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Abstract

Using Austrian data, two consumption-based capital asset pricing models were
empirically tested and estimated in this study, namely the simple power uti-
lity model first introduced by Mehra and Prescott and Abel’s more general
”Catching up with the Joneses”. First of all, the performance of these models
using historical averages and reasonable values of the relative risk aversion
coefficient was examined. In addition, the model parameters were formally
estimated using the generalized method of moments approach as suggested by
Hansen and the overall fit of the models was tested by Hansen’s JT test. Ad-
ditionally, this empirical study examines whether the used time series satisfy
the necessary model assumptions like a lognormal distribution of returns on a
risky asset and consumption growth. In order to be able to adopt the genera-
lized method of moments the underlying stationarity assumptions of the time
series was tested.
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Chapter 1

Introduction

From the very beginning of financial markets and stock exchanges, investors
as well as analysts and economists have been fascinated by the movement of
stock prices. Great efforts have been made in order to understand and, as a de-
sirable result, be able to forecast the prices of these financial instruments. The
fast rise of consumption-based capital asset pricing models (CCAPM) started
with Lucas’ paper on asset pricing in an exchange economy in 1978 [11], where
he first analysed the stochastic behaviour of equilibrium asset prices in a one-
good, pure exchange economy. Lucas linked the pricing of assets to levels of
consumptions, or more precisely, to the utility an individual receives from a
certain consumption level. The general setup of a representative individual
maximizing its utility depending on consumption levels has been the starting
point for a growing number of CCAPM getting more and more complex.

Numerous empirical studies testing CCAPM have been conducted, in the be-
ginning mostly using data from the US. In most cases, simple CCAPM are
not able to match the historical stock and bond returns simultaneously when
using a realistic and therefore low relative risk aversion parameter. Asset pri-
cing puzzles are the consequence and the main goal of researchers is to solve
these puzzles. Recently, CCAPM were exposed to empirical tests in other
countries than the US and even at an international level more often, but the
results remain virtually equal to the evidence from the US.

Ever since Hansen has published his heavily cited article on the large sample
properties of generalized method of moments (GMM) estimators [9], this ap-
proach has become common practice when estimating the parameters of these
non-linear CCAPM. As GMM does not demand strong distributional assump-
tions it is suitable for financial data where the variables are often serially
correlated and heteroscedastic and hence, a conventional estimation would
not result in satisfying estimators. Furthermore, the overall fit of a CCAPM
can be tested using the set of moment conditions implied by GMM.
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1. Introduction

In this thesis Austrian time series data including returns on a risky asset and
a bond as well as aggregate private consumption was used in order to test
and estimate two CCAPM. Starting with Mehra and Prescott’s well-known
simple power utility model described in [13] the attempt was made to pro-
vide evidence for the validity of this model, which links asset prices to the
covariance of returns on a risky asset and consumption growth. Moreover, a
generalization of the simple model was taken into account. Abel’s ”Catching
up with the Joneses” [1] introduces external habit formation, which means
that individuals care not only about their own consumption, but also about
the others’ consumption levels which are regarded as a benchmark.

Using Austrian data both models were examined whether they can match
the historical averages of returns on stocks and bonds when considering reaso-
nable values for the relative risk aversion parameter. Furthermore, the models
were estimated using Hansen’s GMM approach and the fit of the models was
tested by using Hansen’s JT test.

The thesis is organized into the following chapters. Chapter 2 shortly summa-
rizes the basic principles which are needed to develop the necessary unders-
tanding of CCAPM. Chapter 3 introduces the simple power utility model and
Abel’s ”Catching up with the Joneses”. What is more, chapter 3 contains a
discussion of two popular asset pricing puzzles, namely the ”equity premium
puzzle” and the ”risk-free rate puzzle”. Chapter 4 gives a description of the
Austrian data and the time series obtained from this data. Furthermore, this
chapter explains the tests on lognormality and stationarity applied to the time
series and depicts the results. Chapter 5 introduces GMM and how GMM is
implemented in the statistic software R. Moreover, the application of GMM to
the simple model and Abel’s model is described. Chapter 6 finally shows the
results of this empirical study. First, both models are examined whether they
can match historical averages when using a reasonable relative risk aversion
coefficient, second, the results of the GMM procedure are stated and third, a
comparison of the results of the models is given.
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Chapter 2

Basic Principles

Consumption-based capital asset pricing models (CCAPM) are meant to link
asset prices to consumption. More precisely these models link expected returns
to the covariance of returns and (aggregate) consumption. In order to develop
these models it is important to understand the principles used in the models.
If not stated otherwise, this chapter is based on [14] and will shortly introduce
the basics that are used.

2.1 Probability and stochastic processes

Any model with uncertainty refers to a probability space (Ω,F ,R) which is
given by

• Ω, which is the state space of possible outcomes. ω ∈ Ω represents a
possible realization of all uncertain objects of the model.

• F , which is a σ-algebra in Ω and therefore has the following properties

1. Ω ∈ F

2. ∀F ∈ F ⇒ FC ≡ Ω \ F ∈ F

3. for F1, F2, ... ∈ F ⇒
⋃∞
n=1 ∈ F .

• P, which is a probability measure, i.e., a function P : F → [0, 1] with
P(Ω) = 1 and for any sequenceA1, A2, ... of disjoint events P(

⋃∞
m=1Am) =∑∞

m=1 P(Am).

In order to model information and information revelation the concept of an
information filtration is used. A filtration is given by a sequence of σ-algebras
(Ft)t∈T on Ω, where the time horizon is given by T = {1, 2, ..., T} and for
all s, t ∈ T with s < t it follows that Fs ⊆ Ft ⊆ F . The interpretation of
this filtration is that the increasing σ-algebras describe the information avai-
lable at time t. We assume that information at time 0 is trivial and therefore
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2. Basic Principles

F0 = {∅,Ω} which indicates that no information is available at all. We additio-
nally assume that all information is revealed at the final date T and therefore
FT = F . Using this concept a filtered probability space can be written as
(Ω,F ,P, (F )t∈T ).

In order to take the information available into account when considering ex-
pectations of random variables like stock prices or dividends conditional ex-
pectations are needed and the following important theorem will be used:

Theorem 2.1 (The Law of Iterated Expectations) If F and G are two σ-
algebras with F ⊆ G and X is a random variable, then E[E[X|G ]|F ] = E[X|F ].
In particular, if (F )t∈T is an information filtration representing the informa-
tion available at time t and s < t, we have

Es[Et[X]] = Es[X], (2.1)

where Es[X] = E[X|Fs ] and Et[X] = E[X|Ft ].

Using this conditional expectation it is possible to define conditional variances,
conditional covariances and conditional correlations in the same way as it is
done for their unconditional equivalent.

Vart[X] = Et
[
(X − Et[X])2

]
Covt[X,Y ] = Et[(X − Et[X])(Y − Et[Y ])]

Corrt = ρt =
Covt[X,Y ]√

Vart[X] Vart[Y ]
.

When considering multi-period models uncertainty is represented by stochas-
tic processes. Given a filtered probability space (Ω,F ,P, (Ft)t∈T ) a stochastic
process is a collection (Xt)t∈T where each Xt is a random variable. A sto-
chastic process (Xt)t∈T is said to be adapted to the filtration (Ft)t∈T if every
random variable Xt, t ∈ T is Ft - measurable. The interpretation of an adap-
ted stochastic process is the following: at each time t the value Xt of the
stochastic process can be derived using only information from Ft, therefore
the information available at time t is sufficient to know Xt.
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2. Basic Principles

2.2 State-price deflators

2.2.1 The discrete-time multi-period framework

Following [14], in a discrete-time multi-period framework with time set T =
{0, 1, 2, ..., T} a state price deflator (or often referred to as stochastic discount
factor) is defined as an adapted stochastic process ζ = (ζt)t∈T with

1. ζ0 = 1

2. ζt > 0 for all t = 1, 2, · · · , T

3. Vart[ζt] <∞ for any t ∈ T

4. for any basic asset i = 1, ..., I and any t ∈ T , the price satisfies

Pit = Et

[
T∑

s=t+1

Dis
ζs
ζt

]
, (2.2)

where Pit denotes the price of asset i at time t and Dit denotes the dividend
paid for asset i from time t to t + 1. Condition 1 is just a normalization,
condition 3 is technically needed to ensure that some relevant conditional ex-
pectations exist. The pricing rule in condition 4 shows, that the price at time
t is given in terms of future dividends and the state-price deflator.

When considering t′ > t we get Pit′ = Et′
[∑T

s=t′+1Dis
ζs
ζt′

]
and by rewriting

the price at time t it follows that

Pit = Et

[
T∑

s=t+1

Dis
ζs
ζt

]

= Et

[
t′∑

s=t+1

Dis
ζs
ζt

+
T∑

s=t′+1

Dis
ζs
ζt

]

= Et

[
t′∑

s=t+1

Dis
ζs
ζt

+
ζt′

ζt

T∑
s=t′+1

Dis
ζs
ζt′

]

= Et

[
t′∑

s=t+1

Dis
ζs
ζt

+
ζt′

ζt
Et′

[
T∑

s=t′+1

Dis
ζs
ζt′

]]
.

The last part of the equation is the price of asset i at time t′ and therefore we
have

Pit = Et

[
t′∑

s=t+1

Dis
ζs
ζt

+ Pit′
ζt′

ζt

]
. (2.3)
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2. Basic Principles

Hence, state-price deflators make it possible to link the price of an asset to
the price of the same asset at another point in time t′.

Now consider the important special case of t′ = t + 1 and the expression
for the price simplifies to

Pit = Et

[
ζt+1

ζt
(Pi,t+1 +Di,t+1)

]
. (2.4)

As a result the price of an asset can be expressed in terms of the next period
price and the next period dividend.

Defining the gross rate of return of asset i at time t+ 1 as

Ri,t+1 = (Pi,t+1 +Di,t+1)/Pit

it follows that

1 = Et

[
ζt+1

ζt
Ri,t+1

]
. (2.5)

Rewriting these terms leads to an expression for the expected returns on the
risky assets

1 = Et

[
ζt+1

ζt

]
Et [Ri,t+1] + Covt

[
ζt+1

ζt
, Ri,t+1

]
and thus

Et [Ri,t+1] =
1

Et

[
ζt+1

ζt

] − Covt

[
ζt+1

ζt
, Ri,t+1

]
Et

[
ζt+1

ζt

] . (2.6)

Introducing a risk-free asset we define the risk-free gross rate of return Rft as
the return over the period between t and t+ 1. This return will be known at
time t and therefore the following equation holds

1 = Et

[
ζt+1

ζt
Rft

]
= Rft Et

[
ζt+1

ζt

]
and thus

Rft =

(
Et

[
ζt+1

ζt

])−1
. (2.7)

Substituting (2.7) into (2.6) gives an expression for the excess return of asset
i over the period t to t+ 1

Et [Ri,t+1]−Rft = −
Covt

[
ζt+1

ζt
, Ri,t+1

]
Et

[
ζt+1

ζt

] . (2.8)
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2. Basic Principles

Later on we will use the following expression, which is only another rewriting
of (2.8), as the covariance of the state-price deflator and the return can be
written as the product of the correlation and the standard deviations.

EERi,t+1 := Et[Ri,t+1]−Rft = −ρt
[
Ri,t+1,

ζt+1

ζt

]
σt[Ri,t+1]

σt

[
ζt+1

ζt

]
Et

[
ζt+1

ζt

] (2.9)

2.2.2 Properties of state-price deflators

The two most important questions concerning state-price deflators are:

1. When do they exist?

2. When are they unique?

The answers to these questions are given in the following theorems1.

Theorem 2.2 A state-price deflator exists if and only if prices admit no ar-
bitrage.

As most models used in asset pricing theory assume that markets admit no
arbitrage, it is possible to assume the existence of a state-price deflator.

Theorem 2.3 Assume prices admit no arbitrage. Then there is a unique
state-price deflator if and only if the market is complete. If the market is
incomplete, several state-price deflators exist.

2.2.3 Lognormal state-price deflators and returns

Assuming that a state-price deflator ζ is lognormally distributed, it follows
that2

Et

[
ζt+1

ζt

]
= Et

[
e
ln
ζt+1
ζt

]
= exp

{
Et

[
ln
ζt+1

ζt

]
+

1

2
Vart

[
ln
ζt+1

ζt

]}
.

If a risk-free asset exists, the continuously compounded risk-free rate of return
is given by

rft = lnRft = − ln Et

[
ζt+1

ζt

]
= −Et

[
ln
ζt+1

ζt

]
− 1

2
Vart

[
ln
ζt+1

ζt

]
. (2.10)

If the state-price deflator and the gross rate of return on a risky asset Ri,t+1 are

jointly lognormally distributed, the product ζt+1

ζt
Ri,t+1 will also be lognormally

1Proofs of the theorems in discrete time can be found in [14].
2See Appendix A for details.
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2. Basic Principles

distributed and therefore it follows from (2.5) and (2.10) that

1 = Et

[
ζt+1

ζt
Ri,t+1

]

= Et

[
e
ln
ζt+1
ζt

+lnRi,t+1

]

= exp

{
Et

[
ln
ζt+1

ζt
+ lnRi,t+1

]
+

1

2
Vart

[
ln
ζt+1

ζt
+ lnRi,t+1

]}
.

Using the logarithm on both sides of the equation we get

0 = Et

[
ln
ζt+1

ζt
+ lnRi,t+1

]
+

1

2
Vart

[
ln
ζt+1

ζt
+ lnRi,t+1

]

= Et

[
ln
ζt+1

ζt

]
+

1

2
Vart

[
ln
ζt+1

ζt

]
+ Et[lnRi,t+1]+

+
1

2
Vart[lnRi,t+1] + Covt

[
ln
ζt+1

ζt
, lnRi,t+1

]
and substituting into (2.10) the expected log-excess rate of return is given by

eeri,t+1 = Et[ri,t+1]− rft = −Covt

[
ln
ζt+1

ζt
, ri,t+1

]
− 1

2
Vart[ri,t+1], (2.11)

where ri,t+1 = lnRi,t+1 denotes the continuously compounded rate of return
on a risky asset.
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2. Basic Principles

2.3 Optimizing consumption

We assume that individuals have preferences for consumption and therefore
have to plan how much they want to consume at different points in time and
different states of the world. By participating in financial markets individuals
are able to reallocate consumption over time and states.

In a discrete-time framework each individual has to choose a consumption pro-
cess c = (ct)t∈T , with T = {0, 1, ..., T} and ct denoting the random consump-
tion at time t. Participating in the financial market takes place by choosing
a trading strategy θ = (θt)t=0,1,...,T−1, with θt representing the portfolio held
from time t to time t+ 1. As θt may depend on the information available at
time t, θ is an adapted stochastic process. The individual has an endowment
process e = (et)t∈T , where e0 is the initial endowment at time 0 and et is the
possible state-dependent income received at time t.

2.3.1 Utility functions

Different levels of consumption are ranked by a utility function u : R+ → R
and the following common properties are assumed:

• u is continuous and twice continuously differentiable.

• u is increasing, i.e., u(x) > u(y) if x > y.
This assumption implicates that individuals are ”greedy”, they prefer
high consumption to low consumption. It follows that u′ > 0.

• u is concave, i.e., u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y) for α ∈ [0, 1].
This assumption models that individuals are risk-averse and prefer a
sure consumption level to an uncertain one. Therefore, u′′ ≤ 0 is needed
which says that u is assumed to be a concave function.

