [Wallentin08]. The basic
component provides a simple model, where two nodes can communicate if
they are within a certain distance and no other node is using the chan-
nel. The advanced component provides a more realistic model of the radio
propagation by using di�erent radio propagation and bit error models. The
movement of the nodes is modeled by mobility modules. The wireless frame-
work o�ers a number of di�erent mobility modules, but for the evaluation
only the random-waypoint and the no-movement module were used.

All simulations performed for evaluation have in common that the same
parameters for the simulation of radio transmissions were used. Table 4.1
gives an overview over these parameters. To estimate the performance of the
system using di�erent parameter values, it is important to establish under-
standing of the in�uence of radio parameters on the simulation model. As
radio model the shadowing model, as described in [Rappaport99], was used.
This is the most realistic radio model implemented by the wireless simu-
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Figure 4.2: Statistical analyses of the signal strength as function of distance

lation library. For the evaluation of the architecture, it was con�gured to
model the radio propagation in urban area. Therefore, a path loss exponent
of 3 was used, as well as a variation parameter of 4 dB. For the con�gu-
ration of the radio equipment, the parameters of the 3Com O�ceConnect
Wireless 54Mbps 11g Compact USB Adapter [3Com-Corporation06] were
taken. This radio unit has a sensitivity of 3.981071E-11 watt or -74 dBm
and and an output of 0.079432 watt or 19 dBm for a 802.11b signal with a
transmission speed of 11 Mbps. The gain and system loss parameters of the
radio modules are set to 1, so no additional gain or loss is assumed. The
last parameter is the radio frequency used for transmission, which is set
to 2472 MHz, which corresponds with channel 13 of the 802.11b standard
[IEEE00].

Figure 4.2 pictures on an exponential scale the signal strength distribution
of a sender using the parameters described above, depending on the distance
between the sender and the measurement point as. Additionally, the sensi-
tivity level is depicted by a dotted line. The curves marked with P95 and P5
depict the 95th and 5th percentiles. P25 and P75 mark the 25th and 75th
percentiles, which are also the �rst and third quartiles. The median, which
is represented by the curve between the �rst and third quartile, crosses the
sensitivity level at a distance of 61 meter. This means that at 61 meter
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50 percent of the transmissions have a signal strength which lies above the
sensitivity level of the receiver and can therefore be detected. It is worth
noting that even if a receiver detects the signal of a transmission, it does
not necessarily means that the signal is received correctly and consequently
the carried message can be decoded.

To calculate the signal strength at a certain distance from the sender using
the shadowing model, a reference signal strength at a known distance is
needed. Using the free line of sight model [Rappaport99], the transmission
power, the signal frequency, the system loss, and the gain are needed to
calculate a reference signal strength. Consequently, the values of these
parameters have an in�uence of the level of the curves, meaning that a
change of the values result in a up or down movement of the curves. The
path loss exponent has an in�uence on the tenor of the curves. The higher
the exponent, the faster the curves decreases when the distance to the sender
increases. The variation parameter has an in�uence on the distribution of
the received packets signal strengths. An increase of the parameter results
in an increase in the variation. This has an in�uence on the area in which the
transmission probability switches from one to zero. It is worth noting that
the simulation model prevents a distance between nodes beneath 0.5 meter
by treating the nodes as if they were 0.5 meters away from each other.
This is done to avoid unrealistic situation that two physical transmitter
share exactly the same position. Therefore, the simulated signal strength
measured at a distance of 0 meter di�ers from the value the shadowing
model would lead to.

Figure 4.3 presents the transmission probability of data packets using the
request to send / clear to send (RTS/CTS) method in comparison to broad-
cast, depending on the distance between sender and receiver for the given
radio model parameters. The transmission probability for broadcast at a
certain distance is similar to the probability that the signal strength of the
transmission lies above the receiver's sensitivity level at the same distance.
If this is the case, the signal can be detected. Due to the fact that a low sig-
nal to noise and interference ratio (SNIR) increases the bit error probability,
the probability of receiving a valid broadcast frame with an encapsulated
packet lies beneath the signal detection probability. In the given scenario,
the di�erence between signal detection probability and the probability to
receive a valid broadcast frame is minimal, since the background noise is
small, and there is no additional interference caused by other nodes.

Using broadcast, the probability that a packet is transmitted correctly and
the probability that the frame in which the packet is encapsulated is valid
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received is the same. This is not true if the packet is transmitted to a speci�c
node using the acknowledgment mechanism of the 802.11 MAC protocol as
well as the request to send / clear to send (RTS/CTS) method. In this
case, at least four frames have to be exchanged for a complete transmis-
sion. Since the acknowledgment mechanism detects invalid transmissions
and consequently retransmits frames, this mechanism tolerates if the target
node does not correctly receive some frames. Consequently, the probabil-
ity that a packet reaches its target node is higher compare to broadcast,
if the transmission probability is su�ciently high. In the given scenario,
until a distance of 45 meter the transmission probability is over 0.99 when
the acknowledgment mechanism is used. At the same distance, the trans-
mission probability for broadcasts has dropped to 0.86. When the distance
increases, the transmission success probability of a packet using the ac-
knowledgment mechanism drops faster than the transmission probability
for broadcast. This leads to a crossing of the curves at the distance of 56
meter. At 79 meter, the transmission probability for the acknowledgment
mechanism drops below 0.01, contrary to the transmission probability for
broadcast, which lies above this value until the distance of 118 meter.

This information about the nodes transmission range formed the basis for
the development of the simulation scenarios.
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4.2 Evaluation of the route discovery protocol

The routing algorithm proposed in Chapter 3.3.3 uses arti�cial delay to
reduce the �ooding overhead. The value of the delay depends on the pa-
rameter Dmax, stating the maximum delay used by the algorithm. This
section presents the evaluation of the parameter's in�uence on the over-
all performance, as well as the in�uence of the network density and the
nodes processing time. Additionally, the in�uence of the delay on the route
requests propagation is visualized using series of heat maps.

4.2.1 Simulation scenarios

To examine the e�ects of the delay parameter as well as the in�uences of
the network density and the variation of the nodes processing time on the
overall performance, six di�erent simulation scenarios were de�ned.

In the simulation scenarios 1a to 1c, 1000 nodes are uniformly distributed
over an area of 1000 x 1000 meter, whereas in the simulation scenarios 2a
to 2c the area is reduced to 500 x 500 meter. As result, the mean distance
between nodes is smaller in scenario 2a to 2c, with the consequence that in
average every node has more direct neighbors and the mean length of the
shortest paths between nodes, in terms of hops, is smaller than in scenario
1a to 1c. In the simulation scenarios 1a and 2a, the nodes processing time is
uniformly distributed between 1 and 2 milliseconds, for 1b and 2b between
1 and 4 milliseconds and for 1c and 2c between 1 and 10 milliseconds. Table
4.2 gives an overview over the di�erent scenarios.

For each scenario, the delay parameterDmax was altered between 0 and 0.05
seconds in steps of 0.1 milliseconds which leads to 500 di�erent con�gura-
tions. When Dmax is set to 0 the algorithm uses no arti�cial delaying and
the simulation results of this speci�c con�guration can be used as reference

size of the area

1000 x 1000 m 500 x 500 m

pr
o c
es
si
ng

ti
m
e

U(1,2) ms scenario 1a scenario 2a

U(1,6) ms scenario 1b scenario 2b

U(1,10) ms scenario 1c scenario 2c

Table 4.2: Processing time and areal distribution used for the di�erent simulation sce-
narios
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to compare the delay's e�ect on the overall performance.

Using the described scenarios, two simulation series were performed. The
�rst series focuses on the performance of the algorithm when used to �nd the
cheapest route through a network. In the second series, the route discovery
algorithm is used in combination with the statistics module of Cash�ow, to
�nd the most stable route between nodes.

4.2.2 Fee based routing

For the �rst simulation series, the nodes were con�gured to charge whole-
number fees between 1 and 10 units for the forwarding packets. The uni-
formly distributed values were assigned randomly to the nodes.

For the calculation of the delay d the following formula was used:

d(f) =
f ×Dmax

10
(4.1)

In this formula, Dmax is the delay parameter and f the fee nodes charge.
It is the simpli�cation of Formula 3.11 presented in Section 3.3.3 where
Fmin is set to 0, Fmax is set to 10 and DmaxQuality is set to 0. DmaxFee in
the original formula corresponds to Dmax in the formula above.

From the 1000 nodes, which were uniformly distributed over the simulation
area, one node was con�gured to hold an application module in the applica-
tion container module. This application module triggered the route request
to another node. All nodes in the network logged the number of packets
sent and received, as well as the number of detected collisions. Addition-
ally the time until the �rst and optimal route was discovered was recorded.
For every one of the 500 con�gurations per scenarios, 20 runs have been
performed, using di�erent seeds for random variables.

Starting with the results of the simulation series using the 1000 x 1000
meter area, Figure 4.4 depicts a comparison of the average number of
packets sent per node depending on the delay value for scenario 1a, 1b and
1c. In all scenarios, the average number of packets sent per node tends
to decrease with increasing delay until the mean approximates the value 1.
This means that in average for every route search approximately one packet
is broadcasted per node. The rate by which the number of packets sent
per node decreases as the delay increases varies depending on the scenario.
Likewise, the average number of packets sent without the arti�cial delay
varies depending on the scenario. In scenario 1a, if no arti�cial delay is
used, every node sends 2,967 packets in average, in scenario 1b 5,456 packets
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and in scenario 1c 6,635 packets. This di�erence is caused by the in�uence
of the processing time on the collisions probability, which will be explained
later in detail.

The e�ect that the number of packets sent in average approximates faster
the value 1 in scenario 1a than in scenario 1c is also a direct result of the
di�erent node processing time variations. A high variance increases the
probability that even if a packet from node A is delayed longer by the route
discovery protocol than a packet from node B, node A might broadcast
the packet before node B, even if this is not in the intention of the route
discovery algorithm.

Figure 4.5 presents a comparison of the average number of packets send per
node in scenarios 2a, to 2c, using an area of 500 x 500 meter. Similar to the
series using a 1000 x 1000 meter area, the average number of packets sent
per node decreases until it approximates the value 1. It is again observable
that with an increase of the processing time variance, the average number
of packets sent increases, as consequence of collisions. If no delay is used,
in scenario 2c and 2b the average number of packets sent lies beneath the
corresponding values of scenario 1c and 1b. This can be explained by the
network density, which in these scenarios is four times higher than in the
scenarios 1a, 1b and 1c.

Figure 4.6 pictures the average number of detected collisions for the sce-
narios using 1000 x 1000 meter area. In all three scenarios, an increase of
the arti�cial delay results in a decrease of the number of detected collisions.
It is important to note that the �gure includes no information about the
absolute number of packets lost due to these collisions, since it makes no
di�erence from the receiver's point of view, how many packets are involved
in a collision. When no delay is used, in scenario 1a 8.56 collisions are
detected in average by every node of the scenario. This value increases to
13.62 for scenario 1b and 13.87 for scenario 1c.

The e�ect that the number of collisions increases when the node's processing
time variance increases can be explained due to the e�ects the variance
causes on the �ooding process during route discovery. For a single packet,
the probability to get lost due to a collision decreases as consequence of
the increase of the processing time variance. Therefore one would might
expect that the average number of collisions detected by the network nodes
decreases with an increase of the processing time variance, which is exactly
the opposite of the outcome of the simulation as stated above. The increase
of collisions is the consequence of the tra�c increase in the network, caused
by the route discovery protocol as the processing time variance increases.
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This can be seen in Figure 4.4.

