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Kurzfassung

Der Inhalt dieser Arbeit ist die Simulation und Fabrikation von photonischen Kristal-

len. Ähnlich wie in einem Festkörperkristall, der die Ausbreitungseigenschaften von Elek-

tronen bestimmt, bestimmt ein photonischer Kristall die Ausbreitungseigenschaften von

Photonen. Durch Anpassung des Designs des photonischen Kristalls können neuartige op-

toelektronische Bauelemente mit bisher unerreichbaren Eigenschaften geschaffen werden,

wie zum Beispiel photonische Bandlücken, welche die Wellenausbreitung bei bestimmten

Frequenzen vollständig zu unterdrücken. Weiters können durch Einbringen von Kristall-

defekten Resonatoren mit hoher Güte und Wellenleiter mit niedrigen Verlusten gefertigt

werden.

Von besonderem Interesse sind photonische Kristallscheiben, da sie kompatibel sind mit

den Standardverfahren zur Herstellung von Halbleiterbauelementen. Durch Einbringen

eines Detektors in eine photonischen Kristallscheibe konnten die resonanten Moden im

mitteleren-infraroten Spektralbereich (3µm− 30µm) direkt gemessen werden. Als Detek-

tor wurde ein Intersubband-Photodetektor eingesetzt. Da das Licht in die resonanten Mo-

den wesentlich effizienter einkoppelt, wird das breitbandige Photostromspektrum durch

den photonischen Kristall modifiziert. Dadurch können Detektoren mit schmalen Absorp-

tionslinien gefertigt werden, welche zum Bestimmen der Zusammensetzung chemischer

Substanzen genutzt werden können.

Zur Berechnung der Bandstruktur von photonischen Kristallen sind verschiedene Simula-

tionsstrategien verfügbar. Methoden wie die sogenannte “finite difference time domain”

liefern zwar genaue Ergebnisse, speziell wenn die endliche Ausdehnung der Bauelemen-

te berücksichtigt werden muss, aber die Berechnungszeiten sind lange und es wird viel

Speicherplatz benötigt. Daher wurde für diese Arbeit die “revised plane wave expansion

method” verwendet. Hier werden photonische Kristallmoden durch Summen von ebe-

nen Wellen approximiert. In Kombination mit einem effektiven Brechungsindex, um die

Modenführung in der Scheibe zu berücksichtigen, liefert diese Simulation Banddiagram-

me innerhalb weniger Minuten. Die Ergebnisse stimmen mit Messungen an photonischen

Kristallscheiben gut überein.

In einem dielektrischen planaren Wellenleiter sind die Moden nicht ausschließlich auf zwei

Dimensionen beschränkt. Die elektromagnetische Feldverteilung erstreckt sich bis in das

umgebende Medium und klingt dort exponentiell ab. Durch Verändern der Distanz der

photonischen Kristallscheibe zum Substrat wird die elektromagnetische Feldverteilung in

der Scheibe beeinflusst. Mittels anlegen einer Spannung zwischen Substrat und Scheibe

kann ein elektrostatische Kraft erzeugt werden, welche die Scheibe näher zum Substrat

bringt. Dadurch können die photonischen Kristallresonanzen gezielt beeinflusst werden.

Derartige Bauelemente wurden simuliert, hergestellt und gemessen.



Abstract

The focus of this thesis is the simulation and fabrication of photonic crystals. Like a solid

state crystal determines the propagation properties of electrons, a photonic crystal deter-

mines the propagation properties of photons. By tailoring the geometry of the photonic

crystal novel optoelectronic devices can be obtained with properties that were previously

unachievable. Complete optical bandgaps to inhibit wave propagation are possible, which

are unknown from conventional bulk materials. By introducing crystal defects in photonic

crystals, high Q cavities or low loss waveguides can be fabricated.

Photonic crystal slabs are of particular interest as they are compatible with standard semi-

conductor processes. The resonant modes of photonic crystal slabs in the mid-infrared

region (3µm − 30µm) were measured by processing the photonic crystal from detector

material. For mid-infrared light this can be achieved by intersubband absorption in a

quantum well infrared photodetector. The broad photocurrent spectral response of the

photodetector is modified by the photonic crystal as coupling to the resonant modes is

much more efficient. This behavior allows to build detectors with narrow spectral absorp-

tion peaks, which can be used for chemical fingerprinting.

To compute band diagrams for photonic crystal slabs several simulation strategies are

available. Methods like finite differences time domain deliver accurate results, especially

when considering the finite extensions of the devices. But they require a lot of computa-

tion time and memory space. For this thesis the revised plane wave expansion method,

combined with an effective refractive index computation to account for mode guiding in

the slab, was implemented. With this method band diagrams can be computed within

several minutes and the results from this simulation are in good agreement to the mea-

surements from fabricated photonic crystal slabs.

In a dielectric slab wave guide the modes are not fully confined to the slab. The electro-

magnetic field distribution has evanescent tails that extend into the surrounding cladding

region. Changing the distance from the photonic crystal slab to the substrate influences

the electromagnetic field distribution in the slab and hereby the resonances in the pho-

tonic crystal. By applying a voltage between substrate and slab an electrostatic actuator

is formed, the resulting force pulls the slab closer to the substrate and the photonic crystal

resonances are tuned. Such device structures were simulated, fabricated and measured.
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CHAPTER

ONE

PHOTONIC CRYSTALS

1.1 Introduction

In solid state physics a crystal is a periodic arrangement of atoms defined by the lattice

vectors and the unit cell. Similar to solid state crystals, which are formed by a long

range order of atoms, photonic crystals are formed by a long-range order of dielectric

materials with varying electric permittivity. Like a solid state crystal, where propagation

of electrons is determined by the crystal, a photonic crystal determines the propagation

of photons. How these crystals affect the propagation properties is determined by their

geometry and material properties.

periodic in
two directions

2-D 3-D1-D

periodic in
one direction

periodic in
three directions

Figure 1.1: Examples of photonic crystals in one, two and three spatial dimensions (from
left to right). Differently colored areas correspond to different permittivities
εr. Taken from [1].

The periodicity of the long-range order can be classified into one-, two- and three-

dimensional systems (figure 1.1). One-dimensional photonic crystals are formed by di-

electric stacks, which are used for example as distributed bragg reflector (DBR) for mode

selection to operate a semiconductor laser in single mode emission [2]. Because of their

1



1.1. INTRODUCTION

compatibility with the planar semiconductor technology the two-dimensional photonic

crystals are the most used in research and development.

Since the first publications about photonic crystals by Yablonovitch [3] and John [4] in

1987 this new research field has been steadily growing. The main interest was to obtain

a photonic bandgap device where a light wave can not propagate within a certain wave-

length area. Following the publication of these theoretical papers many attempts were

taken to fabricate and measure photonic crystals with a predicted complete photonic band

gaps until Yablonovitch et al. [5] succeeded in 1991 to demonstrate a band gap in a fabri-

cated three-dimensional diamond structure photonic crystal. However, three-dimensional

photonic crystals have the disadvantage that fabrication can not be easily achieved, which

led to the investigation of two-dimensional structures.

Using two-dimensional structures it became possible to investigate local defects in pho-

tonic crystals. Similar to solid state physics, where a defect is formed by a missing,

displaced or different atom, a defect in a photonic crystal can be a missing, displaced or

different size hole. Defects are classified into point and line defects. The former can be

used to localize the light around the defect forming a high quality factor (Q) cavity [6]

(figure 1.2a) and the latter can be used as a wave guide [7] (figure 1.2b).

r = 0    monopole r = 0.34a    dipole

(a) (b)

Figure 1.2: 1.2a Localization of the electromagnetic field around a point defect in a pho-
tonic crystal made of rods embedded in air: (left) missing rod and (right) rod
with larger radius. 1.2b Wave guiding in a photonic crystal with a line defect,
formed by removing a column of rods. Taken from [1].

A unique feature of wave-guiding by line defects in photonic crystals is that very strong

bends are possible [8] (figure 1.3a). Such strong bends lead to high losses by scattering

in conventional wave guides like glass fibers. When employing these wave guides many

applications are possible like wave guide intersections without cross talk [9], beam split-

ters [10] (figure 1.3b) or beam spectroscopy with channel drop filters [11].

The infinite extension perpendicular to the two-dimensional photonic crystal plane is

never possible in planar semiconductor technology. A photonic crystal with limited verti-

cal extension is called a photonic crystal slab. Photonic crystal slabs are a combination of

2



CHAPTER 1. PHOTONIC CRYSTALS

(a)

input 
port

output 
port

output 
port

(b)

Figure 1.3: 1.3a 90◦ wave guide bend in a photonic crystal with low transmission loss and
1.3b 1:1 ’T’ beam splitter. Taken from [1]

a planar dielectric slab wave guide and a two-dimensional photonic crystal. The photonic

band structure is similar to an ideal two-dimensional photonic crystal, as reported by

Johnson [12].

To verify that a simulation yields the same band structure as a fabricated photonic crystal

measurements have to be performed. This can be done by shining light on one side and

measuring the transmitted light at the opposing side with a photo detector [5]. Another

approach is to build a photonic crystal from a detector material and directly measure the

resonant modes that are able to propagate through the photonic crystal. The combination

of a photonic crystal with an active device can also be used to tailor the spectral response

of a photo detector to a desired shape. This allows to build photo detectors with well

defined narrow spectral responsivity peaks. The motivation to build such detectors arises

from the mid-infrared (MIR) absorption spectra of gases and molecules, which show very

characteristic absorption peaks. For this reason this spectral range is called the chemical

fingerprint region. Measuring these absorption peaks allows to determine the composition

of a substance, which is needed for quality control and environmental monitoring appli-

cations.

Visible light can be detected by using semiconductors where the photons excite elec-

trons from the valence band into the conduction band. In the MIR (3µm to 30µm) the

photon energies are below 250meV , which is below the band gap of most semiconduc-

tors. However, for MIR light several other detection principles are available like bolome-

ters (thermal, superconducting and semiconductor), Golay (photo-acoustic), pyroelectric

(deuterated triglycine sulfate (DTGS)) or photo-conducting detectors.

The invention of the molecular beam epitaxy (MBE) [13] in the 1960 led to the develop-

3



1.1. INTRODUCTION

ment of new types of nano-optoelectronic devices. The possibility of growing heterostruc-

tures with layer thickness control on atomic scale allows to build confinement structures

for electrons and holes. Confining an electron in one dimension creates energy subbands

inside the conduction band. The transition between these subbands can be used to gener-

ate or detect photons with energies below the band gap of the semiconductor materials. As

only transitions between subbands are used, these devices are called intersubband (ISB)

devices.

Based on ISB transitions Kazarinov and Suris [14, 15] proposed a semiconductor laser

in 1971 where optical transitions of electrons between quantum well (QW) states are

used. In 1994 Faist et al. [16] realized this structure and built the first quantum cascade

laser (QCL). Photo detection with ISB devices was shown in 1988 by Levine et al. [17]

who realized the first quantum well infrared photodetector (QWIP). Combination of a

laser with a photonic crystal was done by Painter et al. [18] in 1999 where a local point

defect was used to form a high Q cavity as resonator and a slab was used for wave-guiding

perpendicular to the photonic crystal plane (figure 1.4a). In 2003 Colombelli et al. [19]

built a photonic crystal QCL where the low group velocity at flat band regions above the

light line is used to create a single-mode vertically emitting laser (figure 1.4b).

(a) (b)

Figure 1.4: 1.4a Sketch of a photonic crystal laser with a local defect forming a high Q
cavity to enhance localized resonant modes. Taken from [18]. 1.4b Scanning
electron microscopy picture of a realized vertical emitting photonic crystal
laser. Current injection is done by the small stem that ensures that only the
point defect is pumped. Taken from [20].

By using a AlGaAs-GaAs QWIP to fabricate a photonic crystal Schartner et al. [21–25]

were able to measure the resonant modes inside the photonic crystal in the MIR region.

The band diagram of a photonic crystal slab was measured by variation of the angle of

the incident light beam

4



CHAPTER 1. PHOTONIC CRYSTALS

1.2 Crystal structures

Crystals are solid structures that maintain a long-range order and crystallography is used

to describe this order. Many macroscopically observable physical and chemical properties

depend on the underlying crystal structure. In this chapter a basic introduction to crystal

theory is given, which is required for the description of photonic crystals. For further

reading see [26–28].

1.2.1 Bravais lattice

A crystal is defined by its Bravais lattice vectors and its unit cell (basis). The crystal itself

can be constructed from these by discrete translation operations of the basis along the

Bravais lattice vectors. The translation operations are obtained by linear combinations

of the Bravais lattice vectors:

~R = m1 ~a1 +m2 ~a2 +m3 ~a3 m1,m2,m3 ∈ Z (1.1)

All possible sets of Bravais lattice vectors ~a1, ~a2 and ~a3 can be categorized into five types

of lattices in a two-dimensional system (figure 1.5) and into 14 types of lattices in a three-

dimensional system (figure 1.6). These basic types are also called the Bravais lattice

types.

Figure 1.5: The five types of Bravais lattices and their unit cells (shaded areas) in a
two-dimensional system . From top left: Oblique, Rectangular, Centered
rectangular, Square and Hexagonal. Taken from [26].

5



1.2. CRYSTAL STRUCTURES

Figure 1.6: The 14 types of Bravais lattices in a three-dimensional system. Taken from
[26].

The classification is done by the length of the lattice vectors and the angle between them.

Two-dimensional photonic crystals are determined by the two lattice vectors ~a1 and ~a2

and the most common Bravais lattice types are the square and hexagonal (respectively

triangular for high symmetry of the basis) type.

In solid state physics the basis is the location of the atoms and their resulting electrical

potential distribution (V (~r)). Solving the Schrödinger equation results in band diagrams

for electrons. The determining physical property for photonic crystals is the permittivity

distribution inside the unit cell (ε(~r)) and Maxwell’s equations can be used to obtain band

diagrams for photons.

The basis itself is not unique and there are several ways to construct it for a given

crystal. The unit cells of figure 1.5 were constructed by using the Bravais lattice vectors

as boundaries. Another common unit cell is the Wigner-Seitz cell (Ωi), which is defined

by all points closer to a chosen lattice point than to all other lattice points:

Ωi = {~r | ‖ ~r − ~ri ‖<‖ ~r − ~rj ‖ ∧ j 6= i} (1.2)

6



CHAPTER 1. PHOTONIC CRYSTALS

The Wigner-Seitz cell can be constructed graphically by drawing a line between a point

and all its neighbors. At the midpoint of these lines another line is drawn perpendicular

to them and the innermost boundary of these perpendicular lines builds the Wigner-Seitz

cell (figure 1.7).

ri

rjΩi

Figure 1.7: The Wigner-Seitz cell for a hexagonal lattice looks like a honeycomb.

