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Abstract 
In structural stability, apart from determination of the buckling load, the postbuckling behavior maybe 

of interest. The reason for this is that the behavior of the real, i.e. of an imperfect structure depends on 

the postbuckling behavior of the corresponding perfect structure.  

The aim of this work is to study the influence of design changes on buckling and on the postbuckling 

behavior of elastic structures. Of special interest in this context is the conversion of imperfection-

sensitive structures into imperfection-insensitive ones in the course of sensitivity analysis based on 

modifying the original design. Such a conversion will only be useful if the improvement of the 

postbuckling behavior does not entail a decrease in the buckling load. By choosing proper design 

parameters such as the stiffness of additional structural members, the geometric form of the structure, 

etc., the aforementioned conversion is frequently feasible. 

The present dissertation consists of seven published papers. Symmetric bifurcation, zero-stiffness 

postbuckling, and conversion of imperfection-sensitive structures into imperfection-insensitive ones 

were chosen as the main topics of this work. 

Many structures exhibit symmetric bifurcation which, however, is not required for the conversion of 

an imperfection-sensitive structure into an imperfection-insensitive one. A less restrictive necessary 

condition for imperfection insensitivity of structures is presented in this work. 

As a special case of postbuckling behavior, zero-stiffness postbuckling may occur in the course of 

sensitivity analysis of the initial postbuckling behavior. Unfortunately, Koiter’s initial postbuckling 

analysis, representing a computational tool that permits classification of structures as either 

imperfection sensitive or insensitive, is not sufficient for the diagnosis of zero-stiffness postbuckling. 

It is shown that bifurcation buckling from a membrane stress state is a necessary condition for this 

special mode of postbuckling behavior. An example with two degrees of freedom was chosen to 

demonstrate that for imperfections of first kind, characterized by preservation of bifurcation buckling 

as the mode of loss of stability, zero-stiffness postbuckling represents a genuine transition from 

imperfection sensitivity to imperfection insensitivity. For imperfections of second kind, however, 

resulting in snap-through as the mode of loss of stability, the structure is already imperfection 

insensitive. Furthermore, by investigating the potential energy, it was shown that the zero-stiffness 

postbuckling path is stable. 

To be of use for engineering practice, conversion from imperfection-sensitive structures into 

imperfection-insensitive ones must be feasible for real-life structures. An arch bridge was designed to 

demonstrate the practical feasibility of such a conversion. In its original design, the bridge is without 

hangers connecting the two arches with the deck. Loss of stability occurs by symmetric bifurcation of 

the deck, characterized by an antisymmetric buckling mode. The original structure is imperfection 

sensitive. The arch bridge becomes imperfection insensitive by adding sufficiently stiff hangers which 

overcompensate the decrease in the load carried by the deck in the postbuckling regime. 



 

 

Kurzfassung 
Abgesehen von der Ermittlung der Beullast kann bei Stabilitätsuntersuchungen auch das 

Nachbeulverhalten von Interesse sein. Der Grund dafür besteht darin, dass das Verhalten der 

tatsächlichen, also einer imperfekten Struktur vom Nachbeulverhalten der entsprechenden perfekten 

Struktur abhängt. 

Ziel der vorliegenden Arbeit ist das Studium des Einflusses von Änderungen des ursprünglichen 

Entwurfs auf das Beulen sowie das Nachbeulverhalten elastischer Strukturen. Von besonderem 

Interesse ist dabei die Umwandlung imperfektionssensitiver in imperfektionsinsensitive Strukturen im 

Verlauf von Sensitivitätsanalysen auf der Grundlage von Modifikationen des ursprünglichen Entwurfs. 

Eine derartige Umwandlung ist allerdings nur dann technisch sinnvoll, wenn die Verbesserung des 

Nachbeulverhaltens keine Abnahme der Beullast nach sich zieht. Durch Wahl geeigneter 

Entwurfsparameter, wie der Steifigkeit zusätzlicher Tragglieder, der geometrischen Form der Struktur 

usw., lässt sich die zuvor erwähnte Umwandlung in vielen Fällen bewerkstelligen. 

Die vorliegende Dissertation besteht aus sieben veröffentlichten Aufsätzen. Symmetrische 

Verzweigung, sogenanntes „zero-stiffness Nachbeulverhalten“ und die Umwandlung 

imperfektionssensitiver in imperfektionsinsensitive Strukturen sind die Hauptthemen dieser 

Dissertation. 

Bei vielen Strukturen erfolgt der Stabilitätsverlust in Form von symmetrischer Verzweigung. Bei 

dieser Form von Stabilitätsverlust handelt es sich aber um keine notwendige Voraussetzung für die 

zuvor erwähnte Umwandlung. In der vorliegenden Dissertation wird eine weniger restriktive 

notwendige Bedingung für imperfektionsinsensitive Strukturen beschrieben. 

Als spezielle Form von Nachbeulverhalten kann „zero-stiffness postbuckling“ im Verlauf einer 

Sensitivitätsanalyse des initialen Nachbeulverhaltens auftreten. Leider reicht Koiters initiale 

Nachbeulanalyse – ein Rechenverfahren, das die Klassifizierung von Strukturen als 

imperfektionssensitiv bzw. -insensitiv erlaubt – zur Diagnose von „zero-stiffness postbuckling“ nicht 

aus. Es wird gezeigt, dass Verzweigungsbeulen von einem Membranspannungszustand eine 

notwendige Bedingung für diese spezielle Form des Nachbeulverhaltens darstellt. Ein Beispiel mit 

zwei Freiheitsgraden dient zum Nachweis, dass im Falle von Imperfektionen erster Art, 

gekennzeichnet durch Beibehaltung von Verzweigungsbeulen als Form des Stabilitätsverlusts, im 

Zuge der Sensitivitätsanalyse bei Vorliegen von „zero-stiffness postbuckling“ ein echter Übergang 

von Imperfektionssensitivität zu Imperfektionsinsensitivität stattfindet. Im Falle von Imperfektionen 

zweiter Art hingegen, die zu Durchschlagen als Form des Stabilitätsverlusts der Struktur führen, ist die 

Struktur bei Vorliegen von „zero-stiffness postbuckling“ bereits imperfektionsinsensitiv. 

Dementsprechend hat eine Untersuchung der mit dem Nachbeulpfad verbundenen potentiellen Energie 

ergeben, dass dieser Pfad bei „zero-stiffness postbuckling“ stabil ist. 

 



 

IV 

Der Nutzen der Umwandlung von imperfektionssensitiven in imperfektionsinsensitive Strukturen für 

die Ingenieurpraxis hängt von der Realisierbarkeit einer solchen Transformation für reale Strukturen  – 

im Gegensatz zu akademischen Beispielen – ab. Wie anhand der Sensitivitätsanalyse des 

Nachbeulverhaltens einer Bogenbrücke gezeigt wird, ist diese Realisierbarkeit gegeben. Der 

ursprüngliche Entwurf der Brücke enthält noch keine Hängestangen, welche die beiden Bögen mit der 

Fahrbahnkonstruktion verbinden. Der Stabilitätsverlust erfolgt durch symmetrische Verzweigung, 

gekennzeichnet durch eine antimetrische Beulform der Fahrbahnkonstruktion. Die ursprüngliche 

Struktur ist imperfektionssensitiv. Durch Anbringung hinreichend dehnsteifer Hängestangen, die die 

Abnahme der von der ausbeulenden Fahrbahnkonstruktion aufgenommenen Belastung 

überkompensieren, wird die Struktur imperfektionsinsensitiv. 



 

Table of Contents 
 

 

Chapter I 

Summary of the Contents of Papers Representing the Dissertation 1 

1. Introduction ..................................................................................................................................... 2 

1.1. State of the art ......................................................................................................................... 2 

1.2. List of publications representing this dissertation ................................................................... 3 

1.3. Scope of work.......................................................................................................................... 4 

2. Theoretical basis.............................................................................................................................. 4 

3. Is symmetric bifurcation necessary for imperfection insensitivity?................................................ 7 

4. Is zero-stiffness postbuckling imperfection insensitive?................................................................. 8 

5. Conversion of an imperfection-sensitive arch bridge into an imperfection-insensitive one by 

adding tensile members ................................................................................................................. 11 

6. Concluding remarks and recommendations for future work......................................................... 14 

7. Corrigenda..................................................................................................................................... 15 

8. References ..................................................................................................................................... 15 

 

Chapter II 

Remarkable Postbuckling Paths Analyzed  
by Means of the Consistently Linearized Eigenproblem 18 

1. Introduction ................................................................................................................................... 19 

1.1. Motivation ............................................................................................................................. 19 

1.2. Scope of this work................................................................................................................. 19 

1.3. Equilibrium conditions .......................................................................................................... 20 

1.4. Consistently linearized eigenproblem ................................................................................... 20 

2. Theory ........................................................................................................................................... 21 

2.1. Derivatives of the eigenvalue curve ...................................................................................... 21 

2.2. Points of the eigenvalue curve with zero slope ..................................................................... 21 



 

ii 

2.3. Derivation of the eigenvector *
1v .......................................................................................... 22 

2.4. Structure of the tangent stiffness matrix................................................................................ 23 

2.5. Orthogonality of eigenvectors with respect to , nT λ
K ........................................................... 24 

2.6. Derivatives of the eigenvalue curve ...................................................................................... 24 

2.7. The limit case *
1λ λ→  for bifurcation points ....................................................................... 25 

2.8. The limit case *
1λ λ→  for snap-through points .................................................................... 25 

2.9. The limit case *
1λ λ→  for saddle points............................................................................... 27 

2.10. Disintegration of (7) and (8).................................................................................................. 28 

2.11. Imperfection sensitivity versus imperfection insensitivity.................................................... 29 

2.12. Discussion of theoretical results............................................................................................ 29 

3. Structures with remarkable postbuckling paths............................................................................. 30 

3.1. Two-bar system ..................................................................................................................... 30 

3.2. Von Mises truss...................................................................................................................... 35 

4. Conclusions ................................................................................................................................... 41 

Acknowledgements ............................................................................................................................... 43 

References ............................................................................................................................................. 43 

 

Chapter III 

Conditions for Symmetric, Antisymmetric, and Zero-Stiffness Bifurcation  
in View of Imperfection Sensitivity and Insensitivity  45 

1. Introduction ................................................................................................................................... 46 

1.1. Motivation ............................................................................................................................. 46 

1.2. Preliminaries.......................................................................................................................... 46 

2. Series expansion in the framework of Koiter’s initial postbuckling analysis ............................... 47 

2.1. Koiter’s initial postbuckling analysis .................................................................................... 47 

2.2. Coefficients of series expansion............................................................................................ 49 

2.3. Imperfection sensitivity versus imperfection insensitivity.................................................... 50 

3. Symmetric bifurcation................................................................................................................... 50 

3.1. Definition .............................................................................................................................. 50 

3.2. Vanishing of the coefficients ,0na ......................................................................................... 50 

3.3. Potential energy..................................................................................................................... 50 



 

iii 

3.4. Tensors derived from V ......................................................................................................... 51 

3.5. Structure of the vectors vi ...................................................................................................... 51 

3.6. Vanishing of coefficients....................................................................................................... 52 

3.7. Vanishing of the coefficients 2,i ia + ....................................................................................... 53 

3.8. Vanishing of the coefficients 4,i ia + ....................................................................................... 53 

3.9. Conditions for the symmetry of λ ........................................................................................ 53 

3.10. Sufficient conditions for symmetric bifurcation.................................................................... 54 

4. Antisymmetric bifurcation ............................................................................................................ 54 

4.1. Definition .............................................................................................................................. 54 

4.2. Potential energy..................................................................................................................... 54 

4.3. Structure of the vectors vi ...................................................................................................... 55 

4.4. Verification............................................................................................................................ 55 

4.5. Sufficient conditions for antisymmetric bifurcation.............................................................. 56 

5. Zero-stiffness postbuckling behavior ............................................................................................ 56 

5.1. Definition .............................................................................................................................. 56 

5.2. Sufficient conditions for zero-stiffness postbuckling behavior............................................. 56 

6. Examples ....................................................................................................................................... 57 

6.1. Non-symmetric bifurcation ................................................................................................... 57 

6.2. Symmetric bifurcation........................................................................................................... 60 

6.3. Antisymmetric bifurcation .................................................................................................... 61 

6.4. Zero-stiffness postbuckling behavior .................................................................................... 63 

7. Conclusions ................................................................................................................................... 65 

Acknowledgements ............................................................................................................................... 66 

References ............................................................................................................................................. 66 

 

Chapter IV 

Hilltop Buckling as the Alpha and Omega in Sensitivity Analysis  
of the Initial Postbuckling Behavior of Elastic Structures  68 

1. Introduction ................................................................................................................................... 69 

2. Derivation of polynomials............................................................................................................. 69 

2.1. Koiter’s initial postbuckling analysis .................................................................................... 69 

2.2. Coefficients of the asymptotic series expansion of ( ) Cλ η λ− ............................................. 71 



 

iv 

3. Specialization of the expressions for 1 4,,λ λ…  for symmetric bifurcation .................................. 72 

3.1. Conditions for symmetric bifurcation ................................................................................... 72 

3.2. Specialization of (8)-(11) for symmetric bifurcation ........................................................... 72 

4. Conditions for imperfection insensitivity...................................................................................... 72 

5. Hilltop buckling............................................................................................................................. 73 

6. Classification of sensitivity analyses of the initial postbuckling behavior.................................... 75 

6.1. Consistently linearized eigenvalue problem.......................................................................... 75 

6.2. Class I .................................................................................................................................... 77 

6.3. Class II................................................................................................................................... 78 

7. Numerical examples ...................................................................................................................... 80 

7.1. Example for class I ................................................................................................................ 80 

7.2. Example for class II............................................................................................................... 84 

8. Conclusions ................................................................................................................................... 86 

Acknowledgements ............................................................................................................................... 87 

References ............................................................................................................................................. 87 

 

Chapter V 

Three Pending Questions in Structural Stability  89 

1. Introduction ................................................................................................................................... 90 

2. Theoretical foundations................................................................................................................. 90 

3. Are linear prebuckling paths and linear stability problems mutually conditional? ....................... 92 

3.1. A linear prebuckling path ...................................................................................................... 92 

3.2. A linear stability problem...................................................................................................... 92 

3.3. A linear prebuckling path is not necessary for a linear stability problem ............................. 93 

3.4. A linear prebuckling path is not sufficient for a linear stability problem.............................. 93 

3.5. Linear prebuckling paths and (nontrivial) linear stability problems are mutually exclusive 93 

3.6. Example of a linear stability problem ................................................................................... 94 

3.7. Example of a linear prebuckling path.................................................................................... 95 

4. Does the conversion from imperfection sensitivity into imperfection insensitivity require a 

symmetric postbuckling path?....................................................................................................... 96 

4.1. Imperfection insensitivity...................................................................................................... 96 



 

v 

4.2. Symmetric equilibrium paths ................................................................................................ 96 

4.3. Symmetric postbuckling paths are not necessary for the conversion from imperfection 

sensitivity into imperfection insensitivity ............................................................................. 97 

4.4. On the invariance of properties with respect to changes of the path parameter .................... 97 

4.5. Example................................................................................................................................. 98 

5. Is hilltop buckling necessarily imperfection sensitive?............................................................... 101 

5.1. Hilltop buckling................................................................................................................... 101 

5.2. Hilltop buckling is imperfection sensitive........................................................................... 102 

5.3. Example............................................................................................................................... 104 

6. Conclusions ................................................................................................................................. 106 

Acknowledgements ............................................................................................................................. 107 

References ........................................................................................................................................... 107 

 

Chapter VI 

Imperfection Sensitivity or Insensitivity of Zero-stiffness Postbuckling ... that is the Question  109 

1. Introduction ................................................................................................................................. 110 

2. Theory ......................................................................................................................................... 110 

2.1. Koiter’s initial postbuckling analysis .................................................................................. 110 

2.2. Classification of imperfections............................................................................................ 110 

2.3. Definitions of and criteria for imperfection insensitivity .................................................... 111 

3. Condition for zero-stiffness postbuckling ................................................................................... 111 

4. Properties of zero-stiffness postbuckling .................................................................................... 111 

4.1. Internal force along a zero-stiffness equilibrium path......................................................... 111 

4.2. Potential energy along a zero-stiffness equilibrium path .................................................... 112 

5. Examples ..................................................................................................................................... 112 

6. Conclusions ................................................................................................................................. 114 

References ........................................................................................................................................... 114 

 

Chapter VII 

Necessary and Sufficient Conditions for Zero-Stiffness Postbuckling  115 

1. Introduction ................................................................................................................................. 116 



 

vi 

2. Necessary conditions for zero-stiffness postbuckling ................................................................. 116 

3. Sufficient condition for zero-stiffness postbuckling ................................................................... 116 

4. Sufficient and necessary condition for zero-stiffness postbuckling ............................................ 117 

5. Numerical example ..................................................................................................................... 117 

6. Conclusions ................................................................................................................................. 117 

References ........................................................................................................................................... 117 

 

Chapter VIII 

Conversion of Imperfection-sensitive Elastic Structures into Imperfection-insensitive Ones  
by Adding Tensile Members  119 

1. Introduction ................................................................................................................................. 120 

2. Consistently linearized eigenproblem ......................................................................................... 120 

3. Koiter’s initial postbuckling analysis .......................................................................................... 122 

4. Numerical investigation .............................................................................................................. 123 

4.1. Von Mises truss.................................................................................................................... 123 

4.2. Arch bridge.......................................................................................................................... 124 

5. Conclusions ................................................................................................................................. 127 

Acknowledgements ............................................................................................................................. 127 

References ........................................................................................................................................... 127 

 

 



 

 

Chapter I 

Summary 
of the Contents of Papers Representing the Dissertation 



 Chapter I 2 

1. Introduction 
1.1. State of the art 
In 1757, Leonhard Euler derived a formula for the critical load of a long, slender, ideal column 

subjected to an axial vertical load [1]. This may be regarded as the starting point of the analysis of 

structural stability. Two centuries later, the stability of structures had been studied already by 

numerous scientific scholars e.g. [6, 8, 9]. Buckling analysis has been extended from buckling of Euler 

columns to lateral buckling of beams, e.g. [2], buckling of plates e.g. [4], and of shells e.g. [7], plastic 

buckling e.g. [10], dynamic buckling e.g. [12], etc. With the availability of the Finite Element Method 

(FEM) [5, 16], buckling analysis of real-life structures became feasible. Because of the difficulty of 

deriving equilibrium equations for the postbuckling path, postbuckling analysis was not feasible until 

Koiter’s pioneering work on initial postbuckling analysis [6] was translated into the English language. 

Koiter utilized asymptotic series expansions to represent the secondary path at the bifurcation point. 

His approach was integrated in the FEM e.g. by Reitinger [15]. 

From an engineering viewpoint, optimization of the buckling behavior of structures is an important 

topic. In early research on this topic, efforts were focused on optimization of the buckling load e.g. [8]. 

In addition to the buckling load, frequently the postbuckling behavior of structures is of interest. The 

reason for this interest is the influence of imperfections on the postbuckling behavior of ideal, i.e. 

perfect structures. Work on optimization of the postbuckling behavior was done e.g. by Budiansky [9], 

Mróz et al. [13, 18], and Bochenek et al. [19, 20]. 

The focus of the work of the Stability Group at the Institute for Mechanics of Materials and Structures 

of Vienna University of Technology is on computational sensitivity analysis of the initial postbuckling 

behavior of elastic structures. The present research activities of this group were preceded by work of 

Helnwein [17] who proposed the so-called consistently linearized eigenproblem for the purpose of 

estimating the stability limit. Information extracted from the solution of this problem was utilized by 

[21, 33] in the frame of Koiter’s asymptotic series expansions. Depending on the stress state in the 

prebuckling regime, the following distinction between two classes was made: (1) buckling from a 

general stress state; and (2) buckling from a membrane stress state. This classification plays a great 

role in sensitivity analysis of bifurcation buckling of elastic structures. 

The main purpose of sensitivity analysis of the postbuckling behavior of elastic structures is to 

investigate the feasibility of converting imperfection-sensitive structures into imperfection-insensitive 

ones through minor changes of the original design. At first sight, it might appear that such a 

conversion is restricted to symmetric bifurcation. However, Steinboeck et al [23] have shown that 

symmetric bifurcation is not necessary for transition from imperfection sensitivity to insensitivity. 

Steinboeck et. al. [25] have also shown that linear prebuckling paths and linear stability problems are 

not mutually conditional.  
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In the course of sensitivity analysis of the initial postbuckling behavior of structures, hilltop buckling 

and zero-stiffness postbuckling may occur. Definitions of these two special cases and examples can be 

found in [26] and [25]. Later on, Höfinger [27] presented a mathematical proof that hilltop buckling is 

necessarily imperfection-sensitive. Jia [28] showed that zero-stiffness postbuckling is imperfection 

insensitive. Mang [29, 30] derived a necessary and sufficient condition for zero-stiffness postbuckling. 

Academic examples with remarkable postbuckling paths were reported in [22, 23, 24, 25]. An arch 

bridge was designed and analyzed by Jia [31]. This analysis illustrates the feasibility of converting 

imperfection-sensitive structures other than academic examples into imperfection-insensitive 

structures. 

1.2. List of publications representing this dissertation 
This dissertation consists of seven scientific papers. The following list contains references to these 

works. 

1. Andreas Steinböck, Xin Jia, Gerhard Höfinger, Helmut Rubin, Herbert A. 
Mang:  
“Remarkable Postbuckling Paths Analyzed by Means of the Consistently 
Linearized Eigenproblem” 
International Journal for Numerical Methods in Engineering, 76, 156-182, 
2008. 
 
2. Andreas Steinböck, Xin Jia, Gerhard Höfinger, Herbert A. Mang: 
“Conditions for Symmetric, Antisymmetric, and Zero-Stiffness Bifurcation 
in View of Imperfection Sensitivity and Insensitivity” 
Computer Methods in Applied Mechanics and Engineering, 197(45-48), 
3623-3636, 2008. 
 
3. Herbert A.Mang, Xin Jia, Gerhard Höfinger: 
“Hilltop Buckling as the Alpha and Omega in Sensitivity Analysis of the 
Initial Postbuckling Behavior of Elastic Structures” 
Journal of Civil Engineering and Management, 15(1), 35-46, 2009. 
 
4. Andreas Steinböck, Gerhard Hoefinger, Xin Jia, Herbert A. Mang: 
“Three Pending Questions in Structural Stability” 
Journal of the International Association for Shell and Spatial Structures, 
50(1), 51-64, 2009. 
 
5. Xin Jia, Gerhard Höfinger, Herbert A.Mang: 
“Imperfection Sensitivity or Insensitivity of Zero-stiffness Postbuckling ... 
that is the Question” 
In Computational Structural Engineering: Proceedings of the International 
Symposium on Computational Structural Engineering, Springer, Shanghai, 
China, 103-110, 2009. 
 
6. Xin Jia, Gerhard Höfinger, Herbert A. Mang:  
“Necessary and Sufficient Conditions for Zero-Stiffness Postbuckling” 
To appear in PAMM - Proceedings in Applied Mathematics and Mechanics, 
2010. 
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7. Xin Jia, Herbert A. Mang: 
“Conversion of Imperfection-sensitive Elastic Structures into Imperfection-
insensitive Ones by Adding Tensile Members” 
In Proceedings of the International Association for Shell and Spatial 
Structures (IASS) Symposium 2010, Spatial Structures – Permanent and 
Temporary, November 8-12, 2010, Shanghai, China; accepted also for 
publication in the Journal of IASS.  

 
These papers and several other ones not included in the above list were written during the period of the 

doctoral studies of Xin Jia (April 2006 – December 2010). His contributions to all of these works were 

significant and dominant where he is the lead author. The topics of symmetric bifurcation, zero-

stiffness postbuckling, and the conversion of an imperfection-sensitive arch bridge into an 

imperfection-insensitive one were chosen as the main topics of this dissertation. 

1.3. Scope of work 
The summary of publications representing this dissertation is organized as follows: Section 2 is 

devoted to the theoretical basis including formulation of the equilibrium conditions in the framework 

of the FEM, Koiter’s initial postbuckling analysis, the condition for imperfection insensitivity and the 

so-called consistently linearized eigenproblem. The question whether transition from imperfection 

sensitivity to insensitivity of elastic structures requires symmetric bifurcation is discussed in Section 3. 

At first, symmetric bifurcation with respect to (w.r.t.) the parameter η  for the secondary path is 

defined. Then, the condition for symmetric bifurcation is formulated. By comparing this condition 

with the one for imperfection insensitivity, the above question is answered. An example with 2 

degrees of freedom (d.o.f.) is chosen for verification of the theoretical considerations. In Section 4, the 

special case of zero-stiffness postbuckling is investigated. With the help of the imperfection parameter 

ε , it is shown that the zero-stiffness postbuckling path is imperfection insensitive. Furthermore, the 

potential energy surface of an example with 2 d.o.f. is plotted to show that the zero-stiffness 

postbuckling path is stable. Section 5 contains the design of an arch bridge and its analysis for loss of 

stability and for its postbuckling behavior. By adding sufficiently stiff hangers connecting the two 

arches with the deck, the structure is converted from imperfection sensitivity to imperfection 

insensitivity. In Section 6, concluding remarks are made. Corrigenda of errors in published papers are 

summarized in Section 7. 

This work is restricted to static, conservative systems with N  d.o.f., conforming to the FEM. Loss of 

stability at multiple bifurcation points is not taken into account. 

2. Theoretical basis 
For a static, conservative system with N  d.o.f., the equilibrium conditions can be expressed as 

 ( ) ( ), : Iλ λ= − =G u F u P 0  (1) 

where u  is the displacement vector, λ  is a dimensionless scalar scaling a constant reference load P , 

and IF  stands for the vector of internal forces. Eq. (1) defines equilibrium paths of the system. If two 
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equilibrium paths intersect, the system is said to bifurcate at the point of intersection. A bifurcation 

point is denoted as ( ),S Sλu , see e.g. point S  in Fig. 1. The equilibrium path which contains the 

undeformed state is called primary or (up to the stability limit) prebuckling path ( )( ),λ λu . Other 

equilibrium paths that contain the stability limit are referred to as secondary or postbuckling paths. 

The differential form of Eq. (1), representing the basis of incremental-iterative analysis for the solution 

of mechanical problems, is obtained as [25] 

 T d dλ⋅ − =K u P 0  (2) 

with ( )T = ∂ ∂K G u u  standing for the tangent stiffness matrix. For the primary path, (2) can be 

written as 

 T d dλ⋅ =K u P  (3) 

with ( )( ):T T λ=K K u . If 0,dλ =  resulting in 

 T d⋅ =K u 0 , (4) 

and the nullity of TK  is one, snap-through buckling occurs. The snap-through point, represents a local 

maximum on the primary path. 

At the bifurcation point, TK  becomes singular. The zero eigenvector 1v  is defined as 

 1 .T ⋅ =K v 0  (5) 

At S , 

 T
1 0  T d⋅ = ∧ ⋅ ≠v P K u 0 . (6) 

Premultiplying Eq.(3) by 1
Tv  yields 

 ( )1 1 .T T
T d dλ⋅ ⋅ = ⋅v K u v P  (7) 

If T
10    0,dλ = ∧ ⋅ =v P  the bifurcation point S  coincides with the snap-through point, indicating the 

special case of hilltop buckling. For this case, the nullity of TK  is two. 

Koiter utilized ( )ηv  and ( )λ η  (see Fig. 1) to describe the secondary path. ( )ηv  represents the offset 

of the displacement of a point on the secondary path, defined by the path parameter η , from the point 

on the primary path with the same load level. ( )ηv  and ( )λ η  are expanded at the bifurcation point 

S  into asymptotic series. For sensitivity analysis, characterized by a variation of the original design of 

the structure with the help of the design parameter κ , the dependence of the coefficients 1 2, ,...λ λ  and 

of the vectors 1 2, ,...v v  on κ  must be considered: 

 ( ) ( ) ( ) ( ) ( )2 3 4
1 2 3 4, ....λ κ η λ κ η λ κ η λ κ η λ κ ηΔ = + + + +  (8) 



 Chapter I 6 

 ( ) ( ) ( ) ( ) ( )2 3 4
1 2 3 4, ....κ η κ η κ η κ η κ η= + + + +v v v v v  (9) 

u
Su ( ( ))Bλ ηu ( ( )) ( )B Bλ η + ηu v

S

B

Sλ

λ

( )v η

η

prim
ary path

secondary path

0

Bλ

Δλ

 
Fig. 1: Nonlinear primary path and secondary path for a specific value of the 
design parameter κ  [23] 

With  

 ( ) ( )( ) ( )η λ η η= +u u v , (10) 

specialization of (1) for the secondary path reads as  

 ( ) ( )( ) ( ) ( )( ): ,η λ η η λ η= + =G G u v 0 . (11) 

Inserting the series expansions (8) and (9) into (11), yields 

 ( ) ( )2 3 4
0 1 2 3S S S S Oη η η η η= + + + + =G G G G G 0  (12) 

where 
, 0

! n
S

nS n n
η η η= =

= ∀ ∈G G . Satisfaction of (12) for an arbitrary value of η  requires  

 nS =G 0  (13) 

which allows successive computation of the unknown pairs ( ) ( )1 1 2 2, , , ,λ λv v …. 

A necessary and sufficient condition for imperfection insensitivity is  

 0mλ >  (14) 

where mλ  is the first non-vanishing term in (8) and m  is an even number [23]. 

Originally, the so-called consistently linearized eigenproblem was used to estimate the stability limit 

ab initio, i.e. without an incremental analysis [17]. The importance of this eigenproblem rests with its 

role in the derivation of a mathematical condition for bifurcation buckling from a membrane stress 

state in [33]. The mathematical formulation of this eigenproblem for the first eigenpair 

( ) ( )( )1,λ λ λ λ∗ ∗−1 v  is  

 ( )1 , 1T T λλ λ∗ ∗⎡ ⎤+ − ⋅ =⎣ ⎦K K v 0  (15) 

where ,T λK  is the first derivative of TK  w.r.t. λ . At the stability limit, 

 1 1 1 1,   ,   ,Tλ λ∗ ∗= = ⋅ =v v K v 0   (16) 

with (16.3) representing the condition for loss of stability of equilibrium of the primary path. 
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3. Is symmetric bifurcation necessary for imperfection insensitivity? 
Symmetric bifurcation represents a qualitative property of a structure that simplifies postbuckling 

analysis. Frequently, symmetric bifurcation is considered as a necessary condition for imperfection 

insensitivity of the initial postbuckling behavior of elastic structures. In [25] it is shown that this is not 

the case.  

The potential energy function V  plays a pivotal role in determining the load-displacement behavior of 

a structure. With the help of V , symmetric bifurcation can be defined as 

 ( ) ( )( ), ,V Vλ λ=u T u  (17) 

where : N N→T  is an element of a symmetry group.  

If 

 ( )
1

: 1 2
1

1

ij ij ijT δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎡ ⎤= = = −⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

0
T

0
,  (18) 

and  

 ( ) ( )
1.. , 1..

1 2ij ij i N j N
δ δ

= =
⎡ ⎤= − ⋅⎣ ⎦T u u ,  (19) 

the symmetric structure of 
, nT λ

K  with n∈  can be used to demonstrate that symmetry is 

characterized by 

 
[ ] { }

{ }

1

1

0,...,0, , \ 0 ,
0  1,

  3,5,7,... .

T

i

i

p p
i

i

= ∈

⋅ = ∀ >

= ∀ ∈

v
v v
v 0

 (20) 

Necessary and sufficient conditions for the symmetry of the secondary path w.r.t. η  are then obtained 

as  

 ( ) ( ) ( ) ( )( ) ( ) ( )( )      λ η λ η η η λ λ= − ∧ = − ∧ =v T v u T u . (21) 

Substituting (20.1) into (8) yields 

 2 1 0  .i iλ − = ∀ ∈  (22) 

Since symmetric bifurcation is merely a matter of choice of the coordinates, only symmetry with 

respect to a scalar variable η  is addressed herein. 

Comparing the condition for symmetric bifurcation according to (22) with the condition for 

imperfection insensitivity according to (14), it is evident that imperfection insensitivity does not 

require symmetric bifurcation. This is shown for the 2 d.o.f. example in Fig. 2. A detailed analysis of 

this problem is contained in [23]. The meaning of the design parameter κ  follows from Fig. 2. The 
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structure is imperfection sensitive for [0,0.0454)κ ∈  and imperfection insensitive for 0.0454κ ≥ . For 

0.0454κ = , 

 [ ] [ ] [ ] [ ] [ ]

3 3
1 2 3 4 5

1 2 3 4 5

0,  0,  0,  9.79 10 , 9.27 10 ,

0,1 ,  0.048,0 ,  0,0 ,  0.011,0 ,  0,0 .T T T T T

λ λ λ λ λ− −= = = = × = − ×

= = = = − =v v v v v  
Although, the structure is imperfection insensitive for 0.0454κ = , the postbuckling path is not 

symmetric with regard to η . 

Lμ

/2kχ

/2kγ

L

2u

L

kκ

k

Pλ

1u

L

1

2

Lμ

/2kγ

/2kχ

 
Fig. 2: System with an unsymmetric secondary path [23] 

4. Is zero-stiffness postbuckling imperfection insensitive? 
Zero-stiffness postbuckling is characterized by a secondary load-displacement path along which the 

load remains constant. Hence, for zero-stiffness postbuckling, 

 0   i iλ = ∀ ∈ . (23) 

In sensitivity analysis of the initial postbuckling path, zero-stiffness is viewed as a borderline case 

between imperfection sensitivity and insensitivity. However, it is not clear whether zero-stiffness 

postbuckling is imperfection sensitive or insensitive. In order to clarify this issue, imperfections were 

introduced to perfect structures which experience zero-stiffness postbuckling in the course of 

sensitivity analysis of the initial postbuckling behavior, and a new definition of imperfection 

insensitivity was given. 

