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Kurzfassung

Diese Diplomarbeit analysiert die Auswirkungen von Sicherheitsprotokollen auf das IEEE1588v2
Uhrensynchronisationsprotokoll. Der Schwerpunkt liegt dabei auf der hochgenauen Uhrensynchro-
nisation. Im Zuge dieser Arbeit werden die Mechanismen, die zur Sicherung der Netzwerkpakete
genutzt werden, analysiert.
Die Analyse von Annex K des IEEE1588v2 Standards fand einen fundamentalen Fehler, der das
Precision Time Protocol (PTP) anfällig für Man-in-the-Middle-Angri�e macht und der es eben-
falls ermöglicht einen Replay-Angri� durchzuführen.
Die Sicherheitserweiterung vom Precision Time Protocol (PTP) wird weiters mit dem Internet-
Protocol-Security (IPsec-) Protokoll, einem weit verbreiteten Sicherheitsprotokoll das eine gesicherte
Kommunikation basierend auf dem Internet Protocol (IP) ermöglicht. Diese beiden Protokolle wer-
den herangezogen, um die Faktoren zu identi�zieren, die die Uhrensynchronisation bein�uÿen. Die
durchgeführten Messungen zeigen, daÿ die verschiedenen Sicherheitsprotokolle einen deutlichen
Ein�uÿ auf die Packet Delay Variation (PDV) haben. Bei weiteren Messungen wird gezeigt, dass
die Packet Delay Variation, die durch die Sicherheitsprotokolle hervorgerufen wird, jedoch nur
geringe Auswirkungen auf die Qualität der hochgenauen auf Software basierenden Uhrensynchro-
nisation hat.

Abstract

This diploma thesis analyzes the impact of security protocols on clocks synchronized by IEEE1588
v2. An emphasis is put on high-precision clock synchronziation. The work investigates the secu-
rity mechanism used to protect the tra�c, which carries timing information.
An security analyzis performed on Annex K of IEEE1588v2, the native solution, reveals a funda-
mental �aw in the protocol, which makes the Precision Time Protocol (PTP) network prone to
man-in-the-middle and replay attacks.
The security extension of the Precision Time Protocol (PTP) is compared against the Internet
Protocol security (IPsec), which is a widespread protocol used to establish secure communication
for Internet Protocol (IP) packets. These two security schemes are used to explore the in�uenc-
ing factors, which a�ect the precision of the clock synchronization. The performed measurements
show that the various security protocols have a clear impact on the Packet Delay Variation (PDV).
Further measurements show that the Packet Delay Variation introduced by the security protocols
has only a minor impact on the quality of the high-preccision clock synchronization based on
software implementations
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1 Introduction

Networks used in industrial environments often have a need for time-referenced data. To provide
a reliable time information service the nodes in the network need a common notion of time. In
former times a lot of implementations developed proprietary protocols and dedicated wiring to
achieve this goal, e.g., Inter Range Instrumentation Group (IRIG) standard time code B [Tel04]
or Time-Triggered Protocol (TTP).

Newer approaches [IEE08, MMBK10] make use of already existing network infrastructures and
use communication protocols which are already available. A combination, which is very common
today, is the IP based communication together with Ethernet as the physical layer. Concentrating
on one network technology reduced the costs for the required components. Field bus systems
were designed to work with time critical applications. Control functions rely on this concept
and make heavy use of them. By contrast, network infrastructures, which use Ethernet were
not designed having these principles in mind. Packet based communication, such as Ethernet
has a non-deterministic behavior. Without further improvements it cannot be used for real-time
applications.

Modern clock synchronization protocols can help to overcome this obstacle and introduce high-
precision clock synchronization for packet-based communication networks. The clock synchroniza-
tion serves as a foundation for applications, which need accurate timing information, e.g., the
arbitration of a �eld bus. High-precision clock synchronization is one of the technologies, which
is the basis for real-time services for such applications. The clock synchronization protocols use
regular messages to distribute timing information between the nodes in the network. The clock
synchronization protocols make use of �lter algorithms and control loops to compensate for delays
introduced during the network traversal.

One of these protocols is the Precision Time Protocol [MMBK10], which o�ers high-precision
clock synchronization in packet-based networks. The size of such networks can range from a few
nodes to several hundreds of nodes. Until now the security of such networks was a topic, which
was not very popular. Threats for networks were rare and the costs and complexity to implement
security schemes for speci�c clock synchronization protocols were not rated high enough to justify
an implementation. However, more and more operators of such networks have become aware
of security and want solutions, which provide the necessary functionality even in these large
networks. Recently the clock synchronization protocols introduced security features within the
protocol speci�cations, e.g., version 2 of PTP (released 2008). Additionaly, in some cases networks
already have schemes in place to secure the tra�c. One of these solutions is the Internet Protocol
security (IPsec) and it is one of the most widespread protocols to establish secure communication.
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Introduction

The goal of this work is to evaluate state-of-the-art security schemes for high-precision clock
synchronization. On the security solutions provided by PTP a security analysis is performed.
For users it is necessary to know the impact of the security scheme on the clock synchronization
performance. The result of the analysis can be used by network operators to determine, if the
additional security has in�uence on the quality of the clock synchronization.

1.1 Motivation

Security for high-precision clock synchronization in packet-oriented networks is a cutting edge
topic, which is not covered by many reviews yet. In addition, the topics of clock synchronization
and security seem to be natural enemies, since security adds delay and jitter. The synchronization
highly cares about the time [TH10].

The demand for a combination of the two �elds of knowledge, clock synchronization and security,
is driven by the needs of modern computer networks. Concepts for both applications are available
but the fusion of the topics is a task, which can hardly be anticipated. The demands of the
network operators does not end at the fusion of the two domains, they want to reuse already
existing solutions. An operator who is already using a certain security implementation might not
be willing to introduce yet another security measure, it is more favorable for him to adopt the
clock synchronization to �t the available network structure.

Currently little information is available about the impact of security on clock synchronization
networks. The algorithms, which are used for protection and encryption, have a non-deterministic
behavior. This leads to an additional in�uence, which is not accounted for yet, and can reduce
the precision and therefore the quality of the clock synchronization.

Security within a network can be implemented on di�erent layers. It might be an option of
the application and therefore provided by an application layer. Another approach would be to
integrate the security directly in the IP layer and make use of already existing structures. For
proper design of systems clear indicators are required to select the best solution.

The impact of the in�uencing factors on clock synchronization is manifold and unforeseeable.
Therefore, an implementation has to be veri�ed via experiments, which in the end, add a noticeable
change in the behavior of the clock synchronization stack. This is the goal of this thesis.

1.2 Goal of this Work

Within this diploma thesis a secure high-precision clock synchronization stack has to be imple-
mented, which o�ers the possibility to securely synchronize nodes in a network. The protocol used
for this application is the Precision Time Protocol, which is standardized in IEEE1588v2. The
e�ect of the implemented security has to be analyzed; which impact does it have on o�set and
accuracy of the clock synchronization?

Namely the following tasks and requirements have to be ful�lled:

� Security analysis of Precision Time Protocol Annex K

� Implementation of secure stack for clock synchronization
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� Analysis of the implemented security

� Comparing IPsec with the developed security solution provided by IEEE1588v2

This diploma thesis is structured as follows:

� Chapter 2 covers the state-of-the-art clock synchronization protocols, which are most com-
monly used. It gives a general overview about security in networks. Furthermore, it shows
the technologies, which can be used to secure tra�c in clock synchronization networks.

� Chapter 3 analyses the native security solution of the Precision Time Protocol and shows
possible attacks and weaknesses. The di�erent attacks are explained in detail together with
the consequences which arise.

� Chapter 4 covers the design and implementation of a secure clock synchronization stack. It
also introduces means to verify and validate implementations for standardization and testing
of interoperability.

� Chapter 5 presents the measurement setup used in chapter 6 for all measurements. It
holds information about the con�guration of the components, which are needed to run the
measurements.

� Chapter 6 shows the comprehensive measurement results, which were conducted to evaluate
the implementations.

� Chapter 7 gives a resume of the work and gives an outlook on possible �elds for further
scienti�c research.
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2 Technology Overview

This chapter gives a brief introduction on the topic of clock synchronization protocols for today's
networks. The �rst part explains the need for clock synchronization followed by the two main
protocols used in this domain, namely the Precision Time Protocol (PTP) and the Network Time
Protocol (NTP). The second part focuses on the available options to secure the clock synchroniza-
tion tra�c within networks.

2.1 Application of Clock Synchronization

In today's world it is common to be able to set the clock of a computer to a speci�c time. One
hundred years ago this task involved adjusting the local mechanic clock to a mechanic clock
nearby. Even today many people have wristwatches, which are set manually. The accuracy that
is achieved with this adjustment is usually within one or two minutes. Most people never set their
clocks again until they miss a bus (typically half a year after they set their watch). After such an
event they check their watch again only to realize that the time is already o� by �ve minutes. A
drift of �ve minutes over six months equals 27 parts per million (ppm). This value is quite good
for temperature-stabilized watch. Typically clocks used in modern computers have an error of
100 ppm or more, which is a drift of at least four minutes and 32 seconds per month.

For day-to-day use such a drift does not mean a lot, but a consequence could be that an email
seamingly arrives at the receiver before it got sent. The situation changes completely when the
topic is changed to more time sensitive applications. These applications depend on reliable timing
information, that needs to be sure that the time is in a certain interval to provide con�dence.
For example the Global Positioning System (GPS), it heavily depends on synchronized clocks.
The position is calculated with the help of the signal delays between the di�erent satellites. A
di�erence of only 3 ns already results in a di�erence of approximately one meter between the
displayed position and the actual position. It is the domain of clock synchronization, which makes
such tasks even possible.

In the domain of computer science many models used assume a common notion of time. When
something happens and this information is distributed to another entity, the event happened
before the message arrives. For the applications, the basic assumption is always an increasing
time. Therefore, when a message with the current timestamp is sent from one entity to the next
entity the arrival is always later than the time included in the message. Making a leap from
theoretical models to real networks reveals an interesting fact. Real clocks used in network nodes
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run at di�erent rates. A communication protocol, which adjusts the rate of two clocks to have a
common notion of time, can operate within a certain range. This problem can be expanded to
more than two network nodes, for example to a network consisting of hundreds of nodes. The
goal of such a communication protocol is to align the clocks of multiple network devices as good
as possible.

Modern computer use quartz oscillators and counters to produce intervals, which interrupt a
running processor every few milliseconds. Such an interval is called a tick. Each tick leads to an
increase of a variable, which is representing the actual time of the computer clock. This value
is available for the use in other applications. If necessary the time can be adjusted to a speci�c
absolute value, which is equal to setting the current time on a mechanic clock. The period of the
tick can be adjusted in small steps to adjust the rate of the clock smoothly.

In Figure 2.1 the time of a local clock compared to a reference clock is depicted. To adjust the
local clock to the time which is provided by the reference clock, the rate of the clock is adapted.
The aim of the node is to adjust its local clock as good as possible to the reference time. In the
diagram the local clock is slower than the reference clock � the ticks are �too big�. The control
algorithm adapts to the new situation and adjusts the rate to make the clock go faster. This
procedure is done constantly to keep the local clock synchronized to the reference clock.

Reference Time

Lo
ca

l 
Ti

m
e

Ideal Clock

Computer Clock

Figure 2.1: Comparison of ideal clock with computer clock

Security seems a little bit o� topic for the domain of clock synchronization, but accomplishing this
task can be vital for some applications. Using an already available open network to synchronize
network components is very appealing but also threatening. Apparently a lot of things can go
wrong when an attacker adjusts the clock values of nodes, which play well with this bad inten-
tions. Areas of applications, which facilitate clock synchronization and are targets for attackers,
can be telecommunication, substation automation, factory automation, etc. This diploma thesis
concentrates on the security aspects and shows possible implementations, which can be used to
secure a clock synchronization network using IP-based networks.
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2.2 Protocol Overview

Protocols used to synchronize two or more clocks are trying to eliminate the o�set between the
local time and a distant clock. There are a variety of possible solutions for this problem. All of
today's clock synchronization protocols follow a general approach where a client contacts a time
server, which then responds with the current time. To increase the accuracy of the system the
client has to determine the delay of the connection to �nd out the real o�set of clocks. Especially,
in big networks (such as the Internet) several factors can have a great in�uence on the delay, e.g.,
the time of day, the path which is used for a packet is not �xed, etc.

The protocols used for such a task have to handle a wide range of applications. In practice a small
network for automation starts with only two nodes, which are to be synchronized. The size can
easily extend to several hundred nodes in big production halls. Automation networks are typically
the domain of IEEE1588v2, a protocol discussed later in a subsection 2.2.2. Another common
protocol used for clock synchronization is the Network Time Protocol (NTP), which is the topic
of the next subsection 2.2.1. The public NTP network consists of several hundreds of servers and
millions of clients connected to it. The National Institute of Standards and Technology (NIST)
estimates 25 million clients are communicating directly with their servers [Mil06]. This number
only includes the direct communication. There are many more subnetworks which are private and
indirectly receive the time via intermediate servers. This number might be even bigger.

Reliability for clock synchronization networks is often solved with the help of multipath connec-
tions. Using multiple servers and di�erent paths to these servers provides the necessary diversion
for such an application. Such a scheme protects against hardware errors, broken network links, and
faulty software. Also common for clock synchronization protocols is a hierarchical arrangement
of the communication partner, e.g., a server/client or a master/slave scheme.

2.2.1 Network Time Protocol � NTP

The Network Time Protocol (NTP) (speci�ed in [MMBK10]) is a protocol used for synchronizing
clocks of computers in networks. It is designed for packet-switched networks and is one of the
oldest clock synchronization protocols. Development of this protocol started in the 1980s with the
latest version being released in June 2010 (NTPv4). The original design is from David L. Mills
who is still maintaining the releases. This chapter provides an overview of the used topology, the
structure of the messages, the clock selection algorithm and the clock �lter algorithm, which are
used in NTP.

To increase the reliability of the clock synchronization NTP uses many di�erent servers and
even completely di�erent networks. When a lot of connections are established, at �rst it cannot
be determined which o�ers the best conditions for the clock synchronization. This is where
the clock synchronization algorithm performs its work. The algorithm tries to �nd the best
con�guration to operate in. Having found the optimal set of clocks for the synchronization, the
clock �lter algorithm is facilitated. It selects from the received data sets the best samples and
applies mathematical algorithms to suppress errors observed due to network problems, outliers
etc.
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Network Topology of the Network Time Protocol

The structure of NTP is hierarchical with di�erent levels of clock sources. The levels are called
stratum and start with stratum-0, which is the best source available for the clock synchronization.
With the �nal stratum level being 15. In NTP a stratum can be de�ned as the distance between
a local clock and a reference clock. A computer getting its timing information from level n, is
classi�ed in level n+1. A generic classi�cation can be made for the according to [Mil06]: Each
stratum level consists of many hosts, which all o�er the same functionality for clock synchroniza-
tion and work as servers as well as clients. The duplication of the computers o�ers two bene�ts.
Firstly, a higher redundancy, since if one of the computers is not accessible several others can �ll
the gap. Secondly, the distance between the computers can have great in�uence on the quality of
the synchronization. Therefore, some computers are a better choice, e.g., they are nearby or have
a very stable connection. A generic classi�cation of the stratum levels can be made as follows:

� Stratum-0: This level is the source of the clock hierarchy. Stratum-0 are high-precision
clocks, which are called reference clocks, e.g., atomic clocks, GPS clocks, etc. These clocks
are usually not connected directly to the network. It is to use them as a source for a locally
connected computer.

� Stratum-1: Clocks with a stratum-0 level are directly connected � not over a network con-
nection � with stratum-0, e.g., a Pulse Per Second (PPS) output. Stratum-1 servers are
commonly called time servers.

� Stratum-2: Computers, which are part of this level, get their timing information form
stratum-1 servers. This level uses several stratum-1 servers as source and chooses only the
best amongst them. Obviously wrong servers are dropped automatically. Stratum-2 devices
communicate with other stratum-2 devices to build a stable group for timing information.

� Stratum-3 to 15: This level employs the same functionality as stratum-2, but instead of
stratum-1 as source it depends on several stratum-2 sources. The maximum depth of the
network, which is supported, is level 15 (stratum-15).

An illustration of the levels is given in Figure 2.2.

Protocol Structure of the Network Time Protocol

In NTP the time is passed on from one source to another as described in subsection 2.2.1. When
a client is synchronizing to a server in the network, several packets are exchanged in a request-
response procedure.

The client starts the procedure when it sends a request to the server. The request contains the
local time called origin timestamp. The server which is receiving this packet adds a local time
when the message is received in the �eld receive timestamp. The packet is then prepared to be
returned to the sender. When the packet is sent, the local time is inserted in the �eld transmit
timestamp. The receiver of the reply stores the time of arrival. With the timestamps the receiver
can estimate the time, which the packet needed to travel from the local source to the server and
back. The total delay of a packet is the travel time of the packet minus the residence time at the
server. It is assumed that the delay between the two hosts is symmetrical and therefore the delay
from one host to the other is the half of the total delay.
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Stratum-0

Stratum-1

Stratum-2

Stratum-3

Stratum-15

Figure 2.2: Structure of NTP networks with di�erent stratum levels

The timing information in the packet is also used to �nd the time o�set between both hosts.
This o�set is corrected with the delay, which is determined before. The timing information from
servers are not used immediately, several messages are exchanged and sanity checks are performed
to assure a certain quality of the data.

When an NTP stack is started, it reads from the con�guration �le to �nd the sources for the
synchronization. If the stack was already running, it provides the gathered statistical data, which
are considered for the current execution. After this initializing phase the stack is up and running
and starts exchanging packets with the servers provided at startup. Usually, the stack needs �ve
minutes to apply all the algorithms and optimizations and to accept the timing information from
a server. After this procedure the NTP stack is constantly updating the local clock to supply the
applications of the system with this information.

The communication between the hosts is based on NTP messages, which are transported over
UDP and use port 123. The structure of the NTP packet can be seen in Table 2.1. The following
�elds are included:

� Leap Indicator: This 2 bit value indicates an impending leap second. Four states are possible
� no leap second, not synchronized, add one second, and subtract one second.

� Version: This value indicates the used NTP version, the most recent version is NTPv4.

� Mode: This �eld indicates the mode of the sender. The most common values are server and
client mode.

� Stratum: This variable de�nes the stratum level for the clock. Value 1 is reserved for
reference clocks and 2-15 is for the di�erent possible levels.
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� Poll: This �eld is of type 8 bit unsigned integer, which indicates the maximum interval
between two successfully exchanged messages. The value is interpreted as second and set to
the nearest power of two, the poll interval itself is 2Poll, and starts with 4 seconds and goes
up to approximately 36 hours.

� Precision: The precision of the clock is of type 8 bit signed integer indicating the precision
of the clock. It is measured in seconds and is equal to the nearest power of two, i.e., a value
of -18 for the precision is analog to a precision of about 4 µs (2−18s). This value is measured
when the system is started up and represents the minimum over several attempts to read
the system clock.

� Root Delay: This value indicates the total round-trip delay in seconds to the reference clock.

� Root Dispersion: This value indicates maximum error relative to the reference clock, in
seconds.

� Reference ID: This value is a clock identi�er and is depending on the stratum level of the
clock. Stratum-0 clocks have a four character ASCII code assigned that is called a kiss code.
Also stratum-1 devices are assigned 4 byte left-justi�ed, zero-padded ASCII string [Mil06].
For higher stratum levels the ID consists either of the IPv4 address or, if IPv6 is used, the
highest 4 byte of the address or a MD5 hash of the IPv6 address.

� Reference timestamp: The reference time denotes the local time of the node.

� Origin timestamp: This value holds the time at which the request to the server was sent.

� Receive timestamp: This timestamp contains the arrival time on the server side.

� Transmit timestamp: The transmit timestamp is the time when the message departs from
the server to the client.

� Extensions �eld: This optional �eld is used by the Autokey public key cryptographic algo-
rithms [HM10], more information can be found in section 2.3.1.

� Message Authentication Code (MAC): This is an optional value, which consists of the key
ID and a message digest. It is only present when an authentication for the NTP message is
used.