The processing time variance reduces additional to the backo� algorithm
the probability that two nodes access the shared medium simultaneously,
which results in collisions. This has an in�uence on the average number of
nodes receiving a broadcasted packet of a node. If there are no collisions,
all nodes within the footprint of a node receive the broadcasted packet. If
collisions occur, part of the nodes does not receive the packet. For the route
search however, the loss of a broadcasted packet is the same as discarding a
potential path. Therefore, if a broadcasted packet is received by 15 instead
of 40 nodes because of collisions, 25 potential paths are lost and conse-
quently not considered during route search. Therefore, the quality of route
search decreases if collisions occur, since only a subset of potential routes
is considered. If the collision rate decreases and more paths are considered
during route search, the probability that a node using the route discovery
algorithm presented in Chapter 3.3.3 without arti�cial delaying has to re-
broadcast route request packets increases. This causes additional tra�c as
it can be seen in Figure 4.4 comparing the average number of received
packets for the three scenarios, when no delay is used. The consequence
is an increase of the absolute number of registered collisions. The relative
number of detected collisions in terms of detected collisions per detected
packet decreases when the processing time variance increases.

As mentioned before, with an increase of the arti�cial delay the collision
probability decreases. The arti�cial delay in�uences the collision probability
in two ways. First, similar to the processing time variance, an increase of
the arti�cial delay additionally scatters the points in time when nodes try
to access the shared medium. Additionally, and this is the second e�ect
of the arti�cial delay on the collision probability, an increase of the delay
causes an decreases of the tra�c, since nodes wait before they forward a
route request. If a node receives a route request packet during the waiting
time, it either drops the original route request packet in the case that the
newly received packet contains information about a better route, or, in the
case that the original packet which caused the begin of the waiting time
includes information about a more preferable route than the newly received
packet, the new packet gets dropped. Both cases result in a decrease of the
tra�c. With an increase of the delay, this e�ect gets ampli�ed as described
before.

Figure 4.7 presents the average number of detected collisions per node for
scenario 2a, 2b and 2c. The collision number in these scenarios, using an
area of 500 x 500 meter, lies over the values of the corresponding scenarios if
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an area of 1000 x 1000 meter is used. The increase of the collision number
is caused by the density increase. It is observable that the e�ect of the
processing time variation becomes negligible when the delay becomes big
enough. This is also true for the scenarios using the 1000 x 1000 meter area,
but because of the smaller number of collisions, it is not as eye-catching as
in these scenarios.

Figure 4.8 presents the in�uence of the arti�cial delay on the ratio between
sent and received packets. The �gure depicts the average number of nodes
a node can reach using broadcast. The value depends on the transmission
range of nodes, the node density, and the probability that packets get lost
due to collisions. Since the average number of collisions approximates zero
when the arti�cial delay increases, we can conclude for the scenarios using
an area of 1000 x 1000 meter that in average every node has 11 other
nodes in its radio footprint. If no or a small arti�cial delay is used, part
of the packets get lost due to collisions, with the consequence that not all
possible paths are considered during route search. By comparing the ratio
between sent and received packets with the value the curve is converging to
it is possible to estimate the number of possible connections not considered
during route search per broadcast for a speci�c arti�cial delay value. When
no delay is used, in scenario 1a 4.9 out of 11 connections are considered in
average during route search per broadcast, 6.4 out of 11 for scenario 1b,
and 7.5 out of 11 for scenario 1c. Again, the e�ect of di�erent processing
time variations on the collision rate is observable.

When 1000 nodes are distributed over an area of 500 x 500 meter instead
of 1000 x 1000 meter, the average number of reachable nodes per node
increases, as shown in Figure 4.9. As described before, because of the
higher density the collision rate is higher than in the scenarios using 1000
x 1000 meter. We can conclude from Figure 4.9 that in the case when no
collisions occur, in average every node can reach more than 35.17 nodes.
It can be estimated by extrapolating data from �gure 4.8 that the actual
value of the average number of nodes in the footprint of a node is about 44.
When no arti�cial delay is used, for scenario 2a in average 9.52 connections
to neighbor nodes are considered during route search per broadcast, instead
of 33.35 when a delay of 50 milliseconds is used. Similar in scenario 2b,
where 11.16 connections in average are considered in contrast to 34.45 with
the usage of the same arti�cial delay. In scenario 2c, 13.73 connections are
considered per broadcast in average, 35.17 when an arti�cial delay of 50
milliseconds is used.

Figure 4.10 pictures the average number of received packets per node for
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scenario 1a, 1b and 1c, depending on the delay. With an average of 49.81
received packets per node when no arti�cial delay is used, scenario 1c has the
highest reception value, followed by scenario 1b with 35.1, and scenario 1a
with 14.6 packets in average. Since with an increase of the delay, the average
number of packets sent approximates the value 1 and the collision rate
approximates 0 in all three scenarios, the average value of received packets
approximates the value 11, which is the average number of nodes in the
footprint of a node as described before. Also in Figure 4.11, picturing the
average number of received packets per node when the nodes are distributed
over an area of 500 x 500 meter, all three curves approximates the value
of the average number of nodes in the footprint of nodes, even if in these
scenarios it is not as visible as in the scenarios 1a to 1c. The e�ect of arti�cial
delaying used by the route discovery protocol on the average number of
packets send per node as well as on the collision rate is visible in all three
curves, especially in the curve progression of the scenario 2a's curve. First
the average number of packets received per node decreases, mainly as result
of the decrease of the average number of packets send per node. When
an arti�cial delay larger than 5 milliseconds is used the average number of
received messages increases again, because the additional delay decreases
the collision probability as described before.

The arti�cial delay also in�uences the time the route discovery protocol
needs for route search. Figure 4.12 pictures the median of the time passed
until the �rst route between a source and a target node was found for
the scenarios 1a to 1c. Since the positions of source and target node are
randomly chosen in these scenarios, the number of hops between these nodes
varies greatly between the di�erent simulation runs. This is the reason,
why the curves pictured in this �gure are not smooth. Never the less, it
is observable that the average time until the �rst route is found increases
linearly when the arti�cial delay increases. The o�set between the curves is
caused by the di�erent processing time variations used in the scenarios. The
higher the average processing time, the longer it takes the route discovery
process to �nd the �rst route to the target node, independent if a arti�cial
delay is used or not. As shown in Figure 4.13, the same is true for scenario
2a to 2c where the area is reduced to 500 x 500 meter. In addition, a
linear increase of the route discovery time is observable, but this time the
inclination is not as high as in scenario 1a to 1c. The reason for this e�ect is
that the nodes are distributed over a smaller area and therefore the number
of hops between source and target node is in average smaller.

Besides the time needed to discover the �rst route, the time needed to dis-
cover the best route is of interest. Since the target node only returns a
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Figure 4.12: Time until �rst route to target is found, using an area of 1000 x 1000 m
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Figure 4.14: Comparison of the time until the �rst and the last route was found for
scenarios 1a to 1c and 2a to 2c. (scales for scenario series 1 and 2 di�er.)
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routing message to the source node if the �rst route or a better route than
the previous found round is detected, the best route will consequently be
the last route the route discovery protocol detects during a search from the
source node's point of view. The diagrams in Figure 4.14 compare the time
until the �rst and the best route was found in average for scenario 1a to 1c
and 2a to 2c. In all six scenarios, the time until the �rst route was found
approximates the time until the best route was found. That means, that if
the delay is big enough, the route discovery algorithm returns only one path
to the sender, and this one path is the best path available between source
and target node. Additionally, the in�uence of the processing time varia-
tion is observable. The higher the processing time variance, the higher the
variance of the time the algorithm needs to detect the best route available
in the network.

Summarizing, the simulation series have shown the in�uence of arti�cial
delaying on the route discovery process based on the fee nodes charge. The
usage of arti�cial delay results in a decrease of the number of packets needed
for route search and, at the same time, increases the quality of the route
search. This is done by reducing the number of collisions during route
search. Since collisions cause the exclusion of potential routes during route
search, a reduction of collisions increases the route discovery algorithm's
quality.

4.2.3 Quality based routing

After analyzing the in�uence of the arti�cial delay on the performance of
route discovery using fee as main routing parameter, this section focuses
on the arti�cial delay's in�uence if link quality is used as main routing
parameter. Cash�ow's statistics module monitors the quality of links to
neighbor nodes and classi�es the link depending on the average received
signal strength, transmission failures and time. A detailed description of
the classi�cation algorithm is given in Section 3.3.8. In short, the statistics
module divides the links intro three classes: When a new link is detected,
the link automatically belongs to class 3, the bottom quality calls. If the
signal quality of a certain number of received signals is above a certain level
and if no transmission problems occurred for a certain time, the link's class
is upgraded to class 2. However, if the signal losses quality over time, the
link gets again classi�ed as class 3 link. If a link belongs to class 2 for
a relative long time, in this context for some minutes, the link's class is
upgraded to 1, marking links with good quality and stability in the time
domain, since a good connection over a long time indicates that the two



4.2 Evaluation of the route discovery protocol 145

nodes connected by the link have nearly no relative movement or at least
stay within a certain distance.

In general, it is in the interest of nodes to build channels along links of class
2 or 1, since links of class 3 are in most cases unstable, which could result
in additional overhead caused by retransmission of frames, in frame loss,
or in the worst case in channel disruption. Retransmissions and frame loss
are also possible if class 2 or 1 links are used, but the probability is lower.
Concerning channel disruption, the probability at class 2 links is lower than
at class 3 links but higher than at class 1 links. The di�erence between class
2 and 3 can be explained by the di�erence of the transmission probability,
since a dropped frame is interpreted by the system as channel disruption.
A channel can also break because of node's movement. This explains the
di�erence between class 2 and 1 links, since the long lifetime of class 1 links
indicates nearly no relative movement.

The simulation series used to analyze the in�uence of arti�cial delay on qual-
ity based routing are nearly identical with the simulation scenarios used for
purely fee based routing as described in Section 4.2.1. The only di�erence is
that in contrast to the simulation scenarios used in 4.2.2 a warm up phase is
needed. During the warm up phase all nodes randomly broadcast messages
allowing the statistic modules of other nodes to categorize links. After the
warm up phase, one node triggers a route search to another network node,
which gets analyzed exactly like in the previously presented analysis of the
route discovery strategy using fee as route decision criteria.

Figure 4.15 shows a graphical visualization of a simulated network with
1000 nodes distributed over 1000 x 1000 meter after the warm up phase. In
this �gure class 1 links are painted red, class 2 links green and class 3 links
blue. It is observable that class 3 links are dominating. To give concrete
numbers, in this scenario 38395 links belong to class 3, 2662 to class 2 and
2580 to class 1. This means only 13,6% of the links are actually interesting
for routing.

