
Systematic Proof Theory for Non-Classical
Logics: Advances and Implementation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Mag. Lara Katharina Spendier
Matrikelnummer 0525611

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuerin: Dr. Agata Ciabattoni

Wien, 02.05.2011

(Unterschrift Verfasserin) (Unterschrift Betreuerin)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Acknowledgements

I would like to thank my advisor Agata Ciabattoni for introducing me to the field of
systematic proof theory, for her patience and her continuous support. I really appreciate
the time she spent on explanations when a proof didn’t work out as planned. I also want
to thank Gernot Salzer who was of great help when I was struggling with PROLOG.

I am really grateful to my parents, Patrizia and Ingmar, my brother Dominik and
my family for supporting me in every possible way. I also want to thank Christoph for
always being there.

Lara

ii

Abstract

Non-classical logics are logics different from classical, boolean logic. They encompass,
amongst others, the family of intermediate, fuzzy, and substructural logics. During
the past few years, these logics have gained importance, especially in many fields of
computer science, artificial intelligence, and knowledge representation. By now, there
are many useful and interesting non-classical logics and practitioners in various fields
keep on introducing new logics to fulfill their needs.

Non-classical logics are usually defined by adding Hilbert axioms to known systems.
The usefulness of these logics, however, heavily depends on the availability of analytic
calculi for them, i.e., of calculi where the derivations proceed by step-wise decomposition
of the formulas that should be proved. An analytic calculus for a logic is usually defined by
first choosing a suitable formalism and then providing the right rules for formalizing the
logic. Furthermore, soundness, completeness and cut-elimination for the defined calculus
have to be proved. This leads to the introduction of a large number of such proofs and
papers which increases with the definition of new logics. An automated procedure to
introduce analytic calculi in a systematic way would therefore be very desirable.

In this thesis we extended the scope of the systematic procedure introduced in [15],
which translates Hilbert axioms into equivalent analytic calculi, to capture the family
of axioms known as (Bdk) with k ≥ 1, see [9]. These axioms are especially interesting
as intuitionistic logic extended with (Bd2) is the only interpolable intermediate logic to
which the procedure in [15] does not apply to. To adapt the procedure to these axioms,
we introduced a new formalism, called Non-Commutative Hypersequent Calculus, and
identified suitable rules corresponding to (Bdk). For these rules we provided uniform
proofs of soundness, completeness and cut-elimination. In addition to this theoretical
investigation, the systematic procedure in [15] has been translated into an algorithm
which was implemented in PROLOG.

iii

Zusammenfassung

Nichtklassische Logiken nahmen in den letzten Jahren in vielen Gebieten, vor allem in der
Informatik, der Künstlichen Intelligenz oder der Wissensrepräsentation, an Bedeutung
zu. Mittlerweile existiert bereits eine große Anzahl nützlicher und interessanter nichtklas-
sischer Logiken, wie beispielsweise die Familie der intermediären Logiken, Fuzzy-Logiken
oder Substrukturelle Logiken. Zudem führen Wissenschaftler verschiedener Fachbereiche
weiterhin neue Logiken ein, um ihre Anforderungen zu erfüllen.

Nichtklassische Logiken definiert man üblicherweise, indem man Hilbert-Axiome zu
bereits bekannten Systemen hinzufügt. Die Nützlichkeit dieser Logiken hängt jedoch
stark von der Verfügbarkeit sogenannter analytischer Kalküle ab, in welchen Beweise
durch schrittweises Zerlegen der Formeln geführt werden. Den analytischen Kalkül einer
Logik definiert man durch die Wahl eines passenden Formalismus, sowie das Festlegen
geeigneter Regeln zur Formalisierung der Logik. Zusätzlich müssen Korrektheit, Voll-
ständigkeit und Schnittelimination des definierten Kalküls bewiesen werden. Mit der
Definition neuer Logiken wächst daher auch die Anzahl solcher Beweise und eine au-
tomatisierte Prozedur zur Einführung analytischer Kalküle in systematischer Weise wäre
somit erstrebenswert.

In dieser Diplomarbeit erweiterten wir die systematische Prozedur, die in [15] einge-
führt wurde und Hilbert-Axiome in äquivalente analytische Kalküle umformt, auf die
Familie der Axiome (Bdk) mit k ≥ 1, siehe [9]. Diese Axiome sind insbesondere in-
teressant, da die Erweiterung intuitionistischer Logik mit dem Axiom (Bd2) die einzige
interpolierbare, intermediäre Logik ist, auf die man die Prozedur in [15] nicht anwen-
den kann. Um die Prozedur auf diese Axiome auszuweiten, definierten wir zunächst
einen neuen Formalismus, den Nichtkommutativen Hypersequenzkalkül, und erstellten
geeignete Regeln entsprechend den Axiomen (Bdk). Für diese Regeln bewiesen wir Ko-
rrektheit, Vollständigkeit und Schnittelimination. Zusätzlich entwickelten wir einen Al-
gorithmus auf Basis der systematischen Prozedur in [15] und implementierten diesen in
PROLOG.

iv

Contents

1 Introduction 1

1.1 Overview . 2

2 Proof Theory in Non-Classical Logics: Preliminaries 3

2.1 Basic Definitions . 3
2.2 Sequent and Hypersequent Calculus . 4

3 From Axioms to Analytic Rules: A Systematic Procedure 11

3.1 The Substructural Hierarchy . 11
3.2 The Transformation Procedure . 13
3.3 Related Work . 19

4 An implementation for the classes N2 and P3 21

4.1 General Information . 21
4.2 Part 1: Identifying the axiom class . 24
4.3 Part 2: From axioms to (hyper)structural rules 25
4.4 Part 3: Applying the completion procedure 27

5 From the axioms (Bdk) to analytic rules 29

5.1 The non-commutative hypersequent calculus 30
5.2 From the axioms (Bdk) to nc-hypersequent rules 38
5.3 Proof of Cut-Elimination . 43

6 Summary and Future Work 58

List of Tables 60

List of Figures 60

Bibliography 61

v

Chapter 1

Introduction

During the past few years, non-classical logics — i.e., logics different from classical,
boolean logic — have gained importance in many fields of computer science, artificial
intelligence, or knowledge representation. By now, there are many useful and interesting
non-classical logics, such as modal logics [9], linear logic [23], relevance logics [1, 2], or
fuzzy logics [26]. These logics provide languages for formal modeling and reasoning, e.g.
about dynamic data structures, time, or resources. Moreover, practitioners in various
fields keep on introducing new logics to fulfill their needs.

Non-classical logics are usually defined by adding Hilbert axioms to known systems.
The usefulness of these logics, however, heavily depends on the availability of calculi
in which the cut-elimination theorem holds. These calculi are indeed a prerequisite
for the development of automated reasoning methods, and also the key to establish
essential properties of the formalized logics. Cut-elimination — i.e., any proof containing
applications of the so-called cut-rule can be transformed into a proof that does not make
use of the cut-rule — is a fundamental result to establish in proof theory for several
reasons. One of the main factors is that cut-elimination gives analyticity in the sense
that all intermediate statements in a proof are subformulas of the formulas to be proved.
For a computer scientist, this means that the computational search for proofs in cut-free
calculi is feasible, as opposed to non-analytic calculi where the allowance of the cut-rule
adds non-determinism to the proof search.

An analytic calculus for a logic is usually defined by first choosing a suitable for-
malism, e.g. Sequent Calculus [22], Hypersequent Calculus [5], Display Logic [7], or the
Calculus of Structure [25], and then providing the right rules for formalizing the logic.
Furthermore, soundness, completeness and cut-elimination for the defined calculus have
to be proved. The invention of new logics leads therefore to the introduction of a large
number of such proofs. Hence, an automated procedure to introduce analytic calculi in
a systematic and uniform way would be very desirable.

First steps in this direction have been made in Ciabattoni et al. [14, 15] where a new

1

research direction called “algebraic proof theory” was introduced. Algebraic proof theory
emerges from combining systematic proof theory for non-classical logics and universal al-
gebra in an innovative way. Within this new field of research, a systematic and uniform
procedure that translates Hilbert axioms into equivalent analytic calculi was developed
in [14, 15]. This procedure works up to certain classes of a novel classification of Hilbert
axioms called substructural hierarchy. In this thesis, the scope of this systematic pro-
cedure has been extended to capture the family of axioms known as (Bdk) with k ≥ 1

which are semantically characterized by Kripke models with depth ≤ k, see [9]. These
axioms are especially interesting as intuitionistic logic extended with (Bd2) is the only
one of the seven interpolable intermediate logics — i.e., logics between intuitionistic and
classical logic — to which the procedure in [15] does not apply to. To capture these
axioms and extend the procedure in [15, 17], we introduced a new formalism, more pow-
erful than sequent and hypersequent calculi, and identified suitable rules corresponding
to (Bdk). For these rules we provided a uniform proof of soundness, completeness and
cut-elimination. In addition to this theoretical investigation, the systematic procedure
in [15] has been transformed into an algorithm which was implemented in PROLOG.

1.1 Overview

Chapter 2 provides basic definitions and an introduction to sequent and hypersequent
calculi, as well as to cut-elimination. In Chapter 3, we outline the theoretical basis for
this thesis. We explain the substructural hierarchy and the systematic procedure in [15]
which transforms Hilbert axioms into equivalent analytic rules. Furthermore, we provide
an overview of the results that have been established in this research direction so far.
The translation of the systematic procedure into an algorithm and its implementation
in PROLOG is described in Chapter 4. Chapter 5 constitutes a central part of this
thesis as it contains the extension of the systematic procedure to the axioms (Bdk). We
introduce the Non-Commutative Hypersequent Calculus and adapt the procedure in [15]
to deal with the axioms (Bdk). Proofs of soundness, completeness and cut-elimination
are provided for the defined non-commutative hypersequent calculi in a uniform way.
We summarize the main results of this thesis and discuss further research directions in
Chapter 6.

2

Chapter 2

Proof Theory in Non-Classical Logics: Preliminaries

Proof theory studies the formalization and the structure of mathematical proofs. Hilbert
is widely recognized as the initiator of proof theory since his attempt to provide a proof
of the consistency of mathematics. Nowadays, there exist roughly two branches within
proof theory: interpretational proof theory and structural proof theory. The latter has
been first developed by Gentzen in [22] and is of particular interest for us as it is based
on the combinatorial analysis of proof structure. Examples for applications of structural
proof theory are automated theorem proving or logic programming. [35, 37]

In this chapter, we introduce some basic notions of structural proof theory, in par-
ticular the concepts of sequent and hypersequent calculi and cut-elimination. The main
references for this chapter are the books and articles by Takeuti [35], Troelstra and
Schwichtenberg [37], Metcalfe et al. [28], Gentzen [22] and Avron [4, 5].

2.1 Basic Definitions

Definition 2.1.1. [15, 35, 37] Atomic formulas are propositional variables p, q, The
notion of formulas is defined inductively:

(1) Every atomic formula is a formula.
(2) The logical constants 1 (unit), ⊥ (false), � (true) and 0 are formulas.
(3) If A and B are formulas, then (A ∧ B), (A ∨ B) and (A → B) are formulas.

Metavariables A,B,C, . . . denote formulas, Π,Θ stand for stoups, i.e., either a formula
or an empty set, and Γ,∆,Σ, . . . for finite, possibly empty, lists of formulas.

Definition 2.1.2. [35, 37] Sequents are expressions of the form Γ ⇒ ∆ with Γ,∆ being
finite lists of formulas. Γ is called the antecedent and ∆ is called the succedent of the
sequent.
Sequents, where the succedent contains at most one formula, are called single-conclusion
and they are called multiple-conclusion, otherwise.

3

Intuitively, a sequent A1, . . . , Am ⇒ B1, . . . , Bn with m,n ≥ 1 is interpreted as: if
A1 ∧ · · · ∧Am, then B1 ∨ · · · ∨Bn.

Definition 2.1.3. [37] We use the symbol � to denote derivability in a formalism. For
sequents and formulas derived in a formalism S, we write

S � Γ ⇒ ∆ or �S Γ ⇒ ∆ for sequents
S � A or �S A for formulas

For formalisms based on sequents, S � A coincides with S �⇒ A, i.e., the sequent Γ ⇒ A

with Γ being empty.

2.2 Sequent and Hypersequent Calculus

One of the first systems introduced for writing formal deductions was the (Frege-)Hilbert
system. Such a system is usually characterized by a set of axioms (or axiom schemes)
and a small number of inference rules, e.g. modus ponens [8]. However, Hilbert systems
are not analytic and therefore cannot be used for computational proof search. In 1935,
Gentzen [22] introduced the sequent calculi LK and LJ as formalisms for classical and
intuitionistic logic. Proofs in these systems are analytic which proved to be more suitable
for automated deduction.

Below we will provide a short introduction to sequent and hypersequent calculus,
substructural logics and some basic explanations regarding cut-elimination.

2.2.1 Sequent Calculus

We start presenting Gentzen’s calculus for intuitionistic logic LJ. The system LJ consists
of single-conclusion sequents (see Definition 2.1.2) of the form Γ ⇒ Π with Γ being a
finite, possibly empty, list and Π being either a formula or empty. Sequent calculi consist
of initial axioms and inference rules, which are further divided into logical rules, structural
rules and the cut-rule. For every logical and structural rule there exists a left and a right
rule depending on which side of the sequent, i.e. left or right, is modified. The structural
rules introduced by Gentzen (for the calculus LJ) are:

Γ, A ⇒ Π
(e, l)

A,Γ ⇒ Π
Γ ⇒ Π (w, l)

Γ, A ⇒ Π
Γ ⇒ (w, r)

Γ ⇒ Π
Γ, A ⇒ Π

(c, l)
Γ, A,A ⇒ Π

The cut-rule is different from the other rules as it contains a formula A, called cut-formula,
in both premises which does not occur in the conclusion:

Γ ⇒ A Σ, A ⇒ Π
(cut)

Γ,Σ ⇒ Π

The rules of the LJ calculus are contained in Table 2.2.1.

4

Axioms Cut Rule

A ⇒ A ⊥ ⇒ A
Γ ⇒ A A,Σ ⇒ Π

Σ,Γ ⇒ Π

Structural Rules

Γ ⇒ Π (w, l)
Γ, A ⇒ Π

Γ ⇒ (w, r)
Γ ⇒ Π

Γ, A,A ⇒ Π
(c, l)

Γ, A ⇒ Π
Γ, A ⇒ Π

(e, l)
A,Γ ⇒ Π

Logical Rules

Γ, A ⇒ B
(→, r)

Γ ⇒ A → B

Γ ⇒ A B,Γ ⇒ Π
(→, l)

Γ, A → B ⇒ Π

Γ ⇒ A Γ ⇒ B (∧, r)
Γ ⇒ A ∧B

Γ, Ai ⇒ Π (∧i, l)i=1,2Γ, A1 ∧A2 ⇒ Π

Γ ⇒ Ai (∨i, r)i=1,2Γ ⇒ A1 ∨A2

Γ, A ⇒ Π Γ, B ⇒ Π
(∨, l)

Γ, A ∨B ⇒ Π

Table 2.1: Sequent Calculus LJ [22]

Substructural Logics

Substructural logics are non-classical logics where the structural rules are absent and
which are therefore weaker than classical or intuitionistic logic. The base system FL,
Full Lambek Calculus, is obtained from the sequent calculus LJ when all structural rules
are dropped, e.g. see [30]. In this sense, instead of LJ we could also write FLewc:
Full Lambek Calculus with the exchange e, weakening w and contraction c rule. Some
important substructural logics are relevant logics, Full Lambek calculus, or linear logic,
which are motivated, amongst others, by considerations from philosophy, linguistics, or
computer science.

When some of the structural rules are missing, the commas in the antecedent of
sequents do not behave like the additive conjunction ∧ any more, but like the conjunction
·, called fusion or multiplicative conjunction [30]:

Γ, A,B,Σ ⇒ Π
(·, l)

Γ, A ·B,Σ ⇒ Π
Γ ⇒ A Σ ⇒ B (·, r)

Γ,Σ ⇒ A ·B

Sometimes, the propositional constants 1 and 0 are introduced in systems for sub-
structural logics. Usually, we use ⊥ and � to denote false and true which are introduced

5

as follows (with Γ and Π possibly empty):

(⊥, l)⊥,Γ ⇒ Π
(�, r)

Γ ⇒ �

When a system lacks the weakening rules, these initial sequents cannot be replaced
with ⇒ � and ⊥ ⇒ any more. But if the system does not contain those weaker initial
sequents, the constants defined by them behave differently. Therefore, the following rules
for 0 and 1 are introduced:

(0, l)
0 ⇒

Γ ⇒ (0, r)
Γ ⇒ 0

Γ ⇒ Π (1, l)
1,Γ ⇒ Π

(1, r)⇒ 1

Note that the negation ¬A is used as an abbreviation for A → 0.