• u′(∞) := limc→∞ u
′(c) = 0, this means that marginal utility tends to

zero when wealth tends to infinity.

The degree of risk aversion is associated with u′′. One possibility to measure
risk aversion are the Arrow-Pratt measures which are defined as follows:

Definition 2.1 The absolute risk aversion is given by

ARA(c) = −u
′′(c)

u′(c)
. (2.12)

Definition 2.2 The relative risk aversion is given by

RRA(c) = −cu
′′(c)

u′(c)
= cARA(c). (2.13)
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2. Basic Principles

In a discrete-time multi-period setting individuals can consume at each point
in time in T = {0, 1, 2, ..., T}, where consumption is stochastic and therefore
modelled as a stochastic process c = (ct)t∈T . Hence we need to generalize the
setting. We do that by defining a multi-date utility function U(c0, c1, ..., cT ).

CCAPM often assume time-additivity, which means that the utility an in-
dividual gets from consumption in one period does not directly depend on
what was consumed in earlier periods or what is planned to be consumed in
later periods.

Definition 2.3 A utility function in a discrete-time model is said to be time-
additive if

U(c0, c1, ..., cT ) =

T∑
t=0

ut(ct), (2.14)

where each ut is a ’single-dated’ utility function.

Additionally, it is typically assumed that ut(ct) = e−δtu(ct) for all t. In eco-
nomical terms this means that the utility an individual gets from a given
consumption level is basically the same for all dates, but the individual pre-
fers to consume any given number of goods sooner than later. This is modelled
by the subjective time preference rate δ, which is assumed to be constant over
time and independent of the consumption level. More impatient individuals
therefore have higher δ’s.

For a discrete-time multi-period framework we get

U(c0, c1, ..., cT ) =

T∑
t=0

e−δtu(ct). (2.15)

An important class of utility functions used in CCAPM are the CRRA (Constant
Relative Risk Aversion) or power utility functions. This class is defined as

u(c) =
c1−γ

1− γ
(2.16)

where c > 0, γ > 0 and γ 6= 1.

From u′(c) = c−γ and u′′(c) = −γc−γ−1 it follows that the absolute and
relative risk aversion are given by

ARA(c) = −u
′′(c)

u′(c)
=
γ

c
, RRA(c) = cARA(c) = γ. (2.17)

The relative risk aversion parameter is therefore constant across consumption
levels c. In [13] Mehra and Prescott argue, that there is evidence that most
investors have a relative risk aversion above 1 and below 10.
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2. Basic Principles

2.3.2 The optimal consumption plan

An individual wants to optimize its consumption over time at time 0. As-
suming time-additive utility the problem is a maximization problem of the
sum of the utility of time 0 consumption and the expected utility of future
consumption:

max
θ

u(c0) +

T∑
t=1

e−δt E[u(ct)] (2.18)

s.t. c0 ≤ e0 − θ0P 0,
ct ≤ et +Dθt , t = 1, ..., T ,
c0, c1, ..., cT ≥ 0.

where Dθt = θt−1(P t +Dt)− θtP t. At time t− 1 we invested in the portfolio
θt−1, at time t we sell the portfolio at price P t and get dividends Dt for it.
From time t to t + 1 we invest in the portfolio θt and we pay prices P t for
this investment.Since we assume that individuals prefer more consumption to
less, it is clear, that the budget constraints will hold as equalities. As we assu-
med infinite marginal utility u′(c) at c = 0 the non-negativity constraints are
automatically satisfied. Furthermore we assume that individuals act as price
takers, hence prices are unaffected by their portfolio choices. The constraint
on time t consumption is therefore given as

ct = et + θt−1(P t +Dt)− θtP t (2.19)

and using (2.19) the optimization problem can be written as

max
θ

u(e0 − θ0P 0) +
T∑
t=1

e−δt E[u(et + θt−1(P t +Dt)− θtP t)]. (2.20)

The only terms involving the initial portfolio θ0 = (θ10, θ20, ..., θI0)
T is

u(e0 − θ0P 0) + e−δ E[u(e1 + θ0(P 1 +D1)− θ1P 1)]. (2.21)

The first order condition with respect to θi0 implies

Pi0 = E

[
e−δ

u′(c1)

u′(c0)
(Pi1 +Di1)

]
. (2.22)

More generally the first order condition with respect to θit implies

Pit = Et

[
e−δ

u′(ct+1)

u′(ct)
(Pi,t+1 +Di,t+1)

]
, (2.23)

where ct and ct+1 are the optimal consumption rates of the individual. When
comparing (2.23) with (2.4) it follows that

ζt+1

ζt
= e−δ

u′(ct+1)

u′(ct)
. (2.24)
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2. Basic Principles

When rewriting the general expression of the state-price deflator we get an
expression for ζt

ζt =
ζt
ζt−1

ζt−1
ζt−2

...
ζ1
ζ0

= e−δ
u′(ct)

u′(ct−1)
e−δ

u′(ct−1)

u′(ct−2)
...e−δ

u′(c1)

u′(c0)
, (2.25)

which leads to an expression for the state-price deflator assuming time-additive
utility

ζt = e−δt
u′(ct)

u′(c0)
. (2.26)

As a result the state-price deflator can be interpreted as the individual’s mar-
ginal rate of substitution between consumption at time 0 and consumption at
time t, which means the willingness of the individual to substitute consump-
tion at time 0 for consumption at time t.

When again considering power utility as in (2.16) the state-price deflator is
given by

ζt = e−δt
(
ct
c0

)−γ
. (2.27)

2.3.3 A representative individual

Since it is much easier to analyze models with only one individual rather than
many, asset pricing models often assume the existence of a representative
individual. Assuming that L individuals in the economy have time-additive
utility as given in (2.15) with ul denoting the utility function of individual l
the utility function Uη,t of the representative individual is defined as

Uη,t(C) = sup

{
L∑
l=1

e−δltηlul(cl)

∣∣∣∣∣
L∑
l=1

cl ≤ C

}
, (2.28)

where C denotes aggregate consumption which is defined as
∑L

l=1 cl and η is
a vector of strictly positive numbers giving weight to the utility functions of
different individuals. As individuals are assumed to be greedy the constraint
holds as equality and the first order condition with respect to cl is given by

∂

∂cl

[
L∑
l=1

e−δltηlul(cl) + λt(C −
L∑
l=1

cl)

]
!

= 0

and it follows that

e−δltηlu
′
l(cl)− λt = 0

e−δltηlu
′
l(cl) = λt. (2.29)
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2. Basic Principles

As λt is a constant, in an optimum the marginal utility weighted by ηl is the
same for all L individuals in the economy.

When expressing individual consumption as a function of optimal aggregate
consumption cl = cl(C) and using e−δltηlu

′
l(cl(C)) = λ and C =

∑L
l=1 cl(C),

which implies 1 =
∑L

l=1 c
′
l(C) when differentiated with respect to C, it follows

that

U′η,t(C) =
L∑
l=1

e−δltηlu
′
l(cl(C))c′l(C) = λt

L∑
l=1

cl(C)′ = λt. (2.30)

λt denotes the shadow price, i.e., the marginal change of the objective function.

Supposing that there existed a vector η so that individual consumption cl,t(ω)
optimizes Uη,t(Ct) for all points in time t = {0, 1, ..., T} and all states ω ∈ Ω

with Ct =
∑L

l=1 cl,t it follows that

U′η,t+1(Ct+1)

U′η,t(Ct)
=
λt+1

λt
=
e−δl(t+1)ηlu

′
l(cl,t+1)

e−δltηlu
′
l(cl,t)

= e−δl
u′l(cl,t+1)

u′l(cl,t)
, (2.31)

which is the marginal rate of substitution of individual l and according to
(2.24) denotes a valid state-price deflator. Therefore, the state-price deflator
of individual l can be expressed in terms of the utility function of a represen-
tative individual and aggregate consumption C.

It can be shown, that a weighting vector η exists if the financial market is
complete, hence a representative individual exists. In this case the state-price
deflator is the same for every individual l and the state price deflator of the
representative individual is unique.
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Chapter 3

The Models

3.1 The simple power utility model

With the instruments developed in the previous chapter it is possible to link
asset pricing to consumption and to derive a first approximation for the excess
return. To do so, we link expected returns to the covariance of returns and
consumption as it is shown in [14] and obtain two versions of the simple power
utility model.

As discussed before the marginal rate of substitution of an individual defines
a state-price deflator. We assume time-additive utility with a time preference
rate δ and a utility function u.

3.1.1 Version 1

Additionally to the assumptions stated above we assume that

i) the economy has a representative individual with constant relative risk
aversion. Therefore we define utility as in (2.16), i.e.

u(Ct) =
C1−γ
t

1− γ
, (3.1)

where C denotes aggregate consumption.

ii) Future aggregate consumption growth is lognormally distributed, i.e.

ln(Ct+1/Ct) ∼ N(g, σ2C). (3.2)

The first assumption leads to a marginal rate of substitution given by

u′(Ct+1)

u′(Ct)
=

(
Ct+1

Ct

)−γ
= exp

{
−γ ln

(
Ct+1

Ct

)}
. (3.3)
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3. The Models

From the second assumption it follows (see Appendix A) that

Et

[
u′(Ct+1)

u′(Ct)

]
= Et

[
exp

{
−γ ln

(
Ct+1

Ct

)}]
= exp

{
−γg +

1

2
γ2σ2C

}
(3.4)

and
σt

[
u′(Ct+1)
u′(Ct)

]
Et

[
u′(Ct+1)
u′(Ct)

] =

√
eγ

2σ2
C − 1 ≈ γσC , (3.5)

where the approximation is based on ex ≈ 1 + x for x ≈ 0 and σC denotes
the standard deviation of consumption growth. Another approximation is
needed to reach the result that is used in most literature and also for empirical
analysis. Considering the first-order Taylor approximation of the function
f(x) = x−γ around 1 gives f(x) ≈ f(1) + f ′(1)(x− 1) = 1− γ(x− 1). Using
x = Ct+1/Ct it follows that(

Ct+1

Ct

)−γ
≈ 1− γ

(
Ct+1

Ct
− 1

)
. (3.6)

Substituting (3.5) and (3.6) into (2.9) we get an expected excess return on a
risky asset as follows

EERi,t+1 ≈ γσCρt
[
Ri,t+1,

Ct+1

Ct

]
σt[Ri,t+1]. (3.7)

Substituting (3.4) into (2.7) the gross risk-free rate of return over the period
t to t+ 1 is explicitely given by

Rft = eδ

(
Et

[(
Ct+1

Ct

)−γ])−1
= exp

{
δ + γg − 1

2
γ2σ2C

}
. (3.8)

The continuously compounded risk-free rate of return is then given as

rft = lnRft = δ + γg − 1

2
γ2σ2C . (3.9)

3.1.2 Version 2

To get the relation, that is used in empirical studies in addition to assumptions
i) and ii) we assume that

iii) the gross rate of return on the risky assets and consumption growth are
simultaneously lognormally distributed.
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3. The Models

As consumption growth is lognormally distributed the one-period state-price
deflator ζt+1/ζt is also lognormally distributed

ζt+1

ζt
= e−δ

u′(Ct+1)

u′(Ct)
= e−δ

(
Ct+1

Ct

)−γ
= exp

{
−δ − γ ln

(
Ct+1

Ct

)}
with an expectation of −δ − γg and a variance of γ2σ2C , and therefore we can
use the results of section 2.2.3.

The continuously compoundend risk-free rate of return is the same as in ver-
sion 1 and we get an explicit continuously compounded excess rate of return
as follows:

eeri,t+1 +
1

2
Vart[ri,t+1] = −Covt

[
ln
ζt+1

ζt
, rt,i+1

]

= γσCρt

[
ln
Ct+1

Ct
, ri,t+1

]
σt[ri,t+1]. (3.10)

3.1.3 Asset pricing puzzles

The simple model has been exposed to numerous empirical tests. Using data
from different countries Campbell shows the results of such empirical tests in
[5]. These tests focus on the question whether relation (3.10) holds for stock-
indices and for reasonable values of the relative risk aversion coefficient γ.

Table 3.1 below shows empirical results for the US and several European coun-
tries. The first column of the table headed by ẽer gives the annualized sample
estimate of the left hand side of (3.10), which is the expected excess return of
the risky asset over the risk-free asset, adjusted for half of the sample variance
of the risky asset. The second column shows the annualized average risk-free
rate r̃f . The third column reports the annualized standard deviation of the
return on the risky asset σ̃R. The fourth column headed by σ̃C shows the an-
nualized standard deviation of consumption growth and the fifth column the
correlation between the log stock return and consumption growth denoted by
ρ̃. The last two columns show the implied relative risk aversion coefficient γ.
The column headed γ uses (3.10) to get the estimated risk aversion. The other
column shows γ if the correlation of stock returns and consumption growth is
set to the counterfactual value of 1. Campbell argues, that this correlation is
hard to measure accurately as it is easily affected by measurement errors in
consumption and it is very sensitive to the measurement horizon. Therefore,
it could be interesting to just ignore the correlation and setting it equal to 1.
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3. The Models

Country Period ẽer r̃f σ̃R σ̃C ρ̃ γ γ̂

USA 74Q2-98Q3 8.071 0.896 15.271 1.071 0.205 240.6 49.3

FRA 73Q2-98Q3 8.308 2.715 23.175 2.922 -0.093 neg 12.3

GER 78Q4-97Q3 8.669 3.219 20.196 2.447 0.029 599.5 17.5

ITA 71Q2-98Q1 4.687 2.371 27.068 1.665 -0.006 neg 10.4

CH 82Q2-98Q4 14.898 1.393 21.878 2.123 -0.112 neg 32.1

NL 97Q2-98Q3 11.421 3.377 16.901 2.510 0.032 850.0 26.9

SWE 70Q1-99Q2 11.539 1.995 23.518 1.851 0.015 1713.2 26.5

UK 70Q1-99Q1 9.169 1.255 21.198 2.511 0.093 186.0 17.2

Table 3.1: The equity premium puzzle in selected countries

Several facts hold true over all countries:

1. The average real excess return on stock is high. Except for Italy this
number is at least 8.1 or even higher. Furthermore, stock returns are
volatile with a standard deviation between 15.3% and 27.1%.

2. The risk-free rate is low. In the considered countries it is mostly below
3%. The standard deviation of the risk-free asset is smaller than 3% for
quaterly data1, therefore the real interest rate is much less volatile than
the returns on a risky asset.

3. Real consumption growth has a low volatility, the standard deviation
lies between 1.071% and 2.922%.

4. The relative risk aversion is either unrealistically high or negative due
to a negative correlation of returns on the risky asset and consumption
growth. Even when using a hypothetical correlation ρ equal to one, γ̂ is
still too high when thinking of a realistic value between 1 and 10.

The figures derived by Campbell lead to different ”asset pricing puzzles” as
the results of the model are often far from being realistic when compared
to historical averages. The two best know puzzles are the ”equity premium
puzzle” and the ”risk-free rate puzzle”, which will now be discussed briefly.

The equity premium puzzle

The question, why the average real stock return is so high compared to the
average short-term interest rate, is called the ”equity premium puzzle” and
was first analysed by Mehra and Prescott in [13]. As the average stock return
is high and the interest rate is low, the expected excess return on stock is
high. This high equity premium can only be explained by a very high relative

1See [5], Table 1 for details.
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3. The Models

risk aversion coefficient as shown in Table 3.1. For reasonable values of risk
aversion ranging from 1 to 10 the expected excess return is far too low when
compared with the historical average.

