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Abstract

In this work incompressible Newtonian flow in lid-driven triangu-

lar cavities is studied. The primary interest is transition of two-

dimensional steady-state flow to three-dimensional flow and the iden-

tification of physical mechanisms driving this transition. The neu-

tral stability curves and perturbation flows are computed numerically

through linear stability analysis. In order to get more insight into

physical mechanisms kinetic energy analysis is carried out. The prob-

lem is investigated in the following parameter ranges

• Ratio between lengths of the moving lid and one of side-walls

Γ ∈ [0.2− 4.0].

• Angle enclosed by the moving lid and a side-wall θ ∈ [15◦−135◦].

• The motion of the lid is directed either towards or away from the

corner where the angle θ is specified.

Five different instability modes are recognized in the above parameter

range. Two of these modes are identified to be of centrifugal nature

while the remaining three are of elliptic nature. The physical mecha-

nisms driving the instability are explained by discussing representative

cases for each of the modes. The analogies of the perturbation modes

to those occurring in one and two-sided driven rectangular cavities

are discussed.



Kurzfassung

In dieser Arbeit werden Strömungen in einseitig angetriebenen Drei-

ecksbehältern mit inkompressiblen, Newtonschen Fluiden untersucht.

Das Auffinden des Übergangs zweidimensionaler stationärer in dreidi-

mensionale Strömungen und die Identifikation der dafür verantwortli-

chen, physikalischen Mechanismen sind Hauptziele dieser Arbeit. Die

neutralen Stabilitätskurven und die Störströmungen werden nume-

risch durch eine lineare Stabilitätsanalyse berechnet. Um einen Ein-

blick in die physikalischen Mechanismen zu bekommen wird eine ki-

netische Energieanalyse durchgeführt. Das Problem wird in folgenden

Parameterbereichen untersucht

• Verhältnis der Längen der bewegten Wand zu einer der ruhenden

Wände Γ ∈ [0, 2− 4, 0].

• Winkel zwischen der bewegten Wand zu einer der ruhenden Wän-

de θ ∈ [15◦ − 135◦].

• Die Wand bewegt sich zur Ecke in der der Winkel angegeben ist

hin oder von ihr weg.

Fünf verschiedene instabile Moden werden im obengenannten Para-

meterbereich gefunden. Zwei davon werden als zentrifugale, die ande-

ren drei als elliptische Instabilitäten identifiziert. Die physikalischen

Mechanismen der fünf Moden werden anhand von repräsentativen

Fällen erklärt. Analogien zwischen den in dieser Arbeit gefundenen

Moden mit solchen in ein- oder zweiseitig angetriebenen Rechtecks-

behältern werden diskutiert.
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Chapter 1

Introduction

Flow in lid-driven cavities served as a bench mark for validation of numerical

methods and understanding of complex flows for decades. Relatively less work

is available in three dimensional cavities of complex cross-section in comparison

to the simple rectangular cavities. This work addresses the lid-driven cavity of

triangular cross-section. A short review of some of the known and new results

are presented to place the present work in proper context.

Two-dimensional steady-state flow in an equilateral triangular cavity was

studied by Ribbens et al. [1994], where it was concluded that mean-square law

on boundary velocities for the interior vorticity is not successful. Jyotsna and

Vanka [1995] used triangular grid and multi-grid method to solve the Navier–

Stokes equation and to overcome the problem of singularities associated with the

corners of moving wall for isosceles cavity. Li and Tang [1996] further reported

the flow topologies in triangular cavities with Reynolds number in the range of

Re ∈ [1− 1500]. Gaskell et al. [1999] used analytical specification of the vorticity

near the singular corners while using the vorticity-stream-function formulation for

the triangular cavity. Erturk and Gokcol [2007] employed the vorticity-stream-

function formulation for triangular cavity and was able to obtain steady solutions

at higher Reynolds numbers for different shapes of triangular cavities. The limit

of Reynolds number to which such a steady-state two dimensional solution of

the flow is valid is of primary interest. It is known that the flow eventually

becomes three dimensional as the Reynolds number is increased beyond a cer-

tain critical value. More important is the physical Mechanism by which such

1



1. Introduction

a two-dimensional flow in a container, unbounded in third direction, becomes

three-dimensional. Objective of present work is to point out the limits of validity

of two-dimensional solution of the flow and the underlying physical mechanism

by which the flow become three dimensional in lid-driven triangular cavities. A

short review of related physical mechanisms and some recent results are presented

below.

Based on classical Rayleigh centrifugal instability theory Bayly [1988] derived

that sufficient conditions for the centrifugal instability in inviscid flows are that

the stream line shall be convex closed curves in some part of the flow with mag-

nitude of circulation decreasing outward. Their results show that centrifugal

instability is generic property of the circulating flows regardless of the symme-

try or antisymmetry and degree of distortion from circularity. Sipp and Jacquin

[2000] described the sufficient criterion for centrifugal instability in an inviscid

flow based on the local magnitude of velocity, vorticity and local radius of cur-

vature of a closed stream line. Kerswell [2002] discussed the elliptic instability

of inviscid flows also showing the detuning and stabilization due to presence of

viscosity. It was concluded that this instability is due parametric resonance of

normal mode or a pair of normal modes of the undistorted rotating flow with the

underlying strain field.

A closely related problem of flow in lid-driven rectangular cavity is exten-

sively studied. The first known numerical results for non-linear solution of flow

in a square lid-driven cavity in the Reynolds number range Re ∈ [0 − 128], are

that of Kawaguti [1961]. Simuni [1964] Extended the idea to rectangular cavities

solving the unsteady Navier-Stokes equations up to Re = 1000. Burggraf [1966]

showed that the later solutions were under resolved at Re > 400 by providing the

first accurate solutions of the two-dimensional equations of motion in a square

domain up to Re = 400. The results were used to discuss the earlier theories of

Moffat [1963] and Batchelor [1956], regarding the development of corner vortices

at finite Reynolds numbers and the centre vortex in the limit Re→∞. Flow visu-

alization for finite aspect-ratio cavities were presented in the experimental work of

Pan and Acrivos [1967] for Re ∈ [20−4000]. The range of two-dimensional numer-

ical solutions in lid-driven square cavities were extended to Re ≤ 10000 by Ghia

et al. [1982] and Schreiber and Keller [1983]. It was observed that the numerical

2



1. Introduction

solutions of flow becomes unsteady even in the strictly two-dimensional rectan-

gular cavity. The unsteadiness and transition to three-dimensional flow were also

observed experimentally and numerically for three-dimensional, span-wise homo-

geneous flow in a container of rectangular cross-section. The results of Ding and

Kawahara [1998] provided the description of oscillating unstable mode in a squre

lid driven cavity. The missing modes were later found by complete parametric

studies of three-dimensional instability in the rectangular cavities independently

by Theofilis [2000] and Albensoeder et al. [2001], where the instability map of

the flow by discovering the leading eigenmodes of the flow was completed. In

the latter work a complete study of the effect of aspect ratio is also presented.

In the work of Albensoeder et al. [2001] centrifugal instabilities were reported

in one side driven cavities of rectangular cross-section where the instability was

characterized by the kinetic energy budget and the inviscid criterion of Sipp and

Jacquin [2000]. In subsequent investigations Kuhlmann and Albensoeder [2004]

reported the presence elliptic, quadripolar, centrifugal and cooperative instabili-

ties in two-lid driven rectangular cavities. Siegmann-Hegerfeld et al. [2008], gave

further experimentation and discussions of the different classes of instabilities

in the rectangular two-lid driven cavity by establishing a close correspondence

between linear-stability calculations and detailed LDV measurements.

The first three-dimensional flow structure that appears commonly in rectan-

gular cavities as the Reynolds number is increased are the longitudinal Taylor-

Görtler-like (TGL) vortices, as is obvious from the experimental results of Koseff

and Street [1984a]; Koseff et al. [1983], Rhee et al. [1984] and Prasad and Kos-

eff [1989]. The size of the TGL vortices was found to scale with the boundary

layer thickness, which is usually small compared to the linear dimensions of the

container. At further increase of the Reynolds number these vortices become

time-dependent and start to meander [Koseff and Street, 1984b].

As for as the instabilities in triangular cavities is concerned Kühnen [2006]

reported the experimental observations of instabilities occurring in a right-angled

triangular cavities with the lid motion directed either away or towards the right

angled corner. González et al. [2007] analysed the three dimensional (BiGlobal)

instability of flows in different geometries including lid-driven equilateral trian-

gular cavity. Some of the results to be presented in this thesis were also included

3



1. Introduction

in GONZÁLEZ et al. [2011].

This thesis is organised in a way such that the problem to be investigated is

presented in chapter 2, along with the governing equations and related boundary

conditions, numerical methods employed are summarized in chapter 3, Valida-

tions of the numerical code are outlined in chapter 4, results are presented and

discussed in chapter 5, finally some conclusive remarks are given in chapter 6.

4



Chapter 2

Problem Definition

We consider a Newtonian, incompressible fluid bounded in a prismatic cavity

with a triangular cross-section as sketched in figure 2.1(a). The invariant cross

section in the (x, y)-plane is made by three walls si, i = 1, 2, 3, of which s1 and

s2 enclose an angle θ. While s2 and s3 are at rest, the side wall s1 moves with a

constant velocity ±Uex either in positive or negative x-direction with unit vector

ex, i.e. either towards or away from the corner where the angle θ is specified

and in the plane defining the triangle. To further characterize the geometry an

aspect ratio is defined such that Γ = s2/s1 as the ratio between the length of the

side wall s2 and the length s1 of the moving lid. The cavity length in the axial

z-direction orthogonal to the (x, y)-plane is denoted by l. The corresponding

span-wise aspect ratio is defined as Λ = l/s1. The non dimensional geometry and

coordinate system is shown in figure 2.1(b), where the lid of the cavity is taken

as length scale.

2.1 Formulation of the problem

The motion of an incompressible Newtonian fluid with density ρ and kinematic

viscosity ν is governed by the Navier–Stokes and continuity equations

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u, (2.1a)

∇ · u = 0 (2.1b)

5



2. Problem Definition

(a)

x

θ

y

z
l/2

-l/2

s1

s2 s3

0 ±U

(b)

x

θ

y

z

0

Γ

Λ/2

−Λ/2

1
u = ±ex

Figure 2.1: Sketch of the triangular cavity with dimensional (a) and non-
dimensional variables (b). The black arrow indicates the motion of the lid.

where u is the velocity vector and p the pressure field. Here we have used the

scales s1, s1/U , U , and ρU
2 for length, time, velocity and pressure. The Reynolds

number is defined as

Re =
Us1
ν
. (2.2)

The equations must be solved inside the prism defined above and subjected to

no-slip boundary conditions on the three side walls, using Cartesian coordinates

as sketched in figure 2.1(b)

u(y = 0) = ±ex, (2.3a)

u [y = −x tan(θ)] = 0, (2.3b)

u

[

y =
−Γ sin(θ)

Γ cos(θ)− 1.0
(x− 1.0)

]

= 0. (2.3c)

For cavities with finite length the above boundary conditions must be supplied

with the rigid boundary conditions on the side walls at z = ±Λ/2. Since we are

interested in the bulk-flow instabilities, we assume distant end walls corresponding

to Λ→∞ and consider periodic boundary conditions in z-direction

[u, p] (z = Λ/2) = [u, p] (z = −Λ/2). (2.4)

In the absence of side walls, for Λ → ∞ the problem is characterized by four

6



2. Problem Definition

parameters, the Reynolds number Re, the aspect ratio Γ, the angle θ, and the

direction of motion of lid.

From the periodic boundary conditions 2.4 it follows that the equations 2.1

have a steady two-dimensional solution (u0, p0) at moderate Reynolds number.

It is assumed that the steady solution is unique as there has been no evidence of

multiplicity of two-dimensional flow in such a one-sided driven cavity.

As the primary interest here is the linear stability of the two-dimensional

steady basic flow, we consider the perturbations (ũ, p̃) such that the total flow

field can be written as

u = u0(x, y) + ũ(x, y, z, t), (2.5a)

p = p0(x, y) + p̃(x, y, z, t). (2.5b)

Substituting (2.5) into (2.1), linearising with respect to ũ and subtracting the

basic steady-state flow from the resulting equations, the perturbation equations

become

∂ũ

∂t
+ u0 · ∇ũ+ ũ · ∇u0 = −∇p̃ +

1

Re
∇2

ũ, (2.6a)

∇ · ũ = 0. (2.6b)

The perturbation flow must satisfy the no-slip boundary conditions ũ = 0 at all

boundaries. The coefficients of (2.6) do not depend on z and t which allows an

ansatz in form of normal modes

ũ = û(x, y)eγt+ikz + c.c, (2.7a)

p̃ = p̂(x, y)eγt+ikz + c.c. (2.7b)

where the complex conjugate (c.c) render the perturbations real. The wave num-

ber k in ℜ is assumed to be real while γ = σ+ iω is the complex growth rate with

real growth rate σ and oscillation frequency ω. Substituting the ansatz (2.7) into

7



2. Problem Definition

the perturbation equations (2.6) yield

(

L+
∂u0
∂x

)

û+ v̂
∂u0
∂y

+
∂p̂

∂x
= −γû, (2.8a)

(

L+
∂v0
∂x

)

v̂ + û
∂v0
∂x

+
∂p̂

∂y
= −γv̂, (2.8b)

Lŵ + ikp̂ = −γŵ, (2.8c)

∂û

∂x
+
∂v̂

∂y
+ ikŵ = 0. (2.8d)

with L the linear advection-diffusion operator

L = u0
∂

∂x
+ v0

∂

∂y
−

1

Re

(

∂2

∂x2
+

∂2

∂y2
− k2

)

. (2.9)

Equations 2.8 represent a complex singular eigenvalue problem. Following the

transformation of [González et al., 2007] ŵ → −iŵ, it is possible to deduce a real

eigenvalue problem

A ·X = −γB ·X. (2.10)

From a heuristic point of view it can be stated the the overall flow consists of

a unique steady-state basic flow plus a series of perturbation modes (eigenmodes)

with variable wave numbers ki and growth rates σi. An eigenmode can now either

grow (σi > 0), decay (σi < 0) or remain the same (σi = 0). For the flow to be

stable all the eigenmodes need to be decaying. So for a given geometry and certain

wave number k one has to find an eigenmode with largest growth rate and trace

it until σ = 0 by varying the Reynold number Re. The Re obtained is the neutral

Reynolds number Ren. In order to obtain the critical Reynolds number Rec one

has to find the neutral Reynolds number for all the physical wave numbers, and

take the minimum. Symbolically it can be stated as

Rec = min
i
(Ren,i(ki)). (2.11)

8



2. Problem Definition

2.2 Energetics

Having obtained the normal modes the local transfer of kinetic energy between

the basic flow and the perturbations provides insight into the instability mech-

anism. To that end we consider the Reynolds–Orr equation similar as, e.g., in

Albensoeder et al. [2001]. It is obtained by multiplying the perturbation equa-

tion 2.6a with ũ and integrating over the finite prism V with span-wise length of

λ = 2π/k corresponding to one period of the flow in z-direction.