2.2.2 Hypersequent Calculus

Gentzen’s sequent calculus is a powerful framework which is capable of dealing with many
interesting logics. However, many logics seem to escape a cut-free sequent formalization.
For this reason, Avron introduced a simple generalization of the sequent calculus called
hypersequent calculus (see e.g. [5]).

Definition 2.2.1. [5] A hypersequent is a structure of the form
Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

where every Γi ⇒ ∆i is an ordinary sequent and is called a component of the hyper-
sequent. If all components of a hypersequent are single-conclusion, the hypersequent is
called single-conclusion, and multiple-conclusion otherwise.

Note that the symbol “ |” is usually interpreted as disjunction:

Definition 2.2.2. A hypersequent of the form
G := Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | · · · | Γn ⇒ ∆n

is interpreted as follows:
GI := (

�
Γ1 →

�
∆1) ∨ (

�
Γ2 →

�
∆2) ∨ · · · ∨ (

�
Γn →

�
∆n)

where
�

Γi is the conjunction of the formulas in Γi or �, when Γi is empty, and
�
∆i is

either the disjunction of the formulas in ∆i or ⊥.

As in the case of sequent calculus, the hypersequent calculus consists of initial axioms,
logical rules, the cut-rule and structural rules. Initial axioms, logical rules and the cut-
rule are essentially the same as in the sequent calculus. The only difference is that a
(possibly empty) side hypersequent G may occur in hypersequents. Consequently, to
obtain the base calculus HLJ, the rules from the base calculus LJ in Table 2.2.1 are

6

extended with the side hypersequent G, e.g. the hypersequent rules for (→) are as
follows:

G | Γ, A ⇒ B
(→, r)

G | Γ ⇒ A → B

G | Γ ⇒ A G | B,Γ ⇒ Π
(→, l)

G | Γ, A → B ⇒ Π

The structural rules are divided into two groups: external structural rules and internal
structural rules. The internal structural rules are the standard structural rules for ex-
change, weakening, and contraction and are applied to the formulas within a component.
External rules manipulate the components of a hypersequent and are as follows:

G (ew)
G | Γ ⇒ Π

G | Γ ⇒ Π | Γ ⇒ Π
(ec)

G | Γ ⇒ Π

G | Γ2 ⇒ Π2 | Γ1 ⇒ Π1
(ee)

G | Γ1 ⇒ Π1 | Γ2 ⇒ Π2

In hypersequent calculi, there is the possibility to define rules which act on several
components of one or more hypersequents in parallel. An example for such a rule is the
communication-rule introduced by Avron in [4]:

G | Γ1,∆1 ⇒ Π G | Γ2,∆2 ⇒ Θ
(com)

G | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Θ

Consider as an example the hypersequent calculus GLC depicted in Table 2.2.2, which
consists of the hypersequent version of the rules for LJ, the external structural rules
and the communication rule [4]. With this calculus, we are able to handle Gödel logic
[24] (also known as Dummett’s LC [19], or Intuitionistic Fuzzy Logic [36]) which is the
extension of LJ with the prelinearity axiom (A → B) ∨ (B → A).

Example 2.2.3. The prelinearity axiom can indeed be proved in GLC as follows:

A ⇒ A B ⇒ B (com)
A ⇒ B | B ⇒ A

(→, r)
⇒ A → B |⇒ B → A

(∨, r)
⇒ (A → B) ∨ (B → A) |⇒ (A → B) ∨ (B → A)

(ec)
⇒ (A → B) ∨ (B → A)

2.2.3 Cut Elimination

Cut-elimination is a fundamental result to establish in proof theory. It corresponds to
the removal of lemmas (the cuts) from proofs, resulting in a proof which is analytic in the
sense of Leibniz, i.e., all statements in the proof are already contained in the conclusion.

There are various ways to prove for a calculus that the cut-elimination theorem
holds. The better known method is the one introduced by Gentzen [22] for sequent
calculus where he removes the uppermost cut in a derivation by a double induction on

7

Axioms Cut Rule

A ⇒ A ⊥ ⇒ A
G | Γ ⇒ A H | A,Σ ⇒ Π

G | H | Σ,Γ ⇒ Π

Internal Structural Rules

G | Γ ⇒ Π
(w, l)

G | Γ, A ⇒ Π

G | Γ ⇒
(w, r)

G | Γ ⇒ Π

G | Γ, A,A ⇒ Π
(c, l)

G | Γ, A ⇒ Π

G | Γ, A ⇒ Π
(e, l)

G | A,Γ ⇒ Π

External Structural Rules

G | Γ ⇒ Π | Γ ⇒ Π
(ec)

G | Γ ⇒ Π

G (ew)
G | Γ ⇒ Π

G | Γ2 ⇒ Π2 | Γ1 ⇒ Π1 (ee)
G | Γ1 ⇒ Π1 | Γ2 ⇒ Π2

Logical Rules

G | Γ, A ⇒ B
(→, r)

G | Γ ⇒ A → B

G | Γ ⇒ A G | B,Γ ⇒ Π
(→, l)

G | Γ, A → B ⇒ Π

G | Γ ⇒ A G | Γ ⇒ B
(∧, r)

G | Γ ⇒ A ∧B

G | Γ, Ai ⇒ Π
(∧i, l)i=1,2

G | Γ, A1 ∧A2 ⇒ Π

G | Γ ⇒ Ai (∨i, r)i=1,2
G | Γ ⇒ A1 ∨A2

G | Γ, A ⇒ Π G | Γ, B ⇒ Π
(∨, l)

G | Γ, A ∨B ⇒ Π

Communication Rule

G | Γ1,∆1 ⇒ Π G | Γ2,∆2 ⇒ Θ
(com)

G | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Θ

Table 2.2: Hypersequent Calculus GLC [4, 5]

the complexity of the cut formula — i.e., the number of its connectives — and on the sum
of its (left and right) ranks. The left (right, respectively) rank is defined as the number of
consecutive sequents which contain the cut formula, counting upward from the left (right,
respectively) upper sequent of the cut [35]. In the proof, the cut is either pushed up (see
Example 2.2.4) or the cut formula is replaced by a smaller one (see Example 2.2.5).

8

Example 2.2.4. Consider the following instance of a cut, where the cut is pushed up:

Γ ⇒ X

Σ, X ⇒ A
(∨, r)

Σ, X ⇒ A ∨B
(cut)

Γ,Σ ⇒ A ∨B

−→
Γ ⇒ X Σ, X ⇒ A

(cut)
Γ,Σ ⇒ A

(∨, r)
Γ,Σ ⇒ A ∨B

Example 2.2.5. Consider the following instance of a cut, where the cut is replaced with
a smaller one:

Γ ⇒ A (∨, r)
Γ ⇒ A ∨B

A,Σ ⇒ C B,Σ ⇒ C
(∨, l)

A ∨B,Σ ⇒ C
(cut)

Γ,Σ ⇒ C

−→ Γ ⇒ A A,Σ ⇒ C
(cut)

Γ,Σ ⇒ C

When repeating these two steps, the derivation will either end in an application of
the cut rule with at least one of the upper sequents being an initial sequent, e.g.

Γ ⇒ A A ⇒ A (cut)
Γ ⇒ A

or in an application of the weakening rule where the cut formula is introduced. Either
way, the proof can be made without using the cut rule. But Gentzen noticed that an
application of the internal contraction rule to the cut formula might result in a problem as
the contraction does not necessarily make the cut smaller or push it up in the derivation.

Example 2.2.6. Consider the following instance of a cut, where the cut formula is con-
tracted by an application of (c, l):

Γ ⇒ A

A,A,Σ ⇒ C
(c, l)

A,Σ ⇒ C
(cut)

Γ,Σ ⇒ C

−→ Γ ⇒ A

Γ ⇒ A A,A,Σ ⇒ C
(cut1)

A,Γ,Σ ⇒ C
(cut2)

Γ,Γ,Σ ⇒ C
(c, l)

Γ,Σ ⇒ C

Note that the size of the cuts does not decrease in (cut1) or (cut2).

To solve this problem, he introduced the multi-cut rule which generalizes the cut rule
in the sense that more than one formula can be cut in one application of the rule:

Γ ⇒ A Σ ⇒ Π (mcut)
Γ,ΣA ⇒ Π

Σ contains at least one occurrence of A and ΣA is Σ with some occurrences of A deleted.

Gentzen’s method of cut elimination was also generalized to the hypersequent calculus
by Avron [4]. He ran into a similar problem when the cut formula was contracted using
the external contraction rule (ec). Analogously to Gentzen’s solution, Avron introduced
an adequate version of the multi-cut rule for the hypersequent setting:

G | Γ ⇒ A H | Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

(mcut)
G | H | Γ,ΣA

1 ⇒ Π1 | · · · | Γ,ΣA

n ⇒ Πn

9

Σi contains at least one occurrence of A and ΣA

i
is Σi with some occurrences of A deleted.

An alternative method to prove cut-elimination was introduced by Schütte [32] and Tait
[34]. We will describe and adapt this method in Chapter 5 to prove cut-elimination for
the non-commutative hypersequent calculus.

10

Chapter 3

From Axioms to Analytic Rules: A Systematic Procedure

In this chapter, we describe the systematic procedure introduced by Ciabattoni, Galatos
and Terui in [15] that transforms Hilbert axioms into equivalent analytic inference rules
in sequent and hypersequent calculi. The uniform proofs of soundness, completeness
and cut-elimination can be found in [14] and [15]. Cut-elimination shows that the (hy-
per)sequent calculus for FLe extended with rules obtained by the procedure is indeed
analytic. We start with the definition of the substructural hierarchy which constitutes
the foundation for the algorithm. In Section 3.2, we provide a description of the afore-
mentioned procedure. In Section 3.3, we give an overview of the state of the art in this
research field.

3.1 The Substructural Hierarchy

The foundation for the systematic procedure in [15] is the substructural hierarchy which is
a novel classification of Hilbert axioms based on the connectives of FL (see e.g. [29]). The
substructural hierarchy, which is similar to the arithmetical hierarchy Σn,Πn, is based
on the concept of polarity of logical connectives [3]. The logical connectives of FL can
be divided into two groups of negative (→,∧, 0,�) and positive (·,∨, 1,⊥) connectives,
depending on whether the right or left logical rule is invertible, i.e., the conclusion of a
rule implies its premise(s). Axioms with a leading logical connective of positive (negative)
polarity belong to a positive class P (negative class N) of the hierarchy.

Definition 3.1.1. (Substructural Hierarchy) [15] Let A be a set of atomic formulas.
For n ≥ 0, the sets Pn,Nn of formulas are defined as follows:

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | �

A graphical representation of the substructural hierarchy is depicted in Figure 3.1. Note
that the arrows → stand for inclusions ⊆ of the classes.

11

P0

�� ��

�� P1

��

�� P2

��

�� P3

��

�� P4

��

�� . . .

N0

�� ��

�� N1

��

�� N2

��

�� N3

��

�� N4

��

�� . . .

Figure 3.1: The substructural hierarchy by Ciabattoni et al. [15]

Each class of the hierarchy contains an infinite number of axioms.

Example 3.1.2. (Axioms in the substructural hierarchy)

N2: A → 1, 0 → A (weakening, [22]), A → A ·A (contraction, [22])

P2: A ∨ ¬A (excluded middle, [5]), (A → B) ∨ (B → A) (prelinearity, [4])

N3: ((A → B) → B) → ((B → A) → A) (Łukasiewicz axiom)

P3: ¬A∨¬¬A (weak excluded middle, [13]), ¬(A ·B)∨ (A∧B → A ·B) (weak nilpotent
minimum, [20])

P4: A ∨ (A → (B ∨ ¬B)) (Bd2, [9])

A normal form of the axioms of each class is given in the following proposition:

Proposition 3.1.3. [15] Every axiom A ∈ Pn+1 is equivalent to an axiom of the form
�

1≤i≤m
Bi where each Bi is a fusion of formulas in Nn. Every axiom A ∈ Nn+1 is

equivalent to an axiom of the form
�

1≤i≤m
Ci → Bi where each Bi is either 0 or a

formula in Pn and each Ci is a fusion of formulas in Nn.

Then the notion of N2-normal axioms is defined as follows:

Definition 3.1.4. [15] An axiom A is called N2-normal if it is of the form A1 · · ·An → B

where B is either 0 or
�

1≤i≤m
Bi with every Bi a fusion of propositional variables and

each Ai is of the form
�

1≤j≤mi
C

j

i
→ B

j

i
where B

j

i
is 0 or a propositional variable and

C
j

i
is a fusion of propositional variables.

For systems without weakening, e.g. FLe, it is hard to deal with axioms of the class
P3. To solve this problem, a subclass of P3 called P �

3 is considered in the substructural
hierarchy [15]:

P �
3 ::= N2 ∧ 1 | P �

3 · P �
3 | P �

3 ∨ P �
3 | 1 | ⊥

We abbreviate a formula A ∧ 1 ∈ P �
3 as (A)∧1. Then we can say that:

12

Lemma 3.1.5. [15]: Every formula in P �
3 (P3, respectively) is equivalent to a finite set

of formulas (A1)∧1∨· · ·∨(An)∧1 (A1∨· · ·∨An, respectively) where each Ai is N2-normal.

3.2 The Transformation Procedure

We describe the systematic procedure in [15] which transforms axioms that belong to the
classes N2 and P �

3 (P3, respectively) into equivalent analytic rules with FLe and HFLe

(HFLew, respectively) as base calculi. The axioms are first transformed into sets of
equivalent structural sequent and hypersequent rules — structural and hyperstructural
rules, for short — , i.e., rules not involving any connective. In a second step these
(hyper)structural rules are transformed into analytic rules by applying a completion
procedure. Examples for such transformation of axioms into their equivalent analytic
rules — i.e., rules that preserve cut-elimination when added to a calculus — are depicted
in Table 3.1.

Class Name Axiom Rule

N2 weakening A → 1
Γ ⇒ Π (w)

∆,Γ ⇒ Π

0 → A
Γ ⇒ (w’)

Γ ⇒ Π

contraction A → A ·A ∆,∆,Γ ⇒ Π
(c)

∆,Γ ⇒ Π

weak contraction ¬(A ∧ ¬A)
Γ,Γ ⇒

(wc)
Γ ⇒

P2 excluded middle A ∨ ¬A G | Γ,∆ ⇒ Π
(em)

G | Γ ⇒| ∆ ⇒ Π

prelinearity (A → B) ∨ (B → A)
G | Γ1,∆1 ⇒ Π1 G | Γ2,∆2 ⇒ Π2

(com)
G | Γ2,∆1 ⇒ Π1 | Γ1,∆2 ⇒ Π2

P �
3 linearity ((A → B) ∧ 1) ∨ ((B → A) ∧ 1) (com)

P3 weak excluded middle ¬A ∨ ¬¬A G | Γ,∆ ⇒
(lq)

G | Γ ⇒| ∆ ⇒

Kripke models,width ≤ k
�

k

i=0(pi →
�

j �=i
pj)

{G | Γi,Γj ⇒ Πi}0≤i,j≤k,i �=j
(Bwk)

G | Γ0 ⇒ Π0 | · · · | Γk ⇒ Πk

Table 3.1: Some axioms and their equivalent analytic rules

The systematic procedure to obtain structural sequent (hypersequent, respectively)
rules for axioms of the class N2 (P3 and P �

3, respectively) is described in the following
section(s).

3.2.1 Step 1: N2-axioms and sequent rules

Before describing the procedure to obtain structural sequent rules from N2-normal ax-
ioms, we observe the following equivalences:

13

Lemma 3.2.1. [15]: The rule S1 · · · Sm (r0)
A1, . . . , An ⇒ C

is equivalent to each of the rules

�S Y1 ⇒ A1 · · · Yn ⇒ An (r1)
Y1, . . . , Yn ⇒ C

�S C ⇒ X (r2)
A1, . . . , An ⇒ X

where �S = S1 · · ·Sm and Y1, . . . , Yn, X are fresh metavariables for formulas.

The procedure to transform axioms within the class N2 into equivalent structural
rules works as follows:

It suffices to consider N2-normal axioms A where A = A1 · · ·An → C and every Ai =�
1≤j≤mi

B
j

i
→ C

j

i
for i = 1, . . . , n. We first use the invertible rules (→, r), (·, l), (1, l)

on the formula in the conclusion until no further rule applications are possible. Due to
Lemma 3.2.1, we replace the antecedent of the conclusion A1, . . . , An → C with fresh
metavariables Y1, . . . , Yn:

Y1 ⇒ A1 · · · Yn ⇒ An

Y1, . . . , Yn ⇒ C

Then we apply the invertible rules (∧, r), (→, r), (·, l), (1, l) and (0, r) to the premises.
This way, we obtain a set S of sequents which consists only of metavariables without
connectives.

C is either 0 or has the form C1 ∨ · · · ∨ Ck. In the first case, we remove C from the
conclusion by applying (0, r) to get a structural rule. In the second case, we replace C

in the conclusion with a fresh metavariable X (by Lemma 3.2.1) and afterwards apply
(∨, l) to the premises:

S C1 ⇒ X · · · Ck ⇒ X

Y1, . . . , Yn ⇒ X

Finally we use the invertibility of (·, l) and (1, l) to obtain an equivalent structural rule.