Clock Selection Algorithm

To ensure a reliable synchronization, NTP makes use of multiple time sources. These are redundant
servers from the same stratum level and normally selected to have multiple di�erent network paths
available. At the beginning, when the connections are established, the node cannot distinguish
between nodes which distribute an imprecise timing information and such nodes, which provide
correct timing information. It is important that the algorithm used for this scheme is robust and
discards the false timing information.

David L. Mills provides in his book a proof for the following statement:

�... the true o�set θ of a correctly operating clock relative to UTC must be contained
in a computable range, called the con�dence interval ...� [Mil06, page 47]
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Type Length

Leap Indicator 2
Version 3
Mode 3

Stratum 8
Poll 8

Precision 8
Root Delay 32

Root Dispersion 32
Reference ID 32

Reference Timestamp 64
Origin Timestamp 64
Receive Timestamp 64
Transmit Timestamp 64
Extension Field 1 variable
Extension Field 2 variable

Key ID 32
Message Digest 128

Table 2.1: Structure of a NTP packet, with type and length (in bit) of the �elds

Marzullo and Owicki [MO85] developed an algorithm, which is able to �nd an intersection interval
that contains the correct time, for m clocks with a given con�dence interval and no more than f
clocks providing incorrect input. The result of the algorithm is an interval, which provides the
smallest possible set of intervals that contains at least m-f of the provided con�dence intervals.

Figure 2.3 depicts the algorithm when used with four clocks. The example uses for clocks A, B,
C, and D with their respective con�dence interval and an o�set in the middle of the correctness
interval. The true o�set of a host can be found anywhere in the correctness interval. Based
on the proof that the true o�set must be contained in the con�dence interval and all provided
timing values are correct, a non empty interval exists, which contains points in all four con�dence
intervals. As it can be seen in the diagram, this assumption does not hold true for this example.
Therefore not all of the clocks provide correct values. If it is assumed that one of the clocks is
the source of the false information, e.g., D, it is possible to form a non empty interval. When this
approach does not work out, the next step would be to discard two clocks and so on.

The Digital Time Synchronization Service (DTSS) is based on this principle. It searches for the
smallest possible intersection interval that contains at least one point in m-f provided intervals, m
is again the total number of intervals and f is the number of hosts, which provide imprecise values.
This procedure works as long as f < m

2 . For the given example, this algorithm �nds the interval
marked with the label �Interval DTSS�, with D being identi�ed as wrongdoer.

The interval, which is found by the algorithm of the Digital Time Synchronization Service, does
�nd the smallest interval containing the correct timing information, but it is not clear which value
in the interval has to be chosen. A simple approach would be to take the center of the found
interval that would disregard a lot of statistical information, which results in a large jitter. This is
con�rmed by experiments. Therefore, NTP uses a modi�ed version of the DTSS algorithm. The
modi�ed algorithm uses at least m-f clocks where all the midpoints have to lie within intersection

11



Technology Overview

interval. Thus, this algorithm �nds the smallest interval m-f, which contains at least m-f centers.
The result of this modi�cation �nds the interval labeled as �Interval NTP�. The interval includes
the calculated time for clock C.

B

A

CD

Intervall DTSS

Intervall NTP

Figure 2.3: Selection of NTP intersection interval. Clocks with an o�set and a con�dence interval.

2.2.2 Precision Time Protocol � IEEE1588v2

The Precision Time Protocol (PTP) is used for high-precision clock synchronization and is stan-
dardized in IEEE1588v2 [IEE08], currently available in version two release 2008. IEEE1588v2 is
designed to supply higher accuracy than what is achievable with NTP.

This protocol has a hierarchical structure with a master slave architecture. The master distributes
the timing information to the slaves. Messages in PTP can be divided into two groups, timed mes-
sages with accurate timestamps, called event messages, and general messages, which do not require
timestamps. The event messages are used to measure delays and provide accurate timestamps for
the calculation performed by the nodes.

The PTP protocol uses di�erent types of messages for synchronization and management of the
PTP nodes. These messages are divided into two groups. First, the type of messages which are
time-critical and have direct in�uence on the clock synchronization accuracys these are called
event messages. Second type are general messages, which do not interfere with the accuracy of
the synchronization.

The synchronization between a master and a slave uses several types of messages, namely these
are Sync, Follow_Up, Delay_Req, and Delay_Resp messages. A master periodically sends Sync
messages, the slaves take the information from this message and use it to set the local clock.
Clocks can also make use of the Follow_Up message. This type of message is not time critical
and is used to correct received timestamps afterwards. This approach uses two messages instead
of only one for the synchronization and therefore needs double the bandwidth in the network.

For further enhancement the delay request-response mechanism can be used, depicted in Figure 2.3.
It measures the mean path delay between two PTP ports. After all four messages Sync, Follow_Up,
Delay_Req, and Delay_Resp are exchanged, the slave knows four timestamps marked with t1,
t2, t3, and t4. t1 and t4 are measured using the time of the master and t2 and t3 are measured
with the time of the slave. The mean path delay can be calculated with meanPathDealy =
(t2−t1)+(t4−t3)

2 = (t2−t3)+(t4−t1)
2 . This value is the mean value of tms+ tsm. If the delay asymmetry

between the master-slave and slave-master is known, this value can be added to the control
algorithm to get the best result for the synchronization.
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Sync message
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Follow_Up message
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Figure 2.4: Synchronization between a master and a slave node

Network Topology of the Precision Time Protocol

PTP is a protocol which works on the application layer and utilizes UDP for transportation.
Two ports are occupied � 319 for event messages and 320 for general messages. PTP uses a
hierarchical structure, with nodes in master or slave mode. Slave nodes get timing information
from master nodes. It is also possible to form subnets within an existing clock synchronization
network. Complex network arrangements can be implemented, an example for such a network is
depicted in Figure 2.5.

Ordinary Clock/
Master Clock/

Ordinary Clocks/
Slave Clocks

End-To-End
Transparent Clock

Ordinary Clocks/
Slave Clocks

Ordinary Clocks/
Slave Clocks

Ordinary Clocks/
Slave Clocks

Peer-to-Peer
Transparent Clock

Boundary Clock

Figure 2.5: PTP network topology

Aside from the hierarchical master and slave network structure � where nodes are called ordinary
clocks � there are also other di�erent types of PTP devices i.e. boundary clocks, end-to-end
transparent clocks, peer-to-peer clocks, and management nodes, which are mainly used for building
up the hierarchy and connect the hosts. The properties of the di�erent devices are as follows:
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Ordinary Clocks

These devices are network components with a single physical port, which is used for the two logical
interfaces, the event messages and the general messages. This device is part of a clock domain
and has one running instance of the PTP stack. Such a device can be either a master device or
a slave device. When the device is in a master state and the clock is a grandmaster (the highest
master in a group) it is typically synchronized to an external source, e.g., the GPS system.

Boundary Clocks

These components are typically used as network elements and are not connected to any application.
This type of device only cares about PTP devices for tra�c not belonging to PTP it behaves
like a normal network device, e.g., a bridge, repeater, or router. Boundary clocks have several
physical ports in contrast to ordinary clocks. Similar to the previous clock type, each interface
has two logical interfaces, an event port and a general port. All ports use the same local clock for
synchronization and each running instance of the PTP stack can resolve the state of all ports to
decide which port is used for the clock synchronization. PTP messages used for synchronization
or establishing the hierarchy are not forwarded to the other ports. Only management messages
are forwarded to the designated node.

End-to-End Transparent Clocks

These network elements perform as ordinary network devices, with the ability to change �elds in
PTP message. This type of device can compensate for the delay that is introduced by traversing
the end-to-end transparent clock. During the traversal of the message in the network the retention
time within a network device is not deterministic, e.g., due to queues. To overcome this �aw the
end-to-end transparent clock determines the time the packet needed to be received on one port
and sent out on another port. This time di�erence is inserted into the correction �eld of the PTP
header, see Table 2.2. Most relevant for security is the fact that in order to produce valid packets
the device also has to update the cryptographic checksums.

Peer-to-Peer Transparent Clocks

These devices are similar to the end-to-end transparent clocks. The subtle di�erence is that the
peer-to-peer clock directly connects the PTP nodes. With this setup it is possible to measure the
link delays for each port, because the delay depends on the ports involved in the connection. The
delay can vary between a connection of port one to port two, or port one to port three. Therefore
this device compensates for the complete path delay of a PTP message.

Management Nodes

Devices belonging to this group are nodes that have an interface to manage PTP nodes. This
can be an interface for humans or for applications. Thus, it has at least one interface for the
communication with the PTP network. This management interface can be coupled with every
clock type mentioned so far.
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Protocol Structure of the Precision Time Protocol

The communication between the network devices uses PTP packets. These packets are composed
of a common header and message speci�c part. All PTP messages can be extended by one or
more Type Length Values (TLVs). All these TLVs have unique identi�er. When a PTP message
contains TLVs which cannot be processed by the PTP stack, such TLVs are ignored. The structure
of a packet with an preceding transport header from the transport layer is depicted in Figure 2.6.

PTP HeaderTransport Header TLV 1PTP Message TLV n

Figure 2.6: PTP message structure

The structure of the PTP header can be further divided as depicted in Table 2.2. Each message
contains the following �elds:

� transportSpeci�c: This �eld may be used by lower layer transport protocols, the speci�cation
is de�ned in Annex F of IEEE1588v2.

� messageType: The �eld speci�es the type of the message, e.g., Sync, Delay_Req, Follow_Up,
Signaling, etc.

� versionPTP: As of this writing two di�erent versions of PTP exist, which can be distin-
guished by the version number, namely these are the initial version labeled with 1 and the
version released in 2008 labeled with 2.

� messageLength: This value re�ects the length of the message in byte. It starts with the �rst
byte of the header and includes all optionally appended TLV to end at the last byte of the
last TLV.

� domainNumber: It is used to group clocks. Trough that option the network can be divided
into several logical subnets within the existing clock network.

� �ags: The di�erent �ags re�ect the options, which can be used in the network, e.g., use
security, send only unicast messages, use PTP pro�le one or two, etc.

� correctionField: This �eld holds the accumulated delays, which occurred during the network
traversal. The timing value is inserted in nanoseconds.

� sourcePortIdentity: It represents a unique identi�er for all nodes participating in the net-
work.

� sequenceId: The sequence ID is used to �nd corresponding packets. Several types of PTP
messages are sent in a request/reply procedure, to match these packets the sequence ID is
used.

� control: This �eld is provided for compatibility to PTPv1; for PTPv2 it is deprecated.

� logMeanMessageInterval: This value speci�es the message interval for the periodic commu-
nication between master and slave.

� su�x: After the header a PTP message and an arbitrary number of Type Length Values
(TLV) can be appended.
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Type Length

transportSpeci�c 4
messageType 4

reserved 4
versionPTP 4

messageLength 16
domainNumber 8

reserved 8
�ags 16

correctionField 64
reserved 32

sourcePortIdentity 80
sequenceId 16
control 8

logMeanMessageInterval 8
su�x variable

Table 2.2: Structure of a PTP header with type and length (in bit) of the �elds

A PTP message extends the common header with the �elds speci�ed in IEEE1588v2. An example
for such a message would be the synchronization message, depicted in Table 2.3.

Type Length

PTP header 272
originTimestamp 80

Table 2.3: Structure of a PTP synchronization message with type and length (in bit)

Best Master Clock Algorithm

The Precision Time Protocol uses a master slave structure, therefore slaves are synchronizing to a
master. A master is not a �xed position, every node can either be a master or a slave. The Best
Master Clock (BMC) algorithm is a procedure that determines which node has the best clock and
is therefore preferred to be selected as master. Every node in the group is running this distributed
algorithm. This process is not a one-time event, but it runs continuously and adapts to changes in
the system, e.g., properties of a node change, a new node is added, or an existing node is removed.

The algorithm itself can be divided into two parts:

1. A comparison of clock properties that determines which of the clock ports is better.

2. A process suggesting a state for the ports which are available.

The decisions are based on the information, which are collected with the receiving of announce
messages.
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Comparison Algorithm

The compare algorithm of the PTP stack compares datasets, the representation of available clocks
in the network. The decision is based on a priority list with the following order:

1. Priority 1

2. Class

3. Accuracy

4. Variance

5. Priority 2

6. Identity

The lowest priority has the identity of a clock. This identity is based on the MAC address of the
node. When two clocks share the same dataset the decision of which is the better clock is based
on the MAC address. The clock with the lower MAC address wins the election.

State Decision

The state decision of each clock port is determined by an algorithm during the BMC. The dataset,
of a clock is compared with the current clock port. The comparison algorithm results in a state
for this speci�c port, then the next port is chosen until all ports of the local device are served.

2.3 Security

Securing information has a long history. Also in todays modern networks a proper protection is
an important issue and is needed more than ever. Over the years many terms and de�nitions were
established.

One of the most famous examples might be Caesar's cipher. As the name suggests it was used by
Caesar to protect his orders or messages with tactical information for his generals. Some simple
terms, which are used in the domain of security, can be explained with the help of this traditional
story.

In ancient Rome, Caesar had the need to get information to his generals, yet he did not want his
enemies to see it. He would start with writing the message, which would be transported by the
messenger. This text is called a cleartext. If a villain or spy from an adversary can get hold of the
message, it would be easy to read the information. To overcome that obstacle Caesar used a rule
to transform the cleartext into a new sequence of characters. This transformation rule is called
a cipher and the result is the ciphertext. Caesar used a substitution algorithm where a letter
from the cleartext is replaced with a letter several positions down the alphabet. The process of
transforming cleartext into ciphertext is called encryption and today many di�erent algorithms
are available to perform this task. The recipient got the encrypted note from the messenger and
then he performed the converse procedure to get a cleartext again. This procedure is called the
decryption.
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This concept is very simple and does not o�er a lot of con�dence. The information, which is
transported by the messenger, could have been modi�ed. Also it is not guaranteed that the
message was written by Caesar. The same assumption holds true for answers as well. Caesar
cannot be sure that the answer was written by one of his trusted generals or a foe. Therefore,
concepts and de�nitions have been derived, which are used in state-of-the-art applications.

Modern computer security de�nes goals for protecting an asset. The security goals consist of
the following parts: con�dentiality, integrity, availability, authentication, access control, and non-
repudiation. These terms and de�nitions are important for the understanding of the concepts and
examples used in this section. The order is alphabetical and does not re�ect any priority, this is
just for the convenience of the reader who might need to lookup some explanations.

Access Control Essentially access control de�nes who is allowed to do what in a system. Access
control is ubiquitous, for example some users are allowed to delete �les and another users are
allowed to use the network connection. A more day-to-day example would be the key to a house or
car, only a person with the key is allowed to access. This service makes use of several other services
de�ned in a secure environment, namely these are: authentication, con�dentiality, integrity, and
availability.

Authentication This service is a�liated with the challenge of identi�cation. In networks, the
purpose is to identify a communication partner. Entities, which establish a communication, have
to authenticate each other. After this procedure each entity is sure with whom it is communicating.

Availability A system or a part of it, e.g., a device in the system, is available when it is in a
functioning condition, called uptime. The opposite would be unavailability. This is the time when
the system or device is in a state where it is not functioning, called downtime. The availability
can be speci�ed as ratio of uptime to the sum of uptime plus downtime. The result of this ratio
is typically given in the form of a decimal value, e.g., 0.9998, which means 99.98% uptime and
0.02% downtime.

Con�dentiality The service of con�dentiality o�ers the possibility to keep information private
from third parties. Only authorized entities are able to gain access to protected data. Con�den-
tiality can be provided in di�erent ways, it can range from a physical protection of a device up to
cryptographic algorithms executed in software.

Encryption The process of encrypting is a transformation from plaintext into an unreadable
stream of characters. The transformation takes the plaintext as input, applies an algorithm and the
output is the encrypted ciphertext. Encryption is the base needed for the service of con�dentiality.

Integrity Integrity is a service, which ensures consistency. These functions are speci�cally
designed to prevent intentionally and unintentionally modi�cation of the data and detect such an
attempt. For example, within Ethernet networks the integrity of frames is ensured by a checksum
called Frame Check Sequence (FCS). To ensure the integrity of the data, cryptographic hash-
functions can be used. The output of such functions is a hash-value, which is often also called
Integrity Check Value (ICV).
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Non-repudiation This is a service which prevents the sender of an information from denying
the action it has performed. Thus, it guarantees that an information is tied to a speci�c sender.
To provide the feature of non-repudiation, two properties have to be ful�lled. Firstly, the integrity
of the data has to be veri�ed, and secondly, the origin of the data has to be ensured.

2.3.1 Network Time Protocol-Security Extensions

The NTP security model is designed to work in mixed environments. It supports multi-level
security environments and makes use of symmetric key cryptography, public key cryptography,
and unsecured connections. The security concept of NTP makes several assumptions for the
environment:

� The public key algorithms introduce an additional jitter, thus the performance of the syn-
chronization is degraded.

� Depending on the operation mode, a server might not be able to store state variables for all
clients. This information can be recovered at the arrival of a packet from a speci�c client.

� A reliable system clock provides the ability to implement a restriction on the life-span of
cryptographic data. Therefore the entities, which exchange data for synchronization, have
to establish a trusted relationship.

� The security from the client point of view depends only on public values, which can be
transmitted over public networks. Private values are not allowed to be passed on, except if
a trusted agent ensures a secure transport from one host to the other host.

The base of the NTP security model is the requirement for proo�ng the authentication to applica-
tions, which depend on the timing information. Starting with version three of NTP, functionality
is included to authenticate speci�c servers with the help of symmetric key cryptography. The
authentication can only be assured when each NTP server in the communication path can be
authenticated. The authentication is applied to a server and not to the network gear, located
between servers, e.g., routers, switches, etc. The authentication is done on a stratum level base.
A higher stratum (lower number on the stratum level, e.g., stratum-2) authenticates the next
lower stratum level (higher number on the stratum level, e.g., stratum-3).

Secure Groups in the Network Time Protocol

The NTP secure group is a subnet within the NTP network with a consistent security model. Each
computer is able to authenticate other members within this group using cryptographic algorithms.
Based on the hierarchical structure of NTP, also a secure group follows this approach. Every host
within this secure group can verify the identity of direct descended server. The host can traverse
the server hierarchy upwards and also ensure that the next server is valid. The system uses secure
communication between the hosts; it is assumed that every member of such a group is in the
possession of a secret group key. A computer can be a member of multiple secure groups, each
of them with a dedicated key. The protocol and the algorithm, which is used in this process, is
called an identity scheme.
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Autokey Security Protocol

For secure communication NTP facilitates the Autokey protocol [HM10]. The base for the Autokey
protocol is the Public Key Infrastructure (PKI) cryptographic functions of the OpenSSL library.
The Autokey protocol also supports timestamped digital signatures as well as X.509 certi�cates
for the authentication. To detect replay of messages a sequence number is included.

A Public Key Infrastructure uses public key cryptography and consists of several parts. The
�rst piece is a server, which provides the connectivity needed by all participating communication
partners. A Certi�cate Authority (CA) is needed to bind public keys to identities of the commu-
nication partners. The last part is the maintenance of the system, which has the ability to create,
revoke, and manage certi�cates for the identities. For the communication between the entities, the
Certi�cate Authority acts as a trusted third party, which manages the policies of the connections.

Autokey uses MD5 [Riv92] Hash Message Authentication Codes (HMACs) to detect the modi-
�cation of a message. MD5 is also known as a one-way hash function. This function takes on
the input side data with a variable length and provides an output with a �xed length, called a
hash-value. The result is a �ngerprint of the data and it is computationally impracticable to �nd
two di�erent inputs, which generate the same output. The incident of �nding such input strings
is called a collision. The most common use for such functions is to provide digital signatures or
integrity protection for data.

The advantage of the Autokey protocol is the ability to divert attacks and simultaneously preserve
the integrity and the accuracy of the clock synchronization functions [Mil06]. The protocol has
the ability to make a preliminary authentication of a computer even when no reliable timing
information has been veri�ed yet. After the identity of a server is validated, signatures are veri�ed
and the timing information is available, the Autokey protocol has achieved its goal.

In NTP version 4, extra �elds can be added to a message. The extension �eld consists of a 16 bit
type, a 16 bit length, and variable data �eld and is located between the NTP header and the MAC.
The example in Table 2.4 shows a extension �eld with several parameters.

