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Abstract

Many of the mathematical models for cell membranes that have been investigated so far deal

with non-myelinated nerve fibres of cold blooded animals or myelinated nerve fibres; this

diploma thesis examines a slightly adapted Hodgkin-Huxley (HH) model, which shall model

a non-myelinated nerve fibre of warm blooded animals. This model is compared with other

membrane models found in literature. The original HH model was developed in 1952 for the

unmyelinated giant axon of the squid. By changing the maximal ionic conductances gion, the

ion channels are adapted so that gNa almost equals that of the model which was developed by

Chiu, Ritchie, Rogart, Stagg, and Sweeney (CRRSS) for mammalian myelinated nerve fibres.

Changing the ionic conductances is necessary to avoid the heat block, a phenomenon that

prohibits spike propagation at high temperatures.

In this thesis, the local models, where current flow along the axon is prevented, as well as

different propagation models are examined and compared with each other. Adapted HH mod-

els with different factors for the ionic conductances are analyzed, and models for myelinated

nerve fibres with different insulating properties are investigated.

Comparison shows that the total number of ions that cross the cell membrane through

the ionic channels in the HH model during an action potential is smaller than that in any

other model. The total number of sodium ions that cross the membrane at some distance

from the stimulated region in the CRRSS model is, for example, three times the number

of sodium ions that pass the corresponding membrane area in the HH model. The injected

stimulating threshold current in the HH model is also smaller than those in the other models.

The conduction velocity of an action potential along the unmyelinated HH fibre is higher than

that according to any other examined membrane model, and can be increased by modeling

myelinated nerve fibres. In a 1µm thick axon, the conduction speed can be heightened to

16 m/s. As regards the shape of the action potentials, the spike in the adapted HH model is

unusually short, which can be observed in the local model as well as in the propagation models.

The spike is quite different to those in the CRRSS and the SRB model, which were created

for modeling the membrane of a mammalian myelinated nerve fibre and a human myelinated

nerve fibre, respectively. This indicates that the adapted HH model is not adequate for

modeling the membrane of warm blooded animals.

One possible reason might be that the value of Q10 in the HH model is not constant

but changes with temperature. Another reason might be that the HH model does not take

account of different types of sodium channels.



Zusammenfassung

Viele bisher entwickelten mathematischen Modelle für Zellmembranen behandeln unmyeli-

nisierte Nervenfasern von Kaltblütern oder myelinisierte Nervenfasern; diese Diplomarbeit

beschäftigt sich insbesondere mit einem etwas veränderten Hodgkin-Huxley-Modell (HH-

Modell), das unmyelinisierte Nervenfasern von Warmblütern modellieren soll. Dieses Modell

wird mit anderen in der Literatur gefundenen Modellen verglichen. Das ursprüngliche HH-

Modell wurde 1952 für die unmyelinisierten Riesenaxone der Tintenfische entwickelt. Durch

eine Veränderung der maximalen Ionenleitfähigkeiten gion werden die Ionenkanäle denen des

von Chiu, Ritchie, Rogart, Stagg und Sweeney (CRRSS) entwickelten Modells für myelini-

sierte Nervenfasern von Säugetieren angepasst. Eine Änderung der Ionenleitfähigkeiten ist

nötig, um den Hitzeblock, ein Phänomen, das die Reizweiterleitung bei hohen Temperaturen

verhindert, zu vermeiden.

In dieser Diplomarbeit werden lokale Modelle, bei denen der Stromfluss entlang des Ax-

ons verhindert wird, und verschiedene Modelle mit Ausbreitungseffekten untersucht und mit-

einander verglichen. Veränderte HH-Modelle mit unterschiedlichen Faktoren für die Ionen-

leitfähigkeiten werden analysiert, und Modelle für myelinisierte Nervenfasern mit verschiede-

nen Isolierungseigenschaften werden untersucht.

Ein Vergleich zeigt, dass die Ionenanzahl, die beim HH-Modell während eines Impulses

durch die Ionenkanäle fließen, kleiner als bei den übrigen Modellen ist. Die Gesamtzahl der

Natriumionen, die beispielsweise beim CRRSS-Modell die Zellmembran passieren, ist in einem

vom Stimulationsbereich entfernten Abschnitt ungefähr drei mal so groß wie beim HH-Modell.

Der Schwellwert für den Stimulusstrom ist beim HH-Modell ebenfalls kleiner als bei den an-

deren Modellen. Die Reizweiterleitungsgeschwindigkeit eines Aktionspotentials entlang einer

HH-Zellmembran ist höher als bei den anderen untersuchten Modellen, und kann erhöht wer-

den, indem man myelinisierte Nervenfasern modelliert. In einem 1 µm dicken Axon kann die

Geschwindigkeit auf 16 m/s erhöht werden. Die Form des Nervenimpulses beim HH-Modell

ist ungewöhnlich kurz. Insbesondere hat das Aktionspotential eine andere Form als das des

CRRSS- und des SRB-Modells, die die Zellmembran einer myelinisierten Nervenzelle eines

Säugetiers bzw. eines Menschen modellieren. Dies zeigt, dass das adaptierte HH-Modell für

die Modellierung einer Zellmembran von Warmblütern ungeeignet ist.

Ein möglicher Grund ist, dass das Q10 im HH-Modell nicht für alle Temperaturen gleich

ist, sondern sich mit der Temperatur ändert. Ein anderer Grund könnte sein, dass das HH-

Modell die verschiedenen Typen von Natriumionenkanälen nicht berücksichtigt.
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Chapter 1

Introduction

The first quantitative description of axonal membrane currents was made by Alan Lloyd

Hodgkin and Andrew Huxley[21] for the giant axon of the squid. Later, Bernhard Franken-

haeuser[12],[14] demonstrated that membrane currents measured in the frog node of Ranvier

were similar to those of the squid axon and were composed of Na+ and K+ currents and

a non-specific leakage current. Based on the quantitative analysis of these nodal currents,

Frankenhaeuser and Huxley[15] were able to calculate action potentials which were similar to

those measured.

Following a short description of action potentials and membrane currents in the rat1, the

first successful voltage-clamp experiments in mammalian nerve fibres were reported in the

rabbit[5] and in the rat[4].

Because of the lack of human data, previous models of action potentials and slow excitability

changes in human nerve fibres have been based on measurements from frog, rabbit, or rat

nodes, although extracellular recordings from human nerve in vivo have also been taken into

account2,[2]. K+ channel density differs substantially between frog and mammalian nodes[4],[5],

and in rat fibres, K+ channel distribution changes with age[3]. Therefore, it has been open to

question whether data from laboratory animals can provide a satisfactory model of excitability

in adult human axons. [42]

The aim of this thesis is the investigation of a nerve cell model for unmyelinated fibres of

warm blooded animals at 37 ℃ body temperature on the basis of the model of Hodgkin and

Huxley. The ion channel dynamic is adapted to avoid the heat block, a phenomenon that

occurs at the original HH model at high temperatures, i.e. that blocks the propagation of

1Horáckova M., Nonner W. & Stämpfli R., 1968. Action potentials and voltage clamp currents of single rat

Ranvier nodes. Proc. int. Union Physiol. Sci. 7, 198
2H. Bostock, D. Burke, and J.P. Hales, Differences in behaviour of sensory and motor axons following release

of ischaemia. Brain, 117:225-234, 1994
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a nerve impulse in the cell membrane. The idea is to multiply the maximum conductances

of each ionic current by a constant factor in order to get almost the same maximum sodium

conductance as in the CRRSS model. This adaption corresponds to an increase of ionic

channels when considering the biological aspect of a nerve cell.
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Chapter 2

Hodgkin and Huxley’s space clamp

experiment

In 1902, Julius Bernstein postulated that the cell membrane has pores which open during

excitation, but it took fifty years until a quantitative description of the phenomena involved

was found by the ingenious experiments of Alan Lloyd Hodgkin and Andrew Huxley on giant

squid axons. They assumed that a gating mechanism is responsible for the ionic transport

across the membrane and that sodium and potassium ions are responsible for exciting the

axon. The ionic currents seemed to be independent of each other, but both could be de-

scribed in a statistical manner. In order to quantify the voltage-dependent conductance of

the membrane new electronic techniques were used. [34]

Within their experiments, Hodgkin, Huxley, and Katz inserted two electrodes consisting

of fine silver wires down the axis of the fibre for a distance of about 30 mm. One of these

electrodes recorded the membrane potential, the other was responsible for stimulation of the

axon.

In the “space clamp” experiment there is no current flow along the axis, all parts of the

membrane work under the same conditions because there are ‘isopotentials’ on the inside as

well as on the outside of the membrane. This “local model”, where current flow along the axis

is prohibited, is often used to describe the reaction of the axon at a fixed point. The space

clamp experiment can be used to produce a simultaneous action potential at all parts of the

membrane by applying a current square pulse or any stimulus signal of arbitrary shape. As

the whole injected current Iinj has to cross the membrane (and cannot leak away to the left or

the right), it only splits into a capacitive and an ion current Iinj = Icap +Iion = Cm · dV
dt +Iion.

More details on the model of the cell membrane can be found in the sections 6.3 and 6.4.

[22],[34]
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2.1 The voltage clamp

The space clamp experiment can be used for voltage clamp analysis where the voltage across

the membrane is controlled and held at a constant level. A feedback amplifier, which is

connected to the stimulating electrode regulates the current entering the electrode in such a

way as to change the membrane potential suddenly and hold it at the new level. Under these

conditions it was found that the membrane current consisted of a nearly instantaneous surge of

capacity current, associated with the sudden change of potential, and an ionic current during

the period of maintained potential. Note that at constant voltage the capacitive current is

zero
(

Icap = C · dV
dt

)

!

In the voltage clamp experiment the time course of the voltage is given and the injected

current is measured in order to find the nonlinear conductances for the ionic currents. For

this purpose, the voltage is varied as a step or pulse function. In practise, this means that the

voltage signal has a very large slope as the rise time is in the order of 1µs. Within this short

rise time interval a large current has to be injected and nearly all this current is needed to

load the capacitor. After this short starting phase dV
dt equals zero and all the injected current

passes the membrane in form of ionic current until at the end of the pulse voltage a strong

capacity current occurs again. In most experiments of Hodgkin and Huxley dV
dt equals zero

so that the ionic current can be obtained directly from the experimental record. This is the

most obvious reason for using electronic feedback to keep the membrane potential constant.

Within the pulse interval, Iinj equals Iion.

By changing the bathing solution, the axon is laid, or by using blockers which stop the

activity of special types of channels, the ionic currents can be determined individually. One

way to separate sodium and potassium currents is to exchange the sodium component of the

bath solution with larger cations which cannot pass the small sodium channels; thereby the

potassium outward current is found. Because of Iinj = INa + IK, the sodium current is also

determined.

The main result of the voltage clamp experiment is the time course of gNa and gK, which is

proportional to INa and IK. It is important to note that the electrical membrane behaviour

is not linear, which means that doubling the amplitude of the voltage pulse does not produce

just the doubled time course of INa and IK. Therefore Hodgkin and Huxley varied the

amplitudes of the voltage pulses and, by fitting the transient behaviour of gNa and gK, they

found a description for the squid membrane of the general current-voltage relation through

four differential equations (see section 7.1). [22],[34]
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2.2 The patch clamp

The patch clamp technique is a method to measure the electric current of single ion channels.

It was developed in 1976 by Erwin Neher, Bert Sakmann, and their colleagues, and is a

refinement of the voltage clamp which is used to measure the ion currents across a cell

membrane while holding the membrane voltage at a set level.

Unlike in the case of the voltage clamp, where two electrodes are inserted into the cell, one

micropipette with an inside diameter of 0.3 µm is pressed against the surface and onto some

ion channels of a cell membrane in a patch clamp experiment. Suction produces low pressure

on the inside of the pipette to get a seal between the membrane and the glass of the pipette.

In this way, only those currents which pass through this very small patch of membrane are

measured. This technique was used by Sigworth and Neher in 1980 for whole cell recordings.

They filled the micropipette with a modified Ringer solution which was connected to an

operational amplifier, which recorded the currents passing through 2−5 Na+ channels that

were located within the opening of the pipette.

This technique can also be used to cut a small patch of membrane and put it in a bathing solu-

tion. Arbitrary solutions are put inside the pipette and in the bath before the current across

the membrane is measured under voltage control. In this way, the patch clamp technique

was used to find both the open times and the resulting current strengths of single channels

under the control of different intra- and extracellular solutions and also under the influence

of transmitters. [34]
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Chapter 3

Gating of ion channels

A gating process is quantitatively represented by a single variable y being a function of time

and voltage. y statistically describes the gating behaviour of a high number of channels of

one special type, for example a potassium channel, lying in a small patch of membrane. y = 1

means that all gates are open, y = 0 means that all gates are closed.

The conductance of the membrane may be determined by the rate constants α and β. At a

fixed voltage, β defines the change of the part of open gates which closes within a time unit

∆t (β · y of open gates will close), whereas α · (1 − y) of the closed gates—the probability of

a gate to be closed is (1 − y)—open up at the same. Thus, one can calculate the probability

that gates are open with the help of the following differential equation.

dy

dt
=

(

α(1 − y) − βy
)

· k (3.1)

k is the temperature coefficient which accelerates the gating process for temperatures higher

than the original experimental temperature. [34],[37]

3.1 Time constant and steady state value

Equation (3.1) can also be written in the following form:

dy

dt
= k · α − k · (α + β) · y (3.2)

Before a voltage step is applied, the probability of open gates may be y(0) = y0 and according

to equation (3.2) y increases exponentially to a steady state value y∞:

y = y∞ − (y∞ − y0) · e−
t

τ (3.3)
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where

y∞ =
α

α + β
, (3.4)

and

τ =
1

k · (α + β)
. (3.5)

As regards the function y = e−t/τ , after the time t = τ the value of y decays to 1/e. As τ is

the time scaling parameter for exponentially changing processes, τ is called the “exponential

time constant” or just the “time constant” and determines the rate at which y approaches its

steady state value y∞. y∞ and τ are the essential parameters of the gating process, they give

information about the steady state and how quickly it will be reached. The voltage dependent

parameters τ and y∞ of different ion conductances in different membrane models are shown in

figures 3.1 and 3.2. As a model for the cell membrane has more than one type of ion channel

and the gating of the sodium channel is more complicated than of the potassium channel

anyway (see section 3.2), several variables are used instead of y. One can see that at very

negative potentials (e.g., −75 mV) n∞ (n is the gating variable for the potassium channel)

of the HH model is small, meaning that potassium channels would tend to close. At positive

potentials (e.g., 50 mV) n∞ is nearly 1, meaning that channels tend to open. As regards the

τn curve of the HH model, the parameter n relaxes slowly to new values at −75 mV and much

more rapidly at 50 mV.

Unfortunately, the gating mechanism of living cells cannot be described by such a simple rule

(equation (3.3)). Hodgkin and Huxley observed that during a depolarization step the increase

of potassium conductance gK follows an S-shaped time course, whereas on repolarization the

decrease is exponential. This very flat response at the beginning of the voltage step does

not confirm the time course of the gating variable in accord with the differential equation

(3.1). By using the fourth power of n they gained better fitting and a good approximation

to the experimental data. As they noted, such kinetics would be obtained if the opening

of a potassium channel were controlled by four independent membrane-bound “particles”.

Supposing that each particle is in the correct position to set up an open channel with a

probability n, the probability that all four particles are correctly placed is n4. Hence, the

potassium current of the HH model is represented by

IK = gKn4(V − VK). (3.6)

VK is the Nernst potential for the potassium ions. For more details on the Nernst potential,

the reader is asked to have a look at section 6.5. The equations above except the last one for

the potassium current hold for all gating variables. Nevertheless, the gating of the sodium

channel is more complicated than that of the potassium channel.[17],[20],[21],[34]
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Figure 3.1: Steady state values y∞ (red solid line) and time constants τy (blue dotted line)

according to different gating variables y in the HH model, the CRRSS model, and the FH

model as a function of the membrane voltage V = Vi − Ve at 37 ℃.
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Figure 3.2: Steady state values y∞ (red solid line) and time constants τy (blue dotted line)

according to different gating variables y in the SE model, and the SRB model as a function

of the membrane voltage V = Vi − Ve at 37 ℃.
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3.2 Activation and inactivation of sodium channels

Hodgkin and Huxley found out that during a depolarizing voltage step, which can be made

possible by a voltage clamp experiment (see section 2.1), the sodium permeability of the

membrane rises rapidly and then decays. This a remarkable difference to the potassium

conductance, whose time course increases monotone to the steady state. Hodgkin and Huxley

said that gNa activates and then inactivates, nowadays one would say that Na+ channels

activate and then inactivate. In the Hodgkin-Huxley analysis, activation is the rapid process

that opens Na+ channels during a depolarization. A quick reversal of activation during a

repolarization accounts for the rapid closing of channels after a brief depolarization pulse is

terminated. According to the Hodgkin-Huxley view, if there were no inactivation process,

gNa would increase to a new steady state level in a fraction of a millisecond with any voltage

step in the depolarizing direction, and would decrease to a new steady state level, again in a

fraction of a millisecond, with any step in the hyperpolarizing direction. Without inactivation,

such rapid opening and closing of channels could be repeated as often as desired. Sodium

channels do behave exactly this way if they are modified by certain chemical treatments of

natural toxins.

Inactivation is a slower process that closes Na channels during a depolarization. Once sodium

channels have been inactivated, the membrane must be repolarized or hyperpolarized, often

for many milliseconds, to remove the inactivation. Inactivated channels cannot be activated

to the conducting state until their inactivation is removed. The inactivation process overrides

the tendency of the activation process to open channels. Thus, inactivation is distinguished

from activation in kinetics, which are slower, and in its effect, which is to close rather than

to open during a depolarization. Inactivation of sodium channels accounts for the loss of

excitability that occurs if the resting potential falls by as little as 10 or 15 mV—for example,

when there is an elevated extracellular concentration of potassium ions, or after prolonged

anoxia or metabolic block. Hodgkin and Huxley treated activation and inactivation as entirely

independent of each other. Both depend on membrane potential; either can prevent a channel

from being open; but one does not know what the other is doing.[17]

Due to the opposing gating processes activation and inactivation of sodium channels,

there have to be two kinds of gating particles for the sodium current. Hodgkin and Huxley

called them m and h. Three m particles control activation and one h particle, inactivation.

Therefore, the probability that they are all in the permissive position is m3h, and INa is

represented by

INa = gNam
3h(V − VNa). (3.7)

In this way the sodium conductance gNa will reach the maximum value only when m = 1
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Figure 3.3: Steady state values of the gating variables for the sodium channel according

different membrane models as a function of the membrane voltage V = Vi − Ve at 37 ℃.

and h = 1 at the same time, i.e. all the sodium gates of the membrane are open. Note that

both, the variable for activation as well as for inactivation, stand for the probability that

the Na+ channel is open. The inactivation gate is assumed to be at one end of the channel

and in the resting state it has a high probability h to be open. Nevertheless, there is no

good conductance for the sodium ions, as long as, the three activation gates m in the same

channel have a low probability to be open. Red solid lines in figures 3.1 and 3.2 indicate the

probability m (activation of sodium channel), n (gating variable for potassium channel), and

h (inactivation of sodium channel). [17],[34]

For the interpretation of the whole sodium channel, it is more significant to look at the

steady state values of m3h (HH model), m2h (CRRSS model), m2h (FH model), m3h (SE

model), and m3h (SRB model) which are plotted in figure 3.3. One can see, that at very

negative potentials the permeability of a sodium channel to open is very small meaning that

sodium channels would tend to close. Due to inactivation this can also be observed at higher

potentials.
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Chapter 4

Conduction velocity and fibre

diameter

Propagation velocity is proportional to fibre diameter, that is a common assumption among

scientists, which is the consequence of many studies.

In 1937, Joseph Erlanger and Herbert Spencer Gasser found out that different peaks in the

compound action potential1—the summed activity of hundreds of axons—of the frog peroneal

nerve represent the activity of fibre groups of different conduction velocities. Measurements of

the histological sections of nerves facilitate the creation of a histogram of the nerve fibres. As

quoted in “Nerve and Muscle Excitation”, in 1943, Gasser found out that such a histogram for

a human sensory nerve shows two peaks, one at about 3µm and the other at about 12µm. The

observed compound action potential, which was measured 4 cm distant from the stimulated

region, had two well-defined elevations, one large at about 0.7 ms and another at 2.4ms after

the stimulus. In several studies, Erlanger and Gasser showed that the first or α peak was due

to the large-diameter fibre group. Their first, and most necessary assumption was that the

conduction velocity of each fibre was proportional to its outside diameter. By delaying the

contribution of each size of the fibre by the appropriate conduction time and summing, they

could obtain a fair representation of the compound action potential. Assuming that individual

spike amplitudes were proportional to fibre diameters, they were able to obtain much better

fits to the compound action potential. As quoted in “Nerve and Muscle Excitation”, J.B.