Example 3.2.2. We use the algorithm to obtain an equivalent structural rule from the
axioms A → A ·A (contraction) and ¬(A ∧ ¬A) (weak contraction):

A → A ·A: A ⇒ A ·A −→(r2) A ·A ⇒ X

A ⇒ X
−→(·,l) A,A ⇒ X (c0)

A ⇒ X

¬(A ∧ ¬A): ⇒ ¬(A ∧ ¬A) −→(→,r)
A ∧ ¬A ⇒ −→(r1) Y ⇒ A ∧ ¬A

Y ⇒

−→(∧,r) Y ⇒ A Y ⇒ ¬A
Y ⇒ −→(→,r) Y ⇒ A Y,A ⇒ (wc0)

Y ⇒

14

3.2.2 Step 1: P3-axioms and hypersequent rules

To handle axioms of the classes P �
3 and P3, we have to shift to the hypersequent setting.

A more detailed description of the hypersequent calculus can be found in Section 2.2.
Recall that a hypersequent is a multiset S1 | · · · | Sn, where the symbol “|” denotes a
disjunction on a meta-level. This correspondence is used in the following definition of
the interpretation function that retrieves axioms from hypersequents:

Definition 3.2.3. [15] Let S = S1 | · · · | Sn be a hypersequent and Si = A1, . . . , An ⇒ C

and Sj = A1, . . . , An ⇒ components of S. They are interpreted as follows:
(A1, . . . , An ⇒ C)I = A1 · · ·An → C

(A1, . . . , An ⇒)I = A1 · · ·An → 0

(S1 | · · · | Sn)I = S
I

1 ∨ · · · ∨ S
I
n

Example 3.2.4. Let S = G | A1, A2 ⇒ C | B1, B2 ⇒ be a hypersequent. S is then
interpreted as follows:

S
I = G

I ∨ (A1, A2 ⇒ C)I ∨ (B1, B2 ⇒)I = G
I ∨ (A1 ·A2 → C) ∨ (B1 ·B2 → 0)

Analogously to Lemma 3.2.1 for N2, the following equivalences can be observed for
structural hypersequent rules:

Lemma 3.2.5. [15]: Let Φ,Φ1, . . . ,Φm be (meta)hypersequents consisting of metavari-
ables. The hypersequent rule G | Φ1 · · · G | Φm

(hr0)
G | Φ | A1, · · · , An ⇒ C

is equivalent to each of the rules

�G | Φ G | Υ1 ⇒ A1 · · · G | Υn ⇒ An (hr1)
G | Υ1, · · · ,Υn ⇒ C

�G | Φ G | C,Υ ⇒ Ψ
(hr2)

G | Φ | A1, · · · , An,Υ ⇒ Ψ

where �G | Φ = (G | Φ1, · · ·G | Φm), Υi is a fresh metavariable Yi or Γi, and Υ ⇒ Ψ is
either ⇒ X or Σ ⇒ Π with fresh X,Σ,Π.

The procedure to transform axioms within P �
3 (P3, respectively) into equivalent hy-

perstructural rules works as follows:
We consider axioms in P �

3 (P3, respectively) which are equivalent to a finite set
(A1)∧1 ∨ · · · ∨ (An)∧1 (A1 ∨ · · · ∨ An, respectively) where A1, . . . , An are N2-normal
axioms. By Definition 3.2.3 we directly obtain Φ = G |⇒ A1 | · · · |⇒ An from these
axioms with G being an empty hypersequent. Analogously to the procedure for N2-
normal axioms, we first apply the invertible rules (→, r), (·, l), (1, l) to every component
of the hypersequent Φ. Then we use the equivalences from Lemma 3.2.5 and introduce
fresh metavariables to the antecedent of every component in the conclusion:

15

G | Υ1 ⇒ A1 · · · G | Υn ⇒ An

G | Υ1, · · · ,Υn ⇒ C

Afterwards we use the invertibility of (∧, r), (→, r), (·, l), (1, l) and (0, r) on the premises
to obtain a set SH of hypersequents without connectives.

The succedents of the components are either 0 or of the form C1 ∨ · · · ∨ Ck. In the
first case, we remove C from a component with an application of (0, r). Otherwise, we
use Lemma 3.2.5 and the invertibility of (∨, l) to shift the succedent from a component
to the premise:

SH G | C1,Υ ⇒ Ψ · · · G | Cn,Υ ⇒ Ψ

G | Υ1, · · · ,Υn,Υ ⇒ Ψ

Finally we use (·, l) and (1, l) to obtain an equivalent hyperstructural rule.

Example 3.2.6. We use the algorithm to obtain hyperstructural rules from the axioms
(A → B) ∨ (B → A) (prelinearity) and ¬A ∨ ¬¬A (weak excluded middle):

(A → B) ∨ (B → A): (lin0)
G | A ⇒ B | B ⇒ A

¬A ∨ ¬¬A: G |⇒ ¬A |⇒ ¬¬A −→(→,r)
G | A ⇒| ¬A ⇒

−→(hr1)
G | Y ⇒ ¬A
G | A ⇒| Y ⇒

−→(→,r) G | Y,A ⇒
(wem0)

G | A ⇒| Y ⇒

3.2.3 Step 2: The completion procedure

A three-step-completion procedure has been defined in [15] to obtain equivalent analytic
rules from (hyper)structural rules. It applies to any (hyper)structural rule with a base
calculus that admits weakening (e.g., HFLew) or to any acyclic (hyper)structural rule
with a base calculus that does not admit weakening (e.g., HFLe).

The rules that we have obtained in Step 1 of the algorithm are equivalent to their
corresponding axioms in N2,P �

3 (with the base calculus (H)FLe) and P3 (with the base
calculus HFLew) but they do not necessarily preserve cut admissibility. For those rules,
we only need to apply steps (2) and (3) of the completion procedure to retrieve the
equivalent analytic rules.

Definition 3.2.7. [15] A hyperstructural rule (hr) is acyclic if the dependency graph

D(hr) is acyclic: Given a hyperstructural rule G | Υ�
1 ⇒ Ψ�

1 · · · G | Υ�
n ⇒ Ψ�

n (hr)
G | Υ1 ⇒ Ψ1 | · · · | Υm ⇒ Ψm

, D(hr)
is then built as follows:

• The vertices of D(hr) are the metavariables for formulas occurring in the premises
G | Υ�

1 ⇒ Ψ�
1, · · · , G | Υ�

n ⇒ Ψ�
n.

16

• There is a directed edge A −→ B in D(hr) if and only if there is a premise
G | Υ�

i
⇒ Ψ�

i
such that A occurs in Υ�

i
and B = Ψ�.

Example 3.2.8. The rules (c0), (wc0) and (wem0) from Example 3.2.2 and

Example 3.2.6 are acyclic. The rule G | A ⇒ B G | B ⇒ C G | C ⇒ A

G | A ⇒ C
is cyclic.

In general, the completion procedure is divided into the following three parts: a prelim-
inary step, a restructuring step and a cutting step. Note that the preliminary step can
be skipped for rules generated by the algorithm in Step 1.

(1) Preliminary Step. This step ensures that a given (hyper)structural rule con-
tains neither Γ nor Π before applying steps (2) and (3). We skip this step when a
(hyper)structural rule does not contain Γ or Π, which is the case for all rules that are
obtained by the algorithm described in the previous sections. If a (hyper)structural rule
contains Γ or Π, we replace it with a fresh metavariable BΓ or BΠ. This step preserves
the acyclicity of a rule.

Example 3.2.9. [15, 5] The cyclic rule (SI) from [5] is restructured as follows:

G | Γ,∆ ⇒ A
(SI)

G | Γ ⇒ A | ∆ ⇒ A
−→

G | BΓ, B∆ ⇒ A
(SI)

G | BΓ ⇒ A | B∆ ⇒ A

(2) Restructuring. We proceed with (hyper)structural rules containing only metavari-
ables for formulas. Let Γ1, . . . ,Γn,ΣX ,ΠX be mutually distinct, fresh metavariables. We
replace:

– every component (Y1, . . . , Yn ⇒ X) in the conclusion with (Γ1, . . . ,Γn,ΣX ⇒ ΠX)

and add n+1 premises of the form (G | Γ1 ⇒ Y1), . . . , (G | Γn ⇒ Yn), (G | X,ΣX ⇒
ΠX).

– every component (Y1, . . . , Yn ⇒) in the conclusion with (Γ1, . . . ,Γn ⇒) and add
n premises of the form (G | Γ1 ⇒ Y1), . . . , (G | Γn ⇒ Yn).

Notice that the context G | is only added to hyperstructural rules.
This step preserves the acyclicity of a rule. The resulting rules are equivalent to the
axioms by Lemma 3.2.1 and Lemma 3.2.5 and satisfy the following properties [15]:

• linear-conclusion: Each metavariable occurs at most once in the conclusion.

17

• separation: No metavariable occurring in the antecedent (succedent, respectively)
of a component of the conclusion occurs in the succedent (antecedent, respectively)
of a premise.

• coupling: The metavariables of each pair (ΣX ,ΠX), which is associated to the same
occurrence of X, occur in the same premise.

Example 3.2.10. We apply the restructuring step to the rule (c0) from Example 3.2.2
which we have obtained for the contraction axiom:

A,A ⇒ X
(c0)

A ⇒ X
−→ Γ ⇒ A A,A ⇒ X

(c1)
Γ ⇒ X

−→
Γ ⇒ A

X,Σ ⇒ Π A,A ⇒ X
(c2)

Γ,Σ ⇒ Π

Example 3.2.11. We apply the restructuring step to the rule (lin0) from Example 3.2.6
which we have obtained for the prelinearity axiom:

(lin0)
G | A ⇒ B | B ⇒ A −→

G | Γ1 ⇒ A G | Γ2 ⇒ B
(lin1)

G | Γ1 ⇒ B | Γ2 ⇒ A

−→
G | Γ1 ⇒ A

G | B,Σ1 ⇒ Π1

G | Γ2 ⇒ B

G | A,Σ2 ⇒ Π2
(lin2)

G | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

(3) Cutting. In the last step of the completion procedure, we remove the redundant
metavariables, i.e., metavariables that occur in the premise but not in the conclusion
[15].

Let A be a redundant metavariable. Let G1 = {G | Υ�
i
⇒ A, 1 ≤ i ≤ k} be the subset

of the premises where A is in the succedent and G2 = {G | Υj , A, . . . , A ⇒ Ψj , 1 ≤ j ≤ m}
the subset of the premises with one or more A in the antecedent.

If k = 0, i.e., G1 is empty and, thus, A only occurs in the antecedent of some premises,
we remove subset G2 from the premises of the rule. Similarly, if m = 0, i.e., A only occurs
in the succedent, we remove subset G1 from the premises of the rule. If we deal with
a base calculus that admits weakening, e.g. HFLew for the class P3, we also take a
subset G3 = {G | Υ, A, . . . , A ⇒ A} into consideration and remove it from the premises
immediately.

Otherwise, if k > 0 and m > 0, we create a new subset of premises Gcut = {G |
Υj ,Υ�

i1
, . . . ,Υ�

ip
⇒ Ψj , 1 ≤ j ≤ m, 1 ≤ i1, . . . , ip ≤ k}. We replace G1 ∪ G2 with Gcut

and repeat this cutting step until we obtain a (hyper)structural rule without redundant
metavariables.

18

A (hyper)structural rule is completed when all three steps of the completion procedure
have been applied to it. Every completed (hyper)structural rule is equivalent to the
original (hyper)structural rule and has the following properties [15]:

• linear-conclusion

• coupling

• strong subformula property: Every metavariable that occurs in the antecedent
(succedent, respectively) of a premise, also occurs in the antecedent (succedent,
respectively) of the conclusion.

Example 3.2.12. We apply the cutting step to the rule (c2) equivalent to the contraction
axiom (see Example 3.2.10):

Γ ⇒ A

X,Σ ⇒ Π A,A ⇒ X
(c2)

Γ,Σ ⇒ Π
−→A

X,Σ ⇒ Π Γ,Γ ⇒ X
(c3)

Γ,Σ ⇒ Π
−→X

Γ,Γ,Σ ⇒ Π
(c)

Γ,Σ ⇒ Π

Example 3.2.13. We apply the restructuring step to the rule (lin2) equivalent to the
prelinearity axiom (see Example 3.2.11):

G | Γ1 ⇒ A

G | B,Σ1 ⇒ Π1

G | Γ2 ⇒ B

G | A,Σ2 ⇒ Π2
(lin2)

G | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

−→A
G | Γ1,Σ2 ⇒ Π2

G | Γ2 ⇒ B

G | B,Σ1 ⇒ Π1
(lin2)

G | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

−→B
G | Γ1,Σ2 ⇒ Π2 G | Γ2,Σ1 ⇒ Π1

(com)
G | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

Indeed, adding the (com)-rule to the hypersequent version of LJ yields the calculus GLC

(see Table 2.2.2) introduced by Avron in [4] for Gödel-logic, i.e., intuitionistic logic ex-
tended with the prelinearity axiom.

3.3 Related Work

The topic of this thesis is situated in a new research direction called “algebraic proof
theory” which emerges from joining the two research fields systematic proof theory and
universal algebra in an innovative way. Algebraic proof theory aims at integrating and
investigating various methods of both research fields in a uniform way. In the first steps
into this new direction, the substructural hierarchy was introduced by Ciabattoni et al.
in [14, 15] as a novel classification of axioms. It constitutes the foundation for a first

19

systematic procedure that allows the transformation of axioms into equivalent analytic
rules. The general aim is to cover the whole hierarchy bottom up as far as possible.

The first results in [14] cover all axioms up to the class N2 and transform them
into structural rules of the single-conclusion, sequent calculus. The authors provided
an algebraic proof of cut-elimination for the base calculus FL extended with completed,
acyclic rules obtained by the presented procedure. Moreover, they showed that the
corresponding algebraic equations, which coincide with axioms in proof theory, are closed
under the Dedekind-MacNeille completion [14].

In [15], Ciabattoni et al. extended the procedure to the axioms up to the classes
P �
3 (P3, respectively) of the hierarchy with FLe (FLew, respectively) as base calculus.

The axioms are transformed into structural rules of the single-conclusion, hypersequent
calculus. They provided a uniform, semantic cut-elimination proof for the base calculi
FLe and FLew extended with completed rules obtained by the algorithm described
before. An implementation of this systematic procedure for axioms up to the classes N2

and P3 can be found in Chapter 4 of this thesis.
In [17] the procedure was shifted to the classic, multiple-conclusion setting which

caused a deconstruction of the hierarchy. As a consequence, some axioms that belong to
higher classes in the intuitionistic, single-conclusion setting are brought down to lower
classes in the classic, multiple-conclusion setting.

An extension of this procedure to certain axioms that reside in classes above P3 is
provided in Chapter 5.

20

Chapter 4

An implementation for the classes N2 and P3

We implemented in PROLOG the systematic procedure in [15]. As [15] does not contain
an algorithmic description of this procedure but the theoretical foundation expressed in
various theorems, we first had to transform the theoretical results into a real algorithm.
In this chapter, we describe the implementation of this algorithm which works for axioms
up to the classes N2 and P3 of the substructural hierarchy in the presence of weaken-
ing. To provide further detail, we illustrate the descriptions with code snippets. The
program, called AxiomCalc, is available online at http://www.logic.at/people/lara/
axiomcalc.html where you can either download the source code or use the program via
a web interface.

4.1 General Information

PROLOG is a declarative logic programming language [33]: It only contains a single
data type, a term, to construct a logic program which consists of Horn clauses, i.e., a
clause with at most one positive literal. A term is either a constant, i.e., an integer or
an atom, a variable or a compound term, i.e., an atom called functor and a number of
one or more arguments which are again terms. A logic program consists of a finite set of
clauses which are divided into the two groups of rules and facts. A rule is a statement
of the form

A ← B1, . . . , Bn with n ≥ 0

where A is called the head and the conjunction of all Bi’s are the body of the rule. A fact
is a rule with an empty body, i.e., n = 0. To compute a logic program we use queries
which are conjunctions of the form:

A1, . . . , An? with n > 0

where every Ai is called a goal. For more information on PROLOG, consult one of the
main references from Sterling and Shapiro [33] or Deransart et al. [18].

Among the many free PROLOG implementations, we chose SWI-PROLOG (see
http://www.swi-prolog.org) by Jan Wielemaker for our implementation because it

21

http://www.logic.at/people/lara/axiomcalc.html
http://www.logic.at/people/lara/axiomcalc.html
http://www.swi-prolog.org

is one of the most famous implementations and available for many platforms.

According to the systematic procedure described in Chapter 3, we split the program into
three parts:

(1) Identification of the class of the substructural hierarchy the input axiom belongs
to.

(2) Transformation of the axiom into an equivalent structural sequent (hypersequent,
respectively) rule if it is within the class N2 (P3, respectively).