Figure 4.16 shows the network graph after removing all class 3 links. It is
observable that in most cases the usage of class 2 and 1 links is su�cient
to reach most network nodes. However, some nodes, like the nodes at the
position marked with C, are only reachable using class 3 links. Therefore,
in some cases it is important to consider also class 3 links. Cash�ow's route
discovery protocol is able to handle these situations, which di�erentiates
the presented protocol from other link strength sensible routing protocols
like signal stability-based adaptive routing [Dube97].
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Figure 4.15: Visualization of class 1, 2 and 3 links of a network

The two shown �gures additionally lead to the assumption that if class 2
and 1 links are preferred over class 3 links, the average path length increases.
For instance, nodes at position A and B in Figure 4.16 are directly con-
nected by class 3 links. However, if these links should not be used, the path
contains several hops instead of a single one. Since the routing algorithm
also considers class 3 links, in cases when the best path is much longer than
a path including one or two class 3 links, the source node will learn about
the path including class 3 links as well as the alternative more stable path.
Therefore, in such cases, Cash�ow leaves the decision which path to take to
the node.
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Figure 4.16: Visualization of class 1 and 2 links of a network

Figures 4.17 and 4.18 show class 2 and class 1 link separately. It is
observable that while class 2 links span one single graph covering most of
the network nodes, class 1 links form unconnected clusters. Even if this is
not relevant for Cash�ow's route discovery protocol, which is optimized to
�nd the cheapest route with certain link quality properties, the clustering
forms an interesting base for the development of purely quality based routing
algorithms using Cash�ow's delaying concept to optimize �ooding. Since
class 1 links are considered as relative stable within a class 1 link cluster, a
proactive routing scheme could be used to update information if a new node
is connected over a class 1 link or if a class 1 link is downgraded to class 2.
This could be combined with a reactive routing scheme, using Cash�ow's
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Figure 4.17: Visualization of class 1 links of a network

arti�cial delaying concept, to discover paths including class 2 and 3 links
connecting class 1 clusters. However, since the consideration of fees brings
an additional dynamic facture into the route discovery process, this scheme
is not feasible for Cash�ow.

The main outcome of this visual analysis is that it can be assumed that in
average the algorithm prefers longer paths over short ones. This is on the
one hand because class 3 links might connect part of the networks which are
only connected over long paths of class 1 and 2 links, and, on the other hand,
because class 3 links have a longer span than class 1 and 2 links, which means
that several hops along class 1 and 2 links are needed to bridge the distance
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Figure 4.18: Visualization of class 2 links of a network

of one class 3 link. This is a di�erence compared to the simulation series,
using fee as main routing decision criteria. In these series, the algorithm
preferred in average shorter routes over longer once because of the lower
costs. This leads to the assumption that if the routing algorithm prefers
quality over price and consequently in average longer routes, the overhead, if
no arti�cial delaying is, used will be larger compared to the simulation series
presented in the last section. Additionally, the larger number of messages
exchanged during route discovery will increase the number of collisions. In
short, it is assumed that in absolute numbers the arti�cial delaying will
decrease the overhead more than in the simulation series presented in the
last section.
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For the calculation of the arti�cial delay the nodes used the following for-
mula:

d(c) =

{
DmaxClass×10(c−1)

10(2) if c > 1
0 if c ≤ 1

(4.2)

This formula is a simpli�ed version of formula 3.11 presented in Section
3.3.3, where DmaxFee is set to 0, since the fee is not considered for routing,
and Cmax to 3, since in the used scenario the statistics module uses three
classes for link classi�cation. DmaxClass is the maximum delay used for
arti�cial delaying. The actual value varies depending on the simulation.
The parameter c represents the class of the current link. In short, nodes
delay a frame for the time DmaxClass if the link is of class 3, and a tenth of
DmaxClass if the link is of class 2. If the link belongs to class 1, no arti�cial
delay is used.

Starting with the discussion of the results of the simulation using an area
of 1000 x 1000 meter, Figure 4.19 shows the average number of packets
send per node depending on the delay and on the processing time variation.
It is observable that with an increase of arti�cial delay the average num-
ber of sent packets decreases. This is true for all three simulation series,
independent from the processing time variation. That means, similar to
the previously presented simulation series using node's fee as route decision
parameter, the routing protocol's overhead is reduced by changing racing
conditions using arti�cial delaying. With an increase of the delay the proba-
bility that the �rst discovered path to a node is also the best path increases.
Therefore, the number of undesired rebroadcast is reduced, which results
in a better performance. Additionally, the in�uence of the processing time
variation is observable; the smaller the variation, the stronger the in�uence
of arti�cial delaying. Comparing Figure 4.19 with the results of the pre-
vious simulation series, where the nodes fee was the main routing decision
parameter, it is observable that in average more packets are transmitted per
node during route search. The relation between delay increase and overhead
decrease cannot be compared directly between these two simulation series,
since di�erent delaying mechanisms are used.

Figure 4.20 visualizes again the average number of packets send per node
depending on the used delay and the processing time variance. For this
simulation series, the nodes were distributed over an area of 500 x 500 me-
ter, resulting in a four times higher density. Again, it is observable that
with an increase of the delay the average number of transmitted packets de-
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Figure 4.19: In�uence of delay on average packet number send by nodes, using an area
of 1000 x 1000 m
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Figure 4.21: In�uence of delay on average packet number send by nodes, using an area
of 500 x 500 m overlaid by additional simulation results

creases. The curve of scenario 2a, using a processing time variation between
1 and 2 milliseconds, is striking in this �gure. This e�ect can be explained
due to the high collision probability. The processing time variance acts as
kind of extension of the backup algorithm implemented by the 802.11 pro-
tocol. However, as mentioned before, the processing time variance has also
a negative in�uence on the arti�cial delaying used by the routing protocol.

For veri�cation, two additional simulation series have been performed, us-
ing delay steps of 1 instead of 0,1 milliseconds and only �ve reruns. These
simulation series used a processing time variation between 1 and 3 millisec-
onds and 1 and 4 milliseconds. Figure 4.21 visualizes again the average
number of sent packets for scenario 2, but additionally the results of the
two additional simulation series are overlaid. The dots represent the values
of the series using a processing variation time between 1 and 3 millisec-
onds, the triangles represent the values of the other series. Additionally,
the corresponding power function based trend lines are shown. The results
of these two simulation series lies between the outcome from series 2a and
2b, showing the in�uence of the processing time variation on the arti�cial
delay's e�ect. Comparing the results to the outcome of the correspond-
ing simulation series using fee as route decision parameter, again a higher
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number of transmitted packets is observable.

Figure 4.22 shows the number of detected collisions depending on the arti-
�cial delay as well as on the processing time variation. It is observable that
the number of collisions decreases when the arti�cial delay's value increases.
This is mainly caused by the reduced tra�c, which is the result of the arti�-
cial delay's in�uence on the racing conditions. The arti�cial delay itself has
additionally a direct in�uence on the collision probability, since it delays
the begin of the node's transmission depending on the link quality resulting
in di�erent retransmission times for nodes, which have received the same
transmission simultaneously. Figure 4.23 shows the number of detected
collision for the scenarios using an area of 500 x 500 meter. Again, a cor-
relation between transmitted packets, shown in Figure 4.21, and collisions
is observable and the positive e�ect of arti�cial delaying on the collision
rate is visible. Comparing the collision rates between scenario 1 and 2, the
in�uence of the density is observable, as described in Section 4.2.2.

Figure 4.24 and 4.25 picture the ratio between sent and received packets
for scenario 1 and 2. With an increase of the arti�cial delay also the ratio
between send and received packets increases. This means that in average a
broadcast is received by more nodes. Since in each scenario the transmission
power of all nodes is constant, this e�ect can be explained by lower tra�c.
Lower tra�c in�uences the probability of receiving a packet in two ways.
First, it reduces the collision probability as described before, resulting in
a higher reception probability. Second, lower tra�c also means less noise
caused by interference at the radio channel, increasing the probability that
even weak signals can be received. However, as shown in Figure 4.22 and
4.23, the collision probability does not reach zero in the simulated range of
the arti�cial delay. Therefore, the ratio between sent and received packets
is increasing continuously in all presented scenarios.

Even if with an increase of the delay the number of nodes receiving a sin-
gle broadcast increases, the absolute number of received packets per node
decreases, as pictured in Figure 4.26 for scenario 1 and Figure 4.27 for
scenario 2. This is a direct result of the decrease of the retransmission rate,
caused by the arti�cial delay's in�uence on the racing conditions. An abrupt
dropped of the reception rate, caused by the reduction of the rebroadcast
rate, followed by an increase due to the reduction of the collision probabil-
ity, as it is observable at the simulation series using fee as route decision
parameter, is not observable in the current scenarios.

Figure 4.28 visualizes the average time needed by the route discovery al-
gorithm to detect the �rst route to the target node. With an increase of
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Figure 4.22: In�uence of delay on average number of collisions detected by nodes, using
an area of 1000 x 1000 m
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Figure 4.24: Ratio between average number of send and receives packets per node, using
an area of 1000 x 1000 m
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Figure 4.26: In�uence of delay on average packet number received by nodes, using an
area of 1000 x 1000 m
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Figure 4.28: Time until �rst route to target is found, using an area of 1000 x 1000 m
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Figure 4.29: Time until �rst route to target is found, using an area of 500 x 500 m
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the arti�cial delay, also the time needed for route discovery increases in all
three scenarios, since the time needed for route discovery consists of the
time needed for data transmission, the processing time, and the arti�cial
delay. This explains the correlation of the arti�cial delay and the route
discovery time. Additionally, this is also the explanation for the di�erent
route discovery times of the three scenarios. Assume a path of 20 hops. In
scenario 1a, each packet gets in average delayed 1.5 milliseconds per hop,
resulting in a cumulative delay caused by the processing time of 30 millisec-
onds. Comparing this to scenario 1c, where each node delays each packet in
average 5.5 milliseconds resulting in a cumulative delay of 110 milliseconds,
in scenario 1a the path is discovered 80 milliseconds earlier than in scenario
1b.

Furthermore, it is observable that the three curves for scenario 1a to 1c do
not increase by the same rate, which is an indirect e�ect of the change of the
racing conditions by the route discovery protocol. With an increase of the
delay, the number of rebroadcasts needed to �nd the best route decreases,
since preferable routes are detected earlier during the route discovery pro-
cess. This has been discussed in detail before. The usage of link quality as
main route decision criteria results in average in longer but stable routes,
compared to the shorted possible routes. Consequently, with a decrease
of the arti�cial delay the time needed for the discovery of the �rst route
increases, but additionally the average length of the �rst discovered route
increases. Since the increase of a routes length causes a scenario dependent
increase of the route discovery time, which is caused by the di�erent average
processing times, the curves increase at a di�erent rate depending on the
delay.

Figure 4.29 pictures again the time needed for the discovery of the �rst
route in the scenarios 2a to 2c. Similar to the results of scenario 1, an
increase of the time needed for �rst route discovery as consequence of the
arti�cial delays increase is observable. Likewise, the impact of the di�erent
processing times can be seen. Comparing the curves of scenario 2 with sce-
nario 1, it is observable that the average time needed for the discovery of
the �rst route is smaller compared to scenario 1. This is the result of the
of the smaller area used for these simulation series and the resulting higher
node density. Since the area is smaller, the average number of hops between
two nodes decreases. This e�ect mainly causes the shorter discovery time.
However, also the higher density has an in�uence. The higher density de-
creases the probability that some nodes or parts of the network are only
long-winded reachable as shown in Figure 4.16, resulting in a faster route
discovery.



4.2 Evaluation of the route discovery protocol 159

Summarizing, this section has shown the positive e�ects of the proposed
arti�cial delaying mechanism on the overall performance if the routing al-
gorithm uses link quality as main route decision criteria. Further, it was
shown that when link quality is used as main route decision criteria, in av-
erage nodes would perform more rebroadcast than if fee would be used as
route decision criteria. Therefore, arti�cial delaying has an even stronger
impact on the protocols performance in terms of saved broadcasts.