1.2.2 Reciprocal lattice

For every crystal lattice there is a reciprocal lattice defined by all vectors ~G, which fulfill

e−j
~G·~R = 1 (1.3)

for all vectors ~R. The spaces spanned by the real and reciprocal lattice are also referred

to as real and reciprocal space. Similar to the lattice the reciprocal lattice can be written

as a linear combination

~G = n1
~b1 + n2

~b2 + n3
~b3 n1, n2, n3 ∈ Z (1.4)

of the reciprocal lattice vectors

b1 =2π
a2 × a3

a1 · (a2 × a3)
(1.5)

b2 =2π
a3 × a1

a2 · (a3 × a1)
(1.6)

b3 =2π
a1 × a2

a3 · (a1 × a2)
(1.7)

or when using a column vector notation:[
b1 b2 b3

]T
= 2π

[
a1 a2 a3

]−1
(1.8)

7



1.2. CRYSTAL STRUCTURES

In crystallography the reciprocal lattice is of great importance since many problems in

periodic structures can be more easily described in the reciprocal space than in the real

space. Like the unit cell in the real space a unit cell in the reciprocal space is not unique

and there are multiple methods to obtain one. The most important unit cell in the

reciprocal space is the Wigner-Seitz cell, which is also called the Brillouin zone.

1.2.3 Symmetry groups

Besides the translational invariance of the crystal along the lattice vectors, there usually

is a high symmetry inside the unit cell as well. The symmetry of the unit cell simplifies

handling of crystallographic structures as the symmetry will repeat itself in the physical

properties. The invariance of physical properties under symmetry operations of the crystal

was formulated by Neumann in the Neumann’s principle [29].

By definition a symmetry operation is an operation on the unit cell that results in the same

unit cell. In the case of photonic crystals a symmetry operation T{} on the permittivity

distribution of the basis is defined by

T{ε(~r)} = ε(~r) (1.9)

A trivial but always applicable symmetry operator is the identity operator, which does

not alter to the permittivity distribution in any way. Another group of operations are the

translational operations. They translate the unit cell by an offset ~r′ and are defined by

TT{ε(~r)} = ε(~r + ~r′) (1.10)

The same has already been used for constructing the lattice by translation of the unit

cell along the lattice vectors. It can be neglected for symmetries in the unit cell since any

possible translational symmetry of the basis would mean that there exists a smaller basis.

The important groups of symmetry operations for two-dimensional photonic crystals are

the rotational and mirror operations, which are usually classified as cyclic C1, C2, ... Cn

for rotations around a fixed point by the angle α = 360◦/n and dihedral groups D1, D2,

... Dn for reflections at n axes.

The example figures 1.8 and 1.9 show a two-dimensional photonic crystal with a square

lattice and a hexagonal lattice. The unit cells of the crystal have high symmetry with

several rotational and mirror symmetry axes. Therefore it is possible to define symmetry

points Γ, M and X for the square lattice and Γ, M and K for the hexagonal lattice in

the reciprocal space. When investigating the band diagram of this kind of a photonic

crystal it is sufficient to constrict the computations to these symmetry points and the

8



CHAPTER 1. PHOTONIC CRYSTALS

boundary formed by them. By Neumann’s principle the remaining area of the Brillouin

zone will contain the same information. This reduction leads to the so called irreducible

Brillouin zone, which is the smallest element in the reciprocal space still containing all

the information.

(a) (b)

Figure 1.8: Real 1.8a and reciprocal 1.8b lattice of a square crystal structure with high
symmetry of the unit cell. The irreducible Brillouin zone of the reciprocal
lattice is located between the symmetry points Γ, M and X.

(a) (b)

Figure 1.9: Real 1.9a and reciprocal 1.9b lattice of a hexagonal crystal structure with high
symmetry of the unit cell. The irreducible Brillouin zone of the reciprocal
lattice is located between the symmetry points Γ, M and K.

1.3 Electromagnetism

The propagation of light is (as all electromagnetic waves) governed by Maxwell’s equa-

tions. In this chapter these equations are applied to obtain the optical properties in

photonic crystals. For a detailed introduction to electrodynamics readers should refer to

9



1.3. ELECTROMAGNETISM

one of the many standard textbooks on this topic [30,31].

The fundamental and elegant Maxwell’s equations in their most general form are:

~O× ~E(~r, t) = −∂t ~B(~r, t) (1.11)

~O · ~D(~r, t) = ρ(~r, t) (1.12)

~O · ~B(~r, t) = 0 (1.13)

~O× ~H(~r, t) = ~J(~r, t) + ∂t ~D(~r, t) (1.14)

These equations only describe the coupling of the electric field ~E(~r, t) with the magnetic

field ~B(~r, t) as well as the coupling of the magnetizing field ~H(~r, t) with the electric

displacement field ~D(~r, t). Therefore it is necessary to complement them with the material

equations for the electric field (equation 1.15), which contains the electric permittivity

tensor ε
:
(~r, t, ~E), and for the magnetic field (equation 1.16), which contains the magnetic

permeability tensor µ
:
(~r, t, ~E).

~D(~r, t) = ε
:
(~r, t, ~E) · ~E(~r, t) (1.15)

~B(~r, t) = µ
:
(~r, t, ~H) · ~H(~r, t) (1.16)

It is convenient to split these material properties into the absolute values in vacuum (vac-

uum permittivity ε0 = 8.8541... · 10−12Fm−1, vacuum permeability µ0 = 4π · 10−7Hm−1)

and relative values (εr(~r, t, ~E), µr(~r, t, ~H)). By further considering only a linear (no de-

pendence of ε on ~E respectively of µ on ~H), time-invariant (no dependence on time t)

and isotropic (tensor can be reduced to a scalar) dielectric (relative permittivity can be

assumed to be close to unity µr = 1) material, which is applicable for many common

optical materials, these equations simplify to

~D(~r, t) = ε0εr(~r) ~E(~r, t) (1.17)

~B(~r, t) = µ0
~H(~r, t) (1.18)

Assuming that all materials are devoid of charges (ρ = 0) and electric currents ( ~J = ~0),

Maxwell’s equations can be reformulated in a more suitable form:

~O× ~E(~r, t) = −µ0∂t ~H(~r, t) (1.19)

~O ·
(
ε(~r) ~E(~r, t)

)
= 0 (1.20)

~O · ~H(~r, t) = 0 (1.21)

~O× ~H(~r, t) = ε0εr(~r)∂t ~E(~r, t) (1.22)

10



CHAPTER 1. PHOTONIC CRYSTALS

1.3.1 Electromagnetic waves

A fascinating property of the electromagnetic field is that there are solutions to Maxwell’s

equations in the form of waves. Propagation of these waves can be calculated by the

Helmholtz equation that can be derived from equation 1.19 by applying the curl operator

(O×):

~O×
(
~O× ~E(~r, t)

)
= −µ0∂t

(
~O× ~H(~r, t)

)
(1.23)

and substituting ~O× ~H(~r, t) with equation 1.22:

~O×
(
~O× ~E(~r, t)

)
= −µ0ε0εr(~r)∂

2
t
~E(~r, t) (1.24)

The term µ0ε0 can be replaced by the definition of the vacuum speed of light c0 =
1√
µ0ε0

= 2.9979... · 108ms−1. In a homogeneous medium (εr(~r) = const.), where equation

1.20 becomes ~O · ~E(~r, t) = 0, the left hand side can be written as

~O×
(
~O× ~E(~r, t)

)
= ~O

(
~O · ~E(~r, t)

)
− ~O2 ~E(~r, t) = −~O2 ~E(~r, t) (1.25)

This leads to the Helmholtz equation for the electric field:

~O2 ~E(~r, t) =
1

v2
∂2t
~E(~r, t) (1.26)

with the propagation speed of the wave defined as

v =
c0√
εr

(1.27)

In similar fashion the Helmholtz equation for the magnetizing field can be derived by

applying the curl operator on equation 1.22 and assuming homogeneous media:

~O×
(
~O× ~H(~r, t)

)
= ε0εr∂t

(
~O× ~E(~r, t)

)
(1.28)

Substituting ~O× ~E(~r, t) with 1.19 leads to

~O×
(
~O× ~H(~r, t)

)
= −µ0ε0εr∂

2
t
~H(~r, t) (1.29)

and using the propagation speed of the wave, one obtains the Helmholtz equation for the

magnetizing field:

~O2 ~H(~r, t) =
1

v2
∂2t ~H(~r, t) (1.30)

11



1.3. ELECTROMAGNETISM

Introducing the refractive index of the material as n =
√
εr, the speed of the wave in a

material can be related to the speed of a wave with the same frequency in free space:

v =
c0√
εr

=
c0
n

(1.31)

A class of solutions of the Helmholtz equation is given by plane waves. They will be of

particular interest when discussing numerical methods for photonic crystals:

~E(~r, t) = ~E0e
j(ωt−~k·~r) + c.c. (1.32)

with ω being the angular frequency and ~k the wave vector, which is perpendicular to

the phase fronts. Substituting solution 1.32 into the Helmholtz equation 1.26 yields the

dispersion relation between the frequency and the wave vector:

|~k|2 =
ω2

v2
(1.33)

with |~k|2 = k2x + k2y + k2z .

kx
ky

kz

|k|=kx+ky+kz
2 222 ω2

v2
=

(a)

|k|
2

ω

(b)

Figure 1.10: 1.10a Equi-frequency surface in the k-space and 1.10b the resulting linear
dispersion relation ω(k) for a homogeneous medium.

In the case of homogeneous media a linear dispersion relation is obtained whereas for struc-

tures like a photonic crystal more complicated dispersion relations ω(~k) can be achieved.

Every pair of ~k and ω, that satisfies equation 1.33, imposes a possible solution to the

Helmholtz equation and thus a propagating wave in the medium. Assuming a constant

frequency ω, all possible combinations of kx, ky and kz form a sphere in the k-space (figure

12



CHAPTER 1. PHOTONIC CRYSTALS

1.10a) with the radius ω2

v2
.

In a homogeneous medium the magnitude of the wave vector is independent of the di-

rection of propagation. For photonic crystals the dispersion relation sphere is deformed

into more complex shapes. These are visualized as band diagrams, which show only the

dispersion relation along straight lines between the symmetry points.

1.3.2 Eigenvalue formulation

To calculate solutions for Maxwell’s equations it is often useful to reformulate the equa-

tions as an eigenvalue problem. Problems of this kind have been well studied and many

efficient algorithms for numerical computation are available. In mathematics an eigen-

value problem for an operator A is given by

Ax = λx (1.34)

Possible solutions of λ for eigenvectors x are called eigenvalues of the operator.

For monochromatic waves with a well defined frequency ( ~E(~r, t) = ~E(~r)e−jωt) it is possible

to obtain an eigenvalue formulation of Maxwell’s equations by substituting the electric

field in equation 1.24:

1

ε(~r)
~O×

(
~O× ~E(~r)

)
=

(
ω

c0

)2

~E(~r) (1.35)

This equation already has the form of an eigenvalue problem of the operator V = 1
ε(~r)

~O×
~O× with the eigenvalues (ω/c0)

2 and the corresponding eigenvectors ~E(~r). For the mag-

netizing field a similar eigenvalue problem can be derived from equation 1.29:

~O×
(

1

ε(~r)
~O× ~H(~r)

)
=

(
ω

c0

)2

~H(~r) (1.36)

with a similar operator W = ~O ×
(

1
ε(~r)

~O×
)

. These are the basic two equations for the

calculation of band diagrams for photonic crystals. They are often referred to as master

equations for the electric respectively the magnetizing field.

Similar problems are known in quantum mechanics where the time-independent Schrödinger

equation forms an eigenvalue problem. Therefore a small excursion into quantum mechan-

ics is useful since most readers are probably familiar with band diagrams for electrons

in a solid state crystal (where the potential V (~r) is periodic). The time-independent

13



1.3. ELECTROMAGNETISM

Schrödinger equation is defined as(
− ~2

2m
~O2 + V (~r)

)
ψ(~r) = Eψ(~r) (1.37)

The operator on the left side of this equation is referred to as the Hamiltonian H =

− ~2
2m
~O2 +V (~r). The wavefunctions ψ(~r) are the eigenfunctions and the energies E are the

eigenvalues of this eigenvalue problem (see table 1.1 for a compact overview). For pho-

tonic crystals the eigenvalue formulation is similar but instead of the potential V (~r) the

electric permittivity εr(~r) has a periodic modulation. This makes it easier to understand

why also for photonic crystals band diagrams of the dispersion relation exist, which will

be shown in the subsequent chapters.

Quantum mechanics Electric field Magnetizing field

Master equ. Hψ(~r) = Eψ(~r) VE(~r) =
(
ω
c0

)2
E(~r) WH(~r) =

(
ω
c0

)2
H(~r)

Operator H = − ~2
2m
~O2 + V (~r) V = 1

ε(~r)
~O× ~O× W = ~O× 1

ε(~r)
~O×

Eigenfunctions ψ(~r) E(~r) H(~r)

Eigenvalues energy E frequency
(
ω
c0

)2
Periodicity V (~r) = V (~r + ~R) permittivity εr(~r) = εr(~r + ~R)

Table 1.1: Analogies between the quantum mechanic and electromagnetic eigenvalue prob-
lems

1.3.3 Bloch theorem

The analogies of light propagating through a photonic crystal and an electron propagating

through a crystal allows to apply some of the theories of solid state physics to photonic

crystals. One of these is the Bloch theorem [32] that can be used to make a separation

ansatz for an electron wave in solid state physics.

The Bloch theorem states that for a periodic structure the eigenfunctions can be written

as a product of a planar wave and a periodic function with the same periodicity:

ψ(~k, ~r) = e−j
~k·~ru(~k, ~r) (1.38)

u(~k, ~r) is the periodic function in ~r, that has to fulfill u(~k, ~r) = u(~k, ~r + ~R) with ~R being

any of the possible Bravais lattice vectors.

The Blochvector ~k is not uniquely determined, because the first term e−j
~k·~r has the peri-

14



CHAPTER 1. PHOTONIC CRYSTALS

odicity 2π (e−j(
~k·~r+2π)=e−j

~k·~r). Adding another vector ~k′ with the constraint e−j
~k′·~R = 1

does not change the resulting eigenvalue and hence refers to the same state (e−j(
~k+~k′)·~R =

e−j
~k·~R). This translational invariance was already covered in the discussion of the Brillouin

zone in the reciprocal space of a crystal lattice in chapter 1.2.2.

1.3.3.1 Scalability

An important feature of the master equations 1.35, 1.36 is the scalability, i.e. scaling all

geometric dimensions by a factor α also scales the eigenvalues by the same factor. Scaling

the lattice constant of a photonic crystal by a factor α yields a new set of Bravais lattice

vectors ( ~R′ = α~R). Furthermore the permittivity can be rewritten as ε(~r′) = ε(α~r) and

the Nabla operator as ~O′ = 1
α
~O. Applying this to the master equation of the electric field

results in a rescaled eigenvalue master equation:

1

ε(~r′)
~O×

(
~O× ~E(~r′)

)
=

(
αω

c0

)2

~E(~r′) (1.39)

That means that an increase in the lattice constant a by a factor α reduces the frequency

of an eigenstate by the same factor. The same applies for a decrease in the lattice constant.

Scaling the Bravais lattice vectors also scales the reciprocal space by the inverse factor:
~k′ = 1

α
~k.

The advantage of this scaling property is that, instead of using absolute values for ω and
~k, it is possible to use a normalized frequency ν and a normalized wave vector ~k

:
:

ν =
aω

2πc0
=
a

λ
(1.40)

~k
:

=
a

2π
~k (1.41)

A set of a normalized (also called reduced) frequency and a normalized wave vector

uniquely defines the eigenstate of a photonic crystal regardless of the spatial dimensions.

