
Hardware Transactional Memory for
a Real-Time Chip Multiprocessor

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Peter Hilber
Matrikelnummer 0326179

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: O.Univ.Prof. Dipl.-Ing. Dr.techn. Herbert Grünbacher
Mitwirkung: Assoc. Prof. Dipl.-Ing. Dr.techn. Martin Schöberl

Wien, 15.06.2010
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Peter Hilber
Pfeilgasse 3a/374
A-1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15.06.2010

i

Acknowledgements
I am grateful to my thesis advisors, Prof. Martin Schöberl and Prof. Herbert Grünbacher,
for supervising my thesis, for providing advice, and for guiding my research efforts.
Earlier work by Martin Schöberl, Florian Brandner and Jan Vitek laid the foundations
for my thesis. Martin also provided editorial and technical advice and the used tag
memory implementation. I would like to thank Martin for many interesting discussions.
I would also like to thank the members of the Real Time Systems Group at the Vienna
University of Technology for their constructive feedback. The Department of Computer
Engineering at the Vienna University of Technology generously provided the used target
hardware. Thanks go to http://www.alteraforum.com user Rysc for sharing a content
addressable memory implementation.

I would like to thank my parents, my sisters, my brother and my grandparents for
their support during the course of my studies. Special thanks go to Carina for her support
while writing this thesis.

iii

Hardware Transactional Memory
for a Real-Time Chip Multiprocessor

Abstract

Transactional memory is an alternative to conventional lock-based synchro-
nization. Locks are difficult to use and not composable; transactional memory
offers a simple programming model and the high concurrency desired for future
multiprocessors. While actually multiple threads concurrently access shared data,
the results look as if code sections (transactions) had been executed sequentially.
Conflicts among concurrent transactions are automatically resolved.

To our knowledge, there is currently no transactional memory system suitable
for hard real-time systems on multiprocessors. Real-time transactional memory
(RTTM) is a proposal of a time-predictable transactional memory for chip multipro-
cessors. The main goals of RTTM are a simple programming model and analyzable
timing properties. Static analysis detects non-conflicting transactions, which low-
ers the worst-case execution time bounds. In this master’s thesis, RTTM was
implemented on an FPGA and the viability of the implementation was evaluated.

For time-predictable execution, RTTM is hardware-based. Each core gets a
small, fully associative cache which tracks the memory accesses in a transaction.
RTTM was implemented on JOP, a time-predictable chip multiprocessor directly
executing Java bytecode. The basic programming interface is the @atomic method
annotation. Using Java facilitates link-time transformations and the abort of con-
flicting transactions.

The FPGA-based implementation supports small transactions suitable for syn-
chronization in embedded real-time applications. Up to 12 cores fit on a low-cost
Cyclone II FPGA running at 90 MHz with a device utilization of more than 90%.
The RTTM hardware is costly due to the fully associative cache, but does not
dominate the hardware resource consumption. The close relationship of the pro-
cessor to the Java Virtual Machine enables some resource-saving optimizations.
A part of RTTM was implemented in software in order to make the integration
of the CPU nearly transparent and to lower the hardware costs. As a preparation
for tool-based worst-case execution time analysis, the execution time of individual
RTTM operations was bounded.

v

Hardware Transactional Memory
for a Real-Time Chip Multiprocessor

Kurzfassung

Transactional Memory (Transaktionaler Speicher) ist eine Alternative zur kon-
ventionellen Synchronisation mit Locks. Programmierung mit Locks ist aufwän-
dig, fehlerhaft und nicht composable; Transactional Memory bietet ein einfaches
Programmiermodell und die hohe Nebenläufigkeit, die für künftige Multiprozes-
soren benötigt wird. Obwohl mehrere Threads gleichzeitig auf gemeinsame Daten
zugreifen, entsprechen die Ergebnisse einer sequentiellen Ausführung von Co-
deabschnitten (Transaktionen). Konflikte von Transaktionen werden transparent
aufgelöst.

Nach meinem Wissen gibt es kein für harte Echtzeitsysteme geeignetes Trans-
actional Memory für Multiprozessoren. Real-Time Transactional Memory (RTTM)
ist der Entwurf eines echtzeitfähigen Transactional Memories für Chip-Multipro-
zessoren. Die Entwurfsziele von RTTM sind ein einfaches Programmiermodell und
analysierbares Zeitverhalten. Statische Analyse der potentiellen Konflikte von Trans-
aktionen ermöglicht eine Verringerung der Worst-Case Execution Time Bounds. In
dieser Diplomarbeit wurde RTTM auf einem FPGA implementiert und die Imple-
mentierung evaluiert.