4.2.4 Propagation analysis

Chapter 4.2.2 and 4.2.3 already discussed the in�uence of arti�cial delaying
on the overall performance of the route discovery algorithm. This chapter
focuses on the distribution of network activity during route discovery, de-
pending on the discovery strategy, the arti�cial delay, and the processing
time variation. For the analysis of the network activity, eight simulation
scenarios have been deployed. All eight scenarios have in common that the
nodes use the same radio parameters as described in Chapter 4.1. Each
scenario consists of a network of 1024 nodes. In contrast to the simulation
scenarios used for the analysis of the routing algorithm's performance, the
nodes are not randomly distributed. Instead, the nodes form a regular grid
of 32 to 32 nodes, with a distance of 30 meter between them. This topology
was chosen to allow a visual presentation of the network activity in the form
of heat maps.

The scenarios di�er from each other by the used route discovery strategy,
the used delay, and the processing time variation. Table 4.3 gives an
overview over the resulting eight scenarios. Scenarios of the type �Fee�
uses the fee nodes charge as main routing decision parameter, in contrast to
scenarios of the type �Quality�, where the connection quality between nodes
is taken as basis for routing decisions. Four out of the eight scenarios use
an arti�cial delay of 10 milliseconds for DmaxClass or DmaxFee to calculate
the actual delay, depending on the route decision strategy (compare with
Formula 3.9, 3.10 and 3.11). For the other four scenarios, no delay is
used. The last parameter by which the scenarios di�er from each other is
the processing time variance. Again, four scenarios uses a processing time
uniformly distributed between 1 and 2 milliseconds, the other four vary the
processing time between 1 and 10 milliseconds.

In all eight scenarios, the node in the lower left corner triggers a route search
with the node in the upper right corner as target. In scenarios using the fee
nodes charge as decision parameter, the route search is started immediately
at the start of the simulation. This cannot be done in the scenarios using
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link quality as decision parameter, since the statistics module, which evalu-
ates the connection between a node and its neighbor nodes, needs a number
of transmissions to get enough data for the statistical analysis. Therefore, a
route search immediately started at the beginning of the simulation would
not be representative. Hence, these scenarios start with a warm up phase,
where nodes perform a number of broadcasts to allow the statistic modules
to valuate connections. After the start up time follows a short waiting time
to guaranty that there is no network activity any more. Finally, the node
in the lower left corner triggers a route search like in the scenarios where
the fee is used by the routing algorithm as decision parameter.

The moment, when the route search is triggered by the application, was
de�ned as time 0 for the propagation analysis. From this time on, every
�ve milliseconds in the simulation a heat map of the network activity was
created. The heat maps are based on the number of received packets per
node during the last �ve milliseconds. This was done for the �rst 95 mil-
liseconds during the route search, resulting in 160 heat maps, 20 for each
scenario. The complete series of heat maps are included in Annex A

Figure 4.30 pictures an example of a heat map displaying the network
activity during route discovery at a certain moment. In this heat map,
areas with no network activity are colored dark blue. In contrast, areas
with network activity are colored in shades of light blue, green and yellow,
depending on the amount of packets detected per node during the last 5
simulated milliseconds. Yellow marks areas with the highest activity, which
correspond to 10 or more detected packets. Areas with no network activity
are called inactive areas in contrast to active areas, which reveres to areas
where at least one packet is detected. In this heat map the position of the
source node, which triggers the route search is marked. The triggering of the

Scenario Type Delay Variance

FeeD0U2 Fee 0 ms U(1,2) ms
FeeD1U2 Fee 10 ms U(1,2) ms
FeeD0U10 Fee 0 ms U(1,10) ms
FeeD1U10 Fee 10 ms U(1,10) ms
QualityD0U2 Quality 0 ms U(1,2) ms
QualityD1U2 Quality 10 ms U(1,2) ms
QualityD0U10 Quality 0 ms U(1,10) ms
QualityD1U10 Quality 10 ms U(1,10) ms

Table 4.3: Parameters of the simulation scenarios used for propagation analysis
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Figure 4.30: Explanation of heat maps

route search causes a �ooding of route request packets. The �ooding starts
at the position of the source node and propagates over the whole network
until eventually a route to the target node, which is also marked in the heat
map, is found. Since �ooding causes network activity, the �ooding generates
an active area, which propagates over the complete network in direction to
the target node. Depending on the scenario and the time, the active area
eventually divides the network in two inactive areas, as shown in the heat
map. The inactive-considered area is the inactive area, which includes the
source node. Nodes located in this area are not involved in the current route
discovery process any longer. These nodes have already discovered the best
route, depending on the route selection criteria, between themselves and
the source node. Since the active area has already passed the nodes located
in the inactive-considered area, the border between active and inactive-
considered area is named back side. The inactive-unconsidered area is the
inactive area, which includes the target node. The active area expands into
this area. Therefore, the border between the inactive-unconsidered area
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and the active area is named front side of the active area. Since all nodes
located in the inactive-unconsidered area have received no route discovery
packet so far and consequently not broadcasted a route discovery packet
themselves, they possess no current routing data to the source node. At
the moment, when the active area �nally expanses over the target node,
the �rst route between the source and the target node is detected by the
algorithm. This �rst path does not have to be the best path necessarily. As
long as the target node is located in the active area, the source node might
learn about better routes. After some time the active area will dissolve and
the route discovery process is �nished.

The size and the propagation speed of the active area are in�uenced by the
arti�cial delay, the route selection criteria, and the processing time variation
of nodes. Starting with an analysis of the arti�cial delay's in�uence on the
network activity during route discovery, Figure 4.31 presents a comparison
of a heat map selection for the scenarios FeeD0U2 and FeeD1U2. The heat
maps on the left side present the network activity of scenario FeeD0U2 at
the time 0.01, 0.02, 0.03, and 0.04. The right column presents the activity of
FeeD1U2. The same routing selection criteria and the same processing time
variance is used in both scenarios but only in scenario FeeD1U2, arti�cial
delaying is used. By comparing the heat maps, it is observable that the
propagation speed of the active area is not as fast in scenario FeeD1U2 as if
no arti�cial delay is used. When no arti�cial delay is used, the active area
reaches the target node at sometime between 0.01 and 0.02 milliseconds
after the start of the route discovery. At 0.02, the active area in scenario
FeeD1U2 has not even passed the half way between the source and the target
node. Since the moment when the active area reaches the target node is
also the moment when the �rst route is discovered as described before, this
observation approves the in�uence of the delay on the route discovery time,
as discussed in Section 4.2.2.

Besides the propagation speed, the arti�cial delay also in�uences the size
of the active area. When no arti�cial delay is used, a larger area is active,
in contrast when an arti�cial delay is used. This is the case, because the
route discovery protocol prevents a fast expansion, as long as the collective
knowledge of the nodes in the active area about the topology is low. The
bene�t of this strategy is that it reduces the number of nodes involved in
the route discovery process simultaneously and consequently reduces the
probability that node have to renew their o�er. The route discover algo-
rithm is design in a way that as long as nodes frequently discover new paths
to the source node, they extends their delay period without broadcasting
route request packets. Only when the duration of the arti�cial delay time
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Figure 4.31: Network activity at the time 0



164 Evaluation

has passed without the discovery of a better path during the waiting period,
a node can broadcast a route discovery packet including the best path it
has learned so far. This mechanism especially a�ects nodes along the front
side of the active area, which are new to the route discovery process. When
the active area expanses over a node, this node will learn about new routes
frequently and consequently will delay the forwarding of the received route
discovery packets, until the time between two new discoveries exceeds the
arti�cial delay the node uses. As consequence, an undesirable fast expansion
of the active area is prevented.

These two e�ects, the reduction of the propagation speed and the decrease
of the size of the active area, are not limited to the processing time variance
and route selection strategy used in these two scenarios. Figure 4.32 visu-
alizes the in�uence on the propagation speed for the other scenarios. The
four heat maps on the left side represent scenarios where no arti�cial delay
is used. On the right side, the heat maps of the corresponding scenarios us-
ing arti�cial delay are depicted. The heat maps on the right side represent
the moment, when the �rst route was found. Because of the in�uence of the
network density as well as the processing time variation, the actual point in
time when the �rst route is found varies, depending on the scenario. There-
fore, the heat maps representing scenarios with a processing time variation
between 1 and 2 milliseconds, visualize the network activity at 25 millisec-
onds after the route search's start. The heat maps representing scenario
FeeD0U10 and the corresponding scenario FeeD1U10 visualize the activity
at 55 milliseconds. The last two heat maps in Figure 4.32 are taken from
scenario QualiD0U10 and QualiD1U10 at 65 milliseconds after the start.
In all four cases, it is observable that at the moment, when the active area
reaches the target node in scenarios where no delay is used, the active area
has not even passed the half area if the arti�cial delay is activated. It is
worth noting that the heat maps showing scenarios with arti�cial delay look
similar to each other, even if they represent the network activity at di�er-
ent moments. The activity area covers nearly the same area in all four heat
maps. This means, that the arti�cial delay slows the propagation down by
a factor, which is independent from the processing delay variation and the
route selection strategy.

Besides the in�uence of the arti�cial delay on propagation speed, also its
in�uence on the active area is observable, as depictured in Figure 4.33.
Again, the heat maps on the left side represent scenarios without the usage
of arti�cial delay, and on the right side the corresponding heat maps with
the usage of arti�cial delay are depictured. Each heat map pair represent
the network activity at a moment, when in the heat map of the scenario
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Figure 4.32: In�uence of arti�cial delay on propagation speed
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Figure 4.33: In�uence of arti�cial delay on active area
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using arti�cial delay the active area is clearly bordered by two inactive areas.
At the same time, when no arti�cial delay is used, a larger area is active.
In some cases, the active area covers nearly the whole area. Summarizing,
it is observable that the arti�cial delay decreases the active area's size in all
presented scenarios.

Continuing with the in�uence of the processing time variation on the ex-
pansion speed and the active area, Figure 4.34 shows heat maps of the
scenarios using a processing time variation between 1 and 2 milliseconds on
the left side. On the right side, the heat maps of the corresponding sce-
narios with a processing time variation between 1 and 10 milliseconds are
depictured. For the analysis of the propagation speed, the heat maps on
the left side of the picture visualize the moment, when the route discovery
protocol discovers the �rst route to the target node. Comparing the heat
maps on the left side with the corresponding heat maps on the right side,
it is observable that in scenarios using a lower processing time variation,
the �rst route is found earlier, compared to scenarios using a larger pro-
cessing time variation. With an increase of the processing time variation,
the average time a node delays a broadcast increases, resulting in a slower
propagation of route discovery packets. This observation coincide with the
results of the statistical analysis in Section 4.2.2 and 4.2.3.