The risk-free rate puzzle

Even when allowing investors to have a high relative risk aversion coefficient
the simple model is not realistic as a high γ can lead to the ”risk-free rate
puzzle” . Very risk-averse investors have a strong desire to transfer wealth
from periods with high consumption to periods with low consumption. As
consumption has been growing steadily over time, a high risk aversion makes
investors want to borrow in order to reduce the discrepancy between future
and present consumption, and this demand increases the risk-free rate. Consi-
dering again (3.9) given by

rft = δ + γg − 1

2
γ2σ2C

it follows, that a low risk-free rate can only be obtained with a low or even
negative time preference rate δ that reduces the desire to borrow and therefore
lowers the risk-free rate. It can be noticed that with a high γ and a positive
mean growth rate g the linear term on the right side of (3.9) is high. Of
course, γ also appears in the quadric term of (3.9) and it can happen, that
this term dominates the linear term if γ becomes high enough. The quadric
term can be interpreted as modelling precautionary savings. Risk-averse in-
vestors have a desire to hold precautionary savings, as future consumption is
uncertain. This could lower the risk free rate, as savings work against the de-
sire to borrow. However, unrealistically high values of γ would be necessary to
achieve a reasonable value of the quadric term as the low standard deviation
of consumption growth σC depreciates the value of the term.
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3. The Models

3.2 Abel’s relative consumption model or
”Catching up with the Joneses”

Abel’s relative consumption model is an extension of version 2 of the simple
model. It differs from the simple model in two ways. First we need an ad-
ditional assumption to assumptions i), ii) and iii) of the simple model, which
says that

iv) consumption growth is independent and identically distributed.

Second, the representative individual maximizes a utility function now not
only depending on the consumption level ct but also on a benchmark Xt. This
benchmark is an ”external habit” depending on past aggregate consumption
which is supposed to be unaffected by an individual’s decision. The interpre-
tation of such an external habit is that of Xt being the standard of living in the
economy where individuals care about the lagged value of aggregate consump-
tion. Therefore this model is often called the ”Catching up with the Joneses”.
The general setup of Abel’s model is described in [1] and [2], [5] introduces
an external habit as the special case of Xt depending on one lag of aggregate
consumption which is not influenced by a person’s own past consumption.

The utility function of the representative individual is now given by

u(Ct, Xt) =
1

1− γ

(
Ct
Xt

)1−γ
, γ > 0 (3.11)

and the external habit is defined as

Xt = Cκt−1, (3.12)

where κ measures the importance of the the consumption-benchmark ratio and
is assumed to be a positive number in [1]. In [2] Abel restricts κ to 0 < κ ≤ 1.
For κ = 0 we are back in the simple model without a benchmark level of
consumption.

Since u′(Ct, Xt) = (Ct/Xt)
−γ (1/Xt) and u′′(Ct, Xt) = γ (Ct/Xt)

−1 the re-
lative risk aversion is still the constant γ.

It follows that the marginal rate of substitution can be stated as

u′(Ct+1, Xt+1)

u′(Ct, Xt)
=

(
Ct+1

Xt+1

)−γ
1

Xt+1(
Ct
Xt

)−γ
1
Xt

=

(
Ct+1

Ct

)−γ ( Xt

Xt+1

)1−γ
.

Using lagged aggregate consumption as a habit like in (3.12) we get
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u′(Ct+1, Xt+1)

u′(Ct, Xt)
=

(
Ct+1

Ct

)−γ ( Ct
Ct−1

)κ(γ−1)
(3.13)

and as consumption growth is lognormally distributed the one-period state-
price deflator is still lognormally distributed as well and is given by

ζt+1

ζt
= e−δ

(
Ct+1

Ct

)−γ ( Ct
Ct−1

)κ(γ−1)

= exp

{
δ − γ ln

(
Ct+1

Ct

)
+ κ(γ − 1) ln

(
Ct
Ct−1

)}
. (3.14)

Using again relation (2.10) it follows that

Et

[
ζt+1

ζt

]
= Et

[
exp

{
−δ − γ ln

(
Ct+1

Ct

)
+ κ(γ − 1) ln

(
Ct
Ct−1

)}]

= exp

{
−δ − γg +

γ2σ2C
2

}
exp

{
κ(γ − 1) ln

(
Ct
Ct−1

)}
(3.15)

as the ratio ln(Ct/Ct−1) is already known at time t and the average risk-free
rate is therefore given by

rft = δ + γg − 1

2
γ2σ2c − κ(γ − 1)g. (3.16)

The expected excess return on the risky asset follows as

eeri,t+1 +
1

2
Vart[ri,t+1] = γσCρt

[
ln
Ct+1

Ct
, ri,t+1

]
σt[ri,t+1], (3.17)

which is the same as in (3.10), hence the expected excess return is not affected
by this external habit.

Nevertheless, an external habit can help to explain asset pricing puzzles. Com-
paring (3.9) and (3.16) a positive κ reduces the risk-free rate because of the
term −κ(γ − 1)g. As a result, higher values of the relative risk aversion γ can
supposably be used to solve the equity premium puzzle without encountering
the risk-free rate puzzle.

In chapter 6 the results for Austrian data and both models are described. For
the simple model, a row for Austria was added to Table 3.1 and the figures
were then compared to the other countries. This gave a first approximation
for the parameter γ before it was formally estimated using the generalized
method of moments (GMM) described in chapter 5. It was checked whether
the equity premium puzzle and the risk-free rate puzzle exist in Austrian data
and whether the Abel model can help to resolve the puzzles.
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Chapter 4

Data and Tests

This chapter contains a description of the Austrian data used in this empiri-
cal study, the tests the data was exposed to and the generalized method of
moments (GMM), which was used to estimate the parameters of the CCAPM.

4.1 Description of Austrian data

As it is crucial for the outcome of the analysis to have ”good” data plenty
of time was invested in order to obtain the most appropriate time series.
Nevertheless, the used time series, especially the data for private consumption,
are not perfect in several ways:

• It was not possible to obtain quarterly private consumption data for
durable goods. As these goods offer consumption ”services” beyond the
period of purchase, it would have been more appropriate to take them
not into account and thus to deduct their value from total consumption.

• Private consumption data is reported infrequently (quarterly) relative to
financial data (daily). Furthermore, the quarterly time series for private
consumption were available only from the first quarter of 1988 (1Q1988)
onwards, which limits the observation period considerably.

• The time series for the population growth in Austria was only available
at annual terms.

The Austrian data used to carry out this empirical study consists of 7 basic
time series which can be found in Table 4.1. The sample period was cho-
sen from 1Q1989 to 4Q2009 as only for this period of time all the necessary
data was available. The time series were obtained from Thomson Datastream
database, the database of the WIFO1 and the webpage of Statistik Austria2.

1Österreichisches Institut für Wirtschaftsforschung ; Austrian Institute of Economic Re-
search; www.wifo.ac.at

2Statistics Austria - The Information Manager; www.statistik.at
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Name Basis3 Source Description

ATX D Datastream Austrian Trade Index

MV D Datastream The market value is the sum of the share
price multiplied by the number of ordinary
shares in issue for each constituent and is
given in Millions of EUR.

DIV D Datastream The dividends are expressed as a percen-
tage of the market value.

VIB D Datastream For 1Q1989 - 4Q1998 the Vienna Inter-
bank Offered Rate (Vibor) is used; as it
was replaced by the Euro Interbank Offe-
red Rate (Euribor) in 1999 the Euribor is
used for 1Q1999 - 4Q2009.

POP Y Statistik Austria The population is given as the population
at the begin of the year.

CPI M Statistik Austria The consumer price index is based on
1986.

CSP Q WIFO The total real valued private consumption
with services is given in Millions of EUR
and based on prices in 2005.

Table 4.1: Basic time series used

Most financial data such as the stock price, market value, dividends or the
risk-free rate was available as daily data. In order to obtain quarterly data
the instructions described in the Data Appendix of [5] were followed. Private
consumption was already given in quarterly, real terms based on the year 2005,
however, the data was not seasonally adjusted. Most financial and consump-
tion data needed to be adjusted from inflation by using the consumer price
index based on 2005 and 1990. Population was given in annual terms and was
transformed to quarterly data.

The adjustments were implemented in R and ”gretl”, the source codes conduc-
ting the necessary calculations can be found in Appendix B. Figures 4.1 to
4.11 illustrate the time series used.

Austrian Traded Index - ATX

In order to derive quarterly data from daily data the monthly averages were
calculated and the averages of the months March, June, September and De-
cember were used as end-of-quarter values. Figure 4.1 illustrates the history
of this Austrian price index.

3D = daily, M = monthly, Y = yearly
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Market Value - MV

The market value is only necessary to calculate quarterly dividends. To do so
the end-of-quarter values are derived like the ATX end-of-quarter values by
using the average of the corresponding months. The movement of the market
value is depicted in Figure 4.2.

Dividends on the ATX - DIV

The dividends were given in percentage of the market value and were calcu-
lated by Datastream as a moving average of the dividends of the previous
11 months and the current month. In order to obtain quarterly data the
percentage was multiplied with the corresponding market value. It was assu-
med that the dividends had been approximately constant during the last 12
months. Then, monthly dividends were obtained by using the corresponding
end-of-month value. Finally, quarterly dividends were computed by adding up
monthly dividends of the corresponding months. The dividends on the ATX
are illustrated in Figure 4.3.

Vibor/Euribor - VIB

The quarterly risk-free rate was derived by computing the averages of the daily
quotations of the Vienna Interbank Offered Rate from 1Q1989 to 4Q1998 and
the averages of the daily quotations of the Euro Interbank Offered Rate from
1Q1999 to 4Q2009. The average annual rates were transformed in quarterly
rates and are shown in Figure 4.4.

Population - POP

Data concerning population was given as annual data and was turned into
quarterly data by assuming that growth had been constant over the year. The
growth in population is depicted in Figure 4.5.

Consumer Price Index - CPI

In order to adjust the ATX, Vibor as well as consumption from inflation,
the consumer price index was needed to be based on the year 2005 as real
consumption is based on 2005. Furthermore, the given reference values of the
results of the simple model are based on 1990. Therefore, the time series based
on 1986 had been transformed so that it was based on the year 2005 as well
as 1990. The time series based on 1990 is shown in Figure 4.6.
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Figure 4.1: ATX-1Q88-4Q09
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Figure 4.2: Market value-1Q88-4Q09
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Figure 4.3: Dividends-1Q88-4Q09
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Figure 4.4: Vibor/Euribor-1Q89-4Q09
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Figure 4.5: Population-1Q89-4Q09
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Figure 4.6: CPI-1Q89-4Q09
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Consumption - CPS

To obtain a seasonally adjusted time series for consumption, the data was
adapted by using the Census X-12-ARIMA method4, which is included in
the software package ”gretl”. It can be noted from Figure 4.8, which shows
the original per capita consumption, that the mode of calculation of private
consumption was changed in 1996 due to the introduction of the European
System of Accounts (ESA 95) in 1995, which has since then been compulsory
for all European membership countries. The seasonal adjustment of aggregate
private consumption derived by ”gretl” is depicted in Figure 4.7.

Figure 4.7: Seasonal adjustment of aggregate private consumption

Per capita consumption was then computed by dividing quarterly real consump-
tion by population numbers. The original time series for per capita consump-
tion, this means before seasonal adjustment, is shown in Figure 4.8. Using this
data the original time series for consumption growth based on the preceding
quarter (Ct+1/Ct) was derived and is shown in Figure 4.10, where once again
the change in the calculation system for private consumption can be noted.
Figures 4.9 and 4.11, however, depict the time series finally used in this empi-
rical study, where oscillation is much smaller when compared to the original
consumption data.

Finally, Table 4.2 reports summary statistics for the basic time series. For the
observations from 1Q1989 to 4Q2009, mean, standard deviation (Std.Dev),
minimum, maximum and the first-order autocorrelation are stated5.

Name Mean Std.Dev Min Max Autocorr.

ATX 874.863 564.378 223.350 2549.799 0.953

MV 31445.200 30530.920 2519.870 114746.200 0.965

DIV 154.691 160.234 13.946 562.584 0.960

VIB 1.093 0.590 0.088 2.322 0.962

CSP 500.785 43.406 414.780 570.825 0.960

Table 4.2: Summary statistics for basic time series

4See http://www.census.gov/srd/www/x12a for further details.
5MV is given in Mio EUR, VIB as a quarterly rate and all other positions in EUR.
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Figure 4.8: Per capita consumption -
1Q89-4Q09
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Figure 4.9: Per capita consumption
seasonally adjusted - 1Q89-4Q09
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Figure 4.10: Consumption growth -
1Q89 - 4Q09
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Figure 4.11: Consumption growth sea-
sonally adjsuted - 1Q89-4Q09
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Figure 4.12: Histogram and density
function for returns on the ATX
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Figure 4.13: Histogram and density
function for consumption growth

4.2 Testing the data

The data used in this empirical study was exposed to several tests. The
different models and methods used demand various assumptions to deliver
significant and reliable results. The testing in this section was meant to show
which assumptions hold true and, on the other hand, which time series were
not ideal when testing CCAPM. The tests were done using R and ”gretl”.

4.2.1 Tests on a lognormal distribution

The simple model assumes that consumption growth is lognormally distribu-
ted, i.e.

ln(Ct+1/Ct) ∼ N(g, σ2C).

In version 2 of the simple model, it is additionally assumed that returns on
risky assets and consumption growth are jointly lognormally distributed. If a
vector of two random variables is bivariate normally distributed then it follows
that each random variable itself is univariate normally distributed. Hence, log-
returns on the ATX and log-consumption growth were tested. If they do not
come from a univariate normal distribution, they can not be jointly lognor-
mally distributed.

As a first step graphical techniques to evaluate the goodness of fit were used.
Histograms provide some insights on the shape of a distribution, therefore the
probability density function of a normal distribution with the empirical mean
and standard deviation and the histogram of the data were drawn together in
one plot, which is depicted in Figures 4.12 and 4.13.
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Figure 4.14: Boxplot for returns on
the ATX
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Figure 4.15: Boxplot for consumption
growth

Another graphical way is to draw boxplots of the data which are shown in
Figures 4.14 and 4.15.

Using these first impressions of the data depicted in the histograms and box-
plots, a normal distribution of log-returns on the ATX and log-consumption
growth is not very likely. In the histograms too many observations are loca-
ted in the range near the empirical mean. Additionally, the data on returns
on the ATX shows discrepancies at the tails. The consumption growth rates
do not appear to be symmetrically distributed. The boxplots lead to a si-
milar conclusion. The median of a normal distribution is supposed to be in
the middle of the box, the whiskers should be of the same length and the out-
liers in Figure 4.14 indicate a deviation from the assumed normal distribution.

In a next step goodness of fit tests were used in order to test if it is reasonable
that the data comes from a specific distribution. The null and alternative
hypotheses are given as:

H0: Sample data comes from the stated distribution
H1: Sample data does not come from the stated distribution

The R package ”nortest”6 was used for testing whether the data comes from
a normal population. This package includes 5 different tests for norma-
lity, namely the Anderson-Darling test (AD), Cramer-von Mises test (CvM),
Lilliefors (or Kolmogorov-Smirnov) test (L), Pearson chi-square test (P) and
the Sharpiro-Francia test (SF).