For perfect systems undergoing bifurcation buckling, imperfections are classified in two categories 

depending on whether or not the imperfect system has a bifurcation point. With the help of the 

potential energy function referring to the imperfect structure, ( )* * , , ,V V λ ε= u  where ε ∈  denotes 

the imperfection parameter and *  marks variables or functions referring to the imperfect structure, the 

imperfection vector is defined as  
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 ( ) ( )
2

*
,, : VV ελ ε

ε

∗

=

∂
= = =

∂ ∂u u u
Ε u u

u
. (24) 

The following classification of imperfections is given in [28]:  

 { }1 0  ,  / 0I
T λ ε⋅ = ∀ ∈ ∈Ε v  for imperfections of the first kind for which the 

imperfection parameter is denoted as ;Iε  (25) 

 { }1 0  ,  / 0I
T

Iλ ε⋅ ≠ ∀ ∈ ∈Ε v  for imperfections of the second kind for which the 
imperfection parameter is denoted as .IIε  (26) 

For the definition of imperfection insensitivity in case of imperfections of the first kind, it is sufficient 

to consider [ , ]Iε ς ς∈ −  where ς  is an arbitrary, small positive value. If all imperfect structures in this 

interval are still stable at the bifurcation point *S , then the initial postbuckling path of the 

corresponding perfect structure is imperfection insensitive w.r.t. Iε . Actually, Iε  is equivalent to the 

design parameter for sensitivity analysis. For each value of Iε , it can be found out by checking (14) 

whether the structure is imperfection sensitive or insensitive. 

For the definition of imperfection insensitivity in case of imperfections of the second kind, it is 

sufficient to consider { }[ , ] \ 0IIε ς ς∈ − . If no imperfect structure in this interval has a load-

displacement path with a snap-through point ( )* *,D Dλu  with *D Sλ λ< , then the initial postbuckling 

path of the corresponding perfect structure is imperfection insensitive w.r.t. IIε .  

A structure with 2 d.o.f. (see Fig. 3) was studied in [28], considering four different imperfections. The 

results (see Fig. 4) from this analysis show that zero-stiffness postbuckling is a case of a real transition 

from imperfection sensitivity to imperfection insensitivity for imperfections of the first kind and that it 

is imperfection insensitive for imperfections of the second kind.  

 

L

Pλ
L

1u 2u
k

kμ

kκ

 
Fig. 3: A two-bar system [28] 
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(c)                                                                    (d) 

Fig. 4: Equilibrium paths of perfect and imperfect structures (a) imperfection of 
stiffness of top spring; (b) imperfection of stiffness of lateral spring; (c) shift of 
load; (d) change of initial angle between two rods [28] 

Moreover, Fig. 5 shows the intersection of the potential energy function ( ),V λu  for the present 

example with the hyper-plane Sλ λ= , denoted as ( ) ( )( )1 2' ,V u uη η . The closed, plane, horizontal 

curve ( )γ η  on 'V  represents the potential energy along the zero-stiffness postbuckling path. Hence, 

the potential energy along such a path is constant. At each point on ( )γ η , 2 0Vδ ≥ , indicating stable 

equilibrium. The local maximum of the surface 'V , denoted as C , corresponding to a deformation 

state of the two bars being horizontal and in line, is characterized by unstable equilibrium, i.e. 2 0Vδ < . 
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'V

 
Fig. 5: Surface ( )1 2' ,V u u  containing the plane horizontal curve 

( ) ( ) ( )( ) ( ) ( )( )1 2 1 2' , , , SV u u V u u ,γ η η η η η λ= =  related to zero-stiffness 
postbuckling [28] 

 

5. Conversion of an imperfection-sensitive arch bridge into an 
imperfection-insensitive one by adding tensile members 

If a vertical spring of sufficient stiffness is attached to the top of a von Mises truss (see Fig. 6), the 

structure becomes imperfection insensitive. To utilize the positive influence of a tensile member on 

the postbuckling behavior, an arch bridge, shown in Fig. 7, was designed and analyzed.  

 

 

kκ

Pλ

1u L
10u

L

2ua
a

 
Fig. 6: Left half of a von Mises truss with a vertical elastic spring attached to 
the load point [24] 
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(a) 

 
(b) 

 
(c) 

   
(d) 

Fig. 7: (a) Arch bridge, (b) view from the side; (c) floor plan, (d) front view; unit 
of numerical data: cm unit of dimensions: cm [31] 
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Fig. 8: Load-displacement paths of the midpoint of the deck of an arch bridge 
for three different values of the stiffness of the hangers; (a) 0κ = , (c) 

0.6182κ = , (d) 0.8000κ = (κ is related to the diameter of the cross section 
of the hangers) [31] 
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Fig. 8 shows selected results from sensitivity analysis of the prebuckling and the postbuckling 

behavior of the arch bridge where λ  denotes the load parameter by which the uniformly distributed 

reference load of the deck is multiplied and u  stands for the vertical displacement of the midpoint of 

the deck of the bridge. The thick lines represent the primary and secondary paths of the perfect 

structures, and the thin lines refer to the load-displacement paths of imperfect structures. The 

imperfections were chosen as perturbations of the geometric shapes of the perfect structures, affine to 

the respective eigenvector 1v . As follows from Fig. 8, the slope of the projection of the secondary path 

onto the -u λ  plane at the bifurcation point S  changes from negative to positive, indicating that the 

postbuckling behavior of the structure can be significantly improved by adding sufficiently stiff 

hangers which overcompensate the decrease in the load carried by the deck in the postbuckling regime. 

At the same time, also the buckling load is increased.  

6. Concluding remarks and recommendations for future work 
Imperfection-insensitive structures can carry loads that are larger than the stability limit of the 

respective perfect structures. Hence, investigating the possibility of a conversion of originally 

imperfection-sensitive structures into imperfection-insensitive ones can be useful. To make sense, 

such a conversion should result in an improvement of the postbuckling path without decrease of the 

buckling load. By choosing proper design parameters such as the stiffness of additional tensile 

members, the rise of the structure, the reduction of non-axial deformations by means of a change of 

the original form of the structures etc., the mentioned conversion can be achieved.  

In this work, Koiter’s initial postbuckling analysis was used as a tool for investigating the initial 

postbuckling behavior. The consistently linearized eigenproblem was utilized within Koiter’s 

approach that represents the theoretical basis for sensitivity analysis. 

It was shown that symmetric bifurcation, characterized by 2 -1 0, i iλ = ∈ , is not necessary for 

conversion of imperfection-sensitive structures into imperfection-insensitive ones. What is necessary 

for such a conversion, however, is 1 0  λ κ= ∀ . 

In the course of sensitivity analysis of the initial postbuckling path, zero-stiffness postbuckling may 

occur in bifurcation buckling analysis. For this special case, all load coefficients in (8) vanish. Hence, 

the condition for imperfection insensitivity, as given by (14), is not applicable. By investigating a 2 

d.o.f. structure for four types of imperfections, zero-stiffness postbuckling was shown to represent a 

genuine transition from imperfection sensitivity to imperfection insensitivity for imperfections of the 

first kind, but to be imperfection insensitive for imperfections of the second kind. Furthermore, by 

investigating the potential energy, it was shown that the zero-stiffness postbuckling path is stable (see 

Fig. 5). 

An arch bridge was designed and analyzed to illustrate the practical applicability of converting 

imperfection-sensitive structures into imperfection-insensitive ones. The design results in symmetric 
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bifurcation of the deck, with an antisymmetric buckling mode. The original design is characterized by 

imperfection sensitivity of the bridge. The structure becomes imperfection insensitive by adding 

sufficiently stiff hangers which overcompensate the decrease in the load carried by the deck in the 

postbuckling regime.  

Further work should focus on investigating the reason for a structure being either imperfection 

sensitive or imperfection insensitive. On the basis of this dissertation, the degree of tensile stiffness of 

a structure has a significant influence on its postbuckling behavior. Obviously, such a qualitative 

statement needs further quantitative corroboration. 

7. Corrigenda 
Error 1: 

In [26], Eq. (84) is incorrect. It is based on the erroneous assumption of  

 ( ) ( ) ( )2 1 1 0a aλ κ κ κ∗= = =  (27) 

which was insinuated by numerical work pursued by Schranz and reported in [22]. The mentioned 

error also appeared in [29, 30]. 

Error 2: 

In [26], Fig. 4(a) and Fig. 5(a) are incorrect, because 2 0λ =  does not occur for the same value of the 

design parameter as 1 0a = . 

Error 3: 

In [30], Eq. (8) is incorrect. In [31], the curvature of the secondary path at the bifurcation in Fig. 7(c) 

is positive, indicating that 
2

4 0
0

λ
λ

=
> . 

Error 4: 

Eq. (4) in [29] and Eq. 3 in [30] are incorrect. The two eqations were based on the wrong assumption 

of “restricted asymmetry”. The example in Section 4.5 of [25] shows that ( )2 0λ κ =  but ( )3 0λ κ ≠ .  
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Abstract 
In addition to determination of load levels at critical points of stability problems, frequently the 

postbuckling behavior is of interest. For nonlinear problems, the so-called consistently linearized 

eigenvalue problem is a suitable tangent linearization method, which facilitates determination of 

stability limits. The solution process of the eigenproblem is significantly simplified by appropriate 

coordinate transformations. Within this process, characteristic shapes of eigenvalue curves allow 

identification of bifurcation buckling modes, snap-through modes, and hilltop buckling modes. 

Mathematical properties of the eigenvalue curves are addressed and conclusions regarding the shape 

of postbuckling paths are drawn. Considerations also touch upon the conversion from imperfection 

sensitivity into insensitivity. The theoretical findings are corroborated by examples dealing with a von 

Mises truss and a similar discrete system, showing a remarkable postbuckling behavior such as a zero-

stiffness equilibrium path. For both systems, the same approach of stiffness increase allows conversion 

from imperfection sensitivity into insensitivity. 

Keywords 
bifurcation, consistently linearized eigenproblem, hilltop buckling, imperfection insensitivity, snap-

through, von Mises truss. 
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1. Introduction 
1.1. Motivation 
Major tasks in the analysis of static, nonlinear stability problems are: (i) determination of the stability 

limit and (ii) assessment of the postbuckling behavior. A common method of determining stability 

limits in the context of the Finite Element Method (FEM) is to search along the nonlinear prebuckling 

path for points at which the tangent stiffness matrix TK  becomes singular. To this end, Gallagher and 

Yang [1] developed a secant linearization technique representing an extension of conventional linear 

stability analysis. Brendel [2] gave an overview of incremental secant methods and suggested a new 

approach which was applied to nonlinear structures by Brendel et al. [3]. 

For finite dimensional systems, Helnwein [4] introduced the so-called consistently linearized 

eigenproblem which associates the tracing of a nonlinear prebuckling path with an accompanying 

eigenvalue problem. In a series of studies ([4-6]]), this approach was used to estimate stability limits 

ab initio, i.e., without an incremental analysis. Mang et al. [7] extended the considerations to the 

postbuckling regime insofar as they investigated the possibility of converting an imperfection-sensitive 

into an imperfection-insensitive system by means of minor structural modifications, which is the 

second aforementioned task. 

Originally, Koiter [8] proposed a mathematical scheme to analyze postbuckling paths in the vicinity of 

the bifurcation point representing the stability limit. In Koiter’s approach, asymptotic series 

expansions play a pivotal role. Hence, the considerations focus on initial postbuckling behavior. Mang 

et al. [7] integrated Koiter’s scheme and Helnwein’s consistently linearized eigenproblem for the 

purpose of specifying diagnostics for the conversion from imperfection sensitivity into insensitivity. 

Several algorithms have been developed for optimizing the postbuckling behavior, e.g. [9-12]. 

However, it seems that there is still a lack of knowledge of designing a structure for imperfection 

insensitivity right from the outset. 

1.2. Scope of this work 
An objective of this work is to identify characteristic properties of eigenvalue curves which occur in 

the process of solving the consistently linearized eigenproblem. These properties may be beneficial for 

engineers intending to convert designs of imperfection-sensitive structures into imperfection-

insensitive ones. For this purpose, theoretical considerations about characteristic shapes of eigenvalue 

curves will be carried out in Section 2, followed by a discussion of remarkable load-displacement 

paths and corresponding eigenvalue curves in Section 3, as may appear in simple static systems. An 

intuitive method of conversion from imperfection sensitivity into insensitivity [7] will be delineated 

and its effectiveness will be demonstrated. Section 3 will be concluded by an example showing how a 

system with infinitely many degrees of freedom can be approximated by a two-degrees-of-freedom 

model. Justification for using the approximation in practical analyses will be given by comparison of 
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the approximate and the exact solution. The simplified model allows an analysis of the structure by 

means of the consistently linearized eigenproblem. 

In this work, static, conservative systems with N degrees of freedom will be considered. Restriction to 

finite values of N is no limitation insofar as this approach conforms to the FEM. Only perfect 

structures subjected to dead load will be investigated. The assumed material behavior is either linear 

elastic or rigid. The considerations include bifurcation from nonlinear prebuckling paths. In addition, 

snap-through and the special case of hilltop buckling [13] will be considered as possible modes of loss 

of stability. 

1.3. Equilibrium conditions 
( , ) : NV λ × →u  is the expression of the potential energy of a conservative system with N degrees 

of freedom. N∈u  is the vector of displacement coordinates and λ∈  is a load multiplier, which 

scales a constant reference load vector .N∈P  Introduction of the so-called out-of-balance force 

 I
,: ( ) ,V λ= = −uG F u P  (1) 

allows to formulate the equilibrium conditions as .=G 0  The differential of this expression, 

 ,T d dλ⋅ − =K u P 0  (2) 
with the tangent-stiffness matrix 

 ,: ( , ),T V λ= uuK u  (3) 
permits the solution of nonlinear problems by the FEM. 

1.4. Consistently linearized eigenproblem 
In the context of the solution of such problems by the FEM, Helnwein [4] defined the consistently 

linearized eigenproblem as 

 ( )* *
,( ) .T T λλ λ+ − ⋅ =K K v 0  (4) 

Because of its well-natured mathematical behavior, it has proved valuable in computing points of the 

load displacement path where the tangent-stiffness matrix TK  experiences a rank deficiency. An 

upper tilde denotes quantities that are evaluated along the primary equilibrium path. In (4), 
*( )λ λ− ∈  is the eigenvalue corresponding to the eigenvector * .N∈v  *λ  and *v  are functions of λ. 

The eigenproblem (4) is a set of implicit equations defining N curves in the * - -space.λ λ  Hence, it has 

got N  solutions * *( , ) {1,2, , },j j j Nλ ∈v …  referred to as eigenpairs. The eigenvalue curves *( )jλ λ  allow 

identification of characteristic properties of the postbuckling behavior. ,[ ] λi  denotes the special rule of 

differentiation along the primary path, as defined by [7]. To distinguish it from the partial derivative, 

the latter will be written as ;[ ] .λi  

Moreover, the equation 

 * 0λ λ− =  (5) 
defines a straight line in this space. At points where both, (4) and (5) are satisfied, i.e., at points of 

intersection of two curves defined by (4) and (5), TK  is singular. The stability limit C is the first value 
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of λ where this happens when λ is either increased or decreased starting from 0.λ =  Quantities 

evaluated at C are labeled by a subscript C. Hence, the load level at the bifurcation point C is .Cλ  

Without loss of generality, only positive values of λ will be considered in the following, since the sign 

of P in (1) can be defined at will. Although snap-through points are not excluded from this analysis, it 

is generally assumed that the relevant mode of loss of stability is bifurcation buckling. A new vector 

1
N∈v  defined by the equation 

 1TC ⋅ =K v 0  (6) 
is introduced, i.e., 1v  is a zero-eigenvector of TCK  and it describes the initial buckling shape. As 

suggested by Mang et al. [7], indices of the N eigenpairs * *( , )j jλ v  are chosen such that *
1 1.C =v v  

Therefore, *
1 .C Cλ λ=  Because of this definition, *

1λ λ=  is the bifurcation point. 

2. Theory 
2.1. Derivatives of the eigenvalue curve 
The first and second derivative of (4) with respect to λ follow as: 

 ( ) ( )* * * * *
, , , , ,( ) ( ) ,T T T Tλ λ λλ λ λλ λ λ λ λ+ − ⋅ + + − ⋅ =K K v K K v 0  (7) 

 

( )
( )
( )

* * * *
, , , , ,

* * *
, , , ,

* *
, ,

(2 1) ( )

2 ( )

( ) ,

T T T

T T

T T

λλ λ λ λλ λλλ

λ λ λλ λ

λ λλ

λ λ λ λ

λ λ λ

λ λ

+ − + − ⋅

+ + − ⋅

+ + − ⋅ =

K K K v

K K v

K K v 0

 (8) 

Premultiplying (7) by * ,v T  taking T T=K K T  into account, and substitution of (4) yields 

 ( )*T * * *
, , ,( )T Tλ λ λλλ λ λ⋅ + − ⋅ =v K K v 0  (9) 

and, consequently, 

 
*T *

,* *
, *T *

,

( ) .T

T

λλ
λ

λ

λ λ λ
⋅ ⋅

= − −
⋅ ⋅

v K v
v K v

 (10) 

Treating (8) in the same way gives 

 
( ) ( )* * * * * *

, , , , , , ,* *T
, *T *

,

(2 1) ( ) 2 ( )
.T T T T

T

λ λλ λλλ λ λ λλ λ
λλ

λ

λ λ λ λ λ λ
λ

− + − ⋅ + + − ⋅
= − ⋅

⋅ ⋅

K K v K K v
v

v K v
  

  (11) 

2.2. Points of the eigenvalue curve with zero slope 
Because of (10), the vanishing of *

1,λλ  requires 

 

*T *
1 , 1*

1 *T *
1 , 1

*
*T * 1
1 , 1 *T *

1 , 1

0

trivial case

0 .

nontrivial case

T

T

T
T

λλ

λ

λλ
λ

λ λ

λ λ

⎛ ⎞⋅ ⋅
− = ∧ <⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

∨

⎛ ⎞−
⋅ ⋅ = ∧ <⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

v K v
v K v

v K v
v K v

∞

∞

 (12) 
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In the nontrivial case, (11) degenerates to 

 *
1,

*T * *T *
1 , 1 1 , 1,* *

1, 1 *T *0
1 , 1

2
( ) .T T

T
λ

λλλ λλ λ
λλ λ

λ

λ λ λ
=

⋅ ⋅ + ⋅ ⋅
= − −

⋅ ⋅

v K v v K v
v K v

 (13) 

Examples of horizontal tangents of eigenvalue curves will be given in Section 3 (cf. Figs. 2 and 6). 

The trivial case of (12) indicates loss of stability, since TK  becomes singular. This case always 

coincides with a horizontal tangent *
1,( 0),λλ =  unless the second part of the trivial case of condition (12) 

is not satisfied. 

2.3. Derivation of the eigenvector *
1v  

It follows from (4) that 

 *T * *T *
1 , 10, 0 {2,3, , }.j T j T j Nλ⋅ ⋅ = ⋅ ⋅ = ∀ ∈v K v v K v …  (14) 

Since the eigenvectors *  {1,2, , }i i N∈v …  are a basis of ,N
 

*
1,λv  can be written as 

 * *
1, 1

1
.

N

i i
i

cλ
=

=∑v v  (15) 

Inserting (15) into (7), premultiplying the obtained expression by *T,jv  making use of (14) and 

substituting 

 ( )*T * *
,( )j T j T jλλ λ⋅ + − ⋅ =v K K v 0  (16) 

yields 

 
*T **

, 11
1 * * *T *

1 ,

{2,3, , }.j T
j

j j T j

c j Nλλ

λ

λ λ
λ λ

⋅ ⋅−
= − ∀ ∈

− ⋅ ⋅

v K v
v K v

…  (17) 

11c  cannot be determined by applying this scheme. At first sight, 11c  may take arbitrary values, which 

would also follow from the definition (4). However, the normalization condition 

 *T *
1 , 1 1T λ⋅ ⋅ =v K v  (18) 

is used in order to define the length of *
1v  and, consequently, the value of 11.c  Thus, *T *

1 , 1T λ⋅ ⋅v K v  is 

piecewise continuous and piecewise continuously differentiable. Excluding points where *T *
1 , 1T λ⋅ ⋅v K v  

changes its sign, the derivation of (18) with respect to λ gives 

 *T * *T *
1 , 1, 1 , 12 0.T Tλ λ λλ⋅ ⋅ + ⋅ ⋅ =v K v v K v  (19) 

Substitution of (15) into (19) and consideration of (10) and (14) yields 

 
*T * *
1 , 1 1,

11 **T *
11 , 1

1 .
2 2( )

T

T

c λλ λ

λ

λ
λ λ

⋅ ⋅
= − =

−⋅ ⋅
v K v
v K v

 (20) 

As expected, this expression becomes infinite at the excluded points. 

In case of linear prebuckling behavior, ,T λK  is constant and , .T λλ =K 0  Consequently, (4) yields a 

constant solution *( )λ λ  and 1 0 {1,2, , }.ic i N= ∀ ∈ …  This is the rationale for sometimes referring to 

11c  as nonlinearity coefficient. However, 11 0c =  is only a necessary condition for linear prebuckling 

behavior [7]. 
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2.4. Structure of the tangent stiffness matrix 
It is assumed that FE

TK  is the tangent stiffness matrix defined for an arbitrary coordinate system with 

displacement coordinates q. For instance, FE
TK may be thought of as the tangent stiffness matrix 

generated by the finite element method. Since FE
TK  is symmetric, it is always possible to diagonalize it 

through transformation of coordinates. New displacement coordinates u are introduced such that 

 : ,d d= ⋅q T u  (21) 
where : N N→T  is generally a variable linear mapping, sometimes denoted as Jacobian matrix. 

Hence, 

 .∂ ∂
= ⋅

∂ ∂
T

u q
 (22) 

The columns of 

 [ ]1 2: N=T t t t  (23) 
can be defined by the eigenproblem 

 {1,2, , }.FE
T i i i i Nτ⋅ = ∀ ∈K t t …  (24) 

The eigenvectors it  are orthogonal with respect to each other, since T.FE FE
T T=K K  In addition, it is 

stipulated that they are normalized to unit length, i.e., 

 
1

:
0i j

i j
i j
=⎧

⋅ = ⎨ ≠⎩
t t  . (25) 

Left-hand multiplication of 

 1 2diag{ , , , }FE
T Nτ τ τ⋅ = ⋅K T Τ …  (26) 

by TT  and consideration of T⋅ =T T I  as well as of (3) and (22) yields the diagonal matrix 

 
2 2

T T
1 2 T Tdiag{ , , , } .FE

N T T
V Vτ τ τ ∂ ∂

= ⋅ ⋅ = ⋅ ⋅ = =
∂ ∂ ∂ ∂

T K T T T K
q q u u

…  (27) 

Hence, without loss of generality, it can be assumed that the tangent stiffness matrix and also its 

derivatives with respect to λ evaluated along the primary path have the following structure 

 
upper left

,

, , ,

, ,

0

( , ) 0
0 0

n

n n
i j

n
N N

T

T u u

u u

V

V

λ

λ λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

K
K u , (28) 

where the buckling coordinate is .Nu  By permutation of coordinates it is always possible to ensure that 

, N Nu uV  is the first vanishing eigenvalue of TK  as λ is increased. The upper-left submatrix may be 

diagonal. 

It is emphasized that solving (24) and computing (27) can be numerically cumbersome if the number 

of degrees of freedom is large. However, in this Subsection it was shown that, in principle, it is always 

possible to obtain a diagonal structure of 
,

.nT λ
K  As will be seen in the following Subsections, this 

diagonal structure facilitates many theoretical considerations. 
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2.5. Orthogonality of eigenvectors with respect to , nT λ
K  

Orthogonality of the eigenvectors *
1v  and * ( {2,3, , })j j N∈v …  with respect to 

, nT λ
K  leads to 

simplifications of the analysis of eigenvalue curves. In particular, it facilitates the computation of 

higher derivatives of *λ  with respect to λ. It will be shown in this Subsection that, if the assumptions 

stipulated in the previous Subsection hold and the suggested coordinate transformations are applied, 

orthogonality is a consequence of (28). 

Specialization of the lower right component of 
, nT λ

K  from (28) for 0n =  and the stability limit C 

yields 

 , 0,
N Nu u CV =  (29) 

which reflects the vanishing of an eigenvalue of TK  at C. 

 [ ]T ,* *
1 1

, ,

0 0 N N

N N

u u

u u

V
p p

V λ

λ λ= ∈ ∧ = −v  (30) 

is a solution of the consistently linearized eigenproblem (4) specialized by means of (28). At C, 
*
1 1C =v v  and *

1C Cλ λ λ= =  hold. Because of (14) and the specialization of (28) for 0n =  or 1,n =  

 
T* * * *

1 2 1 0 {2,3, , }.j j j j Nv v v j N−⎡ ⎤= ∀ ∈⎣ ⎦v …  (31) 

Consequently, 

 *T *
1,

0 ( , ) {2,3, , } .nj T
j n N

λ
⋅ ⋅ = ∀ ∈ ×v K v …  (32) 

The implications of this remarkable orthogonality will be analyzed in the following Subsections. 

2.6. Derivatives of the eigenvalue curve 
Specialization of (10) for the first eigenpair reads as 

 
*T *
1 , 1* *

1, 1 *T *
1 , 1

( ) .T

T

λλ
λ

λ

λ λ λ
⋅ ⋅

= − −
⋅ ⋅

v K v
v K v

 (33) 

For the first derivative of the eigenvector *
1, ,λv  it follows from (32), that 1 0 {2,3, , }jc j N= ∀ ∈ …  and 

 
*
1,* * *

1, 11 1 1*
1

,
2( )

c λ
λ

λ
= =

λ −λ
v v v  (34) 

where (17) and (20) were used. That is, the direction of *
1v  is constant. Substitution of (34) into the 

specialization of (11) for the first eigenpair and consideration of (33) results in 

 
* * *T *
1, 1, 1 , 1* *

1, 1* *T *
1 1 , 1

(2 1)
( ) .

( )
T

T

λ λ λλλ
λλ

λ

λ λ
λ λ λ

λ λ
− ⋅ ⋅

= − −
− ⋅ ⋅

v K v
v K v

 (35) 

Derivation of (34) with respect to λ yields 

 
* *
1, 1,* * *

1, 1, 1* *
1 1

( 2)1 .
2( ) 2( )

λ λ
λλ λλ

λ λ
λ

λ λ λ λ
⎛ ⎞−

= −⎜ ⎟
− −⎝ ⎠

v v  (36) 

Generally, after further derivations 

 * *
11,

.n n
λ
∝ ∀ ∈v v  (37) 
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In order to analyze characteristic properties of the eigenvalue curve, (35) is specialized for points 

which have a nontrivial horizontal tangent, i.e., *
1, 0λλ =  and *

1 .λ λ≠  In this case 

 *
1,

*T *
1 , 1* *

1, 1 *T *0
1 , 1

( ) .T

T
λ

λλλ
λλ λ

λ

λ λ λ
=

⋅ ⋅
= − −

⋅ ⋅

v K v
v K v

 (38) 

2.7. The limit case *
1λ λ→  for bifurcation points 

At bifurcation points, the fraction in (33) will generally remain finite. It becomes infinite, however, at 

snap-through points and, in particular, for the special case of hilltop buckling [13], where a bifurcation 

point coincides with a snap-through point. A discussion of snap-through phenomena and hilltop 

buckling is postponed to Subsection 2.8. Hence, at C, 

 
*
1

*
1,lim 0λ

λ λ
λ

→
=  (39) 

holds. Assuming that 

 
*T *
1 , 1

*T *
1 , 1

,C T C C

C T C C

λλλ

λ

⋅ ⋅
<

⋅ ⋅

v K v
v K v

∞  (40) 

insertion of (33) into (35) and computation of the limit yields 

 
*
1

*T *
1 , 1*

1, 11*T *
1 , 1

lim 2 .C T C C
C

C T C C

cλλ
λλ

λ λ
λ

λ
→

⋅ ⋅
= = −

⋅ ⋅

v K v
v K v

 (41) 

However, the situation is different if a point with a horizontal tangent *
1,( 0)λλ =  approaches the 

stability limit *
1 .λ λ=  In this case, 

 ( )** 1,1

*
1, 0

lim 0
λ

λλ λλ λ
λ

=→
=  (42) 

follows from (38), provided that (40) is satisfied. (42) requires that the point with the horizontal 

tangent 1,( 0)λλ∗ =   “moves” in the *
1- -λ λ space. This is tied to parameter changes of the structure. 

2.8. The limit case 1λ λ∗→  for snap-through points 

In the following, snap-through instability will be indentified from the *( )jλ λ  curves. For this purpose, 

the first and the second derivative of these curves at the snap-through point D will be computed. 

However, compared to Subsection 2.7, a different approach is required. 

The considerations are applicable to any eigenpair * *( , ) {1,2, , }.j j j Nλ ∈v …  At D, the equilibrium path 

has a local extremum in terms of the load multiplier λ, i.e., 0.dλ =  Hence, derivatives /d dλ  will 

generally produce infinite or indeterminate results, and λ is not a good choice for parameterizing the 

equilibrium path in the vicinity of D. To circumvent this problem, the new path parameter ξ∈  is 

introduced, which by definition vanishes at D. It follows that, if D is a local maximum, 

 , ,0, 0.D Dξ ξξλ λ= <  (43) 

The derivative of TK  with respect to λ can be rewritten as 

 ,
,

,

.T
T

ξ
λ

ξλ
=

K
K  (44) 
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Substitution of (44) into the specialization of (4) for the j-th eigenpair and left-hand multiplication by 
*T

, jξλ v  yields the scalar equation 

 ( )*T * *
, ,( ) 0.j T j T jξ ξλ λ λ⋅ + − ⋅ =v K K v  (45) 

Insertion of the series expansions 
* * * 2 3

, , ,

* * * * 2 3
, ,

2 3
, ,

2 3
, , , ,

( ) / 2 ( ),

/ 2 ( ),

/ 2 ( ),

/ 2 ( )

j j D j D D

j jD j D j D

T TD T D T D

T T D T D T D

ξ ξξ ξξ

ξ ξξ

ξ ξξ

ξ ξ ξξ ξξξ

λ λ λ ξ λ λ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− = + − +

= + + +

= + + +

= + + +

v v v v

K K K K

K K K K

O

O

O

O

 (46) 

into (45) and consideration of coefficients up to order 2ξ  yields 

 

( )
(

*T * *T * * *T *
, , , , , ,

*T * *T * * *T *
, , , , , , , , ,

* *T * *
, , , , ,

2 ( )

2( )

( )/2 ( /2 )

jD TD jD j D TD jD j D jD T D jD

j D TD jD j D TD j D j D j D T D jD

j D D jD T D jD j D

ξ ξ ξ ξ ξ ξ

ξ ξξ ξ ξ ξ ξ ξ ξ ξ

ξξ ξξ ξ ξ ξ

λ λ λ λ ξ

λ λ λ λ

λ λ λ λ

⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅

+ − ⋅ ⋅ + +

v K v v K v v K v

v K v v K v v K v

v K v v )*T * 2 3
, ( ) 0.jD T D jDξξ ξ ξ⋅ ⋅ + =K v O

  

  (47) 
It follows from (43) that , ( ).ξλ ξ=O  On the premise that 1,ξ  terms in (47) up to order ξ can be 

reshaped as 

 
* *T * *T *
, ,1

*T * *T *
, , ,

1 2 ( ).j D jD TD jD j D TD jD

jD T D jD jD T D jD

ξ ξ

ξ ξ ξ

λ
ξ ξ

λ
− ⋅ ⋅ ⋅ ⋅

= − − − +
⋅ ⋅ ⋅ ⋅

v K v v K v
v K v v K v

O  (48) 

The limit of (48) for 0,ξ →  i.e., *
, /j D Dξ ξλ λ  is the desired first derivative *

, .j Dλλ  At first, (48) is 

specialized for the case of a snap-through mode * ,jDv  which means that * .TD jD⋅ =K v 0  Then, 

computation of the limit 0ξ →  of (48) results in 

 *
, 1.j Dλλ = −  (49) 

As a second possibility, (48) is specialized for the case that *
jDv  does not represent the snap-through 

mode. If hilltop buckling [13] is excluded, *
TD jD⋅ ≠K v 0  and hence, 

 *
, .j Dλλ = ±∞  (50) 

The sign depends on the sign of ξ as the limit 0ξ →  is calculated, but has no practical relevance. 

For determination of *
, ,j Dλλλ  *

,j λλλ  is written in terms of the path parameter ξ 

 
* * *
, , , ,*

,
, , , , ,,

1 .j j j
j

ξ ξξ ξ ξξ
λλ

ξ ξ ξ ξ ξλ

λ λ λ λ
λ

λ λ λ λ λ
⎛ ⎞ ⎛ ⎞

= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (51) 

Insertion of the Taylor series expansions 

 * * * 2 * * * 2
, , , , , ,( ) , ( )j j D j D j j D j Dξ ξ ξξ ξξ ξξ ξξξλ λ λ ξ ξ λ λ λ ξ ξ= + + = + +O O  (52) 

and truncation after the constant term gives 

 
* *
, , ,*

,
, , , ,

1 ( ).j D j D
j

ξξ ξ ξξ
λλ

ξ ξ ξ ξ

λ λ λ
λ ξ

λ λ λ λ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

O  (53) 

(47) is reshaped to get 
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,

,

*T * 2
*T *
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, , , ,

*T * *T * * *T *
, , , , , , ,

* *T
, ,

2

2 (1 / )

2(1 / )
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j D

jD TD jD
jD T D jD

j D TD jD j D jD T D jD
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ξ ξ ξ ξ

ξ ξ ξξ ξ ξ ξ ξ

ξ ξ
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ξ

λ λ ξ

λ λ

λ λ

−

−

=

− ⋅ ⋅
⋅ ⋅

+ ⋅ ⋅ + + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅

+ + ⋅

v K v
v K v

v K v v K v
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v ) ) ,* 0 0
,

,

( ) .D
T D jD

ξξ
ξξ

ξ

λ
ξ ξ ξ

λ
⋅ + +K v O

 (54) 

Finally, insertion of (48) and (54) into (53) and truncation after terms of order 1ξ −  yield 

 

(

( ) )

* *T * 2
, *T *

, ,

*T * * *T * 1
, , , ,

*T *
, 1 0

*T *
,,

1 2

2 (1 / )

( ) .

j jD TD jD
jD T D jD

j D TD jD j D jD T D jD

jD TD jD

jD T D jD
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ξ ξ

ξ ξ ξ ξ

ξξ

ξξ

λ ξ
λ

λ λ ξ

λ
ξ ξ

λ

−

−

−

⎛
= − ⋅ ⋅⎜ ⋅ ⋅⎝

+ ⋅ ⋅ + + ⋅ ⋅

⎞⋅ ⋅
+ + ⎟⎟⋅ ⋅ ⎠

v K v
v K v

v K v v K v

v K v
v K v

O

 (55) 

Hence, 

 *
, {1,2, , },j D j Nλλλ = ± ∀ ∈ …∞  (56) 

irrespectively of the value of * .TD jD⋅K v  The sign of *
,j Dλλλ  depends on the sign of ,ξλ  as the limit 

0ξ →  is computed, but has no practical relevance. 

