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Abstract

Multi-Context Systems (MCS) are formalisms that enable the inter-linkage of single knowledge
bases called contexts, via bridge rules. In this thesis, we focus on Brewka and Eiter-style
heterogeneous nonmonotonic MCS and develop a novel distributed algorithm for computing
the equilibria of such MCS. We examine previous approaches for distributed MCS evaluation
that have been implemented as part of the DMCS system. Moreover, the notion of association
rules and the process of association rule extraction from the data mining field are recalled.
None of the available techniques addressed the issue of local optimization within a distributed
evaluation, which is the motivation behind our work. Our approach for local constraint pushing
(DMCS-SLIM), relies on the coupling of some optimization techniques for distributed MCS
evaluation with local association rules extraction. We prove DMCS-SLIM to be sound and
complete. Furthermore, we present a prototypical implementation, which is used for empirical
evaluation. We performed exhaustive set of experiments against several runtime parameters of
our system as well as comparisons with existing approaches. We observed that our approach has
potential to surpass the current approaches.
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Kurzfassung

Multi-Context Systeme (MCS) sind Formalismen, die es einzelnen Wissensbasen (den Kontexten)
erlauben, mittels sogenannten Bridge Regeln verbunden zu werden. In dieser Arbeit konzentrieren
wir uns auf heterogene nicht-monotone MCS von Brewka und Eiter, und entwickeln einen
neuartigen verteilten Algorithmus zur Berechnung der Equilibria dieser MCS. Wir untersuchen
bisherige Ansätze für verteilte MCS-Auswertung, die als Teil des DMCS Systems implementiert
wurden. Darüber hinaus verwenden wir sogenannte Assoziationsregeln und Assoziationsregel-
Extraktion aus dem Bereich des Data Mining. Keine der verfügbaren Techniken beantwortet die
Frage der lokalen Optimierung innerhalb einer verteilten Evaluation, die die Motivation unserer
Arbeit ist. Unser Ansatz des Constraint Pushings (genannt DMCS-SLIM) beruht auf der Kopplung
von Optimierungsverfahren zur verteilten MCS Auswertung mit lokaler Assoziationsregeln-
Extraktion. Wir beweisen Korrektheit und Vollständigkeit von DMCS-SLIM. Darüber hinaus
präsentieren wir eine prototypische Implementierung, die wir zur empirischen Auswertung
heranziehen. Wir führten ausgiebige Experimente durch und testeten unser System mit mehreren
Laufzeit-Parametern, und verglichen unseren Ansatz mit bereits bestehenden. Wir beobachteten,
dass unser Ansatz das Potenzial besitzt, die aktuellen Ansätze zu übertreffen.
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Chapter 1

Introduction

Russell and Norvig [2003] define artificial intelligence as the study and design of intelligent
agents. Throughout history and within every major civilization, humans have long been fascinated
about intelligent machines. McCorduck [2004] claims that thinking machines and artificial beings
can be traced back to ancient Egyptian and Greek civilizations. In this thesis, we focus on
contemporary theories with regards to subfields within artificial intelligence.

Lakemeyer and Nebel [1994] define knowledge representation as

The area of artificial intelligence that deals with the problem of representing, main-
taining, and manipulating knowledge about an application domain.

One can consider knowledge representation as one of the central subfields within the field of
artificial intelligence, of which knowledge based systems (KBS) is of special interest to us. Ak-
erkar and Sajja [2009] define KBS as computer-based system that uses and generates knowledge
from data, information and knowledge. The key difference between KBS and traditional com-
puter systems, is the capability to understand the information being processed before producing a
decision.

Kadie [1988] explains nonmonotonic reasoning as a pattern of reasoning that allows an agent
to make and retract conclusions from inconclusive evidence. Consider the following standard
example for explanation. During a session between a person A and a nonmonotonic reasoner B.
A informs B that “Tweety is a bird”, and poses the question “Can Tweety fly?”. B will check
its knowledge about birds and reply “Yes, Tweety can fly”. At this point, A provides another
fact, “Tweety is a Penguin” and poses the same query “Can Tweety fly?”. Thus, B will retract its
previous conclusion and respond by “No, Tweety cannot fly”.

A distributed system, as defined by Dollimore et al. [2005], is

A system in which hardware or software components located at networked computers
communicate and coordinate their actions only by passing messages.

This definition captures a broad range of systems and ideas where networked computers can
be usefully deployed. Modern distributed systems are also heterogeneous, as they comprise
sub-systems built on many different platforms (Devanbu and Wohlstadter [2001]). There are
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several reasons such as physical constraints, market conditions, available technical skills, and
history.

In the last years, the rise of distributed systems as well as the World Wide Web gave a huge
boost to the increasing interest in systems comprised of multiple knowledge bases.

The following is a briefly summarized list of the main contributions of this thesis:

• We formally present an adaptation of the notion of association rules under the framework
of multi-context systems.

• We define an automatic procedure for association rule extraction.

• We extend an existing distributed algorithm for evaluating multi-context systems by aug-
menting it with constraint pushing strategy.

• We provide a prototypical implementation of our distributed approach.

• We perform a thorough experimental evaluation between several variants of the novel
approach as well as previous distributed techniques.

In the sequel, we peek the interest of the reader by presenting a brief introduction and history
overview of multi-context systems. Then, we briefly discuss the existing evaluation strategies for
such systems, thus leading to the motivation of our work. After that, we present an organizational
overview for the thesis.

1.1 Multi-Context Systems

The evolution of modern multi-context systems as we know them nowadays, took place over a
long period of time with respect to the relatively young field of artificial intelligence. In fact,
contexts as formal objects were first introduced with lean formalization by McCarthy [1993].

One of the goals of artificial intelligence has always been to simulate human intelligence. To
this end, McCarthy [1993] described the use of the formalized contexts as one of the essential
tools for reaching human-level intelligence by logic-based methods. In fact they described the
ability to overcome the original restrictions of limited axiomatization of contexts as transcending,
where it is needed to be able to comprehend the discovery of someone else, even if we cannot
make the discovery ourselves.

Over the years, there were several research proposals for multi-context systems, most notably
by Giunchiglia and Giunchiglia [1992], who mathematically defined contexts, inter-contextual
information flow and an epistemologically adequate theory for reasoning. Giunchiglia and
Serafini [1994] devised systems that allows the usage of multiple distinct logical languages with
properties that do not hold in modal logic such as the propagation of inconsistency through the
hierarchy of theories. Moreover, a parallel evaluation of monotone multi-context systems with
classical theories using SAT solvers for the contexts was investigated by Roelofsen et al. [2004].

The separation between locally available information and combined information from all
the existing contexts is the key to almost all of the existing multi-context systems proposals. In
Ghidini and Giunchiglia [2001], the distinction was specified by defining two principles, namely
the:
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Mr.1
Mr. 2

Figure 1.1: The magic box

• Locality Principle: reasoning uses only part of what is potentially available (e.g., what is
known, the available inference procedures). The part being used while reasoning is what
we call context (of reasoning); and the

• Compatibility Principle: there is compatibility among the reasoning performed in differ-
ent contexts.

Illustrating these main intuitions, let us consider an example from Ghidini and Giunchiglia
[2001] illustrated in Figure 1.1, McCarthy’s magic box. We have placed a ball in a six-sector
box, for our agents to locate. There are two agents Mr. 1 and Mr. 2, each looking at the box
from a different angle. Mr. 1 can only determine whether the ball is to his left by using the
proposition letter l or to his right by using another proposition letter r. Similarly Mr. 2, has the
proposition letters r and l, in addition to c, which indicates that the ball is in the center. It is clear
that neither of the two agents can pinpoint the exact location of the ball independently, as none of
them possesses a depth factor. Thus, the locality principle can be considered as Mr. 1’s and Mr.
2’s individual perception of the environment. On the other hand, if both agents can communicate
and share the partial information that they have, then they can easily decide the ball’s location.
The compatibility principle comes into play here as they are both observing the same box.

A unifying formalism for the aforementioned information distinction is the multi-context
systems. Informally, if a context can be denoted by a Ci, one can consider each multi-context
system as a collection of contexts, M = (C1, . . . , Cn), where the inter-linking between contexts
is achieved using bridge rules. Roughly, bridge rules offer a formal representation for the relation
between atoms from different contexts in order for some atom to be valid at a certain context. A
bridge rule schema for context Ck is: s← (c1 : p1), . . . , (cn : pn), which means that s will be
true at Ck if pi is true w.r.t. Ci. Thus, one can formalize the magic box using propositional logic
as follows:

In this work, we are interested in the framework devised by Brewka and Eiter [2007], as
it generalizes previous approaches in contextual reasoning and allows for heterogeneous and
nonmonotonic multi-context systems, i.e., with different, possibly nonmonotonic logics in its
contexts (thus furthering heterogeneity), and bridge rules may use default negation (to deal,
e.g., with incomplete information). Hence, nonmonotonic multi-context systems interlinking
monotonic context logics are possible.

1.2 Multi-Context Systems Evaluation

Evaluating multi-context system M = (C1, . . . , Cn) is a computational task that requires the
usage of some special form of belief states S = (S1, . . . , Sn). Roughly, one can think of each

3



kb1

br1

C1

kb2

br2

C2

Figure 1.2: Magic box represented by a multi-context system

belief state as a collection of the local belief sets of each context that are compliant with the
information stored in its knowledge base. Additionally, each belief set should contain information
imported from other contexts via the bridge rules. During evaluation, it is customary to represent
a multi-context system graphically. The magic box can have a pictorial representation as depicted
in Figure 1.2.

Example 1 Let Mr. 1 and Mr. 2 from the Magic box be represented by contexts C1 and C2,
respectively. Thus, as multi-context system, they can be expressed as M = (C1, C2). The
knowledge within each context is represented by a knowledge base. The bridge rules represent a
the dependencies of a context on other contexts. Thus, for M we have:

• kb1 =

{
l1 ∨ r1 ←
not r1 ←

}
;

br1 =


l1 ∨ r1 ← (2 : l2)
l1 ∨ r1 ← (2 : c2)
l1 ∨ r1 ← (2 : r2)

;

• kb2 =

{
l2 ∨ c2 ∨ r2 ←

l2 ←

}
; and

br2 = ∅

kb1 describes the knowledge of Mr. 1, where he knows that the ball can either be on the left
or the right, and that it is currently not on the right. br1 represents the knowledge that Mr. 1 will
gain upon communication with Mr. 2. Similarly, kb2 describes the knowledge of Mr. 2, where he
knows that the ball can either be on the left, center, or right and that it is currently not on the left.
br2 is empty as there is no information to be gained from Mr. 2.

After evaluation, we get one belief state representing the equilibrium of the system, S =
({l1}, {l2}).

Eiter et al. [2005] define HEX-programs as nonmonotonic logic programs admitting higher-
order atoms as well as external atoms. HEX-programs can deal with the external knowledge
and reasoners of various natures. This is the reason why Brewka and Eiter [2007] decided to
use HEX-programs to evaluate multi-context systems. They described the encoding of a multi-
context system M into a HEX-program PM , such that its computed minimal models (answer
sets) correspond to the equilibria of M .
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As each multi-context system represents a collection of contexts, then in theory it should
be possible to adopt a distributed approach for system evaluation. To this end, Dao-Tran et al.
[2010] provided a distributed technique for multi-context system evaluation, that requires each
context to perform its local computation separately, and to communicate its partial solutions with
the other contexts in order to discover the unified solutions.

Bairakdar et al. [2010a] discussed the shortcomings of the approach provided by Dao-Tran
et al. [2010] and presented a distributed algorithm for a multi-context system evaluation. The
described approach makes use of some meta information, such as the topological structure
of the multi-context system, where it achieved economical small representations of context
dependencies, as well as minimized data transmissions during context communication.

1.3 Motivation

Given the multi-context system framework under consideration, and all the existing distributed
evaluation techniques, we noticed that no approach has investigated the possibility of optimizing
the local evaluation at the contextual level.

In this thesis, we investigate the idea of optimizing local solving at each context with a
distributed evaluation environment for multi-context systems. We attempt to develop an approach
that both: prunes the search space, and reduces the run time. Thus, improving the local solving
within each context.

The idea of our approach is that during system evaluation, each context should augment the
queries issued to any other context by some kind of constraints. These constraints will prune the
successor’s search space, i.e., pushing forward information in the form of constraints to help in
guiding the evaluation algorithm.

To illustrate the intuition behind our motivation consider the following scenario (Figure 1.3).
Let C1 and C2 represent two people who have decided to share a large pizza at a restaurant. They
are discussing which kind of toppings they should order. Naturally, both of them have to agree on
the same toppings before an order is placed. Moreover, it might be the case that both of them
have different sets of preferences. Let C1 be not eager to consume meat at that point of time. This
entails that both of them cannot order any pizza with toppings such as: chicken, beef, turkey, etc.
Thus, as a response to the query imposed by C1 with regards to the acceptable pizza toppings, C2

should have been informed by C1 that he is only interested in vegetarian toppings upfront. As a
result, C2 will have a pruned list of possible items to base his decision upon. Thus C2’s search
space will be reduced, as well as the time required to reach a decision.

Pushing information forward is fruitful technique that is not new in distributed systems.
For example, in the field of distributed database management systems, Bernstein et al. [1981]
introduced semijoin which was enhanced by Najjar and Slimani [1998]. When the data is
distributed at different sites, and large communication costs are incurred when performing regular
joins in one step, semijoins are used. As a first step, semijoins help reducing the size of the
relations to minimize the data transmission cost for processing queries.

The constraints are generated automatically at each context. They make use of the existing
bridge rules and provide an insight on the truth values of the atoms, that are expected to hold
among the other contexts referenced in the bridge rules. Thus, these contexts will only provide
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Figure 1.3: Ordering a pizza

models fitting such constraints. In our work, we utilized the notion of association rules introduced
by Agrawal et al. [1993] from data mining to represent such constraints.

1.4 Thesis Contribution

In this thesis, we attempt to optimize the local evaluation process at each context within a dis-
tributed evaluation of heterogeneous nonmonotonic multi-context system by pushing constraints
forward from one context to the next.

After careful consideration, we noted that the notion of association rules from data mining
field can be utilized as a formalization of such constraints. To this end, we formally presented
an adaptation of the association rules under the framework for monotonic heterogeneous multi-
context systems.

Extracting association rules given a data set is a well known problem within the data mining
field. In our thesis, we are interested in the automatic extraction of association rules from within
each context during local computation. Thus, we defined an automatic procedure for association
rule extraction.

After reviewing the existing distributed evaluation approaches, we decided to extend one
of them by augmenting it for the constraint pushing strategy. We prove that our approach for
multi-context systems distributed evaluation is sound and complete.

In order to evaluate our approach empirically, we provide a prototypical implementation,
where we perform an exhaustive set of experiments using several run time parameters of our
approach, as well as previous distributive techniques.

Our initial hypothesis was that the constraint pushing strategy would undoubtedly reduce
the amount of partial solutions computed during local computations. The interpretation of our
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benchmarking results shows that indeed there is an improvement with respect to the number of
locally computed solutions as it had dropped by 20% in some setups and reached even 40% in
other cases.

Additionally, we guess that certain parameters could have a significant effect on the overall
performance. The experimental results reveal that it was indeed the case for some parameters like
the maximum allowed size for association rules during the extraction process.

1.5 Thesis Organization

In this thesis, we explore the idea of local optimization for distributed evaluation of heterogeneous
nonmonotonic multi-context systems using constraint pushing strategy. The remainder of this
thesis is divided into five chapters, where:

• Chapter 2: we provide the necessary technical background information that covers the
standard multi-context systems framework terminology. We also cover all the existing
distributed approaches for multi-context systems evaluation, as well as the association rules
original standard notations.

• Chapter 3: we adapt the notions of association rules and association rule extraction to the
multi-context framework. We present our distributed approach for distributed equilibrium
evaluation for multi-context systems using the local constraints pushing strategy, prove its
soundness and completeness, and explore possible optimization techniques.

• Chapter 4: we introduce the prototypical implementation of our new Algorithm, which is
the basis for the empirical evaluation.

• Chapter 5: we thoroughly evaluate our approach with regards to the existing distributed
algorithms. The interpretation of our experimental results showed that indeed there is an
improvement with respect to the number of locally computed solutions as it had dropped
by 20% in some setups and reached even 40% in other cases.

• Chapter 6: we conclude our findings and discuss possible future work.

In Appendix A, we present a full trace of our running example using the new algorithm.
The interested reader can consult that part to understand the inner workings of the algorithm.
Furthermore, we refer to some excerpts as smaller examples throughout the thesis.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic building blocks of our work. We present all the technical
background information required throughout the thesis. We cover the following areas in our
discussions: Answer Set Programming, Multi-Context Systems, and Association Rules.

This chapter is divided into three sections. In Section 2.1, we provide a brief introduction to
Answer-Sets Programming. In Section 2.2, we recall the Multi-Context Systems formalism, where
we follow the evolution of distributed MCS and recall the most recent applicable decomposition
techniques. In Section 2.3, we introduce the notion of Association Rules from the Data Mining
field.

2.1 Answer Set Programs

Declarative programming is a programming paradigm that describes what a program should do
rather than specifying how it should be done, i.e., describing the logic behind a computation
without explicitly describing the control flow. Answer Set Programming (ASP) falls under this
programming paradigm.

ASP’s core has been introduced by Gelfond and Lifschitz [1988, 1991]. Throughout the
years, ASP has been under constant development, we recall several notions from the detailed
historical overview provided by Eiter et al. [2009].

There are several classes of logic programs, we recall the Disjunctive Logic Program (DLP),
which subsumes other classes like normal logic programs.

In the sequel we restrict the notations for all the ASP related definitions to those as in (Eiter
et al. [2009]) for simplicity.

Definition 1 (Eiter et al. [2009]) LetA be a finite alphabet of atomic propositions. A disjunctive
rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn (2.1)

for k ≥ 0 and n ≥ m ≥ 0, where a1, . . . , ak, b1, . . . , bn ∈ A.
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Let r be a disjunctive rule. The head of the rule r is defined as H(r) = {a1, . . . , ak}, the
body of the rule as B(r) = B+(r) ∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) =
{bm+1, . . . , bn}.

Syntactically, an answer set program P is a finite set of rules r in the form of (2.1). For intro-
ducing the semantics of P , we have to properly define an interpretation of P . An interpretation
is a set I ⊆ A of atoms. Intuitively, a ∈ I means a is true, and a 6∈ I that a is false.

Definition 2 (Eiter et al. [2009]) Let P be an answer set program, and let I be an interpretation.
Then:

• I satisfies a rule r, (I |= r), if H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅.

• I satisfies P , if I |= r, ∀r ∈ P .

Gelfond and Lifschitz [1991] defined the GL-reduct P I of P relative to an interpretation I ,
which is the program obtained from P by deleting,

• every rule r ∈ P such that B−(r) ∩ I 6= ∅

• all not bj , for bj ∈ B−(r), for every remaining rule r.

Definition 3 (Eiter et al. [2009]) Given an answer set program P , an answer set of P is any
interpretation I such that I is a ⊆- minimal model of P I .

