

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Today's real-time applications, such as computer games or virtual environments,
need to display more and more geometrically complex surfaces. The appearance
of such surfaces are achieved by local parallax, correct occlusions, convincing
silhouettes and even by sophisticated effects such as self-reflection, refraction,
translucency, self-shadowing and caustics to name a few. Hence simple texturing
mapping is insufficient to produce such high geometric complexity.
This thesis proposes a cell-based approach to model and render repetitive fine
scaled details with a high visual quality. The main idea of the precomputation is
to decompose the object into a low frequent geometry (the general shape of the
object) and high frequent surface details. The high frequent surface details are
represented by so-called cells tiled all over the object space. The precomputed
cell-based object representation is displayed by a ray tracer providing correct
parallax, occlusions and silhouettes. This thesis proves that sophisticated effects
such as specular self-reflection and refraction can easily be rendered with the
cell-based approach.

Kurzfassung

Die heutigen Echzeitanwendungen, wie zB Computerspiele oder virtuelle
Umgebungen, müssen immer komplexere geometrische Oberflächen darstellen.
Dies Beschaffenheit solcher Oberflächen umfassen lokale Parallaxe, korrekten
Überdeckungen, überzeugende Silhouetten und sogar kompliziertere Effekte wie
zB Selbstreflektion, Refraktion, Transluzenz, Selbst-Schattierung und Kaustik.
Mit Texture Mapping kann diese geometrische Komplexität nicht dargestellt
werden.
Diese Diplomarbeit schlägt einen zellenbasierten Ansatz vor, um wiederholende
feine Oberflächenstrukturen mit hoher visueller Qualität zu modellieren und
darzustellen. Die Grundidee der Vorberechnung ist das Objekt in eine
tieffrequente Geometrie (grobe Repräsentation des Objekts) und hochfrequente
Oberflächendetails zu unterteilen. Die hochfrequenten Oberflächendetails
werden durch sogenannte Zellen, die über den Objektspace verteilt werden,
repräsentiert. Diese vorberechnete, zellbasierte Objektrepräsentation wird mittels
Ray Tracing dargestellt. Dies ermöglicht korrekte Parallaxe, Verdeckungen und
Silhouetten. In dieser Diplomarbeit wird auch bewiesen, dass kompliziertere
Effekte wie spekulare Selbstreflektion und Refraktion mittels zellenbasierten
Ansatz genauso leicht implementiert werden können.

Contents

1. Introduction...7
1.1 Aim of the Thesis..9
1.2 Thesis Structure...9

2. State of the Art..10
2.1 Features...10

2.1.1 Parallax..10
2.1.2 Silhouette...11
2.1.3 Self Shadowing..11
2.1.4 Self Occlusion..11
2.1.5 Self Reflection...11
2.1.6 Refraction..11
2.1.7 Caustics..12
2.1.8 Translucency..12

2.2 Macro-, Micro- and Mesostructure...12
2.3 Mesostructure Rendering Techniques...12

2.3.1 Bump Mapping..13
2.3.2 Normal Mapping..13
2.3.3 Horizon Mapping...16
2.3.4 Parallax Mapping...16
2.3.5 Offset Parallax Mapping ...18
2.3.6 Displacement Mapping..19
2.3.7 View-dependent Displacement Mapping (VDM)............................20
2.3.8 Relief Mapping ...21
2.3.9 Enhanced Relief Mapping...23
2.3.10 Shell Mapping..25

2.4 Cell-Based Texturing...28
2.4.1 Texture Bombing...28
2.4.2 Voronoi Diagram...29
2.4.3 A Cellular Texture Basis Function...30
2.4.4 Feature-Based Cellular Texturing..31
2.4.5 Solid Texturing..32

3. Cell-Based Object Representation...33
3.1 Preprocessing Stage..33

3.1.1 Basic Mesh..33
3.1.2 Voxel-Based Cells ...34
3.1.3 Cell Tiles..35
3.1.4 Representing Objects as Voxel Cell Tiles..36
3.1.5 Cell Membership Determination...36
3.1.6 Cell Membership Map Indexing..38
3.1.7 Color Map..39
3.1.8 Normal Map ..40
3.1.9 Conclusion...40

3.2 Rendering Stage..43
3.2.1 Ray Tracer..43
3.2.2 First Hit..44
3.2.3 Specular Self-Reflection..47
3.2.4 Refraction..50

3.3 Summary...54

4. Implementation...55
4.1 Tile Map ...55
4.2 Cell Splitting...57
4.3 Split Cell Index Determination...60
4.4 Cell Membership Determination...61
4.5 Split Cell Membership Merger..68
4.6 Normal Map..72
4.7 Tools..73

5. Results and Discussion...76
5.1 Memory Consumption..76
5.2 Computational Time..78
5.3 Visual Quality..79

Conclusion..89
6.1 Summary ..89
6.2 Future Work...89

List of Figures..91

List of Tables..94

List of Algorithms..94

Bibliography...95

„If it looks like computer graphics,
it is not good computer graphics. „
 Jeremy Birn

Chapter 1. Introduction

Introduction
The human visual system is able to distinguish between various material
properties such as texture, roughness, temperature, thickness and shininess to
name a few. If we take a closer look at some real world objects, such as in Figure
1.1, we can recognize that many of these material properties are given by the
fine scaled surface details. Hence to reproduce these various types of material
properties in computer graphics, surface details play a key role in digital image
synthesis. Therefore numerous data structures and rendering techniques got
developed especially to define fine scaled details on the object's surface. The
basic idea is to decompose the object into a rough representation described by a
polygonal mesh and the surface defined by the fine scaled details.

Figure 1.1: A close up view of real world objects. Upper row from left to right:
swan, butterfly, tree. Lower row from left to right: strawberry, lemon, crab.

Chapter 1. Introduction 8

Typically, surface appears with some repetitive fine scaled details. If we take a
look at Figure 1.1, especially on the close up view of the strawberry, we could
clearly see that the strawberry contains little seeds repetitively distributed on its
surface. The same for the crab's surface appearing with larger black and smaller
white bumps in a repetitive surface structure. Not only on the surface but also in
the inside of an object we could find the repetition property. In Figure 1.2 you
can see an orange pulp, which appears with a repetitive cellular detail structure.

Figure 1.2: A close up view of an orange pulp [25] having a repetitive cellular
structure.

Hence there is a need for modeling and rendering repetitive surface details in an
efficient way. The term “efficient” refers to high image quality by
simultaneously performing fast rendering providing a low memory consumption.
For example if we take a look again at the strawberry close up view in Figure 1.1
we would possibly only model a single seed once and copy it all over the
strawberry's surface to avoid redundant information. This is the basic idea of
“cell-based object representation” by defining a so-called “cell”, which
represents repetitive surface details, which could be tiled over the object space
and finally rendered by a ray tracer.

Chapter 1. Introduction 9

1.1 Aim of the Thesis

This thesis proposes an approach to model and render repetitive surfaces
efficiently by defining a “cell-based” data structure. The term cell-based refers
to a data structure, which holds cells as spatial elements describing the fine
scaled details of an object. This proposed method is derived from solid texturing
[18] using a given mesh and a 3D Texture. Instead intersecting the viewing ray
with the mesh, our approach intersects the viewing ray with the cells that make
up the cell-based object.
The cell-based data structure makes ray tracing very efficiently and avoids to
store redundant information, which leads into low memory requirements and
therefore getting high frame rates. Due to the ray tracing it is also possible to
render effects, such as reflection and refraction easily computed by shooting
additional rays. Furthermore the cell-based approach enhances the realism and
visual quality of complex surfaces by supporting self-occlusion, parallax and
correct object silhouettes.

1.2 Thesis Structure

This thesis is structured into five chapters as follows:

• Chapter 2 gives an explanation of some terms used for classification.
Furthermore this chapter gives a survey of common mesostructured
rendering techniques and cell-based texturing.

• Chapter 3 proposes the main idea of cell-based object representation.
This chapter is split into two parts. First the precomputation stage is
discussed. Second a ray tracer is proposed for displaying the
precomputed cell-based objects. Beside the basic ray tracing two
advanced effects such as specular self-reflection and refraction are
explained.

• Chapter 4 deals with the implementation details and explains the
preprocessing stage from a technical point of view.

• Chapter 5 discusses the memory consumption, computational time and
the visual quality of some results created with the proposed cell-based
approach.

„I like to collect things. When I was
young I collected stamps; now I collect
empty margarine tubs and algorithms
for drawing circles.„
Jim Blinn

Chapter 2. State of the Art

State of the Art
Many different algorithms and data structures have been developed to enhance
the realism and visual quality in real time applications. In addition, memory
consumption has to be kept low. Due to the increasing power of processors and
increasing memory storage more complex scenes are rendered. Therefore new
algorithms and data structures are needed. Nowadays there are many such
mesostructure rendering techniques.
In Chapter 2.1 the most important features are explained to classify the
mesostructure rendering techniques mentioned in Chapter 2.3. Chapter 2.2
explains the terms macro-, micro- and mesostructure. Finally Chapter 2.4 gives
an overview of some methods for cell-based texturing.

2.1 Features

How do we know which mesostructure rendering technique is the best? Every
technique has its pros and cons and it highly depends on the object surface we
want to synthesize. However each technique could be classified by its supported
features such as parallax, silhouettes, self shadowing, self occlusions, refraction,
caustics, self reflections and translucency to name a few. All these mentioned
features are necessary for realistic appearance. In this chapter the most important
features will be explained.

2.1.1 Parallax

Motion parallax is a depth cue that results from our motion. As we move, objects
that are closer to us move farther across our field of view than objects that are in
the distance.

Chapter 2. State of the Art 11

2.1.2 Silhouette

An object with a silhouette feature also contains the complex surface on the
outermost object's boundary. This feature could be best described by an orange.
The rough shape of an orange is a sphere, which means that the outermost
object's boundary is approximately a concentric circle. But in a close up view
you will realize that the orange outermost boundary isn't exactly circular, but
rather circular with bumps on it. If we synthesize this object in our real-time
application and the orange appears with circular bumpy shape it contains the
silhouette feature.

2.1.3 Self Shadowing

A shadow on an object appears whenever it is not visible from the light source's
position. This happens because an occluder lies between the object and the light
source. In case the occluder itself is the object's geometry we are speaking of self
shadowing.

2.1.4 Self Occlusion

Objects that are behind other objects and not seen from the point of view are
occluded. If the object occludes areas of itself we are speaking of self occlusion.

2.1.5 Self Reflection

The law of reflection says that for specular reflection the angle at which the
wave is incident on the surface equals the angle at which it is reflected. Self
reflection means that a light is reflected on it's surface more than once, before it
reaches the observer.

2.1.6 Refraction

Refraction occurs when light waves penetrate into a refractive medium, such as
glass or water. At the medium's boundary a change in direction occurs due to
increase or decrease of light ray's speed. For example if light penetrates from air
into water a decrease of light occurs, which leads into a change of direction. The
amount of bending the incident light depends on the media's property.

Chapter 2. State of the Art 12

2.1.7 Caustics

Caustics occur by the possible paths of the light beam through the medium,
accounting for the refraction and reflection. This effect is best seen when light
shines on a drinking glass. The glass casts a shadow and simultaneously also
produces a curved region of bright light.

2.1.8 Translucency

Translucency is a process of sunlight transmitted through the media and exiting
on the opposite side. Very thin materials such as paper or leaves show the
translucency effect very well by holding those directly into the sunlight. The
back-lit side of the leave or the piece of paper occurs because of the translucency
effect.

2.2 Macro-, Micro- and Mesostructure

A geometrical object is usually defined on the three scales, the “mesostructure”
level, “macrostructure” level and “microstructure” level [2]. A macrostructure
level describes a geometric model as a set of polygons, which represents the
rough object shape. On the other hand microstructure enriches the geometric
model with a more detailed look by surface microfacets, which are
indistinguishable by human eyes. This fine scaled detail is mostly defined by a
texture map. Mesostructure is in scale between macro- and microstructure,
which represents the complex surface of an object. That is the mesostructure
level is defined by the geometric details, which are relatively small but still
visible for human eyes such as bumps. Note the bark structure on the tree trunk
in Figure 1.1. In this case the bark structure represents the mesostructure level
due to high-frequency visible geometry.

2.3 Mesostructure Rendering Techniques

Back in the seventies Catmull, who is the current president of Walt Disney
Animation and Pixar Animation Studios, invented the commonly used technique
texture mapping [1]. With texture mapping a revolutionary step was taken into a
new direction. For the first time it was possible to add details on a surface by
mapping textures on an object, which results to an more realistic look.
Mesostructure rendering techniques simulate geometric details by texture
mapping techniques. This chapter gives a review of the most prevalent rendering
techniques to generate mesostructure surfaces with focus on supported features
mentioned in Chapter 2.1.

Chapter 2. State of the Art 13

2.3.1 Bump Mapping

Bump mapping is probably the most known texture mapping technique in
computer graphics and it is still used in some real-time applications. Blinn [3]
introduced a method that adds detail to a surface without modifying the
geometric representation itself. This wrinkled look is achieved by perturbing the
surface normal per pixel, which results after the illumination computation in
surface irregularities.