1

D∗

dEkin

dt
= −1 +

4
∑

i=1

∫

V

Ii dV. (2.12)

where we normalized the rate of change of energy by the dissipation in the vol-

ume D∗ =
∫

V
(∇ × ũ)2dV . The local energy production can be decomposed in

Cartesian coordinates

I1 = −
1

D∗

(

ũ
∂u0
∂x

)

ũ, (2.13a)

I2 = −
1

D∗

(

ṽ
∂u0
∂y

)

ũ, (2.13b)

I3 = −
1

D∗

(

ũ
∂v0
∂x

)

ṽ, (2.13c)

I4 = −
1

D∗

(

ṽ
∂v0
∂y

)

ṽ. (2.13d)

Note that the local pressure work −ũ · ∇p̃ and advection term −ũ · (u0 · ∇ũ)

vanishes on integration over the volume for the present boundary conditions.

The physical interpretation of I1, for example, is the rate of change of kinetic

energy density of the perturbation caused by basic state momentum u0 being

transported in x direction by the action of the perturbation flow component ũ.

For the energy analysis those regions in space where the energy transfer is positive

can be identified and in case of the relative dominance of certain terms allows the

identification of the physical mechanisms involved.

In certain situations it is better to use a decomposition into coordinates

aligned with the local basic flow u0. If the perturbation velocity is decomposed

9



2. Problem Definition

into ũ = ũ⊥ + ũ‖ with

ũ‖ =
(ũ · u0)u0

u2
0

and ũ⊥ = ũ− ũ‖ (2.14)

the terms Ii in (2.12) must be replaced by I ′i given by

I
′

1 = −
1

D∗
ũ⊥ · (ũ⊥ ·∇u0), (2.15a)

I
′

2 = −
1

D∗
ũ‖ · (ũ⊥ ·∇u0), (2.15b)

I
′

3 = −
1

D∗
ũ⊥ · (ũ‖ ·∇u0), (2.15c)

I
′

4 = −
1

D∗

ũ‖ · (ũ‖ ·∇u0). (2.15d)

2.3 Instability Mechanisms

Besides determining the critical parameters for stability, the purpose of the

present work is to analyse the mechanism of instability and relate them with

the known mechanisms of instability. In this section a brief introduction of two

types of instability mechanisms will be given that occur in the triangular cavities.

2.3.1 Centrifugal Instability

One of the earliest mechanisms recognised for instability is centrifugal instability.

The necessary condition for the such an instability is the existence of convex

streamlines in a flow with decreasing angular momentum outward from the center.

So that exchange of fluid element with high angular momentum at small radii

with a fluid element with low angular momentum at higher radii will results in

an energy gain. The first sufficient criterion for centrifugal instability of inviscid

rotating flow was given by Rayleigh, Lord [1917], according to which instability

could evolve when the Rayleigh circulation criterion

d

dr
(Ωr2)2 < 0 (2.16)

10



2. Problem Definition

is fulfilled, where Ω = Ω(r) is the angular velocity of rotating fluid u = Ωreφ.

Bayly [1988] generalized the criterion for any close streamline in a flow. An

equivalent local criterion for centrifugal instability of inviscid fluid was given by

Sipp and Jacquin [2000], which can be stated as an inviscid flow could become

unstable if
V0
R
(̟0) < 0 (2.17)

all along a closed streamline, where ̟0 being the vorticity of the basic state,

V0 = |u0| the velocity magnitude and R the local radius of curvature of the

closed streamline. R can be evaluated as

R =
V 3
0

(∇ψ).(u0.∇u0)
(2.18)

ψ being the stream function. It shall be noted that this criterion is valid for in-

viscid flow only. However it will be used as an indication of centrifugal instability

if the maximum of local energy transfer occurs at a location where this criterion

also holds.

2.3.2 Elliptic Instability

The elliptic instability mechanism in contrast to centrifugal mechanism of insta-

bility was recognized in the mid 1970’s. The linear instability mechanism by which

three-dimensional flows can be generated in the region of two-dimensional, elliptic

streamlines is now known as elliptic instability mechanism. Kerswell [2002] gave

a detailed discussion of the elliptic instability mechanism, where it was concluded

that the instability is primarily a parametric resonance of normal mode or pair

of normal modes of undistorted rotating flows with underlying strain field. It

was Sipp and Jacquin [1998] who stated that the amplification of the modes are

higher at the center of deformed vortex. The criterion which will be used for

detection of such instability is that the local energy transfer takes maximum near

the center of some elliptically deformed vortex. Generally the criterion (2.17) for

centrifugal instability does not hold at the center of a vortex.

11



Chapter 3

Numerical Methods

In this chapter the numerical methods and information necessary to solve the

mathematical formulation presented in chapter 2 will be discussed. Initially the

methods necessary to calculate the basic state are discussed in section 3.1. The

techniques related to the perturbation flow field and the eigenvalue problem are

presented in section 3.2. Finally the computational strategies are discussed in

section 3.3.

3.1 Basic state calculation

The natural choice for solution of the steady Navier–Stoke equations in the present

geometry is the finite element method. The variational formulation of the Navier–

Stoke equations had been intensively discussed in literature, a few examples are

Ben [2006]; Chung [1978]; Dick [2009]; Zienkiewicz et al. [2008]. In the following

only the present implementation procedure will be discussed starting from the

weak form of the equations which can be stated as

(u · ∇u+∇p−
1

Re
∇2

u)Φi = 0, (3.1a)

(∇ · u)Ψj = 0. (3.1b)

where Φi and Ψj are the velocity and pressure basis functions respectively. The

next step is to integrate these equations in the domain Ω. Any strong solution

12
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will obey the following equations.

∫

(u · ∇u+∇p−
1

Re
∇2

u)ΦidΩ = 0, (3.2a)
∫

(∇ · u)ΨjdΩ = 0. (3.2b)

The 2nd order viscous term can be integrated by parts

−

∫

(
d2u

dx2
)ΦidΩ = −

d

dx
(
du

dx
Φi)|∂Ω +

∫

du

dx

dΦi
dx

dΩ, (3.3a)

−

∫

(
d2u

dy2
)ΦidΩ = −

d

dy
(
du

dy
Φi)|∂Ω +

∫

du

dy

dΦi
dy

dΩ. (3.3b)

As a usual practice the basis function Φi is assumed in a way that it vanishes on

the boundary ∂Ω, where the velocity is defined. So the boundary terms disappear

and the final set of equations can be written as

∫

((u · ∇u+∇p)Φi +
1

Re
∇u · ∇Φi)dΩ = 0, (3.4a)

∫

(∇ · u)ΨjdΩ = 0. (3.4b)

It should be noted that the boundary terms will not vanish if the boundary

conditions are of Neumann or Robin type for the velocity. However such boundary

conditions don’t occur in the present problem. For the present study velocity

and pressure are approximated by quadratic and linear interpolation polynomials

respectively, where triangular elements of Taylor–Hood type as shown in figure

3.1 are employed. A single element consists of 6 nodes, 3 nodes at the vertices

and 3 mid-side nodes. As such pressure is approximated only at the vertices of

the element. The linear basis interpolation functions for such an element can be

written as

Ψ1 =
1

2A

∣

∣

∣

∣

∣

∣

∣

x y 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

, Ψ2 =
1

2A

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x y 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

, Ψ3 = 1−Ψ1 −Ψ2 (3.5)
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n1(x1, y1) n2(x2, y2)

n3(x3, y3)

n4(x4, y4)n5(x5, y5)

n6(x6, y6)

Figure 3.1: Taylor–Hood type of triangular element.

where A is the area of the element A = 1

2

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

. The quadratic interpola-

tion functions for the velocities can be expressed in terms of linear pressure basis

interpolation functions by the relations

Φ1 = Ψ1(2Ψ1 − 1), Φ4 = 4Ψ2Ψ3,

Φ2 = Ψ2(2Ψ2 − 1), Φ5 = 4Ψ1Ψ3,

Φ3 = Ψ3(2Ψ3 − 1), Φ6 = 4Ψ1Ψ2.

(3.6)

Velocity and pressure in an element can be approximated as

uh(x, y) =
6

∑

i=1

Φi(x, y)ui,

vh(x, y) =

6
∑

i=1

Φi(x, y)vi,

ph(x, y) =

3
∑

i=1

Ψi(x, y)pi.

(3.7)

The superscript h represents the element h. ui, vi and pi are the nodal values

of the velocities and pressure. Both the velocities are approximated with same

degree of polynomials.
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3.1.1 Equations for a single element

Substitution of the velocity and pressure interpolation functions 3.7 and the basis

function 3.5 and 3.6 in the so called weak integral equation 3.4 will yield a non-

linear equation for a single element. The equation for a single element can be

written in scalar form symbolically as

ANRxMuMuR + ANRyMvMuR +BNQxpQ + CNMuM = 0, (3.8a)

ANRxMuMvR + ANRyMvMvR +BNQypQ + CNMvM = 0, (3.8b)

DMxQuM +DMyQvM = 0. (3.8c)

with N,M,R = 1, 2, ..6 the quadratic nodal points and Q = 1, 2, 3 the linear

nodes (vertices). The coefficients appearing in equation 3.8 are given by

ANRiM =

∫
(

ΦNΦM
∂ΦR
∂i

)

dΩ (convective matrix),

BNQi =

∫
(

ΦN
∂ψQ
∂i

)

dΩ (Pressure matrix),

CNM =
1

Re

∫
(

∂ΦN
∂x

∂ΦM
∂x

+
∂ΦN
∂y

∂ΦM
∂y

)

dΩ (dissipation matrix),

DMiQ =

∫
(

∂ΦM
∂i

ΨQ

)

dΩ (continuity matrix).

(3.9)

with i = [x, y] and Ω now represent the domain of a single element. The inte-

grands in equation 3.9 are polynomials and can be evaluated either numerically

or analytically such as e.g

∫

(Ψa
1Ψ

b
2)dΩ =

a!b!

(a+ b+ 2)!
2Ae (3.10)

where Ae is the area of element.The remaining basis functions can be written in

terms of (Ψ1,Ψ2) using relations 3.5 and 3.6. Equations 3.8 is still non-linear

in terms of the nodal values due to convective terms. It will yield a non-linear

global system of equation, which can either be solved with iterative methods or

any non-linear method of algebraic system such as Newton-Raphson method. An

alternative is to apply the Newton-Raphson method to the equations on element
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basis and then form the global system of equations.

3.1.2 Newton-Raphson Method

Equations 3.8 are set of fifteen non-linear algebraic equations more precisely 2×6

equations from momentum and 3 from continuity equation. The equations can

be rewritten as

A(X)X = b (3.11)

where X represents the nodal unknowns. The Newton-Raphson method can now

be employed on an element to form global linear system of equations as following.

1. Calculate the residual on element base

rk = A(Xk)Xk − b (3.12)

For the first iteration k = 0 nodal values X0 can be chosen randomly.