An application of the GL-reduct and answer sets generation, is shown in the following
example.

Example 2 Let P be an answer set program, where P contains the rules

a ∨ b ←
d ← a,not c
e ← b

.

P has two answer sets, namely: I1 = {a, d} and I2 = {b, e}. The GL-reduct for each of the
answer sets is as follows:

P I1 =


a ∨ b ←

d ← a
e ← b

 and P I2 =


a ∨ b ←

d ← a
e ← b


There are several other classes of logic programs in addition to disjunctive logic programs,

where the structure of the rules is the only variant. For example, a normal logic program has the
same structure, but the heads of the rules do not contain disjunction and consist of one atom only.
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2.2 Heterogeneous Nonmonotonic Multi-Context Systems

In Section 1.1, we discussed the history behind the evolution of Multi-Context System (MCS).
We take this discussion a step further by approaching MCS formally and recalling the technical
details behind that notion in this section. To this end, we recall some of the basic definitions
from the framework of heterogeneous nonmonotonic multi-context systems by Brewka and
Eiter [2007], on which our work is based upon. Afterwards, we discuss a couple of distributed
evaluation techniques. First, we cover the basic distributed evaluation technique, then we consider
some applicable decomposition methodologies which eventually amount to another distributed
approach.

2.2.1 Basic Multi-Context Systems Definitions

The framework for heterogeneous nonmonotonic multi-context systems was developed by Brewka
and Eiter [2007]. As our work is entirely based on this framework, we proceed by recalling some
of its notions.

Definition 4 (Brewka and Eiter [2007]) A logic is, viewed abstractly, a tuple L = (KBL,
BSL,ACCL), where

1. KBL is a set of well-formed knowledge bases, each being a set (of formulas),

2. BSL is a set of possible belief sets, each being a set (of formulas), and

3. ACCL : KBL → 2BSL is a function describing the “semantics ” of the logic by assigning
to each kb ∈ KBL a set of acceptable belief sets.

This formalization of logic covers many (non)monotonic KR formalisms like description
logics, modal logics, defeasible logic, normal logic programs under answer set semantics, default
logic, etc. In our work we focus on (propositional) answer set programs logic (ASP logic), which
is defined as.

Definition 5 A (propositional) ASP logic L may be defined, such that:

• KBL is the set of answer set programs over a (propositional) alphabet A,

• BSL = 2A contains all subsets of atoms,

• ACCL assigns each kb ∈ KBL the set of all its answer sets (more details about ASP
follow later).

Other logics can easily be expressed utilizing such formalization. Consider the next example
for another kind of logic.

Example 3 A Default logic (Reiter [1980]) L may be defined, such that:

• KBL is the set of default theories over an alphabet A,
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Figure 2.1: An abstract representation for a multi-context system

• BSL is the set of deductively closed sets of A-formulae,

• ACCL assigns each kb ∈ KBL the set of KBL’s extension.

Within a multi-context system, contexts are interlinked via bridge rules to other contexts.
They are the means by which information flow occurs. Formally, a bridge rule is defined as
follows.

Definition 6 (Brewka and Eiter [2007]) Let L = {L1, . . . , Ln} be a set of logics. An Li-
bridge rule over L, 1 ≤ k ≤ n, is of the form

s ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . ,not (cm : pm) (2.2)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck , 1 ≤ k ≤ m, and for each
kb ∈ KBk : kb ∪ {s} ∈ KBi.

Roughly speaking, bridge rules represent additional knowledge of a context that depends on
the knowledge of another (external) context. In fact, one can modify a context’s knowledge base
by adding s, if it is believed in the other contexts.

Now that we have formally introduced logics and bridge rules, we can recall the syntactic
definition of a multi-context system.

Definition 7 (Brewka and Eiter [2007]) A multi-context system (MCS) M = (C1, . . . , Cn)
consists of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a
logic, kbi ∈ KBi is a knowledge base, and bri is a set of Li-bridge rules over {L1, . . . , Ln}.

Recall our previous understanding of a context within a multi-context system as an agent
behaving in a multi-agent environment. In that case, one can think of each context as having its
own language that might be different from the other contexts, i.e., the logic it utilizes. Additionally,
one can consider the knowledge base of the context as its own set of beliefs and knowledge and the
bridge rules as the means to gather the required information from other contexts as well as passing
its knowledge to other contexts within the same environment. An abstract graphical representation
for a MCS, without considering the bridge rules requirements is depicted in Figure 2.1.

The semantics of a multi-context system is by belief states. Informally, one can think of each
belief state as the current state of each context with respect to its knowledge base and bridge rules.
The current state of each context is one of its possible belief sets.

Definition 8 (Brewka and Eiter [2007]) Let M = (C1, . . . , Cn) be an MCS. A belief state is a
tuple S = (S1, . . . , Sn) such that each Si is an element of BSi.
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Figure 2.2: Multi-context system from Example 4

Intuitively, Si should be a belief set of the knowledge base kbi, while taking into consideration
the bridge rules bri. For this purpose, kbi is augmented with all the conclusions of all r ∈ bri
that are applicable.

A bridge rule r of the form (2.2) is applicable in a belief state S = (S1, . . . , Sn) iff pi ∈ Sci ,
for 1 ≤ i ≤ j and for j + 1 ≤ k ≤ m : pk 6∈ Sck .

Let app(R,S) denote the set of all bridge rules r ∈ R that are applicable in S. Furthermore,
for any r of form (2.2), head(r) denotes the literal s, and B(r) = {(ck : pk) | 1 ≤ k ≤ m}.

Generally any belief state for an MCSM , does not represent the whole system properly. It can
only represent M as a whole if each rule in each knowledge base and bridge rule in each context
are satisfied. To this end, one must make sure that the chosen belief states are in equilibrium.

Definition 9 (Brewka and Eiter [2007]) A belief state S = (S1, . . . , Sn) of a multi-context sys-
tem M is an equilibrium, iff for all 1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).

There are several notions of equilibria discussed in Brewka and Eiter [2007], such as grounded
equilibria that works on a restricted class of MCS, and minimal equilibria which guarantee
minimality of the equilibria. However, in this work, we focus on the basic notion of equilibrium
that we have defined previously. To fully grasp the concept of equilibrium, let us consider the
following example.

Example 4 (Dao-Tran et al. [2010]) Let M = (C1, C2, C3, C4) be an MCS such that all Li are
ASP logics, with alphabets A1 = {a}, A2 = {b}, A3 = {c, d, e}, A4 = {f, g}. Suppose

• kb1 = ∅, br1 = {a← (2 : b), (3 : c)};

• kb2 = ∅, br2 = {b← (4 : g)};

• kb3 = {c← d; d← c}, br3 = {c ∨ e← not (4 : f)};

• kb4 = {f ∨ g ←}, br4 = ∅.
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Figure 2.3: Scientist group example

One can check that S = ({a}, {b}, {c, d,¬e}, {¬f, g}) is an equilibrium of M . Additionally,
the graphical representation of M is illustrated in Figure 2.2.

We examine the previous example (Example 4) rigorously to understand the concept behind
the evaluation techniques for MCS. Context C1 has an empty knowledge base, kb1, which means
that excluding its bridge rules, br1, any belief state representing C1 would have an empty set
in place of the respective belief set. However, as each context possesses a set of bridge rules,
bri, in addition to its knowledge base, we have to pick the applicable rules among such a set and
augment the kbi with the head of such rules. C1’s has one bridge rule only, a← (2 : b), (3 : c),
which means that a will be considered true iff b is valid in C2 and c is valid in C3 within the same
belief state. Upon further investigation of the remaining contexts of M , one can notice that b and
c are both valid in their respective contexts, which leads C1 to have the belief set of {a}, which is
part of the belief state equilibrium of M .

In the rest of this thesis, we assume that contexts Ci have finite belief sets Si that are
represented by truth assignments vSi : Σi → {0, 1} to a finite set Σi of propositional atoms such
that p ∈ Si iff vSi(p) = 1 (as in Brewka and Eiter [2007], such Si may serve as kernels that
correspond 1-1 to infinite belief sets). Furthermore, we assume that the Σi are pairwise disjoint
and that Σ =

⋃
i Σi.

2.2.2 Distributed Nonmonotonic Multi-Context Systems

A distributed algorithm for computing equilibria of heterogeneous nonmonotonic multi-context
systems was presented in Dao-Tran et al. [2010]. This algorithm provides a direct approach for
distributed MCS evaluation. We recall the intuition behind it and provide a brief discussion as it
is considered a part of the basis for our work.

Evaluating a system automatically and distributively, means that one can expect each context
to perform some local individual evaluation and then all of these partial solutions are merged
together to achieve the global solution for the whole system. In fact, this is almost a rough idea of
the behavior of this algorithm. First, we introduce our running example, and then we recall some
of the definitions and notations from Dao-Tran et al. [2010].

The MCS framework can conveniently capture the following scenario, which we use as a
running example.

14



Example 5 (Bairakdar et al. [2010a]) A group of four scientists, Ms. 1, Mr. 2, Mr. 3, and Ms. 4,
just finished their conference visit and are now arranging a trip back home. They can choose
between going by train or by car (which is usually slower than the train); and if they use the train,
they should bring along some food. Moreover, Mr. 3 and Ms. 4 have additional information from
home that might affect their decision.

Mr. 3 has a daughter, Ms. 6. He is fine with either transportation option, but if Ms. 6 is sick
then he wants to use the fastest vehicle to get home. Ms. 4 just got married, and her husband,
Mr. 5, wants her to come back as soon as possible. He urges her to try to come home even sooner,
while Ms. 4 tries to yield to her husband’s plea.

If they go by train, Mr. 3 is responsible for buying provisions. He might choose either salad
or peanuts. The options for beverages are coke or juice. Mr. 2 is a modest person as long as he
gets home. He agrees to any choice that Mr. 3 and Ms. 4 select for vehicle but he dislikes coke.
Ms. 1 is the leader of the group and prefers to go by car, but if Mr. 2 and 3 go by train then she
would not object. A problem is that Ms. 1 is allergic to nuts.

Mr. 3 and Ms. 4 do not want to bother the group with their circumstances and communicate
just their preferences, which is sufficient for reaching an agreement.

Ms. 1 decides which option to take based on the information she gets from Mr. 2 and Mr. 3.

The previous example is illustrated graphically in Figure 2.3. The final decision can only be
reached if it satisfies all the different constraints from all the individuals. Now a question presents
itself, how can such an evaluation be achieved?

In order to properly evaluate the scenario distributively (or otherwise) in Example 5, we have
to provide a formal encoding as an MCS.

Example 6 (Bairakdar et al. [2010a]) The scenario in Example 5 encoded as an MCS M =
(C1, . . . , C6), where all Li are ASP logics and

• kb1 =

{
car1 ← not train1;
⊥ ← nuts1

}
and

br1 =

{
train1 ← (2 : train2), (3 : train3);
nuts1 ← (3 : peanuts3)

}
;

• kb2 =
{
⊥ ← not car2,not train2;

}
and

br2 =

{
car2 ← (3 : car3), (4 : car4);

train2 ← (3 : train3), (4 : train4),not (3 : coke3)

}
;

• kb3 =


car3 ∨ train3 ← ;

train3 ← urgent3;
salad3 ∨ peanuts3 ← train3;

coke3 ∨ juice3 ← train3

 and

br3 =

{
urgent3 ← (6 : sick6);

train3 ← (4 : train4)

}
;

• kb4 =
{

car4 ∨ train4 ←
}

and br4 =
{

train4← (5 : sooner5)
}

;
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• kb5 =
{

sooner5 ← soon5

}
and br5 =

{
soon5 ← (4 : train4)

}
;

• kb6 =
{

sick6 ∨ fit6 ←
}

and br6 = ∅.

Within a multi-context system, context reachability plays an important role during a distributed
evaluation. We recall the notion of import closure which formally captures this notion.

Definition 10 (Dao-Tran et al. [2010]) Let M = (C1, . . . , Cn) be an MCS. The import neigh-
borhood of a context Ck is the set

In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk} .

Moreover, the import closure IC (k) of Ck is the smallest set S such that (i) k ∈ S and (ii) for all
i ∈ S, In(i) ⊆ S.

For each context within a multi-context system there is a set of reachable contexts via the
bridge rule connections. The immediate reachable contexts for a context Ci, denoted In(i), are
the contexts that Ci will have to query at some point to properly evaluate the system. Meanwhile,
IC (i), shows the bigger picture from Ci’s perspective, as this is the full set of contexts that should
have finished their evaluation so that Ci can finish its own. Note that both In(i) and IC (i) can
be the empty set in case of a leaf node.

Example 7 Consider M in Example 6. Then:

In(1) = {2, 3}, In(2) = {3, 4}, In(3) = {4, 6}, In(4) = {5}, In(5) = {4} and In(6) = ∅

where the import closure of C1 is IC (1) = {1, 2, 3, 4, 5, 6}.

Representing partial information generated from local evaluation without considering other
contexts in an MCS, requires a different notion, which is formally stated in the following
definition.

Definition 11 (Dao-Tran et al. [2010]) LetM = (C1, . . . , Cn) be an MCS, and let ε /∈
⋃n
i=1 BSi.

A partial belief state of M is a sequence S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for
1 ≤ i ≤ n.

Compared to Definition 8, one notices that there is a representation for unevaluated con-
texts. Thus, from the point of view of any context, the partial belief state either contains some
information for the other contexts or it does not care for them as they have not been evaluated yet.

We recall the adaptation of the notion of equilibrium (Definition 9) to match that of partial
belief states.

Definition 12 (Dao-Tran et al. [2010]) A partial belief state S = (S1, . . . , Sn) of an MCS M is
a partial equilibrium ofM w.r.t. a context Ck iff i ∈ IC (k) implies Si ∈ ACCi(kbi∪{head(r) |
r ∈ app(br i, S)}), and if i 6∈ IC (k), then Si = ε, for all 1 ≤ i ≤ n.
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The previous definition mirrors the notion of equilibrium in case of partial belief states. The
partial equilibrium for an MCS M can be considered as equilibria for sub-MCS M ′ generated
at a context Ck. Thus, the aim of each individual evaluation, in a distributed environment, is to
calculate a partial equilibrium. Naturally, the ultimate goal of such computation is combining all
the other contexts’ partial equilibrium in order to eventually compute the partial equilibrium with
respect to the root context.

The notion of combining several partial belief states, is formally known as joining the belief
states.

Definition 13 (Dao-Tran et al. [2010]) Given partial belief states S = (S1, . . . , Sn) and T =
(T1, . . . , Tn), their join S ./ T is defined as the partial belief state (U1, . . . , Un) with

(i) Ui = Si, if Ti = ε ∨ Si = Ti, and

(ii) Ui = Ti, if Ti 6= ε ∧ Si = ε,

for all 1 ≤ i ≤ n.

Consequently, if we have two sets S and T of partial belief states then the join is naturally
defined as S ./ T = {S ./ T | S ∈ S, T ∈ T }. The following example illustrates the result of
applying the join to two sets of partial belief states.

Example 8 Consider two sets of partial belief states from our running example during evaluation
at C3:

S =


(ε, ε, {car3}, {car4}, ε, ε) ,
(ε, ε, {train3}, {train4}, ε, ε) ,
(ε, ε, {train3}, {train4}, ε, {sick6}) ,
(ε, ε, {train3}, {car4, train4}, ε, ε) ,
(ε, ε, {train3}, {car4, train4}, ε, {sick6})

 and

T =

{
(ε, ε, ε, {car4}, ε, ε) ,
(ε, ε, ε, {train4}, ε, ε)

}
.

Their join is given by

S ./ T =


(ε, ε, {car3}, {car4}, ε, ε) ,
(ε, ε, {train3}, {train4}, ε, ε) ,
(ε, ε, {train3}, {train4}, ε, {sick6})

 .

Dao-Tran et al. [2010] developed DMCS, which is a distributed algorithm to find the equi-
librium for an MCS M . The adopted approach is, given an MCS M and a starting context Ck,
to find all partial equilibria of M w.r.t. Ck in a distributed manner. In DMCS, each context is
represented by an instance of the algorithm which runs independently, communication is achieved
via partial belief states exchange. Regardless of the logic used by each context, an application
of this algorithm provides a method for distributed model building to any MCS, provided that
appropriate solvers for the respective context’s logic are available.
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One of the main features of DMCS is its ability to compute projected partial equilibria, i.e.,
partial equilibria projected to a relevant portion of the signature of the import closure of the
starting context. This functionality is achieved by the addition of the relevant interface, V , input
parameter.

Given a (partial) belief state S and set V ⊆ Σ of variables, the restriction of S to v, denoted
S|V , is given by the (partial) belief state S

′
= (S1|V , . . . , Sn|V ), where Si|V = Si ∩V if Si 6= ε,

and ε|V = ε; the restriction of a set of (partial) belief states S to V is S|V = {S|V | S ∈ S}.

Definition 14 (Dao-Tran et al. [2010]) The import interface of context Ck is V (k) = {pi | (ci :
pi) ∈ B(r), r ∈ brk}. The recursive import interface of Ck is V∗(k) =

⋃
i∈IC (k) V (i).

The recursive import interface represents the interface of the import closure of Ck. Let Cr be
the root context for an MCS M , then minimum recursive import interface is V∗(r).

Example 9 Consider M from the running example (Example 6). The recursive import interface
of C1 in M from the running example is:

V∗(1) = {train2, car3, train3, peanuts3, coke3, car4, train4, sooner5, sick6}.

We refrain from discussing the technical details of DMCS, instead we refer the interested
reader to Dao-Tran et al. [2010].

Depending on the underlying logic at context Ck, it might be possible to compile brk into
kbk, yielding a kb

′
k, where it will lead to a simplification for the local solving at Ck, given all

the partial equilibria of its neighbors. This can e.g. be done in case of ASP logics, as there are
well-known transformations of ASP programs kbk into equivalent classical theories φ(kbk), such
that the answer sets of kbk are given by the classical models of φ(kbk). This idea hinges on the
notion of loop formulas (Lin and Zhao [2004], Lee and Lifschitz [2003]). The transformation
procedure, π(Ck), for each context with an MCS with normal ASP logics is provided in Dao-Tran
et al. [2010]. This concept is mainly utilized for the implementation of SAT-solver based DMCS.

Although we do not present the DMCS algorithm itself, it is interesting to observe the control
flow during the execution of the running example (Example 6).