A direct in�uence of the processing time variation on the size of the activity
area is not clearly visible. Only the comparison of the scenarios FeeD1U2
and FeeD1U10 as pictured in Figure 4.33 gives an indication on the in�u-
ence of the processing time on the arti�cial delay. The active area in the
heat map of scenario FeeD1U10 is larger than the heat map depicting the
activity of the corresponding scenario using a lower processing time. As
described before, the route discovery algorithm prevents nodes from broad-
casting route discovery packets, as long as the time between the detection of
new, more preferable routes is smaller than the used arti�cial delay. With
an increase of the processing time variation the e�ectively of this function-
ality gets extenuated, because the increase of the processing time variation
slows the route discovery process down and consequently increases in aver-
age the time between the last route detection and the detection of a better
route. Therefore, if the processing time variation increases, the probability
increases that the arti�cial delay time passes without the detection of a new
route, resulting in a broadcast of the route request before the actual opti-
mal route to the node is found, causing a faster propagation of the activity
area. This causes an increase of the routing algorithm's overhead, since the
routes included in these prematurely broadcasted route discovery packets
are more likely to become obsolete than later ones.
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Figure 4.34: In�uence of processing time variation on propagation speed
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Figure 4.35: Comparison of scenario FeeD0U2 and QualityD0U2
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Figure 4.36: Comparison of scenarios based on route decision strategy
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Besides di�erent values for arti�cial delay and processing time variation,
di�erent route selection strategies where used in the investigated scenarios.
Figure 4.35 depictures heat maps of scenario FeeD0U2 and QualityD0U2,
visualizing the network activity at 10, 20, 30, and 40 milliseconds after
the start of the route discovery process. The four heat maps on the left
side picture the activity of scenario FeeD0U2, the heat maps of scenario
QualityD0U2 can be seen on the right side if the �gure. Even if there is
no obvious di�erence in the propagation speed, in terms of expansion of
the active area along the front side in this scenario, there is a noticeable
di�erence in the speed of the back sides movement. Comparing the heat
maps representing the moment of 30 milliseconds after start of the route
discovery process, when the fee nodes charge is the main route selection
criteria, the inactive considered area covers half of the complete area. In
contrast, the activity area covers the whole network when link quality is
used as main route selection criteria.

The same e�ect can also be observed in the other scenarios as pictured in
Figure 4.36. The heat maps on the left side represent scenarios using fee
as route decision criteria. The maps on the right side visualize the network
activity of the corresponding scenarios using quality as route decision pa-
rameter. All heat maps in this �gure represent the network activity at 95
milliseconds after the route search's start. Comparing the heat maps of sce-
nario FeeD0U2 and FeeD1U2 with scenario QualityD0U2 and QualityD1U2,
it is observable that while there is nearly no network activity any more in
the scenarios using fee as route decision parameter. In the other two sce-
narios, the route discovery process is still in progress. Also in the heat map
representing scenario FeeD010, the inactive considered area already covers
a larger area than in the corresponding scenario QualityD010. A similar
di�erence concerning the active area can also be observed comparing the
last two heat maps. Comparing these both scenarios, again a di�erence in
the propagation speed of the active area is clearly visible. This accords to
the statistical analysis of the time needed for the �rst route discovery as
pictured in Figure 4.12 and 4.28.

The di�erence in the movement speed of the active area's back side, caused
by the di�erent route decision strategies, can be explained by the e�ect
that when connection quality is used as route decision parameter, the route
discovery algorithm prefers longer routes than if fee is used for the route
selection. Consider the following example. A number of nodes are arranged
in a line and are numbered consecutively. Every node has a good connec-
tion to his direct neighbor nodes and a weak connection to the neighbor's
neighbor. So node 1 has a good connection to node 2 and a weak connection
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to node 3. Node 2 has a good connection to node 3, a weak one to node 4,
and so on. Additionally, it is assumed that every node charges the same fee
and no arti�cial delay is used. When a node triggers a route search to �nd a
path to another node in the line, there are two optimal outcomes depending
on the route decision strategy: If the fee is the route selection criteria, the
route discovery algorithm will return a path, where only every second node
is used as hop. This path consists only out of week connections, but it is the
cheapest possible path. The other case is when the quality is used as route
selection criteria. In this case, the route discovery algorithm will return a
path with every intermediate node along the line between sender and target
node is included. This path consists only out of strong connections, but it
is also the most expensive path. The route discovery process using the fee
as route selection criteria will now work like follows: Node 1 broadcasts a
route request, which is received by node 2 and 3. Node 2 and 3 now re-
broadcast the request. The broadcast from node 3 is received by node 4 and
5, the broadcast from node 2 by 3 and 4. Node 3 ignores the route discovery
packet from node 2, because the fee for the path 1 - 2 - 3 is more expensive
than the direct path 1 - 3. Therefore, after the �rst broadcast of node 2
and 3, the front side of the activity area lies between node 5 and 6, the back
side between 3 and 4. If quality is used as route decision parameter, node
3 would not have ignored the received route discovery packet from node
2 because path 1 - 2 - 3 has a higher quality than the direct path 1 - 3.
Therefore, in this case node 3 would try to rebroadcast the route discovery
packet, this time including the path 1 - 2 - 3. Consequently, the back side
of the activity area lies between node 2 and 3. Because of the rebroadcast,
the back side of the activity area moves slower than in the case that fee is
used as route selection criteria, where no rebroadcast is needed. During the
route discovery, this e�ect accumulates leading to the described e�ect.

Summarizing, the heat map analyses presented in this section support the
outcome of the statistical analysis laid out in the previous two sections.
Additionally, the heat maps give insight on the in�uence of arti�cial delay,
processing time variance, and route selection criteria on the propagation of
route request packets. In short, the usage of arti�cial delay slows down the
propagation of route request packets, which accords to the statistical anal-
ysis, and addition has an in�uence on the area in which the route discovery
process is active. The value of the processing time variance has an in�uence
on the propagation speed. If in average nodes need longer for the processing
of route request packets, the propagation slows down. The last parameter,
the route selection criteria, has mainly an in�uence on the retraction of the
active area. When quality is used as route selection criteria, the active area
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propagates faster then it retracts, leading to a lager active area compared
to fee as route selection criteria.

4.2.5 Conclusion

The simulation results presented in this section lead to the conclusion that
the change of racing conditions using arti�cial delaying decreases the routing
protocol's overhead. This comes at the cost of an increase of the time needed
for discovering the �rst route to the target node. However, in most cases,
especially if only a small delay is used, the �rst discovered route is not
the best route in terms of fee or link stability, but rather the last route a
node learns about. One of the outcomes of the simulation was that even
if the route discovery process is slowed down by the arti�cial delay, the
time needed for the detection of the best route to a target does not have to
increase necessarily comparing to no delay usage. If the delay is conveniently
chosen, the time the algorithm needs to detect the best route to a target is
shorter compared to scenarios without usage of arti�cial delay.

The arti�cial delay also increases the quality of the route discovery, since
it reduces the collision probability. Since �ooding techniques used for route
discovery are usually based on broadcasts, the correct reception of the trans-
mitted data by all nodes in the radio footprint of a node is not veri�ed. Con-
sequently, if during the discovery phase route discovery packets get lost, the
corresponding links are not considered by the routing protocol. Since the
usage of arti�cial delay reduces the number of packets broadcasted dur-
ing route discovery, the collision probability decreases resulting in a lower
probability that links are not considered.

4.3 Evaluation of the Cash�ow architecture

In Chapter 3 we presented the architecture of the virtual currency system
Cash�ow, including algorithms for the realizations of the proposed modules.
This section focuses on the evaluation of the architecture using the suggested
algorithms, by analyzing the access regulation mechanism as well as the load
balancing functionality of the system. Cash�ow provides an interface for
applications to request channels with speci�c properties to other nodes. It
is in the reasonability of the applications to decide what connection they
need and how much they are willing to pay for it. To evaluate Cash�ow,
such an application was implemented and will be presented in the following
subsection. After the description of this evaluation application, the access
regulation mechanism of Cash�ow, realized by the pricing functionality, will
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be analyzed. Before this section concludes, the evaluation of the balancing
functionality is presented.

4.3.1 Model of the source

The evaluation application is an example of a simple application using Cash-
�ow. This application is used for the evaluation of Cash�ow. Its basic
functionality is to open a speci�c number of channels to a target node and
use these channels to transmit data to the target node. The number of
channels the application opens depends on a parameter stating the maxi-
mum number of open channels and on the fees intermediate nodes charge
for forwarding.

The application can be con�gured by the following parameters:

� target: Using this parameter, it is possible to specify the target node.

� number of channels: This parameter is used to con�gure the number
of channels the application should open to the target node. It is
important to note, that it is not always possible for the application to
open exactly as many channels as speci�ed in this parameter because
of the fee forwarding nodes charge. This parameter can be also seen
as an upper limit, since the application will not open more channels
than speci�ed.

� maximum price: This is the maximum price the node is allowed to
pay for channels. If the application request a new channel and the
cumulative price including this new channel lies above this value, the
node must reject the o�er. In this case, the application is not able
to open as many channels as speci�ed by the parameter number of
channels .

� channel size: This parameter states the number of packets that should
be transmitted through a channel.

� packet size: This parameter speci�es the maximum size of packets used
for the transmission through the channel. The product of channel and
packet size gives the maximum throughput through a channel.

� channel type: This parameter states if the fee or the stability of the
channel is more important. In all following scenarios, stability is pre-
ferred.
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The evaluation application performs three tasks in parallel as pictured in
Figure 4.37: route management, channel management and data manage-
ment. The task of the route management function is to trigger the route
discovery process if needed. Figure 4.38 pictures the �ow chart of this
process. After the start of this process, the algorithm immediately trig-
gers a route search. The target of the route search is the node speci�ed
by the parameter target. After the triggering of route search, the variable
lastRouteSearch is set to zero. This variable is used to store the time when
the last route search was performed. Besides this variable, also the variable
priceOpex is initialized with the value zero. It is used to store information
about the operation costs of the currently active channels. Then this func-
tion enters the sleep state. After 0.5 seconds, the function gets active again
and checks if at least 10 seconds have passed and the value of priceOpex has
changed since the last route search. If not, it enters the sleep state again,
else, the function triggers another route search and refreshes the values of
the variables lastRouteSearch and priceOpex. Using this mechanism, the
node has to wait at least 10 seconds between route searches. The compar-
ison of the current Opex value, provided by the getOpex function, to the
priceOpex value stored at the last route discovery time is used to prevent
unnecessarily route searches. The function getOpex() returns a value, which
is the cumulative price of all currently open channels. A change of this value
can be caused by the opening or closing of a channel or by an intermediate
node, which has changed the fee it charges during the last expansion of
the channels activity time. So if a node has already established its chan-
nels over a network with low load, causing no changes in the fee the nodes
charge, no route search is triggered. This is done to reduce the number of

Route 
management

Channel 
management

Transmission 
management

Stop

Start

Figure 4.37: Overview over evaluation application
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Start

Stop

routeSearch()
lastRouteSearch=0

priceOpex=0

sleep(0.5s)

If ((lastRouteSearch < (now()-10)) && 
(priceOpex!=getOpex()))

false

routeSearch()
priceOpex=getOpex()

lastRouteSearch=now()

true

If (now()>=endTime())false

true

Figure 4.38: Visualization of the route management function

route searches to a minimum, as long as there is no indicator that there
was a change in the fee nodes charge, making the current routes obsolete.
This process, like the other two management processes, is active until the
simulations end.