Figure 2.1: A bump map T(u,v) is applied on a macrostructure to generate
bumps on a surface. Surface normals (left) and resulting perturbed surface
normals (right). [3]

The perturbation function T(u,v) itself is defined as a bump map texture as we
can see in Figure 2.1. This bump map stores gray values, which represent the
offset by which the normals has to be wrinkled. A comparison between
conventional texture mapping and bump mapping is shown in Figure 2.2.

2.3.2 Normal Mapping

Another approach of bump mapping is normal mapping, sometimes called as
“dot3 bump mapping” [5]. Instead of perturbing the surface normals, normal
mapping replaces the existing surface normal entirely. These pre-computed
normals are stored in a multichannel texture also referred to as normal map. The
values of each channel represent the xyz coordinate of the replacing normal (see
Figure 2.3.).

Chapter 2. State of the Art 14

Figure 2.2: A comparison between conventional texture mapping (left) and
bump mapping (right). Note the difference in the specular highlights [2].

Figure 2.3: Original model (top left). Normal map projected on normal mapped
model (top right). RGB values of the normal map represent the xyz-coordinates
of a normal. Resulting image after normal mapping (bottom). [6]

Chapter 2. State of the Art 15

Normal mapping is usually found in two varieties, object-space and tangent-
space normal mapping. They differ in coordinate systems in which the normals
are measured and stored (see Figure 2.4).

Figure 2.4: Tangent-space normal map (left). Object-space normal map (right).
[7]

Due to normal map, normal mapping is theoretically faster than bump mapping,
because only a simple texture lookup has to be done to obtain the pre-computed
normal for light computation. In consideration of the fact that the whole normal
is stored in a texture, this approach needs more memory than bump mapping.
Nowadays there is no noticeable computational difference due to the modern
graphics hardware.
With bump mapping and normal mapping it is possible to model details to a
surface without creating new surfaces. Unfortunately this fact leads to artifacts in
the silhouette of the object. Hence, the bump mapped sphere in Figure 2.1 still
has a circular silhouette. A further problem of this approach is that neither self
occlusion nor self shadowing is considered at all. In the following chapters all
these problems are going to be solved by advanced rendering techniques.

Chapter 2. State of the Art 16

2.3.3 Horizon Mapping

Shadows provide important perceptual cues for understanding surface shape.
However, horizon mapping [8] extends the standard bump mapping by
calculating self shadowing. This effect is provided by horizon maps. Each texel
contains eight pre-computed angles to the horizon (see Figure 2.5), which holds
information at what height the sky becomes visible a given direction. In other
words a surface gets illuminated if and only if the light direction is higher than
the interpolated horizon value. Figure 2.5 (right) shows an object rendered with
horizon mapping.
Unfortunately the self shadowing effect is not for nothing due to additional
texture memory requirements. Furthermore no self occlusion and silhouettes are
considered.

Figure 2.5: Eight horizon values per pixel for calculating self shadowing (left).
Model rendered with horizon mapping (right). Note the self shadows in the
valleys. [8]

2.3.4 Parallax Mapping

Parallax mapping considers the parallax features explained in Chapter 2.1.1 and
was introduced by Tomomichi Kaneko et al [9] in 2001.
The fundamental idea of this approach is to shift the texture coordinates
dynamically using the view vector and the current height map value shown in
Figure 2.6. Consequently the greater angle the more texture coordinate gets
displaced, which gives us the illusion of parallax motion. This effect is best
shown at the house tops’ side walls on the left side of the brick wall in Figure
2.7, which demonstrates a rendered wall with and without parallax mapping.

Chapter 2. State of the Art 17

Figure 2.6: The texture coordinate offset for parallax mapping is obtained by
modulating the eye vector by the surface height. [2]

Figure 2.7: Wall rendered with bump mapping (left). Same wall rendered with
parallax mapping (right). Note the parallax effect at the house tops’ side walls
on the left side of the brick wall. [9]

A drawback of this approach is that a noticeable distortion occurs, which is
caused by depth approximation. This results when the viewing angle becomes
more grazing shown in Figure 2.8.

Chapter 2. State of the Art 18

Figure 2.8: The more the grazing viewing angle grows, the more distortion
occurs. Note that the distortion does not grow linearly along with the viewing
angle. [9]

2.3.5 Offset Parallax Mapping

Welsh [10] solves the problem of parallax mapping at grazing angles by limiting
the texture coordinate offsets, so that they never get larger than the height at To
shown in Figure 2.9. Figure 2.10 compares parallax mapping with and without
offset limiting.

Figure 2.9: Basic idea of offset parallax mapping. The texture coordinate offset
will be no longer than the height at To.[2]

Chapter 2. State of the Art 19

Figure 2.10: Comparison of parallax mapping (left) and offset parallax
mapping (right). Note the swimming artifacts on the stone ground at grazing
angles (left), which gets solved by offset parallax mapping (right). [2]

2.3.6 Displacement Mapping

The fundamental approach of displacement mapping [11] originates from
REYES algorithm [12], whereby a geometric model is tessellated into
micropolygons, whose size are close to or even less than the area of a pixel.
Displacement mapping also tessellates the macrostructure into a more detailed
geometric representation, in order to displace the vertices in direction of the
surface normal given by the height map stored as a texture map(see Figure 2.11).

Figure 2.11: Rendering pipeline for displacement mapping. Displacement
mapping is a per-vertex method and therefore done in the vertex shader. [2]

Chapter 2. State of the Art 20

On the basis of this approach displacement mapping is able to solve the self
occlusion and silhouette problem mentioned in the previous sections and seen in
Figure 2.12. Although displacement mapping can be implemented in hardware,
its performance is limited by the large number of vertices that result from fine
mesh subdivision.

Figure 2.12: Comparison of different mesostructure rendering techniques. Bump
mapping (top left), horizon mapping (top right), displacement mapping (down
left) and view-dependent displacement mapping with self-shadowing (down
right). [2]

2.3.7 View-dependent Displacement Mapping (VDM)

VDM [13] is an enhancement of displacement mapping achieved by two
substantial modifications. Firstly, VDM represents displacements along the
viewing direction instead of the mesh normal direction shown in Figure 2.13.
Secondly, due to increasing performance of graphics hardware, VDM is
implemented using per-pixel operations to obtain faster rendering, since no fine
mesh subdivision has to be done. Nevertheless the VDM data consumes most of
the graphics hardware memory and therefore a data composition and
compression is indispensable. VDM Figure 2.12 shows a comparison of bump
mapping, horizon mapping, displacement mapping and VDM. Note that VDM
considers self occlusion, self shadowing and silhouettes.

Chapter 2. State of the Art 21

Figure 2.13: Rendering pipeline for view-dependent displacement mapping.
VDM is a per-pixel method and therefore done in the fragment shader. Hence,
no fine mesh subdivision has to be done. [2]

2.3.8 Relief Mapping

Relief mapping [14] is based on an efficient ray-height-field intersection
algorithm. That is, to locate the intersection between the height field and the ray,
two search algorithms are needed. At first, a linear search is performed to find a
pair of points on the ray that enclose the possibly first intersection. Second, a
binary search refines these approximations. Both search algorithms are
demonstrated in Figure 2.14.

Figure 2.14: Binary search (left) followed by a linear search (right) to calculate
ray intersection with a height field. [14]

Chapter 2. State of the Art 22

Self shadowing is accomplished in an analogous manner by checking an
intersection between a ray from the light source and the height field shown in
Figure 2.15. Relief mapping needs two texture maps, a depth map for
intersection calculation and a normal map for illumination computation shown in
Figure 2.16.

Figure 2.15: Computing self shadows by shooting another ray to the light
source, checking if there is an intersection with the height field.[14]

Figure 2.16: Gray values in the depth map (left) represent the height values and
RGB values in the normal map (right) represent the xyz-values of a normal. [14]

Chapter 2. State of the Art 23

2.3.9 Enhanced Relief Mapping

The Relief mapping algorithm can be extended [15] to handle non-height-field
representations. This idea is realized by storing not only one but even more
depth values for intersection calculation. Figure 2.17 shows four intersections di,
dj, dk and dn for ray (α, β).

Figure 2.17: Ray intersection with four layers, which results in intersection with
four depth value di, dj, dk and dn for ray (α, β). [15]

In modern graphic hardware four layers could be checked for ray intersection in
parallel. Hence, three four-channel (RGBα) texture maps are needed, which is
shown in Figure 2.18. One texture contains depth values for the four layers in the
RGBα channels, another one stores the x-values of the unit-length normal
vectors and the last one holds the y-values also for the unit-length normal
vectors. The z components of the normals are computed as:

Chapter 2. State of the Art 24

Figure 2.18: (a) Depth values for the four layers stored in the RGBα channels of
the texture. (b) x components of the unit normal vectors for the four layers. (c) y
components of the unit normal vectors for the four layers. [15]

Another enhancement of relief mapping [16] considers the silhouette by adding
two coefficients for every vertex representing a quadric surface that locally
approximates the object’s geometry. These coefficients are pre-computed once
for a polygonal model by using a least squares fitting algorithm. Results of the
enhanced relief mapping technique are shown in Figure 2.19. Note the silhouette
at the columns and the stone object. Furthermore a comparison of bump
mapping, parallax mapping and relief mapping is shown in Figure 2.20.
On the whole relief mapping offers all advantages as displacement mapping does
without modifying respectively subdividing the underlying geometry. That is, no
additional memory consumption is needed, which makes real-time rendering
possible.

Figure 2.19: A room scene rendered with enhanced relief mapping technique.
Note the silhouette at the columns and the stone object. The self shadowing
effect is best shown at the stone object. [16]

Chapter 2. State of the Art 25

Figure 2.20: : A comparison of (a) bump mapping, (b) parallax mapping and (c)
relief mapping. The upper and the middle image remain flat, whereas the bottom
image provides a strong depth cue. Also note the self-occlusion and the self-
shadowing effect. [16]

2.3.10 Shell Mapping

With shell mapping [17] it is possible to model surface details by applying a
three-dimensional volume onto a surface. Therefore a new space, namely shell
space, has to be specified, which lies between the original surface and an offset
surface to the base shown in Figure 2.21. Furthermore a one-to-one function
between texture space and shell space so-called shell map is responsible for
mapping the surface details onto the polygonal model.

Figure 2.21: Shell space lies between base surface and offset surface. A shell
map itself is a one-to-one function between texture space and shell space. [17]

Chapter 2. State of the Art 26

Shell Mapping meets two main challenges. That is to say, firstly generating an
offset surface paying attention to self intersections and second maintaining a
continuous tetrahedral mesh. To construct a continuous tetrahedral mesh, first
and foremost every vertex from the base surface has to be connected with the
corresponding vertex in the offset surface (see Figure 2.22). In doing so prisms
are generated, which have to be split into three tetrahedrals again shown in
Figure 2.23. To avoid discontinuity in the tetrahedral mesh, each tetrahedral has
to be labeled with a splitting direction. Finally the rippling algorithm comes into
play, which propagates the inconsistent labeled edges away, by flipping the label
on an adjacent edge, until all prisms are consistent (see Figure 2.24). Hence
given a tetrahedron in shell space with its corresponding tetrahedron in texture
space, any point can be located by using barycentric coordinates.
Due to usage of ray-tracing, refraction and caustic is supported by shell mapping
shown in Figure 2.25. Furthermore a correct parallax, self occlusion, self
shadowing and silhouettes are provided by shell mapping.

Figure 2.22: Generated prism by connecting every vertex from the base surface
to the corresponding vertex in the offset surface. Prisms in shell space
correspond to prisms in texture space defined by a shell map. [17]

Chapter 2. State of the Art 27

Figure 2.23: A Prism can be split in six ways, depending on the direction of the
triangulation of the quadrilateral faces. The six splits can be characterized with
labels R(Raising) and F(Falling). [17]

Figure 2.24: A demonstration of the rippling algorithm. (a) The red triangle
represents a prism with inconsistency. (b) Rippling algorithm flips the label on
an adjacent edge, until all prisms are consistent shown in (c). [17]

Figure 2.25: A shell mapped model rendered with ray tracing (left) Generated
mesh by shell mapping (right). [17]

Chapter 2. State of the Art 28

2.4 Cell-Based Texturing

The fundamental concept of cell-based texturing will be discussed in the
following related work.

2.4.1 Texture Bombing

Often in large scenes texturing requires a huge amount of memory due to adding
visual details to make it more realistic. For example in a nature scene the artist
wants to texture thousands of plants on the grassland producing a huge texture,
which requires a huge amount of memory. An idea would be to texture only a
few tens of plants and irregularly distributing them on the grassland to safe
texture memory. This is exactly the basic idea of Texture bombing [26], which is
a procedural technique placing patterns in an irregular interval shown in Figure
2.26. Additionally it reduces the problem of regular looking patterns.

Figure 2.26: Four images stored in a texture map (bottom), which are irregular
and randomly tiled over a single texture using texture bombing.