(3) Completion procedure to transform the (hyper)structural rule into an analytic rule
preserving cut-elimination when added to (H)FLe(w).

A more detailed description of these parts is provided in the following sections.

4.1.1 Input: Syntax of AxiomCalc

In the first step, the user has to provide a Hilbert axiom which will be transformed into
an analytic rule. The input axiom may consist of

• the letters [a-z] for atomic formulas
• 0, 1, bot and top for logical constants
• for logical connectives:

– & . . . additive and
– v . . . or
– * . . . fusion/multiplicative and
– - . . . negation
– -> . . . implication

Example 4.1.1. Examples for axioms according to the input syntax would be:
a -> 1, 0 -> a, (a*a) -> a, -(a & -a), (a -> b) v (b -> a)

4.1.2 Data structure

For the representation of hypersequents and rules we chose lists as data structure.

Hypersequents

Recall that we deal with single-conclusion hypersequents of the form G | A1, . . . , An ⇒ C

or G | A1, . . . , An ⇒. To simplify matters, we omit the side hypersequent G | in the list
representation of a hypersequent and only print it in the output. One component of a

22

Figure 4.1: List representation of hypersequents

hypersequent is represented as a list, containing another list for the antecedent and one
variable for the succedent:

[[_, _, _, _, _, ...], _]

A hypersequent is then considered a list of such lists. The list representation of a
hypersequent is illustrated schematically in Figure 4.1.

Example 4.1.2. Let S = G | a, b ⇒ c | d ⇒ be a hypersequent. In our list representation,
it is written as follows:

[[[a, b], c], [[d], ’’]]

Rules

The representation of the premises and the conclusion of a rule is the same as for hyper-
sequents: the premises and the conclusion are handled as two lists of hypersequents.

Example 4.1.3. Consider the rule (∨, l):

G | X,A ⇒ C G | X,B ⇒ C
(∨, l)

G | X,A ∨B ⇒ C

In list representation, it is written as follows:

[[[X, A], C], [[X, B], C]]

--------------------------- (v,l)

[[[X, A v B], C]]

23

List Manipulation

For list manipulation we use the methods append for adding list items, remove for re-
moving list items, reverseList for reversing the list and replaceElements for replacing
list elements with new items.

4.2 Part 1: Identifying the axiom class

In the first part, we recall the definition of the substructural hierarchy and reformulate
it with PROLOG clauses.

Definition 4.2.1. (Substructural Hierarchy) [15] Let A be the set of atomic formulas.
For n ≥ 0, the sets Pn,Nn of formulas are defined as follows:

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | �

Propositional variables are considered atomic whereas 0, 1, bot, top reside on level
≥ 1 of the classes P or N (A is the axiom):

is_atom(A) :-

atomic(A), % propositional variables are atomic

\+ member(A,[0,1,bot,top]). % except 0, 1, bot, top

Then we provide a recursive definition of the positive (is_pos_axiom) and the negative
(is_neg_axiom) classes of the substructural hierarchy. The first parameter A stands for
the axiom, the second argument N is the variable for calculating the level of the class in
the hierarchy. E.g. for the definition of positive classes we write (analogously for the
negative levels):

is_pos_axiom(A, 1) :-

is_atom(A).

is_pos_axiom(1, N) :- % 1 is situated on any level P_n, n > 0

N > 0.

is_pos_axiom(bot, N) :- % bot is situated on any level P_n, n > 0

N > 0.

is_pos_axiom(A, N1) :- % any axiom on a level P_n is on the level N_n-1

N1 > 0,

N is N1-1,

is_neg_axiom(A, N).

24

is_pos_axiom(A v B, N) :- % if A v B is situated on level P_n,

N > 0, % then A and B are both also on level P_n

is_pos_axiom(A, N),

is_pos_axiom(B, N).

is_pos_axiom(A * B, N) :-

N > 0,

is_pos_axiom(A, N),

is_pos_axiom(B, N).

This way we determine the levels Nnn
and Pnp

for the input axiom. If np < nn, the
axiom belongs to the class Pnp

, otherwise it belongs to the class Nnn
. If the axiom

belongs to a class above N2 or P3, the program calculates the class level but does not
proceed further. Instead, an information message is printed on the screen, e.g.

The axiom a v (a -> (b v -b)) is in the class: p(4)
The algorithm does not work for this class yet.

4.3 Part 2: From axioms to (hyper)structural rules

When the algorithm has determined the class of the input axiom and if it belongs to a
class up to N2 or P3, the program generates a structural rule in sequent or hypersequent
calculus equivalent to the original axiom. However, we do not distinguish between se-
quent and hypersequent rules in the program code because sequent rules are considered
hypersequent rules with only one component and without the context G | printed in the
output. The program proceeds in the same way as it has been described in Section 3.2:

– Consider the interpretation function for hypersequents (Definition 3.2.3): We re-
trieve the components of the hypersequent by splitting the axiom at every ∨:

is_hypersequent(Ax1 v Ax2, HS1) :-

is_hypersequent(Ax1, HS0),

append([Ax2], HS0, HS1).

is_hypersequent(Ax, HS) :-

atomic(Ax),

append([Ax], [], HS).

is_hypersequent(Ax, HS) :-

compound(Ax),

append([Ax], [], HS).

25

Example 4.3.1. Let A = -a v -(-a) be the input axiom. is_hypersequent then
retrieves the following hypersequent: [[[], -a], [[], -(-a)]]

– We use the invertible rules (→, r), (·, l) and (1, l) on every component in the con-
clusion of the hypersequent until no further rule-application is possible. E.g. the
recursive application of the right-invertible rules (→, r) and (¬, r), the latter being
basically a combined application of (→, r) and (0, r), to the components of the
conclusion is implemented as follows (note that the first two parameters, denoted
by _, _, do not matter here; the third parameter is the succedent of the conclu-
sion which we get as input, the fourth argument is the whole component of the
conclusion which we get as a result):

apply_right(_, _, Axiom, [[], Axiom]).

% (-> r) rule: X => a -> b ... a, X => b

apply_right(_, _, Ax1 -> Ax2, [P1, C0]) :-

apply_right(_, _, Ax2, [P0, C0]),

append(P0, [Ax1], P1).

% (-r) rule: X => -a ... a, X =>

apply_right(_, _, -C1, [[C1], ’’]).

– Then we use the equivalence lemmas, Lemma 3.2.1 and Lemma 3.2.5, to replace
the antecedents Ai in the conclusion with fresh metavariables Y+i with i being an
index and add Y+i => Ai to the premises.

– We apply the invertible rules (∧, r), (→, r), (·, l), (1, l) and (0, r) to the premises
until no further application is possible.

– We either apply (0, r) to every component of the conclusion, or we use the equiva-
lence lemmas to replace the succedents C of the conclusion with fresh metavariables
X+j with j being an index and add C => X+j to the premises.

– We recursively apply the invertible rules (∨, l), (·, l) and (1, l) to the premises.

Thus we obtain a (hyper)structural rule equivalent to the input axiom.

26

4.4 Part 3: Applying the completion procedure

In the third part, the program transforms the (hyper)structural rule obtained in part (2)
into an equivalent analytic rule. We implement step (2) and step (3) from the completion
procedure described in Section 3.2, namely restructuring and cutting.

Given any (hyper)structural rule, we replace every metavariable Y+i in the antecedent
of a component of the conclusion with G+j, which stands for Γj . Then we add G+j => Y+i
to the premises. Similarly, we replace all metavariables X+i in the succedent of a com-
ponent of the conclusion with D+k => P+k and add X+i, D+k => P+k to the premises:

%% restructuring(+Premises, -Premises, +Conclusion, -Conclusion)

restructuring(P0, P0, [], []).

restructuring(P0, P3, [[A0|[’’]]|T], C2) :-

restructuring(P0, P1, T, C1),

is_replaced_antecedent(A0, A1, P2), %replace the antecedent

append([[A1, ’’]], C1, C2),

append(P1, P2, P3).

restructuring(P0, P4, [[A0|[’X’+I]]|T], C2) :-

restructuring(P0, P1, T, C1),

is_replaced_antecedent(A0, A1, P2),

append([’D’+I], A1, A2),

append([[A2, ’P’+I]], C1, C2),

append(P1, P2, P3),

append([[[’X’+I, ’D’+I], ’P’+I]], P3, P4).

Then we apply the cutting step until the premises are free of redundant metavari-
ables (note that is_metafree_premises(P0) evaluates to true if there are no redundant
metavariables in P0):

cutting(P0, P0) :-

is_metafree_premises(P0).

cutting(P0, P2) :-

\+ is_metafree_premises(P0),

is_containing_metavariable(P0, MV),

cut_metavariable(P0, P1, MV),

cutting(P1, P2).

The rule that is obtained by this completion procedure does not contain any metavariables
X+i, Y+j or any atoms, but only metavariables G+i, D+j, P+j.

27

Example 4.4.1. The input axiom (a -> b) v (b -> a) results in the following analytic
rule:

Equivalent Analytic Rule:

G|G+1,D+2 => P+2 G|G+2,D+1 => P+1

G| D+2,G+2 => P+2| D+1,G+1 => P+1

28

Chapter 5

From the axioms (Bdk) to analytic rules

The systematic procedure of Ciabattoni et al. [15] to translate Hilbert axioms into
equivalent analytic calculi works only up to the classes N2 and P3 of the substructural
hierarchy. In this chapter, the scope of this procedure will be extended to capture the
family of axioms known as (Bdk) with k ≥ 1 which are semantically characterized by
Kripke models with depth ≤ k, see [9]. The axiom scheme (Bdk) is recursively defined
as follows:

(Bd1) A1 ∨ ¬A1

(Bdi+1) Ai+1 ∨ (Ai+1 → (Bdi))

These axioms are especially interesting as intuitionistic logic extended with the axiom
(Bd2) is the only one of the seven interpolable intermediate logics — i.e., logics between
intuitionistic and classical logic — to which the procedure in [15] does not apply to.
Indeed all other six axioms are within the class P3 of the substructural hierarchy while
(Bd2) belongs to the class P4.

Example 5.0.2. Consider the axiom (Bd2) = A2 ∨ (A2 → (A1 ∨ ¬A1)): (A1 ∨ ¬A1) is
within P2, (A2 → (A1 ∨ ¬A1)) is within N3 and due to the outermost connective ∨, the
axiom (Bd2) belongs to the class P4.

The extension of the systematic procedure to cover the family of axioms known as (Bdk)

requires the introduction of a new, more powerful formalism and the identification of suit-
able rules corresponding to (Bdk). Subsequently, the proofs of soundness, completeness
and cut-elimination for the generated calculi in the new framework have to be provided.

29

5.1 The non-commutative hypersequent calculus

Here we introduce a new formalism, the non-commutative hypersequent calculus, and
provide suitable rules corresponding to the axioms (Bdk). Moreover, we give uniform
proofs of soundness, completeness and cut-elimination for the introduced calculi in the
framework.

Definition 5.1.1. A non-commutative hypersequent (nc-hypersequent, for short) is an
expression of the form

Γ1 ⇒ ∆1 |� . . . |� Γn ⇒ ∆n

where for all i = 1, . . . , n,Γi ⇒ ∆i is a sequent which is called component of the non-
commutative hypersequent. A non-commutative hypersequent is single-conclusion if all
of its components are single-conclusion and it is multiple-conclusion otherwise.

As in the case of the hypersequent calculus [5], the nc-hypersequent calculus consists
of initial axioms, logical rules, the cut-rule and (internal and external) structural rules.
The main aspect where the non-commutative hypersequent calculus differs from the
hypersequent calculus is the lack of the external-exchange structural rule (ee) (see Sec-
tion 2.2.2), i.e., the order of the components of a non-commutative hypersequent matters.
E.g., Γ1 ⇒ ∆1 |� Γ2 ⇒ ∆2 is not the same as Γ2 ⇒ ∆2 |� Γ1 ⇒ ∆1. Therefore, non-
commutative hypersequents contain two (possibly empty) side nc-hypersequents G and
G

�.

Definition 5.1.2. A non-commutative hypersequent of the form
G := Γ1 ⇒ ∆1 |� Γ2 ⇒ ∆2 |� . . . |� Γn ⇒ ∆n

is interpreted as follows:
GI :=

�
Γ1 → (

�
∆1 ∨ (

�
Γ2 → (

�
∆2 ∨ (· · · ∨ (

�
Γn →

�
∆n)))))

where
�

Γi is the conjunction of the formulas in Γi or �, when Γi is empty, and
�
∆i is

either the disjunction of the formulas in ∆i or ⊥. For single-conclusion nc-hypersequents,
∆i is either one formula or ⊥.

The difference between hypersequents and nc-hypersequents is illustrated best when com-
paring their interpretation functions. Recall the definition of the interpretation function
for hypersequents (see Definition 3.2.3): A hypersequent Gc = Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

is interpreted as GI
c = (

�
Γ1 →

�
∆1) ∨ (

�
Γ2 →

�
∆2) which shows that the com-

ponents are commutative and, consequently, the order does not matter. In contrast,
the corresponding nc-hypersequent Gnc = Γ1 ⇒ ∆1 |� Γ2 ⇒ ∆2 is interpreted as

30

GI
nc =

�
Γ1 → (

�
∆1 ∨ (

�
Γ2 →

�
∆2)) where the nesting of the components becomes

obvious.

Notation. For the interpretations of side nc-hypersequents, we write G
I [∗] where ∗ is

replaced with the interpreted nc-hypersequent components nested into G
I . Let G be a

generic non-commutative hypersequent of the form
G = G |� Γ ⇒ ∆ |� G

�

G is interpreted as follows:
GI = (G |� Γ ⇒ ∆ |� G

�)I = G
I [
�

Γ → (
�
∆ ∨G

�I)]

Definition 5.1.3. [35, 37] Given a logical rule, the principal formula is the formula in
the conclusion of a rule in which the logical symbol is introduced. The formula(s) in the
premise(s) from which the principal formula derives are called active formula(s). The
formulas which remain unchanged are referred to as side formulas or (internal) contexts.

Example 5.1.4. Consider the rule (∧, r): G |� Γ ⇒ A |� G
�

G |� Γ ⇒ B
(∧, r)

G |� Γ ⇒ A ∧B |� G
�

Then A∧B is the principal formula, A and B are the active formulas. Γ is the (internal)
context (or side formula).

31

Calculus rules

We denote by HLJ
nc the non-commutative hypersequent calculus for LJ. HLJ

nc con-
sists of the following rules:

Axioms Cut Rule

A ⇒ A ⊥ ⇒ A
G |� Γ ⇒ A |� G

�
H |� A,Σ ⇒ Π |� H

�

G |� H |� Σ,Γ ⇒ Π |� H
� |� G

�

External Structural Rules

G |� G
�

(ew)
G |� Γ ⇒ Π |� G

�
G |� S |� S |� G

�

(ec)
G |� S |� G

�

with S = Γ1 ⇒ Π1 |� · · · |� Γn ⇒ Πn

Internal Structural Rules

G |� Γ ⇒ Π |� G
�

(w, l)
G |� Γ, A ⇒ Π |� G

�
G |� Γ ⇒ |� G

�

(w, r)
G |� Γ ⇒ Π |� G

�

G |� Γ, A,A ⇒ Π |� G
�

(c, l)
G |� Γ, A ⇒ Π |� G

�
G |� Γ, A ⇒ Π |� G

�

(e, l)
G |� A,Γ ⇒ Π |� G

�

Logical Rules

G |� Γ, A ⇒ B
(→, r)

G |� Γ ⇒ A → B |� G
�

G |� Γ ⇒ A |� G
�

G |� B,Γ ⇒ Π |� G
�

(→, l)
G |� Γ, A → B ⇒ Π |� G

�

G |� Γ ⇒ A |� G
�

G |� Γ ⇒ B |� G
�

(∧, r)
G |� Γ ⇒ A ∧B |� G

�
G |� Γ, Ai ⇒ Π |� G

�

(∧i, l)i=1,2
G |� Γ, A1 ∧A2 ⇒ Π |� G

�

G |� Γ ⇒ Ai |� G
�

(∨i, r)i=1,2
G |� Γ ⇒ A1 ∨A2 |� G

�
G |� Γ, A ⇒ Π |� G

�
G |� Γ, B ⇒ Π |� G

�

(∨, l)
G |� Γ, A ∨B ⇒ Π |� G

�

Table 5.1: Non-commutative Hypersequent Calculus HLJ
nc

We will show that �LJ Γ ⇒ Π iff �HLJnc Γ ⇒ Π, i.e., if Γ ⇒ Π is provable in LJ, it is
also provable in HLJ

nc and vice versa (see Corollary 5.1.9).
Recall the hypersequent calculus GLC depicted in Table 2.2.2. Note that the calculus
HLJ

nc lacks the external exchange rule (ee). Furthermore, in HLJ
nc we have to take

care of the left and right contexts G and G
�, whereas we only have to consider the left

32

context G in GLC. There is also an important difference between the logical rule (→, r)

and the other rules of HLJ
nc as the right context G� is omitted in the premise of (→, r).