Figure 4.39 pictures the �ow diagram of the channel management tool.
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Start reductionBorder=maxOpex/(numberOfChannels*1.5)

If(activeChannels<numberOfChannels)

Sleep(NegExpDistri(2)+2)

false

bestRoute=getBestRouteFromCache()

bestRoute.price>reductionBorder

true

bestRoute!=NULLfalse

true

true

targetNrOfChannels=(int)maxOpex/(1.5*bestRoute.price)
priceCurrent=maxOpex/(targetNrOfChannels*1.5)

targetNrOfChannels=numberOfChannels
priceCurrent=maxOpex/(targetNrOfChannels*1.5)

false

If(activeChannels<targetNrOfChannels)false

channelPrice=priceCurrent+(priceCurrent/targetNrOfChannels)*(targetNrOfChannels-activeChannels)
openChannel(this,size,(channelPrice*size),bestRoute)

true

If (now()>=endTime())
false

End

true

Figure 4.39: Route management function

The purpose of this module is to open the optimal number of channels to
the target node. After the start, it calculates the value of the variable
reductionBorder. This is the quotient of the maximum price the manage-
ment module is allowed to spend divided by the product of the number of
channels this module should open times 1.5. The value of reductionBorder
is used to decide if the number of channels the module should open can
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be reached or if only a smaller number of channels can be opened. The
function used for opening a channel requires a price value, which states
the maximum fee the channel is allowed to cost. The actual price of the
channel can lie beneath this value, but as soon as the price level reaches
the value of the maximum fee, the channel is closed. The multiplication
of the number of channels with 1.5 during the calculation of reductionBor-
der allows the module to keep channels alive, even if the price increases in
average up to 50% compared to the original price. After the calculation
of the reductionBorder, the route management function checks if additional
channels should be opened. If the current number of open channels equals
the number of channels the module should open, the module enters the
sleeps state and rechecks the number of channels later. If the number of
active channels is smaller than the number of channels the module should
open, the module requests the cheapest route to the target node from the
routing module. If the routing module cannot deliver a route to the target
node, the module enters the sleep mode and tries to open channels later
again. If a route is found, the price of this route is compared with the
value of reductionBorder. In the case that the route's fee is larger than the
value of reductionBorder, the algorithm recalculates the target number of
channels. In the other case, if the route's fee is lower, the target number of
channels is set to the number of channels the module should open as given
by the corresponding parameter. Additionally, in both cases, a basis price
for opening channels is computed. The next step veri�es if the number of
active channels lies beneath the number of target channels. If the target
number of channels corresponds to the number of active channels, no ad-
ditional channels need to be opened. Therefore, the algorithm enters the
sleep state again. Otherwise, it calculates the price for the new channel
and opens it. The price is based on the base price calculated before and
additionally on the ratio between active channels and the target number of
channels. The idea behind this price assignment strategy is to assign dif-
ferent maximum prices to the di�erent channels with the result that in the
case that all channels are using the same path and the intermediate nodes
start to increase their fees, the fees of the open channels will not reach the
corresponding maximum fee values at the same time. Considering the case
that all channels using the same value for the maximum fee and the actual
price reaches this value, all channels would be closed within a minor time
span, which is not in the intention of the user. Using staggered maximum
prices, an increase of the fee causes also a staggered release of channels,
giving the network time to react on the resulting drop in the network load
to which the pricing function of the nodes is correlated. Additionally, the
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Startsleep(1/(size*activeChannels))

sendoverChannel(message,currentChannel,FORWARD)
currentChannel=currentChannel.nextChannel();

StopIf (now()>=endTime()) true

false

Figure 4.40: Visualization of the transmission management function

source node does not lose all channels at nearly the same time. After this
state, the algorithm returns to the sleep state as pictured in the �ow chart.

The last function depicted in Figure 4.40 is the transmission management
function. It periodically transmits messages over the open channels. The
sending rate depends hereby on the number of open channels and their size,
as given through the con�guration parameters.

In the following scenarios, this application is used to open channels depend-
ing on the fee and generate tra�c over these channels. Additionally, it can
be seen as a prototype of an application using Cash�ow.

4.3.2 Evaluation of fee calculation

The regulation of access is tightly coupled with the pricing mechanism. In
regions with high network activity nodes increase the fee they charge, mak-
ing routes through these regions less attractive. The high fee results in a
decrease of open channels, since it is not a�ordable for nodes to maintain
all open channels. Additionally, nodes might reschedule parts of their com-
munication until communication is cheaper. This section focuses on the
analysis of the pricing function and its ability to regulate the access to the
network.

For the analysis, a chained network with eight nodes, as pictured in Figure
4.41, is used. The distance between nodes amounts to 25 meter. Using the
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con�guration parameters for the physical and MAC layer as described in
Section 4.1, every node has strong connections with his direct neighbors
and weak connections to two-hop neighbors. In all following scenarios, the
evaluation application is executed on node 1. The application running on
this node tries to open channels and transfers packets with a size of 2250
byte to node 8.

The pricing module used in the simulations presented in this section corre-
sponds to the pricing module suggested in Section 3.3.7. Recapitulating,
the pricing function is con�gured by the following parameters: basePrice,
batteryPenalty, maxUsage, stepSize, preferedThroughput, maxThroughput,
throughputTolerance. The sum of basePrice and batteryPenalty form the
minimum fee a node charges for forwarding packets. Every node updates
its price once every second. If the current throughput of a node lies above
the sum of preferedThroughout and throughputTolerance, the fee is increased
by the value stated in the parameters stepSize. In the case that the current
throughput lies beneath the di�erence of preferedThroughout and through-
putTolerance, the fee is reduced by the value of stepSize. In the case that
the node had to reject a channel request because the load of the new channel
would lead to a throughput larger than stated in maxThroughput, or if the
current usage of the shares medium exceeds the value of maxUsage, the fee
is additionally increased by two times the value of stepSize. This summa-
rizes the functionality of the used pricing module. A detailed description
can be found in Section. 3.3.7.

Table 4.4 shows the basic con�guration of the application and pricing mod-
ules. Some of these values change depending on the simulation scenario but
most values are the same in all simulation scenarios. The �rst simulation
scenario, scenario C1, uses exactly these parameters. This scenario repre-
sents a low load situation. As depictured in Figure 4.42, the evaluation

1 2 3 4 5 6 7 8

source node target node

intermediate node

node idstrong connection

weak connection

Figure 4.41: Chain topology used for the evaluation of the pricing function
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Parameter Value

evaluation application

target node8
number of channels 5
maximum price 700
channel size 5
segment size 2250 byte
channel type stabillity

pricing module

basePrice 1
batteryFee 0
maxUsage 0.7
stepSize 0.01
preferedThroughput 540 kbit/s
maxThroughput 900 kbit/s
throughputTolerance 54 kbit/s

Table 4.4: Default parameters of evaluation application and pricing function

application can a�ord to open �ve channels as ordered by the correspond-
ing parameter and keeps these channel alive during the whole duration of
the simulation of 2000 seconds. Since the cumulative throughput of 450
kbit/s is lower than the preferred amount of 540 kbit/s, and the usage of
the shared medium is beneath 0.7, as pictured in Figure 4.44 and 4.45,
nodes keep their fee at the minimum level during the whole simulation, as
pictured in Figure 4.43 and 4.46. In this and all following scenarios, the
shared medium's usage curve is similar for all nodes in the same scenario,
with the di�erence of an o�set. Therefore, only the shared medium's us-
age curve of node 4 is depictured for this and all other scenarios. Figure
4.45 compares the average usage of the shared medium as detected by the
nodes. The di�erences between the values allow drawing conclusions about
the actual curve for other nodes. The shared medium's usage measured by
nodes is the ratio between active and inactive phases on the radio channel,
including the time nodes have to wait because of a set NAV-timer as active
phase. Therefore, it is not surprising that nodes with two two-hop neigh-
bors senses a higher usage of the shared medium than nodes having only
one two hop neighbor like node 2 and 7.

In the next scenario, scenario C2, node 1 tries to open eight channels with a
cumulative throughput of 720 kbit/s, which lies over the preferred amount of
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Figure 4.42: Number of open channels between node 1 and 8 in scenario C1
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Figure 4.44: Shared medium's usage as monitored by node 4 in scenario C1
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Figure 4.45: Comparison of nodes average
load in scenario C1
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540 kbit/s but below the maximum throughput of 900 kbit/s. When node 1
requests eight channels, the intermediate nodes grant all those channels but
react with an increase of the fee they charge, as it is pictured in Figure 4.48.
All nodes increase their fee by a similar rate, until the fee reaches a value
whereby it is not possible for the application function to maintain all open
channels without exceeding the maximum amount the application is allowed
to spend. Assuming an average price of 2.3 units per packet per channel
charged per node, the fee for eight channels would amount to 828, which
exceeds the maximum amount of 700 units. Also seven channels would
exceed the maximum price. Therefore, at this price level and with the given
parameters, only six channels are a�ordable for the evaluation application
as pictured in Figure 4.47. Those six channels produce a throughput of 540
kbit/s, which �ts exactly to the preferred throughput of the intermediate
nodes. Consequently, they do not increase the fee anymore leading to a
stable network state. As pictured in Figure 4.49, the network load never
exceeds the value of 0.7, which is the maximum allowed load on the radio
channel as given by the corresponding parameter. Therefore, the shared
medium's usage has no in�uence on the fee calculation in this scenario.

Scenario C3 is the �rst overload scenario in this simulation series. The
preferred throughput of each intermediate node is set to 540 kbit/s, the
maximum throughput to 630 kbit/s. Node 1 tries to open nine channels
corresponding to a throughput of 810 kbit/s. As pictured in Figure 4.52,
the number of open channels �uctuates between seven and eight channels,
until the number drops to six channels and stabilizes at this value. Com-
paring the number of open channels with the activity level, as pictured in
Figure 4.54, it is observable that the activity level is constant during the
whole simulation. This e�ect is caused by the exchange of control infor-
mation inside channels during the channel's establishment. When a node
wants to open a channel, it sends a channel request packet to the destination
node. This request packet is submitted outside a channel causing the inter-
mediate nodes to open a channel. The target node return a packet including
information about the fees charged for the channel or information that the
channel could not be used and consequently will be closed immediately be-
cause of an overload situation. After forwarding a control packet including
information about an overload situation, the channel is closed by the node.
This leads to the �uctuation in the number of open channels but causes
no signi�cant tra�c. The bene�t of forwarding the request packet to the
target node, even if it is clear for some intermediate nodes that the channel
will never be used because of a local overload situation, is that nodes along
the path, which are not in an overload situation, learn about the demand
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Figure 4.47: Number of open channels between node 1 and 8 in scenario C2
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Figure 4.48: Comparison of nodes fee in scenario C2



186 Evaluation

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

lo
ad

 o
f 

th
e

 s
h

ar
e

d
 m

e
d

iu
m

time in seconds

network usage messured at node 4

Figure 4.49: Shared medium's usage as monitored by node 4 in scenario C2
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Figure 4.50: Comparison of nodes average
load in scenario C2
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Figure 4.51: Comparison of nodes average
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and can use this information to adjust their fees. Additionally, this leads
to a faster adjustment of the fee for a channel if more nodes along a path
are in overload situations. As pictured in Figure 4.53, all nodes adjust
their fee and not only node 2, which is the �rst node observing that more
channels are requested as it can handle. Comparing the fee development of
this scenario with the fees from scenario C2 as pictured in Figure 4.48, the
nodes increase the fee faster when overload is detected.