Scaling the lattice vectors will result in the same band diagram ν(~k
:
) when using normal-

ized variables. That means that regardless of the spectral range (THz, MIR, visible light,

...) the band diagram remains the same when the spatial dimensions are appropriately

scaled.
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1.4. PHOTONIC BAND STRUCTURE COMPUTATION

1.4 Photonic band structure computation

In order to be able to design photonic crystals for a given application it is necessary to

obtain design and simulation tools, that are able to provide accurate results in a timely

manner. The focus of the next chapters is on the mathematical background of the so-

called plane wave expansion method (PWEM) and of its successor the revised plane wave

expansion method (RPWEM).

It has to be mentioned that several other numerical tools exist with disadvantages as

well as advantages compared to the PWEM/RPWEM. The finite difference time domain

(FDTD) method can be applied to all kinds of problems without restrictions. However,

the drawback of the FDTD is that solving a problem might take several hours up to days of

computation time. For two-dimensional structures with mode confinement perpendicular

to the photonic crystal plane (photonic crystal slabs), the RPWEM simulation combined

with an effective refractive index for mode guiding in the third dimension provides accu-

rate results in a timely manner.

Subsequently computable forms (PWEM and RPWEM) of the master equations for two-

dimensional photonic crystals will be derived. The same derivations are also applicable

to the one- and three-dimensional cases.

At this point it is necessary to introduce a Cartesian coordinate system. Unless otherwise

specified, the x and y axes are always in-plane of the photonic crystal and the z axis per-

pendicular. For a perfect photonic crystal there is no variation of the electromagnetic field

along the z axis. That will be different when considering finite extents like encountered

in slabs.

1.4.1 Plane wave expansion method

The PWEM was initially proposed by Plihal et al. [33] and has become one of todays stan-

dard tools for computation of the properties of photonic crystals. By using plane waves

the PWEM decomposes the electromagnetic field and the permittivity into the reciprocal

space. This makes it possible to obtain an eigenvalue problem for ω in matrix form, which

can be implemented as an algorithm in a program. Solving the eigenvalue problem along

the boundary of the Brillouin zone leads to the band diagram of the photonic crystal.

Besides calculation of band structures it also allows for calculating the confinement of the

electromagnetic field in point defects (cavities) and linear defects (wave guides). This is

done by investigating a substitute photonic crystal, consisting of a cut-out of the under-

lying photonic crystal with the defect. As long as the lattice constant of the new unit cell

(called supercell) is large enough that coupling between the defects can be neglected the

resulting mode distributions are a good approximation.
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As discussed in chapter 1.3.3 it is possible to express the electric field as product of a

plane wave and a Bloch function:

~E(~k, ~r) = e−j
~k·~r~u(~k, ~r) (1.42)

Since the function ~uk(~r) is periodic in two dimensions it can be written as two infinite

sums of plane waves with the Fourier coefficients ~AEn1,n2
(~k):

~u(~k, ~r) =
∑
n1

∑
n2

~AEn1,n2
(~k)e−j

~Gn1,n2 ·~r (1.43)

It is convenient to reorder the two summations over n1 and n2 into one summation over

n in a way that ~G−n = −~Gn:

~u(~k, ~r) =
∑
n

~AEn (~k)e−j
~Gn·~r (1.44)

Substituting this into the Bloch theorem (equation 1.42) leads to:

~E(~k, ~r) = e−j
~k·~r
∑
n

~AEn (~k)e−j
~Gn·~r =

∑
n

~AEn (~k)e−j(
~k+ ~Gn)·~r (1.45)

Analogous the magnetizing field with the Fourier coefficients ~AHn (~k) can be derived:

~H(~k, ~r) =
∑
n

~AHn (~k)e−j(
~k+ ~Gn)·~r (1.46)

1.4.1.1 Permittivity decomposition

The permittivity and the inverse of the permittivity are also periodic functions and can

therefore also be decomposed into a superposition of plane waves:

εr(~r) =
∑
n

εne
−j ~Gn·~r (1.47)

1

εr(~r)
=
∑
n

θne
−j ~Gn·~r (1.48)

For the known permittivity distribution the coefficients εn and θn can be efficiently cal-

culated by the fast Fourier transform (FFT) or an analytical solution can be used. From

the Fourier cofficients two matrices ε̂ and θ̂ are assembled, where the element in the m-th
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row and n-th column is determined by the Fourier coefficient at m− n:

ε̂mn = εm−n (1.49)

θ̂mn = θm−n (1.50)

For computational purposes it is necessary to reduce the infinite sums of the decompo-

sitions to finite sums. This is done by truncating the infinite set of plane waves Gn to

a finite set G′n = {Gn | |n1|, |n2| ≤ Nmax}. Increasing the number of plane waves by

increasing Nmax gives more accurate results but also increases the computation time. The

optimum number of plane waves for a given problem depends on the geometry of the unit

cell. A simple layout like holes in a dielectric medium already yields accurate results with

Nmax = 5 (121 plane waves). When investigating the influence of point defects on the

band diagram, where the unit cell consists of several periods of the undisturbed photonic

crystal, Nmax has to be chosen accordingly higher.

As example, figure 1.11 shows a simple photonic crystal formed by alumina rods and the

corresponding unit cell. The permittivity distribution is discretized into 501× 501 points

and then the FFT is used to obtain the coefficients εn1,n2 .

Air

εr=1

Alumina

εr=8.9

x

y

z

Figure 1.11: Two-dimensional photonic crystal consisting of alumina rods and relative
permittivity distribution in the unit cell.

After truncating the amount of plane waves (figure 1.12a) the coefficients are assembled

into the matrix ε̂ (figure 1.12b).

For unit cells with non-perpendicular lattice vectors, conventional FFT algorithms can

not be applied in a straightforward way. However, the unit cells of all two-dimensional

lattices can be transformed by an affine shear transformation TA{·} into a square unit
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(a) (b)

Figure 1.12: 1.12a After FFT and truncating to 121 plane waves (Nmax = 5) there is a
total of 121 coefficients left. 1.12b These are rearranged into the 121 × 121
matrix ε̂.

cell. For these the standard FFT algorithms can be applied. Since both operations are

linear, the inverse shear transformation after the FFT yields the Fourier transformation

of the initial unit cell:

T−1A {F{TA{ε(~r)}} = T−1A {TA{F{ε(~r)}} = F{ε(~r)} (1.51)

x

y

x'

y'

a1

a2
TA{}

Figure 1.13: An oblique lattice under the right shear transformation TA becomes a rect-
angular lattice.

For a unit cell with lattice vectors ~a1 and ~a2 under an oblique angle (figure 1.13) the

required shear transformation TA can be written as

x = x′ − y′ ~a1 · ~a2
|~a1||~a2|

y = y′ (1.52)

and the inverse of this shear transformation T−1A is

x′ = x+ y
~a1 · ~a2
|~a1||~a2|

y′ = y (1.53)
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With this transformation the permittivity distribution of a photonic crystal consisting of

holes in a triangular lattice can be easily Fourier transformed with the FFT by transform-

ing it to a square cell (figure 1.14).

TA{}

Figure 1.14: Permittivity distribution of a triangular lattice photonic crystal before and
after shear transformation to a square shape.

1.4.1.2 Transversal magnetic polarization

At this point it is necessary to distinguish between transversal electric (TE) and transversal

magnetic (TM) polarized electromagnetic waves. For two-dimensional photonic crystals

the TM modes only have non-zero Ez, Hx and Hy components, while TE modes only have

non-zero Hz, Ex and Ey components (due to the translational invariance along z).

For TM polarization there is only an Ez component, thus the master equation for the

electric field (equation 1.35) will take a simple form. The first curl operator in equation

1.35 applied on the decomposition of the electric field (equation 1.45) yields:

~O× ~E(~k, ~r) =~O×
∑
n

~AEn (~k)e−j(
~k+ ~Gn)·~r =

∑
n

~O×
[
~AEn (~k)e−j(

~k+ ~Gn)·~r
]

= 1

∑
n

[
e−j(

~k+ ~Gn)·~r ~O× ~AEn (~k)︸ ︷︷ ︸
=~0

+
(
~Oe−j(

~k+ ~Gn)·~r
)
× ~AEn (~k)

]
= 2

∑
n

[
−je−j(~k+ ~Gn)·~r

(
(~k + ~Gn)× ~AEn (~k)

)]
(1.54)

Applying the second curl operator on this result leads to:

~O× ~O× ~E(~k, ~r) =
∑
n

~O×
[
−je−j(~k+ ~Gn)·~r

(
(~k + ~Gn)× ~AEn (~k)

)]
= 1

∑
n

[
− je−j(~k+ ~Gn) ~O×

(
(~k + ~Gn)× ~AEn (~k

)
︸ ︷︷ ︸

=~0

+

(
−j~Oe−j(~k+ ~Gn)·~r

)
×
(

(~k + ~Gn)× ~AEn (~k
) ]

= 2

1~O× (f~g) = f~O× ~g + (~Of)× ~g
2~Oe~a·~r = ~ae~a·~r
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∑
n

[
e−j(

~k+ ~Gn)·~r(~k + ~Gn)×
(

(~k + ~Gn)× ~AEn (~k)
)]

= 3

∑
n

e−j(
~k+ ~Gn)·~r

[
(~k + ~Gn)

(
(~k + ~Gn) · ~AEn (~k)

)
︸ ︷︷ ︸

=0

−

~AEn (~k)
(

(~k + ~Gn) · (~k + ~Gn)
) ]

(1.55)

For TM modes the Fourier coefficients ~AEn (~k) only have a z component (AEz
n (~k)) and

thus it follows that the first scalar product with (~k + ~Gn) (only consisting of x and y

components) is zero:

~O× ~O× ~E(~k, ~r) =
∑
n

e−j(
~k+ ~Gn)·~r

[
AEz
n (~k)

(
(~k + ~Gn) · (~k + ~Gn)

)]
(1.56)

Substituting this and the decomposition of the inverse permittivity (1.48) into the master

equation for the electric field (1.35) further leads to(∑
m

θme
−j ~Gm·~r

)(∑
n

e−j(
~k+ ~Gn)·~r

[
AEz
n (~k)

(
(~k + ~Gn) · (~k + ~Gn)

)])
=(

ω

c0

)2∑
n

AEz
m (~k)e−j(

~k+ ~Gn)·~r (1.57)∑
m,n

e−j(
~k+ ~Gm)·~r

[
AEz
n (~k)

(
(~k + ~Gn) · (~k + ~Gn)

)]
θm−n =

(
ω

c0

)2∑
m

AEz
m (~k)e−j(

~k+ ~Gm)·~r (1.58)

This can be reduced to a set of equations that must hold for every m:

∑
n

(
(~k + ~Gn) · (~k + ~Gn)

)
θm−nA

Ez
n (~k) =

(
ω

c0

)2

AEz
m (~k) (1.59)

Finally the problem can be rewritten into a matrix form, that contains all equations for

every possible m. The result is a computable form of the eigenvalue problem for TM

modes:

WaEz =

(
ω

c0

)2

aEz (1.60)

which can be solved by standard eigenvalue solvers. aEz is a column vector with all the

Fourier coefficients of the electric field in z direction. The matrix elements of W are

3~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b)
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determined by:

Wm,n =
(

(~k + ~Gn) · (~k + ~Gn)
)
θm−n (1.61)

1.4.1.3 Transversal electric polarization

For TE polarized modes a similar result can be obtained from the master equation for

the magnetizing field (1.36). The first curl operator yields the same result as for TM

polarized modes, but the application of the second curl operator yields a different result

since the inverse permittivity has to be considered:

~O×
(

1

ε(~r)
~O× ~H(~k, ~r)

)
=
∑
m,n

~O×
[
−je−j(~k+ ~Gm)·~rθm−n

(
(~k + ~Gn)× ~AHn (~k)

)]
=

∑
m,n

e−j(
~k+ ~Gm)·~r

[
AHz
n (~k)

(
(~k + ~Gm) · (~k + ~Gn)

)]
θm−n (1.62)

This leads to

∑
n

(
(~k + ~Gm) · (~k + ~Gn)

)
θm−nA

Hz
n (~k) =

(
ω

c0

)2

AHz
m (~k) (1.63)

and after truncation and rewriting into matrix a computable form of the eigenvalue prob-

lem for TE modes is obtained:

VaHz =

(
ω

c0

)2

aHz (1.64)

with the matrix elements:

Vm,n =
(

(~k + ~Gm) · (~k + ~Gn)
)
θm−n (1.65)

1.4.2 Revised plane wave expansion method

The drawback of the PWEM is that it is only suitable for materials with constant per-

mittivity for all frequencies (ε(ω) = const.). However, when investigating materials with

not negligible material dispersion or when using effective refractive indices (neff ) to ap-

proximate finite extensions of a photonic crystal along the z-axis, it is necessary to use a

frequency dependent permittivity.

Therefore the RPWEM was proposed in 2005 by Shouyuan et al. [34], and later on in an

improved version (presented in this chapter) by Zabelin [35]. The latter version allows

to search for solutions of the wave vector ~k along an arbitrary direction instead of be-
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ing limited to kx and ky directions. Therefore it is possible to obtain eigenvalues along

arbitrary directions in the reciprocal space, which would otherwise require a coordinate

transformation. As the coordinate transformation requires a redefinition of the unit cell

a band unfolding of the results often becomes necessary.

The RPWEM changes the eigenvalue problem for ω of the PWEM into an eigenvalue

problem for ~k. By making ω an exogenic variable, a permittivity for a given frequency

can be calculated beforehand. For a one-dimensional algorithm this would mean a straight

forward reformulation of the equation. However, in the two-dimensional case the wave

vector ~k contains two components and an eigenvalue problem can only be solved for a

scalar value. Therefore the wave vector ~k has to be either split up into kx and ky com-

ponents where one is specified and the other can be solved or it can be split up into two

vectors. One of these vectors (~k0) stays constant and the other (~k1) is multiplied by a

scalar (α). For this scalar it is possible to obtain an eigenvalue problem (figure 1.15):

~k = ~k0 + α~k1 (1.66)

kx

ky

k0

α·k1

Figure 1.15: Decomposition of the wave vector ~k for the RPWEM. Solutions for the wave
equation are searched along the dashed line specified by the two vectors ~k0
and ~k1

These two vectors determine a straight line along which wave vectors are searched for,

that are possible solutions of the wave equation. Figure 1.16 shows a comparison of the

strategies used in the PWEM and the RPWEM algorithm.
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kx

ky

ω

(a)

kx

ky

ω

k0

k1

(b)

Figure 1.16: Dispersion diagram of a two-dimensional photonic crystal. 1.16a In the
PWEM kx and ky are determined and eigenvalue solutions for ω are searched.

1.16b In the RPWEM ω is specified, as well as two vectors ~k0 and ~k1. Eigen-
values along the straight line determined by these two vectors are computed.