Type Length

Field type 16
Field length 16

Association identi�er 32
Timestamp 32
Filestamp 32
Data length 32

Data variable
Signature length 32

Signature variable
Padding variable

Table 2.4: NTP extension �eld for security

When a computer synchronizes to a server, which supports security, it uses an extension �eld,
which incorporates a digital signature and a timestamp. After the veri�cation of the server the
host starts the synchronization process. Messages, which are replayed or do not pass a sanity
check are discarded.
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2.3.2 Precision Time Protocol-Security Extension

The PTP security extension de�ned in Annex K of the IEEE1588v2 standard provides group
source authentication, message integrity, and replay protection for PTP messages. The security
of IEEE1588v2 consists of two mechanisms:

� An integrity protection, which is based on Message Authentication Codes (MAC). The MAC
is used to verify that a message originated from a trusted source and was not modi�ed during
the transport in the network. Additionally, it prevents the replay of a message with replay
counters.

� A challenge-response procedure, used to authenticate new sources and to keep already es-
tablished connections up to date.

The security extension does not provide non-repudiation or con�dentiality services. There is a
simple reason for that; PTP follows the concept of time as a common good and therefore it does
not have to be con�dential.

The protection of a message depends on the Integrity Check Value (ICV). The ICV is a MAC
applied to the message. The actual algorithm that is used, is determined by the SA. The result
of the MAC calculation is appended to the message and it protects against the modi�cation of a
packet. Any modi�cation of the message can be identi�ed because the receiver fails to verify the
appended ICV with the reference ICV calculated over the actual message.

The replay protection consists of two attributes, the increasing replay counter and a random
lifetime ID. Both are also part of the SA. The replay counter is incremented by two every time
used on a sending process. A receiver has to verify that the received lifetime ID matches the
lifetime ID stored in the incoming SA and that the received replay counter is larger than the one
saved in the SA.

The security extension supports three di�erent types of messages which are called Type Length
Values (TLV):

1. Authentication TLV

2. Authentication Challenge TLV

3. Security Association Update TLV

These types are used in di�erent stages of the communication �ow and are explained within the
next subsections.

The nodes participating in the communication share symmetric keys. These keys can be shared by
a small group of nodes or by a complete domain. The distribution of the keys can be done either
manually or with the help of key management protocols. Annex K supports both possibilities but
does not specify the key distribution process itself.

A connection between the communication partners within the network relies on Security Associa-
tions (SA). The SA consists of several information used to verify that the packet is received from
a trusted source. Another advantage is that these connections are uniquely identi�able, e.g., the
source port of the sender, the source protocol address of the sender, the destination port at the
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receiver. Every node maintains SAs for incoming and for outgoing connections. SAs can be used
for single receiver but also for multiple receivers. In case of multiple receivers the di�erent nodes
have copies of the SA, which only di�er in the value of the replay protection counter. The copies
of the receivers are all smaller than the replay counter of the originator. When a single SA is used
for all outgoing connections, one advantage can be noted. The replay counter of the single SA
is increased more often. Therefore, the update frequency of the SA is higher. This results in a
lifetime ID which is changed more often.

An SA is communicated from the sender to the receiver (or the receivers, in case of group com-
munication to multicast). The sender decides if it creates a single SA for all outgoing connections
or it creates a SA for each connection being made with the di�erent destinations. This decision
can be made depending on the individual requirements of the implemented network. The im-
plementation di�ers only on the sender side in the PTP network. If a single SA is used for all
destinations, the replay counter is increased with each sending of a message and an update of the
SA is necessary much earlier. For an implementation with di�erent outgoing SAs, the outgoing
table is bulkier than in the single SA solution. From a receivers point of view, there is no di�erence
which technique is used.

Securing the Tra�c Flow

The primary goal of Annex K is the protection of the tra�c between the participating entities.
This protection is based on the Authentication Type Length Value (TLV), which uses a Integrity
Check Value (ICV). The ICV is the result of applying a Message Authentication Code (MAC)
function to the PTP message.

The authentication TLV is depicted in Table 2.5, which shows the structure of the TLV. The
tlvType identi�es the type of the TLV, in this case AUTHENTICATION. It is followed by the
length �eld, which holds the length of the TLV minus 4 byte (tlvType plus length). The next
�eld is the lifeTimeID, which is used for replay protection. This random number is speci�ed
by the SA, which is used for the communication. The replayCounter �eld is used as a replay
counter, and incremented by two on each use [IEE08, section K.2]. The keyId is used to select
the shared secret and the algorithmID is used to select the algorithm, used for the calculation. At
the end of the TLV, the result of the cryptographic integrity protection is inserted together with
a possibly needed padding to achieve a �xed TLV length. For an implementation according to
IEEE1588v2, two calculation schemes have to be supported, HMAC-SHA-1 and HMAC-SHA-256
[NIS02]. Additional schemes can be implemented but are not speci�ed by IEEE1588v2. Both
hashing algorithms produce a result which is truncated and inserted in the ICV �eld (last �eld
of Table 2.5). HMAC-SHA-1 is truncated to 12 byte and HMAC-SHA-256 is truncated to 16 byte.
The padding, which is inserted before the ICV is only present when HMAC-SHA-1 is used and
has 4 byte to achieve a constant TLV length.

Generation of Authentication TLV

The following procedure is needed to generate an Authentication TLV for a message, which is
protected by an outgoing Security Association (SA):

1. The secret key is de�ned by the key ID, stored in the outgoing SA and used as a key for the
hash algorithm.
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Type Length

tlvType = AUTHENTICATION 16
length 16

lifeTimeID 16
replayCounter 32

keyID 16
algorithmID 8
reserved 8

pad + ICV 128

Table 2.5: Structure of an IEEE1588v2 authentication TLV with type and length (in bit) of the �elds

2. The hash algorithm is speci�ed by the algorithm ID and, together with the key ID, it is
used to calculate the Integrity Check Value (ICV). The key table is indexed by the key ID
and contains also the corresponding algorithm ID for a key.

3. The hash algorithm determined by the algorithm ID and the secret key is used to compute
the actual ICV. The ICV calculation includes the �rst byte of the PTP header and ends
with the last byte of the authentication TLV, thus it also includes the ICV �eld. During
the calculation of the hash, the �elds of the ICV are set to zero, and are included in the
message digest.

Veri�cation of Authentication TLV

The subsequent procedure is followed to verify a received message appended with an Authentica-
tion TLV and protected by an outgoing Security Association (SA):

1. Check the key ID supplied by the authentication TLV; if the key is unknown the message
fails the ICV check and it is discarded.

2. The algorithm ID supplied by the authentication TLV has to be checked against the key list
and must match the algorithm ID stored together with the key.

3. The hash calculation is applied to the message with the corresponding key ID and algorithm
ID from the authentication TLV. For the calculation, the original ICV inserted in the TLV is
replaced by zero. The calculation starts with the �rst byte of the PTP header and ends with
the last byte of the security authentication TLV. The result of the calculation is compared
to the value of the ICV received. A message passes the check when the two hashes are equal,
if they do not match the message is discarded.

For sending and receiving messages a security association look-up is performed. The incoming
messages are checked against the incoming security association table and for the outgoing messages
the check is performed against the outgoing security associations table. This message is then
matched to an applicable entry in the incoming security association table, where the source port
ID and the source protocol address are compared to the received values. If no viable Security
Association (SA) is found the message is discarded, otherwise the search returns the trust state
of the SA. There are three trust states de�ned:

1. Trusted
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2. Untrusted

3. Challenging

Trusted relations are established connections, which have already performed a challenge-response
procedure and no timeout has occurred. Untrusted connections are connections, which have timed
out and marked for removal from the table. Connections in a challenging state have started a new
connection and are waiting for a response from the communication party.

In addition to the state of the connection, the key ID can match two values, key ID and next key
ID. In a nutshell, if an incoming connection does not match either of these �elds the message is
discarded. Additional information on this topic can be found in subsection2.3.2.

The next chapter gives an overview on howto establish a valid connection between communication
partners.

Establishing New Security Associations

Before two entities can exchange information they have to perform a mutual authentication, to
ensure their identity. IEEE1588v2 is using a challenge-response procedure to perform the au-
thentication. The challenge-response procedure includes the exchange of three di�erent message
types:

1. Challenge-request

2. Challenge-response-request

3. Challenge-response

The Authentication Challenge TLV is depicted in Table 2.6, which shows the structure of the
TLV.

Type Length

tlvType = AUTHENTICATION_CHALLENGE 16
length 16

challengeType 8
reserved 8

requestNonce 32
responseNonce 32

Table 2.6: Structure of an IEEE1588v2 Authentication Challenge TLV with type and length (in bit) of
the �elds

The tlvType identi�es the type of the TLV, in this case AUTHENTICATION_CHALLENGE.
It is followed by the length �eld, which holds the length of the TLV minus 4 byte (tlvType plus
length). The next �eld is the challengeType, which can be set to: challenge-request, challenge-
response-request, or challenge-response. The requestNonce and responseNonce are values, needed
to establish a connection. A chronological overview of the process is depicted in Figure 2.7 and
the procedure itself is explained with the help of the following example.
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In Figure 2.7 Node 1 sends a message secured with an authentication TLV, which is received by
Node 2. Node 2 performs a look-up in the incoming Security Association (SA) table and does not
�nd a corresponding SA. The message is immediately discarded and a challenge-request for Node
1 is triggered.

Node 2 inserts a random number into the requestNonce �eld and sets the responseNonce to zero.
The TLV where the values are inserted is shown in Table 2.6. The ID and the nonce, which was
sent, is stored for later use.

Node 1 receives the challenge-request and triggers a challenge-response-request. The received
requestNonce is copied to the responseNonce and a new random number is inserted into the
requestNonce �eld. This time, Node 1 stores the ID and the requestNonce of the sent message.

Next in the chronological overview is the receiving of the challenge-response-request at Node 2.
The challenge-response-request contains a new requestNonce from Node 1 and a responseNonce,
which was sent as a requestNonce in the challenge-request message. Node 1 matches the received
responseNonce with the saved requestNonce. On a mismatch of the two nonces, the message is
discarded immediately. If the two nonces match, Node 2 prepares a challenge-response message, it
copies the received requestNonce and sets the responseNonce to zero. The last action from Node
2 within this procedure is to set the newly established connection to trusted.

Node 1 receives the last message from Node 2 and matches the received responseNonce with the
saved nonce. Again, on a mismatch the message is discarded immediately. If the two nonces
match Node 1 sets the SA to trusted. Finally both entities have performed their authentication
and the next message received is passed to the IEEE1588v2 stack. All messages exchanged in this
procedure have to pass the ICV calculation, additionally timers are setup and if timeouts occur
the connections are deleted without completing the whole procedure.

Message from an unknown source

Node 2Node 1

Send challenge-request

Send challenge-response-request

Send challenge response

Discard message

Figure 2.7: Chronological overview of the challenge-response procedure

Updating Security Associations

When the replay counter of a Security Association (SA) rolls over, an update procedure is triggered.
The currently used key ID and lifetime ID are removed and replaced by next key ID and next
lifetime ID. The update TLV delivers the new next key ID and new next lifetime ID, which is
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going to be used for the current connection. The currently used lifetime ID is overwritten by the
value of the next lifetime ID. Therefore, the next lifetime ID is empty and a new random value is
generated to �ll it. The new next lifetime ID has to obey two conditions:

1. It must not be zero.

2. It must be di�erent from the current lifetime ID.

This update TLV has to be approved with a challenge-response authentication. This procedure
provides new values for the next rollover and keeps the SA up to date.

During the communication with other entities, which have already established a Security Asso-
ciation (SA), the SA is used regularly. Such a periodic tra�c is important to keep the SA in
trusted state. If a SA is not used for a speci�ed time, the connection times out and it is removed
from the table. When a node wants to communicate with the entity again, the challenge-response
procedure has to be repeated. The corresponding SA is already deleted from the SA table and
therefore a new authentication of the node is necessary. This procedure is described in subsection
2.3.2.

The maintenance of established connections is implemented via security update TLVs, the struc-
ture of this TLV is depicted in Figure 2.7, it shows the structure of the TLV and the length of each
�eld in byte. The tlvType identi�es the type of the TLV, in this case SECURITY_ASSOCIATION
_UPDATE. It is followed by the length �eld, which holds the length of the TLV minus 4 byte
(tlvType plus length). The next �eld is the addressType, which identi�es the connection type.
Valid values are: All, Multicast, P-Multicast, and Unicast; The nextKeyID and nextLifetimeID

are the values which replace the old nextKeyID and nextLifetimeID stored with the SA .

Type Length

tlvType = SECURITY_ASSOCIATION_UPDATE 16
length 16

addressType 8
reserved 8

nextKeyID 16
nextLifetimeID 16

Table 2.7: Structure of an IEEE1588v2 security association update TLV, with type and length (in byte)
of the �elds.

2.3.3 Internet Protocol Security

The Internet Protocol Security (IPsec) [KS05, Bri10] is a collection of protocols to secure Inter-
net Protocol (IP) [DH98] communication. It includes protocols for key exchange, e.g., Internet
Key Exchange (IKEv2 [KHNE10]), Internet Security Association and Key Management Protocol
(ISAKMP) [MSST98], Kerberized Internet Negotiations of Keys (KINK) [SKTV06].

However, it also includes di�erent services like the Authentication Header (AH) [Ken05a] or En-
capsulated Security Payload (ESP) [Ken05b] and modes like Transport Mode and Tunnel Mode.
These services and modes of IPsec are the subject of the following subsections.
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Modes of the Internet Protocol Security

IP and IPsec are tightly integrated and both operate on the same Open Systems Interconnection
(OSI) layer, on layer three. IPsec can handle both versions of IP, IPv4 and IPv6. The established
connections are end-to-end connections between two IP nodes. IPsec supports two di�erent modes
of operation, transport mode and tunnel mode, explained subsequently.

Transport Mode

IPsec in transport mode authenticates and/or encrypts only the payload of the IP packet. The
header of the IP packet is not modi�ed nor encrypted. If the Authentication Header (AH) is used
for transportation, it is not feasible to change a �eld, e.g., the IP address of the packet. That is
due to the fact that the address is part of the hash value used by IPsec AH.

Due to the fact that all higher layers are protected by IPsec too, it is not viable to modify any bit
of the data, e.g., translate port numbers. The Encapsulated Security Payload (ESP) is responsible
for con�dentiality. Figure 2.8 shows examples of IPsec packets in transport mode. Figure 2.8a
and 2.8b depict the position of the newly inserted IPsec header after the original IP header for
transport mode.

Tunnel Mode

IPsec in tunnel mode authenticates and/or encrypts the entire IP packet. Such connections are
used to build Virtual Private Networks (VPN). The original packet is encapsulated in a new IP
packet with a new IP header. Within this mode Network Address Translation (NAT) traversal is
possible and poses no problem for the transmission. Figure 2.8c and 2.8d depict the position of
the newly inserted IP and IPsec header before the original IP header.

Original IP Header
(20)

Ethernet Header
(14)

AH Header
(12+20)

Payload
(variable)

FCS
(4)

a) IPsec in transport mode with Authentication Header

Ethernet Header
(14)

b) IPsec in transport mode with Encapsulating Security Payload

ESP Header
(8)

Original IP Header
(20)

Payload
(variable)

FCS
(4)

Authentication Data
(variable)

Ethernet Header
(14)

c) IPsec in tunnel mode with Authentication Header

Original IP Header
(20)

Payload
(variable)

FCS
(4)

New IP Header
(20)

AH Header
(12+20)

Ethernet Header
(14)

d) IPsec in tunnel mode with Encapsulating Security Payload

ESP Header
(8)

Original IP Header
(20)

Payload
(variable)

FCS
(4)

Authentication Data
(variable)

New IP Header
(20)

Figure 2.8: Combination of IPsec services and modes; additional parts in the packet introduced by IPsec
are highlighted. The size of the di�erent headers (in byte) is given in the parentheses.

Services of the Internet Protocol Security

IPsec o�ers two di�erent services, Authentication Header (AH) and Encapsulating Security Pay-
load (ESP). These two services can be used individually or combined. It is even possible to embed
IPsec packets within IPsec, which o�ers the possibility to form complex network structures.
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Authentication Header � Authentication and Integrity

The Authentication Header (AH) o�ers the functionality of connectionless integrity protection
and authentication [Ken05a]. The authentication of the packet is determined by the Authentica-
tion Data (AD), which is the result of a cryptographic one-way hash function, called a Message
Authentication Code (MAC). The hash is calculated over the complete IP packet including the
header and is inserted at the end of the Authentication Header, which is depicted in Table 2.8.

Depending on the connection type, the calculation method used for the authentication can be
divided into two cases:

� Point-to-point connections: Either symmetric encryption algorithms, e.g., AES and DES, or
one-way message authentication codes, such as MD5, SHA-1, and, SHA-256 can be used.

� Multicast connections: One-way hash algorithms are combined with asymmetric signature
algorithms.

Depending on the used algorithm, the length of the Authentication Data (AD) varies, e.g., 16 byte
for MD5 [Riv92] or 20 byte for SHA-1 [Man07]. Excluded from the hash calculations are values,
which will change or are not predictable during the network traversal, such as the Time To Live
(TTL) �eld.

Table 2.8 shows the �elds of an IPsec AH header. The packet starts with the Next Header �eld,
which identi�es the type of the payload. This value corresponds to the values used by IP. The
Payload Len �eld speci�es the length of the AH, in 32 bit words minus 2. To clarify this statement
an example is provided. For the Table depicted in 2.8 the result of the calculation is a Payload

Len of four. The header consists of 96 bit from the Authentication Header plus 96 bit for the
Authentication Data, because a SHA-1 is used. The sum of 96 bit + 96 bit is 192 bit. The number
of 32 bit words is 6, 192 bit

32 bit . From this value �2� is subtracted resulting in a Payload Len of four.

The Security Parameter Index is an arbitrary number, which identi�es the Security Association
used by the connection. The Sequence Number Field is a counter, which is incremented with each
use and is used as an anti-replay protection. At the end of the header, the Authentication Data

is located, which comprises the result of the calculation of the integrity protection.

Type

Next Header 8
Payload Len 8
Reserved 16

Security Parameters Index (SPI) 32
Sequence Number Field 32

Authentication Data (AD) variable, 96 bit for SHA-1

Table 2.8: Authentication Header (AH) structure with type and length (in bit) of the �elds

The composition of an IP packet with AH is depicted in Figure 2.8a and 2.8c. The AH header is
located before the payload of the IP packet. Depending on the mode, which is used, the position
of the AH header changes. For transport mode the AH header is located between the original
header and the payload as shown in Figure 2.8a. In case of tunnel mode the AH header is located
between the new added IP header and the original IP header, depicted in Figure 2.8c.
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Encapsulating Security Payload � Encryption

The Encapsulating Security Payload (ESP) o�ers authenticity, integrity, and con�dentiality for
the IP packet [Ken05b]. ESP is designed for symmetric encryption algorithms and supports both
block ciphers and stream ciphers [Man07].

When it comes to the o�ered services, authentication, integrity and replay protection, ESP takes
the same approach as AH by including Authentication Data (AD) and a replay counter to the
packet structure, but this data is appended at the end of the packet. Table 2.9 shows the structure
of the ESP Header.

Similar to AH, ESP uses two di�erent calculation schemes, depending on the application. A Mes-
sage Authentication Code (MAC), based on symmetric encryption algorithms for point-to-point
connections and one-way hash algorithms with asymmetric signature algorithms for multicast
connections.

In ESP the length of the IPsec packet depends on two facts: First, the length of the Authentication
Data (AD), which is determined by the algorithm, e.g., 16 byte for MD5 or 20 byte for SHA-1;
Second, the length of the encrypted payload, which is determined by the block size1 used by the
algorithm, e.g., 16 byte for the Advanced Encryption Standard (AES) [DR02].

Table 2.9 shows the �elds of an IPsec ESP header. The packet starts with the Security Parameters
Index, which is an arbitrary number that identi�es the Security Association used by the connection.
It is followed by the Sequence Number Field, which is a counter incremented by one with each
sending of a packet. This counter is used as anti-replay protection. The original IP packet is
carried as payload in ESP. The Pad Length indicates the length of the padding, which is located
in front of this �eld. Next to the last �eld the Next Header �eld identi�es the type of the payload,
this value corresponds to the values, which are used by IP. The Authentication Data is added as
the last �eld of the packet and it comprises the result of the calculation of the integrity protection.

