
Logical Formalization of Semantic
Business Vocabulary and Rules

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science (Computational Logic) (MSc)

im Rahmen des Studiums

Computational Logic (Erasmus-Mundus)

eingereicht von

Dmitry Solomakhin
Matrikelnummer 0818286

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O. Univ. Prof. Dr. Thomas Eiter
Mitwirkung: Prof. Dr. Enrico Franconi

Univ.-Ass. Dr. Mantas Simkus

Wien,
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Logical Formalization of Semantic
Business Vocabulary and Rules

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computational Logic) (MSc)

in

Computational Logic (Erasmus-Mundus)

by

Dmitry Solomakhin
Registration Number 0818286

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O. Univ. Prof. Dr. Thomas Eiter
Assistance: Prof. Dr. Enrico Franconi

Univ.-Ass. Dr. Mantas Simkus

Vienna,
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dmitry Solomakhin
viale Druso 299b, 39100 Bolzano, Italien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Artifacts such as laws, regulations and policies, use deontic constructs expressed in natural
language to articulate human behavior, as well as alethic rules, describing what the organization
takes things to be and how do the members of the community agree on the understanding of the
domain. In most cases such artifacts have a rather ambiguous semantics, which can hardly be
formalized. But sometimes, in order to satisfy the organizations’ need of automatic reasoners,
a logical framework can be built to provide such tools for validation and verification of the
artifacts. The most promising candidate for such a framework is a recently approved standard
for specifying Semantics of Business Vocabulary and Business Rules (SBVR). Despite existence
of formally grounded notations, e.g. ORM2 specification language, up to now SBVR still lacks
a sound and consistent logical formalization which would allow developing automated solutions
able to automatically test business models for consistency of business rules.
This work reports on the attempt to provide logical foundations for the SBVR standard by
the means of defining a specific first-order deontic-alethic logic (FODAL) designed to capture
the desired semantics of business rules and their interaction. We also report on the logical
properties of the aforementioned formalization, such as completeness and soundness. Moreover,
we studied its connections with other logical formalisms, including satisfiability reduction to the
first-order logic and the description logic ALCQI, which allows to obtain decidability results
for a certain fragment of FODAL logic. As a result, a special tool providing automated support
for consistency checks of a set of ALCQI-expressible deontic and alethic business rules was
implemented. This tool was developed in the context of the ONTORULE FP7 project and
became a part of the public deliverable. Addressing the objective of the project to combine rules
and ontologies, we also implemented a translation of the aforementioned class of business rules
into an OWL2 ontology, which facilitates integration with other modeling tools and fulfilment
of the demand for automated solutions with reasoning support.

iii

Kurzfassung

Im Kontext der Geschäftsprozessmodellierung verwenden Verordnungen und Richtlinien deon-
tische und in natürlicher Sprache verfasste Formulierungen, um menschliches Verhalten zu
artikulieren. Andererseits werden alethischen Regeln verwendet, um die Struktur eines Business-
Bereiches zu beschreiben. Da Geschäftsmodelle stetig komplizierter werden, ist der Bedarf
für ein logisches Rahmenwerk gegeben, welches automatische Schlußfolgerung mit Geschäfts-
regeln ermöglicht. Der vielversprechendster Kandidat für solch einen Rahmenwerk ist der
Standard für Semantics of Business Vocabulary and Business Rules (SBVR).
Obwohl es eine formale Syntax für SBVR gibt, zum Beispiel die ORM2 Spezifikationssprache,
fehlt dem SBVR Standard zur Zeit noch immer eine solide und konsistente logische Formali-
sierung, die eine automatisierte Konsistenzprüfung von Geschäftsregeln im Geschäftsmodellen
ermöglichen würde.

Diese Arbeit berichtet über den Aufbau der logischen Grundlagen für den SBVR Standard,
nämlich die deontisch-alethische Prädikatenlogik FODAL. Diese wurde entwickelt, um die
erwünschte Semantik und Interaktion von Geschäftsregeln zu erfassen. Wir begutachten die
logischen Eigenschaften der FODAL Formalisierung wie Vollständigkeit und Korrektheit.
Darüber hinaus untersuchten wir Verbindungen von FODAL mit anderen logischen Formalis-
men einschließlich Prädikatenlogik und der ALCQI Beschreibungslogik. Wir zeigten auch
die Entscheidbarkeit eines bestimmten FODAL-Fragments und entwickelten daraufhin ein
Programm zur Konsistenzprüfung von deontischen und alethischen Geschäftsregeln, die in
ALCQI ausdruckbar sind. Wir haben weiters eine Übersetzung der oben genannten Klasse
von Geschäftsregeln in eine OWL2 Ontologie umgesetzt. Dieses Programm wurde im Rahmen
des FP7 ONTORULE Projekt entwickelt und wurde in einem öffentlichen ONTORULE Bericht
publiziert.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contribution of the thesis . 3
1.4 Outline of the work . 3

2 Modeling business rules in SBVR 5
2.1 General overview . 5

2.1.1 Noun and verb concepts . 5
2.1.2 Business rules . 6

2.2 Conceptual modeling in SBVR . 7
2.2.1 Semantical foundations . 7
2.2.2 Expressing business rules with modalities 8
2.2.3 Notations for business vocabulary and rules 10

2.3 Model-theoretic semantics of SBVR . 11
2.3.1 Alethic constraints . 12
2.3.2 Deontic constraints . 13
2.3.3 Ambiguity of the formal semantics of SBVR 14

3 Proposed logical formalization of SBVR 19
3.1 First-order deontic-alethic logic (FODAL) . 19

3.1.1 Language . 19
3.1.2 Semantics . 20
3.1.3 Axiomatization . 24

3.2 Modeling SBVR vocabulary and rules with FODAL 26
3.2.1 The meaning of SBVR conceptual schema 26
3.2.2 Reasoning tasks . 28

3.3 Satisfiability of FODAL regulations . 30

vii

3.3.1 Reduction to satisfiability in first-order logic 30
3.3.2 Canonical model for FODAL regulations 33

3.4 Reduction to monomodal logic QK . 34

4 Implementation of automated reasoning support tool 39
4.1 General description of the tool . 39
4.2 Input specifications . 40

4.2.1 ORM2 Formal Syntax . 40
4.2.2 Input format . 42
4.2.3 Naming convention . 44
4.2.4 Obligatory input elements . 45

4.3 Logical foundations of implementation . 46
4.4 Examples . 48

4.4.1 Checking the consistency of a given set of rules 48
4.4.2 Translating a given ORM2 schema into OWL2 ontology 50

5 Conclusion and future work 53

A Glossary of the ORM2 Formal Syntax 55

B Mapping ORM2 Formal Syntax into DLR 61

C The OWL/XML fragment of a sample OWL2 output 65

Bibliography 69

viii

CHAPTER 1
Introduction

1.1 Motivation

Automated support to enterprise modeling has increasingly become a subject of interest for
organizations seeking solutions for storage, distribution and analysis of knowledge about
business processes [11]. One of the most common approaches for describing business and the
information used by that business is the rule-based approach [17]. It consists in identifying and
articulating the rules that define the structure and control the operation of an enterprise [37].
The main expectation from automated solutions implementing this approach is the ability to
automatically determine consistency of business rules in a business model.

Rule bases for describing complex processes may explode in size and become intractable
by humans, thus resulting in modeling mistakes, or in the choice to useless formal approaches.
For this reason, the Object Management Group (OMG) has recently approved a standard for
specifying business objects and rules in natural language. The Semantics of Business Vocabulary
and Business Rules (SBVR) [38] standard provides means for describing the structure of the
meaning of rules, so called “semantic formulation”, expressed in one of the intuitive notations,
including the natural language that business people use [5] and Object-Role Modeling (ORM2)
diagrams [18].

SBVR is supposed to describe structural (alethic) aspects of processes, as well as the policies
that should guide agents behavior in certain situations. As such, the language is provided by the
capability to specify deontic prescriptions, which in turn implies the possibility to introduce
“deviation” in the model – i.e., the possibility that individual behave differently from what is
prescribed by rules. However, the use of deontic rule formulations raises the problem of formally
defining their semantics for automatic reasoning.

1

Several attempts have been made so far in order to provide a logical formalization for
structural and behavioral rules in SBVR and its notations. Some certain semantic and logical
foundations were defined already in the specification of the standard [38]. The most significant
related work includes the first-order translation of the SBVR Structured English notation [16]
and several formalizations of the ORM2 notation, including translation to first-order predicate
logic [21] and some description logics ([25], [31] and [23]). However, none of the existing
approaches enables consistency checks for a combined set of possibly interacting alethic and
deontic business rules.

Another approach widely used to capture complex business semantics is ontology-based
approach [40], which seeks to model basic business logic and meta-knowledge about business
domain using ontologies. While the rule-based approach mostly focuses on the operational
procedures of a business model, the ontology-based approach serves the purpose of capturing
the rationale of the underlying business logic as well as providing means for business models
interoperability.

This thesis research was conducted in the context of the “ONTORULE: Ontologies meet
Business Rules” FP7 project [3], which aims to combine rule-based and ontology-based [40]
approaches to business modeling in order to enable system interoperation and collaboration over
business processes.

1.2 Objectives

The purpose of this thesis is to investigate the problem of logical formalization of SBVR,
which provides means for automated solutions with reasoning support and enables integration of
business rules with ontologies. In order to meet this purpose we address the following objectives:

• Study the specification of the SBVR standard, in particular, its semantic and logical
foundations and identify the weak points.

• Examine the possible methods of formalization of business rules, taking into account the
deontic part and develop such a formalization.

• Study the logical properties of the defined formal semantics and its connections with other
logical formalisms, including those that facilitate integration with ontologies.

• Investigate the problem of developing automated solutions with reasoning support for
business rules modeling and business processes monitoring.

2

1.3 Contribution of the thesis

Addressing the issues described above, this thesis bridges the gap between informal specification
of the standard and a logical formalism for business rules with a clear formal semantics which
allows automated reasoning on a combined set of structural and behavioral business rules.

In particular, we obtained the following results:

• We defined a multimodal first-order deontic-alethic logic (FODAL) with sound and
complete axiomatization that captures the desired semantics of and interaction between
business rules.

• We also showed that satisfiability in FODAL logic may be reduced to a standard first-order
satisfiability for a class of formulas restricted to atomic modal sentences that may be used
to express the majority of real-world rules. In attempt to overcome undecidability of
FODAL which follows from undecidability of first-order logic, we also showed that under
further restrictions FODAL satisfiability problem may be reduced to that of satisfying
some formula in the ALCQI description logic.

• Moreover, in order to establish a relationship with a standard logical formalism, we
defined a truth-preserving translation from a fragment of bimodal FODAL into quantified
monomodal logic QK, that can be used to facilitate the transfer of decidability results
from well-studied fragments of predicate modal logics to FODAL.

• Finally, a special tool was implemented which provides an automated support for
consistency checks of a set ofALCQI-expressible business rules along with its translation
to OWL2 ontology [32].

1.4 Outline of the work

The content of the thesis is divided into 5 chapters. In the second chapter an overview of
the SBVR standard and its logical foundations is given, as well as the analysis of discovered
shortcomings of its formal semantics. Third chapter describes the proposed logical formalization
in terms of first-order deontic-alethic logic (FODAL) along with its syntax, semantics and
complete and sound axiomatization. It also contains the study of the relevant logical properties
of FODAL. The fourth chapter gives an overview of the tool developed to provide automated
support for consistency checks together with translation to OWL2.

3

CHAPTER 2
Modeling business rules in SBVR

2.1 General overview

The Semantics of Business Vocabulary and Business Rules (SBVR) is a standard recently
approved by the Object Management Group (OMG) [38] that provides means for specifying
business objects and rules in natural language that business people use [5].

SBVR is supposed to describe structural (alethic) aspects of business processes, as well as
the policies that should guide agents behavior in certain situations. A core idea of business
rules formally supported by SBVR is the following: “Rules build on facts, and facts build on
concepts as expressed by terms. Terms express business concepts; facts make assertions about
these concepts; rules constrain and support these facts” [38]. The notions of terms and facts
of this “business rules mantra” correspond to SBVR noun concepts and verb concepts (or fact
types) respectively [7].

In this section we give a short overview of building blocks of Business Vocabulary and
Business Rules as defined by SBVR standard approved by the Object Management Group
(OMG) [38] and provide some examples in order to illustrate the subject.

2.1.1 Noun and verb concepts

Definition 1. A noun concept is “concept that is the meaning of a noun or noun phrase”, which
can be one of the following: an object type, an individual concept or a fact type role.
An object type is a “noun concept that classifies things on the basis of their common properties”.
An individual concept is “a concept that corresponds to only one object [thing]”.
A fact type role is a “noun concept that corresponds to things based on their playing a part,
assuming a function or being used in some situation”.

5

Definition 2. A verb concept (or a fact type) represents the notion of relations and is defined as
“a concept that is the meaning of a verb phrase”.
A fact type can have one (characteristic), two (binary) or more fact type roles.

Example 2.1.1. A noun concept rental car is an object type corresponding to those cars
that are rented. A noun concept EU-Rent Vienna Downtown Office 1 is an individual
concept whose one and the only instance is an individual city branch in Vienna.
An example of a fact type in SBVR Structured English notation [38, annex C] is the following:

rental car is stored at branch

where roles rental car and branch are two fact type roles of a given verb concept.
The instances of this particular fact type are all actualities of rental cars being stored at branches.

2.1.2 Business rules

The SBVR standard defines two types of business rules: structural (definitional) rules and
operative behavioral rules (See Figure 2.1).

Figure 2.1: SBVR rules and advices

Definition 3. A structural (alethic) rule specifies what the organization takes things to be, how
do the members of the community agree on the understanding of the domain [12]. It defines the
characteristics of noun concepts and puts constraints on verb concepts, being in fact a constraint
that is true by definition and hence can not be broken.

6

A structural business rule can be expressed using either necessity, impossibility or restricted
possibility modalities.

Definition 4. An operative (deontic) rule is intended to describe business processes in
organization (e.g. working instructions) and can be either ignored or violated by people.
An operative business rule can be expressed using either obligation, prohibition or restricted
permission modalities.

N.B. It should be noted that one should not confuse the common notion of a “logical rule”
understood as an inference rule and the notion of “rule” used hereafter in this thesis to denote a
business rule.

2.2 Conceptual modeling in SBVR

In this section we recapitulate some definitions of the basic concepts from [21], introduce the
basic background and terminology used in the standard [38] and provide some examples in order
to illustrate the matter.

2.2.1 Semantical foundations

For any given business, the term “business domain” is usually used to indicate those aspects of
the area that are of interest for the business modeling community. Facts, which are of a particular
Fact Type are the main building blocks of SBVR and are considered to be propositions taken to
be true by the business. The lowest-level logical unit in SBVR is an Atomic Formulation, which
is a logical formulation based directly on a particular fact type, without any logical operations,
quantifiers or operators.

Definition 5 (Conceptual model).
An SBVR conceptual modelCM = 〈S, F 〉 is a structure intended to describe a business domain,
where S is a conceptual schema, declaring fact types and rules relevant to the business domain,
and F is a population of facts that conform to this schema.

Definition 6 (Ground facts).
We use f ∈ F to denote a ground fact from a fact population F in SBVR.
An existential fact fex is an assertion of the existence of an individual.
An elementary fact fel is a declaration that an individual has some property, or that one or more
individuals participate in a relationship.

A conceptual model, also referred to as fact model, may cover any time span and contain
facts that describe past, present and future. Any change to a conceptual model, including changes

7

regarding fact population and individual facts, produces a different fact model. Although in
practice the conceptual schema as a part of a model can evolve over time, it is usually considered
as fixed and it is the fact population which is considered to be highly variable. Different
populations of the fact model with fixed conceptual schema are often referred to as states of
fact model and include a set of ground facts, which can be either elementary or existential.

Business rules defined in the conceptual schema S can be considered as high-level facts (i.e.,
facts about propositions) and play a role of constraints, which are used to impose restrictions
concerning fact populations and may be either static (define which populations are possible or
permitted) or dynamic (imposes restriction on transition between populations). When classifying
the rule as a static constraint, it is asserted that it is true for each state of the fact model,
taken individually, while dynamic constraints restrict transitions between states of the model.
Hereafter in this work only static constraints will be taken into consideration.

2.2.2 Expressing business rules with modalities

The SBVR standard provides means for describing business facts and business rules that may
be expressed either informally (in terms of un-interpreted comments) or formally (in terms of
fact types of pre-defined schema and certain logical operators, quantifiers, etc.). For the main
objectives of the standard its description focuses on formal statements of rules, since only those
may be transformed into logical formulations, which can in turn be used for exchange with other
rules-based software tools.