1.4.2.1 Transversal magnetic polarization

The first step for deriving the RPWEM eigenvalue problem is similar to the PWEM

ansatz. Instead of using the master equation in the form of 1.35, the relative permittivity

is multiplied to the right side

~O×
(
~O× ~E(~r)

)
=

(
ω

c0

)2

ε(~r) ~E(~r) (1.67)

and from that follows:

∑
n

(
(~k + ~Gn) · (~k + ~Gn)

)
AEz
n (~k) =

(
ω

c0

)2∑
n

AEz
n (~k)εm−n (1.68)

Substituting the wave vector ~k with (1.66) gives

(~k + ~Gn) · (~k + ~Gn) = α2 + α
[
2~k1(~k0 + ~Gn)

]
+ (~k0 + ~Gn) · (~k0 + ~Gn) (1.69)

Rewriting the m equations into matrix form and introducing the vector of Fourier coeffi-

cients for the electric field yields

α2aEz + αRaEz + SaEz =

(
ω

c0

)2

ε̂aEz (1.70)

24



CHAPTER 1. PHOTONIC CRYSTALS

ε̂ is the permittivity matrix defined in equation 1.49 and the elements of the matrices R

and S are:

Rmn =2~k1 · (~k0 + ~Gm)δmn
1 (1.71)

Smn =(~k0 + ~Gm) · (~k0 + ~Gm)δmn (1.72)

By reformulating the previous equation into

α(αaEz) = −R(αaEz) +

[(
ω

c0

)2

ε̂aEz − SaEz

]
(1.73)

and by introducing a second (trivial) equation αaEz = αaEz , or in matrix form:(
0 I

)(
aEz αaEz

)T
= αaEz (1.74)

the eigenvalue problem of the RPWEM for TM modes is obtained: 0 I(
ω
c0

)2
ε̂− S −R

( aEz

αaEz

)
= α

(
aEz

αaEz

)
(1.75)

with 0 being the zero matrix and I the identity matrix. In this equation α is the eigenvalue

that can be solved for at a given frequency ω and a given combination of ~k0 and ~k1. The

major difference to the PWEM eigenvalue problem is that the eigenvalue problem of

the RPWEM has twice the degrees of freedom and hence takes a notable larger time to

compute. However, it is still much faster than an iterative approach for the PWEM when

studying frequency dependent materials or effective refractive index structures where the

relative permittivity depends on the frequency (ε̂ = ε̂(ω)).

1.4.2.2 Transversal electric polarization

In the case of transversal electric polarization the first step to derive the RPWEM algo-

rithm is to apply the first curl operator in the same manner as in the PWEM. Starting

with equation (1.63) and substituting ~k = ~k0 + α~k1 yields

(~k + ~Gm) · (~k + ~Gn) = α2 + α
[
~k1(2~k0 + ~Gm + ~Gn)

]
+ (~k0 + ~Gm) · (~k0 + ~Gn) (1.76)

1δmn is the Kronecker symbol defined by δmn =

{
1 m = n

0 m 6= n
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and after switching to matrix form this becomes

α2aHz + αPaHz + QaHz =

(
ω

c0

)2

aHz (1.77)

where the elements of the matrices P and Q are determined by

Pmn =θmn[~k1 · (~k0 + ~Gm + ~Gn)] (1.78)

Qmn =θmn[(~k0 + ~Gm) · (~k0 + ~Gn)] (1.79)

Extending the problem by the trivial identity αaHz = αaHz leads to the matrix eigenvalue

problem for TE modes:

 0 I

ε̂

((
ω
c0

)2
I−Q

)
−ε̂P

( aHz

αaHz

)
= α

(
aHz

αaHz

)
(1.80)

1.4.2.3 Examples

The RPWEM can be easily implemented as an algorithm in a computer program. This

was done for this thesis in a self-written MATLAB program. MATLAB offers a wide range

of functions that are very useful for this kind of task like FFT and efficient eigenvalue

solvers (LAPACK, ARPACK). The major problem for the implementation was to supply

these available algorithms with the correct data in matrix form. To build these matrices

the vectors ~k0 and ~k1 are required.

For a triangular photonic crystal with a lattice constant a the lattice vectors are defined

as

~a1 = a(~ex) (1.81)

~a2 = a(0.5~ex + 0.866~ey) (1.82)

and the reciprocal lattice vectors are

~b1 =
2π

a
(~ey) (1.83)

~b2 =
2π

a
(0.866~ex − 0.5~ey) (1.84)

The symmetry points in the reciprocal space can be expressed as

Γ = 0 (1.85)
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M =
~b1
2

(1.86)

K =
2~b1 +~b2

3
(1.87)

From the symmetry points the vectors ~k0 and ~k1 can be calculated for each of the three

sections of the band diagram:

~k0, ~k1 =


K, Γ−K from K to Γ

Γ, M − Γ from Γ to M

M, K −M from M to K

(1.88)

With these vectors the matrices for the eigenvalue problem can be built and solving it

for various frequencies leads to the band diagram. The dimension of the matrices is

solely determined by the amount of plane waves taken into the calculation and for a two-

dimensional problem these matrices can become quite large. Choosing Nmax = 5 leads

to 121 Fourier coefficients and the matrix of the eigenvalue problem has 242 × 242 ele-

ments, which leads to 242 eigenvalues. To reduce the computation time of the eigenvalue

solver it is possible with the ARPACK package to only calculate the smallest magnitude

eigenvalues. How many eigenvalues need to be computed to get all within the Brillouin

zone has to be determined empirically or with an adaptive algorithm. Eigenvalues with

an imaginary part are evanescent modes and are filtered out. Only real eigenvalues are

the resonant modes of the photonic crystal that are plotted in the band diagram.
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Free space To become acquainted with band diagrams it is useful to study very simple

structures first. Although the two-dimensional RPWEM algorithm is capable of much

more complicated problems, the first example is a unit cell consisting only of air (εr = 1).

The resulting band diagram describes the dispersion relation of free space propagation

(already discussed in chapter 1.3.1). But due to the arbitrary definition of the unit cell,

the bands get folded back at the borders of the Brillouin zone (figure 1.17). Each of the

bands can be explained by investigating the possible wave vectors in the reciprocal space.

Because of the translational invariance wave vectors extending into a neighboring unit cell

are equivalent to a wave vector pointing at the same point inside the Brillouin zone. By

the linear dispersion relation the frequency for a wave vector is given by ω = c0k. This

leads to additional modes at higher frequencies for a given point.
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Figure 1.17: Band Diagram of a square unit cell containing only air (εr(~r) = 1). The TE
and TM bands overlap and at the edges of the Brillouin zone the bands are
folded back into the band diagram.
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Dielectric stack Dielectric stacks of materials with varying permittivity are one-dimen-

sional photonic crystals. These stacks are used as DBR for mode selection in lasers to

obtain single mode light emission [2]. The mode selection is obtained by exploiting the

forming of photonic band gaps (frequencies where no possible solutions to the wave equa-

tion exist) for wave vectors that are perpendicular to the interfaces (figure 1.18).

0
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0.1
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0.2
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0.3
ω

a
/(

2
π
c

0
)

X Γ

TE

TM

GaAs

εr=13

Air

εr=1

Photonic

Bandgap

k

Figure 1.18: Band diagram of a dielectric stack consisting of 0.5a thick GaAs (εr = 13)
and 0.5a thick Air (εr = 1) layers. For certain frequencies no light can
propagate through the stack. If there is no mode within a frequency range
that range is called a photonic band gap.
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Alumina rods The last example is a two-dimensional photonic crystal consisting of the

alumina rods already discussed in chapter 1.4.1.1 with a rod radius of r/a = 0.2. In the

computed band diagram (figure 1.19) it can be seen that the TM and TE have different

dispersion relations.

The gray area is called the light cone. It indicates the dispersion relation for a wave in

free space and marks a boundary between guided and leaky modes of the photonic crystal.

States below the light line are localized within the photonic crystal and can not couple

with waves propagating in the background material. This means that only modes above

the light line can be excited by external light sources.

By inverse FFT of the eigenvectors aEz and aHz it is possible to obtain the field distri-

bution inside the unit cell for a given mode. For higher frequencies it can be seen how

the field distribution evolves from one maximum inside the unit cell to two maxima. The

modes with two maxima are also called dipole modes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω
a
/(

2
π
c

0
)

X Γ M X

TE

TM

Hz(x,y) Hz(x,y)

Ez(x,y)

Ez(x,y)

Ez(x,y)

Ez(x,y)

Air

εr=1

Alumina

εr=8.9

Figure 1.19: Band diagram and field distributions of a photonic crystal consisting of Alu-
mina rods (εr = 8.9) with a radius of r/a = 0.2 and Air (εr = 1).
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1.5 Slab wave guides

A dielectric slab (or planar) wave guide consists of a slab of high refractive index material,

surrounded by two lower refractive index materials. In order to obtain wave guiding in a

slab the ray angle has to be larger than the critical angle θ > θc = sin−1
√

nc

ns
(figure 1.20)

under which total internal reflection occurs. The propagation constant β for waves guided

in the slab (assumed to be propagating along the y-direction) depends on the confinement

of the wave to the slab and is bounded to the range nck0 < β < nsk0 (k0 = ω/c0).

In contrast to a wave guide with perfect electrically conducting boundaries, in a dielectric

wave guide there is an evanescent field in the cladding region. For light impinging above

the critical angle at the interfaces the evanescent field changes to a propagating wave.

This results in radiating modes instead of guided modes.

z

x y

cladding nc

cladding nc

slab ns>nc

z=d/2

z=-d/2

evanescent wave

evanescent wave

propagating

wave

θ>θc

Figure 1.20: A slab wave guide consisting of a high refractive index material between two
low refractive index materials. Wave guiding occurs along the slab whereas
in the low refractive index region only evanescent fields exist.

The RPWEM examples shown in the previous chapter did not include permittivities

that change with the frequency and could also have been calculated with the PWEM.

When considering photonic crystal slabs it is possible to break down the three-dimensional

problem into a one-dimensional slab wave guide and a two-dimensional photonic crystal,

which both can be independently solved. Coupling is done by calculating an effective

refractive index, obtained from the dispersion relation of the slab wave guide, and using it

as a frequency dependent material (εr(ω) = (neff (ω))2) in the photonic crystal simulation.

Calculating the propagation constant and further the effective refractive index can be done

by using the wave equation for harmonic fields in the corresponding region:

~O2 ~E(~r) + ω2µεc,s ~E(~r) = ~0 (1.89)
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and using an ansatz for the electric field with a wave propagating along the y-axis with

an unknown distribution along the z-axis:

~E(~r) = ~E(y, z) = ~E(z)e−jβy (1.90)

Substituting this ansatz into the wave equation (ω2µεc,s being replaced by k20nc,s) yields

∂2 ~E(~r)

∂y2
+
∂2E(~r)

∂z2
+ k20nc,s ~E(~r) =~0 (1.91)

∂2 ~E(~z)

∂z2
+ (k20nc,s − β2) ~E(~r) =~0 (1.92)

Differential equations of this form can be easily solved with an exponential or a sin/cos

ansatz. For the slab region the sin/cos form is used since standing waves can be expected:

~Es(z) = ~Asin(kzsz) + ~Bcos(kzsz) (1.93)

and when substituting this ansatz into the differential equation an equation for kzs can be

obtained:

kzs =
√
k20n

2
s − β2 (1.94)

For the field in the cladding regions an evanescent exponential ansatz is used since an

evanescent field can be expected:

~Ec1(z) = ~C1e
−kzcz (1.95)

~Ec2(z) = ~C2e
kzcz (1.96)

with ~C1 for the top and ~C2 for the bottom cladding region. Substituting this into the

differential equation yields an expression for the propagation constant:

kzc =
√
β2 − k20n2

c (1.97)

To determine the constants ~A, ~B, ~C1 and ~C2, the boundary conditions for the electric and

magnetizing field (~n× J ~EK = ~0, ~n× J ~HK = ~0) have to be fulfilled and the possible modes

have to be split up again into TE and TM polarizations.
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1.5.1 Transversal electric polarization

In the case of TE polarized waves the electric field only consists of a component along the

x-axis (Ex
c,s) due to the translational invariance along x and y. The non-zero magnetizing

field components are found along y and z direction. They are related to the electric field

by ~O× ~E(~r) = jωµ ~H(~r). In Cartesian coordinates the curl operator can be written as

~O× ~E =

(
∂Ez
∂y
− ∂Ey

∂z

)
~ex +

(
∂Ex
∂z
− ∂Ez

∂x

)
~ey +

(
∂Ey
∂x
− ∂Ex

∂y

)
~ez (1.98)

The magnetizing field along the y axis can therefore be written as

Hy
c,s = − j

ωµ

∂Ex
c,s

∂z
(1.99)

Using the boundary conditions for the electric field (Ex
c = Ex

s ) at the upper interface

(z = +d/2) gives an equation that relates the solution in the upper cladding and the slab

Asin

(
kzsd

2

)
+Bcos

(
kzsd

2

)
= C1e

− kzcd

2 (1.100)

and analogous at the second interface at z = −d/2:

−Asin
(
kzsd

2

)
+Bcos

(
kzsd

2

)
= C2e

− kzcd

2 (1.101)

With the boundary conditions for the magnetizing field (Hy
c = Hy

s ) an additional set of

equations can be obtained

kzsAsin

(
kzsd

2

)
− kzsBcos

(
kzsd

2

)
=− kzcC1e

− kzcd

2 (1.102)

kzsAsin

(
kzsd

2

)
+ kzsBcos

(
kzsd

2

)
=kzcC2e

− kzcd

2 (1.103)

By addition and subtraction these can be reformulated to:

2Asin

(
kzsd

2

)
= (C1 − C2)e

− kzcd

2 (1.104)

2kzsAcos

(
kzsd

2

)
= −kzc (C1 − C2)e

− kzcd

2 (1.105)

2Bcos

(
kzsd

2

)
= (C1 + C2)e

− kzcd

2 (1.106)

2kzsBsin

(
kzsd

2

)
= kzc (C1 + C2)e

− kzcd

2 (1.107)
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However, since we are only interested in the possible modes the unknowns can be elim-

inated and a guiding condition can be obtained. The possible solutions to the guiding

condition can be separated into two types:

1. symmetric (A = 0, C1 = C2):

From division of equation (1.107) by equation (1.106) follows:

kzstan

(
kzsd

2

)
= kzc (1.108)

2. asymmetric (B = 0, C1 = −C2):

From division of equation (1.105) by equation (1.104) follows:

kzscot

(
kzsd

2

)
= −kzc (1.109)

Using equations (1.94) and (1.97) the right hand side of these guiding conditions can be

replaced by kzc =
√
kzs − k20n2

c − k20n2
s, leading to transcendent equations for the guiding

conditions:

kzstan

(
kzsd

2

)
=
√
k20n

2
s − k20n2

c − (kzs)
2 symmetric (1.110)

−kzscot
(
kzsd

2

)
=
√
k20n

2
s − k20n2

c − (kzs)
2 asymmetric (1.111)

From the solutions for kzs the propagation constant β along the x direction can be calcu-

lated by

β =
√
k20n

2
s − (kzs)

2 (1.112)

From this follows the effective refractive index:

neff =
β

k0
(1.113)

This effective refractive index can be used in the RPWEM algorithm as frequency depen-

dent permittivity (εr = n2
eff ) of the slab material.

For low frequencies only the first symmetric mode can propagate in the slab and for

ω → 0 this mode is not confined to the slab and the effective refractive index approaches

the refractive index of the surrounding material (neff → nc). Contrariwise for ω → ∞
the first mode is fully confined to the slab. That means that the effective refractive index

approaches the refractive index of the slab material (neff → ns). Therefore the effective
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refractive index is bounded by the refractive indices of the slab and the cladding material

(nc < neff < ns).

The transcendent guiding equations can not be solved analytically and hence numerical

or graphical tools have to be used. The graphical solution can be obtained by drawing

the right hand side of the equation, which describes a circle, and the left hand side, which

is determined by xtan(x) and −xcot(x) functions, into a diagram and determine the in-

tersection points (figure 1.21a). The radius of the circle is determined by k0 and hence

by increasing the frequency the circle grows and more modes are possible. Increasing the

frequency also increases the confinement of the modes to the slab region (figure 1.21b)

and shifts the effective refractive index for the corresponding mode closer to the refractive

index of the slab.
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Figure 1.21: 1.21a Graphical solution for the guiding condition and 1.21b field distribution
Ex for the first symmetric mode.