Type Length

Security Parameters Index (SPI) 32
Sequence Number Field 32

Payload Data variable
Padding 0-2040

Pad Length 8
Next Header 8

Authentication Data (AD) variable

Table 2.9: Encapsulating Security Payload (ESP) structure with type and length (in bit) of the �elds

The composition of an IP packet with ESP, is depicted in Figure 2.8b and 2.8d. It shows that
the ESP is separated into a header, which is located at the beginning of the IP packet, and a
trailer, which follows after the IP packet. The trailer comprises the Authentication Data (AD).
Depending on the mode, the position of the ESP header changes. For transport mode the header
is located between the original header and the payloada as depicted in Figure 2.8b. In case of
tunnel mode the ESP header is located between the new IP header and the original IP header as
depicted in Figure 2.8d.

1Block ciphers perform theit calculations on a �xed length of bits. The length of the stream of the bits is called
the block size of the algorithm.
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Replay Protection

Replay protection is implemented as monotonically increasing counter value, which is called Se-
quence Number in IPsec. This counter is increased by each use and is a mandatory �eld in the
header of both services, the Authentication Header and the Encapsulated Security Payload. The
sender always has to send this �eld, but it is up to the recipient if it is used or not. This service
is only allowed to be used when authentication is used, otherwise the integrity of the value would
not be guaranteed.

At the initialization of an SA the counter on both connection partners is initialized with zero.
It is not allowed to produce an over�ow on the Sequence Number. Before that happens a new
SA connection has to be established and the counter is initialized again with zero. IPsec does
not provide options to manage/synchronize the replay counter in a multi-sender environment,
which uses a single SA. Therefore, the replay protection has to be deactivated in multi-sender
environments using a single SA.

Network Con�gurations

With the help of the two modes and two di�erent services provided by IPsec, di�erent network
connections can be established. Three generic connection types can be identi�ed:

1. Network-to-network

2. Client-to-network

3. Client-to-client

These connections are depicted in Figure 2.9 and the explanations are following subsequently.
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Figure 2.9: IPsec in three possible network con�gurations: network-to-network, client-to-network, and
client-to-client
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Network-to-Network Connection

A network-to-network connection is a connection which establishes a secure tunnel between two
di�erent networks. Between these networks any type of network con�guration can be implemented.
The two endpoints of the link act as border gateways for the two connected networks. The border
gateways control the incoming and outgoing tra�c of the two connection points.

The route of the tra�c between the two endpoints is not predictable. This �ow is depending
entirely on the behavior of the intermediate network, which is not under the control of the border
gateways. An IPsec connection is associated with a single Security Association (SA) and therefore
only an end-to-end security can be established between the border nodes.

Clients connected to the tunnel in each network are not able to distinguish between tra�c being
sent or received locally and tra�c being sent or received by the secure tunnel. An example for a
network-to-network connection is depicted on the left of Figure 2.9.

Client-to-Network Connection

A client-to-network connection is a connection which establishes a secure tunnel between a network
and a remote network device. Between the two members of the tunnel any type of network
con�guration can be implemented. The border gateway and the remote network device control
the incoming and outgoing tra�c of the two connection points.

Similar to the previously discussed network-to-network connection, the route of the tra�c between
the two endpoints is not predictable. The �ow is depending entirely on the behavior of the inter-
mediate network, which is not under control of the connected entities. Also in this con�guration,
the IPsec connection is associated with a single Security Association (SA) and therefore only an
end-to-end connection can be established.

Clients connected to the border gateway of the tunnel are not able to distinguish between tra�c
being sent or received local and tra�c being sent or received by the remote network device. An
example for a client-to-network connection is depicted in the middle of Figure 2.9.

Client-to-Client Connection

A client-to-client connection is a connection establishing a secure tunnel between two remote
network devices. Between the two members of the tunnel any type of network con�guration can
be implemented. Only the two endpoints can generate tra�c and utilize the tunnel.

Similar to the previously discussed network-to-network connection, the route of the tra�c between
the two endpoints is not predictable. The path of the packet is depending entirely on the behavior
of the intermediate network, which is not under the control of connected devices. Between the
two network devices a single Security Association (SA) is established, an end-to-end connection.

The network devices know that tra�c to the other network device can only be sent via the secured
connection. An example for a client-to-client connection is depicted on the right of Figure 2.9.
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3 Security Analysis for Clock

Synchronization

During the last decades the information technology gained massive importance for industry and
automation systems. This modern communication is very often the target of a variety of di�erent
type of attacks. Although the majority of threats are in the domain of computer science, this
analysis concentrates on threats for network communication, it is the most relevant factor for
clock synchronization.

3.1 Attack on Networks

The common application of clock synchronization is to provide this service for higher layers.
Therefore an attacker who can manipulate the local clock of a node in�uences the functionality of
the applications depending on it. Secure environments pursuit the following goals: con�dentiality,
integrity, availability, authentication, access control, and non-repudiation.

A classi�cation of the attacks against clock synchronization networks can be categorized on the
target that is attacked: master, slave, or the control loop [GTS06]. This classi�cation should be
extended for this thesis:

1. Master and slave: A �rst approach is to attack the nodes of the clock synchronization
networks directly, e.g., master or slave. This attack heavily depends on the implementation
of the stack used for the communication. In many cases it is valid to assume that the nodes
themselves are secure. However, during this work a �aw in the speci�cation was found,
which is discussed in section 3.3. The worst case, apart from �awed code, is to block the
communication of a node.

2. Selection algorithm: Modern clock synchronization protocols, e.g., IEEE1588v2, use a sim-
ple approach to gather information about the other nodes. Every node announces the
accuracy of the local clock. This announced accuracy cannot be checked by any of the
communication partners. Things get worse when two nodes have the same accuracy and
the decision is based on the MAC address. For IEEE1588v2 the node with the lower MAC
address wins the election. Spoo�ng the MAC address of a node is a well known method
used in many attacks. When an attacker tricks the election it can setup a Byzantine master,
also called babbling idiot master. This vicious master distributes wrong timing information
and manipulates the part of the system relying on this service.
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3. Network: A basic attack used to disturb the clock synchronization can be done by blocking
packets traversing the network. This can be achieved either by physically interrupting
the network connection or by deleting packets from the communication channel. Deleting
packets can be performed in already installed network devices, e.g., switches or routers.
A Denial of Service (DoS) attack directed against a switch or router results in a complete
interruption of the network communication. A more sophisticated attack is to remove speci�c
clock synchronization messages. It is much harder to detect and can in�uence the control
loop of the nodes. The manipulation of the control loop a�ects all kinds of messages used
for communication.

Apart from these specialized attacks for clock synchronization, a more general de�nition can be
used. An attack is initiated by an adversary who can be classi�ed as follows [Sch95]:

� Passive attacker: This type of attacker only observes the tra�c exchanged over the network.
The attacker is only a threat for the con�dentiality of the data.

� Active attacker: The adversary is working actively to gain in�uence. This might be achieved
by deleting messages from the network, adding tra�c, altering information, or by simply
delaying particular messages. In this case the attacker compromises the integrity, the au-
thentication, availability, and also the con�dentiality of the data.

According to this classi�cation, attacks on clock synchronization systems are:

1. Eavesdropping: It characterizes the behavior of an adversary who is listening to private
conversations of third parties without permission. In the case of network communication, the
adversary monitors the network tra�c. If data is sent without encryption, the transmission
is cleartext and the attacker can read the tra�c. As already outlined in subsection 2.3.1
and subsection 2.3.2 con�dentiality is of minor interest for clock synchronization networks,
because the time is seen as a common good.

2. Man-in-the-Middle: The attacker is located between two communication partners and im-
personates their identity. To successfully establish a connection, the adversary fakes the
identity of the �rst entity to communicate with the second entity and fakes the second
entity to establish the communication with the �rst entity.

3. Data Modi�cation: The attacker gains access to a network and modi�es transmitted data.
The in�uence does not stop with modifying data � if an attacker can modify the tra�c, it
can also redirect, delete, or generate arti�cial tra�c. This is exceptionally easy when the
transmissions are cleartext without any protection, such as hashes or encryption.

4. Replay Attack: The adversary observes the tra�c and saves valid transmissions for later use.
At any unspeci�ed time the packets are sent again. For the domain of clock synchronization
packets used to synchronize a clients clock are replayed at a later time, thus the client adjusts
the clock to an �old� time. Services depending on the correct time cannot ful�ll their task
anymore.

5. Denial of Service (DoS): A Denial of Service attack has only one goal, to shut down network
communication. To bring down a connection the interface of the victim has to be overloaded.
The goal can be achieved when a lot of messages are sent to the victim. It becomes impossible
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to process all packets and the system is overloaded. A variant of this attack is the Distributed
Denial of Service (DDoS) attack. Opossed to DoS, DDoS uses a distributed approach and
sends the messages from di�erent points in the network to overload a common target.

6. Delay Attack: As the name suggests, this attack delays speci�c messages, which results in a
negative impact on the network. For the domain of clock synchronization where time is the
most critical asset, a synchronizing node is extremely vulnerable to these kind of attacks.
Messages, which are used to determine the delay between a server and the client, can be
delayed. This is resulting in a wrong value for the network traversal time compensation,
which has direct in�uence on the adjustment of the clock.

7. Byzantine Clocks: This type of attack is speci�c for clock synchronization. The byzantine
clock is a type of clock, which does not simply fail, instead it produces an output, which leads
to a maximum error within the network. If applied to the domain of clock synchronization,
a byzantine clock would provide timestamps, which produce a maximum time di�erence
between the synchronized components.

3.2 Ine�ciency at the Startup of Secure PTP Networks

In the PTP network without security extension, when a node is started it waits until an internal
timeout occurs and then starts sending out a synchronization message. All the other nodes in the
network perform the same procedure and send a synchronization message. With this mechanism
each node collects data from the other members in the network and then performs the Best
Master Clock (BMC) algorithm to determine the master. Each node sends one message and all
other participants in the network have the information needed.

The startup of a network with security enabled looks di�erent: When a synchronization message
is received by a node it performs a lookup in the Security Association table. As the node just got
started (and the table is empty) the search returns with an empty result for the lookup. When
a sender is not known, the message is discarded immediately and a challenge-response procedure
is triggered. This behavior can be assumed as a standard procedure for newly started nodes. All
nodes in the network follow the same rules and all initially sent messages are discarded, shortly
followed by the messages generated by the challenge-response procedure, resulting in a �ood of
messages during startup. After the nodes have authenticated each other, another timeout has to
occur before sending the synchronization message. This time the BMC algorithm can be performed
and a master is selected.

To eliminate the �ood of PTP packets, at the beginning two actions can be performed:

1. The initial synchronization message is not discarded but re-evaluated after the authenti-
cation of the nodes. This action reduces the time needed to elect the best master. The
additional timeout, which is needed to perform the BMC, can be saved.

2. The timeout until the �rst synchronization is sent can be adjusted. It is possible to de�ne a
minimum and a maximum value via a con�guration switch for the startup phase. A random
variable is used to determine the timeout positioned somewhere between the two boundaries.
This action does not reduce the overall bandwidth, but �attens the load.
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3.3 PTP Security Flaw

A typically clock synchronization network consists of several network components:

� One master clock, which distributes the time to all other nodes in the network.

� Slave clocks that synchronize to the master of the network.

� Transparent clocks, which are actually switches with additional timing capability. They
measure the time a PTP message needs to pass from the input port to the output port.
This is necessary, as the switching fabrics in the switches have a non-deterministic behavior,
hence the transparent clock compensates this drawback.

These components together with the connection are depicted in Figure 3.1. Additionally two
adversaries are inserted. The �rst, on the left side of the �gure, is a man-in-the-middle attacker.
It is located between the master and a slave. The second attacker is a transparent clock, which
can reach a higher number of nodes in the clock synchronization network.

Master

SlaveAttacker

Slave Slave

Slave Slave

Slave

Transparent Clock 

Transparent Clock

Attacker

Transparent Clock 

Figure 3.1: Structure of an IEEE1588v2 network with attackers

3.3.1 Modi�cation of Source Address

For optimized transmission, the size of the PTP messages is kept at minimum. For the sake
of e�ciency, the security extension reuses the network protocol address. Incoming messages are
veri�ed with their respective Security Association. The Security Association is identi�ed by the
source port ID, source protocol address, destination port ID, and destination protocol address.
From a security point of view this behavior does not a�ect the security of the system. However,
together with the scheme used for the ICV calculation a major security breach is produced.

The IEEE1588v2 standard speci�es:

�Using the message authentication code function selected by the algorithm and
secret key, the ICV value is computed over all PTP message �elds beginning with the
�rst octet of the common header and ending with and including the last octet of the
security extension TLV. � [IEE08, page 244]
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This speci�cation results in the breach of security [TH09]. The network addresses, which are used
as identi�ers, are not protected by the Integrity Check Value (ICV) and can be changed by an
attack without being detected. Due to this security breach the possible attacks can range from a
Denial of Service (DoS) attack, by �lling up the Security Association table, triggering unlimited
challenge-response cycles, or even a replay attack with old synchronization messages.

3.3.2 Creating Counterfeit Security Association

A Security Association consists of several parameters: source port, source protocol address, desti-
nation port, destination protocol address, key, random lifetime ID, and a replay counter. These
informations are stored in a SA table, with the four values of source and destination address
forming the unique key.

The basic principle needed for this attack, is to create a new Security Association from an already
existing one, or to clear an already established Security Association. For this attack, a villain
is positioned between a master and a slave, as shown in Figure 3.1 path over device (a) or (b).
The attacker has the ability to change and replay packets. According to the speci�cation a
master and a slave perform a mutual authentication at the beginning of the communication. The
procedure results in trusted Security Associations on both nodes. The complete communication
cycle, together with the information stored at the nodes is depicted in Figure 3.2. At the end of
the mutual authentication each node has authenticated the counterpart and has created an entry
in the SA table with all relevant information.

Synchronization Message 

Source 11:11:11:11:11:11

Node 2
Source 22:22:22:22:22:22
ClockId 2
Port 5

Node 1
Source 11:11:11:11:11:11
ClockId 1
Port 5

Challenge-Request

Source        
22:22:22:22:22:22

Destination 11:11:11:11:11:11

Challenge-Response-Request

Source        11:11:11:11:11:11

Destination 22:22:22:22:22:22

Challenge-Response

Source        
22:22:22:22:22:22

Destination 11:11:11:11:11:11

Discard message

SA Table

MAC 22:22:22:22:22:22
ClockId   Port   RPC
     2          5         0

SA Table

Empty

SA Table

MAC 11:11:11:11:11:11
ClockId   Port   RPC
     1          5         0

SA Table

Empty

RPC ... Replay Counter

Figure 3.2: Mutual authentication procedure

A successful attack starts with modifying the MAC address of a regular message, e.g., synchroniza-
tion message. The modi�ed MAC address is the address of the attacker, AA:AA:AA:AA:AA:AA.
The altered message is replayed by the attacker and triggers a new challenge-response procedure.
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Due to protocol address (not part of the ICV), the ICV of the message is valid and passes the
ICV check at the receiver. This message is then processed as a legit query and a normal challenge
procedure is performed. In Figure 3.3 the process of creating a counterfeit SA entry is depicted.
The attacker replaces the original MAC addresses 11:11:11:11:11:11 and 22:22:22:22:22:22 with
its own MAC address, AA:AA:AA:AA:AA:AA. The result of this procedure is a new trusted SA
entry with a fresh initialized replay counter. Such new SAs can be created as long as the limit for
dynamic SAs is not reached.

Synchronization Message Source 11:11:11:11:11:11

Node 2
Source 22:22:22:22:22:22
ClockId 2
Port 5

Node 1
Source 11:11:11:11:11:11
ClockId 1
Port 5

SA Table

MAC 22:22:22:22:22:22
ClockId   Port   RPC
     2          5         m

RPC ... Replay Counter

Attacker
Source AA:AA:AA:AA:AA:AA
ClockId 3
Port 5

Synchronization Message Modified 
Source AA:AA:AA:AA:AA:AA

Discard message

Challenge-Request

Source        22:22:22:22:22:22 

Destination AA:AA:AA:AA:AA:AA

Challenge-Request

Source       AA:AA:AA:AA:AA:AA

Destination 11:11:11:11:11:11

Challenge-Response-Request 
Source       11:11:11:11:11:11
Destination AA:AA:AA:AA:AA:AA

Challenge-Response-Request 
Source       AA:AA:AA:AA:AA:AA
Destination 22:22:22:22:22:22

SA Table

MAC 11:11:11:11:11:11
ClockId   Port   RPC
     1          5         n

SA Table

MAC 11:11:11:11:11:11
ClockId   Port   RPC
     1          5         n

MAC AA:AA:AA:AA:AA:AA
ClockId   Port   RPC
     1          5         nSA Table

MAC 22:22:22:22:22:22
ClockId   Port   RPC
     1          5         n

MAC AA:AA:AA:AA:AA:AA
ClockId   Port   RPC
     1          5         2

Challenge-Response

Source        22:22:22:22:22:22 

Destination AA:AA:AA:AA:AA:AA

Challenge-Response

Source       AA:AA:AA:AA:AA:AA

Destination 11:11:11:11:11:11

Figure 3.3: Vicious mutual authentication procedure

This attack can be used directly to �ood the Security Association table of the attacked node with
counterfeit, although fully trusted entries. This behavior o�ers the possibility to launch Denial
of Service (DoS) attacks against both types of nodes, master and slave, and prevent legitimate
connection attempts.

When the attacker forces already established Security Associations into timeouts, the complete
Security Association table can be �lled up with these counterfeit SAs. The attacker can accomplish
this task with low e�ort: he removes messages completely or modi�es them a bit to prevent a
positive ICV check. This attack does not only �ll the Security Association table, but as the
generation of these entries only di�er in the MAC address, recorded packets can be replayed.
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The element which softens the e�ect of the attack is the lifetime ID. This is a 16 bit integer
value that is set randomly and during the attack the value for the counterfeit SA entry is not
changed. Therefore the success of the attack depends on the implementation of the random
number generator and the frequency of the attacks. The frequency of attacks is limited by the
creation of new SAs, which depends on the speed of the challenge-response procedure.

3.3.3 Resetting Security Association by Timeout

This attack shows a second alternative to reset the replay counter of an attacked node. Similarly to
the attack used in subsection 3.3.2, an authentication between two nodes is performed, resulting
in a valid Security Association (see previous Figure 3.2). In this case the attacker blocks the
tra�c between the master and a slave. Thus the Security Associations are forced into timeouts
and a dynamic SA is deleted or a static SA wil expire. Subsequently, the attacker opens the
communication channel again and the authentication is performed once again. After this re-
authentication the attacker has two possibilities:

1. In the case of a dynamic SA, a new dynamic SA is created. The only issue left for the attacker
is to match the lifetime ID, similar to the attack described in the previous subsection.

2. For static SAs, no particular speci�cations are given in IEEE1588v2 how to proceed after
such a connection has expired, only that values of such connections have to be preset. Thus,
the attack depends on the implementation of the stack. For implementations, exactly fol-
lowing the standard and presets all the values, it can be assumed that the lifetime ID is also
a�ected. Therefore, an attack is possible.

3.3.4 Replay Attack with Counterfeit Security Association

A replay attack starts with recording the tra�c between a master and a related slave. The packets
can be recorded anytime, it is not necessary that the counterfeit Security Association is already
set up. The prerequisites for this attack to work out are:

1. A reset Security Association in the counterfeit SA (see section 3.3.2 and section 3.3.3).

2. A matching lifetime ID.

Under these two conditions the recorded packets of the attacker can be used for the attack. The
attacker replaces the original source protocol address with the source protocol address of the
counterfeit Security Association (see section 3.3.2). After that, the packet can be replayed by the
attacker. The modi�ed packet looks legitimate for the receiver, because the ICV calculation is
performed correctly. The last issue, which could prevent the attack, is the sequence ID, which is
used by the PTP stack. However, the security extension is passed and the packet is forwarded
to the clock synchronization stack. This way the attacker has replayed a clock synchronization
packet successfully.