For the special case of hilltop buckling [13], 

 * *
, ,1 ,j D j Dλ λλλ λ= − = ±, ∞  (57) 

hold for both, the buckling mode and the snap-through mode, since C D=  and 

* * .TC jC TD jD⋅ = ⋅ =K v K v 0  For 1,j=  * *
jC jD= =v v 0  holds as a consequence of (18) and (44). 

2.9. The limit case 1 1λ λ∗→  for saddle points 
In analogy to the previous Subsection, a path parameter ξ∈  is introduced, which vanishes by 

definition at the saddle point D. It follows that 

 , , ,0, 0, 0.D D Dξ ξξ ξξξλ λ λ= = ≠  (58) 
Without loss of generality, it is assumed that ( 1)ju jξ = ≠  is the only coordinate which changes its 

value at D. This deflection mode will be referred to as saddle mode. The assumed situation can be 

established by the coordinate transformation introduced in Subsection 2.4; throughout this Subsection, 

it is assumed that TK  has a diagonal structure. Thus, ,ξu  is the j-th unit vector and 

 , .ξξ =u 0  (59) 
Dividing (2) by ,dξ  specializing the result for D, and insertion of (58) yields 

 , .TD Dξ⋅ =K u 0  (60) 

Hence, TDK  is singular and following from the specialization of (4) for D 

 *
, , \{0},jD Dp pξ= ∈v u  (61) 
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where *
jDv  describes the saddle mode. Division of (2) by dξ  derivation of the result with respect to ξ, 

insertion of (59), specialization for D, and insertion of (58) yields 

 , , .T D Dξ ξ⋅ =K u 0  (62) 
Insertion of (61) results in 

 *
, .T D jDξ ⋅ =K v 0  (63) 

It is emphasized that (63) is based on , 0,Dξξλ =  i.e., it generally does not hold for snap-through points. 

Since TK  is a diagonal matrix, the relation 

 * *
, n jj

n
ξ
∝ ∀ ∈v v  (64) 

can be deduced in analogy to (37) referring to the first eigenvector *
1.v  Insertion of * ,TD jD⋅ =K v 0  (63), 

and the specialization of (64) for D into (47) and solving the result for *
, ,/j Dξ ξλ λ  yields 

 
*
,

,

1 ( ).
2

j Dξ

ξ

λ
ξ

λ
= − +O  (65) 

Finally, computation of the limit 0ξ →  of (65) gives  

 
*
,*

,
,

1 .
2

j D
j D

D

ξ
λ

ξ

λ
λ

λ
= = −  (66) 

Similar to the deduction of (55) and (56), it can be shown that in this case 

 *
,| | .j Dλλλ <∞  (67) 

Hence, *( ),jλ λ  corresponding to the saddle mode, is a smooth curve. However, for the remaining 

eigenvalues *( ) ( ),i i jλ λ ≠  (50) and (56) still hold, implying that their tangent is vertical. 

2.10.  Disintegration of (7) and (8) 
Because of (4) and (34), the specialization of (7) for the first eigenpair disintegrates into 

 ( ) ( )* * * * *
1, , 1 , 1 1 , 11 1( ) , ( ) .T T T T cλ λ λλ λλ λ λ λ λ+ − ⋅ = + − ⋅ =K K v 0 K K v 0  (68) 

It follows from (68) that 

 * * *
1, 1 , 10 0 ,Tλ λλλ λ λ= ∧ − ≠ ⇒ ⋅ =K v 0  (69) 

which describes the nontrivial case of (12). Substitution of (37) into the specialization of (8) for the 

first eigenpair and consideration of (4) and (68) show that (8) disintegrates into 

( ) ( )
( )

* * * * * * *
1, , 1, , 1 , 1 1, , 1 , 11 1

* *
1 , 1

(2 1) ( ) , ( ) ,

( ) .

T T T T T

T T

c

p p

λλ λ λ λλ λλλ λ λ λλ

λ

λ λ λ λ λ λ λ

λ λ

+ − + − ⋅ = + − ⋅ =

+ − ⋅ = ∈

K K K v 0 K K v 0

K K v 0
  

  (70) 
Proceeding in this manner, it can be shown that higher derivatives of the eigenproblem (4) also 

disintegrate as a consequence of (37). It is possible to compute derivatives *
1, nλ
λ  from these equations. 

E.g., (68) and (70) give (33) and (35), respectively. 

It is once more emphasized that the Subsections 2.5 through 2.7 as well as 2.10 essentially use the 

structure of 
, nT λ

K  given in (28). In Subsection 2.9, it is even assumed that 
, nT λ

K  is diagonal. These 
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are no limitations, since the postulated structure of 
, nT λ

K  can be established by means of a coordinate 

transformation. 

2.11.  Imperfection sensitivity versus imperfection insensitivity 
A system is imperfection sensitive if it is not guaranteed that the ultimate load of the imperfect system 

exceeds the theoretical limit load Cλ  of the perfect system. In order to analyze this for a specific 

structure by means of the FEM, it has proved useful to expand the load multiplier ( )λ η  into an 

asymptotic series with respect to .η∈  η is a scalar which parameterizes the postbuckling path, and 

by definition 0.Cη =  Hence, 

 2 3 4
1 2 3( ) ( ).Cλ η λ λ η λ η λ η η= + + + +O  (71) 

The coefficients iλ ∈  can be computed from FEM results (cf. [4, 5, 7, 14]]). Sometimes, the 

buckling coordinate is chosen as the path parameter η. With the help of 

 min : min{ | \{0} 0},mm m m λ= ∈ ∧ ≠  (72) 
a necessary and sufficient condition for imperfection insensitivity [14], in a mathematical sense, is 

obtained as 

 
minmin  is even 0.mm λ∧ >  (73) 

If this condition is not satisfied, the system is imperfection sensitive. 

2.12.  Discussion of theoretical results 
At first, the following considerations focus on the point *

1( , ( ))C Cλ λ λ  at which the curve *
1 ( )λ λ  

intersects the straight line *
jλ λ=  for the first time, i.e., for the smallest value of λ. (39) or in case of 

hilltop buckling (57) reveal that *
1, 1.Cλλ <  Therefore, since C is the first point of intersection of *

1 ( )λ λ  

and λ and since only positive values of λ are considered, 

 *
1 ( ) 0 .Cλ λ λ λ λ− > ∀ <  (74) 

For ,Cλ λ<  stability requires that TK  is positive definite. Consequently, this applies also to the scalar 

, ,
N Nu uV  which vanishes at C. Generally, as λ exceeds ,Cλ  , 0,

N Nu uV <  at least in the vicinity of the 

stability limit. The existence of such points requires ,C D≠  i.e., hilltop buckling is excluded. 

Therefore, 

 , , ( ) 0 ( , ),
N Nu u C CV a aλ λ λ λ λ< ∀ ∈ − +  (75) 

where ( , )C Ca aλ λ− +  is a sufficiently small domain including the stability limit. (75) implies that in 

the considered domain ,T λK  is not positive semidefinite. Moreover, (75) implies 

 *T *
1 , 1 0 ( , ).T C Ca aλ λ λ λ⋅ ⋅ < ∀ ∈ − +v K v  (76) 

Using this result, it follows from (33) that the sign of the slope of the eigenvalue curve *
1,λλ  is 

essentially determined by the sign of , , .
N Nu uV λλ  A physical interpretation of the foregoing can be given 

based on the fact that , N Nu uV  represents the tangential stiffness of the structure with respect to the 
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buckling displacement .Nu  As described by (75), this stiffness reduces as the load multiplier λ is 

increased. The rate at which , N Nu uV  decreases may change, which is quantified by , , .
N Nu uV λλ  Assuming 

, , 0,
N Nu u CV λλ ≠  *

1,λλ  changes its sign at C (cf. (33)). 

In case of a point with a nontrivial horizontal tangent * *
1, 1( 0 ),λλ λ λ= ∧ ≠  *

1,λλλ  is defined by (38). In 

essence, its sign is determined by the sign of , , ,
N Nu uV λλλ  which does not allow a straightforward 

physical interpretation. However, (42) indicates that *
1,λλλ  changes its sign as the considered point 

characterized by a horizontal tangent passes the stability limit. 

For snap-through points D, it was shown in Subsection 2.8, that the slope of the eigenvalue curve *
jλ  

belonging to the snap-through mode *
jv  is 1,−  i.e., that it has a finite value. However, the curvature is 

infinite, and consequently, D is a cusp of the *( )jλ λ  curve. Hence, 

 *( ) 0jλ λ λ− ≥  (77) 

with the equality sign holding at the cusp D. If, on the other hand, *
jv  is neither a snap-through mode 

nor a hilltop buckling mode, ( )*
jλ λ  has a vertical tangent at D. Since both, the first and the second 

derivative are infinite in this case, the curvature may be finite or infinite. It follows from (20) that in 

this case 

 11 ,Dc = ±∞  (78) 
which is just another indicator for snap-through points. In case of hilltop buckling, (77) also holds for 

*
1 ,λ  which corresponds to the bifurcation mode. Insertion of (57) and (77) into (20) results in 

 11 .Cc = −∞  (79) 
In Subsection 2.9 it was shown that, if the load-displacement path contains a saddle point D, 

*
, 1/2j Dλλ = −  and *

,| |j Dλλλ <∞  hold for the associated eigenvalue curve. Eigenvalue curves not 

corresponding to the saddle mode have a vertical tangent at D. 

Examples given in the following Section will corroborate these theoretical findings. The examples 

refer to symmetric bifurcation behavior [14], i.e., the sign of the buckling coordinate is not relevant. 

3. Structures with remarkable postbuckling paths 
3.1. Two-bar system 
A planar, static, conservative system with two degrees of freedom, as shown in Fig. 1, is considered. 

Both rigid bars, 1 and 2 have the same length L and in the non-buckled state they are in-line. The 

bars are linked at one end and supported by turning-and-sliding joints at their other ends. A horizontal 

linear elastic spring of stiffness k and a vertical linear elastic spring of stiffness kκ  are attached to 

turning-and-sliding joints. 
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Pλ

L

1
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2
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kμ
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Fig. 1: Two-bar system 

A spring of stiffness kμ  “pulls” the two bars back into their in-line position. The system is loaded by 

a vertical load Pλ  at the vertical turning-and-sliding joint. The two displacement coordinates are the 

angles 1u  and 2 ,u  summarized in the vector T
1 2[ , ] .u u=u  In order to write the out-of-balance force G 

in the structure defined in (1), other coordinates would need to be chosen. In fact, the angle 1u  would 

need to be replaced by the vertical position of the upper turning-and-sliding joint. This would only 

require a simple coordinate transformation. For convenience, however, the angle 1u  was chosen as a 

coordinate. The unloaded position, delineated in gray, is defined by T
10[ ,0] .u=u  This system was 

originally suggested by Schranz et al. [15]. The potential energy expression follows as 

( ) ( )

( )

2 22 2 2 2
10 1 2 2 10 1 2

10 1 2

( , ) 2 sin( ) sin( )cos( ) sin ( ) 2 cos( ) cos( )cos( )
2

2 sin( ) sin( )cos( ) .

kV k L u u u L u k L u u u

P L u u u

μλ κ

λ

= − + + −

− −

u

  (80) 
The equilibrium equations 

1, 0uV =  and 
2, 0uV =  are satisfied for the primary path 

 
( )

2

1 10 1 10

0,
2 (1 )sin( ) cos( ) tan( ) sin( ) ,

u
L k u u u u
P

λ κ κ

=

= − − +
 (81) 

and for the secondary path 

 

10
2

1

10 1 10

cos( )4arccos ,
4 cos( )

2 4 cos( ) tan( ) sin( ) .
4

uu
u

L k u u u
P

μ

μ κλ κ
μ

⎛ ⎞= ± ⎜ ⎟−⎝ ⎠
−⎛ ⎞= +⎜ ⎟−⎝ ⎠

 (82) 

Since a perfect system is assumed, the sign of 2u  is indeterminate, i.e., it is not known into which 

direction the two bars will buckle. The tangent-stiffness matrix follows as 

( )

( )

2 2 2
10 1 1 10 1 1 1

2 2
10 1 1 10 1 1 1

4 diag 1 sin( )sin( ) 2sin ( ) 1 cos( )cos( ) 2cos ( ) sin( );
2

sin( )sin( ) sin ( ) cos( )cos( ) cos ( ) sin( ) .
2

T
Pk L u u u u u u u
k L

Pu u u u u u u
k L

κ λ

κ λ

⎧
= + − + + − −⎨

⎩
⎫

− + − − ⎬
⎭

K

  (83) 
Its derivative with respect to λ can be computed by 
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 , , , , ; ,T V Vλ λ λ= ⋅ +uuu uuK u  (84) 
where ,λu  is the derivative of the displacement vector along the primary path, which can be 

determined from the linear equation 

 , , ; .Tλ λ λ= ⋅ + =G K u G 0  (85) 
The expression of ,T λK  looks similar to (83). For the sake of conciseness, it has been omitted. Hence, 

all terms necessary for solving the eigenproblem (4) have been deduced. 

10 ( /2, /2),u π π μ +∈ − ∈  and κ +∈  are parameters that can be varied in order to achieve qualitative 

changes of the system. However, in this work, only κ was modified. The remaining two parameters 

were taken as 3/5μ =  and 10 0.67026,u =  in which case hilltop buckling occurs for 0.κ =  The load-

displacement path for hilltop buckling and its projection onto the plane 2 0u =  are shown in Fig. 2(a) 

and (b), respectively. S labels the unloaded state. As the load is increased, the state will move up along 

the primary path until C D=  is reached. In case of a load-controlled system, snap-through will occur. 

However, a displacement-controlled system would bifurcate and the state would traverse one branch 

of the secondary path. The corresponding eigenvalue curve is given in Fig. 2(c). As expected from the 

theoretical result (57), both curves have a cusp at ,C D=  where the slope of their common tangent is 

1.−  

If 2 ,uη =  the relevant coefficients of the series expansion (71) generally follow as 

 

2
10

2
2

1 2 3 4 22
1010

22

cos ( )1 4
( / 4) (1 / 4)0, , 0, .

cos ( )12cos ( ) 11 (1 / 4)(1 / 4)

u
k L

uP u
λκ μ μλ λ λ λ

μμ

−
− −= = = = −

−− −−

 (86) 

Thus, 4 2.λ λ∝  For 0,κ =  this system is imperfection sensitive 2( 0),λ <  and Cλ  exceeds the ultimate 

load of any imperfect system. Increasing the parameter κ, i.e., the stiffness of the vertical spring, 

improves the postbuckling behavior insofar as 2λ  increases monotonically. The system is imperfection 

insensitive for /4.κ μ>  Load-displacement paths and eigenvalue curves for the transition case 

/4κ μ=  are shown in Figs. 2(d) and (e), respectively. Remarkably, Cλ λ=  holds along the whole 

postbuckling path, i.e., the motion occurs with zero-stiffness. From an engineering viewpoint, this is 

not better than snap-through behavior, because under load control the system will undergo a 

discontinuous displacement associated with high accelerations. Fig. 2(e) confirms (39) and (50) for the 

eigenvalue *
1λ  (thick line) corresponding to the bifurcation mode, as well as (49) and (56) for the 

eigenvalue *
2λ  (thin line) corresponding to the snap-through mode. It is noted that cases where 

1 1C Du u<  are possible, if 10u  would be reduced. However, this is not elaborated here, since it is only 

relevant for displacement-controlled systems. 

As κ is further increased, the critical displacement 1Du  at the onset of snap-through approaches 0. 

Eventually, at 101 cos( ),uκ = −  the two turning points meet at ,=u 0  where the primary path exhibits a 
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saddle point D. This situation is shown in Fig. 2(f). Its theoretical background was discussed in 

Subsection 2.9. Fig. 2(g) verifies that *
2, 1/2Dλλ =−  and that the curvature of *

2λ  at D is finite. Hence, 

the eigenvalue curve does not show a cusp. 

For 101 cos( ),uκ > −  the only possible mode of loss of stability is bifurcation. The system remains 

imperfection insensitive. If 

 2
10

2

1 / 41 0.364,
cos ( )2 3
(1 / 4)

u
μκ

μ

−
= + =

−
−

 (87) 

*
1λ  has a saddle point at C, as demonstrated by Fig. 2(i) (thick line). *

2λ  (thin line) does not intersect 

the line * ,λ λ=  which reflects the fact that snap-through cannot occur. 

Generally, as κ is increased, the projection of the secondary path approaches the primary path, as may 

be concluded from a comparison of the Figs. 2(d), (f), and (h). Equating λ from (81) and λ from (82) 

yields that for 1,κ =  the difference between the primary path and the projection of the secondary path 

vanishes, whereas the displacement 2u  is nonzero. In fact λ depends only on 1u  but not on the 

buckling coordinate 2.u  This special case is shown in Fig. 2(j). The corresponding eigenvalue curve is 

plotted in Fig. 2(k). The second eigenvalue curve is outside the plotting frame; it does not intersect the 

straight line * .λ λ=  

If 1κ >  and 1 0,u >  the projection of the secondary path exceeds the primary path in terms of λ. That is, 

the secondary path carries higher loads than the primary path. It is unclear, whether this effect is of 

practical use, since the large deflection 2u  may be unacceptable. 

In Subsection 2.12, it was concluded that 11Cc =−∞  for hilltop buckling. This is verified by Fig. 3, 

where 11Cc  approaches a vertical asymptote at 2 0.387λ = −  and 4 0.516,λ = −  for 0.κ→  Apart from 

the three special cases 10/4, 1 cos( )uκ μ κ= = −  and 1,κ =  which were already discussed, two more 

noteworthy points are highlighted in Fig. 3, i.e., 0.346κ =  and 0.692.κ =  The latter marks the 

maximum of 11 ,Cc  which splits 11Cc  into two monotonically decreasing sections. For κ→+∞,  the 

curve asymptotically approaches 0. However, it is emphasized that this is a rather unrealistic case, 

since the vertical spring would become rigid and the buckling load Cλ  infinitely large. As expected 

from (41), 11Cc  also vanishes for 0.346,κ =  where the curve 1λ
∗  has a saddle point at C (cf. Fig. 2(i)). 

This example verified the theoretical conclusions of Section 2, especially those concerning the shape 

of the eigenvalue curves. Their characteristic properties, like intersections with the straight line * ,λ λ=  

cusps, tangents having a specific slope (0, 1/2, 1, ),− − ±∞  etc., facilitate the analysis of instability 

phenomena. Moreover, this example proved the existence of remarkable postbuckling paths, such as 

the zero-stiffness case or the equivalence of a primary path and the projection of a secondary path. 



 Chapter II  34 

−0.5 0 0.5−0.3
0

0.3

−0.1

0

0.1

 

 S

u
1

 C=D

 κ=0 

 

u
2
    

λP/kL

  (a)

 primary path
 secondary path

 −0.5 0 0.5
−0.1

−0.05

0

0.05

0.1

S 

 C=D

  (b)

 κ=0 

u
1

λP/kL

 

 

 primary path
 secondary path

 0 0.5 1

0.6

0.8

1

1.2

1.4

1.6

1.8

C=D  

  (c)

 κ=0 

λ/λ
C

 

λ*
j
/λ

C

 

 

 λ*
1
/λ

C

 λ*
2
/λ

C

 λ/λ
C

 

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

S  

 C
D 

  (d)

 κ=μ/4 

u
1

λP/kL

 0 0.5 1

0.8

1

1.2

1.4

1.6

1.8

2

C

  D

  (e)

 κ=μ/4 

λ/λ
C

 

λ*
j
/λ

C

 −0.5 0 0.5
0

0.1

0.2

0.3

S  

 C

 D

  (f)

 κ=1−cos(u
10

) 

u
1

λP/kL

 

0 0.5 1  
0.5

1

1.5

2

C

  D

  (g)

 κ=1−cos(u
10

) 

λ/λ
C

 

λ*
j
/λ

C

 −0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

S

 C

  (h)

 κ=0.346 

u
1

λP/kL

 0 0.5 1 1.5
0

0.5

1

1.5

C

  (i)

 κ=0.346 

λ/λ
C

 

λ*
j
/λ

C

 

−0.5 0 0.5
0

0.5

1

1.5

2

S

 C

  (j)

 κ=1 

u
1

λP/kL

 0 0.5 1  
0

0.5

1

1.5

C

  (k)

 κ=1 

λ/λ
C

 

λ*
j
/λ

C

 
Fig. 2: Load-displacement paths and eigenvalue curves for various values of κ, (a) load displacement path, (b), 
(d), (f), (h), and (j) projections of load-displacement paths onto the plane 2 0,u =  (c), (e), (g), (i), and k) 
eigenvalue curves (normalized with respect to ,Cλ  equal scaling on both axes) 
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Fig.3: 2 4 11- - Ccλ λ  curve 

3.2. Von Mises truss 
Fig. 4 shows the geometry of a von Mises truss supported by a vertical spring ,kκ  with 710 N/m.k =  

In fact, only one half of the truss is considered herein. κ +∈  is a scaling parameter that is varied in 

order to control the behavior of the planar system. [0, 1m]s L∈ =  shall be a Lagrangian coordinate of 

the principal beam, which is straight in the unloaded configuration as shown in gray color. The 

homogeneous beam has a squared cross section (side length 0.2m)a=  and the elastic modulus of its 

material is 11 22.1 10 N/m .E = ⋅  The position of a vertical turning-and-sliding joint is defined by 1 .u L  

The load ,Pλ  with 710 N,P=  is applied to this joint. The beam and the spring are unstrained if the 

beam is straight and 1 10 0.30901.u u= =  Using these parameters, hilltop buckling occurs for 0.κ =  

The angle between the tangent to the beam and the line connecting its end points is denoted as 

2 2( ) [ , ],s u uϕ ∈ −  where 2(0) ( ) .L uϕ ϕ=− =  ( )w s  measures the lateral deflection of the beam with 

respect to the line connecting its end points. The Euler-Bernoulli hypothesis is the basis of the 

kinematic relations of the beam. Generally, the system has infinitely many degrees of freedom. Both, 

the bending and the stretching energy of the beam are taken into account. 

kκ

Pλ
1
u L

10
u L( )sϕ

L

( )w s

2
u

a

a
s

 
Fig. 4: Von Mises truss 

Two solution strategies are pursued: (i) exact nonlinear theory and (ii) approximation of the deformed 

shape as a sine-curve. In the latter case, it is stipulated that T
1 2[ , ]u u=u  suffices to define the 

configuration of the system, i.e., the model is reduced to a two-degrees-of-freedom scheme. 
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For the exact solution (i), the equilibrium equation reads as 

 ( )
2 22
10 1

10 12
1

1
( ) sin( ) 0

u udEI P k L u u
ds u
ϕ λ κ ϕ

− +
+ − − =  (88) 

with the boundary conditions 

 2
(0) ( )(0) ( ) , 0.d d LL u

ds ds
ϕ ϕϕ ϕ= − = = =  (89) 

In (88), I denotes the areal moment of inertia. With the help of 

 ( ) ( )
2 2
10 1

2 10 1
1

1
2 cos( ) cos( ) ( ) ,

u ud u P k L u u
ds u EI
ϕ ϕ λ κ

− +
= − − −  (90) 

which satisfies (88), and the complete elliptic integrals [16] 

 
/ 2 / 2

2

2
0 0

( ) : , ( ) : 1 sin( )
1 sin( )

dtK m E m m t dt
m t

π π

= = −
−

∫ ∫  (91) 

of first and second kind, respectively, the length reduction caused by bending can be computed as 

 
( )
( )

2
2

2
2

sin( /2)
2 1 .

sin( /2)B

E u
L L

K u

⎛ ⎞
Δ = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (92) 

Neglecting the curvature of the beam, the change of its length caused by stretching reads as 

 ( )
2 2
10 1

10 1
1

11 ( ) ,N

u u
L P k L u u

E A u
λ κ

− +
Δ = − − −  (93) 

where 2A a=  is the cross-sectional area. The geometric relation 

 ( )2 2
10 11 1B NL L L u uΔ − Δ = − − +  (94) 

complements the set of equations required to obtain the exact solution. The primary path follows with 

0ϕ =  and 0BLΔ =  from (93) and (94) as 

 1
10 1 2 2

10 1

1( ) 1 .
1

u E Ak L u u
P P u u

κλ ⎛ ⎞= − + −⎜ ⎟⎜ ⎟− +⎝ ⎠
 (95) 

(88) through (94) yield the solution for the secondary path 

 
( )
( ) ( )

22
222 2

1 10 222
2

sin( /2) 41 2 1 sin( /2)
sin( /2)

E u Iu u K u
ALK u

⎛ ⎞
= ± − + − −⎜ ⎟⎜ ⎟
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in terms of the angle 2.u  It is possible to develop (97) into a series expansion with respect to 2.u  The 

buckled shape of the beam can be computed as 
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with 2 2[ , ].u uϕ∈ −  (99) contains an incomplete elliptic integral of first kind, which can be inverted if 

Jacobian elliptic functions are employed [16], i.e., computation of ( )sϕ  from (99) and insertion into 

(98) results in ( ).w s  

Quantities of the approximate solution (ii), where the deformed shape of the beam is assumed as 

 ( )2'( ) sin( ' ) sin / ,Lw s u s Lπ
π

=  (100) 

shall be labeled by a quotation mark. Hence, '( )sϕ  and the length reduction caused by bending follow 

as 

 ( )( )2'( ) arcsin sin( ' )cos / ,s u s Lϕ π=  (101) 

 ( )2
2

2' sin( ' ) ,B
LL L E u
π

Δ = −  (102) 

respectively. Rewriting (94) for the approximate solution yields 

 ( )2 2
10 1' ' 1 1 ' .N BL L L u uΔ = Δ − − − +  (103) 

(101) through (103) allow deduction of the strain energy  

 ( )
2

2 2 2 2
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resulting from stretching and bending of the beam, respectively. Summation of the strain energy of the 

vertical spring ,kκ  the potential of the external load ' ,Pλ  (104), and (105) gives the total potential 

energy 

 

( )

( )

2
2 2 2 2 2

10 1 10 1 2 10 1

2

2

2'( ', ') ( ' ) ' ( ' ) sin( ' ) 1 '
2 2

1 cos( ' ) .
2

k EALV L u u PL u u E u u u

EI u
L

κλ λ
π

π

⎛ ⎞= − − − + − − +⎜ ⎟
⎝ ⎠

+ −

u

 
  (106) 
The equilibrium equations 

1, '' 0uV =  and 
2, '' 0uV =  yield the same primary path as for the exact solution 

given in (95). The postbuckling solution follows as 
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Insertion of (107) into (108) allows expansion of 'λ  into a series in terms of 2' .u  

The diagonal structure of the tangent stiffness matrix 
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reflects the fact that 2' 0u =  holds along the primary path. With 'TK  from (109) and ,'T λK  according to 

(84), the eigenproblem (4) can be solved. 

For the postbuckling analysis, the chosen path parameters are 2uη =  and 2' ' .uη =  A comparison of 

results for 2 2'u u=  should be carried out with due care, since 2u  and 2'u  do not correspond directly. 

However, 2 0u =  and 2' 0u =  describe equivalent states of the system. It can be shown that 

 1 1 2 2' , ' , ' ,C C C Cu u λ λ λ λ= = =  (110) 
which is a consequence of the fact that the approximate solution asymptotically approaches the exact 

solution for 2 20, ' 0.u u→ →  However, generally 4λ  does not equal 4' .λ  It can be shown that 2 2' ,λ λ=  

4 ,λ  and 4'λ  depend linearly on κ. Hence, if κ is the only parameter that is varied, there is a linear 

relationship between 2 2' ,λ λ=  4 ,λ  and 4' .λ  The coefficient of κ in the expression of 2 2'λ λ=  is 

positive. Consequently, increasing κ will improve the postbuckling behavior. 
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Fig. 5: Bending line of buckled principal beam for 1 1' 0u u= =  

It is emphasized that (96), (97), (107), and (108) give different results for λ  and 'λ  even if 1 1' .u u=  

For the parameter values chosen in this analysis, their numerical difference did not exceed 4/10 .Cλ  In 

graphical representations of the results, this difference is hardly visible. Thus, in the following 

discussion of numerical results, no distinction will be made between exact and approximate results, 

unless stated otherwise. Another justification for this simplified approach is presented inFig. 5. It 

shows the bending line of the buckled principal beam for the case 1 1' 0,u u= =  i.e., where both, the 

lateral deflection ( )w s  and the compressive normal force of the beam reach a maximum. The 

differences between the two solutions are small. If the deflections ( )w s  and '( )w s  are compared for 

several load levels ',λ λ=  the maximum error ( ) '( )w s w s− ∞  never exceeds 0.13 %  of ( /2) .w L  

Load-displacement paths for hilltop buckling ( 0)κ =  and their projections onto the plane 2 0u =  are 

shown in Figs. 6(a) and 6(b), respectively. Again, S labels the unloaded state and C D=  the bifurcation 

point which, at the same time, is a snap-through point. The corresponding eigenvalue curve was 

computed by means of the potential 'V  of the approximate solution; it is shown in 6(c). The plot 
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corroborates (57), since both curves exhibit a cusp and a slope of 1−  at .C D=  For 0,κ =  the relevant 

coefficients of the series expansion (71) follow as 

 1 2 2 3 4 40, ' 38.1, 0, 167.6, ' 164.1.λ λ λ λ λ λ= = = − = = − = −  (111) 
Thus, the system is imperfection sensitive. If κ is increased, the transition from imperfection 

sensitivity to insensitivity occurs for 27.2,κ =  where 

 1 2 2 3 4 40, ' 0, 0, 22.4, ' 22.2.λ λ λ λ λ λ= = = = = − = −  (112) 
The transition case itself is imperfection sensitive 4( 0).λ <  Load-displacement paths and eigenvalue 

curves for this situation are shown in Figs. 6(d) and 6(e). At first sight, the projection of the 

postbuckling path onto the plane 2 0u =  seems to be a straight line (cf. Figs. 6(b), 6(d), 6(f), and 6(h)) 

[15]. However, 6(d) contradicts this impression, since the postbuckling path is inclined whereas its 

tangent at C is horizontal. 

In 6(e), the horizontal and vertical tangent of *
1'λ  (thick line) at C and D conforms to (39) and (50), 

respectively. The cusped shape of *
2'λ  (thin line) verifies (49) and (56). Figs. 6(c) and (e) are only 

plotted for positive values of 1u  in order to avoid confusion resulting from additional curves 

corresponding to the non-relevant bifurcation and snap-through modes in the domain 1 0.u <  

As κ is further increased, the two turning points approach the point ,=u 0  where they merge to a 

saddle point D on the primary path. That is, turning points and the cusp of the associated eigenvalue 

curve *
2'λ  no longer exist. This special case occurs for the parameter value 43.2.κ =  Figs. 6(f) and (g) 

demonstrate that the situation is similar to the previous example (cf. Figs. 2(f) and (g)). As 

theoretically addressed in Subsection 2.9, the corresponding eigenvalue curve *
2'λ  (thin line) exhibits a 

finite curvature and a slope of *
2,' 1/2Dλλ = −  at D, whereas *

1'λ  is characterized by a vertical tangent. 

Fig. 6(f) shows that the system is imperfection insensitive 2( 22.5).λ =  

For 43.2,κ >  the primary path is monotonically increasing. The eigenvalue curve *
1'λ  (thick line) has a 

positive curvature at C, i.e., *
1,' 0.Cλλλ >  However, this changes at 85.7,κ =  which marks a saddle point 

of *
1'λ  at C. Figs. 6(h) and (i) show the relevant graphs for 85.7.κ =  As expected, there is no 

intersection of *
2'λ  (thin line) and the line *' ',jλ λ=  reflecting the fact that snap-through is not possible. 

A situation where the projection of the postbuckling path onto the plane 2 0u =  equals the primary pah, 

which was observed in the previous example, does not occur for the von Mises truss.  

Fig.7 shows 2 2' ,λ λ=  4' ,λ  and 11' Cc  as a function of κ. As expected from (79) and the results 

(111), 11' Cc  approaches a vertical asymptote at 2 38.1λ =−  and 4' 164.1λ =−  for 0.κ→  In the limit, 

11' Cc =−∞.  Apart from the cases 27.2,κ =  43.2,κ =  and 85.7κ =  corresponding to 2 0,λ =  a saddle 

point D on the primary equilibrium path, and a saddle point of the eigenvalue curve *
1'λ  at C, 

respectively, 171.4κ =  is a point of interest, since it marks the maximum of 11' .Cc  For ,κ→+∞  11' Cc  
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approaches 0. It is emphasized that the projection of the 2 4 11- ' - ' Ccλ λ  curve onto the plane 11' 0Cc =  is a 

straight line, which does not contain the point 2 4' =0.λ λ=  In fact, this projection is the asymptote of 

the 2 4 11- ' - ' Ccλ λ  curve for .κ→+∞  
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Fig.6 Load-displacement paths and eigenvalue curves for various values of κ, (a) load displacement path, (b), 
(d), (f), and (h) projections of load-displacement paths onto the plane 2 0,u =  (c), (e), (g), and i) eigenvalue 
curves (normalized with respect to ,Cλ  equal scaling on both axes) 
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This example corroborated some theoretical findings deduced in Section 2. Again, characteristic 

properties of eigenvalue curves could be identified and thereupon employed for analyzing the behavior 

of the system. In contrast to the previous example, remarkable types of postbuckling paths such as 

straight lines or projections of secondary paths which equal primary paths were not observed. This 

corresponds to the fact that the von Mises truss is a continuous system (infinitely many degrees of 

freedom), whereas in the previous example a discrete system was addressed. 