6Further details on the package ”nortest” can be found on http://cran.r-
project.org/web/packages/nortest/nortest.pdf
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Return on ATX

Test Test Statistic p-Value

AD 1.3122 1.96e-03

CvM 0.212 3.67e-03

L 0.0994 3.94e-02

P 12.286 3.34e-01

SF 0.9122 7.78e-05

Consumption Growth

Test Test Statistic p-Value

AD 0.7862 3.98e-02

CvM 0.1314 4.11e-02

L 0.0848 1.43e-01

P 14.2857 2.18e-01

SF 0.9646 2.25e-02

Table 4.3: Results of tests on lognormality

Considering the returns on the ATX the null hypothesis is rejected by all tests
except the Pearson chi-square test on all conventional significance levels and
the Lilliefors test at a level of significance of 0.01. The true p-value for the
Pearson chi-square test lies somewhere between 0.2660 and 0.43147, however
it is recommended to prefer the results of the other tests as these are more
reliable. For the consumption data the Pearson chi-square test and the Lillie-
fors test do again not reject the null hypothesis on conventional significance
levels. For the other tests the the null hypothesis is not rejected on the 0.01 si-
gnificance level, but is rejected on the 0.1 and 0.05 significance levels. Hence,
the tests provide evidence for the impression gained by the histograms and
boxplots that the data does not come from a lognormal distribution. Further-
more, the tests fail to provide support for the assumption, that returns on the
ATX and consumption growth are jointly lognormally distributed, as it would
be needed in version 2 of the simple model.

4.2.2 Tests on stationarity

In chapter 5 the generalized method of moments was used to estimate the
parameters δ and γ. The most important assumption in order to be able to
apply GMM is the stationarity of the random variables used8. A stochastic
process (xt)t∈T is said to be weakly stationary if E[x2t ] <∞ and

E[xt] = µ (4.1)

Cov[xt, xt+k] = γk. (4.2)

In order to test the respective time series whether they are stationary or not,
the Augmented Dicky-Fuller test (ADF) and the KPSS test for stationarity
(KPSS) were used. Both tests are included in the software package ”gretl”,
the definitions and descriptions are taken from [10] and [8].

7See http://cran.r-project.org/web/packages/nortest/nortest.pdf, pages 6-7 for details.
8All assumptions are covered in depth in [9].
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In chapter 5 relation (2.5) will be used to set up the necessary moment condi-
tions, therefore consumption growth as well as the returns on the ATX and the
risk-free rate need to satisfy the stationarity assumption. Considering Figures
4.4, 4.11 and 4.16, returns on the ATX and consumption growth are likely to
be stationary, the risk-free rate is supposably not stationary.
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Figure 4.16: Log-returns on the ATX - 1Q88-4Q09

ADF test

The ADF test is a test for the null hypothesis that a time series sample has a
unit root. The model to which this test was applied to uses an autoregressive
process of order p which is defined as follows:

Definition 4.1 A p-th order autoregressive process (AR(p)) satisfies the p-th
order stochastic difference equation

yt = c+ φ1yt−1 + ...+ φpyt−p + εt, (4.3)

where c is a constant, φp 6= 0 and (εt) is a white noise error term, i.e. E[εt] =
0, E[ε2t ] = σ2 > 0 and E[εtεt−j ] = 0 for j 6= 0.

If the stability condition

φ(z) = (1− φ1z1 − φ2z2 − ...− φpzp) 6= 0 ∀|z| ≤ 1 (4.4)

holds, i.e., there are no roots on the unit circle, the process yt is the unique
weak-stationary solution to these stochastic difference equations given in (4.3).
In contrast, if there is a unit roots (z = 1), the equation has no weak-stationary
solution, the solutions is then a so-called ”unit-root processes” where the first
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differences of the process rather than the process itself is stationary.

The ADF test now uses this methodology and tests whether φ(z) has a unit
root (z = 1), which leads to non-stationarity, or not, which means that the
process is stationary. Therefore, the null and alternative hypothesis are given
as:

H0: φ(1) = 0, i.e., the process has a unit root (z = 1)
H1: φ(1) > 0, i.e., the process has no unit root and is therefore stationary

The following model is used in ”gretl” to compute the ADF test, this is the
t-statistic on β in the following expression

∆yt = µt + βyt−1 +

p−1∑
i=1

γi∆yt−i + εt. (4.5)

(p − 1) := p is the lag order, γi are the coefficients and (εt) is the error term
as defined above. There are several forms for µt namely µt = 0 (F1), µt = µ0
(F2) resulting in yt being a AR(p) process with mean not equal to zero if the
null hypothesis is rejected, and µ = µ0 + µ1t (F3) allowing for a linear trend.

As a matter of fact the condition β = (<) 0 is equivalent to the stationa-
rity condition φ(1) = (>) 0, hence the null hypothesis H0 : β = 0 meaning
non-stationarity was tested versus the alternative hypothesis H1 : β < 0 indi-
cating a stationary AR(p) process.

The number of lags p was automatically determined in ”gretl” by setting the
lag order to a high number, then a sequential procedure was started which
decremented p until the t-statistic for the estimated parameter γp was high
enough.

As the alternative hypothesis is given by H1 : β < 0, large negative values
of the test statistic lead to rejection of the null hypothesis. The critical values
for different levels of significance are given in the following table9.

Quantile CV for F1 CV for F2 CV for F3

1% -2.59056 -3.50906 -4.06996

5% -1.94404 -2.89588 -3.46321

10% -1.61775 -2.58485 -3.15776

Table 4.4: Critical values for the ADF test

9The critical values are calculated as recommended in [12] via the formula β∞ + β1/T +
β2/T

2 with T = 84 using the β-values stated in Table 1.
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Using the return on the ATX data 3 lags were used in order to derive the
results of the ADF test. For the risk-free rate 4 lags were used and for the
consumption growth time series 6 lags were necessary.

ADF test - return on ATX

Statistic p-Value β̂

F1 -0.379 5.48e-01 -0.006

F2 -7.095 1.82e-01 -0.954

F3 -7.041 1.89e-009 -0.956

ADF test - return on VIB

Statistic p-Value β̂

F1 -1.128 2.36e-01 -8.06e-005

F2 -1.454 5.57e-01 -1.72e-02

F3 -2.629 2.67e-01 -5.70e-02

ADF test - con. growth

Statistic p-Value β̂

F1 -0.404 5.38e-01 -0.001

F2 -10.732 1.43e-021 -1.879

F3 -11.193 8.33e-025 -1.942

Table 4.5: Results of the Augmented Dickey-Fuller test

Table 4.5 shows that all test statistics are negative, however, the test statis-
tics for F1 are greater than the critical values in Table 4.4, hence the null
hypothesis is accepted for all three time series on the conventional signifi-
cance levels. For F2 and F3 the null hypothesis is rejected for returns on the
ATX and consumption growth, i.e. φ(z) has no unit roots. This leads to the
conclusion, that these time series are assumed to be stationary and seem to
have a mean not equal to zero. For consumption growth the statistic of F3
shows the smallest value which is an indicator for a linear trend in the data.
The null hypothesis is accepted for the risk-free rate in both cases at conven-
tional significance levels. The same conclusions follow when considering the
estimate value β̂ of β. For F1 the values are pretty close to zero, the same
can be noted for the risk-free rate when looking at F2 and F3. Considering
the returns on the ATX and consumption growth β̂, differs significantly from
zero for F2 and F3 and therefore the null hypothesis is rejected for these cases.

Hence, the consumption growth process as well as the the risk-free rate process
fail to satisfy the stationarity assumption needed for GMM.

KPSS test

The KPSS test differs from the ADF test in that way, that the null hypothesis
is the case of stationarity and the alternative hypothesis concerns the unit root
option. The basic model (BM) is simple

∆yt = εt − νεt−1, (4.6)
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where ν is a constant and εt is a stationary process with mean zero and a
variance σ. The null and alternative hypothesis are given by

H0 : ν = 1, i.e., the process yt = ν0 + εt is stationary
H1 : ν < 1, i.e., the process yt is not stationary

and the corresponding test statistic can be stated as

η =
1

T 2

T∑
t=1

Ŝ2
t

σ̂2S
(4.7)

with

et = yt − yT
Ŝt =

∑t
i=1 ei

γ̂k = 1
T

∑T−k
i=1 ei+kei

σ̂2S = γ̂0 + 2
∑I−1

j=1 wj(I)γ̂j .

I = 4(T/100)1/4 was used and the weights for the estimation of σ̂2S are given
as wj(I) = 1− j/I. Under the null hypothesis the test statistic η has a well-
defined but non-standard asymptotic distribution which has been tabulated
by simulation and is stated in Table 4.6 for selected quantiles.

η −→
∫ 1

0
V 2(s)ds,

where the process (V (s))s∈[0,1] denotes a standard Brownian Bridge.

Generalizing this concept to the case where yt is stationary around a determi-
nistic trend the model (TM) is given by

∆yt = ν1 + εt − νεt−1. (4.8)

The null and alternative hypothesis are then given by:

H0 : ν = 1, i.e., the process yt = ν0 + ν1t+ εt is trendstationary
H1 : ν < 1, i.e., the process yt is not stationary.

The test statistic and the parameter estimates are the same as in (4.7), only
et is defined as the residual from an ordinary least squares (OLS) regression
of yt on a constant and a linear trend:

et = yt − ν̂0 − ν̂1t.
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Similarly to the first case the asymptotic distribution is given by an integral

η −→
∫ 1

0
V 2
2 (s)ds,

where the process (V (s))s∈[0,1] is the so called second level Brownian Bridge.

For both cases H0 is rejected if the test statistic η is bigger than the cor-
responding critical values (CV), which are provided for the 90%, 95% and
99% quantiles by ”gretl”10:

Sign.Level CV for BM CV for TM

1% 0.732 0.215

5% 0.467 0.148

10% 0.350 0.120

Table 4.6: Critical values for the KPSS test

Using the same number of lags as used for the ADF test the following results
were obtained for the basic model and the trend model:

Time series η for BM η for TM

Return on the ATX 0.075 0.070

Risk-free rate 1.346 0.285

Consumption growth 0.392 0.044

Table 4.7: Results of the KPSS test

Comparing the test statistic η to the critical values for returns on the ATX
and consumption growth, it is smaller for both models and both time series,
hence the null hypothesis is accepted. Again it can be noted that consumption
growth is likely to have a deterministic trend as the test statistic for the trend
model is significantly smaller than the one for the basic model. The null hy-
pothesis is rejected for the risk free rate in both models. Again consumption
growth and the risk-free rate fail to satisfy the stationarity assumption for
GMM.

In conclusion, both tests support the assumption that returns on the ATX
follow a stationary process, hence the necessary assumption for GMM used in
the next chapter is satisfied for this time series. Consumption growth seems
to follow a trendstationary process and there is no evidence for a stationary
risk-free rate. Therefore, both tests fail to provide evidence for stationarity of
consumption growth and the risk-free rate as it would be needed for GMM.

10The critical values are computed via the method presented by Sephton in [15].
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Chapter 5

Parameter Estimation

5.1 The Generalized Method of Moments

The generalized method of moments (GMM) as described by Hansen in [9] is
used to formally estimate the parameters and evaluate the models considered
in this analysis. The parameters are picked in a way that minimizes a weighted
sum of squared pricing errors. The fit of the model can then be tested with
Hansen’s JT test by looking at the sum of squared pricing errors. This short
summery on GMM for asset pricing models is taken from [7].

General setup

Denoting the one-period state-price deflator ζt+1/ζt as a function of several
parameters given in a 1 × q parameter vector θ, we have ζt+1/ζt = mt+1(θ).
A general notation for any asset pricing model is given by

E[pt] = E[mt+1(θ)xt+1] or

0 = E[mt+1(θ)xt+1 − pt], (5.1)

where xt+1 denotes the pay-off vector of an asset given by pt+1 + dt+1 .

Defining Rt+1 as the vector of returns on different assets and using equa-
tion (2.5) the moment conditions can be expressed in terms of the state-price
deflator and returns on the assets, which implies that

1 = E[mt+1(θ)Rt+1] or

0 = E[mt+1(θ)Rt+1 − 1]. (5.2)

We further define an error term vt(θ) = [mt+1(θ)Rt+1 − 1] and gT (θ) as the
sample mean of the vt’s, when the parameter vector is θ and the sample size
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is T , and it follows that

gT (θ) =
1

T

T∑
t=1

vt(θ) = ET [vt(θ)] = ET [mt+1(θ)Rt+1 − 1], (5.3)

where ET [.] = 1
T

∑T
t=1[.] denotes the sample mean.

It is common to add instruments when testing asset pricing models. Using
again equation (2.5) both sides can be multiplied by any variable zt obser-
ved at time t before taking unconditional expectations which results in the
following orthogonality conditions

E[zt] = E[mt+1(θ)Rt+1zt] or

0 = E{[mt+1(θ)Rt+1 − 1]zt}.

This can be done for a whole vector of returns and instruments, multiplying
each return by each instrument which can be denoted by

E{[mt+1(θ)Rt+1 − 1]⊗ zt} = 0, (5.4)

where ⊗ means ”multiply every element by every other element” and the first
element of the instrument vector is 1.

Assuming for example two returns R = [Ra, Rb]′ (5.4) looks like

E



mt+1(θ)R

a
t+1

mt+1(θ)R
b
t+1

mt+1(θ)R
a
t+1zt

mt+1(θ)R
b
t+1zt

−


1
1
zt
zt


 =


0
0
0
0

 . (5.5)

Two-step GMM estimation

To estimate the model parameters two steps are done:

1. Usually there are more moment conditions than parameters, hence θ is
chosen to make the pricing errors gT (θ) as small as possible. The first-
stage estimate of θ therefore minimizes a quadratic form of the sample
mean of the errors,

θ̂1 = argmin{θ}gT (θ)′WgT (θ) (5.6)

for a weighting matrix W that is often the identity matrix I. The weigh-
ting matrix shows how much attention is paid to each moment, using
the identity matrix as weighting matrix W = I means that all assets are
treated symmetrically. The derived estimate θ̂1 of the parameter vector
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θ is consistent and asymptotically normal.

As some asset returns may have much more variance than others which
implies that the sample mean will vary more from sample to sample, in
a second step another weighting matrix is used for statistical reasons.
T Var[gT ] →

∑∞
j=−∞ E[vtv

′
t−j ] = S suggests that the inverse of S might

be a good weighting matrix and [9] shows, that it is the statistically
optimal weighting matrix in the sense that it produces estimates with
the lowest asymptotic variance. Hence in the second step less attention
is paid to pricing errors from assets with high variances. Using θ̂1 an
estimate Ŝ of

S =
∞∑

j=−∞
E(vt(θ)vt−j(θ)

′) (5.7)

need to be formed to be able to continue with the second step. The
estimation of S is described in the next section.

2. The second-stage estimate θ̂ uses the estimated matrix Ŝ as a weighting
matrix in the quadratic form

θ̂ = argmin{θ}gT (θ)′Ŝ−1gT (θ). (5.8)

θ̂ is a consistent, asymptotically normal and asymptotically efficient esti-
mate for the parameter vector θ. Due to the choice of the weighting ma-
trix W = Ŝ−1 it has the smallest asymptotic variance-covariance matrix
among all possible estimators corresponding to the moment conditions
gT (θ).