2. Assemble the global residual vector rkglobal by adding the element terms at

proper locations corresponding to the connectivity of elements and apply

the boundary conditions such that rkglobal[i] = 0 at boundary nodes i

3. Compute the Jacobian for the nodal values

Jkj,i =

∣

∣

∣

∣

∂rj
∂Xi

∣

∣

∣

∣

X=Xk

(3.13)

4. Assemble the global Jacobian Matrix Jkglobal by adding the element terms at

proper locations corresponding to the connectivity of elements and apply

the boundary conditions such that Jkglobal[i, j] = 0 and Jkglobal[i, i] = 1.0 for

the equation of boundary nodes i

5. Solve the linear system of equations

JkglobalY
k = −rkglobal (3.14)

6. Calculate new vector Xk+1 = Xk + Y k
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7. Calculate new residual rk+1

global as in step 1 and 2 using the new vector Xk+1

a) If the norm of the residual is sufficiently small along with maximum

difference between any nodal value at present iteration and previous

iteration is sufficiently small or the maximum number of iteration is

exceeded i.e.

||rk+1

global||2 < ǫ1 and Max(|rk+1

global − r
k
global|) < ǫ2 or k > kmax (3.15)

the iteration is stopped, Xk+1 is solution vector.

b) other wise resume the process at step 3

The above process suffers from two major drawbacks. If the initial guess X0 is too

far from the solution the iteration may diverge. A remedy is to start calculations

at low Reynolds number and to increase the Reynolds number to the desired

value in steps, using the solution of low Reynolds number as the initial guess for

the next calculation. The second drawback is the overshooting of the iterative

process over the original solution which can be cured by application of modified

Armijo rule in step 7(b). The modified Armijo rule can be stated as

1. α = 0.50

2. for i = 1, 2, ..nArmijo

3. If ||rk+1

global||2 > ||r
k
global||2

Xk+1 = αXk+1

α = α
2.0

The resulting algebraic equations in step 5 were solved using the open source

software SuperLU Demmel et al. [1999]. The exact integrations 3.10 was used to

reduce the numerical noise. The convergence criterion in step 7 were set to

ǫ1 = 10−30, ǫ2 = 10−15 (3.16)

It takes normally 5-10 iteration depending on mesh size with a nominal step of

500 in Reynolds number to achieve this convergence criterion fulfilled.
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3.2 Linear stability analysis

Using the velocity basis functions as weights for the momentum and pressure

basis functions as weights for the continuity of the perturbation equations 2.8,

the weak form of the system can be written as

((

u0
∂

∂x
+ v0

∂

∂y
−

1

Re

(

∂2

∂x2
+

∂2

∂y2
− k2

)

+
∂u0
∂x

)

û+ v̂
∂u0
∂y

+
∂p̂

∂x

)

Φi = −γûΦi,

((

u0
∂

∂x
+ v0

∂

∂y
−

1

Re

(

∂2

∂x2
+

∂2

∂y2
− k2

)

+
∂v0
∂y

)

v̂ + û
∂v0
∂x

+
∂p̂

∂y

)

Φi = −γv̂Φi,

((

u0
∂

∂x
+ v0

∂

∂y
−

1

Re

(

∂2

∂x2
+

∂2

∂y2
− k2

))

ŵ + kp̂

)

Φi = −γŵΦi,

(

∂û

∂x
+
∂v̂

∂y
− kŵ

)

Ψj = 0.

(3.17)

i = 1, 2, ..nV and j = 1, 2..np where nv is the total number of velocity nodes

and np is the total number of pressure nodes in the element. It shall be noted

tha a transformation ŵ → −iŵ was used in the above equation to deduce the

coefficients of system as real. The basis functions are the same as before, and the

perturbation variables on a Taylor-Hood element figure 3.1 are approximated by

ûh(x, y) =
6

∑

i=1

Φi(x, y)ûi,

v̂h(x, y) =
6

∑

i=1

Φi(x, y)v̂i,

ŵh(x, y) =

6
∑

i=1

Φi(x, y)ŵi,

p̂h(x, y) =

3
∑

i=1

Ψi(x, y)p̂i.

(3.18)

Again the superscript h denotes the element h. ûi, v̂i, ŵi and p̂i are the nodal

values of velocities and pressure.
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3.2.1 Equations for a single element

Substitution of the interpolation function 3.18 and the basis functions 3.5 and 3.6

into the perturbation equations 3.17 and integrating over the element will yield

the system of equations for single element, which symbolically can be written as

(

AMNRxu
N
0 + AMNRyv

N
0 +

k2

Re
BMR + FMR + AMRNxu

N
0

)

ûR+

AMRNyu
N
0 v̂R +DMQxp̂Q = −γBMRûR,

(

AMNRxu
N
0 + AMNRyv

N
0 +

k2

Re
BMR + FMR + AMRNyv

N
0

)

ûR+

AMRNxv
N
0 ûR +DMQyp̂Q = −γBMRv̂R,

(

AMNRxu
N
0 + AMNRyv

N
0 +

k2

Re
BMR + FMR

)

ŵR + kCMQp̂Q =

−γBMRŵR,

GMxQûM +GMyQv̂M − kCMQŵM = 0.

(3.19)

With N,M,R = 1, 2..., 6 the velocity nodes and Q = 1, 2, 3 the pressure nodes.

uN0 and vN0 represents the basic state at node N . The definitions of the individual

terms are

AMNRi =

∫

ΦMΦN
∂ΦR
∂i

dΩ, BMR =

∫

ΦMΦRdΩ,

CMQ =

∫

ΦMΨqdΩ, DMQi =

∫

ΦM
∂ΨQ

∂i
dΩ,

FMR =
1

Re

∫
(

∂ΦM
∂x

∂ΦR
∂x

+
∂ΦM
∂y

∂ΦR
∂y

)

dΩ, GMiQ =

∫

∂ΦM
∂i

ΨQdΩ.

(3.20)

with i = x, y. Again the second order derivative terms are integrated by parts.

The terms in equation 3.20 are evaluated analytically using the relation 3.10.

Equations 3.19 represent a system of 21 equations and unknowns for the present

Taylor-Hood triangular element, with eighteen equations from the momentum

and three from the continuity equations.

When the individual element equations 3.19 are assembled into the global

system through the connectivity of the elements, yields an eigenvalue problem
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which can be written as

AX̂ = −γBX̂ (3.21)

where A and B are real with B singular, which will have a solution either real or

in form of complex conjugate pair.

3.2.2 Krylov Subspace Iteration

The important eigenvalues for the linear stability theory are those which lie close

to γr = σ = 0. An iterative method ”Arnoldi algorithm”, originally proposed

by Saad [1980] and discussed in detail by Theofilis [2003], is used to determine

these eigenvalues in present study. As this algorithm yields eigenvalues with

largest modulus, and the requirement for our study is to find the eigenvalues

with largest real part, the original problem 3.21 has to be transformed such that

the required eigenvalues will have the largest modulus near the imaginary axis.

Defining

µ = −γ−1 (3.22)

will convert the problem to

A−1BX̂ = µX̂, A−1B = C, CX̂ = µX̂. (3.23)

The generalized eigenvalue problem is now converted to a standard EVP. A finite

number of eigenvalues m (m being the number of Krylov subspaces which is small

compared to the dimensions of A) for a certain wave-number k and basic flow at

a certain Reynolds number Re can be determined with the Arnoldi algorithm as:

1. choose an initial random vector v1 apply the boundary conditions and nor-

malize it to 1.

2. repeat for i = 2, 3, ..m

a) calculate vi = Cvi−1 which is equivalent to solve Avi = Bvi−1

b) for j from 1 to i− 1

∗ hj,i−1 = (vj , vi)

∗ vi = vi − hj,i−1vj
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c) hi,i−1 = ||vi||

d) vi =
vi

hi,i−1

The algorithm yields an orthonormal basis Vm = [v1, v2, ...vm] of the Krylov sub-

space Km = span{v1, Cv1, ...C
m−1v1} and an upper Hessenberg matrix Hm =

{hi,j}. The eigenvalues of the matrix Hm are approximation of the m largest

eigenvalues of the problem 3.23, from which the eigenvalues of the original prob-

lem 3.21 can be evaluated through relation 3.22. The eigenvectors associated

with these eigenvalues can be obtained by

X̂i = VM ŷi (3.24)

where ŷi is an eigenvector of Hm associated with the eigenvalue µi. The open

source SupeLU Demmel et al. [1999] is used for the LU decomposition of the

system in step 2a of the algorithm. The the decomposed matrices can be used

for the subsequent iterations where as the eigenvalues of the upper Hessenberg

matrix Hm are computed through LAPACK Anderson et al. [1999]. It should be

noted that the eigenvalues evaluated through the above Arnoldi algorithm are

the approximate eigenvalue with the smallest modulus of the original problem

3.21, which lie close to the imaginary axis. Therefore it is necessary to step from

low Reynolds number to higher values, so that none of the positive eigenvalue is

missed.

Cayley Validation

Eigenvalues with moderate or even largest real part, that have a large imaginary

part might be missed by the Arnoldi algorithm described above. It is necessary

to check that such eigenvalues are not missed. Cayley transformation of the

problem as was proposed by Meerbergen et al. [1994] can be applied to validate

the eigenvalues evaluated through subspace iteration. The original problem 3.21

can be written as

(A− α1B)X̂ − η(A− α2B)X̂ = 0. (3.25)
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The relation between the eigenvalues γi of the original problem 3.21 and the new

eigenvalues ηi of equation 3.25 can be stated as

γi =
ηiα2 − α1

1− ηi
. (3.26)

The parameters (α1, α2) for the Cayley transformation can be computed from

the subspace eigenvalues already evaluated. If the eigenvalues from the Arnoldi

method are ordered with decreasing real parts such that (σ1 > σ2.... > σm) then

the parameters can be evaluated as

α1 =
(−1 − ρuser)σ1 − 2σref

1− ρuser
,

α2 = 2σref − α1.

(3.27)

where σref is the real part of a reference eigenvalue γref which can be taken any

of the eigenvalues evaluated with acceptable degree of confidence in the subspace

iteration. The parameter ρuser can be taken between 1.2 and 1.5 as was reported

by Meerbergen et al. [1994]. The largest eigenvalues of problem 3.25 shall be

evaluated either by the Arnoldi or implicitly restarted Arnoldi method such that

at least two of the eigenvalues used in parameters evaluation e.g. γ1, γref appears

from the relation 3.26 with an acceptable degree of tolerance. The Cayley trans-

formation acts as validation of the eigenvalues evaluated by the shift invert with

zero shift, and will deliver eigenvalues in the neighbourhood of the eigenvalue

with largest real part from the shift invert step having high imaginary parts, if

those were missed in the initial step.

3.2.3 Secant Method

The Arnoldi algorithm augmented optionally with the Cayley transformation

stated above will yield the eigenvalue with the largest real part for a certain

Reynolds number Re at a certain wave-number k. To obtain the neutral Reynolds

number Ren so that σmax = 0 the secant method can be used. To this end the

growth rate is assumed as a function of Reynolds number σ = σ(Re). Suppose

we already computed the eigenvalues for at least two Reynold numbers in the
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neighbourhood of the neutral curve for a certain wave-number k, a new Reynolds

number can be computed by secant method as

Ren+1 = Ren − σmax(Re
n)

Ren − Ren−1

σmax(Re
n)− σmax(Re

n−1)
(3.28)

The method depicts the Newton method with respect to convergence. The only

requirement is to know the function values σmax(Re) at two points Ren,Ren−1

to start the iteration. The iteration is stopped as soon as the variation of Re is

smaller than some tolerance ǫRe for two consecutive steps i.e

|Ren+1 − Ren| < ǫRe. (3.29)

3.2.4 Resolving Wave-Number

The secant method will yield the neutral Reynolds number for a specific wave-

number k. One way to get the critical Reynolds number Rec for a specific ge-

ometry is to repeat the process of finding Ren for a number of wave-numbers

k and then take the minimum of the curve Ren(k). However the wave-number

will still be a discrete quantity and the approximation will be very rough. To

fully resolve the wave-number an optimization problem is imposed on the overall

process. To this end the Ren is taken as a quadratic function of k, such that

Ren(k) = ak2n+ bk+ c with some arbitrary constants a, b, c. The quadratic inter-

polation needs at least three points initially to calculate the constants and start

the iterative process. The new wave-number knew and neutral Reynolds number

Renewn can be estimated as

knew =−
b

2a
,

Renewn =ak2new + bknew + c.
(3.30)

The new guess for the wave number knew shall now replace one of the old guesses

depending on its value. The process of finding Ren is repeated for this new k

in an iterative manner using the new guess of Re as initial guess.The iteration
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process is stopped as soon as the variation of the k is sufficiently small i.e.

|knew − kold| < ǫk. (3.31)

The above process will deliver the critical parameters (Rec, kc) for a specified

geometry. The process may also converge to the maxima without any check. The

main check with such a quadratic approximation is the value of the quadratic

constant a, which for a minimum shall be greater than zero.

Triangulation

Although we derived all the element equations in this chapter for a Taylor-Hood

triangular element, nothing has been said on the process of grid generation or tri-

angulation until now. An iso-parametric grid can be implemented for the triangu-

lar cavity by meshing the boundaries with an equal number of nodes and joining

the corresponding nodes on the boundaries with lines parallel to the boundaries

to get triangular elements exactly of the shape of the cavity. Similarly domains

of other simple shape such as rectangles and polygons could be initially divided

into coarse triangles and then meshed. However if the main triangular domain is

skewed the property will be inherited to each triangle and as such may give rise

to numerical difficulties. A second drawback of the approach is the difficulty to

stretch the grid at certain points where needed. An alternative is to use the avail-

able software’s for mesh generation such as ”Triangle” Shewchuk [1996], ”Gmsh”

Geuzaine and Remacle [2003], ”NETGEN” Schöberl [1997]. In the present study

we use iso-parametric grids as well as ”Gmsh” because of its fine integration with

the programming language ”C++” and ease of use. For more details about the

software the reader is referred to Geuzaine and Remacle [2003]. To have an idea

about the mesh a very coarse mesh generated by the iso-parametric approach

and by ”Gmsh” is presented in figure 3.2 for an isosceles right-angled triangular

cavity. For iso-parametric grid each of the boundaries was meshed with equal

number n = 5 nodes, whereas the mesh generated by ”Gmsh” was controlled by

maximum length of any side of the resulting element lc = 0.25. The mid-side

nodes of elements are not shown in 3.2. It should be noted that these meshes
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(a) (b)

Figure 3.2: Triangular meshes (a) iso-parametric mesh, (b) mesh from ”Gmsh”

are meant to just have an idea of the resulting elements and will not be used for

computation as they are very coarse.

3.3 Solution Strategies

The numerical methods described in the previous sections will give accurate solu-

tion if the initial guesses used are in the neighbourhood of the critical or neutral

parameters. The natural questions which arises are

• What shall be the initial guess for Ren to be used for the given physical

conditions?

• What shall be the initial guess for kc to be used for the given physical

conditions?

It is the aim of this section to somehow answer the above questions with an

example at the end. Suppose we don’t have any idea of the critical parameters,

then one could start in the following way to get a rough idea of the values of

critical parameters.

1. start with a low Re and define a moderate step size δRe in Re and initialize

a step counter i = 1

2. Calculate the basic state for Re.

3. define a coarse step-size in k equal to δk and maximum number of steps nk

in k so that nkδk covers the range of physical wave-numbers.
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4. repeat for j = 1 to nk

k = j · δk

Compute the eigenvalues qm through Krylov subspace iteration and

the Arnoldi algorithm.