Hush in 1939 found out that their assumptions also held for cat neurons. [25]

Following Douglas Junge [25], the cable theory that was first worked out for transatlantic

telegraph cables by Lord Kelvin in 1855, is the simplest theory that explains the behaviour

1Unlike the action potential of an individual axon which is all-or-none, the compound action potential is

graded and varies in size with the stimulus amplitude. This is because increasing the stimulus brings more

and more axons into play, each of which contributes to the total record.
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of axons and muscle fibres. The axon is considered as a conductive cylinder surrounded by a

dielectric layer which is all immersed in a highly conductive medium. The electric equivalent

model is similar to the one at the top of figure 8.1, without the segmentation of the fibre into

sections of the length ∆x and with constant (inner-)axonal and membrane conductances. The

axonal resistance Ra (which is the reciprocal of the axonal conductance Ga) varies inversely

with the square of the fibre diameter. A three times thicker axon implicates a ninth of axonal

resistance. The axonal resistance of 1 cm of the axon is given by

Ra,1 cm = ρa ·
4

d2 · π , (4.1)

where ρa is the resistivity (or specific resistance) of the axon, d the diameter of the axon.

When Ra is lower, more current flows from the active to the inactive region, and the inactive

region is excited more rapidly. This effect causes an increase in conduction velocity with

increasing diameter (lower Ra). The membrane resistance Rm, which is the reciprocal of

the membrane conductance Gm, varies inversely with the first power of the diameter. The

membrane resistance of 1 cm of the axon is given by

Rm,1 cm = rm · 1

d · π . (4.2)

rm symbolizes the resistance of the membrane, the quantity is defined with respect to 1 cm2 of

membrane and its unit is Ωcm2, d is the diameter of the axon. However, Rm has an opposite

effect from that of Ra. As more current flows across the membrane, a smaller membrane

resistance produces a lesser depolarization of the inactive region and excites it less rapidly.

Since the effect of diameter is stronger on Ra, the conduction velocity varies approximately

with the first power of fibre diameter.

The influence of fibre diameter can be derived from equation (8.5) too. For this purpose,

it is assumed that the solution of equation (8.5) is computed for an unmyelinated nerve fibre

(l = ∆x) of diameter d at the supporting points xn = n · ∆x. Comparing a propagating

action potential which is far away from the point of generation, and therefore which is not

influenced by the stimulus signal with one of another nerve fibre with a diameter of d1 = k ·d,

one gets exactly the same coefficients in equation (8.5) if a new choice for ∆x1 =
√

k · ∆x

is made. Therefore, one gets the same results at the points of support at the same times as

in the first case, but now at distances
√

k · ∆x. This means that velocity of propagation is

proportional to the square root of diameter in unmyelinated nerve fibres, the rule of thumb

is ‘velocity in m/s is 1.1 times
√

d in µm’.

In the case of myelinated nerve fibres—when assuming that the nodal distance ∆x is propor-

tional to d and that the gap width l of the node of Ranvier is independent of d—a changed

diameter d1 = k · d would demand for ∆x1 = k ·∆x to get the same values at the supporting
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points. This is in agreement with the empirical rule ‘velocity in ms is 4.5 times d in µm’ for

human applications. Another rule of thumb says that for fibres thicker than 11µm, v = 6 · d.

Furthermore, it is seen with these assumptions that the duration and even the shape of the

action potential is independent of the diameter for both the myelinated and the unmyelinated

fibre.

Comparing the equations for the propagation velocities of the myelinated and the unmyeli-

nated nerve fibre, one can see that in very small fibres (d < 0.25 µm) action potentials

propagate quicker within unmyelinated axons than within myelinated ones. With other as-

sumptions the diameter at which unmyelinated axons are quicker is even larger. [34]
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Chapter 5

Biological Background

5.1 Cells and Nervous System

A typical neuron has four morphologically defined regions: the cell body, dendrites, the axon,

and presynaptic terminals (see figure 5.1).

The cell body (soma) is the metabolic center of the cell. It contains the nucleus, which stores

the genes of the cell, as well as the endoplasmatic reticulum, an extension of the nucleus

where the cell’s proteins are synthesized. The cell body usually gives rise to two kinds of

processes: several short dendrites and one, long, tubular axon. Dendrites branch out in

tree-like fashion and are the main apparatus for receiving incoming signals from other nerve

cells. In contrast, the axon extends away from the cell body and is the main conducting unit

for carrying signals to other neurons. An axon can convey electrical signals along distances

ranging from 0.1 mm to 3 m. These electrical signals, called “action potentials”, are rapid,

transient, all-or-none nerve impulses, with an amplitude of 100 mV and a duration of about

1 ms. Action potentials are initiated at a specialized trigger region at the origin of the axon

called the “axon hillock” (or “initial segment” of the axon); from there they are conducted

down the axon without failure or distortion at rates of 1-100 m/s. The amplitude of an action

potential traveling down the axon remains constant because the action potential is an all-

or-none impulse that is regenerated at regular (in terms of periodical) intervals along the

axon. Action potentials constitute the signals by which the brain receives, analyzes, and

conveys information. These signals are highly stereotyped throughout the nervous system,

even though they are initiated by a great variety of events in the environment that impinge

on our bodies—from light to mechanical contact, from odorants to pressure waves. Thus,

the signals that convey information about vision are identical to those that carry information

about odors. The information conveyed by an action potential is determined not by the

form of the signal but by the pathway the signal travels in the brain. The brain analyzes

17



and interprets patterns of incoming electrical signals and in this way creates our everyday

sensations of sight, touch, taste, smell, and sound.

To increase the speed by which action potentials are conducted, large axons are wrapped in a

fatty, insulating sheath of myelin. The sheath is interrupted at regular intervals by the nodes

of Ranvier. At these uninsulated spots on the axon the action potential becomes regenerated.

Near its end, the tubular axon divides into fine branches that form communication sites with

other neurons. The point at which two neurons communicate is known as a “synapse”. The

nerve cell transmitting a signal is called the presynaptic cell, the one receiving the signal the

postsynaptic cell. The presynaptic cell transmits signals from the swollen ends of its axon’s

branches, called “presynaptic terminals”. However, a presynaptic cell does not actually touch

or communicate anatomically with the postsynaptic cell since the two cells are separated by

a space, the synaptic cleft. Most presynaptic terminals end on the postsynaptic neuron’s

dendrites, but the terminals may also end on the cell body or, less often, at the beginning or

end of the axon of the receiving cell.[26]

5.1.1 Ion channels

Physiologists have long known that ions play a central role in the excitability of nerve and

muscle. In the late nineteenth century, Sidney Ringer showed that a solution containing a

definite proportion of sodium, potassium and calcium ions lets a frog heart continue beating.

In the early twentieth century, Julius Bernstein correctly proposed that excitable cells are

surrounded by a membrane selectively permeable to potassium ions at rest and that during

excitation the membrane permeability to other ions increases. Nowadays, one knows that

neuronal signaling depends on rapid changes in the electrical potential across nerve cell mem-

branes. Individual sensory cells can generate changes in membrane potential in response to

very small stimuli: receptors in the eye respond to a single photon of light, olfactory neurons

detect a single molecule of odorant, and hair cells in the inner ear respond to tiny movements

of atomic dimensions. Signaling in the brain depends on the ability of nerve cells to respond

to those small stimuli by producing rapid changes in the electrical potential across the nerve

cell membranes.[17],[26]

5.1.2 Membrane potential and action potential

Bernstein’s “membrane hypothesis” explained the resting membrane potential of nerve and

muscle as a diffusion potential set up by the tendency of positively charged ions to diffuse

from their high concentration in cytoplasm to their low concentration in the extracellular

solution. During excitation the internal negativity would be lost transiently as other ions are
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Figure 5.1: Structure of a neuron, adapted from [1]. Most neurons in the vertebrate nervous

system have several main features in common. The cell body contains the nucleus, the

storehouse of genetic information, and gives raise to two types of cell processes, axons and

dendrites. Axons are the transmitting element of neurons, they can vary greatly in length;

some can extend more than 3 m within the body. Most axons in the central nervous system are

very thin (between 0.2 and 20µm in diameter) compared with the diameter of the cell body

(50µm or more). Many axons are insulated by a fatty sheath of myelin that is interrupted at

regular intervals by the nodes of Ranvier. The action potential, the cell’s conducting signal,

is initiated either at the axon hillock, the initial segment of the axon, or in some cases slightly

farther down the axon at the first node of Ranvier. Branches of the axon of one neuron

transmit signals to another neuron at a site called the synapse. The branches of a single axon

may form synapses with as many as 1000 other neurons. Whereas the axon is the output

element of the neuron, the dendrites are input elements of the neuron. Together with the cell

body, they receive synaptic contacts from other neurons.[26]
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allowed to diffuse across the membrane, effectively short circuiting the K+ diffusion potential.

[17]

During an action potential the membrane potential changes quickly, up to 500 volts per

second. These rapid changes in membrane potential are mediated by ion channels, a class

of integral membrane proteins found in all cells of the body. The ion channels of nerve cells

are optimally tuned for rapid information processing. The channels of nerve cells are also

heterogeneous, so that different types of channels in different parts of the nervous system can

carry out specific signaling tasks.

Ion channels have three important properties: (1) They conduct ions, (2) they recognize and

select specific ions, and (3) they open and close in response to specific electrical, mechanical,

or chemical signals. The channels in nerve and muscle conduct ions across the cell membrane

at extremely rapid rates, thereby providing a large flow of ionic current: up to 100 million

ions may pass through a single channel per second. This current flow causes the rapid changes

in membrane potential required for signaling.

Despite their ability to conduct ions at high rates, ion channels are surprisingly selective: Each

type allows only one or a few types of ions to pass. For example, the membrane potential

of nerve cells at rest is largely determined by channels that are selectively permeable to

K+. Typically, these channels are 100-fold more permeable to K+ than to Na+. During the

action potential, however, ion channels 10- to 20-fold more permeable to Na+ than to K+

are activated. Thus, a key to the great versatility of neuronal signaling is the activation of

different classes of ion channels, each of which is selective for specific ions.

Finally, many channels are regulated or gated; they open and close in response to various

stimuli. Voltage-gated channels are regulated by changes in voltage, ligand-gated channels by

chemical transmitters, and mechanically gated channels by pressure or stretch. An individual

channel is usually most sensitive to one type of signal. In addition to the gated channels,

there are nongated channels that are normally open in the cell at rest. These resting channels

contribute significantly to the resting potential.[26]
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Chapter 6

Electrical properties

6.1 Structure of the cell membrane

Cell membranes consist of bimolecular lipid layers with embedded proteins. Each of the phos-

pholipid molecules has two about 2 nm long hydrocarbon chains which have a very symmetrical

structure, which signifies that there is no polar behaviour. This results in the hydrophobic

(lipophilic, fatty) property of the hydrocarbon chains. The small heads, on the other hand,

are not symmetric. Consequently, they are account for the hydrophilicity of this part of the

lipid. As a consequence of its complex structure, it is not a dipole like a water molecule but

an even more complicated multipole.

There are several possibilities how emulsified lipids order in water, one is a spherical arrange-

ment where the hydrophobic chains form the center and the hydrophilic heads face the water

molecules around. The arrangement within the cell membrane is similar. Two lipids face one

another with their hydrophobic chains, their hydrophilic heads face the liquid of the intracel-

lular and the extracellular medium. As a consequence of the molecular structure, the lipid

bilayer is mechanically stable, and even when a microelectrode is carefully introduced into

the cell, the gap in the membrane is filled and ionic separation is not disturbed.

Because of its structure the cell membrane is fluid and stable, into which so-called domains

are embedded. These have proteins embedded which are responsible for specific transport

across the membrane, they have the function of “pores”. The structure of two membrane

pores can differ in a wide range and as a consequence of that, have specific functions. [31],[34]

6.2 Ohm’s law is central

All matter is made up of charged particles. They are normally present in equal numbers,

so most bodies are electrically neutral. Quantity of charge (symbolized Q) is measured in
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coulombs (abbreviated C), where the charge of a proton is e = 1.6 · 10−19 C.

Electrical phenomena arise whenever charges of opposite signs are separated or can move

independently. Any net flow of charges is called a current. Current is measured in amperes

(abbreviated A), where one ampere corresponds to a steady flow of one coulomb per second.

By the convention of Benjamin Franklin, positive current flows in the direction of movement

of positive charges. Hence if positive and negative electrodes are placed in Ringer’s solution,

Na+, K+, and Ca2+ ions will start to move toward the negative pole, Cl− ions will move

toward the positive pole, and an electric current is said to flow through the solution from

positive to negative pole.

The size of current will be determined by two factors: the potential difference between the

electrodes and the electrical conductance of the solution between them. Potential difference

is measured in volts (abbreviated V) and is defined as the work needed to move a unit test

charge in a frictionless manner from one point to another. To move a coulomb of charge

across a 1-V difference requires a joule of work. In common usage the words “potential”,

“voltage”, and “voltage difference” are used interchangeably to mean potential difference,

especially when referring to a membrane. Electrical conductance (symbolized g) is a measure

of the ease of flow of current between two points, it is measured in siemens (abbreviated S and

formerly called mho which was derived from spelling “ohm” backwards and which expresses

the fact that it is the multiplicative inverse of ohm, unit of the electrical resistivity). [17]

To describe the behavior of biological membranes, it is often convenient to employ elec-

trical models, or analogues. These are approximations to the real membrane, but they have

well-defined properties. In the study of ionic channels, we see how much can be learned by

applying simple laws of physics. Ohm’s law (V = R · I) plays a central role in membrane

biophysics because each ionic channel is modeled as an elementary conductor spanning the

insulating lipid membrane. It shows the relation between voltage (symbolized V ), resistance

(symbolized R) and current (symbolized I). As the reciprocal of resistance is called conduc-

tance, Ohm’s law can also be written in terms of conductance: [17],[25]

I = g · V (6.1)

Excitation and electrical signaling in the nervous system involve the movement of ions

through ionic channels. The Na+, K+, Ca2+, and Cl− ions seem to be responsible for almost

all of the action. Each channel may be regarded as an excitable molecule, as it is specifically

responsive to some stimulus: a membrane potential change, a neurotransmitter or other

chemical stimulus, a mechanical deformation, and so on. The channel’s response, called

“gating”, is apparently a simple opening or closing of the pore. The open pore has the

important property of “selective permeability”, allowing some restricted class of small ions to
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flow passively down their electrochemical activity gradients at a rate that is very high (> 106

ions per second) when considered from a molecular point. We consider the high throughput

rate as a diagnostic feature distinguishing ionic channel mechanisms from those of other ion

transport devices such as the Na+-K+ pump (Na+-K+-ATPase). An additional major feature

is a restriction to downhill fluxes not coupled stoichiometrically to the immediate injection of

metabolic energy.

How do gated ionic fluxes through pores make a useful signal for the nervous system? For elec-

trophysiologists the answer is clear. Ionic influxes are electric currents across the membrane

and therefore they have an immediate effect on membrane potential. Other voltage-gated

channels in the membrane detect the change in membrane potential, and they in turn become

excited. In this way the electric response is made regenerative and self-propagating. [17]

6.3 The membrane as a capacitor

The lipid bilayer of biological membranes separates internal and external conducting solutions

by an extremely thin insulating layer. One lipid has a length of about 3 nm, so the cell is

surrounded by an about 6 nm thick membrane. Such a narrow gap between two conductors

forms, of necessity, a significant electrical capacitor.

This separation of charge results in a potential difference between the inside and the outside

of the membrane. Capacitance (symbolized C) is a measure of how much charge needs to

be transferred from one conductor to another to set up a given potential and is defined by

C = Q
V . The unit of capacitance is the farad (abbreviated F). A 1 F capacitor will be charged

to 1 V when 1 C of charge is on one conductor and −1 C on the other. The rate of change of

the potential under a current Icap is obtained by differentiating the last equation with respect

to t. With 1 to 2 µF/cm2 the capacitance of the membranes is relatively large because of the

very thin sheets of the lipid bilayers. [17],[31]

Icap =
dQ

dt
= C · dV

dt
(6.2)

6.4 Mathematical model for a patch of cell membrane

The lipid bilayer contains many conducting channels, through which ions can pass. The

ionic current is caused by ions that diffuse down their concentration gradient either from the

inside to the outside or the other way round. An ionic channel is modeled as an elementary

conductor spanning the insulating lipid membrane, the current across the ion channel can be

calculated by Ohm’s law (Iion = V
R ) as long as the cell membrane is not excited, i.e. does
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not produce an action potential. In contrast to its constant capacitance, the resistance of

a cell membrane depends to very large extend on the voltage sensitive gating mechanism of

the ionic channels. Only in cases close to the steady state one can approximate membrane

resistances by constants.

The resulting model of the currents across the membrane is the sum of a capacitance current

and an ionic current. A current IM that crosses the membrane is therefore split into a

capacitance current which involves a change in ion density at the outer and the inner surface

of the membrane, and an ionic current which depends on the movement of charged particles

through the membrane:

IM = Icap + Iion = C · dV

dt
+ Iion (6.3)

IM is the total current through the membrane, Iion is the ionic current, C is the membrane

capacitance, and t is time. Equation (6.3) is the main equation for internal stimulation of the

soma or any other compartment where current flow to other processes or neighbored com-

partments is prevented. In most experiments of Hodgkin, Huxley, and Katz, dV
dt equals zero,

so that the ionic current can be obtained directly from the experiment records. This is the

most obvious reason for using electronic feed-back to keep the membrane potential constant.

As an injected current is prevented to flow to other processes or neighbored compartments, it

all has to pass the membrane and therefore, Iinj = IM = . . . This situation can be caused by

a space clamp experiment (see chapter 2). Thus, a solution of equation (6.3) when applying

an injected current of arbitrary shape is more or less a good approximation of the expected

response of the nerve cell under space clamp condition, depending on the model for the ionic

currents. [17],[22],[34],[37]

The behavior of a piece of membrane (patch) can be simulated by an electric circuit

consisting of a voltage source, capacitance and resistance (see figure 6.1). If we assume an

inside potential Vi and an external potential Ve we obtain the voltage V = Vi − Ve across

the membrane. The ionic current can be approximated either by an electric circuit consisting

of a constant resistivity (left circuit in figure 6.1) or of a nonlinear resistivity that depends

on voltage and time (right circuit in figure 6.1). One proceeds on the first assumption if the

axon is not excited but stimulated by a subthreshold current; in this case the ionic current

Iion equals—according to Ohm’s law—V
R or in terms of conductance: Iion = g · V . If the

stimulating current is high enough to reach or exceed threshold, the resistance cannot be

approximated to be constant. In this case, the ionic current has to be calculated by one of

the mathematical models, which some of them are presented in chapter 7. [17],[34]

The solution of the differential equation (6.3) when considering constant resistance (i.e.

when the system is only slightly disturbed by an injected current Iinj) is
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Figure 6.1: Electrical models for a patch of membrane. Left: The model with constant

conductance (resistance) can be appropriate for subthreshold analysis. Voltage of resting state

is represented as a voltage source. Right: The model includes active gating mechanism and

has voltage depending conductances, which is indicated by the arrows across the conductances

(resistances). The additional voltage, resulting from the differences in the ionic concentrations

on both sides of the membrane, is simulated by batteries. Adapted from [34]

V (t) = RIinj ·
(

1 − e−
t

RC

)

(6.4)

The voltage exponentially follows the value which is defined by the pure ohmic resistance.

The time constant of the membrane τ = R · C defines how quickly the transient behavior

returns to the steady state. After the pulse the voltage drops down to zero with the same

exponential behavior. By splitting the total current across the membrane, one can calculate

the ohmic part with IR = Iinj ·
(

1 − e−
t

RC

)

(within the pulse interval), and the capacitive

part with IC = Iinj · e−
t

RC . [34]

6.5 Membrane resting potential and action potential

As regards the conveyance of information inside the body, the cell membrane is of special

interest. If a cell is in resting state and not excited by any stimulus, one can measure a

potential difference between the inside and the outside of each cell, whether it is a blood

cell, a muscle cell or any other type of cell. The so-called resting potential is of the order of

−70 mV which means that the inside is negative to the outside, as every membrane potential

(or voltage) is measured ‘inside minus outside’.