Such logical rule formulations are equivalent to formulae in 2-valued, first-order predicate
calculus with identity [38]. In addition to standard universal (∀) and existential (∃) quantifiers,
for the sake of convenience, SBVR standard allows logical formulation to use some pre-defined
[18] numeric quantifiers, such as at-most-one (∃0..1), exactly-n (∃n, n ≥ 1) and others.

In order to express the structural or operational nature of a business rule, the corresponding
rule formulation use any of the basic alethic or deontic modalities shown in Table 2.1. Structural
rule formulations use alethic operators: � = it is necessary that and ♦ = it is possible that;
while operative rule formulations use deontic modal operators O = it is obligatory that, P = it
is permitted that, as well as F = it is forbidden that.

Definition 7. Rule formulation �p having a necessity modal operator as a main modality is
called a necessity claim. Possibility, obligation and permission claims are defined similarly
as rule formulations having the main modal operator of possibility, obligation or permission,
respectively.

Every rule formulation may be expressed using positive, negative or default verbalization,
that can be obtained by applying the standard modal negation equivalences:

8

• it is not necessary that ≡ it is possible that not (¬�p ≡ ♦¬p);

• it is not possible that ≡ it is necessary that not (¬♦p ≡ �¬p);

• it is not permitted that ≡ it is obligatory that not (¬P p ≡ O¬p);

• it is not obligatory that ≡ it is permitted that not (¬Op ≡ P¬p).

The reason for allowing both positive and negative verbalizations is that they are useful for
validating the constraints by business domain experts, for example, when producing counter-
examples. However, for the needs of automation tools, modal negation equivalences may be
used together with double negation in order to end up with one alethic (e.g. �) and one deontic
(e.g. O) operator.

Modality
Modal Expression applying modal negation equivalences

= (Logically Equivalent) Modal Ex-
pression

Expression Reading (Verbalized
as):

Expression Reading (Verbalized
as):

alethic necessity �p It is necessary that p ¬♦¬p It is not possible that not p

non-necessity:
the negation of

necessity

¬�p It is not necessary that p ♦¬p It is possible that not p

possibility ♦p It is possible that p ¬�¬p It is not necessary that not p

impossibility:
the negation of

possibility

¬♦p It is not possible that p

It is impossible that p

�¬p It is necessary that not p

contingency ♦p ∧ ¬�p It is possible but not necessary

that p

¬(¬♦p∨�p) It is neither impossible nor

necessary that p

deontic obligation Op It is obligatory that p ¬P¬p It is not permitted that not p

non-obligation:
the negation of

obligation

¬Op It is not obligatory that p P¬p It is permitted that not p

permission P p It is permitted that p ¬O¬p It is not obligatory that not p

prohibition: the

negation of permis-

sion

¬P p

F p

It is not permitted that p

It is forbidden that p

It is prohibited that p

O¬p It is obligatory that not p

optionality P p ∧ ¬Op It is permitted but not obliga-

tory that p

¬(¬P p∨Op) It is neither prohibited nor

obligatory that p

Table 2.1: Basic alethic and deontic modalities

The modality of an SBVR rule is determined by the main modal operator applied explicitly
or implicitly in the corresponding rule formulation. If no modality is explicitly defined, then
an alethic operator � is often assumed. For example, rule formulation “Each Method has at

9

most one QualityAssurance” implies necessity and can be thus explicitly verbalized as “It is
necessary that each Method has at most one QualityAssurance”. The same constraint can be
reformulated in a negative verbalization as “It is impossible that the same Method has more
than one QualityAssurance”.

2.2.3 Notations for business vocabulary and rules

There are several common means of expressing facts and business rules in SBVR, namely
through statements, diagrams or any combination of those, each serving best for different
purposes. While graphical notations are helpful for demonstrating how concepts are related,
they are usually impractical when defining vocabularies or expressing rules.

Definition 8. We use r to denote a business rule in SBVR regardless the particular format
in which it is written. For the sake of readability we will denote any necessity claim as r� ,
possibility claim as r♦ , obligation claim as r

O
and permission claim as r

P
.

The SBVR standard suggests three different verbalization approaches:

1. SBVR Structured English approach [38, Annex C], which defines one such way of using
English that maps English words and structures to SBVR concepts. Business rules are
introduced using a number of keyword prefixes for each modality, which are then applied
to Structured English statement, representing the body of a rule. An example of a
behavioral business rule of obligation expressed in SBVR Structured English notation
is the following:

r = It is obligatory that the rented car of the rental is stored

at the pick-up branch of the rental.

One of the advantages of using such controlled English is that its non-modal statements
can be easily be translated into first-order logic [16]. We will hereafter denote by φr̂i a
first-order representation of a non-modal Structured English sentence r̂i from a rule r.

N.B.: Since the nature of business rules implies the absence of uncertainty, it means that the
resulting first-order formulae will not contain free variables, i.e. will be closed formulae.
Then an SBVR rule may be represented by an expression resulted from application of
modalities and boolean connectives to a set of closed first-order formulae φr̂i .

2. RuleSpeak [34], which is an existing business rule notation that is widely used by business
experts dealing with large-scale projects. RuleSpeak uses basically the same expression
forms as Structured English, however instead of rule prefixes it uses embedded (mixfix)

10

keywords conveying a modality. The following example illustrates the syntax:

r = The driver of a rental must be qualified.

3. Object-Role Modeling (ORM2), which is a conceptual modeling approach combining
both formal, textual specification language and formal graphical modeling language [19].
ORM2 specification language applies to mixfix predicates of any arity and contains
predefined patterns covering a wide range of constraints typical for business domains.
An example of a structural rule expressed as necessity statement in ORM2 specification
language is the following:

r = Each visitor has at most one passport

An example illustrating ORM2 graphical notation [20] is introduced on Figure 2.2.

Figure 2.2: Example of ORM2 diagram

The difference between ORM2 and other notions is that it is a formal language per se,
featuring rich expressive power, intelligibility, and semantic stability [22]. There exist
several translations from non-modal ORM2 expressions to standard logics, including
translation to first-order logic ([21]) and some description logics ([25], [31], [15]).
Similar to φr̂, we will denote by φ

DL

r̂ a description logic representation of a non-modal
ORM2 expression r̂.

3a. Cognition-enhanced Natural language Information Analysis Method (CogNIAM) is one of
the equivalent graphical variants of ORM2 notation, developed by one of the ONTORULE
project partners in order to facilitate machine processing of ORM2 diagrams [38,
annex L].

2.3 Model-theoretic semantics of SBVR

In this section we recapitulate the existing approach defined by SBVR standard [38, Sec-
tion 10.1.1] which provides a model-theoretic semantics for business rule formulations. We
then observe existing shortcomings, present some inaccuracy of the given semantics and ground

11

the demands for a well-defined, noncontradictory formal semantics for both alethic and deontic
business rules.

2.3.1 Alethic constraints

Structural rule formulations representing static alethic constraints may use the following alethic
operators: � = it is necessary that; and ♦ = it is possible that. Usually most statements
of business rules include only one modal operator which is the main (preceding) operator of
the whole statement. However, “to make life interesting” [38, p. 102] SBVR allows rule
formulations to include multiple occurrences of modal operators as well as their nesting and
embedding in the formulation.

Definition 9 (Normalized rule).
A normalized rule formulation is a logical formulation having its modal operators in the front of
the formula.

In order to provide a set of transformation rules to obtain the normalized form, the
standard proposes to use modal negation equivalences, Barcan formulae (2.1) as well as other
equivalences which hold in standard modal logics, e.g. in S4 (2.2).

∀x�Fx ≡ �∀xFx

∃x♦Fx ≡ ♦∃xFx (2.1)

��p ≡ �p; ♦♦p ≡ ♦p; �♦�♦p ≡ �♦p; ♦�♦�p ≡ ♦�p (2.2)

In most cases the aforementioned transformations may lead to obtaining an equivalent
constraint with one and the only modal operator which is placed at the front of the rule
formulation. In this case, the SBVR model theory suggests omitting the preceding operator
and tagging the corresponding rule as a necessity or a possibility respectively.
Then the implementation impact of a necessity tag is that any attempted change of the fact
population that would cause the resulting fact model to violate the tagged constraint gets
rejected. The semantics of a possibility tag is not explicitly defined by SBVR standard,
however, assuming the intended semantics of the possibility operator ♦ in terms of possible
worlds, one could consider the possibility tag as a guidance for potential changes of the fact
populations.

In the rest of the cases, when there are multiple occurrences of modal operators or there
is an embedded alethic modality that cannot be eliminated by transformation, SBVR considers
adopting the formal semantics of the modal logic S4 [6, p. 192]. All constraints are interpreted
in terms of possible world semantics introduced by Saul Kripke [27], where a possible world
corresponds to a state of the fact model that might exist at some point in time. Thus, a necessity

12

static constraint is satisfied if and only if the proposition under the necessity modality is true in
all possible states of the fact model. Similarly, a proposition is possible if and only if it is true in
at least one possible state of the model. And a proposition is impossible if and only if it is false
in all possible states.

2.3.2 Deontic constraints

Operative rule formulations represent static deontic constraints using standard deontic operators
(O = it is obligatory that, P = it is permitted that) as well as F = it is forbidden that.
The approach to defining a formal semantics for deontic constraints is similar to the one for
alethic rule formulations. Thus, a certain procedure is proposed to end up with a normalized rule
formulation, suggesting usage of deontic modal negation equivalences, deontic counterparts to
the Barcan formulae (2.3) as well as other equivalences such as (2.4).

∀xOFx ≡ O∀xFx

∃xPFx ≡ P∃xFx (2.3)

p→ Oq ≡ O(p→ q) (2.4)

If the resulting normalized rule formulation contains one and the only preceding basic modal
operator (i.e. Op or P p), then this operator is omitted and the remaining first-order formula p is
tagged as obligation or permission respectively (rather then necessity or possibility in the alethic
case). The informal semantics behind this tag is that it is ought (permitted) to be the case that p,
for all future states of the fact model until the rule is canceled or changed.
From the implementation perspective rules tagged as obligation may be violated in some states
of the fact model and in which case some appropriate action ought to be taken to either eliminate
the violation or to impose a penalty. However, such actions are considered to be outside of the
scope of SBVR and remain unspecified. The idea behind tagging a rule as a permission is also
undeclared, however based on the notion of obligation tag, it can be considered as guidance to
be respected when imposing new obligation constraints.

Definition 10 (Model in SBVR).
According to the model-theoretic perspective given in [38, p. 103], a model M in SBVR “is an
interpretation where each non-deontic formula evaluates to true, and the model is classified as a
permitted model if p in each deontic formula (of the form Op) evaluates to true, otherwise the
model is a forbidden model (though still a model)”.

There can be the case when a formulation of a constraint may contain an embedded deontic
modality that cannot be eliminated by the transformations (2.3-2.4). In this case SBVR doesn’t

13

commit to any particular deontic modal logic as with alethic modalities. Instead, it suggests
to apply the objectification approach - each deontic modality get substituted by a respective
service predicate with a reserved name which is defined at the business domain level, e.g. “is
forbidden”, “is permitted”, etc. Additionally, in order to capture the desired semantics of the
deontic modalities (e.g. modal negation equivalences), some complementary rules are declared,
like: “it is forbidden that” ≡ not “it is permitted that”.

2.3.3 Ambiguity of the formal semantics of SBVR

While the logical foundations and definition of formal semantics given in the standard may
actually serve for its purposes, the utility of such formalization for development of automated
business modeling systems is arguable, since we can point out several shortcomings of such
definition [36].

Independent treatment of modalities

We note that one of the main shortcomings of the SBVR’s formal semantics for business
rules is that both structural (alethic) and behavioral (deontic) rules are considered independently,
without taking into account possible inconsistencies between each other. For example, some rule
can be declared necessary with an alethic rule formulation and at the same time the negation of
the logical formulation used in that rule may participate in some deontic rule, for instance,
consider this trivial example:

It is necessary to breathe

It is permitted not to breathe

Although advices of permission are not meant to remove any degree of freedom, this set of rules
is intuitively fallacious. Which is, however, not always the case when dealing with rules with
contradictory bodies. Assume another trivial example:

It is obligatory not to smoke

It is possible to smoke

As a matter of fact, this set of rules is clearly consistent – indeed, although it is physically
possible to smoke, it may be prohibited to smoke in public areas.

Moreover, the formal semantics based on tags, proposed by SBVR, is not able to capture
the dependencies and contradictions even between rules of similar nature. However, the task
of detecting possible contradictions and inconsistencies within model is very important from
business modeling perspective. If there is no specific procedure to define whether the set of

14

business rules is consistent, it is highly probable for the resulting models to be useless, as they
will not correctly represent the intended business domain.

Incompatibility with formal semantics of classical deontic logics

We also note that another serious problem with the formalization defined by the standard is
that its way of dealing with behavioral rules has serious discrepancies with formal semantics of
existing deontic logics. The core source of such a conflict is the claim [38, p. 103] that in order
to normalize a deontic rule formulation one could use equivalence (2.4):

p→ Oq ≡ O(p→ q)

As a matter of fact, it can be observed that this transformation rule contradicts with the intended
semantics of behavioral business rules as long as it doesn’t preserve the validity of a given rule
formulation with respect to the semantics of traditional deontic logics.

Let’s assume that the proposed rule transformation is valid in some classical deontic logic
D∗. Then, according to the Kripke-style modal semantics of D∗, the equivalence (2.4) should
be valid in the class of serial frames [30] and therefore should be valid in every model based on
a serial frame [6]. In particular this applies for the Standard Deontic Logic SDL [30].
Now let’s assume the following model based on a serial frame represented on Figure 2.3.

• // •p // •p // •p,q // •p,q // . . .

Figure 2.3: Counter-example to the direct implication

It is obvious that the formula (2.4) is not satisfied at the first state of this model: while p→ Oq

evaluates to true, O(p→ q) evaluates to false.
Thus, the direct implication of the equivalence (2.4) is not valid in this model and therefore not
valid in the class of serial frames.

Therefore it is showed that the transformation rule p→ Oq ≡ O(p→ q) does not preserve
the validity of rule formulations and, as a result, the normalization procedure for deontic rule
formulations defined by the standard’s specification can not be applied.

Incompatibility with formal semantics of standard deontic logic SDL

SDL is one of the most prominent and widely used deontic logics whose formal semantics
is adopted in order to formalize notions of obligation and permission. However, it can be shown

15

that the model-theoretic semantics introduced in the SBVR specification becomes contradictory
when adopting the formal semantics of SDL.

Let’s assume the following conceptual schema S and its interpretation I which satisfies p
and falsifies q at some accessible world:

O(p→ q) (2.5)

O(¬q) (2.6)

O(p) (2.7)

p (2.8)

¬q (2.9)

Then, from a model-theoretic perspective of SBVR, the given interpretation is classified as
forbidden model, because each non-deontic formula evaluates to true, while the first deontic
rule is violated.

However, assuming formal semantics of SDL, one could obtain the following results via
natural deduction:

O(p→ q)→ (Op→ Oq) axiom of SDL (2.10)

Op→ Oq modus ponens of 2.5 and 2.10 (2.11)

Oq modus ponens of 2.11 and 2.7 (2.12)

Oq → ¬O(¬q) axiom of SDL (2.13)

¬O(¬q) modus ponens of 2.12 and 2.13 (2.14)

⊥ contradiction of 2.6 and 2.14 (2.15)

Therefore the conceptual schema (2.5)–(2.7) is inconsistent, hence it is counter-intuitive to claim
that it has a model, that contradicts with the definition of a “forbidden model” given by the
standard’s specification.

Ambiguity of model-theoretic semantics of SBVR

As a matter of fact, since the model-theoretic semantics given by SBVR standard specifica-
tion mentions only obligatory deontic formulae, it can be observed that a serious ambiguity or

16

even fallacy of this semantics is caused when dealing with deontic formulae of the form P p,
that represent the notion of permission.

Assume that {Op,P (¬p)} is a rule set of some SBVR conceptual schema S, and some fact
population I of S is such that it satisfies p. Then, from a model-theoretic perspective of SBVR,
the given fact population is classified as permitted model.

However, the conceptual schema S is inconsistent as it contains contradicting deontic rule
formulations (since Op ≡ ¬P (¬p)). Therefore it is counter-intuitive to claim that it has a
model.