Example 10 Let us consider invoking DMCS on C1 from M = (C1, . . . , C6) in Example 6 with
V =

⋃
1≥i≥6 V (i). The initial call would be C1.DMCS(V, ∅); this would eventually amount to

calling all the contexts multiple times in the following order:

C1, C2, C3, C4, C5, C4, C6, C4, C5, C4, C3, C4, C5, C4, C6

At the end of the execution, C1.DMCS(V, ∅) computes three equilibria for M :

• S = ({train1}, {train2}, {train3, urgent3, juice3, salad3}, {train4},
{soon5, sooner5}, {sick6});

• T = ({train1}, {train2}, {train3, juice3, salad3}, {train4}, {soon5, sooner5}, {fit6});
and

• U = ({car1}, {car2}, {car3}, {car4}, ∅, {fit6}).
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Figure 2.4: Simple MCS

The DMCS was the first approach to tackle the problem of MCS equilibrium evaluation in
a distributed manner. Similarly to all ground-breaking algorithms, it could be classified as a
basic approach. The authors of this approach had some ideas to improve the performance of
the algorithm which included considering overall system topology during evaluation as well as
finding means to reduce partial belief states transportation costs. Combining the previous ideas
with some of their benchmark observations, an optimized version of the algorithm, DMCSOPT,
was created, which we will review in the sequel.

2.2.3 Decomposition of Distributed Nonmonotonic Multi-Context Systems

DMCS is a basic direct approach for distributed equilibrium evaluation in MCS. Hence, the
obvious need for optimization and improvement. Then, the authors of DMCS observed some
scalability issues during the experiments. One of which is that contexts treat each other generically
during evaluation as they are not aware of context dependencies. Another is that the number
of models per contexts can scale to a huge size thus degrading the overall evaluation time. In
Bairakdar et al. [2010a], some decomposition techniques were introduced with the aim of overall
optimization of DMCS.

In the sequel, we recall some of the necessary basic notions and definitions. Additionally we
briefly cover the utilized decomposition techniques. Finally, we recall the new algorithm and
discuss some of its limitations.

Bairakdar et al. [2010a] present an optimization strategy that pursues two orthogonal goals:
(i) to prune dependencies in an MCS and cut superfluous transmissions, belief state building, and
joining of belief states; and (ii) to minimize information in transmissions.

One of the motivating ideas behind such optimization strategy is to avoid redundant calls to
contexts, thus decreasing network resources consumption as well as local resources.

Example 11 Reconsider the running example (Example 6) with only contexts C1, C2, C3 where
all the other contexts and atoms referring to them are removed (Figure 2.4). Thus, C1 would
depend on C2 and C3, while C2 depends on C3. The straightforward evaluation for this MCS
would be invoke both C2 and C3 during the execution of C1.

In turn context C2, would issue another query to C3 as C2’s belief sets must be evaluated
with respect to C3’s belief sets. Although simple caching strategies would improve the second
belief state building in C3, a transmission of belief states still occurs from C3 to C1. A call to C3

can be avoided if C2 reports the partial belief states to C1 with the belief sets of C3 along side its
own belief sets (which are consistent with respect to C3).

The key notion behind the first part of the optimization strategy is to acknowledge the
significant value of information and knowledge that resides in graphical representation of the

19



contexts within an MCS.

Definition 15 (Bairakdar et al. [2010a]) The topology of an MCS M = (C1, . . . , Cn) is the
digraph GM = (V,E), where V = {1, . . . , n} and (i, j) ∈ E iff some rule in br i has an atom
(j:p) in the body.

The topology for the running example (Example 6) is depicted in Figure 2.3, where the nodes
represent the contexts and the arrows represent the information dependency.

As the topology is in fact a directed graph, any further discussion requires standard graph
terminologies (Bondy and Murty [2008]). To this end, we recall the notions utilized by Bairakdar
et al. [2010a], some of which will not be directly used in this chapter (however, they are crucial
for subsequent Chapters).

Graph Theoretic concepts: For any graph G = (V,E) and set S ⊆ E(G) of edges, G\S
denotes the subgraph of G that has no edges from S. For a vertex v ∈ V (G), G\v represents the
subgraph of G induced by V (G)\{v}. A path is a sequence of consecutive edges, and a graph
is connected if there is a path connecting every pair of vertices. A path graph, Pn, is a is a tree
with two nodes of vertex degree 1, and the other n− 2 nodes of vertex degree 2, it can be drawn
so that all of its vertices and edges lie on a single straight line. A graph is weakly connected if
replacing every directed edge by an undirected edge yields a connected graph. A vertex c of
a weakly connected graph G is a cut vertex, if G\c is disconnected. A biconnected graph is a
weakly connected graph without cut vertices. A block in a graph G is a maximal biconnected
subgraph of G. Let T (G) = (B ∪ C, E) denote the undirected bipartite graph, called block tree
of graph G, where B is the set of blocks of G, C is the set of cut vertices of G, and (B, c) ∈ E
with B ∈ B and c ∈ C iff c ∈ V (B). Note that T (G) is a rooted tree for any weakly connected
graph G; for arbitrary graphs, it is a forest.

The rationale behind utilizing the notion of block trees is that one can generate a block tree
for a given MCS topology, where each block is optimized separately. Bondy and Murty [2008]
offered several block optimization strategies, where in case for acyclic blocks, the edge pruning
techniques are in fact transitive reductions of the graph GM . In case of cycles, ear decomposition
is applied to remove the edges. Thus the end result would be that each node in the original graph
is visited only once.

Generating a block tree for our running example, where edge pruning is performed in each
block would yield the following.

Example 12 (Bairakdar et al. [2010a]) The topology GM of M in Example 6 is shown in
Figure 2.3. It has two cut vertices, viz. 3 and 4; thus the block tree T (GM ) (Figure 2.5) contains
the blocks B1, B2, and B3, which are subgraphs of GM induced by {1, 2, 3, 4}, {4, 5}, and
{3, 6}, respectively. The dashed edges are the removed edges after pruning the subgraphs in each
block using either transitive reduction or ear decomposition.

The second goal of the underlying optimization strategy which handles the minimization
of information needed for transmission between two neighboring contexts Ci and Cj , requires
further notations.
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Figure 2.5: Scientist group example decomposition

Definition 16 (Bairakdar et al. [2010a]) Given an MCS M = (C1, . . . , Cn) and a subgraph
G of GM , for an edge (i, j) ∈ E(G), the recursive import interface of Ci to Cj w.r.t. G is
V∗(i, j)G = {p ∈ V ∗(i) | p ∈ Σ`, j reaches ` in G}.

The rationale behind this definition is that if a context is a cut vertex c in GM , all partial
belief states representing the partial equilibria with respect to its successors are projected so that
only its own belief sets survive. Thus, all information concerning the successors can be dropped
before returning its result to the parent block of c in T (GM ). This does not compromise the
computation at the parent. Recursive import interfaces with respect to blocks in GM capture this
property and can be exploited for information minimization during transmission.

Bairakdar et al. [2010a] combined all these optimization techniques into one algorithm that
generates the set of removable edges from the topological structure of a multi-context system
represented as a block tree. It operates on a block tree T in a DFS-way, where the end result is
a pair of all edges removed from blocks in T , and a labelling v for the remaining edges. The
labelling v represents the set of interface variables that need to be transfered between contexts.
Within each block, all cycles haven been broken (if any), and transitive reduction was used for
edge removal. We refrain from discussing the topology optimization algorithm in depth, instead
we refer the interested reader to Bairakdar et al. [2010a].

In order to properly adapt DMCS to the new decomposition techniques, one has to recall
a further notion. Given an MCS M , and its topology, a stripped version of the topology that
includes both the minimal context dependencies as well as transferable interface variables is a
query plan.

Definition 17 (Bairakdar et al. [2010a]) A query plan of an MCS M w.r.t. context Ck is any la-
beled subgraph Π ofGM induced by IC (k) withE(Π) ⊆ E(GM ), and edge labels v : E(G)→ 2Σ.

In our work, we use the query plan as constructed by Bairakdar et al. [2010a], where it is
based on set of the removable edges from the aforementioned briefly discussed algorithm.

Combining the topology optimization techniques that are engulfed in the query plan for a
certain MCS with the distributed evaluation of DMCS yielded DMCSOPT.

Abstracting from low-level implementation details, the idea of the algorithm is as follows:
Given a query plan, Πr, with respect to context Cr, we start with context Ck and traverse Πk by
expanding each outgoing edge, like in a depth first search, at each context. The expansion takes
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Algorithm 1: DMCSOPT(c : context id of predecessor) at Ck = (Lk, kbk, brk)

Data: Πr: query plan w.r.t. starting context Cr and label v, cache(k): cache
Output: set of accumulated partial belief states

(a) if cache(k) is not empty then S := cache(k) else
T := {(ε, . . . , ε)}

(b) foreach (k, i) ∈ E(Πr) do T := T ./ Ci.DMCSOPT(k) // neighbor beliefs

(c) if there is i ∈ In(k) s.t. (k, i) /∈ E(Πr) and Ti = ε for T ∈ T then
T := guess(v(c, k)) ./ T // guess for removed dependencies in Πr

(d) foreach T ∈ T do S := S ∪ lsolve(T ) // get local beliefs w.r.t. T

cache(k) := S
(e) if (c, k) ∈ E(Πr) (i.e., Ck is non-root) then return S|v(c,k) else return S

Algorithm 2: lsolve(S : partial belief state) at Ck = (Lk, kbk, brk)

Output: set of locally acceptable partial belief states
T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)})
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T}

place till a leaf context is reached. If Ci is a leaf that contains (j:p) in the bodies of its bridge
rules and there is no context Cj along the query plan to visit, then this means that a cycle was
broken and thus an edge was removed. Subsequently, all the possible truth assignments for the
import interface of Cj are considered. For any context , Ci, the result is the set of partial belief
states, which comes from the join of the local belief sets and the neighbor results. The final result
of the system is computed at Ck. A cache is used to store the partial belief states at each context,
in order to minimize the re-computations.

According to Bairakdar et al. [2010a], the steps of DMCSOPT (Algorithm 1) are explained
as follows:

(a) + (b) check the cache, if empty get neighbor contexts from the query plan, request partial
belief states from all neighbors and join them;

(c) if there are (i : p) in the bridge rules brk such that (k, i) /∈ E(Πr), and no neighbor
delivered the belief sets for Ci in step (b) (i.e., Ti = ε), we have to call guess on the
interface v(c, k) and join the result with T : intuitively, this happens when edges had been
removed from cycles;

(d) compute local belief states given the imported partial belief states collected from neighbors;
and

(e) return the locally computed belief states and project to the variables in v(c, k) for non-root
contexts; this is the point were we mask out parts of the belief states that are not needed in
contexts the lie in a different block of T (GM ).

22



DMCSOPT utilizes two subroutines:

• lsolve(S) (Algorithm 2): This module augments the knowledge base kb of the current
context with the heads of applicable bridge rules in br with respect to partial belief state S.
This is achieved by computing the local belief sets using the ACC function, then merging
them S and eventually returning the resulting set of partial belief states.

• guess(V ): This is a unary function, that guesses all the possible truth assignments for the
interface variables V .

In order to grasp the difference between DMCS and DMCSOPT, let us consider the following
example. It illustrates the control flow during the execution of our running example (Example 6)
with DMCSOPT:

Example 13 Invoking DMCSOPT on C1 from M = (C1, . . . , C6) in Example 6 with Π1 as the
formal representation of Figure 2.5. The initial call would be with C1.DMCSOPT(0), this would
eventually amount to invoking all the contexts once, as the control flow would be:

C1, C2, C3, C4, C5, C6

At the end, C1.DMCSOPT(0) computes two partial equilibria for M :
• S = ({train1}, {train2}, {train3}, {train4}, ∅, ∅);and
• T = ({car1}, ∅, {car3}, {car4}, ∅, ∅).

Observe that in Example 13 there are two equilibria, while Example 10 produced three. This
is because DMCSOPT utilizes the minimal interface projection which is part of the query plan.
As a result, within the block that contains C1, which is the context that we used to start the
evaluation, the information regarding C5 and C6 are deemed irrelevant and are discarded at the
respective cut vertices. Additionally, the import interface between the contexts has been restricted
according to the query plan so that it conveys only the join-relevant information.

Although DMCSOPT produced exemplary results when compared to its predecessor DMCS,
optimization is still possible. Despite the addition of the query plan notion and the improvements
added to context interface variables, some local pruning techniques are still possible.

2.3 Association Rules

Given a set of data, one of the key approaches in the data mining field that provides descriptive
information about the general properties within that data is association rule mining (Rabuñal et al.
[2009]). Acquiring descriptive knowledge about data is a highly beneficial process, depending
on the field where that data originated the usage will be different, as an example in case of the
business field of customer relationship management, such insight helps to concentrate the efforts
on customers that have a high likelihood to respond to offers.

In the sequel, we recall the notion of association rules as well as some of the related statistical
metrics. Association rules were first introduced by Agrawal et al. [1993] in order to address
the classical problem of “market basket analysis”. This problem is clearly visible in stores and
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supermarkets where stores aim at optimizing the product placement strategy. This is done by
gathering information regarding customers buying habits from the daily transactions, where
frequently jointly purchased products are discovered and thus they are placed in neighboring
shelves accordingly. For example, it is almost always the case that when a customer buys chips,
he buys some kind of beverage. Thus, if supermarkets place the chips next to the beverages
shelves, they have a high probability to increase their revenue, as the customers’ psyche will
unconsciously remind them when they are buying chips to buy some kind of beverage from the
neighboring shelf.

Prior to recalling the formal definition of association rules, one has to recall some other basic
notions.

Definition 18 A transaction is an n-ary tuple, where the first element is a unique transaction
identifier. The remaining elements of the tuple are called an itemset. They are the items from the
available binary data such that no item appears twice.

Definition 19 (Agrawal et al. [1993]) Let I = {i1, i2, . . . , in} be a set of n binary attributes
called items. Let D = {t1, t2, . . . , tm} be a set of unique transactions called the database, where
each transaction in D contains a subset of the items in I . An association rule is defined as an
implication of the form X ⇒ Y where X,Y ⊆ I and X ∩ Y = ∅.

In the previous definitionX and Y are both itemsets and are called antecedent (left-hand-side,
LHS) and consequent (right-hand-side, RHS) of the rule respectively. One can also denote them
as head and body, respectively. Generally, one is interested in a sub class of itemsets, the Frequent
itemsets, which are the itemsets satisfying a minimum support threshold.

The process of association rule extraction is usually guided by some statistical parameters
(Maimon and Rokach [2005]), the most commonly used are minimum support and confidence.

• Support is the portion of transactions in the data set which contain the itemset. Let n be the
total number of available transactions and a the number of transaction that contain X , then
supp(X) = a

n .

• Confidence is an estimate of the probability P (Y | X), which is the probability of finding
the consequent of the rule, Y , in the transactions under condition that these transactions
also contain the antecedent, X . Formally it can be represented as conf (r) = supp(X∪Y )

supp(X) ,

Example 14 Assume that we are working at a supermarket. We are tasked with the extraction of
some association rules for the following set of items, I = {milk, bread, butter, beer}, where
the relevant set of transactions are in Table 2.1.

Each row corresponds to a transaction. Each cell, apart from those in the transaction ID
column, represents an item within a transaction, a “1” represents the existence of that item, and
vice versa for “0”. Some of the possible association rules would be:

a) {milk, bread} ⇒ {butter}: which means that whenever a customer buys milk and bread,
we expect him to buy butter as well. The confidence of this rule is 0.5, which means that
for 50% of the transactions that contain milk and bread, this rule applies.
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Transaction ID milk bread butter juice
1 1 1 0 0
2 0 1 1 0
3 0 0 0 1
4 1 1 1 0
5 0 1 0 0

Table 2.1: Supermarket transactions

b) {milk} ⇒ {bread}: which means that if milk is bought, customers also buy bread. The
confidence of this rule is 1.0, which means that this rule is always valid.

c) {butter} ⇒ {bread}: which means that if butter is bought, customers would most likely
buy bread. The confidence of this rule is 1.0, which means that this rule is always valid.

d) {bread} ⇒ {butter}: which means that if someone buys bread, he/she will probably buy
butter. Unlike the previous rule, the confidence of this one is 0.5, despite of using the same
itemsets.

In Example 14, we have assumed that all the investigated association rules were statistically
significant, i.e., above the designated threshold for the support, or rather exceeded the minimum
support. However, the value of confidence varied greatly among the chosen rules.

Consider Figure 2.6, each rectangular area represents some itemsets. We are interested in two
specific itemsets; namely, A and B. The minimum support is graphically represented by A ∪B,
while the intersection between each two sets signifies the confidence level when combined with a
set’s area. In Figure 2.6a, A⇒ B can be classified as a strong rule as it is almost always the case
that when A is true B holds. However, the converse is not true, B ⇒ A holds sometimes, thus
it has a low confidence level. Consider Figure 2.6b, A ⇒ B and B ⇒ A are both considered
association rules with a low confidence level. Conversely, in Figure 2.6d, A⇒ B and B ⇒ A are
both considered association rules with a very high confidence level. Thus, one can observe that
both sides of any association rule are rarely interchangeable without having great ramifications
on the association rule’s confidence level.

Practical applications usually contain thousands or millions of transactions, and an association
rule usually requires a support of hundreds of transactions before being deemed statistically
relevant.

The basic idea behind any association rule mining algorithm is to identify from the given
data base, set of transactions, consisting of itemsets, whether the occurrence of specific items,
implies also the occurrence of other items with a relatively high probability. Generally, this is a
two step process. First, the minimum support is applied to find all frequent itemsets in a database.
second, these frequent itemsets and the minimum confidence constraints are used to form the
rules. There are several algorithms which handle this harvesting process, Apriori which was
introduced by Agrawal and Srikant [1994], the Partition algorithm by Savasere et al. [1995], Zaki
[2000] introduced six algorithms, KDCI developed by Orlando et al. [2003] among others.
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Figure 2.6: Possible confidence levels

We shall not delve into the inner workings of association rule mining algorithms, as they will
be utilized later on as inter-changeable black box elements in our work. We consider them as
having an identical structure with respect to input and output parameters.
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Chapter 3

Local Constraint Pushing for
Distributed Multi-Context Systems

In this chapter, we present the formalization for the idea of local optimization of MCS via
constraint pushing. To this end, we present the intuition behind our approach, adapt the notion
of association rules and association rule extraction to the framework of MCS. Afterwards, we
present a distributed evaluation algorithm for MCS, which we provide a proof for its soundness
and completeness. Additionally, we present several parameterized optimization strategies and
ideas for association rule extraction procedure.

3.1 Motivation and Intuition

Motivated by the previous chapters, we build upon the foundations of multi-context systems
under the framework of Brewka and Eiter [2007]. We utilize the decomposition technique from
Bairakdar et al. [2010a].

Informally speaking, the idea behind our work is to utilize the available information about
each context effectively, which has been otherwise neglected. Upon examination of the control
flow of the both previous approaches DMCS and DMCSOPT, we notice that each context invokes
its neighbors, combines their results and then performs the local solving. Now the question comes
up what would happen if the local computation took place before checking for the neighbors?
If we just swap these parts, in either algorithms, we will end up with the same result eventually,
which is expected. The key question that we bring up in our work is can we utilize some of the
knowledge that was generated from the local computation at a each context to aid the computation
at its neighbors?