There are two prerequisites to obtain a voltage difference V at the cell. First, there has to

be a different ion concentration at the inside and the outside of a cell. Second, there has

to be a different permeability for the ions to cross the membrane through appropriate ion

channels. Table 6.1 displays ionic concentrations of different ions at the inside of the cell and

the extracellular fluid.
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All systems are moving towards an equilibrium, a state where the tendency for further change

vanishes. A first approach in finding this state was made by Walther Nernst, who described

the voltage across the membrane when only one type of ions is involved. His basic idea was

that the electric work that is needed to bring n moles of ions (1 mol = 6.0225 · 1023) from

concentration c1 to concentration c2 is equal to the osmotic work that compresses these ions

from volume V1 to volume V2. According to the laws of gasdynamics, the osmotic energy dW

that is needed to compress the volume dV is given by the product of the pressure p and the

volume dV , i.e. dW = p · dV . The total work therefore is

Wosmotic = −
∫ V2

V1

p dV (6.5)

By applying the ideal gas law p · V = n ·R · T with the gas constant R = 8.31441 J/mol·K, one

gets

Wosmotic = −
∫ V2

V1

nRT

V
dV = −nRT · ln V2

V1
(6.6)

Introducing the concentrations c1 = n
V1

and c2 = n
V2

, one finally gets

Wosmotic = nRT · ln c2

c1
(6.7)

The electric work on the other hand that moves a charge Q against the voltage V is given by

Weletric = Q · V (6.8)

With Q = n · z · F , where z is the valence (e.g. for K+ ions z = 1) and F is the Faraday

constant F = 9.64845 · 104 C/mol, equation (6.8) reads as

Weletric = n · z · F · V. (6.9)

Setting Welectric = Wosmotic results in the “Nernst equation” for the voltage across the mem-

brane Vm:

Vm =
R · T
z · F ln

c2

c1
(6.10)

Table 6.1: Different ionic concentrations at the inside and the outside of a squid axon [31],

a mammalian muscle [31], a frog muscle [27], and a motoneuron [31] in mMol/l

Squid axon Mammalian muscle Frog muscle Motoneuron

Ion outside inside outside inside outside inside outside inside

Na+ 460 50 120 9 120 9.2 150 15

K+ 10 400 2.5 140 2.5 140 5.5 150

Cl− 540 50 120 4 120 3-4 125 9

Ca2+ 1 10−3
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The Nernst potential is determined using the concentration of the ion inside and outside the

cell. Suggesting that only K+ ions are involved, the membrane potential can be calculated:

Vm =
R · T

F
ln

[K+]e

[K+]i
(6.11)

The Nernst potential for the potassium ions is often called ‘potassium potential’ VK, just as

the sodium potential VNa and the leakage potential VL. [17],[34]

The Nernst potential is an essential part in most mathematical descriptions of ionic cur-

rents, as can be seen in the formulas of chapter 7, and also appears in the equivalent circuits

(e.g. see figure 6.1). If the membrane were only modeled as a capacitor and a conductor in

parallel, one immediately would recognize a deviation: Ionic current in the pores would go to

zero at 0 mV and not at their equilibrium potentials. As a consequence, one would suggest

that a concentration gradient which is the reason for the equilibrium potential is like a battery

with an electromotive force in series with the resistor. The modified current-voltage law of

Ohm becomes, e.g. for the potassium current, IK = gK(V − VK). The electromotive force is

VK and the net driving force on K+ ions is now V −VK and not V . In the equivalent currents,

the resting potential according to the ionic current one is dealing with is represented as a

battery. [17]

However, the Nernst equation gives only an incomplete description of the voltage difference

across the cell membrane. The consideration that the membrane were only permeable to

potassium ions would result in a static equilibrium, which means that after achieving this

state, there would not be any ion transfer. Actually, there is a so-called steady state where

different ions cross the membrane without having any effect on the membrane potential.

To get a better, completer, description of the resting potential, one has to take into account

that the cell membrane is slightly permeable for other ions too. Regarding that the membrane

is permeable to sodium ions as well, they diffuse because of their concentration gradient from

the extracellular medium into the cell, potassium ions from the inside out of the cell. The

resulting little bit smaller absolute value of the membrane potential can better be described

by the Goldman equation, which regards the sodium and the chloride ions as well. Within

his ‘constant field theory’, Goldman assumed that ions that cross the membrane move under

the influence of electric fields and concentration gradients, just as they would do in free

solutions. Another assumption was that ionic concentration at the edges of the membrane

are proportional to those in the aqueous solutions in contact there. A third was that the

electrical potential gradient is constant within the membrane. The Goldman equation is

written in equation (6.12). [31],[34]

Vm =
R · T

F
· PK · [K+]e + PNa · [Na+]e + PCl · [Cl−]i
PK · [K+]i + PNa · [Na+]i + PCl · [Cl−]e

(6.12)
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[K+] is the potassium concentration, the suffixes e and i stand for external and internal,

respectively. PK, is the permeability of the potassium channel, measured in cm/s. It is defined

as uβRT
αF where u is the mobility of the ion in the membrane, β is the partition coefficient

between the membrane and the aqueous solution, and α is the thickness of the membrane.

Note that sodium and potassium ions are cations, but chloride ions are anions, therefore

[Cl−]i appears in the numerator of the Goldman equation. [34]

Within the assumption that the membrane at rest is not only permeable to potassium ions,

one gets a completer description as it takes the steady state into account. A simultaneous

change of K+ and Na+ implies a steady voltage but no static state according to the ionic

system. The ionic currents at rest are very small, but without the Na+-K+-ATPase the

concentration gradient would decrease and so would the membrane voltage. The Na-K-

ATPase guarantees the maintenance of the concentration gradient as it replaces a K+ ion

of the extracellular medium with a Na+ ion of the inside of the cell. This process requires

energy in form of ATP.

The Goldman equation allows a good quantitative description of the membrane potential; for

qualitative analysis it is more suitable to work on equivalent circuits. [31]

The considerations for the resting potential made above are valid for each type of cell.

However, neurons (nerve cells) and muscle cells have electrically excitable membranes, which

is noticeable by the occurrence of action potentials.

Investigations show that whenever a nerve (or muscle) cell is stimulated by a negative cur-

rent pulse, the membrane reacts with an exponential hyperpolarization which decreases with

increasing distance from the stimulating electrode. An analogue effect can be observed when

the cell is stimulated by a small positive current pulse, which implicates an exponential de-

polarization.

A phenomenon arises when the depolarizing pulse increases the membrane voltage up to a

certain point—the so-called threshold—which differs from cell to cell. Once the threshold is

reached or exceeded, the nerve cell reacts with an action potential which does not decrease

with increasing distance from the stimulating electrode. When an axon of a neuron is suffi-

ciently disturbed, there first is a steep depolarization phase which is followed by an overshoot.

The membrane potential climbs from about −50 to −70 mV up to about +40 mV where it

has its maximum value. The following steep decrease of the membrane potential is called the

repolarization phase which is followed by the hyperpolarization phase where the membrane

potential is lower than the resting potential. [31]

When the membrane potential is suddenly depolarized, the initial pulse of current through

the capacitance of the membrane is followed by large currents carried by ions. According to

the results of Hodgkin and Huxley, depolarization leads to a rapid increase in permeability of
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sodium ions. The influx of sodium ions, which move under the influence of concentration and

potential difference, cause the rising phase of the action potential. Throughout the change

in voltage, the potassium channels open and allow the highly concentrated inside potassium

ions to flow outside.

The current carried by sodium ions rises rapidly to a peak and then decays to a low value;

that carried by potassium ions rises much more slowly along an S-shaped curve, reaching a

plateau which is maintained with little change until the membrane potential is restored to its

resting value. For more details on the sodium and potassium currents, have a look at chapter

3. [19],[34]
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Chapter 7

Models for the ionic channels

7.1 Model of Hodgkin and Huxley (HH)

The general aim of the series of papers of Hodgkin, Huxley and Katz ([18],[19],[20],[21],[22])

was to determine the laws which govern movements of ions during electrical activity at the

giant axon from the squid. Within their voltage clamp experiments with the giant axon (see

section 2.1) the authors found out that the membrane current consisted of a capacitance

current and an ionic current (see e.g. equation (6.3)). The ionic current could be resolved

into a transient component associated with movement of sodium ions, and a prolonged phase

of potassium current. Both currents varied with the permeability of the membrane to sodium

or potassium and with the electrical and osmotic driving force. They could be distinguished

by studying the effect of changing the concentration of sodium in the external medium. [22]

Unlike today’s convention that the voltage difference across the membrane is measured

V = Vi−Ve, Hodgkin and Huxley measured V ∗ = Ve−Vi. They regarded the resting potential

as a positive quantity and the action potential as a negative variation. Neurophysiologists

call an outward membrane current (positive charges that flow out of the cell) positive and an

inward current negative. This “inward negative” convention is also not in accordance with

the one of Hodgkin and Huxley, who named inward current positive (inward positive). For

this thesis, the equations of the original HH papers were adapted to fit to modern convention.

[22],[29]

The HH equations are a very powerful tool for analyzing the membrane properties because

they predict the membrane behaviour for arbitrary shapes of stimulating signals. Although

many other equations are in use, even today no other membrane model finds as many appli-

cations as the HH model. [34]

The quantities of equation (6.3) depend on the diameter and the length of the fibre. In

order to be independent of geometrical parameters, equation (6.3) can be formulated for
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1 cm2 of the membrane by dividing the current and capacitance through the membrane area

involved. All currents become current densities and c the capacitance per cm2.

dV

dt
=

(

− (iNa + iK + iL) + istim
)1

c
(7.1)

V is the ‘reduced membrane voltage’ V = Vi − Ve − Vrest which implies that V = 0 in the

resting state. c is the membrane capacitance per unit area, iion the current density according

to a specific ion, istim the density of the injected current Iinj .
[22],[34]

In their paper “The components of membrane conductance in the giant axon of Loligo” the

authors showed that the ionic permeability of the membrane can be satisfactorily expressed

in terms of ionic conductances. The individual ionic currents are obtained from these by the

relations

iNa = gNam
3h(V − VNa) iK = gKn4(V − VK) iL = gL(V − VL) (7.2)

gNa, gK and gL are the maximum sodium, potassium and leakage conductances, m, n and

h are dimensionless variables, called gating variables, that vary from 0 to 1 as a function

of voltage and time, VNa and VK are the equilibrium potentials (Nernst potentials) for the

sodium and potassium ions, and VL is the potential at which the ‘leakage current’ due to

chloride and other ions is zero.

dm

dt
=

(

− (αm + βm)m + αm

)

k (7.3)

dh

dt
=

(

− (αh + βh)h + αh

)

k (7.4)

dn

dt
=

(

− (αn + βn)n + αn

)

k (7.5)

k is the temperature coefficient that accelerates the dynamic of the gating variables at tem-

peratures higher than 6.3℃. α’s and β’s are rate constants that vary with voltage but not

with time and have dimensions of 1/ms. They are given by the following equations. [21]

αm =
2.5 − 0.1V

e2.5−0.1V − 1
βm = 4 · e− V

18 (7.6)

αn =
0.1 − 0.01V

e1−0.1V − 1
βn = 0.125 · e− V

80 (7.7)

αh = 0.07 · e− V

20 βh =
1

e3−0.1V + 1
(7.8)

Hodgkin, Huxley and Katz found out that the rate at which the ionic current changed

with time was increased about threefold for a rise of 10℃. Thus, the temperature coefficient

is determined by equation (7.9). [22]

k = 30.1T−0.63 (7.9)
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Figure 7.1: Phase plane of V , m reduced HH system, with h and n fixed at their resting

values and without any stimulating current. Solutions of equations follow paths marked

with arrow-heads. Three singular points occur at intersections of nullclines (curves on which

V̇ = 0 and ṁ = 0 respectively.) Threshold phenomenon appears at saddle point B. Stimulus

displaces phase point from resting singular point A, and is followed by either return to A or

passage to singular point C (excitation), depending on the shock strength. Adapted from [8]

VNa = 115 gNa = 120 c = 1 m(0) = 0.05 (7.10)

VK = −12 gK = 36 Vrest = −70 n(0) = 0.32 (7.11)

VL = 10.6 gL = 0.3 V (0) = 0 h(0) = 0.6 (7.12)

In contrast to all the other models the HH model has a curiosity: it also allows the

generation of an action potential by stimulation with inverse signals, that is with negative

currents from the inside. [34]

An approach in analyzing the behavior of the HH model was taken by Richard FitzHugh

in 1960. He first approximated the four equations by a reduced system of two equations by

arbitrarily setting h and n constant and equal to their resting values. After investigation of the

effect on the behavior of this reduced system produced by changing h and n to other constant

values, he reintroduced h and n (separately or together) as variables to give the V , m, h and

V , m, n reduced systems and finally the complete V , m, h, n system. This synthetic process

leads to a better understanding of the complete system than can be obtained by considering

all the variables at once, and suggests how modifications in the separate equations will affect

the behavior of the complete system.

The reduced system with two differential equations has three singular points (labeled A, B,

and C in figure 7.1) which are the intersections of the two nullclines V̇ = 0 and ṁ = 0. The

two stable points correspond to the resting state (A) and the excited state (C), the third is a
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saddle point (B). There are two paths, called the ‘stable separatrices’ along which solutions

approach this saddle point as t → ∞, which can be called ‘threshold separatrices’. Together

they form a boundary in the phase plane in which a threshold phenomenon occurs. This had

already been investigated by FitzHugh in 1955 [7]. An instantaneous positive (anodic) current

pulse (brief enough to be considered as instantaneous or proportional to a delta function) at

t = 0 will displace the phase point of the resting system from A to some point horizontally and

to the right from A. This displacement in V will be denoted ∆V . The threshold value ∆Vθ

of ∆V is that which brings the state point to rest on the threshold separatrix. If a current

pulse displaces the phase point of the resting system from the resting point by ∆V 6= ∆Vθ, it

will eventually approach either C or A, resulting in an “all” or a “none” response.

Because of the small angles between the nullclines at their two lower intersections (labeled A

and B in figure 7.1), the locations of these intersections are very sensitive to slight movements

of the V nullcline. If the V nullcline is lowered, A moves to the right and B to the left, so

that A and B approach each other. This changes the resting potential (the value of V at A)

positively, and, in decreasing the separation of A and B, decreases the magnitude of ∆Vθ. As

a critical value of istim (or h or n) is passed, A and B coalesce and then vanish. C, which

is the only remaining singular point, is approached by all solutions, including those starting

at the original resting point. One result of this is that a step change i0 of istim at t = 0 will

have a positive threshold value for excitation, or rheobase1, at which the nullclines are just

tangent. Similar results are found when h or n are changed instead of istim. Changing any

one of the parameters istim, h, or n can modify the effect of another so that, for instance, a

decrease of h or an increase of n will increase the magnitude of the rheobase. These changes

in excitability in the V , m reduced system are also what one would expect qualitatively from

the physical significance of the variables istim, h, and n in the HH model.

Conversely, when the V nullcline is raised, by changing istim, h, or n in opposite directions

from those considered above, A and B move apart, changing the resting potential nega-

tively and increasing the magnitude of the shock threshold ∆Vθ. Eventually, points B and

C approach, coalesce, and vanish, leaving A as the only singular point. The system is now

inexcitable, and each parameter (istim, h, n) has a critical value at which this happens.

This system shows no recovery to the resting state, for which changes in h and n are required.

Thus, the action potential (V plotted against t) with h and n at their resting values, shows

a rising phase similar to that of a real nerve, followed by a permanent plateau with V about

equal to VNa. The time course of the V , m reduced HH system can be seen in the left of

1The rheobase is the supremum of the subthreshold current strengths or the minimum of the threshold

current strengths. One theoretically needs an infinitely long impulse for istim = irheobase to obtain an action

potential.[34]
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Figure 7.2: Time course of V according to the V , m reduced HH system (left) and of the

V , m, h reduced HH system (right) at the original temperature of 6.3 ℃. In the first case,

the gating variables h and n are set constant and equal to their resting values, in the second

case, n is set constant and equal to its resting value. Minimal stimulus istim for a pulse width

of 0.1 ms is 30 µA/cm2 for the V , m reduced HH system and 37 µA/cm2 for the V , m, h reduced

HH system.

figure 7.2.

Within the V , m, h reduced system where only n is held constant, V , m, and h are coordinates

of a three-dimensional phase space in which the solutions of the reduced HH equations appear

as paths. The function h∞(V ) is a monotonically decreasing S-shaped curve (see, e.g. figure

3.1). Therefore, when V goes positive, as during the rising phase on the action potential,

h∞ decreases, and h pursues it. Consider first the case of stimulation by an instantaneous

shock producing an initial displacement ∆V . If ∆V is just threshold for the V , m reduced

system the phase point lies initially on the threshold separatrix. Initially, h = h∞(0) and

the (V, m) phase plane is as shown in figure 7.1. As t increases, since V > 0, h decreases,

the V nullcline in the (V, m) plane moves upward, and saddle point B moves to the right,

carrying the threshold separatrix with it away from the moving phase point. At any instant

t > 0, therefore, the phase point finds itself no longer on the threshold separatrix, but on a

subthreshold path, so that it returns toward A. If ∆V is made more positive by increasing the

shock strength, the phase point will initially lie beyond the threshold separatrix and may get

so far as to cross the V nullcline and start moving to the right and upward toward the excited

point C. But the threshold separatrix is also moving to the right, and whether excitation

actually takes place will depend on whether the phase point is overtaken by the separatrix

and forced to turn back toward A.

In the case of stimulation by a positive step current, the rheobase also is increased when

changes in h are allowed. istim must be greater than for the V , m system in order to allow

the phase point to pass between the two nearly tangent nullclines before these have had a
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chance to collide and produce a saddle point B with a threshold separatrix, which can then

pursue the phase point, head it off, and turn it back toward A. Thus the effect of allowing h to

vary is to produce accommodation; i.e., an increase of rheobase or shock threshold. The time

course of V of the reduced V , m, h system can be seen in the right of figure 7.2. The minimal

stimulating current strength to produce an action potential has raised from 30 µA/cm2 at the

V , m reduced HH system to 37 µA/cm2 at the V , m, h reduced HH system when stimulated

for 0.1 ms.

The introduction of h as a variable produces an action potential having a distinct peak,

followed by a lower plateau which may be looked on as the result of partial recovery. The

rather complex process of interaction between the variables can be described as follows. By

the time the phase point has nearly reached C, C has started to move to the left, as a result of

the decrease in h. As C continues to move to the left, the phase point follows it closely. As V

simultaneously turns and starts to become more negative again, h∞(V ) reverses its decreasing

trend and begins to increase again toward h. The latter therefore begins to decrease even

more slowly than before. This slows down the motion of C to the left, and the behaviour of

the system from now on will depend very much on whether C finally stops moving before it

can meet B, which is approaching it along the m nullcline. If B and C do meet and vanish,

the phase point must return to A. It happens that the addition of the third variable h to the

V , m system does not change the number of the singular points, but as FitzHugh has shown,

the addition of the fourth variable n does so. [8]

In one of his papers, FitzHugh classified mathematical models according to their threshold

phenomena. He introduced the discontinuous threshold phenomenon (DTP), the singular-

point threshold phenomenon (STP), and the quasi threshold phenomenon (QTP). According

to this classification, the V , m, the V , m, h as well as the V , m, n reduced system each have a

STP, whereas the complete V , m, n, h system has a QTP. In a QTP, there is no saddle point in

the complete system, and any intermediate response between “all” and “none” is obtainable

by an accurate enough adjustment of the stimulus intensity. FitzHugh’s synthetic process

to first investigate the reduced systems and then dealing with the full system is an example

of how a QTP in a four-dimensional phase space can be represented by a STP in a moving

two-dimensional subspace. As quoted in [8], this is related to Lotka’s 2 interpretation of a

quasi-equilibrium state which has a slowly changing non-equilibrium variable as a “moving

(stable) equilibrium”. A QTP could be described from this point of view as one type of

“moving unstable equilibrium”. [7],[8]

Like all theories, the HH model of the squid giant axon membrane requires testing. Predic-

tions of the results of a variety of experiments have been made, starting from their equations,

2A.J. Lotka. Elements of Physical Biology, Baltimore, The Willians & Wilkins Co., 1925
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of which some do and some do not agree with experimental results. The HH model is not

universally accepted; there are some prediction from the model which are definitely false, and

these indicate that even if the model is basically valid, it needs to be modified.