JT test

The overall fit of an asset pricing model can finally be tested with the JT test
of overidentifying restrictions, which is given by

TJT = T min
{θ}

[gT (θ)′S−1gT (θ)] ∼ χ2(#moments−#parameters). (5.9)

It states that assuming the model is specified correctly, T times the minimized
value of the second-stage objective is distributed χ2 with degrees of freedom
equal to the number of moment conditions less the number of estimated pa-
rameters.
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5.2 GMM in R

5.2.1 The Algorithm

To estimate the parameter vector θ the R-package ”gmm”1 was used. This
package includes the function gmm, which estimates θ using the original two
step version of GMM as proposed by [9]. The algorithm follows the two steps
described in section 5.1 and is given below.

Two-step GMM algorithm

1. Compute θ̂1 = argmin{θ}gT (θ)T gT (θ).

2. Compute the matrix Ŝ.

3. Compute θ̂ = argmin{θ}gT (θ)T Ŝ−1gT (θ).

Additionally a refined version of the original GMM is available. This iterative
version is implemented as follows.

Iterative GMM algorithm

1. Compute θ̂1 = argmin{θ}gT (θ)T gT (θ).

2. Compute the matrix Ŝ.

3. Compute θ̂2 = argmin{θ}gT (θ)T Ŝ−1gT (θ).

4. If ‖θ̂1 − θ̂2‖ < crit stop, else θ̂1 = θ̂2 and go to step 2.

5. Define θ̂ as θ̂2.

where crit can be set arbitrarily small .

1Further details on the package ”gmm” can be found in [6] and on http://cran.r-
project.org/web/packages/gmm/gmm.pdf
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5.2.2 Estimation of the optimal weighting matrix S and the
asymptotic variance-covariance matrix V (θ)

Estimation of S

For the second step of both algorithms it is needed to estimate the optimal
weighting matrix S which is given in (5.7) by

S =
∞∑

j=−∞
E[vt(θ)vt−j(θ)

′].

Using [3], [7] and [16] an estimate Ŝ of S is obtained as follows. Supposing
we have given a consistent (first step) estimate θ̂1 of θ, the estimator for S
derived in R is based on the empirical values of the error terms vt(θ)’s. More
precisely, the estimator Ŝ is based on the weighted empirical autocorrelations
of the empirical error terms v̂t = vt(θ̂1) = [mt+1(θ̂1)Rt+1 − 1] ⊗ zt as given
below2.

Ŝ =
T

T − q

T−1∑
j=−T+1

k

(
j

b

)
Γ̂(j), (5.10)

with

Γ̂(j) =


1
T

∑T
t=j+1 v̂tv̂

′
t−j for j ≥ 0

1
T

∑T
t=−j+1 v̂t+j v̂

′
t for j < 0

(5.11)

and

k(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
. (5.12)

The factor T/(T − q) is a small sample degrees of freedom adjustment, where
q is the dimension of the parameter vector θ. b is the bandwidth parameter
used, which is calculated as a function of the data and is described in more
detail below. k(.) describes the weights used to downweight higher-order au-
tocorrelations, since they are based on only a few observations. k(.) given in
(5.12) is the so called ”quadratic spectral kernel” recommended by Andrews
in [3].

The bandwidth parameter b for a kernel k(.) is estimated from the data as
follows.

1. Specify p univariate approximating parametric models for {v̂at}, with
a = 1, ..., p, where v̂t = (v̂1t, ..., v̂pt). The default procedure in R uses first
order autoregressive (AR(1)) models for {v̂at}, with different parameters

2See the [3] for a detailed description and the appendix of [3] for the derivation.
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for each a: (ρa, σ
2
a) denote the autoregressive and innovation variance

parameters, respectively, for a = 1, ..., p.

2. Estimate the parameters of the approximating parametric models by
standard methods. To do so R uses the OLS method to get the estimates
{(ρ̂a, σ̂2a) : a = 1, ..., p}.

3. Substitute these estimates into the formula

α̂(2) =

p∑
a=1

wa
4ρ̂2aσ̂

4
a

(1− ρ̂a)8

/
p∑
a=1

wa
σ̂4a

(1− ρ̂a)4

to get an estimate α̂(2) of α(2), where wa is the diagonal element of the
weighting matrix. Finally, use α̂(2) and

k2 = −1

2

d2k(x)

dx2

∣∣∣∣
x=0

to calculate the estimate b̂ of the bandwidth parameter b as

b̂ =

(
2k22α̂(2)T∫
k2(x)dx

)1/5

.
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Figure 5.1: The quadratic spectral kernel

For the quadratic spectral kernel depicted in Figure 5.1 this leads to b̂ =
1.3221(α̂(2)T )1/5.

Estimating S in this way necessarily generates a positive semi-definite esti-
mator Ŝ which can be inverted and then used as the weighting matrix for the
second step of GMM.
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Estimation of V (θ)

Relying on the central limit theorem, the asymptotic distribution of the GMM
estimate θ̂ of the parameter vector θ is given by

√
T (θ̂ − θ) −→ N(0, V (θ)), (5.13)

where −→ means convergence in distribution. V (θ) denotes the asymptotic
variance-covariance matrix of θ̂, with θ̂ based on the estimated optimal weigh-
ting matrix Ŝ−1. V (θ) can be expressed in a ”sandwich” form3

V (θ) = (B(θ)′S(θ)B(θ))−1,

where S(θ) denotes the optimal weighting matrix and B(θ) is given as

B(θ) = E

[
∂vt(θ)

∂θ

]
.

An estimator of B(θ) is given by

B̂ =

[
∂gT (θ)

∂θ

]
θ=θ̂

= ET

[
∂vt(θ)

∂θ

]
θ=θ̂

, (5.14)

where θ̂ is the estimate of θ and vt(θ) = [mt+1(θ)Rt+1−1]⊗zt is again the error
term. The derivatives of vt(θ) are obtained with the R-function numericDeriv
which numerically evaluates the gradient of an expression.
Using the estimates Ŝ and B̂ and estimate of V (θ) is given as

V̂ = (B̂′ŜB̂)−1. (5.15)

3A formal proof is given in [4], Chapter 5.
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5.3 GMM and the simple model

The state-price deflator of the simple model given by

ζt+1

ζt
= e−δ

(
Ct+1

Ct

)−γ
uses two parameters δ and γ. Writing this state-price deflator as a function of
these parameters gives

mt+1(θ) = e−δ
(
Ct+1

Ct

)−γ
. (5.16)

With β = e−δ the parameter vector is given by θ = [β, γ]′.

By substituting (5.16) in (5.4) the following orthogonality conditions are ob-
tained

E

{[
β

(
Ct+1

Ct

)−γ
Rt+1 − 1

]
⊗ zt

}
= 0, (5.17)

where Rt+1 denotes the vector of returns consisting of the returns on the ATX
and the returns on the Vibor/Euribor, i.e. Rt+1 = [RAtxt+1, R

V ib
t+1]

′.

Using (5.3) the sample orthogonality conditions based on T observations are
given as

gT (θ) =
1

T

T∑
t=1

[
β

(
Ct+1

Ct

)−γ
Rt+1 − 1

]
⊗ zt (5.18)

and the parameter vector θ is estimated by minimizing gT (θ)′WgT (θ).

The instrument sets (I-Set) used for the moment conditions given in (5.17) are
the following.

1. zt = [1, RAtxt ]′, i.e. a constant and lagged return on the ATX

2. zt = [1, RV ibt ]′, i.e. a constant and lagged return on the Vibor/Euribor

3. zt = [1, Ct/Ct−1]
′, i.e. a constant and lagged consumption growth

4. zt = [1, RAtxt , RV ibt ]′, i.e. a constant, lagged return on the ATX and
lagged return on the Vibor/Euribor

5. zt = [1, RAtxt , Ct/Ct−1]
′, i.e. a constant, lagged return on the ATX and

lagged consumption growth

6. zt = [1, RV ibt , Ct/Ct−1]
′, i.e. a constant, lagged return on the Vibor/Euribor

and lagged consumption growth

7. zt = [1, RAtxt , RV ibt , Ct/Ct−1]
′, i.e. a constant, lagged return on the ATX,

lagged return on the Vibor/Euribor and lagged consumption growth
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5.4 GMM and Abel’s model

The state-price deflator of Abel’s ”Catching up with the Joneses” is given by

mt+1(θ) = e−δ
(
Ct+1

Ct

)−γ ( Ct
Ct−1

)κ(γ−1)
and uses three parameters δ, γ and κ.

Similar to the previous section the orthogonality conditions are then given
as

E

{[
β

(
Ct+1

Ct

)−γ ( Ct
Ct−1

)κ(γ−1)
Rt+1 − 1

]
⊗ zt

}
= 0. (5.19)

where Rt+1 denotes the vector of returns on the ATX and the Vibor/Euribor
and zt is the respective instrument vector.

The sample orthogonality conditions based on T observations are given by

gT (θ) =
1

T

T∑
t=1

[
β

(
Ct+1

Ct

)−γ ( Ct
Ct−1

)κ(γ−1)
Rt+1 − 1

]
⊗ zt. (5.20)

The parameter κ is not estimated during the procedure, but the estimation
is done for different values of κ. Even though Abel limites κ to 0 < κ ≤ 1 in
[2] we use some values greater than 1 as a comparison. The considered values
for κ are 0.5, 0.75, 0.95, 1, 2 and 5. The parameter vector to be estimated is
therefore still given by θ = [β, γ]′, the instrument sets used are the same seven
sets as given in the previous section.
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Chapter 6

Results

6.1 Summary statistics

Returns and consumption

Using the time series for returns on the ATX, the Vibor/Euribor as a risk-free
rate and consumption growth as depicted in Figures 4.4, 4.11 and 6.1, Fable
6.1 states the summary statistics for version 1 of the simple model.
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Figure 6.1: Returns on the ATX - 1Q88-4Q09

1Q1989 - 4Q2009 Mean Std.Dev Autocorr.

Return on Stocks 11.080 27.220 0.201

Return on Bonds 3.721 1.226 0.968

Consumption Growth 1.375 1.664 -0.335

Table 6.1: Summary statistics for the simple model version 1
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Figure 6.2: Log-returns on the ATX -
1Q89-4Q09
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Figure 6.3: Log-consumption growth
rates - 1Q89-4Q09

In Austria the average annual return1 on the ATX accounts for 11.808% and
is therefore high when considering the period from 1Q1989 to 4Q2009. The
standard deviation of risky assets is high as well, returns on the ATX have a
volatility of 27.220%. First-order autocorrelation has a value of 0.201. Returns
on bonds are low compared to risky returns and account for 3.721% with a low
standard deviation of 1.226%. The first-order autocorrelation is high accouting
for 0.968. Consumption growth has a mean of 1.375% and a low standard
deviation of 1.664%. First-order autocorrelation of consumption growth is
negative and has a value of −0.335.

Logarithmic returns and consumption

For the simple model version 2 the returns and consumption growth are consi-
dered in logarithmic terms and are depicted in Figures 6.2 and 6.3. Table 6.2
reports the summary statistics for version 2 of the simple model.

1Q1989 - 4Q2009 Mean Std.Dev Autocorr

Return on Stocks 7.239 27.722 0.225

Return on Bonds 3.696 1.211 0.968

Consumption Growth 1.359 1.659 -0.336

Table 6.2: Summary statistics for the simple model version 2

As expected, the figures are in the same range as in version 1 of the simple
model. The average return on risky assets accounts for 7.239% with a standard

1To annualize the quarterly data, means were multiplied by 400 to obtain annual percen-
tage points, standard deviations by 200 as suggested by Campbell in [5].
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deviation of 27.722% and a first-order autocorrelation of 0.225. The mean of
the risk-free asset has a value of 3.696% and is again much smaller than returns
on the risky assets. The standard deviation is low and accounts for 1.211%.
First-order autocorrelation is the same as in version 1. Consumption growth
has a value of 1.359% with a standard deviation of 1.659%. Autocorrelation
is again negative and accounts for −0.336.
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6.2 The simple model

Version 1

Using the summary statistics of version 1 of the simple model and substituting
them into (3.7)

EERi,t+1 = Et[Ri,t+1]−Rft ≈ γσCρt
[
Ri,t+1,

Ct+1

Ct

]
σt[Ri,t+1],

we get the following result for version 1 of the simple model.

Country Period ˜EER R̃f σ̃R σ̃C ρ̃ γ γ̂

AUT 89Q1-09Q4 7.359 3.720 27.220 1.664 0.152 106.6 16.25

Table 6.3: The equity premium puzzle in Austria - version 1

Version 2

Considering again the more often used version 2 of the simple model and
equation (3.10)

eeri,t+1 +
1

2
Vart[ri,t+1] = γσCρt

[
ln
Ct+1

Ct
, ri,t+1

]
σt[ri,t+1]

it is now possible to append the results for Austria to Table 3.1.

Country Period ẽer r̃f σ̃R σ̃C ρ̃ γ γ̂

USA 74Q2-98Q3 8.071 0.896 15.271 1.071 0.205 240.6 49.3

FRA 73Q2-98Q3 8.308 2.715 23.175 2.922 -0.093 neg 12.3

GER 78Q4-97Q3 8.669 3.219 20.196 2.447 0.029 599.5 17.5

ITA 71Q2-98Q1 4.687 2.371 27.068 1.665 -0.006 neg 10.4

CH 82Q2-98Q4 14.898 1.393 21.878 2.123 -0.112 neg 32.1

NL 97Q2-98Q3 11.421 3.377 16.901 2.510 0.032 850.0 26.9

SWE 70Q1-99Q2 11.539 1.995 23.518 1.851 0.015 1713.2 26.5

UK 70Q1-99Q1 9.169 1.255 21.198 2.511 0.093 186.0 17.2

AUT 89Q1-09Q4 7.405 3.696 27.722 1.659 0.117 209.0 24.4

Table 6.4: The equity premium puzzle in selected countries including Austria

The first column of Table 6.4 reports the left hand side of (3.10), this is the
average excess log-return derived by subtracting the risk-free rate from returns
on the ATX and adjusting it for half of the variance of the returns on the ATX.
As mentioned before, this adjustment arises from the fact that expectations
of log-returns are considered. The expected excess return for the Austrian
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data set is within the range of the other countries given in Table 3.1. The
second column shows the risk-free rate, which is slightly higher than in the
other countries and is comparable with risk-free returns in Germany or the
Netherlands. The third column gives the annualized standard deviation of
the log-excess return on the ATX, which is comparable with the highest of all
values in Italy. The next column reports the annualized standard deviation of
consumption growth, which is again in the range of Italy and therefore mid-
range when compared to the other countries. Column five gives the correlation
of consumption growth and the returns on risky assets, which is relatively high,
but still not as high as in the US. The relative risk aversion γ obtained using
these figures accounts for 209.0. Setting the correlation to 1 gives a γ of 24.4
which is in the range of the other countries but still too high to be a realistic
value which would be between 1 and 10.

The equity premium puzzle

When using the figures σ̃R, σ̃C and ρ̃ derived from Austrian data as stated in
Table 6.4 it is possible to calculate the expected excess return for reasonable
values of γ ranging from 1 to 10. The first column in Table 6.5 headed by
ẽer(γ) reports the expected excess return when using equation (3.10), the
second column headed by ẽer(γ̂) uses a correlation ρ̃ equal to 1, which is
most favorable to the model and yields in the highest possible values for the
expected excess return.