Moreover, this example demonstrated that for engineering purposes the approximation of the buckled 

shape of the principal beam by a sine curve is sufficiently accurate. This approximation allows an 

exact computation of the primary path as well as of the critical load Cλ  and of the coefficient 2λ  in the 

series expansion (71). In fact, these quantities are sufficient for qualifying the system as imperfection 

sensitive or insensitive. For this example, increasing the stiffness of a vertical supporting spring kκ  

proved successful in converting the system from imperfection sensitivity into insensitivity. 

4. Conclusions 
The merits and limits of the consistently linearized eigenproblem as a means of computing (i) the 

stability limit and assessing (ii) the initial postbuckling behavior of a structure were discussed. 

Characteristic points and qualitative shapes of eigenvalue curves *( )jλ λ  were analyzed. 

It was shown that after an appropriate coordinate transformation, the direction of the eigenvector *
1v  is 

constant whereas its length is still defined by the normalization condition (18). The method of 

constructing such coordinate transformations was demonstrated in Subsection 2.4. Orthogonalities of 

eigenvectors with respect to
, nT λ

K   and a considerably simplified solution process of the consistently 

linearized eigenproblem are the most significant consequences of the aforementioned coordinate 

transformation. 
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For eigenvalue curves corresponding to bifurcation modes, points with a horizontal tangent *
1,( 0)λλ =  

occur at the bifurcation point C. The curvature *
1, Cλλλ  at such points is proportional to a nonlinearity 

coefficient 11 ,Cc  which may be a helpful parameter for classifying the system behavior (cf. Figs. 3 and 

7). Moreover, horizontal tangents may occur at points which do not mark stability limits. Such special 

cases are coupled to the vanishing of *
, 1 .T λλ ⋅K v  

It was shown that snap-through modes entail cusped shapes of eigenvalue curves, where the cusp 

marks the stability limit D and its tangent is perpendicular to the straight line * 0.λ λ− =  At snap-

through stability limits D, eigenvalue curves corresponding to bifurcation modes have a vertical 

tangent. However, the situation is different for hilltop buckling ( ),C D=  where both, the eigenvalue 

curve belonging to the bifurcation mode and the one referring to the snap-through mode exhibit a cusp 

at which their common tangent is perpendicular to the line * 0.λ λ− =  Another noteworthy case is the 

occurrence of a saddle point D on the primary path, reflected by an associated eigenvalue curve which 

is smooth and has a slope of 1/2−  at D. 

In the framework of Koiter’s initial postbuckling analysis, a necessary and sufficient condition for 

imperfection insensitivity was given. The proposed check is based on the computation of a few scalar 

coefficients .iλ  This condition is readily applicable to the FEM. 

For two examples, the consequences of modifying a structural parameter κ, which controls the 

stiffness of a linear elastic spring, were studied. For both cases, it was shown that 2 ,λ  which is the 

coefficient relevant to imperfection sensitivity or insensitivity, depends linearly on κ, which likewise 

applies to 4.λ  Therefore, increasing κ improved the system and eventually brought about the desired 

conversion from imperfection sensitivity into insensitivity. Moreover, for sufficiently large values of κ, 

snap-through behavior was remedied which entailed the occurrence of a transition case characterized 

by a saddle point. Both examples show symmetric equilibrium paths. 

In the course of varying κ, some remarkable postbuckling paths were observed for the example in 

Subsection 3.1. Zero-stiffness postbuckling means that λ is constant along the secondary path. 

Moreover, it proved feasible that λ depends only on 1u  but not on the buckling coordinate 2u  in which 

case the projection of the postbuckling path onto the plane 2 0u =  equals the primary path. 

The analysis of the von Mises truss in Subsection 3.2 demonstrated the possibility of replacing 

rigorous solutions by approximations without deteriorating results relevant to qualify a system as 

imperfection sensitive or insensitive. In fact, results for the primary path, the buckling load Cλ  and the 

coefficient 2λ  are not influenced by the change from rigorous analysis to the simplified model. 

Considerations made herein to systems analyzed by the FEM leave scope for future scientific work. 

Moreover, the meaning of other peculiarities of eigenvalue curves, like singularities, planar points, 

loops, etc., should be investigated. Such remarkable types of eigenvalue curves have been observed for 
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more complicated examples ([4, 5, 15]), but their role is yet partially unclear, especially as regards the 

mode of conversion from imperfection sensitivity into imperfection insensitivity. 
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Abstract 
So far, it is not clear how to design structures such that they are ab initio imperfection insensitive, i.e., 

without modifications of the original design after the diagnosis of imperfection sensitivity. Symmetry 

and antisymmetry of bifurcation paths, representing qualitative properties of a structure, not only 

simplify the postbuckling analysis, but also have an influence on the behavior of real, i.e., imperfect 

structures. The special case of a zero-stiffness postbuckling path incorporates both, symmetry and 

antisymmetry. Mathematical definitions of the three categories symmetric, antisymmetric, and zero-

stiffness equilibrium paths are given. It is shown that symmetry as well as antisymmetry causes the 

vanishing of specific coefficients in an asymptotic series expansion, following from Koiter’s initial 

postbuckling analysis. Thereupon, methods of checking for the three categories of bifurcation behavior 

are discussed. Finally, the three categories are investigated in terms of necessary and/or sufficient 

conditions for imperfection insensitivity. For instance, a horizontal tangent of the postbuckling path at 

the bifurcation point is required for imperfection insensitivity. Four examples illustrate non-symmetric, 

symmetric, and antisymmetric bifurcation as well as zero-stiffness postbuckling behavior. For the first 

two examples, the approach of increasing the stiffness results in the conversion of the system from 

imperfection sensitivity into insensitivity. Remarkably, this happens without changing the prebuckling 

behavior and the buckling load of the structure. The third example demonstrates that imperfection 

sensitivity is an inevitable implication of antisymmetric bifurcation. 

Keywords 
antisymmetric bifurcation, imperfection insensitivity, Koiter’s postbuckling analysis, symmetric 

bifurcation, vanishing of coefficients of series expansion, zero-stiffness postbuckling behavior. 
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1. Introduction 
1.1. Motivation 
Koiter [6] proposed a mathematical scheme to investigate postbuckling paths in the vicinity of the 

bifurcation point representing the stability limit. Koiter’s calculus proved to be suitable for analyzing 

static stability problems. However, it appears that there is still a lack of knowledge of designing a 

structure for imperfection insensitivity right from the outset. 

Several algorithms have been developed for optimizing the postbuckling behavior, e.g. in [1, 9]. 

Usually, they are of iterative nature, i.e., quantitative parameters defining a structure are modified 

within algorithmic loops. Apart from the computational cost, the difficulty with these algorithms is 

that they do not allow deduction of general design rules, since they only work on a case-by-case basis. 

Similar problems are faced in design sensitivity analyses ([4, 8, 10]), which focus on quantitative 

properties of the load-displacement behavior of a structure. 

The objective of this work is to identify categories of qualitative properties of equilibrium paths and to 

clarify their influence on the conversion process of imperfection-sensitive into imperfection-

insensitive structures. The nature of imperfections is that their shapes and amplitudes are unknown, at 

least at the design stage of a structure. Therefore, structural analysis is frequently based on models of 

the ideal system. However, for the fact that an improvement of the ideal system goes hand in hand 

with an improvement of the real, imperfect system, this is no limitation. In this sense, a first attempt to 

designing for imperfection insensitivity is made. Eventually, this requires formulation of design rules 

which either allow designing for imperfection insensitivity ab initio, or at least facilitate the 

conversion from imperfection sensitivity into imperfection insensitivity. In this context, the question 

of necessary and sufficient conditions for imperfection insensitivity is raised. 

Mirror symmetry and antisymmetry of equilibrium paths as well as so-called zero-stiffness 

postbuckling paths are three prominent categories of bifurcation behavior. Their mathematical 

definitions will be given in Subsections 3.1, 4.1, and 5.1, respectively, appended by examples. In [12], 

elastic structures showing zero-stiffness equilibrium paths are presented. There, zero-stiffness 

behavior is denoted as neutral equilibrium. In [1, 7] it is stated that symmetric bifurcation is a 

requirement for imperfection insensitivity. However, it will be shown that none of the three categories, 

in a rigorous mathematical sense, is necessary for the conversion of an imperfection-sensitive into an 

imperfection-insensitive structure [11]. Symmetric bifurcation is generally better understood and 

investigated than antisymmetry, mainly because it occurs more frequently in the design of engineering 

structures. 

1.2. Preliminaries 
Static, conservative systems with N degrees of freedom will be considered. Restriction to finite values 

of N does not limit the scope of this work insofar as this restriction conforms to the Finite Element 

Method (FEM). Only perfect structures subjected to dead loads will be analyzed, and the assumed 
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material behavior is either rigid or linear elastic. The analysis allows for bifurcation from nonlinear 

prebuckling paths. 

In addition, snap-through will be considered as a mode of loss of stability. Despite the fact that real, 

imperfect systems practically never exhibit bifurcation behavior but only snap-through or no loss of 

stability, the main focus of this work is on bifurcation. This approach is justifiable, since conversion of 

an imperfection-sensitive, ideal, bifurcation system into an imperfection-insensitive system ensures 

that the associated snap-through buckling path of the corresponding imperfect system is replaced by a 

monotonically increasing load-displacement path, at least in the vicinity of the theoretical bifurcation 

point. 

For simplicity, multiple bifurcation and hilltop buckling will be excluded. Moreover, it will be 

refrained from touching upon catastrophe theory ([5, 13]), a commonly employed method in structural 

stability. Koiter’s approach [6] appears to be transferable to the FEM regime more straightforwardly 

than results from catastrophe theory. 

In structural analysis, many systems are known to behave symmetrically. Herein, the term symmetric 

refers to load-displacement paths exhibiting mirror symmetry. Similarly, antisymmetry means that load 

displacement paths show antisymmetries. This should not be confused with antisymmetric buckling 

modes, which may for instance occur in buckling of transversally loaded shallow arches. There, 

antisymmetry is a geometric property of the buckling shape. Antisymmetric buckling modes usually 

correspond to symmetric bifurcation (cf. [3, 13]). 

It is emphasized that symmetric and antisymmetric bifurcation behavior are not intrinsic properties of 

a structure, but rather a matter of the choice of coordinates. Identification of a system as symmetric 

(antisymmetric) requires a statement on the parameter with respect to which symmetry (antisymmetry) 

is observed. In this work, only symmetry (antisymmetry) with respect to a scalar variable η will be 

addressed. Obviously, there are systems that are not symmetric (antisymmetric) and that cannot be 

rendered symmetric (antisymmetric) through diffeomorphic coordinate transformations. 

2. Series expansion in the framework of Koiter’s initial postbuckling 
analysis 

2.1. Koiter’s initial postbuckling analysis 
Fig. 1 shows a projection of the load-displacement paths of a system bifurcating at point C. The solid 

line represents a primary path, whereas the dashed line is a secondary path. The latter is parameterized 

by ,η ∈  defined as zero at C. Herein, the subscript C means evaluation of a quantity at C. The 

reference load P  is scaled by a dimensionless load factor λ; u denotes the vector of generalized 

displacement coordinates. 
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Fig.1: On the series expansion of the secondary path at the bifurcation point C 

In [7, 11], Koiter’s initial postbuckling analysis [6] was used to expand the out-of-balance force 

 I( , ) : ( ) ,Nλ λ= − ∈G u F u P  (1) 
where I ( )F u  denotes the internal forces, into an asymptotic series at C. For a static, conservative 

system, G can be derived from the potential function V as 

 .V∂
=

∂
G

u
 (2) 

G vanishes along equilibrium paths in the u-λ-space. ( )λ η  is the load parameter at the point of the 

secondary path defined by η as outlined in Fig. 1. The point on the primary path characterized by the 

same load is described by the displacement vector ( ( )).λ ηu  Quantities evaluated along the primary 

path are labeled by an upper tilde. The displacement at the corresponding point of the secondary path 

can be expressed as ( ) ( ( )) ( ),η λ η η= +u u v  where v is the displacement offset which vanishes trivially 

at C. Hence, 

 ( ) ( ( ( )) ( ), ( ))η λ η η λ η= + =G G u v 0  (3) 
must hold along the secondary path. Insertion of the asymptotic series expansions 

 2 3 4
1 2 3( ) ( )Cλ η λ λ η λ η λ η η= + + + +O  (4) 

 2 3 4
1 2 3( ) ( )η η η η η= + + +v v v v O  (5) 

into (3) and expanding the resulting expression into a series in terms of η yields 

 2 3
0 1 2 ( ) ,C C Cη η η= + + +G G G G O  (6) 

with 

 , .
!
nC

nC n
n
η= ∀ ∈

G
G  (7) 

 denotes the set of natural numbers including zero. Throughout this paper, ,( ) λi  indicates the 

special rule of differentiation with respect to λ along a direction that is parallel to the primary path [7]. 

To show its mathematical definition, an arbitrary tensorial quantity ( , ) :λ Γ→Λf u  is introduced. Its 

argument 1( , ) Nλ +∈Γ ⊂u  is a tuple of N generalized displacement coordinates ui and the load factor 

λ. Then, , ( , ) :λ λ Γ→Λf u  reads as 

 ,
,

0

( ( ), )( , )( , ) : , .λ
λ

α

α λ λλλ α
λ α =

∂ +∂
= + ∈

∂ ∂
f

f u uf uu  (8) 

Examples for the coefficients appearing in (6) are 
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, , , , ,

2
, , , , , , , , , , , , ,

,

2 :
η λ η η

ηη λ ηη λλ η λ η η η η ηη

λ

λ λ λ

= + ⋅

= + + ⋅ + + ⋅
u

u uu u

G G G v

G G G G v G v v G v⊗
 (9) 

and thus 

 
0

1 , 1

2 , 1 1 , 1 1 , 2

,
,

1 : ,
2

C

C C

C C C Cλ λ

=

= ⋅

= ⋅ + + ⋅

u

u uu u

G 0
G G v

G G v G v v G v⊗

 (10) 

where the identity 

 
, nC

n
λ

= ∀ ∈G 0  (11) 

was used. 

Since (3) must hold for any point along the secondary path, i.e., for arbitrary values of η, each 

coefficient GnC of the series must vanish. This condition paves the way for successive calculation of 

the pairs of unknowns 1 1 2 2, , , , etc.λ λv v  Premultiplying (6) by 1v  is one of the basic steps of this 

calculation scheme. The tensor contractions 1 nC⋅v G  are scalar polynomials in the 

( {1,2, , 1}),m m nλ ∈ −…  i.e., 

 11

1 1 1 1

1 1
1 1

1

1 , , , 1 1 , 1 , , ,
, , 0

, .n

n n

n
n

n
ii i

nC n i i n n i n i i
i i i
i i n

A a n Aλ λ λ−

− −

−
−

−

−
∈ =

+ + <

⋅ = = ∀ ∈ ∈∑ ∑v G … …
…
…

 (12) 

As indicated by (12), the order 1 1ni i −+ +…  of the monomials 11
1 1

nii
nλ λ −

−  is always smaller than n. The 

coefficients 
1 1, , , nn i iA

−…  are constants, i.e., mλ  does not appear in their expressions. 1 nC⋅v G  may 

alternatively be interpreted as a polynomial in 1,λ  as shown by the rightmost expression of (12). This 

will be addressed in more detail in the following Sections. 

2.2. Coefficients of series expansion 
The coefficients ,n ia  in (12) are themselves polynomials in ( \{0,1}).r rλ ∈  The lengthy 

mathematical expressions of the coefficients 
1 1, , , nn i iA

−…  and ,n ia  are listed in Mang et al. [7]. For a 

concise overview, the coefficients ,n ia  were arranged as a triangular array 

 

1,0

2,1 2,0

3,2 3,1 3,0

4,3 4,2 4,1 4,0

, 1 , ,0

.
n n n i n

a

a a

a a a

a a a a

a a a−

⋅⋅⋅

⋅⋅⋅

 (13) 

The underlining is only relevant for symmetric bifurcation. Its meaning will become clear later on. The 

last element in each row of (13) can be written as 

 ,0 1 \{0,1}.n n na a nλ −= − ∀ ∈  (14) 
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2.3. Imperfection sensitivity versus imperfection insensitivity 
With the help of 

 min : min{ | \{0}, 0},mm m m λ= ∈ ≠  (15) 
a necessary and sufficient condition for imperfection insensitivity is obtained as 

 
minmin  is even 0.mm λ∧ >  (16) 

If this condition is not satisfied, the system is imperfection sensitive. According to Bochenek [1], 

symmetric behavior in the vicinity of C, characterized by 1 0λ =  and satisfaction of , ( )sign( ) 0ηλ η η ≥  

in a local domain around C, is necessary and sufficient for imperfection insensitivity. This is 

equivalent to (16). 

3. Symmetric bifurcation 
3.1. Definition 
Bifurcation behavior is qualified as symmetric with respect to the parameter η if it obeys the definition: 

 ( ) ( )λ η λ η= − ∧  (17) 
 ( ) ( ( ))η η= − ∧v T v  (18) 
 ( ( )) ( ( ( ))),λ η λ η=u T u  (19) 
where the linear mapping : N N→T  is an element of a symmetry group. Insertion of (4) into (17) 

yields 

 1 3 5 ... 0.λ λ λ= = = =  (20) 
A convenient method of testing if a system satisfies the postulated conditions (17)-(19) will be 

developed in the following. Only situations where T is defined by 

 

1

: (1 2 )
1

1

ij ij iNT δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= = = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

0
T

0
 (21) 

will be considered. This is no restriction, because for symmetric systems it is always possible to find 

coordinates such that (17)-(19) hold together with the definition (21). As will be demonstrated in the 

example 6.2, it is possible to construct systems that bifurcate symmetrically simply by supplementing 

a non-symmetric bifurcation system by its mirror image. 

3.2. Vanishing of the coefficients ,0na  
Eq. (12) represents polynomials in 1,λ  which must vanish along any equilibrium path. Therefore, 

1 0λ =  implies 

 ,0 0 \{0},na n= ∀ ∈  (22) 
i.e., for symmetric bifurcation, the last element of each row of (13) must be zero. 

3.3. Potential energy 
It is assumed that the continuously differentiable expression of the potential energy ( , ) :V λ Γ→u  

obeys the symmetry condition 

 ( , ) ( , ) ( , ) .V Vλ λ λ= ⋅ ∀ ∈Γu T u u  (23) 
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It follows from (21) and (23) that an equilibrium path exists which is restricted to the hyperplane 

0.Nu =  Usually, it is referred to as the primary path. This proves (19). Moreover, (1), (2), and (23) 

prove (17). 

3.4. Tensors derived from V 
In the mathematical analysis of the postbuckling behavior, tensors are used which are derivations of V 

with respect to u and/or λ. The components of these tensors are 

 
 times

, ...,
,

: , ,... {1,2,..., }, .
...n

nm

m

ij
i j

VV i j N n
u uλ

λ

⎡ ⎤∂
= ∈ ∈⎢ ⎥∂ ∂⎣ ⎦

 (24) 

,
( ) nλ
i  means that the differentiation operation ,( ) λi  defined in (8) is applied n times. Because of (23), 

 
 times

, ...,
0

0 if  appears in the -tuple of indices ( ...) an odd number of times.n

m
N

ij
u

V N m i j
λ

=

=

  (25) 
Eq. (25) is essentially based on the fact that the operation ,( ) λi  allows only infinitesimal 

displacements within the hyperplane 0,Nu =  i.e., no differentiations with respect to Nu  are permitted. 

For example, the tangent stiffness matrix along the primary path and its derivatives with respect to λ 

have the structure 

 
upper left

,

, , ,

, ,

0

( , ) 0
0 0

n

n n

n

T

T ij

NN

V

V

λ

λ λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎣ ⎦

K
K u . (26) 

That is, 
, ,

.n nTλ λ
=

u
G K  Specialization of the lower right component for C and 0n =  yields 

 0, ,
0,

NN C
V

λ
=  (27) 

which reflects the vanishing of an eigenvalue of TK  at C. In the following, additional examples of 

tensors derived from V will be given. The expressions may be deduced from (2)-(12) or can be found 

in [7]. 

 

2

, ,

, , , , ,

, , , , ,

, , , , , ,, ,
:

T

T

T

T

V

V V

V V

V V V

λ λ λ

λ λ λ

λλ λ λ λλλ

=

= = ⋅

= = ⋅

= = + ⋅

u uuu

uu uuu

u uuu uuuu

uuuu uuuuu

K

K u

K u

K u u u⊗

 (28) 

The vectors , ,, ,λ λλu u …  are the partial derivatives of the displacements with respect to λ. These 

vectors are used to realize the operation ,( ) λi  in the computation of the tensors. 

3.5. Structure of the vectors vi 
Apart from a scaling parameter, the eigenvector v1 is defined by the equation 

 1 ,TC ⋅ =K v 0  (29) 
which, because of (27), always has a non-trivial solution. Hence, 
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 [ ]T
1 0 0 \{0}.p p= ∈v  (30) 

Apart from their length, the remaining vectors ( 1)i i ≠v  are uniquely defined in [7] if the 

orthogonality condition 

 1 0 1,i i⋅ = ∀ >v v  (31) 
proposed in [2], is introduced. It follows from (5), (30), and (31) that 

 ( ) .N Nu v pη η= =  (32) 
Because of (21) and (23), V is invariant with respect to sign changes of .Nu  However, it is generally 

not invariant with respect to sign changes of ( ).iu i N≠  If V is formulated as a function of η, 

symmetry requires that ( ) ( ).V Vη η= −  Therefore, the displacements ( )iu i N≠  must not depend on the 

sign of η. Together with (23) and (32), this proves ( ) ( ),η η= ⋅ −u T u  which implies (18). The results of 

this Subsection can be summarized as follows: 

 
[ ]T

1

1

0 0 \{0}
1
{3,5,7,...}.

i

i

p p
i
i

= ∈
⋅ = ∀ >

= ∀ =

v
v v 0

v 0
 (33) 

3.6. Vanishing of coefficients 
According to the definition given in Subsection 2.1, nCG  ( )n∈  is a linear combination of terms 

having the structure 

 
,

 times  times

: ... ... ... , , ..., , , ... \{0}, , .q r a bC
q r

a b q rα βλ
λ λ α β⋅ ∈ ∈

u
G v v⊗ ⊗  (34) 

Because of (7) and the fact that η does not explicitly appear in ( ( ) , )λ λ+G u v  but only in (4) and (5), 

 .a b nα β+ + + + + =… …  (35) 
Because of (11), i.e., 1,

,n
n

Cλ
λ =G 0  nCG  is a polynomial in 1λ  of an order smaller than n, as reflected 

by (12). Generally, the highest power of 1λ  appearing in nCG  is 1
1 .nλ −  Introduction of the abbreviation 

, 1 1: : 0T Cλ◊ = ≠K v v⊗  and multiplication of nCG  by 1( / )− ◊v  renders the scalar polynomials in 1,λ  

which make up the respective rows of (13). ,n ia  ( )i n<  is the coefficient of 1 .iλ  Hence, ,n ia  is a linear 

combination of terms of the structure 

 1 1,
1 times  times

1 : ... ... ... , , ... \{0}, , , ... \{0,1}, , ,q r a bC
q r i

V a b q rα βλ
λ λ α β+

+ −

− ⋅ ∈ ∈ ∈
◊ u

v v v⊗ ⊗ ⊗

  (36) 
where (2) was used. The discussion is now restricted to every second column of (13) characterized by 

an even integer value .n i−  In this case, 

 1 1a b n iα β+ + + + + + = − +… …  (37) 
from (36) is an odd integer, e.g. 

 

2,

4,

6,

3 for 
5 for 

1 ... ... .
7 for 

i i

i i

i i

a
a

a b
a

α β

+

+

+

⎧
⎪
⎪+ + + + + + = ⎨
⎪
⎪⎩

 (38) 
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If { , ,..., , ,...} {3,5,7,...} { },a b α β ∩ ≠  (36) vanishes because of (20) and (33). Otherwise, it contains 1v  

an odd number of times and vanishes because of (25). Hence, , 0n ia =  if n i−  is an even integer, i.e., 

every second column of (13) vanishes for symmetric bifurcation. 

The proof given in this Subsection will be illustrated in the following Subsections 3.7 and 3.8, which 

explicitly contain the expressions appearing in the second and fourth column of (13). 

3.7. Vanishing of the coefficients 2,i ia +  
Introducing the function 

 2 1 2 , 1 1 1
1 1: : ,

2T TB ⎛ ⎞= − +⎜ ⎟◊ ⎝ ⎠
uK v v K v v v⊗ ⊗ ⊗  (39) 

it follows from the definition of the coefficients 2,i ia +  (cf. [7]) that 

 2, 2 ,

1 [ ] .
! ii i C

a B
i λ+ =  (40) 

Eq. (40) is not restricted to symmetric bifurcation to which (33) applies. (40) conforms to (36) and 

(38). Hence, any non-zero component of the tensors 1 2v v⊗  and 1 1 1v v v⊗ ⊗  has an index that 

contains N once or three times, respectively. Because of (25), all tensor contractions in (40) yield zero. 

This shows that for symmetric bifurcation the second column of (13) vanishes. 

3.8. Vanishing of the coefficients 4,i ia +  
Introducing the function 

4 3 , 1 1 2 , 1 2 , 1 1 1 1 4 , 1 1 3

, 1 2 2 , 1 1 1 2 , 1 1 1 1 1

1 1: : : :
2

1 1 1:: : ,
2 2 24

T T T T T

T T T

B λ λ λλ λ⎛ ⎛ ⎞= − + + + +⎜ ⎜ ⎟◊ ⎝ ⎠⎝
⎞+ + + ⎟
⎠

u u

u uu uuu

K v v K v v K v v v K v v K v v v

K v v v K v v v v K v v v v v

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

  (41) 
it follows from the definition of the coefficients 4,n na +  (cf. [7]) that 

 4, 4 ,

1 [ ] .
! ii i C

a B
i λ+ =  (42) 

Eq. (42) is not restricted to symmetric bifurcation to which (20), (25), and (33) apply. (42) conforms to 

(36) and (38). Hence, 4, 0.i ia + =  This shows that for symmetric bifurcation the fourth column of (13) 

vanishes. 

By giving the full expressions, it was shown that the coefficients 2,i ia +  and 4,i ia +  vanish. The same can 

be done for the columns 6, 8, etc. of (13), although this involves lengthy mathematical expressions. 

3.9. Conditions for the symmetry of λ  
So far, it was proved that for symmetric bifurcation all underlined terms in (13) vanish. However, this 

is not sufficient for ( ) ( )λ η λ η= −  (cf. (17)). Following (14), it is necessary and sufficient for 

( ) ( )λ η λ η= −  that  

 ,0 0 {2, 4, ...}.n na a n− = ∀ ∈  (43) 
Since 1 0λ =  requires (22), (43) disintegrates. Hence, 
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 ,0 0 {2, 4, ...}n na a n= = ∀ ∈  (44) 
is necessary and sufficient for ( ) ( ).λ η λ η= −  

3.10. Sufficient conditions for symmetric bifurcation 
The following conditions are sufficient for symmetric bifurcation (see (17)-(19)): 

 [ ]
,0

T
1

1

( ) : ( ) 0 (primary path)
0 {2, 4, ...}

0 0 \{0}
0 1

{3,5,7,...}.

N

n n

i

i

u
a a n

p p
i
i

λ λ∃ =
∧ = = ∀ ∈

∧ = ∈
∧ ⋅ = ∀ ≠

∧ = ∀ =

u

v
v v

v 0

 (45) 

Testing a bifurcation problem for symmetry by means of (45) is a difficult task, since satisfaction of 

infinitely many conditions needs to be proved. This is a consequence of the asymptotic series 

expansion of G. Starting out from the expression of the potential energy V, only the single condition 

(23) would have to be examined. 

4. Antisymmetric bifurcation 
4.1. Definition 
Bifurcation behavior is qualified as antisymmetric with respect to the parameter η if it obeys the 

definition: 

 ( ) ( ( ) )C Cλ η λ λ η λ− = − − − ∧  (46) 
 ( ) ( )η η= − − ∧v v  (47) 
 ( ( )) ( ( )).λ η λ η= − −u u  (48) 
Hence, any equilibrium path in Γ is centrosymmetrical with respect to point ( ( ), ).C Cλ λu  In some 

cases, a situation fulfilling (46)-(48) can be achieved by means of diffeomorphic coordinate 

transformations. This is the rationale for using these conditions in the sequel without loss of generality. 

(46) may be reduced to ( ) ( )λ η λ η= − −  by an appropriate shift of the load level zero. Insertion of (4) 

and (5) into (46) and (47), respectively, yields 

 2 4 6 ... 0,λ λ λ= = = =  (49) 
 2 4 6 ... .= = = =v v v 0  (50) 
Therefore, according to the definition given in Subsection 2.3, an antisymmetric bifurcation system is 

always imperfection sensitive. A convenient method of testing if a system satisfies the postulated 

conditions (46)-(48) will be suggested in the following. 

4.2. Potential energy 
In contrast to Subsection 3.3, the potential energy is now written as ( , ) :CV λ λ− Γ→u  with 

1( , ) N
Cλ λ +− ∈Γ ⊂u  and split into four parts which depend only on a subset of the coordinates u. 

For this purpose, the projection matrices 

 1 2 1
1 1: ( ), : ( ) ,
2 2

= + = − = −T I T T I T I T  (51) 

with T from (21), are introduced. The potential function V may be written as 
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 ( )1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( , ) ,C S A C A S CV V V V Vλ λ λ λ λ λ− = ⋅ + ⋅ + − ⋅ + ⋅ ∀ − ∈Γu T u T u T u T u u
  (52) 
since λ scales a reference load. The matrices T1 and T2 must not be removed from the arguments of 

(52), because they ensure that SV  and AV  do not depend on uN, whereas AV  and SV  depend only on uN. 

The split of the potential according to (52) is no restriction, because a coordinate transformation which 

diagonalizes KT can always be found. 

Antisymmetric bifurcation requires that V obeys (52) together with 

 1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) .

S S A A

A A S S

V V V V
V V V V

⋅ = − ⋅ ∧ ⋅ = − − ⋅ ∧

⋅ = − − ⋅ ∧ ⋅ = − ⋅

T u T u T u T u
T u T u T u T u

 (53) 

This does not allow the general conclusion that an equilibrium path restricted to the hyperplane 0Nu =  

exists. 

4.3. Structure of the vectors vi 
Apart from a scaling parameter, the eigenvector v1 is defined by the equation 

 1 ,TC ⋅ =K v 0  (54) 
just as for symmetric bifurcation. Following from (52), the mixed derivatives 

, ,
( )niN

V i N
λ

≠  vanish. 

Hence,  

 [ ]T
1 0 0 \{0}.p p= ∈v  (55) 

The orthogonality condition (31) also applies to antisymmetric bifurcation. Therefore (5), (31), and 

(55) yield 

 ( ) .N Nu v pη η= =  (56) 

4.4. Verification 
The equilibrium conditions following from (52) are 

 ( ) ( ), 1 , 1 , 1 2 , 2 , 2( ) ( ) ( ) ( ) ( ) ( ) ,S C A A C SV V V V Vλ λ λ λ= ⋅ ⋅ + − ⋅ + ⋅ ⋅ + − ⋅ =u u u u uT T u T u T T u T u 0   
  (57) 
which disintegrate into 

 , 1 , 1 , 2 , 2( ) ( ) ( ) ( ) ( ) ( ) .S C A A C SV V V Vλ λ λ λ⋅ + − ⋅ = ∧ ⋅ + − ⋅ =u u u uT u T u 0 T u T u 0  (58) 
Partial derivation of (53) with respect to u yields 

 , 1 , 1 , 2 , 2

, 1 , 1 , 2 , 2

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ) .
S S A A

A A S S

V V V V

V V V V

⋅ = − − ⋅ ⋅ = − ⋅

⋅ = − ⋅ ⋅ = − − ⋅
u u u u

u u u u

T u T u T u T u

T u T u T u T u
 (59) 

Insertion of (59) into (58) leads to 

 , 1 , 1 , 2 , 2( ) ( ) ( ) ( ) ( ) ( ) .S C A A C SV V V Vλ λ λ λ− − ⋅ + − − ⋅ = ∧ − ⋅ − − − ⋅ =u u u uT u T u 0 T u T u 0  
  (60) 
Since (58) and (60) are equivalent, 

 , ,( , ) ( , ( )) ( , ) .C C CV Vλ λ λ λ λ λ− = ⇔ − − − = ∀ − ∈Γu uu 0 u 0 u  (61) 
This directly proves (46) and (48). Since the displacements along the secondary path can be written as 

( ( )) ( ),λ η η+u v  (61) also verifies (47). It is emphasized that classification of equilibrium paths as 

primary and secondary is generally not as clear-cut as for symmetric bifurcation. In fact, the 
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statements (52)-(61) are equally applicable to any equilibrium path of an antisymmetric bifurcation 

system. 

4.5. Sufficient conditions for antisymmetric bifurcation 
The following conditions are sufficient for antisymmetric bifurcation: 

 [ ]T
1

1

( ) : ( ) ( ( ))
0 {2, 4, 6, ...}

0 0 \{0}
0 1

{2,4,6,...}.