As a matter of fact, the introduced example not only proves the fallacy of model-
theoretic semantics of SBVR operative rules, but also justifies the urgent need for
well-defined, noncontradictory formal semantics for both alethic and deontic business
rules in order to provide business expert with automated modeling solutions preventing
inconsistent business models.

17

CHAPTER 3
Proposed logical formalization of

SBVR

3.1 First-order deontic-alethic logic (FODAL)

The basic formalisms we use to model business rule formulations are standard deontic logic
(SDL) and normal modal logic S4, which are both propositional modal logics. We then
construct a first-order deontic-alethic logic (FODAL) – a multimodal logic, as a first-order
extension of a combination of SDL and S4 to be able to express business constraints defined
in SBVR. In order to construct the first-order extension for the combined logic we follow the
procedure described in [14].

3.1.1 Language

The alphabet of FODAL contains the following symbols:

• a set of propositional connectives: ¬,∧.

• a universal quantifier: ∀ (for all).

• an infinite set P = {P 1
1 , P

1
2 , ..., P

2
1 , P

2
2 , ..., P

n
1 , P

n
2 , ...} of n-place relation symbols (also

referred to as predicate symbols).

• an infinite set V = {v1, v2, ...} of variable symbols.

• alethic modal operator: � (necessity).

• deontic modal operator: O (obligation).

19

Definition 11 (Atomic formula).
An atomic formula is any expression of the form R(x1, x2, ..., xn), where R is an n-place
relation symbol and xi, i =

−−−→
1 . . . n, are variables.

Definition 12 (FODAL formulae).
The formulae of FODAL are defined inductively in the following way:

• Every atomic formula is a formula.

• If X is a formula, so is ¬X .

• If X and Y are formulae, then X ∧ Y is a formula.

• If X is a formula, then so are �X and OX .

• If X is a formula and v is a variable, then ∀vX is a formula.

The notions of free and bound variables and their occurrences are defined in a usual way
[14].
The existential quantifier (∃) as well as other propositional connectives (∨,→,↔) are defined
as usual, while additional modal operators (♦,P ,F) are defined in the following way:

♦φ ≡ ¬�¬φ (3.1)

Pφ ≡ ¬O¬φ (3.2)

Fφ ≡ O¬φ (3.3)

Definition 13 (Closed formula).
A FODAL formula with no free variable occurrences is called a closed formula or a sentence.

Definition 14 (Objective formula).
An objective formula is a FODAL formula which does not contain any modalities.

Definition 15 (Modal sentence).
A modal sentence is a sentence whose main logical operator is a modal operator.
An atomic modal sentence is a modal sentence which contains one and the only modal operator.

3.1.2 Semantics

Semantics for propositional multimodal logics are usually defined using Kripke n-frames [28].

Definition 16 (N-frame).
An n-frame is a relational structure F = 〈W, R1, ..., Rn〉, where n > 0 is a natural number,W
is a non-empty set and Ri, i =

−−−→
1 . . . n, is a binary relation onW .

20

Definition 17 (Path).
A path from point x ∈ W to point y ∈ W in an n-frame F is a sequence 〈x0, x1, ..., xk〉 such
that xi ∈ W, x0 = x, xk = y and xiRjxi+1 for each i =

−−→
0..k and some j ∈ [1;n].

Definition 18 (Rooted n-frame).
An n-frame F is called rooted if there exists some x ∈ W , called root, such that for every
y ∈ W, y 6= x there is a path from x to y.

Definition 19 (Depth of a frame).
An n-frame F is said to be of depth k if k is the length of the longest path in F. If no such path
exists, then the n-frame is said to be of infinite length.

In propositional multimodal logics models are defined by a frame F = 〈W, R1, ..., Rn〉
and a relation � between propositional letters and worlds. In the first-order case, the relation
� is substituted by a first-order interpretation function and an n-frame is complemented with a
definition of domain, which can be either constant or world-dependent.

Since SBVR itself interprets constraints in terms of Kripke semantics where possible worlds
correspond to states of the fact model, i.e. different fact populations, the choice of varying
domain semantics is intuitively justified [38]. Also, since SBVR rule formulations may include
only two types of modalities: deontic and alethic, - hereafter in this work only two-layer frames
are considered as a particular case of n-frames with n = 2 and accessibility relations RO and
R� respectively.

Definition 20 (Augmented frame).
A varying domain augmented bimodal frame is a relational structure Fvar = 〈W, RO, R�,D〉,
where 〈W, RO, R�〉 is a two-layer frame and D is a domain function mapping worlds ofW to
non-empty sets. A domain of a possible world w is then denoted as D(w) and a frame domain
is defined as D(F) =

⋃
{D(wi)|wi ∈ W}.

Definition 21 (Interpretation).
An interpretation I in a varying domain augmented frame Fvar = 〈W, RO, R�,D〉 is a function
which assigns to each m-place relation symbol P and to each possible world w ∈ W some m-
place relation on the domain D(w) of that world.
I can be also interpreted as a function that assigns to each possible world w ∈ W some first-
order interpretation I(w).

Definition 22 (Model).
A varying domain first-order model is a structure M = 〈W, RO, R�,D, I〉, where 〈W, RO, R�,D〉
is a varying domain augmented frame and I is an interpretation in it.

21

The satisfiability relation between varying domain first-order models and formulae is then
defined in the usual way, using the notion of valuation which maps variables to elements of the
domain.

Definition 23 (Valuation).
A valuation σ in a varying domain model M is a mapping that assigns to each free variable x
some member of the domain of the model D(M). A valuation σ′ is an x-variant of a valuation
σ when σ′ and σ agree on all variables except x.

Definition 24 (Truth in a model).
Let M = 〈W, RO, R�,D, I〉 be a varying domain first-order model, X,Y and Φ be FODAL
formulae. Then for each possible world w ∈ W and each valuation σ on D(M) the following
holds:

• if P is a m-place relation symbol, then M, w �σ P (x1, ..., xm) if and only if
(σ(x1), ..., σ(xm)) ∈ I(P,w) or, equivalently, I(w) �

FOL

σ P (x1, ..., xm),

• M, w �σ ¬X if and only if M, w 2σ X ,

• M, w �σ X ∧ Y if and only if M, w �σ X and M, w �σ Y ,

• M, w �σ ∀xΦ if and only if for every x-variant σ′ of σ at w, M, v �σ Φ,

• M, w �σ ∃xΦ if and only if for some x-variant σ′ of σ at w, M, v �σ Φ,

• M, w �σ �X if and only if for every v ∈ W such that wR�v, M, v �σ X ,

• M, w �σ ♦X if and only if for some v ∈ W such that wR�v, M, v �σ X ,

• M, w �σ OX if and only if for every v ∈ W such that wROv, M, v �σ X ,

• M, w �σ PX if and only if for some v ∈ W such that wROv, M, v �σ X .

The notions of validity and truth are defined classically:

• If for all valuations σ we have that M, w �σ Φ, then the FODAL formula Φ is said to be
true at the world w of a model, which is abbreviated as M, w � Φ.

• A FODAL formula Φ is valid in a model M, denoted as M � Φ, if it is true at every world
w ∈ W of M.

• A FODAL formula Φ is said to be valid in the class of frames F, denoted as �F Φ, if it is
valid in every model of the given class of frames F.

22

In order to correctly capture the behavior and interaction of the alethic and deontic modal
operators it is necessary to constrain the corresponding accessibility relations: the alethic
accessibility is usually taken to be a reflexive and transitive relation (S4) [6], while the behavior
of a deontic modality is classically considered to be captured by a serial relation (KD) [29].

Moreover, since one of the objectives of formalization under development is to define the
consistency of the set of business rules, it should also take into account the existing interaction
between alethic and deontic modalities. The desired interaction can be verbalized as “Everything
which is necessary is also obligatory” and then expressed as a following FODAL formula:

�X → OX (3.4)

It can be shown that the modal formula 3.4 defines a certain class of bimodal frames for which
the following restriction on the accessibility relations R� and RO holds:

RO ⊆ R� (3.5)

Proposition 3.1.1. The modal formula �X → OX defines the class of augmented bimodal
frames F = 〈W, RO, R�,D〉 such that RO ⊆ R�, where R� is a preorder and RO is serial.
We then call such frame a FODAL frame.

Proof. Recall that a modal formula φ defines a class of frames FODAL if and only if it is valid
on precisely the frames in FODAL, i.e. (a) φ must be valid on every frame in FODAL and (b)
it should the case that φ is falsified on any frame that is not in FODAL [33].

Suppose M is a model based on the bimodal frame of the class under consideration, w ∈ W
is an arbitrary possible world and σ is an arbitrary valuation. For let �X be true at w: M, w �σ
�X . Then, by definition of satisfiability:

∀v ∈ W such that wR�v : M, v �σ X (3.6)

Now assume OX does not hold at w. This means that

∃v′ ∈ W such that wROv
′ : M, v′ 2σ X (3.7)

However RO ⊆ R�, which means that (w, v′) ∈ R� and thus, by assumption 3.6, M, v′ �σ X ,
which contradicts with 3.7. Thus OX is also true at w. Hence, whenever �X holds at world w,
OX also holds, irrespective to the possible world w and valuation σ. Then �X → OX is valid
in a class of frames with property 3.5, which proves first part of the definability claim 3.1.1.

To complete the proof it is necessary to show that (�X → OX) can be falsified on any
bimodal frame that does not belong to the considered class. Suppose M′ = 〈W, RO, R�,D, I〉
is a model which is not based on the bimodal frame from introduced class FODAL, so RO *
R�. This means that for some possible world w ∈ W there is another world v ∈ W , such that

23

(w, v) ∈ RO but (w, v) /∈ R�. For let σ be such a valuation that makes X false at v and true
everywhere else, so also at w. Then M′, w �σ X and M′, w �σ �X by the reflexivity of R� as
a S4 accessibility relation. Hence �X is true at w under valuation σ. However OX does not
hold at w because there exists v, (w, v) ∈ RO for which M′, v 2σ X . Therefore the formula
(�X → OX) is falsified and the definability claim under consideration is proved.

Definition 25 (FODAL model).
A FODAL model is a varying domain first-order model MFODAL = 〈W, RO, R�,D, I〉 such
that RO is serial, R� is a preorder relation and RO ⊆ R�.

Hereafter in this work only FODAL models are taken into consideration.

3.1.3 Axiomatization

As SBVR rules formulations may include only closed formulae, it might seem that taking
only FODAL sentences into consideration is sufficient for the formalization being developed.
However from the logical perspective proofs of those sentences would involve formulae with
free variables. In the following Φ(x) denotes a FODAL formula in which the variable x may
have free occurrences and the notion of substitutability if defined in a classical way:

Definition 26 (Substitutability).
A free variable y is substitutable for a variable x in Φ(x) provided that no free occurrences of x
in Φ(x) is within the scope of ∀y.

An FODAL axiom system for first-order alethic-deontic logic is defined following the
approach presented in [14] and is obtained by combining the axiom systems for the propositional
modal logics S4 and KD and extending the resulting combination with additional axiom
schemas and the axiom 3.4 reflecting desired interaction between alethic and deontic modalities.

Definition 27 (Axioms).
All the formulae of the following forms are taken as axioms.

(Tautologies S4) Any FOL substitution-instance of a theorem of S4 logic (3.8)

(Tautologies KD) Any FOL substitution-instance of a theorem of KD logic (3.9)

(Vacuous ∀) ∀xφ ≡ φ, provided x is not free in φ (3.10)

(∀ Distributivity) ∀x(φ→ ψ)→ (∀xφ→ ∀xψ) (3.11)

(∀ Permutation) ∀x∀yφ→ ∀y∀xφ (3.12)

(Restricted ∀ Elimination) ∀y(∀xφ(x)→ φ(y)) (3.13)

(Necessary Obligation) �φ→ Oφ (3.14)

24

Definition 28 (Rules of inference).

(Modus Ponens)
φ φ→ ψ

ψ
(3.15)

(Alethic Necessitation)
φ

�φ
(3.16)

(Deontic Necessitation)
φ

Oφ
(3.17)

(∀ Generalization)
φ

∀xφ
(3.18)

Theorem 3.1.2. The FODAL axiom system is complete and sound with respect to the class of
FODAL frames.

Proof. The resulting multimodal logic can be considered as a simple fusion of quantified modal
logics QS4 and QKD enriched with an additional inclusion axiom 3.14. Both basic logics
QS4 and QKD are known to be sound and complete with respect to the varying domain
semantics [24]. Moreover, it was recently shown in [35] that soundness and completeness
properties can be transferred from monomodal first-order logics QS4 and QKD to their
multimodal join. Therefore, in order to prove the soundness of the FODAL axiomatization it
is required to state the validity of the additional Necessary Obligation axiom with respect to the
FODAL semantics. The transfer of completeness result from the simple join QS4⊕QKD to
the resulting FODAL system is then proved in a manner described in [13] utilizing the method
of canonical models.

The validity of �φ → Oφ follows as a result of Proposition 3.1.1, hence soundness is
straightforward.

Definition 29 (Canonical model).
Mc = 〈Wc, RcO, R

c
�,D

c, Ic〉 is the canonical model for the FODAL axiom system, if Dc, Ic

and Wc – the set of all maximal consistent sets of formulae, are defined as in [24] and for all
w,w′ ∈ Wc, wRc◦w

′ if and only if {φ | ◦ φ ∈ w} ⊆ w′, where ◦ ∈ {�,O}.

The crucial fact concerning model Mc is that the following truth lemma holds for every
formula Φ and possible world w ∈ Wc [24]:

Φ ∈ w if and only if Mc, w �σ Φ (3.19)

It was also shown in [13] that if the canonical model for some axiomatization L happens to
be an L-model, then completeness follows since if some Φ is not a theorem of L, there is an
L-model in which Φ fails – the canonical one. Thus, completeness proof can be concluded by
verifying that constructed canonical model Mc is actually a FODAL model.

25

Since the simple join QS4 ⊕QKD is complete, it follows that RcO is serial and Rc� is a
preorder. Therefore it is left to show that RcO ⊆ Rc�.

Now suppose w ∈ Wc. Assume �X ∈ w. Since �φ → Oφ is an axiom of FODAL and
possible worlds of the canonical model Mc are maximally consistent, so deductively closed,
it follows that OX ∈ w. Then, by definition of accessibility relations in the canonical model,
X ∈ vi, for each vi such that wRcOvi. Therefore {X | �X ∈ w} ⊆ vi. By definition of Rc� it
follows that wRc�vi, which proves that RcO ⊆ Rc�.

Hence, the constructed canonical model Mc is actually a FODAL model what proves the
completeness of the FODAL axiom system with respect to the class of FODAL frames.

3.2 Modeling SBVR vocabulary and rules with FODAL

3.2.1 The meaning of SBVR conceptual schema

Given an SBVR conceptual schema S – as informally introduced in Section 2.2 – we define the
following translation τ(·) from elements of S to notions of first-order deontic-alethic logic:

• For each noun concept A from S, τ(A) is an unary predicate in FODAL.

• For each verb concept R from S , τ(R) is an n-ary predicate in FODAL (n ≥ 2).

• Recall that an SBVR business rule may be represented by an expression resulted from
application of modalities and boolean connectives to a set of closed first-order formulae
φr̂i , as defined in Section 2.2.3. Then for each SBVR rule r from S, its FODAL
formalization τ(r) is defined inductively as follows:

– τ(r̂) = φr̂, where r̂ is an non-modal SBVR expression and φr̂ is its first-order
translation,

– τ(�r̂) = �τ(r̂),

– τ(Or̂) = Oτ(r̂),

– τ(¬r) = ¬τ(r),

– τ(r1 ◦ r2) = τ(r1) ◦ τ(r2), ◦ ∈ {∧,∨,→,↔}, where r1 and r2 are rule formulations.

Example 3.2.1. Assume the following set of business rules, expressed in Structured English:

r1 = Each car rental is insured by exactly one credit card.

r2 = Each luxury car rental is a car rental.

r3 = It is obligatory that each luxury car rental is insured by

at least two credit cards.

26

Then the corresponding FODAL formulas are the following:

τ(r1) = ∀x∃1y(CarRental(x) ∧ Insured(x, y)),

τ(r2) = ∀x(LuxuryCarRental(x)→ CarRental(x)),

τ(r3) = O(∀x∃≥2y(LuxuryCarRental(x) ∧ Insured(x, y))).

While our FODAL formalization of SBVR rules provides logical mechanism supporting
rule formulations with multiple occurrences of modalities, SBVR standard mostly focuses on
normalized business constraints [38, p.108] that may be expressed by rule statements of the form
of atomic modal sentences or by statements reducible to such a form via mechanisms provided
by FODAL axiomatization. As a matter of fact, restricting the domain of interest only to such
atomic modal rule formulations allows to obtain some useful results concerning satisfiability
reduction and connection to standard logics, as will be shown later.