γ ẽer(γ) ẽer(γ̂)

1 0.054% 0.460%

2 0.011% 0.920%

3 0.161% 1.380%

4 0.215% 1.840%

5 0.269% 2.300%

γ ẽer(γ) ẽer(γ̂)

6 0.323% 2.760%

7 0.376% 3.219%

8 0.431% 3.679%

9 0.484% 4.139%

10 0.538% 4.599%

Table 6.5: Expected excess returns for reasonable γ’s

It can be noted, that the equity premium puzzle is present in the Austrian
data set, as the excess returns, when considering γ ranging from 1 to 10, is
significantly lower than the historical average of 7.405%. Hence, like in other
countries, the simple model fails to explain the high returns on stocks.
Using a correlation of 1 the values for ẽer are higher, but still too low to resolve
the equity premium puzzle. When allowing for high values of the relative risk
aversion coefficient the equity premium puzzle can be solved, however, this
can lead to the risk-free rate puzzle, which is described in the next section.
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The risk-free rate puzzle

Calculating the risk-free rate as given in (3.9)

rft = δ + γg − 1

2
γ2σ2C ,

for reasonable values of γ between 1 and 10 and a subjective time preference
rate δ equal to 0.9 the following result can be obtained:

γ r̃f (γ)

1 2.259%

2 3.617%

3 4.976%

4 6.334%

5 7.692%

γ r̃f (γ)

6 9.049%

7 10.406%

8 11.763%

9 13.120%

10 14.476%

Table 6.6: Risk-free rates for reasonable γ’s

To get the historical risk-free rate of 3.696% a relative risk aversion between
3 and 4 is needed. Higher values of γ result in an unrealistically high risk-free
rate, hence, when solving the equity premium puzzle by allowing a higher risk
aversion, we run into the risk-free rate puzzle as it was noted in other countries
as well.

As a result, like in other countries the simple power utility model is not able
to solve the considered asset pricing puzzles simultaneously.
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6.3 Abel’s model

Considering Abel’s ”Catching up with the Joneses” and the summery statistics
stated in section 6.1 the equity premium puzzle remains the same as in section
6.2 but we can have a look at the risk-free rate given in (3.16) by

rft = δ + γg − 1

2
γ2σ2c − κ(γ − 1)g.

As there is an additional term depending on γ and κ which decreases the risk-
free rate we can hope for a lower value compared to the simple model. Using
again reasonable values for γ ranging from 1 to 10, δ = 0.9 and 0 < κ ≤ 1 as
suggested by Abel in [2] the following risk-free rates were obtained.

γ κ = 0.5 κ = 0.75 κ = 0.9 κ = 1

1 2.259% 2.259% 2.259% 2.259%

2 2.938% 2.598% 2.394% 2.258%

3 3.617% 2.937% 2.530% 2.258%

4 4.295% 3.276% 2.664% 2.257%

5 4.974% 3.615% 2.799% 2.256%

6 5.652% 3.953% 2.934% 2.254%

7 6.329% 4.291% 3.068% 2.252%

8 7.007% 4.628% 3.201% 2.250%

9 7.684% 4.966% 3.335% 2.248%

10 8.361% 5.303% 3.468% 2.245%

Table 6.7: Risk-free rates for reasonable γ’s - Abel model

Compared to Table 6.6 the risk-free rates are lower, and therefore allow for
a higher relative risk aversion γ. The case κ = 1 is not realistic for Austrian
data as the risk-free rate decreases with increasing γ and the highest value is
given by 2.259%. For κ = 0.9 the historical value of 3.696% was reached with
γ between 11 and 12 and for κ = 0.95 a value around γ = 24 was needed,
which was obtained using equation (3.10) with a correlation of ρ = 1. For
κ > 1 negative values for the risk-free rate were obtained, which confirms the
restriction of κ ≤ 1.
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6.4 Results of the GMM estimation

For the simple model and Abel’s habit formation model the parameters β and
γ were formally estimated with the R package ”gmm”. In order to obtain
starting values for the procedure, a grid search was done using the moment
conditions in (5.4) and the corresponding instrument sets. The identity matrix
was used as weighting matrix and the values with the lowest TJT statistic were
selected as the initial parameters. Two different ranges corresponding to the
values for γ and γ̂ stated in Table 6.4 were considered, which resulted in similar
starting values. The sourcecode conducting the estimation is partly given in
Appendix B.

6.4.1 GMM estimation of the simple model

Given the state-price deflator of the simple model ζt+1/ζt = e−δ(Ct+1/Ct)
−γ

with β = e−δ the following sections describe the estimates obtained for the
parameters γ and β using the two-step as well as the iterative version of GMM.

Two-step estimation

For the original two-step version proposed by [9] and described in section 5.2
the estimated optimal weighting matrix Ŝ was used in the second step to
estimate the parameters. The parameter space was restricted to β ∈ (0,∞)
as the subjective time preference rate δ is then derived as the negative of the
logarithm of β. Moreover, γ ∈ (0,∞) is required as only a positive parameter
γ results in a concave utility function u.

I-Set β̂ Std.Dev γ̂ Std.Dev TJT p-Value

1 1.04133 0.02730 18.72439 12.19299 3.60708 0.16471

2 1.00644 0.02796 12.64402 8.81056 1.12010 0.57118

3 1.05315 0.02242 16.44676 7.59717 0.65374 0.72118

4 1.02210 0.02097 10.64091 5.58863 4.98324 0.28902

5 1.04056 0.01752 17.08042 5.18848 5.82537 0.21257

6 1.02795 0.01721 11.19497 4.03124 1.66066 0.79785

7 1.03329 0.01728 14.18698 3.81370 6.59640 0.35979

Table 6.8: Two-step GMM results - simple model

The first column of Table 6.8 headed by β̂ states the estimates obtained for the
parameter β, the second column shows the corresponding standard deviations.
It follows, that the values for β are in the range around 1. As a result the
corresponding subjective time preference rates δ are low, which means that
investors are unwilling to substitute consumption over time. This reduces
their desire to borrow and, recalling the risk-free rate puzzle, β > 1 could help
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to obtain a lower risk-free rate. However, it can be noted that the risk-free
rate puzzle is still present as δ is only slightly negative for β slightly greater
than 1, and hence there is more or less no effect on the risk-free rate. The
third column headed by γ̂ gives the estimated relative risk aversion coefficient
γ̂, which is greater than 10 for all instrument sets. The next column states
the corresponding standard deviations. As these standard deviations are high,
no evidence can be given for a γ in the desired range from 1 to 10. On the
other hand, the values are smaller than the value of 209.0 derived by using
the simple equation in the previous section. The fifth column shows the test
statistic TJT for Hansen’s test of overidentifying restrictions and the sixth
column the corresponding p-value. On conventional significance levels the JT
test does not reject the simple model in any case. Instrument set 4 shows the
smallest value of γ̂ which is just slightly above 10. The corresponding standard
deviation, however, is 5.58863. The corresponding β̂ is given by 1.02210 with
a standard deviation of 0.02097.

Iterative estimation

For the iterative GMM estimation of the simple model the weighting matrix
was again the estimated optimal weighting matrix Ŝ. The procedure is said
to converge if the distance ‖θ̂1 − θ̂2‖ gets smaller than 0.1 during 100 itera-
tions. In a first step, the parameter space was restricted to γ ∈ (0,∞) and
β ∈ (0,∞), because only positive values make sense for the model. However,
for instrument set 3 the procedure reached this minimal possible value and
stopped before converging. Table 6.9 shows the results when restricting the
parameter space as mentioned above, Table 6.10 shows several steps of the
procedure for instrument set 3 without this restriction.

Results with a restricted parameter space

I-Set β̂ Std.Dev γ̂ Std.Dev TJT p-Value

1 0.98373 0.00281 0.18836 0.67191 20.29000 0.00004

2 1.01213 0.01441 6.87589 4.29595 0.73905 0.69106

3 0.99083 0.00157 0.00000 0.06443 1.62033 0.44478

4 1.00328 0.00516 4.29924 1.59557 5.56470 0.23410

5 0.99699 0.00165 2.13148 0.47489 5.83402 0.21189

6 0.99485 0.00000 0.01952 0.00005 42099 0

7 0.99838 0.00205 2.77760 0.58196 10.43194 0.10760

Table 6.9: Iterative GMM results simple model - restricted parameter space

The values and standard deviations obtained by the iterated GMM are lower
than those obtained by using the two-step GMM, and some of the values can
be assumed to lie in the range from 1 to 10. Except for instrument set 3, where
the minimal possible value of 0 was reached, the estimators of the relative risk
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aversion parameter are in the range of γ̂ ∈ [0.01952, 6.87589]. with relatively
low standard deviations compared to the two-step GMM results. β̂ is close
to 1 for all instrument sets and the corresponding standard deviations are
low. However, when using instrument set 1 and 6 the model is rejected by
Hansen’s JT test of overidentifying restrictions. Interestingly, these are the
instrument sets which resulted in positive values for γ̂ that are smaller than
1. For instrument set 3 the procedure stopped when γ̂ reached 0, at this point
the model was not rejected on the conventional significance levels.

Results with an unrestricted parameter space

Instrument Set 3

It. β̂ Std.Dev γ̂ Std.Dev TJT p-Value

1 0.99850 0.00449 2.90980 1.37420 0.84864 0.65421

2 0.99136 0.00135 0.31097 0.17787 1.19705 0.54962

3 0.99042 0.00309 -0.10676 0.15025 1.25899 0.53286

4 0.99069 0.0262 -0.16219 0.17836 2.96771 0.22676

5 0.99030 0.00239 -0.18495 0.17737 0.87619 0.64526

6 0.99028 0.00240 -0.18353 0.17693 0.96464 0.61735

7 0.99028 0.00240 -0.18353 0.17693 0.96464 0.61735

Table 6.10: Iterative GMM results simple model - instrument set 3

Considering Table 6.10, by using an unrestricted parameter space allowing
β ∈ (−∞,∞) and γ ∈ (−∞,∞), the iterative GMM procedure converged
after 7 iterations using instrument set 3. After the third iteration the value
for γ̂ was negative, after the sixth iteration the value did not change any more.
The corresponding standard deviation is about 0.17. Even though the value
obtained for the relative risk aversion parameter is not a meaningful result
when expecting a value between 1 and 10, it can be noted, how fast the values
decrease when allowing for several iterations. This was also noticed when
using the other instrument sets.

6.4.2 GMM estimation of Abel’s model

The formal parameter estimation for Abel’s model was done in the same way
as the parameters of the simple model were estimated. The state-price deflator
ζt+1/ζt = e−δ (Ct+1/Ct)

−γ (Ct/Ct−1)
κ(γ−1) with β = e−δ was used to set up

the moment conditions. The parameter space for β and γ was restricted
to positive values. The parameter κ was not estimated by GMM but the
procedure was done for several different values of κ. As section 6.3 had shown
that reasonable risk-free rates for higher values of γ are only possible with
κ < 1, but close to 1 special attention was paid to these values.
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Two-step estimation

Instrument Set 1

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.09089 0.10215 203.21277 58.38272 12.44662 0.00198

0.75 0.00507 0.02157 274.27317 147.93145 9.27257 0.00969

0.95 0.00093 0.00758 298.38253 246.79546 8.59672 0.01359

1 0.00720 0.06856 232.46774 285.18086 6.16176 0.04591

2 0.52115 0.18362 47.07854 15.96607 12.30173 0.00213

5 0.56968 0.19928 18.32984 7.71102 13.60378 0.00111

Instrument Set 2

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.99204 0.00801 16.86304 7.78775 0.62890 0.73019

0.75 0.96793 0.02142 -2.38150 19.33878 0.53777 0.76423

0.95 0.97582 0.01335 16.56703 6.06453 0.60665 0.73836

1 0.97290 0.01438 16.28777 6.05215 0.60713 0.73818

2 0.92372 0.04170 12.95372 5.94754 0.62944 0.72999

5 0.86569 0.08407 7.63369 3.92398 0.67754 0.71264

Instrument Set 3

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 1.01522 0.00844 9.87555 2.01563 1.70678 0.42597

0.75 1.00551 0.00786 8.34032 1.75695 1.72224 0.42269

0.95 0.99982 0.00796 7.38310 1.58279 1.73445 0.42012

1 0.99863 0.00802 7.17816 1.54206 1.73701 0.41958

2 0.98465 0.00893 4.74531 1.05397 1.75267 0.41631

5 0.97207 0.01189 2.77244 0.59690 1.71334 0.42457

Instrument Set 4

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.14302 0.08130 182.32420 36.37687 16.39326 0.00253

0.75 0.00468 0.00891 276.14657 74.04099 9.63823 0.04698

0.95 0.29618 0.10266 111.59014 18.42171 19.03100 0.00078

1 0.52680 0.10521 80.60771 13.08808 21.34600 0.00027

2 0.81097 0.05944 25.85157 6.65207 23.36800 0.00011

5 0.83048 0.08268 9.69075 3.72128 23.52600 0.00010
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Instrument Set 5

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.85583 0.00876 -9.75652 2.19394 70.25700 0.00000

0.75 0.91861 0.00620 -5.39801 1.40039 59.89900 0.00000

0.95 1.00289 0.00644 11.95365 2.40582 27.15300 0.00002

1 1.00038 0.00643 11.28891 2.28978 25.86200 0.00003

2 0.98106 0.00926 5.12027 1.14676 19.95200 0.00051

5 0.97209 0.01013 2.56687 0.51540 18.59660 0.00094

Instrument Set 6

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 1.02162 0.00682 12.11324 2.40943 2.59304 0.62806

0.75 1.00859 0.00539 10.19533 2.14069 2.66207 0.61587

0.95 1.00022 0.00555 8.80111 1.89245 2.74427 0.60149

1 0.99845 0.00571 8.48536 1.83134 2.76430 0.59800

2 0.98099 0.00813 4.79621 1.05523 2.92559 0.57035

5 0.97029 0.01041 2.61188 0.49576 2.77698 0.59581

Instrument Set 7

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 1.00120 0.05198 95.96013 11.99766 87.84200 0.00000

0.75 0.93570 0.04498 75.90787 10.53907 72.95100 0.00000

0.95 0.97185 0.01848 33.68463 6.22041 44.28400 0.00000

1 0.96840 0.01750 30.55280 5.77540 42.53600 0.00000

2 0.95456 0.01281 8.69935 1.94310 30.09500 0.00004

5 0.95461 0.01805 3.76497 0.84077 24.63100 0.00040

Table 6.11: Two-step GMM results - Abel model

The two-step estimation gives varying results for different instrument sets.
For instrument set 1 and κ lying between 0 and 1 the parameter γ̂, considered
together with the corresponding standard deviation, is unrealistically high.
For κ > 1, γ̂ and the corresponding standard deviations get lower the higher
the value of κ. γ̂ reaches a value around 18 with a standard deviation of
about 7 for the highest value of κ. The model was rejected by Hansen’s JT
test for all values of κ on conventional significance levels except for κ = 0.95
and κ = 1 on the 10% significance level. Similar results appear for instrument
sets 4 and 7. For 0 < κ ≤ 1, γ̂ and the corresponding standard deviations are
high, but with κ > 1, they decrease. For the higher values of κ we get some
realistic values for γ̂. However, the model using these instrument sets was
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clearly rejected by Hansen’s JT test. Instrument set 5 shows negative values
of γ̂ and relatively low standard deviations for 0 < κ < 1. For κ ≥ 1 the
estimates for γ are in a reasonable range, however, the model was rejected for
all values of κ when using this instrument set. For instrument sets 2 the model
is not rejected for any value of κ. The values for γ̂ are mostly around 16 with
standard deviations of about 6-7. The most reasonable result is obtained when
using κ = 5. Instrument sets 3 and 6 resulted in relatively low values for γ̂,
which are below 12, and low standard deviations, even with 0 < κ ≤ 1. Again
γ̂ and the standard deviations decreases when increasing κ and the model was
not rejected by Hansen’s JT test. What most instrument sets have in common
is that the estimated relative risk aversion parameter γ̂ and the corresponding
standard deviations decrease for an increasing κ. This contradicts with the
findings in section 6.3 where κ ∈ (0, 1] was assumed in order to derive positive
risk-free rates. The most reasonable values when restricting κ and assuming
that γ decreases with increasing κ are given for instrument set 3 or instrument
set 6 with κ ∈ [0.75, 0.95].

