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Abstract

Today's real-time applications, such as computer games or virtual environments, 
need to display more and more geometrically complex surfaces. The appearance 
of such surfaces are achieved by local parallax, correct occlusions, convincing 
silhouettes and even by sophisticated effects such as self-reflection, refraction, 
translucency, self-shadowing and caustics to name a few. Hence simple texturing 
mapping is insufficient to produce such high geometric complexity.  
This thesis proposes a  cell-based approach to model and render repetitive fine 
scaled details with a high visual quality. The main idea of the precomputation is 
to decompose the object into a low frequent geometry (the general shape of the 
object) and high frequent surface details. The high frequent surface details are 
represented by so-called  cells tiled all over the object space. The precomputed 
cell-based object representation is displayed by a ray tracer providing correct 
parallax, occlusions and silhouettes. This thesis proves that sophisticated effects 
such as specular self-reflection and refraction can easily be rendered with the 
cell-based approach. 



Kurzfassung

Die  heutigen  Echzeitanwendungen,  wie  zB  Computerspiele  oder  virtuelle 
Umgebungen, müssen immer komplexere geometrische Oberflächen darstellen. 
Dies Beschaffenheit solcher Oberflächen umfassen lokale Parallaxe, korrekten 
Überdeckungen, überzeugende Silhouetten und sogar kompliziertere Effekte wie 
zB Selbstreflektion, Refraktion,  Transluzenz, Selbst-Schattierung und Kaustik. 
Mit  Texture  Mapping  kann  diese  geometrische  Komplexität  nicht  dargestellt 
werden. 
Diese Diplomarbeit schlägt einen zellenbasierten Ansatz vor, um wiederholende 
feine  Oberflächenstrukturen  mit  hoher  visueller  Qualität  zu  modellieren  und 
darzustellen.  Die  Grundidee  der  Vorberechnung  ist  das  Objekt  in  eine 
tieffrequente Geometrie (grobe Repräsentation des Objekts) und hochfrequente 
Oberflächendetails  zu  unterteilen.  Die  hochfrequenten  Oberflächendetails 
werden  durch  sogenannte  Zellen,  die  über  den  Objektspace  verteilt  werden, 
repräsentiert. Diese vorberechnete, zellbasierte Objektrepräsentation wird mittels 
Ray Tracing dargestellt. Dies ermöglicht korrekte Parallaxe, Verdeckungen und 
Silhouetten.  In  dieser  Diplomarbeit  wird  auch  bewiesen,  dass  kompliziertere 
Effekte  wie  spekulare  Selbstreflektion  und  Refraktion  mittels  zellenbasierten 
Ansatz genauso leicht implementiert werden können. 
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„If it looks like computer graphics, 
it is not good computer graphics. „
 Jeremy Birn

Chapter 1. Introduction

Introduction
The  human  visual  system  is  able  to  distinguish  between  various  material 
properties such as texture,  roughness, temperature,  thickness and shininess to 
name a few. If we take a closer look at some real world objects, such as in Figure
1.1, we can recognize that many of these material properties are given by the 
fine scaled surface details. Hence to reproduce these various types of material 
properties in computer graphics, surface details play a key role in digital image 
synthesis.  Therefore  numerous  data  structures  and  rendering  techniques  got 
developed especially to define fine scaled details on the object's surface. The 
basic idea is to decompose the object into a rough representation described by a 
polygonal mesh and the surface defined by the fine scaled details. 

Figure 1.1:  A close up view of real world objects. Upper row from left to right:  
swan, butterfly, tree. Lower row from left to right: strawberry, lemon, crab.
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Typically, surface appears with some repetitive fine scaled details. If we take a 
look at  Figure 1.1, especially on the close up view of the strawberry, we could 
clearly see that the strawberry contains little seeds repetitively distributed on its 
surface. The same for the crab's surface appearing with larger black and smaller 
white bumps in a repetitive surface structure. Not only on the surface but also in 
the inside of an object  we could find the repetition property. In Figure 1.2 you 
can see an orange pulp, which appears with a repetitive cellular detail structure. 

Figure 1.2:  A close up view of an orange pulp [25] having a repetitive cellular  
structure.

Hence there is a need for modeling and rendering repetitive surface details in an 
efficient  way.  The  term  “efficient”  refers  to  high  image  quality  by 
simultaneously performing fast rendering providing a low memory consumption. 
For example if we take a look again at the strawberry close up view in Figure 1.1 
we  would  possibly  only  model  a  single  seed  once  and  copy it  all  over  the 
strawberry's  surface to avoid redundant information. This is the basic idea of 
“cell-based  object  representation”  by  defining  a  so-called  “cell”,  which 
represents repetitive surface details, which could be tiled over the object space 
and finally rendered by a ray tracer. 
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1.1 Aim of the Thesis

This  thesis  proposes  an  approach  to  model  and  render  repetitive  surfaces 
efficiently by defining a “cell-based” data structure. The term cell-based refers 
to  a  data  structure,  which  holds  cells  as  spatial  elements  describing  the fine 
scaled details of an object. This proposed method is derived from solid texturing 
[18] using a given mesh and a 3D Texture. Instead intersecting the viewing ray 
with the mesh, our approach intersects the viewing ray with the cells that make 
up the cell-based object. 
The cell-based data structure makes ray tracing very efficiently and avoids to 
store redundant  information,  which leads into low memory requirements and 
therefore getting high frame rates. Due to the ray tracing it is also possible to 
render  effects,  such as  reflection  and refraction  easily computed  by shooting 
additional rays. Furthermore the cell-based approach enhances the realism and 
visual  quality of  complex surfaces  by supporting self-occlusion,  parallax and 
correct object silhouettes.

1.2 Thesis Structure

This thesis is structured into five chapters as follows:

• Chapter  2  gives  an explanation of  some terms used for  classification. 
Furthermore  this  chapter  gives  a  survey  of  common  mesostructured 
rendering techniques and cell-based texturing.

• Chapter  3  proposes  the  main  idea  of  cell-based  object  representation. 
This  chapter  is  split  into  two parts.  First  the  precomputation  stage  is 
discussed.  Second  a  ray  tracer  is  proposed  for  displaying  the 
precomputed  cell-based  objects.  Beside  the  basic  ray  tracing  two 
advanced  effects  such  as  specular  self-reflection  and  refraction  are 
explained. 

• Chapter  4  deals  with  the  implementation  details  and  explains  the 
preprocessing stage from a technical point of view.

• Chapter 5 discusses the memory consumption, computational time and 
the visual quality of some results created with the proposed cell-based 
approach.



„I like to  collect  things.  When I  was  
young I collected stamps; now I collect  
empty margarine tubs and algorithms 
for drawing circles.„
Jim Blinn

Chapter 2. State of the Art

State of the Art
Many different algorithms and data structures have been developed to enhance 
the realism and visual  quality in real  time applications.  In addition,  memory 
consumption has to be kept low. Due to the increasing power of processors and 
increasing memory storage more complex scenes are rendered. Therefore new 
algorithms  and  data  structures  are  needed.  Nowadays  there  are  many  such 
mesostructure rendering techniques. 
In  Chapter  2.1  the  most  important  features  are  explained  to  classify  the 
mesostructure  rendering  techniques  mentioned  in  Chapter  2.3.  Chapter  2.2 
explains the terms macro-, micro- and mesostructure. Finally Chapter 2.4 gives 
an overview of some methods for cell-based texturing.

2.1 Features

How do we know which mesostructure rendering technique is the best? Every 
technique has its pros and cons and it highly depends on the object surface we 
want to synthesize. However each technique could be classified by its supported 
features such as parallax, silhouettes, self shadowing, self occlusions, refraction, 
caustics, self reflections and translucency to name a few. All these mentioned 
features are necessary for realistic appearance. In this chapter the most important 
features will be explained. 

2.1.1 Parallax

Motion parallax is a depth cue that results from our motion. As we move, objects 
that are closer to us move farther across our field of view than objects that are in 
the distance. 
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2.1.2 Silhouette

An object with a  silhouette feature also contains the complex surface on the 
outermost object's boundary. This feature could be best described by an orange. 
The  rough shape of  an  orange is  a  sphere,  which  means  that  the  outermost 
object's boundary is approximately a concentric circle. But in a close up view 
you will realize that the orange outermost boundary isn't exactly circular, but 
rather circular with bumps on it. If we synthesize this object in our real-time 
application and the orange appears with circular bumpy shape it  contains the 
silhouette feature.

2.1.3 Self Shadowing

A shadow on an object appears whenever it is not visible from the light source's 
position. This happens because an occluder lies between the object and the light 
source. In case the occluder itself is the object's geometry we are speaking of self 
shadowing.

2.1.4 Self Occlusion

Objects that are behind other objects and not seen from the point of view are 
occluded. If the object  occludes areas of itself we are speaking of self occlusion.

2.1.5 Self Reflection

The law of reflection says that for specular reflection the angle at which the 
wave is incident on the surface equals the angle at which it is reflected. Self 
reflection means that a light is reflected on it's surface more than once, before it 
reaches the observer.

2.1.6 Refraction

Refraction occurs when light waves penetrate into a refractive medium, such as 
glass or water. At the medium's boundary a change in direction occurs due to 
increase or decrease of light ray's speed. For example if light penetrates from air 
into water a decrease of light occurs, which leads into a change of direction. The 
amount of bending the incident light depends on the media's property.
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2.1.7 Caustics

Caustics occur  by the possible  paths of  the light  beam through the medium, 
accounting for the refraction and reflection. This effect is best seen when light 
shines on a drinking glass. The glass casts a shadow and simultaneously also 
produces a curved region of bright light. 

2.1.8 Translucency

Translucency is a process of sunlight transmitted through the media and exiting 
on  the  opposite  side.  Very  thin  materials  such  as  paper  or  leaves  show the 
translucency effect very well  by holding those directly into the sunlight.  The 
back-lit side of the leave or the piece of paper occurs because of the translucency 
effect.

2.2 Macro-, Micro- and Mesostructure

A geometrical object is usually defined on the three scales, the “mesostructure” 
level, “macrostructure” level and “microstructure” level  [2]. A macrostructure 
level describes a geometric model as a set of polygons, which represents the 
rough object  shape.  On the other  hand microstructure enriches the geometric 
model  with  a  more  detailed  look  by  surface  microfacets,  which  are 
indistinguishable by human eyes. This fine scaled detail is mostly defined by a 
texture  map.  Mesostructure  is  in  scale  between  macro-  and  microstructure, 
which represents the complex surface of an object.  That is  the mesostructure 
level  is  defined by the  geometric  details,  which are  relatively small  but  still 
visible for human eyes such as bumps. Note the bark structure on the tree trunk 
in  Figure 1.1. In this case the bark structure represents the mesostructure level 
due to high-frequency visible geometry.

2.3 Mesostructure Rendering Techniques

Back  in  the  seventies  Catmull,  who is  the  current  president  of  Walt  Disney 
Animation and Pixar Animation Studios, invented the commonly  used technique 
texture mapping [1]. With texture mapping a revolutionary step was taken into a 
new direction. For the first time it was possible to add details on a surface by 
mapping textures on an object, which results to an more realistic look. 
Mesostructure  rendering  techniques  simulate  geometric  details  by  texture 
mapping techniques. This chapter gives a review of the most prevalent rendering 
techniques to generate mesostructure surfaces with focus on supported features 
mentioned in Chapter 2.1.
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2.3.1 Bump Mapping

Bump  mapping  is  probably  the  most  known  texture  mapping  technique  in 
computer graphics and it is still used in some real-time applications. Blinn  [3] 
introduced  a  method  that  adds  detail  to  a  surface  without  modifying  the 
geometric representation itself. This wrinkled look is achieved by perturbing the 
surface normal  per pixel,  which results  after  the illumination computation in 
surface irregularities. 