C C C

i

i

i

i

p p
i
i

λ λ λ λ λ λ
λ

∃ − − = − − −
∧ = ∀ ∈

∧ = ∈
∧ ⋅ = ∀ ≠

∧ = ∀ =

u u u

v
v v

v 0

 (62) 

Testing a bifurcation problem for antisymmetry by means of (62) is a difficult task, since infinitely 

many expressions need to be examined. Again, this is a consequence of the asymptotic series 

expansion of G. Starting out from the expression (52), it would only have to be shown that the 

conditions (53) were satisfied. 

The relations between antisymmetric bifurcation and the vanishing of coefficients in the triangular 

array (13) are not as straightforward as in case of symmetric bifurcation. Since the specific properties 

of (13) for antisymmetric bifurcation will not be used in the sequel, they are omitted here. 

5. Zero-stiffness postbuckling behavior 
5.1. Definition 
Whereas symmetric and antisymmetric bifurcation behavior are global properties of all equilibrium 

paths of a system, zero-stiffness bifurcation concerns only the postbuckling path, but does not 

determine the shape of other equilibrium paths. Therefore, the zero-stiffness case cannot be defined in 

terms of a potential function V which is valid in the whole domain Γ. Zero-stiffness requires that 

 ( ) 0Cλ η λ− =  (63) 
holds along the postbuckling path. Hence, it satisfies both, (17) and (46). Considering the third 

condition (33) for symmetric bifurcation and the condition (50) for antisymmetric bifurcation, it 

follows that 

 1( ) .η η=v v  (64) 
In essence, a zero-stiffness postbuckling path may be thought of as being both, a symmetric and an 

antisymmetric equilibrium path. This is the rationale for the construction of a system with zero-

stiffness postbuckling behavior by augmenting an antisymmetric bifurcation system by its mirror 

image, as will be demonstrated in the example given in Subsection 6.4. Finally, a suitable definition of 

a zero-stiffness postbuckling path is 

 ( ) 0Cλ η λ− = ∧  (65) 
 ( ) ( ( )) ( ).η η η= − = − −v T v v  (66) 
Without loss of generality, the definition of T given in (21) was used here again. 

5.2. Sufficient conditions for zero-stiffness postbuckling behavior 
The following conditions are sufficient for zero-stiffness postbuckling behavior: 
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i
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i

λ = ∀ ∈
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∧ = ∀ ∈

v
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 (67) 

With this definition, in principle, infinitely many conditions must be checked. General statements 

about the coefficients of the triangular array (13) are not possible in this case, since the prebuckling 

behavior and in turn TK  is not specified. 

6. Examples 
In this Section, static, finite-degrees-of-freedom systems will be presented, which bifurcate in one of 

the distinct categories described in the previous Sections. The simplicity of the analyzed low-

dimensional structures allows both, drawing focus on corroborating the foregoing theoretical findings 

and quick repetition of the relatively simple computations. 

6.1. Non-symmetric bifurcation 
The general case of non-symmetric bifurcation is characterized by postbuckling behavior that does not 

exhibit specific symmetry properties. Fig. 2(a) shows a system which bifurcates non-symmetrically. 

Bar 1  is mounted on two turning-and-sliding joints. Bar 2  can only rotate with respect to a 

horizontal axis; 2u  defines the angle of rotation. The angle between this axis and bar 1  is denoted as 

1.u  A vertical load Pλ  ( )λ ∈  is exerted on the upper turning-and-sliding joint. The system is 

supported by four linear elastic springs k, ,kγ  ,kκ  and kχ  ( , , [0, )).γ κ χ ∈ +∞  Because of mirror 

symmetry, the factor μ ∈  can be restricted to non-negative values without loss of generality. The 

unloaded position, which is delineated in Fig. 2(a) in gray color, is defined as 1 2( , ) ( /4, 0).u u π=  

Lμ

kχ

kγ

(a)

L

2u
L
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k
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1
u
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/2kγ

/2kχ

 
Fig. 2: Static systems with two degrees of freedom, which bifurcate (a) non-symmetrically, (b) symmetrically 

The potential energy reads as 

 1 2 1 2 1 2( , , ) ( , ) ( , , ),V u u U u u W u uλ λ= +  (68) 
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where 

 
( ) ( )(

( ) ( ) )

222 2 2 2
1 2 1 2 2

22 2 2 2
2 2 2

1( , ) 1 2 cos( ) 1 (2 cos( )) ( sin( ))
2

1 cos( ) 1 cos( ) ( sin( ))

U u u kL u u u

u u u

γ μ μ

κ χ μ μ

= − + + − − + +

+ − + + − + +

 (69) 

is the strain energy and 

 ( )1 2 1 2( , , ) 1 2 sin( )cos( )W u u PL u uλ λ= − −  (70) 
is the potential energy of the external load. V is neither symmetric with respect to 1u  nor with respect 

to 2.u  The equilibrium equations are obtained as ,1 0V =  and ,2 0.V =  The load-displacement relation 

for the primary path follows as 

 ( )1 1 1 2( ) 2 sin( ) tan( ) ,   0.k Lu u u u
P

λ = − =  (71) 

Analytical solutions for the secondary load-displacement path could not be deduced. Hence, the 

postbuckling paths were constructed pointwise, using a numerical solver. 

Generally, the system does not bifurcate symmetrically. However, a special set of parameters can be 

found, such that, irrespectively of 2 ,λ  at least 1 3 0λ λ= =  holds. This is the case for 1.671μ =  and 

/ 1.717.χ γ =  The remaining parameter values are chosen as 1m,L =  1N/m,k =  0.05,χ =  and 

1N.P =  The structural parameter that is varied for conversion from imperfection sensitivity into 

imperfection insensitivity is κ, which scales the stiffness of the vertical spring. The system is 

imperfection sensitive for [0, 0.0454)κ ∈  and imperfection insensitive for 0.0454.κ ≥  For 

0.0454,κ =  the components of the triangular array of coefficients (13) are: 

 

1,0

2,1 2,0

3,2 3,1 3,0
2

4,3 4,2 4,1 4,0
2

5,4 5,3 5,2 5,1 5,0

0
1 0

2.634 0 0
14.74 0 / 6 0
51.60 0 0.5392 0 0 .

a
a a
a a a
a a a a p
a a a a a p

−
=

−

 (72) 

Moreover, 

 

3 4 3 5
1 2 3 4 5

2 4

1 2 3 4 5

0, 0, 0, 9.79 10 , 9.27 10 ,
0 0.048 0.011

, , , , .
0 0

p p

p p
p

λ λ λ λ λ− −= = = = ⋅ = − ⋅

⎛ ⎞ ⎛ ⎞−⎛ ⎞
= = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
v v v 0 v v 0

 (73) 
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Fig.3: Coefficients of asymptotic series expansion of  λ for varying κ 
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It is emphasized that 1 3 3, , ,λ λ v  and 5v  as well as the second and the fourth column of (72) only 

vanish because of the special choice of μ, χ, and γ. Fig. 3 shows 2λ  and 4λ  for 1p =  and varying κ. It 

can be shown that the dependence of 2λ  and 4λ  on κ is linear and quadratic, respectively. 

According to (71), the shape of the primary path depends only on the initial rise of bar ,1  which is 1 

in this case. In particular, (71) is independent of γ, κ, μ, and χ. Hence, these parameters only control 

the postbuckling behavior. Along the primary path, TK  does not depend on κ. Therefore, also the 

bifurcation points are independent of κ. TK  is a diagonal matrix, reflecting that 2 0u =  along the 

primary path. The non-symmetric equilibrium paths for specific values of κ are shown in Fig. 4. A 

second bifurcation point 1C  and a snap-through point D are located on an unstable section of the 

primary path. 
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Fig.4: (a) Load-displacement paths of the system shown in Fig. 2(a), (b) projection onto the plane 2 0u =  

For sufficiently large values of κ, the limit load of the secondary path exceeds the limit load at the 

snap-through point D of the primary path. Any increase of γ, μ, or χ will increase the buckling load λC. 

Hence, an increase of these parameters such that the system does not bifurcate anymore would reduce 

its ultimate load. Moreover, it can be shown that the maximum value of the ultimate load is obtained 

for 0.2668.κ =   Therefore, an increase of κ beyond this value is counterproductive, because the 

ultimate load drops. 

This example shows that non-symmetric bifurcation does not hamper the conversion from 

imperfection sensitivity into imperfection insensitivity, as long as 1 0λ =  can be realized. In this 

example, both, 1 0λ =  and 3 0λ =  were achieved simultaneously. Together with 4 0,λ >  this is the 

reason that the transition case 2 0λ =  is also imperfection insensitive. 1 0λ =  was obtained through 

variation of parameters. However, there are also cases where enforcing 1 0λ =  involves structural 
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modifications of the original design, which may be undesirable or not feasible from an engineering 

perspective. 

6.2. Symmetric bifurcation 
Many simple bifurcation systems behave symmetric without any special design measures. However, 

any non-symmetric bifurcation system can be rendered symmetric if it is supplemented by its mirror 

image. This simple principle was applied to the system given in Fig. 2(a), which yields the system 

shown in Fig. 2(b). It is very similar to the original system, however, it bifurcates symmetrically. In 

order to keep the buckling load λC at the same level, the stiffness of the duplicated springs was halved. 

The strain energy reads as 

 

( ) ( )(
( ) ( )

( ) ( ) )

222 2 2 2
1 2 1 2 2

2 22 2 2
2 2 2

2 2
2 2 2 2 2 2

2 2 2 2

1( , ) 2 1 2 cos( ) 1 (2 cos( )) ( sin( ))
4

1 (2 cos( )) ( sin( )) 1 cos( )

1 cos( ) ( sin( )) 1 cos( ) ( sin( )) .

U u u kL u u u

u u u

u u u u

γ μ μ

γ μ μ κ

χ μ μ χ μ μ

= − + + − − + +

+ + − − + − + −

+ + − + + + + − + −

  (74) 
It is not surprising that (74) is the symmetric part ( )1 2 1 2( , ) ( , ) / 2U u u U u u+ −  of (69). The potential 

function of the vertical load Pλ  and the solutions for the primary path are the same as in the previous 

example, given in (70) and (71), respectively. Again, the postbuckling load-displacement paths were 

constructed using a numerical solver. 

Compared to the previous example, the parameter values were not modified. Hence, the buckling load 

λC is the same. Again, κ is used as the parameter for conversion from imperfection sensitivity into 

imperfection insensitivity. This conversion is achieved for 0.0454.κ =  The system is imperfection 

sensitive for [0, 0.0454),κ ∈  and imperfection insensitive for 0.0454.κ ≥  For the transition case, the 

components of (13) are: 

 

1,0

2,1 2,0

3,2 3,1 3,0

2
4,3 4,2 4,1 4,0

2
5,4 5,3 5,2 5,1 5,0

0

1 0

2.634 0 0

14.74 0 / 6 0

51.60 0 0.5392 0 0 .
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−

 (75) 

Moreover, 

 

3 4
1 2 3 4 5

2 4

1 2 3 4 5

0, 0, 0, 9.79 10 , 0
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, , , .

0 0

p

p p
p

λ λ λ λ λ−= = = = ⋅ =

⎛ ⎞ ⎛ ⎞−⎛ ⎞
= = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
v v v 0 v v 0

 (76) 

(76) shows that the transition case itself is imperfection insensitive. As expected, λi vanishes for odd 

values of i and vj vanishes for {3,5,7, }.j ∈ …  This would still be the case, if the values of γ, κ, μ, or 

χ were changed. 2λ  and 4λ  are plotted for 1p =  and for varying values of κ in Fig. 5. Again, the 
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dependence of 2λ  and 4λ  on κ is linear and quadratic, respectively. Along the primary path, TK  is a 

diagonal matrix, which for a two-degrees-of-freedom system verifies (26). 
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Fig. 5: Coefficients of asymptotic series expansion of  λ for varying κ 

The symmetric equilibrium paths for specific values of κ are shown in Fig. 6. The second bifurcation 

point C1 is located on an unstable section of the primary path. As regards the qualitative behavior of 

the system if γ, κ, μ, and χ are increased, the same statements as given at the end of Subsection 6.1 

hold. 
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Fig. 6: (a) Load-displacement paths of the system given in Fig. 2(b), (b) projection onto the plane 2 0u =  

6.3. Antisymmetric bifurcation 
Fig. 7(a) shows a planar, static, two-degrees-of-freedom system, which bifurcates antisymmetrically. It 

is based on a parallelogram four-bar linkage. The coupler link 2  remains always horizontal and 

carries a constant, vertical load k L, which may be conceived of as gravitational force. The grounded 

link 1  is designed as an L-shaped bracket supported by a linear elastic spring k, which always 

remains vertical. Both legs of the bracket 1  have the length L. A cantilevered bar 3  (length L) is 

assembled at the upper left joint and propped up by a linear elastic torsional spring c. Beam 3  carries 

the vertical load Pλ  at its free end. Two angular degrees of freedom u1 and u2 measure the angular 

position of bar 3  and bracket ,1  respectively. Both angles are counted positive in clockwise 
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direction. The springs are strain-free for 1 0u =  and 2 0.u =  This situation is delineated in gray, 

whereas the deflected position is shown in black. No parameters are varied. 
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Fig. 7: Static systems with two degrees of freedom, which bifurcate 
(a) antisymmetrically, (b) with zero-stiffness postbuckling behavior 

The potential energy reads as 

 1 2 1 2 1 2( , , ) ( , ) ( , , ),V u u U u u W u uλ λ= +  (77) 
with the strain energy 

 ( )22 2
1 2 1 2 2

1 1( , ) 1 cos( ) sin( )
2 2

U u u cu k L u u= + − +  (78) 

and the potential energy of the external loads 

 ( ) ( )1 2 2 1( , , ) 1 cos( ) sin( ) 1 cos( 2) .W u u PL u u k L uλ λ= − − − − −  (79) 
The tangent stiffness matrix along the primary path, where 2 0,u =  follows as 

 1

1

sin( ) 0
.

0 cos( )T
c PL u

PL u
λ

λ
⎡ ⎤−

= ⎢ ⎥−⎣ ⎦
K  (80) 

Therefore, the critical load is 0Cλ =  and V satisfies the conditions for antisymmetric bifurcation (52) 

and (53). Moreover, the antisymmetric bifurcation behavior is verified by the analytical expressions of 

the load-displacement paths 

 1
2

1

, 0
cos( )
cu u

PL u
λ = − =  (81) 

for the primary path and 

 
( )2

2 21

1 2

2cos ( ) cos( ) 1
,

cos( ) sin( )
k L u ucu

PL u P u
λ λ

− −
= − = −  (82) 

for the secondary path. TK  is a diagonal matrix, which for a two-degrees-of-freedom system conforms 

to the definition (52). The parameter values are chosen as 1Nm,c = 1N/m,k = 1m,L =  and 1N.P =  

Then, the values of the triangular array of coefficients (13) are 
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2 3
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a
a a p
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−
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−
 (83) 

Moreover, 
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Fig.8: (a) Load-displacement paths of the system given in Fig. 7(a), (b) projection onto the plane 1 0u =  

It is emphasized that for antisymmetric bifurcation, 3 5 7, , ,v v v …  generally do not have to be equal to 

0. The two non-trivial equations described by the second and fourth row of (83) are linear equations in 

1.λ  Moreover, they are identical. The equilibrium paths and their projection to the plane 1 0u =  are 

shown in Fig. 8. The snap-through points on the secondary path are a consequence of the rotational 

(2 )π  periodicity of 2.u  

From this example it can be concluded that antisymmetric bifurcation prevents conversion from 

imperfection sensitivity into imperfection insensitivity. Such a conversion would require abandoning 

antisymmetric bifurcation, which usually corresponds to qualitative modifications of the original 

structure. Such modifications may be undesirable or not feasible from an engineering perspective. It is 

unlikely that simple variations of parameters can render an antisymmetric bifurcation system 

imperfection insensitive. 

6.4. Zero-stiffness postbuckling behavior 
Fig. 7(b) shows a system which is similar to the antisymmetric bifurcation system of the previous 

Subsection. It is obtained by augmenting the original system with a mirror image of the L-shaped 

bracket, which is responsible for the antisymmetric bifurcation. This gives a T-shaped grounded link 

,1  supported by two vertical springs. Apart from their spring stiffness kκ  and (1 ) ,kκ−  respectively, 

no parameters of the previous example were changed. It can be shown that for any value of the 

parameter [0,1],κ ∈  the critical load is 0Cλ =  and the primary path is defined by (81), i.e., equal to 

the case of antisymmetric bifurcation. For 0,κ =  the original system is obtained, and for 1/2,κ =  

which will be used in the sequel, zero-stiffness postbuckling behavior is achieved. 
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In this case, the strain energy reads as 

 ( ) ( )( )2 22 2
1 2 1 2 2 2 2

1 1( , ) 1 cos( ) sin( ) 1 cos( ) sin( )
2 2 2

kU u u cu L u u u u= + − + + − −  (85) 

and the potential energy of the external loads is defined by (79). As expected, (85) is the symmetric 

part ( )1 2 1 2( , ) ( , ) / 2U u u U u u+ −  of the strain energy (78) of the associated antisymmetric bifurcation 

system. The primary equilibrium path is the same as in the previous example, given in (81). The 

secondary path follows as 

 1 20, , 0.u u λ= ∈ =  (86) 
Hence, the conditions (65) and (66) for zero-stiffness postbuckling behavior and equivalently (67) are 

satisfied. The values of the triangular array of coefficients (13) are 
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3,2 3,1 3,0
2

4,3 4,2 4,1 4,0
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0 0 0 0 0 .
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a a a a p
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−
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Moreover, 

 1

0
0 \{0}, , \{0,1}.i ii i

p
λ

⎛ ⎞
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⎝ ⎠
v v 0   (88) 

The vanishing values in (87) and (88) reflect the fact that this system satisfies the criteria for 

symmetric bifurcation. The equilibrium paths and their projection onto the plane 2 0u =  are shown in 

Fig. 9. In this projection, the secondary path degenerates to a point. 
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Fig. 9: (a) Load-displacement paths of the system given in Fig. 7(b), (b) projection onto the plane 2 0u =  

The example shows that zero-stiffness postbuckling does not necessarily indicate the transition from 

imperfection sensitivity to insensitivity, as is frequently the case. The reason for this is that for the 

special case of 1/2,κ =  as delineated in this example, postbuckling happens with zero-stiffness, but 

for any other value [0,1],κ ∈  the system behaves antisymmetric, i.e., imperfection sensitive. 
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7. Conclusions 
The three categories symmetric bifurcation, antisymmetric bifurcation, and zero-stiffness postbuckling 

behavior were identified as distinct properties of a bifurcation system. Their role regarding the 

conversion from imperfection sensitivity into insensitivity was investigated. Qualitative conditions 

that ensure, facilitate, hamper, or prevent such a conversion were given. Symmetric and antisymmetric 

bifurcation is a global property of a system, whereas zero-stiffness postbuckling behavior can only be 

attributed to single equilibrium paths. Nevertheless, it may be regarded as a combination of symmetric 

and antisymmetric equilibrium paths. 

In the framework of Koiter’s initial postbuckling analysis, the conditions (45), (62), and (67) were 

proposed as being sufficient for symmetric bifurcation, antisymmetric bifurcation, and zero-stiffness 

postbuckling behavior, respectively. In principle, these conditions involve examining infinitely many 

coefficients. Therefore, checking for the three categories of bifurcation behavior by means of (23), 

(52), and (53) as well as (65), and (66), respectively, is preferable. Often, it is obvious that the 

bifurcation behavior is symmetric, antisymmetric, or showing a zero-stiffness postbuckling path, i.e., a 

priori engineering knowledge renders testing for such categories superfluous. 

Supplementing a general bifurcation system by its mirror image yields a symmetric bifurcation system. 

This was shown in the examples in Subsections 6.1 and 6.2. Augmenting an antisymmetric bifurcation 

system by its mirror image, zero-stiffness postbuckling behavior is obtained, which was demonstrated 

by the examples described in Subsections 6.3 and 6.4. However, this is obviously not the only way of 

designing systems that experience symmetric bifurcation or zero-stiffness postbuckling. For instance, 

in [10], some examples of symmetric bifurcation and zero-stiffness postbuckling paths are elaborated. 

Symmetric bifurcation requires all underlined terms in (13) to vanish. However, this is not a sufficient 

condition for symmetry. There are also classes of bifurcation problems, where additional terms in (13) 

become zero, e.g. zero-stiffness bifurcation as noticed in (87). 

An imperfection-insensitive structure must satisfy (16). Hence, imperfection insensitivity requires 

1 0,λ =  which holds automatically for systems that bifurcate to a symmetric or a zero-stiffness 

postbuckling path. Generally, however, neither symmetry nor zero-stiffness postbuckling is necessary 

for the conversion from imperfection sensitivity into imperfection insensitivity. This facilitates the 

analysis of bifurcation problems by the FEM, since the discretization by means of finite elements may 

destroy symmetry properties. 

If, in case of non-symmetric systems, 1 0,λ ≠  the vanishing of 1λ  must be enforced in the course of the 

conversion process. For the example discussed in Subsection 6.1 (non-symmetric bifurcation), this 

was done without difficulty by variation of parameters, but in other cases, undesirable structural 

modifications of the original design may be inevitable. This holds particularly for antisymmetric 

bifurcation systems, which do not change their antisymmetric bifurcation behavior if only parameter 

values are modified. In contrast, a qualitative modification of the original structure will be necessary 

so that equilibrium paths deviate from their originally antisymmetric (imperfection sensitive) shape. 
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Condition (16) implies that 2 0λ =  is neither necessary nor sufficient for conversion from imperfection 

sensitivity into imperfection insensitivity. It is not necessary because a general non-symmetric 

bifurcation system with 1 0λ ≠  and 2 0λ >  could be made imperfection insensitive by enforcing 1 0,λ =  

whereas 2λ  always remains positive. Moreover, 2 0λ =  is not sufficient for such a conversion, which 

can be concluded from the example given in Subsection 6.4. 

The ultimate load of a structure does not necessarily benefit from increasing the stiffness. In 

Subsections 6.1 and 6.2, the spring stiffness kκ  of a system was varied and it was found that this 

contributes to the conversion from imperfection sensitivity into imperfection insensitivity. However, 

raising the stiffness above a certain value will have adverse effects on the postbuckling behavior, at 

least for the analyzed cases. In fact, it leads to qualitative changes of the secondary path. 

Example 6.3 demonstrated that antisymmetric bifurcation always entails imperfection sensitivity, 

which also follows from (16) and (49). The examples of non-symmetric and symmetric bifurcation 

given in Subsections 6.1 and 6.2 showed the possibility of converting an imperfection-sensitive into an 

imperfection-insensitive structure without modifying the prebuckling domain, particularly without 

changes of the buckling load. 

Application of the considerations made herein to multiple-degrees-of-freedom systems, in particular to 

systems analyzed by the FEM, leaves scope for future scientific work. Moreover, the meaning of 

different characteristic patterns of vanishing coefficients in the triangular array (13) needs further 

clarification. It is expected that this will allow identification of additional qualitative design properties 

that are pivotal for the conversion from imperfection sensitivity into imperfection insensitivity. 
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Abstract 
The coincidence of a bifurcation point with a snap-through point is called hilltop buckling. In this 

paper, it either serves as the starting point – the Α – or as the end – the Ω – in sensitivity analysis of 

the initial postbuckling behavior of elastic structures. It is shown that hilltop buckling is imperfection 

sensitive. In sensitivity analyses with hilltop buckling as the starting point (end), the bifurcation point 

and the snap-through point are diverging from (converging to) each other. Two classes of sensitivity 

analyses are identified by means of the consistently linearized eigenproblem. They determine the more 

(or less) effective mode of conversion of an originally imperfection-sensitive into an imperfection- 

insensitive structure. The results from the numerical investigation corroborate the theoretical findings. 

The present study is viewed as a step in the direction of better understanding the reasons for different 

modes of the initial postbuckling behavior of elastic structures and its interplay with the prebuckling 

behavior. 

Keywords 
consistently linearized eigenproblem, hilltop buckling, imperfection (in)sensitivity, Koiter’s initial 

postbuckling analysis, sensitivity analysis, symmetric bifurcation, zero-stiffness postbuckling. 
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1. Introduction 
The coincidence of a bifurcation point with a snap-through point is called hilltop buckling [1]. It can 

be realized by appropriately tuning a set of design parameters of a structure [2].  

Assuming that hilltop buckling is imperfection sensitive, it may serve as the starting point – the Alpha 

– for sensitivity analysis of the buckling load and the initial postbuckling behavior by means of 

variation of a design parameter. The motivation for such an analysis may be improvement of this 

behavior through conversion of an originally imperfection-sensitive into an imperfection- insensitive 

structure [3], [4]. In the course of this analysis, the stability limit, represented by the bifurcation point, 

is increasing less strongly than the load corresponding to the snap-through point. Hence, the two 

points are diverging from each other. 

Conversely, in sensitivity analysis the stability limit may be increasing more strongly than the snap-

through load. In this case, the two load points are converging to each other. Their coincidence 

represents the end – the Omega – of sensitivity analysis of the buckling load and the initial 

postbuckling behavior because snap-through would otherwise replace bifurcation buckling as the 

relevant mode of loss of stability. 

The purpose of this paper is to examine these two forms of sensitivity analyses of the buckling load 

and the initial postbuckling behavior. Examination tools include Koiter’s initial postbuckling analysis 

[5] and the Finite Element Method (FEM). 

It will be shown that hilltop buckling is imperfection sensitive. As a special form of transition from 

imperfection sensitivity to imperfection insensitivity, zero- stiffness postbuckling [6] will be 

mentioned. 

The investigation is restricted to static, conservative, perfect systems with a finite number N  of 

degrees of freedom as conforms to the FEM. The material behavior is assumed to be either rigid or 

linear elastic. Only symmetric bifurcation behavior with respect to a scalar variable η  will be 

considered [6]. Multiple bifurcation will be excluded, especially multiple hilltop buckling is not 

discussed in this analysis, i.e. there is only a single secondary path. For a discussion on multiple 

hilltop branching phenomena and their influence on imperfection sensitivity refer to [1], [11]. The 

numerical results of examples presented there corroborate the following theoretical findings. 

Sensitivity analysis will be restricted to variation of one design parameter at a time. 

2. Derivation of polynomials 
2.1. Koiter’s initial postbuckling analysis 
Fig. 1 shows a projection of load-displacement paths of a system bifurcating at point C . The solid 

line represents the primary path, whereas the dashed line is a secondary path. The latter is 

parameterized by η∈ , defined as zero at C . Herein, the subscript Ci  means evaluation of a 
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quantity at C . The reference load P  is scaled by a dimensionless load factor λ , and u  denotes the 

vector of generalized displacement coordinates. 

In [3] and [6] Koiter’s initial postbuckling analysis [5] was used to expand the out-of-balance force 

 ( ) ( ), :  λ λ= − ∈I NG u F u P , (1) 
where ( )IF u  denotes the internal forces, into an asymptotic series at C . For a static, conservative 

system, G can be derived from the potential energy function V as 

 V∂
∂

G =
u

. (2) 

u
Cu ( ( ))λ ηu ( ( )) ( )λ η + ηu v

CλC

( )λ η

λ

1 1 , 1[ , ]λλ λ +T T Tu v

, , , ,[ , ]η η λ ηλ λ +u vT T T( )ηv
,[1, ( ( ))]λ λ ηuT T

η

0

,[1, ( )]λ λ
T T

Cu

 
Fig. 1: On Koiter’s initial postbuckling analysis [6]  

G  vanishes along equilibrium paths in the λ−u  space. ( )λ η  is the load level at the point of the 

secondary path associated with ,η  as outlined in Fig. 1. The point on the primary path characterized 

by the same load is described by the displacement vector ( )( ).λ ηu  Quanti- ties evaluated along the 

primary path are labeled by an upper tilde. The displacement at the corresponding point of the 

secondary path can be expressed as ( ) ( )( ) ( )η λ η η= +u u v  where v  is the displacement offset which 

vanishes trivially at C . 

Hence, 

 ( ) ( )( ) ( ) ( )( ): ,η λ η η λ η= + =G G u v 0  (3) 

must hold along the secondary path. Insertion of the asymptotic series expansions 

 ( ) ( )2 3 4
1 2 3C Oλ η λ λη λ η λ η η= + + + +  (4) 

 ( ) ( )2 3 4
1 2 3         Oη η η η η= + + +v v v v  (5) 

into (3) and expanding the resulting expressions into a series in terms of η  yields 

 ( )2 3 4
0 1 2 3C C C C Oη η η η= + + + +G G G G G  (6) 

with 

 ,   
!
nC

nC n
n
η= ∀ ∈

G
G , (7) 

where  denotes the set of natural numbers including zero. Details of computation of nCG  are given 

in [6]. 
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Since (3) must hold for any point along the secondary path, i.e. for arbitrary values of η , each 

coefficient nCG  of the series must vanish. This condition paves the way for successive calculation of 

the pairs of unknowns 1 1 2 2( ,  ),  ( ,  ),λ λv v etc. described in [3]. 

2.2. Coefficients of the asymptotic series expansion of ( ) Cλ η λ−   

For the present investigation only the first four coefficients of the series expansion of ( )λ η  need to be 

known. They are given as follows [3]: 

 1 0dλ = , (8) 
 2

2 1 1 1 1 1a b dλ λ λ= + + , (9) 
 3 2* * *

3 1 1 1 1 1 1 1 2 2a b c b dλ λ λ λ λ= + + + + , (10) 
 4 3 2 2

4 1 1 1 1 1 1 1 1 1 2 2 2 1 3 3
ˆ ˆˆ ˆa b c d a b b dλ λ λ λ λ λ λ λ= + + + + + + + , (11) 

where 

 *
1 1 2 22c a bλ= + , (12) 

 * *
1 1 2 2

1ˆ 3
2

c a bλ= + , (13) 

 *
1 1 2 1 3 3

ˆ 2 2d b a bλ λ= + + , (14) 
whereas none of the other coefficients in the expressions for 3λ  and 4λ  depends on 2λ , and 2λ  and 

3 ,λ  respectively. 

To get an idea of the structure of the coefficients in (8)-(11), the expressions for 0d ( 0b  in [3]), 1a , 1b , 

1d , and *
1a  are listed in the following [3]: 

 1 , 1 1
0

1 , 1

:1
2

T
T

T
T

d
λ

⋅ ⊗
= −

⋅ ⋅
uv K v v

v K v
, (15) 

 1 , 1
1

1 , 1

1
2

T
T

T
T

a λλ

λ

⋅ ⋅
= −

⋅ ⋅

v K v
v K v

, (16) 

 
1 , 2 1 , 1 1

1
1 , 1

1 :
2

T T
T T

T
T

b
λ λ

λ

⋅ ⋅ + ⋅ ⊗
= −

⋅ ⋅

uv K v v K v v

v K v
, (17) 

 
1 , 1 2 1 , 1 1 1

1
1 , 1

1:
6

T T
T T

T
T

d
λ

⋅ ⊗ + ⋅ ⊗ ⊗
= −

⋅ ⋅

u uuv K v v v K v v v

v K v
, (18) 

 1 , 1*
1

1 , 1

1
6

T
T

T
T

a λλλ

λ

⋅ ⋅
= −

⋅ ⋅
v K v
v K v

. (19) 

( ) ,T = uK u G is the tangent stiffness matrix which generally refers to out-of-balance states, whereas 

 ( ) ( )( ):T Tλ λ=K K u  (20) 

is the one that refers to the special case of equilibrium states on the primary path. ( ),λ
i  indicates the 

special differentiation with respect to λ  along a direction parallel to the primary path [3]. Most of the 

coefficients in (8)-(11) are given in [3]. The remaining coefficients can be deduced from Appendix B 

in [3]. 



 Chapter IV 72 

3. Specialization of the expressions for 1 4,,λ λ…  for symmetric bifurcation 
3.1. Conditions for symmetric bifurcation 
Bifurcation is qualified as symmetric with respect to the parameter η  if it obeys the definitions [6]: 

 ( ) ( )λ η λ η= − ∧  (21) 

 ( ) ( )( )Tη η= − ∧v v  (22) 

 ( )( ) ( )( )( )Tλ η λ η=u u , (23) 

where the linear mapping : N NT → is an element of a symmetry group. Insertion of (4) into (21) 

yields 

 1 3 .... 0λ λ= = = . (24) 

3.2. Specialization of (8)-(11) for symmetric bifurcation 
Substitution of (24) into (8)-(11) gives 

 00 d= , (25) 
 2 1dλ = , (26) 
 1 2 20 b dλ= + , (27) 
 2

4 1 2 2 2 3a b dλ λ λ= + + . (28) 
According to [6], symmetric bifurcation requires  

 0 2 .... 0d d= = = . (29) 
Hence, following from (27), 

 1 0b = . (30) 
This corresponds with the result of a proof in [6] according to which *

1 1 1 1
ˆ ˆ,  ,  , , ,b b b d… …must vanish 

for symmetric bifurcation. Hence, following from (14), also 

 3 0b = . (31) 

4. Conditions for imperfection insensitivity 
A necessary condition for imperfection insensitivity is given as [7] 

 1 0λ =  (32) 
which is automatically satisfied for symmetric bifurcation. Sufficient conditions for imperfection 

sensitivity are [7] 

 1 20,  0λ λ= > . (33) 
Hence, symmetric bifurcation is not necessary for imper- fection insensitivity [8]. If 1 20 0,λ λ= ∧ =  

 3 0λ =  (34) 
is a necessary condition for imperfection insensitivity which is automatically satisfied for symmetric 

bifurcation. Sufficient conditions for imperfection insensitivity in this case are 

 3 40,  0λ λ= > . (35) 
Thus, for imperfection insensitivity the first non-vanishing coefficient in the asymptotic series 

expansion (4) must have an even subscript which is automatically the case for symmetric bifurcation, 

and must be positive. 
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5. Hilltop buckling 
In the following it will be proved that hilltop buckling is imperfection sensitive. Introducing the 

parameter ξ , which refers to the primary path, into (16),  gives 

 1 , 1 ,
1

, ,1 , 1

1
2

C

T
T

T
T

a ξξ ξξ

ξ ξξ ξ ξ

λ
λ λ

=

⎛ ⎞⋅ ⋅
= − −⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

v K v
v K v

, (36) 

with Cξ ξ=  indicating the stability limit Cλ λ= . 