Optionally compute the transformed eigenvalues ηm through Krylov

subspace iteration and Arnoldi algorithm using the eigenvalues from

the previous step.

Store the eigenvalue with largest real part qmaxj in a vector eig i.e

eigj = qmaxj .

5 If any entry in vector eig is sufficiently small or greater than zero stop

iteration.

6 Re = Re + δRe

i = i+ 1

Resume iteration from step 2.

From the above process we will get the eigenvalues with the largest real parts at

discrete wave-numbers for different Reynolds numbers. From the data obtained

the critical wave-number kc and Reynolds number can be roughly estimated as

the points where maximum growth rate occurs. Once we have a guess of the

critical parameters they can be used for the full computational process as initial

guesses. The full algorithm is stated as

1. start with initial guess for Re, k , define a moderate step-size δRe and a fine

step-size δk in Re and k respectively, initialize counters i=1,j=1.

2. Calculate the basic state for Re.

3a. Compute the eigenvalues qm through Krylov subspace iteration and the

Arnoldi algorithm using the computed basic state.

3b. Optionally compute the transformed eigenvalues ηm through Krylov sub-

space iteration and the Arnoldi algorithm using the eigenvalues from the

previous step.
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4. eigi = qmaxi where qmaxi is the eigenvalue with largest real part.

5. if i < 2

Re = Re + δRe

i = i+ 1

Resume iteration at step 2.

6. Apply the secant method to compute a new Re

7. If the convergence criterion of the secant method is not fulfilled resume

iteration at step 2.

8. if j < 3

k = k + δk

j = j + 1

i = 1

Resume the iteration at step 2.

9. Apply the quadratic optimization to compute a new Re and k

10. If convergence criterion of optimization is fulfilled stop iteration the Re and

k are the critical parameters, otherwise reset the counter i = 1 and resume

the iteration from step 2.

The above algorithm will deliver the critical parameters. However if we are inter-

ested in getting neutral curve the last two steps may be omitted. The quadratic

optimization is used because it can be implemented easily, however it could also

be replaced by some higher order scheme.

3.3.1 An Example

As an example let us consider an isosceles right-angled triangular cavity of unit

aspect ratio. We want to determine the critical parameters for this cavity when

the lid moves away from the right angle. Applying the first algorithm with an
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Table 3.1: Output of the full algorithm for the isosceles cavity
Iteration Ren kn σ

1 540.403311 2.800000 −7.643836e− 12
2 540.198052 2.900000 6.852125e− 12
3 541.940419 3.000000 −5.999636e− 11
4 540.048332 2.860539 −1.372007e− 10

initial Reynolds number of 100 and step-sizes of 100 in Re, and 0.25 in k, and

keeping the range of k = 0 − 10 will need nk = 40. The resulting growth rates

at different wave-numbers k for different Re are shown graphically in figure 3.3.

From these results it can be seen that the critical parameters lie in the range
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Figure 3.3: Growth-rates for the isosceles cavity (a)Re ∈ [100−600], lowest curve
corresponds to Re = 100 and increasing in steps of 100 for upper curves , (b)
Zoom of (a) with the lowest curve representing Re = 300 and the upper most
Re = 600 in steps of 100.

[500 − 600] for Re and 2.75 − 3.25 for k. Also note a discontinuity in all the

curves near k = 3.75− 4.25 which represent a change of mode.

These values can be used as initial guess for the full algorithm to determine

the the critical parameters. Taking the initial guesses as Re = 550, k = 2.8,

δRe = 25, and δk = 0.2 for the full algorithm yields the critical parameters for

this geometry as (Rec, kc) = (540.048, 2.860) with a tolerance limit of 0.0001 in k.

The neutral Reynolds number Ren computed during each iteration at different k

is represented in table 3.1. The quadratic interpolation converged to the critical
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values in only one iteration. Once the critical parameters are evaluated for a

certain geometry, they can be used as initial guess for a slightly varied geometry.
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Chapter 4

Validation of the Numerical Code

In order to validate the numerical code, results must be compared with those

available in the literature. A comparison of results for the steady-state two-

dimensional basic flow with some of the available data will be carried out in

section 4.1. Results from the stability analysis will be compared with some of the

available data in section 4.2.

4.1 Validation of Basic State

As a first verification of the basic state we consider an isosceles right-angled

triangular cavity at different Re. The values of the stream function and vorticity

at the center of the primary eddy along with its position are compared to the

results of Erturk and Gokcol [2007], for the motion of the lid directed away from

the right-angled corner. It shall be noted that Erturk and Gokcol [2007] used the

stream function-vorticity formulation with a coordinate transformation to solve

the problem in contrast to present finite-element approach. The data tabulated in

table 4.1 show good agreement with a maximum deviation of less than the 1.03%.

The grid used for the present results in table 4.1 consists of 29161 quadratic

velocity nodes, and 7381 linear pressure nodes in a total of 14400 iso-parametric

triangular elements. For a qualitative comparison of the overall flow, streamlines

of basic two-dimensional flows for various Re are shown in figure 4.1, where the

results of Erturk and Gokcol [2007] are also reproduced. An excellent agreement
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4. Validation

Table 4.1: Stream function (ψC) and vorticity (̟C) at the center (xC, yC) of
the primary vortex. The data in parentheses are taken from Erturk and Gokcol
[2007].

Re −ψC −̟C xC yC
100 0.06452 (0.06451) 5.02972 (5.01902) 0.4472 (0.4473) 0.8520 (0.8516)
500 0.06072 (0.06065) 5.75854 (5.73737) 0.5486 (0.5469) 0.8482 (0.8496)
1000 0.05325 (0.05306) 6.99701 (7.02235) 0.6081 (0.6094) 0.8678 (0.8691)
1500 0.04795 (0.04765) 8.15992 (8.20570) 0.6554 (0.6582) 0.8852 (0.8848)
2000 0.04396 (0.04353) 9.23088 (9.32624) 0.6931 (0.6953) 0.8946 (0.8965)

(a) Re = 100 (b) Re = 500 (c) Re = 1000

(d) Re = 100 (e) Re = 500 (f) Re = 1000

Figure 4.1: Streamlines of the basic flow at various Re, the lid moves away from
the right angle. Results of Erturk and Gokcol [2007] are reproduced here in the
lower row (d), (e) and (f).

between the profiles can be observed for different Re in figure 4.1.

A comparison between streak lines of experimental results of Kühnen [2006]

for an isosceles right-angled triangular cavity with the present numerical results

are shown in figure 4.2. The cavity used in the experiment has a finite size
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(a) Re = 100 (b) Re = 500

(c) Re = 100 (d) Re = 500

Figure 4.2: Wall motion towards the rectangular corner. The photographs show
streak lines in the (x, y)-plane at z = −1 for Re = 100 (a) and Re = 500 (b).
The numerically computed contours of the stream function are shown in (c,d).

in the z-direction with a span-wise aspect ratio of λ = 10.85, and the lid was a

circular cylinder of radius R = 3.375 Γ. As can be seen the numerically computed

streamlines agree satisfactorily to the experimental results with the exception that

only two of the vortices are clearly visible in the experiment. In-fact the strength

of the tertiary and subsequent eddies from the numerical results are of order 10−7,

and therefore may not be prominently visible in the experiment.

To check the influence of grid resolution computations were made on different

grids, with the resolution of the grids controlled by a parameter lc, such that
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Figure 4.3: Grid convergence check for an isosceles right-angled triangular cavity
with lid moving away from rectangular corner and Re = 1000.(a)at center of
primary eddy value of stream function ψc (squares) and vorticity ̟c (circles) as a
function of grid parameter l−1
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Figure 4.4: Grid convergence check for an isosceles right-angled triangular cavity
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Γ Rec kc ±ωc
0.25 1149.9 (1152.7) 20.69 (20.63) 2614.1 (2619.6)
0.50 703.74 (706.1) 10.63 (10.63) 818.0 (819.9)
0.75 647.62 (650.6) 7.262 (7.258) 480.9 (482.1)
1.00 784.22 (786.3) 15.44 (15.43) 0.000 (0.000)
1.20 726.58 (730.4) 6.692 (6.680) 350.3 (350.1)
1.50 485.97 (490.4) 1.754 (1.750) 0.000 (0.000)
2.00 442.28 (446.3) 1.720 (1.715) 0.000 (0.000)

Table 4.2: Results for the rectangular cavity of different aspect ratios data in
parentheses are from Albensoeder et al. [2001].

none of the edges of any of the resulting triangular elements is greater than

lc. Results are shown in figures 4.3 and 4.4. It can be seen from figure 4.3(a)

that the stream function and vorticity at center of the primary eddy reach the

asymptote at lc ≈
1

70
. Similarly there is only a minor difference between the

results for stream function, and the velocities, along a line x = 0.5 for lc =
1

40
and

lc =
1

120
. In-fact the respective curves of data for lc =

1

120
almost exactly overlap

the curves for lc =
1

60
(not shown for clarity). It can be stated that the solution

is well converged for the lc ≤
1

70
for the basic state. However if the geometry or

Re is changed this resolution may not be enough and as such the resolution shall

be checked again. For the present study such checks were performed randomly

for different shapes and Re to be sure that the basic state calculated was well

converged with respect to the grid resolution. Another point to be mentioned is

that all the computations were performed in the present study with lc ≤
1

110
.

4.2 Validation Linear Stability Analysis

To verify the results from the linear stability analysis comparison with the critical

data of Albensoeder et al. [2001] for rectangular one-sided lid-driven cavity flow

is shown in table 4.2. The grid controlling parameter used for the tabulated data

was lc =
1

100
whereas the number of Krylov subspaces employed were m = 100.

It can be seen that the critical data for different aspect ratios Γ are in excellent

agreement, despite of the difference in the numerical methods employed and the
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Γ Ref Re(d/a)1/2 α
0.75 Present Result 49.52 3.14

Roberts [1960] 49.52 3.14
Sparrow et al. [1964] 49.53 3.14

0.5 Present Result 68.17 3.16
Roberts [1960] 68.19 3.16
Sparrow et al. [1964] 68.19 3.16
Walowit et al. [1964] 68.18 3.16

Table 4.3: Critical values of Re(d/a)1/2 and dimensional wave number α = 2πd/λ
at aspect ratio Γ = a/b for Taylor-Couette flow between concentric cylinder with
a rotating inner cylinder of radius a and a stationary outer cylinder of radius b.

Motion Ref Rec kc ωc
(a) Present Result 540.2 2.86 0.00

Kühnen [2006] 570± 20 2.89± 0.11 0.00
(b) Present Result 777.9 10.3 1.14

Kühnen [2006] 730± 20 11.2± 0.6 1.121± 0.05

Table 4.4: Comparison of the critical data for right-angled isosceles triangular
cavity for (a)lid motion directed away from the right-angled corner (b) lid motion
directed towards the right-angled corner.

overall approach used to solve the eigenvalue problem.

As a next step of verification the Taylor-Couette flow between concentric

circular cylinders of indefinite length with the outer cylinder at rest, is analysed

with the present numerical code. The critical data for two values of aspect ratio

Γ are tabulated in table 4.3, along with results cited in the literature. It shall be

noted that Γ in this type of flow is the ratio of the radii of inner cylinder a to outer

cylinder b, with a gap-width of d = b − a between them. The Reynolds number

is defined in the same way as by Di Prima and Swinney [1985] i.e. Re = utd
ν
, ut

being the tangential velocity of the inner cylinder. It can be observed from table

4.3 that the critical data are in excellent agreement with those cited in literature,

despite the fact that the Cartesian formulation was used for the problem in the

present study.

A comparison of the critical data with the experiments of Kühnen [2006] is
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l−1
c Ren σ
20 540.879376 −5.187237× 10−14

30 539.517538 2.894572× 10−11

40 540.007489 −6.194745× 10−14

50 540.076282 −8.035942× 10−14

60 539.982469 9.241060× 10−14

70 540.046705 −7.555110× 10−14

80 540.021811 7.127308× 10−15

90 540.039644 4.231025× 10−9

100 540.048381 4.246143× 10−9

110 540.045784 5.947313× 10−10

120 540.041487 9.842830× 10−10

Table 4.5: Neutral Reynolds number Ren and growth rate σ delivered by different
grids at wave number k = 2.86 and for subspaces used m = 100, resolution of
grid is controlled by parameter lc.

shown in table 4.4 for the two cases of lid motion for the isosceles right-angled

triangular cavity. It can be seen that the critical data for the case of lid motion di-

rected away from the right angled corner are in excellent agreement, whereas there

is good agreement when the motion of the lid is directed towards the right-angled

corner. The minor discrepancies may be due to the fact that three dimensional

flow cannot be measured exactly at the onset of instability. Moreover the effects

of stationary side walls of the cavity of finite size used in the experiments could

not be ruled out completely.