Thus, we have to be very careful when using this rule, especially when proving soundness,
w.r.t. intuitionistic logic, and cut-elimination.

Lemma 5.1.5. (Completeness) S �HLJnc⇒ S
I

Proof. Let S be a generic non-commutative hypersequent. Assume that S is of the form
S = Γ1 ⇒ Π1 |� Γ2 ⇒ Π2. We show that S �HLJnc⇒ S

I — i.e., S �HLJnc⇒
�

Γ1 →
(Π1 ∨ (

�
Γ2 → Π2)) — as follows:

Γ1 ⇒ Π1 |� Γ2 ⇒ Π2

(c, l)(∧, l)�
Γ1 ⇒ Π1 |�

�
Γ2 ⇒ Π2

(w, l)�
Γ1 ⇒ Π1 |�

�
Γ1,

�
Γ2 ⇒ Π2

(→, r)�
Γ1 ⇒ Π1 |�

�
Γ1 ⇒

�
Γ2 → Π2

(∨, r)�
Γ1 ⇒ Π1 ∨ (

�
Γ2 → Π2)) |�

�
Γ1 ⇒ Π1 ∨ (

�
Γ2 → Π2)

(→, r)
⇒

�
Γ1 → (Π1 ∨ (

�
Γ2 → Π2)) |� ⇒

�
Γ1 → (Π1 ∨ (

�
Γ2 → Π2))

(ec)
⇒

�
Γ1 → (Π1 ∨ (

�
Γ2 → Π2))

The proof can easily be extended to a non-commutative hypersequent with n components.

Lemma 5.1.6. (Soundness) If �HLJnc Γ1 ⇒ Π1 |� · · · |� Γn ⇒ Πn then �LJ⇒ (Γ1 ⇒
Π1 |� · · · |� Γn ⇒ Πn)I .

Proof. By induction on the length of the derivation. The base case is true since the
claim holds for axioms (�HLJnc A ⇒ A implies �LJ⇒ A → A and therefore �LJ A ⇒ A,
similarly for �HLJnc ⊥ ⇒ A). For the inductive case we proceed by showing that for
each inference rule in HLJ

nc with premises
G |� S1 |� G

��
, . . . , G |� Sn |� G

��

and conclusion G |� S0 |� G
�, the sequent

(G |� S1 |� G
��)I , . . . , (G |� Sn |� G

��)I ⇒ (G |� S0 |� G
�)I

is provable in LJ (with n ∈ {1, 2} and G
�� might be empty).

– Logical rules. We show the cases of the rules (→, r) and (→, l). The other logical
rules can be proved analogously.

33

(→, r):

G |� Γ, A ⇒ B
(→, r)

G |� Γ ⇒ A → B |� G
�

By induction hypothesis we have �LJ⇒ G
I [(

�
Γ ∧A) → B]. Since �LJ G

I [(
�
Γ ∧

A) → B] ⇒ G
I [
�

Γ → ((A → B) ∨G
�I], the claim follows by using (cut):

⇒ G
I [(

�
Γ ∧A) → B] G

I [(
�

Γ ∧A) → B] ⇒ G
I [
�
Γ → ((A → B) ∨G

�I)]
(cut)

⇒ G
I [
�
Γ → ((A → B) ∨G

�I)]

Remark: The proof for the rule (→, r) does not work in the presence of a right
context G� in the premise due to the nesting of the interpreted formula. Indeed we
cannot prove (

�
Γ ∧A) → (B ∨G

�I) ⇒
�

Γ → ((A → B) ∨G
�I).

(→, l):

G |� Γ ⇒ A |� G
�

G |� B,Γ ⇒ Π |� G
�
(→, l)

G |� Γ, A → B ⇒ Π |� G
�

By induction hypothesis we have �LJ⇒ G
I [
�
Γ → (A ∨G

�I)] and �LJ⇒ G
I [(B ∧

�
Γ) → (Π ∨G

�I)]. Since �LJ G
I [
�
Γ → (A ∨G

�I)], GI [(B ∧
�
Γ) → (Π ∨G

�I)] ⇒
G

I [(
�
Γ ∧ (A → B)) ∨ (Π ∨G

�I)], the claim follows by using (cut):

⇒ G
I [
�

Γ → (A ∨G
�I)]

⇒ G
I [(B ∧

�
Γ) → (Π ∨G

�I)]

G
I [
�

Γ → (A ∨G
�I)], GI [(B ∧

�
Γ) → (Π ∨G

�I)]

⇒ G
I [(

�
Γ ∧ (A → B)) → (Π ∨G

�I)]
(cut)

G
I [
�

Γ → (A ∨G
�I)] ⇒ G

I [(
�

Γ ∧ (A → B)) → (Π ∨G
�I)]

(cut)
⇒ G

I [(
�

Γ ∧ (A → B)) → (Π ∨G
�I)]

– Structural rules. We outline the proofs for the cases (ew) and (ec). The remain-
ing cases are similar.

(ew):

G |� G
�

(ew)
G |� Γ ⇒ Π |� G

�

By induction hypothesis we have �LJ⇒ G
I [G�I]. Since �LJ G

I [G�I] ⇒ G
I [
�
Γ →

(Π ∨G
�I)], the claim follows by using (cut):

⇒ G
I [G�I] G

I [G�I] ⇒ G
I [
�

Γ → (Π ∨G
�I)]

(cut)
⇒ G

I [
�

Γ → (Π ∨G
�I)]

34

(ec):

G |� S |� S |� G
�
(ec)

G |� S |� G
�

Suppose S = Γ ⇒ Π. By induction hypothesis we have �LJ⇒ G
I [
�
Γ → (Π ∨

(
�

Γ → (Π ∨G
�I)))]. Since �LJ G

I [
�
Γ → (Π ∨ (

�
Γ → (Π ∨G

�I)))] ⇒ G
I [
�
Γ →

(Π ∨G
�I)], the claim follows by using (cut):

⇒ G
I [
�

Γ → (Π ∨ (
�

Γ → (Π ∨G
�I)))]

G
I [
�

Γ → (Π ∨ (
�

Γ → (Π ∨G
�I)))]

⇒ G
I [
�

Γ → (Π ∨G
�I)]

(cut)
⇒ G

I [
�

Γ → (Π ∨G
�I)]

– (cut)-Rule.

G |� Γ ⇒ A |� G
�

H |� A,Σ ⇒ Π |� H
�
(cut)

G |� H |� Γ,Σ ⇒ Π |� H
� |� G

�

By induction hypothesis we have �LJ⇒ G
I [
�
Γ → (A ∨G

�I)] and �LJ⇒ H
I [(A ∧

�
Σ) → (Π∨H

�I)]. Since �LJ G
I [
�

Γ → (A∨G
�I)], HI [(A∧

�
Σ) → (Π∨H

�I)] ⇒
G

I [HI [(
�
Γ ∧

�
Σ) → (Π ∨H

�I [G�I])]], the claim follows by using (cut):

⇒ H
I [(A ∧

�
Σ) → (Π ∨H

�I)]

⇒ G
I [
�

Γ → (A ∨G
�I)]

G
I [
�

Γ → (A ∨G
�I)], HI [(A ∧

�
Σ) → (Π ∨H

�I)]

⇒ G
I [HI [(

�
Γ ∧

�
Σ) → (Π ∨H

�I [G�I])]]
(cut)

H
I [(A ∧

�
Σ) → (Π ∨H

�I)] ⇒ G
I [HI [(

�
Γ ∧

�
Σ) → (Π ∨H

�I [G�I])]]
(cut)

⇒ G
I [HI [(

�
Γ ∧

�
Σ) → (Π ∨H

�I [G�I])]]

The reason why (ee) does not work in HLJ
nc

:

G |� G
�
(ee)

G
� |� G

Due to the definition of the interpretation function, we are not able to prove the external-
exchange rule for LJ: Suppose G = Γ ⇒ Π and G

� = Γ� ⇒ Π�. Then we have to show
�LJ

�
Γ → (Π ∨ (

�
Γ� → Π�)) ⇒

�
Γ� → (Π� ∨ (

�
Γ → Π)). After one rule application

of (→, r) we are stuck. An application of (→, l) yields
�
Γ� ⇒

�
Γ which is not provable

in general. When using (∨, r), we have to omit either Π� or (
�
Γ → Π). Either way, we

lose an important part of the formula which we will need later to finish the proof. Thus,
the external exchange rule cannot be proved in LJ and an addition of this rule to the
calculus would contradict Lemma 5.1.6.

35

Proposition 5.1.7. For any non-commutative hypersequent S and any set of sequents
S ∪ {S0}, we have the following equivalences:

{S} ∪ S �HLJnc S0 iff {⇒ S
I} ∪ S �HLJnc S0 iff {⇒ S

I} ∪ S �LJ S0

Proof. {⇒ S
I} ∪ S �LJ S0 obviously implies {⇒ S

I} ∪ S �HLJnc S0 (if a sequent
is provable in LJ, it is also provable in the non-commutative hypersequent framework
HLJ

nc).
Due to Lemma 5.1.5, {⇒ S

I} ∪ S �HLJnc S0 implies {S} ∪ S �HLJnc S0.
{S} ∪ S �HLJnc S0 implies {⇒ S

I} ∪ S �LJ S
I

0 by Lemma 5.1.6. The claim follows as
S
I

0 implies S0 in LJ.

Lemma 5.1.8. (Bdk) Let S be the natural nc-hypersequent “corresponding” to (Bdk),
i.e., S is ⇒ Ak |� Ak ⇒ Ak−1 |� · · · |� A2 ⇒ A1 |� ⇒ ¬A1. Then we can show for
k ≥ 2: �LJ (Bdk) ↔ S

I .

Proof. The proof tree is split in two parts, the first one showing the direction �LJ

(Bdk) → S
I , the second one showing �LJ S

I → (Bdk). This may be done since �LJ

(Bdk) ↔ S
I is �LJ ((Bdk) → S

I) ∧ (SI → (Bdk)) and due to the application of the
(∧, r) rule.

�LJ (Bd2) → S
I :

A ⇒ A

A ⇒ A

B ⇒ B

¬B ⇒ ¬B
(→, r)(w, l)

¬B ⇒ � → ¬B
(∨, l)(∨, r)

B ∨ ¬B ⇒ B ∨ (� → ¬B)
(→, r)(→, l)

A → (B ∨ ¬B) ⇒ A → (B ∨ (� → ¬B))
(∨, l)(∨, r)

A ∨ (A → (B ∨ ¬B)) ⇒ A ∨ (A → (B ∨ (� → ¬B)))
(→, r)

⇒ (A ∨ (A → (B ∨ ¬B))) → (A ∨ (A → (B ∨ (� → ¬B))))

�LJ S
I → (Bd2):

A ⇒ A

A ⇒ A

B ⇒ B

A ⇒ � ¬B ⇒ ¬B
(→, l)

� → ¬B,A ⇒ ¬B
(∨, l)(∨, r)

B ∨ (� → ¬B), A ⇒ B ∨ ¬B
(→, r)(→, l)

A → (B ∨ (� → ¬B)) ⇒ A → (B ∨ ¬B)
(∨, l)(∨, r)

A ∨ (A → (B ∨ (� → ¬B))) ⇒ A ∨ (A → (B ∨ ¬B))
(→, r)

⇒ (A ∨ (A → (B ∨ (� → ¬B)))) → (A ∨ (A → (B ∨ ¬B)))

The proof can easily be extended for k > 2 by induction, k = 2 being the base case.

Corollary 5.1.9. For any nc-hypersequent P and any set S ∪ {S0} of sequents, we have
S �HLJnc+P S0 iff S �HLJnc+{⇒P I} S0 iff S �LJ+{⇒P I} S0.

36

In the following lemma, we show that the logical rule (→, r) is invertible when there is
no right context G

�. The invertibility of (→, r) holds only in this specific case because
the right context is omitted in the premises of the rule (see Table 5.1).

Lemma 5.1.10. (Invertibility of (→, r)) [6] If d �HLJnc G |� Γ ⇒ A → B then one
can find d1 �HLJnc G |� Γ, A ⇒ B such that ρ(di) ≤ ρ(d) and |di| ≤ |d| for i = 1, 2.

Proof. We show the invertibility of (→, r) when there is no right context G� by induction
on |d|. We consider the last inference R in d.

1. R is a logical rule.

(a) A → B is the principal formula. Then we have:

...d�

G |� Γ, A ⇒ B

G |� Γ ⇒ A → B

The required derivation d1 is d
�.

(b) A → B is not the principal formula. A → B is then propagated to one or two
premises. Suppose that R is (∨, l):

...d�

G |� Γ, X ⇒ A → B

...d��

G |� Γ, Y ⇒ A → B

G |� Γ, X ∨ Y ⇒ A → B

We apply the induction hypothesis to d
� and d

�� and get d�1 �HLJnc G |� Γ, X,A ⇒
B and d

��
1 �HLJnc G |� Γ, Y, A ⇒ B with |d�1|, |d��1| ≤ |d| and ρ(d�1), ρ(d

��
1) ≤ ρ(d).

The derivation d1 can be retrieved by applying (∨, l) to d
�
1 and d

��
1. The re-

maining cases are similar.

2. R is an internal or external structural rule.

(a) A → B is neither weakened nor in the active component. The derivations
can be retrieved by application of the induction hypothesis and subsequent
application(s) of R.

(b) R is (ec) and A → B is in the active component. Suppose that R is (ec)

with G = G1 |� G2 with S = G2 |� Γ ⇒ A → B being the contracted
nc-hypersequent:

...d�

G |� Γ ⇒ A → B |� G2 |� Γ ⇒ A → B

G |� Γ ⇒ A → B

37

We apply the induction hypothesis to d
� and get d

�
1 �HLJnc G |� Γ, A ⇒ B

or d
��
1 �HLJnc G |� Γ ⇒ A → B |� G2 |� Γ, A ⇒ B with |d�1|, |d��1| ≤ |d| and

ρ(d�1), ρ(d
��
1) ≤ ρ(d). The derivation d1 is then d

�
1 or can be retrieved from d

��
1

by applying the induction hypothesis again to the second component.

3. R is (cut). Analogous to case 1.(b).

5.2 From the axioms (Bdk) to nc-hypersequent rules

Here we describe how to adapt the systematic procedure in [15] to deal with the axioms
(Bdk). To obtain structural rules equivalent to the axioms (Bdk), we suitably modify
the transformation steps for hypersequent calculi described in [15] to deal with non-
commutative hypersequents. In the first step of the algorithm, we transform an axiom
into a non-commutative hypersequent structural rule, nc-hyperstructural rule for short.
The second step consists of a completion procedure similar to the one provided in [15].

As described earlier, the axioms (Bdk) have the form [9]:

(Bd1) A1 ∨ ¬A1

(Bdi+1) Ai+1 ∨ (Ai+1 → (Bdi))

By Lemma 5.1.8, we know that each axiom (Bdk), k ≥ 2 is equivalent to the non-
commutative hypersequent:

⇒ Ak |� Ak ⇒ Ak−1 |� · · · |� ⇒ ¬A1

Indeed, this is true by Proposition 5.1.7 which states that if some sequent is derivable
in HLJ

nc, the interpretation of this sequent is derivable in LJ and vice versa. After one
application of (→, r) to the last component, this nc-hypersequent is in turn equivalent to
the nc-hypersequent structural rule (with G being a possibly empty side nc-hypersequent)
by the invertibility of (→, r) with no right context G

� (see Lemma 5.1.10):

G |� ⇒ Ak |� Ak ⇒ Ak−1 |� · · · |� A1 ⇒

Example 5.2.1. The nc-hyperstructural rule (Bd20) for the axiom (Bd2) = A2∨ (A2 →
(A1 ∨ ¬A1)) is:

(Bd20)
G |� ⇒ A2 |� A2 ⇒ A1 |� A1 ⇒

38

However, this nc-hyperstructural rule does not yet preserve cut admissibility when added
to the calculus HLJ

nc. To overcome this problem, we provide a completion procedure
similar to the one in [15] to transform an nc-hyperstructural rule into an analytic rule.
The transformation procedure consists of two steps, where the rule is first restructured
and then cut.

(1) Restructuring

Given the nc-hypersequent structural rule derived from an axiom (Bdk). We replace every
component (Y1, · · · , Yn ⇒ X) in the conclusion with (Γ1, · · · ,Γn,ΣX ⇒ ΠX) and add
n+1 new premises of the form (G |� Γ1 ⇒ Y1), · · · , (G |� Γn ⇒ Yn), (G |� X,ΣX ⇒ ΠX)

with Γ1, · · · ,Γn,ΣX ,ΠX being fresh and mutually distinct metavariables. We replace
every component (Y1, · · · , Yn ⇒) with (Γ1, · · · ,Γn ⇒) and add n new premises of the
form (G |� Γ1 ⇒ Y1), · · · , (G |� Γn ⇒ Yn). The resulting rules have the following
properties [15]:

• linear conclusion: Each metavariable occurs at most once in the conclusion.