During a distributed MCS evaluation with DMCSOPT, it might be the case that some context
Ci, has a common atom a, among all the set of its partial belief states. This a might be a bridge
atom from another context Cj . Using the standard computation methodology of DMCSOPT, a
will only be discovered to be a common atom when all of the neighbors of Ci will return their
respective sets of partial belief states and all the joining would have occurred. During the local
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computation of Cj , it might be the case that the search space would have been pruned greatly if a
it was known that the invoker of Cj is looking only for the literal a, thus eliminating the need for
computing the models for ¬a. In other words, if Ci was able to push some of the information that
it already possesses via its bridge rules to its neighbors as a set of facts, clauses or rather models,
then in principle the overall computation time and search space of the neighboring atoms could
decrease significantly.

Example 15 Given an MCS M = (C1, C2), where all Li are ASP logics and

• kb1 = {⊥ ← not a1} and

br1 = {a1 ← (2 : b2)}

• kb2 =

{
c2 ← not b2;
b2 ← not c2

}
br2 = ∅

Now we aim to find the equilibrium for M , utilizing DMCSOPT with C1 as a root context.
Tracing the execution we get:

a) The client initiates a call to C1, checks for neighbors, finds C2 and queries it. Context C2

checks for neighbors, discovers that it is a leaf node, computes its local belief sets, transforms
them into partial belief states, projects them to the interface v(1, 2), which is {b2}, and finally
returns the result to its invoker, C1:

- U = ({}, {not b2})
- T = ({}, {b2}).

b) Afterwards, C1 computes its local belief sets and joins them with the results from C2, which
leads to the following equilibrium for M :

- S = ({a1}, {b2}).

In Example 15, we observe that during the local evaluation for C2, unnecessary belief states
were generated. In fact, the belief state T was discarded entirely during the join operation in
C1. Upon closer examination for T , one notices that it could have lead to an inconsistent system
as a1 would be false. Our idea is to find the proper means by which one can push forward the
information that C1 is expecting the value of b2 is going to be false. By pushing forward, we mean
propagating the constraint that b2 is true to all the neighbors of C1, in this case C2. This should
help C2 during local soiling, as it would prune away the search space for lsolve. Additionally, it
will reduce the amount of partial belief states transmitted between contexts.

We have just introduced a simple example to show the effect of constraint pushing. Imagine
a bigger setup, where the pruning effect will not be just one single belief state, but rather an
exponential number of belief states. Even better, imagine a case where such constraint pushing
techniques would readily lead to an inconsistency within the system, thus eliminating the need
for useless computation along the expected control flow.
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Pushing the information forward is not an easy task. As we are dealing with heterogeneous
nonmonotonic MCS, a unified generic formalization had to be chosen. After investigating several
fields, we noticed that looking for important information within a given set of data or rather
extracting and formalizing descriptive knowledge is an idea that has been well exhausted in the
field of data mining. We utilize the association rules introduced in Section 2.3 to handle the
constraint pushing scenario.

3.2 Association Rules for Multi-Context Systems

In this section, we tailor the notion of association rules that was introduced in Section 2.3 so that
it is compatible with heterogeneous nonmonotonic MCS.

Association rules are mainly characterized by their support and confidence values. Recall
the statistical notions from Section 2.3, where the support represents the portion of transactions
that contain a certain itemset and the confidence factor that is responsible for the strength of the
rule as it is a measure of its validity. Soundness and completeness are the two corner stones of
our work. To this end, we will always maintain the value of the confidence at “1.0”, so that we
consider association rules that are always true for a certain set of transactions. This is to ensure
that the equilibrium of the system will not be contaminated. On the other hand, we have to ensure
that the threshold for the minimum support will be as low as possible. This constraint is added to
make sure that during the association rule mining process, no rule will go unchecked and thus
jeopardizing the constraint pushing system as a whole.

The first amendment to the original definition (Definition 19), is to remove the transaction
unique identifier from the definition of transaction. Thus a transaction is now a set of itemsets.
This coincides perfectly with our notion of belief states. Thus one can consider there is a one-to-
one correspondence between a (partial) belief state and a transaction, where the belief sets are
indeed the item sets. As a result, one can consider the set of belief states as a set of transactions.

Notice that the belief sets, and by extension the belief states, contain only atoms that are
assigned the value true; However, this is not the case for transactions. Transforming each belief
state into a transaction means that all the positive atoms are considered as well as negative atoms.
Additionally, all the unknown belief sets, marked with ε, are simply ignored.

Example 16 Consider the running example (Example 6) where C4 computes the following set
of partial belief states:

S =


(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, ε, ε)
(ε, ε, ε, {train4}, {sooner5}, ε)

 .

Transforming S into a set of transactions, it would lead to the inclusion of the negative
literals, which are a hidden part of S. Thus, the set of transactions that correspond to S is St,
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represented as:

St =


({car4, not train4}, {not sooner5})
({not car4, train4}, {not sooner5})
({not car4, train4}, {sooner5})

 .

Definition 20 Let A be a finite alphabet of atomic propositions. An association rule for an MCS
M = (C1, . . . , Cn) has the following form:

l0 ⇐ l1, . . . , lm (3.1)

for n ≥ 0, where l0, l1, . . . , lm are literals, such that and li 6= (¬)lj for i 6= j, 0 ≤ i, j ≤ m.

Additionally, A =
n⋃
i=0

Σi, where Σi is the alphabet of Ci.

Comparing the adapted association rules Definition 20 with the original Definition 19, one
can observe that the set of binary items I has been replaced by A and that l0 is the consequent
Y of the original association rule definition, but with the cardinality restricted to 1 and that
l1, . . . , lm are X . Additionally, note that the direction of rule has been reversed.

Given an association rule r of the form 3.1, let the head of the rule be defined as H(r) = {l0},
the body of the rule as B(r) = {l1, . . . , ln} and at(r) = {l0, l1, . . . , ln} returns a set of all the
atoms in the rule.

Given a set of association rules R and an MCS M = (C1, . . . , Cn), where (Σ1, . . . ,Σn)
represents the tuple of local alphabets, then the applicable set of association rules from R with
respect to Σi is defined as R|Σi = {r ∈ R | at(r) ⊆ Σi}. Thus, computing the applicable set of
association rules for a context, would yield all the possible rules that are relevant for that certain
context, i.e., context specific filtration.

Example 17 Consider the MCS M from the running example (Example 6) and assume that C1

extracted association rules via a module called the association rules miner. Then, C1 would push
forward some association rules, which include:

¬peanuts3 ⇐
¬nuts1 ⇐
train1 ⇐ ¬car1

¬car1 ⇐ train1

where they will be utilized by C2 and other contexts to prune their local search space.

One of the benefits that we gain from such adaptation for the association rules is the ability to
pass along clauses not only facts as described in Example 17.

After adjusting the association rules for MCS, we move to the actual association rule mining
process, which is discussed in the next section.
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3.3 Association Rules Harvesting

There is a variety of schools and algorithms, when it comes to association rules extraction.
However, none of them is of relevance to this section as they are treated as inter-changeable black
boxes. Nonetheless, we are interested in the syntax and semantics of the input and output of such
procedure, as we have to ensure their compatibility with the MCS framework.

Generally, an association rule mining function requires a minimum of several parameters as
its input, namely the set of transactions, the minimum support and confidence. However, as we
have discussed in the previous section, the values for the confidence and minimum support are
fixed. Additionally, recall the analogy between transactions and the set of (partial) belief states.
Thus, the association rule mining function requires only one input parameter to operate, a set
of (partial) belief states. To this end, we denote the association rule mining function as a unary
function, called mineARules .

The function mineARules has one input parameter which is a set of partial belief states
restricted to a certain set of atoms S|V , each following Definition 11, while the output is a set
of association rules R, such that each association rule follows Definition 20. The generated
association rules have to be sound and have only one single literal for the head. The rules bodies
can contain as many positive or negative literals as needed provided that none of them is the head
of the given rule. Naturally, as the mineARules function operates on a certain set of input, the
signature A (Definition 20) has to be restricted to the some set of the atoms available in the set of
partial belief states, S.

We reduce the set of extracted association rules by restricting the set of belief states to a
minimal set of atoms such that extracted association rules are only for literals that are required by
other contexts. This is because the association rule extraction process is expensive in terms of
time and processing power, so we eliminate the generation of association rules that are going to
be ignored by other contexts.

Given an MCSM = (C1, . . . , Cn). LetCr be the root context for a query. Then by Definition
14, the minimum recursive import interface for M w.r.t. Cr is V∗(r). This interface represents all
the atoms that are required at some point by some context Ci ∈M such that i ∈ IC (r). Thus,
restricting the mining process to the set of atoms that appear in V∗(r), where Cr is a root context
of an MCS M would yield the desired reduction.

Notation: Let S be a set of partial belief states, and V ⊆ Σ be a set of atoms for the MCS M.
Then

⋃
S|V := {

⋃
i Si | Si ∈ S|V ∧ Sij 6= ε}, denotes the set of all atoms that appear in all the

partial belief states excluding the belief sets that have not been evaluated yet (Sij 6= ε). Moreover,
S|V := ¬.(Σ|V \

⋃
S|V ) denotes the set of all remaining negated atoms computed by collecting

the atoms in the global alphabet that do not appear in S|V for non-empty belief sets, and then
negating them. Thus,

⋃
S|V ∪ S|V denotes all the possible literals from non-empty belief sets

for a certain set of partial belief states.

Definition 21 Let X be a set of literals, a be a literal such that a 6∈ X , and S be a set of partial
belief states. Then the support of X w.r.t. S, is denoted by σ(X,S) := |{S ∈ S | X ⊆

⋃
S}|.

Moreover, the confidence which is the estimate for P ({a} | X), is denoted by γ(X, a,S) :=
σ(X∪{a},S)
σ(X,S) .
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Definition 22 Let S be a set of partial belief states. Then,

mineARules(S|V ) = {a⇐ X | S ∈ S|V ∧ a ∈
⋃
S|V ∪ S|V ∧

(X ⊆
⋃
S|V ∪ S|V \ {a,¬a}) ∧ γ(X, a,S|V ) = 1} (3.2)

Note that in the previous definition, the confidence level of all the rules is maintained at 1.0 by
forcing γ(X, a,S) = 1.0. Additionally, note that the minimum support was not part of equation
3.2, which automatically sets it to zero.

The following example presents a direct application of the association rules miner on one of
the contexts in our running example.

Example 18 Consider the running example (Example 6) where C4 computes the following set
of partial belief states:

S =


(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, ε, ε)
(ε, ε, ε, {train4}, {sooner5}, ε)

 .

Invoking mineARules(S|V∗(1)) would yield a total of 15 rules, which include the following:

R =



car4 ⇐ ¬train4

¬train4 ⇐ car4

¬sooner5 ⇐ ¬train4

¬sooner5 ⇐ car4

¬car4 ⇐ sooner5

train4 ⇐ sooner5

train4 ⇐ ¬car4

¬car4 ⇐ train4

¬sooner5 ⇐ car4,¬train4


.

Note that the association rules are only treated at the syntactic level, and do not incorporate
any semantics at all.

In the sequel, we extend an existing distributed algorithm for equilibrium evaluation for
multi-context systems by augmenting it with constraint pushing strategy that makes use of the
association rule extraction process. We will discuss the merits, drawbacks, and investigate its full
potential.

3.4 Evaluation Algorithm using Association Rules Pushing

In this section, we formalize the ideas presented in the previous sections into an algorithm
called DMCS-SLIM. Our formalization is based on DMCSOPT (Algorithm 1) by Bairakdar et al.
[2010a]. This is due to the assumption that the topology for a set of given context has been
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optimized and that there is a given query plan for a certain root context. Additionally, we utilize
the data mining techniques introduced in Section 2.3.

Abstracting from low-level implementation issues, the idea is as follows: Given a query plan
that starts with a root context Cr, Πr. We start with context Ck, and a set of association rules R,
we guess for all the possible truth assignments for all the (j : p) in the bodies of Ck bridge rules
while complying to the relevant constraints provided by R, and store the result in partial belief
state format. Afterwards, we compute Ck’s local belief sets with the aid of all the applicable
association rules from R with respect to Ck, and transform all the belief sets into partial belief
states. In the next step, we apply a mining function to mine for all the possible association rules
from these partial belief states and append them to R, giving us Q. Then, we traverse the given
query plan, Πr, by expanding the outgoing edges of that plan at each context, like in a depth-first
search, until a leaf context is reached. During the traversal, R is always updated and passed on
to the next context as a new Q, so that it contains all the mined association rules along the path
from Ck to its invoker. A leaf context Ci simply performs the local computation of it belief states
and returns the results as partial belief states to its parent, without mining for association rules.

Algorithm 3: DMCS-SLIM(c,R) at Ck = (Lk, kbk, brk)

Input: c: context identifier of a direct predecessor, R: a set of association rules for M
Data: Πr: query plan w.r.t. starting context Cr and label v, cache(k,R): cache
Output: set of accumulated partial belief states

(a) if cache(k,R) is not empty then S := cache(k,R)
else

(b) T := {(ε, . . . , ε)}
foreach i ∈ In(k) do
T := guess(v(k, i), R|Σi) ./ T

(c) S := ∅
foreach T ∈ T do S := S ∪ lsolve(T,R|Σk

)
(d) if S 6= ∅ ∧ ∃(k, i) ∈ E(Πr) then
(e) Q = R ∪ mineARules(S|V∗(r))
(f) T := {(ε, . . . , ε)}

foreach (k, i) ∈ E(Πr) do
T := T ./ Ci.DMCS-SLIM(k,Q)

(g) S := S ./ T
(h) cache(k,R) := S
(i) if (c, k) ∈ E(Πr) then S := S|v(c,k) // Ck is non-root

return S

Algorithm 4: lsolve(S,R) at Ck = (Lk, kbk, brk)

Input: S: partial belief state, R: a set of association rules R
Output: set of locally acceptable partial belief states
T := {T ∈ ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)}) | T |= R} ;
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T} ;
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The steps of Algorithm 3 can be explained as follows:

(a) Check the cache for an appropriate partial belief state;

(b) Guess for all interface v(k, i) of the import neighborhood of context k with respect to the
relevant set of association rules,R|Σi , which is the standard R projected to context i. Join the
all the partial belief states together;

(c) Compute local belief states given the guessed partial belief states of the neighbors, taking
into consideration the set of applicable association rules, R|k; this is the standard R projected
to the current context, k;

(d) Check the partial belief states for consistency; in case of inconsistency there would be no
partial belief states. In addition, check if it is not a leaf context. If it was indeed a leaf context,
then the computation of S has been finalized;

(e) Apply the association rule miner function on the projected partial belief states to gather as
much information as possible about the expected neighbors’ models;

(f) For each neighbor to context k, that is available in the root’s query plan, E(Πr), invoke said
neighbor and request its partial belief states. Join all the results from all neighbors;

(g) Filter irrelevant models from the current set of partial belief states by joining the previously
computed local models with the combined partial belief states collected from all neighbors;

(h) Store the value of S in the relevant cache position; and

(i) In case of a non-root context, project the partial belief state to the interface variables in
v(c, k). Otherwise, return the full belief state unaltered.

DMCS-SLIM utilizes several subroutines. Some of them are adaptations of others, previously
used in DMCSOPT and/or DMCS, while some are new:

• cache(k,R): This is a binary function that accepts an integer denoting the context id k,
and a set of association rules as input parameters R. This is simply a lookup table where
the unique key is the pair (k,R) and stored data are the partial belief states at context
Ck. If a hit is found, then there is no need for any computations. Thus, minimizing the
re-computations. It behaves similarly to the unary cache function in DMCSOPT.

• guess(v,R): This binary function that takes a set of interface variables v between two
contexts as the first parameter and a set of relevant association rules R as the second.
The result is the same as the unary guess function utilized by DMCSOPT, as it guesses
all the possible truth assignments for the interface variables V = v(k, i). However, the
enhancement to the previous version is that it takes the set of applicable association rules
into account. As such, the return value of this function is all the possible truth assignments
of the interface variables while adhering to the constraints imposed by the set of relevant
association rules.
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2 3

Figure 3.1: Graphical representations of Example 20

• lsolve(S,R): This is a binary function which takes a set of partial belief states S as a first
parameter and a set of association rules R as the second and last parameter. The call of this
function occurs at a certain context Ck = (Lk, kbk, brk). The role of the function is the
same as that utilized within DMCSOPT, although the other is a unary function and a less
sophisticated one. The goal of this function is to supplement S with the augmentation of
kbk as well as all heads from bridge rules brk such that S is still valid. The key difference
in our approach is the extra restriction that has been placed prior to the result of the join
of the augmented kbk with the given S, where the augmented kbk must model all the
association rules available in R. The function returns a set of partial belief states adheres
to the previously mentioned limitations.

• mineARules(S): This is a unary function which accepts a projected set of partial be-
lief states S as its input. It is specific to DMCS-SLIM and has not been used in either
DMCSOPT or DMCS, as it is specific to the model pushing strategy. A detailed expla-
nation of this function input and output parameters is provided in the previous section
(Section 3.3).

Consider the following excerpt from invoking DMCS-SLIM on our running example, to aid
understanding our approach.

Example 19 Invoking DMCS-SLIM on C1 from M = (C1, . . . , C6) in Example 6 with Π1 as
the formal representation of Figure 2.5. The initial call would be C1.DMCS-SLIM(0, {}). When
the execution flow reaches C3, then at step (c),

R|Σ3 =



¬peanuts3 ⇐
¬coke3 ⇐ ¬car3

train3 ⇐ ¬car3

train4 ⇐ ¬car3

¬coke3 ⇐ ¬car4

train3 ⇐ ¬car4

train4 ⇐ ¬car4

car4 ⇐ ¬train3

car3 ⇐ ¬train3

car4 ⇐ ¬train4

car3 ⇐ ¬train4

car4 ⇐ ¬coke3

car3 ⇐ ¬coke3



.
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Thus, after the execution of the lsolve in the loop at step (c),

S =


(ε, ε, {car3}, {car4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3}, {train4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3}, {car4, train4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3, urgent3}, {train4}, ε, {sick6})
(ε, ε, {train3, sandwiches3, juice3, urgent3}, {car4, train4}, ε, {sick6)})

 .

Note that compared to DMCSOPT, | S | has been reduced from to 34 to 5.

The full trace of the running example is available in Appendix A. Next we consider a relatively
small example, to highlight all the interesting execution steps.

Example 20 Consider the following MCS M = (C1, C2, C3), where all Li are ASP logics and

• kb1 = {a1 ← not b1; ⊥ ← c1} and

br1 = {b1 ← (2 : b2), (3 : b3); c1 ← (3 : c3)};

• kb2 = {⊥ ← not a2,not b2} and

br2 = {a2 ← (3 : a3); b2 ← (3 : b3)};

• kb3 = {a3 ∨ b3 ←; c3 ∨ d3 ← b3} and
br3 = ∅

The representation of M ’s query plan is depicted in Figure 3.1, where the dashed line
represents a removed edge (see Section 2.2.3).

Following a the control flow of DMCS-SLIM applied to M , we notice the following:

• (f) at C1: after applying the mining operation, there is a total of 21 association rules, such
as ¬c1 ⇐,¬c3 ⇐ and ¬a1 ⇐ b1.