At the snap-through point, ( )λ ξ  has a local maximum: 

 , ,0,  0ξ ξξλ λ= < . (37) 
Because of  

 1 , 1 0T
T ξ⋅ ⋅ ≠v K v , 1 , 1

T
T ξξ⋅ ⋅ ≠ ∞v K v , (38) 

the first term in parentheses of (36) is negligible. Thus 

 1a = −∞ . (39) 
Because of 2

, ,ξξ ξλ λ  with (37), 1a  has a pole of 2nd order. 

Alternatively, the path parameter η , referring to the secondary path, is inserted into (16), which gives 

 1 , 1 ,
1

, ,1 , 1 0

1
2

T
T

T
T

a ηη ηη

η ηη η

λ
λ λ

=

⎛ ⎞⋅ ⋅
= − −⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

v K v
v K v

, (40) 

with 0η =  indicating the stability limit .Cλ λ=   

Equating the right-hand side (40) to the one of (36) gives 

 

2 2

, ,0 0 1 , 1
, ,0

,, ,
1 1

,

1 , 1
,

,
1 1

, 0

             , 0,

C C

C

T
T

TT

T
T

TT

η ηη η ξξ
ηη ξξη

ξξ ξξ ξ ξ ξ

ξ ξ ξ

ηη
ξ

η

η η

λ λ
λ λ

λ λ
λ

λ

λ

= =

=
= =

=

=

⎛ ⎞ ⎛ ⎞ ⋅ ⋅⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⋅ ⋅

⋅ ⋅
+ >

⋅ ⋅

v K v
K

v v

v K v
K

v v

 (41) 

where, for the time being, hilltop buckling is excluded. Inserting 

 , 1 , 20 0
 and 2 ,η ηηη η

λ λ λ λ
= =
= =  (42) 

which follows from (4), and 

 1
, ,0

, ,
1 1 1 1 1 ,· ·

C

C

T TTT T
T

ξη
λ λ λ

η ξη ξ ξ
λ λ =

= =

⋅ ⋅ = ⋅ ⋅ =
K K

v v v v v K v  (43) 

into (41) yields 
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,

1 ,

2

1 , 1
1

2 ,
, 1 1

0

1

1

, 1

,

1
2

1
2

C

C

C C

C

T

T

T

T

T

T

T

T

ξξ ξ ξ
ξξ ξ ξ

ξ λξ ξ λ λ

ηη η

λ λ λ

λλ λ
λ

=

=
= =

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −

⋅
+

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⋅

⋅ ⋅

⋅
+

⋅

⋅ ⋅

K

v K

v K v

v

v v

v K v

 (44) 

where [3] 

 1 , 1 0.
C

T
T ξ ξ ξ=

∞ < ⋅ ⋅ <− v K v  (45) 

In order not to a priori dismiss the antithesis, i.e. the possibility of imperfection insensitivity for 

hilltop buckling, the special case of  

 , 10
0η η

λ λ
=
= =  (46) 

will be considered, resulting in  

 
1 0

2

, 1

1 , 1

1 ,
2

C

T
T

T
T

ηη η

λ λ λ

λ =

=

⋅ ⋅
=

⋅ ⋅

v K v

v K v
 (47) 

where  

 ,1 10 · · .T
T ηη≤ < ∞Kv v  (48) 

Following from (45), (47) and (48), 2 0λ =  requires 

 
01 , 1 0.T

T ηη η=
⋅ ⋅ =v K v  (49) 

Extending now the validity of (47) to hilltop buckling, i.e. replacing (41.2) by  

 , 0,ξλ ≥  (50) 
requires extending the range in (45) from ( ,0)−∞ to [ ,0)−∞  and in (48) from [0, )∞ to [0, ]∞ . Hence, for 

hilltop buckling 2 0λ =  represents an indeterminate expression with 

 1 , 1 1 , 0 1        
C

T T
T Tλ λ ηηηλ= =

⋅ ⋅ = −∞ ∧ ⋅ ⋅ = ∞v K v v K v  (51) 

To show that hilltop buckling is necessarily imperfection sensitive, a design parameter κ  is increased. 

Initially, 

 ( ) ( )0 2 0 2, 00,   0,   0.κκ κ λ κ λ κ= ≥ < >  (52) 
The purpose of this sensitivity study is conversion of an originally imperfection sensitive into an 

imperfection insensitive structure. As follows from (45) and its extension to (51.1), and from (47) and 

(51.2), 

 0
1 , 10

0 T
T ηηη

κ κ= =
< ⋅ ⋅ ≤ ∞v K v  (53) 

If hilltop buckling occurs for 0κ κ= ,  

 0
01 , 1

T
T ηη

κη κ= =
⋅ ⋅ = ∞v K v  (54) 

Fig. 2(a) refers to this situation. It shows that hilltop buckling is imperfection sensitive. 

If hilltop buckling occurs for 0Hκ κ κ= > , 
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Fig. 2: Hilltop buckling as (a) the Α  and (b) the Ω of sensitivity analysis 

 0
1 , 10

0 T
T ηηη

κ κ= =
< ⋅ ⋅ < ∞v K v  (55) 

 0
01 , 1

T
T ηη

κη κ= =
⋅ ⋅ = ∞v K v  (56) 

(56) follows from the fact that for both cases 

 
( )

0
1 , 1 1 , 0 1

,
0,   0.

C

T T
T T ηηλ λ λ η κ κκκ= = =

⋅ ⋅ < ⋅ ⋅ >v K v v K v  (57) 

Fig. 2(b) refers to 0Hκ κ κ= > It shows that also for this case hilltop buckling is imperfection sensitive. 

Information about 4λ  is obtained from specialization of (28) for 2
1a = −∞  and 2 0λ <  and 

consideration of the following scheme: 

 

2
4 1 2 3 2 2

2 2

1 1

0

 +
+  

.

a d bλ λ λ= + +
− ∞ ∞

∞ − ∞
− ∞

 (58) 

In this scheme, “ 2∞ ”, “ 1∞ ”, and “ 0∞ ” denote a pole of 2nd, 1st, and 0th order (with respect to a 

variable design parameter κ ), noting that the latter is a positive, finite number. The scheme is based 

on the hypothesis that (58) cannot disintegrate at hilltop buckling. Numerical results have validated the 

scheme according to which 

 1 2
3 42 0.,   ,   db λ∞ = ∞ −∞ < <=  (59) 

Eq. (59) corroborates the conjecture that for the symmetric bifurcation at the hilltop all coefficients 

with an even subscript in the asymptotic series expansion (4) must be negative, finite numbers. 

6. Classification of sensitivity analyses of the initial postbuckling behavior 
6.1. Consistently linearized eigenvalue problem 
With the help of the consistently linearized eigenproblem, sensitivity analyses of the initial 

postbuckling behavior can be categorized in two classes. For a specific value of κ , this eigenproblem 

is defined as [8], [9] 

 *
,

*( .) TT λλ λ⎡ ⎤+ =⎣ − ⋅⎦K vK 0  (60) 
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In (60), *( )λ λ− ∈  is the eigenvalue corresponding to the eigenvector * N∈v . Because of (20), 

*λ and *v are functions of λ . If *λ λ= , TK  is singular. Thus, a candidate for the stability limit is 

found [8]. The first eigenpair of (60) is ( )* *
1 1,  λ v . At the stability limit, 

 * *
1 1 1, .Cλ λ λ= = =v v  (61) 

(Recall that Cλ  and 1v  appear on the right-hand side of (4) and (5), respectively.)  

Furthermore, at the stability limit [3], 

 

*
1, 1 1aλ = ∧v v  

 ( )
*

, 1* 2 * *
1, 1 1 1 * *

2
*

,
*
1 )( )

3  .
(

TN
j T

jT
j j T jj

a a λλ
λλ

λλ λ=

= + +
⋅ ⋅

− ⋅ ⋅∑
v K v

v v v
v K v

 (62) 

Equating (47) to (16) gives 

 

1
2 1 , 1

1 , 1

T
TT

T

a
η

λλ
ηλ ⋅ ⋅

⋅ ⋅
= − v K v

v K v
 (63) 

where [3] 

 1 1, .1
2 C

a λλ λ λ
λ∗

=
= −  (64) 

Because 1 , 1
T

T λ⋅ ⋅v K v  does not vanish [3], the same applies to 11 1 ,/ ,T
Ta λλ⋅ ⋅v K v  as follows from (16). 

Consequently, 1 0a =  requires 1 , 1 0.T
T λλ⋅ ⋅ =v K v  It follows that 

 

( )

( )

*
1,1

* *
1 , 11 , 1

*

* * * *
1 , 1, 1 , 1

*

1 ,

1,

1

1

2

1 0
2 0

1
2

03

C
C

C

TT
TT

T T
T T

T
T

a

a λλ

λλλλ λ λλ λ

λ

λλ λ λλλ λ λ

λ

λλ

λλ

λ

λ

==

=

= − =
⋅ ⋅⋅ ⋅

= − =
⋅ ⋅ + ⋅ ⋅

= ≠
⋅ ⋅

=
v v

v v

Kv K v

K K v

v K

v

v

 (65) 

where use of (19), (61.1) and (62.1) with 1 0a =  was made and, following from (65), 

 1,1 .1
6 C

a λλλ λ λ
λ∗ ∗

=
= −  (66) 

For class II, in contrast to class I, 1 0a =  implies 

 1 0a∗ =  (67) 
which requires  

 1 , 1 0,T
T λλλ⋅ ⋅ =v K v  (68) 

as follows from (65). Thus 
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 (69) 

For the special case of  

 , 1· 0,T λλ =vK  (70) 

 
**
1,1

* *
1 , 1 1 , 1

1 0.
6

C

T T
T T

a λλλλ

λλ λλλ λλ λ λ

λ

=
⋅ ⋅ ⋅ ⋅

= − ≠
v K v v K v

 (71) 

The joint vanishing of 1a  and 1a∗  represents a limiting case insofar as it correlates with a limiting value 

of 2 1( 0).aλ =  (See Sections 6.2. and 6.3.) 

6.2. Class I 
This class is characterized by  

 *
, 1 0      {2,3 ,, },T

j T Njλλ = ∀ ∈⋅ ⋅ …v K v  (72) 
resulting in 

 * 2 *
1, 1 1 13( ) .a aλλ = +v v  (73) 

This remarkable orthogonality relation represents the special case that the curve described by the 

vector function ( )1 λ*v  degenerates into a straight line. 

For  

 2 0,λ =  (74) 
 1 4 320,    0,    .da b λ =< >  (75) 
The signs of 1a  and 2b  are the same as for hilltop buckling. The sign of 4 3dλ =  which follows from 

(28) is indeterminate. For  

 1 0a = , (76) 
 2 0.λ >  (77) 
For class I, (76) requires [2] 

 , 1· .T λλ =K v 0  (78) 
Fig. 3(a) (3(b)) shows qualitative plots of 1a  and 2b  ( 2 3,  dλ , and 4λ ) as functions of κ  which 

denotes the stiffness of an elastic spring attached to the structure, details of which will be given in 

Chapter 7 (Numerical investigation). 

Fig. 3 refers to a situation where hilltop buckling represents the starting point of sensitivity analysis, 

characterized by  

 0.κ =  (79) 
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κ

 hilltop buckling

02λ =
κ

( )a

( ) ( ) ( )2 3 4, , dλ κ κ λ κ

4λ
3d

κ

2λ

2 0λ < 2 0λ ≥

imperfection
sensitive

imperfection
insensitive

hilltop buckling

02λ =
κ

( )b  
Fig. 3: Sensitivity analysis (class I, hilltop buckling as the starting point): 

( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

In Fig. 3(b),  

 3 2 4 2( 0) ( 0) 0d λ λ λ= = = > , (80) 
indicating that at 2 0λ =  the structure is already imperfection insensitive. For 3 2( 0) 0,d λ = <  the 

structure would still be imperfection sensitive at 2 0λ = . For 3 2( 0) 0d λ = = , the sign of 

6 2 4( 0, 0)λ λ λ= =  would determine the initial postbuckling state of the structure. The linear 

dependence of 2λ  and 4λ  on κ  represents a special situation. 

6.3. Class II 
 In this class, (72) does not hold. Furthermore, contrary to class I, 

 2 0λ =  (81) 
jointly occurs with 

 ,1 10 (with  )Ta λλ= ⋅ ≠ ∨ =0K v 0  (82) 
and 
 ,

*
1 10 (with  )Ta λλλ= ⋅ ≠K 0v . (83) 

Substitution of (82) into (62.1) and of (82) and (83) into (62.2) gives 

 *
1,λ ∧=v 0 *

1, * *

*
, 1 * , 1

* *
2 ,1

·
)(

if 
 

) e
 

lse(

TN
j T T

jT
j j Tj j

λλ λλ
λλ

λλ λ=

⋅ ⋅

− ⋅ ⋅
⎧= =
≠

= ⎨
⎩

∑
v K v 0 K v 0

v v
v K v 0 

 (84) 

indicating a singular point 1
*
1 )( Cλ =v v  in the form of a cusp on the curve described by the vector 

function *
1 )(λv . 

Fig. 4(a) (4(b)) shows qualitative plots of 1a  and 2b  ( 2 3,  dλ , and 4λ ) as functions of κ  which 

denotes the stiffness of an elastic spring attached to the structure, details of which will be given in 

Chapter 7 (Numerical investigation). Fig. 4 refers to a situation where hilltop buckling represents the 

starting point of sensitivity analysis, characterized by  

 0κ = . (85) 
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( ) ( )1 2, a bκ κ
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κ
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( ) ( ) ( )2 3 4, , dλ κ κ λ κ

4λ

3 d

κ

2λ

2 0λ ≤ 2 0λ >

imperfection
sensitive

imperfection
insensitive

hilltop buckling

3d

02λ =
κ

( )b  
Fig. 4: Sensitivity analysis (class II, hilltop buckling as the starting point):  

( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

Substitution of (81) into (28) and into its first derivative with respect to κ  gives, 

2 2, 2, 2, 3 ,4( ) 02 db bκκ κ κ κκλ λλ+ − =+ , (86) 

2 2, 3 42 2, , ,)( 02b db κ κκκ κ κλ λλ + + =− . (87) 
Because of (82) and, contrary to Fig. 3(a), of 1lim 0aκ→∞ ≠  (see Fig. 4(a)), 

 ( )2 3 4 ,
00b d

κ
λ= ∧ − =  (88) 

(see Figs. 4 and 5). According to Fig. 4(b), 

 3 2 4 20) 0) 0( (d λ λ λ= = = < , (89) 
indicating that for 2 0λ =  the structure is still imperfection sensitive. 

Following from (88.2) 

 3, 2 4, 20)( 0( )d κ κλ λ λ= = =  (90) 
(see Figs. 4(b) and 5(b)). Fig. 4 is based on *

1, .λλ ≠v 0  

( ) ( )1 2, a bκ κ

1a

2 b

κ
0κ

hilltop buckling

02λ =
κ

( )a        

( ) ( ) ( )2 3 4, , dλ κ κ λ κ

κ
02λ =

κ

imperfection
sensitive

 hilltop buckling

0κ

2λ

3 d

4λ

3d
4λ

2λ

( )b  
Fig. 5: Sensitivity analysis (class II, hilltop buckling as the end): 

( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

Fig. 5(a) (5(b)) shows qualitative plots of 1a  and 2b  ( 2 3,  dλ , and 4λ ) as functions of κ  standing for 

the thickness of the structure, details of which will be given in Chapter 7 (Numerical investigation). 
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The initial value of κ  is denoted as 0κ . The curves illustrate a situation where hilltop buckling 

represents the end of sensitivity analysis because snap-through would become relevant to loss of 

stability if κ  was further increased. 

If *
1, ,λλ =v 0  then also (see Fig. 5(b)) 

 2, 2 0( ) 0.κλ λ = =  (91) 
Furthermore, (86) and (88.2) disintegrate into (see Fig. 5(b)) 

 3 2 4 20) 0) 0   ( (d λ λ λ= = = = ∧  3, 2 4, 20) 0) 0( ( .d κ κλ λ λ= = = =  (92) 
Substitution of (81), (82), (88.1), and (91) into the second derivative of (28) with respect to κ  yields 

(see Fig. 5(b)) 

 3, 2 4, 20) 0( ( ) 0.d κκ κκλ λ λ= = = =  (93) 
At 2 0λ = , there is no conversion from imperfection sensitivity into imperfection insensitivity. 2 0λ =  

marks the starting point of deterioration of the initial postbuckling behavior accompanied by continued 

improvement of the prebuckling behavior.  

7. Numerical examples 
The numerical investigation consists of one example each for the two classes of sensitivity analyses of 

the initial postbuckling behavior. In the example for class I (II), hilltop buckling is chosen as the 

starting point (end) of such sensitivity analysis. The example for class I (II) is solved analytically 

(numerically by the FEM). 

7.1. Example for class I 

L

Pλ
L

1u 2u
1

2

k
kμ

kκ

 
Fig. 6: Pin-jointed two-bar system [2] 

Fig. 6 shows a planar, static, conservative system with two degrees of freedom. The description of this 

system closely follows [2] where additional details can be found. Both rigid bars, 1 and 2 have the 

same length L and in the non-buckled state they are in-line. The bars are linked at one end and 

supported by turning-and-sliding joints at their other ends. A horizontal linear elastic spring of 

stiffness k  and a vertical linear elastic spring of stiffness kκ  are attached to turning-and-sliding joints. 

A spring of stiffness kμ  “pulls” the two bars back into their in-line position. The system is loaded by 

a vertical load Pλ  at the vertical turning-and-sliding joint. The two displacement coordinates are the 
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angles 1u  and 2 ,u  summarized in the vector T
1 2[ , ] .u u=u  In order to write the out-of-balance force G  

in the structure as defined in (1), other coordinates would have to be chosen. In fact, the angle 1u  

would have to be replaced by the vertical position of the upper turning-and-sliding joint. This would 

only require a simple coordinate transformation. For convenience, however, the angle 1u  was chosen 

as a coordinate. The unloaded position, delineated in gray, is defined by T
10[ ,0] .u=u  This system was 

first investigated in [4] and later on in [2]. 

The potential energy expression follows as 

 

( )

( )
( )

22
10 1 2

2 2
2

22
10 1 2

10 1 2

( , ) 2 sin( ) sin( )cos( )

sin ( )
2

 2 cos( ) cos( )cos( )

2 sin( ) sin( )cos( ) .

V k L u u u
k L u

k L u u u

P L u u u

λ κ
μ

λ

= −

+

+ −

− −

u

 (94) 

The equilibrium equations 
1, 0uV =  and 

2, 0uV =  are satisfied for the primary path 

 
( )

2

1 10 1 10

0,
2 (1 )sin( ) cos( ) tan( ) sin( ) ,

u
L k u u u u
P

λ κ κ

=

= − − +
 (95) 

and for the secondary path 

 

10
2

1

10 1 10

cos( )4arccos ,
4 cos( )

2 4 cos( ) tan( ) sin( ) .
4

uu
u

L k u u u
P

μ

μ κλ κ
μ

⎛ ⎞= ± ⎜ ⎟−⎝ ⎠
−⎛ ⎞= +⎜ ⎟−⎝ ⎠

 (96) 

Since a perfect system is assumed, the sign of 2u  is indeterminate, i.e. it is not known into which 

direction the two bars will buckle. The tangent-stiffness matrix follows as 

 

( )

( )

2
10 1 1

2 2
10 1 1

1

2
10 1 1

2
10 1 1

1

1 sin( )sin( ) 2sin ( )

4 diag 1 cos( )cos( ) 2cos ( ) ,   

sin( )
2

sin( )sin( ) sin ( )

cos( )cos( ) cos ( ) .

sin( )
2

T

u u u

k L u u u
P u
k L

u u u

u u u
P u
k L

κ

λ

κ

λ

⎧
⎪ + −
⎪⎪= + + −⎨
⎪
⎪−
⎪⎩

⎫
⎪−
⎪⎪+ − ⎬
⎪
⎪−
⎪⎭

K

 (97) 

Its derivative with respect to λ can be computed by 

 ,
, , , ,T

V
Vλ λ λ

∂
= ⋅ +

∂
uu

uuuK u  (98) 

where ,λu  is the derivative of the displacement vector along the primary path, which can be 

determined from the linear equation 
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 , , .Tλ λ λ
∂

= ⋅ + =
∂
GG K u 0  (99) 

The expression of ,T λK  looks similar to (97). For the sake of conciseness, it has been omitted. Hence, 

all terms necessary for solving the eigenproblem (60) are available. 

10 ( /2, /2),u π π∈ −  μ +∈  and κ +∈  are parameters that can be varied in order to achieve 

qualitative changes of the system. However, in this work, only κ  was modified. The remaining two 

parameters were taken as 3/5μ =  and 10 0.67026,u =  in which case hilltop buckling occurs for 0κ =  

representing the starting point of sensitivity analysis of the buckling load and the initial postbuckling 

behavior. The load-displacement path for hilltop buckling and its projection onto the plane 2 0u =  are 

shown in Figs. 7(a) and 7(b), respectively. S  labels the unloaded state. As the load is increased, the 

state will move up along the primary path until C D=  is reached. In case of a load-controlled system, 

snap-through will occur. However, a displacement-controlled system would bifurcate and the state 

would traverse one branch of the secondary path. 

If 2 ,uη =  the relevant coefficients of the series expansion (4) generally follow as 

 1 2 2
10

2

( / 4)0, ,
cos ( )1

(1 / 4)

k L
P u

κ μλ λ

μ

−
= =

−
−

      

2
10

2
2

3 4 2
10

2

cos ( )1 4
(1 / 4)0, .

12 cos ( )1
(1 / 4)

u

u
λ μλ λ

μ

−
−

= = −
−

−

 (100) 

Thus, 4 2 .λ λ∝  For 0κ =  (hilltop buckling), this system is imperfection sensitive 2( 0),λ <  and Cλ  

exceeds the ultimate load of any imperfect system. Increasing the parameter ,κ  i.e. the stiffness of the 

vertical spring, improves the postbuckling behavior insofar as 2λ  eventually begins increasing 

monotonically. The system is imperfection insensitive for /4.κ μ>  Fig. 7(c) refers to the transition 

case / 4.κ μ=  Remarkably, Cλ λ=  holds along the whole postbuckling path, which requires 

 {0}0iλ ∀∈= . (101) 
This situation is referred to as zero-stiffness postbuckling. In contrast to the present example, where 

zero-stiffness postbuckling is a special case of symmetric bifurcation, it may also be a special case of 

antisymmetric bifurcation [6]. However, this special case is of little practical interest because it does 

not represent a transition from imperfection sensitivity to imperfection insensitivity.  

As κ  is further increased, the critical displacement at the beginning of monotonically increasing 

prebuckling paths approaches 0. Eventually, at 101 cos( ),uκ = −  the two turning points meet at ,=u 0  

where the primary path exhibits a saddle point .D  This situation is shown in Fig. 7(d). A comparison 

of Figs. 7(b), 7(c), and 7(d) shows that the bifurcation point C  is increasing less strongly with 

increasing κ  than the snap through point .D  Hence, the two points are diverging from each other. 
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Fig. 7: Selected results from sensitivity analysis of the initial postbuckling behavior of the pin-jointed two-bar 
system shown in Fig. 5: (a) load-displacement path for hilltop buckling; (b), (c), (d) projections of load-
displacement paths onto the plane 2 0u =  for hilltop buckling, zero-stiffness postbuckling, and the beginning of 
monotonically increasing prebuckling paths 
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7.2. Example for class II 
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Fig. 8: Shallow cylindrical shell subjected to a point load at the center [4] 

Fig. 8 shows a shallow cylindrical shell subjected to a point load at the center. It contains the 

geometric data as well as values for the modulus of elasticity E  and the shear modulus .G  The 

reference load 1000 P kN=  is scaled by a dimensionless load factor .λ  The descrip- tion of 

sensitivity analysis of the initial postbuckling behavior of the shell is based on [4] where this structure 

was previously investigated and where additional details can be found.  

In contrast to the first example, Koiter’s initial postbuckling analysis was not used to compute post- 

buckling paths for this example. Instead of it, prebuckling and postbuckling analyses were performed 

by means of the FEM, using the finite element program MSC.Marc [10]. 

The parameter κ  that is varied in the course of sensitivity analysis of the initial postbuckling behavior 

of the shell is the thickness. The initial value 0κ  was chosen as 5.35 .cm  Load-displacement paths for 

5.35 ,  6.35 ,  7.35 ,  and 8.10 cm cm cm cmκ =  are shown in the left part of Fig. 9 where u  denotes the 

displacement of the load point. The right part of Fig. 9 contains details of corresponding plots of the 

left part. 

For each one of the four values of κ  considered, the structure is imperfection sensitive. For the 

thinnest shell ( 5.35 cmκ = ), the slope of the postbuckling path at the stability limit is negative 

whereas the curvature is positive. The postbuckling path has a minimum followed by a maximum. For 

the second thinnest shell ( 6.35 cmκ = ), the slope of the postbuckling path at the stability limit is 

approximately zero, i.e. 2 0λ ≈ . 

According to Fig. 5(b), for 2 0,λ =  also 2, 4 4, 4,0,  0,  0,  and 0.κ κ κκλ λ λ λ= = = =  Because of the 

negative curvature of the postbuckling path at the stability limit, the first non-vanishing coefficient of 

(4), which because of symmetric bifurcation must have an even subscript, is negative. For the second 

thickest shell ( 7.35 cmκ = ) and the thickest shell ( 8.10 cmκ = ), both the slope and the curvature of 

the postbuckling path are negative at the stability limit. For the thickest shell, hilltop buckling occurs. 

It represents the end of sensitivity analysis of the initial postbuckling behavior of the shell, because 

loss of stability would occur by snap-through if the thickness of the structure was further increased. 
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Fig.9: Selected results from sensitivity analysis of the initial postbuckling behavior of the shallow cylindrical 
shell shown in Figure 7: (a) Load-displacement paths for different values of the thickness of the shell, with the 
largest value referring to hilltop buckling; (b) details of load-displacement paths 
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A comparison of the plots in Fig. 9 shows that the bifurcation point C  is increasing more strongly 

with increasing κ  than the snap-through point D . Hence, the two points are converging to each other. 

This comparison also shows that 2 0λ =  marks the starting point of deterioration of the initial 

postbuckling behavior accompanied by continued improvement of the pre- buckling behavior, 

characterized by  

 2 0    0d dλ κ< ∧ > . (102) 
Fig. 9 elucidates that the increase of the thickness of the shell does not result in a transition from 

imperfection sensitivity to imperfection insensitivity. 

8. Conclusions 
It was shown that hilltop buckling is imperfection sensitive.  

It is conjectured that for symmetric bifurcation all non-vanishing coefficients in the asymptotic series 

expansion for the load level at an arbitrary point of the secondary path (see (4)) are negative, i.e. 

2 0 k kλ < ∀ ∈ {0}.  This conjecture is based on a hypothesis representing the generalization of a 

scheme that was validated numerically for the special case of 4λ  (see (58)). Verification of this 

conjecture is planned. 

Hilltop buckling as the starting point – the Α  – of sensitivity analysis of the initial postbuckling 

behavior of elastic structures is characterized by 2, 0κλ >  with 2 0 d 0,dλ κ> ∧ >  where κ  is a design 

parameter that is increased in the course of the analysis. It marks the starting point of an improvement 

of the initial postbuckling behavior of the structure, accompanied by an improvement of the 

prebuckling behavior. The bifurcation point and the snap-through point are diverging from each other.  

Hilltop buckling as the end – the Ω  – of such sensitivity analysis is characterized by 2, 0,κλ <  with 

2 0 0.d dλ κ< ∧ >  It is preceded by a deterioration of the initial postbuckling behavior of the structure, 

accompanied by an improvement of the prebuckling behavior. Hilltop buckling represents the end of 

sensitivity analysis because snap-through would become relevant to loss of stability if κ  was further 

increased. The bifurcation point and the snap-through point are converging to each other. 

Two classes of sensitivity analyses of the initial postbuckling behavior of elastic structures were 

identified. Class I is characterized by a remarkable orthogonality condition derived from the so-called 

consistently linearized eigenproblem (see (60)). It may be viewed as a special case of class II for 

which this condition does not hold. In mechanical terms, for the first class the decisive eigenvector of 

the eigenproblem, ( )1 λ∗v , describes a rectilinear motion, with λ  representing the time. For class II, 

however, ( )1 λ∗v describes a general motion. Hence, it is conjectured that class I is restricted to 

relatively simple problems. 

The two classes of sensitivity analyses determine the mode of conversion of an originally 

imperfection- sensitive into an imperfection-insensitive structure. Such a conversion is the true 

motivation for this type of sensitivity analyses. 
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For class I, there is no restriction on the sign of ( )4 2 0λ λ = . Hence, for 2 0λ = , the structure may 

either be already imperfection insensitive or still imperfection sensitive. As a special case, zero- 

stiffness postbuckling may occur (see Fig. 7(b)). 

For class II, if ( )*
1, ,Cλλ λ ≠v 0  then ( )22, 0 0,κλ λ = >  and ( )4 2 0 0λ λ = <  (see Fig. 4(b)), but if 

( )*
1, ,Cλλ λ =v 0  then 2, 2 0( ) 0,κλ λ = =  4 2 4, 2 4, 20) 0,  and 0) 0,  0)( 0( (κ κκλ λλ λ λ λ= = = = = = (see Fig. 

5(b)). For the second case there is no transition from imperfection sensitivity into imperfection 

insensitivity. Thus, the increase of the thickness of a structure, while improving its prebuckling 

behavior, does not result in such a transition. For class II, 2 0λ =  correlates with a singular point in 

form of a cusp on the curve described by the vector function ( )*
1 λv  at the point ( )*

1 1Cλ =v v  (see (84)). 

The type of the cusp depends on whether or not ( )*
1, Cλλ λv  is zero. 

The present investigation is viewed as a step in the direction of better understanding the reasons for 

the initial postbuckling behavior of a particular elastic structure and of its interplay with the 

prebuckling behavior. Such understanding will help to avoid the design of structures with unfavorable 

postbuckling characteristics. In this sense, the present study is aimed at changing the widespread 

opinion about postbuckling as a structural feature that can hardly be influenced. 
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Three Pending Questions in Structural Stability 
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Abstract 
This analysis deals with three pending questions in structural stability: 

 Are linear prebuckling paths and linear stability problems mutually conditional? 

 Does the conversion from imperfection sensitivity into imperfection insensitivity by means of a 

modification of the original structural design require a symmetric postbuckling path? 

 Is hilltop buckling, characterized by the coincidence of a bifurcation point and a snap-through 

point on a load-displacement path, necessarily imperfection sensitive? 

The questions will be answered by means of both mathematical proofs and examples. 

Keywords 
linear prebuckling path, linear stability analysis, imperfection (in)sensitivity, symmetric postbuckling 

path, hilltop buckling. 
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1. Introduction 
Despite the long history of structural stability as a field of great scientific relevance and practical 

importance, it still holds a number of questions which have not yet been rigorously answered.  The 

reasons for some pieces of the structural stability landscape still being uncharted range from missing 

mathematical proofs to aspects that are commonly regarded as matters of course, which, at first glance, 

render thorough proofs dispensable.  This is the motivation for delivering in this work some clear cut 

answers to the three questions listed in the abstract.  Recently, they have been cursorily discussed in 

[11]. 

The questions are related to the analysis of load-displacement paths and, in particular, to instability 

phenomena, exhibiting either imperfection sensitivity or insensitivity [9].  After a brief theoretical 

introduction into the topic in Section 2, the Sections 3 through 5 answer the posed questions based on 

mathematical proofs and representative examples.  The example problems are solved analytically or 

numerically or both.  Their simple nature allows drawing focus on corroborating the theoretical 

findings of this work and permits quick repetition of the computations. 