Texture bombing divides the UV space into a regular grid of cells. Every cell
contains an randomly placed image by using a pseudo-random number function.
Since the placing image could cross adjacent cells, neighboring cells need to be
considered as well. On the whole two coordinates are relevant for image
sampling. Firstly, by dividing the UV coordinate by the grid cell size we get the
grid cell index, which defines in which image we want to sample. Secondly, the
remaining cell offset represents the texture coordinate for sampling in the image.
This method isn't only applicable for 2D UV space, but also extendable to the
3D space by dividing the object-space into 3d grid cells.

Chapter 2. State of the Art 29

2.4.2 Voronoi Diagram

Figure 2.27: Variations of Voronoi diagrams depending on the distance
function. (a) Voronoi diagram with Euclidean distance function. The concentric
circles representing the distances to the placed seeds of each Voronoi cell. (b)
Anisotrop diagram, (c) Apolonius diagram and (d) Moebius diagram. [21]

Voronoi diagrams are named after the famous Russian mathematician Georgy
Fedoseevich Voronoi. He firstly defined the Voronoi diagram in the general n-
dimensional case in 1908. A huge range of applications for Voronoi diagrams [4]
could be found in many scientific areas, such as biology, chemistry, geology and
many more. Even in computer graphics Voronoi diagram plays an important
factor for spatial descriptions.
In general a Voronoi diagram is a finite set S of points Pn in Euclidean space
defined by

S = {P1,....,Pn}

Chapter 2. State of the Art 30

For every point x in Euclidean space, there is one point of S closest to x defined
by a distance function. The set of all points closer to one point S than to any
other point of S is the interior of convex polytope called the “Voronoi cell”. Set
of points x, which are equally distant to more than one point in S are called
“Voronoi cell boundary”. This is best shown in Figure 2.27 (a). Note that the cell
boundaries are placed exactly between two equally distant circles.
The appearance of each cell depends highly on the distance function. In the
simplest case a Euclidean distance is taken, which could be found in Figure 2.27.
Many variations of Voronoi diagrams such as Möbius, Apollonius, anisotropic,
spherical or hyperbolic Voronoi diagrams can be easily integrated on the GPU
[21] also shown in Figure 2.27.

2.4.3 A Cellular Texture Basis Function

The cellular texture basis function [19] was developed for practical texture
design and complements Perlin noise. The basic idea is to divide space into a
grid of uniformly spaced cubes. Each cube contains one or more feature points,
which get spread through space based on a Poisson distribution. Now a function
F1(x) defines the distance from x to the closest feature point. Boundaries are
defined in locations where x is equidistant to more than one feature point. These
boundaries describe exactly the Voronoi cell boundaries explained in Chapter
2.4.2. Furthermore functions F2(x), F3(x),...Fn(x), are defined to build even
more

interesting textures (n stands for n-closest feature points). Consequently, F2(x)
gives the distance between x and the closest and second-closest feature point
shown in Figure 2.28. More variations are produced by linear combination of
Fn(x) by the following formula:

C1F1 + C2F2 + C3F3 + C4F4

Due to higher n start looking similar, they choose the lower n values (up to 4),
which look more interesting and distinct. In Figure 2.29 some combinations with
various values of Cn are shown.

Chapter 2. State of the Art 31

Figure 2.28: F1(x) producing polka dots (left) and F2(x) has rapid changes and
internal structure (right) [21]

2.4.4 Feature-Based Cellular Texturing

Feature-based cellular texturing [27] is a method especially designed for
architectural models. The architectural model is decomposed into two
components. Firstly, the basic shape, which provides the rough representation
and secondly the cellular texture containing repetitive 3D pattern, such as a brick
wall pattern. Three kinds of features faces, edges and corners are identified in the
basic mesh (see Figure 2.30). Then a fitting algorithm applies cells onto the three
types of features by using a occupancy map. This map is a bit mask that holds
information about areas are already occupied and areas responsible for filling. In
Figure 2.30 you can see a basic mesh with identified features and applied
cellular texture.

Figure 2.29: Some interesting linear combinations of C1F1 + C2F2 + C3F3 +
C4F4. [19]

Chapter 2. State of the Art 32

Figure 2.30: Basic mesh (left), identified features faces (blue), edges (green)
and corners (red) for the basic mesh (middle) and basic mesh applied with brick
wall pattern (right) [27]

2.4.5 Solid Texturing

Texture mapping is usually done in two-dimensional space. However, solid
texturing [18] uses texture functions defined throughout a region of three-
dimensional space. That is this method must not concern about the shape of the
surface being textured. Generally, the solid texture function gets evaluated
procedurally by the object-space coordinates. Hence we not only get color
information on the surface of an object but also in the inside. The most known
example for solid texturing is to synthesize wood by the solid texture function
shown in Figure 2.31.

Figure 2.31: Three-dimensional solid wood texture. [28]

„It's not an idea until you write it
down.„
Ivan Sutherland

Chapter 3. Cell-Based Object
Representation

Cell-Based Object Representation

This chapter presents a cell data structure to model fine scale details of an object
with a repetitive surface structure for a real-time application. Furthermore it
shows how to display a cell-based object by using a ray tracer. First, some
precomputations, such as tiling and generation of cell membership information,
has to be done before rendering explained in Chapter 3.1. In the rendering stage
at runtime a ray-tracing algorithm is performed, which uses the precomputed
information to render the fine scaled details described in Chapter 3.2.

3.1 Preprocessing Stage

In this chapter the data structure for a cell-based object is presented. The data
structure contains important information, which are precomputed in an offline
process. This precomputed information makes the cell-based rendering efficient.

3.1.1 Basic Mesh

First of all a rough representation of the cell-based object is defined by a
polygonal mesh. In the following the rough representation will be called the
“basic mesh”. A basic mesh has two main functionalities. In the preprocessing
stage the basic mesh acts as a bounding area for modeling the fine scale details.
In Figure 3.1 (c) the fine scale details, represented by the colored dots are
enclosed by a basic mesh of a torus (blue circular lines). Secondly, the basic
mesh acts as an entry point for ray tracing in the rendering stage, which gets
explained more precisely in Chapter 3.2.

Chapter 3. Cell-Based Object Representation 34

3.1.2 Voxel-Based Cells

After defining the area of modeling by a basic mesh, the inner area has to be
described somehow. Therefore a three-dimensional, cellular component is
specified, a so-called “cell”. A cell is a building block, which is needed for
modeling the fine scale details of the cell-based object. More precisely a cell is
defined by a set of connected voxels shown in Figure 3.2. Consequently the set
of all inside cells make up the final cell-based object. This constitutive
separation into a basic mesh and corresponding inside cells can be found in the
preprocessing stage in Figure 3.1 (c) . Note that all inside cells (colored dots) are
completely inside the basic mesh (blue silhouette of the torus) not touching the
basic mesh's boundary.

Figure 3.1: Three-dimensional cell collection (b) gets tiled over the object-
space (c). The blue silhouette of the torus represents the basic mesh. The basic
mesh is also shown in (a) by a wireframed polygonal mesh. The colored dots
represent the inside cells. Rendering results to a torus with fine scale detail
surface (d).

Chapter 3. Cell-Based Object Representation 35

3.1.3 Cell Tiles

To model the fine scale details by placing every single cell in the bounded three-
dimensional inner area of the basic mesh is a tedious task. Furthermore this type
of modeling requires a huge amount of memory storing each cell separately. A
better solution is to define a small amount of cells in such a way, so that a
repetitive tiling over the whole object-space is possible. This approach has the
advantage, that a tileable cell collection has to be modeled only once.
Furthermore it avoids huge memory consumption. The idea of tiling is done by
dividing the three-dimensional object-space into a grid of uniformly spaced
cubes as we can see in Figure 3.1 (c) . In the following these cubes will be called
“tiles”. Each tile contains the same cell collection (seen in Figure 3.1 (b)). To
have a smooth transition between each tile border the cell collection has to be
tileable in all six directions. That is a cell, which ends on the one side of the
cube, continues on the opposite side. Since cells are described by voxels a cell
collection of a tile can be stored in a three-dimensional texture shown in Figure
3.2. This three-dimensional texture will be called the “tile map”.

Figure 3.2: A three-dimensional texture of a tile's cell collection, which
contains eight tileable cells. For example the red cell gets tiled over the edges.

Chapter 3. Cell-Based Object Representation 36

3.1.4 Representing Objects as Voxel Cell Tiles

Since the cells are defined by a set of connected voxels and the fact that cells
have to be tested against the basic mesh to determine the cell membership
(explained in Chapter 3.1.5) a voxelization of the basic mesh is indispensable.
Voxelization is concerned with converting geometric objects from their
continuous geometric representation into a set of voxels that best approximates
the continuous object [29]. In the preprocessing stage the basic mesh is
voxelized to determine which parts of the basic mesh are inside or outside
respectively. The idea is to render the basic mesh slice by slice with an
orthogonal projection [22]. The clue is to set the near clipping plane to the slice
depth and the far clipping plane to infinity as we can see in Figure 3.3.
Additionally the stencil operation for front faces is set to decrement and for the
back faces to increment. After rendering, in each slice nonzero values represent
the area inside the basic mesh. This information is stored voxel by voxel. The
whole inside-outside voxelization can be done on the GPU even in real-time.
This approach works only with water-tight closed meshes.

3.1.5 Cell Membership Determination

After tiling the tiles(cell collections) all over the object-space it has to be
determined which cells are totally inside, totally outside and intersected by the
basic mesh. To determine the cell membership for a cell, every cell in the
object-space has to be tested against the basic mesh voxel by voxel. If there is an
intersection between a cell and the basic mesh's boundary the tested cell is
tagged as “intersected” (shown in Figure 3.4 by the red colored cells). That is if
only one voxel of a cell intersects with the basic mesh, the whole tested cell is
tagged as intersected. Accordingly, cells totally inside or outside (meaning all
containing voxels of the cell), i.e. the basic mesh, not touching the basic mesh's
boundary are tagged as “inside” (green colored cells in Figure 3.4) or “outside”
(gray colored cells in Figure 3.4), respectively. At the end of this testing
algorithm each cell in object-space is tagged with a membership stored in the
“cell membership map”.

Chapter 3. Cell-Based Object Representation 37

Figure 3.3: Inside-outside voxelization of a polygonal mesh of a gargoyle. [22]

Figure 3.4: Cell membership definition: inside cells (green cells), outside cells
(gray cells) and intersected cells(red cells). The blue line represents the basic
mesh's boundary.

Chapter 3. Cell-Based Object Representation 38

3.1.6 Cell Membership Map Indexing

Since the cell membership map has a spatial structure based on tiles, an efficient
indexing is required to localize a cell in a tile. The first step for cell localization
is to define a “tile index”, which describes a specific tile position in the
uniformly divided object space. Due to the known tile size it is very easy to
determine the tile index. Since a tile is specified, a second index, the so-called
“cell index”, has to be defined to finally localize a cell. If we take a look at
Figure 3.5 on the left we can see a tile containing four cells. Note that the blue
cell gets tiled over the corners, the green and magenta cells are tiled over the
edges and the red cell lies totally inside the tile. However, for localizing each
cell in this tile, four cell indices are insufficient. Therefore the cell index range
has to be expanded by splitting each tiling cell into “split cells”. That is in the
given tile example in Figure 3.5 the blue cell is split into four split cells. On the
other hand the green and magenta cells are split into two split cells. Note the new
indexing of each split cell in Figure 3.5 on the right.

Figure 3.5: Tile containing four cells on the left. Each tileable cell gets split into
split cells. Due to cell splitting a new indexing could be found on the right.

Chapter 3. Cell-Based Object Representation 39

In Table 3.1 the cell-to-split-cell connectivity for the tile example in Figure 3.5 is
shown. Note that after cell splitting the cell index range changes from four to
nine. With this important splitting step it is possible to localize every cell in the
cell membership map by the tile and cell index.

Cell index Split cell index
1 1,2,3,4
2 5,6
3 7,8
4 9

Table 3.1: Cell index before cell splitting (left column). Corresponding split cell
indices for each tiled cell (right column).

3.1.7 Color Map

As we have seen in Chapter 2.3 every mesostructure rendering technique needs
an input for the rendering process, mostly a two-dimensional color map.
However cell-based rendering requires a three-dimensional color map. That is to
say that cell-based rendering also handles color information inside the object
such as in solid texturing explained in Chapter 2.4.5. To accomplish this feature
a mapping between a three-dimensional point in object space and texture space
is done. So even if we cut through the object we get color information also on
the cutting plane. Furthermore if the color map contains transparency
information and by the fact that cell-based rendering uses a ray tracer for
rendering, it is easy to render refraction and translucency by shooting further
rays in the pixel shader.
Since a tile has only a description of a cell collection and containing no color
information, a three-dimensional color map has to be created additionally. It is
up to the artist to inherit the cellular structure of the tile in his three-dimensional
color map. In doing so the color map has to be also tileable in all directions to
get nice results for rendering. In Figure 3.6 a three-dimensional color map (e) is
applied as input for cell-based rendering, which results into a more interesting
looking torus as we have seen in Figure 3.1 (d). Figure 3.7 shows further results
with other color maps as input. Note that no shading is applied on these results.