• (b) at C2: we have a non-empty set of association rules. Applying the applicability relation
(filtering relation) to this set with respect to C3, we get a set of one rule only, namely
¬c3 ⇐. This leads to the pruning away half of the set of the partial belief states that were
normally going to be computed.

• (f) at C2: mineARules generates 9 association rules. The union removes any duplicates.

• (b) at C3: there are 3 relevant association rules, ¬c3 ⇐, b3 ⇐ ¬a3 and a3 ⇐ ¬b3.

• (c) at C3: the size of the computed set of partial belief states has been reduced from 3 to 2.

Thus, the computed equilibria for M are: S = ({a1}, ∅, {a3}) and T = ({b1}, {b2}, {b3}).

Recall that at step (d), we have a check for inconsistency that might arise during lsolve or
guess. If the system is consistent, then the execution proceeds normally. Otherwise, there is no
need to continue the evaluation of the remaining contexts, as the result is already available. This
property is illustrated in the next example.
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1 2 3

Figure 3.2: Graphical representations of Example 21

Example 21 Consider the following relatively small MCS M = (C1, C2, C3), whose topology
is shown in Figure 3.2, where all Li are ASP logics and

• kb1 = {a1 ← not b1; ⊥ ← a1} and

br1 = {b1 ← (2 : b2)};

• kb2 = {⊥ ← b2} and

br2 = {a2 ← (3 : a3)};

• kb3 = {a3 ∨ b3 ←} and
br3 = ∅.

This MCS is inconsistent. Using DMCSOPT, the inconsistency will not be detected until
all contexts have been invoked and returned their results. However, DMCS-SLIM realizes
the inconsistency earlier and terminates any further processing at step (d) in C2. This is
because C1 generated the association rule, b2 ⇐ at step (e). The result of augmenting
this rule during the lsolve operation at C2, was the generation of the empty set. Thus, an
inconsistency within the system have been created and caught by the algorithm at the next
step of execution.

In the previous examples, we have demonstrated the effect of search space pruning during
local computations. In theory, this reduces both transmission time and cost, but the overhead
incurred from association rules transmission might overwhelm this reduction. Needless to say,
there might be some cases where there are no benefits from using DMCS-SLIM over DMCSOPT
at all. Further investigation is provided in Chapter 5.

3.5 Soundness and Completeness of DMCS-SLIM

In this section, we formally prove the soundness and a completeness of DMCS-SLIM.
We start by recalling Lemma 7 from Dao-Tran et al. [2010].

Lemma 1 (Dao-Tran et al. [2010]) For any context Ck and partial belief state S of an MCS
M = (C1, . . . , Cn), app(brk, S) = app(brk, S|V ) for all V ⊆ V∗(k)

We do not recall the proof for this lemma, instead we refer the interested reader to the original
paper.

For Lemmas 2 and 3, we let Ck and Cc be contexts of an MCS M = (C1, . . . , Cn), where
k ∈ IC (c). Let T (GM ) = (B ∪ C, E) be the block tree graph of GM , let Bj ∈ B, and let
Ck ∈ Bj . Additionally, let R be a set of association rules computed at Cc.
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In the following lemma, we prove that the set of partial belief states computed by the guess
function in DMCS-SLIM is a subset of the set of partial belief states computed by the guess
function in DMCSOPT.

Lemma 2 Let S be the set of belief states at Ck computed from ./i∈In(k) guess(v(k, i)). Let
S ′ be the set of belief states at Ck computed from ./i∈In(k) guess(v(k, i), R|Σi). Then the
computations of the guess function from DMCS-SLIM S ′ , are all a subset of the computations of
the guess function from DMCSOPT S, i.e., S ′ ⊆ S.

Proof Let S ∈ S, as ./i∈In(k) guess(v(k, i)) = ./i∈In(k) 2(v(k,i)), then S ∈./i∈In(k) 2(v(k,i)).
Let S

′ ∈ S ′ , as ./i∈In(k) guess(v(k, i), R) = ./i∈In(k) 2(v(k,i)) |= R, then S
′ ∈./i∈In(k)

2(v(k,i)) |= R.
Thus by construction of S and S

′
, if S

′ ∈ S ′ then S
′ ∈ S. Thus, S ′ ⊆ S .

In the following lemma, we prove that the set of partial belief states computed by the lsolve
function in DMCS-SLIM is a subset of the set of partial belief states computed by the lsolve
function in DMCSOPT.

Lemma 3 Let U be the set of belief states from ./i∈In(k) guess(v(k, i), R|Σi). Let S =

lsolve(U) and S ′ = lsolve(U,R) at Ck. Then the computations of the lsolve function from
DMCS-SLIM S ′ , are all a subset of the computations of the lsolve function from DMCSOPT S,
i.e., S ′ ⊆ S.

Proof Let S ∈ S , then by definition of lsolve(U), S = (U1, . . . , Uk−1, Tk, Uk+1, . . . , Un), such
that Tk ∈ T, where T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, U)}).

Similarly let S
′ ∈ S ′ , then by definition of lsolve(U,R), S

′
= (U1, . . . , Uk−1, T

′
k, Uk+1, . . . , Un),

such that T
′
k ∈ T

′
, where T

′
:= {T ′ ∈ ACCk(kbk ∪{head(r) | r ∈ app(brk, U)}) | T ′ |= R}.

If R = ∅, then T
′

= T, otherwise if R 6= ∅, then by construction of T
′
, T

′ ⊆ T and by
extension T

′
k ⊆ Tk.

Thus by construction of S and S
′
, if S

′ ∈ S ′ then S
′ ∈ S. Thus, S ′ ⊆ S.

In order to prove soundness and completeness of DMCS-SLIM, we present two propositions,
where Propositions 4 and 5 give us soundness and completeness, respectively.

For Propositions 4 and 5, we let Ck be a context of an MCS M , where M = (C1, . . . , Cn).
Let T (GM ) = (B ∪ C, E) be the block tree graph of GM , let Bj ∈ B, and let Ck ∈ Bj such that
Ck is the root context. Let Πk be a query plan for Ck, let V = {p ∈ v(k, j) | (k, j) ∈ E(Πk)}.

Proposition 4 For each S′ ∈ Ck.DMCS-SLIM(0, ∅), there exists a partial equilibrium S of M
w.r.t. Ck such that S′ = S|V .

Proof If this is not the first round of queries for Ck, then at step (a), the cache will have a hit
where we retrieve the stored value of S. Then, we jump to step (i), where for S′ ∈ S|V , there
exists a partial equilibrium S of M w.r.t. Ck such that S′ = S|V . For the remainder of the proof,
we assume it is the first time to query the system.
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Let S′ ∈ Ck.DMCS-SLIM(c,R). We show now that there exists a partial equilibrium S of
M w.r.t. Ck such that S′ = S|V . We proceed by structural induction on the topology of MCS M .

Base case: Ck is a leaf with In(k) = ∅, then brk = ∅. Let Cc be the direct predecessor of Ck
in Πr, soR is the set of association rules computed atCc. AsCk is a leaf, this means that (b) is not
executed and T = {(ε, . . . , ε)}. At step (c), S = ∅ and lsolve runs exactly once on (ε, . . . , ε) and
R. Thus the set of all belief states S = lsolve((ε, . . . , ε), R) = {(ε, . . . , ε, Tk, ε, . . . , ε) | Tk ∈
{T ∈ ACCk(kbk) | T |= R}}. By Lemma 3, if there is a partial equilibrium of M w.r.t. Ck, then
S is a partial equilibrium for M w.r.t. Ck. At step (d), as Ck is a leaf node, so ¬∃(k, i) ∈ E(Πr),
thus the control flow jumps to step (h). We store the value of S in the cache under the entry for
cache(c,R). At step (i) we get that S′ ∈ S|V . Towards a contradiction, assume that there is
no partial equilibrium S = (S1, . . . , Sn) of M w.r.t. Ck such that S′ = S|V . From In(k) = ∅,
we get that IC (k) = {k}, thus the partial belief state (ε, . . . , ε, Tk, ε, . . . , ε) ∈ S is a partial
equilibrium of M w.r.t. Ck. Contradiction.

Induction step: assume that the import neighborhood of context Ck is In(k) = {i1, . . . , im}
for m ≥ 1, Qk is the set of association rules computed at Ck and

Si1 = Ci1 .DMCS-SLIM(k,Qk),
...

Sim = Cim .DMCS-SLIM(k,Qk),

such that for every S′ij ∈ Sij , there exists a partial equilibrium Sij of M w.r.t. Cij such that
S′ij = S′ij |V . Let the invoker for Ck be Cc and let Rc be the set of association rules which was
passed as a parameter. Following the control flow for Ck, as In(k) = {i1, . . . , im}, step (b) will
be executed, which yields

T = ./i∈In(k) guess(v(k, i), R|Σi).

According to Lemma 2, T is a set of partial belief states w.r.t. Ck. At step (c), S = ∅ and
lsolve is invoked several times according to the cardinality of T .

S =
⋃
{lsolve(S,R|Σk

) | S ∈ T }.

Thus, by Lemma 3, S is the set of partial belief states containing the partial equilibria of Ck.
At step (d), as we have In(k) = {i1, . . . , im}, then we have a case distinction over S:

• S = ∅: this implies that Ck is inconsistent, which in turn makes M inconsistent. The
control flow jumps to step (h), where S is stored in the cache. Afterwards, step (i) is
irrelevant as the projection of ∅ yields ∅. Thus, returning S as the result, which would
make Proposition 4 trivially holds.

• S 6= ∅: Thus, there is no inconsistency so far and we step inside the if condition. We
continue the proof w.r.t. this case.

At step (e), Qk = mineARules(S|V ) is computed. Then step (f) takes place, which yields
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T = Si1 ./ · · · ./ Sim

as a result of calling all DMCS-SLIM at Ci1 , . . . , Cim . Since every DMCS-SLIM at Ci1 , . . . , Cim
returns some of its partial equilibria w.r.t. Cij projected to V , we have every T ∈ T is a partial
equilibria w.r.t. Cij projected to V . At step (g) S=S ./ T . Thus, we have that S will simply
be filtered w.r.t. to the partial equilibria in T , as per the join operation (Definition 13). Thus,
as we have visited all the contexts from In(k), S contains the partial equilibria of M w.r.t. Ck.
At step (h), We store the value of S in the cache under the entry for cache(c,R). By Lemma 1,
every T ∈ T preserves applicability of the bridge rules. Thus at step (i), we eventually get that
S′ ∈ S|V , and that there exists a partial equilibrium S of M w.r.t. Ck such that S′ = S|V .

Proposition 5 For each partial equilibrium S ofM w.r.t.Ck, there exists an S′ ∈ Ck.DMCS-SLIM(0, ∅),
such that S′ = S|V .

Proof If this is not the first round of queries for Ck, then at step (a), the cache will have a hit
where we retrieve the stored value of S. Then, we jump to step (i), where for S′ ∈ S|V , there
exists a partial equilibrium S of M w.r.t. Ck such that S′ = S|V . For the remainder of the proof,
we assume it is the first time to query the system.

Let S be a partial equilibrium of M w.r.t. Ck such that S′ = S|V . We show that S′ ∈
Ck.DMCS-SLIM(0, ∅). Let Ck ∈ Bj be the root context for Bj . We a have case distinction on
In(k).

• In(k) = ∅: At step (b), T = ./i∈In(k) guess(v(k, i), R|Σi). As R = ∅ and In(k) = ∅,
then T = ∅. This means that Ck is a leaf node and does not have any neighbors at all. At
step (c), S should represent a superset for the partial equilibria of M w.r.t. Ck. However, as
In(k) = ∅, then brk = ∅, so S represents the set of all the partial equilibria of M w.r.t. Ck.
Thus, S =

⋃
{lsolve(T,R|Σi) | T ∈ T }. As R = ∅, we have S =

⋃
{lsolve(T, ∅) |

T ∈ T }. Let Ŝ ∈ S, thus Ŝ = (Ŝ1, . . . , Ŝk−1, Tk, Ŝk+1, . . . , Ŝn), such that Tk ∈ T,
where T := {T ∈ ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)}) | T |= R}. Thus,
T := ACCk(kbk)}). As a result, for each Ŝ ∈ S , Ŝ is a partial equilibria of M w.r.t. Ck.
As In(k) = ∅, then we jump to step(h) at step (d) as Ck is a leaf node. We store the value of
S in the cache under the entry for cache(0, ∅). Afterwards, at step (i), we just have to show
that for each S ∈ S , S′ = S|V . Since Ck ∈ Bj , V = {p ∈ v(k, j) | (k, j) ∈ E(Πk)}, and
brk = ∅. Thus, S is the set of partial equilibria for Ck that will be returned by the Ck as a
response to the initial call. As a result for each S ∈ S , we get that S′ = S|V , which means
that S′ ∈ Ck.DMCS-SLIM(0, ∅).

• In(k) = {i1, . . . , im} where m ≥ 1: At step (b), T = ./i∈In(k) guess(v(k, i), R|Σi),
which is the set of all interpretations for all the bridge rule atoms w.r.t. Ck. As R = ∅
and In(k) = {i1, . . . , im}, then T = ./i∈In(k) guess(v(k, i), ∅) = ./i∈In(k) 2(v(k,i)) |= ∅,
then T = ./i∈In(k) 2(v(k,i)). We continue the proof w.r.t. this case.

At step (c), S should represent a superset for the partial equilibria of M w.r.t. Ck. Thus, S =⋃
{lsolve(T,R|Σi) | T ∈ T }. As R = ∅, we have S =

⋃
{lsolve(T, ∅) | T ∈ T }. Let Ŝ ∈ S,
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thus Ŝ = (Ŝ1, . . . , Ŝk−1, Tk, Ŝk+1, . . . , Ŝn), such that Tk ∈ T, where T := {T ∈ ACCk(kbk ∪
{head(r) | r ∈ app(brk, Ŝ)}) | T |= R}. Thus, T := {T ∈ ACCk(kbk ∪ {head(r) | r ∈
app(brk, Ŝ)}) | T |= ∅}. Thus, T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, Ŝ)}). At this
point, for some Ŝ ∈ S , it is the case that Ŝ|V is a partial equilibrium of M w.r.t. Ck. At step (d),
as we have In(k) = {i1, . . . , im}, then we have a case distinction over S:

• S = ∅: this implies that Ck is inconsistent, which in turn makes M inconsistent. Thus,
Proposition 5 trivially holds.

• S 6= ∅: Thus, there is no inconsistency and we step inside the if condition. We continue
the proof w.r.t. this case.

At step (e), Qk = mineARules(S|V ), where by the mechanism association rule mining
(Definition 22), for all r ∈ Qk and for each Ŝ ∈ S, it is the case that for Ŝ = (Ŝ1, . . . , Ŝn),
Ŝi |= r. At step (f), since In(k) = {i1, . . . , im}, let the results collected from the neighbors be:

Si1 = Ci1 .DMCS-SLIM(k,Qk),
...

Sim = Cim .DMCS-SLIM(k,Qk).

where each Sij represents all the partial equilibrium for M w.r.t. Cj . Let S̄ be S restricted
to IC (j) where S̄ = (S̄1, . . . , S̄n) such that for each y ∈ IC (j), S̄y = Sy, otherwise S̄i = ε.
Towards a contradiction, assume that S̄ 6∈ Sij .

(i) From step (c), we already established that S represents a superset for all the possible partial
equilibria of M w.r.t. Ck, thus S̄ ∈ S. Since Qk = mineARules(S|V ), thus for each
Ŝ ∈ S, it is the case that for each r ∈ Qk, Ŝ |= r. As S is a partial equilibrium of M
w.r.t. Ck, then for each r ∈ Qk, S̄ |= r.

(ii) As each Cij .DMCS-SLIM(k,Qk) uses Qk|Σj at the lsolve and guess operations. Thus, for
each Sij ∈ Sij , it is the case that for each r ∈ Qk|Σj , Sij |= r. As S̄ 6∈ Sij , then there
exists r ∈ Qk|Σj such that S̄ 6|= r.

Since Qk|Σj ⊆ Qk, then from (i) we get that for each r ∈ Qk|Σj , S̄ |= r, which clearly
contradicts with (ii) where there exists r ∈ Qk|Σj such that S̄ 6|= r. Thus (i) and (ii) can not
both hold, contradiction. Therefore, S̄ ∈ Sij , and thus all the partial equilibria computed at any
neighbor Cij for Ck, which are partial equilibria for M w.r.t. Ck, are not pruned away.

At the end of step (f), the result from joinin all the partial belief states is

T = Si1 ./ · · · ./ Sim ,

where T represents all the partial equilibrium for M w.r.t. to all of Ck’s neighbors. At step (g),
the locally computed partial belief states are pruned with the aid of T , thus S ′′ = S ./ T . By the
join operation (Definition 13) and the generation of each Ŝ ∈ S (step (b) +(c)), no new partial
belief states can be generated. In fact it can only be the case that either S does not change or
is partially pruned. Thus, for each S

′′ ∈ S ′′ , it is the case that S
′′ ∈ S. Thus, S ′′ ⊆ S. At
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the next step (step (h)), we store the value of S in the cache under the entry for cache(0, ∅).
Afterwards, at step (i), for each S ∈ S ′′ , we have to show that S′ = S|V . Since Ck ∈ Bj and
V = {p ∈ v(k, j) | (k, j) ∈ E(Πk)}, we get by Lemma 1 that the applicability of bridge rules
in brk are preserved. Thus, S ′′ is the set of partial equilibria for Ck that will be returned by the
Ck as a response to the initial call. As a result for each S ∈ S ′′ , we get that S′ = S|V , which
means that S′ ∈ Ck.DMCS-SLIM(0, ∅).

3.6 Optimizations for Association Rules Mining

In the previous sections, we have presented a generic approach for distributed MCS evaluation
where local optimization is performed based on the concept of constraint pushing. Here, we
present some optimization strategies that offer more control over the association rule mining
operation.

3.6.1 Subsumption of Association Rules

Association rule miners work only on the syntactic level, thus it might be the case that the miner
produces association rules that provide the same information as other association rules during a
mining operation. The only difference between these rules is that one of them is more effective
and general than the other.

Definition 23 Let r1 and r2 be two association rules. Then r1 subsumes r2 iff H(r1) = H(r2)
and B(r1) ⊂ B(r2).

Thus in order to generate such prime implicants, we can utilize the following function.

Definition 24 Let R be a set of association rules. Then,

nonSubsumption(R) = {r ∈ R | there is no r′ ∈ R s.t. r′ subsumes r, and r 6= r′}

Example 22 Consider the MCS M from the running example (Example 6). During the associa-
tion rule extraction procedure at C1, the following rules are produced:

R =


¬peanuts3 ⇐
¬peanuts3 ⇐ ¬car1

¬peanuts3 ⇐ train1

¬peanuts3 ⇐ ¬car3

 .

Applying the subsumption property during extraction, leads to the following reduction:

R =
{
¬peanuts3 ⇐

}
.

In order to make DMCS-SLIM compatible with the subsumption checking strategy, simply
replace step (e) by Q = nonSubsumption(R ∪ mineARules(S|V∗(r))).