Um echtzeitfähig und performant zu sein, ist RTTM hardware-basiert. Ein
jedem Prozessor zugeordneter, vollassoziativer Cache verfolgt die Speicherzugriffe
in einer Transaktion. Die Implementierungsplattform ist der echtzeitfähige Chip-
Multiprozessor JOP, der Java Bytecode direkt ausführt. Die wesentliche Program-
mierschnittstelle ist die @atomicMethod Annotation. Die Verwendung von Java
vereinfacht Codetransformationen zur Link Time und den Abbruch von in Konflikt
stehenden Transaktionen.

Die FPGA-basierte Implementierung ermöglicht Transaktionen zur Synchro-
nisation von eingebetteten Echtzeitanwendungen. Auf einem Cyclone II FPGA
können bis zu 12 Prozessorkerne laufen, mit einer Taktfrequenz von 90 MHz und
einer Nutzung von über 90% der FPGA-Ressourcen. Die RTTM-Hardware ist
wegen des vollassoziativen Caches aufwändig, dominiert aber nicht den Ressourcen-
verbrauch. Die Verwandtschaft von JOP mit der Java Virtual Machine ermöglicht
Ressourcen sparende Optimierungen. Ein Teil von RTTM wurde in Software imple-
mentiert, um die Integration der CPU zu vereinfachen und den Ressourcenverbrauch
zu vermindern. Als Vorbereitung auf eine toolbasierte Worst-Case-Execution-Time-
Analyse wurde die maximale Ausführungszeit der einzelnen RTTM-Operationen
analysiert.

vii

Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

List of Figures xiii

List of Tables xiii

List of Listings xiv

1 Introduction 1
1.1 Transactional memory . 2
1.2 Real-time transactional memory (RTTM) 3
1.3 The Java Optimized Processor . 7
1.4 The SimpCon SoC interconnect . 8
1.5 Problem statement . 8
1.6 Overview . 9

2 Related Work 11
2.1 Hardware transactional memory . 11
2.2 Transactional memory for real-time systems 13

3 Characterization of implementation 17
3.1 Semantics . 17
3.2 Implementation characteristics . 22
3.3 Programming interface . 23

3.3.1 Software commands . 24
3.3.2 Diagnostics . 25

3.4 Scheduling . 25

ix

4 Implementation 27
4.1 HW/SW-Partitioning . 27
4.2 Hardware layer . 28

4.2.1 The RTTM module . 30
4.2.2 The memory arbiter . 33
4.2.3 Influence of target technology 33
4.2.4 Tag memory implementation 34
4.2.5 Interfaces of the read tag memory and write buffer 36
4.2.6 The transaction cache . 38
4.2.7 The state machine . 40
4.2.8 Transaction states . 40
4.2.9 Pipelining . 45
4.2.10 Memory access classification 46
4.2.11 Summary of hardware integration 48

4.3 Software layer . 49
4.3.1 The transaction wrapper . 50
4.3.2 Transaction rollback . 52
4.3.3 Zombie bytecodes . 53
4.3.4 Summary of runtime system integration 56

4.4 Link time transformations . 56

5 Programming for RTTM 57
5.1 Recommended programming style . 58
5.2 Limitations . 59
5.3 Testing and debugging . 59

6 Evaluation 61
6.1 Hardware resource consumption and performance 61
6.2 Worst-case temporal behavior . 63
6.3 Discussion . 66

7 Conclusion 69
Summary of contributions . 70
Future Work . 71

A Acronyms 73

B Code Listings 75

C Source code availability 81

D Measurements 83

x

Index 85

Bibliography 87

xi

List of Figures

1.1 RTTM overview . 4
1.2 RTTM commit . 5
1.3 JOP chip multiprocessor . 9

4.1 RTTM implementation layers . 28
4.2 Conventional JOP CMP components . 29
4.3 RTTM implementation hardware components 29
4.4 Interfaces of an RTTM module . 30
4.5 Read tag memory interface . 37
4.6 Write buffer interface . 37
4.7 Transaction cache . 39
4.8 RTTM module state machine . 41
4.9 Sequence diagram of successful transaction 42
4.10 Interfaces to conventional part of CMP . 48
4.11 Zombie bytecode . 54

6.1 Components and interfaces affecting temporal behavior 64

List of Tables

1.1 Read set/write set overlaps . 6

3.1 Glossary of used terms . 18
3.2 Example of data-handoff . 19
3.3 Privatization safety . 20

xiii

3.4 Publication safety . 20
3.5 Data race during publication . 20
3.6 Publication in a conditional . 21

4.1 Hardware commands . 31
4.2 SimpCon signals in RTTM implementation 32
4.3 Comparison of tag memory variants resource requirements 37
4.4 Transaction cache fields . 38
4.5 Non-conflicting memory areas . 47
4.6 Modifications to JOP runtime system . 56