Although the message has passed the security extension, the sequence ID of the PTP packet could
hinder or delay a successful attack. The sequence ID of the PTP packet has to be incremented
by one on each packet received. For each type of message and destination address a separate
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sequence ID counter has to be used. No rules are speci�ed for verifying a received sequence ID.
An implementation may check that the counter is increasing or use a more stringent rule, the
counter has increased by one. The stringent rule would not tolerate lost messages, which can be
a big problem in real life scenarios. The worst case scenario for an attacker happens when the
attack has to be delayed until the sequence counter rolls over and the messages can be used again.
An attacker which removes all messages from the communication path can change the value of
the slave clock according to the recorded packets, only limited to the messages with the current
lifetime ID.

This attack uses the fact that a 2 byte sequence ID of the PTP stack has a higher frequency of
rollovers than the 4 byte replay counter of the security extension.

3.3.5 Replay Attack with Static Security Association

Similar to the previous attack, the tra�c between the master and the corresponding slave is
recorded. After recording the communication, the static Security Association is reset (see section
3.3.3). The attacker can start sending the recorded packets and at the same time blocking the
communication from the master. Following the previous attack, only those messages can be
replayed, which have been recorded at the beginning of the attack. The maximum amount of
messages which can be facilitated depends on the replay counter. The replay counter is 32 bit
long, hence a maximum number of 4294967296 (232) messages can be recorded. After the rollover
of the replay counter the lifetime ID is changed, which deprecates the recorded messages.

However, when a static Security Association is reset by the attacker, the recorded messages can be
used multiple times. The only drawback of this approach is again the sequence ID. It is required
to be larger than the sequence ID of the previous message. Due to these implementation speci�cs,
the attack might have limited success when the check of the sequence ID is more stringent.

3.3.6 E�ect of the Vulnerability

The vulnerabilities, found during the analysis of the IEEE1588v2 standard, a�ect both master
and slave. Furthermore, the e�ect is not only limited to Ethernet, any transport protocol used to
transport the PTP messages allows replaying messages. The clock value can be changed, as pointed
out in the previous subsections. The e�ect is not limited to synchronization messages, it also
a�ects other messages, e.g., management messages, which can be used to alter the con�guration
of a node.

When these modi�ed messages are passed on by the security extension, higher functionalities such
as master clusters, are also a�ected. To be still compliant with the PTP standard, the only option
left is to ban the use of dynamic Security Associations and use only static Security Associations,
where the protocol address is predetermined. With this concept the creation of counterfeit Security
Associations is avoided and the e�ect on incoming SAs is limited. These types of connections have
to be limited to only one connection, otherwise the connections can be abused when a counterfeit
Security Association is created.

The attack itself has to be rated high. The security extension uses unprotected data to authenticate
a connection. As shown in the previous subsections, several kinds of attacks bene�t from this
behavior. However, the attacks rely on implementation speci�cs of a stack and additionally have
to use brute force attacks against the lifetime ID. Furthermore, only a receiver of the message
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is a�ected. Therefore, transparent clocks relaying messages, are not directly a�ected, only if the
destination of the message is the transparent clock itself.
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4 Design and Implementation of a Secure

Clock Synchronization Stack

This chapter puts a focus on the design and implementation of a secure clock using the IEEE1588v2
Annex K security extension. The approach is derived from the design goals, which are outlined in
subsection 4.1. It is followed by a description of the implementation of the security extension in
subsection 4.2. After the solution provided by Annex K, a second approach using IPsec to secure
the PTP tra�c is presented in subsection 4.3.

4.1 Design Goals

The task of extending and, in this case, also securing an already existing system, has to be
carried out carefully. Therefore, the task of planning and integrating these new parts is of utterly
importance.

Software design is the procedure of solving a given problem and implementing the solution in some
kind of programming language. The whole process of designing a new software starts with a need
that arises and has to be satis�ed. The design process includes the task of de�ning an software
architecture, implementing algorithms and also taking into account the hardware, which has to
be used e�ciently.

The so called needs that come up can be manifold. For a system, which is used in a time resource
limited environment, e�ciency might be the factor with the highest impact. Another system has
to work in very demandig environments with a lot of errors. The demand here would be to stay
in a safe state. The simplest case could be that a task is periodic in nature and the procedure of
solving it manually is not very hard and only costs time. Another possibility is that a task is too
complex and time sensitive so that it is impossible for a human being to ful�ll this need. Either
way the process of designing an optimal solution for a given problem is a challenge. In the course
of this work the need is to extend an already available PTP stack with a security extension.

The �rst step is to perform a thorough software requirements analysis. This process is the foun-
dation for the speci�cations, which are needed to engineer the software. The speci�cations are
already available in the form of an IEEE standard, namely IEEE1588v2. The functional require-
ments of security for the di�erent use cases are speci�ed in Annex K of IEEE1588v2.
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For this work, a PTP stack conformant with the speci�cations of IEEE1588v2 has been provided
by Oregano Systems and is available for implementing the security extension. The provided stack
is platform independent and runs under Windows and Linux.

To be able to support both operating systems without having to maintain two versions, the security
part has to be located after the platform dependent functions. For security reason, it is favorable to
take a modular approach. This ensures that the new functionality is encapsulated, has �xed points
for interaction with the rest of the system and helps on maintenance [TH08]. An implementation,
which is also transparent for the stack, allows an almost independent development of the security
and the clock synchronization stack. Furthermore, the application domain dictates an e�cient
implementation: The clock synchronization stack and its security extension are used on resource
limited devices, and are deployed in a network that uses the timestamp information as foundation
for other services. As a conclusion, three main attributes for this integration are:

1. Modular layout

2. Transparent design

3. E�cient implementation

After the implementation phase (integrating all functionalities), the new software needs to be
tested. This procedure ensures that the new software works as it supposed to be. The test
procedure is divided into two parts, veri�cation and validation. Veri�cation is about building the
system right and validation ensures building the right system.

In the following sections the integration, the veri�cation, and the validation of Annex K into the
the provided stack is explained.

4.2 Integration of Security in the PTPv2 Stack

As pointed out in the previous section, the design has to favor a modular, transparent and e�cient
implementation. For obvious reasons, the security extension may not mess with the core function-
ality of the PTP stack and has to keep the overhead low. Furthermore, an inspection of the code
and the interfaces from the code has to be performed to avoid the possibilities of side-channel
attacks, bu�er over�ows and other attack patterns.

The security extension is implemented as an extra layer, which incorporates the security extension.
The architecture is depicted in Figure 4.1. The advantage of this architecture is the highly modular
structure as de�ned as essential for this application. This approach o�ers the possibility to expand
the security extension independently of the core functionality. Additionally, it is possible to modify
certain aspects of the extension to test di�erent implementations for certain parts, e.g., di�erent
cryptographic libraries or variable back ends for data handling.

The next module, located at the bottom of Figure 4.1 is the PTP network interface, named
PTP_NetworkIfc. It is part of the provided PTP stack, has to split the received messages.
This fragmentation divides the head of a PTP message from the appended Type Length Val-
ues (TLVs). This module is not part of the security layer, however this module has to work very
e�ciently to ease possible Denial of Service (DoS) attacks and to prevent bu�er over�ow attacks.
PTP_SecurityIfc is the interface class between the PTP_Engine and the security extension. The
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PTP_Engine

PTP_SecurityIfc

PTP_NetworkIfc

Receive Packet Send Packet

Figure 4.1: PTP stack architecture, with added security layer, PTP_SecurityIfc (Ifc...Interface)

security module has two interfaces, one to the upper module, the PTP state machine, and one
to the lower module, the network interfaces of the system. The security extension has control
over the network tra�c, incoming and outgoing, which is destined for the PTP stack. It performs
all security a�liated tasks between the upper and the lower layer modules. Finally the module
PTP_Engine represents the PTP stack.

The communication with the PTP state machine has to be divided into a receiving and a sending
part. When a message is received, the security extension decides if the message is passed on to the
state machine. This decision is provided via an integer value, which indicates if the message has
to be discarded or is handled as usual. For a simple case, a boolean would be enough as return
parameter, however for advanced feature implementation an integer is used. Not only enables it
the stack to discard the message, it also can trigger an indicator for a speci�c security breach.
The sending of a message is also transparent for the PTP state machine. The return value of
the sending function responds with sending successful or sending failed, exactly to the feedback
provided by the network module directly. Therefore the PTP stack gets a feedback, which is the
same for activated and deactivated security extension.

The base of the security module builds on the security association table. This table contains all the
information necessary for running the security module and also supplies functions to add, remove
and search for entries. The security extension Annex K speci�ed in IEEE1588v2 demands that all
security relevant data of the message have to be checked against the locally stored data. The same
applies for sending a packet, which also results in retrieving data from the security association
table to compose a valid message for the receiver. Sending and receiving PTP messages is a
periodic task. In particular for a master clock, which supplies several hundreds of slaves, the
computational load can grow very fast. Therefore, the operations on the security association
table are optimized for fast information access, which use well performing algorithms.

C++ o�ers di�erent types of lists, e.g., hash map, linked list, double linked list, etc. The security
association table makes use of hash maps, which are included in the standard template library and
o�er good performance. The main class of the security module calls the appropriate functions
to perform the relevant tasks such as adding and deleting of new Security Associations. The
security state machine takes care of keeping track of the various messages and timers which are
due. The expiration of authentications, expiration of security association, and the update of
security associations are also handled by the security state machine.
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4.2.1 Structure of the Security Module

The modular approach for the security class, which is explained in the previous chapter, is used
to segment the implementation into speci�c parts. The implementation makes use of already
implemented types, classes, and functions of the PTP stack, which keeps the overall size of the
stack slim.

The structure of the security module is depicted in Figure 4.2. On the left side of the diagram
the security class itself is shown. This class is only allowed to be instanced once. It supplies all
functionality within this single module and can handle hundreds of connections. It is only limited
by the storage space and the computing power of the supplied system.

The security module depends on several classes, which can be seen on the right side of the diagram.
To be able to instance the PTP_Security class, a PTP_LogIfcError has to be supplied for logging
together with a PTP_Con�gIfc to retreive con�guration parameters.

1. PTP_LogIfcError, this class is the back end for all logging tasks. It provides several logging
levels, i.e., Error,Warning, Notice, Info, andDebug. These levels provide di�erent verbosities
for the user. The most verbose level is Debug, used for developers to get the maximum
amount of information from the stack, to track down errors and malfunction and to �nd
the part of the code responsible for these actions. The next higher level is Info. It supplies
less information than the Debug level, but enough output for maintenance to see if severe
problems occured. The next level is Warning, supplying a user with warnings of the stack,
which might cause problems during runtime. The last level is the Error mode, which only
reports severe problems to the user.

2. PTP_Con�gIfc supplies the stack and the security module with con�guration settings. For
the security module, these settings concentrate on the keys and associated data. This data is
read from a con�guration �le. The �le uses the a Comma Separated Values (CSV) structure
where each dataset starts with a new line.

The format of the PTP_Con�gIfc follows this layout:

� An unique key ID, to identify the key.

� An algorithm ID, which speci�es the algorithm that has to be used. Two values are possible
�1� for SHA-1 or �2� for SHA-256

� The key, which is used to ensure the integrity of the data.

� An expiration time, which indicates the expiration of the validity of a key.

Both classes are supplied via the PTP stack and are also used by the stack itself. The Type Length
Values (TLVs), needed by the security extensions, are inherited from the base classes supplied by
the PTP stack via the PTP_TLVBase class. These three types are:

1. PTP_TLVAuthentication

2. PTP_TLVAuthenticationChallenge

3. PTP_TLVSecurityAssociationUpdate
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PTP_TLVAuthentication

lifeTimeId:uint16_t
replayCounter:uint32_t
keyId:uint16_t
algorithmId:uint8_t
res:uint8_t
icv [16]:uint8_t

convert_2n ():void
convert_2h ():void

PTP_TLVAuthenticationChallenge

challengeType:uint8_t
res:uint8_t
requestNonce:uint32_t
responseNonce:uint32_t

convert_2n ():void
convert_2h ():void

PTP_TLVSecurityAssociationUpdate

addressType:uint8_t
res:uint8_t
nextKeyId:uint16_t
nextLifetimeId:uint16_t

convert_2n ():void
convert_2h ():void

PTP_LogIfc

Error (const char *fmt,...):void
Warning (const char *fmt,...):void
Notice (const char *fmt,...):void
Info (const char *fmt,...):void
Debug (const char *fmt,...):void
redirectToSyslog ():void
set_level (int lev):void
~PTP_LogIfc ():virtual

PTP_Security

extraTLVLength:uint16_t
extraTLVType:uint16_t
floodEndTime:timeval
timeBetweenMessages:uint16_t

PTP_Security ()
~PTP_Security ()
PTP_Security (PTP_Security const &copy)
init (PTP_LogIfc *m_logIfc, PTP_ConfigIfc *m_cfgIfc):void
initFile ():void
getNodeCounter ():int
increaseNodeCounter ():void
decreaseNodeCounter ():void
setOutgoingReplayCounter (uint32_t value):void
addOutgoingReplayCounter (uint32_t value):void
getOutgoingReplayCounter ():uint32_t
setOutgoingReplayCounterOld (uint32_t value):void
getOutgoingReplayCounterOld ():uint32_t
setCurrentRandomNumber ():void
getCurrentRandomNumber ():uint32_t
setLifeTimeId (uint32_t value):void
getLifeTimeId ():uint32_t
setNextLifeTimeId (uint32_t value):void
getNextLifeTimeId ():uint32_t
setKeyId (uint16_t value):void
getKeyId ():uint16_t
setNextKeyId (uint16_t value):void
getNextKeyId ():uint16_t
addsaIncoming (saEntry *newEntry):void
searchSaIncoming (PTP_PortId *portId):saEntry *
setSaIncoming ():void
getSaIncoming ():saEntry *
nextSaIncoming ():void
addsaOutgoing (saEntry *newEntry):void
searchSaOutgoing (PTP_PortId *portId):saEntry *
setSaOutgoing ():void
getSaOutgoing ():saEntry *
nextSaOutgoing ():void
newTableEntry (int table, PTP_PortId *portId, bool requestSent,
     bool responseRequestSent):void
updateSingleEntry (PTP_PortId *portId, int table):void
updateOutgoing ():void
updateCounteroverflow ():void
updateAll ():void
alterTableEntry (saEntry *alterEntry, PTP_TLVAuthentication *recACH,
     PTP_TLVSecurityAssociationUpdate *SAU, uint8_t challengeType,
     security_state myTrustState, challenge_state myChallengeState,
     bool trustTimer, bool challengeTimer, bool counterOverflow):void
entryTimeout (saEntry *timeoutEntry):bool
printTableEntry (saEntry *tmpsaEntry):void
addKeyList (keyEntry *newEntry):void
searchKeyList (uint16_t keyId):keyEntry *
getAlgorithmId (uint16_t keyId):uint8_t
getCurrentTime ():timeval
setChallengeTLV (PTP_TLVAuthenticationChallenge *setTLV):void
getChallengeTLV ():PTP_TLVAuthenticationChallenge *
setUpdateTLV (PTP_TLVSecurityAssociationUpdate *setTLV):void
getUpdateTLV ():PTP_TLVSecurityAssociationUpdate *
setAuthenticationTLV (PTP_TLVAuthentication *setTLV):void
getAuthenticationTLV ():PTP_TLVAuthentication *
checkICV (const int8_t *m_buf, uint16_t len,
     PTP_TLVAuthentication *authenticationTLV,
     unsigned char *hash):bool
calculateICV (const int8_t *m_buf, uint16_t len, keyEntry *keyItem,
     int algorithmId, unsigned char *hash):bool

PTP_ConfigIfc

twoStep:bool
prio1:uint8_t
prio2:uint8_t
domain:uint8_t
announceInterval:int8_t
syncInterval:int8_t
dlyReqIntervalOffs.int8_t
pdlyReqInterval:int8_t
dlyMechanism:uint8_t
clkAccuracy:uint8_t
clkClass:uint8_t
clkVariance:uint16_t
dlyAsymmetry:TimeInterval_t
announceRecptTout:uint8_t
flags:uint8_t
timeSrc:uint8_t
currUTCOffs:uint16_t
enableSecurity:uint8_t
pathToSecurityConfigFile:char *

E2E = 0x01:static const uint8_t
P2P = 0x02:static const uint8_t
noDly = 0xFE:static const uint8_t
leap61 = 0x01:static const uint8_t
leap59 = 0x02:static const uint8_t
currUTCOffsValid = 0x04:static const uint8_t
ptpTimescale = 0x08:static const uint8_t
timeTraceable = 0x10:static const uint8_t
freqTraceable = 0x20:static const uint8_t

Figure 4.2: Overview of the security module class structure
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The relation of the classes is depicted in Figure 4.3. Each of these message classes represents the
structure of the message type it belongs to. Furthermore, two functions are available:

� Network-to-host byte order

� Host-to-network byte order

The two functions are needed to support a platform independent approach. Di�erent types of com-
puters are using di�erent byte orderings, big-endian (most signi�cant byte �rst byte in the word,
default for network byte order) and little-endian (most signi�cant byte last in the word, default
for x86 CPU from Intel and AMD). With a conversion between the two schemes, communication
systems with di�erent byte orders can communicate with each other.

The next three subsections will give more detail on the main actions of the stack sending a message,
receiving a message, and the challenge-response procedure.

PTP_TLVBase

type:uint_16
length:uint_16

convert_nw ():void

PTP_TLVAuthentication

lifeTimeId:uint16_t
replayCounter:uint32_t
keyId:uint16_t
algorithmId:uint8_t
res:uint8_t
icv [16]:uint8_t

convert_2n ():void
convert_2h ():void

PTP_TLVSecurityAssociationUpdate

addressType:uint8_t
res:uint8_t
nextKeyId:uint16_t
nextLifetimeId:uint16_t

convert_2n ():void
convert_2h ():void

PTP_TLVAuthenticationChallenge

challengeType:uint8_t
res:uint8_t
requestNonce:uint32_t
responseNonce:uint32_t

convert_2n ():void
convert_2h ():void

Figure 4.3: Message types speci�ed by Annex K in IEEE1588v2

Processing Incoming PTP Messages

The processing of an incoming PTP messages is depicted in Figure 4.4. The PTP stack calls the
security extension and passes on the received message. In the �rst place, a review of the message
to validate it and build the base for further processing is performed:

1. Check if the security �ag is set in the header of the PTP message, see section 2.2.2.

2. Check if the PTP message has an appropriate Authentication TLV appended.

3. Check the ICV. The module �Message is valid� in Figure 4.4 performs this �rst check.
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If one of the validation fails, the message is immediately discarded. This behavior helps minimizing
the impact on the system load. After this entry-level test, the message is passed on to the state
machine of the security module.

The security state machine is performing a look-up in the Security Association Table to �nd a
Security Association (SA) related to the incoming message. Depending on the outcome of the
search, two di�erent options are possible:

1. The look-up brings up an empty result. There are currently no associations built up with
the sender of this message. If the number of currently established associations is lower than
the maximum associations allowed by the system, a new association is created together with
the initial challenge-response message. All new and updated associations have to be veri�ed
via challenge-response message exchange.

2. There is a, SA available for the message. The entry in the Security Association Table
provides additional parameters, which are checked against the received message. The stored
key ID in the message has to be the same key ID, which is saved with the corresponding SA
and the replay counter has to be greater than the stored one.

In the second case the next steps depend on the message type, which is received.

� If the received message is a challenge-response message, it is processed according to section
4.2.1.

� The message uses the next key ID and next lifetime ID. These parameters are also part of
the Security Association Table and can be checked. The switch from old security parameters
to new security parameters has to be con�rmed by a challenge-response procedure.

� If the message does not �t into one of the previous two options, the timeout of the SA entry
is renewed and the message passed on to the PTP stack for further processing.

Challenge Processing

The challenge-response processing is a special case of receiving a message. Figure 4.5 shows the
functions in detail, which are presented as block �Process challenge message� in Figure 4.4.

When an incoming message is identi�ed as a challenge-request, the security state machine prepares
a challenge-response-request message. The response-request message includes a request nonce,
which has to be saved to validate a proper response.