If, however, a rule statement can not be normalized using FODAL axioms, then it might be
either reformulated manually by a business domain expert so that to end up with a normalized
semantically-equivalent constraint, or, in case it is neither possible, the rule can be retained as
is and the whole SBVR conceptual schema should then be considered purely with respect to
FODAL formal semantics.
Hereafter in this work we will only consider SBVR rules expressible in one of the following
forms of atomic modal sentences:

�φ ♦φ Oφ Pφ (3.20)

where φ is any closed well-formed formula of first-order logic.
In the case of having negation in front of the modal operator, we assume application of the
standard modal negation equivalences in order to obtain the basic form of the initial rule.

Definition 30 (FODAL regulation).
A FODAL regulation Σ is a set of FODAL atomic modal sentences formalizing structural and
operational rules of an SBVR conceptual schema S. We introduce the following designations:

τ(r�) = �η, τ(r♦) = ♦π,

τ(r
O

) = Oθ, τ(r
P

) = P ρ,

Σ = {�η1, ...,�ηk,♦π1, ...,♦πl,Oθ1, ...,Oθm,P ρ1, ...,P ρn} (3.21)

The regulation Σ can also be represented as a conjunction of all formulae of the set:

Σ∧ =
k∧
i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi (3.22)

27

where every ηi, πi, θi, ρi is a closed first-order logic formula.
A set Σ� = {�η1, ...,�ηk,♦π1, ...,♦πl} is called a FODAL structural regulation.
A set ΣO = {Oθ1, ...,Oθm,P ρ1, ...,P ρn} is called a FODAL operational regulation.

3.2.2 Reasoning tasks

The final objective of the proposed formalization is to provide an automation solution with
reasoning support for SBVR business modeling and business processes monitoring. When
reasoning about some particular universe of discourse, consistency is essential, since once a
logical inconsistency is accepted, it is possible to deduce anything (including rubbish) from it –
an extreme case of the GIGO (Garbage In Garbage Out) principle.

According to Halpin [21], there are two types of garbage: logical and factual. Inconsistent
designs of the schema S contain logical garbage. For example, one might declare two business
rules that contradict one another. On the other hand, factual errors may arise while populating
the schema S with a set of ground facts describing the current state of business world. For
example, a declared rule that

Each rental car is owned by at most one branch

may be violated by some fact population that assigns some rental car to more than one
branch.

In the following section we define several tasks which address described issues.

Definition 31 (Consistency of a set of business rules).
Assume a FODAL regulation Σ representing a set of structural and operative business rules.
The task of consistency check for Σ is defined as procedure which analyzes the given set Σ and
decides whether none the rules contradict with each other, i.e. there is no formula ψ such that
Σ ` ψ and Σ ` ¬ψ, i.e. Σ 0 ⊥.
A FODAL regulation Σ is called internally inconsistent when the specified constraints do not
contradict each other when the system is populated.
A minimal inconsistent set Σ⊥ ⊆ Σ is a subset of Σ such that Σ⊥ ` ⊥ and ∀∆ ⊂ Σ⊥, ∆ 0 ⊥.

According to the completeness of the FODAL logic we have that Σ 0 ψ if and only if there
exists a FODAL model M and a possible world w in it, such that M, w � Σ ∧ ¬ψ.

Definition 32 (Types of inconsistency).
We distinguish several types of inconsistency depending on types of modalities of rules involved.
The set Σ is called alethic inconsistent if it is inconsistent and the minimal inconsistent set Σ⊥

contains formulae of only alethic nature, i.e. Σ⊥ ⊆ Σ�.
The set Σ is called deontic inconsistent if it is inconsistent and the minimal inconsistent set Σ⊥

28

contains formulae of only deontic nature, i.e. Σ⊥ ⊆ ΣO.
Otherwise, if Σ⊥ ⊆ Σ� ∪ ΣO, the set Σ is called cross inconsistent.

Examples of possible sources of inconsistency are the following:

• “something is obligatory and at the same time it is not possible”: OX ∧ �¬X , cross
inconsistency;

• “something is permitted and forbidden at the same time”: PX ∧ O¬X , deontic
inconsistency;

• other combinations of conflicting rules: �(P → Q) ∧OP ∧O¬Q, cross inconsistency.

Since Theorem 3.1.2 proves the completeness of the FODAL logic, in order to check the
consistency of a set of rules it is sufficient to state the satisfiability of the conjunction of all
formulae of the set:

Σ∧ =
k∧
i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi

Definition 33 (Maximal consistent subset).
Assume a FODAL regulation Σ. Then the task of finding a maximal consistent subset of Σ is
defined as procedure which determines a possible maximal subset Σmax ⊆ Σ, such that:

• Σmax is consistent,

• Σmax is maximal with respect to ⊆,

Therefore this task may also be reduced to the satisfiability of a subformula of Σ∧ also being a
conjunction of FODAL atomic modal sentences.

Definition 34 (Conformity of fact population).
Assume a FODAL regulation Σ representing a set of structural and operative business rules S
and a knowledge base KB – a set of ground facts representing some fact population F . KB
expresses the current state of business world, which is defined as an interpretation of a business
model defined in terms of SBVR concepts. Then the task of conformity of fact population is a
procedure which determines whether the set KB is compliant with all the business rules of the
model, i.e. whether all the necessity claims are valid and no obligations are broken.

For the conformity check we consider only those business rules which possess some
restrictions on the fact populations, namely, necessity and obligation claims:

Σrestrict = {�φi | �φi ∈ Σ} ∪ {Oφi |Oφi ∈ Σ} (3.23)

29

We denote the set of first-order formulae under the scope of modal operators as

Λrestrict = {φi | either �φi ∈ Σrestrict or Oφi ∈ Σrestrict}, (3.24)

Then, since the set of ground facts KB may be seen as a first-order interpretation at some
possible world w, the task of conformity check consists in asserting the claim that KB satisfies
each formula φi ∈ Λrestrict.

Definition 35 (Types of nonconformity).
The knowledge base KB is called strongly nonconforming with respect to a FODAL regulation
Σ if there is a FODAL necessity rule �ψ ∈ Σ such that ψ evaluates to false under KB.
The knowledge base KB is called nonconforming with respect to obligation(s) of a FODAL
regulation Σ if there is a FODAL obligation rule Oψ ∈ Σ such that ψ evaluates to false under
KB.

3.3 Satisfiability of FODAL regulations

3.3.1 Reduction to satisfiability in first-order logic

In this section we will show that if we restrict the domain of interest to business rules
expressed as FODAL atomic modal sentences, we can reduce the satisfiability problem (and
thus consistency) of such fragment of FODAL to first-order satisfiability, what by-turn enables
the transfer of logical results from well-studied reduction classes for satisfiability of predicate
first-order logic [8].

Definition 36.
A FODAL regulation Σ expressed as a FODAL formula 3.22 is satisfiable with respect to a
valuation σ, denoted Satσ(Σ), if and only if there is a model M = 〈F, I〉, based on a FODAL
frame F = 〈W, RO, R�,D〉, and a possible world w ∈ W such that

M, w �σ

k∧
i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi (3.25)

Since FODAL atomic modal sentences, being members of the regulation Σ, may only
contain closed first-order formulae and thus do not contain any free variables, if 3.25 holds
with respect to some valuation σ, then it holds for any other valuation σ′. Hence, hereafter we
will omit mentioning σ in computations.

30

Now by definition of satisfiability of conjunction in FODAL we have that

Sat(Σ) = true if and only if there exists a FODAL frame F = 〈W, RO, R�,D〉,

an interpretation I and a possible world w ∈ W , such that

〈F, I〉, w �
k∧
i=1

�ηi and (3.26a)

〈F, I〉, w �
l∧

i=1

♦πi and (3.26b)

〈F, I〉, w �
m∧
i=1

Oθi and (3.26c)

〈F, I〉, w �
n∧
i=1

P ρi. (3.26d)

Proceeding with expanding the conjunctions and applying Definition 24 for modal operators,
it can be shown that

Sat(Σ) = true if and only if ∃F = 〈W, RO, R�,D〉,∃I,∃w ∈ W such that

∀v ∈ W such that wR�v, 〈F, I〉, v �
k∧
i=1

ηi and (3.27a)

∃vj ∈ W such that wR�vj , 〈F, I〉, vj � πj , ∀j =
−−−→
1 . . . l and (3.27b)

∀v ∈ W such that wROv, 〈F, I〉, v �
m∧
i=1

θi and (3.27c)

∃uj ∈ W such that wROuj , 〈F, I〉, uj � ρj , ∀j =
−−−→
1 . . . n. (3.27d)

Then, taking into account the properties of accessibility relations of the FODAL frame F (in
particular, RO ⊆ R�) and using the definition of an interpretation in first-order deontic-alethic

31

logic, we have that

Sat(Σ) = true if and only if ∃F = 〈W, RO, R�,D〉, ∃I, ∃w ∈ W such that

∀v ∈ W such that wR�v, I(v) �
FOL

k∧
i=1

ηi and (3.28a)

∀v ∈ W such that wROv, I(v) �
FOL

m∧
i=1

θi ∧
k∧
i=1

ηi and (3.28b)

∃vj ∈ W such that wR�vj , I(vj) �
FOL

πj ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . l and

(3.28c)

∃uj ∈ W such that wROuj , I(uj) �
FOL

ρj ∧
m∧
i=1

θi ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . n

(3.28d)

Therefore we showed that Σ is satisfiable if and only if for some FODAL frame F∗ and some
world w there exists a set of first-order logic interpretations I∗(w′), assigned to each possible
world w′, such that (3.28a - 3.28d) holds. Which proves the following theorem:

Theorem 3.3.1. A FODAL regulation Σ∧ =
∧k
i=1 �ηi ∧

∧l
i=1 ♦πi ∧

∧m
i=1 Oθi ∧

∧n
i=1 P ρi is

FODAL-satisfiable if and only if each of the following formulae N ,O,Qj ,Pj is independently
first-order satisfiable:

N =

k∧
i=1

ηi (3.29a)

O =

m∧
i=1

θi ∧
k∧
i=1

ηi (3.29b)

Qj = πj ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . l (3.29c)

Pj = ρj ∧
m∧
i=1

θi ∧
k∧
i=1

ηi, ∀j =
−−−→
1 . . . n (3.29d)

Observe that satisfiability of N follows naturally from satisfiability of any Qj . The same
holds for O and Pj respectively. However, the satisfiability checks for 3.29a and 3.29b should
be examined explicitly, since Σ may only contain necessity and obligation rules. Moreover, such
definition allows to detect the actual source of unsatisfiability of the FODAL regulation Σ.

32

Modularity of the approach: It should be noted that the developed approach of satisfiability
reduction possesses a property of modularity, i.e. it does not depend on the formalism behind
the rule bodies ηi, θi, πi and ρi, as long as formalism-specific satisfiability relation is provided.

3.3.2 Canonical model for FODAL regulations

This section outlines a method to construct a canonical pointed model MΣ = 〈FΣ, IΣ, w�〉 for
a given FODAL regulation Σ, which can be used for satisfiability checking.

Definition 37 (Σ-canonical pointed model).
Assume a FODAL regulation Σ, expressed as a conjunction of FODAL formulae:

Σ∧ =

k∧
i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi (3.30)

Then a Σ-canonical pointed model MΣ = 〈FΣ, IΣ, w�〉 is constructed in the following way:

• FΣ = 〈WΣ, w�, R
Σ
�, R

Σ
O,D〉 is a pointed FODAL frame with root w� ∈ WΣ.

• WΣ = {w�, wO, v1, ..., vl, u1, ..., un} is the set of all possible worlds.

• RΣ
� = {(w�, v) | v ∈ WΣ}∗ is a necessity accessibility relation and {·}∗ denotes the

operation of reflexive transitive closure.

• RΣ
O = {(w�, wO)} ∪ {(w�, uj) | ∀j =

−−−→
1 . . . n} ∪ RKD

O is an obligation accessibility
relation and RKD

O is any complement set ensuring the seriality of RΣ
O, for instance:

RKD
O = {(uj , uj) | ∀j =

−−−→
1 . . . n} ∪ {(wO, wO)}.

• D is some domain function mapping worlds ofWΣ to non-empty sets.

• IΣ = {(v, Iv) | ∀v ∈ WΣ} is a FODAL interpretation such that

Iw� �
k∧
i=1

ηi (3.31a)

IwO
�

m∧
i=1

θi ∧
k∧
i=1

ηi (3.31b)

Ivj �
k∧
i=1

ηi ∧ πj , ∀j =
−−−→
1 . . . l (3.31c)

Iuj �
m∧
i=1

θi ∧
k∧
i=1

ηi ∧ ρj , ∀j =
−−−→
1 . . . n (3.31d)

33

Proposition 3.3.2. Given a FODAL regulation Σ, if a Σ-canonical pointed model
MΣ = 〈FΣ, IΣ, w�〉 exists, then Σ is true in this model.

Proof. This result follows directly from the construction of a Σ-canonical pointed model MΣ

since the constructed frame is a FODAL frame and the definition of IΣ coincides with the result
(3.28a - 3.28d) obtained in the previous section. Thus, if it is possible to define IΣ such that it
meets the conditions (3.31a - 3.31d), then IΣ satisfies Σ at the world w�, hence Σ is true in the
pointed model MΣ.

Theorem 3.3.3. A FODAL regulation Σ is satisfiable if and only if there exists a Σ-canonical
pointed model MΣ = 〈FΣ, IΣ, w�〉.

Proof. The reverse direction follows from Proposition 3.3.2, therefore it remains to prove the
following statement: if MΣ can not be constructed, then Σ is not satisfiable in any other model.

Assume that the Σ-canonical pointed model MΣ can not be constructed, which means that it
is not possible to define such a FODAL interpretation IΣ that meets conditions (3.31a - 3.31d).
So, either of the following holds:

(a) ∀ FOL interpretations Iw� , Iw� 2
∧k
i=1 ηi

(b) ∀ FOL interpretations IwO
, IwO

2
∧m
i=1 θi ∧

∧k
i=1 ηi

(c) ∃j ∈ [1, l] such that ∀ FOL interpretations Ivj , Ivj 2
∧k
i=1 ηi ∧ πj

(d) ∃j ∈ [1, n] such that ∀ FOL interpretations Iuj , Iuj 2
∧m
i=1 θi ∧

∧k
i=1 ηi ∧ ρi

Now assume that condition 3.31a cannot be met, hence (a) holds, and suppose that Σ is
satisfiable, so there exists a model M′ = 〈F′, I′〉 and a possible world w′ of this model such that

M′, w′ �
k∧
i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧
i=1

Oθi ∧
n∧
i=1

P ρi

Therefore, by the definition of conjunction, we have that M′, w′ �
∧k
i=1 �ηi. This means that,

by definition of necessity, ∀v such that w′R�v, M′, v �
∧k
i=1 ηi and thus I′(v) �

FOL ∧k
i=1 ηi.

However, this contradicts with the statement (a) and hence Σ is unsatisfiable. The same results
can be obtained for the rest of the cases (b)-(d) in a similar way, which completes the proof.

3.4 Reduction to monomodal logic QK

As a matter of fact, the FODAL logic inherits the property of undecidability from both its
component logics: standard predicate modal logics QS4 and QKD are undecidable [24].

34

However, decidability results have been obtained for several well-studied fragments of quantified
modal logics [39]. This section defines a truth-preserving translation of atomic modal sentences
of the FODAL logic into standard predicate modal logic QK, which allows to determine
decidable fragments of the FODAL logic.

Definition 38 (Monomodal simulating pointed frame).
Given a FODAL frame F = 〈W, RO, R�,D〉 and a possible world w0 ∈ W , a monomodal
simulating pointed frame Fsw0

is defined as a tuple 〈Ws, Rs,Ds, w0〉, such that:

• Ws includes w0 and all its deontic and alethic successors:
Ws = {w0}∪{v | (w0, v) ∈ RO}∪{v | (w0, v) ∈ R�} = |since RO ⊆ R� and R� is reflexive| =
{v | (w0, v) ∈ R�}.

• Rs = {(w0, v) | (w0, v) ∈ R�}, and �s,♦s are modal operators associated with Rs.

• Ds is a domain function on Ws such that Ds(v) = D(v) ∪ {πDs}, ∀v ∈ Ws, where
πD

s
/∈ D is a new service domain symbol.