6.1 Implementation platform reference values 62
6.2 Scaling with tag memory size . 62
6.3 Scaling with # of cores . 63
6.4 rdy_cnt values during non-transactional write 65

List of Listings

3.1 Example of atomic method . 23
3.2 earlyCommit() example . 25

4.1 Tag memory line encoder with priority 35
4.2 Tag memory line encoder without priority 35
4.3 Transaction wrapper for not nested transaction 51

B.1 Java code similar to transaction wrapper 75
B.2 Transaction using RTTM hardware interface 76
B.3 Fully associative tags using memory blocks 77

D.1 Script to reproduce measurements . 83

xiv

CHAPTER 1
Introduction

Performance of sequential processors has increased exponentially in past decades, but
this growth has slowed down in recent years. The gains by heavier use of instruction
level parallelism and pipelining are diminishing and complex and fast clocked processors
need more power than sustainable [OH05]. Moore’s law about the exponential increase
of the number of transistors available on an integrated circuit [Moo98] appears to remain
valid for the next years, however [LR07].

The past increases in computational power have rendered possible increasingly
capable software, and further increases of computational power are highly desirable.
Chip multiprocessing is seen as a way to continue performance growth by using thread
level parallelism. This does however necessitate the parallelization of applications,
which is seen as a major problem [OH05]. Parallelization is usually not transparent
to the programmer. Parallel programming is considered “fundamentally more difficult
than sequential programming” [LR07, p. 2]. Concurrency and nondeterminism make it
difficult to write parallel programs and reason about them.

In contrast to message passing systems, shared memory reduces the need for manual
data distribution [KMVR90]. When using task parallelism (as opposed to data paral-
lelism), concurrent threads are then usually coordinated using lock-based concurrency
control such as semaphores, mutexes and monitors. The employed mechanisms are at a
low level of abstraction.

Abstraction1 and composability2 are very important for handling complex systems
[Kop08]. Abstraction and composability are extensively used in software engineering.
Traditional, lock-based concurrency control does however not compose [Her06, Ch. 18.1].

1“An abstraction is a simplified view of an entity, which captures the features that are essential to
understand and manipulate it for a particular purpose.” [LR07, p. 3]

2“Composition is the ability to put together two entities to form a larger, more complex entity, which
in turn is abstracted into a single, composite entity.” [LR07, p. 4]

1

2 CHAPTER 1. INTRODUCTION

When manipulating data, it is often necessary to lock multiple exposed objects to guaran-
tee invariants mandated by the application. A classical example is the atomic movement
of an item between two data structures. It is necessary to lock both data structures in
order to guarantee atomic movement, but this may lead to deadlocks when performing
concurrent movements and taking locks in different order.

1.1 Transactional memory
Transactional memory (TM) is an alternative to conventional lock-based synchroniza-
tion. Transactional memory allows a simple and composable programming model and
potentially high concurrency. The name stems from analogies to transactions used in
database systems. Database transactions have the ACID properties: (failure) atomicity,
consistency, isolation and durability [HR83]. In a transactional memory system, a com-
putation executing in a thread is wrapped in a transaction. Such a transaction has ACI
properties (durability is not needed for in-memory transactions). Failure atomicity means
that a transaction either fully completes or does not change anything at all. Consistency
means that a transaction, when starting from a consistent state, will leave the system
in a consistent state. Consistency is application dependent and may be represented as
invariants on data structures. Isolation ensures that each transaction produces correct
results regardless of any concurrently executing transactions [LR07].

The ACI properties make programming parallel systems easier: the results of trans-
actions look as if they had been executed one after the other, while actually they might
have been executing concurrently. For example, efficient parallel read and write access
to a FIFO queue is difficult with locks because there can be contention when the queue
has fewer than two elements [MS96]. When using transactional memory, such a parallel
data structure is a non-issue. Ideally, a programmer only needs to mark code blocks
which are to be executed atomically. When using other synchronization mechanisms,
one has to specify explicitly which shared data is accessed, except when using coarse
grain locking such as a single global lock. The semantics of transactional memory is
however not fully specified by the ACI properties, since the interaction of transactional
and non-transactional code is not defined [LR07]. There is not yet a consensus how the
semantics of transactional memory should be described and how strong such semantics
should be [MBS+08, Boe09, Luc08, SDMS08]. An often proposed semantics is single
global lock atomicity [MBS+08], where transactions behave as if each was encompassed
by a reentrant single global lock. Transactional memory systems differ in the semantics
they provide as well as in their implementation.