Iterative estimation

Instrument Set 1

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.00001 0.00004 430.39135 103.21911 5305.2 0.00000

0.75 0.00019 0.00086 376.73913 156.54715 9.76621 0.00757

0.95 0.00024 0.00193 336.14423 243.27555 4.997481 0.08219

1 0.00009 0.00090 354.91695 277.46733 4.79326 0.09102

2 0.00685 0.02843 154.79951 82.18833 4.19541 0.12274

5 0.03074 0.02507 55.24878 9.96218 2.33140 0.31170

Instrument Set 2

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 1.00462 0.00954 10.71609 6.56832 0.59825 0.74147

0.75 0.99362 0.00537 11.81118 5.64662 0.59167 0.74391

0.95 0.98334 0.00886 12,27402 5.63702 0.59465 0.74280

1 0.98055 0.01017 12.43581 5.66384 0.59795 0.74158

2 0.92954 0.04026 12.10838 5.89547 0.62263 0.73248

5 0.86569 0.08407 7.63373 3.92398 0.67754 0.71264
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Instrument Set 3

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.99277 0.00116 0.16843 0.04199 1.46167 0.48151

0.75 0.99353 0.00116 0.21904 0.04429 1.44448 0.48566

0.95 0.99407 0.00117 0.25327 0.04668 1.44560 0.48540

1 0.99420 0.00117 0.26257 0.04721 1.44623 0.48524

2 0.99628 0.00127 0.39316 0.05618 1.45210 0.48382

5 0.99935 0.00161 0.62456 0.05196 1.47264 0.47887

Instrument Set 4

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5∗ 0.67469 0.011326 95.37656 15.49157 3484.6 0.00000

0.75∗ 0.34234 0.11239 120.37275 19.82806 2853.8 0.00000

0.95∗ -0.0009 0.00028 409.95312 95.64646 30.09600 0.00001

1∗ 0.00111 0.00240 285.93176 70.21232 12.86732 0.01194

2∗ -0.03831 0.00148 -21.88347 7.10883 19.30400 0.00068

5 0.81098 0.08484 10.58423 3.77070 22.86600 0.00013

Instrument Set 5

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.99267 0.00116 0.11511 0.04222 15.86985 0.00320

0.75 0.99349 0.00116 0.17048 0.04691 15.11668 0.00447

0.95 0.99407 0.00117 0.21000 0.05042 14.55359 0.00572

1 0.99421 0.00118 0.21952 0.05119 14.42904 0.00604

2 0.99637 0.00128 0.37346 0.06002 13.15455 0.01545

5 0.99948 0.00166 0.61128 0.05579 12.88527 0.01185

Instrument Set 6

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.99543 0.00061 0.12078 0.04448 9.36441 0.05261

0.75 0.99599 0.00070 0.17789 0.04840 8.93571 0.06273

0.95 0.99653 0.00078 0.22325 0.05089 9.85533 0.04294

1 0.99663 0.00079 0.23304 0.05147 9.88319 0.04244

2 0.99799 0.00112 0.38850 0.05762 11.31743 0.02322

5 1.00004 0.00174 0.57426 0.06345 6.99330 0.13624
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Instrument Set 7

κ β̂ Std.Dev γ̂ Std.Dev TJT p-Value

0.5 0.99165 0.06071 103.29577 12.70494 47.54700 0.00000

0.75 0.92022 0.04743 78.82301 10.70742 43.58900 0.00000

0.95 0.99153 0.00084 1.03180 0.03403 73.76400 0.00000

1 0.99184 0.00083 1.05746 0.03783 74.19400 0.00000

2 0.99705 0.00117 0.37261 0.06017 25.78300 0.00024

5 0.99912 0.00174 0.58079 0.06317 24.07463 0.00051

Table 6.12: Iterative GMM results - Abel model

Using the iterative GMM estimation the results vary even more than the
results obtained by the two-step method. Instrument set 1 shows again too
high values for γ̂ and the corresponding standard deviations as to be able to
derive a meaningful result, especially in the range 0 < κ ≤ 1. For these values
the model was rejected by Hansen’s JT test at least at the 10% significance
level. With κ > 1 the model was not rejected, but the relative risk aversion
parameter considered together with the standard deviation is still too high.
Instrument set 2 resulted in values for γ̂ of about 10 and standard deviations of
around 6, and the model was not rejected in any case. Neither was instrument
set 3, with γ̂ being positive but smaller than 1 and small standard deviations
of about 0.05. For instrument set 4 the κ’s marked with * resulted either
in negative values for one of the parameters β̂ and γ̂ or even both, or in
positive values but rejection of the model by Hansen’s JT test depending on the
number of iterations used. The values stated are the results after 50 iterations.
Instrument set 5 shows small values of γ̂ and the corresponding standard
deviations, however, the model was rejected by the JT test for 0 < κ ≤ 1 and
close to rejection for κ > 1. A similar situation is given for instrument set 6,
where the relative risk aversion is positive and smaller than 1, and the model
was mostly rejected at least for significance levels below 10%. Instrument set
7 shows high values for γ̂, standard deviations of at least 10 and a rejection of
the model in the range 0 < κ ≤ 0.75. For κ > 0.75 the values are much smaller
with standard deviations below 1, but the model was still strictly rejected by
Hansen’s JT test. Using the iterative GMM a decreasing γ̂ for increasing κ is
no longer given.
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6.4.3 Simple model versus Abel model

When comparing the simple model to the Abel model using the seven different
instrument sets it can be noted, that the Abel model was rejected more often.
For the two-step GMM the simple model was not rejected at all, the Abel
model was rejected for instrument set 1, 4, 5 and 7 which is actually more
often than it is not rejected. Using the iterative GMM the simple model was
rejected for instrument set 1 and 6, instrument set 3 resulted in a negative
value for γ̂ with a standard deviation below 1. Abel’s model was not rejected
for instrument set 2 and 3 but no reasonable values could be obtained.
The value of κ does not significantly influence the rejection of a model. Mo-
reover, when looking at the two-step GMM results of the simple model mostly
a high κ in Abel’s model is needed in order to obtain values in the range of the
simple model estimates. As γ̂ decreases with increasing κ this again contra-
dicts with the assumption κ ∈ (0, 1).

As a result, it was not possible to provide evidence for the Abel model outper-
forming the simple model when using GMM for estimation of the parameters
γ and β.
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Chapter 7

Concluding remarks

The aim of this thesis was to empirically test whether consumption-based ca-
pital asset pricing models are able to explain the movements of stock and bond
prices on the Austrian capital market. Using the Austrian ATX as the risky
asset, the Vibor/Euribor as the risk-free rate and private aggregate consump-
tion for describing consumption growth, the simple power utility model [13]
and Abel’s more general ”Catching up with the Joneses” [1] were examined.
The main empirical findings are as follows.
First, when testing the assumptions made for the models and GMM it could
be noted, that not all of these assumptions were satisfied when using Austrian
data. Returns on the ATX and consumption growth failed to be lognormally
distributed as it is needed to derive closed-form expressions for the state-price
deflator and hence for the stock and bond prices. In contrast, returns on the
ATX satisfied the stationarity assumption needed for applying GMM, which
was unfortunately not true for consumption growth and the risk-free rate.
Second, using the time series mentioned above resulted in the well-known
equity premium puzzle, as the historical excess return of 7.405% could only be
obtained with an unrealistically high relative risk aversion parameter γ. Allo-
wing for such a high parameter the risk-free rate puzzle was encountered since
it was not possible to obtain the low value of 3.696% with the high γ. Using
the more general Abel model allowed the use of higher relative risk aversion
coefficients without encountering the risk-free rate puzzle for selected values
of κ, measuring the importance of the additionally introduced consumption-
benchmark.
Third, estimating the parameters β and γ and testing the overall fit of the
models using the two version of GMM as suggested by Hansen [9] resulted in
different findings for the two different models and different instrument sets.
Considering the simple model and the two-step GMM the relative risk aversion
coefficient was lower when compared to the initial findings using the simple
equation for the excess return. The model was not rejected in any case by
Hansen’s JT goodness-of fit test. However, the parameter γ was found to have
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a too high standard deviation as to be a meaningful result. The iterative
GMM resulted in more appropriate figures for γ for some but not all instru-
ment sets. Turning to Abel’s ”Catching up with the Joneses”, the model was
rejected for several instrument sets. For the others, reasonable values for γ
were mostly obtained for κ > 1, which contradicts with the assumption made
by Abel in [2]. The results for the iterative GMM were even less encouraging
since the model was rejected for five of seven instrument sets and the results
of the remaining were not satisfying either. As a result, using GMM did not
provide evidence for the Abel model performing better than the simple power
utility model.

Further work following this analysis could contain a refinement of the data
set, especially of the time series for the risk-free rate and consumption as these
time series were not stationary. Additionally, having consumption only avai-
lable for the period from 1Q88 to 4Q09 restricted the length of the time series
used considerably. Furthermore it would be more appropriate to deduct the
value of consumption of durable goods from private aggregate consumption.
Additionally, the testing and estimation of more complex models could be a
challenge and would hopefully result in improved findings as it was noticed in
several empirical studies.
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Appendix A

Results on the lognormal
distribution

A random variable Y is said to be lognormally distributed if the random
variable X = lnY is normally distributed. If we have

X = lnY ∼ N(m, s2)

the probability density function for X is given by

fX(x) =
1√

2πs2
exp

{
−(x−m)2

2s2

}
, x ∈ R.

Theorem A. 1 The probability density function for Y is given by

fY (y) =
1√

2πs2y
exp

{
−(ln y −m)2

2s2

}
, y > 0

and fY (y) = 0 for y ≤ 0.

Proof: The transformed density function of a random variable Y = H(X),
with H(x) a monotonically increasing function of x and the unique inverse
given by x = H−1(y), is derived with the following result:

fY (y) = fX(H−1(y))|H−1′(y)|

with x = H−1(y) = ln y and H−1
′
(y) = 1/y we have that

fY (y) =
1√

2πs2
exp

{
−(ln y −m)2

2s2

}
1

y
.

�
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Theorem A. 2 For X ∼ N(m, s2) and γ ∈ R the following holds true

E[e−γX ] = exp

{
−γm+

1

2
γ2s2

}
.

Proof: Per definition we have

E[e−γX ] =

∫ +∞

−∞
e−γx

1√
2πs2

e−
(x−m)2

2s2 dx.

Rewriting the exponent leads to

E[e−γX ] = e−γm+ 1
2
γ2s2

∫ +∞

−∞

1√
2πs2

e−
1

2s2
[(x−m)2+2γ(x−m)s2+γ2s4]dx

= e−γm+ 1
2
γ2s2

∫ +∞

−∞

1√
2πs2

e−
(x−[m−γs2])2

2s2 dx

= e−γm+ 1
2
γ2s2 ,

where the last equality is due to the fact that the expression of the integral is
again a density function of a N(m− γs2, s2) distributed random variable and
is therefore equal to 1. �

Using γ = −1 the mean of a lognormally distributed random variable Y = eX

can easily be computed:

E[Y ] = E[eX ] = exp

{
m+

1

2
s2
}
.

With γ = −2 we get
E[Y 2] = E[e2X ] = e2(m+s2),

so that the variance of Y is given by

Var[Y ] = E[Y 2]− (E[Y ])2

e2(m+s2) − e2m+s2

e2m+s2(es
2 − 1).
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Sourcecodes

B.1 Consumption

######################################################################

##### CONSUMPTION ####################################################

######################################################################

#select correct file

setwd("C:/Users/Martin/Documents/R")

#Load data concerning consumption

ConData<-read.table("ConData.txt",header=TRUE,sep="\t",dec = ",")

#save copy of original data

y<-length(ConData[,1])

CData<-array(1,dim=c(y,5))

varianz<-function(x){n=length(x);var(x)*(n-1)/n}

stdabw<-function(x){n=length(x);sqrt(var(x)*(n-1)/n)}

#Consumption deflator based on 2005

for(i in 1:y){

if(ConData[i,1]==20051)basis<-ConData[i,3]}

for(i in 1:y){

CData[i,5]<-round(100/basis*ConData[i,3],digits=1)}

#Consumption deflator based on 1990

for(i in 1:y){

if(ConData[i,1]==19901)basis<-ConData[i,3]}

for(i in 1:y){

CData[i,3]<-round(100/basis*ConData[i,3],digits=1)}

#calculate per capita consumption in EUR instead of Mio EUR

for(j in 1:y){

CData[j,2]<-ConData[j,2]/ConData[j,4]*100000}
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#Consumption Growth based on quarter of the previous year

for(j in 5:y){

CData[j,1]<-CData[j,2]/CData[j-4,2]}

#Consumption Growth previous quarter

for(j in 5:y) {

CData[j,4] <- CData[j,2]/CData[j-1,2]}

ConGrowth<-CData[c(-1,-2,-3),]

write.table(ConGrowth,file="ConsumptionGrowth",quote=FALSE,sep="\t",dec=",")

######################################################################

######################################################################

#Load seasonally adjusted consumption data

Con_ad<-read.table("Consumption_adj.txt",header=TRUE,sep="\t",dec=".")