Figure 2.1:   A bump map T(u,v) is applied on a macrostructure to generate  
bumps  on  a  surface. Surface  normals  (left)  and  resulting  perturbed  surface 
normals (right). [3]

The perturbation function T(u,v) itself is defined as a bump map texture as we 
can see in  Figure 2.1. This bump map stores gray values, which represent the 
offset  by  which  the  normals  has  to  be  wrinkled.  A  comparison  between 
conventional texture mapping and bump mapping is shown in Figure 2.2.

2.3.2 Normal Mapping

Another approach of bump mapping is normal mapping, sometimes called as 
“dot3 bump mapping”  [5].  Instead of perturbing the surface normals,  normal 
mapping  replaces  the  existing  surface  normal  entirely.  These  pre-computed 
normals are stored in a multichannel texture also referred to as normal map. The 
values of each channel represent the xyz coordinate of the replacing normal (see 
Figure 2.3.). 
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Figure  2.2: A  comparison  between  conventional  texture  mapping  (left)  and  
bump mapping (right). Note the difference in the specular highlights [2].

Figure 2.3: Original model (top left). Normal map projected on normal mapped  
model (top right). RGB values of the normal map represent the xyz-coordinates  
of a normal. Resulting image after normal mapping (bottom). [6]
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Normal mapping is  usually found in two varieties,  object-space and tangent-
space normal mapping. They differ in coordinate systems in which the normals 
are measured and stored (see Figure 2.4). 

Figure 2.4: Tangent-space normal map (left). Object-space normal map (right). 
[7]

Due to normal map, normal mapping is theoretically faster than bump mapping, 
because only a simple texture lookup has to be done to obtain the pre-computed 
normal for light computation. In consideration of the fact that the whole normal 
is stored in a texture, this approach needs more memory than bump mapping. 
Nowadays there is no noticeable computational difference due to the modern 
graphics hardware.
With bump mapping and normal mapping it is possible to model details to a 
surface without creating new surfaces. Unfortunately this fact leads to artifacts in 
the silhouette of the object. Hence, the bump mapped sphere in Figure 2.1 still 
has a circular silhouette. A further problem of this approach is that neither self 
occlusion nor self shadowing is considered at all. In the following chapters all 
these problems are going to be solved by advanced rendering techniques.
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2.3.3 Horizon Mapping

Shadows provide  important  perceptual  cues  for  understanding surface  shape. 
However,  horizon  mapping  [8] extends  the  standard  bump  mapping  by 
calculating self shadowing. This effect is provided by horizon maps. Each texel 
contains eight pre-computed angles to the horizon (see Figure 2.5), which holds 
information at what height the sky becomes visible a given direction. In other 
words a surface gets illuminated if and only if the light direction is higher than 
the interpolated horizon value. Figure 2.5 (right) shows an object rendered with 
horizon mapping.
Unfortunately  the  self  shadowing  effect  is  not  for  nothing  due  to  additional 
texture memory requirements. Furthermore no self occlusion and silhouettes are 
considered.

Figure 2.5: Eight horizon values per pixel for calculating self shadowing (left).  
Model  rendered  with  horizon  mapping (right).  Note  the  self  shadows  in  the  
valleys. [8]

2.3.4 Parallax Mapping

Parallax mapping considers the parallax features explained in Chapter 2.1.1 and 
was introduced by Tomomichi Kaneko et al [9] in 2001. 
The  fundamental  idea  of  this  approach  is  to  shift  the  texture  coordinates 
dynamically using the view vector and the current height map value shown in 
Figure  2.6.  Consequently  the  greater  angle  the  more  texture  coordinate  gets 
displaced,  which gives us  the illusion of  parallax motion.  This  effect  is  best 
shown at the house tops’ side walls on the left side of the brick wall in  Figure
2.7, which demonstrates a rendered wall with and without parallax mapping.
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Figure 2.6:  The  texture coordinate offset for parallax mapping is obtained by 
modulating the eye vector by the surface height. [2]

Figure 2.7: Wall rendered with bump mapping (left). Same wall rendered with  
parallax mapping (right). Note the parallax effect at the house tops’ side walls  
on the left side of the brick wall. [9]

A drawback of  this  approach is  that  a  noticeable distortion  occurs,  which  is 
caused by depth approximation. This results when the viewing angle becomes 
more grazing shown in Figure 2.8. 
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Figure 2.8: The  more the  grazing  viewing angle  grows,  the  more  distortion  
occurs. Note that the distortion does not grow linearly along  with the viewing 
angle. [9]

2.3.5 Offset Parallax Mapping 

Welsh [10] solves the problem of parallax mapping at grazing angles by limiting 
the texture coordinate offsets, so that they never get larger than the height at To 
shown in Figure 2.9.  Figure 2.10 compares parallax mapping with and without 
offset limiting.

Figure 2.9: Basic idea of offset parallax mapping. The texture coordinate offset  
will be no longer than the height at To.[2]
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Figure  2.10: Comparison  of  parallax  mapping  (left)  and  offset  parallax  
mapping (right). Note the swimming artifacts on the stone ground at grazing  
angles (left), which gets solved by offset parallax mapping (right). [2]

2.3.6 Displacement Mapping

The  fundamental  approach  of  displacement  mapping  [11] originates  from 
REYES  algorithm  [12],  whereby  a  geometric  model  is  tessellated  into 
micropolygons, whose size are close to or even less than the area of a pixel. 
Displacement mapping also tessellates the macrostructure into a more detailed 
geometric  representation,  in  order to  displace the vertices in  direction of  the 
surface normal given by the height map stored as a texture map(see Figure 2.11). 

Figure  2.11: Rendering  pipeline  for  displacement  mapping. Displacement  
mapping is a per-vertex method and therefore done in the vertex shader. [2]
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On the basis of this approach displacement mapping is able to solve the self 
occlusion and silhouette problem mentioned in the previous sections and seen in 
Figure 2.12. Although displacement mapping can be implemented in hardware, 
its performance is limited by the large number of vertices that result from fine 
mesh subdivision.

Figure 2.12: Comparison of different mesostructure rendering techniques. Bump 
mapping (top left), horizon mapping (top right), displacement mapping (down  
left)  and  view-dependent  displacement  mapping  with  self-shadowing  (down  
right). [2]

2.3.7 View-dependent Displacement Mapping (VDM)

VDM  [13] is  an  enhancement  of  displacement  mapping  achieved  by  two 
substantial  modifications.  Firstly,  VDM  represents  displacements  along  the 
viewing direction instead of the mesh normal direction shown in  Figure 2.13. 
Secondly,  due  to  increasing  performance  of  graphics  hardware,  VDM  is 
implemented using per-pixel operations to obtain faster rendering, since no fine 
mesh subdivision has to be done. Nevertheless the VDM data consumes most of 
the  graphics  hardware  memory  and  therefore  a  data  composition  and 
compression is indispensable. VDM Figure 2.12 shows a comparison of bump 
mapping, horizon mapping, displacement mapping and VDM. Note that VDM 
considers self occlusion, self shadowing and silhouettes.
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Figure  2.13: Rendering  pipeline  for  view-dependent  displacement  mapping. 
VDM is a per-pixel method and therefore done in the fragment shader. Hence,  
no fine mesh subdivision has to be done. [2]

2.3.8 Relief Mapping 

Relief  mapping  [14] is  based  on  an  efficient  ray-height-field  intersection 
algorithm. That is, to locate the intersection between the height field and the ray, 
two search algorithms are needed. At first, a linear search is performed to find a 
pair of points on the ray that enclose the possibly first intersection. Second, a 
binary  search  refines  these  approximations.  Both  search  algorithms  are 
demonstrated in Figure 2.14. 

Figure 2.14: Binary search (left) followed by a linear search (right) to calculate  
ray intersection with a height field. [14]
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Self  shadowing  is  accomplished  in  an  analogous  manner  by  checking  an 
intersection between a ray from the light source and the height field shown in 
Figure  2.15.  Relief  mapping  needs  two  texture  maps,  a  depth  map  for 
intersection calculation and a normal map for illumination computation shown in 
Figure 2.16.

Figure  2.15: Computing  self  shadows  by  shooting  another  ray  to  the  light  
source, checking if there is an intersection with the height field.[14]

Figure 2.16: Gray values in the depth map (left) represent the height values and  
RGB values in the normal map (right) represent the xyz-values of a normal. [14]



Chapter 2. State of the Art 23

2.3.9 Enhanced Relief Mapping

The Relief mapping algorithm can be extended [15] to handle non-height-field 
representations.  This  idea  is  realized by storing  not  only one but  even more 
depth values for intersection calculation. Figure 2.17 shows four intersections di, 
dj, dk and dn for ray (α, β). 

Figure 2.17: Ray intersection with four layers, which results in intersection with  
four depth value di, dj, dk and dn for ray (α, β). [15] 

In modern graphic hardware four layers could be checked for ray intersection in 
parallel. Hence, three four-channel (RGBα) texture maps are needed, which is 
shown in Figure 2.18. One texture contains depth values for the four layers in the 
RGBα  channels,  another  one  stores  the  x-values  of  the  unit-length  normal 
vectors  and  the  last  one  holds  the  y-values  also  for  the  unit-length  normal 
vectors. The z components of the normals are computed as:
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Figure 2.18: (a) Depth values for the four layers stored in the RGBα channels of  
the texture. (b) x components of the unit normal vectors for the four layers. (c) y  
components of the unit normal vectors for the four layers. [15] 

Another enhancement of relief mapping [16] considers the silhouette by adding 
two  coefficients  for  every  vertex  representing  a  quadric  surface  that  locally 
approximates the object’s geometry. These coefficients are pre-computed once 
for a polygonal model by using a least squares fitting algorithm. Results of the 
enhanced relief mapping technique are shown in Figure 2.19. Note the silhouette 
at  the  columns  and  the  stone  object.  Furthermore  a  comparison  of  bump 
mapping, parallax mapping and relief mapping is shown in Figure 2.20. 
On the whole relief mapping offers all advantages as displacement mapping does 
without modifying respectively subdividing the underlying geometry. That is, no 
additional  memory consumption  is  needed,  which  makes  real-time  rendering 
possible. 

Figure 2.19: A room scene rendered with enhanced relief mapping technique. 
Note the silhouette  at  the columns and the stone object.  The self  shadowing  
effect is best shown at the stone object. [16]
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Figure 2.20: : A comparison of (a) bump mapping, (b) parallax mapping and (c)  
relief mapping. The upper and the middle image remain flat, whereas the bottom  
image provides a strong depth cue. Also note the self-occlusion and the self-
shadowing effect. [16]

2.3.10 Shell Mapping

With shell mapping  [17] it is possible to model surface details by applying a 
three-dimensional volume onto a surface. Therefore a new space, namely shell 
space, has to be specified, which lies between the original surface and an offset 
surface to the base shown in  Figure 2.21. Furthermore a one-to-one function 
between texture  space  and shell  space so-called  shell  map is  responsible  for 
mapping the surface details onto the polygonal model.

 

Figure 2.21: Shell space lies between base surface and offset surface. A shell  
map itself is a one-to-one function between texture space and shell space. [17]
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Shell Mapping meets two main challenges. That is to say, firstly generating an 
offset  surface paying attention to  self  intersections  and second maintaining a 
continuous tetrahedral mesh. To construct a continuous tetrahedral mesh, first 
and foremost every vertex from the base surface has to be connected with the 
corresponding vertex in the offset surface (see Figure 2.22). In doing so prisms 
are  generated,  which  have  to  be  split  into  three  tetrahedrals  again  shown in 
Figure 2.23. To avoid discontinuity in the tetrahedral mesh, each tetrahedral has 
to be labeled with a splitting direction. Finally the rippling algorithm comes into 
play, which propagates the inconsistent labeled edges away, by flipping the label 
on an adjacent edge,  until  all  prisms are consistent  (see  Figure 2.24).  Hence 
given a tetrahedron in shell space with its corresponding tetrahedron in texture 
space, any point can be located by using barycentric coordinates.
Due to usage of ray-tracing, refraction and caustic is supported by shell mapping 
shown  in  Figure  2.25.  Furthermore  a  correct  parallax,  self  occlusion,  self 
shadowing and silhouettes are provided by shell mapping.  