2. Theoretical foundations 
For the analysis of static, conservative systems, the potential energy function ( , ) : NV λ × →u  

can serve as a basis.  Here, N∈u  is the vector of generalized displacement coordinates, and λ∈  is 

a load multiplier which scales a constant reference load .N∈P   It is assumed that the system is either 

discrete or has been discretized such that the number of degrees of freedom N is finite.  The derivative 

 ,( , ) : ( )IVλ λ= = −uG u F u P  (1) 
may be interpreted as an out-of-balance force.  ( )I N∈F u  is the vector of internal forces.  The 

implicit equation 

 ( , )λ =G u 0  (2) 
defines the equilibrium paths of the system.  If two equilibrium paths intersect, the system is said to 

bifurcate at the point of intersection.  Hereinafter, bifurcation points are denoted as ( , ),C Cλu  like 

point C in Fig. 1.  The equilibrium path which contains the unloaded state is referred to as primary or 

prebuckling path ( ( ), ).λ λu   Any other equilibrium path is called a secondary or postbuckling path.  In 

this work it is assumed that there is just one secondary path ( ( ), ( )),η λ ηu  which is uniquely 

parameterized by ,η∈  such that 0( ( ), ( )) | ( , ).C Cηη λ η λ= =u u  

The differential of (2) 

 ,T d dλ⋅ − =K u P 0  (3) 
with the symmetric tangent stiffness matrix , ( )I

T = uK F u  plays an important role for the solution of 

structural problems by the FEM. 
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Fig. 1: On the series expansion of the secondary path at the bifurcation point C (adopted from [9]) 

The notation , ( ( ))I
T λ= uK F u  is used for the specialization of TK  for the primary path.  Along this 

path, apart from snap-through points, where 0,dλ =  (3) can be written as 

 , .T λ⋅ − =K u P 0  (4) 
Differentiating a second time with respect to λ  yields 

 , , , .T Tλ λ λλ⋅ + ⋅ =K u K u 0  (5) 
In the context of Koiter’s initial postbuckling analysis [8], the displacement offset ( ) Nη ∈v  between 

the primary and the secondary path is introduced as outlined in Fig. 1.  Therefore, with 

 ( ) ( ( )) ( ),η λ η η= +u u v  (6) 
the specialization of (2) for the secondary path reads as ( ) ( ( ( )) ( ), ( )) .η λ η η λ η= + =G G u v 0   Insertion 

of the series expansions 

 2 3 4
1 2 3( ) ( )Cλ η λ λη λ η λ η η= + + + +O  (7) 

 2 3 4
1 2 3( ) ( )η η η η η= + + +v v v v O  (8) 

yields the new series expansion 

 2 3 4
0 1 2 3( ) : ( )C C C Cη η η η η= + + + + =G G G G G 0O  (9) 

with , 0| / ! .nnC n nη η== ∀ ∈G G  To simplify their computation, Mang et al. [9] used for tensorial 

quantities ( , )λf u  the differentiation rule 

 ,
; ,

0

( ( ), )
( , ) : ( , ) λ

λ λ
α

α λ λ
λ λ

α =

∂ +
= +

∂
f

f f
u u

u u  (10) 

with .α ∈   Then the first three coefficients in (9) read as 

 
0

1 , 1

2 , ; 1 1 , 1 1 , 2

,

,
1 : .
2

C

C C

C C C Cλ λ

=

= ⋅

= ⋅ + + ⋅
u

u uu u

G 0

G G v

G G v G v v G v⊗

 (11) 

Eq. (9) must be satisfied along the whole secondary path, independently of .η   Therefore, nC =G 0  

.n∀ ∈   From the latter conditions, the unknown pairs 1 1 2 2( , ), ( , ),λ λv v etc. can be successively 

computed.  The length of 1 ≠v 0  (a null eigenvector of ( )T CK u ) can be chosen at will.  Budiansky [5] 

suggested the orthogonality condition 1 0i⋅ =v v  1,i∀ >  which renders the computation of the 

remaining unknowns 1 2 2 3, , , ,λ λv v etc. unique. 
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3. Are linear prebuckling paths and linear stability problems mutually 
conditional? 

3.1. A linear prebuckling path 
A prebuckling path is linear if it satisfies  

 1 2( )λ λ⋅ + + =A u k k 0  (12) 
with some constant matrix N N×∈A  and some constant vectors 1 2, .N∈k k  Eq. (12) must hold for 

any value of ,λ  which requires 1 2im( ) im( ),∈ ∧ ∈k A k A  where im( )A  denotes the image of .A   The 

differential of (12) follows as 

 2 .d dλ⋅ + =A u k 0  (13) 
The formal similarity between (13) and the specialization of (3) for the primary path is somewhat 

misleading since A  is constant.  If A  is singular, the system has at least one unconstrained degree of 

freedom.  Ruling out such exceptional cases, (12) may be rewritten as 

 1
1 2( ) ( ),λ λ−= − ⋅ +u A k k  (14) 

or equivalently ( ) (0)λ λ= +u u k  with 

 1
, 2 const.λ

−= = − ⋅ =u k A k  (15) 
This is both necessary and sufficient for a linear prebuckling path.  The case =k 0  is disregarded in 

the sequel, because it would imply a rigid system. 

3.2. A linear stability problem 
Linear stability problems are characterized by a tangent stiffness matrix of the form 

 0 1.T λ= +K K K  (16) 
It simplifies the computation of the buckling load Cλ  because the condition for loss of stability, i.e. 

det( ) 0,T =K  is just a polynomial equation in .λ  Zienkiewicz and Taylor [15] obtain the result (16) for 

in-plane loaded plates, which indeed exhibit linear prebuckling paths.  The reasonable assumption of 

stability in the unloaded state 0λ =  requires that the constant matrix 0 0
T=K K  is positive definite. 0K  

is referred to as small displacement stiffness, whereas 1 1
Tλ λ=K K  is known as geometric stiffness.  

The conditions for a structural stability problem to be considered as linear are that along the primary 

path (i) changes of the material tangent stiffness matrix are negligibly small, (ii) the displacements are 

sufficiently small, (iii) there is a linear relation between stresses and loads, and (iv) the loads do not 

depend on the displacements [1, 2, 3, 6, 14, 15]. 

With these conditions at hand, possible sources of nonlinearity can be identified as: (i) geometric 

nonlinearity, meaning that the strain-displacement relations are significantly nonlinear, (ii) nonlinear 

material behavior, and (iii) nonlinear boundary conditions [6, 15].  The following considerations are 

confined to the case (i), since it is almost trivial that the cases (ii) and (iii) generally entail both 

nonlinear prebuckling behavior and nonlinear stability problems. 

The question whether linear prebuckling paths and linear stability problems are mutually conditional 

has been answered already in [13].  The present work is an extension of [13] insofar as the alternative 

proofs given in the sequel furnish the same results as [13]. 
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3.3. A linear prebuckling path is not necessary for a linear stability problem 
The following proof by contraposition demonstrates that a linear prebuckling path is not necessary for 

a linear stability problem. 

For a linear stability problem with TK  from (16) it is assumed that 1K  is regular, i.e. its null space is 

empty. Moreover, it is assumed that a linear stability problem implies a linear prebuckling path.  

Insertion of (15) and (16) into (5) leads to the contradiction 1 .⋅ =K k 0  Consequently, the assumption 

that a linear stability problem implies a linear prebuckling path is wrong. 

A question that may be raised at this point concerns the existence of conditions to achieve a linear 

prebuckling path if the stability problem is linear.  Again, insertion of (15) and (16) into (5) furnishes 

the answer: A linear prebuckling path requires 

 1 , = .λ λ⋅ ∀ ∈K u 0  (17) 

3.4. A linear prebuckling path is not sufficient for a linear stability problem 
The following proof by contradiction shows that a linear prebuckling path is not sufficient for a linear 

stability problem. 

A linear prebuckling path is considered, i.e. ,λu  satisfies (15). Additionally, it is assumed that 

 0 1( ) ,T f λ= +K K K  (18) 
with some differentiable function ( ) :f λ →  obeying (0) 0.f =  Thus, the assumption to be refuted 

is 

 Eq. (15) ( ) .f λ λ⇒ =  (19) 
Insertion of (15) and (18) into (5) yields 

 , 1( ) ,f λ λ ⋅ =K k 0  (20) 
which requires either , ( ) 0f λ λ =  or 1 =K 0  or 1 .⋅ =K k 0  The cases , ( ) 0f λ λ =  or 1 =K 0  result in 

constancy of ,TK  meaning that loss of stability is impossible. Therefore, these trivial cases are ruled 

out. For the third possibility 1 ,⋅ =K k 0  proposition (19) is wrong. Hence, (15) is not sufficient for (16). 

It can be concluded from (20) that it is impossible to formulate sufficient conditions for a linear 

stability problem in terms of the prebuckling path ( ( ), ).λ λu   Thus, there is no analogue to (17). This 

conclusion is also plausible from a practical viewpoint. The postbuckling behavior must have an 

influence on the tangent stiffness matrix .TK  Otherwise the same primary path would always entail 

the same matrix ,TK  which clearly contradicts the empirical evidence (cf. the example given in 

Section 4.5 and the results shown in Fig. 6). Therefore, the shape of the primary path alone cannot 

suffice to render a stability problem linear. 

3.5. Linear prebuckling paths and (nontrivial) linear stability problems are mutually 
exclusive 

The following direct proof shows that a nontrivial linear stability problem does not allow a linear 

prebuckling path.  Nontrivial means that in (16) 1 .≠K 0  
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Substitution of (16) into (4) yields 

 1 1 1 1 1
, 0 1 0 1 0( ) ( ) .Tλ λ λ− − − − −= ⋅ = + ⋅ = + ⋅ ⋅ ⋅u K P K K P I K K K P  (21) 

Let the eigenvectors of 1
0 1
− ⋅K K  constitute the columns of .V   Hence, the Jordan canonical form is 

obtained as 

 1 1
0 1 .− −= ⋅ ⋅ ⋅J V K K V  (22) 

Using this transformation in (21) gives 

 1 1 1
, 0( )λ λ − − −= ⋅ + ⋅ ⋅ ⋅u V I J V K P  (23) 

and after premultiplication by 1−V  

 1 1 1 1
, 0( ) .λ λ− − − −⋅ = + ⋅ ⋅ ⋅V u I J V K P  (24) 

The last row of 1( )λ −+I J  reads as 

 10 0 .
1 NNJλ

⎡ ⎤
⎢ ⎥+⎣ ⎦

 (25) 

Therefore, the left hand side of (24) is generally not constant w.r.t. ,λ  which would be necessary for a 

linear prebuckling path.  This result is general because by permutation of columns in V  any of the 

eigenvalues of J  can take the position of NNJ  in the last row. 

3.6. Example of a linear stability problem 
The above theoretical considerations are illustrated by characteristic examples presented in [13]. First, 

a linear stability problem emerging from a two-degrees-of-freedom, planar system shown in Fig. 2(a) 

is analyzed. 

L
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( )f x

1u x

y
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2u
2k

3 1( )k u

Pλ

L

10 1u u−

a( ) b( )

10u

1

2

3

4

 
Fig. 2:  Linear stability problem, (a) original system, (b) equivalent system with nonlinear spring k3 [13] 

The original, undisplaced position of the system is delineated in gray.  The cam plate 1 can undergo 

any in-plane translation but its rotational degree of freedom is blocked by a parallelogram mechanism.  

Part 2 has only one translational degree of freedom in vertical direction.  It is connected to part 1 by a 

negligibly small pivot 3 which slides along the cam contour 

 ( )/0 1

1 1
( ) 1x k Pk P Pf x e x

k F k
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (26) 
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with constants 0 1,k k +∈  and a constant force .F +∈   The local coordinate system x-y is attached to 

part 1.  P +∈  is a constant reference load, amplified by the scalar parameter .λ   The relative 

displacement 1u  and the angle 2u  serve as generalized coordinates.  Apart from the linear spring 2 ,k  

which is unstrained for 2 0,u =  all components are rigid.  Absence of friction is stipulated. 

The mechanism with the parts 1, 2, and 3 may be thought of as a nonlinear spring.  Its passivity 

(stability and monotonous spring characteristics) follows directly from the fact that 1 0.du d Pλ ≥   

Therefore, the two systems shown in Figs. 2(a) and 2(b), respectively, are equivalent if the spring 

characteristics 3 1( )k u  is identical to the nonlinear behavior of the mechanism. 

The potential energy function of the system is 

 ( ) 2 22
1 2 1 2(1 cos( )) ( ) sin ( ).

2
kV P u L u F f u L uλ= − + − + +  (27) 

The equilibrium equations , 1
0uV =  and , 2

0uV =  yield that the primary path is defined by the nonlinear 

relations 

 1
1 2

1 0
ln 1 ,  0.kPu u

k k
λ⎛ ⎞= + =⎜ ⎟

⎝ ⎠
 (28) 

The tangent stiffness matrix specialized for the primary path follows as 

 0 1

2

0
.

0 ( )T

k k
L k L P

λ
λ

+⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K  (29) 

Hence, the stability problem is linear with a regular matrix 1K  according to (16). However, in Section 

3.3, regularity of 1K  was found to be in conflict with a linear prebuckling path. 

3.7. Example of a linear prebuckling path 

L 2u
k

Pλ
1u

c
 

Fig. 3:  System with a linear prebuckling path [13] 

The second system to be analyzed is shown in Fig. 3.  Apart from the linear elastic torsional spring c 

and the linear elastic spring k, all components are rigid.  The displacement 1u  and the angle 2u  serve 

as generalized coordinates.  In the unloaded initial state 0λ =  and 1 2( , )Tu u = 0  (delineated in gray) 

the springs are unstrained. 

The potential energy function is readily found as 

 
2

2 1
1 2

2

1 1 .
2 2 cos( )

L uV Pu cu k L
u

λ −⎛ ⎞= − + + −⎜ ⎟
⎝ ⎠

 (30) 

With the equilibrium equations , 1
0uV =  and , 2

0,uV =  this results in a linear prebuckling path 
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 1 2,   0Pu u
k
λ

= =  (31) 

and in the tangent stiffness matrix 

 
0

.
0 ( / )T

k
c P L P kλ λ

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  (32) 

It follows from det( ) 0T =K  that there is no bifurcation point if 2 4 .k L c≤  Evidently, the stability 

problem is nonlinear, which verifies the theoretical result of Section 3.4. An approximation of the 

stability problem as linear by neglecting the nonlinear term in (32) is only acceptable for large values 

of k or large values of L or both. This situation corresponds to the case of sufficiently small 

prebuckling displacements, as briefly discussed in Section 3.2. 

4. Does the conversion from imperfection sensitivity into imperfection 
insensitivity require a symmetric postbuckling path? 

Since Koiter [8] introduced a method for analyzing postbuckling paths of perfect structures in the 

vicinity of the bifurcation point, the question of imperfection sensitivity or insensitivity of these 

structures has experienced ongoing research interest. More recently, studies have focused on 

improving the buckling behavior [4, 9], which may mean to convert imperfection sensitive into 

imperfection insensitive structures.  Therefore, it is necessary to clarify the role of characteristic 

properties of stability problems for the conversion process from imperfection sensitivity into 

imperfection insensitivity. The ultimate goal should be to provide the structural engineer with a set of 

rules for designing structures exhibiting imperfection insensitivity right from the outset. 

As a contribution to this topic, the following considerations answer the question whether symmetric 

equilibrium paths are a necessary precondition for imperfection sensitivity.  A mathematically more 

fundamental discussion and some insights concerning the role of antisymmetric load-displacement 

paths as well as zero-stiffness postbuckling paths can be found in [12]. 

4.1. Imperfection insensitivity 
Bochenek [4] proposed to classify bifurcation at point C as imperfection insensitive if and only if 

, ( )sign( ) 0ηλ η η ≥  in an open local domain around C with the equals sign holding only for 0.η =   

Bochenek referred to these properties as symmetric load-displacement behavior in the vicinity of C.  

By introduction of : min{ | \{0}, 0},min mm m m λ= ∈ ≠  Bochenek’s condition can be expressed in 

terms of the coefficients iλ  from (7) as 

  is even 0.min mmin
m λ∧ >  (33) 

In any other case, the system is imperfection sensitive. 

4.2. Symmetric equilibrium paths 
Essentially, it is the potential energy function V that defines the load-displacement behavior of a 

structure. Therefore, it is reasonable to give a definition of symmetric load-displacement behavior in 
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terms of V. Let the linear mapping : N N→T  be an element of a group that describes mirror 

symmetry.  In [12], the symmetry condition 

 ( , ) ( ( ), ) ( , ) NV Vλ λ λ= ∀ ∈ ×u T u u  (34) 
was proposed.  The uniqueness of the primary path requires ( ) ( ( )).λ λ=u T u   Specializing V for the 

secondary path, it may be expressed as a function of .η   Hence, symmetry with respect to η  requires 

( ) ( )V Vη η= −  or with (6) 

 ( ( ( )) ( ), ( )) ( ( ( )) ( ), ( )) .V Vλ η η λ η λ η η λ η η+ = − + − − ∀ ∈u v u v  (35) 
A comparison of (34) and (35) shows that ( ) ( )λ η λ η= −  and ( ) ( ( )).η η= −v T v   Therefore, necessary 

and sufficient conditions for the symmetry of the secondary path with respect to η  are 

 ( ) ( )λ η λ η= − ∧  (36) 
 ( ) ( ( ))η η= − ∧v T v  (37) 
 ( ) ( ( )).λ λ=u T u  (38) 
In [12], these results were deduced by means of the series expansions (7) and (8).  There, it was shown 

that for symmetric bifurcation problems a coordinate transformation allows to describe the symmetry 

with 1... , 1...( ) [ (1 2 )]ij iN i N j Nδ δ = == − ⋅T u u  where ijδ  is the Kronecker symbol.  Then, the symmetric 

structure of 
, nT λ

K  with n∈  can be used to demonstrate that symmetry is reflected by 

1 [0, , 0, ]Tp=v …  with some \{0},p∈  1 0i⋅ =v v  1,i∀ >  and i =v 0  {3,5,7, },i∀ ∈ …  which 

corroborates (37). 

Moreover, insertion of (7) into (36) yields 1 3 5 ... 0.λ λ λ= = = =  

4.3. Symmetric postbuckling paths are not necessary for the conversion from 
imperfection sensitivity into imperfection insensitivity 

Satisfaction of (33) is independent of (37) and (38). Consequently, symmetry is not necessary for 

imperfection insensitivity. 

The condition (33) provides a means of classifying a system as imperfection sensitive or insensitive.  

To do so, it suffices to compute the coefficients iλ  up to an index i m=  such that 0.mλ ≠  In terms of 

the coefficients ,iλ  the conversion from imperfection sensitivity into imperfection insensitivity is 

reflected by a sign reversal of mmin
λ  with even .minm  Evidently, this does not require symmetry. If, in 

contrast, minm  is odd, both a symmetric bifurcation path and imperfection insensitivity are unfeasible. 

4.4. On the invariance of properties with respect to changes of the path parameter 
The path parameter η  should uniquely parameterize the postbuckling path and it should be zero at the 

bifurcation point C.  Apart from these stipulations, the choice of η  is not unique.  The parameter η  

may be replaced by any bijective coordinate transformation ( )η η η  which obeys (0) 0.η =  In 

contrast to symmetry, the property of imperfection sensitivity or insensitivity is invariant with respect 

to such transformations. 
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To show this, consider that a bijective transformation of the path parameter can be defined by 
1 2

1 2( ) n n n
n n nk k kη η η η η+ +

+ += + + +…  with 0.nk ≠  For bijectivity, n has to be odd. Application of this 

transformation to (7) yields 

 1
1( ( )) m mmin min

m mmin min
λ η η λ η λ η +

+= + +…  (39) 

with mmin
m m nmin min

kλ λ=  and .min minm nm=  Therefore, the property of imperfection sensitivity is 

invariant with respect to this type of coordinate changes. This is plausible from a physical perspective; 

imperfection sensitivity or insensitivity is an intrinsic property of a system.  In contrast, symmetry can 

easily be lost through such transformations because the parameters iλ  in (39) may be coefficients of 

odd powers of ,η  even if ( )λ η  was a symmetric function. 

4.5. Example 
The following problem exemplifies the above theoretical findings.  It closely follows the lines of an 

example presented in [12]. 

The transition from imperfection sensitivity to imperfection insensitivity requires modifications of the 

original structure.  It is reasonable to formulate the problem such that the considered modifications can 

be controlled by a scalar parameter which will be denoted as .κ   Hence, the analysis should furnish 

the range of values of κ  where the structure is imperfection insensitive. 

kγ

L

2uL

kκ

k

Pλ

1u1

2

L

 
Fig. 4: System with non-symmetric secondary path 

Fig. 4. shows a two-degrees-of-freedom system which exhibits a postbuckling path that is not 

symmetric. A rigid bar 1 is fitted with two turning-and-sliding joints. The second rigid bar 2 can only 

rotate with respect to a horizontal axis.  The coordinate 1u  measures the angle between this axis and 

bar 1, whereas the coordinate 2u  defines the angular position of bar 2. The constant vertical reference 

load P +∈  is applied to the system at the upper turning-and-sliding joint. It is amplified by the scalar 

parameter .λ  The remaining components of the system are three linear elastic springs ,k  ,kγ  and kκ  

with parameters γ  and .κ +∈  The unloaded state which is defined by 0λ =  and 1 2( , ) ( / 4,0)u u π=  

is rendered in gray.   
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The potential function 

 
( ) ( )(

( ) ( ) )

22
1 2 1

22
2 2 2

11 2 sin( )cos( ) 1 2 cos( )
2

1 cos( ) 1 3 2(sin( ) cos( ))

V P L u u kL u

u u u

λ

κ γ

= − − + −

+ − + − + −
 (40) 

is not symmetric with respect to the coordinates 1u  and 2.u  The equilibrium equations , 1
0uV =  and 

, 2
0uV =  yield the primary path 

 
( )1 1 1

2

( ) 2 sin( ) tan( )

0.

k Lu u u
P

u

λ = −

=
 (41) 

Because an analytical solution for the secondary path was not found, this path was computed using a 

numerical solver. 

The coefficient 1λ  vanishes independently of κ  and any other system parameter. Vanishing of 1λ  is a 

necessary condition for both symmetry and imperfection insensitivity.  However, since 3 0,λ ≠  the 

postbuckling path is not symmetric.  The parameter values are chosen as 1 m,L =  1 N/m,k =  

0.07,γ =  and 1 N.P =  

The design parameter κ  is varied in order to achieve the desired conversion from imperfection 

sensitivity into imperfection insensitivity.  For [0, 0.08183],κ ∈  the buckling behavior is imperfection 

sensitive and imperfection insensitivity is achieved for 0.08183.κ >  At the transition point 

0.08183,κ =  the first few coefficients of the series expansions (7) and (8) take the values 
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 (42) 

if 1v  is normalized to unit length.  It can be shown that the dependence of the coefficients 2λ  and 4λ  

on κ  is linear and quadratic, respectively. Fig. 6 shows this dependency in a parametric plot of 2λ  and 

4.λ  

 κ =0

 κ =0.08183
 κ =0.25

κ =0.43  
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imperfection insensitivity
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Fig. 5:  Coefficients of asymptotic seriesexpansion of λ  for varying κ  
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It follows from (41) that the shape of the primary path depends only on the initial rise of bar 1, but not 

on the system parameters γ  and .κ   However, γ  and κ  do have an influence on the shape of the 

secondary path. Moreover, it can be shown that TK  is independent of ,κ  which implies that the 

bifurcation points are not influenced by variations of the design parameter .κ   Indeed, the location of 

C is constant with respect to ,κ  as shown in Fig. 6. It contains load-displacement paths for 

representative values of .κ  Evidently, the postbuckling paths are not symmetric and a conversion from 

imperfection sensitivity into insensitivity is achieved. A second bifurcation point 1C  and a snap-

through point D are located on an unstable sector of the primary path.  Moreover, Fig. 6 shows that 

increasing the stiffness by means of κ  may lead to topological changes of the secondary path. 

Apart from the constancy of the prebuckling behavior, it is worthwhile to note that for sufficiently 

large values of ,κ  the ultimate load of the postbuckling path exceeds the limit load at the point D of 

the primary path.  An increase of the parameter γ  would cause a larger buckling load ,Cλ  i.e. the 

point C approaches D. Consequently, stiffening the system by increasing γ  is counterproductive 

insofar as the ultimate load of the system may drop. 

This example shows that symmetry is not necessary for the conversion from imperfection sensitivity 

into insensitivity. However, 1 0λ =  is a necessary condition for such a conversion. If, in contrast to the 

presented example, a system does not obey this condition, structural modifications of the original 

system may be necessary to enforce 1 0,λ =  before further measures are taken to shape the coefficient 

2.λ  Moreover, the considered example demonstrated that the conversion from imperfection sensitivity 

into insensitivity can be achieved without modifications of the primary path and the buckling load. 
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Fig. 6: (a) Load-displacement paths of the system shown in Fig. 4, (b) projection onto the plane 2 0=u  

5. Is hilltop buckling necessarily imperfection sensitive? 
For the same motivation that sparked off the previous question, namely ab initio design for 

imperfection sensitivity, it seems reasonable to identify classes of stability problems where 

imperfection insensitivity is impossible.  The following discussion will demonstrate why the 

prominent case of hilltop buckling falls into such an undesirable class. 

5.1. Hilltop buckling 
Hilltop buckling is characterized by the coincidence of a bifurcation point C and a snap through point 

D of a load-displacement path [7]. Multiple hilltop buckling is not discussed in this analysis, i.e. there 

is only a single secondary path. For a discussion on multiple hilltop branching phenomena and their 

influence on imperfection sensitivity refer to [10]. The results of examples presented there corroborate 

the following theoretical findings. 

As described in 0, the equation 1 3 0C⋅ =v G  with 3CG  from (9) can be expressed as 

 2
1 1 1 1 1 0a b cλ λ+ + =  (43) 

with 

 , 1 1
1

, 1 1

( ) :1
2 ( ) :

T C

T C

a λλ

λ

= −
K u v v
K u v v

⊗
⊗

 (44) 

and similar terms for 1b  and 1c  [9]. The parameter 2λ  is contained in 1.c  So far, the primary path was 

parameterized by ,λ  but in the vicinity of snap-through points this does not allow a unique 

parameterization of the path.  Therefore, a new path parameter ξ  is introduced, which is single-valued 

along the primary path.  At the stability limit ( , ),C Cλu  it takes the value ,= Cξ ξ  whereas < Cξ ξ  

holds along the prebuckling path. 

Then, 1a  from (44) can be expressed in terms of ξ  as  
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 , 1 1 ,
1

, ,, 1 1

:1 .
2 :

C

T

T

a ξξ ξξ

ξ ξξ ξ ξ

λ
λ λ

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

K v v
K v v

⊗
⊗

 (45) 

At snap-through points, ( )λ ξ  exhibits a local maximum, i.e. , 0ξλ =  and , 0,ξξλ <  , 1 1:T ξξK v v⊗  

remains finite, and , 1 1:T ξK v v⊗  does not vanish.  Hence, snap-through points are characterized by 

1 .a = −∞   In fact, 1a  exhibits a pole of second order at snap-through points (cf. [9]). Vice versa, if the 

stability limit does not coincide with the snap-through point, , 0>ξλ  and 1a > −∞.  This case is 

considered in the subsequent section, unless stated otherwise. 

5.2. Hilltop buckling is imperfection sensitive 
The fundamental idea of the following proof is to study the mathematical expression for 2λ  if the 

bifurcation point C approaches the snap-through point D as a consequence of parametric changes of 

the original design.  Finally, it can be shown that the transition case, where C and D converge, only 

allows 2 0.λ <  

The coefficient 1a  from (45) can also be computed in terms of ,η  i.e. the parameter of the secondary 
path: 

 , 1 1 ,
1

, ,, 1 1 0

:1 .
2 :

T

T

a ηη ηη

η ηη η

λ
λ λ

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

K v v
K v v

⊗
⊗

 (46) 

Equating the right-hand sides of (45) and (46) gives 

 

2

,, 1 1 0 , 1 1
, ,0

, , 1 1 , , 1 1,0

: :
.

/ : / :
C C

T T

T T

ηηη η ξξ
ηη ξξη

η η ξ ξξη ξ ξ ξ ξ

λ
λ λ

λ λλ
=

=
= = =

⎛ ⎞ ⎛ ⎞⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

K v v K v v
K v v K v v

⊗ ⊗
⊗ ⊗

 (47) 

Insertion of 

 , 1 , 20 0
, 2 ,η ηηη η

λ λ λ λ
= =
= =  (48) 

which follow from (7), and the equivalence 

 , ,
,

, , 0
C

C

T T
T

ξ η
λ λ λ

ξ ηξ ξ η
λ λ=

= =

= =
K K

K  (49) 

into (47) yields 

 

2
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, , 1 1,, 1 1
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TT

ηη η ξξ
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ξ ξξξ ξ ξ ξ ξξ ξ

λλ λ λ
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K v v K v v
K v vK v v
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 (50) 

If 1 0,λ ≠  the system is imperfection sensitive. Therefore, it only remains to analyze the case 1 0,λ =  

which allows rewriting (50) as 

 
, 1 10

2 ,
, 1 1

:1 .
2 : C

C

T

T

ηη η
ξ ξ ξ

ξ ξ ξ

λ λ=

=

=

=
K v v

K v v

⊗

⊗
 (51) 

Note that 1v  is the null eigenvector of | .
CT λ λ=K   Thus, 
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 1 1

0 if 
: 0 if 

0 else

C

T C

ξ ξ
ξ ξ

> <⎧
⎪= =⎨
⎪<⎩

K v v⊗  (52) 

holds along the prebuckling path and in the vicinity of the stability limit.  Because of (52) and the fact 

that the eigenvalues of TK  cannot undergo discontinuous changes, 

 , 1 1: 0,
C

T ξ ξ ξ=
− < <K v v∞ ⊗  (53) 

or equivalently 

 , , 1 1: 0.
CC

T λ ξ ξ ξλ λ
λ

==
− < <K v v∞ ⊗  (54) 

Alternatively, (53) and (54) may be proved by means of the so-called consistently linearized 

eigenproblem [9]. 

, 0 1 1

2

| :=T ηη η
λ

K v v⊗

, 0 1 1| :=T ηη ηK v v⊗

2λ

0
T , | = Cξ ξ ξλ

, | 0= =
Cξξ ξ ξλ

 
Fig. 7:  Values of , 0 1 1| :T ηη η=K v v⊗  and 2λ  as the bifurcation point C moves along the primary path 
(qualitative plot) 

A transition from imperfection sensitivity to imperfection insensitivity requires 2 0,=λ  which entails 

, 0 1 1| : 0T ηη η= =K v v⊗  in (51). The exceptional case of 2λ  being identically 0 is excluded in the sequel, 

because then the same arguments would apply to 4 ,λ  which is relevant for imperfection sensitivity or 

insensitivity if 1 2 3 0.= = =λ λ λ  In fact, the following line of reasoning applies to ,mmin
λ  where minm  

needs to be even. For simplicity, the expressions are given for the most frequent case 2.=minm  

In Fig. 7, which contains qualitative plots of , 0 1 1| :T ηη η=K v v⊗  and 2 ,λ  the transition from 

imperfection sensitivity to imperfection insensitivity occurs at point T. Both graphs start at the 

minimum value of , | ,= Cξ ξ ξλ  where , | 0= =
Cξξ ξ ξλ  holds. At this point, the secondary path degenerates to 

a single point. However, this occurs beyond hilltop buckling ,( | 0)= =
Cξ ξ ξλ  and is, hence, only of minor 

interest. 
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The transition from imperfection sensitivity to imperfection insensitivity happens as , 0 1 1| :T ηη η=K v v⊗  

changes from 0 to a (finite) negative value.  Therefore, , 0 1 1| : 0T ηη η= =K v v⊗  (point T in Fig. 7) may be 

considered as the borderline case. 

If the same transition should take place for the hilltop buckling case characterized by , | 0,= =
Cξ ξ ξλ  

, 0 1 1| :T ηη η=K v v⊗  must change from a finite value to ,±∞  which can be deduced from (51).  Therefore, 

here, the borderline case is , 0 1 1| : .T ηη η= = ±K v v⊗ ∞  

Since a smooth transition of the expression , 0 1 1| :T ηη η=K v v⊗  from 0 to ±∞  within an infinitesimal 

increment of ξ  or equivalently , | = Cξ ξ ξλ  is impossible, a bifurcation point C that refers to a transition 

case from imperfection sensitivity to imperfection insensitivity cannot converge to a snap-through 

point D. This finding is reflected in Fig. 7 since the transition point T cannot coincide with the hilltop 

buckling point 0. In fact, 2 0=λ  and hilltop buckling are mutually disjoint events. Therefore, at hilltop 

buckling points only one sign of 2λ  is allowed. From a practical viewpoint and in agreement with 

numerical results, this sign is negative, i.e. 2 0.<λ  Any secondary path emerging from a hilltop 

buckling point is necessarily imperfection sensitive. Thus, hilltop branching may be interpreted as one 

of the most undesirable types of initial postbuckling behaviors. 

5.3. Example 
The undesirable properties of hilltop buckling are demonstrated by means of a planar, two-degrees-of-

freedom system which is outlined in Fig. 8. 

2u

Pλ

k

c
1L

3L

1u
2L 1

2

 
Fig. 8: System exhibiting hilltop buckling 

The undisplaced position of the system is shown in gray. The angular position 1u  of bar 1 and the 

angular position 2u  of the knee 2 serve as generalized coordinates. A constant vertical reference load 

,P +∈  which is amplified by the load factor ,λ  is applied to the system at the top of part 2. A linear 

elastic torsional spring c counteracts rotations of the knee 2. The spring k is also linear elastic. In the 
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unloaded initial state 0λ =  and 1 2( , ) ( /6, 0),u u π=  the springs are unstrained. Snap-through can occur 

in the direction of 1,u  whereas 2u  may be referred to as the bifurcation coordinate. 

The potential energy function reads as 

 
( )

( )( )
3 2 1 1

22
2 1 1 2 2

(1 cos( )) (1/ 2 sin( ))
1 1 3 / 2 cos( ) (1 cos( )) .
2 2

V P L u L u

cu k L u L u

λ= − − + −

+ + − + −
 (55) 

The primary path 

 
( )1

1 1 1

2

( ) tan( ) cos( ) 3 / 2

0

k Lu u u
P

u

λ = −

=
 (56) 

readily follows from the equilibrium equations , 1
0uV =  and , 2

0.uV =   It is independent of ,c  2 ,L  and 

3.L  However, these parameters do have an influence on the secondary path, which was computed by 

means of a numerical solver.  An analytical solution was not found. All load-displacement paths are 

symmetric with respect to the plane 2 0.u =  
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Fig. 9: (a) Load-displacement paths of the system shown in Fig. 8, (b) projection onto the plane 2 0=u  
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Constant system parameters are chosen such that 1/k P L=  and 3 13 .L L=   2L  and c  are defined as 

 ( )
2 1

2
1

0.8 (2 1)

0.02 0.132678...