Chapter 3. Cell-Based Object Representation 40

3.1.8 Normal Map

Shading makes an object more interesting and realistic looking. Therefore a
precomputation of normals is indispensable. Generally in volume rendering
gradients serve as normals for shading calculation. Often gradients are
precomputed (or even in realtime) by the central difference [24]. Since a cell-
based object uses three-dimensional textures a modified gradient precomputation
has to be done. Instead calculating the normals in non-homogenous areas such as
in volume rendering our normals gets precomputed on the cell's boundary. A
detailed implementation description is explained in chapter 4.7. In Figure 3.8 a
color (a) and a normal map (b) is applied, which results into a colored and phong
shaded look (d). In Figure 3.9 a comparison between an unshaded (left) and a
phong shaded (right) cell-based torus is shown.

3.1.9 Conclusion

This proposed cell-based object representation is especially designed for
repetitive surface details. With this representation it is possible to avoid huge
memory consumption by precomputing a cell membership map. The cell
membership map contains all inside cells, from which the cell-based object is
build. Furthermore the cell membership map offers an easy indexing for
localizing each cell in object space, which can be very helpful for rendering as
explained in Chapter 3.2.

Chapter 3. Cell-Based Object Representation 41

Figure 3.6: Cell-based rendering with a color map [23] (e) as input. Note that
the final result (d) has no shading applied.

Figure 3.7: Cell-based rendering with further color maps [23] (bottom) as
input. Note that the results (top) have no shading applied.

Chapter 3. Cell-Based Object Representation 42

Figure 3.8: Cell-based Rendering with a specific cell collection (a) with
corresponding normal map (b) and color map [23] (c) as input. A phong
shading is applied to the cell-based torus object (d).

Figure 3.9: Comparison between an unshaded cell-based torus (left) and a
phong shaded, cell-based torus object (right). Both objects are colored with the
stone color map from [23] Figure 3.7.

Chapter 3. Cell-Based Object Representation 43

3.2 Rendering Stage

In this chapter a ray tracing-based rendering method is proposed for rendering
the cell-based object. The ray tracer uses the precomputed cell membership map
(explained in Chapter 3.1), which makes rendering very efficient. Even self
reflection and refraction can be easily computed by shooting further rays. The
main goal of the ray tracer is to find the inside cell's boundary, which represent
the fine scale details of the cell-based object.

3.2.1 Ray Tracer

This proposed rendering process is based on a ray tracing algorithm. The
rendering needs the following four three-dimensional textures as input: tile map,
cell membership map, color map and normal map. The tile map and cell
membership map are required to localize a cell in object space and to determine
its cell membership. After finding an inside cell's boundary a local illumination
calculation is done which needs the color map and normal map as input. The
fifth and last input for rendering is the basic mesh. By rendering the basic mesh
(the rough representation of our cell-based object), the object's surface is the
entry point for the ray tracing algorithm. The idea is to shoot rays from the
object's surface in eye direction to hit an inside cell shown in Figure 3.10 called
the “first hit”. To find an intersection of an inside cell two simple search
algorithms have to be performed. The following piece of pseudo code shows a
first hit by performing a linear search with a subsequent binary search to find the
inside cell's boundary:

1 for each pixel shoot ray in eye direction
2
3 entry point is set to the basic mesh's surface
4
5 //linear search
6 while (cellMembership == INTERSECTED)
7 stepsize along ray
8 determine cell membership
9 if (cell membership == INSIDE)
10 store hit position
11 break while loop
12 end
13 end
14 if (cell membership == OUTSIDE)
15 discard ray

Chapter 3. Cell-Based Object Representation 44

16 end
17
18 //binary search
19 start binary search from last hit position
20 for each binary step
21 determine cell membership
22 half step size
23 if (cell membership == INSIDE)
24 store hit position

25 step two times backwards along ray
26 end
27 step one step forward along ray
28 end
29 end

Algorithm 3.1: First hit performed by a linear search (row 6-13) with a
subsequent binary search (row19 - 28) to find the inside cell's boundary.

3.2.2 First Hit

First of all a linear search is performed to find an inside cell (shown in row 6-13
in Algorithm 3.1). As we can see in Figure 3.10 the ray entry is shown by a cyan
colored dot labeled with an “E”. Note that the entry point is inside an
intersection cell, which is no coincidence. The fact that cells touching the
object's surface is per definition an intersected cell. In the following an
intersection cell, which contains the entry point will be called the “entry cell”.
The linear search is performed until an inside cell is found (green cell in Figure
3.10). In every iteration (represented by the yellow colored dots labeled with
“L1” and “L2” in Figure 3.10) a constant sized step is done. The initial step size
of the linear search highly depends on the angle between the shooting ray and
the basic mesh's surface normal. This rule is needed to avoid artifacts by more
grazing viewing angles [15]. This happens because the step size is too high and
therefore missing an inside cell.
It is not always the case (as in Figure 3.10) that right after the entry cell an inside
cell is followed. Especially at grazing angles often the ray steps through more
than one intersection cell until it hits an inside cell shown in Figure 3.11.
But it is not guaranteed that exactly the border of the inside cell was hit.
Therefore the binary search has to be performed (shown in row 19-28 in
Algorithm 3.1). The idea is to half the step size with every iteration as long as
the step size is smaller than a certain threshold(ideally the size of a voxel) shown
in Figure 3.12. As we can see in Figure 3.12 the binary search algorithm starts at

Chapter 3. Cell-Based Object Representation 45

the last position of the linear search, which has to be inside an inside cell(the
cyan colored dot labeled with a “L”). In the example in Figure 3.12 we only
need three iterations to hit exactly the inside cell's border(yellow colored dot
labeled with a “B3”).

Figure 3.10: Ray tracing performing a linear search to find an inside cell (green
cells). Intersected cells are colored red and outside cells are colored gray. The
blue line represents the basic mesh's surface. “E” is the entry point and
“L1,”L2” are the equidistant steps along the ray.

Figure 3.11: At grazing angles the ray steps through more than one intersected
cell (red cells). Four equidistant steps (yellow colored dots) are required to hit
an inside cell (green cell).

Chapter 3. Cell-Based Object Representation 46

Figure 3.12: Ray tracing performing a binary search to find the cell's boundary.
Inside cells are colored green, intersected cells are colored red and outside cells
are colored gray. The blue line represents the basic mesh's surface. Three
iterations B1,B2 and B3 are needed to hit exactly the inside cell's border.

Generally for the linear search the termination criteria is to hit an inside cell no
matter if this inside cell is an adjacent neighbor of the intersection cell. After
finding an inside cell the search algorithm switches to a binary search to finally
hit the cell's boundary for illumination computation. But what happens if the ray
hits an outside cell? If we take a look at Figure 3.13 we can see that the first ray
hits an outside cell meaning the ray is outside the object's surface. To finally find
an inside cell the ray had to step through all the outside cells until it hits the
object's surface again. Due to basic mesh rendering we get entry points inside an
intersected cell. This fact helps us to skip all over the outside cells such as in
Figure 3.13 and immediately starting at the entry point right after the outside
cells shown by the second entry point in Figure 3.13. This approach saves some
computational time. In fact the idea is not to skip the outside cells, but discarding
the first ray entirely (marked by the red “X” for ray 1 in Figure 3.13) if an
outside cell is hit. Due to basic mesh rendering a further ray right after the
outside cells (ray 2 in Figure 3.13) is shot from the object's surface pointing in
the same viewing direction. To discard a ray means the search algorithm can be
entirely terminated by not performing a subsequent binary search. In this case no
inside cell could be hit and therefore the color information gets entirely
discarded meaning that ray misses the object's surface. By finding an inside cell's
boundary only a simple lookup in the precomputed normal and corresponding
color map has to be done to finally evaluate the local illumination.

Chapter 3. Cell-Based Object Representation 47

Figure 3.13: Ray tracing performing a linear search. Since the first ray hits an
outside cell (gray cells) ray 1 gets entirely discarded (shown by the red “X”).
Due to basic mesh rendering a further ray (ray 2) is shot pointing in the same
viewing direction. Ray 2 hits an inside cell (green cell).

3.2.3 Specular Self-Reflection

After finding the inside cell's boundary performing a first hit (explained in
Chapter 3.2.2) specular self-reflection can be easily computed by shooting
further rays (reflected rays R1 and R2 shown in Figure 3.14). The law of
reflection says that for specular reflection the direction of the incoming light (the
incident ray) and the direction of outgoing light reflected (the reflected ray)
make the same angle with respect to the surface normal. In Algorithm 3.2 a self
reflection is explained. As for the first hit (explained in Chapter 3.2.2) a linear
search has to be performed to find an inside cell. The main difference between
the first hit and the specular self-reflection is that a linear search (shown in row
4-17 in Algorithm 3.2) is performed mostly outside the cell-based object instead
inside. This fact provides an optimization by doing a “tile skipping” for empty
tiles (shown in row 11-16 in Algorithm 3.2). Due to the precomputed
membership map, which contains the membership of each cell in a tile, we can
easily check if a whole tile contains solely outside cells. In case the ray intersects
an empty tile (magenta highlighted square in Figure 3.15) only a box vs ray
intersections has to be computed to determine the exit point (yellow colored dot
labeled with a “B” in Figure 3.15) along the shooting ray. After finding an
inside cell a binary search (the same as in Algorithm 3.1 row 19-28) is

Chapter 3. Cell-Based Object Representation 48

performed to find the cell's boundary. In case no inside cell is hit by the linear
search the ray gets entirely discarded (19-20 in Algorithm 3.2).
Specular self-reflection can have more than one reflection bounce. Since every
further reflection bounce leads to more computational costs, in practice only one
or maybe even two reflection bounces are sufficient to have a realistic looking
specular self-reflection. More reflection bounces don't contribute so much details
in the final rendering so that a higher order ray would be worth the effort. In
Figure 3.16 we can see a comparison of a cell-based torus object rendered with
higher order rays using an environment map. It shows that the difference
between ray order one and higher orders is hardly visible.

1 for each specular reflection bounce shoot ray in reflection direction
2
3 determine reflection direction
4 while (cellMembership != INSIDE) //linear search
5 stepsize along ray
6 determine cell membership
7 if (cell membership == INSIDE)
8 store hit position
9 break while loop
10 end
11 if (cell membership == OUTSIDE) //empty tile skipping
12 if (tile is empty)
13 box(tile) vs ray intersection to determine exit point
14 hit position = exit point
15 end
16 end
17 end
18
19 if (linear search found no hit)
20 discard ray
21
22 perform binary search
23 end

Algorithm 3.2: Specular self-reflection performed by a linear search (row 4-17)
with a subsequent binary search (row 22) to find the inside cell's boundary. For
optimizing purposes an empty tile skipping (row 11-16) is done for the linear
search.

Chapter 3. Cell-Based Object Representation 49

Figure 3.14: Specular self-reflection with two bounces. E is the viewing
direction, which is the incident ray for the first bounce. R1 is the corresponding
reflected ray. In this example an additional bounce is performed. R1 is the
incident and R2 the reflected ray, respectively. N1 and N2 are the surface
normals.

Figure 3.15: Empty tile skipping is done by computing a box(tile) vs ray
intersection to determine the exit point “B”.“A” is the corresponding entry
point. The magenta colored square represents the empty tile, which contains
solely outside cells.

Chapter 3. Cell-Based Object Representation 50

Figure 3.16: A close-up view of a cell-based torus rendered with specular self-
reflection and environment mapping. Traversing higher order reflection ray:
zero (top left), one (top right), two (bottom left) and three (bottom right).

3.2.4 Refraction

Refraction can be easily computed just like specular self-reflection explained in
Chapter 3.2.3 by shooting further rays right after the first hit. Instead of shooting
further rays in reflection direction this time a refraction direction is computed by
Snell's law. Snell's law is a formula used to describe the relationship between the
angle of incidence θ1 and refraction θ2:

Chapter 3. Cell-Based Object Representation 51

When light penetrates from one media into another the direction of the incident
light gets bend. The amount of bending the light direction depends on the media
refractive index n1 and n2 .
In Figure 3.17 the first refraction R1 occurs when the viewing ray E penetrates
into the cell-based object. Ray R1 travels inside the object until it leaves the
object by hitting the inside cell's boundary. To determine the inside cell's
boundary efficiently a modified linear search has to be performed as we have
seen for the specular reflection. Due to ray marching is done in the inside
(instead outside) the object the termination criteria for the cell membership has
to be changed (as we can see in Algorithm 3.3 row 4 and row 7). Hence a tile
skipping can be also done for tiles, which contain solely inside cells (shown in
Algorithm 3.3 row 12-15). After the ray hits the cell-based object's boundary two
possible refractions are possible. First, the ray can be refracted in such a way so
that the ray travels again in the inside of the cell-based object shown by R2 in
Figure 3.17. In this case the same search algorithm (row 4-17 in Algorithm 3.3)
as mentioned before is performed due to ray marching is done inside the cell-
based object. The second possibility is that the ray leaves the cell-based object
(ray R3 in Figure 3.17) so that a ray marching is performed at the outside of the
cell-based object. This algorithm (Algorithm 3.2 row 4-22) was mentioned
before in the specular self-reflection explained in Chapter 3.2.3. Refraction is
repeated until no cell-based object's surface can be hit anymore. At the end of
this refraction process we get a ray direction, which could be used to lookup into
an environment map (just like for specular self-reflection). Results of refraction
with an environment map can be seen in Figure 3.18.