Figure 2.22: Generated prism by connecting every vertex from the base surface  
to  the  corresponding  vertex  in  the  offset  surface. Prisms  in  shell  space  
correspond to prisms in texture space defined by a shell map. [17]
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Figure 2.23: A Prism can be split in six ways, depending on the direction of the  
triangulation of the quadrilateral faces. The six splits can be characterized with  
labels R(Raising) and F(Falling). [17]

Figure 2.24: A demonstration of the rippling algorithm. (a) The red triangle  
represents a prism with inconsistency. (b) Rippling algorithm flips the label on  
an adjacent edge, until all prisms are consistent shown in (c).  [17]

Figure 2.25: A shell mapped model rendered with ray tracing (left) Generated  
mesh by shell mapping (right).  [17]
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2.4 Cell-Based Texturing

The  fundamental  concept  of  cell-based  texturing  will  be  discussed  in  the 
following related work.

2.4.1 Texture Bombing

Often in large scenes texturing requires a huge amount of memory due to adding 
visual details to make it more realistic. For example in a nature scene the artist  
wants to texture thousands of plants on the grassland producing a huge texture, 
which requires a huge amount of memory. An idea would be to texture only a 
few tens  of  plants  and irregularly distributing  them on the  grassland to  safe 
texture memory. This is exactly the basic idea of Texture bombing [26], which is 
a procedural technique placing patterns in an irregular interval shown in Figure
2.26. Additionally it reduces the problem of regular looking patterns. 

Figure 2.26: Four images stored in a texture map (bottom), which are irregular  
and randomly tiled over a single texture using texture bombing.

Texture bombing divides the UV space into a regular grid of cells. Every cell 
contains an randomly placed image by using a pseudo-random number function. 
Since the placing image could cross adjacent cells, neighboring cells need to be 
considered  as  well.  On  the  whole  two  coordinates  are  relevant  for  image 
sampling. Firstly, by dividing the UV coordinate by the grid cell size we get the 
grid cell index, which defines in which image we want to sample. Secondly, the 
remaining cell offset represents the texture coordinate for sampling in the image. 
This method isn't only applicable for 2D UV space, but also extendable to the 
3D space by dividing the object-space into 3d grid cells. 
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2.4.2 Voronoi Diagram

Figure  2.27: Variations  of  Voronoi  diagrams  depending  on  the  distance  
function. (a) Voronoi diagram with Euclidean distance function. The concentric  
circles representing the distances to the placed seeds of each Voronoi cell. (b)  
Anisotrop diagram, (c) Apolonius diagram and (d) Moebius diagram. [21]

Voronoi diagrams are named after the famous Russian mathematician Georgy 
Fedoseevich Voronoi. He firstly defined the Voronoi diagram in the general n-
dimensional case in 1908. A huge range of applications for Voronoi diagrams [4] 
could be found in many scientific areas, such as biology, chemistry, geology and 
many more.  Even in computer  graphics  Voronoi  diagram plays  an  important 
factor for spatial descriptions. 
In general a Voronoi diagram is a finite set S of points Pn in Euclidean space 
defined by

S = {P1,....,Pn}
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For every point x in Euclidean space, there is one point of S closest to x defined 
by a distance function. The set of all points closer to one point S than to any 
other point of S is the interior of convex polytope called the “Voronoi cell”. Set 
of points x, which are equally distant to more than one point in S are called 
“Voronoi cell boundary”. This is best shown in Figure 2.27 (a). Note that the cell 
boundaries are placed exactly between two equally distant circles. 
The appearance of  each cell  depends highly on the distance function.  In  the 
simplest case a Euclidean distance is taken, which could be found in Figure 2.27. 
Many variations of Voronoi diagrams such as Möbius, Apollonius, anisotropic, 
spherical or hyperbolic Voronoi diagrams can be easily integrated on the GPU 
[21] also shown in Figure 2.27.

2.4.3 A Cellular Texture Basis Function

The  cellular  texture  basis  function  [19] was  developed  for  practical  texture 
design and complements Perlin noise. The basic idea is to divide space into a 
grid of uniformly spaced cubes. Each cube contains one or more feature points, 
which get spread through space based on a Poisson distribution. Now a function 
F1(x) defines the distance from x to the closest feature point. Boundaries are 
defined in locations where x is equidistant to more than one feature point. These 
boundaries describe exactly the Voronoi cell  boundaries explained in Chapter 
2.4.2.  Furthermore  functions  F2(x),  F3(x),...Fn(x),  are  defined  to  build  even 
more 

interesting textures (n stands for n-closest feature points). Consequently, F2(x) 
gives the distance between x and the closest and second-closest feature point 
shown in  Figure 2.28. More variations are produced by linear combination of 
Fn(x) by the following formula:

C1F1 + C2F2 + C3F3 + C4F4

Due to higher n start looking similar, they choose the lower n values (up to 4), 
which look more interesting and distinct. In Figure 2.29 some combinations with 
various values of Cn are shown.
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Figure 2.28: F1(x) producing polka dots (left) and F2(x) has rapid changes and  
internal structure (right) [21]

2.4.4 Feature-Based Cellular Texturing

Feature-based  cellular  texturing  [27] is  a  method  especially  designed  for 
architectural  models.  The  architectural  model  is  decomposed  into  two 
components. Firstly,  the basic shape, which provides the rough representation 
and secondly the cellular texture containing repetitive 3D pattern, such as a brick 
wall pattern. Three kinds of features faces, edges and corners are identified in the 
basic mesh (see Figure 2.30). Then a fitting algorithm applies cells onto the three 
types of features by using a occupancy map. This map is a bit mask that holds 
information about areas are already occupied and areas responsible for filling. In 
Figure  2.30 you  can  see  a  basic  mesh  with  identified  features  and  applied 
cellular texture.

Figure 2.29:  Some interesting linear combinations of C1F1 + C2F2 + C3F3 +  
C4F4. [19] 
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Figure 2.30: Basic mesh (left),  identified features faces (blue), edges (green)  
and corners (red) for the basic mesh (middle) and basic mesh applied with brick  
wall pattern (right) [27]

2.4.5 Solid Texturing

Texture  mapping  is  usually  done  in  two-dimensional  space.  However,  solid 
texturing  [18] uses  texture  functions  defined  throughout  a  region  of  three-
dimensional space. That is this method must not concern about the shape of the 
surface  being  textured.  Generally,  the  solid  texture  function  gets  evaluated 
procedurally  by  the  object-space  coordinates.  Hence  we  not  only  get  color 
information on the surface of an object but also in the inside. The most known 
example for solid texturing is  to synthesize wood by the solid texture function 
shown in Figure 2.31. 

Figure 2.31: Three-dimensional solid wood texture. [28]
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Cell-Based Object Representation

This chapter presents a cell data structure to model fine scale details of an object 
with  a  repetitive  surface  structure  for  a  real-time  application.  Furthermore  it 
shows how to  display a  cell-based  object  by using  a  ray tracer.  First,  some 
precomputations, such as tiling and generation of cell membership information, 
has to be done before rendering explained in Chapter 3.1. In the rendering stage 
at  runtime a ray-tracing algorithm is  performed, which uses the precomputed 
information to render the fine scaled details described in Chapter 3.2.  

3.1 Preprocessing Stage

In this chapter the data structure for a cell-based object is presented. The data 
structure contains important information, which are precomputed in an offline 
process. This precomputed information makes the cell-based rendering efficient. 

3.1.1 Basic Mesh

First  of  all  a  rough  representation  of  the  cell-based  object  is  defined  by  a 
polygonal  mesh.  In  the following the rough representation will  be called the 
“basic mesh”. A basic mesh has two main functionalities. In the preprocessing 
stage the basic mesh acts as a bounding area for modeling the fine scale details. 
In  Figure  3.1 (c)  the  fine  scale  details,  represented  by  the  colored  dots  are 
enclosed by a basic mesh of a torus (blue circular lines). Secondly, the basic 
mesh acts as an entry point for ray tracing in the rendering stage, which gets 
explained more precisely in Chapter 3.2.   
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3.1.2 Voxel-Based Cells 

After defining the area of modeling by a basic mesh, the inner area has to be 
described  somehow.  Therefore  a  three-dimensional,  cellular  component  is 
specified,  a  so-called  “cell”.  A cell  is  a  building block,  which is  needed for 
modeling the fine scale details of the cell-based object. More precisely a cell is 
defined by a set of connected voxels shown in Figure 3.2. Consequently the set 
of  all  inside  cells  make  up  the  final  cell-based  object.  This  constitutive 
separation into a basic mesh and corresponding inside cells can be found in the 
preprocessing stage in Figure 3.1 (c) . Note that all inside cells (colored dots) are 
completely inside  the basic mesh (blue silhouette of the torus) not touching the 
basic mesh's boundary.

Figure  3.1: Three-dimensional  cell  collection  (b)  gets  tiled  over  the  object-
space (c). The blue silhouette of the torus represents the basic mesh. The basic  
mesh is also shown in (a) by a wireframed polygonal mesh. The colored dots  
represent  the inside cells.  Rendering results  to  a torus with fine scale detail  
surface (d).   
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3.1.3 Cell Tiles

To model the fine scale details by placing every single cell in the bounded three-
dimensional inner area of the basic mesh is a tedious task. Furthermore this type 
of modeling requires a huge amount of memory storing each cell separately. A 
better solution is  to define a small  amount  of cells  in  such a  way,  so that  a  
repetitive tiling over the whole object-space is possible. This approach has the 
advantage,  that  a  tileable  cell  collection  has  to  be  modeled  only  once. 
Furthermore it avoids huge memory consumption. The idea of tiling is done by 
dividing  the  three-dimensional  object-space  into  a  grid  of  uniformly  spaced 
cubes as we can see in Figure 3.1 (c) . In the following these cubes will be called 
“tiles”. Each tile contains the same cell collection (seen in  Figure 3.1 (b)). To 
have a smooth transition between each tile border the cell collection has to be 
tileable in all six directions. That is a cell, which ends on the one side of the 
cube, continues on the opposite side. Since cells are described by voxels a cell 
collection of a tile can be stored in a three-dimensional texture shown in Figure
3.2. This three-dimensional texture will be called the “tile map”. 

Figure  3.2:   A  three-dimensional  texture  of  a  tile's  cell  collection,  which  
contains eight tileable cells. For example the red cell gets tiled over the edges. 
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3.1.4 Representing Objects as Voxel Cell Tiles

Since the cells are defined by a set of connected voxels and the fact that cells 
have  to  be  tested  against  the  basic  mesh  to  determine  the  cell  membership 
(explained in Chapter 3.1.5) a voxelization of the basic mesh is indispensable. 
Voxelization   is  concerned  with  converting  geometric  objects  from  their 
continuous geometric representation into a set of voxels that best approximates 
the  continuous  object  [29].  In  the  preprocessing  stage  the  basic  mesh  is 
voxelized  to  determine  which  parts  of  the  basic  mesh  are  inside  or  outside 
respectively.  The  idea  is  to  render  the  basic  mesh  slice  by  slice  with  an 
orthogonal projection [22]. The clue is to set the near clipping plane to the slice 
depth  and  the  far  clipping  plane  to  infinity  as  we  can  see  in  Figure  3.3. 
Additionally the stencil operation for front faces is set to decrement and for the 
back faces to increment. After rendering, in each slice nonzero values represent 
the area inside the basic mesh. This information is stored voxel by voxel. The 
whole inside-outside voxelization can be done on the GPU even in real-time. 
This approach works only with water-tight closed meshes. 