1.5.2 Transversal magnetic polarization

For TM modes the magnetizing field is perpendicular to the propagation direction and

only consists of the Hx
c,s component, due to of the translational invariance along x and y.

The electric field can be calculated from the magnetizing field by ~O× ~H(~r) = −jωε ~E(~r):

Ey
c,s =

j

ωε

∂Hx
c,s

∂z
(1.114)

Using the same ansatz for the magnetizing field as for the electric field yields with the

boundary conditions for the tangential components of the magnetizing field:

Asin

(
kzsd

2

)
+Bcos

(
kzsd

2

)
= C1e

− kzcd

2 (1.115)
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−Asin
(
kzsd

2

)
+Bcos

(
kzsd

2

)
= C2e

− kzcd

2 (1.116)

Together with the boundary conditions for the tangential components of the electric field

1

n2
s

(
kzsAsin

(
kzsd

2

)
+ kzsBcos

(
kzsd

2

))
=

1

n2
c

kzcC1e
− kzcd

2 (1.117)

1

n2
s

(
−kzsAsin

(
kzsd

2

)
+ kzsBcos

(
kzsd

2

))
=

1

n2
c

kzcC2e
− kzcd

2 (1.118)

a similar set of four equations can be found:

2Asin

(
kzsd

2

)
= (C1 − C2)e

− kzcd

2 (1.119)

2kzsAcos

(
kzsd

2

)
= −kzc

n2
s

n2
c

(C1 − C2)e
− kzcd

2 (1.120)

2Bcos

(
kzsd

2

)
= (C1 + C2)e

− kzcd

2 (1.121)

2kzsBsin

(
kzsd

2

)
= kzc

n2
s

n2
c

(C1 + C2)e
− kzcd

2 (1.122)

Eliminating the coefficients and substituting kzc gives the guiding conditions for the TM

modes

kzstan

(
kzsd

2

)
=
n2
s

n2
c

√
k20n

2
s − k20n2

c − (kzs)
2 symmetric (1.123)

−kzscot
(
kzsd

2

)
=
n2
s

n2
c

√
k20n

2
s − k20n2

c − (kzs)
2 asymmetric (1.124)

Beside the factor n2
s

n2
c

these equations are exactly the same as for the TE modes. However

this factor leads to a different dispersion relation for the TM modes. Especially for a high

index contrast a different effective refractive index for TM and TE modes is obtained.

This is shown in figure 1.22 for the first symmetric mode in a GaAs slab with a thickness

of h = 2µm and a refractive index of ns = 3.2 (in MIR) surrounded by air (nc = 1).
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Figure 1.22: Effective refractive index for TM and TE modes of a GaAs (ns = 3.2) slab
wave guide (d = 2µm), cladded by air (nc = 1). TM modes are less confined
to the slab and hence have a smaller effective refractive index neff .

1.6 Photonic crystal slabs

Photonic crystal slabs are two-dimensional photonic crystals, where the extension of the

crystal perpendicular to the slab plane can not be considered to be infinite or very large

compared to the wavelength. In such structures the dispersion relation of a propagating

wave is determined by the photonic crystal and the slab wave guide. Due to lack of trans-

lational symmetry in the photonic crystal plane the TE and TM modes are no longer

separable, but it was shown that the resulting modes of photonic crystals have a strong

resemblance to pure TE and TM modes [12, 36]. At the maximum intensity along the

slab wave guide they are even identical. Therefore an approximation can be done where

the photonic crystal slab modes are regarded to be TE-like and TM-like.

To couple the two dispersion relations from the photonic crystal and the slab wave guide

the effective refractive index of the slab wave guide is introduced as a frequency depen-

dent permittivity (εr(ω) = (neff (ω))2) of the dielectric material forming the photonic

crystal [37, 38].

With the effective refractive index calculation for the fundamental modes of a dielectric

slab wave guide it is possible to calculate the band diagram of a photonic crystal slab

with the RPWEM. The thickness of the slab has a large impact onto the band diagram

of a photonic crystal slab, especially in the area where the thickness is close to the lat-

tice constant. When calculating band diagrams with the effective index approach it is

assumed that only the first symmetric mode propagates. However, for higher frequencies

many more modes are possible and this simple approach is not sufficient anymore. This

results in additional bands that can be attributed to a photonic crystal with an effective

refractive index from the dispersion of these higher modes.
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1.6.1 Simulation results

Simulations were performed for a triangular photonic crystal slab (figure 1.23) consisting

of GaAs (εr = 10.24 in the MIR region [39]) with circular holes between two layers of air

(εr = 1). The lattice constant of the photonic crystal is a = 4µm and the hole radius is

r/a = 0.2.

a1

a2 2r/a

d

Ga
As

ε r=
10
.2
4

Air

εr=1

Figure 1.23: A photonic crystal slab with thickness d made from GaAs (εr = 10.24 in
MIR) with a triangular lattice of holes (r/a), defined by the two lattice
vectors ~a1 and ~a2.

The computation of the band diagrams for varying slab thicknesses d shows how the dis-

persion relation changes (figure 1.24, see appendix A.4 for additional band diagrams).
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Figure 1.24: Change in the band diagram by variation of the slab thickness d of a trian-
gular photonic crystal slab (a = 4.0µm and r/a = 0.2). d→ inf corresponds
to an ideal photonic crystal with infinite extents in z direction. For thinner
slabs the band diagram approaches the properties of free space propagation.
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For better comparison it is useful to plot only the solutions in the Γ point over the slab

thickness. Then it can be clearly seen how the reduction of the slab thickness pushes the

bands to higher frequencies (figure 1.25). For TM modes the resonances already shift at

higher slab thicknesses since these modes are less confined to the slab.

In a slab with a thickness of d = 2µm the first TM resonance in the Γ-point shifts from

0.365 (normalized frequency ωa
2πc0

) to 0.468 (+30%). Whereas the first TE resonance in

the Γ-point shifts from 0.361 to 0.417 (+15%).
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Figure 1.25: Shifting of the resonances in the Γ-point by variation of the thickness d of
a triangular photonic crystal slab. For thin slabs the TM modes are hardly
confined to the slab and hence the resonances of the TM modes shift to higher
frequencies before the TE modes.
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1.7 Quantum well infrared photodetector

An elegant way to characterize photonic crystals is to build the photonic crystal from an

active material that can detect light as shown by Schartner et al. [40] for the MIR region

by using a QWIP as detector. The QWIP is flexible in terms of wavelength design and is

compatible with standard cleanroom technology. Therefore processing a photonic crystal

from this active material can be easily achieved.

A QWIP basically is a symmetric device with single quantum wells. They are placed in

series to increase the size of the active zone in order to increase the absorbing layer thick-

ness. The quantum wells are designed such that there is a bound state in the quantum

well and a quasi-bound state close to the continuum. The quantum wells are intentionally

n-doped to fill the lower bound state with electrons. These electrons can be excited by

absorbing a photon into the quasi-bound state, where they can escape into the continuum.

By applying a bias at the contacts they can be detected as photocurrent.

~ 50 stages

A

I
ph

Ub

hω

Figure 1.26: Working principle of a QWIP consisting of several quantum wells. Electrons
from the ground state are excited into the continuum by absorption of a
photon, where they can be detected as photocurrent. Taken from [40].

1.7.1 Photocurrent

Photons in a QWIP can excite electrons from the confined states into the continuum,

where they can be measured as photocurrent Iph. The photocurrent is related to the

influx per unit time of incoming photons φ = Ps

~ω [41] by

Iph = eφηgph (1.125)
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The probability of a photon to generate a detected electron is split up into η and gph. The

probability of a photon being absorbed by an electron excitation is accounted for in the

internal quantum efficiency η. The second parameter gph is called the photoconductive

gain. It factors that the excited electrons actually have to reach the external contacts to

contribute to the photocurrent. The photoconductive gain is determined by the ratio of

capturing time τc and transit time τtr:

gph =
τc
τtr

(1.126)

By means of scattering with longitudinal optical (LO) phonons electrons can be captured.

This occurs on a timescale of about τc = 5ps. The transit time is determined by the drift

velocity of the semiconductor

v(E) =
µE√

1 + (µE/vsat)2
(1.127)

and the thickness of the detection region. With typical values for the mobility (µ =

103cm2V/s) and for the saturation velocity (vsat = 107cm/s) of the barrier material it is

possible for a QWIP with only few periods that gph becomes larger than unity [42]. For

this reason gph is called the photoconductive gain.

1.7.2 Dark current

When applying a bias voltage to a QWIP the resulting current is consisting of several

components: the photocurrent Iph as a result of signal photon absorption, the background-

photocurrent IBG as a result of absorbed ambient black body radiation and the dark

current Id as a result of thermal excitation of electrons from the ground state to the

continuum. A second path for the dark current is the defect assisted inter-well tunneling.

It can be neglected when making a sufficiently thick barrier between the quantum wells

(figure 1.27a)

A model to calculate the dark current Jd is given by Kane et al. [43]. The density of

electrons excited from the ground state to the continuum and above is determined by:

Jd = eN3Dv(E) (1.128)

The three-dimensional carrier density N3D can be calculated using the Boltzmann distri-

bution and the carrier density for a three-dimensional system:

N3D ≈ 2

(
mbkBT

2π~2

)3/2

e−εact/kBT (1.129)
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with mb being the effective mass in the barrier, kB the Boltzmann constant (1.381... ·
10−23J/K) and T the temperature.
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Figure 1.27: 1.27a Dark current generation in a QWIP through thermally excited elec-
trons and defect assisted inter-well tunneling. 1.27b Carrier distribution of
thermally excited electrons with the energies used for calculation of the dark
current. Taken from [40].

The activation energy is given by εact = εb − εF (figure 1.27b). This also shows that

decreasing the doping density in the well also decreases the Fermi level εF = (π~2/mw)2ND

(mw effective mass in the quantum well) and hence exponentially less dark current will

be generated.

1.7.3 BLIP temperature

The main contributor to noise in a QWIP is the shot noise generated by the dark current

of the device. For a given dark current the shot noise In is determined by

In =
√

4egphBId (1.130)

with B being the bandwidth of the measurement setup (in case of an integrating readout

B = 1/τin). At low temperatures the dark current is low, because only few thermally ex-

cited electrons are generated. The QWIP performance is limited by the current generated

by ambient black body radiation. It then operates in background limited performance

(BLIP). Increasing the temperature until the dark current exceeds the current generated

by ambient black body radiation brings the device into the region of detector limited per-

formance (DLIP). The temperature where Id=IBG is called BLIP temperature (TBLIP ).
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1.7.4 QWIP characterization

1.7.4.1 Current-Voltage characteristics

Among the most important characteristics of a QWIP is the voltage-current curve with

only the ambient black body radiation impinging on the device. The IV curve of a sam-

ple can be measured by cooling it down in a cryostat and applying a bias voltage while

measuring the current (figure 1.28).
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Figure 1.28: Measurement circuit for the IV-characteristic of a QWIP. The sample with
the QWIP is mounted inside a cryostat to cool it down to 20K (below TBLIP )
with liquid He.

The IV curves of the samples H661 and H694 (figures 1.29a and 1.30a, sample descriptions

are given in the appendix A.1) were measured for various temperatures between 20K to

100K. For a list of devices used for measurement see the appendix A.3.

Increasing the bias above a critical point results in the electric field tilting the band struc-

ture so much that electrons in the bound state can tunnel out of the well into the contin-

uum. As the sample H694 has less periods this kink in the IV occurs at lower bias voltage

since lower voltages are required to obtain the same internal electric field. The point at

which the dark current due to thermal excitation dominates the current due to ambient

black body radiation is obtained by plotting the dark current for a given bias voltage

(−2V ) in the constant current region over the temperature. This yields a TBLIP = 69K

for the H661 sample (figure 1.29b) and a TBLIP = 72K for the H694 sample (figure 1.30b)
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Figure 1.29: H661 QWIP sample: 1.29a IV characteristic and 1.29b TBLIP at VB = −2V .
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Figure 1.30: H694 QWIP sample: 1.30a IV characteristic and 1.30b TBLIP at VB = −2V .

1.7.4.2 Spectral response

Another important characteristic of the QWIP is its photocurrent spectral response. It

shows how much photocurrent is generated at a specific wavelength. Because the QWIP

is an ISB device the light needs to have an electric field along the growth direction. This

means that light impinging at surface normal incidence can not be detected. To generate

a signal a 45◦ wedged sample is used with light impinging perpendicular to the wedged

facet (figure 1.31). The 45◦ tilted facet is obtained by grinding and polishing the sample.
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hω

Figure 1.31: Measurement of the QWIP spectral response by light impinging on a 45◦

wedged facet to obtain electric field components along the sensitive axis.

Before measuring the spectral response the optical system has to be aligned such that

the incident beam of the source is focused onto the device. This is done by using the

broadband MIR light source (glowbar) of a Fourier transform infrared (FTIR) spectrom-

eter modulated with 80Hz by a beam chopper. Using a current-amplifier and a lock-in

amplifier the optical setup is aligned for maximum signal (figure 1.32).
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Figure 1.32: Measurement setup to focus the beam from the glowbar in the FTIR spec-
trometer onto the QWIP on the sample.

After aligning the optical setup the measurement circuit is changed to obtain the spectral

response. The spectral response is measured by using an interferogram generated by a

beam splitter and a movable mirror inside the FTIR spectrometer (figure 1.33). Feeding

back the measured photocurrent into the FTIR spectrometer, where the interferogram is

Fourier transformed, yields the spectral response of the glowbar multiplied by the spectral

response of the QWIP. To obtain the spectral response of the QWIP itself the measured

spectral response is divided by the spectral response of the glowbar. The glowbar spec-

tral response is obtained with a calibrated DTGS detector inside the FTIR spectrometer.
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Figure 1.33: Measurement setup for acquiring the spectral response of a QWIP.

Figures 1.34a and 1.34b show the spectral responses of a QWIP processed from H661 and

H694 samples. The devices were designed to have a peak sensitivity at 1250cm−1, which

for the actual samples is at 1232cm−1 (H661) and 1332cm−1 (H694). Using an optical

polarizer in front of the QWIP shows how the TM waves excite more photocurrent due to

the electric field being in growth direction. The signal for TE polarization comes from the

imperfect extinction ratio of the polarizer and from polarization conversion at the metal

contacts.

1000 1250 1500 1750 2000

 

 

 TM pol.
 TE pol.

sp
ec

tra
l p

ho
to

cu
rr

en
t d

en
si

ty
 (a

.u
.)

wavenumber (cm-1)

(a)

1000 1250 1500 1750 2000

 TM pol.
 TE pol

 

 

sp
ec

tra
l p

ho
to

cu
rr

en
t d

en
si

ty
 (a

.u
.)

wavenumber (cm-1)

(b)

Figure 1.34: QWIP spectral response of the samples H661 (1.34a) and H694 (1.34b).
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1.8 Photonic crystal slab QWIP

Fabricating a photonic crystal into a QWIP changes the broad spectral response to sev-

eral peaks according to the excited resonant modes in the photonic crystal. Such narrow

spectral lines are desirable for chemical fingerprinting of gases or for free-space commu-

nication. Furthermore, confining the light inside the slab yields higher amplitudes due

to higher absorption length since by reflection at the boundaries the wave remains in the

active region.