Solving the HH equations by a numerical method with a desk calculator found good agreement

with experiment for, e.g., the membrane (space clamped) action potential at two tempera-

tures, the propagated action potential and conduction velocity, net fluxes of sodium and

potassium ions per impulse, the absolute refractory period, the value of threshold to short

current pulses, as well as for other phenomena.

On the other hand, membrane action potentials computed with a digital computer—solving

the equations with a desk calculator was so time-consuming that a digital computer was

programmed to do this—at very near threshold show not only the variation of spike height to

be expected from experiment, but also an apparently continuous gradation of responses of all

intermediate heights between subthreshold active response and a full-sized action potential.

This is an apparent violation of the all-or-none law which forbids such intermediate sized

responses and which is obeyed by the squid axon experimentally. The discrepancy is, however,

only apparent, the result of the greater accuracy of the digital computer than that of a

real axon. The latter is affected by spontaneous fluctuations that practically eliminate the

possibility of intermediate responses in a normal axon. This is shown by the fact that when

the stimulus is set just as threshold, a real axon gives action potentials for only a certain

proportion of stimuli, whereas the equations, not containing any statistical variation, always

give the same result. The analog computer, with its electrical noise, also shows randomness

near threshold, and is thus more lifelike than the digital computer. There has no attempt been

made to include statistical variation in the equations in order to represent this phenomenon.

This apparent disagreement between the model and the experiment is therefore not serious.[11]

7.1.1 Modifications

This section provides some ideas in which the HH model can be modified or improved, as it

has been done several times in history. The following adaptions of the HH model are quoted

in the book “Biological engineering” [11], which was written by Richard FitzHugh and Herman

P. Schwan in 1969. The first modification concerns the situation when tetraethylammonium

chloride (TEA) is injected into the axon. The obtained plateau action potential with bistable

behavior can be closely imitated if the equations are modified by increasing the relaxation

time of variable n by a factor of 100 or so.3

Computations by Huxley on the effect of changes of calcium concentration on the squid

3Richard FitzHugh, J. Gen. Physio., 43:867, 1960; E.P. George, Nature, 186:889, 1960; E.P. George and

E.A. Johnson, Australian J. Exptl. Biol. Med. Sci., 39:275, 1961
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axon were made by changing m∞(V ) to m∞(V + ∆V ), τm(V ) to τm(V + ∆V ), and h∞(V ),

τh(V ), n∞(V ) and τn(V ) similarly. Here ∆V = K · ln [Ca]
[Ca]n

, [Ca] is the calcium concentration

used, [Ca]n is the normal concentration, and K = −9.32 mV. These changes were based on

experimental findings. The effect of these changes is to shift all the steady state and relaxation

time functions along the V axis to the right for an increase of [Ca]. 4

Not each modification was an improvement, as the example of E.B. Wright and T. Tomita

shows. They used the HH equations to predict the effect of changing external sodium and

potassium concentrations by changing the values of VNa and VK. Instead of recalculating the

(new) resting values of V , m, n, and h, the authors used V = 0 and reset m, n, and h to

arbitrary values for their initial conditions which produced an error in their solutions. 5

As quoted in [8], Goodall and Martin6 solved a set of differential equations which, for

greater convenience in adjusting parameters, were slightly different from the HH equations.

They used an additional chloride current and a sixth instead of a fourth power in their

potassium conductance to obtain action potentials like those of muscle, and by altering the

potassium time constant, an oscillating plateau.

In this thesis, the maximum sodium, potassium and leakage conductances gNa, gK and

gL are heightened by a factor of 12. The reason is that the HH model does not work at

temperatures higher than 33 ℃ (see e.g. section 9.1), but which is necessary when applying

the HH model to a human being with a temperature of 37 ℃. The CRRSS model was developed

for a mammalian myelinated nerve cell, so the sodium conductance of the CRRSS model of

1445 mS/cm2 was approximated by multiplying the conductance of the HH model by a factor of

12. The new conductances—in order not to change the ratio as well as the initial conditions,

the other conductances are multiplied by the same factor too—are: gNa = 1440, gK = 432,

and gL = 3.6mS/cm2.

Since for other excitable membranes the voltage-clamp techniques are more difficult than

for the squid axon, it is natural to take the HH model as a starting point and modify it to

describe new membranes, instead of starting all over again from the beginning to develop a

new model. It is a useful procedure as long as its dangers are recognized; it might turn out

that a different cell operated on different principles than the squid axon does. [11]

As quoted in [11], the voltage-clamp technique has been applied to the single node of

Ranvier of the myelinated nerve fibres of the frog and the toad, and modifications of the HH

model have been found which duplicates these results. They differ from the HH equations in

the functions used for the steady state values and relaxation times, in some of the constants,

4A.F. Huxley, Ann. N.Y. Acad. Sci, 81:221, 1959
5J. Cellular Comp. Physiol., 65:211, 1965
6Goodall, M.C. and Martin, T.E, Analogue computer solutions of Hodgkin-Huxley, Program and Abstracts

of the Biophysical Society, Cambridge, Massachusetts, 1958
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and in the fact the sodium and potassium currents are nonlinear in V .

7.2 Model of Chiu, Ritchie, Rogart, Stagg, and Sweeney (CRRSS)

In 1979, Chiu, Ritchie, Rogart, and Stagg made some voltage-clamp studies in order to model

single rabbit myelinated nerve fibres. These studies were carried out at a temperature of 14

℃ with the method of Dodge & Frankenhaeuser7. Mammalian membrane fibres had already

been investigated by Horáckova et al.8 and by Nonner & Stämpfli9 earlier. Although no

detailed analysis had been made, they had found out that the potassium currents seem to be

entirely lacking. The analysis of Chiu et al. shows that except the absence of the potassium

currents the currents in the rabbit node are well described by the Hodgkin-Huxley formulation.

Unfortunately, the authors did not publish all the data which are necessary for simulation

although the complete model was used in the paper to demonstrate good agreement with the

experiment. The missing values can be found by fitting data of the measurements presented

in their figures. By recalculation, one can find similar values to those obtained by Sweeney

and his colleagues[43], who transformed the original data to find a model for warm-blooded

axons. The CRRSS model, named after Chiu, Ritchie, Rogert, Stagg and Sweeney describes

the sodium and leakage currents in mammalian myelinated fibres at 37 ℃. [5],[36]

As a consequence of the absence of the potassium currents, the ionic currents are split

into two components, a sodium and a leakage current. The main equation (7.13) as well as

the equations for the gating variables (7.14) and (7.15) are similar to the HH equations.

dV

dt
=

(

− (iNa + iL) + istim
)1

c
(7.13)

dm

dt
=

(

− (αm + βm)m + αm

)

k (7.14)

dh

dt
=

(

− (αh + βh)h + αh

)

k (7.15)

7Dodge F.A & Frankenhaeuser B., 1958. Membrane currents in isolated frog nerve fibre under voltage

clamp conditions. Journal of Physiology 143, 76-90.
8Horáckova M., Nonner W. & Stämpfli R., 1968. Action potentials and voltage clamp currents of single rat

Ranvier nodes. Proc. int. Union Physiol. Sci. 7, 198
9Nonner W. & Stämpfli R., 1969. A new coltage clamp mathod. In “Laboratory Techniques in Membrane

Biophysics”, ed. Passow H. & Stämpfli R., Berlin: Springer-Verlag
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The sodium currents in rabbit nodes were fitted by the HH model using m2h kinetics.

iNa = gNam
2h(V − VNa) iL = gL(V − VL) (7.16)

αm =
97 + 0.363V

1 + e(
31−V

5.3 )
βm =

αm

e(
V −23.8

4.17 )
(7.17)

αh =
βh

e(
V −5.5

5 )
βh =

15.6

1 + e(
24−V

10 )
(7.18)

The transient inward sodium current is responsible for the fast initial depolarization phase of

the action potential, while the repolarizing phase is accounted for by leak alone. The computed

shape of the action potential was in good agreement with the experimentally obtained action

potential. [5]

The Q10 is equal to the one of the HH model; as the standard temperature of the CRRSS

model is 37 ℃, the temperature coefficient k can be calculated by

k = 30.1T−3.7 (7.19)

T is the temperature in ℃. The constants and the initial values or rather the resting values

are [43]

VNa = 115 gNa = 1445 m(0) = 0.003 (7.20)

VL = −0.01 gL = 128 h(0) = 0.75 (7.21)

Vrest = −80 c = 2.5 V (0) = 0 (7.22)

Even though the CRRSS model neglects the potassium currents, voltage sensitive potas-

sium channels do exist in such fibres. The experiments of Röper and Schwarz showed that in

rat myelinated nerve at least two potassium conductance can be distinguished, suggesting the

existence of two different types of K+ channels: those with fast and those with slow gating

kinetics, in the ratio 4:1. Although they have no significant influence in the intact membrane,

it is notable that these fast and slow voltage-sensitive potassium channels exist in the nodal,

the paranodal (the area between node and internode), and in the internodal regions. The

density of the slow potassium channels is maximal in the nodal membrane and decreases

to 1
31 in the internode. By contrast, the distribution of the fast potassium channels differs,

their density being maximal in the paranode and descreasing to one sixth in the node and

paranode. However, no sodium channels seem to be present in the myelinated parts of the

membrane. See also Sherratt et al.10, Kokis & Waxman11. [34],[40]

10Sherratt R.M., Bostock H. and Sears T.A., 1980. Effects of 4-aminopyridine on normal and demyelinated

nerve fibres. Nature 283, 570-572
11Kokis J.D and Waxman S.G., 1987. Ionic channel organization of normal and regenerating mammalian

axons. In “Progress in Brain Research” Ed. Seil F.J., Herbert E. and Carlson. Amsterdam Elsevier 71, 89-101
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7.3 Model of Frankenhaeuser and Huxley (FH)

In 1964, Frankenhaeuser and Huxley published their investigation on the action potential in

the myelinated nerve fibre of the toad. Analogue to the voltage clamp experiments of Hodgkin

and Huxley, they analyzed the recorded current after changing the membrane potential step

by step.

The membrane current densities are treated as the sum of a capacitive current density and

an ionic current density which is split into a leak current density iL, an initial current density

and a complex delayed current density. Earlier, it was shown by Dodge and Frankenhaeuser[6]

that the initial current is mainly carried by sodium ions, and by Frankenhaeuser12 that the

delayed current in the myelinated nerve fibre is carried essentially by potassium ions. Some

of the complex delayed current was separated as a ‘non-specific current’ iP which is to large

extent carried by sodium but possibly also by other ions such as calcium13. [6],[15]

dV

dt
=

(

− (iNa + iK + iP + iL) + istim
)1

c
(7.23)

dm

dt
=

(

− (αm + βm)m + αm

)

k (7.24)

dn

dt
=

(

− (αn + βn)n + αn

)

k (7.25)

dh

dt
=

(

− (αh + βh)h + αh

)

k (7.26)

dp

dt
=

(

− (αp + βp)p + αp

)

k (7.27)

Notation is identical to the models mentioned above. There is another differential equation

for the gating variable p which appears in the equation for the non-specific current density iP.

Voltage clamp experiments indicate that the sodium and potassium transport system can be

described in terms of potassium permeability when permeability is defined by the ‘constant

12Frankenhaeuser B. 1962. Delayed currents in myelinated bnerve fibres of Xenopus laevis investigated with

voltage clamp technique. Journal of Physiology 160, 40-45. (Wuerd ich weglassen: Frankenhaeuser B. 1962.

Instantaneous potassium currents in myelinated nerve fibres of Xenopus leavis. Journal of Physiology 160, 46-

53.) Frankenhaeuser B. 1962. Potassium permeability in myelinated nerve fibres of Xenopus laevis. Journal

of Physiology 160, 54-61
13Frankenhaeuser B. 1963. A quantitative description of potassium currents in myelinated nerve fibres of

Xenopus laevis. Journal of Physiology 169, 424-430
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field equation’. The specific permeabilities PNa, etc. are measured in cm/s. [6],[13]

iNa = PNam
2h

EF 2

RT

[Na]o − [Na]i · e
EF

RT

1 − e
EF

RT

αm =
0.36(V − 22)

1 − e(
22−V

3 )
βm =

0.4(13 − V )

1 − e(
V −13

20 )

iK = PKn2 EF 2

RT

[K]o − [K]i · e
EF

RT

1 − e
EF

RT

αn =
0.02(V − 35)

1 − e(
35−V

10 )
βn =

0.05(10 − V )

1 − e(
V −10

10 )

iP = PPp2 EF 2

RT

[Na]o − [Na]i · e
EF

RT

1 − e
EF

RT

αh = −0.1(V + 10)

1 − e(
V +10

6 )
βh =

4.5

1 + e(
45−V

10 )

iL = gL(V − VL) αp =
0.006(V − 40)

1 − e(
40−V

10 )
βp = −0.09(V + 25)

1 − e(
V +25

20 )

PNa is the sodium permeability constant, m, n, h, and p are gating variables, E is the absolute

value of the membrane voltage (unlike the reduced membrane voltage V which is zero at rest,

E is −70 mV at rest), F is the Faraday constant F = 9.64845 · 104 C/mol, R the gas constant

R = 8.31441 J/mol·K, T the temperature in ℃, [Na]o and [Na]i are the ion concentration in

mMol/l of Na+ ions outside and inside the membrane, α’s and β’s are rate constants.

It should be pointed out that the value of βn depend to some extent on the previous

history of the fibre. The equation for βn used for this thesis was fitted to experimental data

which were obtained from measurements after short current steps (about 1 ms). A different

equation for βn is appropriate for longer (5-15 ms) current steps. [14]

Frankenhaeuser and Moore determined temperature coefficients for simulations at tem-

peratures other than 20 ℃. Their Q10 agrees rather well with the Q10 of 3 which was used

by Hodgkin and Huxley for the squid fibre data. The only exception are the coefficients for

αm and βm. In their investigation, Q10 values for PNa and PNa were also determined. [15],[16]

Q10(αm) = 1.8 Q10(βm) = 1.7 m(0) = 0.0005 (7.28)

Q10(αn) = 3.2 Q10(βn) = 2.8 n(0) = 0.0268 (7.29)

Q10(αh) = 2.8 Q10(βh) = 2.9 h(0) = 0.8249 (7.30)

Q10(PNa) = 1.3 Q10(PK) = 1.2 p(0) = 0.0049 (7.31)

PNa = 0.008 E = V + Vrest (7.32)

PK = 0.0012 Vrest = −70 (7.33)

PP = 0.00054 V (0) = 0 (7.34)

[Na]o = 114.5 [K]o = 2.5 VL = 0.026 c = 2 (7.35)

[Na]i = 13.7 [K]i = 120 gL = 30.3 k = Q0.1T−2.0
10 (7.36)
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The leak conductance gL in the FH equations is independent of potential and time. This

is in contrast to the fact that gL increases when NaCl or KCl is added to the ordinary Ringer’s

solution, the nerve cell is embedded in, which indicates that the leak current is carried by both

Na+ and K+. Further, gL increases somewhat after cathodal steps of long duration, which is

an indication that gL is, to some extent, potential and time dependent. This is neglected in

the FH analysis. [15]

7.4 Model of Schwarz and Eikhof (SE)

In 1987, Schwarz and Eikhof developed their model which is of the FH type from voltage clamp

experiments on rat nodes. Additionally, they showed that the results of their experiments

performed in the cat nerve were essentially the same as those in the rat nerve fibres. The

original SE model describes nodal currents, not densities. By assuming a nodal area of 50µm2,

one obtains a model with current densities which is comparable to the other membrane models.

This model is of special interest for medical application because most data were measured at

20 ℃ and 37 ℃. [36],[41]

An aim of Schwarz and Eikhof was to record membrane currents and action potentials at

37 ℃ as until then, only a few scattered notes about voltage and current clamp measurements

in mammalian nerve fibres at body temperature were performed. [41]

dV

dt
=

(

− (iNa + iK + iL) + istim
)1

c
(7.37)

dm

dt
= −(αm + βm)m + αm (7.38)

dn

dt
= −(αn + βn)n + αn (7.39)

dh

dt
= −(αh + βh)h + αh (7.40)

iNa = PNam
3h

EF 2

RT

[Na]o − [Na]i · e
EF

RT

1 − e
EF

RT

αm =
1.87(V − 25.41)

1 − e(
25.41−V

6.06 )
βm =

3.97(21 − V )

1 − e(
V −21
9.41 )

iK = PKn2 EF 2

RT

[K]o − [K]i · e
EF

RT

1 − e
EF

RT

αn =
0.13(V − 35)

1 − e(
35−V

10 )
βn =

0.32(10 − V )

1 − e(
V −10

10 )

iL = gL(V − VL) αh = −0.55(V + 27.74)

1 − e(
V +27.74

9.06 )
βh =

22.6

1 + e(
56−V

12.5 )

E = V + Vrest (7.41)
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gL = 86 k = Q0.1T−3.7
10 c = 2.8 (7.42)

Vrest = −78 VL = 0 V (0) = 0 (7.43)

m(0) = 0.0077 Q10(αm) = 2.2 Q10(βm) = 2.2 (7.44)

n(0) = 0.0267 Q10(αn) = 3 Q10(βn) = 3 (7.45)

h(0) = 0.76 Q10(αh) = 2.9 Q10(βh) = 2.9 (7.46)

PNa = 0.00328 [Na]o = 154 [K]o = 5.9 (7.47)

PK = 0.000134 [Na]i = 8.71 [K]i = 155 (7.48)

7.5 Model of Schwarz, Reid, and Bostock (SRB)

Schwarz, Reid, and Bostock derived a mathematical model for action potentials of human

myelinated nerve fibres. Their nerve material was obtained from patients that were undergoing

nerve graft operations. The model is based on the FH equations and closely matches the

recorded action potentials. Their study was undertaken to investigate the possible differences

between action potentials and ionic currents in human and rat nodes of Ranvier. [42]

dV

dt
=

(

− (iNa + iK,fast + iK,slow + iL) + istim
)1

c
(7.49)

dm

dt
=

(

− (αm + βm)m + αm

)

k (7.50)

dn

dt
=

(

− (αn + βn)n + αn

)

k (7.51)

dh

dt
=

(

− (αh + βh)h + αh

)

k (7.52)

dp

dt
= −(αp + βp)p + αp (7.53)

iNa = PNam
3h

EF 2

RT

[Na]o − [Na]i · e
EF

RT

1 − e
EF

RT

αm =
4.6(V − 65.6)

1 − e(
−V +65.6

10.3 )
βm =

0.33(61.3 − V )

1 − e(
V −61.3

9.16 )

iK,fast = gK,fastn
4(V − VK) αn =

0.0517(V + 9.2)

1 − e(
−V −9.2

1.1 )
βn =

0.092(8 − V )

1 − e(
V −8
10.5 )

iK,slow = gK,slowp(V − VK) αh = −0.21(V + 27)

1 − e(
V +27

11 )
βh =

14.1

1 + e(
55.2−V

13.4 )

iL = gL(V − VL) αp =
0.0079(V − 71.5)

1 − e(
71.5−V

23.6 )
βp = −0.00478(V − 3.9)

1 − e(
V −3.9
21.8 )
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E = V + Vrest VK = 0 VL = 0 Vrest = −84 (7.54)

PNa = 0.00704 gK,fast = 30 gK,slow = 60 gL = 60 (7.55)

c = 2.8 V (0) = 0 [Na]o = 154 [Na]i = 30 (7.56)

m(0) = 0.0382 n(0) = 0.2563 h(0) = 0.6986 p(0) = 0.0049 (7.57)

Q10(αm) = 2.2 Q10(βm) = 2.2 (7.58)

Q10(αn) = 3 Q10(βn) = 3 (7.59)

Q10(αh) = 2.9 Q10(βh) = 2.9 (7.60)

k = Q0.1T−3.7
10 (7.61)

7.6 Model of FitzHugh

All models mentioned above have a similar behavior in regards to the electrostimulation

process, thus, all these models belong to the same class of differential equations: They have

a stable steady state; small disturbances produce small excursions of the states, but higher

influences bring them against a pseudo limit circle from where the trajectories come back to

the resting level. One can easily analyze the characteristics by reducing to two-dimensional

models, such as the model of FitzHugh. [34]

In 1961, the ‘Biophysical Journal’ published a paper of Richard FitzHugh in which he made

some phase plane analysis with a model he called “BVP model” after Bonhoeffer and Van

der Pol. In literature, it is also often found as the Bohhoeffer Van der Pol FitzHugh (BVF)

model. It has only two variables of state, which represent excitability and refractoriness, and

its properties can therefore be visualized on a phase plane. FitzHugh’s aims were to describe

a large class of non-linear systems which show excitable and oscillatory behavior and the

analysis of the stability of the singular points which represent the resting state. The model

is not intended to be an accurate quantitative model of the axon, in the sense of reproducing

the shape of experimental curves (see, e.g. figure 7.3). It rather tries to figure out the

basic interaction between excitability and refractoriness. The algebraic form of the FitzHugh

equations is not important and can be changed without altering the general properties of

interest here. [9],[34]

The FitzHugh model is simple to analyze and needs less computation time than experimen-

tally fitted equations. Time transformation and scaling allows the physiological interpretation
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Figure 7.3: Time course of the main variable x of the FitzHugh model according to different

starting values x(0) = −0.5,−0.25, 0, . . . , 1.5; y(0) = −0.625 without any stimulus signal, with

standard parameters and β = 1. From [34]

of the results. The modified equations give the nerve response to a stimulus signal s(t). [34]

dx

dt
= c ·

(

y + x − x3

3
− s

)

· β (7.62)

dy

dt
= −(x − a + by)

c
· β (7.63)

x may be interpreted as scaled voltage, s as the stimulus current density, and y as the recovery

variable. The membrane voltage can be approximated by the following equation.