3.1.5 Cell Membership Determination

After  tiling  the  tiles(cell  collections)  all  over  the  object-space  it  has  to  be 
determined which cells are totally inside, totally outside and intersected by the 
basic  mesh.   To determine  the  cell  membership  for  a  cell,  every cell  in  the 
object-space has to be tested against the basic mesh voxel by voxel. If there is an 
intersection  between  a  cell  and  the  basic  mesh's  boundary the  tested  cell  is 
tagged as “intersected” (shown in Figure 3.4 by the red colored cells). That is if 
only one voxel of a cell intersects with the basic mesh, the whole tested cell is 
tagged as intersected. Accordingly, cells totally inside or outside (meaning all 
containing voxels of the cell), i.e. the basic mesh, not touching the basic mesh's 
boundary are tagged as “inside” (green colored cells in Figure 3.4) or “outside” 
(gray  colored  cells  in  Figure  3.4),  respectively.  At  the  end  of  this  testing 
algorithm each cell in object-space is tagged with a membership stored in the 
“cell membership map”. 
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Figure 3.3:  Inside-outside voxelization of a polygonal mesh of a gargoyle. [22]

Figure 3.4: Cell membership definition: inside cells (green cells), outside cells  
(gray cells) and intersected cells(red cells). The blue line represents the basic  
mesh's boundary.
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3.1.6 Cell Membership Map Indexing

Since the cell membership map has a spatial structure based on tiles, an efficient 
indexing is required to localize a cell in a tile. The first step for cell localization 
is  to  define  a  “tile  index”,  which  describes  a  specific  tile  position  in  the 
uniformly divided object space. Due to the known tile size it is very easy to 
determine the tile index. Since a tile is specified, a second index,  the so-called 
“cell index”, has to be defined to finally localize a cell.  If we take a look at 
Figure 3.5 on the left we can see a tile containing four cells. Note that the blue 
cell gets tiled over the corners, the green and magenta cells are tiled over the 
edges and the red cell lies totally inside the tile. However, for localizing each 
cell in this tile, four cell indices are insufficient. Therefore the cell index range 
has to be expanded by splitting each tiling cell into “split cells”. That is in the 
given tile example in Figure 3.5 the blue cell is split into four split cells. On the 
other hand the green and magenta cells are split into two split cells. Note the new 
indexing of each split cell in Figure 3.5 on the right. 

Figure 3.5: Tile containing four cells on the left. Each tileable cell gets split into  
split cells. Due to cell splitting a new indexing could be found on the right.
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In Table 3.1 the cell-to-split-cell connectivity for the tile example in Figure 3.5 is 
shown. Note that after cell splitting the cell index range changes from four to 
nine. With this important splitting step it is possible to localize every cell in the 
cell membership map by the tile and cell index. 

Cell index Split cell index
1 1,2,3,4
2 5,6
3 7,8
4 9

Table 3.1: Cell index before cell splitting (left column). Corresponding split cell  
indices for each tiled cell (right column).

3.1.7 Color Map

As we have seen in Chapter 2.3 every mesostructure rendering technique needs 
an  input  for  the  rendering  process,  mostly  a  two-dimensional  color  map. 
However cell-based rendering requires a three-dimensional color map. That is to 
say that cell-based rendering also handles color information inside the object 
such as in solid texturing explained in Chapter 2.4.5. To accomplish this feature 
a mapping between a three-dimensional point in object space and texture space 
is done. So even if we cut through the object we get color information also on 
the  cutting  plane.  Furthermore  if  the  color  map  contains  transparency 
information  and  by  the  fact  that  cell-based  rendering  uses  a  ray  tracer  for 
rendering, it  is easy to render refraction and translucency by shooting further 
rays in the pixel shader. 
Since a tile has only a description of a cell collection and containing no color 
information, a three-dimensional color map has to be created additionally. It is 
up to the artist to inherit the cellular structure of the tile in his three-dimensional 
color map. In doing so the color map has to be also tileable in all directions to 
get nice results for rendering. In Figure 3.6 a three-dimensional color map (e) is 
applied as input for cell-based rendering, which results into a more interesting 
looking torus as we have seen in Figure 3.1 (d). Figure 3.7 shows further results 
with other color maps as input. Note that no shading is applied on these results. 
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3.1.8 Normal Map 

Shading  makes  an  object  more  interesting  and realistic  looking.  Therefore  a 
precomputation  of  normals  is  indispensable.  Generally  in  volume  rendering 
gradients  serve  as  normals  for  shading  calculation.  Often  gradients  are 
precomputed (or even in realtime) by the central difference  [24]. Since a cell-
based object uses three-dimensional textures a modified gradient precomputation 
has to be done. Instead calculating the normals in non-homogenous areas such as 
in volume rendering our normals gets precomputed on the cell's boundary.  A 
detailed implementation description is explained in chapter 4.7. In Figure 3.8 a 
color (a) and a normal map (b) is applied, which results into a colored and phong 
shaded look (d). In  Figure 3.9 a comparison between an unshaded (left) and a 
phong shaded (right) cell-based torus is shown. 

3.1.9 Conclusion

This  proposed  cell-based  object  representation  is  especially  designed  for 
repetitive surface details. With this representation it is possible to avoid huge 
memory  consumption  by  precomputing  a  cell  membership  map.  The  cell 
membership map contains all inside cells, from which the cell-based object is 
build.  Furthermore  the  cell  membership  map  offers  an  easy  indexing  for 
localizing each cell in object space, which can be very helpful for rendering as 
explained in Chapter 3.2. 
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Figure 3.6: Cell-based rendering with a color map [23] (e) as input. Note that  
the final result (d) has no shading applied. 

Figure  3.7: Cell-based  rendering  with  further  color  maps  [23] (bottom)  as  
input. Note that the results (top) have no shading applied. 
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Figure  3.8: Cell-based  Rendering  with  a  specific  cell  collection  (a)  with  
corresponding  normal  map  (b)  and  color  map  [23] (c)  as  input. A  phong 
shading is applied to the cell-based torus object (d).

Figure  3.9: Comparison  between  an  unshaded  cell-based  torus  (left)  and  a  
phong shaded, cell-based torus object (right). Both objects are colored with the  
stone color map from [23] Figure 3.7.
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3.2 Rendering Stage

In this chapter a ray tracing-based rendering method is proposed for rendering 
the cell-based object. The ray tracer uses the precomputed cell membership map 
(explained  in  Chapter  3.1),  which  makes  rendering  very  efficient.  Even  self 
reflection  and refraction can be easily computed by shooting further rays.  The 
main goal of the ray tracer is to find the inside cell's boundary, which represent 
the fine scale details of the cell-based object.  

3.2.1 Ray Tracer

This  proposed  rendering  process  is  based  on  a  ray  tracing  algorithm.  The 
rendering needs the following four three-dimensional textures as input: tile map, 
cell  membership  map,  color  map  and  normal  map.  The  tile  map  and  cell 
membership map are required to localize a cell in object space and to determine 
its cell membership. After finding an inside cell's boundary a local illumination 
calculation is done which needs the color map and normal map as input. The 
fifth and last input for rendering is the basic mesh. By rendering the basic mesh 
(the rough representation of our cell-based object),  the object's  surface is  the 
entry point for the ray tracing algorithm. The idea is  to  shoot rays  from the 
object's surface in eye direction to hit an inside cell shown in Figure 3.10 called 
the  “first  hit”.  To  find  an  intersection  of  an  inside  cell  two  simple  search 
algorithms have to be performed. The following piece of pseudo code shows a 
first hit by performing a linear search with a subsequent binary search to find the 
inside cell's boundary: 

1 for each pixel shoot ray in eye direction 
2
3 entry point is set to the basic mesh's surface
4
5 //linear search
6 while (cellMembership == INTERSECTED)
7 stepsize along ray
8 determine cell membership
9 if (cell membership == INSIDE)
10 store hit position
11 break while loop
12 end
13 end
14 if (cell membership == OUTSIDE)
15 discard ray
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16 end
17
18 //binary search
19 start binary search from last hit position
20 for each binary step 
21 determine cell membership
22 half step size
23 if (cell membership == INSIDE)
24 store hit position

25 step two times backwards along ray
26 end
27 step one step forward along ray
28 end
29 end

Algorithm  3.1: First  hit  performed  by  a linear  search  (row  6-13)  with  a  
subsequent binary search (row19 - 28) to find the inside cell's boundary. 

3.2.2 First Hit

First of all a linear search is performed to find an inside cell (shown in row 6-13 
in Algorithm 3.1). As we can see in Figure 3.10 the ray entry is shown by a cyan 
colored  dot  labeled  with  an  “E”.  Note  that  the  entry  point  is  inside  an 
intersection  cell,  which  is  no  coincidence.  The  fact  that  cells  touching  the 
object's  surface  is  per  definition  an  intersected  cell.  In  the  following  an 
intersection cell, which contains the entry point will be called the “entry cell”. 
The linear search is performed until an inside cell is found (green cell in Figure
3.10). In every iteration (represented by the yellow colored dots labeled with 
“L1” and “L2” in Figure 3.10) a constant sized step is done. The initial step size 
of the linear search highly depends on the angle between the shooting ray and 
the basic mesh's surface normal. This rule is needed to avoid artifacts by more 
grazing viewing angles [15]. This happens because the step size is too high and 
therefore missing an inside cell. 
It is not always the case (as in Figure 3.10) that right after the entry cell an inside 
cell is followed. Especially at grazing angles often the ray steps through more 
than one intersection cell until it hits an inside cell shown in Figure 3.11. 
But  it  is  not  guaranteed  that  exactly  the  border  of  the  inside  cell  was  hit. 
Therefore  the  binary  search  has  to  be  performed  (shown  in  row  19-28  in 
Algorithm 3.1). The idea is to half the step size with every iteration as long as 
the step size is smaller than a certain threshold(ideally the size of a voxel) shown 
in Figure 3.12. As we can see in Figure 3.12 the binary search algorithm starts at 
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the last position of the linear search, which has to be inside an inside cell(the 
cyan colored dot labeled with a “L”). In the example in  Figure 3.12 we only 
need three iterations to hit exactly the inside cell's border(yellow colored dot 
labeled with a “B3”). 

Figure 3.10: Ray tracing performing a linear search to find an inside cell (green 
cells). Intersected cells are colored red and outside cells are colored gray. The  
blue  line  represents  the  basic  mesh's  surface.  “E”  is  the  entry  point  and  
“L1,”L2” are the equidistant steps along the ray.

Figure 3.11:  At grazing angles the ray steps through more than one intersected  
cell (red cells). Four equidistant steps (yellow colored dots) are required to hit  
an inside cell (green cell).
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Figure 3.12: Ray tracing performing a binary search to find the cell's boundary. 
Inside cells are colored green, intersected cells are colored red and outside cells  
are  colored  gray.  The  blue  line  represents  the  basic  mesh's  surface.  Three  
iterations B1,B2 and B3 are needed to hit exactly the inside cell's border.

Generally for the linear search the termination criteria is to hit an inside cell no 
matter if this inside cell is an adjacent neighbor of the intersection cell. After 
finding an inside cell the search algorithm switches to a binary search to finally 
hit the cell's boundary for illumination computation. But what happens if the ray 
hits an outside cell? If we take a look at Figure 3.13 we can see that the first ray 
hits an outside cell meaning the ray is outside the object's surface. To finally find 
an inside cell the ray had to step through all the outside cells until it hits the 
object's surface again. Due to basic mesh rendering we get entry points inside an 
intersected cell. This fact helps us to skip all over the outside cells such as in 
Figure 3.13 and immediately starting at the entry point right after the outside 
cells shown by the second entry point in Figure 3.13. This approach saves some 
computational time. In fact the idea is not to skip the outside cells, but discarding 
the first  ray entirely (marked by the red “X” for ray 1 in  Figure 3.13) if  an 
outside  cell  is  hit.  Due to  basic  mesh rendering  a  further  ray right  after  the 
outside cells (ray 2 in Figure 3.13) is shot from the object's surface pointing in 
the same viewing direction. To discard a ray means the search algorithm can be 
entirely terminated by not performing a subsequent binary search. In this case no 
inside  cell  could  be  hit  and  therefore  the  color  information  gets  entirely 
discarded meaning that ray misses the object's surface. By finding an inside cell's 
boundary only a simple lookup in the precomputed normal and corresponding 
color map has to be done to finally evaluate the local illumination.
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Figure 3.13: Ray tracing performing a linear search. Since the first ray hits an  
outside cell (gray cells) ray 1 gets entirely discarded (shown by the red “X”).  
Due to basic mesh rendering a further ray (ray 2) is shot pointing in the same 
viewing direction. Ray 2 hits an inside cell (green cell). 