1 for each refraction bounce shoot ray in refraction direction
2 determine refraction direction
3 if (next step along ray == INSIDE)
4 while (cellMembership == INSIDE) //linear search
5 stepsize along ray
6 determine cell membership
7 if (cell membership == INTERSECTED)
8 stepsize backwards along ray
9 store hit position
10 break while loop
11 end
12 if (tile contains solely inside cells) //tile skipping
13 box(tile) vs ray intersection to determine exit point
14 store exit point as hit position
15 end
16 end
17 perform binary search

Chapter 3. Cell-Based Object Representation 52

18 end
19 else //same search algorithm just like for specular self-reflection
20 (see row 4-22 in Algorithm 3.2)
21 end
22 end

Algorithm 3.3: Refraction performed by a linear search (row 4-16) in the inside
of the cell-based object with a subsequent binary search (row 17) to find the
inside cell's boundary. For optimizing purposes an tile skipping (row 12-15) for
tiles containing solely inside cells is done for the linear search. Search
algorithm for refraction rays outside the cell-based object are explained in
Algorithm 3.2 in row4-22.

Figure 3.17: Refraction with two possible ray paths R2 and R3. E represents the
viewing vector, which penetrates into the cell-based object. At the first hit
position (yellow dot) a refraction vector R1 is shot. At the second hit position
two possible refraction vectors are shown. R2 refracts into the cell-based object.
R3 leaves the cell-based object.

Chapter 3. Cell-Based Object Representation 53

Figure 3.18: A cell-based torus rendered with refraction. In this rendering an
environment map is used. The image above is rendered with a lower refraction
index than the image at the bottom.

Chapter 3. Cell-Based Object Representation 54

3.3 Summary

In summary in the preprocessing stage the object-space is split into tiles. Each
tile contains the same tileable cell collection. After precomputation each cell in
object-space is tagged with one of the following cell membership information:
inside, outside or intersected and stored in the cell membership map.
Localization of a cell is done by two indices, the tile index and the cell index.
Especially for tileable cells a cell splitting has to be done, which results to a new
indexing. The color map has to be tileable to get nice results in the rendering.
The normal map is computed by calculating edge normals on the cell's boundary.
In the rendering stage a ray-tracer is performed using a linear with a subsequent
binary search to hit an inside cell's boundary to calculate a local illumination.
Additionally features such as specular self reflection and refraction can be easily
computed by shooting further rays. For ray tracing some optimizations such as
discarding viewing rays and empty tile skipping are discussed to improve the
rendering speed.

„An algorithm must be seen to be
believed„
Donald Knuth

Chapter 4. Implementation

Implementation

With the fundamental understanding of the basic concept of a cell-based object
representation described in Chapter 3 we can analyze the preprocessing stage
from a technical point of view. During the preprocessing stage the following
textures are precomputed: tile map, membership map and normal map. In this
chapter each texture generation is explained in detail. In Chapter 4.1 we will
discuss various ways to generate a tilemap. In Chapter 4.2 and 4.3 some index
modifications to the tile map has to be done to meet certain requirements for the
next precomputational stage the cell membership determination, which is
explained in Chapter 4.4 and 4.5. Chapter 4.6 explains how to generate the
corresponding normal map. The last Chapter 4.7 presents three tools to model
and render the cell-based objects.

4.1 Tile Map

In Chapter 3.1.3 we defined the term cell tile, which contains a collection of
cells stored in a three-dimensional texture called the tile map. This cell tile gets
tiled over the object space to create the fine scaled details on a cell-based object.
The basic idea is to create a three-dimensional texture, which contains cell
indices. Each cell is defined by an unsigned integer. In Figure 3.2 we can see a
tile map containing eight cells meaning that the cell index range goes from 1 to
8. Note that some cells get tiled over the corners and edges. Since the tile map in
Figure 3.2 is based on a Voronoi diagram (explained in Chapter 2.4.2) each cell
has a immediate adjacent cell. That is no empty space is defined in this texture.
However it is also possible to create a tile map containing empty space defined
by the cell index 0. In Figure 4.1 we can see a tile map with empty space defined
by the black area. In this tile map we created spheres with a certain radius. Each
sphere represents a cell in the tile map. In Figure 4.2 a slice of a three-
dimensional tile map is shown containing four cells. Each pixel in this slice is
tagged with an unsigned integer representing a cell index (index range from 1 to
4) or emtpy space (index 0).

Chapter 4. Implementation 56

Defining each cell by hand could be a tedious task because every slice of the
three-dimensional tile map has to be created by hand with a painting tool. To
make life easier the tile map should be created automatically. For testing purpose
we choose a Voronoi diagram (explained in Chapter 2.4.2) for generating a tile
map. We randomly set some seed points in three-dimensional space and
generated a three-dimensional Voronoi diagram given by Euclidean distance. In
Figure 3.2 we can see a computed tile map out of eight randomly set seed points
This tile map has a resolution of 64x64x64 voxels. Instead of the Euclidean
distance we can use another distance function, which produces various
interesting Voronoi diagrams as we have seen in Figure 2.27. Certainly there are
many procedural texture generation methods, which could be used to create a tile
map. Some of them we have been described in the related work in Chapter 2.4.
There are some practical methods for texture design [20] to build procedural
textures.

Figure 4.1: A tile map containing eight spherical cells (colored dots). The black
area represents the empty space.

Figure 4.2: Tile map slices tagged with a cell index 1 to 4. Index 0 represents
empty space.

Chapter 4. Implementation 57

4.2 Cell Splitting

Assuming that we have chosen a procedural method for building a tile map, such
as a Voronoi diagram, we have to do some modifications to the tileable cells
itself. In such a map there are some cells, which fit entirely into the tile map
(magenta colored cell tagged with the cell index 4 in Figure 4.2) and some other
cells, which get tiled over the tile map's boundaries (the purple colored cell
tagged with cell index 2 in Figure 4.2). Every split cell in this tile has to be
locatable by a split cell index as explained in Chapter 3.1.6. If the tiled cell is
tagged with the same cell index, we have to clip this cell on the tile map's
boundary and assign each split part of the tileable cell with a new cell index
somehow. In the three dimensional space a cell can be split up to eight split cells.
Producing eight split cells is only possible if and only if the cell gets tiled over
the corners as we can see for the cyan colored cell in Figure 3.2. Accordingly we
need for every tileable cell a placeholder for eight possible split cells.

Figure 4.3: A three-dimensional texture's boundary tagged with a six bit binary
code.

Chapter 4. Implementation 58

If we take the example from Figure 4.2 the tile map's slice contains two tileable
cells with index 1 and 2. Each of these tileable cells have to be split into two
split cells. To determine which cells are tiled over a boundary, we have to tag
every cell, which comes in contact with a boundary, with a so-called “face
code”. Since a three-dimensional texture map has a cubic shape each face side
can be tagged with a face code, which is realized by a six bit binary code shown

in Figure 4.3. The split cell algorithm needs the following three three-
dimensional textures:

1.) tileMap: Is the input for the split cell algorithm.
2.) splitCellMap1: A three-dimensional texture, which is initialized with the

face codes.
3.) SplitCellMap2: Another three-dimensional texture, which is empty

meaning all voxels are set to zero.

The data type (unsigned integer) and the resolution of both split cell maps are the
same as for the tile map. In Algorithm 4.1 we can see the pseudo code for a split
cell algorithm. The tile map is set as input for the split cell shader (row1 in
Algorithm 4.1). A sort of “ping pong” swapping between the two split cells
splitCellMap1 and splitCellMap2 is done after each split cell shader pass (row 3-
11 in Algorithm 4.1). Ping pong swapping in this context means that one split
cell map is set as input and the other as output for the split cell shader.
The main idea of the split cell shader (pseudo code shown in Algorithm 4.2) is to
go through every voxel and apply an OR-operator (row 13 in Algorithm 4.2) on
the corresponding neighboring voxels (26 directions since we are working with
three-dimensional texture maps) of the same cell. At the end of the whole
process every cell is tagged with the corresponding face code, meaning that for
each cell we know exactly every touching boundary.

1 set tileMap as input texture
2
3 for each pass
4 set splitCellMap1 as input texture
5 set splitCellMap2 as output texture
6 do split cell shader
7
8 set splitCellMap1 as output texture
9 set splitCellMap2 as input texture
10 do split cell shader
11 end

Algorithm 4.1: Split cell algorithm.

Chapter 4. Implementation 59

1 for each voxel
2 cCellIndex = tile map's cell index on current position
3 cSplitCellIndex = get split cell index on current position
4
5 //empty space
6 if(cCellIndex == 0)
7 return 0;
8
9 for each neighboring voxel
10 nCellIndex = tile map's cell index on neighboring position
11 if(nCellIndex == cCellIndex)
12 nSplitCellIndex = get split cell index on neighboring position
13 cSplitCellIndex = cSplitCellIndex | nSplitCellIndex;
14 end
15 end
16
17 return cSplitCellIndex;
18 end

Algorithm 4.2: The split cell shader.

An example of an input tile map and split cell map initialized with face codes is
shown in Figure 4.4. In this example only two passes (shown in Figure 4.5) of
the split cell shader are needed to get the final result. The number of passes
depends on the resolution of the input maps. Assuming that NxNxN is the
resolution of the input map the algorithm needs N passes to assure correct
results.

Figure 4.4: The two input maps for the split cell shader. The tile map (left)
containing three cells and empty space. The split cell map (right) initialized with
face codes.

Chapter 4. Implementation 60

Figure 4.5: Two passes of the split cell algorithm for the example in Figure 4.4.
First pass is on the left and the second and last pass is on right. The highlighted
pixels represent the pixels modified in the current pass.

4.3 Split Cell Index Determination

As we can see in Figure 4.5 every split cell has a corresponding face code. But
for a correct cell membership map indexing (explained in Chapter 3.1.6) we
cannot adopt the face codes in our resulting split cell map (shown in Figure 4.5
right). With the knowledge that every cell needs a placeholder of eight split cell
indices we define for each cell an ascending sequence, meaning that the first
cell has the index range from 1 to 8, the next cell the index range from 9 to 15
and so on. Hence the only task is to convert the resulting face codes into an
ascending split cell index. The result of conversion for the example from Figure
4.5 can be found in Figure 4.6.

Figure 4.6: Conversion of face codes (left) into an ascending split cell index
(right) needed for a correct cell membership map indexing.

Chapter 4. Implementation 61

At the end of the split cell index conversion two new important textures are
created, the face code map (in Figure 4.6 left) and the split cell map (in Figure
4.6 right). Both textures are important for the cell membership determination.

4.4 Cell Membership Determination

The basic concept of cell membership determination is explained in Chapter
3.1.5. At the end of this process the cell membership map contains for each split
cell in object space a membership information (inside, outside and intersected).
The main implementation idea of the cell membership determination is to
calculate the split cell membership slice by slice (see Algorithm 4.3). As input
for the cell membership determination a voxelization of the basic mesh
(mentioned in Chapter 3.1.4) is required. In Figure 4.7 on the left we can see a
slice of a voxelized object. Notice the black and grey areas. The grey area
(tagged with a 1) represents the inside and the black area (tagged with 0) the
outside of the basic mesh. In the following the set of all slices will be called the
“inside outside map”. The resolution of the inside outside map depends on two
parameters calculated by the resolution of the split cell map times the number of
tiles. Since the resolution of the split cell map in Figure 4.7 on the right is 8x8
and since the split cell map gets tiled over the object space two times in every
direction (x, y, and z) the resulting resolution of the inside outside map in Figure
4.7 on the left has to be 16x16. On modern graphics cards the maximum texture
size is 8192x8192. Hence a high precision of the inside outside voxelization is
possible. Assuming the maximum texture memory size is 1 GB the cell
membership map contains 406x406x406 tiles at most, due to the following
formula:

In this case the resolution of the split cell map is 20x20x20 pixels calculated by
the above mentioned formula:

Chapter 4. Implementation 62

If this split cell map contains only one cell, which would make sense for a
resolution of 20x20x20 pixels, this cell based object can have up to 406 cells
(due to 406 tiles) in one coordinate axis (or up to 406^3 = 66923416 cells in the
whole object space). Since only the inside cells in the cell-based ray tracing are
rendered usually only half of the possible cells gets rendered depending on the
basic mesh. On the whole we can assume that the following ratio between inside,
outside and intersected cells exists:

inside:outside:intersected = 3:2:1

1 for each slice
2 create inside outside slice
3 calculate split cell membership
4 end
5
6 merge split cell membership information

Algorithm 4.3: Cell membership determination.

After computing the inside outside voxelization (see Algorithm 4.3 row 2) it has
to be determined whether split cells are totally inside, outside or even
intersecting the basic mesh (see Algorithm 4.3 row 3). For this a new data
structure is defined, which holds the cell membership information the so-called
“cell membership map”. The resolution of the cell membership map is depending
on the number of tiles. If N is the number of tiles in one direction the resolution
of the cell membership map is set to NxNxN. A tiling in three-dimensional
object space is shown in Figure 4.8. Due to the fact that a cell can be tagged as
“inside”, “outside” or “intersected” we need only two bits per split cell. In our
implementation the following bit codes are defined:

Binary code Cell membership tag
00 OUTSIDE
01 INSIDE
10 INTERSECTED
11 UNSET

Table 4.1: Binary codes for cell membership information.. In the following the
colors will represent the corresponding cell membership tags for better
visualization.