V = 25 · (−x + 1.2) (7.64)

For the standard parameters

a = 0.7, b = 0.8, c = 3 (7.65)

the stable solution
(

dx
dt = dy

dt = 0
)

is xrest = 1.2 and yrest = −0.625. β is the time transfor-

mation factor that changes the time scaling, but does not influence the form of the solution.

Warm blooded axon excitation behavior can be modeled with β = 4 to β = 4 when time

is measured in ms, i.e. the solution is four times quicker than for the original problem with

β = 1. For this thesis, β = 7 was chosen.[34]

The behavior of this model in the phase plane can be seen in figure 7.4. The state point

or phase point representing the state of the system moves spontaneously in this plane along

the paths (also called trajectories) which are represented by the blue lines in figure 7.4. Only

a few representative paths have been drawn, but they should be thought of as completely
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Figure 7.4: Phase plane of the FitzHugh model without any stimulus with standard

parameters. Trajectories (blue lines) are responses to different starting values x(0) =

−0.5,−0.25, 0, . . . , 1.5; y(0) = −0.625. All solutions of the FitzHugh equations finally end in

the resting point. This is the intersection of the curves ẋ = 0 and ẏ = 0. Green dotdashed

line indicates the ‘(x) phase line’ through the resting point. More details in the text. After

[9]

filling the plane, like the stream lines of a fluid flow. Without a stimulus s the courses of the

trajectories only depend on the starting point. At the highest and the lowest point of the

trajectories there is ẏ = 0 and all the extremity points are situated on the y nullcline which

is defined by y = −x−a
b which is obtained by setting ẏ equal zero in equation (7.63). The

leftmost and the rightmost points of the curves are at the x nullcline which is defined by the

‘N-shaped’ curve y = x3

3 − x which is obtained by setting ẋ equal zero in equation (7.62). x

and y nullclines are represented by the solid and dotted red lines in figure 7.4, respectively.

This ‘N-shaped’ curve, which is typical for equations of nerve model, allows the existence of a

‘separatrix’ which separates the small excursions from the long ways of the spikes. A solution,

which starts at a point above the separatrix, simulates a subthreshold response. Most of the

curves starting above the separatrix follow in short pathways to the resting state and it is

difficult to find starting values for solutions which pass through a large area called ‘no man’s

land’. In practice, this means that one normally will not find a stimulus which can produce

a subthreshold response that reaches, e.g., 90% of the amplitude of an action potential.

The trajectories of the phase plane of figure 7.4 are solutions of the FitzHugh model without

a stimulus signal. Starting from the resting point, a stimulating signal has to drive the

trajectory below or—which is the same— to the left of the separatrix in order to produce an

action potential. [9],[34]
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One has to be cautious when changing the standard parameters (7.65), the following

limitations have to be taken into account:

1 − 2b

3
< a < 1, 0 < b < 1, b < c2 (7.66)

These conditions on a and b guarantee that without a stimulus signal the nullclines will

intersect at only one singular point, which is a stable node or focus. This singular point

represents the resting state. [9]

The FitzHugh equations can be more easily understood by considering separately the

behavior of two subsystems. Except near the y nullcline, y is a more slowly changing variable

than x. If y is kept constant at any value, the corresponding horizontal line in the (x, y) plane

may be thought of as a phase line of a reduced system with a single variable of state x. The

(x) phase line through the resting point (dotdashed green line in figure 7.4) has three singular

points where it intersects the three branches of the x nullcline. The middle one is unstable

and represents a threshold phenomenon. The other two are a stable excited point at the left

and a stable quiescent point at the right. Displacement of the phase point from the resting

point to some point to the left of the unstable threshold singular point produces excitation in

the reduced system, and the phase point approaches the excited singular point. Considering

the complete (x, y) system again, as a result of this negative change in x, y increases slowly,

causing the phase line to move upward until the excited and threshold singular points meet

and vanish. Then, in the (x) reduced system, the phase point rapidly approaches the only

remaining singular point, the quiescent one on the right branch. Finally, y slowly decreases,

and the phase point in the plane approaches the resting point. This description is similar to

that given in [8] for the course of an impulse in the HH equations except that in the latter

case the two subsystems were each of two dimensions instead of one (Hodgkin and Huxley’s

V and m together behave like x, h and n like y). [9]
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Chapter 8

Propagation of the spike

Previous methods like the space clamped experiments can be used to simulate the reaction of

fibres with long inserted electrodes. The injected stimulating current cannot leak away along

the fibre and has to cross the membrane as capacitive or ionic current (see, e.g. section 6.4).

It gives a good approximation of the behaviour of cell bodies because these are practically

isopotential inside the membrane.

However, this model cannot describe the behaviour of an axon or muscle fibre, where the

transmembrane potential may vary from point to point. Since the injected current leaks away

to both sides along the axon, the membrane voltage becomes a function of distance. Therefore,

the nerve fibre is segmented into several cylinders of length ∆x, where each segment, or

compartment, is represented as an electric circuit (see figure 6.1) so that the whole neuron is

represented as an electric network (see figures 8.1 and 8.2). [25],[34]

The physiological reason for the propagation effect of an action potential along the fibre

is the electrotonic coupling of nearby regions. Transmembrane current in the active region

is inward, as Na+ ions flow from outside to inside (which causes the internal potential to

reverse and become positive in the active region). But since charge is neither added to nor

subtracted from the whole system, the inward current in the active zone must be balanced by

an equal outward current in the neighboring inactive regions. We know from artificial injection

of current with microelectrodes that outward current in an inactive region of membrane is

depolarizing. Thus, the outward current in an inactive region that is produced by inward

current in an active region depolarizes the inactive membrane to threshold and excites it. As

quoted in the book ‘Nerve and muscle excitation’, the sufficiency of this method of propagating

the action potential was shown by Hodgkin in 19371; he demonstrated that action potentials

that arrived at a crushed portion of nerve could depolarize the inactive nerve beyond the

1A.L. Hodgkin, Evidence for electrical transmission in nerve, Part I. The Journal of Physiology. 90:183-210;

Part II. The Journal of Physiology. 90:211-232
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blocked area and could excite the inactive region if the block were small enough. [25]

Kirchhoff’s current law says that at any node in an electrical circuit the sum of all inflowing

currents is equal to the sum of all outflowing currents or, in other words, the sum of all currents

at any node is zero. Considering that one compartment has only two neighbor segments,

Kirchhoff’s law for the nth compartment according to the network model in figure 8.1 reads

as:

Istim,n = Cm
d(Vi,n − Ve,n)

dt
+ Iion,n + Ga(Vi,n − Vi,n−1) + Ga(Vi,n − Vi,n+1) (8.1)

or expressed in terms of resistance

Istim,n = Cm
d(Vi,n − Ve,n)

dt
+ Iion,n +

Vi,n − Vi,n−1

R
+

Vi,n − Vi,n+1

R
(8.2)

Cm is the membrane capacitance, Ga the inneraxonal conductance, R the inneraxonal resis-

tance, and Vi,n(Ve,n) the intracellular (extracellular) potential of the the nth compartment.

In contrast to the local model where any injected current has to pass the membrane either as

capacitive or ionic current, the injected current in this network model is split into a capacitive

current, an ionic current, an axonal current to the left, and an axonal current to the right of

the considered segment.

Because the equations for the ionic currents are formulated with current densities, it is

convenient to transform equation (8.2) by setting

R =
4ρi∆x

πd2
and Cm = cmπd · l (8.3)

where ρi is the resistivity (the specific resistance) of the axoplasm which is about 0.1 kΩ · cm,

d is the diameter of the axon, cm is the capacitance per cm2 of membrane, and l is the nodal

gap width. One can treat the case of myelinated and of unmyelinated fibre in parallel if one

sets l = ∆x for unmyelinated fibres. Equation (8.2) becomes [34]

d(Vi,n − Ve,n)

dt
=

1

cm
·
(

Istim,n

πd · l − iion,n +
d

4ρi∆x · l ·
(

Vi,n−1 − 2Vi,n + Vi,n+1

)

)

(8.4)

By introducing the reduced membrane voltage Vn = Vi,n − Ve,n − Vrest and by setting

the extracellular potential equal to zero, equation (8.4) without any stimulus current can be

written in the following form:

dVn

dt
=

1

cm
·
(

−iion,n +
d

4ρi∆x · l ·
(

Vn−1 − 2Vn + Vn+1

)

)

(8.5)

Neglecting the extracellular potential is a simplification which was used by the pioneers when

they examined the propagating action potential. As quoted in the book ‘Electrical Nerve
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Figure 8.1: Electrical network to simulate the currents in an axon. Unmyelinated, as well

as, myelinated fibres of diameter d are segmented into cylinders of length ∆x. Myelinated

fibres have active membrane parts only in the yellow area at the nodes of Ranvier. Here,

ionic currents will only enter at a length l. The length of an internode is denoted as L.

The membrane of every cylinder is simulated by an electric circuit (top diagram) consisting

of membrane capacitance Cm, voltage source, and nonlinear membrane conductance. Ve,n

and Vi,n are the external and the internal potential of the nth segment. Gm symbolizes the

nonlinear membrane conductance and Ga the conductance of axoplasm between two segments.

Iion,n is the ionic current passing the membrane in the nth segment. Adapted from [32]
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Figure 8.2: Electrical network for nerve fibres. It consists of active circuits with nonlinear

membrane conductances (marked as arrows) which define the ionic currents at the nodes of

Ranvier, and passive circuits with constant resistance resulting from N layers of Schwann cell

membranes. Every passive element symbolizes one internodal segment. The voltages Ve and

Vi are average values of the segments. Passive segment length: ∆x, active segment length:

l. d is the diameter of the axon, Iion,n is the ionic current passing the membrane in the nth

segment. Adapted from [34]
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Stimulation’, John Clark and Robert Plonsey2 examined the potential distribution on both

sides of the membrane and found, that only changes in the order of some mV occur on the

extracellular side when an action potential is passing. However, about 97 to 99% of the

voltage is carried by the inside of an isolated fibre. As long as no extracellular stimulation is

applied, one can neglect the extracellular potential for simplified cases. [34]

The axon model corresponding to figure 8.1 is adequate for unmyelinated as well as myeli-

nated axons as long as, the myelin sheath is assumed to be a perfect insulator of the internodal

axolemma. In this case, the behaviour of the model is only dependent on the membrane dy-

namics in the node of Ranvier. The assumption that myelin is a perfect insulator is not

consistent with experimental work, Donald McNeal described it as the “most serious error in

the model”. The effect of current leaking through the myelin sheath on the results according

to this model is difficult to assess without resorting to a much complex simulation which

would include sets of partial differential equations to describe the change in potential along

the internodal regions as well as at the nodes. [30],[39]

In order to regard these findings, there is another model which assumes that the myelin

sheath is an imperfect insulator in which some current can flow through the myelin. The

electric network according to this model is presented in figure 8.2. The corresponding equation

to (8.5) for the nth nodal section is

dVn

dt
=

1

cm
·
(

−iion,n +
1

2lρi
·
(

d

∆xn−1
· Vn−1

−
(

d

∆xn−1
+

d

∆xn+1

)

· Vn +
d

∆xn+1
· Vn+1

))

(8.6)

and for the nth internodal section

dVn

dt
=

N

cm
·
(

− Vn

N · r +
d

2ρi∆x2
n

·
(

Vn−1 − 2Vn + Vn+1

)

)

(8.7)

r denotes the membrane resistivity, N is the number of membranes wrapped around the

myelinated part of the axon.[34]

8.1 The Cable Equation

For analytical considerations of unmyelinated axons, it is often instructive to take the limit

∆x → 0; without an injected stimulating current equation (8.4) reads as

∂(Vi − Ve)

∂t
=

1

cm
·
(

−iion +
d

4ρi
· ∂2Vi

∂x2

)

(8.8)

2Clark J. and Plonsey R. The extracellular potential field of the single active nerve fiber in a volume

conductor. Biophysical Journal 8:842-864. 1968; Plonsey R. The active fiber in a volume conductor. IEEE-

Trans. Biomed. Eng. BME-21, 371-381. 1974
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Vi, Ve and iion are functions of t and x. By introducing the reduced membrane voltage

V = Vi − Ve − Vrest and by setting Ve = 0, ga = d/4ρi, and iion = gm · V , equation (8.8) may

be written in the simplified form

ga
∂2V

∂x2
= gmV + cm

∂V

∂t
(8.9)

which, for constant gm is called the “cable equation”. Since gm is approximately constant only

near resting state, the cable equation can be used for subthreshold analysis. If the axon is

stimulated by a constant subthreshold current, injected at x = 0, the membrane conductance

gm may be assumed to be constant. With this constant current we can observe the steady

state solution
(

∂V
∂t = 0

)

for all points along the axon. Equation (8.9) becomes

ga
∂2V

∂x2
= gmV (8.10)

which has the solution

V (x) = V (0) · e−
|x|
λ (8.11)

λ, which is defined as λ2 = ga

gm
, is called the “space constant”. It gives the distance where V

falls to V
e , i.e. V loses 63% of its value. [34]

Equation (8.9) can also be used as approximation for the space clamp reaction after a

subthreshold stimulus. Here we get exponential decay again. Setting ∂2V
∂x2 = 0 and assuming

constant gm, equation (8.9) reads as

0 = gmV + cm
∂V

∂t
(8.12)

which has the following solution:

V (t) = V (0) · e− t

τ (8.13)

τ is called the “time constant” and gives the time when subthreshold excitation loses 63% of

its value. Thus λ and τ characterize the subthreshold decay in time and space domain. [34]
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Chapter 9

Results

9.1 Comparing HH with FH, CRRSS, SE, and SRB

First of all, it is important to note that the HH model is not appropriate for warm-blooded

animals because of its heat block. When combined networks and standard HH-parameters

are used to simulate an excitation process along the fibre, it turns out that action potentials

will not propagate for temperatures higher than 31 ℃. [34]

A check with the model of a nerve cell used for this thesis resulted in a shrinkage of an

action potential at 34 ℃; an action potential in an axon of 33 ℃ propagates in a normal

manner. The amplitude of the peak which is propagating in an axon of a temperature of

33 ℃ after a minimal stimulus signal of 0.75 nA increases from 32 mV in the stimulating

compartment to 47 mV in the 1.2 mm distant compartment and is still slightly increasing.

This decrease of the amplitude at high temperatures—the amplitude of a squid axon at

standard temperature (6.3 ℃) is about 100 mV—confirms Hodgkin and Katz’s experiments

on the largest axon of the stellar nerve of ‘Loligo forbesi’ from 1949[23], where the authors

investigated temperature effects on the squid axon. They found out that the amplitude of the

spike is not altered greatly except at temperatures above 30 ℃, where it falls rapidly. They

observed an action potential of 62.6 mV at 30 ℃ and of 46.5 mV at 35 ℃ and found out that

the temperature at which heat block occurred showed considerable variation.

Figure 9.1 shows action potential propagation at a nerve cell at 33 ℃ and 34 ℃. One

can see that the spike on the right is shrinking although the stimulating current should be

high enough (1.26 nA) in order to enable propagation. As quoted in [34], a heat block with

a similar value of 33 ℃ was discovered through another method by Huxley1.

As a consequence of the heat block, sodium, potassium and leakage conductances from

the original model of Hodgkin and Huxley (HH model) are multiplied by a factor of 12 in

1Huxley A.F. Ion movements during nerve activity. Ann. N.Y. Acad. Sci. 81: 221-246, 1959
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Figure 9.1: Heat block: Spike propagation at 33 ℃ (left) and 34 ℃ (right). At 34 ℃ the

action potential can only be conducted within a certain distance. The x-axis represents the

time in ms, the four graphs the reduced membrane voltage V = Vi −Ve −Vrest (in mV) of the

stimulated compartment, the 0.4mm, 0.8 mm, and 1.2 mm distant compartment according to

the original HH model.

order to get spike propagation and similar sodium conductance to the CRRSS model; the new

conductances for the HH equations are: gNa = 1440, gK = 432, gL = 3.6 mS/cm2. The other

models can cope with a temperature of 37 ℃, their parameters do not need to be adapted.

The investigation was carried out by using ACSL (Advanced Continuous Simulation Lan-

guage), a programming language which is designed for modeling and evaluating the perfor-

mance of continuous systems described by time-dependent, nonlinear differential equations.

Typical applications of ACSL include aerospace simulation, chemical process dynamics, toxi-

cology models, robotics, and many others. ACSL has several built-in integration algorithms;

for this investigation the Runge-Kutta algorithm of fourth order with fixed step size was used.

Translator and runtime table size were expanded and double precision was applied. The com-

munication interval—the interval at which the variables have their values recorded—was set

to a tenth of the standard value, hence so was the integration step size. The parameter

‘nsteps’, which defines the integration step size in terms of the communication interval, was

not changed. All numerical parameters are summarized in table 9.1. [24]

In section 9.1.1 local models—where current flow along the axon is prevented—of Hodgkin

& Huxley (HH), Chiu, Ritchie, Rogart, Stagg, and Sweeney (CRRSS), Frankenhaeuser &

Huxley (FH), Schwarz & Eikhof (SE), Schwarz, Reid, and Bostock (SRB), and FitzHugh,

are analyzed. Section 9.1.2 explains the differences between the models when propagation

along the axon is regarded. For the investigation, intracellular stimulation is applied, the

stimulating current lasts for 0.1 ms and has a strength which is sufficient for each model to

be excited, i.e. to generate an action potential.

55



9.1.1 Local Models (Space clamp experiments)

HH and CRRSS

Considering an axon under space clamp conditions, one can see some differences between

the (adapted) HH and the CRRSS model. First, it takes more effort (a higher current) to

stimulate and produce an action potential at a nerve cell whose ionic currents are modeled

with the CRRSS equations. At 37 ℃, it needs about 21 times as much stimulating current

to generate an action potential, the 0.1 ms long pulse has to increase the voltage of the cell

membrane by 19.81 mV. The membrane voltage of the CRRSS nerve fibre at the end of the

stimulating current is 262% of the membrane voltage of the HH fibre, which must only be

heightened by 7.55 mV. The shape of the generated spikes show differences too. Apart from

the fact that the voltage of the CRRSS model must be higher at the end of stimulation, figure

9.2, which compares the action potential of six different models, shows that the falling phases

of the spikes look different. The slope of the HH spike is more negative than the slope of

the CRRSS spike, and in contrast to the CRRSS model, the undershoot only exists at the

HH model. The action potential of the HH model needs another half millisecond to reach

its resting level; the spike of the CRRSS model does not hyperpolarize, it reaches its resting

level immediately after the falling phase.

The results of this simulation at three different temperatures are listed in table 9.2. As

models for the cell membrane use current densities (µA/cm2) rather than currents, the unit

of excitation is µA/cm2 as well. For comparison with propagating models, the stimulating

current densities are multiplied by a factor that corresponds to a nerve cell segment which

is modeled as a cylindric section with a diameter of 1 µm and a length of 10 µm. istim is

the minimum stimulating current density that is necessary for generating an action potential.

Iinj is the injected threshold current for a cell with a surface area of 10πµm2, which will be

the lateral surface area of one segment of the nerve fibre at the propagating model. V (0.1)

is the reduced membrane voltage at the end of the stimulating current, i.e. after 0.1 ms.

The number in brackets tells the percentage according to the (modified) HH model, i.e. the

stimulating current density of the CRRSS model at 37 ℃ is 2111% of the stimulating current

density of the HH model.