3.2.3 Specular Self-Reflection

After  finding  the  inside  cell's  boundary  performing  a  first  hit  (explained  in 
Chapter  3.2.2)  specular  self-reflection  can  be  easily  computed  by  shooting 
further  rays  (reflected  rays  R1  and  R2  shown  in  Figure  3.14).  The  law  of 
reflection says that for specular reflection the direction of the incoming light (the 
incident  ray)  and the  direction  of  outgoing light  reflected  (the  reflected  ray) 
make the same angle with respect to the surface normal. In Algorithm 3.2 a self 
reflection is explained.  As for the first hit (explained in Chapter 3.2.2) a linear 
search has to be performed to find an inside cell. The main difference between 
the first hit and the specular self-reflection is that a linear search (shown in row 
4-17 in Algorithm 3.2) is performed mostly outside the cell-based object instead 
inside. This fact provides an optimization by doing a “tile skipping” for empty 
tiles  (shown  in  row  11-16  in  Algorithm  3.2).  Due  to  the  precomputed 
membership map, which contains the membership of each cell in a tile, we can 
easily check if a whole tile contains solely outside cells. In case the ray intersects 
an empty tile (magenta highlighted square in  Figure 3.15) only a box vs ray 
intersections has to be computed to determine the exit point (yellow colored dot 
labeled with a “B” in  Figure 3.15) along the shooting ray.   After finding an 
inside cell a binary search (the same as in Algorithm 3.1 row 19-28) is 
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performed to find the cell's boundary. In case no inside cell is hit by the linear 
search the ray gets entirely discarded (19-20 in Algorithm 3.2). 
Specular self-reflection can have more than one reflection bounce. Since every 
further reflection bounce leads to more computational costs, in practice only one 
or maybe even two reflection bounces are sufficient to have a realistic looking 
specular self-reflection. More reflection bounces don't contribute so much details 
in the final rendering so that a higher order ray would be worth the effort. In 
Figure 3.16 we can see a comparison of a cell-based torus object rendered with 
higher  order  rays  using  an  environment  map.  It  shows  that  the  difference 
between ray order one and higher orders is hardly visible. 

1 for each specular reflection bounce shoot ray in reflection direction
2
3 determine reflection direction
4 while (cellMembership != INSIDE) //linear search
5 stepsize along ray
6 determine cell membership
7 if (cell membership == INSIDE)
8 store hit position
9 break while loop
10 end
11 if (cell membership == OUTSIDE) //empty tile skipping
12 if (tile is empty)
13 box(tile) vs ray intersection to determine exit point
14 hit position = exit point
15 end
16 end
17 end
18
19 if (linear search found no hit)
20 discard ray
21
22 perform binary search 
23 end

Algorithm 3.2: Specular self-reflection performed by a linear search (row 4-17)  
with a subsequent binary search (row 22) to find the inside cell's boundary. For 
optimizing purposes an empty tile skipping (row 11-16) is done for the linear  
search. 
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Figure  3.14: Specular  self-reflection  with  two  bounces. E  is  the  viewing 
direction, which is the incident ray for the first bounce. R1 is the corresponding  
reflected  ray.  In  this  example  an  additional  bounce  is  performed.  R1 is  the  
incident  and  R2  the  reflected  ray,  respectively.  N1  and  N2  are  the  surface  
normals. 

Figure  3.15: Empty  tile  skipping  is  done  by  computing  a  box(tile)  vs  ray  
intersection  to  determine  the  exit  point “B”.“A” is  the  corresponding  entry  
point.  The magenta colored square represents  the empty tile,  which contains  
solely outside cells.
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Figure 3.16: A close-up view of a cell-based torus rendered with specular self-
reflection  and environment  mapping. Traversing  higher  order  reflection  ray:  
zero (top left), one (top right), two (bottom left) and three (bottom right).

3.2.4 Refraction

Refraction can be easily computed just like specular self-reflection explained in 
Chapter 3.2.3 by shooting further rays right after the first hit. Instead of shooting 
further rays in reflection direction this time a refraction direction is computed by 
Snell's law. Snell's law is a formula used to describe the relationship between the 
angle of incidence θ1 and refraction θ2: 
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When light penetrates from one media into another the direction of the incident 
light gets bend. The amount of bending the light direction depends on the media 
refractive index n1 and n2 . 
In Figure 3.17 the first refraction R1 occurs when the viewing ray E penetrates 
into the cell-based object. Ray R1 travels inside the object until it  leaves the 
object  by  hitting  the  inside  cell's  boundary.  To  determine  the  inside  cell's 
boundary efficiently a modified linear search has to be performed as we have 
seen  for  the  specular  reflection.  Due  to  ray  marching  is  done  in  the  inside 
(instead outside) the object the termination criteria for the cell membership has 
to be changed (as we can see in Algorithm 3.3 row 4 and row 7). Hence a tile 
skipping can be also done for tiles, which contain solely inside cells (shown in 
Algorithm 3.3 row 12-15). After the ray hits the cell-based object's boundary two 
possible refractions are possible. First, the ray can be refracted in such a way so 
that the ray travels again in the inside of the cell-based object shown by R2 in 
Figure 3.17. In this case the same search algorithm (row 4-17 in Algorithm 3.3) 
as mentioned before is performed due to ray marching is done inside the cell-
based object. The second possibility is that the ray leaves the cell-based object 
(ray R3 in Figure 3.17) so that a ray marching is performed at the outside of the 
cell-based  object.  This  algorithm  (Algorithm  3.2 row  4-22)  was  mentioned 
before in the specular self-reflection explained in Chapter 3.2.3. Refraction is 
repeated until no cell-based object's surface can be hit anymore. At the end of 
this refraction process we get a ray direction, which could be used to lookup into 
an environment map (just like for specular self-reflection). Results of refraction 
with an environment map can be seen in Figure 3.18.

1 for each refraction bounce shoot ray in refraction direction
2 determine refraction direction
3 if (next step along ray == INSIDE)
4 while (cellMembership == INSIDE) //linear search
5 stepsize along ray
6 determine cell membership
7 if (cell membership == INTERSECTED)
8 stepsize backwards along ray
9 store hit position
10 break while loop
11 end
12 if (tile contains solely inside cells) //tile skipping
13 box(tile) vs ray intersection to determine exit point
14 store exit point as hit position
15 end
16 end
17 perform binary search 
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18 end
19 else //same search algorithm just like for specular self-reflection
20 (see row 4-22 in Algorithm 3.2)
21 end
22 end

Algorithm 3.3: Refraction performed by a linear search (row 4-16) in the inside  
of the cell-based object with a subsequent binary search (row 17) to find the  
inside cell's boundary. For optimizing purposes an tile skipping (row 12-15) for  
tiles  containing  solely  inside  cells  is  done  for  the  linear  search.  Search  
algorithm  for  refraction  rays  outside  the  cell-based  object  are  explained  in  
Algorithm 3.2 in row4-22.

Figure 3.17: Refraction with two possible ray paths R2 and R3. E represents the  
viewing  vector,  which  penetrates  into  the  cell-based  object.  At  the  first  hit  
position (yellow dot) a refraction vector R1 is shot. At the second hit position  
two possible refraction vectors are shown. R2 refracts into the cell-based object.  
R3 leaves the cell-based object. 
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Figure 3.18: A cell-based torus rendered with refraction. In this rendering an 
environment map is used. The image above is rendered with a lower refraction  
index than the image at the bottom.
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3.3 Summary

In summary in the preprocessing stage the object-space is split into tiles. Each 
tile contains the same tileable cell collection. After precomputation each cell in 
object-space is tagged with one of the following cell membership information: 
inside,  outside  or  intersected  and  stored  in  the  cell  membership  map. 
Localization of a cell is done by two indices, the tile index and the cell index. 
Especially for tileable cells  a cell splitting has to be done, which results to a new 
indexing. The color map has to be tileable to get nice results in the rendering. 
The normal map is computed by calculating edge normals on the cell's boundary.
In the rendering stage a ray-tracer is performed using a linear with a subsequent 
binary search to hit an inside cell's boundary to calculate a local illumination. 
Additionally features such as specular self reflection and refraction can be easily 
computed by shooting further rays. For ray tracing some optimizations such as 
discarding viewing rays and empty tile skipping are discussed to improve the 
rendering speed. 



„An  algorithm  must  be  seen  to  be  
believed„
Donald Knuth

Chapter 4. Implementation

Implementation

With the fundamental understanding of the basic concept of a cell-based object 
representation described in Chapter 3 we can analyze the preprocessing stage 
from a technical point of view. During the preprocessing stage the following 
textures are precomputed: tile map, membership map and normal map. In this 
chapter each texture generation is explained in detail.  In Chapter 4.1 we will 
discuss various ways to generate a tilemap. In Chapter 4.2 and 4.3 some index 
modifications to the tile map has to be done to meet certain requirements for the 
next  precomputational  stage  the  cell  membership  determination,  which  is 
explained  in  Chapter  4.4  and 4.5.  Chapter  4.6  explains  how to  generate  the 
corresponding normal map. The last Chapter 4.7 presents three tools to model 
and render the cell-based objects.

4.1 Tile Map 

In Chapter 3.1.3 we defined the term cell tile, which contains a collection of 
cells stored in a three-dimensional texture called the tile map. This cell tile gets 
tiled over the object space to create the fine scaled details on a cell-based object. 
The  basic  idea  is  to  create  a  three-dimensional  texture,  which  contains  cell 
indices. Each cell is defined by an unsigned integer. In Figure 3.2 we can see a 
tile map containing eight cells meaning that the cell index range goes from 1 to 
8. Note that some cells get tiled over the corners and edges. Since the tile map in 
Figure 3.2 is based on a Voronoi diagram (explained in Chapter 2.4.2) each cell 
has a immediate adjacent cell. That is no empty space is defined in this texture. 
However it is also possible to create a tile map containing empty space defined 
by the cell index 0. In Figure 4.1 we can see a tile map with empty space defined 
by the black area. In this tile map we created spheres with a certain radius. Each 
sphere  represents  a  cell  in  the  tile  map.  In  Figure  4.2 a  slice  of  a  three-
dimensional tile map is shown containing four cells. Each pixel in this slice is 
tagged with an unsigned integer representing a cell index (index range from 1 to 
4) or emtpy space (index 0). 
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Defining each cell by hand could be a tedious task because every slice of the 
three-dimensional tile map has to be created by hand with a painting tool. To 
make life easier the tile map should be created automatically. For testing purpose 
we choose a Voronoi diagram (explained in Chapter 2.4.2) for generating a tile 
map.  We  randomly  set  some  seed  points  in  three-dimensional  space  and 
generated a three-dimensional Voronoi diagram given by Euclidean distance. In 
Figure 3.2 we can see a computed tile map out of eight randomly set seed points 
This  tile  map has  a  resolution of 64x64x64 voxels.  Instead of  the Euclidean 
distance  we  can  use  another  distance  function,  which  produces  various 
interesting Voronoi diagrams as we have seen in Figure 2.27. Certainly there are 
many procedural texture generation methods, which could be used to create a tile 
map. Some of them we have been described in the related work in Chapter 2.4. 
There are some practical methods for texture design  [20] to build procedural 
textures. 

Figure 4.1:  A tile map containing eight spherical cells (colored dots). The black  
area represents the empty space. 