In a TM system, a transaction can end with either a commit or an abort. A commit
makes all changes of a transaction visible outside of the transaction, while an aborted
transaction has no visible effects. Transactional memory systems are usually a form of
optimistic concurrency control and execute multiple transactions in parallel. In case of

1.2. REAL-TIME TRANSACTIONAL MEMORY (RTTM) 3

conflicting accesses to shared resources, some of the involved transactions are aborted
and possibly restarted. There are different strategies how to save the tentative updates
of a transaction and how to detect conflicts among transactions. For hardware-based
TM implementations (hardware transactional memory, HTM), updates are commonly
buffered in a CPU-local write buffer. If a transaction is aborted, the TM system undoes
any visible changes. For a HTM, this includes changes to the program counter, the
register file etc. HTM implementations usually detect conflicts by recording the read
set and write set, which represent the memory addresses read resp. written during a
transaction. Conflict detection often does not preclude some false positives (e.g. if
the granularity of conflict detection is a cache line). The time at which conflicts are
detected can also vary, since it might not be feasible to detect a conflict immediately
after occurrence. This is called early conflict detection or late conflict detection. A more
comprehensive introduction to transactional memory can be found in [LR07].

Transactional memory was first proposed by Herlihy and Moss as a hardware ex-
tension to cache coherency protocols [HM93]. There have been many hardware based
transactional memory system proposals since then (e.g. [HWC+04, MBM+06, KHR+08,
BHHR]). However, transactional memory has not been implemented in available com-
mercial microprocessors yet.3 As an alternative approach, software transactional memory
(STM) systems have been proposed, beginning with [ST95]. STM designates transac-
tional memory systems implemented in software. STM systems have the benefit of
running on off-the-shelf hardware. STM implementations are also more flexible, which is
an advantage given the missing experience with transactional memory [LR07, GZU+09].
Hardware transactional memory (HTM) systems, i.e. systems with only a moderate
software component, usually also have some intrinsic limitations due to fixed-size hard-
ware structures and therefore cannot efficiently support transactions with a large read
set and write set. Hybrid TM systems combine hardware and software implementation
[DFL+06, Lie04].

1.2 Real-time transactional memory (RTTM)
Real-time transactional memory (RTTM) is a proposal of a time-predictable transactional
memory by Martin Schoeberl, Florian Brandner and Jan Vitek [SBV10b]. RTTM
targets chip multiprocessors with a shared memory. It is to our knowledge the first
transactional memory system intended for real-time systems with hard deadlines running
on multiprocessors. Other work on transactional memory for real-time systems is
discussed in Section 2.2. The main design goals of RTTM are a simple programming
model and analyzable timing properties. Design decisions were taken considering
their impact on the worst-case execution time (WCET) estimates. High average case
throughput is not a goal of RTTM.

3Sun’s Rock processor has limited support for transactional memory.

4 CHAPTER 1. INTRODUCTION

RTTM transactions are small, i.e. they only have a small read set and write set.
RTTM assumes that there are many pairs of transactions which do not conflict with each
other. Static program analysis of conflicts among transactions is then used to provide
competitive WCET estimates. A discussion of transactional memory variants related to
RTTM is in Chapter 2.

CPU

Commit token
arbitration

Shared memory

Read Tags

Write Buffer

CPU

Read Tags

Write Buffer

CPU

Read Tags

Write Buffer

Commit
token

Figure 1.1: RTTM components

RTTM is a hardware-based transactional memory system. It assumes a chip multi-
processor (CMP) with a global shared memory. Each CPU of the CMP is equipped with
its own write buffer and read tag memory (cf. Figure 1.1). The write buffer contains the
memory addresses and data written by the corresponding CPU during a transaction (i.e.
the write set of a transaction). The read tag memory contains the memory addresses read
by the CPU during a transaction (i.e. the read set of a transaction). During a transaction,
all writes to the shared memory are buffered in the write buffer.

For time-predictable and efficient memory accesses, the write buffer and read tag
memory need to be realized in hardware. To avoid false conflicts, accesses are logged
at the data word level. The caches implementing the write buffer and read tag memory
are fully associative to avoid unpredictable cache usage. Since fully associative caches
are expensive in terms of hardware consumption [Hyd03, Ch. 11.4.2], their size and
therefore the read set and write set size are limited. The implications of this restricted
size for programmers are discussed in Chapter 5 and [SBV10b].