As regards the ionic currents, during an action potential Na+ ions flow into and K+

ions out of the cell. For this reason, Na+ currents have a minus sign. We can also observe

that more ions are passing the membrane in the CRRSS model. Analogue to the situation

of the stimulating current density, ionic current densities iion are multiplied by a factor in

order to become currents Iion, which can be compared with the propagation models. As the

CRRSS model does not have a K+ current, the focus is on the Na+ currents. The maximum
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Figure 9.2: Time course of an action potential according to the local models of HH, CRRSS,

FH, SE, SRB, and FitzHugh at 37 ℃ when stimulated with threshold current. The stimulating

current densities are: 81 µA/cm2 (HH), 1710 µA/cm2 (CRRSS), 676 µA/cm2 (FH), 2186 µA/cm2

(SE), 1822 µA/cm2 (SRB), and 1.1 (FitzHugh)
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Figure 9.3: Time course of the ionic current densities across the membrane during an action

potential according to the HH model (left) and the CRRSS model (right). The blue line

indicates the Na+ current density, the red dashed line the K+ current density, the green line

the leakage current density. As Na+ ions flow into the cell, their current density has a minus

sign.

magnitude of the sodium current density of the CRRSS model is about double the size of

the HH model; 13733 µA/cm2 is the maximum current density according to the CRRSS model,

7181 µA/cm2 according to the HH model. The total number of Na+ ions, which are passing

the cell membrane during an action potential, is about three times the size of that in the HH

model. 3.15 million sodium ions flow across the cell membrane in the CRRSS model, 1.06

million in the HH model. As one can see when comparing the currents, the leakage current

of the HH model can be neglected. However, the leakage current of the CRRSS modeled cell

is of the order of its Na+ currents (see table 9.3 and figure 9.3).

FH and SE

Frankenhaeuser and Huxley separated a ‘non-specific current’ IP from the complex delayed

current, which is to a large extent carried by Na+ ions. Their model was formulated for 20

℃, but Frankenhaeuser and Moore determined temperature coefficients for αm, βm, αh, βh,

αn, βn, PNa, and PK to be 1.8, 1.7, 2.8, 2.9, 3.2, 2.8, 1.3, and 1.2, respectively. [14],[15],[16]

There are some similarities between the FH and the HH models with regard to action

potentials at minimal stimulus. As regards the shape and the amount of current used for

stimulation as well as the Na+ current that flows from the outside to the inside of the cell

during an action potential, the FH model is more similar to the HH model than to the

CRRSS model. The stimulating current density of the FH model is eight times the current

density of the HH model, a CRRSS model has a 21 as high stimulating current density. The
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threshold, which the voltage of the FH membrane has to reach in order to generate a spike, is

about 18.8 mV, which is near the threshold of the CRRSS model (19.81 mV), but through its

hyperpolarization phase it differs from the latter. The magnitude of the spike is higher than

in the HH or CRRSS model and is, apart from that of the SRB model, which is discussed

later, the only one that exceeds 100 mV. When comparing the FH with the HH model, one

can observe that on the one hand the maximum Na+ current density of the FH model is 26%

higher, but on the other hand the total amount of ions passing the FH membrane is more

than double the size, which implies that the current flow takes longer across a FH modeled

cell membrane than across a HH modeled cell membrane. This difference can be seen even

more clearly when regarding the potassium currents. The maximum ionic current of the FH

model is smaller than that of the HH model (69%), but the total amount of K+ ions is 137%

the size of its equivalent in the HH model. The non-specific current IP is neglectable, the

leakage current IL about twelve times as high as in the HH model and the number of ‘leakage’

ions ten times as high. The sum of all currents of the FH model is more than twice that of

the HH model.

The SE model, on the other hand, is similar to the CRRSS model. There is hardly any

phase of hyperpolarization and the slope of the falling phase of the action potential is nearly

the same as that of the CRRSS model. The minimal stimulating current to produce an action

potential is even larger than the one of the CRRSS model. The SE model needs a stimulating

current which is 27 times the strength of the HH stimulating current; a CRRSS nerve cell

‘only’ needs 21 times as much current as the HH model. The higher stimulus increases the

membrane potential of the nerve cell even more, the voltage is raised by 30.27 mV, which

is four times the membrane voltage of the HH model. Analogue to the FH model and the

CRRSS model, it takes more time for the currents to pass the membrane. The maximum

magnitude of the sodium current is 155% and the total number of sodium ions that pass the

membrane during an action potential is 255% of the total numbers in the HH model. An

analysis of the other currents shows that the potassium current of the SE model is so small

that it can be neglected (the total amount of ions makes only 11% of that in the HH model);

the leakage current on the other side is getting more important. The total number of ‘leak’

ions is 30 times the number of the HH model and is now of the order of its Na+ current. This

is quite the reverse situation one finds in the HH model, where the potassium current is of

the order of its sodium current and the leakage current is negligible.

SRB and FitzHugh

Schwarz, Reid and Bostock distinguished between a fast potassium current IK,fast and a slow

potassium current IK,slow in order to create a model for human nodes of Ranvier. [42]
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Figure 9.4: Time course of the ionic current densities across the membrane during an action

potential according to the FH model (left) and the SE model (right). The blue line indicates

the Na+ current density, the red dashed line the K+ current density, the green line the leakage

current density, the blue dotted line the nonspecific current density iP.

The first interesting difference one notes when looking at the membrane voltage when it is

excited with threshold stimulus (see figure 9.2) is the long delay after which the steep slope of

the action potential begins. About 0.5 ms go by until the voltage finally rises to a maximum

value of 106 mV. The minimal stimulating current makes 2249% of the stimulating current

of the HH model and raises the membrane voltage up to 30.54 mV. This is four times as high

as the voltage of the HH model at the end of the stimulating signal.

The currents that flow across the membrane during an action potential are higher too.

The maximum sodium current is 1.5 times as high as in the HH model but the total amount

of ions passing the membrane is four times the value of that in the HH model. The leakage

currents differ even more. In the SRB model, the maximum value of the leakage current is 24

times the value of that in the HH model and the factor of the total number of ‘leakage ions’ is

even 41. One reason might be the delay after which the spike finally starts in the SRB model.

A higher stimulating current would shorten this delay, as it would in any other model.

The FitzHugh model differs considerably from any previously discussed membrane model.

This model does not include five (FH, SRB), four (HH, SE) or three (CRRSS) differential

equations, but only two. The two variables of state represent excitability and refractoriness

(see section 7.6). As the model does not include explicit equations for ionic currents, a

comparison with other models cannot be made. Although the model does not include an

equation for the membrane voltage either, it can be approximated (equation (7.64)). The

reduced membrane voltage at the end of the minimal stimulus according to this equation is

18.81 mV, which is about two-and-a-half times of its value in the HH model. As the model

has lost its physical interpretation, the parameter s, which may be interpreted as the stimulus
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Figure 9.5: Phase plane of the FitzHugh model with β = 7 and standard param-

eters. The seven trajectories are the solutions to different stimulation strengths s =

0.5 (smallest “circle”), 0.9, 1.0, 1.1, 1.2, 1.5, and 2.0. The x-axis represents the state variable

x, the y-axis the state variable y.

current density[34], does actually not have a physical unit. The minimal s that is necessary

for producing an action potential has a strength of 1.1.

As mentioned above, the advantage of the FitzHugh model is that solutions according

to different stimulating currents or starting values can be shown in a phase plane. The

trajectories of figure 9.5 are the solutions according to the FitzHugh model when stimulated

with values of 0.5 (smallest “circle”), 0.9, 1.0, 1.1 (thick blue line), 1.2, 1.5, and 2.0.

Summary

As it takes more time for the currents of the CRRSS, FH, SE, and SRB models to pass the

membrane than for those of the adapted HH model, it is obvious that the action potential of

the HH type itself is faster than all the others, i.e. that it takes less time for the spike to rise

and fall. This can be seen in figure 9.2. It does not imply that an action potential of the HH

type propagates faster than action potentials of the other types, for it takes approximately

as much time as in the other models for excitation at minimal stimulus. But as we will see

later, the propagation velocity of an HH action potential along the fibre is faster than those

of the others.

9.1.2 Propagation Models

The basis for the investigation is an unmyelinated nerve fibre—or to be exact, the axon of

an unmyelinated nerve fibre—which has a diameter of 1µm[28] and an intracellular electrical

resistivity ρi of 0.1 kΩcm[34]. Depending on the model, the specific capacitance of the cell
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Figure 9.6: Time course of the ionic current densities across the membrane during an action

potential according to the SRB model. The blue line indicates the Na+ current density, the

red dashed line the fast K+ current density, the red dotted line the slow K+ current density,

the green line the leakage current density.

membrane is either 1 (HH), 2 (FH), 2.5 (CRRSS), or 2.8 (SE, SRB) µF/cm2. The fibre is

modeled as a long cylinder with a circular cross-section area. It is divided into 101 cylindric

segments (or sections) with a length of 10 µm each and is stimulated in the 51st compartment,

which represents the middle of the axon. Within one section, the voltage and currents are

individually approximated by a mean value, i.e. there is, for example, one (time dependent)

voltage value for all ten micrometers that are united into a segment. Each segment of the

fibre represents a space clamp experiment, which can be simulated as a local model. The

simulation was carried out using equations for current densities rather than currents. These

were calculated by appropriate formulas.

HH and CRRSS

Analogue to the space clamp analysis, it takes a higher current to stimulate the CRRSS model

than the HH model. Under space clamp conditions, the stimulating current of the CRRSS

model was 21 times that of the HH’s current; within the propagation models the stimulating

current of the CRRSS model is only five times that of the HH model. As currents can leak

away to both sides of the compartment in which the stimulating electrode is inserted, it is

clear that a higher stimulus current is needed to produce an action potential. In the case

of the HH model, it takes more than thirteen times as much stimulating current for the cell

when propagation is allowed than during a space clamp experiment. A CRRSS modeled cell

only needs a current that is about three-and-a-half times higher.

In compartment models, the action potential propagation along the axon—when stimu-
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lated with threshold current—produces a spike in the stimulating compartment which is lower

than those of the of the following compartments. As can be seen in figure 9.7, the magnitude

of the spike of the HH model increases from approximately 70 mV in the 51st (stimulating)

compartment to approximately 95 mV in the 70th (distant) compartment. A spike according

to the CRRSS model increases from 74 mV in the stimulating compartment (SC) to 91 mV

in the distant compartment (DC), as do the ionic currents. The magnitude of the sodium

current of the HH model increases from 1.83 nA to 2.71 nA, which corresponds to a factor of

1.48; the currents of the CRRSS model behave in a similar way. Its Na+ current magnitude

increases from 5.70 nA to 6.66 nA, which corresponds to an increasing factor of 1.17. The

magnitude of the sodium current in the SC of the CRRSS model is three times the height of

its equivalent in the HH model; the magnitude in the DC of the CRRSS model is two-and-

a-half times the height of that of the HH model. If we stimulated with a higher current, the

magnitude of the sodium currents in the stimulated would be higher and the difference to that

in the distant compartment would get smaller. The shape of the spike has not significantly

changed by contrast with the local models, as is also the case in the models of FH, SE and

SRB. The alteration of the total number of sodium ions between the SC and the DC is 1.17

in the HH model and 0.92 in the CRRSS model. The drop in the total amount of sodium ions

in the CRRSS model may be due to the shorter action potential in the 70th compartment

(see figure 9.7).

The propagation velocity along the fibre of the HH model is 1.67 m/s and of the CRRSS

model 0.71 m/s, which corresponds to 43%. As the action potential has different properties in

the stimulated region than in some distant compartment (it has a different shape and its peak

has a smaller magnitude), the conduction speed of the spike is measured at some distance

from the stimulated region—to be exact, between the 65th and the 75th compartment. One

can see the faster propagation velocity of the HH model in Figure 9.7 as well as in Figure

9.9. Figure 9.7 shows the time course of the voltage in the stimulating compartment, which is

represented by the first blue line, and in the 70th compartment. Two closer spikes indicate a

higher velocity; the greater the distance between two peaks, the slower the conduction speed

of an action potential is. Figure 9.9 shows propagation along the fibre. The x-axis represents

the whole axon, the graphs follow the membrane voltages along the axon at a specific time,

t = 0, 0.04, 0.08, . . . , 1 ms. At each time step, the graph is shifted to indicate the propagating

effect. The spike of the HH model reaches the end of the fibre earlier than the one of the

CRRSS model, which emerges clearly from the two graphs. One can also observe a later

generation of an action potential at minimal stimulus in the stimulating compartment of the

HH model (cp. also figure 9.7).

The total number of ions that are passing the CRRSS modeled membrane during an action
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potential is higher than that of the HH modeled membrane. 4.36 million sodium ions pass the

membrane at the 51st compartment, 4 million ions pass it at the 70th compartment. As only

1.09 million sodium ions cross the stimulating and 1.27 million the 70th segment of the HH

modeled cell, there are about four times more Na+ ions involved in the excitation process of

the CRRSS model than in the HH model. In the 70th section, the sodium ions in the CRRSS

model make 314% of those in the HH model.

FH and SE

The injected threshold current of the FH model has increased from 0.21 nA in the local model

to 1.26 nA, which corresponds to an increase factor of six. This injected current is only three-

and-a-half times the height of the injected current of the HH model, whereas the current of

the local model was more than eight times the height of the HH model. The threshold voltage

has also increased, from 18.8 mV to about 27 mV, which corresponds to a factor of 1.4. The

increase of the maximum membrane voltage from 97 mV in the stimulated compartment to

105 mV in the distant is rather small.

Contrary to the HH model, the sodium current during an action potential in a FH modeled

cell does not increase with increasing distance from the stimulated segment. In the stimulating

compartment, the maximum magnitude of the Na+ current is 4.01 nA whereas it is 3.71 nA

in the distant compartment which corresponds to 92.5%. The total amount of sodium ions

that cross the membrane also decreased from 3.31 million to 2.40 million ions. In comparison

with the HH modeled cell, the number of sodium ions corresponds to a factor of three in

the stimulating compartment and 1.8 in the 70th compartment. With a conduction speed of

0.71 m/s, a spike of the FH model propagates as fast as one of the CRRSS model.

A SE modeled cell needs an about eight times stronger stimulus than a HH modeled cell

which is quite different to the ratio of the two local models where SE needs a 27 times as high

stimulus as HH. The membrane voltage at the end of the threshold current is about three

times the voltage of the HH model.

The number of Na+ ions passing the membrane in the SE model during an action potential

decreases from 6 million in the stimulated segment to only 3 million ions in the distant

section, although the maximum magnitude slightly increases from 4.28 nA to 4.93 nA. A

similar property can be seen in the case of the leakage current. The total number of ‘leak’ ions

is 4.28 million in the 51st compartment and 2.84 million in the 70th, whereas the maximum of

the current increases from 1.88 nA to 2.17 nA. Only 210000 potassium ions pass the membrane

in the stimulated segment, 110000 is the total number in the 70th compartment and can

therefor be neglected. The total number of sodium ions make 554% (51st section) and 232%

(70th section) of a HH modeled axon, the total amount of potassium ions only 17% and 8%,
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Figure 9.7: Time course of the injected threshold current (red dashed line) and resulting

action potentials (blue lines) of the stimulated (51st) and distant (70th) compartment accord-

ing to different membrane models, at 37 ℃. The first blue line indicates the voltage in the

stimulus compartment, the second blue line the voltage of the 70th compartment. The in-

jected currents are: 0.35 nA (HH), 1.84 nA (CRRSS), 1.26 nA (FH), 2.70 nA (SE), and 2.71 nA

(SRB)
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Figure 9.8: Time course of the ionic currents according to the HH model and the CRRSS

model in the stimulated compartment (first set of lines) and in the distant compartment

(second set of lines). The blue line represents the Na+ current, the red dashed line the K+

current, the green line the leakage current. The additional axis on the right of each graph is

the scale of the appropriate current densities.

respecively. The maximum of the K+ current in the stimulated region is 0.15 nA which is

6% of the appropriate value of the HH model. In the distant compartment, the maximum

is only 0.10 nA any more which corresponds to 3% of the HH model. The amplitude of the

leakage current as well as the total amount of not specified ions of the SE modeled nerve cell

are higher and more than those of HH and FH. As seen in tables 9.9 to 9.11, there are 0.19

million (HH), 0.76 million (FH) and 2.84 million (SE) nonspecific ions passing the membrane

at the 70th segment, the maximum of the current is 0.10 (HH), 1 (FH) and 2.17 (SE) nA.

The propagation velocity of a spike along the fibre is 0.30 m/s which is much slower compared

to the HH model and is almost the slowest among all the examined models.

SRB

The SRB model needs a higher stimulating current than all the other models to generate an

action potential. Its injected threshold current is 2.75 nA which is about eight times the height

of the HH cell. The other models have smaller threshold currents: 1.84 nA (CRRSS), 1.26 nA

(FH), 2.70 nA (SE). As one can observe, it is the model with the highest “transfer rate” of

ions in the stimulated compartment too, especially when looking at the sodium currents. The

number of Na+ ions that pass the membrane is 7.68 million in the 51th compartment and 4.26

million ions in the 70th compartment. Only the CRRSS model with 4.36 million ions in the

stimulated region and 4.00 million ions in the distant segment comes close to the SRB model.

It is the model with most ionic movement, which can also be observed when comparing the
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Figure 9.9: Action potential propagation along the axon after stimulation by threshold

current in the middle at 37 ℃ according to the HH, CRRSS, FH, SE, and SRB models.

Each line represents the membrane voltage along the whole axon at a determined time,

t = 0, 0.04, 0.08, . . . , 1 ms.
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Figure 9.10: Time course of the ionic currents according to the FH model, the SE model,

and the SRB model in the stimulated compartment (first set of lines) and in the distant

compartment (second set of lines). The blue line represents the Na+ current, the red dashed

line the K+ current (the slow potassium current of the SRB model is represented by the red

dotted line), the green line the leakage current. The additional axis on the right of each graph

is the scale of the appropriate current densities.
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sum of all currents. In the distant compartment, about 8.5 million ions cross the membrane

of the SRB model. Once again, the CRRSS model with 8 million crossing ions is the only

model close to the SRB model in this matter.

The membrane voltage of 44.61 mV at the end of the stimulus is three times the voltage

of the HH model and quite similar to the membrane voltage of the SE model (42.79 mV). The

propagation velocity of an action potential along the fibre is slower than at any other model,

with 0.37 m/s it is only 22 % of the conduction speed of the HH model.

Summary

A comparison of sodium ions that cross the membrane in the distant section shows that the

SRB model needs more ions for conducting an action potential along the fibre than any other

examined model. With 4.26 million ions the SRB model is the model with most sodium ions

passing the membrane, followed by the CRRSS model (4.00 million), the SE model (2.95

million), the FH model (2.40 million) and the HH model (1.27 million). The situation in

the stimulated compartment is similar. The only difference is that in the SE modeled cell

there are more Na+ ions passing the membrane during an action potential than in a CRRSS

modeled cell. 7.68 million ions are involved in the excitation process of the SRB model, 6.05

million ions in the SE modeled cell, 4.36 million ions in the CRRSS modeled cell, 3.31 million

ions in the FH modeled cell and 1.09 million ions in the HH modeled cell.

An overall view of any ions moving into and out of the cell shows similar results. 8.52

million ions are involved in the propagation effect of the action potential in the 70th section

of the SRB cell, 8.01 million ions cross the CRRSS modeled cell, 5.90 million the SE modeled

cell, 4.86 million the FH modeled cell and 2.87 million ions the HH modeled cell. Analogue

to the situation of the sodium ions, the roles of CRRSS and SE swap when regarding the 51th

segment. The total amount of ions in the stimulated compartment is 13.56 million (SRB),

10.55 million (SE), 8.72 million (CRRSS), 6.15 million (FH) and 2.51 million (HH).

One section is modeled as a right circular cylinder with a lateral area of 31.4 µm2, as the

length of a section is 10µm and the diameter is 1µm. To generalize the investigations made

above, one can calculate the total number of ions per centimetre of fibre length or per square

centimetre of the lateral membrane area. Tables 9.9 to 9.12 list the total number of ions that

cross the 1 µm thick membrane within a length of 1 cm as well as the total number of ions

that cross a patch of 1 cm2 of cell membrane. Calculations of the number of ions that pass

one square centimetre of membrane area show that in the HH model 3479 · 109 sodium ions

pass it in the stimulated region, 4054 ·109 ions pass it in the distant compartment. In the HH

model, 3979 · 109 potassium ions pass one square centimetre of membrane in the stimulated

compartment, 4465 ·109 ions in the distant compartment. These values seem to be very large,
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but one has to take account of the large membrane area of 1 cm2: a 1µm thick axon ought

to be about 32 m long in order to have a membrane area of 1 cm2.