• separation: No metavariable occurring in the antecedent (succedent, respectively)
of a component of the conclusion occurs in the succedent (antecedent, respectively)
of a premise.

• coupling: The metavariables of each pair (ΣX ,ΠX), which is associated to the same
occurrence of X, occur in the same premise.

Example 5.2.2. Suppose we have the nc-hyperstructural rule for the axiom (Bd2) from
Example 5.2.1. By applying the restructuring step to all three components, we get the
following nc-hyperstructural rule (Bd21):

G |� A2,Σ ⇒ Π
(1)

G |� Σ ⇒ Π |� A2 ⇒ A1 |� A1 ⇒

G |� A2,Σ ⇒ Π

G |� Γ� ⇒ A2

G |� A1,Σ� ⇒ Π�
(2)

G |� Σ ⇒ Π |� Γ�
,Σ� ⇒ Π� |� A1 ⇒

G |� Γ� ⇒ A2

G |� A2,Σ ⇒ Π

G |� Γ�� ⇒ A1

G |� A1,Σ� ⇒ Π�
(3) (Bd21)

G |� Σ ⇒ Π |� Γ�
,Σ� ⇒ Π� |� Γ�� ⇒

39

(2) Cutting

Given any nc-hypersequent structural rule derived from an axiom (Bdk). We proceed
with cutting the redundant metavariables, i.e., metavariables that occur in the premise
but not in the conclusion [15].

Let A be such a redundant metavariable and G1 = {G |� Υ�
i
⇒ A, 1 ≤ i ≤ m}

be the subset of premises which have A in the succedent, G2 = {G |� Υj , A, · · · , A ⇒
Ψj , 1 ≤ j ≤ n} be the subset of premises which have at least one occurrence of A in the
antecedent and A does not appear in Υj .

If n = 0, i.e., A only occurs in the succedent, we remove subset G1 from the premises.
Analogously, if m = 0, i.e., A only occurs in the antecedent, we remove subset G2 from
the premises. The resulting rule implies the original rule by instantiating A with ⊥ (if
m = 0) or � (if n = 0).

Otherwise, if m > 0 and n > 0, we create a new subset of premises Gcut = {G |� Υj ,

Υ�
i1
, · · · ,Υ�

is
⇒ Ψj , 1 ≤ j ≤ n, 1 ≤ i1, · · · , is ≤ m}. Then we replace G1 ∪ G2 with Gcut.

We repeat this cutting step until we get an nc-hyperstructural rule without redundant
metavariables.

Example 5.2.3. We apply the cutting step to the nc-hyperstructural rule (Bd21) from
Example 5.2.2 until we obtain the rule (Bd2). First, we apply the cutting procedure to
A2:

G |� Γ�
,Σ ⇒ Π

G |� Γ�� ⇒ A1

G |� A1,Σ� ⇒ Π�
(Bd22)

G |� Σ ⇒ Π |� Γ�
,Σ� ⇒ Π� |� Γ�� ⇒

Then we apply the cutting procedure to A1:

G |� Γ�
,Σ ⇒ Π G |� Γ��

,Σ� ⇒ Π�
(Bd2)

G |� Σ ⇒ Π |� Γ�
,Σ� ⇒ Π� |� Γ�� ⇒

Every nc-hyperstructural rule obtained by this procedure is called completed. Completed
rules have the same properties as the rules after the restructuring step, except that the
property of separation is strengthened to the “strong subformula property” [15]: Every
metavariable that occurs in the antecedent (succedent, respectively) of a premise, also
occurs in the antecedent (succedent, respectively) of the conclusion.

40

Lemma 5.2.4. The rule G |� Φ1 |� G
� · · ·G |� Φm |� G

�
(r0)

G |� Φ |� A1, · · · , An ⇒ C |� G
� is equivalent to the rules

�G |� Φ |� G� G |� Υ1 ⇒ A1 |� G
� · · ·G |� Υn ⇒ An |� G

�
(r1)

G |� Φ |� Υ1, · · · ,Υn ⇒ C |� G
�

and
�G |� Φ |� G� G |� C,Υ ⇒ Ψ |� G

�
(r2)

G |� Φ |� ψ1, · · · ,ψn,Υ ⇒ Ψ |� G
�

where �G |� Φ |� G� = (G |� Φ1 |� G
�
, · · · , G |� Φm |� G

�) with Φ,Φ1, . . . ,Φm being nc-
(meta)hypersequents consisting of metavariables. Υi is a fresh metavariable Yi or Γi and
Υ ⇒ Ψ is either ⇒ X or Σ ⇒ Π.

Proof.
(r0) → (r1): To show that (r1) can be derived from (r0), we use (cut):

G |� Υ2 ⇒ A2 |� G
�

G |� Υ1 ⇒ A1 |� G
�

�G |� Φ |� G�
(r0)

G |� Φ |� A1, · · · , An ⇒ C |� G
�

(cut)
G |� Φ |� Υ1, A2, · · · , An ⇒ C |� G

�

(cut)
G |� Φ |� Υ1,Υ2, A3 · · ·An ⇒ C |� G

�

(cut)
G |� Φ |� Υ1, · · · ,Υn ⇒ C |� G

�

(r1) → (r0): To show this direction, Υi has to be instantiated with Ai.
(r0) → (r2): To show that (r2) can be derived from (r0), we use (cut):

�G |� Φ |� G�
(r0)

G |� Φ |� A1, · · · , An ⇒ C |� G
�

G |� C,Υ ⇒ Ψ |� G
�

(cut)
G |� Φ |� A1, · · · , An,Υ ⇒ Ψ |� G

�

(r2) → (r0): To show this direction, Υ ⇒ Ψ has to be instantiated with ⇒ C.

Theorem 5.2.5. Every nc-hypersequent structural rule can be transformed into a com-
pleted rule which is equivalent in HLJ

nc.

Proof. We have to show that every rule obtained by applications of the steps (1) “Re-
structuring” and (2) “Cutting” is equivalent to the initial nc-hypersequent structural rule
of the axioms (Bdk), k ≥ 2.

– The equivalence of the initial nc-hypersequent structural rule and the nc-hypersequent
structural rule after step (1) of the procedure follows by Lemma 5.2.4.

– We show that every rule r
� obtained from r by replacing the premises G1 ∪ G2 with

Gcut in step (2) is equivalent to r as follows:
r → r

�: To show that the premises of r� can be obtained from r, we use (cut) on
the premises of r. E.g. suppose

41

G |� Γ ⇒ A G |� Γ� ⇒ A G |� A,Σ ⇒ Π
(r)

G |� Γ,Σ ⇒ Π |� Γ� ⇒

G |� Γ,Σ ⇒ Π G |� Γ�
,Σ ⇒ Π

(r�)
G |� Γ,Σ ⇒ Π |� Γ� ⇒

Then:

G |� Γ ⇒ A G |� A,Σ ⇒ Π

G |� Γ,Σ ⇒ Π

G |� Γ� ⇒ A G |� A,Σ ⇒ Π

G |� Γ�
,Σ ⇒ Π

(r�)
G |� Γ,Σ ⇒ Π |� Γ� ⇒

r
� → r: For this direction, we set Ā =

�
m

i=0Υ
�
i
. Then we can prove the premises

G |� Υ�
i
⇒ Ā from r. We can derive G |� Ā,Υj ⇒ Ψj by applying (∨, l) to the

premises of r�. E.g. suppose the rules (r), (r�) as previously described. Then we
have Ā = Γ ∨ Γ� and:

G |� Γ ⇒ Ā G |� Γ� ⇒ Ā

G |� Γ,Σ ⇒ Π G |� Γ�
,Σ ⇒ Π

(∨, l)
G |� Ā,Σ ⇒ Π

(r)
G |� Γ,Σ ⇒ Π |� Γ� ⇒

5.2.1 Completed rules resulting from the axioms (Bdk)

We retrieve the following nc-hypersequent rules for the axioms (Bdk) with the adapted
transformation procedure:
For every axiom (Bdk) of the form:

Ak ∨ (Ak → (Ak−1 ∨ (· · · ∨ (A2 → (A1 ∨ ¬A1)))))

we get the following hyperstructural rule:

G |� ⇒ Ak |� Ak ⇒ Ak−1 |� · · · |� A2 ⇒ A1 |� A1 ⇒

After applying the completion procedure, we obtain the analytic rules:
{G |� Γi,Σi+1 ⇒ Πi+1}1≤i≤k

(Bdk)
G |� Σk+1 ⇒ Πk+1 |� Γk,Σk ⇒ Πk |� · · · |� Γ2,Σ2 ⇒ Π2 |� Γ1 ⇒

Example 5.2.6. By applying to the axiom (Bd2), i.e., A2 ∨ (A2 → (A1 ∨ ¬A1)), the
transformation procedure described in this chapter, we obtain the following analytic rule:

G |� Γ2,Σ3 ⇒ Π3 G |� Γ1,Σ2 ⇒ Π2
(Bd2)

G |� Σ3 ⇒ Π3 |� Γ2,Σ2 ⇒ Π2 |� Γ1 ⇒

Consider the calculus HLJ
nc extended with the rule (Bd2) from Example 5.2.6. We are

then able to proof the axiom (Bd2) as follows:

42

A ⇒ A B ⇒ B (Bd2)⇒ A |� A ⇒ B |� B ⇒
(w, l)

⇒ A |� A ⇒ B |� A,B ⇒
(→, r)

⇒ A |� A ⇒ B |� A ⇒ ¬B
(∨, r)

⇒ A |� A ⇒ B ∨ ¬B |� A ⇒ B ∨ ¬B
(ec)

⇒ A |� A ⇒ B ∨ ¬B
(→, r)

⇒ A |� ⇒ A → (B ∨ ¬B)
(∨, r)

⇒ A ∨ (A → (B ∨ ¬B)) |� ⇒ A ∨ (A → (B ∨ ¬B))
(ec)

⇒ A ∨ (A → (B ∨ ¬B))

5.3 Proof of Cut-Elimination

Here we prove that the cut-elimination theorem holds for the non-commutative hyper-
sequent calculus extended with completed rules which are obtained by the procedure
described in the preceding section. One of the standard methods for cut-elimination was
introduced by Gentzen in [22] and is shortly described in Chapter 2. However, we can-
not use this method of cut-elimination for our calculus because of the asymmetry which
arises by the logical rule (→, r) where the right context is omitted in the premises (see
Example 5.3.1).

Example 5.3.1. Consider the following instance of a cut:

...d1
G |� Γ ⇒ X |� G

�

...d2
G |� Σ, X,A ⇒ B

(→, r)
G |� Σ, X ⇒ A → B |� G

�

(cut)
G |� Γ,Σ ⇒ A → B |� G

�

In this case, we cannot shift the cut rule over the premise d2 due to the context G
�

in the premise G |� Γ ⇒ X |� G
�.

Therefore, we use a method close to that introduced by Schütte-Tait [32, 34], in which
the cuts are eliminated by shifting the cut formula upwards over only one premise. By
using the invertibility of some of the logical rules, we replace the cuts with smaller ones
in the exact same place.

Definition 5.3.2. The right premise of the cut rule is the premise that contains the
cut-formula in the succedent. Analogously, the left premise of the cut rule is the premise
that contains the cut-formula in the antecedent.

43

Example 5.3.3. Consider the following cut: G |� Γ ⇒ A |� G
�

H |� Σ, A ⇒ C |� H
�

(cut)
G |� H |� Γ,Σ ⇒ C |� H

� |� G
�

Then G |� Γ ⇒ A |� G
� is the right premise and H |� Σ, A ⇒ C |� H

� is the left premise
of the cut.

We generalize the Schütte-Tait-style cut-elimination in [6] for the non-commutative
hypersequent calculus. Due to the fact that there are only two invertible rules, (∧, l) and
(∨, l), we have to be very careful when shifting the cut formula upwards. If the outermost
connective of the cut formula is ∧ or ∨, we proceed by shifting the cut formula over the
right premise and replace the cuts with smaller ones by invertibility of the rules (∧, l)
and (∨, l). If the cut formula has → as the outermost connective, we have to first shift
the cut formula over the right premise and then shift it upwards over the left premise.
Note that in this case the right context of the right premise has already been deleted due
to an application of → and the subsequent shift over the left premise may therefore be
carried out.
To be able to trace the cut formula in the derivation, we introduce the notion of a
decorated formula:

Definition 5.3.4. [6] Let d �HLJnc H and A be a formula in H that is not the cut formula
of any cut in d. The decoration of A in d is inductively defined as follows: we denote by
A* any marked occurrence of A. Given a hypersequent H’ in d with some (not necessarily
all) marked A’s. Let R be the rule introducing H’. We divide some cases according to R.

1. R is a logical rule:
1.1 A is principal in R, e.g.,

G |� Γ� ⇒ Π� |� G
�

(R)
G |� Γ ⇒ Π |� G

�

(a) Suppose that A* ∈ Γ. A*∈ Γ� if and only if A* is an occurrence of a formula in
Γ which is not the principal formula. Moreover, the marked formulas of G,G

� in the
premise of R are as in the conclusion. That is, for each {Σ ⇒ B} ∈ {G,G

�}, A* ∈ Σ

if and only if A* ∈ Σ of the corresponding component belonging to the conclusion of
R.
(b) Suppose that Π is A*. The marked formulas of G,G

� in the premise of R are as
in the conclusion.
1.2 A is not principal in R. The marked formulas of the premise of R are as in the
conclusion.
If R is a rule with two premises, the definition is analogous.

44

2. R is (ew), (e, l) or (cut). The marked formulas of the premise(s) of R are as in the
conclusion.

3. R is (c, l).
3.1 A* is the contracted formula, then A*, A* belongs to the premise of R. The
remaining formulas in the premise of R are marked as in the conclusion.
3.2 A* is not the contracted formula. Analogous to case 2.

4. R is (w, l) or (w, r). Analogous to case 1.
5. R is (ec). Similar to case 3.

Definition 5.3.5. [6] The complexity |A| of a formula A is inductively defined as:
– |A| = 0 if A is atomic
– |A ∧B| = |A ∨B| = |A → B| = max(|A|, |B|) + 1

The length |d| of a derivation d is the maximal number of inference rules + 1 occurring
on any branch of d. The cut-rank ρ(d) of d is the maximal complexity of cut formulas in
d + 1. (ρ(d) = 0 if d is cut-free).

Definition 5.3.6. [10] Any HLJ
nc-rule R, n ≥ 1:

G |� Γ1 ⇒ Π1 |� G
� · · ·G |� Γn ⇒ Πn |� G

�
(R)

G |� Γ ⇒ Π |� G
�

is said to be substitutive whenever the following conditions hold:
1. Let X be any formula occurring in Γ that is not principal in R. Let P be the nc-
hypersequent resulting by replacing some occurrences of X in Γ with any multiset of
formulas ∆. P can then be derived from the premises of R, where every occurrence of X
in each Γi, i = 1, . . . , n is substituted with ∆, by an application of R and, if needed, the
structural rules of HLJ

nc.
2. If Π is neither empty nor principal in R, the nc-hypersequent G |� Γ,Σ ⇒ Θ |� G

�

for any Σ and Θ is derivable only using R and the structural rules of HLJ
nc from the

premises of R with Γi,Σ ⇒ Θ uniformly substituted for each Γi ⇒ Πi in which Πi = Π.

Lemma 5.3.7. The calculus rules of HLJ
nc and the completed rules derived by the sys-

tematic procedure described in Section 5.2 are substitutive in the sense of Definition 5.3.6.

Proof.

(1) Suppose that X is a formula in Γ that is not principal in R.

– R is a logical rule. The claim holds for all logical rules because the side
formulas from the antecedent are propagated to the premise(s). Suppose we

45

have (→, l) with G |� Γ, A → B ⇒ Π |� G
� as the conclusion and Γ = X,Γ�.

We are then able to derive P as follows:

G |� Γ�
,∆ ⇒ A |� G

�
G |� Γ�

,∆, B ⇒ Π |� G
�

(→, l)
G |� Γ�

,∆, A → B ⇒ Π |� G
�

Analogously for the other logical rules.

– R is an internal or external structural rule. The claim holds for all structural
rules because the side formulas are propagated to the premise. Suppose we
have (w, l) with G |� Γ, A ⇒ Π |� G

� as the conclusion and Γ = X,Γ�. Then
we are able to derive P as follows:

G |� Γ�
,∆ ⇒ Π |� G

�

(w, l)
G |� Γ�

,∆, A ⇒ Π |� G
�

Analogously for the other structural rules.

– R is the (cut)-rule. The claim holds because the side formulas in the an-
tecedent are either propagated to the left or to the right premise. Suppose we
have G |� H |� Γ,Σ ⇒ Π |� H

� |� G
� with Σ = X,Σ�:

G |� Γ ⇒ A |� G
�

H |� Σ�
,∆, A ⇒ Π |� H

�

(cut)
G |� H |� Γ,Σ�

,∆ ⇒ Π |� H
� |� G

�

– R is a completed rule. Due to the “strong subformula property”, every metavari-
able that occurs in the antecedent of a premise occurs also in the antecedent
of the conclusion. Thus, the claim holds.