Commit During a commit, which happens at the end of a transaction, the contents
of the write buffer are written to the shared memory. The addresses being written to
the shared memory are also broadcasted to all other CPUs (somewhat similar to bus
snooping). This is depicted in Figure 1.2 on the next page. Before committing, a CPUA

1.2. REAL-TIME TRANSACTIONAL MEMORY (RTTM) 5

has to acquire the single commit token. During the commit,A holds the commit token.
DuringA’s commit, all other CPUs which are currently executing a transaction compare
the addresses being written and broadcasted byA to the addresses they have read so far,
i.e. their read tag memory. A match on another CPU B indicates an overlap of B’s read
set with the write set ofA. Any conflict between transactions will lead to such a match
in one of the transactions. On a match, B will abort its transaction.

CPU A

Commit token
arbitration

Shared memory

Read Tags

Write Buffer

CPU B

Read Tags

Write Buffer

CPU C

Read Tags

Write Buffer

Commit
token

Addr. Addr.

Data

Figure 1.2: RTTM commit

Early commits The situation that the write set resp. read set of a transaction is bigger
than the capacity of the write buffer resp. the read tag memory should be avoided by
static program analysis. In the exceptional case that such an overflow occurs, an early
commit is done: The CPU will attempt to acquire the commit token. If the CPU succeeds
in acquiring the commit token, it will hold the token while continuing the transaction
and broadcasting any addresses written during the transaction. The early commit phase
stretches until the end of the transaction.

After the commit token has been acquired by a transaction t, no other, possibly
non-conflicting, transaction will be able to commit until t has ended. Parallelism is
therefore crippled by an early commit, which should however not happen frequently
during normal operation. Early commits may also be used to execute I/O operations
during a transaction, which usually cannot be rolled back.

From the point of view of other CPUs, there are few differences between a transaction
performing a commit and one performing an early commit (disregarding temporal
behavior). In both cases the commit token is held and there are writes to the shared
memory and corresponding broadcasts.

6 CHAPTER 1. INTRODUCTION

Conflict detection In RTTM, conflicts are violations of the serialization of memory
accesses implied by the commit order. All conflicts among concurrent transactions are
detected as overlaps of the write set of some committing transaction t and the read set of
another still running transaction. The conflicts are detected during t’s commit. Possible
overlaps of the read set and write set are depicted in Table 1.1. Two transactions t1 and
t2, where t1 commits first, are conflicting iff t2 read an address from the shared memory
before t1 wrote to it.4 In all other cases, the serialization is already implied by the commit
order.

Committing
transaction (t1)

Running
transaction (t2)

Corresponding
data hazard

Conflict resolution

Read Read — No conflict
Write Write Write-After-Write No conflict (order respected)
Write Read Read-After-Write Rollback of running trans.
Read Write Write-After-Read No conflict (order respected)

Table 1.1: Read set/write set overlaps

As a kind of late conflict detection, this can be implemented efficiently in hardware,
as only a single (committing) CPU broadcasts to the other CPUs at the same time. (By
contrast, early conflict detection, where writes to the write buffer are immediately broad-
casted, requires n CPUs to listen to the n−1 other CPUs.) Early and late conflict detection
lead to a similar WCET. When a conflict is detected, the committing transaction wins
and the other transaction performs a rollback and a subsequent retry of the transaction.

In RTTM, a (failing) transaction may see inconsistent data if it read memory modified
by a conflicting, committing transaction. Similar to [DS07, p. 4], we define a zombie
transaction as “a transaction that is still running after having read an inconsistent view
of global data”.5 In general, zombie transactions may behave incorrectly. Incorrect
behavior may include – depending on the implementation characteristics – invalid mem-
ory accesses, exceptions, infinite loops or infinite recursions [LR07, Section 2.3.5]. An
RTTM implementation must therefore provide zombie containment until the conflict
was detected and the transaction was aborted. The global state – in particular the shared
memory – will not be influenced by a zombie transaction.

WCET analysis The basic programming model of RTTM is the definition of atomic
sections. Source code blocks marked with an @atomic annotation are executed in a

4A transaction performing an early commit may write multiple times to the same address in the shared
memory, in which case the time of the last write is relevant.

5In the RTTM paper [SBV10b], the term zombie transaction has a slightly different meaning. It refers
to “transactions that are marked as aborted, but continue to run their transaction”.

1.3. THE JAVA OPTIMIZED PROCESSOR 7

transaction. Because of the limited size of the read set and write set, (tool-based) static
analysis should be employed to assure that no overflows occur. If all transactions are
executed as part of a periodic task, WCET analysis is possible [SBV10b]. The number
of transaction retries in the worst case depends on the number of conflicting transactions.
Under the simplifying assumption of the same WCET for all transactions, the maximum
number of retries of a transaction is one less than the number of conflicting transactions.
More complex sets of transactions lead to pessimistic but safe bounds. Static analysis
should also be used to detect which transactions are not conflicting. In the RTTM paper
[SBV10b], static analysis is discussed and considered viable.