A unique issue of the HH model is that the number of ions crossing the membrane increases

from the stimulated compartment to the distant compartment. The total number of sodium

ions as well as the number of potassium and nonspecific leakage ions increase by a factor of

1.17 (sodium ions), 1.12 (potassium ions) and 1.13 (leakage ions). Except for the nonspecific

P ions of the FH model, the total number of any ion type of any examined membrane model

decreases from the 51st to the 70th compartment by factors between 0.96 (slow potassium ions

of the SRB model) and 0.49 (sodium ions of the SE model). The increase of the maximum

magnitude of all ionic currents from the 51st to the 70th compartment, which can be observed

at the HH model, can also be seen at the model of CRRSS. Apart from the K+ current of

the SE model and the fast K+ current of the SRB model, which, by the way, are really small,

these two models show a similar property. Only the amplitudes of the sodium and potassium

currents according to the model of FH decrease.

9.2 Factor for Conductance

As mentioned in section 9.1, the parameters of the original HH model are changed to get

action potential propagation along an axon at 37 ℃. Maximum sodium, potassium and leakage

conductances are multiplied by a factor of 12. The aim of this section is the investigation

of lower factors and to find the minimal factor for these conductances that is necessary for

action potential propagation at 37 ℃. As we have already been working on the model with a

conductance factor of 12, this will be the reference model.

9.2.1 Minimal factor

The minimal factor by which the maximum ionic conductances of the HH model have to be

multiplied is 1.5; multiplying them by a lower factor would forward a spike only within a

certain distance. Figure 9.11 compares the action potentials of four HH models with different

‘conductance factors’ f . One can see that in the model with f = 1.5 only the propagation of

a spike is ensured, the shape of the action potential has significantly changed. The maximum

of the membrane voltage difference between the inside and the outside of the nerve cell in

the 70th compartment is only 35.36 mV any more and the action potential has a longer rising

phase as well as a longer falling phase. As the resting potential of the HH model is −70 mV,

there is actually no phase of ‘depolarization’.

The conduction speed of an action potential decreases to 0.56 m/s which is only a third

compared to the HH model with a conductance factor of 12. The 0.1 ms long injected stimulat-
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ing current Iinj must be 0.69 nA high to heighten the membrane potential by about 30 mV in

order to generate an action potential. Both, the injected threshold current and the threshold

membrane potential, are about double the size of that in the reference model. The maximum

magnitude of the sodium and potassium currents in the 70th compartment according to the

minimal factor model make 9 and 4% of the factor-12-HH respectivly, their amplitudes are

0.25 nA and 0.13 nA. Unlike the situation of the factor-12-HH, where more sodium and potas-

sium ions are involved in the propagation of an action potential in the distant compartment

than in the stimulated compartment, the total number of sodium and potassium ions in the

distant section of the HH model with conductance factor 1.5 is lower than in the stimulating

section. 0.22 million Na+ ions cross the membrane in the 51st section, 0.19 million in the 70th

section. K+ ions behave in a similar way: 0.28 million ions flow through the ion channels

in the stimulating compartment, 0.2 million in the distant compartment. To generalize the

investigations made above, one can calulate the total number of of ions per centimetre of fibre

length or per square centimetre of the membrane lateral area. Table 9.13 summarizes these

calculations.

The minimum conductance factor model also differs from the factor-12-model with respect

to the maximum of the potassium currents in the stimulated and in the distant compartment.

The maximum in the stimulating compartment is 0.16 nA, which is higher than in the distant

compartment (0.13 nA), whereas the maximum potassium current according to the factor-

12-model increases from 2.30 nA (51st compartment) to 3.10 nA (70th compartment). The

behaviour of the maximum magnitude of the sodium currents on the other hand does con-

form to the of the factor-12-model. There is a higher amplitude (0.25 nA) in the distant

compartment than in the stimulated compartment (0.22 nA) which is 9 and 12% of the values

of the HH model with a conductance factor of 12, respectively. Due to the fact that leakage

currents can be neglected (see section 9.1.1) they are not investigated.

9.2.2 Factor analysis

In this section, four adapted HH models are analyzed. Original maximal ionic conductances

gion are multiplied by different factors f , f = 12, 8, 4, and 1.5. The conductances for the

already used factor-12-HH-model, which is our reference model, are gNa = 1440, gK = 432,

gL = 3.6, the conductances for the new models are gNa = 960, gK = 288, gL = 2.4 for the

HH model with f = 8, gNa = 480, gK = 144, gL = 1.2 for the HH model with f = 4,

and gNa = 180, gK = 54, gL = 0.45 for the HH model with the minimal conductance factor

(f = 1.5).

Figure 9.11 compares the action potentials of the four adapted HH models. One can

see that with increasing f the maximum of the membrane voltage increases. As already
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mentioned in the previous section, the factor-1.5-model is not suitable for real nerve cells, as

the membrane voltage cannot depolarize the cell (the resting potential of the HH model is

about −70 mV). The conduction speed also increases with increasing f , which is indicated by

the smaller distance between two spikes. Calculation between the 65th and 75th compartment

shows that propagation velocity along the axon of the minimal factor model is 0.56 m/s which is

33% of the conduction speed of the factor-12-model, which conducts an action potential with

1.67 m/s. A spike according to the HH model with a conductance factor of 4 propagates with

a speed that is 67% of the reference model’s speed, the spike according to the factor-8-model

with a velocity which is 86% of that of the reference model.

When focusing on the threshold current for the injected stimulating electrode, one can

observe an increase with the decrease of the conductance factor. In the factor-12-model, the

injected threshold current is 0.35 nA; multiplying the maximum ionic conductances by lower

factors will increase the threshold current. The factor-8-model needs a 0.38 nA high current

for excitation, the factor-4-model 0.46 nA, and the factor-1.5-model 0.69 nA. These values are

110%, 133%, and 200% of that of the reference model, respectively. Just as the minimal

stimulating current increases with decreasing f , so does the threshold membrane voltage in

the stimulated compartment. The injected current must increase the membrane voltage of

the reference model by 14.57 mV, of the factor-8-model by 16.12mV, of the factor-4-model by

19.71 mV, and of the factor-1.5-model by 30.59 mV in order to produce an action potential.

These voltage values make 111%, 135%, and 210% of the voltage of the reference model and

are quite similar to the alteration of the threshold injected stimulating currents.

Table 9.13 summarizes the measured data of the four investigated adapted HH models.

The assumption that the total number of ions that are involved just in the propagation

of an action potential, which can be measured in the distant compartment, decreases with

decreasing conductance factor f makes sense, as a modification of gion can be interpreted as

a change of the number of ion channels. Actually, changing f from 12 to 8, that is adapting

f to 66% of that in the reference model, involves a decrease in the total number of sodium

and potassium ions to 70% and 69% of the equivalents in the reference model, respectively.

Changing f to 4, which is a modification to 33% of the reference model, results in a reduction

of the total number to 38% of those in the factor-12-model; changing the factor to 1.5, which

is 13% of 12, results in a reduction to 15% (Na+ ions) and 14% (K+ ions) of those in the

reference model.

The maximum magnitudes of the sodium and potassium currents in the distant compart-

ments are influenced by the change of f in a slightly similar way, even if the modification in

percentage of f does not implicate an almost same modification in percentage of the maxi-

mum magnitude of the ionic currents. Changing f to 67% of the f of the reference model
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results in an adaption in the maximum absolute value of the sodium current of 70% and in

a maximum potassium current of 66% of the equivalents of the factor-12-model. Applying a

conductance factor f of 4 to the HH model, which is a change to 33% of that in the reference

model, induces a change of the maximum magnitude of the sodium current to 42% and of the

potassium current to 29% of those in the factor-12-model. Setting f = 1.5 in the HH model,

which is 13% of the f of our reference model, results in a decrease of amplitude of the sodium

current to 9% and of potassium current to 4% of the equivalents in the factor-12-model.

The maximum absolute value of the currents in the stimulated compartment vary more

largely. One attribute that all models have is that a reduction of f to x% of the f in the

reference model implicates a reduction of the amplitudes of the currents to a value smaller

than x% of those in the reference model. Additionally, the reduction of the amplitude of the

K+ currents is greater than of the Na+ currents, i.e. for example, changing f to 33% of the

reference model’s f results in a change of the maximum amplitude of the potassium current

to 8%, and of the sodium current to 9% of the equivalents in the reference model, respectively.

It may be important to note that in the factor-4-model as well as in the factor-1.5-model the

sodium’s maximum absolute value in the stimulating compartment is reached right at the

end of stimulation and not at the moment of the membrane voltage’s peak. This distorts the

observations from above to some extent. All measured data are collected in table 9.13.

9.3 Faster propagation

Faster propagation can be achieved by modeling the cell with segments that represent the

part of an axon that is wrapped by a “Schwann cell”—the so-called myelin sheath—and with

segments that represent the “Node of Ranvier” between them. Schwann cells surround the

axon and prevent currents to cross the membrane or at least reduce them in order to enable

higher propagation speed of an action potential. Ionic currents therefore can only occur at

the small nodes.

9.3.1 Myelin as perfect insulator

Modeling myelin as a perfect insulator of the internodal axolemma totally prohibits ions from

crossing the membrane at the myelinated regions. Ionic currents can only occur at the Nodes

of Ranvier, the model is only dependent on the membrane dynamics there. [39]

Three different models were compared with the HH model of the unmyelinated nerve fibre.

The length L of each myelinated part of the myelinated cell is 100µm which corresponds to

the ratio of internodal space to fibre diameter[30], the small nodes in between have lengths of

l = 10µm (first model), l = 5µm (second model), and l = 1µm (third model).
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Figure 9.11: Time course of the reduced membrane voltage V = Vi −Ve −Vrest in the stim-

ulated (51st) and in the distant (70th) compartment after stimulation by threshold current at

37 ℃ according to HH models with adapted ionic conductances. Original sodium, potassium,

and leakage conductances are multiplied by a factor f of 12, 8, 4, and 1.5. The first continuous

blue line is the voltage of the stimulating compartment, the second continuous blue line is

the voltage of the 70th compartment. The red dashed line is the threshold current.
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Figure 9.12: Time course of the ionic currents in the 51st (first set of lines) and in the 70th

(second set of lines) compartment after stimulation by threshold currents at 37 ℃ according

to HH models with adapted ionic conductances. Original sodium, potassium, and leakage

conductances are multiplied by a factor f of 12, 8, 4, and 1.5. The blue continuous line is

the sodium current, the red dashed line is the potassium current. The additional axis on the

right of each graph is the scale of the appropriate current densities.
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The currents in the first model (l = 10µm) in the distant compartment are similar to

those in the HH model without myelinated regions. This is not surprising, as the segments

of the unmyelinated nerve fibre are of the same size of the nodes of this myelinated model.

Table 9.14 summarizes the measurements of the investigated models. The maximum magni-

tude of the currents are 100 and 101% of those in the unmyelinated HH model. The total

number of ions that cross the membrane in the 70th compartment, are 93% (sodium) and

98% (potassium) of those in the unmyelinated axon. The maximum sodium and potassium

currents of the stimulating compartment are a little bit higher (121 and 115%, respectively),

the total numbers of ions crossing the cell membrane are about the same size as those in the

unmyelinated model (106 and 98%). The propagation velocity of an action potential along

the axon as well as the stimulating threshold current differs even more. It takes only 27%

of the stimulating threshold current of the unmyelinated HH model to generate an action

potential, which on the other hand propagates faster. Its conduction speed is nearly three

times the speed of a spike in the unmyelinated model. The threshold membrane voltage of

the myelinated nerve fibre is 90% of the potential of the stimulated compartment at the end

of the stimulus in the nonmyelinated fibre.

As regards the ionic currents in the model with a nodal gap width of 5µm, the maximum

magnitude as well as the total number of ions that cross the membrane is about half the

size of the magnitude in the unmyelinated reference model. The amplitude of the sodium

and potassium currents make 53 and 54% in the stimulated, 51 and 50% in the distant

compartment of their equivalents in the unmyelinated model, respecively. As the geometry

of the nerve cell has changed, one has to be careful with the interpretation of these findings.

Ionic currents always depend on the geometry of the fibre; changing the surface of one section

implicates a change in the ionic current (when assuming an unchanging current density).

However, it is evident that comparing current densities and not currents, would overcome

this problem. As the lateral surface area of one nodal section in the model with l = 5µm is

just the half of that in the model with l = 10µm or of one section in the reference model,

multiplying these currents by a factor of 2 gives comparable results. As regards the total

number of ions crossing the membrane, the same problem would occur. By calculating the

total number of ions per centimetre, this problem is avoided too. The total number of sodium

ions per centimetre is very close to that of the unmyelinated HH model, in the stimulated

region it is 99% and in the distant region 98% of that in the referece model, respectively.

The amount of potassium ions per centimetre is 93% of that of the reference model, in

the stimulated as well as in the distant compartment, respectively. The injected threshold

current is 21% of that of the unmyelinated model. Once again, one has to take the geometric

aspect into account. Calculating the stimulating current density results in 43% of that in
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the reference model, which is higher than that in the myelinated nerve fibre with 10µm long

nodes. The conduction speed of the spike has increased to 6.56 m/s, which is about four times

the speed of a spike in the unmyelinated nerve fibre.

The third model of a myelinated axon has a nodal gap width l of 1µm. The conduction

speed of an action potential is about 17 m/s, which is more than hundred times the speed of

a spike in the model without myelin sheath. The maximum magnitudes of the ionic currents

as well as the total amount of ions that are involved in the excitation process are about

10% of those in the reference model. This is not unexpected either, as the geometry of the

nodes of Ranvier is different to that of former models. As regards the current densities, the

maximum magnitude of the sodium current density in the stimulated compartment is 105%

of that in the reference model, the maximum of the potassium current density 107% of that

in the reference model. The current densities in the distant segment are both—sodium and

potassium—100% of those in the unmyelinated model. The threshold stimulating current

density in the myelinated model with l = 1µm is 100% of that in the reference model, too.

Geometric adjustment of the total number of ions that are responsible for propagating action

potential along the fibre and comparison with the model for an unmyelinated axon shows

that the amount of sodium ions per centimetre in the stimulated compartment as well as in

the distant compartment are 98% of those in the reference model. The number of potassium

ions in the stimulated and in the distant section make 93% of those in the reference model.

The threshold voltage in the model for myelinated axons with a nodal gap with of 1µm is

slightly higher than those of the other models for myelinated nerve fibre and is equal to that

of the reference model.

In order to be independent of geometry, figure 9.13 compares the threshold current densi-

ties in the unmyelinated reference model with those in the myelinated models. It is important

to note that the graphs represent the membrane potentials of the 51st and the 70th compart-

ment. The distance between these sections differs from model to model, so the conception

that two closer action potentials implicate a faster propagation of the spike is wrong in this

case. Figure 9.14 compares the sodium and potassium currents in the model for unmyelinated

nerve fibre with those in the three models for myelinated nerve fibres. The first ordinate axis

is the axis of the ionic current density, which has a physical unit of µA/cm2; the second ordinate

axis, which is located on the right of each graph, is the axis of appropriate currents. One can

see that the current densities and the action potentials are of similar shape.

The propagation of a spike after a minimal stimulating current can be seen in figure 9.15.

Basis for these four plots are the 101 compartments of the myelinated axon with 10µm long

internodes. Thus, the x-axis represents a 11.11 mm long axon. As the other models are

dealing with shorter nodes, their number of compartments were adapted to fit in the frame
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of the 11.11 mm long axon. The first (top left) graph represents the membrane voltage of

the axon in the unmyelinated reference model. It is the same graph as in figure 9.9, the only

difference is the scaling of the x-axis. The other graphs show the propagation of an action

potential in the myelinated models with node lengths of 10µm (top right), 5µm (bottom

left) and 1µm (bottom right). It can be easily seen that the unmyelinated nerve fibre is the

slowest, within 1 ms the spike is only conducted within 1.08 mm to both sides of the stimulated

compartment. The conduction speed of an action potential in the models for myelinated nerve

fibres is higher: A spike in the model with 10µm long nodes is conducted within a distance

of 3.74 mm within the first millisecond, a spike in the model with a nodal gap width of 5µm

within 5.04 mm. An action potential in the model with 1µm long nodes even reaches the end

of the investigated area after about 0.61 ms.

Some models of myelinated nerve fibres use a different inneraxonal resistance R∗, by

replacing ∆x in equation (8.3) by the internodal length L.[10],[30] The results according to

these models are summarized in table 9.15. Comparing them with the results in table 9.14,

one can see that there are only small differences.

The conduction speed of an action potential in the ‘new’ myelinated axon model with a

node length of ten micrometers and in that with a node length of five micrometers is a little

bit higher than that in the corresponding previously discussed myelinated models (5.24 and

7.00 m/s instead of 4.78 and 6.56 m/s, respectively). The threshold injected stimulating current

as well as the total number of ions crossing the membrane are slightly higher in the ‘new’

model, too. The maximum magnitude of sodium and potassium currents are almost the same.

9.3.2 Myelin as passive element

The assumption that myelin is a perfect insulator is not consistent with experimental work (see

e.g. chapter 8), so another model is created to regard this finding. In this section, the myelin

sheath is modeled as an imperfect insulator, which means that some current can flow across

the membrane and through the myelin layers of the internodes. Figure 8.2 shows the electrical

network which is the model for the myelinated nerve fibre. The myelin sheath is simulated as

an electric circuit consisting of a capacitor and a resistor, which are both dependent on the

numbers of myelin layers that are wrapped round the axon. For this investigation, 35 myelin

double layers are used with a thickness of 17 nm each. The diameter of a myelinated section

is 1.595 µm, and due to the ratio of internodal space to fibre diameter of 100[30] the length

of each myelinated region is 159.5 µm. The nodes of Ranvier have a length of 10µm and a

diameter of 1µm each and are modeled with HH dynamics. The odd compartments represent

nodes of Ranvier, the even compartments represent the internodes.

As the dimensions of this model are different to those of the models with perfect insulation,
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Figure 9.13: Time course of membrane potential in the stimulating and the distant com-

partment (blue solid lines) after stimulation by threshold current density (red dashed line)

at 37 ℃ according to four different types of nerve cells with HH dynamics. An unmyelinated

axon (top left) is compared with myelinated axons whose myelin sheath is a perfect insulator

of the internodal axolemma. Myelinated regions (internodes) have a length L of 100µm, the

nodes in between have lengths l of 10µm (top right), 5µm (bottom left), and 1µm (bot-

tom right). The threshold current densities are 1101 µA/cm2 in the unmyelinated HH model,

300 µA/cm2 in the myelinated HH model with a nodal gap width l of 10µm, 456 µA/cm2 in that

model with l = 5µm, and 1096 µA/cm2 in that model with l = 1µm.
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Figure 9.14: Time course of the ionic current densities in the stimulated (first set of lines)

and in the distant (second set of lines) compartment after stimulation by threshold current

at 37 ℃ according to four different types of nerve cells with HH dynamics. An unmyelinated

axon (top left) is compared with myelinated axons whose myelin sheath is a perfect insulator

of the internodal axolemma. Myelinated regions (internodes) have a length L of 100µm, the

nodes in between have lengths l of 10µm (top right), 5µm (bottom left), and 1µm (bottom

right). The additional axis on the right of each graph is the scale of the appropriate currents.

80



−5.5 0 5.5
0

1

mm

HH unmyelinated

m
s

−5.5 0 5.5
0

1

mm

HH l=10µm

m
s

−5.5 0 5.5
0

1

mm

HH l=5µm

m
s

−5.5 0 5.5
0

1

mm

HH l=1µm

m
s

Figure 9.15: Action potential propagation along the axon after stimulation by threshold

current in the middle at 37 ℃ according to four different types of nerve cell with HH dynamics.

Each line represents the voltage along the 11110µm long axon at a determined time, t =

0, 0.04, 0.08, . . . , 1 ms. An unmyelinated axon (top left) is compared with myelinated axons

whose myelin sheath is a perfect insulator of the internodal axolemma. Myelinated regions

(internodes) have a length L of 100µm, the nodes in between have lengths l of 10µm (top

right), 5µm (bottom left), and 1µm (bottom right).
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where the myelinated parts are 100µm long, one has to be cautious with a direct comparison.