The next scenario, C4, is again an overload scenario. This time the maxi-
mum throughput accepted by nodes is set to such a high value that is does
not have any in�uence on the simulation. Additionally, the maximum usage
of the shared medium is reduced to 0.5 and the number of channels the eval-
uation application tries to open is increased to 20. Furthermore, the price
the application is allowed to spend is set to 1500 units. The consequence of
this con�guration is that the evaluation application tries to produce a load
resulting in a usage of the shared medium above 0.5. In Figure 4.57, pre-
senting the number of open channels, a similar �uctuation of open channels
is observable like in the last scenario, also stabilizing at the value where the
throughput produced by the channels matches the preferred throughput.
Figure 4.59 shows the usage of the shared medium as observed by node 4.
It is worth noting that even during the overload situation the node man-
ages to keep the usage of the shared medium nearly all the time beneath the
maximum value of 0.5. This is the case because nodes estimate the addi-
tional load a channel would cause and prevent the establishment of channels
if the sum of the measured and the estimated load lies above the maximum
value. In this scenario, the development of the fee is especially interesting
as shown in Figure 4.58. Nodes 3 to 5 increase their fee with a higher rate
than node 2, 6 and 7 for the �rst 250 seconds. Then all nodes increase the
fee for the same rate until the systems reaches a stabile state. This behavior
can be explained using Figure 4.60. Nodes positioned in the middle of the
chain topology are in the footprint of more nodes than nodes near an end of
the chain. Therefore, they detect more network activity meaning that the
shared medium is used more than the shared medium around nodes near an
end of the chain. Consequently, these nodes are confronted with a high load
situation earlier, in terms of open channels, and prevent the establishment
of additional open channels. At the same time, the detected overload causes
a higher increase of the fee in comparison to the other nodes. When the
overload situation is over, all nodes in the network increase their fee at the
same rate, because for all nodes the throughput caused by the channels lies
above the preferred value but below the maximum throughput value and
additionally, the load on the shared medium is also below the maximum
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Figure 4.52: Number of open channels between node 1 and 8 in scenario C3
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Figure 4.54: Shared medium's usage as monitored by node 4 in scenario C3
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value.

In all the previously presented scenarios, all nodes use the same parame-
terization. In scenario C5 one node, node 4, uses di�erent parameters than
the other nodes. Therefore, the in�uence of the node's parameterization on
each other is observable. In this scenario, all nodes with the exception of
node 4 uses the standard parameters as described in Table 4.4. Node 4
di�ers from the other node by the value of the preferred throughput, which
is set to 360 kbit/s in contrast to 540 kbit/s used by the other nodes in
this simulation. The evaluation application running on node 1 tries to open
eight channels, as pictured in Figure 4.62, with a cumulative load of 720
kbit/s. This value lies between the value of the preferred and the maximum
throughput for all nodes. Therefore, as pictures in Figure 4.63, all nodes
increase the fee they charge, forcing the evaluation application to reduce the
number of channels. After 189 seconds, the evaluation application reduces
the number of open channel to six, which corresponds to a throughput of
540 kbit/s. For all nodes, with exception of node 4, this value correlates
to the preferred value and therefore they stop to increase their fee. Since
node 4 prefers even a lower load, it continues to increase the fee, forcing the
evaluation application to reduce the number of open channels to �ve after
353 seconds, resulting in a throughput of 450 kbit/s. Since this load lies
beneath the preferred throughput of all the other nodes, these nodes start
to decrease their fee to motivate the evaluation application to open more
channels. Since these nodes together can adjust their fee faster than node
4 alone, the cumulative price reaches a value where the evaluation appli-
cation is able to open a sixed channel again. After some time, node 4 has
increased the fee to a level so that the evaluation application is forced again
to close a channel, resulting in a drop of the fee the other nodes charge.
This interplay between node 4 an the other nodes continue, until the other
nodes charge a fee of 1 and are therefore not able to reduce their fee any
further, because this value is the minimum fee as given by the parameters
in this scenario. Node 4 continues to increase its fee until it reaches a value
where the evaluation application reduces the number of channels to four,
which corresponds to the preferred throughput value of node 4.

Summarizing, the results of the presented simulations show that the fee's
adaption, according to the usage of the shared medium and the throughput
trough nodes, provides a feasible mechanism to regulate the access to the
network. Because of the used chain topology, in the presented scenarios the
evaluation application was forced to transmit the data along only one path.
Therefore, it had no possibility to avoid nodes with limited capacity left
and use tra�c balancing to avoid overload scenarios, as it will be presented



4.3 Evaluation of the Cash�ow architecture 191

0

3

6

9

12

15

n
u

m
b

e
r 

o
f 

o
p

e
n

 c
h

an
n

e
ls

time in seconds

open channels

Figure 4.57: Number of open channels between node 1 and 8 in scenario C4
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Figure 4.59: Shared medium's usage as monitored by node 4 in scenario C4
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Figure 4.62: Number of open channels between node 1 and 8 in scenario C5
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Figure 4.64: Shared medium's usage as monitored by node 4 in scenario C5
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Figure 4.65: Comparison of nodes average
load in scenario C5
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Figure 4.66: Comparison of nodes average
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in the following section.

4.3.3 Evaluation of balancing functionality

The combination of channel and market concept used by Cash�ow results
in an implicit load balancing function. To visualize the e�ect of the load
balancing function, this chapter compares heat maps from scenarios with
activated load balancing functionality to scenarios with deactivated load
balancing. Since load balancing is an implicit function of Cash�ow, a direct
deactivation is not possible. However, by deactivating the pricing function,
also the load balancing function becomes inactive.

Similar to the propagation analysis, for the evaluation of the balancing func-
tionality a grid topology with 32 to 32 nodes was used, with a distance of
30 meter between nodes. Table 4.5 gives an overview over the used pa-
rameters for the pricing and application modules. It is worth noting that
the application modules used in the following scenarios only open channels
to target node but, in contrast to previous simulation series, do not send
dummy data over these channels. This was done to execute the simulations
in reasonable time. If data tra�c would have been simulated like in the
previous scenarios, the execution of a single simulation would have taken

Parameter Value

evaluation application

number of channels 50
maximum price 25000
channel size 5
segment size 1000 byte
channel type stabillity

pricing module

basePrice 1
batteryFee 0
maxUsage 0.7
stepSize 0.01 or 0
preferedThroughput 400 kbit/s
maxThroughput 960 kbit/s
throughputTolerance 54 kbit/s

Table 4.5: Default parameters of evaluation application and pricing function for the
evaluation of Cash�ows load balancing functionality
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Figure 4.69: Comparison of open channels depending on the usage of load balancing

months instead of days. As a consequence of this con�guration, local over-
head is detected by an overpass of the maximum throughput value and not
by an overpass of the shared medium's usage. This re�ects to scenarios
where nodes allow only a small throughput, with the consequence that an
overload of the shared medium is not possible.

In the �rst scenario, one node located on the left side of the network tries
to open 50 channels to the opposite node on the right side. The heat
maps in Figure 4.67 and 4.68 represent the network activity after 500
seconds, whereas in Figure 4.67 the pricing function and consequently
the load balancing function was deactivated. Areas with high loads are
colored in yellow and red, whereas areas in green and blue shades mark
areas with medium or low load, as preferred by nodes. It is observable
that in both scenarios, the nodes around the source and target node are
very active because of the small number of possible paths. However, the
e�ect of Cash�ow's load balancing functionality is observable by comparing
the intermediate parts of both scenarios. If no load balancing functionality
is used, as pictured in Figure 4.67, the source node prefers the shortest
path, resulting in a number of high loaded areas. If the load balancing
function is activated by activation of the pricing function, the shortest path
becomes unattractive as soon as it gets crowded. Therefore, the system uses
alternative paths resulting in a distribution of tra�c. Figure 4.69 compares
the number of open channels. Using load balancing, the source node can
open more channels. Since the routing algorithm prefers stable route, the
source node has three potential neighbor nodes to route the tra�c over
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Figure 4.72: Comparison of open channels depending on the usage of load balancing

them. Together, these three nodes preferred in the given con�guration 1200
kbit/s of throughput, which corresponds to 30 channels. Consequently, by
regulating the price, the nodes will limit the number of open channels to
nearly 30 channels. Therefore, in this scenario, the fee is the limiting factor.
When the load balancing is deactivated, the maximum throughput of the
one-hop neighbor nodes becomes the limiting factor. Even if the source
node could in this case theoretically transmit up to 2880 kbit/s, the node
can use only a fraction of this bandwidth, since the node is not able to
balance the tra�c over di�erent paths. Because the source node prefers
the shortest route to the target, it prefers one one-hop neighbor node to
the other two one-hop neighbor nodes, resulting in an overload of the node,
which consequently rejects additional channels.

In the next scenario, four nodes on the left side of the network try to open
50 channels to opposite nodes on the right side. Figure 4.70 and 4.71 show
the heat maps of the network activity for this scenario, whereas in Figure
4.70 no load balancing is used in contrast to Figure 4.71. Similar to the last
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Figure 4.74: Scenario with four sources using Cash�ow and two obstacles
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Figure 4.75: Comparison of open channels depending on the usage of load balancing

scenario, the existence of high loaded areas is observable if no load balancing
is used. Additionally between high active areas, inactive areas exist. This
is not the case if the load balancing functionality is activated. As pictured
in Figure 4.71, Cash�ow is able to avoid local overload situations. This
also re�ects in the number of channels the nodes could open. As pictured
in Figure 4.72, when the load balancing function is used, the cumulative
number of open channels overpasses the cumulative number of open channel
when the load balancing function is inactive. Again, this is caused by the
rejection of channels by overloaded nodes.

The last scenario is similar to the scenario described before, with the dif-
ference that an arti�cial bottleneck was inserted by deactivating a number
of nodes. The result is a small corridor in the middle of the network with a
width of two nodes and a length of four nodes. In the heat maps pictured
in Figure 4.73 and 4.74, the inactive nodes are located in the boxes with
dotted borders. The nodes within the bottleneck are not able to provide the
bandwidth requested by the four nodes on the left border of the network.
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However, in these scenarios the nodes can avoid the bottleneck by trans-
mitting data along alternative routes. These alternative routes are longer
and therefore in most cases not detected by routing algorithms preferring
the shortest path. This is not the case if fee sensitive routing is used. If
a pricing system is used, which increases the fee nodes charge in high load
situations, the long routes become feasible, if the price level of the node in
the bottleneck is high. Therefore, these routing protocols will prefer the
longer routes as soon as there is an overload situation in the bottleneck.
This can be seen in Figure 4.73 and 4.74. If no load balancing is used, all
nodes prefer the shortest route through the bottleneck. This results in an
overload and consequently the nodes within the bottleneck start to reject
channels. If the pricing system is activated and therefore the load balancing
system, the system stabilizes after some time. At the beginning, when all
nodes charge the same fee, all four nodes will also prefer paths through the
bottleneck because these are the cheapest routes. Because of the resulting
high load situation, nodes within the bottleneck start to increase their fees.
After some time, the fees reach a level where the longer bypass paths be-
come cheaper than the paths through the bottleneck. As result, nodes start
using the bypass and reduce the load in the bottleneck. This stabilizes the
pricing level within the bottleneck.

The usage of the bypasses allows the nodes to open more channels to the
target nodes, compared to the case when only the path thought the bot-
tleneck is used. Figure 4.75 shows a comparison of the number of open
channels. In the given scenario, the usage of Cash�ow's load balancing
system allows an increase of the throughput of 92,73%. This shows that
in scenarios where alternative routes between nodes exist, the load balanc-
ing system is not only useful for the prevention of overload situations, but
additionally allows increasing throughput.