1.3 The Java Optimized Processor
The Java Optimized Processor (JOP) [Sch05, Sch08] developed by Schoeberl is the
prototype implementation platform for RTTM. JOP is a hardware implementation of the
Java Virtual Machine (JVM) [LY99]. This means it executes Java bytecodes6 directly,
rather than interpreting or dynamically translating them. JOP is targeted at real-time
systems and aims therefore to provide WCET bounds as low as possible. It is a simple
design suitable for embedded systems. The hardware architecture of JOP strives for low
resource requirements and low WCET bounds. Common case optimizations such as
branch prediction or a conventional data cache have been omitted.

The processor is optimized towards the Java Virtual Machine specification [LY99] and
the bytecode instruction set. As the JVM is a CISC (complex instruction set computer),
the bytecodes are internally mapped to sequences of simple microcode instructions.
Simple bytecodes (e.g. integer addition) are mapped to single microcode instructions.
Bytecodes of greater complexity (e.g. field access) are translated to microcode sequences.
Very complex bytecodes (e.g. object creation) are implemented in a subset of Java.7

These mechanisms enable JOP, which is itself a RISC (reduced instruction set computer),
to implement a complex instruction set.

As the JVM instruction set is stack-based, an efficient implementation of the stack
is important for a hardware implementation. A JOP microcode instruction accesses at
most the top two stack elements and a single further stack element. Therefore JOP uses
registers for the top two stack elements and an on-chip RAM for deeper positions [Sch09,
Section “The Stack Cache”]. The strong guarantees of the JVM also make a special
form of an instruction cache feasible: a method cache holds entire methods, so that an
instruction cache miss may only occur on an invocation or return from a method. This
facilitates WCET analysis.

JOP provides a base to implement the Connected Limited Device Configuration
(CLDC) [Sun03] subset of Java. The JOP runtime system provides a real-time profile

6The instruction set of the Java Virtual Machine and other virtual machines is denoted as bytecode.
7This subset of Java gets translated into other bytecodes.

8 CHAPTER 1. INTRODUCTION

similar to Safety Critical Java [HHL+09].8

Pitter has developed a chip multiprocessor version of JOP providing a shared memory
[Pit09]. A priority based preemptive scheduler is provided, with a timer interrupt used
for scheduling. A memory arbiter provides the JOP cores with access to the shared main
memory. Several arbitration strategies have been analyzed. When using a time division
multiple access (TDMA) based memory arbitration strategy, WCET analysis is possible.

FPGA-based systems are considered a “viable platform for CMP research” [WCN+07].
JOP runs on several low-cost FPGAs and is easy to adapt. This and several other features
– related to the implementation and discussed in Section 6.3 – make JOP an appropriate
platform for an implementation of RTTM.

1.4 The SimpCon SoC interconnect
The SimpCon interconnection standard [Sch07] is used in JOP to connect modules (e.g.
coprocessors) and peripherals (e.g. a memory controller). SimpCon is designed for
on-chip interconnections of system-on-chip (SoC) components and is fully synchronous.

SimpCon specifies a point-to-point master-slave connection. The slave informs the
master using a ready counter signal (rdy_cnt) how many cycles are at most left to finish
a read or write access (possibly an unbounded number). Through this, SimpCon supports
pipelining of read and write operations. The ready counter is used for an early restart of
the pipeline in the master. Different levels of pipelining are possible.

In the uniprocessor JOP, the CPU and memory controller communicate using the
SimpCon standard (with the CPU acting as master). In the CMP version, each CPU
is individually connected to the memory arbiter. The arbiter is in turn connected as
SimpCon master to the memory controller. This is depicted in Figure 1.3 on the next
page. The arbiter forwards reads and writes from the CPUs to the memory controller
according to the arbitration strategy. In the RTTM implementation, the RTTM specific
hardware is inserted by redirecting the SimpCon interconnects between each CPU and
the memory arbiter.

1.5 Problem statement
To our knowledge, no transactional memory system for multiprocessors has been consid-
ered for use in hard real-time systems. Transactional memories for real-time systems will
be discussed in Section 2.2. RTTM is a proposal of a time-predictable hardware TM for
chip multiprocessors. The basic RTTM functionality has been simulated in a behavioral

8Safety Critical Java is JSR (Java Specification Request) 302, http://jcp.org/en/jsr/detail?
id=302.