(2) Suppose that Π is neither empty nor principal in R.

– R is a logical left-rule. The claim holds for (∧i, l)i=1,2 and (∨, l) because the
side formulas Γ ⇒ Π (and, thus, Γ,Σ ⇒ Θ) are propagated to the premises.
Suppose we have (→, l) with G |� Γ, A → B ⇒ Π |� G

�. We are then able to
derive P as follows:

G |� Γ ⇒ A |� G
�

(w, l)
G |� Γ,Σ ⇒ A |� G

�
G |� Γ,Σ, B ⇒ Θ |� G

�

(→, l)
G |� Γ,Σ, A → B ⇒ Θ |� G

�

– R is an internal or external structural rule. The claim holds for all structural
rules because the side formulas are propagated to the premises. Suppose we
have (c, l) with G |� Γ, A ⇒ Π |� G� as the conclusion. We derive P as follows:

G |� Γ, A,A,Σ ⇒ D |� G
�

(c, l)
G |� Γ, A,Σ ⇒ D |� G

�

Analogously for the other structural rules.

46

– R is the (cut)-rule. The claim holds because the substituted metavariables are
propagated to the premise with the cut formula in the antecedent. Suppose
we have G |� H |� Γ,Γ� ⇒ Π |� H

� |� G
�:

G |� Γ ⇒ A |� G
�

H |� Γ�
,Σ, A ⇒ Θ |� H

�

(cut)
G |� H |� Γ,Γ�

,Σ ⇒ Θ |� H
� |� G

�

– R is a completed rule. Due to the “strong subformula property”, every metavari-
able that occurs in the succedent of a premise occurs also in the succedent of
the conclusion. Additionally, the “coupling” property ensures that metavari-
ables of a pair (ΣX ,ΠX) associated to the formula X, occur in the same
premise. Thus, the claim also holds for completed rules.

Substitutivity ensures that cuts over side formulas can be shifted upwards over the
premises.
In the following lemma, we show that the invertibility of the rules (∧, l) and (∨, l) holds
in general. This lemma differs considerably from the Lemma 5.1.10, which is restricted
in the sense that (→, r) is only invertible when there is no right context G

�.

Lemma 5.3.8. (Inversion) [6]

(i) If d �HLJnc G |� Γ, A ∨ B ⇒ Π |� G
� then one can find d1 �HLJnc G |� Γ, A ⇒

Π |� G
� and d2 �HLJnc G |� Γ, B ⇒ Π |� G

�

(ii) If d �HLJnc G |� Γ, A ∧ B ⇒ Π |� G
� then one can find d1 �HLJnc G |� Γ, A,B ⇒

Π |� G
�.

such that ρ(di) ≤ ρ(d) and |di| ≤ |d| for i = 1, 2.

Proof. We show the invertibility of (i) and (ii) by induction on |d|. We consider the last
inference R in d.
(i) invertibility of (∨, l):

1. R is a logical rule.

(a) A ∨B is the principal formula. Then we have:

...d�

G |� Γ, A ⇒ Π |� G
�

...d��

G |� Γ, B ⇒ Π |� G
�

G |� Γ, A ∨B ⇒ Π |� G
�

The required derivations d1 and d2 are then d
� and d

��.

47

(b) A ∨ B is not the principal formula. A ∨ B is then propagated to one or two
premises. Suppose that R is (→, l):

...d�

G |� Γ, A ∨B ⇒ X |� G
�

...d��

G |� Γ, A ∨B, Y ⇒ Π |� G
�

G |� Γ, A ∨B,X → Y ⇒ Π |� G
�

We apply the induction hypothesis to d
� and d

�� and get d�1 �HLJnc G |� Γ, A ⇒
X |� G� and d

�
2 �HLJnc G |� Γ, B ⇒ X |� G� and also d

��
1 �HLJnc G |� Γ, A, Y ⇒

Π |� G
� and d

��
2 �HLJnc G |� Γ, B, Y ⇒ Π |� G

� with |d�
i
|, |d��

i
| ≤ |d| and

ρ(d�
i
), ρ(d��

i
) ≤ ρ(d) for i = 1, 2. The derivations d1 and d2 can be retrieved by

applying (→, l) to d
�
1 and d

��
1 (d�2 and d

��
2, respectively). The remaining cases

are similar.

2. R is an internal or external structural rule.

(a) A∨B is not in the principal component or the principal formula. The deriva-
tions can be retrieved by application of the induction hypothesis and subse-
quent application(s) of R.

(b) R is (ec) or (c, l) and A ∨ B is in the principal component or the principal
formula. Suppose that R is (ec) with G = G1 |� G2 with S = G2 |� Γ, A∨B ⇒
Π being the contracted nc-hypersequent:

...d�

G |� Γ, A ∨B ⇒ Π |� G2 |� Γ, A ∨B ⇒ Π |� G
�

G |� Γ, A ∨B ⇒ Π |� G
�

We apply the induction hypothesis to d
� and get d

�
1 �HLJnc G |� Γ, A ⇒

Π |� G2 |� Γ, A∨B ⇒ Π |� G� and d
�
2 �HLJnc G |� Γ, B ⇒ Π |� G2 |� Γ, A∨B ⇒

Π |� G
� with |d�

i
| ≤ |d| and ρ(d�

i
) ≤ ρ(d) for i = 1, 2. The derivations d1 and

d2 can be retrieved by applying the induction hypothesis again to the second
component and a subsequent application of (ec). Analogous for (c, l).

3. R is (cut). Analogous to case 1.(b).

4. R is a completed rule obtained by the algorithm described in Section 5.2. Analogous
to case 1.(b).

(ii) invertibility of (∧, l):

1. R is a logical rule.

48

(a) A ∧B is the principal formula. Then we have:

...d�

G |� Γ, A ⇒ Π |� G
�

G |� Γ, A ∧B ⇒ Π |� G
�

or
...d��

G |� Γ, B ⇒ Π |� G
�

G |� Γ, A ∧B ⇒ Π |� G
�

The required derivation d1 contains both premises, d� and d
��.

(b) A ∧ B is not the principal formula. A ∧ B is then propagated to one or two
premises. Suppose that R is (→, l):

...d�

G |� Γ, A ∧B ⇒ X |� G
�

...d��

G |� Γ, A ∧B, Y ⇒ Π |� G
�

G |� Γ, A ∧B,X → Y ⇒ Π |� G
�

We apply the induction hypothesis to d
� and d

�� and get d�1 �HLJnc G |� Γ, A,B ⇒
X |� G

� and d
��
1 �HLJnc G |� Γ, A,B, Y ⇒ Π |� G

� with |d�1|, |d��1| ≤ |d| and
ρ(d�1), ρ(d

��
1) ≤ ρ(d). The derivation d1 can be retrieved by applying (→, l) to

d
�
1 and d

��
1. The remaining cases are similar.

2. R is an internal or external structural rule.

(a) A∧B is not in the principal component or the principal formula. The deriva-
tions can be retrieved by application of the induction hypothesis and subse-
quent application(s) of R.

(b) R is (ec) or (c, l) and A ∧ B is in the principal component or the principal
formula. Suppose that R is (ec) with G = G1 |� G2 with S = G2 |� Γ, A∨B ⇒
Π being the contracted nc-hypersequent:

...d�

G |� Γ, A ∧B ⇒ Π |� G2 |� Γ, A ∧B ⇒ Π |� G
�

G |� Γ, A ∧B ⇒ Π |� G
�

We apply the induction hypothesis to d
� and get d

�
1 �HLJnc G |� Γ, A,B ⇒

Π |� G2 |� Γ, A∧B ⇒ Π |� G� with |d�1| ≤ |d| and ρ(d�1) ≤ ρ(d). The derivation
d1 can be retrieved by applying the induction hypothesis again to the second
component and a subsequent application of (ec). Analogous for (c, l).

3. R is (cut). Analogous to case 1.(b)

49

4. R is a completed rule obtained by the algorithm described in Section 5.2. Analogous
to case 1.(b).

In the following, P [B/A] indicates the nc-hypersequent P in which we uniformly replace
each occurrence of A by B.

Lemma 5.3.9. Let d �HLJnc G |� Γ ⇒ A |� G�, where A is an atomic formula that is not
the cut formula of any cut in d. One can find a derivation d

�
, H |� A,Σ ⇒ Π |� H � �HLJnc

G |� H |� Γ,Σ ⇒ Π |� H
� |� G

� with ρ(d�) = ρ(d).

Notation. We write Γ̄ when we refer to Γ which might have been changed by some rule
applications during derivation. Analogously, we write Ḡ, Ḡ

� when we refer to the contexts
G,G

� after some rule applications to their components.

Proof. Let A be a decorated formula in d starting from Γ ⇒ A*. We start with a stepwise
derivation of G |� Γ ⇒ A* |� G

�. In every derivation step of the derivation tree d, we
apply the following substitutions and insertions:

(a) Substitution of the decorated formula: We replace the component Ψ ⇒ A* with
Ψ,Σ ⇒ Π. This may be done due to Lemma 5.3.7, part (2).

(b) Insertion of new contexts:

(b.1) We insert the component H between the context Ḡ and the component Ψ,Σ ⇒
Π at the beginning of every nc-hypersequent. If the right context Ḡ

� has not
been completely omitted due to an application of (→, r), we insert H � between
the component Ψ,Σ ⇒ Π and Ḡ

�. If the component is contracted due to
an application of (ec), the contexts have to be contracted as well, e.g. let
S = S1 |� Ψ,Σ ⇒ Π be the contracted component:

...
Ḡ |� S1 |� H |� Ψ,Σ ⇒ Π |� H

� |� S1 |� H |� Ψ,Σ ⇒ Π |� H
� |� Ḡ

�

(ec)
Ḡ |� S1 |� H |� Ψ,Σ ⇒ Π |� H

� |� Ḡ
�

If the component is propagated to one or two premises by any other structural,
logical or the cut-rule, the contexts have to be propagated accordingly, e.g.
suppose an application of (→, l):

...
Ḡ |� H |� Ψ,Σ ⇒ X |� H

� |� Ḡ
�

...
Ḡ |� H |� Ψ,Σ, Y ⇒ Π |� H

� |� Ḡ
�

(→, l)
Ḡ |� H |� Ψ, X → Y,Σ ⇒ Π |� H

� |� Ḡ
�

50

The contexts H,H
� are also inserted when the component is weakened due to

an application of (ew).

(b.2) For resulting nc-hypersequents of the form H |� B ⇒ B |� H
�, we recover the

original axioms B ⇒ B of d by subsequent applications of (ew).

The insertion of the contexts does not harm the proof because the contexts are
propagated in every derivation step of d. Step (b.2) ensures that the axioms of
the original derivation d are also axioms of the new derivation tree. Nevertheless,
depending on the origin of the decorated formula, we have to apply some “correction
steps” which are described below.

To ensure a valid derivation tree, we have to apply the following “correction steps” ac-
cording to the cases in which the decorated formula A* originates:

(i) in an axiom: We get an nc-hypersequent of the form Ḡ |�H |� A,Σ ⇒ Π |�H � |� Ḡ�.
The axiom is then transformed into H |� A,Σ ⇒ Π |� H � using several applications
of (ew).

(ii) in an internal weakening after an application of (w, r): Then, the weakening of A* is
replaced by several weakenings of the formulas B ∈ Σ and Π. We add a subsequent
application of (ew) to omit the contexts H,H

� as they do not necessarily end in
axioms. E.g.

...
Ḡ |� Γ̄ ⇒ |� Ḡ

�

(ew)
Ḡ |� H |� Γ̄ ⇒ |� H

� |� Ḡ
�

(w,l)
Ḡ |� H |� Γ̄,Σ ⇒ |� H

� |� Ḡ
�

(w,r)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

(iii) in an external weakening: Then, the weakening of the component P = Γ̄ ⇒ A* is
replaced by a weakening of P [Σ⇒Π

/A∗]. We add a subsequent application of (ew)
to omit the contexts H,H

� as they do not necessarily end in axioms.

(iv) in the deleted context due to an application of (→, r) to a component in Ḡ. Then
the component P [Σ⇒Π

/A∗], H and H
� are also omitted when the rule (→, r) is

applied to the same component in Ḡ. E.g. suppose Ḡ = G1 |� ∆ ⇒ X → Y :

...
G1 |� ∆, X ⇒ Y

G1 |� ∆ ⇒ X → Y |� H |� Γ,Σ ⇒ Π |� H
� |� Ḡ

�

51

This procedure results in a derivation d
�
, H |� A,Σ ⇒ Π |� H

� �HLJnc G |� H |� Σ,Γ ⇒
Π |� H

� |� G
� with ρ(d�) = ρ(d).

Lemma 5.3.10. In HLJ
nc non-atomic axioms can be derived from atomic axioms.

Lemma 5.3.11. (Reduction) Let dr �HLJnc G |� Γ ⇒ A |� G
� and dl �HLJnc

H |� A,Σ ⇒ Π |� H
� both with cut-rank ρ(di) ≤ |A|. Then we can find a derivation

d �HLJnc G |� H |� Σ,Γ ⇒ Π |� H
� |� G

� with ρ(d) ≤ |A|.

Note: We could also derive G |� H |� Σ,Γ ⇒ Π |� H
� |� G

� by an application of (cut),
but the resulting derivation would then have ρ(d) = |A|+ 1 due to the definition of the
cut-rank.

Notation. We write Γ̄, Σ̄ when we refer to Γ,Σ which might have been changed by some
rule applications during derivation. Analogously, we write Ḡ, Ḡ

�
, H̄, H̄

� when we refer to
the contexts G,G

�
, H,H

� after some rule applications to their components.

Proof. We call dr (dl) the derivation of the right (left) premise of the cut formula. By
Lemma 5.3.10, we assume that dr and dl have atomic axioms.
(1) A is atomic.
By Lemma 5.3.9 we can find a derivation d

�
, H |� A,Σ ⇒ Π |�H � �HLJnc G |�H |� Σ,Γ ⇒

Π |� H
� |� G

� such that ρ(d�) = ρ(dl). We get the derivation d by concatenation of the
derivations dr and dl.
(2) A is not atomic.

– A = B ∧ D. We try to shift the cut over the right premise. Let us consider the
decoration of A in dr starting from G |� Γ ⇒ (B ∧ D)* |� G

�. We proceed with
a stepwise derivation where we apply the substitutions and insertions described in
steps (a) and (b) in Lemma 5.3.9. Although these replacements and insertions do
not harm the proof, we might not have a valid derivation tree anymore. Therefore
we have to apply some “correction steps” according to the cases in which the marked
occurrence of B ∧D originates:

(i) as principal formula of a logical inference. We get the following derivation tree
ending in an application of the (∧, r)-rule:

...
Ḡ |� H |� Γ̄ ⇒ B |� H

� |� Ḡ
�

...
Ḡ |� H |� Γ̄ ⇒ D |� H

� |� Ḡ
�

(∧, r)(∗)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

52

We proceed by replacing the premises of (∗) with the following, smaller cuts:

...
Ḡ |� H |� Γ̄ ⇒ B |� H

� |� Ḡ
�

Ḡ |� H |� Γ̄,Σ ⇒ B |� H
� |� Ḡ

�

...
Ḡ |� H |� Γ̄ ⇒ D |� H

� |� Ḡ
�

Ḡ |� H |� Γ̄,Σ, B ⇒ D |� H
� |� Ḡ

�

...d�
l

H |� Σ, B,D ⇒ Π |� H
�

Ḡ |� H |� D, Γ̄,Σ, B ⇒ Π |� H
� |� Ḡ

�

Ḡ |� H |� B, Γ̄,Σ ⇒ Π |� H
� |� Ḡ

�
(cut)

Ḡ |� H |� Γ̄,Σ ⇒ Π |� H
� |� Ḡ

�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

The missing premise is obtained from dl by the Inversion Lemma 5.3.8 for the
rule (∧, l).

(ii) in an internal weakening. The weakening of (B ∧D)* is replaced with several
weakenings of the formulas X ∈ Σ and Π. We add a subsequent application
of (ew) to omit the contexts H,H

� as they do not necessarily end in axioms.
E.g.

...
Ḡ |� Γ̄ ⇒ |� Ḡ

�

(ew)
Ḡ |� H |� Γ̄ ⇒ |� H

� |� Ḡ
�

(w,l)
Ḡ |� H |� Γ̄,Σ ⇒ |� H

� |� Ḡ
�

(w,r)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

(iii) in an external weakening. The weakening of the component P = Γ̄ ⇒ (B∧D)*
is replaced with the external weakening of the component P [Σ⇒Π

/(B∧D)∗]. We
add a subsequent application of (ew) to omit the contexts H,H

� as they do
not necessarily end in axioms.