L L

c L P

κ

κ

= −

= +
 (57) 

where [0,1]∈κ  is a scalar design parameter. Fig. 8 is drawn for 2 0.>L   If 2 0,<L  the spring is c  is 

on the opposite side of the vertical bar of part 2. Hilltop buckling occurs at 1,κ =  whereas 1κ <  is 

associated with loss of stability caused by bifurcation. Fig. 9 shows the corresponding load-

displacement paths. For 0.5=κ  2( 0),=L  the projection of the secondary path onto the plane 2 0=u  

equals the primary path. As κ  approaches the value 1, the bifurcation point C converges to the snap-

through point D. Increasing κ  further than 1 would be possible, yet, the practical relevance of 

bifurcation points located on an unstable section of the primary path is rather limited. Hence, the 

sensitivity analysis of the initial postbuckling behavior can be terminated at 1.κ =  

For 0,κ =  the system is imperfection sensitive. As κ  is increased, it changes to imperfection 

insensitivity at 0.34381...=κ  and back to imperfection sensitivity at 0.64419...=κ  In line with 

Section 5.2, the hilltop buckling point ( 1)κ =  is imperfection sensitive. These findings follow from 

the sign of 2 ,λ  which is shown in Fig. 10. The transition points 2 0=λ  are marked with circles. For 

[0,1],∈κ  2λ  is always finite. 

Moreover, Fig. 10 contains the parameters 1a  and , 0 1 1| : .T ηη η=K v v⊗  In the limit 1 ,→ −κ  1→−a ∞  and 

, 0 1 1| : .T ηη η= →+K v v⊗ ∞  Clearly, , 0| :T ηη η=K  1 1v v⊗  cannot intersect the abscissa at 1,κ =  which 

confirms the theory of Section 5.2. The hilltop buckling point is tied to an imperfection sensitive 

secondary path. 

Note that modifications of κ  generally have an influence on the buckling load Cλ  (cf. Fig. 10) but not 

on the shape of the primary path. Therefore, modifications of κ  may be appropriate means of 

improving the stability properties of the system. However, there are more intuitive and effective ways 

of doing so, like reducing 2,L  reducing 3,L  or increasing c. 

6. Conclusions 
In this work three pending questions of structural stability were answered. The main results of the 

presented analyses are: 

 A linear prebuckling path is neither necessary nor sufficient for a linear stability problem. 

 The conversion from imperfection sensitivity into imperfection insensitivity does not require a 
symmetric postbuckling path. 

 Hilltop buckling is always imperfection sensitive. 

These findings should help to prevent structural engineers from designing systems which are 

inherently imperfection sensitive and cannot be made imperfection insensitive without significant 

qualitative changes of the original design. Future research will be focused on the identification of 
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additional qualitative properties that are pivotal for the conversion from imperfection sensitivity into 

insensitivity. 
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Imperfection Sensitivity or Insensitivity of  
Zero-stiffness Postbuckling  
... that is the Question  
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1040 Vienna, Austria 

 

Abstract 
Zero-stiffness postbuckling of a structure is characterized by a secondary load-displacement path 

along which the load remains constant. In sensitivity analysis it is usually considered as a borderline 

case between imperfection sensitivity and imperfection insensitivity. However, it is unclear whether 

zero-stiffness postbuckling is imperfection sensitive or insensitive. In this paper, Koiter’s initial 

postbuckling analysis is used as a tool for sensitivity analysis. Distinction between two kinds of 

imperfections is made on the basis of the behavior of the equilibrium path of the imperfect structure. 

New definitions of imperfection insensitivity of the postbuckling behavior are provided according to 

the classification of the imperfections. A structure with two degrees of freedom with a zero-stiffness 

postbuckling path is studied, considering four different imperfections. The results from this example 

show that zero-stiffness postbuckling is a transition case from imperfection sensitivity to imperfection 

insensitivity for imperfections of the first kind and that it is imperfection insensitive for imperfections 

of the second kind. 

Keywords 
zero-stiffness postbuckling, Koiter’s initial postbuckling analysis, classification of imperfections, 

imperfection insensitivity, constant potential energy 
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1. Introduction 
In the course of sensitivity analysis of the initial postbuckling behavior of a structure, a special case 

may occur that is referred to as zero-stiffness postbuckling [6]. It is characterized by a secondary path 

with a constant load. In this paper the question will be answered whether zero-stiffness postbuckling is 

imperfection sensitive or imperfection insensitive. 

The investigation is restricted to static, conservative systems with a finite number N  of degrees of 

freedom as conforms to the FEM. The material is assumed to be rigid. Multiple bifurcation will be 

excluded. 

2. Theory 
2.1. Koiter’s initial postbuckling analysis [3] 
The behavior of a static, conservative system can be deduced from the potential energy 

function ( , ) : .NV λ × →u R R R  The vector N∈u R  contains the displacement coordinates. The 

parameter λ∈R  is a load multiplier scaling a constant reference load N∈P R . Therefore,  

 ( , ) : , ( )Vλ λ= = −I
uG u F u P  (1) 

may be interpreted as an out-of-balance force which vanishes along any equilibrium path in the 

u λ− − space. Here, ( )IF u  is the vector of internal forces. The secondary path is parameterized by a 

scalarη , with 0η = corresponding to the bifurcation point ( , ).C Cλu  The displacement offset between 

the primary and the secondary path is defined by the vector ( ) .Nη ∈v R  Thus, 

( ) ( ( )) ( )η λ η η= +u u v describes the displacement along the secondary path, where ( ( ))λ ηu  denotes 

the displacement vector along the primary path. Insertion of the series expansions 

 2 3 4
1 2 3( ) ( )C Oλ η λ λη λ η λ η η= + + + +  (2) 

 2 3 4
1 2 3( ) ( )Oη η η η η= + + +v v v v  (3) 

into the specialization of G  for the secondary path, i.e., ( ) ( ( ( )) ( ), ( ))η λ η η λ η= + =G G u v 0 , yields 

the new series expansion 

 2 3
0 1 2( ) ( )C C C Oη η η η= + + + =G G G G 0  (4) 

with
0

, !nnC n n
η η=

= ∀ ∈G G N . Since (4) must hold for arbitrary values of η , nC n= ∀ ∈G 0 N . This 

condition paves the way for successive calculation of the unknowns 1 1 2 2, , , ,λ λv v  etc. 

2.2. Classification of imperfections 
For perfect systems undergoing bifurcation buckling, the imperfections are classified in two categories 

depending on whether or not the imperfect system has a bifurcation point. Godoy [1], and Ikeda, et al. 

[2] introduce an imperfection vector Ε  which is calculated from the potential energy function 

referring to the imperfect structure  

 ( )* * , , : NV V λ ε= × × →u R R R R  (5) 
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where ε ∈R  denotes the imperfection parameter, and *  denotes variables or functions of the imperfect 

structure. The imperfection vector is defined as 

 
2 *V
ε

=

∂
=
∂ ∂ u u

Ε
u

. (6) 

Ε  describes the difference of the out-of-balance force between the perfect and the imperfect structure 

depending on the imperfection parameter ε . The classification of imperfections gives: 

 1 0T ⋅ =Ε v  for imperfections of first kind, ,Iε  (7) 
 1 0T ⋅ ≠Ε v  for imperfections of second kind, .IIε  (8) 

2.3. Definitions of and criteria for imperfection insensitivity 
Imperfections of first kind: 

Definition I: [ , ]Iε ς ς∈ − , where ς  is an arbitrary small positive value. If all imperfect structures in 

this interval are still stable at the bifurcation point *C , then the initial postbuckling path of the 

corresponding perfect structure is imperfection insensitive with respect to Iε . 

Criterion I: If, in Eq. (2), 

 
min min0  is even,m mλ > ∧  where min : min{ | \{0}, 0},mm m m λ= ∈ ≠N  (9) 

then the initial postbuckling path is imperfection insensitive with respect to Iε . 

Imperfections of second kind: 

Definition II: [ ,0) (0, ]IIε ς ς∈ − ∪ , where ς  is an arbitrary small positive value. If no imperfect 

structure in this interval has a load-displacement path with a snapthrough point ( )* *,D Dλu with 

*D Cλ λ< , then the initial postbuckling path of the corresponding perfect structure is imperfection 

insensitive to IIε . 

Criterion II: See Definition II. 

3. Condition for zero-stiffness postbuckling  
For zero-stiffness postbuckling, the external load remains constant. Hence, all load coefficients in Eq. 

(2) vanish, i.e.,  

 Cλ λ= , (10) 
 { }0   \ 0i iλ = ∀ ∈N . (11) 
Considering load coefficients ( )i iλ λ= κ , where { }1, ,....κ κ2=κ  is a set of design parameters,  

 ( ) ( ) ( )0 0 0       i i i iC Cλ = ⋅ ∨ ⊆ ∨ ⊆κ κ κ κ κ κ κ  (12) 
with 

 ( )0 0 0C =κ  (13) 
is a necessary and sufficient condition for zero-stiffness postbuckling. 

4. Properties of zero-stiffness postbuckling 
4.1. Internal force along a zero-stiffness equilibrium path 
Substituting (10) into (1) and setting the result equal to zero yields 
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 ( ) Cλ= ⋅IF u P . (14) 
Eq. (14) shows that the internal force along the zero-stiffness path is a constant. 

4.2.  Potential energy along a zero-stiffness equilibrium path 
Since the external load does not change along the zero-stiffness equilibrium path, the difference 

between the work done by the external load on the displacement at an arbitrary point on the secondary 

path and the one on the displacement at the bifurcation point is obtained as  

 ( ) ( )C C CW λ λ= ⋅ ⋅ − ⋅ ⋅P u P u ,  (15) 
The change of the strain energy is given as 

 ( ) ( )CU U UΔ = −u u . (16) 
By the law of conservation of energy,  

 W U= Δ . (17) 
Insertion of (15) and (16) into (17) yields 

 ( ) ( ) ( ) ( ) ( ) ( )C C C C CV U U Vλ λ= − ⋅ ⋅ − ⋅ ⋅ =u u P u = u P u u . (18) 
Eq. (18) indicates that the potential energy along the zero-stiffness equilibrium path is a constant. 

5.  Examples 
A planar, static, conservative system with two degrees of freedom (Fig. 1) is studied to illustrate the 

special situation of zero-stiffness postbuckling. It was originally studied in Schranz et al. [4] and later 

in Steinboeck et al. [5]. 

L

Pλ
L

1u 2u
k

kμ

kκ

 
Fig. 1: Two-bar system 
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Fig. 2: Surface ( )V u  containing the curve ( )ηγ which represents the zero-stiffness postbuckling mode 

Fig. 2 shows the surface ( ) ( )( )( ) 2, ,   V V λ= ∀ ∈u u u u u R . Its intersection with the horizontal plane 

( )( ) 2,   C CV V= ∀ ∈u u u R  is the closed curve ( ) ( ) ( ) ( )( )( )( ), ,   Vγ η η η λ η η= ∀ ∈u u u R  which 

represents the potential energy along the zero-stiffness path containing the bifurcation point 

( )( ),C CC V= u u . In an infinitesimal neighborhood of ( )γ η , ( )V u  coincides (apart from terms that 

are of higher order small) with the potential-energy surface ( )V λu, . In the infinitesimal neighborhood 

of an arbitrary point on ( )γ η , , 0V ≥uu , where the equals sign holds for ( )γ η . Consequently, the 

zero-stiffness postbuckling path is stable. Therefore, zero-stiffness postbuckling can be classified as 

imperfection insensitive. 
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(a) Imperfection of stiffness of top spring                  (b) Imperfection of stiffness of lateral spring 
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(c) Shift of load                                                         (d) Change of initial angle between two rods 

Fig. 3: Equilibrium paths of perfect and imperfect structures 

Four different imperfections are considered herein, including an imperfection of the stiffness of the top 

spring, an imperfection of the stiffness of the lateral spring, a shift of the load and a change of the 

initial angle between two rods. The first two imperfections belong to the first kind, and the last two to 

the second kind of imperfections. Fig. 3 displays the equilibrium paths of the perfect and the imperfect 

structure for different imperfections. 

6.  Conclusions 
From the theoretical investigation and the results of the examples, it follows that zero-stiffness 

postbuckling  

 represents a case of transition from imperfection sensitivity to insensitivity for imperfections of 

first kind;  

 is characterized by a stable postbuckling equilibrium path with constant potential energy and, 

hence, is imperfection insensitive to imperfections of second kind. 
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Abstract 
In the course of sensitivity analysis of the initial postbuckling behavior of elastic structures, a special 

case may occur which is referred to as zero-stiffness postbuckling. The purpose of this paper is to 

present sufficient and necessary conditions for this special case which is associated with a favorable 

form of transition from imperfection sensitivity to imperfection insensitivity in the course of 

sensitivity analysis of the initial postbuckling path. Koiter's initial postbuckling analysis is chosen as 

the vehicle for quantification of the initial postbuckling behavior. 
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1. Introduction 
Tarnai [1] has pioneered research on zero-stiffness postbuckling. Schranz et al. [2] presented a 

numerical example which was further elaborated by Steinboeck et al. [3]. Jia et al. [4] have shown that 

zero-stiffness postbuckling is imperfection insensitive by investigation of the potential energy along 

the postbuckling path. The task of this work is to present sufficient and necessary conditions for zero-

stiffness postbuckling with the help of Koiter's initial postbuckling analysis [5]. 

2. Necessary conditions for zero-stiffness postbuckling 
The difference between the dimensionless load parameter λ  at an arbitrary point on the secondary 

equilibrium path, characterized by the path parameter η , and the value of λ  at the stability limit for 

which 0η = , is given as  

 ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5
1 2 3 4, .Oλ κ η λ κ η λ κ η λ κ η λ κ η ηΔ = + + + +  (1) 

1 2, ,...λ λ  are coefficients depending on a design parameter κ . Steinboeck et al. [3] have shown that  

 ( )1 0   λ κ κ= ∀  (2) 
is a necessary condition for imperfection insensitivity and, consequently, for zero-stiffness 

postbuckling [4]. Additional necessary conditions for zero-stiffness postbuckling are 

 ( ) ( ) ( )2 2 30    0     0,  dλ κ κ κ κ λ κ κ= = ⇒ = = ⇒ = =  (3) 
where κ  is a specific value of κ . These conditions ensure that the first non-vanishing coefficient 

( )iλ κ  in (1) is one with an even subscript. This situation is typical for the case of a restricted 

asymmetry [8] which is a consequence of (2). 

Mang et al. [2] originally derived the relation 

 ( ) ( ) ( ) ( ) ( ) ( )2
4 1 2 2 2 3a b dλ κ κ λ κ κ λ κ κ= + +  (4) 

with ( ) ( ) ( )2
2 1 2b b bκ κ κ= + , and ( ) ( ) ( ) ( )3 1 2 3d b d dκ κ κ κ= + . The expressioins for 1 1 2, , ,a b b and 3d  

are given in [8]. Specialization of (4) for (3) gives 

 ( ) ( )4 3dλ κ κ κ κ= = =  (5) 
which is an additional necessary condition for zero-stiffness postbuckling. In general, however, 

( )4 0λ κ κ= ≠ . 

3. Sufficient condition for zero-stiffness postbuckling 
With the help of the so-called consistently linearized eigenproblem [6], it is possible to distinguish 

between two different classes of problems as regards sensitivity analysis of the initial postbuckling 

path. For the first class, 

 , 1 0,     2,3,..., ,T
j T j nλλ
∗ ∗⋅ ⋅ = =v K v  (6) 

where ,T λλK  is the second derivative of the tangent stiffness matrix, in the frame of the Finite Element 

Method, with respect to λ , and 1
∗v  and j

∗v  stand for the first and the j-th eigenvector, respectively, of 
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the mentioned eigenproblem. This class is characterized by a prebuckling behavior that is restricted to 

axial deformations. For the second class, 

 , 1 0,     2,3,..., .T
j T j nλλ
∗ ∗⋅ ⋅ ≠ =v K v  (7) 

For this class, 

 
2

4 0
0

λ
λ

=
<  (8) 

which is a sufficient condition for non-zero-stiffness postbuckling. Consequently, zero-stiffness 

postbuckling is impossible for this class of nonlinear stability problems which represents the general 

class of such problems. 

4. Sufficient and necessary condition for zero-stiffness postbuckling 
Non-zero-stiffness transitions from imperfection sensitivity to imperfection insensitivity are restricted 

to ( )4 0λ κ κ= ≠  [7]. Hence, it is concluded that 

 ( ) ( ) ( )1 2 40    ,      0λ κ κ λ κ κ λ κ κ= ∀ = = = =  (9) 
are sufficient and necessary conditions for zero-stiffness postbuckling, characterized by 

 ( )i 0    .iλ κ κ= = ∀ ∈  (10) 

5. Numerical example 
Details of an example involving zero-stiffness postbuckling in the course of sensitivity analysis of the 

initial postbuckling path can be found in [6]. For this example, 

 ( )
( )

4

2

.const
λ κ
λ κ

=  (11) 

For 4κ κ μ= = , where κ  is a variable spring stiffness whereas μ  is a costant spring stiffness, 

 ( ) ( )(11)
2 4 0 0.λ κ κ λ κ κ= = ⎯⎯⎯→ = =  (12) 

Hence, the sufficient and necessary conditions for zero-stiffness postbuckling, as given in (9), are 

satisfied.  

6. Conclusions 
Zero-stiffness postbuckling will occur if and only if ( ) ( ) ( )1 2 40 , 0.λ κ κ λ κ κ λ κ κ= ∀ = = = =  

( )4 0λ κ κ= =  requires , 1 0,     2,3,..., .T
j T j nλλ
∗ ∗⋅ ⋅ = =v K v  
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Abstract 
The benefit of an increase of the stability limit of a structure in consequence of a modification of the 

original design may largely be lost through deterioration of the postbuckling behavior. Therefore, it 

may be useful to concentrate on design changes that result in a significant improvement of the 

postbuckling behavior without decrease of the stability limit. It is shown that the possibility of 

converting imperfection-sensitive structures into imperfection-insensitive ones by adding tensile 

members is not restricted to academic examples such as the von Mises truss. An arch bridge serves as 

the demonstration object. The reason for disregarding the option of adding compressive members to 

the original structure is to exclude the possibility of buckling of these members. 

Keywords 
bifurcation buckling, consistently linearized eigenproblem, imperfection (in)sensitivity, Koiter’s initial 

postbuckling analysis, von Mises truss, arch bridge 
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1. Introduction 
In contrast to imperfection-insensitive structures, imperfection-sensitive ones cannot carry the 

buckling loads of corresponding perfect structures. Design changes leading to an increase of the 

stability limit will be counterproductive if such an increase is accompanied by a significant 

deterioration of the prebuckling behavior, i.e. if the imperfection sensitivity of the original structure is 

markedly increased. 

An example for such a design change is the increase of the thickness of a shallow cylindrical shell [1]. 

It results in the convergence of the bifurcation point, which represents the stability limit, to the snap-

through point [2]. The load levels related to these two points increase with increasing thickness of the 

shell. At the same time, the postbuckling behavior gets worse which is reflected by the increase of the 

difference between the stability limit of the perfect structure and the snap-through point of the 

imperfect one. 

The aim of this paper is to utilize the beneficial effect of attaching a vertical elastic spring to the vertex 

of a von Mises truss for a real-life structure. Approximate postbuckling analysis of such a truss, 

subjected to a vertical load at the vertex, is an example that can be solved analytically [3]. Whereas the 

von Mises truss without the spring is imperfection sensitive, it becomes imperfection insensitive 

provided the stiffness of the spring is large enough so that the increase of the load in the spring 

overcompensates the decrease in the load carried by the truss.  

The paper is organized as follows: In section 2, the difference between bifurcation buckling from a 

general state of prebuckling deformations, as occurs in the majority of real-life structures, and from a 

membrane stress state will be mentioned in the context of the Finite Element Method (FEM). Section 

3 contains an extension of Koiter’s initial postbuckling analysis [4] to sensitivity investigations of the 

initial postbuckling behavior [5]. The first example presented in Section 4 is the aforementioned von 

Mises truss. It is an example for buckling from a nonlinear primary path, characterized by a membrane 

stress state. The second example is an arch bridge where loss of stability occurs from a general stress 

state. 

2. Consistently linearized eigenproblem 
The consistently linearized eigenproblem [10] is a vehicle for demonstrating the differences between 

bifurcation buckling from a general stress state and from a membrane stress state. The mathematical 

formulation of the consistently linearized eigenproblem for the first eigenpair ( ) ( )( )1,λ λ λ λ∗ ∗−1 v  

where λ  denotes a dimensionless load factor by which the reference load vector P , in the frame of 

the FEM, is multiplied, reads as [6]  

 ( ) , 1T T λλ λ∗ ∗⎡ ⎤− ⋅ =⎣ ⎦1K + K v 0  (1) 
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where TK  is the tangent stiffness matrix and ,T λK  is its first derivative with respect to λ . At the 

stability limit, 

 1 1 1 1,   ,   ,Tλ λ∗ ∗= = ⋅ =v v K v 0  (2) 
with (2) representing the condition for loss of stability of equilibrium in the form of bifurcation 

buckling, characterized by  

 d 0.λ ≥  (3) 
The equal sign holds for the borderline case of hilltop buckling [2] for which also ,dq  representing an 

infinitesimal increment of the vector of nodal displacements at the snap-through point, is an 

eigenvector. 

Derivation of (1) with respect to λ  yields 

 ( ) ( ), , 1 , 1,T T T Tλ λ λλ λ λλ λ λ λ λ∗ ∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤− ⋅ + − ⋅ =⎣ ⎦ ⎣ ⎦1, 1 1K + K v K + K v 0  (4) 

where [6]  

 1, 1
1

,
N

j j
j

cλ
∗ ∗

=

=∑v v  (5) 

with 

 
*T **T * *

, 11 , 1 1
11 1 * **T * *T *

11 , 1 ,

1 ,      ,    2,3, ,
2

j TT
j

jT j T j

c c j Nλλλλ

λ λ

λ λ
λ λ

⋅ ⋅⋅ ⋅ −
= − = − =

−⋅ ⋅ ⋅ ⋅

v K vv K v
v K v v K v

…  (6) 

where j
∗v  is the eigenvector corresponding to the eigenvalue jλ λ∗ − . The coefficients 11c  and 1jc  

depend on the normalization of the eigenvectors. 

Premultiplication of (4) by 1
T∗v  and consideration of (1) gives 

 
* *T *
1, 1 , 1

* *T *
1 1 , 1

.T

T

λ λλ

λ

λ
λ λ

⋅ ⋅
= −

− ⋅ ⋅
v K v
v K v

 (7) 

At the stability limit, following from (1), (4), (5), (6), and (7), 

 
* *
1, 1, *

1,* *
1 1,

0 .
0 1

λ λλ
λλ

λ

λ λ
λ

λ λ λ
= = = −

− −
 (8) 

Substitution of (8) and and 1λ λ∗ =  (see (2)) into (7) gives 

 
T
1 , 1*

1, T
1 , 1

.T

T

λλ
λλ

λ

λ
⋅ ⋅

=
⋅ ⋅

v K v
v K v

 (9) 

For the special case of bifurcation from a membrane stress state [7], 

 1, ,T λλ
∗⋅ =K v 0  (10) 

 , 1 1, , 1T Tλλ λλ λλ∗⋅ = ⋅K v K v  (11) 
with 1,λλλ∗  according to (9). The relations (10) and (11) may be viewed as constraint conditions holding 

for this special stress state. 
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3. Koiter’s initial postbuckling analysis  
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Fig. 1: Nonlinear primary path and secondary path for a specific value of the design parameter κ ( u  denotes 
the displacements of the primary path) 

Fig. 1 shows a nonlinear primary path (I) and the secondary path (II) for a specific value of the design 

parameter κ  that is increased from zero in the course of sensitivity analysis of the initial postbuckling 

path. For this value of κ , λΔ  (Fig. 1) is a function of the parameter η  that describes the postbuckling 

path. 

The series expansion of ( ),λ κ ηΔ  is given as  

 ( ) ( ) ( ) ( ) ( )2 3 4
1 2 3, .Oλ κ η λ κ η λ κ η λ κ η ηΔ = + + +  (12) 

1 2, ,...λ λ are coefficients depending on κ . Steinboeck et al. [8] have shown that  

 ( )1 0   λ κ κ= ∀  (13) 
is a necessary condition for imperfection insensitivity. Making use of (13), the expression for the 

coefficient ( )2λ κ  is obtained as [5] 

 ( ) ( )2 1dλ κ κ=  (14) 
with (omitting the argument κ ) 

 T T
1 1 , 1 2 1 , 1 1 1T

1 , 1

1 1( : )
6T T

T

d
λ

= ⋅ ⊗ + ⋅ ⊗ ⊗
⋅ ⋅ u uuv K v v v K v v v

v K v
 (15) 

where 1v  is the eigenvector, and ( )2 2 κ=v v  denotes the first residual vector in the series expansion 

 ( ) ( ) ( ) ( ) ( )2 3 4
1 2 3, Oκ η κ η κ η κ η η= + +v v v + v  (16) 

for the displacement offset which vanishes at the stability limit S  (Fig.1). 

A sufficient condition for imperfection insensitivity for a specific value κ  of the design parameter κ  

is  

 ( ) ( )1 2
(14)  0 0,d κ κ λ κ κ= > ⎯⎯⎯→ = >  (17) 

recalling that (14) is based on (13). This condition is not necessary because imperfection insensitivity 

is also given for  

 ( ) ( ) ( )1 2 3
(15) [7]0 0  0d κ κ λ κ κ λ κ κ= = ⎯⎯⎯→ = = ⎯⎯→ = =  (18) 

if  

 ( )4 0.λ κ κ= >  (19) 
If also  
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 ( )4 0,λ κ κ= =  (20) 
then, for the special case of bifurcation buckling from a membrane stress state,  

 ( ) ( ) ( ) ( )5 6 7
(12)... 0  0,λ κ κ λ κ κ λ κ κ λ κ κ= = = = = = = ⎯⎯⎯→ Δ = =  (21) 

indicating zero-stiffness postbuckling which was shown to be imperfection insensitive [5]. Zero-

stiffness postbuckling may be seen as a constraint condition for the postbuckling path that does not 

exist for the general case of bifurcation buckling. 

A theoretical treatment of the sensitivity of structures with respect to imperfections is given e.g. in 

Bažant and Cedolin [11]. 

4. Numerical investigation 
4.1. Von Mises truss  
Fig. 2 shows the left half of a von Mises truss with a vertical elastic spring attached to the vertex of the 

structure at which a vertical load Pλ  with 410P kN=  is applied. The length of the undeformed bar, L , 

is 100cm and the initial position of the load point, 10u , is 30.9 cm. The side length of the quadratic 

cross section, a , is chosen as 20 cm and the elastic modulus E , as 7 22.1 10 / .kN cm×  The spring 

constant is given as kκ  where 210  /k kN cm=  and κ ∈  is a scaling parameter that represents the 

design parameter. In the prebuckling regime, the bar is straight. Hence, buckling occurs from a purely 

axial deformation state of the bar. For such a prebuckling deformation state the constraint conditions 

(10) and (11) must hold at the stability limit. 

kκ

Pλ

1u L
10u

L

2ua
a

 
Fig. 2: Left half of a von Mises truss with a vertical elastic spring attached to the load point 

Details of the analysis can be found in [6] where two solution strategies were pursued: (i) exact 

nonlinear theory and (ii) approximation of the deformed shape as a sine curve. In the latter case, it is 

stipulated that [ ]1 2, Tu u=u  suffices to define the configuration of the system, i.e. the model is reduced 

to a two-degrees-of-freedom scheme. 

All parameters are tuned such that hilltop buckling occurs for 0κ =  (Fig. (a)). The negative slope of 

the projection of the secondary path onto the plane 2 0u =  at S D=  (denoting the coincidence of the 

bifurcation point S  with the snap-through point D ) indicates that a structure which experiences 

hilltop buckling is imperfection sensitive, as was proved theoretically in [2]. Increasing the stiffness of 

the spring by increasing κ , improves the postbuckling behavior, as expressed by a linear increase of 
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( )2 ,  .m mλ κ ∀ ∈  Fig. (b) refers to a situation which is characterized by 2 0λ =  and 4 0.λ <  Hence, 

zero-stiffness postbuckling does not occur here. The positive slope of the projection of the secondary 

path onto the plane 2 0u =  in Fig. (c) shows that the initially imperfection-sensitive structure was 

converted into an imperfection-insensitive structure. The form of the projections of the secondary 

paths in Fig.  onto the plane 2 0u =  indicates symmetric bifurcation with respect to this plane, 

characterized by 1 3 5 .... 0 λ λ λ κ= = = = ∀ . As was shown in [8], symmetric bifurcation is not 

necessary for imperfection insensitivity. 
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(a)                                           (b)                                          (c) 

Fig. 3: Load-displacement paths of a von Mises truss for three different values of the spring stiffness: (a) 0κ = , 
hilltop buckling, (b) 27.2κ =  (c) 43.2κ =  

4.2. Arch bridge  

x
z

y
 

(a)  

 
(b)  

                             
                             (c)                                                                                 (d)  

Fig. 4: (a) Arch bridge, (b) view from the side, (c) floor plan, (d) front view; unit of numerical data: cm 
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Fig. 4(a) shows the investigated bridge. The two inclined, plane, parabolic arches with fixed supports 

meet at mid-span. They are connected by four transverse horizontal braces. The deck is a simply 

supported cylindrical shell with a rise of 100cm (Fig. 4(b)). It is suspended from the braces and the 

arches, respectively, by altogether five hangers and stiffened by three longitudinal beams, two of 

which along the longitudinal edges of the deck. 

The elastic modulus, SE , and Poisson’s ratio, Sν , of the steel used for the arch, the lateral braces, the 

stiffening beams, and the hangers, are given as 221000 /kN cm  and 0.3, respectively. The elastic 

modulus CE  and Poisson’s ratio, Cν , of the concrete used for the deck, are taken as 23500 /kN cm  

and 0.1, respectively. For the given design, loss of stability of the bridge occurs by buckling of the 

deck. At the onset of buckling, the deck is mainly in compression. Hence, the influence of the 

reinforcement ratio and of cracking of concrete on the buckling load and the initial postbuckling 

behavior is negligible. 

Fig. 5 shows the cross-sections of the members of the arch bridge. The diameter of the hangers is 

given as dκ where 1 d cm=  and κ ∈  is a scaling factor that represents the design parameter. The 

thickness of the deck is chosen as 30 cm.  

FE analysis of the arch bridge is carried out with MSC Marc 2005 [9]. The arches, braces, and 

stiffening beams are modelled with 2-node beam elements allowing consideration of twist [9]. The 

deck is discretized with 4-node shell elements [9]. Linear 2-node truss elements with constant cross-

section [9] are used for modelling of the hangers. The uniform reference surface load applied to the 

deck is given as 20.004 /p kN cm=  (including self weight and traffic load).  

60
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40
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802

40
      

dκ
 

(a)                                             (b)                                         (c)                                        (d) 

Fig. 5: Cross-section of (a) the arches, (b) the braces, (c) the stiffening beams, and (d) the hangers; unit of 
numerical data: cm 

                 
                            (a)                                                                          (b) 

Fig. 6: (a) Deformed arch bridge without hangers just before buckling, (b) buckling mode 
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Fig. 6(a) shows the deformed arch bridge without hangers just before buckling. The value of the 

vertical displacement of the midpoint of the arch bridge, for the reference load, is 21.1 cm, which is 

1/189 of the span. In contrast to the von Mises truss, the prebuckling stress state of the structure is not 

a membrane stress state because it contains e.g. bending deformations of the deck. Hence, the 

constraint condition for bifurcation buckling from a membrane stress state (Eq.(11)) is not satisfied. 

Fig. 6(b) shows the buckling mode.  
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(c)                                                              (d)  

Fig. 7: Load-displacement paths of the midpoint of the deck of an arch bridge for three different values of the 
stiffness of the hangers; (a),(b) 0κ = , (c) 0.6182κ = , (d) 0.8000κ =  (Figs. 7(b) - (d) show the projection of 
the secondary path onto the plane 0zr = ) 

Fig. 7(a) shows the load-displacement path of the midpoint of the deck of the arch bridge without 

hangers, i.e. for 0,κ =  where u  denotes the vertical displacement of this point and zr  stands for the 

rotation (in radian) of the tangent at this point in the direction of the x axis− , about the z axis− (see 

Fig. 7(a)) The negative slope of the projection of the secondary path onto the plane 0zr =  at the 

stability limit S  (Fig. 7(b)) indicates that the structure without hangers is imperfection sensitive, i.e. 

( ) ( )1 20 0,  0 0.λ κ λ κ= = = <  The thin curve in Figs. 7(a)− (d) refers to an imperfect structure. The 

imperfection was chosen as a perturbation of the geometric shape of the perfect structure, affine to the 



 Chapter VIII 127 

eigenvector 1v . The largest deviation of the geometric shape of the deck of the imperfect structure 

from the one of the perfect structure is 0.4%. As was found to be the case for the von Mises truss, loss 

of stability of the deck of the arch bridge occurs in the form of symmetric bifurcation with respect to 

the plane 0zr = . Increasing the stiffness of the hangers by increasing κ  to 0.6182, results in 2 0λ =  

and 4 0λ > , indicating that the structure is already imperfection insensitive which is reflected by the 

positive curvature of the projection of the secondary path onto the plane 0zr =  (Fig. 7(c)). For 

0.8000κ = , the path of the imperfect structure and the projection of the secondary path onto the plane 

0zr =  are monotonic (Fig. 7(d)). Comparing Fig. 7(b) with Fig. 7(d), it is seen that the addition of 

tensile members in the form of hangers has resulted in the conversion of the originally imperfection-

sensitive arch bridge into an imperfection-insensitive one. This conversion is accompanied by an 

increase of the stability limit. Moreover, for the reference load, the vertical displacement of the 

midpoint of the arch bridge is 12.9 cm, which is 1/310 of the span, as compared to 1/190 for the arch 

bridge without hangers. 

5. Conclusions 
It was shown that conversion of imperfection-sensitive elastic structures into imperfection-insensitive 

ones by adding tensile members is not restricted to academic problems such as the von Mises truss 

where buckling occurs from a membrane stress state. A condition allowing to identify such a stress 

state by means of the consistently linearized eigenproblem was presented. An arch bridge for which 

this condition does not hold was used to demonstrate that the postbuckling behavior of the structure 

can be significantly improved by adding sufficiently stiff hangers which overcompensate the decrease 

in the load carried by the deck in the postbuckling regime.  
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