9Figure adapted from [Pit09].

http://jcp.org/en/jsr/detail?id=302
http://jcp.org/en/jsr/detail?id=302

1.6. OVERVIEW 9

Memory arbiter

Main memory

CPU

Stack

Method cache

Master

Master

Slave

Slave

CPU

Stack

Method cache

CPU

Stack

Method cache

Master Master

Slave Slave

Figure 1.3: JOP chip multiprocessor. The connections use the SimpCon interconnect
standard. The stack and the method cache are CPU-internal.9

level simulation of the JOP CMP [SBV10b, Muc09]. These simulations have indicated
that the read set and write set size is small when using appropriate programming styles.

The objective of this master’s thesis is the first implementation of RTTM and the
evaluation of its viability. Given the high costs for a fully associative tag memory (and the
limited capacity of the target, a low-cost FPGA), the resource consumption is of critical
importance. Since a main goal of RTTM is a simpler programming model for parallel
systems, the semantics and the limitations of transactional code are also of interest. As
the RTTM proposal targets hard real-time systems, all operations in the implementation
should have analyzable execution time bounds. A full, tool-based WCET analysis is
considered future work.

1.6 Overview
The remainder of this thesis is organized as follows: Chapter 2 discusses related transac-
tional memory systems and compares them to RTTM. Chapter 3 describes the semantics,
the programming interface and other characteristics of the implementation. Chapter 4 de-
scribes the implementation and justifies implementation decisions. Chapter 5 gives some
advice on programming using RTTM. Chapter 6 evaluates the resource consumption and
performance of the implementation and RTTM in general, where possible. Chapter 7
concludes and gives an overview of the directions of future work.

CHAPTER 2
Related Work

2.1 Hardware transactional memory
First, we describe some hardware transactional memory systems which are related to
RTTM. None have been considered for use in real-time systems.

An architecture for mostly functional languages

Knight [Kni86] describes a hardware system which speculatively parallelizes sequential
code written in a functional language on a multiprocessor. It is credited with being
the first paper “to use caches and cache coherence to maintain ordering among specu-
latively parallelized regions of a sequential code in the presence of unknown memory
dependences” [LR07, Ch. 4.3.2].

The hardware organization bears similarities to many later HTM systems, including
RTTM. The functionality of the depends cache and the confirm cache roughly corre-
sponds to that of the read tag memory and write buffer, respectively. Cache coherency
is maintained by the depends cache observing values written by other processors and
dropping incorrect speculation. An important difference to later transactional memory
proposals is that transactions are always committed in the order of the sequential code
regions.

Transactional memory

Transactional memory: Architectural support for lock-free data structures [HM93]
coined the term transactional memory. The paper proposed an extension of a MESI-
style1 cache coherence protocol ([Goo83]) to detect conflicts among transactions. New

1MESI stands for the possible cache line states: modified, exclusive, shared, invalid.

11

12 CHAPTER 2. RELATED WORK

instructions for transactional loads and stores are introduced. A small transactional cache
tracks memory accesses and buffers stores. The transactional cache has, in addition to a
MESI state, a special cache line state. Both the original and the tentative value are stored
in the cache and are dropped on a commit or abort, respectively. Conflicts are detected on
their occurrence. Commit and abort are CPU-local operations, i.e. they produce no cache
coherency traffic or memory traffic. The proposal requires explicit validation to detect
conflicts and allows inconsistent reads. In our understanding (and as suggested in [LR07,
Ch. 4.3.5]), an asynchronous abort on a detected conflict would also have been possible.
In the described implementation, a transaction is aborted when it performs a conflicting
write (when it tries to revoke access from another transaction). The implementation does
not guarantee forward progress, but relies on software-level adaptive backoff instead.
Due to cache coherency mechanisms, non-transactional memory accesses could also be
executed as if each was a transaction.

Similar to RTTM, the transactional cache is fully associative. On an overflow, a
transaction is aborted (unless a larger transactional cache is emulated by software). The
size of transactions is therefore limited.

Transactional Memory Coherence and Consistency

Transactional Memory Coherence and Consistency (TCC) is a hardware transactional
memory system [HWC+04]. All code is executed in atomic transactions. TCC supports
both optimistic synchronization of parallel programs and speculative parallelization of
sequential programs. While MESI-style cache coherency protocols need to support
updates of small cache lines with low latency, TCC replaces this hardware by a high
bandwidth broadcast bus used to commit transactions by reporting the transactions’
write set. The aim of TCC is to combine the simpler hardware used for and the implicit
synchronization provided by message passing systems and the easier programming model
offered by shared memory systems without relaxed consistency.