The effect of grid resolution on the results for the neutral Reynolds number

Ren, was studied for an isosceles right-angled cavity with the lid motion directed

away from the right angle while keeping a constant wave number k = 2.86 and

number of Krylov subspaces m = 100. The results are tabulated in table 4.5 along

with the maximum growth rate at criticality. The grid resolution is controlled by

parameter lc as was in section 4.1. The maximum deviation in Ren is less than

0.26%. It can be observed that even for a very coarse grid l−1
c = 30 the result for

Ren = 539.52 is pretty close to Ren = 540.04 computed at the finer mesh with

l−1
c = 120. So, the numerical solution can be considered as converged on a grid

with resolution l−1
c ≥ 100.
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m σ1 σ2 σ3 σ4 σ5
20 −0.02173788 −0.4117038 −0.4925273 −0.6142544 −0.7999152
25 −0.02173788 −0.4117037 −0.4923752 −0.6130966 −0.8029302
30 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029664
35 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029665
40 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029666
50 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029665
100 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029665
120 −0.02173788 −0.4117037 −0.4923752 −0.6130973 −0.8029665

Table 4.6: Effect of the number of Krylov subspaces m on the growth rate for
the first five eigenvalues σi, i = 1, 2, ...5 for constant wave number k = 2.86 and
Reynolds number Re = 500 and same grid with l−1

c = 120.

m ω4 ω5 ω6

20 1.639179× 10−2 8.355618× 10−1 2.517639× 10−1

30 1.617602× 10−2 8.343197× 10−1 2.706329× 10−1

35 1.617601× 10−2 8.343215× 10−1 2.708480× 10−1

40 1.617601× 10−2 8.343215× 10−1 2.708495× 10−1

50 1.617601× 10−2 8.343215× 10−1 2.708495× 10−1

100 1.617601× 10−2 8.343215× 10−1 2.708495× 10−1

120 1.617601× 10−2 8.343215× 10−1 2.708495× 10−1

Table 4.7: Effect of number of Krylov subspaces m on frequencies for first three
complex eigenvalues ωi, i = 4, 5, 6 for constant wave number k = 2.86, same grid
with l−1

c = 120 and Re = 500.

To check the effect of the number of Krylov subspaces m on the resulting

eigenvalues, computations were performed for an isosceles right angled cavity by

varying the number of subspaces while keeping the wave number k = 2.86 and

Reynolds number Re = 500 constant on a grid with a grid controlling parameter

l−1
c = 120. The results for the growth rates of the first five eigenvalues are

tabulated in table 4.6. It can be seen that the growth rate for even the fifth

eigenvalue is converged at m = 35. Similarly the frequencies of the complex

eigenvalues is converged at m = 40 for the sixth eigenvalue as can be seen in

table 4.7. So it can be stated that m ≥ 50 subspaces will deliver converged

eigenvalues for this type of cavity.
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Chapter 5

Results and Discussion

In this chapter the results will be presented and discussed. Results for the case

when lid moves away from the the specified angle θ i.e. for lid motion in positive

x−direction are presented in section 5.1, where as results for the reverse motion

of the lid are documented in section 5.2

5.1 Lid moving in positive x−direction

In this section results for a right-angled cavity will be presented first and the

variation of the results with variation of angle θ will be discussed on the basis of

these results for the right-angled cavity.

5.1.1 Result for right angled cavity

An overview on the neutral Reynolds Ren and wave numbers kn is provided in

fig. 5.1 which shows the dependence of the neutral data on the aspect ratio Γ.

The critical curve is given by the envelop of all neutral Reynolds numbers Ren(k)

shown. The oscillation frequencies of the non-stationary modes are shown in fig.

5.2.

Depending on the aspect ratio Γ different modes become critical. We find 5

different modes.

• Mode 1: A low frequency oscillatory mode with 0.5 < ωc < 1.0 appearing
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Figure 5.1: Neutral Reynolds number Ren (solid lines: stationary modes, dashed
lines: oscillatory modes) and wave number kn (dotted lines) as functions of the
aspect ratio Γ. Modes are indicated by numbers.

Γ

ωn

0
0

11

1

2

2

3

4

4

5

0.5 1.5

Figure 5.2: Oscillation frequency ωn of the oscillating neutral modes as functions
of aspect ratio Γ. The numbers refer to the different modes.

at an aspect ratio range of Γ ≤ 0.397 ± 0.0005 with critical wave numbers

in the range of 11.7 < kc < 15.1,

• Mode 2: A high frequency oscillatory mode with 4.5 < ωc < 4.6 appearing
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at an aspect ratio range of 0.397 < Γ < 0.42 ± 0.005 with critical wave

numbers in the range of 18.7 < kc < 20.8,

• Mode 3: A stationary mode overlaying and very close to the above oscilla-

tory mode in the same aspect ratio range of 0.397 < Γ < 0.43 and becomes

critical mode in range 0.42 < Γ < 0.43± 0.005,

• Mode 4: A medium-frequency oscillatory mode 1.2 < ωc < 3.0 appearing at

an aspect ratio range of 0.43 < Γ < 0.75±0.005 with critical wave numbers

range of 15.0 < kc < 30.0,

• Mode 5: A stationary mode appearing at an aspect ratio range of Γ > 0.75

with critical wave numbers range of kc < 3.5.

Two out of the five modes are stationary. Moreover, modes 2 and 3 have very close

neutral Reynolds numbers. Both become critical only in a very small range of

aspect ratios. In the following each of the modes will be analyzed by discussing

their properties for representative aspect ratios. The energy production terms

integrated over the volume and normalized with the dissipation term are given

in table 5.1 for the representative cases at critical conditions. For shallow cav-

ities (modes 1 and 2)
∫

I1dV and
∫

I2dV represent the dominant contributions

to the energy production rates. For modes 3 and 5
∫

I2dV makes the domi-

nant contribution to the overall energy production rate, whereas
∫

I1dV is the

major contributor for mode 4. In streamline coordinates the dominant energy

production term is always
∫

I ′2dV .

5.1.1.1 Mode 1: Γ ≤ 0.397

Mode 1 is the most dangerous mode for Γ ≤ 0.397. A close-up of the neutral

curve for mode 1 is shown in figure 5.3. Note that the neutral curve turns back

at Γ ≈ 0.397.

As an example we consider Γ = 0.365. Figure 5.4a shows the flow fields

and the kinetic energy production rates at the critical point (Rec, kc, ωc) =

(1756.66, 11.8, 0.715). The moving lid drives a primary vortex whose center is

located closed to the downstream end of the moving lid. Near the upstream

end of the moving lid and next to the rigid corner made by the two stationary
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Table 5.1: Different energy production terms integrated over volume for repre-
sentative cases of different instability modes at criticality.

Γ = 0.365 Γ = 0.42 Γ = 0.425 Γ = 0.7 Γ = 1.0
Rec 1756.66 2220.66 2206.87 1000.71 540.20

∫

I1dV 0.590 0.555 0.214 0.842 −0.040
∫

I2dV 0.503 0.505 0.896 0.021 1.299
∫

I3dV −0.054 −0.043 −0.101 0.149 −0.252
∫

I4dV −0.039 −0.016 −0.010 −0.011 −0.006
∫

I
′

1dV −0.075 0.090 0.101 0.008 −0.062
∫

I
′

2dV 0.703 0.705 0.785 0.686 0.913
∫

I
′

3dV 0.032 0.002 −0.030 0.121 −0.078
∫

I
′

4dV 0.340 0.201 0.145 0.185 0.227

Ren
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Figure 5.3: Neutral Reynolds number Ren for mode 1 (solid line and dots), neutral
wave number kn (dashed line and circles) and neutral frequencies 12×ωn (dotted
line and grey circles) as functions of aspect ratio Γ. Part of the neutral curves of
mode 2 and 3 are visible as lines entering from the right.

walls separated secondary vortices are found which transform into a sequence of

Moffatt eddies as the rigid corner is approached.

The total local energy transfer
∑

i Ii has a global maximum and a weaker

global minimum near the center of the primary vortex (fig. 5.4a). Likewise, the

flow field of the critical mode has a large relative amplitude in the region of
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(a)

-2.95 0.12 3.19 6.26

(b)

Figure 5.4: (a) Basic state streamlines at Rec = 1756.66 for Γ = 0.365 (different
levels of isolines are used to show the secondary and tertiary eddies) along with the
critical mode (arrows) and the total local energy production rate

∑

i Ii (coloured)
in a plane z = const. in which

∑

i Ii takes its absolute maximum. (b) Basic flow
overlaid with the areas in which the inviscid criterion (2.17) for a centrifugal
instability holds.

the primary eddy, apart from a small region near the upstream wall where no

significant energy production takes place. We conclude that the properties of the

primary vortex are of key importance for the instability of mode 1. The primary

vortex has an elliptic shape due to the driving mechanism and the geometric

constraints. The maximum energy production is located close to the center of

the strained vortex. In this region the perturbation flow is approximately aligned

with the bisection of the major and the minor half axes of the nearly elliptic

streamlines. These characteristics indicate an elliptic instability mechanism [Eloy
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Figure 5.5: Critical mode 1 over one wavelength in z-direction for Γ = 0.365
shown at x = 0.62 (arrows) and total local energy production (coloured). The
arrow indicates the direction of propagation of the wave.
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Figure 5.6: Critical mode 1 over one wavelength in z-direction for Γ = 0.365
shown at y = −0.07 (arrows) and total local energy production (coloured). The
arrow indicates the direction of propagation of the wave.

and Le Dizès, 2001; Kerswell, 2002; Kuhlmann et al., 1998]. In fact, the evaluation

of the local Rayleigh criterion (fig. 5.4b) shows that the energy transfer occurs

outside of the region in which (2.17) holds. This confirms that centrifugal effects

are not the cause of the instability.

The perturbation flow field for a wave propagating in the negative z-direction

is shown in fig. 5.5 for a cross section at x = 0.62. The wavelength of the wave

λ = 2π/k = 0.534 is comparable to the maximum depth Γ = 0.365 of the cavity.

A view through the moving lid is shown in fig. 5.6 at y = −0.07. The absence of

any mirror symmetry indicates that the mode is propagating in z direction.
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A similar basic flow arises in shallow rectangular lid-driven cavities [Alben-

soeder et al., 2001]. Even though some energy transfer occurs in the center of the

vortex as well, the major contribution to the energy transfer arises, via a cen-

trifugal effect, near the bottom of the rectangular cavity. The centrifugal process

is absent in the prismatic cavity with Γ = 0.365, since the fluid which separates

from the bottom wall can expand into a much wider space owing to widening of

the cavity in the negative x direction. This effect slows down the separated basic

flow, thereby suppressing centrifugal effects.

The question arises whether or not an asymptotic limit for the critical Reynolds

and wave numbers exists for Γ→ 0. In that limit, the only available length scale

is the length s2 of the stationary side wall making the right angle with the moving

lid. If the flow instability would occur in the vicinity of the 90◦-upstream corner

of the cavity, s2 would be the relevant length scale and an asymptotic behaviour

of the critical data could be expected. However, the flow near the 90◦-rectangular

corner is similar to an entrance flow and it is stable [see e.g. Albensoeder et al.,

2001; Laure et al., 1990]. For the rectangular cavity the instability occurs further

downstream near the concentrated vortex which forms in front of the downstream

stationary wall. Such a downstream wall, however, is absent in the prismatic case.

Here the flow enters a wedge which becomes ever sharper for Γ→ 0. Even though

we find a vortex in the downstream half of the prismatic cavity for Γ = 0.365

which is the cause of the instability, the basic flow changes in the limit Γ → 0.

Owing to the diminishing height of the cavity the basic flow will be viscously

dominated as the downstream corner is approached. Hence, inertial effects near

the downstream corner will be completely suppressed. Moreover, the basic flow in

the bulk approaches the Couette–Poiseuille profile u0 = U
[

3(y/Γ̃) + 2
]

(y/Γ̃)ex

with Γ̃ = Γ(x − 1) which is linearly stable. Hence, we expect a stable basic flow

in the limit Γ→ 0. To check this hypothesis we apply the scaling based on s2

Re∗ = ΓRe, k∗ = Γk, ω∗ = Re∗ω, (5.1)

suitable for the limit considered. The correspondingly scaled critical data are

shown in fig. 5.7. It can be seen that this scaling is appropriate for a certain

range of intermediate small aspect ratios. However, the neutral Reynolds number
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Figure 5.7: Critical data for mode 1 using the scaling (5.1) for shallow cavities.

Re∗n for mode 1 shows a tendency to diverge as Γ → 0 indicating a stabilization

of the basic flow.

5.1.1.2 Mode 2 and 3: 0.397 < Γ < 0.43

Figure 5.8 shows a close-up of the neutral curves in the aspect-ratio range 0.375 <

Γ < 0.45. In the range 0.397 < Γ < 0.43 two distinct modes may become critical

and their neutral curves are very close to each other. Mode 2 is oscillatory with

the oscillation frequency of in the range 4.55 < ωn < 4.65 and with a wave

number in the range 19 < kn < 20. The other mode, mode 3, is stationary with

a wave number ranging in 25 < kn < 27. The maximum difference between the

neutral Reynolds number of the two modes is less than 20 at any Γ in the range

0.397 < Γ < 0.43 considered.

As an example for the oscillatory mode 2 we consider Γ = 0.42. The critical

condition are (Rec, kc, ωc) = (2220.66, 19.37, 4.58). As shown in fig. 5.9 the basic

flow at criticality is similar to the one at Γ = 0.365 considered above, with a

primary strained vortex in the upper downstream half of the cavity and a large

but weak secondary eddy in the lower left part of the cavity. The perturbation

flow field is most pronounced in the region of the primary eddy. Contrary to

mode 1 where the perturbation flow is essentially unidirectional across the center

of the basic vortex, the perturbation flow for mode 2 is directed towards or away

from the center of the vortex. The region of maximum energy production shifted
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Figure 5.8: Neutral Reynolds number Ren (solid lines and bold symbols), neutral
wave numbers kn (dotted lines and open symbols) and neutral frequencies 5 ×
ωn (dotted line and grey symbols) for the oscillatory mode 2 (circles) and the
stationary mode 3 (squares). The neutral curves for mode 1 and 4 are shown as
lines without symbols.

slightly away from the center of the basic vortex. Yet, the energy production

takes place in a region where the basic flow is expected to be stable regarding

centrifugal mechanisms. This can be seen by evaluation the criterion (2.17) (not

shown) which yields a very similar pattern as for Γ = 0.365 shown in fig. 5.4b.