Since the definition of Rs does not preserve specific properties of RO and R�, the resulting
frame Fsw0

does not belong either to serial or transitive or reflexive class of frames and therefore
can be classified as a K-frame.

We now define the translation schema for FODAL regulations.

Definition 39 (Monomodal translation).
Given a FODAL regulation Σ expressed as a conjunction of FODAL atomic modal sentences
3.30, a monomodal translation of regulation MTR(Σ∧) is defined inductively as follows:

MTR(φ) = φ,where φ is an objective FODAL formula,

MTR(φ1 ∧ φ2) = MTR(φ1) ∧MTR(φ2),where φ1 and φ2 are FODAL atomic modal sentences,

MTR(�ψ) = �sMTR(ψ),

MTR(Oψ) = �s(¬Π→MTR(ψ)),

MTR(♦ψ) = ♦s(MTR(ψ) ∧Π),

MTR(Pψ) = ♦s(MTR(ψ) ∧ ¬Π),

where ψ is a objective FODAL formula and Π is a 0-place predicate symbol, i.e. propositional
letter, encapsulating the nature of the original modality of the rules of possibility and permission.

35

Definition 40 (Simulated pointed model).
Given a FODAL model M = 〈F, I〉 and a possible world w0 ∈ W , a simulated pointed model
Ms

w0
is defined as a tuple 〈Fs

w0
, Is〉 such that:

• Fsw0
= 〈Ws, Rs,Ds, w0〉 is a monomodal simulating pointed frame for F = 〈W, RO, R�,D〉

and a possible world w0 ∈ W ,

• Is is a first-order interpretation on the frame Fsw0
such that:

– For each v ∈ Ws and for every n-place predicate P , Is(P, v) = I(P, v),

– For each v ∈ Ws such that (w0, v) ∈ RO, Is(Π, v) = ∅,

– For each v ∈ Ws such that (w0, v) /∈ RO, Is(Π, v) = {πDs}.

We now state formally that the translation given above is truth-preserving with respect to
varying domain semantics.

Theorem 3.4.1. For any FODAL regulation Σ, any FODAL model M and any possible world
w0 of a model, we have that

M, w0 � Σ if and only if Ms
w0
, w0 �MTR(Σ), (3.32)

where Ms
w0

is a simulated pointed model for M and w0.

Proof. Since a FODAL regulation Σ may be expressed as a conjunction of FODAL atomic
modal sentences 3.30, we can use Definition 24 of a truth in a model to expand the formula and
then prove the proposition by induction on the structure of Σ∧.
Therefore it is necessary to prove the statement 3.32 for the 4 basic cases corresponding to
different modalities:

(a) M, w0 � �φ iff Ms
w0
, w0 � �sφ.

Assume that M, w0 � �φ holds.
By the definition of the modal operator �, it is the case if and only if ∀v, w0R�v : M, v �

φ.
Then, by the definition of interpretation in M, we have that ∀v, w0R�v : I(v) �

FOL
φ.

Now, as Rs = {(w0, v) | (w0, v) ∈ R�}, it follows that M, w0 � �φ if and only if
∀v, w0R

s
�v : I(v) �

FOL
φ.

Since the first-order interpretation Is disagrees with I only on the newly introduced
predicate symbol Π and φ does not contain Π as a subformula, then I(v) �

FOL
φ if

and only if Is(v) �
FOL

φ.
Therefore we have that M, w0 � �φ iff ∀v, w0R

sv : Is(v) �
FOL

φ.
Hence, by definition of the modal operator �s : M, w0 � �φ iff Ms

w0
, w0 � �sφ.

36

(b) M, w0 � Oφ iff Ms
w0
, w0 � �s(¬Π→ φ).

Assume that Ms
w0
, w0 � �s(¬Π→ φ) holds.

By the definition of �s and interpretation in Ms, it is the case if and only if
∀v, w0R

sv : (Is(v) �
FOL

Π or Is(v) �
FOL

φ).
However, Is(v) �

FOL
Π iff (w0, v) /∈ RO, by the definition of Is.

Then, simplifying the set expressions for (w0, v) and repeating the arguments on Is from
the case (a), we have that Ms

w0
, w0 � �s(¬Π→ φ) iff ∀v, (w0, v) ∈ RO : I(v) �

FOL

φ.
Therefore Ms

w0
, w0 � �s(¬Π→ φ) iff M, w0 � Oφ.

(c) M, w0 � ♦φ iff Ms
w0
, w0 � ♦s(Π ∧ φ).

Assume that Ms
w0
, w0 � ♦s(Π ∧ φ) holds. Then, similar to cases (a)–(b), the following

sequence of statements proves the proposition for this particular case:
Ms

w0
, w0 � ♦s(Π ∧ φ) iff ∃v, w0R

sv : Is, v �
FOL

φ ∧Π.
Is, v �

FOL
Π iff (w0, v) /∈ RO.

Ms
w0
, w0 � ♦s(Π ∧ φ) iff ∃v, (w0, v) ∈ R� \RO : I(v) �

FOL
φ.

Ms
w0
, w0 � ♦s(Π ∧ φ) iff M, w0 � ♦φ.

(d) M, w0 � Pφ iff Ms
w0
, w0 � ♦s(¬Π ∧ φ)

Assume that Ms
w0
, w0 � ♦s(¬Π ∧ φ) holds. Then, similar to cases (a)–(c), the following

sequence of statements proves the proposition for this particular case:
Ms

w0
, w0 � ♦s(¬Π ∧ φ) iff ∃v, w0R

sv : Is, v �
FOL

φ ∧ ¬Π.
Is, v �

FOL ¬Π iff (w0, v) ∈ RO.
Ms

w0
, w0 � ♦s(¬Π ∧ φ) iff ∃v, (w0, v) ∈ R� ∩RO : I(v) �

FOL
φ.

Ms
w0
, w0 � ♦s(¬Π ∧ φ) iff M, w0 � Pφ.

Therefore we proved that the translation MTR defined for FODAL regulations is truth-
preserving and, thus, enables the transfer of decidability results from well-studied fragments
of predicate modal logics [39] to FODAL. In particular, the following fragments of FODAL
logic are decidable:

• the set of atomic modal sentences with at most two variables (denoted byMAS2),

• the set of monadic atomic modal sentences, all predicate symbols in which are at most
unary(denoted byMASmon),

• the set of atomic modal sentences, the modal operators in which are applied to subformulas
from the guarded fragment of first-order logic [4] (denoted byMASGF).

37

CHAPTER 4
Implementation of automated

reasoning support tool

In order to demonstrate the practical value of the results obtained in Section 3.3, in particular, a
certain case of reduction of consistency of SBVR rules set to satisfiability in description logic,
we developed a special tool which provides automated support for some reasoning tasks along
with translation into an OWL2 ontology.

4.1 General description of the tool

Since the tool was developed in the context of the ONTORULE FP7 project [26], the set
of SBVR rules is expressed as an ORM2 diagram or an equivalent CogNIAM schema [38,
annex L]. This schema is then translated into the ORM2 Formal Syntax without any loss of
information [15], which is then passed as an input to the developed tool. The CogNIAM schema
to ORM2 Formal Syntax translation has been provided by a project partner and described in the
public deliverable [9].

The implementation of the tool is written in Java and includes a parser for ORM2 Formal
Syntax, a set of Java classes representing the ORM2 knowledge database, a translator into an
OWL2 ontology and a modal reasoning engine using HermiT or FaCT++ as an underlying
reasoner. The parser was developed using the JavaCC parser generator.

The tool provides the following functionality:

• Checking the consistency of a given set of rules

• Translating a given ORM2 schema into OWL2 ontology

39

The workflow diagram of the tool is depicted on Figure 4.1.

Figure 4.1: Workflow Diagram

1Neumont ORM Architect for Visual Studio [1]
2PNA Group Discovery and Validation Assistant [2], [9]

4.2 Input specifications

4.2.1 ORM2 Formal Syntax

In this section we recapitulate the definition of the ORM2 Formal Syntax which was developed
in [15] with a humble contribution of the author of the thesis.

First, we define a signature Ω consisting of:

• a set E of entity type symbols;

• a set V of value type symbols;

• a set of object type symbols as O = E ∪ V;

• a setR of relation symbols;

• a set A of (attribute) role symbols;

• a set D of domain symbols, and

40

• a set Λ of pairwise disjoint sets of values;

• an extension function Λ(·) : D → Λ associating each domain symbol D ∈ D to an
extension ΛD;

• a binary relation % ⊆ R×A linking role symbols to relation symbols. We take the pairR.a
as the atomic elements of the syntax, and we call it localized role. Given a relation symbol
R, %R = {R.a|R.a ∈ %} is the set of localized roles with respect to R; arity(R) = |%R|
is the arity of the relation R;

• for each relation symbol R, a bijection τR : %R → [1..|%R|] mapping each element in
%R to an element in the finite succession of natural numbers [1..|%R|]. We also define
τ =

⋃
R∈R τR. The mapping τR guarantees a correspondence between role components

and argument positions in a relation, so that we can freely choose between an ‘attribute-
based’ and a ‘positional-based’ representation.

Then an ORM2 conceptual schema Σ over Ω consists of the following relations:

• TYPE ⊆ %×O – relation representing role connections.

• FREQ ⊆ ℘(%) × (N × (N ∪ {∞})) – relation defining frequency constraints. The
introduced generalized version of the FREQ construct covers the following: (i) external
frequency (i.e., occurrence frequency constraints that apply to single roles from different
relations), and (ii) internal frequency (i.e., occurrence frequency constraints that apply
to single roles from a single relation) constraints, as well as, their respective compound
versions, where two or more roles are involved. Finally, the introduced syntax naturally
supports the expression of frequency ranges (for a detailed introduction of the different
constraints, see [21, p.272]).

• MAND ⊆ ℘(%)×O – relation representing mandatory role constraints.

• R-SETH ⊆ (℘(%)× ℘(%))× (µ : %→ %), where µ is a partial bijection such that, for any
〈A,B, µ〉 ∈ R-SETH, A = {R.a|µ(R.a) ∈ B} and H = {Sub,Exc}.
R-SETSub represents subset constraints while R-SETExc represents exclusion constraints
respectively.

• O-SETH ⊆ 2O × O, where H = {Isa,Tot,Ex}, – binary relation representing the
subtyping hierarchy on object types.

• O-CARD ⊆ O × (N × (N ∪ {∞})) – partial function defining the cardinality of the
object type extensions (i.e. each population of A includes a number of instances that is
constrained to be in a given range).

41

• R-CARD ⊆ R × (N × (N ∪ {∞})) – partial function defining the cardinality of the
relations extensions (i.e. each population of R includes a number of instances that is
constrained to be in a given range).

• OBJ ⊆ R×O – binary relation defining objectifications.

• RINGJ ⊆ ℘(% × %), where J = {Irr,Asym,Trans, Intr,Antisym,Acyclic,Sym,Ref}, –
relation defining ring constraints.

• V-VAL : V → ℘(ΛD), for some ΛD ∈ Λ, – relation representing object type value
constraints.

The glossary depicting the exact correspondence between key terms and symbols of an
ORM2 diagram and their formal syntactical representation is given in Appendix A.

In order to provide means for expressing the modalities of the constraints expressed
in ORM2 Formal Syntax, we introduce special superscripts (·)� , (·)♦ , (·)O , and (·)P , which
are applicable to all the relations in Ω (e.g. OBJ

�
) and correspond to modal operators of

necessity, possibility, obligation and permission respectively. If no superscript is provided,
then a necessity superscript (·)� is considered implicitly.

4.2.2 Input format

We now define a machine-readable format of ORM2 Formal Syntax, i.e. the plain-text
representation of all the elements of the signature Ω and the ORM2 conceptual schema Σ.

Formal Syntax Input Format
A set E of entity type symbols ENTITYTYPES: {EntType [,EntType]*}

Ex.: ENTITYTYPES:{SeatBeltTest,BusinessObject}

A set V of value type symbols VALUETYPES: {ValType [,ValType]*}

Ex.: VALUETYPES:{MethodName,Quality,Time}

Entity type or value type symbol UppercaseWord, can contain letters, numbers and the
following symbols: ’_’ and ’-’
NB: entity and value types should have unique names.

A setR of relation symbols RELATIONS: {Rel [,Rel]*}

Ex.: RELATIONS:{HasCost,HasQuality}

Relation symbol anycaseWord, can contain letters, numbers and the
following symbols: ’_’ and ’-’
NB: relations should have unique names (see below).

42

A set A of (attribute) role
symbols

ATTRIBUTES: {attr [,attr]*}

A set D of domain symbols DOMAIN: {DomainElem [,DomainElem]*}

Role or domain symbol anycaseWord, can contain letters, numbers and the
following symbols: ’_’ and ’-’
NB: sets of role names, domain symbols, relation names,
entity and value type names should be disjoint.

A binary relation % ⊆ R×A LOC-ROLES: {Rel.attr [,Rel.attr]*}

Ex.: LOC-ROLES:{TestedBy.function,TestedBy.method}

A bijection τR : %R → [1..|%R|]
•LOC-ROLES-INDEX(Rel.attr,i)
•LOC-ROLES-INDEX: {(Rel.attr,i)

[,(Rel.attr,i)]*}
Ex.: LOC-ROLES-INDEX(HasQuality.quality,2)

TYPE ⊆ %×O TYPE(Rel.attr,ObjType)

Ex.: TYPE(HasCost.method,Method)

FREQ ⊆ ℘(%) × (N × (N ∪
{∞}))

FREQ({Rel.attr [,Rel.attr]*},(i,j)),
where i≥ 0 and j> 0 or j=inf or j=INF, corresponding
to j= +∞
Ex.: FREQ({HasQuality.method},(1,1))

MAND ⊆ ℘(%)×O MAND({Rel.attr [,Rel.attr]*},ObjType)

Ex.: MAND({IsIdentifByMethodName.method},Method)

R-SETH ⊆ (℘(%) × ℘(%)) ×
(µ : %→ %)

R-SETh({Rel.attr [,Rel.attr]*},

{Rel.attr [,Rel.attr]*},

{(Rel.attr,Rel.attr)

[,(Rel.attr,Rel.attr)]*}),
where h=[sub|exc]
Ex.: R-SETsub({isIn.course,isIn.subj},

{activIn.course,activIn.subj},

{(isIn.course,activIn.course),

(isIn.subj,activIn.subj)})

O-SETH ⊆ 2O ×O, where H =

{Isa,Tot,Ex}
O-SETh({ObjType [,ObjType]*},ObjType),
where h=[isa|tot|ex]
Ex.: O-SETtot({PhysMethod,VirtMethod},Method)

O-CARD ⊆ O × (N × (N ∪
{∞}))

O-CARD(ObjType)=(i,j), where i≥ 0 and j> 0 or
j=inf or j=INF, corresponding to j= +∞
Ex.: O-CARD(ActiveCourse)=(1,50)

43

R-CARD ⊆ R × (N × (N ∪
{∞}))

R-CARD(Rel)=(i,j), where i≥ 0 and j> 0 or
j=inf or j=INF, corresponding to j= +∞
Ex.: R-CARD(HasQuality)=(1,INF)

OBJ ⊆ R×O OBJ(Rel,ObjType)

Ex.: OBJ(hasPrerequisite,O-Prerequisite)

RINGJ ⊆ ℘(% × %), where J =

{Irr,Asym,Trans, Intr,Antisym,
Acyclic,Sym,Ref}

RINGj(Rel.attr,Rel.attr),
where h=[irr|asym|trans|intr|antisym

|acyclic|sym|ref]
Ex.: RINGirr(hasPrereq.subject,hasPrereq.object)

V-VAL : V → ℘(ΛD) for some
ΛD ∈ Λ

• V-VAL(valType)={(value..value)}

• V-VAL(valType)={(..value]}

• V-VAL(valType)={(value..)}

• V-VAL(valType)={value..value}

• V-VAL(valType)={..value}

• V-VAL(valType)={value..}

• V-VAL(valType)={value [,value]*}

• V-VAL(valType)={<xsd:datatype>}

where
• value can be either an integer or float(e.g. 1.3)
number or a string constant escaped by ’’’’ or ’’’,
• range constraints are defined only for numbers,
• range constraints can either include (’[’, ’]’) or exclude
(’(’, ’)’) bounds,
• unlimited range (e.g. (value..)) cannot include
unlimited bound,
• when not explicitly stated bounds are included,
• xsd:datatype is any built-in XML Schema Datatype, e.g
“xsd:decimal”

Ex.: V-VAL(Course-Code)={[101..399]}

Ex.: V-VAL(Student-Nr)={<xs:decimal>}

(·)� , (·)♦ , (·)O , and (·)P \BOX{·}, \DIA{·}, \OB{·} and \PM{·} respectively.