If a challenge-response or challenge-response Request is received, a valid association has to be
present in the Security Association Table and the status has to be challenging. If there is no entry
or the status is not challenging, then there is no pending request and, therefore, such a response
is bogus and the message is silently discarded.

For the case that a Security Association is found, which is in state challenging, the nonce which
is part of the message (see section 4.2.1) is checked against the value stored in the Security
Association Table.

If the message of type response-request is a matching response, message is compiled and sent back
as an answer.
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After the message has passed these checks, it is determined that this message is an adequate
response to a request, which is expected. Therefore, the state machine modi�es the Security
Association and updates it with the data delivered in the message. For a successful response-
request or response, the following data is modi�ed:

� The trust state is changed to trusted.

� The challenge state is changed to idle.

� The lifetime ID of the message is copied to the Security Association to prolong the lifetime
of the Security Association.

� The replay counter is updated to re�ect the actual count.

Send Message

The process of sending a PTP messages is depicted as �ow diagram in Figure 4.6. The PTP
stack calls the security extension and passes on the message, which needs to be sent. The need to
facilitate the security module is determined by the security �ag, which has to be set in the PTP
header (see section 2.2.2).

All PTP messages to be secured are extended by the Authentication TLV. The data, which has
to be �lled in this TLV is provided by the Security Association. The following data is inserted:

� The current value of the replay counter.

� The matching lifetime ID for this Security Association.

� The key ID for the key currently in use.

� The algorithm ID, which corresponds to the key ID.

� The result of the ICV calculation.

The next step is to prepare the replay counter for the next sending process. The counter in the
Security Association has to be increased by two after every use [IEE08, section K.2]. During this
step the replay counter can roll over and an update procedure is triggered (see section 2.3.2). The
last step in this update process is to set the replay counter to zero. When all these steps are
completed, the message is compiled and can be sent.

4.2.2 Implementation Details

The security module uses several interfaces to interact with the adjacent modules. To give an
overview of the implementation, the most important interfaces are introduced subsequently.
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Figure 4.5: SDL diagram of the challenge-response routine from the IEEE1588v2 security extension

Security Associations

The Security Associations de�ned by Annex K of IEEE1588v2 are mapped to an internal structure
in the security module. This internal structure is based on the information supplied in Annex
K and is extended with additional data for the security state machine. Every SA consists of the
following information:
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struct saEntry {

PTP_PortId portId;

uint32_t replayCounter;

uint16_t lifetimeId;

uint16_t nextLifetimeId;

uint16_t keyId;

uint16_t nextKeyId;

security_state trustState;

timeval trustTimer;

timeval trustTimeout;

challenge_state challengeState;

timeval challengeTimer;

timeval challengeTimeout;

uint32_t requestNonce;

uint32_t responseNonce;

sa_type saType;

bool requestSent;

bool responseRequestSent;

};

This SA structures are maintained in tables and are used in the incoming and outgoing Security
Association Table. The key list uses a similar approach.

The tables, which are used in the implementation, have a big impact on the overall performance
of the security module. Many of the operations performed in the security module depend on
inserting, deleting, and searching for speci�c security associations.

There are a lot of implementations available for handling such lists, e.g., linked list, double linked
list, circular linked list, hash list, etc. For this implementation there are several demands, which
have to be ful�lled. The implemented list management has to cope with the available processing
power and limited space. It is senseless to implement a database with all the functionality to
handle the information occuring on a network node. Another need which arises, is the speed. A
network node in a small network may handle only 10 nodes at the same time. However, in big
networks, this number can grow to several hundred nodes.

An implementation ful�lling all the demands is the so called hash map, also known as hash table
or unordered map in C++. Hash maps o�er almost similar look-up costs independently of the
number of elements stored in the list. The hash map uses a hash function to map values to known
keys. In this implementation the port ID is used as key, because it is an unique identi�er within
the PTP network. The hash function transforms each key and builds an index for searching. In
theory a hash function maps each possible key to a unique entry in the index. However, this ideal
cannot be met for all situations, although this incident is a very rare case. In such exceptions, the
implementation in C++ is providing handlers, which detect such incidents and are able to resolve
them.

The hash maps are used for the incoming and the outgoing Security Association Tables and also
for the list of keys. The implementation of the lists o�ers functions for inserting, deleting and
searching within the list. To perform this task, additional functions are needed to traverse the
list. To provide an example, the functions related to the incoming list are depicted in Table 4.1.
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Initialization File

The initialization of the PTP stack is split into two parts � one general initialization for the PTP
stack and a security related part. The general con�guration is done via command line switches
and it is already available by the PTP stack. A modi�cation of this part introduces an additional
switch for turning on and o� the security extension.

The security related part consists of an initialization �le. The con�guration via command line
is discarded due to the fact that the security module has to be fed with keys and timing data.
This is an error-prone task and hardly to be achievable on command line due to the amount of
data needed by the security module. Additionaly, the key data is equal for all nodes in one group,
therefore a �le o�ers the convenient possibility to distribute the con�guration to several nodes
easily.

The con�guration �le uses a Comma Separated Value approach, which o�ers a �exible structure
for the con�guration of the stack. The con�guration o�ers �ve di�erent labels, used to con�gure
the security extension on startup. These values are given below together with an example entry
in the con�guration �le and a short description.

enableSecurity: The enableSecurity label is used to enable di�erent modes of the security ex-
tension. More information on TLV handling can be found in subsection 4.2.3. An entry in
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Function Name Return Value Parameters Description

addsaIncoming void saEntry
*newEntry

Adds a new entry into the
incoming Security Association
Table, which passed as a
parameter.

searchSaIncoming saEntry * PTP_PortId
*portId

Searches for an entry with a
speci�c port ID in the incoming
Security Association Table, which
is passed as a parameter.

setSaIncoming void � Sets a pointer to the beginning of
the incoming Security
Association Table.

getSaIncoming saEntry * � Returns a pointer to the current
valid element in the incoming
security association table.

nextSaIncoming void � Sets the pointer of the incoming
Security Association Table to the
next element.

Table 4.1: Functions related to the handling and maintaining the incoming Security Association Table.

the con�guration �le would look like this: enableSecurity,1

tlv: The tlv label is used to add a TLV to a message with a speci�c ID and length. This is
primarily for validation. More information on this can be found in subsection 4.2.3. An
example for the con�guration �le would look like this: tlv,abcd,10

replaycounter: The replaycounter label is used to initialize the replaycounter. It can be set to
a speci�c value. An example for the con�guration �le would look like this: replaycounter,10

timebetweenmessages: The timebetweenmessages label is used to con�gure the time, which
has to elapse between the sending of two consecutive messages. The value is speci�ed in µs.
More information on this can be found in subsection 4.2.3. An example for the con�guration
�le would look like this: timebetweenmessages,25000

key: The key label is used to add keys to the key table list. The con�guration for this label has
the following properties:

� An unique identi�er for the key.

� The algorithm ID, which has to be used together with this key.

� The key itself in hexadecimal notation.

� And a time interval in seconds when the key expires.

An example for the con�guration �le would look like this: key,1,2,password,1200;
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4.2.3 Veri�cation and Validation

After the implementation, the system has to be veri�ed and validated. Without this additional
steps, it cannot be ensured that the stack works as it should and that it has inherent security
breaches [TH09].

The �rst step is to use automatic tools to analyze the produced code. The tool used for this task is
Valgrind (http://valgrind.org/). Valgrind is released under the terms of the of the GNU General
Public License. It is a set of tools, which automatically detects bugs in the memory management
and has a pro�ling functionality.

During the examination of the code several cases where pointed out where a reserved memory
was not freed after the initialization. No bugs where found in the underlying structure. All bugs
reported by Valgrind were corrected and, at the end, the system passed the checks without errors.
Yet, such a static analysis cannot check the internal state machine and interact with dynamic
processes during real operation.

For the veri�cation of the internal logic, several tests have been developed. These tests can be
launched from a modi�ed stack. The behavior is changed with switches in the con�guration �le
of the security extension (see subsection 4.2.2).

Thirteen test cases are de�ned to examine the development and correct behavior. Additionaly,
these test cases can also be used for interoperability testing, as test pattern generator against
other PTP stacks.

Table 4.2: Possible test cases of the implemented PTP stack

Test Case Description

0 Disables the security extension. With this option it can be tested if the addition
of the security extension has in�uence on the rest of the stack.

1 Enables the security extension and represents the normal mode of operation. This
option is only available for the implemented stack and cannot be tested with other
implementations.

2 Disables the security �ag in the header of the PTP message. An implementation
running in a secure operation mode has to discard this message immediately.

3 Does not append the mandatory Authentication TLV to the PTP message. This
message quali�es as malformed, an implementation running in a secure operation
mode has to discard this message immediately.

4 Inserts a wrong Integrity Check Value (ICV) in the Authentication TLV of the
PTP message. The receiver calculates the ICV over the PTP message; the
comparison of the received ICV and the calculated result di�ers and an
implementation running in a secure operation mode has to discard this message
immediately.

5 Keeps the replay counter at a �xed number. The standard speci�es that a
received ICV has to be greater than the one saved in the Security Association
Table, therefore a check reveals that the replay counter is equal or smaller than
the one saved. An implementation running in a secure operation mode has to
discard this message immediately.
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Test Case Description

6 Sets the replay counter to a very high value, short before an over�ow occurs. The
replay counter is a 32 bit variable, therefore it over�ows at 4294967295. Setting
the replay counter to a value before this number forces the stack to trigger an
update procedure to distribute the new next key ID and next lifetime ID. The
replay counter is set via the con�guration �le, see subsection 4.2.2.

7 Sets the key ID in the Authentication TLV to an invalid number. An
implementation running in a secure operation mode has to discard this message
immediately.

8 Sets the lifetime ID in the Authentication TLV to an invalid number, neither the
current lifetime ID nor the next lifetime ID. An implementation running in a
secure operation mode has to discard this message immediately.

9 Sends a wrong response nonce in the response-request message to the receiver.
The receiver compares the received value to the one saved in the Security
Association Table. Due to the fact that the sender on purpose sent the wrong
nonce and the check does not work out, the receiver has to discard the message
immediately and the Security Association is never changed to the trusted state.

10 Sends a wrong response nonce in the response message to the receiver. The
receiver compares the received value to the one saved in the Security Association
Table. Due to the fact that the sender sent the wrong nonce on purpose and the
check does not work out, the receiver has to discard the message immediately and
the Security Association is never changed to the trusted state.

11 Floods the network with messages. When the stack runs as master, it sends
constantly sync messages to the slaves. When the stack runs as slave, it sends
constantly delay messages to the master. The interval between two consecutive
messages is de�ned in the con�guration �le of the security extension (see
subsection 4.2.2).

12 Adds an extra TLV to the existing PTP messages. The TLV is inserted before the
Authentication TLV, therefore it is included in the security checks and should not
produce an security related error. In this test, two or even three TLVs are
incorporated in one message. These messages are passed on to the PTP stack,
which has to handle the TLVs according to their identi�er. If it cannot handle
them it has to discard the TLV.

13 It is similar to twelve, it also appends an extra TLV. However, this time no
Authentication TLV is appended. During the stack testing it might be possible
that speci�c TLVs trigger a wrong behavior, therefore it is necessary to be able to
send modi�ed PTP messages without the appended security.
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4.3 IPsec Protection

Secure communication on the IP level has many faces, but one of the most widespread protocols
is IPsec. A lot of applications in di�erent domains make use of this protocol, e.g., building
Virtual Private Networks (VPN), connecting two servers via a secured connection, or o�ering
secured connections for employees from home or a remote working place. In an environment
where the tra�c is already protected by IPsec, it is not useful to secure the PTP tra�c with the
security extension provided by PTP itself. The PTP tra�c can use the already provided secured
communication channel and reduce the necessary maintenance e�ort. As an alternative to the
implemented secure PTP stack, the IPsec protocol stack is examined to show the in�uence on
PTP.

4.3.1 Structure

IPsec is part of the network subsystem and does not have to be implemented. The IPsec protocol
is fully integrated in the IP stack of the kernel. IPsec is used to compare the native solution
of IEEE1588v2 with a well established communication protocol. The information �ow in the
kernel can be in general divided into a receiving path and a transmitting path. Figure 4.7 depicts
the logic �ow of incoming and outgoing IP packets, together with the IPsec extension. The two
communication paths, receiving and transmitting, are connected with a forwarding path. These
functions are used to forward packets to other recipients and not to the local host.

IPsec Receive

A received IP packet is enqueued in the IP stack of the kernel. The �rst handlers of the packet
are the ip_rcv and ip_rcv_�nish functions, depicted in the left part of Figure 4.7. Standard
unencrypted tra�c, which has to be forwarded, can be directly pushed into the forwarding path.
Tra�c, which is encrypted or destined for the local host, is handled by the ip_local_deliver
function. If an IPsec structure is detected, it is fed to the xfrm function, xfrm4 for IPv4 and xfrm6
for IPv6. This function handles either IPsec Authentication Header (AH) packets via ah_input,
or IPsec Encapsulationg Security Payload (ESP) packets, with esp_input. The security features
are checked and proper measurements for authenticating and decrypting the packet are taken.
After this procedure, the packet is passed back to local delivery. If the packet is intended for
local delivery, it is passed down to ip_local_deliver, which serves it to the next higher layer. The
second possible way for the plain IP packet is the forwarding path. For this procedure, the packet
is enqueued again at the beginning of the IP processing.

IPsec Transmit

Transmitting an UDP IP packet starts with enqueueing the packet in ip_push_pending_frames,
depicted in the right part of Figure 4.7. If a packet is secured by IPsec, it is forwarded to the
appropriate functions, ah_output or esp_output. In ah_output the data is authenticated by
the authentication algorithms. The function esp_output performs the encryption of the data.
The result, authenticated or encrypted packet, is fed back into ip_push_pending_frames. For a
combined mode ESP and AH the packet is again forwarded to the speci�c IPsec function to perform
the task. After the IPsec procedures, the packet is forwarded by ip_push_pending_frames to
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ip_output, which is also the entry point for forwarded packets. The ip_output function relays
the packet to ip_�nish_output, which forwards it to the next lower layer.

ip_rcv

ip_rcv_finish

ip_local_deliver

xfrm4_rcv

esp_inputah_input

ip_forward

to upper layer

ip_finish_output

ip_forward_finish
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ip_output
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Figure 4.7: IPsec data �ow in the Linux kernel

4.3.2 Interfaces

IPsec itself is transparent for applications, therefore the implementation of the application does
not need to be modi�ed compared to stock IP. Applications send the tra�c as with non-secured
IP and do not have to know anything about the underlying security enhancement provided by
IPsec. The kernel uses two di�erent structures for handling IPsec connection, Security Policies
(SPs) and Security Associations (SAs).

Security Policies identify which tra�c is handled by the AH functions, ESP functions, or both.
These Security Policies are managed in the Security Policy Database (SPD). The Security Policy
contains the IP address of the node, communicating with the local host, the modes and services
used for the connection.

Besides the SP, which speci�es the properties of the connection, two Security Associations are
created, which specify how the tra�c is handled. One SA is used for the incoming tra�c and one
SA for the outgoing tra�c. The IP stack of the Linux kernel needs information for decrypting,
encrypting, and authenticating the packets. This security related data is retrieved from the
Security Association (SA) associated with the connection. For one host, several SAs can be
provided and all of these associations are managed in the Security Association Database (SAD).
An SA is composed of a source IP address, a destination IP address, the protocol type (AH, ESP
or a combination of both), algorithms, keys, an unique identi�er, and the Security Parameter
Index (SPI). The SAs can be created in two di�erent ways, either manual keyed connections or
automatic keyed connections.

� Manual keyed connections: All information needed to setup the connection have to be pro-
vided manually, e.g., by an administrator. During the setup, it is speci�ed which protocols,
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algorithms and keys have to be used during runtime. The administrator has to setup the
security associations and �ll the SAD.

� Automatic keyed connections: A daemon has to setup the keys for the IPsec connection
automatically. The Internet Key Exchange (IKE) protocol was designed to do this automatic
update.

For setting up the connection, two programs are used in Linux, setkey and racoon. Both tools are
part of the ipsec-tools software suite.

Setkey is a tool to administrate both, the Security Association Database and the Security Policy
Database of the Linux kernel. It is possible to add, dump, �ush, and update entries in the
SAD. The con�guration is either read from the standard input or read from a �le.

Racoon is a tool, which makes use of the IKE protocol. The key management protocol is used to
create Security Associations between two hosts. Racoon is called from the Security Policy
Database.
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5 Measurement Setup

After the security analysis of the clock synchronization stack in subsection 3, and the implementa-
tion which is described in the the previous section 4, the whole system is tested in a real network.
The setup of the test network consists of two parts, �rst the hardware setup and second the
software setup. Both parts are explained in detail in this chapter.

5.1 Setup of the Hardware

The components, which are used in the hardware setup, are consisting of three main parts:

1. Two industrial PCs.

2. Two hardware clock synchronization cards.

3. An oscilloscope or frequency counter.

The two industrial computers, depicted in Figure 5.1 in the rack, are low power devices with an
Intel Celeron M CPU running at 800MHz, 512MB RAM. One industrial PC is equipped with a
hard disk and the other one uses a �ash drive for the operating system and data. The operating
system installed on the nodes is a Linux operating system, Debian Lenny, with a 2.6.26 version
of the kernel. One node is con�gured as PTP master and the other node is the PTP slave.

The hardware clock synchronization card is a PCI card (syn1588) with a crystal oscillator (50 ppm),
which is installed in the industrial computers. The card is produced and sold by Oregano Sys-
tems. With this special hardware, a synchronization between two nodes in the two digit nano
second range is possible. Furthermore, the card has four analog outputs, which can be con�gured
depending on the application. For this setup, one of the ports is con�gured as a Pulse Per Second
(PPS) port. The hardware clock of the card is generating one pulse at the beginning of each
second. With such an output, it is possible to measure the synchronization between two indepen-
dent nodes. The outputs of the two nodes are connected to an oscilloscope or a frequency counter
(depicted in the middle of Figure 5.1), which are used to perform the measurements.

For verifying the test setup, an oscilloscope is used, which is a LeCroy Wave Pro 7300A with 30
Gigasamples (can be seen on the left side of Figure 5.1). The PPS outputs of the two Devices Under
Test (DUT) are connected each to a channel on the oscilloscope to measure the time di�erence
between the two signals. For the measurement sets, a highly accurate universal frequency counter
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is used. The device is programmable and can be controlled externally. The settings are sent to the
device, which then operates according to the commands. This ensures a consistent measurement
setup, which delivers reproduceable results.

Oscilloscope Universal Frequency
Counter Barebones

Figure 5.1: Measurement setup in the laboratory

5.2 Packet Delay Variation Measurement

The accuracy and variance of software clocks highly depends on the jitter introduced by the
di�erent parts present in the system. The network stack already present in the system also
contributes to the jitter. In the Packet Delay Variation (PDV) measurements, the jitter of the
software network stack in di�erent scenarios is determined.

The �rst attempt for measuring the timestamps in the Linux kernel was based on kprobes1. This
software is used to retrieve information from the kernel at speci�c positions. It is mostly used
for debugging the kernel. As it turned out, the functionality of kprobes causes delays and adds
additional jitter almost three magnitudes above the jitter of the measured delay. Therefore, the
functions within the IP/IPsec stack were modi�ed (instrumented) directly.

Figure 5.2 depicts the IP stack of the Linux kernel. The functions, which were instrumented, are
marked with the clock box symbols. To determine the introduced delay, a timestamp is drawn at
the beginning of the processing of an IP packet and a second timestamp is drawn when the packet
leaves the IP stack.

In the receive path, the timestamp tReceive1 is taken in the ip_rcv function, which is the point
of entry from the lower layers. The second timestamp tReceive2 is drawn when the packet exits
ip_local_deliver, which passes the packet on to the upper layers.

In the transmit path, the timestamp tTransmit1 is drawn when the packet from the upper layer
enters the IP stack, which in case of UDP is in ip_push_pending_frames. The second timestamp
tTransmit2 is drawn at the end of ip_�nish_output.

To keep the in�uence on the measurements as low as possible, the timestamps are recorded in a
memory array. The jitter prone printing of the memory array to the kernel log �le is done after
the measurements are �nished.