Chapter 4. Implementation 63

Figure 4.7: top: shows the corresponding slice in object space. bottom left:
voxelized basic mesh, bottom right: split cell map tiled over object space.

Chapter 4. Implementation 64

Figure 4.8: Object space divided into 8x8x8 equal distant cubes. Each cube
represents a tile.

The bit code 11 as in Table 4.1 represents an “unset” voxel, which is important
for initialization. On modern graphics hardware it is possible to store a 128-bit
value per voxel in a three-dimensional texture. Consequently it is possible to
store 64 split cell membership information per tile. In the Chapter 4.2 it was
mentioned that a cell splitting is needed for cells, which are tiled over the tile
maps corner or edges. Due to the fact that a tiled cell could be split into eight
split cells at most and the split cells are tagged with an ascending split cell index
we get the following bit allocation shown in Figure 4.9. In the following the 128-
bit code per tile will be called the “tile bit code”. That is the cell membership
map is stored as a three-dimensional texture with a 32-bit RGBA channel. Each
32-bit channel can store 16 split cells (each split cell needs two bit). Hence the
cell membership is nothing else than a list of tile bit codes.

Figure 4.9: Bit allocation for the cell membership map. A tile is a 128-bit code
containing 64 2-bit split cells. Each 2-bit code represents a split cell
membership tag.

Chapter 4. Implementation 65

So far due to the inside outside voxelization only the cell membership of one
voxel is calculated. However we need the membership of the whole cell. This is
given by the algorithm explained in Algorithm 4.4.

1 initialize membership map with the UNSET tag
2 for each voxel in the inside outside map
3
4 calculate cell and tile coordinates from current voxel position
5 get split cell index
6
7 if (empty space)
8 continue (jump back to row 3);
9 end
10
11 membership = get split cell tag from cell membership map
12
13 if (membership == INTERSECTED)
14 continue (jump back to row 3);
15 end
16
17 newMembership = get tag from inside outside slice
18
19 if((newMembership != membership) && (membership != UNSET))
20 newMembership = INTERSECTED;
21 end
22
23 overwrite existing cell membership with new one
24 end
25 end

Algorithm 4.4: Split cell membership determination.

First of all every split cell in the cell membership map gets initialized with the
“unset” tag (see row 1 in Algorithm 4.4). The idea is to go through every slice of
the inside outside map pixel by pixel (see row 2 in Algorithm 4.4). Due to the
knowledge of the tile's size two coordinates are calculated from the current voxel
position (see row 4 in Algorithm 4.4) by the following formula:

tile coordinate = voxel position modulo tile's size
cell coordinate = voxel position – tile coordinate

Chapter 4. Implementation 66

With the cell coordinate a simple lookup in the split cell map returns the split
cell index (see row 5 in Algorithm 4.4). If the split cell index is equal to zero the
voxel is inside an empty space. Hence no further computation is needed and
therefore the algorithm jumps to the next voxel (see row 7-8 in Algorithm 4.4).
As mentioned in Chapter 3.1.6 a split cell localization is realized by two
coordinates, the tile and cell coordinate. The tile bit code contains the cell
membership for each split cell inside a corresponding tile. To get the tile bit code
a lookup in the cell membership map with the corresponding tile coordinates has
to be done (see row 3 in Algorithm 4.5). Additionally some bit comparisons
(explained in Algorithm 4.5) are done to get the corresponding split cell
membership tag (see row 11 in Algorithm 4.4). The input for the bit comparison
is the split cell index (range from 1 to 64). As mentioned before the cell
membership is stored as a three-dimensional texture with a 32-bit RGBA
channel. Hence the tile bit code has 128-bit storing 64 split cells (16 split cells in
one channel). The corresponding channel is computed by dividing the split cell
index by 16 (Algorithm 4.5 row 2). Next the bit position inside the channel is
computed (shown in Algorithm 4.5 row 1). To get tile bit code only a lookup in
the membership map with the corresponding tile coordinate is done. Knowing
the channel and the bit position in this channel it is very easy to get the split cell
membership out of the tile bit code (see Algorithm 4.5 row 5-16).

1 shift = (splitCellIndex & 15) << 1;
2 channel = splitCellIndex >> 4;
3 tileBitCode = get tile code
4
5 if (channel == 0)
6 splitCellMembershipTag = ((tileBitCode.r & (3<<shift)) >> shift);
7 end
8 if (channel == 1)
9 splitCellMembershipTag = ((tileBitCode.g & (3<<shift)) >> shift);
10 end
11 if (channel == 2)
12 splitCellMembershipTag = ((tileBitCode.b & (3<<shift)) >> shift);
13 end
14 if (channel == 3)
15 splitCellMembershipTag = ((tileBitCode.a & (3<<shift)) >> shift);
16 end

Algorithm 4.5: Bit comparisons to get split cell membership from cell
membership map.”&” = bitwise AND. “<<” = shift left. “>>” = shift right.

Chapter 4. Implementation 67

The final step is to compare the voxel's membership from the inside outside map
(see row 17 in Algorithm 4.4) with the already written membership information
in the cell membership map. By defining the following rules we can determinate
the membership of a whole split cell:

Membership 1 Membership 2 Resulting Membership

INSIDE INSIDE INSIDE

OUTSIDE OUTSIDE OUTSIDE

INSIDE OUTSIDE INTERSECTED

OUTSIDE INSIDE INTERSECTED

Table 4.2: Rules for combining cell memberships. Column 1 and 2 are the inputs
and the third column the output for this operation.

The result after the split cell membership determination explained in Algorithm
4.4 for the input maps from Figure 4.7 can be seen in Figure 4.10. The resulting
membership map is shown in Figure 4.11. Note that this membership map has
only the split cell membership computed without taking the whole cell into
account. Therefore a split cell membership merger explained in the next Chapter
4.5 has to be done. The split cell membership merger is the last step to determine
the final cell membership map.

Figure 4.10: Left: The result of the split cell membership determination from the
example in Figure 4.7. Split cells are tagged with INSIDE(green),
OUTSIDE(red) and INTERSECTED(blue). The numbers represent the split cell
index in a tile. Right: The corresponding face code map from the example in
Figure 4.7 tiled over the object space. This map shows which split cells belong
to which cells. Tile coordinates (x/y) can be found right after the tile label.

Chapter 4. Implementation 68

Figure 4.11: The resulting cell membership map from example in Figure 4.7.
Each row represents a tile bit code containing 64 split cell memberships. Split
cells are tagged with INSIDE(green), OUTSIDE(red), INTERSECTED(blue) and
UNSET(grey). The binary code is defined in Table 4.1.

4.5 Split Cell Membership Merger

At this point we only know the membership of each split cell. The last step is to
merge the split cell membership information to determine the cell membership of
a whole cell (build of up to eight split cells). In our implementation we store a
lookup table (see Figure 4.12), which contains for every split cell a
corresponding face code and additionally know which split cells belong to which
cell. The split cell membership merger is done on the CPU. In this process
(explained in Algorithm 4.6) only the cell membership map is needed. In
Algorithm 4.6 we go through every corresponding split cell of a cell and merge
the corresponding split cell memberships (see row 7-10 in Algorithm 4.6) by the
same rules (see Table 4.2) as mentioned in Chapter 4.4. After calculating the
proper membership for the current cell, all corresponding split cells has to be set
to the calculated cell's membership in the membership map (see row 13-15 in
Algorithm 4.6).
For a better understanding in the following a specific split cell is localized by the
tile coordinate tx and ty and the split cell index si by the tuple (tx/ty)(si). For
example in Figure 4.10 on the left the split cell 10 in tile 2 is localized by the
tuple (1/0)(10). If we look at Figure 4.10 we can see that split cell (0/0)(10) and
(1/0)(9) belong to the cyan colored cell. Split cell (0/0)(10) is tagged as INSIDE
and split cell (1/0)(9) is tagged as INTERSECTED. Since we are using the rules

Chapter 4. Implementation 69

of Table 4.2 the whole cell should be tagged as INTERSECTED. The question
is how do we know in which neighboring tile we have to lookup to find the
neighboring split cell? In the previous Chapter 4.4 we explained the face code,
which was used to determine, in which edge or corner the cell gets tiled. With
this face code it is very easy to determine the corresponding split cells (see row
4-5 in Algorithm 4.6) of a tiled cell lying in neighboring tiles by doing some bit
comparison explained in Algorithm 4.7.

Figure 4.12: Lookup table stores face codes for every split cell. This lookup
table is generated from the example from Figure 4.10. Magenta cell 1 contains 4
tiled split cells with face codes 5,6,9 and 10. Note that cell 3 contains only a
split cell tagged with face code 0, consequently this cell was not tiled.

1 for each tile
2 for each split cell
3 currentMembership = get current split cell membership
4 get face code
5 get corresponding neighboring split cells out of face code
6 for each corresponding neighboring split cell
7 neighboringMembership = get split cell membership
8 if((neighbouringMembership == INTERSECTED) ||
9 (currentMembership != neighbouringMembership))
10 currentMembership = INTERSECTED;
11 end
12 end
13 for each corresponding neighboring split cell
14 set currentMembership for split cell in membership map
15 end
16 end
17 end

Algorithm 4.6: Cell membership determination by merging the split cell
membership information.

Chapter 4. Implementation 70

1 currentTileCoord = get current tile coordinates
2 currentFaceCode = get face code of current split cell
3 for each corresponding neighboring split cell
4 neighboringFaceCode = get face code of corresponding split cell
5 directions = currentFaceCode | neighbourFaceCode
6 xDir = directions & 3
7 yDir = (directions & (3<<2)) >> 2
8 zDir = (directions & (3<<4)) >> 4
9 xShift = yShift = zShift = 0;
10 if(xDir == 3)
11 xShift = 2(currentFaceCode & 3) - 3
12 end
13 if(yDir == 3)
14 yShift = 2*((currentFaceCode & (3<<2)) >> 2) - 3
15 end
16 if(zDir == 3)
17 xShift = 2*((currentFaceCode & (3<<4)) >> 4) - 3
18 end

19 newTileCoordinate = currentTileCoord + (xShift,yShift,zShift)
20 store newTileCoordinate in a list
21 end

Algorithm 4.7: Bit comparisons to get the tile coordinate of the corresponding
neighboring split cells.”&” = bitwise AND. “|” = bitwise OR.“<<” = shift left.
“>>” = shift right.

The bit comparison in Algorithm 4.7 is best explained by the following example.
Note that in this example we only take the two-dimensional case into account.
Assuming we take the same split cells as mentioned before, split cell 10 and 9
from Figure 4.10 and assuming our current tile coordinate (tx,ty) is (1/0). Due to
the lookup table (see Figure 4.12) we know that split cell 9 has as it's neighbor
split cell 10. In Table 4.3 we can see the results for the specific example to get
the right neighboring tile coordinate out of the face code explained in Algorithm
4.7.

Chapter 4. Implementation 71

Binary Code Decimal
Number

Row# in
Algorithm
4.7

Comment

0001 1 Row 2 currentFaceCode of Split Cell 9

0010 2 Row 4 neighboringFaceCode of split cell 10

0011 3 Row 5 directions

0011 3 Row 6 xDir

0000 0 Row 7 yDir

- -1 Row 11 xShift

- 0 Row 9 yShift

Table 4.3: Intermediate results of Algorithm 4.7 from the example in Figure
4.10.

neighboring tile coordinate (tx+xShift,ty+yShift) = (1-1,0+0) = (0/0) row 19

Accordingly if the current tile coordinate for split cell 9 is (1,0) the neighboring
split cell 10 is found in the neighboring tile with coordinate (0,0). A comparison
between two membership maps before and after the split cell merger process are
shown in Figure 4.13.
The split cell membership merger is the last step to determine a proper cell
membership map. Finally a cell-based object representation is described by the
tile and cell membership map, which are necessary for cell localization in the
rendering stage.

Figure 4.13: The cell membership map from the example in Figure 4.10 before
(left) and after (right) split cell merger process. Note that only two cells are
totally inside.

Chapter 4. Implementation 72

4.6 Normal Map

As mentioned in Chapter 3.1.8 in our implementation we precompute normals
on the cell's boundary. An edge normal for a cell is calculated in the following
way. With the tile map as input we go through every voxel in this map (row 1 in
Algorithm 4.8). The idea is to generate for every voxel up to 26 normals
pointing to the neighboring position (row 5 in Algorithm 4.8). It is important,
that only normals with a different cell index are taken into account (row 4 in
Algorithm 4.8). Out of these calculated normals a mean normal has to be
computed, normalized and stored into the three-dimensional normal map. The
normal map has the same resolution as the tile map (row 10-12 in Algorithm
4.8). In our implementation the normal map is a 3 channel 32 bit floating point
texture.