In theory, enforcing subsumption should improve the amount of association rules exchange
among contexts.
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3.6.2 Association Rules Size

Adjusting the size of the generated association rules offers a significant amount of control of the
extraction process. Of course, depending on the set of belief states under consideration, there is
an upper limit on the size of the association rules. Otherwise the extracted association rules will
start exhibiting the “bias” effect, i.e., they will contain information too much specific for current
context under consideration and thus they will not contribute to other contexts and just induce an
extra unnecessary overhead.

Formally, if r is an association rule, then |r| := |at(r)|.

Example 23 Consider the MCS M from the running example (Example 6). During the associa-
tion rule extraction procedure at C1, the following rules are produced:

• association rule size = 1 :

R =

{
¬peanuts3 ⇐
¬nuts1 ⇐

}
.

• association rule size = 2:

R =

{
train3 ⇐ train1

train2 ⇐ train1

}
.

• association rule size = 3:

R =

{
¬peanuts3 ⇐ ¬train1,¬nuts1

¬nuts1 ⇐ car1,¬train3

}
.

Definition 25 Let S be a set partial belief states. Let n be a natural number. Then,

mineARules(S, n) = {r ∈ mineARules(S) | |H(r) ∪B(r)| ≤ n}

In order to use DMCS-SLIM while adopting the upper threshold for association rules size
technique, simply replace mineARules(S|V∗(r))) by mineARules(S|V∗(r), n) and add an extra
input parameter n,to DMCS-SLIM where n represents the maximum allowed association rule
size.

The lower the size limit, the faster the extraction process. However, less information is pushed
forward.

43



3.6.3 Symmetric Association Rules

As the association rule extraction process does not involve any semantical aspects, and despite
the fact that the mining process produces unique association rules, it might be the case the the
information portrayed by some rules be duplicated.

Definition 26 Let r1 and r2 be association rules, such that r1 6= r2. Then, r1 and r2 are called
symmetrical (r1≡̂r2) iff:

¬.B(r1) ∪H(r1) = ¬.B(r2) ∪H(r2)

Example 24 Consider the MCS M from the running example (Example 6). During the associa-
tion rule extraction procedure at C2, the following rules are produced:

R =

{
¬coke3 ⇐ ¬car3

car3 ⇐ coke3

}
.

Note that these two rules are symmetrical and only one of them should be considered.

Definition 27 Let R be a set of association rules. Then,

nonSymmetric(R) = {r ∈ R | there is no r′ ∈ R s.t., r′≡̂r}

Thus given a set of association rules, one could remove all the symmetrical rules while
keeping one of them at random by filterSymmetric function.

Definition 28 Let R be a set of association rules. Then filterSymmetric(R) returns R′, such
that R′ ⊆ R is an asymmetric variant of R where:

• nonSymmetric(R′),

• R′ is maximal with respect to ⊆.

In order to enforce the usage of the symmetrical removal strategy with DMCS-SLIM, simply
replace step (e) by Q = filterSymmetric(R ∪ mineARules(S|V∗(r))).

If any two rules are symmetrical this means we are introducing redundancy. Although, no
erroneous evaluations are procured, it is still the case that one is introducing an overhead both at
the lsolve and inter-context transmissions levels.

3.7 Summary

In this chapter, we elaborated upon the motivation for establishing a new approach for distributed
equilibrium evaluation for nonmonotonic heterogeneous multi-context systems. We argued that
knowledge contained within each context is not utilized efficiently. One could extract information
from such knowledge in the form of constraints, and push them forward to other contexts with
the aim of pruning their search space for local evaluation.
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We discussed one of the possible ways to formally capture such information: association
rules. We have integrated the association rules extraction technique with the multi-context
system terminology. Afterwards, we presented our new approach to optimize local evaluation by
providing a distributed algorithm for equilibrium evaluation for MCS with constraint pushing.
We provided an extensive explanation of the algorithm as well as concrete examples to ease the
understanding. We proved the soundness and completeness of our approach.

Finally, we discussed some possible techniques that could improve the behavior of our
approach, by augmenting the mining module with additional properties and characteristics.
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Chapter 4

Implementation

In order to make the constraint pushing strategy to improve local evaluation for MCS prac-
tically available and to evaluate it empirically, we provide a prototypical implementation of
DMCS-SLIM.

In this chapter, we first approach the system architecture on a modular level, after that we
discuss how querying the system takes place. We also provide an example on how to invoke the
system on an existing MCS.

The idea for this distributed system was not created from scratch. In fact, Bairakdar et al.
[2010b] provided a prototypical implementation of DMCSOPT and DMCS approaches for dis-
tributed evaluation for MCS. The system was called DMCS system. We base our implementation
on that system, thus enhancing it with the constraint pushing capabilities.

DMCS is a SAT-based implementation of DMCS-SLIM, DMCSOPT and DMCS restricted
to ASP logics, it is written in C++ and utilizes several off-the-shelf components. The system is
available at

http://www.kr.tuwien.ac.at/research/systems/dmcs/.

4.1 System Architecture

The DMCS system is a sophisticated system, as it is a distributed system with the capabilities
of evaluating multi-context systems using different approaches (DMCS-SLIM, DMCSOPT and
DMCS). It is comprised of a number of modules.

In the sequel, we list all of the utilized modules within DMCS, and how they interact with
each other to yield the system architecture. Additionally, we present some of the implemented
optimization strategies that are relevant for DMCS-SLIM.

4.1.1 Modules

DMCS is a distributed system, and has a client-server architecture. It has the following modules:

• Association Rules Miner: This is a statistical data mining module, tasked with association
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rule extraction. Given a set of (partial) belief states, it transforms them into the transaction
format and extracts all the possible association rules that have a confidence level of 1.0, i.e.,
it is the implementation of Definition 22. Conceptually, different versions of association
rule miners can be utilized. Nonetheless, an off-the-shelf association rule extraction
algorithm (Hahsler et al. [2011, 2005] based on GNU R 2.11.1 by R Development Core
Team [2011]) is used in this module. It produces as an end result a set of association rules.

• DMCS: This is the core module for our implementation. Based on the desire of the user, it
handles the evaluation of the multi-context system as indicated in DMCS, DMCSOPT or
DMCS-SLIM. It adjusts the control flow, data flow, and modules interactions, accordingly.

• dmcsc: As this is a distributed system, a client/server architecture is essential. This
module is considered to be the front-end of the system. It handles the querying of the
multi-context system by the user.

• dmcsm: This module is responsible for optimizing the topological structure of the MCS.
Given the location of each context in the network, their local alphabet, and their bridge
rules, it builds up the topology of the system, applies optimization techniques and generates
a query plan for a specific root context. It employs the decomposition and optimization
techniques discussed in Bairakdar et al. [2010a]. In our implementation version, dmcsm is
not actually implemented, instead we utilize a file based version of the optimized topology.

• Loop Formula: This module is responsible for transforming the local knowledge base and
bridge rules within a certain context into a SAT theory, denoted by π(Ck) (Section 2.2.2).
It accepts the local knowledge base and bridge rules as input and produces the propositional
SAT theory in DIMACS CNF format (Gebser et al. [2007a]) to match the requirements of
the SAT solver.

• SAT Solver: Due to the restriction to ASP logics, this module is responsible for the
combined functions of the lsolve and guess sub-routines. Its main input parameter is a
propositional SAT theory in DIMACS format. If DMCS-SLIM evaluation technique is
chosen, it accepts as another input parameter a set of association rules, where the association
rules are reformatted into propositional SAT theory, and merged with the other parameter.
It employs an off-the-shelf SAT solver (Clasp 1.3.7 , Gebser et al. [2007b]) and returns all
the models in belief states format.

• Network Interface: This is a standard client-server module. It is responsible for redirecting
queries to their correct destination, whether it is client/server or server/server.

4.1.2 Module Interaction

The DMCS system architecture is outlined in Figure 4.1. It has the following main components:

(i) a front-end dmcsc for querying the multi-context system.
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(ii) daemons dmcsd, where each of them represents a context and interacts with the others.
Each daemon consists of several modules, namely Loop Formula, SAT Solver, Association
Rule Miner, DMCS, and Network Interface. Their interaction is illustrated in Figure 4.2.

(iii) a component dmcsm holding meta information about the MCS that has been collected from
each context, which is basically a configuration file.

Our choice of the association rule mining algorithm was the Apriori algorithm. This stems
mainly from the comparison performed on several association rule mining algorithms by Zheng
et al. [2001], which showed that the lead performance on the conducted comparisons was by
the Apriori algorithm given that synthetic data was utilized. Given that our benchmarking is
comprised of synthetic data as well, in addition to the free-source available implementations for
association rule extraction algorithms, we went ahead with aforementioned algorithm. Apriori
utilizes a breadth-first search strategy to count the support of itemsets.

4.1.3 Optimization Strategies

Several optimization strategies have been incorporated into the DMCS system, all of them are
related to the DMCS-SLIM technique.

• Association Rules Subsumption: Recall Definition 24, which only allows the extracted
association rules that are not subsumed by any other association rule to be passed along.
We augment the association rule miner with this additional property. However, it is only
activated upon user request.

• Association Rules Size: This property offers control over the size of the association rules
that are extracted in the association rules miner module, as described in Definition 25.
Similar to the subsumption checking property, the user has full control over using this
property.
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• Symmetrical Association Rules: By activating this property, any symmetrical rules that
convey the same information are eliminated as per Definition 28. As is the case with all
additional properties, the user has full control on its activation.

• Inconsistency Detection: In addition to the inconsistency check at step (d) in DMCS-SLIM
that occurs before querying the neighbors (if any), the execution halts automatically during
neighbor calls, if any of the neighbors returned an inconsistent result. The rationale
behind this optimization technique is as follows: if one of the neighbors for a certain
context is inconsistent, there is no need to call the other neighbors and waste time with
their computations, thus that context simply terminates its computation and flags the
inconsistency for its invoker (if detected).

4.2 Querying the System

Any query directed to the DMCS system must go through dmcsc, the client. Naturally, this
means that all the servers, dmcsd, must be up and running at that point. To this end, we explain
the process of system startup and query processing.

4.2.1 System Startup

Each dmcsd, which represents one context in the given multi-context system, has the following
set of parameters:

• --context represents the context id that the daemon is representing.

• --kb provides the context’s knowledge base in a file.

• --br provides the context’s bridge rules in a file.
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• --manager provides a file with the topological structure of the multi-context system. When
dmcsm is properly implemented, the parameter will refer to its location in the form of
HOST:PORT.

If the dmcsm module would have been available, then each dmcsd process registers at
the dmcsm, provides its own set of bridge rules, alphabet as well as its port and host name
(Figure 4.3) upon startup. With this information, the dmcsm component identifies the topology
of the system and gets ready to answer any question regarding this meta knowledge. As dmcsm
has not been implemented yet, this information is currently stored and accessed via file.

Upon initialization, each dmcsd utilizes the Loop Formula module to transform its local
knowledge base and bridge rules into a SAT theory denoted by π(Ck) in DIMACS format.
Simultaneously, it activates all modules that utilize off-the-shelf components to avoid any time
delay required for their startup. Then, it starts listening for incoming requests from other daemons,
or from queries of dmcsc.

4.2.2 Processing a Query

Whenever a user wants to query the system, dmcsc is to be used. There are several mandatory
parameters that the user has to provide in order for any query to be properly formulated.

• --context represents the root context that will handle the query.

• --manager provides a file with the topological structure of the multi-context system. When
dmcsm is properly implemented, the parameter will refer to its location in the form of
HOST:PORT.

• --technique provides the desired evaluation technique. There are only three permissible
options SLIM, OPT and STANDARD. If none is provided, the default is STANDARD.

In addition to the previous set of required input parameters, there are several other optional
parameters that the user can provide:
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• --query_variables provides a set of variables of interest to evaluate.

• --subsumption turns the subsumption checking property on. It takes effect only when the
chosen technique is SLIM.

• --symmetrical turns the symmetrical removal property on. It takes effect only when the
chosen technique is SLIM.

• --arules_size provides an upper limit on the size of the association rules to be extracted.
It takes effect only when the chosen technique is SLIM.

• --extra_arules provides an extra set of association rules to the root context to consider
and pass along. It takes effect only when the chosen technique is SLIM.

When the query posed by dmcsc reaches the dmcsd representing the starting context Ck,
the daemon will start its partial belief states computation depending on the chosen evaluation
technique. However, the gist behind all of the evaluation techniques is the computation of the local
partial belief states w.r.t. interface variables, followed by the projection of unwanted variables. If
Ck needs beliefs from neighboring contexts, it sends each neighbor a request and awaits their
belief states, which will be consistently combined with the local beliefs of Ck. Essentially, those
requests look just as queries sent from dmcsc, and every dmcsd will process them in a uniform
manner. After all neighbors have been addressed, Ck returns the partial equilibria to the client,
who presents them to the user.

For a concrete usage scenario of DMCS, we consider our running example.

Example 25 Invoking DMCS on M = (C1, . . . , C6) from Example 6 yields the following set
up Figure 4.4. We start by initializing all the daemons.
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$ dmcsd --context=1 --kb=C1.kb --br=C1.br --manager=scientists.topology
$ dmcsd --context=2 --kb=C2.kb --br=C2.br --manager=scientists.topology
$ dmcsd --context=3 --kb=C3.kb --br=C3.br --manager=scientists.topology
$ dmcsd --context=4 --kb=C4.kb --br=C4.br --manager=scientists.topology
$ dmcsd --context=5 --kb=C5.kb --br=C5.br --manager=scientists.topology
$ dmcsd --context=6 --kb=C6.kb --br=C6.br --manager=scientists.topology

To compute the partial equilibria of M w.r.t. context C1, we initiate a query via dmcsc. We
want to find the total number of equilibria using the DMCS-SLIM approach. Additionally, we
want to use the checking for subsumption property, the symmetrical removal property and we
want to limit the size of the computes association rules to 3. Thus, we issue the follow query:

$ dmcsc --context=1 --manager=scientists.topology --technique=SLIM
--subsumption=ON --symmetrical=ON --arules_size=3

After dmcsd at C1 finishes computation of the query, it delivers the result back to dmcsc.
A list of the partial equilibria is then enumerated to the user:

( {train1,train2,train3,train4}, {car1,car3,car4} )
Total Number of Equilibria: 2
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Chapter 5

Evaluation

In the previous chapters, we provided a new approach for distributed equilibrium computation for
heterogeneous nonmonotonic multi-context systems. In this chapter, we evaluate DMCS-SLIM
by empirically evaluating the experimental results. We consider DMCS-SLIM with respect to
different runtime parameters, and compare it to the other mentioned distributed algorithms,
namely DMCSOPT and DMCS.

In the sequel, we start by describing the setup of the system and then we provide the details
of the experiments. Afterwards, we interpret the experimental results and finally present a brief
summary of our findings.

5.1 System Setup

Establishing a non-biased benchmark that captures the provides a neutral point of view for
understanding the strengths and weaknesses of one’s approach is a tricky subject. To this end, we
present several setups that we utilized in evaluating our approach.

In this section, we discuss the structure of the knowledge bases and bridge rules for each
context. Afterwards, we illustrate the utilized query plans. Finally, we recall the technical aspects
of our benchmark host.

5.1.1 Intra-Contexts

Given an MCS M = (C1, . . . , Cn), Definition 7 states that each context is characterized by three
components, Ci = (Li, kbi, bri). Restricting each Li to ASP Logic, leaves two components as
parameters.

We utilize the parameter setting (n, s, b, r, p), which specifies

(i) the number n of contexts,

(ii) the local alphabet size |Σi| = s, where each Ci has a random ASP program on s atoms
with 2k answer sets, 0 ≤ k ≤ s/2. Let ai, bi and ci ∈ Σi, then the schema for each ASP
program is: ai ← not bi, and there is a 50% chance of having bi ← not ai or bi ← not ci.
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(iii) the maximum interface size b (number of atoms exported), and

(iv) the maximum number r of bridge rules per context, each having at most 2 body literals,

(v) p ∈ [0, 1] is the probability of adding random constraints to the random ASP program. Each
constraint can contain up to two literals.

5.1.2 Topologies

The topological representation of any MCS is an interesting factor for equilibrium evaluation via
the query plan. Consequently, we consider the same topologies used in Dao-Tran et al. [2010],
Bairakdar et al. [2010a], and introduce a new one. We present the structure of the topology as
well as a discussion of its optimization strategies:

• Diamond, D: A diamond topology is represented in 5.1a. A stack of diamonds is a
combination of multiple diamonds in a row, in other words, stacking m diamonds in a
tower of 3m+ 1 contexts. Applying the decomposition techniques, we notice that we can
not remove any edges, as the topologies are equal to their transitive reductions. However,
the import interface at each sub-diamond is refined as every fourth context is a cut vertex,
thus the partial belief states eventually returned by the root context just contain entries for
the first four contexts.

• Zig-Zag, Z: A zig-zag diamond is an ordinary diamond with a connection between the two
middle contexts, as depicted in Figure 5.1b. Similarly to diamond, a stack of diamonds is a
combination of multiple diamonds in a row. The block optimization techniques remove two
edges per block to obtain the transitive reduction and update the recursive import interface
accordingly.

• Ring, R: A ring topology is a cyclic topology that contains only one cycle as depicted in
Figure 5.1c. Applying the decomposition techniques, we realize in the query plan that we
only removed the last edge closing the cycle to context C1. As the resulting topology is a
spanning tree, the refinement of the import interface is restricted to neighboring contexts
including the import interface of the removed edge.

• Binary Tree, B: Binary trees grow balanced, i.e., every level is complete except for the last
level, which grows from the left-most context (Figure 5.2a). Similar to the diamond, no
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edges are removed in the query plan generation. However, the refinement of the import
interface is more drastic, as every non-leaf context is a cut vertex, and the import interfaces
are restricted to those between two neighboring contexts.

• House, H: A house consists of 5 nodes with 6 edges. The ridge context has directed edges
to the two middle contexts which form, with the two base contexts, a cycle with 4 edges
(Figure 5.2b). House stacks are subsequently built up by using the basement nodes as ridges
for the next houses (thus, m houses have 4m+ 1 contexts). Applying the decomposition
techniques, one notices that house stacks have a triangle as a roof and a ring as walls,
thus two connections are pruned which results in chains of contexts. As the two basement
contexts are cut vertices, the final belief states contain only belief sets for the 5 contexts in
the top-most house.

• Mongolian Tent, M : Let Pm and Pn be two path graphs. Formally, a mongolian tent graph
is defined as the graph obtained from the graph Cartesian product Pm × Pn for an odd n
by adding an extra vertex above the graph and joining every other vertex of the top row
to the additional vertex. We increase the cyclicity of the graph by enforcing the edges
directionality, where each 4 contexts located at the intersection of rows i and i+ 1 with
columns j and j + 1 form a cycle, as depicted in Figure 5.2c. Applying the decomposition
techniques, one notices that the monogolian tent is comprised of one block only. Thus,
there exists no cut vertices. Transitive reduction and cycle breaking techniques leads to the
removal of all the edges from the root context except the first one, as well as the removal of
at least one edge per each 4 contexts (2 contexts lie consecutively on the same row and their
counter parts on the next row). The resulting graph is an unbalanced binary tree, where the
recursive import interface is updated accordingly.