The instrumentation has to handle the fact that IPsec packets traverse the instrumented IP
functions multiple times. To exemplify such a case, the receiving of an ESP packet in tunnel

1http://sourceware.org/systemtap/kprobes/
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mode is explained. The packet is passed from the lower layers to ip_rcv. After that the packet
passes ip_local_deliver. Now the packet is not handed over to the upper layer, but processed by
xfrm4_rcv, which handles the IPsec part of the packet. After the outer IPsec header is processed
and stripped, the packet is again enqueued in ip_rcv. The packet still has an IP header and is
processed again. This cycle repeats as long as there are IP headers present and for every round
two timestamps are generated. When all headers are processed, the packet is forwarded to the
upper layers.

Figure 5.3 shows the measurement setup of a single node for PDV measurement. The application
transmits/receives the packets and the Linux kernel processes them. The packets are then trans-
ferred over the network to the receiver/transmitter. This setup is used identically, one time with
IP packets and the second time with IPsec packets. The data, which is stored in the kernel log,
includes the identi�er of the timestamp and the timestamp itself.

Because the logging is built into the kernel, it starts immediately after the system start and
contains a lot of irrelevant measurement data. The actual measurement starts with a sequence,
which can be identi�ed in the log �le, therefore it is possible to start in determined state. The
analysis of the data depends on the mode:

1. IP, one round per packet, two timestamps

2. AH or ESP in transport mode, two rounds per packet, four timestamps

3. AH or ESP in tunnel mode, three rounds per packet, six timestamps

4. ESP+AH in transport mode, three rounds per packet, six timestamps

5. ESP+AH in tunnel mode, four rounds per packet, eight timestamps

The �rst measurement of plain IP without security serves as a reference for all measurements.
The Precision Time Protocol (PTP) operates on the IP layer and, therefore, no dedicated PDV
measurement for this protocol is needed.

5.3 Measurement of Clock Synchronization Precision

The PDV measurements put a focus on the delay, which is introduced by the di�erent security
measures. This delay is introduced in lower layers and the control algorithm, introduced by the
PTP application, tries to minimize such e�ects. The aim of this measurements is to compare the
results between the di�erent implementations. Furthermore, it is possible to compare the PDV
measurement, described in the previous subsection 5.2, to the clock synchronization quality of the
synchronized stack.

The setup can be divided into three classes.

1. PTP over IP

2. PTP over IP together with IPsec

3. PTP over IP with native IEEE1588v2 security extension
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Figure 5.2: Instrumentation points in the IP/IPsec stack of the Linux kernel

Application

Linux Kernel

IP Network
Stack

t1

t2

Network

IPsec

ΔtIP+IPsec=t1-t2

Figure 5.3: Position of timestamps in the measurement setup

5.3.1 IEEE1588v2 Setup

The con�guration of the security module for the PTP stack is provided via a con�guration �le,
the con�guration is static and for all nodes the same. The con�guration used in the setup:

enableSecurity,1

#tlv,0xidentifier(in hex),length (complete tlv)

#must be activated via switch in the line above

tlv,0xabcd,10

#identifier,replay counter

#counteroverflow at 4294967295

replaycounter,10

#time between messages in us

#timeBetweenMessagesint,value timebetweenmessages,25000

#identifier,keyId,algorithmId,key,timeinterval
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ΔtIP,sync=tMaster-tSlave

PTP_Engine

PTP_NetworkIfc

tMaster

Network

Linux Kernel

IP Network
Stack

PTP_Engine

PTP_NetworkIfc

tSlave

Network

Linux Kernel

IP Network
Stack

PTP_Engine

PTP_SecurityIfc

PTP_NetworkIfc

Network

Linux Kernel

IP Network
Stack

Network

Linux Kernel

IP Network
Stack

PTP_Engine

PTP_SecurityIfc

PTP_NetworkIfc

tMaster tSlave

Linux Kernel

IP Network
Stack

IPsec

PTP_Engine

PTP_NetworkIfc

tMaster

Network

PTP_Engine

PTP_NetworkIfc

tSlave

Network

Linux Kernel

IP Network
Stack

IPsec

ΔtIPsec,sync=tMaster-tSlave ΔtAnnexK,sync=tMaster-tSlave

Figure 5.4: Delay measurements in three di�erent setups: IP, IPsec, and IEEE1588v2 Annex K

#keyId must be unique

#algorithmId 1 for sha1 or 2 for sha256

#key in hex

#timeinterval key expiration time in s

key,1,1,abcdabcdabcdabcd,20000

key,2,2,1234567890123456,20

key,3,1,1234567890abcdef,20

key,4,2,1234abcd1234abcd,20

The con�guration of the PTP stack is also static, but it is provided at runtime. The stack is
forced to use a speci�c network interface and the synchronization interval is set to one message
per second.

5.3.2 IPsec Setup

To be able to use all services and modes of IPsec, the appropriate infrastructure has to be setup.
Three tools have to be prepared for the measurement setup:

1. Certi�cate Authority (CA)

2. setkey

3. racoon

Each of the tools has to be con�gured and separately brought up.

Key Distribution

For the IPsec implementation in Linux, certain modes can be used together with key distribution
schemes. These schemes o�er automatic key negotiation between the communication partners.
This key distribution needs a Certi�cate Authority (CA), which distributes digital certi�cates.
With a digital certi�cate, the authenticity of a public key can be identi�ed without sending
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private information from the user over the underlying network. The private key remains secret to
the owner and is not published. Third parties rely on this certi�cate, which is linked to a speci�c
public key. This security concept depends on trusted relationships. The CA acts as a trusted third
party and all communication partners trust this third party. A communication partner, which
is not certi�ed, cannot participate in the communication. The abilities of the CA is not only to
issue digital certi�cates, but it can also revoke certi�cates. This action invalidates an already
trusted certi�cate. The structure of an CA, which is used in this setup, is depicted in Figure 5.5.
The Certi�cate Authority signs two certi�cates for the involved communication partners. Because
both entities trust the CA, the entities trust each other and can exchange information.

Certificate Authority

Certificate A Certificate B

Trust

Figure 5.5: Structure of a Certi�cate Authority

In the test setup, the task of the CA are simple: Each of the clients requires a set of credentials,
which are used to authenticate themselves and the other communication partners. The setup of
the CA starts with the generation of a root key and a self signed certi�cate. Each node in the
network needs a certi�cate which is certi�ed by the root CA. After every certi�cate is signed, the
nodes have all the necessary keys and certi�cates to establish a connection.

Setting IPsec rules

The functions provided by setkey are setting and deleting rules, which have to be applied to
the IP packet, e.g., AH, ESP, or any combination of these. It also de�nes on which connections
these rules have to be applied to. This properties can be applied to tra�c of a speci�c node or a
complete network. It is also possible to de�ne di�erent rules for sending and receiving information.
An example for such a con�guration �le in the test network is given in the following:

flush;

spdflush;

spdadd 192.168.105.15 192.168.105.25 any -P in \

ipsec esp/transport/192.168.105.15-192.168.105.25/require;

spdadd 192.168.105.25 192.168.105.15 any -P out \

ipsec esp/transport/192.168.105.25-192.168.105.15/require;

The �rst two lines of the con�guration �le are deleting all rules from the existing con�guration.
This is done to start from a clean state. After that, a rule for the incoming tra�c is gener-
ated. Tra�c, which is destined from the local interface (192.168.105.15) to the remote interface
(192.168.105.25), has to use IPsec in ESP-transport mode. The next line takes care of the outgoing
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tra�c similar to the con�guration of the incoming connection. For the test setup, this con�gu-
ration �le is provided at the start up of setkey and takes care of all necessary con�gurations
needed.

Key Exchange for IPsec

Racoon is a daemon for automatically keying IPsec connection. This service is provided with the
help of the Internet Key Exchange (IKE) protocol. In the con�guration �le of racoon (racoon.conf)
it is speci�ed which certi�cates have to be used and which algorithms are supported for the data
exchange. An example for such a con�guration �le for the test setup looks as follows:

path include "/etc/racoon";

path_certificates "/root/ipsec/certs";

path pre_shared_key "/root/ipsec/psk.txt";

path script "/etc/racoon/script";

listen { isakmp 192.168.105.15 [500]; }

remote 192.168.105.25 { ... }

sainfo anonymous { ... }

This daemon can be used in all modes and for all services provided by IPsec. For the test setup
the key exchange is always the same for all IPsec measurements.
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6 Measurements and Results

The test setup described in chapter 5 is used for two di�erent measurements, Packet Delay Varia-
tion (PDV) and an overall clock o�set measurement.

Before the actual measurement data is discussed, di�erent in�uences on the measurement setup
are investigated and analyzed. The �rst part of the measurements is putting the focus on the
Packet Delay Variation, introduced in the network stack of the Linux kernel. Therefore, the Linux
kernel was modi�ed, as outlined in the previous section, 5.2. The measurement setup captures
10000 values to have a profound statistical base. These values are used to calculate a mean value
and the standard deviation for the packet delay introduced by the Linux kernel. The baseline of
the measurements is represented by plain IPv4, all other measurements of this series are compared
to this �rst measurement cycle. The complete series is composed of the following measurements:

� IPv4

� IPv4 with Authentication Header in transport mode

� IPv4 with Authentication Header in tunnel mode

� IPv4 with Encapsulating Security Payload in transport mode

� IPv4 with Encapsulating Security Payload in tunnel mode

� IPv4 with Encapsulating Security Payload combined with Authentication Header in trans-
port mode

� IPv4 with Encapsulating Security Payload combined with Authentication Header in tunnel
mode

The second part of the measurements puts the focus on the synchronization between two clock
synchronization nodes. The PTP application runs with di�erent network layer con�gurations:

� IPv4 with PTP, running without native security extension

� IPv4 and PTP, running with the native IEEE1588v2 security extension

� IPv4 with Authentication Header in transport mode, running PTP without native security
extension
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� IPv4 with Authentication Header in tunnel mode, running PTP without native security
extension

� IPv4 with Encapsulating Security Payload in transport mode, running PTP without native
security extension

� IPv4 with Encapsulating Security Payload in tunnel mode, running PTP without native
security extension

� IPv4 with Encapsulating Security Payload combined with Authentication Header in trans-
port mode, running PTP without native security extension

� IPv4 with Encapsulating Security Payload combined with Authentication Header in tunnel
mode, running PTP without native security extension

Plain IP without security and with PTP is used as a reference. For the test setup a master and a
slave synchronize their clocks and the o�set between the two clocks is recorded. These values are
used to calculate a mean value and the standard deviation of the o�set.
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Figure 6.1: In�uence of the system usage on the Packet Delay Variation
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6.1 In�uence on Measurement Results

First measurements showed that several factors have a severe in�uence on the Packet Delay Vari-
ation (PDV) and the clock synchronization. During the analysis of the measurement data, three
main factors where found, which had the greatest impact.

The �rst in�uencing factor was the correlation between the system load and the PDV. Figure 6.1
shows the measurement cycle of the packet delay of a system. At the end of the measurement, an
additional load on the system was applied. The amount of values at the end of the measurement
cycle are too few to be seen in the histogram, but are present. Therefore both representations
are necessary to see e�ects on the measurement. The load on the system consisted of typing
some characters on an empty shell. The sudden change of the PDV is clearly visible at the end
of the Figure 6.1. For the measurements which were taken, a complete autonomous setup was
developed to prevent external in�uences on the measurements. Network services not needed for
the measurements were deactivated and during the measurements no interaction with the system
was performed.

The second factor which had great in�uence on the clock synchronization, was the synchronization
cycle of the hard disk. Figure 6.2 shows the measurement cycle of the o�set between a master and
a slave. In the middle of the measurement cycle the system performed a harddisk synchronization.
The system has to write to the disc and still keep up with the reqests, which are performed via
the network interface. This event depends on the �lesystem and the system settings, which are
used on the system. The measurement setup uses the ext3 �lesystem. The default value for the
ext3 synchronization interval is �ve seconds. To minimize the e�ect on the synchronization the
default value was raised to 15 minutes. During the measurements, the synchronization was still
clearly visible with a high peak, shown in Figure 6.2. For further measurements, the harddisk
synchronization interval was raised further, to ensure that this event does not interfere with the
measurements.
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Figure 6.2: System synchronization of the harddisk (peak in the o�set)

The third factor is the transient behavior on the startup. Figure 6.3 shows the measurement cycle
of the o�set between a master and a slave. At the beginning of the measurement, the transient
behavior can be seen. Approximately 600 seconds after the stack is started, the control loop has
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settled and it oscillates around a �xed value. For the measurement of the clock synchronization,
the analysis of the measurement values was limited to the values after the control loop has settled,
to get the data from an already running system and not from the start up.
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Figure 6.3: Startup of clock synchronization

6.2 Packet Delay Variation Measurement

All the diagrams shown in this section follow the same logic. The upper part of the diagrams
shows the delay of the incoming packets received from the network. The lower part of the diagrams
shows the delay of the outgoing packets sent to another node in the network. The left sub�gures
show the packet delay of the received or sent packets and the right sub�gures depict a histogram
of the packet delay.

The results show distinctive distributions, which accumulate around one or two points. Even
after extensive resarch, no correlation between the measurements and the speci�c values of the
operating system could be found. Possible candidates for the correlation are given in Table 6.1.

Type Frequency Time

CPU frequency 800MHz 1.25 ns

Clock oscillator 1 kHz 1ms

Scheduler 1 200Hz 5ms

Scheduler 2 20Hz 50ms

Scheduler 3 10Hz 100ms

Scheduler 4 1.67Hz 600ms

Scheduler 5 1.25Hz 800ms

Task priority 1 100Hz 10ms

Task priority 2 4.76Hz 210ms

Sync �lesystem 8.3mHz 2min

Table 6.1: System events
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Figure 6.4: Packet delay variation of IPv4 packets without security
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6.2.1 IPv4 without Security

The measurement of the delay of IPv4 packets is depicted in Figure 6.4a to 6.4d.

Figure 6.4a shows the delay over the measurement cycle for incoming packets. Most values are
residing in a band around 27µs, but several outliers can be clearly spotted. These values are 1.62
x the base values. The system used for the measurements is an o�-the-shelf operating system,
which does not o�er real-time services. The scheduling has a great in�uence on the latency. These
task switches introduced by the hardware latencies also add jitter to the packet delay.

The histogram of the incoming delay is shown in Figure 6.4b. One local maximum can be seen,
at approximately 27 µs.

Figure 6.4c shows the delay over the measurement cycle for outgoing packets. Most values are
residing in a band around 2.7 µs, but a lot of outliers are visible. In contrast to diagram (a), in
diagram (c) the measurement values have a distinct cut o� characteristic. This property is visible
due to the changed scale on the y-axis.

The histogram of the outgoing delay can be found in Figure 6.4d. In contrast to the histogram of
the incoming delay, in the histogram of the outgoing delay the quantization of the values is clearly
visible. The values have a quantization of approximately 200 µs.

6.2.2 IPv4 Authentication Header in Transport Mode

The measurement of the delay of IPv4 packets with Authentication Header in transport mode is
depicted in Figure 6.5a to 6.5d.

Figure 6.5a shows the delay over the measurement cycle for incoming packets. Most values are
residing in a band around 80 µs, but again several outliers can be found. The ratio between the
base values and the maximum outliers has increased in comparison to plain IP without security
(Figure 6.4a).

The histogram of the incoming delay is shown in Figure 6.5b. There is one local maximum present
at approximately 80 µs.

Figure 6.5c shows the delay over the measurement cycle for outgoing packets. Most values are
residing in a band around 16 µs, the outliers are again clearly visible. In contrast to Figure 6.4c,
the maximum of the outliers is over 14 times higher.

The histogram of the outgoing delay can be found in Figure 6.5d. Similar to IPv4 without security
enhancements, the outgoing delay has one local maximum.
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Figure 6.5: Packet delay variation of IPv4 packets with Authentication Header in transport mode
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6.2.3 IPv4 Authentication Header in Tunnel Mode

The measurement of the delay of IPv4 packets with Authentication Header in tunnel mode is
depicted in Figure 6.6a to 6.6d.

Figure 6.6a shows the delay over the measurement cycle for incoming packets. Most values are
residing in a band around 84µs. This value is a little bit higher than in the transport mode of the
Authentication Header. Again, several outliers can be found. The ratio between the base values
and the maximum of the outliers has increased in comparison to Figure 6.4a and is similar to
Figure 6.5a and it is now approximately 4.76 x of the base values.

The histogram of the incoming delay is shown in Figure 6.6b. Similar to the previous two cases,
one local maximum is present. It is located at approximately 84 µs.

Figure 6.6c shows the delay over the measurement cycle for outgoing packets. Most values are
residing in a band around 18µs. The maximum values of the outliers are higher than in the case
of IPv4 with Authentication Header in transport mode and the ratio between the maximum of
the outliers and base values is approximately 3.2.

The histogram of the outgoing delay can be found in Figure 6.6d. This time the histogram can
also be compared to IPv4, which has one maximum. The di�erence between the two is that the
peak for IPv4 with Authentication Header in tunnel mode is almost 15 times higher. The two
modes, transport and tunnel, of the Authentication Header have a similar delay.

6.2.4 IPv4 with Encapsulation Security Payload in Transport Mode

The measurement of the delay of IPv4 packets with Authentication Header in tunnel mode is
depicted in Figure 6.7a to 6.7d.

Figure 6.7a shows the delay over the measurement cycle for incoming packets. Most values are
located around 104 µs. This value is higher compared to the tunnel mode of the Authentica-
tion Header and also higher than the Authentication Header in transport mode. The outliers
observed are comparable to the previous measurements. The ratio between the base values and
the maximum of the outliers has decreased to approximately 4.

The histogram of the incoming delay is shown in Figure 6.7b. Again one maximum is present, it
is at approximately 104µs.

Figure 6.7c shows the delay over the measurement cycle for outgoing packets. The values are
located close to 27 µs. The values of the outliers have also increased compared to IPv4 with
Authentication Header in transport or tunnel mode.

The histogram of the outgoing delay can be found in Figure 6.7d. Again the histogram is compa-
rable to IPv4 or IPv4 with Authentication Header in tunnel mode.
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Figure 6.6: Packet delay variation of IPv4 packets with Authentication Header in tunnel mode
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Figure 6.7: Packet delay variation of IPv4 with Encapsulation Security Payload in transport mode
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6.2.5 IPv4 with Encapsulated Security Payload in Tunnel Mode

The measurement of the delay of IPv4 packets with Encapsulated Security Payload in tunnel
mode is depicted in Figure 6.8a to 6.8d.

Figure 6.8a shows the delay over the measurement cycle for incoming packets. Most values are
residing around 103µs. This value is comparable to ESP in transport mode. The absolute values
of the outliers are increasing and is even more than ESP in transport mode, 420µs. The ratio
between the base values and the outliers has increased a little bit in comparison to the previous
measurements. It is now a little bit over 4.

The histogram of the incoming delay is shown in Figure 6.8b. The local maximum is at 103µs,
similar to the previous case.

Figure 6.8c shows the delay over the measurement cycle for outgoing packets. Most of the values
center around 26µs. This value has a little bit decreased compared to ESP in transport mode.

The histogram of the outgoing delay can be found in Figure 6.8d. Also in this measurement there
is only one peak at around 26µs. Compared to IPv4, the delay has increased over 10 times.

6.2.6 IPv4 Encapsulating Security Payload and Authentication Header in

Transport Mode

The measurement of the delay of IPv4 packets with Encapsulation Security Payload and Authen-
tication Header in transport mode is depicted in Figure 6.9 6.9a to 6.9d.

Figure 6.9a shows the delay over the measurement cycle for incoming packets. Most values are
residing in a band around 124 µs. This value has again increased in comparison to the previous
measurement cycles. The outliers observed in the previous measurements are like the ones found
in this measurement.

The histogram of the incoming delay is shown in Figure 6.9b. One local maximum is present at
approximately 124µs. This value has increased when compared to the previous measurements.

Figure 6.9c shows the delay over the measurement cycle for outgoing packets. Most values are
residing around 35 µs. This is 15 times the delay, which has been measured in IPv4. The values of
the maximum outliers has also slightly increased compared to previous measurements. The ratio
between the base values and the maximum of the outliers is approximately 2.