1 for each voxel in the tile map
2 initialize finalNormal with zeros
3 for each neighboring voxel
4 if (current voxel has a different cell index as neighboring voxel)
5 newNormal = neighboring position - current position
6 normalize newNormal
7 finalNormal = finalNormal + newNormal
8 end
9 end
10 calculate mean value out of finalNormal
11 normalize finalNormal
12 store finalNormal in normal map
13 end

Algorithm 4.8: Calculation of the edge normal out of the tile map.

Chapter 4. Implementation 73

4.7 Tools

For a prove of concept a DirectX 10 implementation was created using HLSL
shading and C++ as programming language. We programmed two preprocessing
tools for texture precomputation (tile map, membership map and normal map)
and a rendering program, which displays the cell-based object with a ray tracer
(explained in Chapter 3.2). In the first precomputation program it is possible to
create a tile, color and a normal map procedurally. In Figure 4.14 we used a
three-dimensional Vornoi diagram for generating all three maps. In the second
tool the basic mesh, the tile map and the number of tiles per axis are needed as
input to generate a corresponding cell membership map seen in Figure 4.15.

Figure 4.14: Precomputation tool to generate a tile, color and normal map
procedurally. This is an example of a Voronoi diagram with eight randomly set
seed points.

Chapter 4. Implementation 74

Figure 4.15: Precomputation tool to generate a membership map. Inputs for this
tool are the basic mesh (blue object), the corresponding tilemap and the number
of tiles per axis.

The rendering program puts all precomputed maps together and renders the cell-
based object with three different ray tracing modes: first hit, specular self-
reflection and refraction (shown in Figure 4.16). The first hit mode uses only
primary rays. The two other modes additionally shoot further rays to render
more interesting effects.

Chapter 4. Implementation 75

Figure 4.16: Rendering program to demonstrate the ray tracing for cell-based
objects. It is possible to switch between three rendering modes. From top to
bottom: first hit, specular self-reflection and refraction.

„By three methods we may learn
wisdom: first, by reflection, which is
noblest; second, by imitation, which is
easiest; and third, by experience,
which is the most bitter.„
Confucius

Chapter 5. Results and Discussion

Results and Discussion

All images in this chapter were produced on a Intel Core 2 PC at 2.4 GHz CPU
with 2 GB RAM and a Geforce GTX 295 GPU with 2x896 MB video RAM.
Since using ray tracing for displaying the cell-based objects the performance
highly depends on the output resolution. In order to keep a basis for comparison
all images were rendered with an output resolution of 1024x768.

5.1 Memory Consumption

In the precomputation stage the user is able to choose the cell map resolution and
the number of tiles. A higher cell map resolution is needed for close-up views
(see Figure 5.1 bottom). A higher number of tiles increases the amount of cells.
In Table 5.1 we can see four various parameter setups to produce a high-
resolution cell-based object. High resolution in this context means using a high
precision inside-outside map (8192x8192) for voxelization as mentioned in
Chapter 4.4.

User parameters Texture memory size
Cell map
resolution

Number of
tiles

Cell
map

Color
map

Normal
map

Cell
membership

map

Total

256x256x256 32x32x32 16 MB 8 MB 256 MB 512 KB 280 MB

128x128x128 64x64x64 2 MB 8 MB 32 MB 4 MB 46 MB

64x64x64 128x128x128 256 KB 8 MB 4 MB 32 MB 44 MB

32x32x32 256x256x256 32 KB 8 MB 512 KB 256 MB 264 MB

Table 5.1: Four parameter setups for a cell-based object with the corresponding
texture memory consumption. The color maps [23] have a 32-bit RGBA channel
with a resolution of 128x128x128.

Chapter 5. Results and Discussion 77

Figure 5.1: A high resolution cell-based Stanford Bunny is displayed by an ray
tracer using a specular self-reflection. Top: cell map resolution 64x64x64 and
number of tiles are 128x128x128. Bottom: cell map resolution 128x128x128 and
number of tiles are 64x64x64. Note the the specular self-reflection in close-up
view.

Chapter 5. Results and Discussion 78

Two resulting cell-based objects from the parameter setup from Table 5.1 (row 2
and 3) are shown in Figure 5.1. Note the high frequent, repetitive surface details
(Figure 5.1 top). In this example high frequent means that the object has about
256 cells per axis. This value is estimated based on the fact that the object-space
is split into 128x128x128 tiles and each tile comprises 8 cells. By taking only
one dimension into account a cell resolution of 128 tiles times 2 cells per axis
results into 256 cells per axis. These two cell-based Stanford Bunnies need 46
MB (Figure 5.1 bottom) and 44 MB (Figure 5.1 top) texture memory,
respectively. The texture size highly depends on the two mentioned parameters
the cell map resolution and the number tiles. Hence a high resolution parameter
setup leads to high image quality at the costs of high memory consumption.

5.2 Computational Time

The frames per second highly depends how much the cell-based object covers
the screen. The larger the covered area the more pixels have to be processed by
the ray tracer inducing a lower frame rate. However, for comparison the cell-
based Stanford Bunny from Figure 5.1 (bottom) is rendered with three different
rendering modes: first hit, specular self-reflection and refraction (mentioned in
Chapter 3.2). Each rendering mode is rendered from different zooming positions
to achieve various pixel coverages. In Table 5.2 the exponential dependency
between pixel coverage and frame rate is shown. Since the specular self-
reflection and refraction shoot higher order rays, meaning that a ray bounces
more than once between the object's surface, these two techniques need more
computational time than the first hit rendering mode.

Table 5.2 Stanford Bunny rendered with three different rendering modes: first
hit, specular self-reflection and refraction. Note the exponential dependency
between pixel coverage and the frame rate.

0 20 40 60 80 100 120
0

20
40
60
80

100
120
140
160
180

f irst hit specular self-
reflection

refraction

pixel coverage in percent

fra
m

es
 p

er
 s

ec
on

d

Chapter 5. Results and Discussion 79

Note in Table 5.2 that for close-up views, having a pixel coverage about 90 to
100 percent, the frame rate goes up again. This happens because a smaller
amount of cells is visible and therefore needing less computational time.
Consequently the second factor, which influences the frame rate is the number
of visible cells. In Table 5.3 four close-up views with a pixel coverage of 100
percent are compared to show the influence of visible cells on the frame rate.

Table 5.3: Four different close-up views with a pixel coverage of 100 percent.
Note the dependency between number of visible tiles(cells) and the frame rate.

5.3 Visual Quality

Beside the pixel coverage and the visible number of cells there are other
parameters, which have an influence on the frame rate too. How precise the
boundary of a cell is hit by a ray tracer is depending on the step size for the
linear search. A large step size makes the ray tracing fast but on the other hand
increases the probability to miss a cell's boundary especially for grazing angles.
Hence a small step size enhances the visual quality at cost of lower frame rates.
In Figure 5.2 an object consists of spherical cells is rendered with various step
sizes. Note that the cells near the observer have a finer, concentric silhouette
with decreasing step size. In contrast for distant cells the finer ray traversal have
no distinguishable improvement for the visual quality. The resulting frame rates
for this example in Figure 5.2 are shown in Table 5.4. This table shows that a
finer step size needs more computational time.

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

f irst hit specular self-
ref lection

refraction

tiles per axis

fra
m

es
 p

er
 s

ec
on

d

Chapter 5. Results and Discussion 80

Figure 5.2: A close-up view of an object consisting of spherical cells rendered
with four different step sizes. Step sizes 1/16 (a), 1/64 (b), 1/256 ((c)) and 1/512
(d) are used for the first hit rendering. A step size with value of 1 equates to the
length of a tile. Note that a finer step size results in higher visual quality.

Not only for the first hit but also for higher order rays such as for specular self-
reflection and refraction the step size influences the image quality. Figure 5.3
shows that a smaller step size induces a finer concentric silhouettes in the
specular self-reflection on the spherical cells. Note that if the step size is too
large the outer parts of the cells disappear since the ray misses the cell's
boundary.

Chapter 5. Results and Discussion 81

Table 5.4: The corresponding frame rate to the four different step sizes from
example in Figure 5.2. Note that a finer step size (more steps per tile) induces a
lower frame rate.

Surfaces with a high reflectivity need more than one reflection bounce for
rendering a realistic specular self-reflection. As mentioned in Chapter 3.2.3
every further reflection bounce leads to more computational costs. In Figure 5.4
higher order rays are rendered for specular self-reflection. Table 5.5 shows the
resulting frame rates for the higher order rays from example in Figure 5.4.

Table 5.5: The corresponding frame rate to the three different specular self-
reflection order in Figure 5.4. Note that higher order rays need more
computational time.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

steps per tile

fra
m

es
 p

er
 s

ec
on

d

0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

specular self-reflection bounces

fra
m

es
 p

er
 s

ec
on

d

Chapter 5. Results and Discussion 82

Figure 5.3: A close-up view of an object consisting of spherical cells rendered
with three different step sizes. Step sizes 1/16 (a), 1/64 (b), 1/256 ((c)) are used
for the specular self-reflection. A step size with value of 1 equates to the length
of a tile. Note that a finer step size results in higher visual quality.

Chapter 5. Results and Discussion 83

Figure 5.4: A close-up view of an object consisting of spherical cells rendered
with three different specular self-reflecting ray orders. The ray order goes from
one to three from top to bottom.

Chapter 5. Results and Discussion 84

As mentioned before a higher cell map resolution is a crucial factor for the visual
quality of the cell-based object. Especially in close-up views shown in Figure 5.5
a higher cell map resolution is needed.

Figure 5.5: A close-up view of a cell-based object rendered with the same cell
map but with three different cell map dimensions. Note that the visual quality
highly depends on the cell map resolution. Cell dimensions from left to right:
16, 64, 128.

In Figure 5.6 a cell-based ninja head is rendered with and without specular self-
reflection. The linear step size for first order rays is set to 1/512. The specular
self-reflection is rendered only with one reflection bounce and the linear step
size for the second order reflection rays is 1/128. This object is rendered with a
cell map resolution of 128x128x128 and the object space is split into 64x64x64
tiles. Consequently the cell-based ninja head needs about 34 MB texture
memory. The computational time for viewpoints with a pixel coverage of 100
percent and by rendering all cells is for the first hit rendering about 67 and for
the self-reflection rendering about 29 frames per second. For close up views by
rendering about 3 tiles (containing 8 cells per tile) per axis the frame per second
for the first hit is about 129 and for the specular self-reflection about 39. In
Figure 5.7 the same cell-based ninja head from example in Figure 5.6 is rendered
with the same parameter setup but with different texture maps [23]. The cell-
based dragon model from Figure 5.8 is rendered with a cell map resolution of
64x64x64 and the object space is split into 128x128x128 tiles. The parameter
setup for the ray tracing remains the same as mentioned for the examples from
Figure 5.6. All provided features (parallax, occlusions and silhouettes) and
effects (specular self-reflection and refraction) are pointed out in Figure 5.9.

Chapter 5. Results and Discussion 85

Figure 5.6: A comparison between a cell-based ninja head rendered with(top)
and without(bottom) specular self-reflection. The cell dimension is 128x128x128
and the object space is split into 64x64x64 tiles. The three-dimensional cobble
stone texture is from [23]

Chapter 5. Results and Discussion 86

Figure 5.7: A cell-based ninja head rendered with two different textures [23] .
The cell dimension is 128x128x128 and the object space is split into 64x64x64
tiles.

Chapter 5. Results and Discussion 87

Figure 5.8: A cell-based dragon model rendered with specular self-reflection
(top) and refraction (bottom). The cell dimension is 64x64x64 and the object
space is split into 128x128x128 tiles. The color texture is taken from [23] .

Chapter 5. Results and Discussion 88

Figure 5.9: A cell-based torus rendered with specular self-reflection (bottom)
and refraction (top). Note the correct parallax, occlusions and silhouettes.

„Nobody can go back and start a new
beginning, but anyone can start today
and make a new ending.„
Maria Robinson

Chapter 6. Conclusion Results and
Discussion

Conclusion

6.1 Summary

First this thesis gave a survey of mesostructured rendering techniques and cell-
based texturing. Additionally every mesostructured rendering technique was
categorized by its provided features. This thesis proposed an cell-based approach
to model and display objects with a repetitive surface structure with a high visual
quality. First the basic cell-based datastructure was explained and how to
precompute all the needed information stored in 3D textures. For displaying the
cell-based objects a ray tracer was proposed. To achieve more interesting
looking surfaces the cell-based ray tracer was extended by two sophisticated
effects: the specular self-reflection and refraction. With the fundamental
understanding of the basic concept the technical point of view was introduced by
showing the implementation details about the precomputational process. Last but
not least the cell-based approach was analyzed based on the computational time,
memory consumption and visual quality by showing some high resolution
results.

6.2 Future Work

We proved that effects such as specular self-reflection and refraction could be
easily integrated to the ray tracer displaying cell-based objects. Due to ray
tracing other sophisticated effects such as caustics, translucency, self-shadowing
and ambient occlusion to name a few could be a possible enhancement for the
cell-based ray tracer.