5.1.3 Experimental Setup

Our evaluation is based on the C++ implementation of DMCS system described in Chapter 4.
The host system was using an Intel Xeon 3.00GHz quad-core processor with 16GB RAM and
running Ubuntu 10.10 as the operating system.

As for the off-the-shelf solvers we used:
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• SAT solver: We used clasp 1.3.7 as a SAT solver, Gebser et al. [2007a].

• association rule miner: We used the association rule extraction algorithm Hahsler et al.
[2011, 2005] based on GNU R by R Development Core Team [2011], version 2.11.1
(2010-5-31), available at

http://r-forge.r-project.org/projects/arules/.

Additionally, we set a timeout for the running processes to 200 seconds and 1000 MB as a
memory-limit.

The randomly generated test instances were based on the following set of parameters
(n, s, b, r, p), where n, s, b, r, p have the same functionality as described in Section 5.1.1.

DMCS-SLIM was evaluated using the standard algorithm as well as some of the additional
properties introduced in Section 3.6, namely subsumption, association rules size and removing
symmetrical association rules.

5.2 Experiments

We ran an exhaustive set of benchmarks under the experimental setup described in Section 5.1.
Based on some initial testing while varying all the experimental parameters, we decided that for
the parameter tuple P = (n, s, b, r, p), we vary the following variables accordingly:

• n was chosen based on the topology, T , under consideration. As T ∈ {D,Z,R,B,H,M},
then for:

– D: n ∈ {10, 13, 25}.
– Z: n ∈ {10, 13, 49}.
– R: n ∈ {10, 13, 50}.
– T : n ∈ {20, 35, 50}.
– H: n ∈ {9, 13, 41}.
– M : n ∈ {7, 10, 16}.

• we fixed the variables for s, b, r to either 7, 3, 3 or 10, 5, 5, respectively.

• p was either 0 or 0.2. This is because it was noticed that increasing the value for p greatly
increases the chance of inconsistency even for relatively small systems.

Thus, for each topology there were a total of 12 different possible parameter settings. For
each setting, we created 10 random test instances, where the distributed algorithms were invoked
on each set for empirical data evaluation. In total we ran over 700 experiments.

Based on preliminary results from initial testing, we restricted the investigation of DMCS-SLIM
to the size of the association rules and the subsumption property. Thus DMCS-SLIMa,subs denotes
invoking DMCS-SLIM while limiting the size of the association rules to a and only applying
subsumption subs was available.
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• DMCS-SLIM1: DMCS-SLIM is used while fixing the size of extracted association rules
to 1, and without using the subsumption property. Note that activating the subsumption
property while restricting the size of the association rules to 1 is redundant, as no fact
subsumes another fact.

• DMCS-SLIM2: DMCS-SLIM is invoked while fixing the size of extracted association rules
to 2, and without using the subsumption property.

• DMCS-SLIM2,subs : With this setting, DMCS-SLIM is using the subsumption property in
addition to limiting the size of extracted association rules to 2.

• DMCS-SLIM3: DMCS-SLIM extracts association rules with a maximum size of 3 under
this setting. It does not utilize the subsumption property.

• DMCS-SLIM3,subs : DMCS-SLIM is invoked while fixing the size of extracted association
rules to 3, and it uses the subsumption property as well.

Additionally, we decided to remove the association rules symmetrical removal property from
the investigation as its affect on the performance was negligible. This could be attributed to the
nature of the randomly generated knowledge base and bridge rules as well as the implementation
details of this property.

In the sequel, we report our observations on the gathered data. We present a sample of
gathered statistical data in a tabular format in the next section.

5.3 Observations and Interpretations

Evaluating the results collected from the benchmarking, led to the conclusion that there are
several issues that should be investigated in depth.

A sample of the experimental results are displayed in Tables 5.1 and 5.2. The results are
data set from the parameter setting P = (n, 10, 5, 5, 0). Each subtable X ∈ {R,B,D,Z,H,M}
shows runs with one of the predetermined number of contexts and corresponds to a benchmark
topology from Section 5.1.2. Each row displays the average total running over ten generated
instances, Σ, for one of the different runtime parameters of DMCS-SLIM or DMCSOPT. For
each context in the instances the column x, for x ∈ {φ, φ#, ./,↔, F, F#, E,E#, S, S#} shows
the average over the

• total time spent in the SAT solver (φ),

• total number of partial belief states computed at the SAT solver (φ#),

• total time needed to join the belief states (./),

• total time used to transfer the belief states between the contexts (↔),

• total time spent for association rules filtration (F ),

• total number of context specific association rules (F#),
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• total time spent for association rule extraction (E),

• total number of extracted association rules (E#),

• total time spent for checking the association rules for subsumption (S), and

• total number association rules that have been removed due to the subsumption property
(S#).

The # columns show the median of numbers of projected partial equilibria computed at C1,
which is initiated by querying C1 with a fixed query plan Π1. Entries in parenthesis (σ) show the
standard deviation of Σ and #. Note that only the first four columns and the last two columns are
relevant to DMCSOPT.

In the sequel, we evaluate DMCS-SLIM against itself, to check the effect of certain properties.
Afterwards, we compare the DMCS-SLIM runtime parameter that yielded the best performance
against the other distributed approaches; namely DMCSOPT and DMCS.

5.3.1 Subsumption

Theoretically, the enforcement of the subsumption property for the association rules at each
context should dramatically decrease the number of extracted association rules. In fact, this
was exactly the case as evident in Figure 5.3. One notices that the reduction of the number of
extracted association rules is always apparent, regardless of the topology under consideration.
When DMCS-SLIM checks that all the extracted rules satisfy the subsumption property, this
reduces the number of available association rules for inter-context transmission by at least 50%
and up to 95% in some cases.

Utilizing such property involves some costs, as depicted in Figure 5.4. One can see that
the overall time required to discover the partial equilibria of the system increases whenever the
subsumption check is enforced. The temporal increase can range from just 5% up to 25% w.r.t.
the extraction time. On the other hand, not utilizing the subsumption check increases the time
required for association rules filtration about 2% as well as the transfer time between contexts.

Thus, one may infer that given a proper network setup, one can ignore the need to enforce
the subsumption property among the extracted association rules. Otherwise, if it is the case that
network resources are scarce and expensive, it pays off to enforce the subsumption check.

5.3.2 Limiting the Size of Association Rules

During the mining process, increasing the threshold imposed on the maximum size of association
rules to be extracted increases their number exponentially, as depicted in Figure 5.5.

It is only natural that the higher the number of available association rules, the more information
is available at each context. Thus, the higher the probability to improve the local solving at each
context with respect to the number of locally computed belief states. Figure 5.6, shows that the
number of belief states computed at the SAT solver decreases when the threshold for the size
of association rules increases. However, the improvement is sensibly visible in case of going
from size 1 to 2, and it reaches an average of up to 5%. According to the benchmarking, any

62



 10

 100

 1000

 10000

H D R M

N
u

m
b

e
r 

o
f 

e
x
tr

a
c
te

d
 a

s
s
o

c
ia

ti
o

n
 r

u
le

s
 (

lo
g

s
c
a

le
)

P=(13,10,5,5,0.2) P=(13,10,5,5,0.2) P=(13,7,3,3,0) P=(7,10,5,5,0)

a = 3

a = 2

a = 2

a = 2

with subsumption without subsumption

Figure 5.3: Number of extracted association rules at DMCS-SLIM with and without subsumption

association rule size bigger than two does not yield any significant improvement for the local
solving process. In theory, a fixed point is reached with respect to the improvement in local
solving versus the number of extracted association rules. This is a direct result of the fact that the
bigger the rules get, the more specific they become as they will only represent the context that
they were extracted from and will not contribute any information to others. Given the structure of
our knowledge bases and bridge rules, the optimum was reached at size two.

The overhead incurred from increasing the size limit for the extracted association rules is
depicted in Figure 5.7. The increase in the extraction time can reach up to 25% for association
rules with size 3 w.r.t. those of size 1. However, the extra time for size 2 is only up to 5% w.r.t.
size 1.

Given the experiments performed on the limit on the size of association rules that will be
extracted, one may infer that the optimum size of the upper threshold is 2 literals per rule, as
it does not vary much with respect to needed time when compared to size 1. Additionally, it is
almost always the case that the optimum regarding improvement in the local solving is reached
when the size is set to 2.
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Figure 5.4: Total evaluation time for DMCS-SLIM with and without subsumption
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Figure 5.5: Number of extracted association rules at DMCS-SLIM for different sizes
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 0

 1

 2

 3

 4

 5

 6

H Z R D

e
v
a

lu
a

ti
o

n
 t

im
e

 /
 s

e
c
s
 

P=(13,7,3,3,0) P=(13,7,3,3,0.2) P=(13,10,5,5,0.2) P=(13,10,5,5,0.2)

A

B
C

A
B

C

A B
C

A B

C

A : size = 1 B : size = 2 C : size = 3

subs

subs

Extraction 
Subsumption 

Filtration 

lsolve 
Combine 
Transfer 

Other 
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Figure 5.8: Cyclic topologies after decomposition

5.3.3 Effects of MCS Topology

It has been well established that the topological structure of the multi-context system greatly
influences the evaluation algorithm. Recall that DMCS-SLIM operates on a query plan that is
generated after applying some decomposition techniques that break cycles, apply decomposition
techniques and update the interface variables.

Recall that parameter p controls the probability of adding random constraints to the knowledge
base. In theory, these extra constraints reduce the number of equilibria for the multi-context
system as they automatically force certain values for some literals.

We noticed during the experimentation that when p = 0, the improvement with respect to
the number of locally computed belief states is always present in case of cyclic topologies and
almost non-existent in the rest. However, in case of p = 0.2, the pruning of the local search space
is visible for all topologies.

There are only three topologies in our benchmark that contain any kind of cycle. The fixed
query plans generated for these topologies are depicted in Figure 5.8.

Consider the case where p = 0 and the ring topology Rn, where the fixed query plan is
illustrated in Figure 5.8a. As a result of the applied decomposition techniques, the cycle has
been broken and the last edge has been removed; namely between Cn and C1. Consequently, the
interface variables for all the other contexts have been updated to compensate for the removed
edge. Consider applying DMCS-SLIM to such multi-context system. Then at each context, except
the last, the process of extracting the association rules takes place. Given the randomness nature
of our knowledge base and bridge rules, at Ci, the generated association rules will most likely
provide information regarding Ci itself and no information for Ci+1 at all. However, in case of
C1, the extracted association rules contain information that will be utilized by Cn, as Cn had
originally an edge connecting to C1.

This behavior is also apparent in the house topology, specifically at C5 (Figure 5.8b) and
in the mongolian tent topology at C4 and C5 Figure (5.8c). The sample results presented in
Tables 5.1 and 5.2 show that in case of diamond, zig-zag diamond or tree topology, there was no
improvement over the number of extracted association rules during the local solving. However,
in very rare cases which are also attributed to the randomness of the knowledge bases and bridge
rules, it was the case that acyclic topologies exhibited an improvement in the local solving during
evaluation with DMCS-SLIM.

On the other hand, when p = 0.2, the randomly added constraints affect the results of the
local solving regardless of the adopted topological structure.
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Figure 5.9: Number of extracted association rules DMCSOPT vs. DMCS-SLIM2

5.3.4 DMCSOPT vs. DMCS-SLIM

Up to this point, we have investigated the behavior of DMCS-SLIM under different conditions.
In the sequel, we compare the behavior of DMCS-SLIM with respect to DMCSOPT. We refrain
from providing a full comparison between DMCS and DMCS-SLIM as initial tests revealed that
DMCS-SLIM is on a different level than DMCS with respect to scalability and that it should be
compared by its direct predecessor as they share a common ground, namely the decomposition
techniques that yield the query plan.

In our comparison we utilized DMCS-SLIM2, as we have already established that the best
performance for DMCS-SLIM was achieved while enforcing that the upper limit for the size of the
association rule to be extracted was 2. Additionally, we ignore the subsumption checking property
as the benchmarking was performed on one machine so the networking overhead incurred from
the extra association rules transmission is insignificant compared to the amount of time invested
in enforcing the subsumption property.

Recall, the connection that we established in Section 5.3.3 between the parameter p for the
test instances and the topology based improvement. We adhere to the same case distinction during
this comparison.

For p = 0, a graphical representation of the number of belief states computed at local solving
with DMCS-SLIM2 and DMCSOPT is displayed in Figure 5.9. We observed through all of our
benchmark results that DMCS-SLIM2 achieved a reduction rate on the search space up to 20%
when compared to DMCSOPT w.r.t. the results of the SAT solver utilizing cyclic topologies. For
acyclic topologies, it was also the case that there were no improvements at all, as the number of
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Figure 5.10: Number of extracted association rules DMCSOPT vs. DMCS-SLIM2 cont.

computed belief states stayed the same. Additionally, there were some cases where the acyclic
topologies showed a search space reduction of 2%, which can be attributed to the randomness
nature of the intra-context data generation.

On the other hand, for p = 0.2, DMCS-SLIM2 showed an improvement over DMCSOPT
for all the topologies, a graphical comparison is depicted in Figure 5.10. The search space
reduction rate on the number of computed belief states reached 40% with DMCS-SLIM2 compared
to DMCSOPT. We also observed that the introduction of random constraints might lead to
inconsistent multi-context systems. In fact, with relatively high number of contexts, ≥ 40, it is
almost guaranteed that the randomly generated multi-context system will be inconsistent. Similar
to p = 0, it was some times the case that a very small reduction is apparent which only reached
the neighborhood of 3%; even though this was rare.

Unfortunately, the overhead induced by DMCS-SLIM2 is relatively high compared to DMCSOPT
as shown in Figure 5.11. The total time utilized by both systems is presented as one bar in a
histogram where each colored block represents a certain part the DMCS system. One can easily
spot that the bottleneck is the extraction time. As the time block entails, the extraction time
represents the amount of time invested by the DMCS system in the association rule extraction
process.

In attempt to improve the total time needed to evaluate the system with DMCS-SLIM, we
proceeded by testing the external off-the-shelf association rule miner separately. We found
a relatively efficient implementation of an association rule miner by Borgelt [2003]. Initial
comparison with the GNU R association rule extraction library proved that the implementation of
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GNU R is not efficient. Thus, the extra time spent extracting the association rules by DMCS-SLIM
could greatly be reduced, if a different library is used. Unfortunately, due to the thesis time
constraints, running the experiments with any other libraries was not possible.

5.4 Summary

In this chapter, we attempted to evaluate our implementation of DMCS-SLIM against the other dis-
tributed algorithms; namely DMCSOPT and DMCS. In order to achieve that goal, we performed
a considerable number of experiments on DMCS-SLIM.

We explained the system setup used in the benchmarking process with respect to the inner
structure of the contexts, the topological representation of the system, and the actual experimental
setup utilized (hardware and software). Afterwards, we explained the test instances parameters,
the randomly generated test instances and the chosen DMCS-SLIM variations.

Comparing several versions of DMCS-SLIM together, as well as DMCS-SLIM with DMCSOPT
yielded the following results:

• The effect of removing symmetrical rules is negligible.

• Checking for subsumption is only effective in case of very expensive transmission costs.
Otherwise, it can be ignored on the expense of the time needed for filtration.

• The optimum upper limit for the size of association rules is 2.
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• The effect of DMCS-SLIM is always visible in cyclic topologies.

• Acyclic topologies are not a good candidate for DMCS-SLIM unless random constraints
exist in the knowledge base.

• For inconsistent systems, the local solving overhead is greatly reduced with respect to time
and computed results.

• Given an efficient implementation of an association rule miner, DMCS-SLIM might match
up against DMCSOPT.
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Chapter 6

Conclusion

Multi-context systems emerged as a unifying formalism for integrating knowledge and informa-
tion for independent units of reasoning. The framework of Brewka and Eiter [2007] was one
of the generalizing approaches that allowed for heterogeneous and nonmonotonic multi-context
systems. Our work falls under this framework.

Their initial approach was to encode the MCS M as whole into a HEX-program PM , where
the answer sets correspond to the equilibria ofM . Afterwards, distributed approaches emerged, of
which the first was DMCS. Despite of its innovative approach to compute the MCS equilibrium,
it has scalability issues. DMCSOPT improved it, as it reduced the transmission data between
contexts and pruned the context dependencies. However, all of the distributed approaches failed
to address local optimization.

We developed DMCS-SLIM which is an extension of DMCSOPT as it relies on its decompo-
sition techniques with respect to the topological structure of the multi-context system. The goal
behind this development was to optimize local solving at each context using constraint pushing,
which gathers information at one context and passes it along to the next context in order to prune
its local solving search space. Our approach fulfilled its main objective by utilizing the notion of
association rules to represent constraints.

We provided a formal adaptation for association rules with respect to the chosen framework of
multi-context systems. Additionally, we presented a customized approach to handle association
rules extraction where their soundness is guaranteed. We proved DMCS-SLIM to be sound and
complete.

In order to evaluate our system empirically, we provided a prototypical implementation
for DMCS-SLIM that was based on the existing DMCS system. We performed exhaustive
experiments on several instantiations of DMCS-SLIM, as well as comparing it with DMCS and
DMCSOPT.

After interpreting the data gathered from the experimental results, we came to several
conclusions. The best version, or rather runtime parameter for DMCS-SLIM, would be the
one that includes subsumption checking if the costs for network transmissions are very high. As
the optimum size for the extracted association rules is 2, one can set it as an upper limit during
the extraction process. The topology of the multi-context system is a very important factor, as
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DMCS-SLIM indeed demonstrates its potential in case of cyclic topologies. Finally, one can
say that given an efficient implementation of an association rules miner, DMCS-SLIM has the
potential to surpass DMCSOPT.

Future Work

There are several open issues with regards to the theory behind DMCS-SLIM. One could try
to improve the association rules extraction process by utilizing disjunctive association rules as
described in Nanavati et al. [2001], as they already include the concept of subsumption. Another
issue would be querying the neighbors of a certain context in parallel instead of the current
sequential approach.

It would be interesting to discover sub-classes of multi-context systems where it is always
guaranteed that DMCS-SLIM would have the upper hand compared to DMCSOPT.

With regards to system implementation and benchmarking, there is a huge room for im-
provement. A proper research on fast association rule miner should be performed, where proper
benchmark experimentation should be carried on to assess the possibility of DMCS-SLIM exceed-
ing DMCSOPT and by which margin (if any). Additionally, one could investigate the effect of
extracting association rules using other association rules extraction algorithms, such as Partition
algorithm by Savasere et al. [1995] or Eclat by Zaki [2000].

Another interesting issue to explore would be evaluating the system using a setup that is
based on multiple machines. Thus, one can simulate a real network that acquires and analyzes
realistic information with regards to data transfer and transmission costs.