Figure 4.2:  Tile map slices tagged with a cell index 1 to 4. Index 0 represents  
empty space. 
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4.2 Cell Splitting

Assuming that we have chosen a procedural method for building a tile map, such 
as a Voronoi diagram, we have to do some modifications to the tileable cells 
itself. In such a map there are some cells, which fit entirely into the tile map 
(magenta colored cell tagged with the cell index 4 in Figure 4.2) and some other 
cells,  which  get  tiled  over  the  tile  map's  boundaries  (the  purple  colored cell 
tagged with cell index 2 in  Figure 4.2). Every split cell in this tile has to be 
locatable by a split cell index as explained in Chapter 3.1.6.  If the tiled cell is 
tagged with the same cell  index,  we have to  clip  this  cell  on the  tile  map's 
boundary and assign each split part of the tileable cell with a new cell index 
somehow. In the three dimensional space a cell can be split up to eight split cells. 
Producing eight split cells is only possible if and only if the cell gets tiled over 
the corners as we can see for the cyan colored cell in Figure 3.2. Accordingly we 
need for every tileable cell a placeholder for eight possible split cells. 

Figure 4.3:  A three-dimensional texture's boundary tagged with a six bit binary  
code. 
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If we take the example from Figure 4.2 the tile map's slice contains two tileable 
cells with index 1 and 2. Each of these tileable cells have to be split into two 
split cells.  To determine which cells are tiled over a boundary, we have to tag 
every  cell,  which  comes  in  contact  with  a  boundary,  with  a  so-called  “face 
code”. Since a three-dimensional texture map has a cubic shape each face side 
can be tagged with a face code, which is realized by a six bit binary code shown 

in  Figure  4.3.  The  split  cell  algorithm  needs  the  following  three  three-
dimensional textures:

1.) tileMap: Is the input for the split cell algorithm.
2.) splitCellMap1: A three-dimensional texture, which is initialized with the 

face codes.
3.) SplitCellMap2:  Another  three-dimensional  texture,  which  is  empty 

meaning all voxels are set to zero. 

The data type (unsigned integer) and the resolution of both split cell maps are the 
same as for the tile map. In Algorithm 4.1 we can see the pseudo code for a split 
cell  algorithm.  The tile map is  set  as input for the split  cell  shader (row1 in 
Algorithm 4.1).  A sort  of  “ping pong” swapping between the two split  cells 
splitCellMap1 and splitCellMap2 is done after each split cell shader pass (row 3-
11 in  Algorithm 4.1). Ping pong swapping in this context means that one split 
cell map is set as input and the other as output for the split cell shader. 
The main idea of the split cell shader (pseudo code shown in Algorithm 4.2) is to 
go through every voxel and apply an OR-operator (row 13 in Algorithm 4.2) on 
the corresponding neighboring voxels (26 directions since we are working with 
three-dimensional  texture  maps)  of  the  same  cell.  At  the  end  of  the  whole 
process every cell is tagged with the corresponding face code, meaning that for 
each cell we know exactly every touching boundary. 

1  set tileMap as input texture
2
3  for each pass
4 set splitCellMap1 as input texture
5 set splitCellMap2 as output texture
6 do split cell shader
7
8 set splitCellMap1 as output texture
9 set splitCellMap2 as input texture
10 do split cell shader
11 end

Algorithm 4.1: Split cell algorithm.  
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1   for each voxel
2       cCellIndex = tile map's cell index on current position
3       cSplitCellIndex = get split cell index on current position
4
5       //empty space
6       if(cCellIndex == 0)
7 return 0;
8
9       for each neighboring voxel
10 nCellIndex = tile map's cell index on neighboring position
11 if(nCellIndex == cCellIndex)
12            nSplitCellIndex = get split cell index on neighboring position
13       cSplitCellIndex =  cSplitCellIndex | nSplitCellIndex; 
14 end
15     end
16
17     return cSplitCellIndex;
18  end

Algorithm 4.2: The split cell shader. 

An example of an input tile map and split cell map initialized with face codes is 
shown in Figure 4.4. In this example only two passes (shown in Figure 4.5) of 
the split  cell  shader are needed to get the final result.  The number of passes 
depends  on  the  resolution  of  the  input  maps.  Assuming  that  NxNxN  is  the 
resolution  of  the  input  map  the  algorithm needs  N  passes  to  assure  correct 
results.  

Figure 4.4: The two input maps for the split  cell  shader. The tile map (left)  
containing three cells and empty space. The split cell map (right) initialized with  
face codes.  
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Figure 4.5: Two passes of the split cell algorithm for the example in Figure 4.4.
First pass is on the left and the second and last pass is on right. The highlighted  
pixels represent the pixels modified in the current pass.

4.3 Split Cell Index Determination

As we can see in Figure 4.5 every split cell has a corresponding face code. But 
for a correct cell membership map indexing  (explained in Chapter 3.1.6) we 
cannot adopt the face codes in our resulting split cell map (shown in Figure 4.5 
right). With the knowledge that every cell needs a placeholder of eight split cell 
indices we define for each cell an ascending sequence, meaning  that the first 
cell has the index range from 1 to 8, the next cell the index range from 9 to 15 
and so on. Hence the only task is to convert the resulting face codes into an 
ascending split cell index. The result of conversion for the example from Figure
4.5 can be found in Figure 4.6.

Figure 4.6: Conversion of face codes (left) into an ascending split cell index  
(right) needed for a correct cell membership map indexing. 
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At the end of the split  cell  index conversion two new important textures are 
created, the face code map (in Figure 4.6 left) and the split cell map (in Figure
4.6 right). Both textures are important for the cell membership determination. 

4.4 Cell Membership Determination

The basic  concept  of  cell  membership  determination is  explained in  Chapter 
3.1.5. At the end of this process the cell membership map contains for each split 
cell in object space a membership information (inside, outside and intersected). 
The  main  implementation  idea  of  the  cell  membership  determination  is  to 
calculate the split cell membership slice by slice (see  Algorithm 4.3). As input 
for  the  cell  membership  determination  a  voxelization  of  the  basic  mesh 
(mentioned in Chapter 3.1.4) is required. In Figure 4.7 on the left we can see a 
slice  of  a  voxelized  object.  Notice  the  black  and  grey  areas.  The  grey area 
(tagged with a 1) represents  the inside and the black area (tagged with 0) the 
outside of the basic mesh. In the following the set of all slices will be called the 
“inside outside map”. The resolution of the inside outside map depends on two 
parameters calculated by the resolution of the split cell map times the number of 
tiles. Since the resolution of the split cell map in Figure 4.7 on the right is 8x8 
and since the split cell map gets tiled over the object space two times in every 
direction (x, y, and z) the resulting resolution of the inside outside map in Figure
4.7 on the left has to be 16x16. On modern graphics cards the maximum texture 
size is 8192x8192. Hence a high precision of the inside outside voxelization is 
possible. Assuming  the  maximum  texture  memory  size  is  1  GB  the  cell 
membership  map  contains  406x406x406  tiles  at  most,  due  to  the  following 
formula:

In this case the resolution of the split cell map is 20x20x20 pixels calculated by 
the above mentioned formula:
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If  this  split  cell  map contains  only one cell,  which would make sense  for  a 
resolution of 20x20x20 pixels, this cell based object can have up to 406 cells 
(due to 406 tiles) in one coordinate axis (or up to 406^3 = 66923416 cells in the 
whole object space). Since only the inside cells in the cell-based ray tracing are 
rendered usually only half of the possible cells gets rendered depending on the 
basic mesh. On the whole we can assume that the following ratio between inside, 
outside and intersected cells exists:

inside:outside:intersected =  3:2:1

1 for each slice 
2 create inside outside slice
3 calculate split cell membership
4 end
5
6 merge split cell membership information

Algorithm 4.3: Cell membership determination. 

After computing the inside outside voxelization (see Algorithm 4.3 row 2) it has 
to  be  determined  whether  split  cells  are  totally  inside,  outside  or  even 
intersecting  the  basic  mesh  (see  Algorithm 4.3 row 3).  For  this  a  new data 
structure is defined, which holds the cell membership information the so-called 
“cell membership map”. The resolution of the cell membership map is depending 
on the number of tiles. If N is the number of tiles in one direction the resolution 
of  the  cell  membership  map  is  set  to  NxNxN.  A tiling  in  three-dimensional 
object space is shown in Figure 4.8. Due to the fact that a cell can be tagged as 
“inside”, “outside” or “intersected” we need only two bits per split cell. In our 
implementation the following bit codes are defined: 

Binary code Cell membership tag
00 OUTSIDE
01 INSIDE
10 INTERSECTED
11 UNSET

Table 4.1: Binary codes for cell membership information.. In the following the  
colors  will  represent  the  corresponding  cell  membership  tags  for  better  
visualization. 
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Figure 4.7: top:  shows the  corresponding slice  in  object  space. bottom  left:  
voxelized basic mesh, bottom right: split cell map tiled over object space.  
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Figure 4.8: Object space divided into 8x8x8 equal distant  cubes. Each cube 
represents a tile.

The bit code 11 as in Table 4.1 represents an “unset” voxel, which is important 
for initialization. On modern graphics hardware it is possible to store a 128-bit 
value per voxel in a three-dimensional texture. Consequently it is  possible to 
store 64 split cell membership information per tile. In the Chapter 4.2 it was 
mentioned that a cell splitting is needed for cells, which are tiled over the  tile 
maps corner or edges. Due to the fact that a tiled cell could be split into eight 
split cells at most and the split cells are tagged with an ascending split cell index 
we get the following bit allocation shown in Figure 4.9. In the following the 128-
bit code per tile will be called the “tile bit code”. That is the cell membership 
map is stored as a three-dimensional texture with a 32-bit RGBA channel. Each 
32-bit channel can store 16 split cells (each split cell needs two bit). Hence the 
cell membership is nothing else than a list of tile bit codes. 

Figure 4.9: Bit allocation for the cell membership map. A tile is a 128-bit code  
containing  64  2-bit  split  cells.  Each  2-bit  code  represents  a  split  cell  
membership tag. 
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So far due to the inside outside voxelization only the cell membership of one 
voxel is calculated. However we need the membership of the whole cell. This is 
given by the algorithm explained in Algorithm 4.4.

1 initialize membership map with the UNSET tag
2 for each voxel in the inside outside map
3
4    calculate cell and tile coordinates from current voxel position
5    get split cell index
6   
7    if (empty space)
8   continue (jump back to row 3);
9    end
10    
11    membership = get split cell tag from cell membership map
12
13    if (membership == INTERSECTED)
14   continue (jump back to row 3);
15    end
16
17    newMembership = get tag from inside outside slice
18
19     if( (newMembership != membership) && (membership != UNSET) )
20    newMembership = INTERSECTED;
21     end
22
23    overwrite existing cell membership with new one
24   end
25 end

Algorithm 4.4: Split cell membership determination. 

First of all every split cell in the cell membership map gets initialized with the 
“unset” tag (see row 1 in Algorithm 4.4). The idea is to go through every slice of 
the inside outside map pixel by pixel (see row 2 in  Algorithm 4.4). Due to the 
knowledge of the tile's size two coordinates are calculated from the current voxel 
position (see row 4 in Algorithm 4.4) by the following formula:

tile coordinate = voxel position modulo tile's size
cell coordinate = voxel position – tile coordinate 
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With the cell coordinate a simple lookup in the split cell map returns the split 
cell index (see row 5 in Algorithm 4.4). If the split cell index is equal to zero the 
voxel is inside an empty space.  Hence no further computation is needed and 
therefore the algorithm jumps to the next voxel (see row 7-8 in Algorithm 4.4). 
As  mentioned  in  Chapter  3.1.6  a  split  cell  localization  is  realized  by  two 
coordinates,  the  tile  and  cell  coordinate.  The  tile  bit  code  contains  the  cell 
membership for each split cell inside a corresponding tile. To get the tile bit code 
a lookup in the cell membership map with the corresponding tile coordinates has 
to be done (see row 3 in  Algorithm 4.5).  Additionally some bit  comparisons 
(explained  in  Algorithm  4.5)  are  done  to  get  the  corresponding  split  cell 
membership tag (see row 11 in Algorithm 4.4). The input for the bit comparison 
is  the  split  cell  index  (range  from  1  to  64).  As  mentioned  before  the  cell 
membership  is  stored  as  a  three-dimensional  texture  with  a  32-bit  RGBA 
channel. Hence the tile bit code has 128-bit storing 64 split cells (16 split cells in 
one channel). The corresponding channel is computed by dividing the split cell 
index by 16 (Algorithm 4.5 row 2). Next the bit position inside the channel is 
computed (shown in Algorithm 4.5 row 1). To get tile bit code only a lookup in 
the membership map with the corresponding tile coordinate is done. Knowing 
the channel and the bit position in this channel it is very easy to get the split cell  
membership out of the tile bit code (see Algorithm 4.5 row 5-16).