In this thesis only static cell-based objects were discussed. An enhancement
could be to provide also deformable cell-based objects for animations. We tested
cell-based ray tracing on animated objects and discovered that for extreme
deformations surfaces disappear. This happens because the rays should be
wrinkled somehow depending on the deformation.
The precomputation time is depending on the cell map resolution and the
number of tiles. Changing these parameters changes the look of the resulting
cell-based object. For a high resolution setup the precomputation needs more
than some hours. To achieve a smooth workflow in the modeling stage the
precomputation has to be optimized to provide a fast response to model changes.

List of Figures
1.1 A close up view of real world objects..7
1.2 A close up view of an orange pulp...8
2.1 A bump map T(u,v) is applied on a macrostructure to generate bumps on

a surface...13
2.2 A comparison between conventional texture mapping (left) and bump

mapping (right)..14
2.3 normal mapping...14
2.4 Tangent-space normal map (left). Object-space normal map (right).......15
2.5 Model rendered with horizon mapping..16
2.6 texture coordinate offset for parallax mapping..17
2.7 Wall rendered with bump mapping (left). Same wall rendered with

parallax mapping (right)..17
2.8 The more the grazing viewing angle grows, the more distortion occurs. 18
2.9 Basic idea of offset parallax mapping..18
2.10 Comparison of parallax mapping (left) and offset parallax mapping

(right)...19
2.11 Rendering pipeline for displacement mapping......................................19
2.12 Comparison of different mesostructure rendering techniques...............20
2.13 Rendering pipeline for view-dependent displacement mapping............21
2.14 Binary search (left) followed by a linear search (right) to calculate ray

intersection with a height field...21
2.15 Computing self shadows by shooting another ray to the light source,

checking if there is an intersection with the height field.........................22
2.16 Gray values in the depth map (left) represent the height values and RGB

values in the normal map (right) represent the xyz-values of a normal...22
2.17 Ray intersection with four layers, which results in intersection with four

depth value di, dj, dk and dn for ray (α, β)..23
2.18 (a) Depth values for the four layers stored in the RGBα channels of the

texture. (b) x components of the unit normal vectors for the four layers.
(c) y components of the unit normal vectors for the four layers..............24

2.19 A room scene rendered with enhanced relief mapping technique.........24
2.20 A comparison of (a) bump mapping, (b) parallax mapping and (c) relief

mapping..25
2.21 Shell space lies between base surface and offset surface.......................25
2.22 Generated prism by connecting every vertex from the base surface to

the corresponding vertex in the offset surface...26
2.23 A Prism can be split in six ways, depending on the direction of the

triangulation of the quadrilateral faces..27
2.24 A demonstration of the rippling algorithm...27
2.25 A shell mapped model rendered with ray tracing..................................27
2.26 Four images stored in a texture map (bottom), which are irregular and

randomly tiled over a single texture using texture bombing....................28

2.27 Variations of Voronoi diagrams depending on the distance function.....29
2.28 F1(x) producing polka dots (left) and F2(x) has rapid changes and

internal structure (right)...31
2.29 Some interesting linear combinations of C1F1 + C2F2 + C3F3 + C4F4.

..31
2.30 Basic mesh (left), identified features faces (blue), edges (green) and

corners (red) for the basic mesh (middle) and basic mesh applied with
brick wall pattern (right)..32

2.31 Three-dimensional solid wood texture...32
3.1 Three-dimensional cell collection (b) gets tiled over the object-space (c).

..34
3.2 A three-dimensional texture of a tile's cell collection, which contains

eight tileable cells..35
3.3 Inside-outside voxelization of a polygonal mesh of a gargoyle..............37
3.4 Cell membership definition: inside cells (green cells), outside cells (gray

cells) and intersected cells(red cells)...37
3.5 Tile containing four cells on the left. Each tileable cell gets split into split

cells..38
3.6 Cell-based rendering with a color map [23] (e) as input.........................41
3.7 Cell-based rendering with further color maps [23] (bottom) as input.....41
3.8 Cell-based Rendering with a specific cell collection (a) with

corresponding normal map (b) and color map [23] (c) as input..............42
3.9 Comparison between an unshaded cell-based torus (left) and a phong

shaded, cell-based torus object (right)...42
3.10 Ray tracing performing a linear search to find an inside cell45
3.11 At grazing angles the ray steps through more than one intersected cell

..45
3.12 Ray tracing performing a binary search to find the cell's boundary......46
3.13 Ray tracing performing a linear search..47
3.14 Specular self-reflection with two bounces...49
3.15 Empty tile skipping is done by computing a box(tile) vs ray intersection

to determine the exit point...49
3.16 A close-up view of a cell-based torus rendered with specular self-

reflection and environment mapping...50
3.17 Refraction with two possible ray paths..52
3.18 A cell-based torus rendered with refraction...53
4.1 A tile map containing eight spherical cells..56
4.2 Tile map slices tagged with a cell index..56
4.3 A three-dimensional texture's boundary tagged with a six bit binary code.

..57
4.4 The two input maps for the split cell shader..59
4.5 Two passes of the split cell algorithm..60
4.6 Conversion of face codes (left) into an ascending split cell index (right)

needed for a correct cell membership map indexing.60
4.7 top: shows the corresponding slice in object space. bottom left: voxelized

basic mesh, bottom right: split cell map tiled over object space.............63

4.8 Object space divided into 8x8x8 equal distant cubes..............................64
4.9 Bit allocation for the cell membership map...64
4.10 The result of the split cell membership determination...........................67
4.11 The resulting cell membership map...68
4.12 Lookup table stores face codes for every split cell.69
4.13 The cell membership map from the example in Figure 4.10 before (left)

and after (right) split cell merger process..71
4.14 Precomputation tool to generate a tile, color and normal map

procedurally..73
4.15 Precomputation tool to generate a membership map.74
4.16 Rendering program to demonstrate the ray tracing for cell-based

objects..75
5.1 A high resolution cell-based Stanford Bunny is displayed by an ray tracer

using a specular self-reflection..77
5.2 A close-up view of an object consisting of spherical cells rendered with

four different step sizes..80
5.3 A close-up view of an object consisting of spherical cells rendered with

three different step sizes...82
5.4 A close-up view of an object consisting of spherical cells rendered with

three different specular self-reflecting ray orders....................................83
5.5 A close-up view of a cell-based object rendered with the same cell map

but with three different cell map dimensions...84
5.6 A comparison between a cell-based ninja head rendered with(top) and

without(bottom) specular self-reflection..85
5.7 A cell-based ninja head rendered with two different textures..................86
5.8 A cell-based dragon model rendered with specular self-reflection (top)

and refraction (bottom)..87
5.9 A cell-based torus rendered with specular self-reflection (bottom) and

refraction (top)...88

List of Tables

3.1 Cell index before cell splitting (left column). Corresponding split cell
indices for each tiled cell (right column)...39

4.1 Binary codes for cell membership information.......................................62
4.2 Rules for combining cell memberships..67
4.3 Intermediate results of Algorithm 4.7 from the example in Figure 4.10. 71
5.1 Four parameter setups for a cell-based object with the corresponding

texture memory consumption..76
5.2 Stanford Bunny rendered with three different rendering modes: first hit,

specular self-reflection and refraction...78
5.3 Four different close-up views with a pixel coverage of 100 percent......79
5.4 The corresponding frame rate to the four different step sizes from

example in Figure 5.2..81
5.5 The corresponding frame rate to the three different specular self-

reflection order in Figure 5.4...81

List of Algorithms

3.1 First hit performed by a linear search (row 6-13) with a subsequent
binary search (row19 - 28) to find the inside cell's boundary.44

3.2 Specular self-reflection performed by a linear search (row 4-17) with a
subsequent binary search (row 22) to find the inside cell's boundary......48

3.3 Refraction performed by a linear search (row 4-16) in the inside of the
cell-based object with a subsequent binary search (row 17) to find the
inside cell's boundary. ...52

4.1 Split cell algorithm. ..58
4.2 The split cell shader...59
4.3 Cell membership determination. ...62
4.4 Split cell membership determination. ...65
4.5 Bit comparisons to get split cell membership from cell membership map.

..66
4.6 Cell membership determination by merging the split cell membership

information...69
4.7 it comparisons to get the tile coordinate of the corresponding neighboring

split cells..70
4.8 Calculation of the edge normal out of the tile map..................................72

Bibliography

[1] Ed Catmull, “A Subdivision Algorithm for Computer Display of Curved
Surfaces”, Ph.D. Thesis, University of Utah, 1974.

[2] L. Szirmay-Kalos and T. Umenhoffer, “Displacement Mapping on the
GPU - State of the Art”, Computer Graphics Forum, 2008.

[3] J. F. Blinn: “Simulation of Wrinkled Surfaces”, In Proceedings
SIGGRAPH 78, pp. 286-292, 1978.

[4] http://www.voronoi.com/wiki/index.php?title=Voronoi_Applications
[5] T. Akenine-Möller, E. Haines: “Real-Time Rendering”, Second Edition,

A.K. Peters Ltd., 2002.
[6] http://jerome.jouvie.free.fr/OpenGl/Projects/Shaders.php
[7] http://www.surlybird.com/tutorials/TangentSpace/index.html
[8] N. L. Max: “Horizon mapping: shadows for bump-mapped surfaces”, The

Visual Computer 4, pp.109–117. 1988.
[9] T. Kaneko, et al: “Detailed Shape Representation with Parallax

Mapping”, In Proceedings of ICAT 2001, pp. 205-208. 2001.
[10] T. Welsh: “Parallax mapping with offset limiting: A per pixel

approximation of uneven surfaces”, Tech. rep., Infiscape Corporation.
2004.

[11] R. L. Cook: “Shade trees”, In SIGGRAPH ’84 Proceedings, ACM Press,
pp. 223–231. 1984.

[12] R. L. Cook, L. Carpenter, E. Catmull: “The reyes image rendering
architecture”, In Computer Graphics (SIGGRAPH ’87 Proceedings), pp.
95–102. 1987.

[13] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, H. Shum: “View-
Dependent Displacement Mapping”, ACM Trans on Graphics, Vol. 22,
No. 3, 2003 (Siggraph '03 Proceedings). 2003.

[14] F. Policarpo, M. M. Oliveira: “Relief Mapping of Non-Height-Field
Surface Details”, ACM SIGGRAPH 2006 Symposium on Interactive 3D
Graphics and Games, Redwood City, CA, pp. 55-62. March 2006.

[15] F. Policarpo, M. M. Oliveira, J. Comba: “Real-Time Relief Mapping on
Arbitrary Polygonal Surfaces”, ACM SIGGRAPH 2005 Symposium on
Interactive 3D Graphics and Games, Washington, DC, pp. 155-162. April
2005.

http://jerome.jouvie.free.fr/OpenGl/Projects/Shaders.php
http://www.surlybird.com/tutorials/TangentSpace/index.html

[16] M. M. Oliveira, F. Policarpo: “An efficient representation for surface
details”, Tech. rep. RP-351, Universidade Federal do Rio Grande do Sul.
2005.

[17] S. D. Porumbescu, B. Budge, L. Feng, K. I. Joy: “Shell maps”, ACM
Transactions on Graphics 24, pp. 626–633. 2005.

[18] Peachey, Darwyn R., "Solid Texturing of Complex Surfaces", Computer
Graphics, Vol. 19, #3, pp 279-286, 1985

[19] S. Worley, “A Cellular Texture Basis Function”, In Proc. of SIGGRAPH
1996, ACM Press, 291–294, 1996

[20] S. Worley, “Practical Methods for Texture Design”, Texture and
Modelling: A Procedural Approach, Third Edition, pp 179 – 201, 2003

[21] F. Nielsen, “An Interactive Tour of Voronoi Diagrams on the GPU”,
Shader X6 Advanced Rendering Techniques, pp 539 – 556, 2008

[22] K. Crane, I. Llamas, S. Tariq, “Real-Time Simulation and Rendering of
3D Fluids”, GPU Gems 3, pp 633 – 675, 2007

[23] http://johanneskopf.de/publications/solid/textures/index.html
[24] K.Engel, M.Hadwiger, J.M.Kniss, A.E.Lefohn, C.R.Salama, D.Weiskopf.

“Real-time Volume Graphics”. ACM SIGGRAPH 2004 , pp 108-138,
2004

[25] www.alexeilebedev.com/macrotips/orange.jpg
[26] R. S. GLANVILLE “Texture Bombing” In GPU Gems: Programming

Techniques, Tips and Tricks for Real-Time Graphics, Addison-Wesley,
2004

[27] J. Legakis, J. Dorsey, S. Gortler “Feature-Based Cellular Texturing for
Architectural Models”, Proc. of the 28th annual conference on Computer
graphics and interactive techniques, pp 309 – 316, 2001

[28] http://www.autodesk.com
[29] A. Kaufman, D. Cohen, R. Yagel, “Volume Graphics”, IEEE Computer,

Vol. 26, No.7, pp 51-64, July 1993

http://www.autodesk.com/
http://johanneskopf.de/publications/solid/textures/index.html

	SKMBT_C22011093013020 nürnberg.pdf
	d1 kein Deckblatt
	d2 nürnberg
	d2_1 nürn
	d2_2 nürn
	d3 nürn
	d4 nürn
	d5 nürn
	d6 nürn
	d7 nürn
	d8 nürn