To fabricate these photonic crystal slabs several processing steps have to be performed.

The first step is the bottom-up growth of the layers by MBE or metal organic vapor

phase epitaxy (MOVPE). The grown wafer consists of a sacrificial layer and an active

zone between two contact layers. The samples used for this master thesis were grown by

MBE at the Zentrum für Mikro- und Nanostrukturen (ZMNS) in Vienna.

1.8.1 Material growth

The first layer grown on the GaAs substrate is an AlGaAs sacrificial layer, that is used for

underetching the subsequent layers to create a free-standing slab. For long term stability

(oxidation of aluminum containing layers) and low interface roughness it is desirable to

have the lowest possible aluminum content in this sacrificial layer. It was found that an

aluminum composition (AlxGa1−xAs) of 75% is the minimum for a convenient underetch-

ing process with hydrochloric acid (HCl).

On top of the sacrificial layer a smoothing layer was grown to reduce interface roughness

for the subsequent active zone, which is deposited on a buried high doped contact layer.

On top of the active zone, that consists of quantum wells formed by a Al0.3Ga0.7As -

GaAs heterostructure, a high doped top contact layer is grown (figure 1.35). For detailed

growth sheets see appendix A.1.
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Figure 1.35: Cross section of the QWIP heterostructure with sacrificial layer, grown by
MBE at the ZMNS in Vienna.
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Band diagram measurements of photonic crystal slabs were performed with samples of

the H661 wafer.

1.8.2 Device fabrication

The following list is a detailed protocol on how the H661 samples where processed to

obtain photonic crystal slabs. For a list of devices used in fabrication see the appendix

A.2. The etch time for underetching had to be determined empirically with etch samples.

It was found that heating the acid (HCl) yielded a significantly higher and repeatable

etch rate.

1. Cleaning and oxidation removal

- HCl Dip (HCl : H2O = 1 : 1), 60s

2. Photonic Crystal

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating photoresist: MIR701 35s@10, 000rpm (≈ 670nm), 60s@110◦C

- exposure: Laserwriter, photonic crystal mask

- develop: AZ351B (1 : 4), 30s

- hardbake: 3min@110◦C

- anisotropic dry etching: RIE - etching depth: 3.5µm, SiCl4: 7sccm, N .

17sccm, set pressure: 3mtorr, strike pressure: 40mtorr, RF Power: 50W ,

ICP: 20W

- dry ashing: PLOX 10min@300W

- resist removal: Acetone / Isopropanol

- passivation removal: RIE - SF6 40ccm, set pressure: 50mtorr, strike pressure:

40mtorr, RF power: 50W , time: 1min

3. Mesa

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@4, 000rpm (≈ 1.5µm), 60s@100◦C

- exposure: Mesa mask, 5s

- develop: AZ351B (1 : 4), 30s

- hardbake 3min@100◦C
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- wet etching: H3PO4 : H2O2 : H2O = 4 : 3 : 20 @ RT, etching depth: 1.7µm

(etching rate ≈ 300nm/min)

- resist removal: Acetone / Isopropanol

4. Isolation

- deposition: PECVD - SiH4: 700sccm/min, NH3: 18sccm/min, temperature:

300◦C, RF power: 10W , time: 25min (≈ 300nm)

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@4, 000rpm, 60s@100◦C

- exposure: SiN3 mask, 5s

- develop: AZ351B (1 : 4), 30s

- hardbake 3min@100◦C

- etching, RIE - SF6 40ccm

- resist removal: Acetone / Isopropanol

5. Contacts

- spin coating: maP1275 35s@6, 000rpm, 5min@100◦C

- exposure: edge removal mask, 90s

- develop: maD333 (1 : 0), 15s

- exposure: contact mask, 30s

- develop: maD333 (1 : 0), 15s

- deposition: Evaporator Ge/Au/Ni/Au = 15nm/30nm/14nm/200nm

- sidewall deposition: Sputter Ti/Au = 15nm/200nm

- resist removal (lift off): Acetone / Isopropanol

- annealing: RTA 60s@430◦C

- IV measurement of contacts/QWIP @ RT

6. Underetching

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@2, 000rpm (≈ 2µm), 60s@100◦C

- exposure: etch protect mask, 15s

- develop: AZ351B (1 : 4), 30s
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- hardbake: 3min@100◦C

- underetching: HCl : H2O = 2 : 1 @ 45◦C, 2min

- resist removal: Acetone / Isopropanol

Figure 1.36a shows a sketch of the cross section of a photonic crystal slab device with a

thickness of 2µm suspended over a h = 2µm air gap. The bottom contact can be easily

connected by the evaporated gold contacts next to the Mesas. The top contact has to be

isolated from the bottom contact by a SiN3 layer and only around the edge of the mesa

the gold contacts the top layer. In figure 1.36b a cross section taken with a scanning

electron microscope (SEM) of a processed H661 sample can be seen.

(a)

(b)

Figure 1.36: 1.36a Sketch of the cross section of the H661 samples (yellow: gold contacts,
green: SiN3 isolation) and 1.36b SEM picture of a processed device.
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1.9 Band structure mapping

To measure the spectral response of a fabricated photonic crystal slab a similar measure-

ment setup (figure 1.37) as for obtaining a QWIP spectral response is chosen with the

difference that light impinges from the top side instead on a 45◦ wedged facet. Due to

the photonic crystal structure in the slab the impinging light is diffracted into the guided

slab modes. An external iris is used to reduce the opening angle of the incident beam to

about 2◦. This results in sharper peaks in the spectral response, but also less signal. The

spectral response can be accurately measured, as long as the signal is stronger than the

noise.
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Figure 1.37: Measurement setup for acquiring the spectral response of a photonic crys-
tal by measuring the integrated QWIP. The band diagram is obtained by
rotation of the coldfinger, on which the sample is mounted.

By the variation of the impinging angle it is possible to change the in-plane wave vector

k|| [44] (figure 1.38a). This allows to measure arbitrary points of the band diagram:

k|| = k · sin(α) (1.131)

For α = 0◦ light impinges perpendicular onto the slab and there is no parallel component

of the wave vector. Hence one obtains the frequencies of the photonic bands at the Γ-

point. The band diagram can be measured by stepwise increment of the angle (4α = 5◦)

and acquiring the spectral responses (figure 1.38b). For α = 90◦ the parallel component is

a maximum and the spectral response along the light cone is measured. However spectral

responses were only measured for a maximum angle of αmax = 70◦ in K−Γ direction and

αmax = 60◦ in Γ−M direction due to limitations of the measurement setup.

Using the described method, a band diagram for the K − Γ−M direction was measured

for a photonic crystal slab fabricated from the H661 sample with a lattice constant of
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Figure 1.38: 1.38a Band structure mapping by angle resolved measurement along two
perpendicular directions to obtain the dispersion relation between Γ − M
and Γ −K. By variation of the angle the in-plane wave vector is modified.
1.38b The peaks of the measured spectral responses correspond to modes in
the band diagram along the line determined by the incident angle α. Taken
from [40].

a = 4µm, a hole radius of r/a = 0.2 and a slab thickness of d = 2µm. Figure 1.39a

shows the spectral response for light impinging perpendicular to the slab plane. Due to

the photonic crystal the spectral response of the QWIP changes to the spectral response

of the QWIP multiplied with the spectral response of the photonic crystal. To obtain the

spectral response of the photonic crystal the measured spectral response can be divided

by the spectral response of the QWIP, which can be obtained from a wedged sample

measurement. Piecewise rotation and measurement of the sample yields a set of spectral

responses (figure 1.39b).
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Figure 1.39: 1.39a Spectral response of a photonic crystal combined with a QWIP and
1.39b set of spectral responses obtained by rotation of the sample.
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Plotting the spectral responses along the lines determined by the incident angle leads to

the band diagram (figure 1.40).
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Figure 1.40: Measured band diagram. Bands below the light cone (marked by the gray
area) can not be measured because external fields can not couple into the
guided modes. Yellow areas correspond to large peaks in the spectrum
whereas white areas mean low spectral response. Measurement was per-
formed up to an incident angle of αmax = 60◦/70◦.

The measured band diagram is in good agreement with the RPWEM simulated band di-

agram (figure 1.41). The deviations are due to tolerances in the processing (hole radius is

usually smaller), the measurement (angle and direction can not be controlled accurately)

and the effective index approximation. Due to different incoupling efficencies and resonant

properties not all simulated modes occur in the measurement or they only occur under

certain angles.
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Figure 1.41: Comparison of the measured and calculated band diagram in K − Γ −M
directions for a triangular photonic crystal slab with a = 4.0µm, r/a = 0.2
and d = 2µm.

1.10 Conclusion and outlook

To investigate the band structure of photonic crystal slabs, devices were fabricated from

active QWIP material. This approach allows for direct measurement of the resonant prop-

erties instead of relying on difficult measurements of transmission spectra. The QWIP

material for the photonic crystal slabs consists of a GaAs-AlGaAs heterostructure grown

by MBE.

These processed devices were compared to a RPWEM simulated band diagram with an

effective refractive index approach to account for mode guiding in the slab. The algorithm

was implemented in a self written MATLAB program. On the basis of this simulation

method it is possible to obtain complete band diagrams and field distributions in several

minutes compared to several hours for a FDTD simulation. The measurement and sim-

ulation are in good agreement, however further investigations are needed to explain the

magnitude of the resonances in certain regions of the photonic bands.

A major factor for the differences between measurement and simulation are the tolerances

during processing and measurement of the sample. The hole radius can not be controlled

accurately enough when using the Laserwriter (resolution limit of 500nm). For improved

processing it is necessary to expose the samples with electron beam lithography. Further-

more developing times of the resist have to be optimized as well as the etching recipes

for deep etching. However, even when having a sample with almost perfect geometry the

measurement setup still poses enough tolerances. The incident angle of the beam can only

be controlled to be within about 2◦ of the desired value and the mounting of the sample

in the cryostat is not perfectly accurate.
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Another reason for deviations from the simulation is that the slab is not sufficiently sur-

rounded by air to be considered as a simple air-GaAs-air dielectric wave guide. For

more precise simulations the complete air-GaAs-air-substrate structure has to be con-

sidered with more sophisticated effective refractive index calculations. The close vicinity

(h = 2µm air gap and d = 2µm slab thickness) of the slab to the substrate leads to slab

modes that leak into the substrate. Using a larger air gap or completely removing the

substrate below the photonic crystal by etching from the backside will give information

about how much the substrate effects the modes inside the slab. Further the air gap poses

a resonator structure, which can interact with the photonic crystal modes.

To obtain more reliable results different samples with varying air gaps have to be investi-

gated. However, this is a time consuming task since for every air gap a different sample

has to be grown by MBE. Further, accurate FDTD simulations have to be performed and

compared to RPWEM simulations with the effective refractive index approximation.

It can be expected, that the RPWEM simulation will assist in the design of future gen-

erations of photonic crystal slab devices and proof to be a valuable tool for research on

photonic crystal slabs in general.
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CHAPTER

TWO

ELECTROSTATIC TUNING

2.1 Introduction

A photonic crystal slab has an electromagnetic field that leaks into the substrate when

the gap between slab and substrate is sufficiently small. This leads to a change of the

dispersion relation of the perfect slab wave guide and influences the effective refractive

index. This effect can be used to influence the resonances in the photonic crystal by con-

trolling the air gap. This can be done by using micro electro mechanical system (MEMS)

actuators that use electrostatic force, thermal energy or several other techniques.

The photonic crystal slab already has a very similar structure to membranes used in

MEMS design, where the membrane can be deflected by an electrostatic force induced

by the capacitance between membrane and substrate. However, as the slab is fixed along

all four sides only little deflection can be expected from the photonic crystal slabs shown

in the previous chapter. Suspending the slab onto thin deflection beams, which act as a

weak point for bending, makes it possible to achieve sufficient deflection.

Tuning a photonic device by means of electrostatic MEMS actuators is a mature tech-

nology and has been already employed in digital mirror device (DMD). These are used

in projectors where the angle of a micro mirror, arranged in an array of several hundred-

thousands forming a digital light processor (DLP), can be changed by applying a voltage

(figure 2.1).

Electrostatic actuators can be used to change the properties of a photonic crystal for

several applications. Zhou et al. [46] used a column of rods inserted in a photonic crystal

to form a wave guide. By pulling out the rods with an electrostatic force it is possi-

ble to switch the wave guide off. Another on-off switching photonic crystal was shown

by Kanamori et al. [47] where the transmission of photonic crystal can be changed by

pulling a photonic crystal slab to the substrate by a bimorph actuator, which influences
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Figure 2.1: The micro mirrors made of aluminum can be tilted by an electrostatic force
induced by an applied voltage. Several hundred-thousands of these DMD form
a DLP, which are used in projectors. Taken from [45].

the evanescent coupling of the slab to the substrate. A theoretical analysis was given by

Shu et al. [48] who proposed a wavelength-tunable photonic crystal design by variation of

the distance of two coupled photonic crystal slabs.

(a) (b)

Figure 2.2: 2.2a A photonic crystal slab hat can be dislocated by bimorph actuators to
change the transmission of the device. Taken from [47]. 2.2b A photonic
crystal slab wave guide formed by inserted rods in a regular photonic crystal.
By pulling out the rods from the backside through an electrostatic actuator
the wave guide can be switched off. Taken from [46].

For this master thesis electrostatic tunable photonic crystal slabs were fabricated from

active QWIP detector material to directly measure the resonances. By tuning the dis-

tance to the substrate the leakage of the slab modes into the substrate is increased and

tuning of the resonances can be achieved.
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2.2 Micro electro mechanical systems

The term MEMS was coined by Howe and others around 1989 to describe a new research

field where mechanical elements like cantilevers and membranes are fabricated on a mi-

cro scale. Since the first publications about these devices they have matured into a well

established technology used in DLP, inkjet printers or airbag sensors. MEMS can be clas-

sified into three categories: passive structures, sensor technology and actuator technology.

Passive structures provide mechanical components for linkage, suspension, fluid channels

etc.. Sensors are used to measure a physical property by transformation to an electrical

measurable property. Typical sensors are piezoresistive materials, where an applied force

changes the resistivity, or capacitive sensors, where an applied force changes the distance

of two capacitor plates. The dislocation can be measured by the change of the capaci-

tance. Generating motion of mechanical components is done by MEMS actuators, which

are further distinguished into electrostatic, magnetic, piezoelectric and thermal actuators.

Fabrication of MEMS can be done by bulk or surface micromachining. In bulk microma-

chining components are built directly from the substrate material. In surface microma-

chining layers are deposited and structured to form mechanical components. A common

technique in surface micromachining is the use of a sacrificial layer located under another

layer, that will form a free-standing mechanical part. By using an etchant with high

selectivity between sacrificial and other layers it is possible to underetch a structure and

get free-standing devices for actuation.

For the fabrication of the tunable photonic crystal slabs, presented in this work, an electro-

static actuator is built by surface micromachining. A high aluminum containing AlGaAs

layer acts as a sacrificial layer for underetching to obtain a GaAs electrostatic MEMS de-

vice. The following chapters will give some basic information about how the electrostatic

forces can be used for deflecting a membrane. For a comprehensive introduction into the

MEMS technology see [49].