1  shift = (splitCellIndex & 15) << 1;
2  channel = splitCellIndex >> 4;
3  tileBitCode = get tile code
4
5  if ( channel == 0 )
6  splitCellMembershipTag =  ((tileBitCode.r & (3<<shift)) >> shift);
7  end
8  if ( channel == 1 )
9  splitCellMembershipTag =  ((tileBitCode.g & (3<<shift)) >> shift);
10 end
11 if ( channel == 2 )
12  splitCellMembershipTag =  ((tileBitCode.b & (3<<shift)) >> shift);
13 end
14 if ( channel == 3 )
15  splitCellMembershipTag =  ((tileBitCode.a & (3<<shift)) >> shift);
16 end

Algorithm  4.5: Bit  comparisons  to  get  split  cell  membership  from  cell  
membership map.”&” = bitwise AND. “<<” = shift left. “>>” = shift right. 
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The final step is to compare the voxel's membership from the inside outside map 
(see row 17 in Algorithm 4.4) with the already written membership information 
in the cell membership map. By defining the following rules we can determinate 
the membership of a whole split cell:

Membership 1 Membership 2 Resulting Membership

INSIDE INSIDE INSIDE

OUTSIDE OUTSIDE OUTSIDE

INSIDE OUTSIDE INTERSECTED

OUTSIDE INSIDE INTERSECTED

Table 4.2: Rules for combining cell memberships. Column 1 and 2 are the inputs  
and the third column the output for this operation.  

The result after the split cell membership determination explained in Algorithm
4.4 for the input maps from Figure 4.7 can be seen in Figure 4.10. The resulting 
membership map is shown in  Figure 4.11. Note that this membership map has 
only the  split  cell  membership  computed  without  taking  the  whole  cell  into 
account. Therefore a split cell membership merger explained in the next Chapter 
4.5 has to be done. The split cell membership merger is the last step to determine 
the final cell membership map. 

Figure 4.10: Left: The result of the split cell membership determination from the  
example  in  Figure  4.7.  Split  cells  are  tagged  with  INSIDE(green),  
OUTSIDE(red) and INTERSECTED(blue). The numbers represent the split cell  
index in a tile. Right: The corresponding face code map from the example in  
Figure 4.7 tiled over the object space. This map shows which split cells belong  
to which cells. Tile coordinates (x/y) can be found right after the tile label.
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Figure 4.11: The resulting cell membership map from example in  Figure 4.7.  
Each row represents a tile bit code containing 64 split cell memberships. Split  
cells are tagged with INSIDE(green), OUTSIDE(red), INTERSECTED(blue) and  
UNSET(grey). The binary code is defined in Table 4.1. 

4.5 Split Cell Membership Merger

At this point we only know the membership of each split cell. The last step is to 
merge the split cell membership information to determine the cell membership of 
a whole cell (build of up to eight split cells). In our implementation we store a 
lookup  table  (see  Figure  4.12),  which  contains  for  every  split  cell  a 
corresponding face code and additionally know which split cells belong to which 
cell.  The  split  cell  membership  merger  is  done on the  CPU. In  this  process 
(explained  in  Algorithm  4.6)  only  the  cell  membership  map  is  needed.  In 
Algorithm 4.6 we go through every corresponding split cell of a cell and merge 
the corresponding split cell memberships (see row 7-10 in Algorithm 4.6)  by the 
same rules (see  Table 4.2) as mentioned in Chapter 4.4. After calculating the 
proper membership for the current cell, all corresponding split cells has to be set 
to the calculated cell's membership in the membership map (see row 13-15 in 
Algorithm 4.6).
For a better understanding in the following a specific split cell is localized by the 
tile coordinate tx and ty and the split cell index si by the tuple (tx/ty)(si). For 
example in  Figure 4.10 on the left the split cell 10 in tile 2 is localized by the 
tuple (1/0)(10). If we look at Figure 4.10 we can see that split cell (0/0)(10) and 
(1/0)(9) belong to the cyan colored cell. Split cell (0/0)(10) is tagged as INSIDE 
and split cell (1/0)(9) is tagged as INTERSECTED. Since we are using the rules 
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of Table 4.2 the whole cell should be tagged as INTERSECTED. The question 
is how do we know in which neighboring tile we have to lookup to find the 
neighboring split cell? In the previous Chapter 4.4 we explained the face code, 
which was used to determine, in which edge or corner the cell gets tiled. With 
this face code it is very easy to determine the corresponding split cells (see row 
4-5 in Algorithm 4.6) of a tiled cell lying in neighboring tiles by doing some bit 
comparison  explained in Algorithm 4.7. 

Figure 4.12: Lookup table stores face codes for every split  cell.  This lookup 
table is generated from the example from Figure 4.10. Magenta cell 1 contains 4  
tiled split cells with face codes 5,6,9 and 10. Note that cell 3 contains only a  
split cell tagged with face code 0, consequently this cell was not tiled.  

1 for each tile
2 for each split cell
3 currentMembership = get current split cell membership 
4 get face code 
5 get corresponding neighboring split cells out of face code
6 for each corresponding neighboring split cell
7 neighboringMembership = get split cell membership
8 if( (neighbouringMembership == INTERSECTED) ||  
9      (currentMembership != neighbouringMembership) )
10 currentMembership = INTERSECTED;
11 end
12 end
13 for each corresponding neighboring split cell
14 set currentMembership for split cell in membership map
15 end
16 end
17 end

Algorithm  4.6: Cell  membership  determination  by  merging  the  split  cell  
membership information.
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1 currentTileCoord = get current tile coordinates
2 currentFaceCode = get face code of current split cell
3 for each corresponding neighboring split cell
4 neighboringFaceCode = get face code of corresponding  split cell
5 directions = currentFaceCode | neighbourFaceCode
6 xDir =  directions & 3
7 yDir = (directions & (3<<2)) >> 2
8 zDir = (directions & (3<<4)) >> 4
9 xShift = yShift = zShift = 0;
10 if(xDir == 3)
11 xShift = 2( currentFaceCode & 3) - 3
12 end
13 if(yDir == 3)
14 yShift = 2*(( currentFaceCode & (3<<2)) >> 2) - 3
15 end
16 if(zDir == 3)
17 xShift = 2*(( currentFaceCode & (3<<4)) >> 4) - 3
18 end

19 newTileCoordinate = currentTileCoord + (xShift,yShift,zShift)
20 store newTileCoordinate in a list
21 end   

Algorithm 4.7: Bit comparisons to get the tile coordinate of the corresponding  
neighboring split cells.”&” = bitwise AND. “|” = bitwise OR.“<<” = shift left.  
“>>” = shift right. 

The bit comparison in Algorithm 4.7 is best explained by the following example. 
Note that in this example we only take the two-dimensional case into account. 
Assuming we take the same split cells as mentioned before, split cell 10 and 9 
from Figure 4.10 and assuming our current tile coordinate (tx,ty) is (1/0). Due to 
the lookup table (see Figure 4.12) we know that split cell 9 has as it's neighbor 
split cell 10. In Table 4.3 we can see the results for the specific example to get 
the right neighboring tile coordinate out of the face code explained in Algorithm
4.7.
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Binary Code Decimal 
Number

Row#  in 
Algorithm
4.7

Comment

0001 1 Row 2 currentFaceCode of Split Cell 9

0010 2 Row 4 neighboringFaceCode of split cell 10

0011 3 Row 5 directions

0011 3 Row 6 xDir

0000 0 Row 7 yDir

- -1 Row 11 xShift

- 0 Row 9 yShift

Table 4.3: Intermediate  results  of  Algorithm 4.7 from the example in  Figure
4.10.

neighboring tile coordinate (tx+xShift,ty+yShift) = (1-1,0+0) = (0/0) row 19

Accordingly if the current tile coordinate for split cell 9 is (1,0) the neighboring 
split cell 10 is found in the neighboring tile with coordinate (0,0).  A comparison 
between two membership maps before and after the split cell merger process are 
shown in Figure 4.13.
The split  cell  membership  merger  is  the last  step to  determine a  proper  cell 
membership map. Finally a cell-based object representation is described by the 
tile and cell membership map, which are necessary for cell localization in the 
rendering stage.

Figure 4.13: The cell membership map from the example in Figure 4.10 before 
(left) and after (right) split cell merger process. Note that only two cells are  
totally inside. 
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4.6 Normal Map

As mentioned in Chapter 3.1.8 in our implementation we precompute  normals 
on the cell's boundary. An edge normal for a cell is calculated in the following 
way. With the tile map as input we go through every voxel in this map (row 1 in 
Algorithm  4.8).  The  idea  is  to  generate  for  every  voxel  up  to  26  normals 
pointing to the neighboring position (row 5 in  Algorithm 4.8). It is important, 
that only normals with a different cell index are taken into account (row 4 in 
Algorithm  4.8).  Out  of  these  calculated  normals  a  mean  normal  has  to  be 
computed, normalized and stored into the three-dimensional normal map. The 
normal map has the same resolution as the tile map (row 10-12 in  Algorithm
4.8). In our implementation the normal map is a 3 channel 32 bit floating point 
texture.

1 for each voxel in the tile map
2 initialize finalNormal with zeros
3 for each neighboring voxel
4 if (current voxel has a different cell index as neighboring voxel)
5 newNormal = neighboring position - current position
6 normalize newNormal
7 finalNormal = finalNormal + newNormal
8 end
9 end
10 calculate mean value out of finalNormal
11 normalize finalNormal
12 store finalNormal in normal map
13 end

Algorithm 4.8: Calculation of the edge normal out of the tile map. 
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4.7 Tools

For a prove of concept a DirectX 10 implementation was created using HLSL 
shading and C++ as programming language. We programmed two preprocessing 
tools for texture precomputation (tile map, membership map and normal map) 
and a rendering program, which displays the cell-based object with a ray tracer 
(explained in Chapter 3.2). In the first precomputation program it is possible to 
create a tile, color and a normal map procedurally.  In  Figure 4.14 we used a 
three-dimensional Vornoi diagram for generating all three maps. In the second 
tool the basic mesh, the tile map and the number of tiles per axis are needed as 
input to generate a corresponding cell membership map seen in Figure 4.15. 

Figure 4.14: Precomputation tool  to  generate a tile,  color  and normal map  
procedurally. This is an example of a Voronoi diagram with eight randomly set  
seed points. 
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Figure 4.15: Precomputation tool to generate a membership map. Inputs for this  
tool are the basic mesh (blue object), the corresponding tilemap and the number  
of tiles per axis.

The rendering program puts all precomputed maps together and renders the cell-
based  object  with  three  different  ray  tracing  modes:  first  hit,  specular  self-
reflection and refraction (shown in  Figure 4.16). The first hit mode uses only 
primary rays.  The two other  modes  additionally shoot  further  rays  to  render 
more interesting effects. 
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Figure 4.16: Rendering program to demonstrate the ray tracing for cell-based  
objects. It  is possible to switch between three rendering modes. From top to  
bottom: first hit, specular self-reflection and refraction. 