(iv) in the deleted context due to an application of (→, r) to a component in Ḡ.
Then the component P [Σ⇒Π

/(B∧D)∗], H and H
� are also omitted when the rule

(→, r) is applied to the same component in Ḡ. E.g. suppose Ḡ = G1 |� ∆ ⇒
X → Y :

...
G1 |� ∆, X ⇒ Y

G1 |� ∆ ⇒ X → Y |� H |� Γ,Σ ⇒ Π |� H
� |� Ḡ

�

Then, we are able to check that this procedure results in a derivation d
� �HLJnc

G |� H |� Σ,Γ ⇒ Π |� H
� |� G

� with ρ(d�) ≤ |A|.

– A = B∨D. We try to shift the cut over the right premise like in the case A = B∧D.
Let us consider the decoration of A in dr starting from G |� Γ ⇒ (B∨D)* |� G�. We

53

proceed with a stepwise derivation where we apply the substitutions and insertions
described in steps (a) and (b) in Lemma 5.3.9. Then we might not have a valid
derivation tree anymore and have to apply some “correction steps” according to the
cases in which the marked occurrence of B ∨ D originates. We only explain case
(i) because the other cases are the same as in A = B ∧D.

(i) as principal formula of a logical inference. We get the following derivation tree
ending in an application of the (∨, r)-rule:

...
Ḡ |� H |� Γ̄ ⇒ B |� H

� |� Ḡ
�

(∨, r)(∗)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

We proceed by replacing the premise of (∗) with the following, smaller cut:

...
Ḡ |� H |� Γ̄ ⇒ B |� H

� |� Ḡ
�

Ḡ |� H |� Γ̄,Σ ⇒ B |� H
� |� Ḡ

�

...d�l
H |� Σ, B ⇒ Π |� H

�

Ḡ |� H |� B, Γ̄,Σ ⇒ Π |� H
� |� Ḡ

�

(cut)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

The missing premise is obtained from dl by the Inversion Lemma 5.3.8 for the
rule (∨, l). This case works analogously when Ḡ |� H |� Γ̄ ⇒ D |� H

� |� Ḡ
� is

derived by (∨, r) at (∗).

Then, we are able to check that this procedure results in a derivation d
� �HLJnc

G |� H |� Σ,Γ ⇒ Π |� H
� |� G

� with ρ(d�) ≤ |A|.

– A = B → D. In this case, we cannot simply shift the cut over the right premise and
use the Inversion Lemma because the rule (→, l) is not invertible. Instead, we first
shift the cut over the right premise and, when A is introduced by an application of
(→, r) as principal formula, we shift the cut over the left premise. We proceed as
follows:

Let us consider the decoration of A in dr starting from G |� Γ ⇒ (B → D)* |� G
�.

We proceed with a stepwise derivation where we apply the substitutions and inser-
tions described in steps (a) and (b) in Lemma 5.3.9 until (B → D)* is introduced.
Then we consider the cases in which the marked occurrence of (B → D)* is intro-
duced – again, we only explain case (i) because the cases (ii), (iii) and (iv) are the
same as in the previous cases:

54

(i) as principal formula of a logical inference. We get the following derivation tree
where (B → D)* is introduced by an application of (→, r):

...
Ḡ |� H |� Γ̄, B ⇒ D

(→, r)(∗)
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

We stop at (∗), add an application of (ew) to omit the right context Ḡ
� and

proceed by considering the decoration of A in dl starting from H |� (B →
D)*,Σ ⇒ Π |� H

�. We proceed by a stepwise derivation until (B → D)* is
introduced, similar to steps (a) and (b) in Lemma 5.3.9:

(a’) Substitution of the decorated formula: We replace the component (B →
D)* with Γ̄. This may be done due to Lemma 5.3.7, part (1).

(b’) Insertion of new contexts:

(b’.1) We add the context Ḡ at the beginning of the nc-hypersequent. If the
component Γ̄,Σ ⇒ Π is contracted due to an application of (ec), we
contract the context as well. Similarly, if the component is propagated
to one or two premises by any other structural, logical or the cut-rule,
the context has to be propagated accordingly at the beginning of the
nc-hypersequent.

(b’.2) For resulting nc-hypersequents of the form Ḡ |� B ⇒ B, we recover
the original axioms B ⇒ B of dl by a subsequent application of (ew).

The insertion of the context does not harm the proof as it is propagated to
all components that are associated with the original component Γ̄,Σ ⇒ Π

in the derivation tree dl. Step (b’.2) ensures that the axioms of the original
derivation are also axioms of the new derivation tree. Still, we have to
apply some “correction steps”.

We have to consider the cases in which the marked occurrence of (B → D)*
originates:

(i.i) as principal formula of a logical inference. We get the following derivation
tree where (B → D)* is introduced by an application of (→, l):

55

...d�l
Ḡ |� H̄ |� Σ̄ ⇒ B |� H̄

�

...d��l
Ḡ |� H̄ |� D, Σ̄ ⇒ Π̄ |� H̄

�

(→, l)(∗∗)
Ḡ |� H̄ |� Γ̄, Σ̄ ⇒ Π̄ |� H̄

�

· · ·
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

We proceed by replacing the premises of (∗∗) with smaller cuts and get
the following derivation tree:

...d�
l

Ḡ |� H̄ |� Σ̄ ⇒ B |� H̄
�

Ḡ |� H̄ |� Γ̄, Σ̄ ⇒ B |� H̄
�

...d�r
Ḡ |� H̄ |� Γ̄, B ⇒ D

Ḡ |� H̄ |� Γ̄, Σ̄, B ⇒ D |� H̄
�

...d��
l

Ḡ |� H̄ |� D, Σ̄ ⇒ Π̄ |� H̄
�

Ḡ |� H̄ |� B,D, Γ̄, Σ̄ ⇒ Π̄ |� H̄
�

(cut)
Ḡ |� H̄ |� B, Γ̄, Σ̄ ⇒ Π̄ |� H̄

�
(cut)

Ḡ |� H̄ |� Γ̄, Σ̄ ⇒ Π̄ |� H̄
�

· · ·
Ḡ |� H |� Γ̄,Σ ⇒ Π |� H

� |� Ḡ
�

· · ·
G |� H |� Γ,Σ ⇒ Π |� H

� |� G
�

Note that any application of the rule (→, r) to Π or to a component of H �

does not harm the proof because the context Ḡ� has already been deleted
in dr by the application of (→, r) to the cut formula.

(i.ii) in an internal weakening. The weakening on (B → D)* is replaced with
weakenings of the formulas X ∈ Γ̄. We add a subsequent application of
(ew) to omit the context Ḡ.

(i.iii) in an external weakening. The weakening of the component P is replaced
with the external weakening of the component P [Γ̄/(B→D)∗]. The context
Ḡ is also omitted using (ew).

(i.iv) in the deleted context due to an application of (→, r) to a component in
H̄. Then the component P [Γ̄/(B→D)∗] is also omitted when the rule (→, r)

is applied to the same component in H̄. The context Ḡ is omitted by a
subsequent application of (ew). E.g. suppose H̄ = H1 |� ∆ ⇒ X → Y :

...
H1 |� ∆, X ⇒ Y

Ḡ |� H1 |� ∆, X ⇒ Y

Ḡ |� H1 |� ∆ ⇒ X → Y |� Γ̄, Σ̄ ⇒ Π̄ |� H̄
�

Then, we are able to check that this procedure results in a derivation d
� �HLJnc

G |� H |� Σ,Γ ⇒ Π |� H
� |� G

� with ρ(d�) ≤ |A|.

56

Theorem 5.3.12. (Cut-elimination) If a hypersequent H is derivable in HLJ
nc, then

H is derivable in HLJ
nc without using the cut rule.

Proof. Let d �HLJ
nc H and ρ(d) > 0. The proof proceeds by a double induction

on (ρ(d), nρ(d)), where nρ(d) is the number of cuts in d with cut-rank ρ(d). Take an
uppermost cut with cut-rank ρ(d) in d. By application of the Reduction Lemma 5.3.11
to the premises, either ρ(d) or nρ(d) decreases.

57

Chapter 6

Summary and Future Work

In this thesis, we provide an introductory overview of a new systematic procedure which
transforms Hilbert axioms into equivalent analytic rules and, hence, introduces analytic
calculi for many non-classical logics in an automated way. We turned this procedure into
an algorithm and implemented it in PROLOG. Moreover, we extended the scope of the
systematic procedure to capture the family of axioms known as (Bdk) with k ≥ 1.

In [14, 15], the substructural hierarchy (see Figure 6.1) was introduced as the foun-
dation for the aforementioned systematic procedure. It is a novel classification of Hilbert
axioms based on the connectives of FL. The systematic procedure allows for an auto-
mated transformation of axioms up to the class N2 into equivalent analytic rules with FL

as base calculus within the framework of Gentzen’s sequent calculus. Axioms that belong
to the classes P �

3 (P3, respectively) can be captured with Avron’s hypersequent calculus
using HFLe (HFLew, respectively) as a base calculus. In [14, 15], uniform proofs of
soundness, completeness and cut-elimination have been provided for the resulting calculi.

The main goal of this thesis was to extend the systematic procedure in [15] to the
axioms (Bdk) which are semantically characterized by Kripke models with depth ≤ k.
Due to the structure of the axioms (Bdk), they belong to classes of the substructural hi-
erarchy beyond N2 and P3. Indeed, even the axiom (Bd2) resides at level P4. To capture
the axioms (Bdk), we introduced a new formalism called the non-commutative hyperse-
quent calculus. In Chapter 5, we provided a uniform proof of soundness, completeness
and cut-elimination for the rules in this new framework.

P0

�� ��

�� P1

��

�� P2

��

�� P3

��

�� P4

��

�� . . .

N0

�� ��

�� N1

��

�� N2

��

�� N3

��

�� N4

��

�� . . .

Figure 6.1: The substructural hierarchy by Ciabattoni et al. [15]

58

The second result established in this thesis is the PROLOG-implementation of the
procedure in [15]. The implementation demanded a thorough understanding of the
theorems in [15] and a translation of these theoretical results into an algorithm. The
program, called AxiomCalc, is available online at http://www.logic.at/people/lara/
axiomcalc.html. It works for axioms up to the classes N2 and P3 in presence of weak-
ening and generates (hyper)structural, analytic rules automatically.

We have achieved the intended objectives of this thesis, and established new results for
the framework. Still, some interesting questions remain open. Regarding the extension
of our systematic procedure to capture the axioms (Bdk), it would be very desirable to

(a) identify the general class of axioms for which we could use the non-commutative
hypersequent calculus and the systematic procedure developed in this thesis.

(b) generalize the procedure to a base calculus with as few structural rules as possible,
e.g. HFLew

nc, HFLe
nc, or even HFL

nc.

Concerning the program AxiomCalc, it would be interesting to add features to the im-
plementation for

(a) handling the axioms (Bdk) (or the more general class of axioms) with the base
calculus HLJ

nc.

(b) generalizing the existing procedure to the base calculus FL.

59

http://www.logic.at/people/lara/axiomcalc.html
http://www.logic.at/people/lara/axiomcalc.html

List of Tables

2.1 Sequent Calculus LJ [22] . 5
2.2 Hypersequent Calculus GLC [4, 5] . 8

3.1 Axioms and their equivalent analytic rules . 13

5.1 Non-commutative Hypersequent Calculus HLJ
nc 32

List of Figures

3.1 The substructural hierarchy [15] . 12

4.1 List representation of hypersequents . 23

6.1 The substructural hierarchy [15] . 58

60

Bibliography

[1] A. R. Anderson and N. D. Belnap. Entailment: the logic of relevance and necessitiy,
vol. I. Princeton University Press, 1975.

[2] A. R. Anderson, N. D. Belnap, and J. M. Dunn. Entailment: the logic of relevance
and necessitiy, vol. II. Princeton University Press, 1992.

[3] J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):297–347, 1992.

[4] A. Avron. Hypersequents, Logical Consequence and Intermediate Logics for Con-
currency. Annals of Mathematics and Artificial Intelligence, 4:225–248, 1991.

[5] A. Avron. The method of hypersequents in the proof theory of propositional non-
classical logics. In W. H. et al., editor, Logic: from foundations to applications. Proc.
Logic Colloquium, pages 1–32, 1996.

[6] M. Baaz and A. Ciabattoni. A Schütte-Tait style cut-elimination proof for first order
Gödel logic. In Automated Reasoning with Analytic Tableaux and Related Methods
(Tableaux 2002), LNAI 2381, pages 24–38, 2002.

[7] N. D. Belnap. Display Logic. Journal of Philosophical Logic, 11(4):375–417, 1982.

[8] S. R. Buss, editor. Handbook Proof Theory. Elsevier, Amsterdam, 1998.

[9] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.

[10] A. Ciabattoni. Automated Generation of Analytic Calculi for Logics with Linearity.
In Computer Science Logic (CSL04) LNCS 3210, pages 505–517, 2004.

[11] A. Ciabattoni. A Proof-theoretical Investigation of Global Intuitionistic (Fuzzy)
Logic. Archive of Mathematical Logic, 44:435–457, 2005.

61

[12] A. Ciabattoni and M. Ferrari. Hypertableau and Path-Hypertableau Calculi for some
families of intermediate logics. In Automated Reasoning with Analytic Tableaux and
Related Methods, LNAI 1847, pages 160–175, 2000.

[13] A. Ciabattoni and M. Ferrari. Hypersequent Calculi for some Intermediate Logics
with Bounded Kripke Models. Journal of Logic and Computation, 11(2):283–294,
2001.

[14] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substructural
logics: cut-elimination and completions. Submitted to Annals of Pure and Applied
Logic, 2008.

[15] A. Ciabattoni, N. Galatos, and K. Terui. From axioms to analytic rules in nonclas-
sical logics. In IEEE Symposium on Logic in Computer Science (LICS 08), pages
229–240, 2008.

[16] A. Ciabattoni, G. Metcalfe, and F. Montagna. Algebraic and proof-theoretic char-
acterizations of truth stressers for MTL and its extensions. Fuzzy Sets and Systems,
161(3):369–389, 2010.

[17] A. Ciabattoni, L. Straßburger, and K. Terui. Expanding the realm of systematic
proof theory. In Proceedings of Computer Science Logic (CSL 09), LNCS, 2009.

[18] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard Reference Manual.
Springer, Berlin, 1996.

[19] M. Dummett. A Propositional Calculus with a Denumerable Matrix. Journal of
Symbolic Logic, 24:96–107, 1959.

[20] F. Esteva and L. Godo. Monoidal t-norm based Logic: towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems, 11(2):283–294, 2001.

[21] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. Halle, 1879.

[22] G. Gentzen. Untersuchungen über das Logische Schliessen I and II. Math. Zeitschrift,
39:176–210, 405–431, 1935.

[23] J.-Y. Girard. Linear Logic. In Theoretical Computer Science, volume 50, 1987.

[24] K. Gödel. Zum intuitionistischen Aussagenkalkül. Ergebnisse eines mathematischen
Kolloquiums, 4:34–38, 1933.

62

[25] A. Guglielmi. A System of Interaction and Structure. ACM Transaction on Com-
putational Logic, 8(1):1–64, 2007.

[26] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.

[27] S. C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff, Amsterdam,
1952.

[28] G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics. Springer,
Dordrecht, 2009.

[29] H. Ono. Proof-Theoretic Methods for Nonclassical Logics — an Introduction. In
M. Takahashi, M. Okada, and M. Dezani-Ciancaglini, editors, Theories of Types and
Proofs, MSJ Memoirs vol. 2, pages 207–254. Mathematical Society of Japan, 1998.

[30] H. Ono. Substructural Logics and Residuated Lattices — an Introduction. In V. F.
Hendricks and J. Malinowski, editors, Trends in Logic, volume 20, pages 177–212,
2003.

[31] F. Paoli. Substructural Logics: A Primer. Kluwer, Dordrecht, 2002.

[32] K. Schütte. Beweistheorie. Springer Verlag, 1960.

[33] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, 1987.

[34] W. W. Tait. Normal derivability in classical logic. In The Sintax and Semantics of
infinitary Languages, LNM 72, pages 204–236, 1968.

[35] G. Takeuti. Proof Theory (2nd edition). North-Holland Elsevier, 1987.

[36] G. Takeuti and T. Titani. Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set
Theory. Journal of Symbolic Logic, 49:851–866, 1984.

[37] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory (2nd Edition). Cam-
bridge University Press, 2000.

63

	Introduction
	Overview

	Proof Theory in Non-Classical Logics: Preliminaries
	Basic Definitions
	Sequent and Hypersequent Calculus

	From Axioms to Analytic Rules: A Systematic Procedure
	The Substructural Hierarchy
	The Transformation Procedure
	Related Work

	An implementation for the classes N2 and P3
	General Information
	Part 1: Identifying the axiom class
	Part 2: From axioms to (hyper)structural rules
	Part 3: Applying the completion procedure

	From the axioms (Bdk) to analytic rules
	The non-commutative hypersequent calculus
	From the axioms (Bdk) to nc-hypersequent rules
	Proof of Cut-Elimination

	Summary and Future Work
	List of Tables
	List of Figures
	Bibliography