2.2.1 Electrostatic actuators

Electrostatic actuators are built by two capacitor plates that can be dislocated or bended

by an electrostatic force. The force is generated by applying a voltage between the ca-

pacitor plates. For use of electrostatic tunable photonic crystal slabs it is desirable that

the slab itself does not bend. It should only be possible to dislocate the capacitor plate

formed by the slab as a whole. The electrostatic deflection of such a membrane can be

achieved by a plate suspended with a spring and a fixed second plate (the substrate, figure

2.3).
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Figure 2.3: Simple model for a membrane suspended on a spring with a linear spring
constant. The membrane can be actuated by an electrostatic force, induced
by the voltage applied at the plate capacitance.

Applying a voltage charges the capacitor with positive charges on one plate and negative

charges on the other (depending on the polarization). These charges generate an elec-

tric field and together with the charges on the opposite plate a force is created on both

capacitor plates. For a point charge Q in an electric field the electrostatic force is given

by

~F = Q · ~E (2.1)

In ideal plate capacitors with infinite extensions into all directions (no fringe fields) the

charges are homogeneously distributed over the plates as surface charge (σ = Q/A) and

there is only an electric field perpendicular to the plates.

Considering only one plate charged with a surface charge results in a field distribution

according to figure 2.4a and an electric field of E+ = σ
2ε

. By introducing a second plate

with opposite surface charge −σ the field distribution of a parallel plate capacitor is

obtained (figure 2.4b). Between the plates the electric fields of both plates are in the

same direction. Therefore the amplitude is given by the sum of both electric fields:

E+ + E− = σ
ε
. Outside the electric fields oppose each other and hence cancel each other

out.

The homogeneously distributed electric field can be calculated by the applied voltage V

divided by the plate distance h:

E =
V

h
(2.2)
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Figure 2.4: 2.4a Electrostatic field of a plate with infinite extensions and 2.4b two plates
with infinite extensions.

From this follows an expression for the total charge Q:

Q = ε
AV

h
(2.3)

The electrostatic force on one of the plates can be calculated by surface integration of

the local force, which is given by the charge on the plate multiplied with the electric field

generated by the opposite plate. Since the local force is constant over the whole plate the

surface integrations simplifies to a multiplication with the area A:

F− = Q− · E+ = ε
AV 2

2h2
(2.4)

The second plate is attracted to the first one with the same magnitude of force, but in our

electrostatic model the second plate is fixed to the substrate and can not move. It has to

be emphasized that by applying a voltage to a plate capacitor only attracting forces can

be generated and never repelling ones, since there will always be the opposite charge on

the other electrode.

With this expression for the electrostatic force FeStat the model can be investigated further.

Without a restraining force the upper plate would move closer to the lower one and hence

h would decrease and an even higher electrostatic force would be achieved. The distance

between the two plates would become smaller and smaller till they touch. By suspending

the upper plate with a spring, the deflection by the electrostatic force will also increase the

restraining force generated by the spring. In a simple model the spring force is determined

by the linear spring constant k:

Fspring =k(h0 − h) (2.5)

where h0 is the idle position when the plate is not deflected (Fspring = FeStat = 0). So by

applying a voltage the upper plate will move into an equilibrium where the electrostatic
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force and spring force cancel each other out:

FeStat =Fspring (2.6)

ε
AV 2

2h2
=k(h0 − h) (2.7)

This can be rewritten as cubic equation for h:

h3 − h0h2 + ε
AV 2

2k
= 0 (2.8)

Depending on the coefficients a cubic equation does not necessarily possess real solutions.

Illustrating this is best done graphically as can be seen in figure 2.5a where the left hand

side of equation 2.7 are the 1/h2 curves from the electrostatic force for various voltages

V and the right hand side is the linear curve from the spring force.
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Figure 2.5: 2.5a Graphical solution to the cubic equation for the deflection of a parallel
plate capacitor connected to a spring. 2.5b Normalized solution of the result-
ing air gap h/h0 as function of the applied normalized electrostatic voltage
V/Vpull−in.

Increasing the voltage above a certain threshold (called pull-in, Vpull−in) results in no

stable solutions and the membrane will be pulled down to the second plate. This pull-in

point is always, regardless of the initial distance and material properties, at 2/3 of the

initial distance between the plates (hpull−in = 2/3h0).

Figure 2.5b shows the solution of the resulting air gap for applied electrostatic voltages.

Increasing the voltage above the pull-in point V > Vpull−in results in the membrane being

pulled down to the substrate. Once the membrane touches the substrate the capacitance

is short-circuited and in most cases the MEMS device is destroyed. This can be prevented

with a a thin isolating layer covering one of the plates.
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Reducing the voltage below the pull-in point again will not release the membrane, because

the electrostatic force is much higher once the membrane is close to the substrate. Only

by reducing the voltage to very small values it would be possible for the spring force

to overtake the electrostatic force. But once the membrane contacts the substrate, the

sticking forces (originating from van der Waals forces and capillary forces of condensing

liquids) between the two plates will prevent pulling free the membrane. To counteract

this irreversible sticking of the membrane to the substrate Fan et al. [50,51] showed that

it is possible to use anti-stiction bumps where the membrane, if it is pulled in, touches

the substrate only at the tiny bumps. The sticking forces become much smaller, since the

area of contact between membrane and substrate is much smaller. Another possibility is

the use of anti-stiction coatings with low surface-energy materials on the plates to reduce

the capillary forces [52,53].

2.2.2 Photonic crystal capacitor plate

For a capacitor plate formed by a photonic crystal slab the previously described model

has to be adapted to account for the fact that the upper electrode is not an ideal plate

but a plate with regular shaped holes. From this capacitor plate a smaller force and hence

higher voltages for deflection can be expected. But also the electrostatic force will differ

from 1/h2 curves and the pull-in point will be affected.

To obtain the magnitude of these changes an electrostatic simulation with COMSOL

multiphysics was performed. Using periodic boundary conditions only one unit cell of the

photonic crystal has to be investigated (figure 2.6). The photonic crystal slab itself is

assumed to be a perfect electric conductor in contrast to the real slab where a dielectric

material is sandwiched between two contact layers. This simplification does not have

much influence, because the top contact layer has, compared to the electrostatic tuning

voltage, almost the same voltage as the bottom contact layer.

Due to the principle of actio-reactio the force on the photonic crystal slab has the same

magnitude in the opposing direction. Computation of the force is be done by surface

integrating over the Maxwell stress tensor. For an electrostatic field this tensor is given

by

Tij = ε

(
EiEj −

1

2
δijE

2

)
(2.9)

The components Tij of this tensor are the flux of momentum per area multiplicated by

time. To obtain the force in z direction the surface integral of Tzz over the lower electrode
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Figure 2.6: Geometry used in COMSOL to compute the electrostatic force on a triangu-
lar photonic crystal slab (blue: photonic crystal slab with electric potential
boundary condition, red: bottom plate with ground boundary condition, side-
walls have periodic boundary conditions)

has to be evaluated: ∫
A
TzzdA =

∫
A
ε(EzEz −

1

2
E2
z )dA =

∫
A
ε
E2
z

2
dA (2.10)

This force was simulated with COMSOl for various air gaps h and hole radii r/a as can

be seen in figure 2.7a for a photonic crystal slab with a lattice constant of a = 4µm. For

large holes and a small distance of the plates there is a significant deviation from the ideal

plate (r/a = 0).
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Figure 2.7: 2.7a Electrostatic force applied on the bottom electrode of a triangular lattice
photonic crystal slab and 2.7b normalized forces with the electric potential
distribution in the unit cell for r/a = 0.4.
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Normalizing the forces to the force of an ideal plate capacitor clearly shows how increas-

ing the hole radius changes the deviation from the curve of the ideal plate (figure 2.7b).

However, this change can only be observed for air gaps smaller or in the region of the

lattice constant. By increasing the air gap to h >> a the force of these meshed electrodes

will be almost the same as for the non-meshed one. This can be explained by looking at

the potential distribution, from where it can be seen that there is only a change in the

potential distribution for small air gaps where the electric field penetrates into the holes

(figure 2.7b).

Using a photonic crystal slab as capacitor plate increases the necessary voltages required

to obtain a deflection. However, by changing the shape of the curve of the electrostatic

force the pull-in point shifts from 2/3 to lower values (figure 2.8). That means that more

deflection, i.e. a higher tuning range, can be achieved before pulling in the membrane.
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Figure 2.8: 2.8a Graphical solution of an electrostatic actuator with a photonic crystal
slab (triangular lattice, r/a = 0.5) acting as capacitor plate. 2.8b Normalized
deflection over normalized voltage of the photonic crystal slab (blue) compared
to a perfect capacitor plate (black). The deviation from the quadratic curve
results in a lower pull-in point.
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2.3 Cantilevers

In a real MEMS device the upper electrode is not suspended by a spring, but rather by

thin cantilevers (deflection beams). For these structures it is also possible to derive a

spring constant for use in the model where a membrane is suspended by a spring.

Although the beam itself also forms a plate capacitance with the substrate it is assumed

that the resulting electrostatic force can be neglected, since the membrane will have

a significantly larger area and is in closer vicinity of the bottom electrode. In a first

approach the bending of the cantilever can be modeled by a point force at the free end of

the cantilever where the other end is fixed (figure 2.9a).
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Figure 2.9: 2.9a A beam of length L, that is anchored at on end and deflected in an arc
motion by a point force F at the other end. 2.9b Deflection of a beam with
one anchored end and the other end being deflected in a straight motion by
clamped-beam guiding.

The force at the tip will bend the beam down in an arc motion and the deflection can be

calculated with the Euler-Bernoulli law [54]:

z =
Fx2

6EI
(x− 3L) (2.11)

where E is Youngs modulus (85.5GPa for GaAs), L the length and I the inertia. The

Youngs modulus is a measure for the stiffness of a material and is defined as the ratio of

the unaxial stress to the unaxial strain. For a rectangular beam (width w and thickness

d) the area of inertia I is given by

I =
wd3

12
(2.12)

For a membrane with opposing beams the tip of the cantilever can not describe an arc

motion under stress. These beams have to be modeled by cantilevers with clamped-beam
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guiding were the deflection is given by

z =
Fx2

12EI
(2x− 3L) (2.13)

By substituting I one can obtain the deflection at the end of the beam (x = L):

z = − FL3

Ewd3
(2.14)

From comparison of this equation to the linear spring the spring constant can be derived:

k =
Ewd3

L3
(2.15)

The spring constant can be used to make an educated guess about the required dimen-

sion of the MEMS structure. However, this is only a rough estimate since many effects

have been neglected like the electrostatic force generated by the beams and the resulting

distributed load on the beams.

2.4 Tunable photonic crystal slabs

To make the photonic crystal slabs tunable by an electrostatic force they are suspended

on thin deflection beams on four sides. To obtain a beam width larger than 10µm several

beams are used instead of on large beam, because thinner beams are better suited for

underetching. The dimensions are chosen such that the pull-in point can be reached for

tuning voltages around 20V . Compared to the photonic crystal slabs in the first chapter,

the samples grown for tuning have a thinner slab and a smaller air gap to favor the leakage

of the slab modes into the substrate.

The dimensions are:

- Photonic crystal slab size: ≈ 200µm× 200µm

- Slab thickness=Deflection beam thickness: d = 1.5µm

- Sacrificial layer thickness (air gap): h = 1.5µm

- Deflection beam width: w ≈ 10µm each (3 beams on each side)

- Deflection beam length: L ≈ 100µm

Since the stress of the GaAs-AlGaAs is not exactly known these dimensions are only an

estimate for how much bending of the structure should be possible. Therefore various

different geometries were fabricated to obtain an ideal structure.
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2.4.1 Layout

Figure 2.10 shows the layout that was used for the tunable photonic crystal slabs. At the

top there is the photonic crystal slab membrane, suspended by several deflection beams.

The top contact of the QWIP is deposited directly on the sample, whereas for the bottom

contact etching is required to expose the bottom contact layer. Exposure of the substrate

for the back contact is done by reactive ion etching (RIE) in the same step as the photonic

crystal. By using an additional HCl etch step the remaining (≈ 0.5µm) residue of the

sacrificial layer is removed. For membrane geometry testing samples no contacts were

deposited.

Figure 2.10: Layout of the electrostatic tunable photonic crystal slabs. The slab is sup-
ported by three small deflection beams on each side that serve as bending
points. An electrostatic force is applied by a voltage between back and bot-
tom contact. The QWIP to measure the resonances in the photonic crystal
is contacted by the top and bottom contact layer over the deflection beams.

2.4.2 Device fabrication

The following protocol describes how the H694, H699 and H706 samples (see appendix

A.1) were processed to obtain electrostatic tunable photonic crystal slabs. Since the

AlGaAs sacrificial layer of the samples have different aluminum content (nominal: H694

75%, H699 85%, H706 75%) the underetching times are different for each one. The

underetching times are chosen such that a lateral etching depth of at least 5µm is provided,

which is sufficient to underetch the largest structures (beam width 10µm). Due to the

fragile structure of the suspended membrane it is necessary to use critical point drying
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(CPD) to evaporate CO2 above the critical point, where it goes directly from solid state

into vapor phase. Otherwise the surface tension from the evaporating water would pull

down the membranes to the substrate. For a list of fabrication devices see appendix A.2.

1. Cleaning and oxidation removal

- HCl Dip (HCl : H2O = 1 : 1), 60s

2. Photonic Crystal

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating photoresist: MIR701 35s@10, 000rpm (≈ 670nm), 60s@110◦C

- exposure: Laserwriter, photonic crystal mask

- develop: AZ351B (1 : 4), 30s

- hardbake: 3min@110◦C

- anisotropic dry etching: RIE - etching depth: 2.5µm, SiCl4: 7sccm, N :

17sccm, set pressure: 3mtorr, strike pressure: 40mtorr, RF power: 50W ,

ICP: 20W ,

- dry ashing: PLOX 10min@300W

- resist removal: Acetone / Isopropanol

- passivation removal: RIE - SF6 40ccm, set pressure: 50mtorr, strike pressure:

40mtorr, RF power: 50W , time: 1min

3. bottom-contact etch

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@4, 000rpm (≈ 1.5µm), 60s@100◦C

- exposure: bottom-contact mask, 5s

- develop: AZ351B (1 : 4), 30s

- hardbake 3min@100◦C

- wet etching: H3PO4 : H2O2 : H2O = 4 : 3 : 20 @ RT, etching depth: 1.1µm

(etching rate ≈ 300nm/min)

- resist removal: Acetone / Isopropanol

4. back-contact etch

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@4, 000rpm (≈ 1.5µm), 60s@100◦C

69



2.4. TUNABLE PHOTONIC CRYSTAL SLABS

- exposure: back-contact mask, 5s

- develop: AZ351B (1 : 4), 30s

- hardbake 3min@100◦C

- wet etching: HCl : H2O = 2 : 1 @ 45◦, 30s

- resist removal: Acetone / Isopropanol

5. n-Contacts

- spin coating: maP1275 35s@6, 000rpm, 5min@100◦C

- exposure: edge removal mask, 90s

- develop: maD333 (1 : 0), 15s

- exposure: n-contact mask, 30s

- develop: maD333 (1 : 0), 15s

- deposition: Evaporator Ge/Au/Ni/Au = 15nm/30nm/14nm/200nm

- resist removal (lift off): Acetone / Isopropanol

- annealing: RTA 60s@430◦C

- IV measurement of contacts/QWIP @ RT

6. p-Contacts (H706 only)

- spin coating: maP1275 35s@6, 000rpm, 60s@100◦C

- exposure: edge removal mask, 90s

- develop: maD333 (1 : 0), 15s

- exposure: p-contact mask, 30s

- develop: maD333 (1 : 0), 15s

- deposition: Evaporator Au/Zn/Au = 5nm/5nm/100nm

- resist removal (lift off): Acetone / Isopropanol

- annealing: RTA 60s@430◦C

- IV measurement of contacts

7. Underetching

- spin coating: HMDS 35s@4, 000rpm, 60s@120◦C

- spin coating: AZ5214 35s@4, 000rpm, 60s@100◦C

- exposure: etch protect mask, 15s
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- develop: AZ351B (1 : 4), 30s

- hardbake: 3min@100◦C

- underetching: HCl : H2O = 2 : 1 @ 45◦C, H694 4min30s, H699 2min, H706

2min30s

- resist removal: Acetone / Isopropanol

- CPD: purge time 10min

2.4.3 Tuning voltage range

To be able to apply high tuning voltage the sacrificial layer between the bottom contact

layer and the substrate should be a non-conducting device. If an intrinsic AlGaAs layer is

used between two n-doped layers there is a parasitic leakage current through the resulting

n-i-n diode.