We conclude, therefore, that the instability is due to a resonance of Kelvin-

waves on the concentrated vortex, similar as for Γ = 0.365, The resonance being

communicated by the strain field contained in the deformed vortex [Eloy and Le

Dizès, 2001; Kerswell, 2002].

Further characteristics of the critical mode 2 can be recognized from figs.

5.10 and 5.11. The latter figure shows the critical flow field in the (y, z) plane

for wave propagating in the negative z-direction. The wavelength of the wave

λ = 2π/k = 0.324 is comparable to the depth of the cavity. The different struc-

tures in the vicinity of the basic vortex of mode 2 as compare to mode 1 is

evident. A particular feature of mode 2 is the plane-wave-like structure that

extends upstream the moving lid in the left half of the cavity (fig. 5.10). The

wave propagated away from the upstream wall. This regular wave structure may
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Figure 5.9: Streamlines of basic flow at Rec = 2220.66 for Γ = 0.42 (different
scales are used to show the secondary and tertiary eddies) along with the critical
mode 2 (arrows) and the sum

∑

i Ii of all local energy production rates (coloured)
in a plane z = const. in which

∑

i Ii takes its maximum.
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Figure 5.10: Critical mode 2 (arrows) over one wavelength in z-direction for
Γ = 0.42 shown at y = −0.062 and total local energy production (coloured). The
arrow indicates the direction of propagation of the wave.

reflect a spatial mode of the underlying entrance flow, the mode being damped

in upstream direction. A similar behaviour has been found in rectangular ther-

mocapillary cavities where the unstable hydrothermal waves existing far away

from the lateral boundaries are modified by strong effects due to the primary

vortex localized in front of the downstream wall [see e.g. fig. 17 of Kuhlmann and

Albensoeder, 2008].

As an example for the stationary mode 3 we consider Γ = 0.425. The stream-
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z -3.03 2.58 8.19 13.8

Figure 5.11: Critical mode 2 over one wavelength in z-direction for Γ = 0.42
shown at x = 0.74 (arrows) and total local energy production (color). The arrow
indicates the direction of propagation of the wave.

-9.91 13.2 36.4 59.6

Figure 5.12: Streamlines of basic flow at Rec = 2206.87 for Γ = 0.425 (different
scales are used to show the secondary and tertiary eddies) along with the critical
mode 3 (arrows) and the sum

∑

i Ii of all local energy production rate (coloured)
in a plane z = const. in which

∑

i Ii takes its maximum.

lines of basic steady flow along with the local energy transfer rate are shown

in figure 5.12 at the critical condition (Rec, kc) = (2206.87, 26.84). The nearly

perfect coincidence of the energy production peak with the center of the vortex

together with the alignment of the perturbation flow in direction of the bisection

of the major and minor half axis of the elliptic streamlines of the strained vortex

strongly suggest the elliptic instability mechanism. The distribution of the en-

ergy production is similar as in the two-sided lid-driven cavity [see, e.g., fig. 9 of
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Figure 5.13: Critical mode 3 over one wavelength in z-direction for Γ = 0.425
shown at y = −0.059 (arrows) and total local energy production (color).
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Figure 5.14: Critical mode 3 over one wavelength in z-direction for Γ = 0.425
shown at x = 0.67 (arrows) and total local energy production (coloured).

Albensoeder and Kuhlmann, 2002].

The structure of the critical mode in the two other orthogonal planes is shown

in figs. 5.13 and 5.14. The perturbation flow is clearly restricted to the region

of the basic vortex. The vortical structures of the critical mode are very similar

to the elliptic instability mode that has been found in rectangular cavities with

two facing lids moving in opposite directions (compare fig. 5.13 with fig. 8c of

Kuhlmann et al. [1997] and fig. 8 of Albensoeder and Kuhlmann [2002]).

50



5. Results and Discussion

Sf

Ren

Γ

kn, 13× ωn

0.4 0.5 0.6 0.7 0.8
10

15

20

25

30

35

1000

1500

2000

2500

Figure 5.15: Neutral Reynolds number Ren (solid line and dots), neutral wave
number kn (dashed line and circles) and neutral frequencies 13×ωn of the medium
frequency mode 4 as functions of aspect ratio Γ. Part of the neutral curves for
modes 2, 3 and 5 are shown as lines without symbols.

5.1.1.3 Mode 4: aspect ratios 0.43 < Γ < 0.73

A close-up of the neutral curve for mode 4 is shown in fig. 5.15. Mode 4 is critical

in the aspect-ratio range 0.43 < Γ < 0.73. Within this range of Γ the oscillation

frequency varies within ωc ∈ [1.3, 2.5].

We consider the critical mode 4 for Γ = 0.7 at the critical condition (Rec, kc, ωc) =

(1000.71, 16.4, 1.572). Figure 5.16a shows basic-flow streamlines, the total local

energy production rate, and the perturbation flow field, all in the plane z = const.

in which the energy production rate takes its global maximum. For mode 4 the en-

ergy production is not peaked near the center of the vortex. The region of largest

energy transfer from the basic state to the critical mode is located between the

center of the vortex and the point of basic-flow separation from the oblique wall.

The basic-state streamlines are curved in this region and the velocity decreases

radially outward from center of the vortex. Figure 5.16b shows that the region

of substantial energy production is contained well inside the region in which the

centrifugal instability indicator (2.17) holds. We conclude that mode 4 is due to

a centrifugal instability. Apparently, the change of the instability mechanism is

caused by a change of the basic flow: for aspect ratio Γ = 0.7 the basic vortex
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(a)

-1.36 0.79 2.93 5.08

(b)

Figure 5.16: (a) Streamlines of basic flow at Rec = 1000.71 for Γ = 0.7 (different
scales are used to show the secondary and tertiary eddies) along with critical
mode (arrows) and the total local energy production rate

∑

i Ii of all (coloured)
in a plane z = const. in which

∑

i Ii takes its global maximum. (b) Basic flow
overlaid with the areas in which the inviscid criterion (2.17) for a centrifugal
instability holds.
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Figure 5.17: Critical mode 4 over one wavelength in z-direction for Γ = 0.7 shown
at y = −0.193 (arrows) and total local energy production (coloured). The arrow
indicates the direction of propagation of the wave.

experiences less strain as compared to those for smaller aspect ratios for which

the wedge is sharper. Hence, the elliptic instability mechanism should not be as

effective. Moreover, the basic vortex is more intense and the outer streamlines of

the basic vortex near the separation point experience a larger curvature.

The perturbation velocity field in the (x, z)-plane for wave propagating in
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Figure 5.18: Neutral Reynolds number Ren (solid line and dots) and neutral
wave number kn (dashed line and circles) of the stationary mode 5 as functions of
aspect ratio Γ. The neutral curve for mode 4 is shown as a line without symbols.

negative z-direction is shown in fig. 5.17 over one period. The wavelength λ =

2π/k = 0.383 is relatively short in comparison to the depth of the cavity. A

slightly supercritical flow could be visualized as a spiral wave propagating in

z-direction along the basic vortex. A similar centrifugal mode also arises in

the classical rectangular lid-driven cavity [Albensoeder et al., 2001], however,

the location of energy production near the outer streamlines of the basic vortex

differs.

5.1.1.4 Mode 5: aspect ratio Γ > 0.73

The neutral curve Ren(Γ) and kn(Γ) for the stationary mode 5 are shown in fig.

5.18. As an example we consider Γ = 1. Basic flow, neutral mode and the total

local energy production are shown in fig. 5.19 in a plane in which the local energy

production takes its global maximum. For Γ = 1 the basic vortex is even less

strained as for Γ = 0.7. The location of maximum energy transfer is arises in

a similar region as for mode 4, namely near the separation point and slightly

upstream of it. Also the structure of both critical modes in the cross sections

z = const. shown in figs. 5.19a and 5.16a are similar. For that reason and by
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(a)
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Figure 5.19: (a) Streamlines of basic flow at Rec = 540.2 for Γ = 1.0 (different
scales are used to show the secondary and tertiary eddies) along with critical
mode (arrows) and the

∑

i Ii of the total local energy production rate (color) in a
plane z = const. in which

∑

i Ii takes its global maximum. (b) Basic flow overlaid
with the areas in which the inviscid criterion (2.17) for a centrifugal instability
holds.
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Figure 5.20: Critical mode 5 over one wavelength in z-direction for Γ = 1.0 shown
at x = 0.57 (arrows) and total local energy production (color).

comparison of figs. 5.19a and b we conclude that the instability mechanism of

mode 5 is as well of centrifugal nature. However, a second region of weak energy

transfer can be identified in the center of the slightly stained basic vortex, an

effect which contributes to the destabilization of this mode 5.

The perturbation velocity field at critical conditions in the (y, z)-plane is

shown in fig. 5.20. The perturbation flow in this plane consists of co-rotating
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vortices. The vortices superimposed to the basic flow would result in a super-

critical flow in form of a basic vortex which is periodically displaced towards and

away from the moving lid.

A similar critical mode is also found deep rectangular cavities [see e.g. figs.

20 and 21 of Albensoeder et al., 2001]. In fact, the asymptotic limit for Γ → ∞

should be the same for both systems, the rectangular and the prismatic cavity.

We find indications that the critical Reynolds number for mode 5 tends to an

asymptotic value. While Rec(Γ) does not seem to vary much any-more for Γ >
∼ 2,

the critical wave number is still decreasing even beyond Γ = 4 (see fig. 5.18).

For the largest aspect ratio Γ = 4 considered we get (Rec, kc) = (387.9, 2.04).

This must be compared with (Rec, kc) = (420.3, 1.68) ≈ (Re∞c , k
∞
c ) which has

been obtained for the rectangular cavity for Γ = 4 [Albensoeder et al., 2001].

In the rectangular cavity these values are already very close to the asymptotic

limit Γ→∞. The slower convergence in the present prismatic case is attributed

to the fact that even for Γ = 4 and larger the slope of the oblique rigid wall

still has a sizeable effect on the primary lid-driven vortex, whereas such an effect

is absent in the rectangular cavity. The oblique wall reduces the width in x-

direction available for the basic vortex. Assuming a square vortex this width

reduction would be on average (Γ+1)−1/2. For Γ = 4 this amounts to 0.1. These

10% roughly correspond to the relative difference in the two Reynolds numbers

of 8% for Γ = 4.

5.1.2 Variations of results with angle θ

Variation of the angle would change the constraints on the basic flow in terms

of boundary conditions and the properties of the primary eddy will change in

response to these constraints. The perturbation modes may also change in re-

sponse to this change in the properties of the basic flow. Variation of the modes

with a decrease in angle θ from 90◦ for Γ ≤ 1.2 is shown in figure 5.21. Neu-

tral curves for all the modes occupy region of higher Re as θ decreases. Mode

3 takes the lead for being a neutral curve from other modes (mode 1 and mode

2) as θ decreases for small aspect ratios Γ, as is obvious from the neutral curves

for θ = 45◦, 30◦, and 15◦. At θ = 15◦ mode 3 is the most dangerous mode of
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Figure 5.21: Neutral curves for different angles θ as indicated. Ren for oscillatory modes(mode 1 (black), mode 2
(red) mode 4 (blue)) are represented by dashed lines, and for stationary modes (mode 3 (green), mode 5 (maroon))
by solid lines. Dotted lines represent corresponding wave number k .
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elliptic nature for small aspect ratio Γ ≤ 0.65 except for a very small range

0.57 < Γ < 0.63 where mode 2 define the limits of marginal stability. The region

0 1 2 3 4
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Ren
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θ = 62.5◦ θ = 65◦

θ = 67.5◦

θ = 70◦

Figure 5.22: Qualitative changes in behaviour of the neutral curve for mode 5
with change of angle θ in the range shown.

occupied by stationary centrifugal mode (mode 5) as the most dangerous mode

shrinks in term of Γ as θ decreases and at θ = 15◦ it occupies a very small region

of 0.66 < Γ > 0.73 for being the most dangerous mode. The qualitative changes

in behaviour of mode 5 occurring in the range θ = [70◦− 60◦] are shown in figure

5.22. It can be observed that the neutral curve for mode 5 is no more a continuous

curve for θ < 65◦ at higher aspect ratio Γ > 1.7.

Variation of the neutral curves with increase in θ from 90◦ are shown in figure

5.23. The region occupied by the mode 1 for being the most dangerous mode

expands in Γ as the angle θ is increased from 90◦, so that the turning point of

the neutral curve shifts from Γ ≈ 0.397 for θ = 90◦ to Γ ≈ 0.96 for θ = 135◦.

Accordingly the positions for mode 2 and mode 3 also changes with a shrinkage

of region in Γ for mode 3 to be the most dangerous mode and finally at θ = 135◦

mode 3 does not appear as the most dangerous mode at all. Similarly the first

appearance of mode 4 as the most dangerous mode, is also displaced toward

higher Γ as θ is increased. The first appearance of mode 4 as the most dangerous
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Figure 5.23: Neutral curves for different angles θ as indicated. Ren for oscillatory modes(mode 1 (black), mode 2
(red) mode 4 (blue)) are represented by dashed lines, and stationary modes (mode 3 (green), mode 5 (maroon)) by
solid lines.Dotted lines represent corresponding wave number k.

58



5. Results and Discussion

mode for θ = 90◦ at Γ ≈ 0.43 is shifted to Γ ≈ 1.15 for θ = 135◦. Once again a

drastic change in the behaviour of mode 5 is observed, whose first appearance as

the most dangerous mode for θ = 90◦ at Γ ≈ 0.7 is shifted to Γ ≈ 3.1(not visible

in figures) for θ = 135◦.