The histogram of the outgoing delay can be found in Figure 6.9d. Again, the histogram can be
compared to IPv4, which has only one maximum located close to 35 µs. The increase of 15 times
compared to IPv4 is clearly visible in this diagram.
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Figure 6.8: Packet delay variation of IPv4 with Encapsulation Security Payload in tunnel mode
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Figure 6.9: IPv4 Encapsulating Security Payload and Authentication Header in transport mode
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Figure 6.10: IPv4 Encapsulating Security Payload and Authentication Header in tunnel mode

82



Measurements and Results

6.2.7 IPv4 Encapsulating Security Payload and Authentication Header in Tun-

nel Mode

The measurement of the delay of IPv4 packets with Encapsulating Security Payload and Authen-
tication Header in tunnel mode is depicted in Figure 6.10a to 6.10d.

Figure 6.10a shows the delay over the measurement cycle for incoming packets. Most values are
residing around a mean value slightly below 136µs. This is the highest value for all PDV measure-
ment cycles. Both services, ESP and AH, are present and an additional header for tunnel mode is
used, therefore this measurement cycle puts the highest stress on the CPU. Again, several outliers
can be found, and these values are also the highest measured values over all PDV measurement
cycles.

The histogram of the incoming delay is shown in Figure 6.10b. Also in this measurement, one
local maximum is present, at approximately 136µs.

Figure 6.10c shows the delay over the measurement cycle for outgoing packets. Most of the values
are located a little bit under 38 µs. The amount of outliers is in the same range as in the previous
measurements.

The histogram of the outgoing delay can be found in Figure 6.10d. This time the histogram is
a little bit di�erent. Similar to the previous measurement, e.g., Figure 6.9d, one local maximum
can be found a little bit below 38µs.

6.2.8 Summary of Packet Delay Variation Measurements

The aggregation of the measurement cycle for the PDV measurements can be found in Table 6.2.
The results of the measurement cycle are divided into an input and an output section. Comparing
the input and the output delay, a clear asymmetry is noticeable. The highest ratio between input
and output delay can be found in IPv4. Here, the ratio is 10.19 and it is dropping with the
increase of security services. It comes down to 3.57 for ESP and AH in tunnel mode and 3.58 for
ESP and AH in transport mode.

IP con�guration Input (µ± σ) Output (µ± σ)

IPv4 27.20 µs±1.17µs 2.67µs±0.20µs

IPv4 AH Transport 80.73µs±17.79µs 16.33 µs±2.18µs

IPv4 AH Tunnel 84.36µs±17.70µs 17.80 µs±2.29µs

IPv4 ESP Transport 103.62µs±17.35µs 27.00µs±3.06µs

IPv4 ESP Tunnel 103.65 µs±17.38µs 26.39µs±2.56µs

IPv4 ESP and AH Transport 123.72 µs±18.34µs 34.60µs±3.15µs

IPv4 ESP and AH Tunnel 135.58µs±19.52µs 37.91µs±3.59µs

Table 6.2: Roundup of the PDV measurement results

Figure 6.11 shows the visualization of the PDV results. Starting with the reference measurement of
plain IP without security for both cases, input and output, the least delay and standard deviation
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are visible. The delay is represented by the distance of the center of the circle in the diagram
and the standard deviation is represented by the area of the circle of the measurement. With
every measurement, the absolute delay and the standard deviation are increasing constantly. The
e�ect of the increase is more distinct at the incoming path and less distinct for the outgoing
packets. Additionally, the measurement values for plain IP in the outgoing path are so small,
they are invisible at this scale. Overall it can be observed that the addition of IPsec headers and
the increased use of cryptographic functions increases the PDV for both pathes, incoming and
outgoing.

IP

AH transport

AH tunnel

ESP transport

ESP tunnel

ESP+AH transport

ESP+AH tunnel

0
30

60
90

120
150

IP

Delay in �s

Delay of Incoming IP Packets

IP

AH transport

AH tunnel

ESP transport

ESP tunnel

ESP+AH transport

ESP+AH tunnel

0
10

20
30

40

IP

Delay in �s

Delay of Outgoing IP Packets

Figure 6.11: Comparison of PDV results; the circles represent the standard deviation in scale 1:10.

6.3 Clock Synchronization using PTPv2

In opposite to the previous section, which only considers the delay in the IP stack, the mea-
surements in this section cover the precision of the clock synchronization including all system
components.

A PTP stack in slave mode measures the o�set from the master with the help of synchronization
and delay messages. These values are fed back to the control loop of the PTP stack, which takes
care of the adjustment of the clock and the clock rate. The deviation of the clocks, in terms of
precision, de�nes the in�uence of the underlying stack.

All the diagrams shown in this section follow the same logic. The upper sub�gure shows the
o�set from the slave clock to the master clock over the measurement cycle. A measurement cycle
records the o�set for 30 minutes. Every second a measurement is performed, which is triggered
by the one Pulse Per Second (PPS) output of the two computers. The lower sub�gure shows the
histogram of the o�set, depicted in the upper part of the diagram.
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6.3.1 PTPv2 over IPv4 without Security Extension

The measurement of the o�set between two synchronized nodes over IPv4 without security exten-
sion, neither native PTP solution nor IPsec is depicted in Figure 6.12. This measurement is used
as a reference, since no security is included.

Figure 6.12a shows the o�set over the measurement cycle, the values for the o�set are residing
around 147 µs. The visible oscillation re�ects the adjustment of the clock rate to the measured
values.

The histogram for this measurement is shown in Figure 6.12b. Most of the measurement values
are between 143 µs and 148 µs.
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Figure 6.12: PTPv2 synchronizing over IPv4 without security extension
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6.3.2 PTPv2 with Native Security Extension Annex K

The measurement of the o�set between two synchronized nodes over IPv4 with Annex K, the
native security extension of IEEE1588v2, is depicted in Figure 6.12 a and b.

Figure 6.12a shows the o�set over the measurement cycle, the values for the o�set are residing
around 237µs. Again the oscillation re�ects the adjustment of the clock rate to the measured
values. Compared to the previous measurement cycle, IPv4 only, the o�set has been increased by
90 µs.

The histogram for this measurement is shown in Figure 6.12b. This time the measurement values
are between 236 µs and 241 µs.
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Figure 6.13: PTPv2 synchronizing over IPv4 with Annex K, the native security extension of IEEE1588v2

6.3.3 PTPv2 with Authentication Header in Transport Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Authentication
Header (AH) in transport mode is depicted in Figure 6.14.
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Figure 6.14a shows the o�set over the measurement cycle, the values for the o�set are settling
down a little bit under 155 µs. Again oscillations from the control loop are visible. Comparing the
current measurement cycle to the previous two shows one interesting e�ect. The o�set of IPv4
is marginally lower, about 7µs, and for the native solution it is 80µs higher. IPsec is processed
in kernel space only and uses highly optimized cryptographic libraries. The native solution is
executed completely in user mode, using the OpenSSL library1. Both security extension use the
same calculation schemes. Therefore, the di�erence between the two o�sets re�ects the time for
executing the cryptographic calculations, either in kernel space or in user space, respectively.

The histogram for this measurement is shown in Figure 6.14b. This time, most of the measurement
values are located between 150µs and 158 µs.
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Figure 6.14: PTPv2 synchronizing over IPv4 with Authentication Header in transport mode

1http://www.openssl.org/
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6.3.4 PTPv2 with Authentication Header in Tunnel Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Authentication
Header in tunnel mode is depicted in Figure 6.15.

Figure 6.15a shows the o�set over the measurement cycle, settling around 155 µs, similar to the
previous measurement cycle, Authentication Header in transport mode. Oscillations from the
control loop are visible. Compared to the previous IPsec measurements, no big di�erence can be
spotted.

The histogram for this measurement is shown in Figure 6.15b. Similar to the previous measure-
ment, most of the values are within a range of 10µs. No signi�cant visible similarity can be found
between this measurement and the corresponding PDV measurement.
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Figure 6.15: PTPv2 synchronizing over IPv4 with Authentication Header in tunnel mode
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6.3.5 PTPv2 with Encapsulating Security Payload in Transport Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Encapsulating
Security Payload in transport mode is depicted in Figure 6.16.

Figure 6.16a shows the o�set over the measurement cycle. This time the o�set is oscillating a
little bit under 160 µs, with almost no outliers present. This time also present oscillations from
the control loop. Compared to the previous measurements only, a slight increase for o�set is
noticeable.

The histogram for this measurement is shown in Figure 6.16b. Also this time, the width of the
histogram is approximately 10µs.
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Figure 6.16: PTPv2 synchronizing over IPv4 with Encapsulating Security Payload in transport mode
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6.3.6 PTPv2 with Encapsulating Security Payload in Tunnel Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Encapsulating
Security Payload in tunnel mode is depicted in Figure 6.17.

Figure 6.17a shows the o�set over the measurement cycle. Due to the control loop, the o�set is os-
cillating, and the center is located at 155µs. The o�set is comparable to the previous measurement
cycles and does not introduce an additional o�set.

The histogram for this measurement is shown in Figure 6.17b. In this histogram, the width has
decreased a little bit and it is nowe less than 10µs. The matching PDV measurement has two
peaks, which have a width of less than a range of 10 µs, and it is comparable to this measurement
result. ESP in tunnel mode has less o�set than ESP in transport mode, in contrast to the rest of
the measurements, which indicates that more headers and more cryptographic calculations cause
bigger o�set. Repeated measurements show the same e�ect.
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Figure 6.17: PTPv2 synchronizing over IPv4 with Encapsulating Security Payload in tunnel mode
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6.3.7 PTPv2 with Encapsulating Security Payload and Authentication Header

in Transport Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Encapsulating
Security Payload and Authentication Header in transport mode is depicted in Figure 6.18.

Figure 6.18a shows the o�set over the measurement cycle. This measurement is matching the
previous IPsec measurement cycles, the oscillation is centered around 155µs.

The histogram for this measurement is shown in Figure 6.18b. In this histogram, the width has
decreased a little bit and it is less than 10 µs, just like in Encapsulating Security Payload in tunnel
mode.
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Figure 6.18: PTPv2 synchronizing over IPv4 with Encapsulating Security Payload and Authentication
Header in transport mode
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6.3.8 PTPv2 with Encapsulating Security Payload and Authentication Header

in Tunnel Mode

The measurement of the o�set between two synchronized nodes over IPv4 with Encapsulating
Security Payload and Authentication Header in transport mode is depicted in Figure 6.19.

Figure 6.19a shows the o�set over the measurement cycle. This measurement is matching the
previous measurement cycles, the oscillation is centered around 155µs.

The histogram for this measurement is shown in Figure 6.19b. Similar to the previous measurement
cycles, the width has decreased a little bit and it is less than 10µs, just like in Encapsulating
Security Payload in tunnel mode.
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Figure 6.19: PTPv2 synchronizing over IPv4 with Encapsulating Security Payload and Authentication
Header in tunnel mode
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6.3.9 Summary of the Synchronization Measurements

The aggregation of the measurement cycle for the synchronization measurements can be found in
Table 6.3.

IP con�guration O�set (µ± σ)

IPv4 147.11µs±2.62µs

IPv4 with Annex K 237.98µs±2.49µs

IPv4 AH Transport 154.29µs±2.62µs

IPv4 AH Tunnel 156.14 µs±3.57µs

IPv4 ESP Transport 159.37µs±3.06µs

IPv4 ESP Tunnel 154.76 µs±3.05µs

IPv4 ESP and AH Transport 155.38 µs±3.02µs

IPv4 ESP and AH Tunnel 154.91µs±2.63µs

Table 6.3: Roundup of the synchronization results

The table shows the absolute value of the o�set and the standard deviation between a master and
a slave. The lowest o�set occurs in the IPv4 case. All security enhancements increase the o�set,
however the standard deviation is only increased marginally from 2.49 µs to 3.57 µs.
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Figure 6.20: Comparison of the synchronization results; the circles represent the standard deviation in
scale 1:10.

The native security extension of PTPv2 shows the highest increase of the o�set. In contrast to
the IPsec modes, which have an o�set much closer to the reference scenario, depending on the
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mode the o�set is 7µs to 12 µs.

From the architectural point of view the big di�erence between the native solution and the IPsec
approach is the context in which they run. IPsec runs in kernel space while the native security runs
in user space. Both solutions use di�erent cryptographic libraries. Annex K uses the OpenSSL
cryptographic library and the kernel has its own cryptographic API. The di�erent cryptographic
functions execute in di�erent contexts and have di�erent implementations, therefore the cryp-
tographic functions used in the user space approach have a considerably longer execution time.
Nevertheless, the standard deviations of the di�erent modes are very close together. Therefore
both implementations have the same quality in the context of clock synchronization, only di�ering
in the absolute value of the o�set that is compensated by the control algorithm anyway.

Figure 6.20 shows the visualization of the clock synchronization results. All measurements share
almost the same o�set, the only exception is the native PTPv2 security. Due to the di�erent
cryptographic libraries and the execution in user space. The standard deviation is represented
with the area of the circles and it is almost identical for all measurements.

94



7 Conclusion and Perspectives

The results and insights gained during this work are summarized in the �rst part of this chapter.
Furthermore, an outlook is given in the second part of this chapter, which details topics that are
worthy to pursue and to extend.

7.1 Conclusion

The analysis of the security of Annex K from the IEEE1588v2 standard is done in this work. It
shows that the measures, which are taken in the protocol, are partly �awed. For the deployment
in a productive environment the options, which are available in the security extension, have to
be used with caution, due to the fact that the protocol address is not included in the calculation
of the ICV. The identi�ed �aw allows to launch a man-in-the-middle attack on any PTP node
present in the network. Such an attack can have a devastating e�ect on the clock synchronization
and all services, based on correct timing information.

The security extension in IEEE1588v2 also introdcues a challenge-response procedure for authen-
tication. In contrast to non-secure networks, the nodes have to establish Security Associations
(SA) before any clock synchronization information is exchanged. This start-up phase introduces
three additional messages to authenticate two nodes. This additional tra�c might be negligible
in smaller networks. However, in large networks with several hundreds of nodes this initialization
phase can lead to a serious degradation in performance, when all nodes are turned on at once
[TGHC07].

After the security analysis, the security extension of the PTP was implemented. The implemen-
tation is completely encapsulated and can be ported to stacks from di�erent vendors. Due to
the fact that this implementation has to work on resource limited devices, the design favors an
e�cient design. Most of the implementation is modular, which makes it possible to change parts
and test di�erent implementations depending on the needs of a platform.

After the implementation of the security extension, the focus was put on the veri�cation and
validation of the secure clock synchronization stack. Before testing the application for the correct
behavior, static code analysis was performed to �nd possible candidates for non clean programmed
parts and potential �aws leading in particular to attack threats. Based on the standard, several
tests have been developed to ensure the correct behavior of the software. These tests can be used
to validate existing implementations of the security extension.
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Additionally, real measurements have been taken, giving insight into the behavior of secure clock
synchronization networks. Until now, the e�ects of security schemes could only be guessed, but
no scienti�c analysis was available. The analysis focuses on Annex K of IEEE1588v2 and IPsec.
Both security schemes are evaluated with regard to the Packet Delay Variation (PDV) and the
impact on the clock synchronization. These values are compared to IPv4 without any activated
security schemes.

The PDV for IPv4 shows that the incoming and outgoing delay is asymmetrical, with a minimum
input delay of 80.73 µs±17.79µs and a maximum input delay of 135.58 µs±19.52µs, for IPsec.
The output of the security has a minimum delay of 16.33µs±2.18µs and a maximum delay of
37.91 µs±3.59 µs, for IPsec. The di�erent modes provided by IPsec show a signi�cant change
for these values. The increase of the delay is correlated to the applied security, more headers or
increased demand for encryption and authentication results in higher values for input and output
delay. The highest values for the delay can be observed when ESP and AH are applied together.

The second set of measurements puts the focus on the clock synchronization between a master and
a slave node. Both clocks run PTP for synchronization, facilitating the di�erent security schemes
already used in the �rst set of the measurements. The resulting o�set between the two clocks for
IP and IPsec is very similar. The only exception in this group is the implementation of Annex K.
However, this change is only re�ected in the o�set. The standard deviation for all security modes
is very close to each other, in range of 2.6µs to 3.6 µs.

This work shows that the in�uence of security on high-precision clock synchronization in software
is negligible to the deviation produced by other components in the operating system, such as
schedulers and harddisk read and write operations.

7.2 Perspectives

The current solution is implemented completely in software. The next step to achieve better clock
synchronization would be to implement the complete system in hardware. The design in hardware
o�ers new challenges, such as secure on-the-�y timestamping. The implementation needs to deal
with the more stringent hardware demands for on-the-�y timestamping, which draws the time-
stamp in hardware, adds the information to the packet, and recalculates all necessary checksums.
An obvious obstacle, which has to be solved on the way to a working prototype, is the combination
of hardware timestamp and authentication of a PTP message. These are two competing processes,
both having the demand to be the last operation in the packet processing. The timestamp needs
to be taken as late as possible to o�er the best accuracy and the authentication of the packet can
only be applied after the packet is entirely available.

The algorithms used for the IPsec measurements in this diploma thesis closely followed the pro-
posed algorithms provided in IEEE1588v2. An evaluation of di�erent calculation schemes can
provide information about the computational e�ort needed for a speci�c algorithm and how this
impacts the clock synchronization. IPsec supports a broad range of encryption and authentication
algorithms. A combination of schemes can be used to �nd a solution, which yields to a minimum
of system load, or a solution, which has the lowest impact on the clock synchronization itself.

An aspect, which is also of interest, is the speed of a network. At �rst glance, higher network speeds
seem to be preferable to achieve higher accuracy. This argument is not a valid assumption even for
networks without security extensions. Due to the di�erent approaches taken by the physical layer,
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a hardware solution yields di�erent results for 10MBit/s, 100MBit/s, or 1000MBit/s networks,
where the highest speed not necessarily re�ects the highest accuracy [Los10]. When it comes
to software approaches, there might be little to no di�erence between implementations with and
without security, similar to the results gathered in this diploma thesis. A hardware support for
security has completely di�erent timing constraints for the di�erent network speeds, according to
[THS10].

Currently, the attention is paid on the master and slave devices in the network. A look beyond
these elements needs to be done to include all network elements participating in the communication.
For practical applications, an evaluation of a secure switch architecture with support for hardware
timestamping has to be conducted. IPsec, which is used in this diploma thesis, o�ers end-to-end
protection for an IP packet. A switch that manipulates a message automatically destroys the
integrity of the packet and the receiver will drop such a packet. To be able to change parts of the
packet and generate valid output, the switch would have to have keys, which are shared between
two communicating nodes. However, this defeats the purpose of the end-to-end security. Further,
investigations can be done on the �eld of security schemes, which incorporate all network elements
that join communication.

To be able to use a security scheme in a network, keys are needed for authentication, and also for
encryption. This task can become cumbersome when the network consists of several hundred nodes
and the keys have to be renewed in a periodic interval, ranging from days to weeks. Therefore,
a suitable key management is needed, that ful�lls these requirements. The conditions for such a
scheme are diverse and a solution suitable for all applications might not be feasible. Research in
the area of key management for high numbers of resource limited nodes can be conducted.
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Annex �K� � Cryptographic

Acknowledgment

The origin of the word eavesdropper had nothing to do with a vicious act of a person. The �rst
meaning of this word referred to water that fell from the eaves of a house to the ground. Finally,
an eavesdropper was the name for a person who was standing within the eavesdrop of a house to
listen to conversations inside. After some time, the meaning of the word changed to the current
description, to listen secretly to private conversations.

The riddle consists of a string which includes the people I personally thank for their support. The
reason for the encryption is that they are very shy and I want to protect their privacy.

The encryption used in the riddle is AES-256 with salt. To break a 256 bit key by brute force,
2256 (1.15792089Ö1077) trys are needed. A device capable of checking 1018 keys per second would
need 3x1051 years to test for all possible keys.

AES-256 cyphertext:

U2FsdGVkX18YZvw6uh0H4Z83gL6q8dEwyPd9dCA5IIp689oaQtn8N8i8j2EZ11ge

First hint:

All I can see are the pictures from my measurement.

Second hint:

You have to find the key!
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