The first grown sample (H694) has a GaAs-AlGaAs superlattice (2nm thickness for each

layer) as smoothing layer to smooth the transition from the sacrificial layer to the active

zone during growth (figure 2.11a).

n: GaAs substrate

i: Sacrificial layer (AlGaAs)

n: Bottom contact (GaAs n+ 2e18)

smoothing layer: GaAs-AlGaAs

V

I

(a)

p: GaAs substrate

i: Sacrificial layer (AlGaAs)

n: Bottom contact (GaAs n+ 2e18)

V

I

(b)

n: GaAs substrate

i: Sacrificial layer (AlGaAs)

n: Bottom contact (GaAs n+ 2e18)

V

I

p: Sacrificial layer (AlGaAs)

(c)

Figure 2.11: Cross section of AlGaAs sacrificial leakage current prevention: 2.11a n-i-
superlattice-n device, 2.11b p-i-n device with p-substrate and 2.11c n-p-i-n
device with p-doped sacrificial layer

This n-i-superlattice-n (n: GaAs-substrate, i: AlGaAs-sacrificial, superlattice: AlGaAs-

GaAs, n: GaAs-contact) device also proved to be an acceptable isolator up to 30V at low
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temperatures (figure 2.12a and 2.12b).
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Figure 2.12: 2.12a Measured IV of a n-i-n diode with a superlattice and 2.12b reverse
breakdown voltage V (I = 1mA) as function of temperature.

Although the n-i-superlattice-n device would provide sufficient breakdown voltage for the

intended tuning voltage range, another sample without superlattice was grown on a p-

substrate (H706). The reason to grow without superlattice is that the high aluminum

content of the superlattice is subject to high oxidation rates and low mechanical strength.

After removing an underetched membrane by flipping it out with a needle, the remaining

superlattice can be seen as it falls of the photonic crystal slab and is left behind on the

substrate (figure 2.13).

1μm

Figure 2.13: Residue of the superlattice layer after flipping out the photonic crystal slab.

A more promising approach is to use a p-substrate (figure 2.11b) to obtain a p-i-n diode

(p: GaAs-substrate, i: AlGaAs-sacrificial, n: GaAs-contact). For this device reverse

breakdown voltages of 45V and higher were measured at room temperature (figure 2.14).
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Figure 2.14: Measured IV of a p-i-n diode from a H706 sample at room temperature.

However, the p-substrate proves to be problematic because the zinc (Zn) doping of the

substrate diffuses into the other layers during MBE growth. To prevent this, a diffusion

barrier would be required.

Another possible solution to prevent leakage current is a p-doped AlGaAs layer grown

into the sacrificial layer [55] (figure 2.11c). Since no p-doping source was available in the

MBE, this structure could not be grown yet.

2.4.4 Membrane buckling

The most critical step during fabrication of the tunable photonic crystal slab is the re-

lease of the slab from the sacrificial layer during underetch. For the first test samples

the membranes were stuck to the substrate after underetching (figure 2.15), because the

surface tension of the evaporating water pulls down the membrane during the drying.

20μm

Figure 2.15: SEM picture of a photonic crystal slab sticking to the substrate after air
drying of H2O
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Using CPD allows to process membranes that do not get stuck to the substrate during

drying. However, this revealed another problem: the internal stress of the slab results in

buckling of the membrane (figure 2.16).

20μm

Figure 2.16: SEM picture of a buckled photonic crystal slab after CPD. Etching depth
with the RIE was chosen larger than 3µm to obtain a mesa below the slab
that can be used as reference for buckling.

To counteract the membrane buckling a structure with L-shaped beams was tested to al-

low the released membrane and beams to transform the expansion into torsion. However,

the L-shaped beams do not provide enough freedom for torsion to produce sufficiently flat

membranes and for bigger membranes the buckling is still so high that the corners of the

beams touch the substrate (figure 2.17a).

20μm
Beam corners sticking to substrate

(a)

20μm

(b)

Figure 2.17: 2.17a SEM pictures of L-Beam structure where the corners of the beams touch
the substrate and 2.17b circular-Beam structure where the whole membrane
sticks to the substrate.

Another possible structure is shown in figure 2.17b, where the rectangular membrane is
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switched for a circular one and the L-shaped beams are changed to spiral arms. This

structure should benefit the transformation into torsion, but a free-standing membrane

was not yet possible.

2.5 Measurements

To prove that the QWIP contacts on the deflection beams provide good conductance a

H694 sample was processed with the electrostatic tunable geometry. The triangular pho-

tonic crystal slab has a lattice constant of a = 4µm, a hole radius of r/a = 0.3 and a slab

thickness of d = 1.5µm. However, the membrane was buckled up, which resulted in about

twice the intended air gap of h = 1.5µm. That means that only one fourth of the desired

electrostatic force was achievable. With this increased air gap it was not possible with

tuning voltages of up to 30V to observe any influence on the resonances in the measured

spectral response (figure 2.18).

However, it was possible to confirm that supply of the QWIP and measurement of the

spectral response via the deflection beam works as desired. By applying an electrostatic

tuning voltage VeStat the air gap should decrease. With a lower air gap the slab modes leak

more into the substrate and the effective refractive index increases. For lower frequencies

and TM modes this has more effect and a large shift can be expected.

VeStat

Figure 2.18: Measured spectral response at normal incidence of an electrostatic tunable
triangular photonic crystal slab (a = 4µm, r/a = 0.3, d = 1.5µm and
h > 3µm) processed from a H694 sample. The arrows indicate the expected
shift of the resonance when applying an electrostatic tuning voltage VeStat.

Comparison of the resonances of the measured spectral response with a simulated band
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diagram at the Γ-point shows good agreement between simulation and measurement (fig-

ure 2.19). Because of the buckling the air gap is greater than 3µm and the parasitic

leakage of the modes to the substrate is small.
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Figure 2.19: Measured spectral response at normal incidence of an electrostatic tunable
triangular photonic crystal slab (a = 4µm, r/a = 0.3, d = 1.5µm and
h ≈ 3µm) processed from a H694 sample and simulated band diagram.

2.6 Conclusion and outlook

Photonic crystal slabs with an integrated QWIP to measure resonances were fabricated.

The slabs are suspended by thin beams, that act as bending points when applying elec-

trostatic forces. An analytical model to approximate the electrostatic forces in such struc-

tures was derived. Calculations of the electrostatic forces for the real structure, consisting

of a quasi-infinite plate formed by the substrate and a photonic crystal as second plate,

were performed in COMSOL. The deviation from a parallel plate electrostatic actuator,

where the membrane is pulled in after a deflection of 2/3 of the initial gap, results in an

increase of the maximum deflection. The magnitude of this increase depends on the hole

radius and lattice constant. Using perforated membranes with a low filling factor might

be used as a new technique in other MEMS devices.

The current leakage path formed by the back contact layer, sacrificial layer and bottom
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contact layer was investigated for maximal applicable voltages. Several designs were stud-

ied and it was found that tuning voltages up to 45V are possible with a diode in reverse

direction, which is a reasonable range for tuning voltages.

The underetching times to obtain free-standing membranes were investigated. It was de-

termined that the 10µm wide beams can be underetched within several minutes by using

HCl at a temperature of 45◦. For underetching the slab a CPD process step is required to

prevent the membrane from collapsing to the substrate by capillary forces during drying.

Once released the membranes were buckling upwards up to 4µm, which is considerable

higher than the desired air gap of 1.5µm.

Several different geometries were investigated to circumvent the buckling problem and

transform the tension in the structure into a rotation. However it was not yet possible to

obtain a sufficiently flat and still standing membrane. Therefore the expected resonance

shift by electrostatically tuning the air gap could not be studied. Buckling of the mem-

branes after release from the sacrificial layer still remains the major problem. Further

investigations will be conducted on this topic. Possible solutions are different geometries

or the use of a strain compensation layer on top of the slab.

Electrostatic tuning of photonic crystal slabs can be an important tool for tunable fil-

ters, integrated optical systems, wave guide switching devices and heterodyne detection

schemes.
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A

APPENDIX

A.1 Growth sheets

A.1.1 H661

Layer Thickness (nm) Composition (%) Doping (n-type)

GaAs Substrate 625µm semi-insulating
GaAs 300 2.00E+018
AlGaAs 2000 85
Smoothing 160 2.00E+018
Si:GaAs 350 2.00E+018
Loop 12
AlGaAs 45 30
GaAs 1
Delta Doping Si 4.00E+11
GaAs 3.5
End Loop
AlGaAs 45 30
AlGaAs 11 24
AlGaAs 11 18
AlGaAs 11 12
AlGaAs 11 6
AlGaAs 11 0
Si:GaAs 100 2.00E+018
Si:InGaAs 5 50 2.00E+019
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A.1.2 H694

Layer Thickness (nm) Composition (%) Doping (n-type)

GaAs Substrate 625µm n+
GaAs 500 2.00E+018
AlGaAs 1500 75
Smoothing 110 2.00E+018
Si:GaAs 400 2.00E+018
Loop 16
AlGaAs 45 30
GaAs 1
Delta Doping Si 4.00E+11
GaAs 3.5
End Loop
AlGaAs 45 30
AlGaAs 11 24
AlGaAs 11 18
AlGaAs 11 12
AlGaAs 11 6
AlGaAs 11 0
Si:GaAs 100 2.00E+018
Si:InGaAs 5 50 2.00E+019

80



APPENDIX A. APPENDIX

A.1.3 H699

Layer Thickness (nm) Composition (%) Doping (n-type)

GaAs Substrate 625µm semi-insulating
GaAs 500 2.00E+018
AlGaAs 1500 85
Smoothing 110 2.00E+018
Si:GaAs 400 2.00E+018
Loop 16
AlGaAs 45 30
GaAs 1
Delta Doping Si 4.00E+11
GaAs 3.5
End Loop
AlGaAs 45 30
AlGaAs 11 24
AlGaAs 11 18
AlGaAs 11 12
AlGaAs 11 6
AlGaAs 11 0
Si:GaAs 100 2.00E+018
Si:InGaAs 5 50 2.00E+019
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A.1.4 H706

Layer Thickness (nm) Composition (%) Doping (n-type)

GaAs Substrate 625µm p+
GaAs 500 2.00E+018
AlGaAs 1500 75
Si:GaAs 400 2.00E+018
Loop 18
AlGaAs 45 30
GaAs 1
Delta Doping Si 4.00E+11
GaAs 3.5
End Loop
AlGaAs 45 30
AlGaAs 11 24
AlGaAs 11 18
AlGaAs 11 12
AlGaAs 11 6
AlGaAs 11 0
Si:GaAs 100 2.00E+018
Si:InGaAs 5 50 2.00E+019
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A.2 Cleanroom technology

- Laserwriter To be flexible with the photonic crystal design the Heidelberg DWL66

Laserwriter was used. For the required structures the resolution of the Laserwriter

(500nm) was sufficient and offered fast write times (≈ 30min) in contrast to an

E-beam lithography (several hours). To obtain the required resolution a 2mm write

head with a 10% filter was used. The exposure energy setting in the job file was

100%.

- Optical Lithography For optical Lithography the mask aligner Süss Microtec

MJB4 was used.

- RIE Before anisotropic etching with SiCl4 the RIE the chamber was precondi-

tioned for 30min. During the etching process a red laser (650nm) interferometer

was used for depth control. After anisotropic etching the chamber was cleaned with

a cleaning process (SF6 20ccm, O2 10ccm, set pressure 80mtorr, strike pressure

40mtorr, RF power 50W , ICP 280W ).

- Evaporation For evaporation of n-contacts (Ge/Au/Ni/Au) the electron beam

evaporator from Leybold and for evaporation of p-contacts (Au/Zn/Au) the thermal

evaporator Balzers PLS 500 was used.

- Sputtering Ardenne

Ge/Au/Ni/Au contacts were sputtered with the following recipe:

Material Power time comment

Ni 100W 60s cleaning

Ge 100W 60s cleaning

Ge 25W 2× 30s

Au 25W 2× 20s

Ni 50W 4× 10s

Au 25W 10× 20s

T i/Au contacts were sputtered with the following recipe:

Material Power time comment

Ti 100W 60s cleaning

Ti 25W 1× 20s

Au 25W 10× 20s

- CPD Critical point drying was done with the autosamdri 815.
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A.3 Measurement instruments

- Parametric analyzer Hewlett Packard 4155A

- Current amplifier Stanford Research Systems, Low-Noise Current Preamplifier

SR570.

Settings:

• Mode: Low Noise

• Bandpass: 300Hz - 3kHz

• Bias: 2V

• Sensitivity: 100nA/V

- Chopper Light Beam Chopper HMS 220 set to a Chop frequency of 80Hz

- Lock-in amplifier Princeton Applied Research 5210

- FTIR Bruker Equinox 55 Settings:

• free running

• internal iris: 3000µm

• resolution: 2cm−1

84



APPENDIX A. APPENDIX

A.4 RPWEM simulation results
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Figure A.1: Band diagramms of a triangular photonic crystal slab (a = 4.0µm and r/a =
0.2) for varying slab thickness d.
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des Lichtäthers. Teubner-Verlag, Leipzig, 1885.

[30] J. D. Jackson. Cassical Electrodynamics. New York: Wiley, 3rd edition, 1999.

[31] C. A. Balanis. Advanced Engineering Electromagnetics. New York: Wiley, 1989.

[32] C. Hamaguchi. Basic Semiconductor Physics. Springer, Berlin, 2001.

[33] M. Plihal and A.A. Maradudin. Photonic band structure of two-dimensional systems:

The triangular lattice. Physical Review B, 44(16):8565–8571, 1991. cited By (since

1996) 399.

89



[34] S. Shi, C. Chen, and D.W. Prather. Revised plane wave method for dispersive

material and its application to band structure calculations of photonic crystal slabs.

Applied Physics Letters, 86(4):043104–1–043104–3, 2005. cited By (since 1996) 22.

[35] V. Zabelin. Numerical Investigations of Two-Dimensional Photonic Crystal Optical

Properties, Design and Analysis of Photonic Crystal Based Structures. PhD thesis,
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