4.2.3 Naming convention

According to the specification of ORM2 [21] it is not possible to have several relations with the
same name, therefore it is obligatory that all distinct relations of the input schema have unique

44

case sensitive names. Moreover, if a relation does not have a label (which is quite often the case
for ORM2 diagrams), it is the duty of a tool which converts to ORM2 Formal Syntax to assign
such a label.

Each role within its relation should have a unique label, i.e. it’s forbidden that a relation
has two attributes with the same name. In case of a relation having the same labels of its roles
(e.g., friendOf / friendOf), new labels have to be assigned. However, it is allowed
that two different relations share the labels for their attributes (e.g. hasCar.owner and
hasHouse.owner).

In the case of dealing with reference schemas (e.g., .name, .Nr) the person or tool that
produces the ORM2 input file should identify those reference predicates (relations) by either sur-
rogate (e.g., P2, P3) or extended names (e.g., PersonHasName, IsIdentifByCarName),
as recommended by [21]. We suggest several policies to be used in order to provide unique
names for reference predicates:

• Substitute the dot ’.’ with a dash and a typical “has” and add the name of the relevant
concept in front of the dash, e.g. Person-hasNumber.

• Take a typical key-phrase “IsIdentifiedBy” and add the name of the relevant range
value type, e.g. IsIdentifiedByPersonName.

It is obligatory that the sets of relation names, value type names, entity type names,
attribute names, domain symbols are mutually disjoint and define unique names for each the
aforementioned element.

4.2.4 Obligatory input elements

Although the tool is capable of filling the ORM2 signature Ω on-the-fly, while parsing ORM2
conceptual schema Σ constraints, it is strongly recommended that the input file contains an
explicit full specification of the ORM2 signature.
Moreover, the following elements of the signature Ω are considered to be obligatory:

• the bijection LOC-ROLES-INDEX defining the indices of roles in a relation. This is
necessary in order to define the direction and the arity of the relation, which is especially
crucial in cases of so-called “looping” relations, where relation connects several objects
of the same object type (e.g. childOf).

• the set VALUETYPES of value type symbols. This requirement is imposed by the fact
that in some cases it is not possible to determine whether the parameter of the constraint
is a value type or an entity type (e.g. in case of a typing constraint). Moreover, for

45

implementation reasons, it is necessary to link all the value types to built-in OWL2
datatypes, which can be done in one of the following ways:

– if for some value type there is a V-VAL range or enumeration constraint, then the
base OWL2 datatype is inferred by the type of the constants used in this constraint.

– the base datatype for some value type can be defined explicitly, using a value
constraint of the form V-VAL(valType)={<xsd:datatype>}.

– if for some value type there exists no value constraint, then its base datatype is taken
to be xsd:string.

4.3 Logical foundations of implementation

The algorithm of the developed automated reasoning support tool relies on two fundamental
results.

Firstly, it implements the procedure defined in [15] to translate a set of constraints from
ORM2 Formal Syntax to ALCQI description logic, which is in fact a fragment of OWL2.
The mapping procedure from ORM2 Formal Syntax to DLR is given in Appendix B and the
encoding of the resulting DLR knowledge base into ALCQI/(OWL2) is done in accordance
to [10]. Since ALCQI is less expressible than DLR, in particular, it doesn’t support n-ary
relations, the following information about the ORM2 conceptual schema might be lost:

• no frequency constraints on multiple roles

• no generalized subset (R-SET) constraints

– supported: simple case of stand-alone roles

– supported: special case of contiguous full-set of roles

• no ring constraints (NB: drawback of mapping n-ary relations via reification)

Secondly, in order to check the consistency of a set of business rules expressed in ALCQI-
definable fragment of ORM2, we utilize the modularity of the approach defined in Section 3.3
and adapt the result of satisfiability reduction for the case of general description logic DL. The
satisfiability relation for ORM2 is then provided by the semantic-preserved translation from
ORM2 Formal Syntax to ALCQI [15].

46

Theorem 4.3.1.
A FODAL regulation Σ = {�η1, ...,�ηk,♦π1, ...,♦πl,Oθ1, ...,Oθm,P ρ1, ...,P ρn}, ex-
pressed in DL-definable fragment of ORM2, is internally consistent if and only if each of the
following description logic formulaeNDL

,ODL
,QDL

j ,PDL

j is independently satisfiable in DL:

NDL
=

kl

i=1

ηi

ODL
=

ml

i=1

θi u
kl

i=1

ηi

QDL

j = πj u
kl

i=1

ηi, ∀j =
−−−→
1 . . . l (4.1)

PDL

j = ρj u
ml

i=1

θi u
kl

i=1

ηi, ∀j =
−−−→
1 . . . n

Thus, we can reduce the consistency of a given set of constraints to ALCQI satisfiability,
which in turn can be interpreted as unsatisfiable concepts’ check in resulting OWL2 ontology.
Indeed, whenever a formula in ALCQI is unsatisfiable, it means that the concept definition
expressed by this formula contains a contradiction which prevents the concept from having a
model, i.e. the concept is forced to not have any instances, hence is unsatisfiable.

Therefore, in order to check the consistency of an ORM2 schema Σ expressed in ORM2
Formal Syntax extended with four basic modal operators, we should perform the following steps:

1. Translate each constraint r ∈ Σ, omitting its preceding modal operator, into ALCQI
formula φALCQI

r using the mapping procedure from ORM2 Formal Syntax to DLR given
in Appendix B and the following translation into ALCQI according to [10].
N.B.: In the case when a constraint cannot be expressed inALCQI, a corresponding error
message should be generated.

2. Process the resulting formulae according to Section 3.3 obtaining the set of objective
formulae NDL

,ODL
,QDL

j ,PDL

j from Theorem 4.3.1, each of those is then mapped into
a corresponding OWL2 ontology Oi.

3. For each ontology Oi perform the unsatisfiable classes check using one of the supported
OWL2 reasoners (e.g. FaCT++ or HermiT). Then Σ is internally consistent if and only if
none of Oi contains unsatisfiable classes.

47

Taking advantage of Definition 4.1 it is also becomes possible to define whether the inconsis-
tency is alethic, deontic or of a cross type. Furthermore, in certain cases when inconsistencies
are caused by rules of possibility or permission it would be possible to define the source of
inconsistency.

4.4 Examples

This section demonstrates the functionality of the implemented tool by means of examples of its
usage for different tasks. The graphical user interface of a tool is introduced on Figure 4.2.

Figure 4.2: The Graphical User Interface

4.4.1 Checking the consistency of a given set of rules

The functionality of the consistency check will be demonstrated on the classical example of an
inconsistent ORM2 schema from [21, p.295] (see Figure 4.3).

Below is an ALCQI-expressible fragment of this schema in ORM2 Formal Syntax without
any modal operators, therefore necessities are implicitly understood:

48

Figure 4.3: Inconsistent ORM2 Schema

ENTITYTYPES: {A,B,C}

RELATIONS: {R,S}

TYPE(R.a,A)

TYPE(R.b,B)

TYPE(S.a,A)

TYPE(S.c,C)

LOC-ROLES-INDEX: {(R.a,1),(R.b,2),(S.a,1),(S.c,2)}

MAND({R.a},A)

MAND({S.a},A)

FREQ({S.a},(1,3))

O-SETisa({C},B)

R-SETexc({R.a},{S.a},{(R.a,S.a)})

This schema is internally inconsistent since the mandatory roles on A imply an equality
constraint between these role, therefore ifA is populated, then the exclusion set constraint cannot
be satisfied. The same result is indeed demonstrated by the implemented tool on Figure 4.4.

Let us now express the exclusion constraint as an obligation, so that still conflicts with the
mandatory constraints, but in a deontic manner:

\OB{ R-SETexc({R.a},{S.a},{(R.a,S.a)}) }

We then get the following message as a result of a consistency check:

The given ORM2 schema is internally inconsistent w.r.t. obligations since its

OWL2 translation contains unsatisfiable concepts.

The following concepts are unsatisfiable:

obj_S

obj_R

A

Let us now introduce the modal operators in the following way:

49

Figure 4.4: Sample output

\OB{ MAND({R.a},A) }

\OB{ MAND({S.a},A)

FREQ({S.a},(1,3))

O-SETisa({C},B)

\DIA{ R-SETexc({R.a},{S.a},{(R.a,S.a)}) }

We then get the following message as a result of a consistency check:

The given ORM2 schema is internally consistent.

This is definitely the case since none of the constraints contradict with each other.

4.4.2 Translating a given ORM2 schema into OWL2 ontology

As a part of implementation the translation from a given ORM2 schema into OWL2 ontology
was implemented. However, this translation does not support modal operators in their diversity
and therefore ignores all rules except necessities.

A sample ORM2 schema is presented on Figure 4.5. We present below only a fragment of

50

Figure 4.5: Sample ORM2 input schema

an input file in ORM2 Formal Syntax with some key constraints. The OWL/XML fragment of
the OWL2 output obtained from this particular example is introduced in Appendix C.

OBJ(hasPrerequisite,O-Prerequisite)

MAND({lifelongEnrollmentEdorsedBy.object,wasOn.enrollment},Enrollment)

O-SETtot({ReseachOrTeachingStaff,Student,Admin},UNI-Personnel)

R-SETsub({isIn.course},{activeIn.activecourse},

{(isIn.course,activeIn.activecourse)})

RINGtrans(hasPrerequisite.subject,hasPrerequisite.object)

O-CARD(ActiveCourse)=(1,50)

R-CARD(activeIn)=(1,INF)

V-VAL(Admin-Nr)={<xsd:decimal>}

V-VAL(Course-Code)={[101..399]}

51

CHAPTER 5
Conclusion and future work

The research conducted in this thesis was dedicated to the problem of logical formalization of
the Semantics of Business Vocabulary and Rules standard (SBVR) and providing the business
expert with automated solutions with reasoning support based on such logical formalization.

Firstly, we investigated in detail the formal semantics of SBVR defined by the standard
itself and pointed out several shortcomings of the adopted approach. The most significant
drawbacks include, but are not limited to, disregarding the possible interaction between different
types of rules, incompatibility with the formal semantics of classical deontic logics as well
as ambiguity of the model-theoretic semantics. These facts of imperfection of the existing
formalization justified the demands for a well-defined, noncontradictory formal semantics for
business vocabularies and rules.

As a result of our research, motivated by the drawbacks of the existing methods, we defined
a first-order deontic-alethic logic (FODAL) along with its syntax, semantics and complete and
sound axiomatization. We also defined a certain class FODAL of bimodal frames and proved
that such frames correctly capture the desired semantics of alethic and deontic rules as well as
their interactions.

Another fundamental result obtained in this thesis is that we demonstrated that restricting the
domain of interest to business rules expressed as atomic modal sentences allows to reduce the
problem of satisfiability in FODAL to satisfiability in first-order logic and, further restricting
rule formulations, to satisfiability in description logic. Also in the attempt to establish a
relationship with a standard logical formalism, we defined a truth-preserving translation from
atomic modal sentences of bimodal FODAL into quantified monomodal logic QK, that can be
used to facilitate the transfer of decidability results from well-studied fragments of predicate
modal logics to FODAL.

53

The implementation part of the thesis has resulted in a special tool which provides an
automated support for consistency checks of the conceptual model along with its translation to
OWL2 ontology. A new plain-text input format was also developed for a newly defined Formal
Syntax of ORM2 schemas – a graphical notation for SBVR.

The main functionality of the developed tool results in support for consistency checks of a
set of ALCQI-expressible deontic and alethic business rules. Another important task which is
supported by the tool is translation of the aforementioned fragment of an ORM2 schema into an
OWL2 ontology. However, this translation, as opposed to consistency check, does not support
any modalities except necessity due to lack of notions representing deontic rules in OWL2 (that
however exist in some extensions of OWL2, e.g. SWRL). This tool was developed in the context
of the ONTORULE FP7 project [3] and became a part of the public deliverable [26].

The future research in the field of logical formalization of SBVR aims to study the problem
of entailment with respect to possible interaction of alethic and deontic modalities. Another
possible future course of work may include defining an approach to translate an ORM2 schema
with its alethic and deontic rules to SWRL or some other extension of OWL2.

There is also an ongoing work on binding the implemented approach together with NORMA
(an open-source ORM2 tool) which could lead into more extensive integration with other
modeling tools and fulfil the demand for automated solutions with reasoning support.

54

APPENDIX A
Glossary of the ORM2 Formal Syntax

The glossary depicts the exact correspondence between key terms and symbols of an ORM2
diagram (on the left) and their formal syntactical representation (on the right) as given in [15].

55

ORM2

ORM Glossary 897

ORM 2 ORM 1

Internal Uniqueness Constraints

Unary: r - -] or I -1

Binary: n : l I t I l :n I I I

1 : 1 I I I m : n I I I

UC on role pa i r l -2 I I I I

UC on role pai r l , 3 I I I I

Many UC combinations are possible
.,,.,..

Preferred uniqueness: i I i

I I I I
ORM 2 enables display of preferred
uniqueness constraints on n-aries
to be toggled on/off.

lor i

i ;i

Role Connect ion

i I I ;I

Role is played only by A

External Uniqueness Constraints

Each B 1 B n combination (n > 1)
relates to only one instance of A

Preferred uniqueness:

: i~ "

~'~ ~

I I
P

I" I I ~1

%%

 9 , , ,~ '

FREQ({R.a1,...,R.an},(0,1))

ORM Glossary 897

ORM 2 ORM 1

Internal Uniqueness Constraints

Unary: r - -] or I -1

Binary: n : l I t I l :n I I I

1 : 1 I I I m : n I I I

UC on role pa i r l -2 I I I I

UC on role pai r l , 3 I I I I

Many UC combinations are possible
.,,.,..

Preferred uniqueness: i I i

I I I I
ORM 2 enables display of preferred
uniqueness constraints on n-aries
to be toggled on/off.

lor i

i ;i

Role Connect ion

i I I ;I

Role is played only by A

External Uniqueness Constraints

Each B 1 B n combination (n > 1)
relates to only one instance of A

Preferred uniqueness:

: i~ "

~'~ ~

I I
P

I" I I ~1

%%

 9 , , ,~ '

TYPE(R.a,A)

ORM Glossary 897

ORM 2 ORM 1

Internal Uniqueness Constraints

Unary: r - -] or I -1

Binary: n : l I t I l :n I I I

1 : 1 I I I m : n I I I

UC on role pa i r l -2 I I I I

UC on role pai r l , 3 I I I I

Many UC combinations are possible
.,,.,..

Preferred uniqueness: i I i

I I I I
ORM 2 enables display of preferred
uniqueness constraints on n-aries
to be toggled on/off.

lor i

i ;i

Role Connect ion

i I I ;I

Role is played only by A

External Uniqueness Constraints

Each B 1 B n combination (n > 1)
relates to only one instance of A

Preferred uniqueness:

: i~ "

~'~ ~

I I
P

I" I I ~1

%%

 9 , , ,~ '

FREQ({R.a,S.b},(0,1))

FREQ({R1.a11,...,R1.a1n,...,Rk.ak1,...,Rk.akm},(0,1))

898 ORM Glossary

ORM 2 ORM 1

Mandatory Role Constraints

Simple:

or

Role is mandatory for population of A

Disjunctive (inclusive-or constraint):

Each instance in the population of A
plays at least one of the n attached roles
(n > 1). Role numbers are not displayed.

"A"

I
or

' I

I

Objectification

"A" "A"

etc.

Fact type is objectified as object type A.
ORM 2 allows any fact type to be objectified.

Object Value Constraints

Enumeration Range

~ " - ~ { a u a2, a3} ~ {al.. an}

Semibounded discrete range { a.. } { ..a }

Bounded continuous range
{[a~ .. a2]} includes both end values
{(a~ .. a2)} excludes both end values
{[a~ .. a2)} includes first value
{(a~ .. a2]} includes last value

Combinations are allowed.

Role Value Constraints

{al, a2}

ORM 1 does not support
objectified unaries. It allows
objectification only if for a
spanning UC or a 1:1 pattern.

, i l

(~ {al'
8 2 ,
a 3 }

{a . . } { . .a }

{a 1 . .a 2}

ORM1 does not support
exclusion of any end values

Combinations are allowed.

Same patterns
as above

Not supported

{a 1 .. a n}

MAND({R.a},A)

MAND({R1.a11,...,R1.a1n,...,Rk.ak1,...,Rk.akm},A)

56

ORM2

898 ORM Glossary

ORM 2 ORM 1

Mandatory Role Constraints

Simple:

or

Role is mandatory for population of A

Disjunctive (inclusive-or constraint):

Each instance in the population of A
plays at least one of the n attached roles
(n > 1). Role numbers are not displayed.