A different approach could be to provide an encoding for our association rules mining process
as an ASP program using the approach by Järvisalo [2011], thus enumerating all the answer sets,
which could be considered as another form of association rules.
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Appendix A

Full trace of scientists example
using DMCS-SLIM

In this thesis, we utilized a running example, where the word problem is stated in Example 5, a
formulation using ASP logics is presented in Example 6, and it is depicted graphically in Figure
2.3.

In this appendix, we present a full trace of the running example, using our new approach for
distributed evaluation for nonmonotonic heterogeneous multi-context systems, DMCS-SLIM. We
provide the trace using the subsumption check (Definition 24), and setting the limit for association
rule extraction to 4 (Definition 25).

In the sequel, to track variables easier, we augment all the variables with indices illustrating
the invoker and the current context under consideration. Thus, S12 means the set of partial belief
states in C2 where the invoker was C1. Similarly, R01 is the set of association rules in C1 where
the invoker was the user, i.e. C1 is the root context.

The full trace of Example 6 using DMCS-SLIM is provided in Table A.1. We will only
comment on some of the trace steps, as most of them are straight forward application of the
algorithm:

• (b) at C1: recall that the value for any v(k, i) is the updated recursive import interface. This
is the reason why v(1, 2) contains car4 and train4, although there is no direct connection
between C1 and C4.

• (c) at C1: at this stage, as there are no applicable association rules, the set of computed
partial belief states is the same as if we have used DMCSOPT. If the invoker, or rather the
user have provided extra set of constraints during the initial call, then this stage might have
been changed.

• (e) at C1: upon reviewing the set of all the extracted association rules. We assert that
the generated rules are of different sizes. The only fact that we have seen so far is:
(¬peanuts3 ⇐), this means that whenever a context is encountered with peanuts3 as part
of its alphabet, then it must be the case that the value assigned to this variable is false.
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• (b) at C2: we have a non-empty set of association rules, R12. Applying the applicability
relation to this set with respect to C3, we get a set of one rule only, where it prunes away
half of the set of the partial belief state that were normally going to be computed. As a
result, all the generated partial belief states have the value of peanuts3 as false, and never
as true.

• (c) at C2: application of lsolve without considering the set of applicable association rule
would have lead to doubling the size of the set of partial belief states (22 instead of 11).
This is because belief sets with the value of peanuts3 as true would have been considered.

• (e) at C2: mining at this context leads to the generation of some association rules that are
already passed on from the invoker. However, this does not constitute a problem as the ∪
function eliminates duplicates.

• (c) at C3: the size of S23 is 5, which have been reduced from 34 in case of DMCSOPT.

• (c) at C4: at this context, the applicable association rules have no effect on the resulting
set of partial belief states. This is because of the structure of kb4 and br4. In any case,
one can notice that the applicable rules: train4 ⇐ ¬car4 and car4 ⇐ ¬train4 are in fact
symmetrical rules (Section 28).

• (c) at C5: the size of S45 is 2, which would have been doubled in case of running
DMCSOPT.

• (d) at C5: this is a leaf context, so there is no need to mine for any association rules, thus
the direct jump to the cache storing step.

• (i) at C5: DMCS-SLIM returns from C5 with only 2 possible partial belief states which are
in equilibrium. In case of DMCSOPT, it would have been 4.

• (i) at C4: As the applicable association rules had no effect on S34, the size of the return set
does not change.

• (c) at C6: no optimization occurs in case of S36 as there are no applicable association rules.

• (i) at C6: The size of the return set is the same in either DMCS-SLIM or DMCSOPT as
S36 is the same.

• (i) at C3: the size of the return set is dramatically decreased at C3 from 9 partial belief
states to a mere 2.

• (i) at C2: one of the ramifications induced by the reduction on C3’s partial equilibria appear
here, where C2 returns only 2 partial belief states instead of 3.

• (i) at C1: it is only natural that the result of C1 does not show any improvement at all
with respect to the number of equilibria. This is a direct consequence of the fact that both
DMCSOPT and DMCS-SLIM rely on the same query plan,Π1, that was generated by the
same optimization technique.
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Table A.1: Full trace for the running example (Example 6) by DMCS-SLIM

Execution step Trace Comments
(a) at C1 cache(1, ∅) is empty Initial Call: C1.DMCS-SLIM(0, ∅)
(b) at C1 T01 := {(ε, ε, ε, ε, ε, ε)}

T01 is the standard binary
truth table for all the 5
variables from
v(1, 2) ∪ v(1, 3) in partial
belief state format, total size
is 32

In(1) := {2, 3}
v(1, 2) := {train2, car3, train3,
peanuts3, coke3, car4,
train4}
v(1, 3) := {train3, peanuts3,
car3, coke3}
R01|2 := ∅
R01|3 := ∅
after loop:
T01 := omitted for triviality

(c) at C1 S01 := ∅
R01|1 := ∅
after loop:
S01 = {({car1}, ε, ε, ε, ε, ε)
({car1}, ε, {train3}, ε, ε, ε)
({car1}, ε, {train3, coke3}, ε, ε, ε)
({car1}, ε, {train3, car3}, ε, ε, ε)
({car1}, ε, {train3, coke3, car3}, ε, ε, ε)
({car1}, ε, {coke3}, ε, ε, ε)
({car1}, ε, {car3}, ε, ε, ε)
({car1}, ε, {coke3, car3}, ε, ε, ε)
({car1}, {train2}, ε, ε, ε, ε)
({train1}, {train2}, {train3}, ε, ε, ε)
({train1}, {train2}, {train3, coke3}, ε, ε, ε)
({train1}, {train2}, {train3, car3}, ε, ε, ε)
({train1}, {train2}, {train3, coke3, car3}, ε, ε, ε)
({car1}, {train2}, {coke3}, ε, ε, ε)
({car1}, {train2}, {car3}, ε, ε, ε)
({car1}, {train2}, {coke3, car3}, ε, ε, ε)}

(d) at C1 S01 6= ∅ ∧ ∃(1, i) ∈ E(Π1)

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments
(e) at C1 R01 = ∅

V∗(1) =
{train2, car3, train3,
peanuts3, coke3, car4,
train4, sooner5, sick6}, is
constant throughout the run

Q01 := R01 ∪ {¬peanuts3 ⇐
¬nuts1 ⇐
train1 ⇐ ¬car1

¬car1 ⇐ train1

train2 ⇐ ¬car1

train3 ⇐ ¬car1

train2 ⇐ train1

train3 ⇐ train1

¬train1 ⇐ ¬train2

car1 ⇐ ¬train2

¬train1 ⇐ ¬train3

car1 ⇐ ¬train3

car1 ⇐ ¬train1

¬train1 ⇐ car1

¬car1 ⇐ train2, train3

train1 ⇐ train2, train3

¬train3 ⇐ ¬train1, train2

¬train3 ⇐ car1, train2

¬train2 ⇐ ¬train2, train3

¬train2 ⇐ car1, train3}
(f) at C1 T01 := {(ε, ε, ε, ε, ε, ε)} According to the query plan

Π1, there is only one
neighbor C2

E(Π1)|1 := {(1, 2)}
In Loop:
for (1, 2): invoke C2.DMCS-SLIM(1, Q01)

(a) at C2 cache(2, R12) is empty R12 is Q01

(b) at C2 T12 := {(ε, ε, ε, ε, ε, ε)} cT12 standard binary truth
table for all the 5 variables
from v(1, 2) ∪ v(1, 3)−
{peanuts3} in partial belief
state format, total size is 32.
The variable peanuts3 is
only considered with
negative values as instructed
by the applicable rules

In(2) := {3, 4}
v(2, 3) := {car3, train3, coke3,
peanuts3, car4, train4}
v(2, 4) := {car4, train4}
R12|3 := {lnotpeanuts3 ⇐}
R12|4 := ∅
after loop:
T12 := omitted for triviality

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments
(c) at C2 S12 := ∅ R12|2 should prune the

search space for lsolve at C2R12|2 := {{¬peanuts3} ⇐ {}}
after loop:
S12 = {(ε, {train2}, {train3}, {car4, train4}, ε, ε)
(ε, {train2}, {train3}, {train4}, ε, ε)
(ε, {car2}, {car3}, {car4, train4}, ε, ε)
(ε, {car2}, {car3}, {car4}, ε, ε)
(ε, {car2}, {car3, coke3}, {car4, train4}, ε, ε)
(ε, {car2}, {car3, coke3}, {car4}, ε, ε)
(ε, {car2, train2}, {car3, train3}, {car4, train4}, ε, ε)
(ε, {train2}, {car3, train3}, {train4}, ε, ε)
(ε, {car2}, {car3, train3}, {car4}, ε, ε)
(ε, {car2}, {car3, train3, coke3}, {car4, train4}, ε, ε)
(ε, {car2}, {car3, train3, coke3}, {car4}, ε, ε)}

(d) at C2 S12 6= ∅ ∧ ∃(2, i) ∈ E(Π1)

(e) at C2 Q12 := R12 ∪ {¬peanuts3 ⇐
train2 ⇐ ¬car3

¬coke3 ⇐ ¬car3

train3 ⇐ ¬car3

train4 ⇐ ¬car3

train2 ⇐ ¬car4

¬coke3 ⇐ ¬car4

train3 ⇐ ¬car4

train4 ⇐ ¬car4

¬coke3 ⇐ train2

train3 ⇐ train2

train4 ⇐ train2

¬train2 ⇐ ¬train3

car4 ⇐ ¬train3

car3 ⇐ ¬train3

¬train2 ⇐ ¬train4

car4 ⇐ ¬train4

car3 ⇐ ¬train4

¬train2 ⇐ coke3

car4 ⇐ coke3

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments

car3 ⇐ coke3

car4 ⇐ ¬train2

car3 ⇐ ¬train2

train2 ⇐ ¬coke3, train3, train4}
(f) at C2 T12 := {(ε, ε, ε, ε, ε, ε)} According to the query plan

Π1, there is only one
neighbor C3

E(Π1)|2 := {(2, 3)}
In Loop:
for (2, 3): invoke C3.DMCS-SLIM(2, Q12)

(a) at C3 cache(3, R23) is empty R23 is Q12

(b) at C3 T23 := {(ε, ε, ε, ε, ε, ε)}
In(3) := {4, 6}
v(3, 4) := {car4, train4}
v(3, 6) := {sick6}
R23|4 := {train4 ⇐ ¬car4
car4 ⇐ ¬train4}
R23|6 := ∅
after loop:
T23 = {(ε, ε, ε, {train4}, ε, ε)
(ε, ε, ε, {train4}, ε, {sick6})
(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {car4}, ε, {sick6})
(ε, ε, ε, {car4, train4}, ε, ε)
(ε, ε, ε, {car4, train4}, ε, {sick6})}

(c) at C3 S23 := ∅ Search space of lsolve
heavily reduced when
compared to DMCSOPT

R23|3 := {lnotpeanuts3 ⇐
¬coke3 ⇐ ¬car3

train3 ⇐ ¬car3

train4 ⇐ ¬car3

¬coke3 ⇐ ¬car4

train3 ⇐ ¬car4

train4 ⇐ ¬car4

car4 ⇐ ¬train3

car3 ⇐ ¬train3

car4 ⇐ ¬train4

car3 ⇐ ¬train4

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments

car4 ⇐ coke3

car3 ⇐ coke3}
after loop:
S23 = {(ε, ε, {car3}, {car4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3}, {train4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3}, {car4, train4}, ε, ε)
(ε, ε, {train3, sandwiches3, juice3, urgent3}
{train4}, ε, {sick6})
(ε, ε, {train3, sandwiches3, juice3, urgent3}
{car4, train4}, ε, {sick6)}}

(d) at C3 S23 6= ∅ ∧ ∃(3, i) ∈ E(Π1)

(e) at C3 Q23 := R23 ∪ {¬coke3 ⇐
¬peanuts3 ⇐
¬train3 ⇐ ¬train4

¬train4 ⇐ ¬train3

¬car3 ⇐ ¬train4

¬train4 ⇐ car3

¬sick6 ⇐ ¬train4

car4 ⇐ ¬train4

car3 ⇐ ¬train3

¬train3 ⇐ car3

¬sick6 ⇐ ¬train3

car4 ⇐ ¬train3

¬sick6 ⇐ car3

train4 ⇐ car3

¬car3 ⇐ ¬car4

train3 ⇐ ¬car4

train4 ⇐ ¬car4

¬car3 ⇐ sick6

train3 ⇐ sick6

train4 ⇐ sick6

train3 ⇐ ¬car3

¬car3 ⇐ train3

train4 ⇐ ¬car3

¬car3 ⇐ train4

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments

train4 ⇐ train3

train3 ⇐ train4}
(f) at C3 T23 := {(ε, ε, ε, ε, ε, ε)} According to the query plan

Π1, there are two neighbors
C4 and C6

E(Π1)|3 := {(3, 4), (3, 6)}
In Loop:
for (3, 4): invoke C4.DMCS-SLIM(3, Q23)

(a) at C4 cache(4, R34) is empty R34 is Q23

(b) at C4 T34 := {(ε, ε, ε, ε, ε, ε)} T34 standard binary truth
table for the 5 variables from
v(4, 5) in partial belief state
format,total size is 2

In(4) := {5}
v(4, 5) := {car4, train4, sooner5}
R34|5 := ∅
after loop:
T34 := omitted for triviality

(c) at C4 S34 := ∅ DMCS-SLIM and
DMCSOPT computed same
results

R34|4 := {train4 ⇐ ¬car4

car4 ⇐ ¬train4}
after loop:
S34 = {(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, ε, ε)
(ε, ε, ε, {train4}, {sooner5}, ε)}

(d) at C4 S34 6= ∅ ∧ ∃(4, i) ∈ E(Π1)

(e) at C4 Q34 := R34 ∪ {car4 ⇐ ¬train4

¬train4 ⇐ car4

¬want_sooner5 ⇐ ¬train4

¬want_sooner5 ⇐ car4

¬car4 ⇐ want_sooner5

train4 ⇐ want_sooner5

train4 ⇐ ¬car4

¬car4 ⇐ train4}
(f) at C4 T34 := {(ε, ε, ε, ε, ε, ε)} According to the query plan

Π1, there is only one
neighbor C5

E(Π1)|4 := {(4, 5)}
In Loop:
for (4, 5): invoke C5.DMCS-SLIM(4, Q34)

(a) at C5 cache(5, R45) is empty R45 is Q34

(b) at C5 T45 := {(ε, ε, ε, ε, ε, ε)}
Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments

In(5) := {4}
v(5, 4) := {train4, car4}
R45|4 := {train4 ⇐ ¬car4

car4 ⇐ ¬train4

¬train4 ⇐ car4

¬car4 ⇐ train4}
after loop:
T45 = {(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, ε, }, ε)}

(c) at C5 S45 := ∅ DMCSOPT produced
double the number of belief
states w.r.t. DMCS-SLIM

R45|5 := {train4 ⇐ ¬car4

car4 ⇐ ¬train4

¬train4 ⇐ car4

sooner5 ⇐ ¬train4

sooner5 ⇐ car4

¬car4 ⇐ want_sooner5

train4 ⇐ want_sooner5

¬car4 ⇐ train4}
after loop:
S45 = {(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, {sooner5, soon5}, ε)}

(d) at C5 S45 6= ∅ ∧ ∃(5, i) 6∈ E(Π1) Skip to (h) directly
(h) at C5 cache(5, R45) := S45

(i) at C5 (4, 5) ∈ E(Π1) Returned two partial
equilibriaS45 := S45|v(4,5) =

{(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, {sooner5, }, ε)}
return S45

(f) at C4 after loop
continuation T34 := S45

(g) at C4 S34 := {(ε, ε, ε, {car4}, ε, ε) Filter peq that do not have
{train4} and {sooner5}(ε, ε, ε, {train4}, {sooner5}, ε)}

(h) at C4 cache(4, R34) := S34

(i) at C4 (3, 4) ∈ E(Π1) Returned two partial
equilibriaS34 := S34|v(3,4) =

Continued on next page
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Table A.1 – continued from previous page
Execution Step Trace Comments

{(ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {train4}, ε, ε)}
return S34

(f) at C3 T23 := S34

Now invoke C6cont. for (3, 6): invoke C6.DMCS-SLIM(3, Q23)

(a) at C6 cache(6, R36) is empty R36 is Q23

(b) at C6 T36 := {(ε, ε, ε, ε, ε, ε)}
C6 is a leaf node

In(6) := ∅
loop ignored:

(c) at C6 S36 := ∅
R36|6 := ∅
after loop:
S36 = {(ε, ε, ε, ε, ε, {sick6})
(ε, ε, ε, ε, ε, {fit6})}

(d) at C6 S36 6= ∅ ∧ ∃(6, i) 6∈ E(Π1) Skip to (h) directly
(h) at C6 cache(6, R36) := S36

(i) at C6 (3, 6) ∈ E(Π1)
No change for S36S36 := S36|v(3,6)

return S36

(f) at C3 after Loop
Represents all partial
equilibria for all neighbors

continuation T23 := (ε, ε, ε, {car4}, ε, ε)
(ε, ε, ε, {car4}, ε, {sick6})
(ε, ε, ε, {train4}, ε, ε)
(ε, ε, ε, {train4}, ε, {sick6})}

(g) at C3 S23 := (ε, ε, {car3}, {car4}, ε, ε) Partial equilibria reduced to
3 from 5(ε, ε, {train3, sandwiches3, juice3}, {train4}, ε, ε)

(ε, ε, {train3, sandwiches3, juice3, urgent3}
{train4}, ε, {sick6})}

(h) at C3 cache(3, R23) := S23

(i) at C3 (2, 3) ∈ E(Π1) Returns two partial
equilibria, DMCS-SLIM
shows great improvement

S23 := S23|v(2,3) =

{(ε, ε, {car3}, {car4}, ε, ε)
(ε, ε, {train3}, {train4}, ε, ε)}
return S23

(f) at C2 after loop Represents all partial
Continued on next page
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Table A.1 – concluded from previous page
Execution Step Trace Comments
continuation T12 := S23 equilibria for neighbors
(g) at C2 after loop

Partial equilibria reduced to
11 from 3

S12 := (ε, {train2}, {train3}, {train4}, ε, ε)
(ε, {car2}, {car3}, {car4}, ε, ε)
(ε, {car2}, {car3, coke3}, {car4}, ε, ε)}

(h) at C2 cache(2, R12) := S12

(i) at C2 (1, 2) ∈ E(Π1)
returns two partial equilibriaS12 := S12|v(1,2) =

{(ε, ε, {car3}, {car4}, ε, ε)
(ε, {train2}, {train3}, {train4}, ε, ε)}
return S12

(f) at C1 after loop Represents all partial
equilibria from neighborscontinuation T01 := S12

(g) at C1 S01 = {({car1}, ε, {car3}, {car4}, ε, ε) Partial equilibria reduced to
16 from 2({train1}, {train2}, {train3}, {train4}, ε, ε)}

(h) at C1 cache(1, R01) := S01

(i) at C1 (0, 1) 6∈ E(Π1) Return partial equilibria for
M w.r.t. C1return S01
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