4.3.4 Conclusion

Summarizing, the combination of pricing and channel concept results in an
implicit load balancing and access regulation mechanism. By increasing
their fee, high loaded nodes make them self less attractive as intermediate
node. Therefore, nodes prefer paths along low loaded nodes, resulting in
a balancing of the load. Additionally, since high loaded nodes can reject
channel requests in case the additional channels would cause a local over-
load, the access to the network can be refused, if the transmission through
the network is temporarily not feasible.
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4.4 Summary

In this chapter we have presented the evaluation results of Cash�ow. Start-
ing with a detailed analysis of the routing protocol, it was shown that
in�uencing racing conditions during the �ooding phase of route discovery,
by using arti�cial delay, allows to increase the performance of the route dis-
covery strategy. To analyze the positive e�ect of the arti�cial delay, and to
evaluate the impact of network density and node's processing time on the
performance, a number of simulation series have been performed. The ob-
tained results indicate that with an increase of the arti�cial delay, the over-
head caused by the routing protocol decreases to the point where each node
only broadcasts one packet for route discovery instead of n2 packets, which
is the theoretical maximum for the proposed route discovery strategy in a
network with n nodes. (Compare with [Anderegg03] and [Eidenbenz05]).
Additionally, it was shown that the processing time variance of nodes have
a negative in�uence on the e�ectiveness of arti�cial delaying, meaning that
in systems were the algorithm is challenge by large processing time vari-
ations, higher arti�cial delay values are needed. Concerning the network
density, the results indicate that in dense networks, where collisions occur
frequently, the usage of the delay increases the quality of the route discovery,
by reducing the collision probability.

The second part of this chapter focused on the interaction of Cash�ow's
components. Using an exemplary application, the functionality of the pro-
posed pricing function was analyzed. It was shown how the pricing function
makes nodes unattractive for other nodes in situations where local load ex-
ceeds the user's preferred load or if the shared medium is locally overloaded.
In a next step, Cash�ow's ability to balance load and restrict access to the
network in overload situation, as result of the least-cost routing scheme in
combination of Cash�ow's rescheduling ability of data transmissions, was
presented. The main outcome of this analysis is that by combining the load
and context sensitive pricing function with the least cost routing scheme, an
e�ective load balancing mechanism is implicitly integrated into Cash�ow,
resulting in a better network usage.
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Chapter 5

Summary and future work

In this thesis, we presented Cash�ow, a virtual currency system to prevent
sel�shness in mobile ad hoc networks and to encourage nodes to partici-
pate. Cash�ow distinguishes itself from other virtual currency systems by
a number of unique features. In contrast to other virtual currency sys-
tems, Cash�ow is bases on a channel concept. If a node wants to transmit
data to another node in the network, it has to request a channel from the
nodes along the path to the target node, specifying the channel's size and
duration. The intermediate nodes return an o�er, which the source node
can accept or decline if the claimed fee is too high. This concept has a
number of advantages. First, the source node could decline the channel
and reschedule the data transmission if the current price level is too high.
This is an important feature for the user acceptance since in most other
virtual currency systems the user does not know how much a transmission
will cost before he starts data transmission. Second, this concept decreases
the charging overhead, since it allows charging packets in bulk so that the
system has not to perform charging for every single packet. A third bene�t
of the channel concept is that it prevents local overload. If nodes receive
a channel request, which would overpass the available bandwidth, they can
decline it. This also result in a more deterministic behavior, since open
channels does not get interrupted by new channels.

Another important characteristic of Cash�ow is its pricing system. In con-
trast to other virtual currency systems, it implements a market system,
which determines the fee based on supply and demand. The supply is reg-
ulated by two parameters. First, the maximum supply is determined by
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the maximum available bandwidth, which depends on the used radio tech-
nology. Second, the node's user can specify, which ratio of his bandwidth
can be used for forwarding packets for other nodes. Therefore, the user is
in control of his participation degree, which is an important factor for user
acceptance, but neglected by other virtual currency systems. The fee for
packet forwarding gets periodically adapted based on the demand. If the
demand lies over a certain threshold, the pricing function increases the fee.
Otherwise, if the demand is low, the fee gets decreased. Additionally, the
pricing function allows to include the node's context as additional parame-
ter into the pricing. This is done by adding penalties to the fee, depending
on the nodes context. For instants, nodes running on battery add a bat-
tery penalty to the fee. The actual amount of the penalty depends on the
charging level of the battery. Using this concept, nodes get less attractive
for other nodes as forwarding node while running on battery.

Cash�ow uses a special routing algorithm, which is optimized to support the
needs of virtual currency systems. The algorithm allows to �nd the cheapest
route to a target node while considering restrictions related to the quality
of the used links. This is also a feature of Cash�ow, which distinguishes this
virtual currency system from other systems. Most virtual currency systems
solve the problem how to determine the fee and pay for packet forwarding
along a given route, but they do not provide functionality to determine the
cheapest path to the target.

The combination of market based pricing and the ability to detect the cheap-
est route to a target node result in a load balancing system, which is another
important feature of Cash�ow. Since nodes increase their fees as the tra�c
increases, other paths with low tra�c gets more attractive. Therefore, nodes
automatically balance their tra�c to pro�t from the low price of alternative
routes.

Like other virtual currency systems, Cash�ow can be used in pure mobile
ad hoc networks. However, Cash�ow additionally supports the integration
of mobile ad hoc networks into the Internet. It provides a special search
function, which allows nodes within an ad hoc network to search for nodes
providing Internet access. Using Chash�ow's payment system, nodes can
pay other nodes for the usage of their Internet connection. By adapting
the mobile IP concept, nodes within an ad hoc network are also reachable
over the Internet. In this context, Internet access is seen as a service for
nodes. Since the search and the payment function are implemented in a
generic way, Cash�ow can be used as platform to for other pay-services,
which makes it interesting for business scenarios.



207

Potential future work on Cash�ow could focus on the support of multipoint
communication. Currently, Cash�ow supports bidirectional communication
between two nodes. However, multipoint communication could be interest-
ing for a number of applications, which however is not optimal supported
by the proposed route discovery protocol. Another interesting issue is the
support of gossiping [Friedman07] as data distribution method on top of
the proposed channel concept.

As result of this thesis, there exists an implementation of Chash�ow within
IBKSim. However, the examination of the behavior of Cash�ow in a real
environment might lead to new �ndings, which could be useful for the im-
provement of the system. Therefore, the development of a kind of adapter,
which adapts the simulated MAC interface of IBKSim to a real MAC inter-
face, would be interesting. This would additionally allow developing new
modules for Cash�ow using IBKSim and port it for examination to real
environments without modi�cations.
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Annex A

Propagation analysis heat maps

This annex presents all heat maps generated for the analysis of the network
activity distribution during route search. For the analysis of the network
activity during route discovery, eight simulation scenarios were developed,
using di�erent parameters for route discovery. Depending on the used route
selection criteria (the fee nodes charge or the link quality between nodes),
the used arti�cial delay, and the processing time variance, the activity dur-
ing route discovery varies, as it is observable in the heat maps presented
in this annex. A detailed discussion of the heat maps as well as a precise
description of the simulation scenarios can be found in Chapter 4.2.4.
The aim of this annex is to give the reader the opportunity to comprehend
in detail the in�uence of the route decision criteria, as well as the arti�cial
delay and the processing time variation on the route discovery algorithm, as
discussed in Chapter 3.3.3. For the sake of completeness, all heat maps are
presented in this annex, even if they have already been presented before.
Heat maps presenting the network activity of the same moment but for
di�erent scenarios are grouped together to highlight the di�erences between
the network activities of the di�erent scenarios. Each heat map pictures
the network activity of 5 milliseconds. Since during simulation for every 5
milliseconds a new heat map was generated, the 20 heat maps per simulation
scenarios picture the �rst 95 milliseconds of route discovery.
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Figure A.1: Network aktivity, time:0
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Figure A.2: Network aktivity, time:0.005
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Figure A.3: Network aktivity, time:0.010
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Figure A.4: Network aktivity, time:0.015



214 Propagation analysis heat maps

Fe
eD

0
U
2

0

930

0 930

M
et
e
r

Meter

0

930

0 930

M
et
e
r

Meter

Q
u
al
it
yD

0
U
2

Fe
eD

1
U
2

0

930

0 930

M
et
e
r

Meter

0

930

0 930

M
et
e
r

Meter

Q
u
al
it
yD

1
U
2

Fe
eD

0
U
1
0

0

930

0 930

M
et
e
r

Meter

0

930

0 930

M
et
e
r

Meter

Q
u
al
it
yD

0
U
1
0

Fe
eD

1
U
1
0

0

930

0 930

M
et
e
r

Meter

0

930

0 930

M
et
e
r

Meter

Q
u
al
it
yD

1
U
1
0

Figure A.5: Network aktivity, time:0.020
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Figure A.6: Network aktivity, time:0.025
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Figure A.7: Network aktivity, time:0.030
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Figure A.8: Network aktivity, time:0.035
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Figure A.9: Network aktivity, time:0.040
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Figure A.10: Network aktivity, time:0.045
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Figure A.11: Network aktivity, time:0.050
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Figure A.12: Network aktivity, time:0.055
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Figure A.13: Network aktivity, time:0.060
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Figure A.14: Network aktivity, time:0.065
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Figure A.15: Network aktivity, time:0.070
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Figure A.16: Network aktivity, time:0.075
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Figure A.17: Network aktivity, time:0.080
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Figure A.18: Network aktivity, time:0.085
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Figure A.19: Network aktivity, time:0.090
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Figure A.20: Network aktivity, time:0.095
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List of Abbreviations

ACK Acknowledgment
ACM Association for Computing Machinery
AODV Ad-Hoc On-Demand Distance Vector Routing Protocol
CBRP Cluster Based Routing Protocol
CONFIDENTCooperation of Nodes: Fairness in Dynamic Ad-Hoc Net-

works
CORE Collaborative Reputation Mechanism
CRC Cyclic Redundancy Check
CTL Control
CTS Clear to Send
dB decibel
dBm decibel referenced to one milliwatt
DCF Distributed Coordination Function
DIFS DCF Inter Frame Space
DSAP Destination Service Access Point
DSDV Destination-Sequenced Distance Vector Routing
DSL Digital Subscriber Line
DSR Dynamic Source Routing
FA Foreign Agent
FSR Fisheye State Routing
GPRS General Packet Radio Service
GSR Global State Routing
GW Gateway
HSDPA High-Speed Downlink Packet Access
IBKSim Institute of Broadband Communications Simulator
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ID Identi�cation
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
LAN Local Area Network
LAR Location Aided Routing
LLC Logical Link Control
LS Link State Routing
MAC Media Access Control
MHz megahertz
MN Mobile Node
MPDU MAC Protocol Data Unit
NAV Network Allocation Vector
NS2 Network Simulator 2
OCEAN Observation-based cooperation enforcement in ad hoc net-

works
OLSR Optimized Link State Routing
OSI model Open Systems Interconnection model
PDU Protocol Data Unit
RFC Request for Comments
RH Request Hash
RTS Request to Send
SHA Secure Hash Algorithm
SHARP SHARP Hybrid Ad Hoc Routing Protocol
SIFS Short inter frame space
SNAP Subnetwork access protocol
SNIR Signal to Noise Plus Interference Ratio
SSA Signal Stability-Based Adaptive Routing Protocol
SSAP Source service access point
TBRPF Topology Broadcast based on Reverse-Path Forwarding
VCG VickreyClarkeGroves auction
WLAN Wireless Local Area Network
XML Extensible Markup Language
ZRP Zone Routing Protocol
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