On the basis of the model with imperfect insulation of the internodes, the propagation velocity

of a spike can be heightened up to nearly 10 m/s which is more than five times the propagation

speed of an action potential in the model for the unmyelinated nerve fibre. The threshold

injected stimulating current has decreased to a value of 0.14 nA which is 39% of that in

the unmyelinated model. The potential difference of the membrane has to be heightened by

about the same size as that in the reference model to produce an action potenial. The treshold

membrane voltage is 14.31 mV which is 98% of that in the unmyelinated model. The maximum

magnitudes of the sodium and potassium currents of the stimulating compartment make 111%

of those in the reference model. In the distant compartment the maximum amplitudes of the

currents are 102 and 100% of those in the HH model without myelinated regions, respectively.

As ionic currents can only occur at the nodes, the ionic currents of the 70th compartment

in the reference model are compared with the ionic currents of the 71st compartment in the

model for myelinated axons. The total number of sodium and potassium ions crossing the

membrane during an action potential is about the same size of those in the unmyelinated

model. The number of sodium ions passing the membrane in the stimlating compartment are

105% of those in the reference model, this percentage decreses within a distance; the number

of sodium ions in the distant compartment is 101% of that in the unmyelinated HH model.

The total number of potassium ions in the stimulated compartment are 103%, in the distant

compartment 100% of those in the reference model.
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Figure 9.16: Exploring the model of a myelinated axon whose myelin sheath is an imperfect

insulator of the internodal axolemma, i.e. some current can flow through the myelin. Top

left: Time course of the threshold injected current (red dashed line) and resulting action

potential (blue lines) of the stimulated node (V51), distant internode (V70), and distant node

(V71) at 37 ℃. Top right: Time course of the ionic currents in the stimulated (first set of lines)

and in the distant (second set of lines) node after stimulation by threshold current at 37 ℃.

Bottom: Action potential propagation along the axon after stimulation by threshold current

in the middle at 37 ℃. Each line represents the voltage along the axon at a determined time,

t = 0, 0.04, 0.08, . . . , 1 ms.
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Table 9.1: Numerical parameters that were used for simulation.

communication interval 0.01

integration algorithm Runge-Kutta 4

precision double

nsteps 10

integration step size 0.01
10 = 0.001

translator table size 10000000

runtime table size 2000000

Table 9.2: Threshold stimulating current density istim and injected current Iinj , and mem-

brane voltage after 0.1 ms according to the HH and CRRSS model at 6.3, 20, and 37 ℃.

[istim] = µA/cm2, [Iinj ] = nA, [V ] = mV.

HH CRRSS

istim Iinj V (0.1) istim Iinj V (0.1)

6.3 ℃ 129 0.04 9.16 3885 (3012%) 1.22 35.50 (388%)

20 ℃ 73 0.02 5.68 2517 (3448%) 0.79 25.02 (441%)

37 ℃ 81 0.03 7.55 1710 (2111%) 0.54 19.81 (262%)

Table 9.3: Maximum magnitude of current densities and currents, and total number of ions

crossing the membrane during an action potential according to the HH and CRRSS model at

37 ℃. [iion] = µA/cm2, [Iion] = nA, [ions] = million.

HH CRRSS

Na+ K+ leak Na+ leak

max(|iion|) 7181 8503 266 13733 (191%) 10024

max(|Iion|) 2.26 2.67 0.08 4.31 (191%) 3.15

# ions 1.06 1.13 0.10 3.15 (296%) 3.49
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Table 9.4: Threshold stimulating current density istim and injected current Iinj , and mem-

brane voltage after 0.1 ms according to the FH and SE model. [istim] = µA/cm2, [Iinj ] =

nA, [V ] = mV.

FH SE

istim 676 (835%) 2186 (2699%)

Iinj 0.21 0.69

V (0.1) 18.80 (249%) 30.27 (401%)

Table 9.5: Maximum magnitude of current densities and currents, and total number of ions

crossing the membrane during an action potential according to the FH model. [iion] = µA/cm2,

[Iion] = nA, [ions] = million

Na+ K+ P leak

max(|iion|) 9057 (126%) 5827 (69%) 23 3173

max(|Iion|) 2.85 1.83 0.01 1.00

# ions 2.30 (216%) 1.54 (137%) 0.02 1.07

Table 9.6: Maximum magnitude of current densities and currents, and total number of ions

crossing the membrane during an action potential according to the SE model. [iion] = µA/cm2,

[Iion] = nA, [ions] = million

Na+ K+ leak

max(|iion|) 11157 (155%) 421 (5%) 7973 (2997%)

max(|Iion|) 3.51 0.13 2.50

# ions 2.71 (255%) 0.12 (11%) 3.02 (2962%)
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Table 9.7: Threshold stimulating current density istim and injected current Iinj , and mem-

brane voltage after 0.1 ms according to the SRB and FitzHugh model. [istim] = µA/cm2, [Iinj ] =

nA, [V ] = mV.

SRB FitzHugh

istim 1822 (2249%) —

Iinj 0.57 —

V (0.1) 30.54 (405%) 18.81 (249%)

Table 9.8: Maximum magnitude of current densities and currents, and total number of

ions crossing the membrane during an action potential according to the SRB model. [iion] =

µA/cm2, [Iion] = nA, [ions] = million

Na+ K+
fast K+

slow leak

max(|iion|) 11138 (155%) 1125 346 6359 (2393%)

max(|Iion|) 3.50 0.35 0.11 2.00

ions 4.63 (435%) 0.62 0.21 4.17 (4111%)
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Table 9.9: Maximum magnitude of ionic currents as well as total number of ions passing the

membrane in the stimulated compartment (SC) and in the distant compartment (DC) per cm

of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity v

along the fibre is measured between the 65th and 75th compartments. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the HH model. [Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109,

[v] = m/s, [V ] = mV

HH CRRSS

Na+ K+ leak Na+ leak

max(|Iion|) SC 1.83 2.30 0.07 5.70 (311%) 2.97 (4373%)

max(|Iion|) DC 2.71 3.10 0.10 6.66 (245%) 3.65 (3807%)

# ions/cm SC 1093 1250 172 4361 (399%) 4361 (2541%)

# ions/cm DC 1274 1403 193 4004 (314%) 4004 (2071%)

# ions/cm2 SC 3479 3979 546 13883 (399%) 13883 (2541%)

# ions/cm2 DC 4054 4465 615 12743 (314%) 12744 (2071%)

Iinj 0.35 1.84 (531%)

v 1.67 0.71 (43%)

V (0.1) 14.57 26.33 (181%)
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Table 9.10: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC) per

cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity

v along the fibre is measured between the 65th and 75th compartment. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the HH model. [Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109,

[v] = m/s, [V ] = mV

FH

Na+ K+ P leak

max(|Iion|) SC 4.01 (219%) 1.95 (85%) 0.01 0.92 (1354%)

max(|Iion|) DC 3.71 (137%) 1.93 (62%) 0.01 1.00 (1045%)

# ions/cm SC 3308 (303%) 1802 (144%) 30 1013 (590%)

# ions/cm DC 2396 (188%) 1671 (119%) 35 760 (393%)

# ions/cm2 SC 10529 (303%) 5736 (144%) 95 3224 (590%)

# ions/cm2 DC 7627 (188%) 5319 (119%) 112 2418 (393%)

Iinj 1.26 (365%)

v 0.71 (43%)

V (0.1) 27.04 (186%)

88



Table 9.11: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC) per

cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity

v along the fibre is measured between the 65th and 75th compartment. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the HH model. [Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109,

[v] = m/s, [V ] = mV

SE

Na+ K+ leak

max(|Iion|) SC 4.28 (233%) 0.15 (6%) 1.88 (2777%)

max(|Iion|) DC 4.93 (182%) 0.10 (3%) 2.17 (2268%)

# ions/cm SC 6054 (554%) 213 (17%) 4279 (2493%)

# ions/cm DC 2950 (232%) 114 (8%) 2836 (1468%)

# ions/cm2 SC 19270 (554%) 678 (17%) 13621 (2493%)

# ions/cm2 DC 9390 (232%) 362 (8%) 9029 (1468%)

Iinj 2.70 (781%)

v 0.30 (18%)

V (0.1) 42.79 (294%)
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Table 9.12: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC) per

cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity

v along the fibre is measured between the 65th and 75th compartment. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the HH model. [Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109,

[v] = m/s, [V ] = mV

SRB

Na+ K+
f K+

s leak

max(|Iion|) SC 4.58 (250%) 0.40 0.11 1.83

max(|Iion|) DC 5.56 (303%) 0.25 0.13 2.06

# ions/cm SC 7683 (703%) 836 257 4785 (2788%)

# ions/cm DC 4259 (334%) 428 246 3584 (1855%)

# ions/cm2 SC 24455 (703%) 2661 819 15231 (2788%)

# ions/cm2 DC 13555 (334%) 1362 784 11409 (1855%)

Iinj 2.75 (796%)

v 0.37 (22%)

V (0.1) 44.61 (306%)

90



Table 9.13: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC)

per cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation

velocity v along the fibre is measured between the 65th and 75th compartment. V (0.1) is

the potential of the membrane at the end of stimulation. The value in brackets tells the

percentage in comparison to the HH model with a conductance factor f (a factor, by which

the ionic conductances of the original HH model are multiplied) of 12. [Iion] = [Iinj ] = nA,

[# ions/cm] = million, [# ions/cm2] = 109, [v] = m/s, [V ] = mV

HH (f = 12) HH f = 8 (67%) HH f = 4 (33%) HH f = 1.5 (13%)

max(|INa|) SC 1.83 1.10 (60%) 0.17 (9%) 0.22 (12%)

max(|IK|) SC 2.30 1.36 (59%) 0.18 (8%) 0.16 (7%)

max(|INa|) DC 2.71 1.89 (70%) 1.14 (42%) 0.25 (9%)

max(|IK|) DC 3.10 2.05 (66%) 0.89 (29%) 0.13 (4%)

# Na+ ions/cm SC 1093 758 (69%) 295 (27%) 220 (20%)

# K+ ions/cm SC 1250 872 (70%) 375 (30%) 275 (22%)

# Na+ ions/cm DC 1274 886 (70%) 484 (38%) 188 (15%)

# K+ ions/cm DC 1403 973 (69%) 529 (38%) 200 (14%)

# Na+ ions/cm2 SC 3479 2412 (69%) 939 (27%) 700 (20%)

# K+ ions/cm2 SC 3979 2775 (70%) 1194 (30%) 875 (22%)

# Na+ ions/cm2 DC 4054 2820 (70%) 1540 (38%) 599 (15%)

# K+ ions/cm2 DC 4465 3097 (69%) 1684 (38%) 636 (14%)

Iinj 0.35 0.38 (110%) 0.46 (133%) 0.69 (200%)

v 1.67 1.43 (86%) 1.11 (67%) 0.56 (33%)

V (0.1) 14.57 16.12 (111%) 19.71 (135%) 30.59 (210%)
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Table 9.14: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC) per

cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity v

along the fibre is measured between the 65th and 75th compartments. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the unmyelinated HH model. Myelin sheath is a perfect insulator, the length l

of the internode is 100µm, the length l of the node varies from model to model. Total number

of ions is measured after 2 ms. [Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109,

[v] = m/s, [V ] = mV

HH (unmyelin.) HH l = 10µm HH l = 5µm HH l = 1µm

max(|INa|) SC 1.83 2.22 (121%) 0.97 (53%) 0.19 (11%)

max(|IK|) SC 2.30 2.65 (115%) 1.25 (54%) 0.25 (11%)

max(|INa|) DC 2.71 2.73 (101%) 1.37 (51%) 0.27 (10%)

max(|IK|) DC 3.10 3.10 (100%) 1.56 (50%) 0.31 (10%)

# Na+ ions/cm SC 1093 1155 (106%) 1081 (99%) 1076 (98%)

# K+ ions/cm SC 1250 1222 (98%) 1158 (93%) 1166 (93%)

# Na+ ions/cm DC 1274 1246 (98%) 1249 (98%) 1245 (98%)

# K+ ions/cm DC 1403 1307 (93%) 1309 (93%) 1301 (93%)

# Na+ ions/cm2 SC 3479 3678 (106%) 3440 (99%) 3426 (98%)

# K+ ions/cm2 SC 3979 3889 (98%) 3685 (93%) 3713 (93%)

# Na+ ions/cm2 DC 4054 3965 (98%) 3976 (98%) 3963 (98%)

# K+ ions/cm2 DC 4465 4160 (93%) 4165 (93%) 4142 (93%)

Iinj 0.35 0.09 (27%) 0.07 (21%) 0.03 (10%)

v 1.67 4.78 (287%) 6.56 (394%) 16.83 (1010%)

V (0.1) 14.57 13.12 (90%) 14.11 (97%) 14.58 (100%)
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Table 9.15: Maximum magnitude of ionic currents as well as total number of ions passing

the membrane in the stimulated compartment (SC) and in the distant compartment (DC) per

cm of fibre length and per cm2 of membrane area. Simulation at 37 ℃. Propagation velocity v

along the fibre is measured between the 65th and 75th compartments. V (0.1) is the potential

of the membrane at the end of stimulation. The value in brackets tells the percentage in

comparison to the unmyelinated HH model. Myelin sheath is a perfect insulator, the length

L of the internode is 100µm, the length l of the node varies from model to model. Total

number of ions is measured after 2 ms. Adapted R∗ for the inneraxonal resistance was used.

[Iion] = [Iinj ] = nA, [# ions/cm] = million, [# ions/cm2] = 109, [v] = m/s, [V ] = mV

HH (unmyelin.) HH l = 10µm HH l = 5µm HH l = 1µm

max(|INa|) SC 1.83 1.96 (107%) 1.00 (54%) 0.18 (10%)

max(|IK|) SC 2.30 2.46 (107%) 1.29 (56%) 0.23 (10%)

max(|INa|) DC 2.71 2.75 (102%) 1.37 (51%) 0.27 (10%)

max(|IK|) DC 3.10 3.10 (100%) 1.54 (50%) 0.31 (10%)

# Na+ ions/cm SC 1093 1141 (104%) 1124 (103%) 1093 (100%)

# K+ ions/cm SC 1250 1276 (102%) 1278 (102%) 1250 (100%)

# Na+ ions/cm DC 1274 1272 (100%) 1278 (100%) 1274 (100%)

# K+ ions/cm DC 1403 1401 (100%) 1406 (100%) 1403 (100%)

# Na+ ions/cm2 SC 3479 3630 (104%) 3578 (103%) 3479 (100%)

# K+ ions/cm2 SC 3979 4062 (102%) 4067 (102%) 3979 (100%)

# Na+ ions/cm2 DC 4054 4050 (100%) 4068 (100%) 4054 (100%)

# K+ ions/cm2 DC 4465 4458 (100%) 4476 (100%) 4465 (100%)

Iinj 0.35 0.10 (29%) 0.07 (21%) 0.03 (10%)

v 1.67 5.24 (314%) 7.00 (420%) 16.83 (1010%)

V (0.1) 14.57 13.22 (91%) 14.18 (97%) 14.57 (100%)
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Table 9.16: Maximum magnitude of ionic currents as well as total number of ions passing the

membrane in the stimulated compartment (SC) and in the distant compartment (DC) per cm

of fibre length and per cm2 of membrane area. In the model in which the myelin sheaths are

an imperfect isolator the distant compartment is the 71st compartment. Simulation at 37 ℃.

Propagation velocity v along the fibre is measured between the 65th and 75th compartments.

V (0.1) is the potential of the membrane at the end of stimulation, i.e. the threshold membrane

potential. The value in brackets tells the percentage in comparison to the unmyelinated HH

model. Myelin sheath is an imperfect insulator, the length ∆x of the internode is 159.5 µm,

the length l of the node is 10µm. Diameter of a node is 1µm, diameter of an internode

is 1.595 µm. Total number of ions is measured after 2 ms. [Iion] = [Iinj ] = nA, [v] = m/s,

[V ] = mV, [# ions/cm] = million, [# ions/cm2] = 109

HH HH with passive myelin

max(|INa|) SC 1.83 2.04 (111%)

max(|IK|) SC 2.30 2.56 (111%)

max(|INa|) DC 2.71 2.76 (102%)

max(|IK|) DC 3.10 3.10 (100%)

# Na+ ions/cm SC 1093 1145 (105%)

# K+ ions/cm SC 1250 1288 (103%)

# Na+ ions/cm DC 1274 1281 (101%)

# K+ ions/cm DC 1403 1404 (100%)

# Na+ ions/cm2 SC 3479 3643 (105%)

# K+ ions/cm2 SC 3979 4098 (103%)

# Na+ ions/cm2 DC 4054 4078 (101%)

# K+ ions/cm2 DC 4465 4470 (100%)

Iinj 0.35 0.14 (39%)

v 1.67 9.74 (584%)

V (0.1) 14.57 14.31 (98%)
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Chapter 10

Discussion

In this thesis, the action potential and the propagation effect of a spike according to an

adapted HH model are investigated. The multiplying factor of 12 for the maximum ionic

conductances of the HH model enables the generation and transmission of an action potential

along the membrane of a nerve cell at a temperature of 37 ℃. It changes the maximum sodium,

potassium and leakage conductance of the HH model so that gNa almost equals the maximum

sodium conductance of the CRRSS model, which is a model for mammalian myelinated nerve

fibres. Conduction velocity, stimulating threshold current and other properties of the HH

model are compared with those of models found in literature.

Local models, where current flow along the axon is prevented, as well as different propaga-

tion models are examined and compared with each other. Adapted HH models with different

factors for the ionic conductances are analyzed, and models for myelinated nerve fibres with

different insulating properties are investigated.

The conduction velocity of an action potential along a 1µm thick unmyelinated axon

with an internal resistivity of 0.1 kΩcm and HH dynamics is 1.67 m/s, which is higher than

the velocity of an action potential according to the other investigated membrane models. As

regards the HH model of a myelinated nerve fibre whose myelin sheaths are modeled as perfect

insulators of the internodal axolemma, the conduction speed of a spike is 16 m/s. As shown

in chapter 4, one can calculate the velocity for thicker unmyelinated axons by applying the

rule that an axon with a diameter of k µm increases the speed by a factor of
√

k, i.e. an

axon with a diameter of 3µm can conduct an action potential by v =
√

3 · 1.67 m/s. Changing

the diameter of a myelinated nerve fibre by a factor of k leads to an adaption in propagation

velocity along the fibre by a factor of k; a four times thicker axon conducts an action potential

by v = 4 · 16 m/s.

The injected stimulating threshold current in the HH model is smaller than those in the

other models. In the CRRSS model, for example, the stimulating current has to be more than
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five times that in the HH model to generate an action potential. The threshold membrane

voltage in the HH model is smaller than in the other models, too. The membrane voltage in

the CRRSS model must be heightened by 181% of the membrane voltage in the HH model in

order to produce an action potential. Apart from the conduction speed of a spike and threshold

stimulating current and threshold membrane voltage, the CRRSS model differs from the HH

model in many ways. The maximum amplitudes of the sodium currents in the propagation

model with CRRSS dynamics are two-and-a-half times (in the distant compartment) and three

times (in the stimulating compartment) the height of the corresponding maximum amplitudes

in the HH model. The total number of sodium ions involved in the excitation of a CRRSS

nerve cell is three times (in the distant compartment) and four times (in the stimulating

compartment) of those in the HH model. The total number of any ions in the CRRSS model

that cross the membrane in the stimulated compartment is 3.5 times that in the HH model.

In the distant compartment, 2.8 times as many ions are involved in the conduction of an

action potential in the CRRSS model as in the HH model.

It is important to note that the action potentials according to the adapted HH model are

very short. Figures 9.13 and 9.16 show the time courses of spikes according to unmyelinated

and myelinated HH propagation models. Figure 9.7, which compares propagation models

according to unmyelinated nerve fibres of different membrane models, shows that an action

potential according to the HH model is unusually short. This can also be seen in figure 9.2,

which compares the local models of the investigated membrane models. In particular, the

shape of the spike according to the adapted HH model is different to that of the CRRSS and

the SRB model, which are created for modeling the membrane of a mammalian myelinated

nerve fibre and a human myelinated nerve fibre, respectively. This indicates that the adapted

HH model is not adequate for modeling the membrane of warm blooded animals. In general,

action potentials last for one millisecond which is much longer than the action potentials ac-

cording to the adapted HH model. However, the model may be appropriate for the membrane

of a squid with a temperature of 37℃.

One reason for these differences might be that the value of Q10 within the temperature

coefficient k in the HH model is not equal to three for all temperatures, but changes with

temperature. Another reason could be that the HH model does not take account of different

sodium channel types. In the central nervous system, action potentials are described by high

threshold sodium channels Nav1.2 and low threshold sodium channels Nav1.6.[38]
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