To get more clear picture about the variation of modes with change in angle θ,

the neutral curves for small aspect ratios Γ = [0.3, 0.35, 0.4, and 0.5] are shown

in figure 5.24. For Γ = 0.3 (figure 5.24(a)) mode 1 remains the most dangerous

mode for 135◦ > θ > 35◦. A cross over of the neutral curves for mode 1 and mode

3 occurs at θ ≈ 35◦, so for Γ = 0.3 and θ < 35◦ mode 3 is the most dangerous

mode for instability to evolve. Qualitatively the neutral curves for Γ = 0.35(figure

5.24(b)) are same as for Γ = 0.3 with minor differences. The first difference is

the shift of the cross over point of the two most dangerous modes (mode 1 and

mode 3) to θ ≈ 28◦. A second observable difference is a minor kink in the neutral

curve at θ ≈ 60◦, which gives an indication of breakdown of the neutral curve for

mode 1 at higher Γ. It could be noted that for small aspect ratios Γ < 0.35 mode

1 and mode 3 are the only dangerous modes. For Γ = 0.4 (5.24(c)) the curve for

mode 1 is not a continuous one as it return back at θ ≈ 32.5◦. Mode 1 however

reappears at θ ≈ 92◦, where it forms a turning curve facing in reverse direction

to the initial appearance at small θ. Mode 1 remains the most dangerous mode

in the region 24◦ < θ < 32.5◦ and θ > 92◦ for Γ = 0.4. Mode 3 becomes the most

dangerous mode in the region θ < 24◦ and in a thin region of 33.5◦ < θ < 35.5◦.

Mode 2 becomes visible now as a dangerous mode for Γ = 0.4 and the two regions

where it is most dangerous is 35.5◦ ≤ θ ≤ 57.5◦ and 77.5◦ ≤ θ ≤ 92.5◦. Once

again the mode 3 and mode 2 are very close to each other in terms of Re. Mode

4 is also visible for Γ = 0.4 and it occupies the region 57.5◦ ≤ θ ≤ 77.5◦ for being

the most dangerous mode. It can be seen that in the region 57.5◦ ≤ θ ≤ 77.5◦

the three modes (mode 2,3,4) are very close in terms of Re from figure 5.24(c).

For Γ = 0.5 (figure 5.24(d)) in contrast to Γ = 0.4 the mode 1 does not appear

at small θ, however it appear only at higher angles and is most dangerous for

θ > 110◦, where the neutral curve turns back with the upper bound on Re. At

small angles θ < 21.5◦ mode 3 remains the most dangerous mode for Γ = 0.5

as was the case for other small aspect ratios. Mode 2 once again becomes most

dangerous mode in two regions with 21.5◦ ≤ θ ≤ 28.5◦ and 105◦ ≤ θ ≤ 110.5◦
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Figure 5.24: Neutral curves for different aspect ratios Γ as indicated. Ren for oscillatory modes(mode 1 (black,circles),
mode 2 (red) mode 4 (blue,squares)) are represented by dashed lines, mode 3 (green) by solid lines.Dotted lines
(hollow symbols) represent corresponding wave number k.
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for Γ = 0.5. Mode 4 occupies a large region 28.5◦ ≤ θ ≤ 105◦ for being the most

dangerous mode for Γ = 0.5.

As the aspect ratio is increased beyond 0.5 the straining of the primary eddy

becomes weak due to increase of the available area for fluid flow. The elliptic

instability mechanism gradually vanishes, and the centrifugal modes are domi-

nant. The neutral curve for different aspect ratios Γ = [1.0, 1.5, 2.0, and 3.0] are

shown in figure 5.25. It can be seen that only the centrifugal modes (mode 4

and 5) are the dangerous modes for this range of Γ. The zone where mode 5 is

most dangerous is shifted towards higher angles for an increase in the Γ, as this

mode is most dangerous in the range of 64◦ ≤ θ ≤ 107◦ for Γ = 1.0 and shifted

to 78◦ ≤ θ ≤ 133◦ for Γ = 3.0. A turn or a jump in the curve for neutral wave

number kn could be observed for Γ = 2 and 3.0 at θ = 19◦ and 36◦ respectively.

This turning of the curve for neutral wave number could be explained by the

curves for dangerous growth rate (real part of most dangerous eigenvalue) for a

constant Re at different θ in the neighbourhood of the turning zone as shown

in figure 5.26(a). It can be seen that for θ = [36◦ − 38◦] the growth rate makes

two peaks, without any discontinuity at Re = 725 (very close to criticality). The

continuity in the oscillating frequency also suggests a jump in k but physically the

same mode. the neutral curves (figure 5.26(b)) clearly shows the continuity of the

mode in terms of oscillating frequency and the regions where the ∂Re
∂k

vanishes.

5.1.3 Summary of results

The major observations for instability modes with the lid motion directed away

from a specified angle between two sides of specified lengths of a triangular cavity

could be summarized as

• For small aspect ratios Γ < 0.36 mode 1 and mode 3 are the dangerous

modes, where as mode 3 is active at small angles θ the value of which

depends on the Γ (figure 5.24(a & b)).

• At moderately small aspect ratios 0.36 ≤ Γ ≤ 0.39 mode 2 becomes visible

as a dangerous mode for moderate angles 32◦ ≤ θ ≤ 90◦. The curve for

mode 1 splits into two parts and the mode is dangerous only at the two
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Figure 5.25: Neutral curves for different aspect ratios Γ as indicated. Ren for mode 4 is represented by blue lines
(squares), mode 5 is represented by maroon lines (triangles).Dotted lines (hollow symbols) represent corresponding
wave number kn.
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Figure 5.26: (a)Growth rate σ (full lines and symbols) and γ (dotted lines and hol-
low symbols) as a function of k for Γ = 3.0, Re = 725 and θ = 36◦ (black,circles),
θ = 37◦ (red, squares) and θ = 38◦ (green, triangles), (b) Ren (full lines) and
oscillating frequency γ (dotted lines) as a function of k for Γ = 3.0 and θ = 37.5◦

(black), θ = 38◦ (red) and θ = 38.5◦ green).

ends with respect to θ. Mode 3 remains the dangerous mode at small

angles θ(figure 5.24(b & c)).

• For aspect ratio of Γ = 0.4 mode 4 appears as the dangerous mode at
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57.5◦ ≤ θ ≤ 77.5◦ splitting the dangerous zone of mode 2 into two parts.

As the aspect ratio is increased the region in θ where the mode 4 is most

dangerous is enlarged covering the region 28◦ ≤ θ ≤ 105◦ for Γ = 0.5, where

as the portion of neutral curve for mode 1 at small angles shrinks and finally

disappears at Γ = 0.5(figure 5.24(c & d)).

• Mode 5 is never a dangerous mode for small aspect ratios Γ ≤ 0.5 and is

thus not visible in the figures for neutral curves of small aspect ratios(figures

5.24. However at higher aspect ratios Γ > 0.6 the mode appears as the most

dangerous mode at θ ≥ 62.5◦ splitting the region of where mode 4 is most

dangerous mode into two parts. the upper limit of θ for which mode 5 is

most dangerous mode depends on Γ(figures 5.25).

• The appearance of certain mode as a dangerous mode depends on the struc-

ture of the primary vortex or primary eddy, which depends apart from other

parameters strongly on the shape of the cavity.

• For small aspect ratio Γ << 1.0 where the downstream angle is small, the

instability mechanism is elliptic in nature and the curve for appropriately

rescaled Reynolds number Re∗n shows a trend of divergence or in other words

stabilization of basic flow.

The limits of aspect ratio Γ at which different modes act as the most dangerous

mode are summarized in table 5.2 for representative cases of upstream angles θ.

5.2 Lid moving in negative x−direction

Although a general idea could be captured from the results in previous section

regarding the results for motion of the lid directed towards the specified angle,

by calculating the downstream angle and length of the third side for aspect ratio.

However to get a complete picture the complete parameter variation is necessary.

In this section the different modes will be discussed by their dominant occurrence

in the parameter space.
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Table 5.2: Limits of aspect ratio Γ in which different modes are most dangerous at specific upstream angles θ.

θ Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

15◦ 0.577 ≤ Γ ≤ 0.63 Γ ≤ 0.577 & 0.63 ≤
Γ ≤ 0.667

Γ > 0.724 0.667 ≤ Γ ≤ 0.724

30◦ 0.33 ≤ Γ ≤ 0.41 0.434 ≤ Γ ≤ 0.48 Γ ≤ 0.33, 0.41 ≤ Γ ≤
0.434 & 0.48 ≤ Γ ≤
0.495

0.495 ≤ Γ ≤ 0.593 &
Γ ≥ 0.675

0.595 ≤ Γ ≤ 0.675

45◦ 0.23 ≤ Γ ≤ 0.368 0.368 ≤ Γ ≤ 0.421 Γ ≤ 0.23,& 0.421 ≤
Γ ≤ 0.43

0.43 ≤ Γ ≤ 0.58 &
Γ ≥ 0.7

0.58 ≤ Γ ≤ 0.7

60◦ Γ ≤ 0.35 0.35 ≤ Γ ≤ 0.393 0.393 ≤ Γ ≤ 0.398 0.398 ≤ Γ ≤ 0.59 &
Γ ≥ 0.88

0.59 ≤ Γ ≤ 0.88

75◦ Γ ≤ 0.36 0.36 ≤ Γ ≤ 0.393 0.393 ≤ Γ ≤ 0.399 0.399 ≤ Γ ≤ 0.63 Γ ≥ 0.63

90◦ Γ ≤ 0.391 0.391 ≤ Γ ≤ 0.422 0.422 ≤ Γ ≤ 0.434 0.434 ≤ Γ ≤ 0.726 Γ ≥ 0.726

105◦ Γ ≤ 0.46 0.46 ≤ Γ ≤ 0.49 0.49 ≤ Γ ≤ 0.505 0.505 ≤ Γ ≤ 0.93 Γ ≥ 0.93

120◦ Γ ≤ 0.61 0.61 ≤ Γ ≤ 0.645 0.645 ≤ Γ ≤ 0.67 0.67 ≤ Γ ≤ 1.41 Γ ≥ 1.41

135◦ Γ ≤ 0.975 0.975 ≤ Γ ≤ 1.07 1.07 ≤ Γ ≤ 3.4 Γ ≥ 3.4
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5. Results and Discussion

5.2.1 Mode 1

This mode occurs as a dangerous mode for Γ > 0.5 and θ ≤ 22.25◦ in the

parameter space. As an example the neutral Reynolds Ren and wave numbers

0 1 2 3 4
1500

2000

2500

3000

3500

4000

10

20

30

40

Ren

Γ

kn

Figure 5.27: Neutral Reynolds number Ren (full symbols and solid lines: station-
ary modes, dashed lines: oscillatory modes) and wave number kn (hollow symbols
with dotted lines) as functions of the aspect ratio Γ for θ = 15◦. Modes are in-
dicated by black circles (mode 1), red triangles (mode 2), green squares (mode
3).

kn is provided in fig. 5.27 for a downstream angle θ = 15◦, which shows the

dependence of these data on the aspect ratio Γ. The neutral curves takes an

asymptotic value of Ren ≈ 2081 and kn ≈ 12.48 for higher aspect ratios at

Γ ≈ 1.5. On the other side at small aspect ratios mode 3 crosses mode 1 at

Γ ≈ 0.6, and below an aspect ratio of 0.6 mode 1 is no more the most dangerous

mode.

To get more en-sight about the variation of mode 1 the neutral curves for dif-

ferent aspect ratios Γ = [0.5, 1.0, 2.0, and 3.0] are presented in figure 5.28, which

shows the dependence of Ren and kn on the downstream angle θ for these aspect

ratios. It can be seen from figure 5.28(a) that mode 1 is not the most dangerous

66



5
.
R
e
su

lts
a
n
d

D
isc

u
ssio

n

(a) Γ = 0.5

10 15 20
1000

2000

3000

4000

5000

15

20

25

30

kn

θ◦

Ren

(b) Γ = 1.0

10 15 20
1000

2000

3000

4000

10

15

20

25

kn

θ◦

Ren

(c) Γ = 2.0

10 15 20
1000

2000

3000

4000

10

12

14

16

18

kn

θ◦

Ren

(d) Γ = 3.0

10 15 20
1000

2000

3000

4000

10

12

14

16

kn

θ◦

Ren

Figure 5.28: Neutral curves for different aspect ratios Γ as indicated. Ren for mode 1 is represented by black dashed
line (full circles), mode 2 and mode 3 are represented by red dashed line and green solid line respectively .Dotted
lines (hollow symbols) represent corresponding wave number kn.
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Table 5.3: Limits of turning point of neutral curve for mode 1, when the lid
moves away from a specified angle θupstream and the calculated corresponding
downstream angles θdownstream.

Γ θupstream θdownstream
0.363 75◦ 21.2◦

0.397 90◦ 21.7◦

0.467 105◦ 21.9◦

0.612 120◦ 22.1◦

0.974 135◦ 22.2◦

mode for Γ = 0.5 at any angle. The neutral curves turns back at θ ≈ 21.3◦ for

Γ = 1.0 and at θ ≈ 22.25◦ for Γ = [2.0, 3.0]. This turning behaviour of mode

1 was already seen at certain Γ for a fixed upstream angle θ in previous section

such as figures (5.3, 5.21, 5.23). In fact if the downstream angle is calculated from

aspect ratio and upstream angle in previous section it approximates the down-

stream angle to be θ ≈ [21◦ to 22◦] as the limiting case for turning point. The

data of such calculation is represented in table 5.3 for some cases. As a second

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

-3.27 0.11 3.49 6.87

Figure 5.29: Basic state streamlines at Rec = 1801.93 for Γ = 1.0 and θ = 20◦

(different levels of isolines are used to show the secondary and tertiary eddies)
along with the critical mode (arrows) and the total local energy production rate
∑

i Ii (color) in a plane z = const. in which
∑

i Ii takes its absolute maximum.
Long arrow at top indicates lid motion.

example of mode 1 in present context the streamlines, perturbation modes and

energy production terms are presented for a cavity of unit aspect ratio and down-
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5. Results and Discussion

stream angle θ = 20◦ in a plan z = const where the maxima of energy production

occurs, in figure 5.29 at critical conditions of Rec = 1801.93 and kc = 12.00. It

can be seen that figure 5.29 appears a reflection of figure 5.4 except a change in

the upstream angle. All the qualitative similarities is a proof that it is the same

mode 1 discussed in previous section. Discussion about the details will not be

repeated here.