„By  three  methods  we  may  learn  
wisdom:  first,  by  reflection,  which  is  
noblest; second, by imitation, which is  
easiest;  and  third,  by  experience,  
which is the most bitter.„
Confucius

Chapter 5. Results and Discussion

Results and Discussion

All images in this chapter were produced on a Intel Core 2 PC at 2.4 GHz CPU 
with 2 GB RAM and a Geforce GTX 295 GPU with  2x896 MB video RAM. 
Since using ray tracing for displaying the cell-based objects  the performance 
highly depends on the output resolution. In order to keep a basis for comparison 
all images were rendered with an output resolution of 1024x768. 

5.1 Memory Consumption

In the precomputation stage the user is able to choose the cell map resolution and 
the number of tiles. A higher cell map resolution is needed for close-up views 
(see Figure 5.1 bottom). A higher number of tiles increases the amount of cells. 
In  Table  5.1 we  can  see  four  various  parameter  setups  to  produce  a  high-
resolution cell-based object. High resolution in this context means using a high 
precision  inside-outside  map  (8192x8192)  for  voxelization  as  mentioned  in 
Chapter 4.4. 

User parameters Texture memory size
Cell map 
resolution

Number of 
tiles

Cell 
map

Color 
map

Normal 
map

Cell 
membership 

map

Total

256x256x256 32x32x32 16 MB 8 MB 256 MB 512 KB 280 MB

128x128x128 64x64x64 2 MB 8 MB 32 MB 4 MB 46 MB

64x64x64 128x128x128 256 KB 8 MB 4 MB 32 MB 44 MB

32x32x32 256x256x256 32 KB 8 MB 512 KB 256 MB 264 MB

Table 5.1: Four parameter setups for a cell-based object with the corresponding  
texture memory consumption. The color maps [23] have a 32-bit RGBA channel  
with a resolution of 128x128x128. 
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Figure 5.1: A high resolution cell-based Stanford Bunny is displayed by an ray  
tracer using a specular self-reflection. Top: cell map resolution 64x64x64 and  
number of tiles are 128x128x128. Bottom: cell map resolution 128x128x128 and  
number of tiles are  64x64x64. Note the the specular self-reflection in close-up  
view.
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Two resulting cell-based objects from the parameter setup from Table 5.1 (row 2 
and 3) are shown in Figure 5.1. Note the high frequent, repetitive surface details 
(Figure 5.1 top). In this example high frequent means that the object has about 
256 cells per axis. This value is estimated based on the fact that the object-space 
is split into 128x128x128 tiles and each tile comprises 8 cells. By taking only 
one dimension into account a cell resolution of 128 tiles times 2 cells per axis 
results into 256 cells per axis. These two cell-based Stanford Bunnies need 46 
MB  (Figure  5.1 bottom)  and  44  MB  (Figure  5.1 top)  texture  memory, 
respectively. The texture size highly depends on the two mentioned parameters 
the cell map resolution and the number tiles. Hence a high resolution parameter 
setup leads to high image quality at the costs of high memory consumption. 

5.2 Computational Time

The frames per second highly depends how much the cell-based object covers 
the screen. The larger the covered area the more pixels have to be processed by 
the ray tracer inducing a lower frame rate. However, for comparison the cell-
based Stanford Bunny from Figure 5.1 (bottom) is rendered with three different 
rendering modes: first hit, specular self-reflection and refraction (mentioned in 
Chapter 3.2). Each rendering mode is rendered from different zooming positions 
to  achieve  various  pixel  coverages.  In  Table  5.2 the exponential  dependency 
between  pixel  coverage  and  frame  rate  is  shown.  Since  the  specular  self-
reflection and refraction shoot higher order rays, meaning that a ray bounces 
more than once between the object's surface, these two techniques need more 
computational time than the first hit rendering mode. 

Table 5.2 Stanford Bunny rendered with three different rendering modes: first  
hit,  specular  self-reflection  and  refraction. Note  the  exponential  dependency  
between pixel coverage and the frame rate.
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Note in  Table 5.2 that for close-up views, having a pixel coverage about 90 to 
100  percent,  the  frame  rate  goes  up  again.  This  happens  because  a  smaller 
amount  of  cells  is  visible  and  therefore  needing  less  computational  time. 
Consequently the second  factor, which influences the frame rate is the number 
of visible cells. In  Table 5.3 four close-up views with a pixel coverage of 100 
percent are compared to show the influence of visible cells on the frame rate. 

Table 5.3:  Four different close-up views with a pixel coverage of 100 percent. 
Note the dependency between number of visible tiles(cells) and the frame rate.

5.3 Visual Quality

Beside  the  pixel  coverage  and  the  visible  number  of  cells  there  are  other 
parameters,  which have an influence on the frame rate too.  How precise the 
boundary of a cell is hit by a ray tracer is depending on the step size for the 
linear search. A large step size makes the ray tracing fast but on the other hand 
increases the probability to miss a cell's boundary especially for grazing angles. 
Hence a small step size enhances the visual quality at cost of lower frame rates. 
In Figure 5.2 an object consists of spherical cells is rendered with various step 
sizes. Note that the cells near the observer have a finer, concentric silhouette 
with decreasing step size. In contrast for distant cells the finer ray traversal have 
no distinguishable improvement for the visual quality. The resulting frame rates 
for this example in  Figure 5.2 are shown in  Table 5.4. This table shows that a 
finer step size needs more computational time. 
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Figure 5.2: A close-up view of an object consisting of spherical cells rendered  
with four different step sizes. Step sizes 1/16 (a), 1/64 (b), 1/256 ((c)) and 1/512  
(d) are used for the first hit rendering. A step size with value of 1 equates to the  
length of a tile. Note that a finer step size results in higher visual quality. 

Not only for the first hit but also for higher order rays such as for specular self-
reflection and refraction the step size influences the image quality.  Figure 5.3 
shows  that  a  smaller  step  size  induces  a  finer  concentric  silhouettes  in  the 
specular self-reflection on the spherical cells. Note that if the step size is too 
large  the  outer  parts  of  the  cells  disappear  since  the  ray  misses  the  cell's 
boundary. 
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Table 5.4: The corresponding frame rate to the four different step sizes from  
example in Figure 5.2. Note that a finer step size (more steps per tile) induces a  
lower frame rate. 

Surfaces  with  a  high  reflectivity  need  more  than  one  reflection  bounce  for 
rendering  a  realistic  specular  self-reflection.  As  mentioned  in  Chapter  3.2.3 
every further reflection bounce leads to more computational costs. In Figure 5.4 
higher order rays are rendered for specular self-reflection.  Table 5.5 shows the 
resulting frame rates for the higher order rays from example in Figure 5.4. 

Table 5.5: The corresponding frame rate to the three different specular self-
reflection  order  in  Figure  5.4.  Note  that  higher  order  rays  need  more  
computational time. 
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Figure 5.3: A close-up view of an object consisting of spherical cells rendered  
with three different step sizes. Step sizes 1/16 (a), 1/64 (b), 1/256 ((c)) are used  
for the specular self-reflection. A step size with value of 1 equates to the length  
of a tile. Note that a finer step size results in higher visual quality. 
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Figure 5.4: A close-up view of an object consisting of spherical cells rendered  
with three different specular self-reflecting ray orders. The ray order goes from 
one to three from top to bottom.
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As mentioned before a higher cell map resolution is a crucial factor for the visual 
quality of the cell-based object. Especially in close-up views shown in Figure 5.5 
a higher cell map resolution is needed. 

Figure 5.5: A close-up view of a cell-based object rendered with the same cell  
map but with three different cell map dimensions. Note that the visual quality  
highly depends on the cell map resolution. Cell dimensions from left to right:  
16, 64, 128.

In Figure 5.6 a cell-based ninja head is rendered with and without specular self-
reflection. The linear step size for first order rays is set to 1/512. The specular 
self-reflection is rendered only with one reflection bounce and the linear step 
size for the second order reflection rays is 1/128. This object is rendered with a 
cell map resolution of 128x128x128 and the object space is split into 64x64x64 
tiles.  Consequently  the  cell-based  ninja  head  needs  about  34  MB  texture 
memory. The computational time for viewpoints with a pixel coverage of 100 
percent and by rendering all cells is for the first hit rendering about 67 and for 
the self-reflection rendering about 29 frames per second. For close up views by 
rendering about 3 tiles (containing 8 cells per tile) per axis the frame per second 
for the first  hit  is about 129 and for the specular self-reflection about 39. In 
Figure 5.7 the same cell-based ninja head from example in Figure 5.6 is rendered 
with the same parameter setup but with different texture maps  [23]. The cell-
based dragon model from Figure 5.8 is rendered with a cell map resolution of 
64x64x64 and the object space is split into 128x128x128 tiles. The parameter 
setup for the ray tracing remains the same as mentioned for the examples from 
Figure  5.6.  All  provided  features  (parallax,  occlusions  and  silhouettes)  and 
effects (specular self-reflection and refraction) are pointed out in Figure 5.9. 
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Figure 5.6: A comparison between a cell-based ninja head rendered with(top)  
and without(bottom) specular self-reflection. The cell dimension is 128x128x128  
and the object space is split into 64x64x64 tiles. The three-dimensional cobble  
stone texture is from [23] 
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Figure 5.7: A cell-based ninja head rendered with two different textures [23] .  
The cell dimension is 128x128x128 and the object space is split into 64x64x64  
tiles.
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Figure 5.8: A cell-based dragon model rendered with specular self-reflection  
(top) and refraction (bottom). The cell dimension is 64x64x64 and the object  
space is split into 128x128x128 tiles. The color texture is taken from [23] .
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Figure 5.9: A cell-based torus rendered with specular self-reflection (bottom)  
and refraction (top).  Note the correct parallax, occlusions and silhouettes.



„Nobody can go back and start a new  
beginning, but anyone can start today  
and make a new ending.„
Maria Robinson

Chapter 6. Conclusion Results and 
Discussion

Conclusion

6.1 Summary 

First this thesis gave a survey of mesostructured rendering techniques and cell-
based   texturing.  Additionally  every mesostructured  rendering  technique  was 
categorized by its provided features. This thesis proposed an cell-based approach 
to model and display objects with a repetitive surface structure with a high visual 
quality.  First  the  basic  cell-based  datastructure  was  explained  and  how  to 
precompute all the needed information stored in 3D textures. For displaying the 
cell-based  objects  a  ray  tracer  was  proposed.  To  achieve  more  interesting 
looking surfaces  the cell-based ray tracer  was extended by two sophisticated 
effects:  the  specular  self-reflection  and  refraction.  With  the  fundamental 
understanding of the basic concept the technical point of view was introduced by 
showing the implementation details about the precomputational process. Last but 
not least the cell-based approach was analyzed based on the computational time, 
memory  consumption  and  visual  quality  by  showing  some  high  resolution 
results. 

6.2 Future Work

We proved that effects such as specular self-reflection and refraction could be 
easily  integrated  to  the  ray  tracer  displaying  cell-based  objects.  Due  to  ray 
tracing other sophisticated effects such as caustics, translucency, self-shadowing 
and ambient occlusion to name a few could be a possible enhancement for the 
cell-based ray tracer.



In  this  thesis  only static  cell-based  objects  were  discussed.  An enhancement 
could be to provide also deformable cell-based objects for animations. We tested 
cell-based  ray  tracing  on  animated  objects  and  discovered  that  for  extreme 
deformations  surfaces  disappear.  This  happens  because  the  rays  should  be 
wrinkled somehow depending on the deformation. 
The  precomputation  time  is  depending  on  the  cell  map  resolution  and  the 
number of tiles. Changing these parameters changes the look of the resulting 
cell-based object. For a high resolution setup the precomputation needs more 
than  some hours.  To  achieve  a  smooth  workflow in  the  modeling  stage  the 
precomputation has to be optimized to provide a fast response to model changes.
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