ConData[,2]<-Con_ad

y<-length(ConData[,1])

#calculate per capita consumption in EUR instead of Mio EUR

for(j in 1:y){

CData[j,2]<-ConData[j,2]/ConData[j,4]*100000}

#Consumption Growth based on quarter of the previous year

for(j in 5:y){

CData[j,1]<-CData[j,2]/CData[j-4,2]}

#Consumption Growth based on quater of previous quarter

for(j in 5:y){

CData[j,4]<-CData[j,2]/CData[j-1,2]}

ConGrowth_ad<-CData[c(-1,-2,-3),]

write.table(ConGrowth_ad,file="ConsumptionGrowth",quote=FALSE,sep="\t",dec=",")

B.2 Population

######################################################################

##### POPULATION #####################################################

######################################################################

#select correct file

setwd("C:/Users/Martin/Documents/R")

#Load data concerning population

PopulationData<-read.table("PopulationData.txt",header=FALSE,sep="\t",dec=",")
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varianz<-function(x){n=length(x);var(x)*(n-1)/n}

stdabw<-function(x){n=length(x);sqrt(var(x)*(n-1)/n)}

beginyear<-1988

endyear<-2009

years<-endyear-beginyear+1

quarters<-years*4

#calculate difference between years

Diff<-array(dim=c(years,1))

for(j in 1:years){

Diff[j]<-round((PopulationData[j+1,2]-PopulationData[j,2])/4,digits=0)}

#first column containing quarters/years

QData<-array(beginyear:endyear,dim=c(quarters,2))

QData[,1]<-sort(QData[,1])

for(j in 1:quarters){

QData[j,1]<-QData[j,1]*10+1*j%%4+1}

QData[,1]<-sort(QData[,1])

QData[,2]<-0

#compute quarterly figures for population

j<-0

repeat{QData[j*4+1,2]<-PopulationData[j+1,2];

j<-j+1;if(j==years) break}

i<-0

repeat{for(j in 2:4){

QData[i*4+j,2]<-QData[i*4+j-1,2]+Diff[i+1]};

i<-i+1;if(i==years) break}

PopData<-QData[c(-1,-2,-3),2]

write.table(PopData,file="PopulationData",quote=FALSE,sep="\t",dec=",")

B.3 ATX and Market Value

######################################################################

##### ATX ############################################################

######################################################################

# select correct file

setwd("C:/Users/Martin/Documents/R")

# Load data concerning Atx Stock Prices

AtxData<-read.table("AtxData.txt",header=FALSE,sep="\t",dec=",")

beginyear<-1988
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endyear<-2009

countdays<-length(AtxData[,1])

countquaters<-(endyear - beginyear +1)*4

varianz<-function(x){n=length(x);var(x)*(n-1)/n}

stdabw<-function(x){n=length(x);sqrt(var(x)*(n-1)/n)}

#first column containing quaters/years

QData<-array(beginyear:endyear,dim=c(countquaters,2))

QData[,1]<-sort(QData[,1])

for(j in 1:countquaters){

QData[j,1]<-QData[j,1]*10+1*j%%4+1}

QData[,1]<-sort(QData[,1])

#calculate average quarterly values

QData[,2]<-0

j<-beginyear

i<-1

repeat k<-3

repeat{quater<-NULL

year<-subset(AtxData,as.numeric(substr(AtxData[,1],7,10))==j);

quater<-subset(year,as.numeric(substr(year[,1],4,5))==k);

QData[i,2]<-mean(quater[,2]);

i<-i+1;k<-k+3;if(k>12) break}

j<-j+1;if(j==endyear+1) break}

AtxData<-QData[c(-1,-2,-3),]

write.table(AtxData,file ="AtxData",quote=FALSE,sep="\t",dec=",")

The market value was derived in exactly the same way as the ATX.

B.4 Vibor/Euribor

######################################################################

##### VIBOR/EURIBOR ##################################################

######################################################################

# select correct file

setwd("C:/Users/Martin/Documents/R")

# Load data concerning Vibor Overnight Rate

ViborOnData<-read.table("ViborOnData.txt",header=TRUE,sep="\t",dec=",")

beginyear<-1989

endyear<-2009

countdays<-length(ViborOnData[,1])

countquaters<-(endyear-beginyear +1)*4

Time<-array(dim = c(countdays,5))
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#allocation of months in quarters

for(j in 1:countdays){

Time[j,1]<-as.numeric(substr(ViborOnData[j,1],7,10));

Time[j,2]<-as.numeric(substr(ViborOnData[j,1],4,5))}

for(j in 1:countdays){

Time[j,1]<-Time[j,1]*10+if (Time[j,2]<4)

1

else if(Time[j,2]<7)

2

else if(Time[j,2]<10)

3

else 4}

#append data

Time[,3]<-ViborOnData[,2]

#first column containing quarters/years

QData<-array(beginyear:endyear,dim=c(countquaters,3))

QData[,1]<-sort(QData[,1])

for(j in 1:countquaters){

QData[j,1]<-QData[j,1]*10+1*j%%4+1}

QData[,1]<-sort(QData[,1])

#calculate averages

QData[,2]<-0

QData[,3]<-0

#sum up values for a quarter

j<-1

repeat{for(i in 1:countdays){

if(Time[i,1]==QData[j,1])

QData[j,2]<-QData[j,2]+Time[i,3]};

j<-j+1;if(j==countquaters+1) break}

#number of values of the quater

j<-1

repeat{for(i in 1:countdays){

if(Time[i,1]==QData[j,1])QData[j,3]<-QData[j,3]+1};

j<-j+1;if(j==countquaters+1) break}

#average = sum values for a quater/number of values

for(i in 1:countquaters){

QData[i,2]<-((QData[i,2]/QData[i,3]/100+1)^(1/4)-1)*100}

ViborData<-append(0,QData[,2])

write.table(ViborData,file="ViborOnData",quote=FALSE,sep="\t",dec=",")
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B.5 Dividends

######################################################################

##### DIVIDENDS ######################################################

######################################################################

# select correct file

setwd("C:/Users/Martin/Documents/R")

#Load Data

DividendData<-read.table("DividendData.txt",header=FALSE,sep="\t",dec=",")

n<-nrow(DividendData)

#dividends absolute

if(max(dim(DividendData))==max(dim(MarketValueData))){

for(i in 1:n){

DividendData[i,2]<-DividendData[i,2]*MarketValueData[i,2]/100/12}}

beginyear <- 1988

endyear <- 2009

#first column containing quaters/years

QData<-array(beginyear:endyear,dim=c(countquaters,2))

QData[,1]<-sort(QData[,1])

for(j in 1:countquaters){

QData[j,1]<-QData[j,1]*10+1*j%%4+1}

QData[,1]<-sort(QData[,1])

#calculate quaterly values by summing up the monthly

QData[,2]<-0

j<-beginyear

i<-1

repeat{k<-1

m<-array(0,dim=c(12,1))

q<-array(0,dim=c(12,1))

year1<-NULL

year2<-NULL

month1<-NULL

month2<-NULL

repeat{#select data year j, month k

year1<-subset(DividendData,as.numeric(substr(DividendData[,1],7,10))==j);

year2<-subset(MarketValueData,as.numeric(substr(MarketValueData[,1],7,10))==j)

month1<-subset(year1,as.numeric(substr(year1[,1],4,5))==k);

month2<-subset(year2,as.numeric(substr(year2[,1],4,5))==k);

#sum up end-of-month data in vector m

if(k>1)

m[k,1]<-m[k-1,1]+month1[length(month1[,1]),2]

else
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m[k,1]<-month1[length(month1[,1]),2]

if(k>1)

q[k]<-q[k-1]+mean(month2[,2])

else

q[k]<-mean(month2[,2])

k<-k+1;if(k == 13) break}

#calculate summed up quaterly values

QData[i,2]<-m[3,1] #/q[3,1]*100

QData[i+1,2]<-(m[6,1]-m[3,1])#/(q[6,1]-q[3,1])*100

QData[i+2,2]<-(m[9,1]-m[6,1])#/(q[9,1]-q[6,1])*100

QData[i+3,2]<-(m[12,1]-m[9,1])#/(q[12,1]-q[9,1])*100

i<-i+4;

j<-j+1;if(j==endyear+1) break}

DivData<-QData[c(-1,-2,-3),2]

write.table(DivData,file="DividendData",quote=FALSE,sep="\t",dec=",")

B.6 Summary statistics and γ

######################################################################

##### SUMMARY STATISTICS #############################################

######################################################################

#select correct file

setwd("C:/Users/Martin/Documents/R")

# Load data

PopulationData<-read.table("PopulationData",header=TRUE,sep="\t",dec=",")

AtxData<-read.table("AtxData",header=TRUE,sep="\t",dec=",")

MarketValueData<-read.table("MarketValueData",header=TRUE,sep="\t",dec=",")

DividendData<-read.table("DividendData",header=TRUE,sep="\t",dec=",")

ViborOnData<-read.table("ViborOnData",header=TRUE,sep="\t",dec=",")

ConsumptionData<-read.table("ConsumptionGrowth",header=TRUE,sep="\t",dec=",")

beginyear<-1988

endyear<-2009

countdays<-length(AtxData[,1])

countquaters<-(endyear-beginyear +1)*4

y<-nrow(AtxData)

#generate data matrix

CombinedData<-array(dim=c(max(dim(AtxData)),9))

colnames(CombinedData)<-c("TIME","POP","ATX","DIV","RFR","CSP","CPI05","CPI90","MV")

CombinedData[,1]<-AtxData[,1]

CombinedData[,2]<-PopulationData[,1]

CombinedData[,3]<-AtxData[,2]
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CombinedData[,4]<-DividendData[,1]

CombinedData[,5]<-ViborOnData[,1]

CombinedData[,6]<-ConsumptionData[,2]

CombinedData[,7]<-ConsumptionData[,5]

CombinedData[,8]<-ConsumptionData[,3]

CombinedData[,9]<-MarketValueData[,1]

write.table(CombinedData,file="CombinedData",quote=FALSE,sep="\t",dec=",")

#inflation adjustment of ATX and RFR - 2009 to 1990

for(i in 1:y){

CombinedData[i,3]<-CombinedData[i,3]/CombinedData[i,8]*100;

CombinedData[i,5]<-CombinedData[i,5]/CombinedData[i,8]*100}

#inflation adjustment of Consumption - 2005 to 1990

for(i in 1:y){

CombinedData[i,6]<-CombinedData[i,6]*CombinedData[i,8]/CombinedData[i,7]}

######################################################################

######################################################################

varianz<-function(x){n=length(x);var(x)*(n-1)/n}

stdabw<-function(x){n=length(x);sqrt(var(x)*(n-1)/n)}

#Calculation (log)consumption growth

x<-NULL

i<-2

repeat{ x[i-1]<-(CombinedData[i,6]/CombinedData[i-1,6]);

i<-i+1; if(i== max(dim(CombinedData))+1) break}

consumptiongrowth<-x

x<-NULL

i<-2

repeat{ x[i-1]<-log(CombinedData[i,6]/CombinedData[i-1,6]);

i<-i+1; if(i== max(dim(CombinedData))+1) break}

logconsumptiongrowth<-x

meanC<-mean(consumptiongrowth-1)*400

standarddeviationC<-stdabw(consumptiongrowth-1)*200

varC <- standarddeviationC^2

autocorrC <- acf(consumptiongrowth)

logmeanC<-mean(logconsumptiongrowth)*400

logstandarddeviationC<-stdabw(logconsumptiongrowth)*200

logvarC<-logstandarddeviationC^2

logautocorrC<-acf(logconsumptiongrowth)

######################################################################

######################################################################
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#Calculation returns on risky and risk-free asset

x<-array(0,dim=c(y-1,1))

i<-1

repeat{ x[i]<-(CombinedData[i+1,3]/CombinedData[i,3]+CombinedData[i+1,4]/

CombinedData[i,9]-1);

i<-i+1;if(i==y) break}

return<-x

RiskFreeData<-combinedData[c(-1),5]/100

riskyreturn<-mean(return)*400

riskfreereturn<-mean(RiskFreeData)*400

standarddeviationriskfree<-stdabw(RiskFreeData)*200

expectedexcessreturn<-(riskyreturn-riskfreereturn)

standarddeviationR<-stdabw(return)*200

correlation<-cor(return, consumptiongrowth)

autocorrR<-acf(return)

autocorrRF<-acf(RiskFreeData)

#Calculation LOG-returns

logreturnr<-log(1+return)

logreturnrf<-log(1+RiskFreeData)

logriskyreturn<-mean(logreturnr)*400

logstandarddeviationrisky<-stdabw(logreturnr)*200

logriskfreereturn<-mean(logreturnrf)*400

logstandarddeviationriskfree<-stdabw(logreturnrf)*200

logeer<-logreturnr-logreturnrf

logstandarddeviationexcessreturn<-stdabw(logeer)*200

logvarhalf<-((stdabw(logeer)*2)^2)/2*100

logexpectedexcessreturn<-mean(logeer)*400+logvarhalf

logcorrelation<-cor(logreturnr,logconsumptiongrowth)

logautocorrR<-acf(logreturnr)

logautocorrRF<-acf(logreturnrf)

#generate matrix for gmm

DataGmm <- array(dim = c(y-1, 3))

DataGmm[,1]<-logreturnr+1

DataGmm[,2]<-logreturnrf+1

DataGmm[,3]<-consumptiongrowth

write.table(DataGmm,file="DataGmm",quote=FALSE,sep="\t",dec=",")

######################################################################

######################################################################
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#Calculation of gamma

gamma<-expectedexcessreturn/100/((standarddeviationR/100)*

(standarddeviationC/100)*correlation)

gammahat<-(expectedexcessreturn/100)/((standarddeviationR/100)*

(standarddeviationC/100))

loggamma<-(logexpectedexcessreturn+logvarhalf)/100/

((logstandarddeviationrisky/100)*(standarddeviationC/100)*logcorrelation)

loggammahat<-loggamma*logcorrelation

B.7 GMM estimation

The GMM procedure described below was run for each instrument set. The
code differs only in the definition of function g, where the appropriate instru-
ment set needs to be appended to the variable s.

######################################################################

##### GMM ############################################################

######################################################################

#select correct file

setwd("C:/Users/Martin/Documents/R")

library("gmm")

#load data

GmmData<-read.table("DataGmm",header=TRUE,sep="\t",dec=",")

T<-nrow(GmmData)

r<-GmmData[-T,1] #risky return lagged

rf<-GmmData[-T,2] #risk-free return lagged

c<-GmmData[-T,3] #consumption growth lagged

#data matrix

x<-as.matrix(GmmData[-1,])

I<-c("ident") #weights matrix = identity matrix

O<-c("optimal") # weiths matrix = optimal matrix

######################################################################

##### function g(tet,x) as in (3.7) SIMPLE MODEL #####################

######################################################################

g1<-function(tet,x){

s<-(tet[1]*x[,3]^(-tet[2])*x[,1:2]-1)

s1<-cbind(s,s*r)

return(s1)}
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######################################################################

##### GRID SEARCH - SIMPLE MODEL #####################################

######################################################################

#search for minimum objective function value

K1<-matrix(nrow = 500)

for(i in 1:50){

for(j in 1:10){

K1[(i-1)*10+j] <- gmm(g=g1, x = x ,wmatrix = I,

t0 = c(beta = 0.8+j*2/100, gamma = i))[2]}}

K1<-cbind(1:500,unlist(K1))

K1<-K1[order(K1[,2]),]

######################################################################

##### CALCULATION - STARTING VALUES ##################################

######################################################################

gamma1<-floor(K1[1,1]/10)+1

beta1<-0.8+2*(K1[1,1]-(gamma1-1)*10)/100

if(beta1==0.8) beta1<-1

######################################################################

##### GMM ESTIMATION - SIMPEL MODEL ##################################

######################################################################

####################

#"Instrument set 1"#

####################

beta1

gamma1

print(res1<-gmm(g=g1,x=x,t0=c(beta=beta1,gamma=gamma1),wmatrix=O,

type="twoStep",optfct=c("nlminb"),lower=c(0,0),upper=c(Inf,Inf)))

summary(res1)

The source code for the iterative GMM has the same body except for the final
calculation which is given for instrument set 1 as an example as follows.

####################

#"Instrument set 1"#

####################

beta1

gamma1

print(res1<-gmm(g=g1,x=x,t0=c(beta=beta1,gamma=gamma1),wmatrix=O,

type="iterative",crit=0.1,optfct=c("nlminb"),lower=c(0,0),upper=c(Inf,Inf),

itermax=imax))

summary(res1)
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The Abel model was estimated in the same manner, but with function g as
follows. The procedure was done for different parameters κ.

######################################################################

##### Function g(tet,x) Abel Model as in (5.16) ######################

######################################################################

g1<-function(tet,x){

s<-tet[1]*x[,3]^(-tet[2])*x[,4]^(k*(tet[2]-1))*x[,1:2]-1

s1<-cbind(s,s*r)

return(s1)}
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