5.2.2 Mode 2 & mode 3
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Figure 5.30: Neutral Reynolds number Ren (full symbols and solid lines: sta-
tionary modes, dashed lines: oscillatory modes) and wave number kn (hollow
symbols with dotted lines) as functions of the aspect ratio Γ for θ = 23◦. Modes
are indicated by red circles (mode 2), green squares (mode 3).

The dominant region where these two close modes are the most dangerous

modes are the upstream angle of 21◦ ≤ θ ≤ 24◦ for the whole range of aspect

ratios of 0.2 ≤ Γ ≤ 4.0 for which calculations were made. Although the mode

3 also occupy the region Γ ≤ 0.6 and upstream angle θ < 21◦ as the most

dangerous mode, an example of which is the θ = 15◦ previously discussed, where

mode 3 becomes the most dangerous mode at Γ ≤ 0.6. As an example the neutral
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Figure 5.31: Neutral curves for different aspect ratios Γ as indicated. Ren for mode 2 is represented by red dashed
line , mode 3 is represented by green solid line. Dotted lines with same colour scheme represent corresponding wave
number kn. Black and blue dashed lines indicate mode 2 and mode 4 respectively.
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1.32e-03-9.76 36.3 59.3

Figure 5.32: Basic state streamlines at Rec = 2214.5, k = 26.916 for Γ = 1.0
and θ = 23◦ (different levels of isolines are used to show the secondary and
tertiary eddies) along with the critical mode (arrows) and the total local energy
production rate

∑

i Ii (color) in a plane z = const. in which
∑

i Ii takes its
absolute maximum. Long arrow at top indicates lid motion.

Reynolds Ren and wave numbers kn is provided in fig. 5.30 for θ = 23◦, which

shows the dependence of these data on the aspect ratio Γ. The neutral curves

takes an asymptotic value of Ren ≈ 2206 for both modes and kn ≈ 19.27 (mode

2) and kn ≈ 26.81 (mode 3) for higher aspect ratios at Γ ≈ 1.5. The closeness

of the neutral curves of the two modes for Ren is obvious as they overlap each

other for Γ > 0.4. However for Γ ≤ 0.4 the curves for Ren of the two modes

are distinguishable. Interestingly mode 2 becomes the most dangerous mode at

small aspect ratios Γ < 0.4 for θ = 23◦ in contrast to θ = 15◦ where mode 3 is

the most dangerous mode for the same range of aspect ratios. This change in the

behaviour of the neutral curve could be explained by revisiting the figure 5.28(a),

where the behavioural change of the neutral curve for Ren along upstream angle

θ for an aspect ratio of Γ = 0.5 is shown. The crossover of mode 2 and mode

3 at an upstream angle of θ ≈ 17.5◦ indicates that for θ ≤ 17.5◦ mode 3 will

be the more dangerous if compared with mode 2, and vice versa will be true for

θ > 17.5◦. So in the present case of θ = 23◦ the occurrence of mode 2 as the most

dangerous mode at small aspect ratios is analogous to the previous results.

To get more en-sight about the variation of these modes the neutral curves

for different aspect ratios Γ = [0.5, 1.0, 2.0, and 3.0] are presented in figure 5.31,
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5. Results and Discussion

which shows the dependence of Ren and kn on the θ for these aspect ratios. Once

again the absence of mode 1 in figure 5.28(a) indicates that it is not the most

dangerous mode for Γ = 0.5. The crossing of mode 1 and mode 2 for Γ = 1.0

at downstream angle of θ ≈ 21.1◦ is shifted to θ ≈ 21.9◦ for Γ = 2.0 which

remains the same for Γ = 3.0, due to the fact that the neutral curves takes the

asymptotic value at Γ ≈ 1.5 for all the three modes involved (mode 1, 2 and 3).

On the other limit these modes are succeeded by mode 4 as the most dangerous

mode at θ ≈ [23.4◦, 23.3◦, 23.25◦, and 23.25◦] for Γ = [0.5, 1.0, 2.0, and 3.0].

As the details of perturbation flow field of these mode were already presented

previously. Over here only a cut at z = const at position of maximum energy

production is presented in figure 5.32 for a unit aspect ratio cavity and down-

stream angle of θ = 23◦ as a second example of mode 3 at critical conditions

of (Ren, kn) = (2214.5, 26.91). Once again figure 5.32 appears as a reflection of

figure 5.12 except a change in the upstream angle.

5.2.3 Mode 4 & mode 5

These two modes occupy a large parameter space i.e 23.3◦ ≤ θ ≤ 135◦ and 0.2 ≤

Γ ≤ 4.0, as the most dangerous modes. As some representative examples of the

neutral curves for Ren and kn are presented in figure 5.33 for θ = [30◦, 45◦, 60◦, 75◦]

and figure 5.34 for θ = [90◦, 105◦, 120◦, 135◦], which shows the dependence of these

data on aspect ratio Γ. It can be observed from these figures that for small aspect

ratio (limit of which depends on the downstream angle θ), it is always mode 4

to be the most dangerous mode. The limit of aspect ratio below which mode 4

becomes the most dangerous mode varies from Γ = 0.3 for θ = 30◦ to Γ = 2.1

for θ = 90◦, where as this limit goes beyond Γ = 4 for θ = 105◦ as mode 4

appears as the only dangerous mode for θ = 105◦ in the space Γ = [0.2 − 4.0]

(figure 5.34(b) ). For medium range of downstream angles 45◦ ≤ θ ≤ 90◦ mode

5 appears as the most dangerous mode at some point of aspect ratio Γ < 4.0

and takes an asymptotic value at higher aspect ratio the limit of which depends

on θ, as can be seen from figure 5.33, which shows an increase in the limit of

Γ for the neutral curves to take asymptotic values with increase of angle θ. For

higher downstream angles θ ≥ 105◦, the appearance of mode 5 is more delayed in
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Figure 5.33: Neutral curves for different downstream angles θ as indicated. Ren for modes (2,3,4 and 5) are repre-
sented by red dashed, green solid, blue dashed (circles) and maroon solid (squares) lines respectively .Dotted lines
(hollow symbols, and same colour scheme) represent corresponding wave number kn.
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Figure 5.34: Neutral curves for different downstream angles θ as indicated. Ren for modes (4 and 5) are represented
by blue dashed (circles) and maroon solid (squares) lines respectively .Dotted lines (hollow symbols, and same colour
scheme) represent corresponding wave number kn.
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terms of Γ and was not detected as the most dangerous mode even at Γ = 4.0 for

θ = 105◦. A change of trend of neutral curves for mode 5 occurs at downstream

angle of θ ≤ 35◦. The neutral curve for Ren takes a minimum and then rises

to higher values before taking an asymptotic value. This change of behaviour is

shown in figure 5.35. Below a limit of θ = 32.5◦ mode 5 is no more the most

dangerous mode for instabilities at higher aspect ratio Γ > 0.6, and as such the

most dangerous mode is mode 4 as is obvious from figure 5.21(a) for θ = 30◦.
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θ = 35◦

θ = 37◦
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Figure 5.35: Change in behaviour of neutral curves of mode 5 for downstream
angles θ mentioned in the region Γ ≤ 1.0.

Dependence of Ren and kn on the downstream angle θ for specific cases of Γ =

[0.5, 1.0, 2.0, 3.0] in the region where mode 4 or mode 5 are the most dangerous

modes is shown in figure 5.36. It can be observed that the region in θ for mode

5 to be the most dangerous mode, increases with an increase in aspect ratio Γ.

An interesting feature of the mode 4 for the limit Γ → 0 could be observed

by rescaling of the parameters appropriately as in equation 5.1, for θ > 23◦. An

example of rescaled Re∗n, k
∗
n, and ω∗

n as a function of Γ is shown in figure 5.37.

The rescaled Reynolds number remains finite, with the neutral curves showing a
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Figure 5.36: Neutral curves for different aspect ratios Γ as indicated. Ren for modes (2,3,4 and 5) are represented
by red dashed, green solid, blue dashed (circles) and maroon solid (squares) lines respectively .Dotted lines (hollow
symbols, and same colour scheme) represent corresponding wave number kn.
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behaviour similar to that of rescaled parameters for oneside driven rectangular

cavities as reported by Albensoeder [2004]. Interestingly the value of Re∗n = 293.5

for Γ = 0.1 and θ = 90◦, is very close to the asymptotic limit of rectangular cavity

Re∗n = 288.2 as reported by Albensoeder [2004] . The comparison of ω∗
n = 183.17

and k∗n = 5.64 for triangular cavity with θ = 90◦ and Γ = 0.1 with ω∗
n = 163.7 and

k∗n = 5.175 for a rectangular cavity of aspect ratio Γ = 0.25 from Albensoeder

[2004], suggests that the instability mechanism involved in both geometries is the

same.
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Figure 5.37: Critical data for mode 4 (Re∗n (circles), ω∗
n (squares) and k∗n (tri-

angles)) using the scaling (5.1) for shallow cavities at a downstream angle of
θ = 90◦.

5.2.4 Summary of results

The major observations for instability modes with the lid motion directed towards

a specified angle between two sides of specified lengths of a triangular cavity could

be summarized as

• For small downstream angles θ < 22◦ mode 1 and mode 3 are the dangerous

modes, where as mode 3 is active at small aspect ratio Γ < 0.6 (figure 5.28).
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Table 5.4: Limits of downstream angles θ in which different modes are most
dangerous at specific aspect ratio Γ.

Γ Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0.5 18◦ ≤ θ ≤
23.4◦

θ ≤ 18◦ 23.4◦ ≤ θ ≤
29.3◦ & θ ≥
37.5◦

29.3◦ ≤ θ ≤
37.5◦

1.0 θ ≤ 21.2◦ 21.2◦ ≤ θ ≤
22.9◦

22.9◦ ≤ θ ≤
23.3◦

23.3◦ ≤ θ ≤
36◦ & θ ≥
55.5◦

36◦ ≤ θ ≤
55.5◦

2.0 θ ≤ 22.2◦ 22.2◦ ≤ θ ≤
23◦

23◦ ≤ θ ≤
23.3◦

23.3◦ ≤ θ ≤
35.7◦ & θ ≥
87◦

35.7◦ ≤ θ ≤
87◦

• At moderately small downstream angles 21◦ ≤ θ ≤ 23.5◦ mode 2 becomes

visible as a dangerous mode with neutral curve for Ren being very close and

overlapping with that of mode 3.

• For o downstream angles θ ≥ 23.5◦ mode 4 and 5 appears as the dangerous

modes overlapping each other at different locations depending on Γ and θ.

• For high aspect ratio Γ → ∞ the neutral curves for all the modes tend to

take asymptotic value at all the downstream angles.

• For small aspect ratio Γ << 1.0 and higher downstream angles θ > 23.5◦

the instability mechanism is centrifugal in nature and the curve for appro-

priately rescaled Reynolds number Re∗n shows a trend to take an asymptotic

value.

The limits of downstream angles θ at which different modes act as the most

dangerous mode are summarized in table 5.4 for representative cases of Γ.
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Chapter 6

Conclusions

In this study the linear stability of steady-state two-dimensional flow in triangular

cavities was analysed. The angle θ between two sides of the cavity varied from

15◦ to 135◦ and the aspect ratio Γ was in the range of 0.2 ≤ Γ ≤ 4.0. The lid

motion was directed either towards the corner where the angle θ was specified or

away from it. The instability mechanisms were characterized using the kinetic

energy budget and criteria developed for inviscid flow.

All the calculations were made using a numerical code developed for this

purpose based on the finite element method. Quadratic interpolation was used

for velocities and linear interpolation for pressure. The eigenvalues were deter-

mined using the Krylov subspace method. The code was successfully validated by

comparing numerical results obtained with some of numerical and experimental

results available in literature.

Five different modes of instability were recognized to become critical in the

parameter space considered. Two of these modes were identified to be of cen-

trifugal nature from the kinetic energy budget, whereas the remaining were of

elliptic nature due to stretching of the primary vortex. One of the centrifugal

modes (mode 5) was stationary. The resemblance of wave number k, Reynolds

number Re, perturbation flow field and kinetic energy budget for this stationary

centrifugal mode with that found in deep rectangular cavities, as reported by Al-

bensoeder et al. [2001], strongly suggests that the instability mechanism involved

was the same in both geometries. The second centrifugal mode (mode 4) was

oscillatory and was found to be the most dangerous mode for downstream angles
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θ > 23.5◦ at small aspect ratiosΓ → 0. Again the resemblance of the properties

of the critical mode and critical data at small aspect ratio with that of centrifugal

modes in shallow rectangular cavities Albensoeder et al. [2001] revealed that the

instability mechanism was the same.

For small downstream angles θ ≤ 23.5◦ the primary eddy is strained strongly

enough to ensue the elliptic instability mechanisms. All the three elliptic modes

occur as critical modes for θ ≤ 23.5◦ and 0.2 ≤ Γ ≤ 4.0. Two of these elliptic

natured modes are oscillatory. The perturbation flow field at the maxima of

kinetic energy production rate for the stationary elliptic mode (mode 3) has a close

resemblance with the elliptic instability mode reported for rectangular cavities of

Γ = 1.5 with two facing walls moving in opposite direction by Albensoeder and

Kuhlmann [2002].

Occurrence of a certain mode as the most dangerous mode depends on the

structure of the basic flow. Changing the parameters of the cavity results in

changing the boundary conditions which changes the flow structure in the cavity

and thus the flow structure may be prone to different instability mechanisms.
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