"A"

I
or

' I

I

Objectification

"A" "A"

etc.

Fact type is objectified as object type A.
ORM 2 allows any fact type to be objectified.

Object Value Constraints

Enumeration Range

~ " - ~ { a u a2, a3} ~ {al.. an}

Semibounded discrete range { a.. } { ..a }

Bounded continuous range
{[a~ .. a2]} includes both end values
{(a~ .. a2)} excludes both end values
{[a~ .. a2)} includes first value
{(a~ .. a2]} includes last value

Combinations are allowed.

Role Value Constraints

{al, a2}

ORM 1 does not support
objectified unaries. It allows
objectification only if for a
spanning UC or a 1:1 pattern.

, i l

(~ {al'
8 2 ,
a 3 }

{a . . } { . .a }

{a 1 . .a 2}

ORM1 does not support
exclusion of any end values

Combinations are allowed.

Same patterns
as above

Not supported

{a 1 .. a n}

OBJ(R,A)

898 ORM Glossary

ORM 2 ORM 1

Mandatory Role Constraints

Simple:

or

Role is mandatory for population of A

Disjunctive (inclusive-or constraint):

Each instance in the population of A
plays at least one of the n attached roles
(n > 1). Role numbers are not displayed.

"A"

I
or

' I

I

Objectification

"A" "A"

etc.

Fact type is objectified as object type A.
ORM 2 allows any fact type to be objectified.

Object Value Constraints

Enumeration Range

~ " - ~ { a u a2, a3} ~ {al.. an}

Semibounded discrete range { a.. } { ..a }

Bounded continuous range
{[a~ .. a2]} includes both end values
{(a~ .. a2)} excludes both end values
{[a~ .. a2)} includes first value
{(a~ .. a2]} includes last value

Combinations are allowed.

Role Value Constraints

{al, a2}

ORM 1 does not support
objectified unaries. It allows
objectification only if for a
spanning UC or a 1:1 pattern.

, i l

(~ {al'
8 2 ,
a 3 }

{a . . } { . .a }

{a 1 . .a 2}

ORM1 does not support
exclusion of any end values

Combinations are allowed.

Same patterns
as above

Not supported

{a 1 .. a n}

V-VAL(A)={vD1,...,vDn}

898 ORM Glossary

ORM 2 ORM 1

Mandatory Role Constraints

Simple:

or

Role is mandatory for population of A

Disjunctive (inclusive-or constraint):

Each instance in the population of A
plays at least one of the n attached roles
(n > 1). Role numbers are not displayed.

"A"

I
or

' I

I

Objectification

"A" "A"

etc.

Fact type is objectified as object type A.
ORM 2 allows any fact type to be objectified.

Object Value Constraints

Enumeration Range

~ " - ~ { a u a2, a3} ~ {al.. an}

Semibounded discrete range { a.. } { ..a }

Bounded continuous range
{[a~ .. a2]} includes both end values
{(a~ .. a2)} excludes both end values
{[a~ .. a2)} includes first value
{(a~ .. a2]} includes last value

Combinations are allowed.

Role Value Constraints

{al, a2}

ORM 1 does not support
objectified unaries. It allows
objectification only if for a
spanning UC or a 1:1 pattern.

, i l

(~ {al'
8 2 ,
a 3 }

{a . . } { . .a }

{a 1 . .a 2}

ORM1 does not support
exclusion of any end values

Combinations are allowed.

Same patterns
as above

Not supported

{a 1 .. a n}

DERIVED [TYPE + V-VAL + MAND + UNIQ]
ORM Glossary 899

ORM 2 ORM 1

Subset Constraints

Simple: E~
(~) Each object that plays role 1

also plays role 2
Fh

Contiguous Role-pair:

i 2.112.21 Each object pair that plays
the role sequence 1.1, 1.2
also plays

i1.111.2i the role sequence 2.1, 2.2

Other cases:

i2.1i 2.2i i2.3i Each object tuple that plays I I I
the role sequence 1.1, 1.2, 1.3
also plays

, the role sequence 2.1, 2.2, 2.3
11!11 1!21 I li.31

ORM 2 also displays subset
constraints over join paths

Equality Constraints

2 role-sequences (of I or more roles):
, E ~ 12.112.21 12'=112"21 12i31

| | |
I1.11 1.21 I 1'.11 721' I 11.31

Populations of role-sequences
must be equal

3 or more role-sequences:
e.g.

Exclusion Constraints

! 1.11 1,21
ooO,,- ooo

_ . -" 12.112.21 |
13.113.21

I n. l l n.21 I n.l l n.21 In.31
oo, o,, I... i I

| | %% %,, "%
r ~ { 1.].'i 1.2{ { 1'.1{ 1'.21]1t31

Same

Same

Populations of 2 or more role-sequences
must be mutually exclusive

Same

Same

Not supported
(instead use multiple 2-
sequence constraints)

Same

ORM 1 does not display subset
constraints over join paths

R-SETSub({R.a},{S.b},µ)

R-SETSub({R1.a11,...,R1.a1n,...,Rk.ak1,...,Rk.akm},
 {S1.b11,...,S1.b1n,...,Sk.bk1,...,Sk.bkm},µ)

57

ORM2

ORM Glossary 899

ORM 2 ORM 1

Subset Constraints

Simple: E~
(~) Each object that plays role 1

also plays role 2
Fh

Contiguous Role-pair:

i 2.112.21 Each object pair that plays
the role sequence 1.1, 1.2
also plays

i1.111.2i the role sequence 2.1, 2.2

Other cases:

i2.1i 2.2i i2.3i Each object tuple that plays I I I
the role sequence 1.1, 1.2, 1.3
also plays

, the role sequence 2.1, 2.2, 2.3
11!11 1!21 I li.31

ORM 2 also displays subset
constraints over join paths

Equality Constraints

2 role-sequences (of I or more roles):
, E ~ 12.112.21 12'=112"21 12i31

| | |
I1.11 1.21 I 1'.11 721' I 11.31

Populations of role-sequences
must be equal

3 or more role-sequences:
e.g.

Exclusion Constraints

! 1.11 1,21
ooO,,- ooo

_ . -" 12.112.21 |
13.113.21

I n. l l n.21 I n.l l n.21 In.31
oo, o,, I... i I

| | %% %,, "%
r ~ { 1.].'i 1.2{ { 1'.1{ 1'.21]1t31

Same

Same

Populations of 2 or more role-sequences
must be mutually exclusive

Same

Same

Not supported
(instead use multiple 2-
sequence constraints)

Same

ORM 1 does not display subset
constraints over join paths

DERIVED [R-SETSub]

ORM Glossary 899

ORM 2 ORM 1

Subset Constraints

Simple: E~
(~) Each object that plays role 1

also plays role 2
Fh

Contiguous Role-pair:

i 2.112.21 Each object pair that plays
the role sequence 1.1, 1.2
also plays

i1.111.2i the role sequence 2.1, 2.2

Other cases:

i2.1i 2.2i i2.3i Each object tuple that plays I I I
the role sequence 1.1, 1.2, 1.3
also plays

, the role sequence 2.1, 2.2, 2.3
11!11 1!21 I li.31

ORM 2 also displays subset
constraints over join paths

Equality Constraints

2 role-sequences (of I or more roles):
, E ~ 12.112.21 12'=112"21 12i31

| | |
I1.11 1.21 I 1'.11 721' I 11.31

Populations of role-sequences
must be equal

3 or more role-sequences:
e.g.

Exclusion Constraints

! 1.11 1,21
ooO,,- ooo

_ . -" 12.112.21 |
13.113.21

I n. l l n.21 I n.l l n.21 In.31
oo, o,, I... i I

| | %% %,, "%
r ~ { 1.].'i 1.2{ { 1'.1{ 1'.21]1t31

Same

Same

Populations of 2 or more role-sequences
must be mutually exclusive

Same

Same

Not supported
(instead use multiple 2-
sequence constraints)

Same

ORM 1 does not display subset
constraints over join paths

R-SETExc({R.a},{S.b},µ)

R-SETExc({R1.a11,...,R1.a1n,...,Rk.ak1,...,Rk.akm},
 {S1.b11,...,S1.b1n,...,Sk.bk1,...,Sk.bkm},µ)900 ORM Glossary

ORM 2 ORM 1

Exclusive-Or Constraints

or

Each instance in A's population plays
exactly one of the n attached roles (n > 1)

Subtyping

B / Aibitr~i~i!iPidUrb~176 dC"

Exclusive Total Partition

Frequency Constraints

f Each instance that plays
i i I i role 1 does so ftimes

f
I l i Z l

Each instance pair that plays
roles 1, 2 does so ftimes

' Each instance pair that plays
i] i i ~ I roles 1, 2 does so ftimes

The frequency specification f
may be any of the following

n exactly n (a positive integer)
_> n at least n
_< n at most n
n..m at least n and at most m

Same

B is a proper subtype of
A (its primary supertype) and
C (a secondary supertype)

ORM 1 does not display
constraints over subtyping
connections

Same

i i

i i i

Same

n

> - n

<--n

n . .m

DERIVED [MAND + R-SETExc]

900 ORM Glossary

ORM 2 ORM 1

Exclusive-Or Constraints

or

Each instance in A's population plays
exactly one of the n attached roles (n > 1)

Subtyping

B / Aibitr~i~i!iPidUrb~176 dC"

Exclusive Total Partition

Frequency Constraints

f Each instance that plays
i i I i role 1 does so ftimes

f
I l i Z l

Each instance pair that plays
roles 1, 2 does so ftimes

' Each instance pair that plays
i] i i ~ I roles 1, 2 does so ftimes

The frequency specification f
may be any of the following

n exactly n (a positive integer)
_> n at least n
_< n at most n
n..m at least n and at most m

Same

B is a proper subtype of
A (its primary supertype) and
C (a secondary supertype)

ORM 1 does not display
constraints over subtyping
connections

Same

i i

i i i

Same

n

> - n

<--n

n . .m

O-SETIsa({O1,...,On},A)

O-SETTot({O1,...,On},A)

O-SETEx({O1,...,On},A)

58

ORM2

900 ORM Glossary

ORM 2 ORM 1

Exclusive-Or Constraints

or

Each instance in A's population plays
exactly one of the n attached roles (n > 1)

Subtyping

B / Aibitr~i~i!iPidUrb~176 dC"

Exclusive Total Partition

Frequency Constraints

f Each instance that plays
i i I i role 1 does so ftimes

f
I l i Z l

Each instance pair that plays
roles 1, 2 does so ftimes

' Each instance pair that plays
i] i i ~ I roles 1, 2 does so ftimes

The frequency specification f
may be any of the following

n exactly n (a positive integer)
_> n at least n
_< n at most n
n..m at least n and at most m

Same

B is a proper subtype of
A (its primary supertype) and
C (a secondary supertype)

ORM 1 does not display
constraints over subtyping
connections

Same

i i

i i i

Same

n

> - n

<--n

n . .m

FREQ({R.a},(min,max))

FREQ({R1.a11,...,R1.a1n},(min,max))

[+ ‘External Frequency Constraint’:
FREQ({R1.a11,...,R1.a1n,...,Rk.ak1,...,Rk.akm},(min,max))]

ORM Glossary 901

ORM 2 ORM 1

Ring Constraints

..... . ~ Irreflexive

t I i ~.) Asymmetric

Intransitive

Antisymmetric

~.~ Acyclic

Oas I I I
oit

Cans

Oac

Asymmetric + Intransitive

Acycfic + Intransitive

Symmetric

Symmetric + Irreflexive

Symmetric + Intransitive

Purely Reflexive

Value-comnarison 9 9 9 9 ~ m ~ i

Constraints ~) ~ ~) ~
I I I I

Derived Fact Types
* = derived, ** = derived and stored
* = semi-derived

Deontic Constraints
Colored blue rather than violet. Most
include "o" for "obligatory". Deontic ring
constraints instead use dashed lines.

Uniqueness o-- ~
Mandatory o
Subset, Equality, Exclusion t~ ~) t~
Frequency o f

Irreflexive ~.~'~ Acyclic ~, j

Asymmetric ~+~ Asym-lntrans dt'~',~

Intransitive "~ Acyclic-lntrans ~
Antisymmetric #t'+~.~ Symmetric #t'.".'.~
Purely Reflexive ~.'~ etc.

~

~

~

~

~

Not supported

Not supported

Same for first two options.
3 rd option not supported.

No deontic constraints
are supported

RINGJ(R.a,R.b)
where J={Irr,Asym,Trans,Intr,Antisym,Acyclic,Sym,Ref}

902 ORM Glossary

ORM 2 ORM 1

Object Cardinality Constraints

= n
Each population of A
includes exactly n instances

< n
Each population of A
includes at most n instances

Role Cardinality Constraints

#=n Each population of R
includes exactly n instances

f T ~ ~ n Each population of R
includes at most n instances

Not supported

Not supported

Textual Constraints (ORM 2 example)

 9 has was born _L~ {'Exec', (Rank ~ l I - - --- "
'NonExec'}l(.code) j I~Employeez~l~! I ~ , ~ Date ~

~ ('nr) ~.,~ I /,L(mdy)J
IC~ i ' - - I I/[hiredate]

(.regNr) J ' 9 was hiredon

For each Employee, birthdate < hiredate.
2 Each Employee who has Rank 'NonExec' uses at most one CompanyCar.
3 Each Employee who has Rank 'Exec' uses some CompanyCar.

Constraint Verbalization (ORM 2 example)

C works for
1

C2 / , I ~

I P e r s o n ~ (~ Cs "~CompanY 1

heads /is headed by

C:: Each Person works for at most one Company.
C2: Each Person works for some Company.
C3: Each Person heads at most one Company.
C~: Each Company is headed by at most one Person.
C S Each Person who heads some Company also works for that Company.

The absence of a UC on the top righthand role verbalizes as
It is possible that more than one Person works for the same Company.

O-CARD(A)=(min,max)

902 ORM Glossary

ORM 2 ORM 1

Object Cardinality Constraints

= n
Each population of A
includes exactly n instances

< n
Each population of A
includes at most n instances

Role Cardinality Constraints

#=n Each population of R
includes exactly n instances

f T ~ ~ n Each population of R
includes at most n instances

Not supported

Not supported

Textual Constraints (ORM 2 example)

 9 has was born _L~ {'Exec', (Rank ~ l I - - --- "
'NonExec'}l(.code) j I~Employeez~l~! I ~ , ~ Date ~

~ ('nr) ~.,~ I /,L(mdy)J
IC~ i ' - - I I/[hiredate]

(.regNr) J ' 9 was hiredon

For each Employee, birthdate < hiredate.
2 Each Employee who has Rank 'NonExec' uses at most one CompanyCar.
3 Each Employee who has Rank 'Exec' uses some CompanyCar.

Constraint Verbalization (ORM 2 example)

C works for
1

C2 / , I ~

I P e r s o n ~ (~ Cs "~CompanY 1

heads /is headed by

C:: Each Person works for at most one Company.
C2: Each Person works for some Company.
C3: Each Person heads at most one Company.
C~: Each Company is headed by at most one Person.
C S Each Person who heads some Company also works for that Company.

The absence of a UC on the top righthand role verbalizes as
It is possible that more than one Person works for the same Company.

R-CARD(R)=(min,max)

59

APPENDIX B
Mapping ORM2 Formal Syntax into

DLR

In this appendix we present the mapping of the ORM2 Formal Syntax into intoDLR description
logic, which was developed in [15] with a humble contribution of the author of the thesis.

DLR concepts and relations (of arity between 2 and nmax) are built according to the
following syntax1:

R ::= >n | P | ($i/n : C) | ¬R | R1 uR2

C ::= >1 | A | ¬C | C1 u C2 |
∃[$i]R | (≤ k[$i]R)

where P and A denote atomic relations and atomic concepts respectively, R and C denote
arbitrary relations and concepts, i denotes components of relations (i.e. an integer between 1 and
nmax), k denotes nonnegative integer, >1 denotes the top concept, >n, for n = 2, . . . , nmax,
denotes the top relation of arity n.

1Concepts and relations in DLR must be well-typed.

61

• Background domain axioms:

E v∆ (B.1)

V vΛD, where ΛD = {vD1 , . . . , vDn }, for some D (B.2)

> v∆ ∪ ΛD1 t · · · t ΛDn (B.3)

∆ v¬(ΛD1 t · · · t ΛDn) (B.4)

ΛD1 vΛD2 (B.5)
...

ΛDn−1 vΛDn

• TYPE(R.a,O)

∃[$a]R v O

• FREQ(R.a, (min,max))

∃[$a]R v ≥ min[$a]R u ≤ max[$a]R

• MAND(R1, . . . , Rk, O)

O v ∃[$a1
1]R1 t · · · t ∃[$a1

n]R1 t · · · t

∃[$ak1]Rk t · · · t ∃[$akn]Rk

• R-SETH(A,B)

where A = {R.a1, . . . , R.an}, B = {S.b1, . . . , S.bn}, and n = |σA| = |σB|:

R-SETSub(A,B)

A v B

R-SETExc(A,B)

A v ¬B

• O-SETIsa(P1, . . . , Pn, Q)

P1 t · · · t Pn v Q

• O-SETTot(P1, . . . , Pn, Q)

Q ≡ P1 t · · · t Pn

62

• O-SETEx(P1, . . . , Pn, Q)

P1 t · · · t Pn vQ

P1 v¬P2

...

Pn−1 v¬Pn

• V-VAL(V, {vD1 , . . . , vDn })
V ≡ {vD1 , . . . , vDn }

63

APPENDIX C
The OWL/XML fragment of a sample

OWL2 output

Below is the OWL/XML fragment of the OWL2 output of the translation tool for the ORM2
schema depicted on Figure 4.5.

<? xml v e r s i o n =" 1 . 0 " ?>
< Onto logy xmlns=" h t t p : / /www. w3 . org / 2 0 0 2 / 0 7 / owl# "

o n t o l o g y I R I =" h t t p : / /www. o n t o r u l e . com / o n t o l o g i e s / testORM2_20012011 . owl ">
< A n n o t a t i o n >

< A n n o t a t i o n P r o p e r t y IRI =" # T r a n s l a t i o n N o t e _ 3 " / >
< L i t e r a l

d a t a t y p e I R I =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ">Missed one
of R−SETj c o n s t r a i n t s : u n a b l e t o t r a n s l a t e ! One of i n v o l v e d
r e l a t i o n s i s ' l i f e l o n g E n r o l l m e n t E d o r s e d B y '< / L i t e r a l >

< / A n n o t a t i o n >
< D e c l a r a t i o n >

< C l a s s IRI =" # Course " / >
< / D e c l a r a t i o n >
< D e c l a r a t i o n >

< C l a s s IRI =" # Date " / >
< / D e c l a r a t i o n >
< D e c l a r a t i o n >

< C l a s s IRI =" # E n r o l l m e n t " / >
< / D e c l a r a t i o n >
< E q u i v a l e n t C l a s s e s >

< C l a s s IRI =" #UNI−P e r s o n n e l " / >
<Objec tUnionOf >

< C l a s s IRI =" #Admin " / >

65

< C l a s s IRI =" # R e s e a c h O r T e a c h i n g S t a f f " / >
< C l a s s IRI =" # S t u d e n t " / >

< / Objec tUnionOf >
< / E q u i v a l e n t C l a s s e s >
<SubClassOf >

< C l a s s IRI =" # A c t i v e C o u r s e " / >
<ObjectSomeValuesFrom>

< O b j e c t I n v e r s e O f >
< O b j e c t P r o p e r t y IRI =" # a c t i v e c o u r s e " / >

< / O b j e c t I n v e r s e O f >
< C l a s s IRI =" # ob j_ActCourse−hasCode " / >

< / ObjectSomeValuesFrom>
< / SubClassOf >
<SubClassOf >

< C l a s s IRI =" #Admin " / >
< O b j e c t I n t e r s e c t i o n O f >

<ObjectComplementOf>
< C l a s s IRI =" # R e s e a c h O r T e a c h i n g S t a f f " / >

< / ObjectComplementOf>
< / O b j e c t I n t e r s e c t i o n O f >

< / SubClassOf >
<SubClassOf >

< C l a s s IRI =" # E n r o l l m e n t " / >
<Objec tUnionOf >

<ObjectSomeValuesFrom>
< O b j e c t I n v e r s e O f >

< O b j e c t P r o p e r t y IRI =" # e n r o l l m e n t " / >
< / O b j e c t I n v e r s e O f >
< C l a s s IRI =" # obj_wasOn " / >

< / ObjectSomeValuesFrom>
<ObjectSomeValuesFrom>

< O b j e c t I n v e r s e O f >
< O b j e c t P r o p e r t y IRI =" # o b j e c t " / >

< / O b j e c t I n v e r s e O f >
< C l a s s IRI =" # o b j _ l i f e l o n g E n r o l l m e n t E d o r s e d B y " / >

< / ObjectSomeValuesFrom>
< / Objec tUnionOf >

< / SubClassOf >
<SubClassOf >

<Objec tUnionOf >
< C l a s s IRI =" #Admin " / >
< C l a s s IRI =" # R e s e a c h O r T e a c h i n g S t a f f " / >
< C l a s s IRI =" # S t u d e n t " / >

< / Objec tUnionOf >
< C l a s s IRI =" #UNI−P e r s o n n e l " / >

< / SubClassOf >

66

<SubClassOf >
<ObjectSomeValuesFrom>

< O b j e c t I n v e r s e O f >
< O b j e c t P r o p e r t y IRI =" # a c t i v e c o u r s e " / >

< / O b j e c t I n v e r s e O f >
< C l a s s IRI =" # ob j_ActCourse−hasCode " / >

< / ObjectSomeValuesFrom>
< O b j e c t E x a c t C a r d i n a l i t y c a r d i n a l i t y =" 1 ">

< O b j e c t I n v e r s e O f >
< O b j e c t P r o p e r t y IRI =" # a c t i v e c o u r s e " / >

< / O b j e c t I n v e r s e O f >
< C l a s s IRI =" # ob j_ActCourse−hasCode " / >

< / O b j e c t E x a c t C a r d i n a l i t y >
< / SubClassOf >
< F u n c t i o n a l O b j e c t P r o p e r t y >

< O b j e c t P r o p e r t y IRI =" # admin " / >
< / F u n c t i o n a l O b j e c t P r o p e r t y >
< F u n c t i o n a l O b j e c t P r o p e r t y >

< O b j e c t P r o p e r t y IRI =" # c o u r s e " / >
< / F u n c t i o n a l O b j e c t P r o p e r t y >
< D a t a t y p e D e f i n i t i o n >

< D a t a t y p e IRI =" # Ac t iveCour se−Code " / >
< D a t a t y p e a b b r e v i a t e d I R I =" x s d : s t r i n g " / >

< / D a t a t y p e D e f i n i t i o n >
< D a t a t y p e D e f i n i t i o n >

< D a t a t y p e IRI =" # Course−Code " / >
< D a t a I n t e r s e c t i o n O f >

< D a t a t y p e R e s t r i c t i o n >
< D a t a t y p e a b b r e v i a t e d I R I =" x s d : i n t e g e r " / >
< F a c e t R e s t r i c t i o n

f a c e t =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# m i n I n c l u s i v e ">
< L i t e r a l

d a t a t y p e I R I =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r ">101< / L i t e r a l >
< / F a c e t R e s t r i c t i o n >

< / D a t a t y p e R e s t r i c t i o n >
< D a t a t y p e R e s t r i c t i o n >

< D a t a t y p e a b b r e v i a t e d I R I =" x s d : i n t e g e r " / >
< F a c e t R e s t r i c t i o n

f a c e t =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# m a x I n c l u s i v e ">
< L i t e r a l

d a t a t y p e I R I =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r ">399< / L i t e r a l >
< / F a c e t R e s t r i c t i o n >

< / D a t a t y p e R e s t r i c t i o n >
< / D a t a I n t e r s e c t i o n O f >

< / D a t a t y p e D e f i n i t i o n >
< / Onto logy >

67

Bibliography

[1] Neumont ORM Architect (NORMA) for Visual Studio. http://www.

objectrolemodeling.com/AboutORM/ORMTools/NORMA/tabid/87/

Default.aspx.

[2] PNA Group Discovery and Validation Assistant prototype. http://ontorule.

pna-group.nl/.

[3] The ONTORULE Project (FP7/2009-2011 grant agreement 231875). www.

ontorule-project.eu.

[4] Hajnal Andréka, Johan Van Benthem, and István Németi. Modal languages and bounded
fragments of predicate logic, 1996.

[5] Donald E. Baisley, John Hall, and Donald Chapin. Semantic formulations in SBVR. In
Rule Languages for Interoperability. W3C, 2005.

[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, UK,
2001.

[7] Peter Bollen. The orchestration of fact-orientation and SBVR. In Terry A. Halpin,
John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland
Ukor, editors, BMMDS/EMMSAD, volume 29 of Lecture Notes in Business Information
Processing, pages 302–312. Springer, 2009.

[8] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997.

[9] John Bulles, Jean-Paul Koster, and Sjir Nijssen. D1.2 Transforms from SBVR to ontologies
and rules. Public deliverable, The ONTORULE Project (FP7/2009-2011 grant agreement
231875), 2010.

69

http://www.objectrolemodeling.com/AboutORM/ORMTools/NORMA/tabid/87/Default.aspx
http://www.objectrolemodeling.com/AboutORM/ORMTools/NORMA/tabid/87/Default.aspx
http://www.objectrolemodeling.com/AboutORM/ORMTools/NORMA/tabid/87/Default.aspx
http://ontorule.pna-group.nl/
http://ontorule.pna-group.nl/
www.ontorule-project.eu
www.ontorule-project.eu

[10] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, IJCAI ’99, pages 84–89,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[11] Paolo Ceravolo, Cristiano Fugazza, and Marcello Leida. Modeling semantics of business
rules. In Proceedings of the Inaugural IEEE International Conference On Digital
Ecosystems and Technologies (IEEE-DEST), February 2007.

[12] Donald Chapin. SBVR: What is now possible and why? Business Rules Journal, 9(3),
2008.

[13] Melvin Fitting. Modal proof theory. In Frank Wolter Patrick Blackburn, J. F. A. K.
van Benthem, editor, Handbook of Modal Logic, pages 86–135. Elsevier, 2007.

[14] Melvin Fitting and Richard L. Mendelsohn. First-order modal logic. Kluwer Academic
Publishers, Norwell, MA, USA, 1999.

[15] Enrico Franconi, Alessandro Mosca, and Dmitry Solomakhin. ORM2: Syntax and
semantics. Internal report, KRDB Research Centre for Knowledge and Data, 2011.

[16] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English for
Knowledge Representation. In Cristina Baroglio, Piero A. Bonatti, Jan Małuszyński,
Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors, Reasoning Web,
Fourth International Summer School 2008, number 5224 in Lecture Notes in Computer
Science, pages 104–124. Springer, 2008.

[17] Stijn Goedertier and Jan Vanthienen. Rule-based business process modeling and execution.
In Proceedings of the IEEE EDOC Workshop on Vocabularies Ontologies and Rules for
The Enterprise (VORTE 2005). CTIT Workshop Proceeding Series (ISSN 0929-0672, pages
67–74, 2005.

[18] Terry Halpin. A Logical Analysis of Information Systems: Static Aspects of the Data-
oriented Perspective. PhD thesis, Department of Computer Science, University of
Queensland, 1989.

[19] Terry Halpin. Object-Role Modeling (ORM/NIAM). In Handbook on Architectures of
Information Systems, pages 81–102. Springer-Verlag, 1998.

[20] Terry Halpin. ORM2 Graphical Notation. Technical Report ORM2-01, September 2005.

[21] Terry Halpin and Tony Morgan. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edition, 2008.

70

[22] Terry A. Halpin and Jan Pieter Wijbenga. FORML 2. In Ilia Bider, Terry A. Halpin,
John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, and Roland Ukor, editors,
BMMDS/EMMSAD, volume 50 of Lecture Notes in Business Information Processing,
pages 247–260. Springer, 2010.

[23] Rami Hodrob and Mustafa Jarrar. Mapping ORM into OWL 2. In Proceedings of the 1st
International Conference on Intelligent Semantic Web-Services and Applications, ISWSA
’10, pages 9:1–9:7, New York, NY, USA, 2010. ACM.

[24] G. E. Hughes and M. J. Cresswell. A New Introduction To Modal Logic. Routledge, 1996.

[25] C. Maria Keet. Mapping the Object-Role Modeling language ORM2 into Description
Logic language DLRifd. CoRR, abs/cs/0702089, 2007.

[26] Roman Korf, Eva Kiss, Adil El Ghali, Hugues Citeau, Amina Chniti, Sylvain Viguie, Diego
Berrueta, Jeroen Hoppenbrouwers, Alessandro Mosca, Adeline Nazarenko, and Francois
Levy. ONTORULE M24 Show-Case Demonstrator. Public deliverable, The ONTORULE
Project (FP7/2009-2011 grant agreement 231875), 2010.

[27] Saul A. Kripke. Naming and Necessity. Harvard University Press, 1980.

[28] Agi Kurucz. Combining modal logics. In Frank Wolter Patrick Blackburn, J. F. A. K.
van Benthem, editor, Handbook of Modal Logic, pages 869–926. Elsevier, 2007.

[29] Paul McNamara. Deontic logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Fall 2010 edition, 2010.

[30] John-Jules Meyer and Frank Veltman. Intelligent agents and common sense reasoning.
In Frank Wolter Patrick Blackburn, J. F. A. K. van Benthem, editor, Handbook of Modal
Logic, pages 991–1030. Elsevier, 2007.

[31] Thi Dieu Thu Nguyen, Nhan Le Thanh, and Thi Anh Le Pham. Modeling ORM Schemas
in Description Logics. In Geilson Loureiro and Ricky Curran, editors, Proceedings...,
pages 533–541, São José dos Campos, 2007. ISPE International Conference on Concurrent
Engineering, 14.(CE 2007), Instituto Nacional de Pesquisas Espaciais (INPE).

[32] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[33] Johan van Benthem Patrick Blackburn. Modal logic: A semantic perspective. In
Frank Wolter Patrick Blackburn, J. F. A. K. van Benthem, editor, Handbook of Modal
Logic, pages 1–84. Elsevier, 2007.

71

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

[34] Ronald G. Ross. Principles of the Business Rule Approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[35] Gerhard Schurz. Combinations and completeness transfer for quantified modal logics.
Logic Jnl IGPL, pages jzp085+, January 2010.

[36] Dmitry Solomakhin, Alessandro Mosca, Enrico Franconi, and Alberto Siena. On the
logical foundations of business rules. In Proceedings of 1st Workshop on Law Compliancy
Issues in Organisational Systems and Strategies, 2010.

[37] The Business Rules Group. Defining business rules. What are they really? Technical
report, The Business Rules Group, 2001.

[38] The Object Management Group. Semantics of Business Vocabulary and Business Rules
(SBVR). Formal specification, v1.0, 2008.

[39] Frank Wolter and Michael Zakharyaschev. Decidable fragments of first-order modal logics.
J. Symb. Log., 66(3):1415–1438, 2001.

[40] Gang Zhao, Yanbin Gao, and Robert Meersman. An ontology-based approach to business
modelling. In Proceedings of the International Conference of Knowledge Engineering and
Decision Support (ICKEDS2004), pages 213–221, 2004.

	Introduction
	Motivation
	Objectives
	Contribution of the thesis
	Outline of the work

	Modeling business rules in SBVR
	General overview
	Noun and verb concepts
	Business rules

	Conceptual modeling in SBVR
	Semantical foundations
	Expressing business rules with modalities
	Notations for business vocabulary and rules

	Model-theoretic semantics of SBVR
	Alethic constraints
	Deontic constraints
	Ambiguity of the formal semantics of SBVR

	Proposed logical formalization of SBVR
	First-order deontic-alethic logic (FODAL)
	Language
	Semantics
	Axiomatization

	Modeling SBVR vocabulary and rules with FODAL
	The meaning of SBVR conceptual schema
	Reasoning tasks

	Satisfiability of FODAL regulations
	Reduction to satisfiability in first-order logic
	Canonical model for FODAL regulations

	 Reduction to monomodal logic bold0mu mumu QKQKtopQKQKQKQK

	Implementation of automated reasoning support tool
	General description of the tool
	Input specifications
	ORM2 Formal Syntax
	Input format
	Naming convention
	Obligatory input elements

	Logical foundations of implementation
	Examples
	Checking the consistency of a given set of rules
	Translating a given ORM2 schema into OWL2 ontology

	Conclusion and future work
	Glossary of the ORM2 Formal Syntax
	Mapping ORM2 Formal Syntax into DLR
	The OWL/XML fragment of a sample OWL2 output
	Bibliography