TCC and RTTM have a similar mechanism to guarantee atomicity and isolation of
transactions. Writes are buffered locally and the read set is tracked through the cache. To
commit, a processor tries to obtain the global commit token and, if successful, broadcasts
the write set of the transaction to all other processors over a high bandwidth bus. These
bandwidth requirements limit the scaling of TCC. The broadcast may also include the
modified data, so that caches can be updated directly. However, this requires a higher
broadcast bandwidth [HWC+04]. Conflict detection is similar to RTTM: If another
processor detects an overlap of the broadcasted write set with its read set, it will perform
a rollback.

When using TCC, the programmer inserts transaction boundaries into the code. The
only requirement for error-free execution in the value domain is that “transaction breaks
should never be inserted during the code between a load and any subsequent store of
a shared value (i.e. during a conventional lock’s critical region)” [HWC+04]. Other

2.2. TRANSACTIONAL MEMORY FOR REAL-TIME SYSTEMS 13

inappropriate choices of transaction boundaries may however lead to frequent rollbacks
and degraded performance. In general, transactions should be large, as long as conflicts
are not frequent and the read set and write set do not become too big. When choosing
transaction boundaries, it is possible to trade off development effort and performance.
Transaction boundaries may also be inserted automatically. To preserve partial atomicity
in this case, the programmer needs to mark sections where no boundary may be inserted.

Optionally, transactions may be ordered by assigning phase numbers to them. A
transaction may only commit once all transactions with older phase numbers have been
committed. If used, phase numbers are included in the broadcasts. Phase numbers may
be used to avoid starvation of long transactions.

While it bears many similarities to RTTM, TCC is not geared towards time pre-
dictability. While RTTM expects the programmer to use small atomic sections for
synchronization only, TCC executes all code in transactions. TCC hereby also avoids
issues in the interaction of transactional and non-transactional code.

In simulations of a range of server applications adapted for TCC, the read set size
and write set size was determined to be in the order of 6-12 KiB resp. 4-8 KiB for
almost all transactions with 64 Byte cache lines.2 There were a number of transactions
and benchmarks with higher demands, however. Due to the need for fully associative
tags, RTTM only supports smaller read sets and write sets. When using RTTM, the
programmer only marks small code sections as transactional. In the real-time domain,
the read set and write set size is also expected to be smaller [SBV10b]. While TCC’s
conflict detection has cache line granularity, RTTM has data word granularity to avoid
false positives. In a TCC implementation, caches are likely not fully associative, but a
victim buffer is used instead [MCC+05]. Similar to RTTM, an overflow will trigger an
early commit, which limits parallelism. In RTTM, an early commit should be excluded
by performing static analysis of the read set size and write set size.

Interestingly, there is also an FPGA-based prototype implementation of TCC (using
a high-performance multi-FPGA board) [WCN+07]. This was the “first FPGA-based
framework for research on CMPs with hardware support for transactional memory”
[WCN+07]. The prototype is intended as a replacement of slow simulation; some FPGA-
specific implementation issues are reported. We will briefly discuss similarities and
differences of the implementations in Section 4.2.3 and Section 4.2.4.

2.2 Transactional memory for real-time systems
To our knowledge, transactional memory implementations which are considered suit-
able for real-time systems have so far been limited to software transactional memory.
These transactional memory implementations are restricted to single core processors,
with the exception of [SQV09], which targets soft real-time systems. According to

2We did not find data on how many words were actually changed.

14 CHAPTER 2. RELATED WORK

[SQV09], “most of [the] existing solutions for real-time scheduling consider either tasks
in multiprocessor systems or transactions in database systems, but not both together”.

Preemptible Atomic Regions for Real-time Java

Preemptible Atomic Regions (PARs) [MBC+05] is a concurrency control abstraction for
real-time systems. In order to minimize blocking time, PARs can be preempted by higher
priority tasks. On preemption, the effects of a PAR are undone. PARs are a restricted
form of software transactional memory. The original PAR design is for uniprocessors
only. PARs were motivated by the possibility of interference between the non-real-time
and real-time code in an RTSJ (Real-time Specification for Java [GB00]) environment.
The authors report that, depending on semantics, programs can run faster and experience
less jitter when using PARs instead of locks.

Since PAR is for uniprocessors, code within a PAR can update memory in place. On
each write, address and original contents of the written location are also recorded in
an undo buffer (undo log). A commit only resets a pointer to the undo buffer. When a
PAR is aborted due to preemption, the original contents recorded in the undo buffer are
restored in reverse order. Similar to RTTM, it is assumed that there are a limited number
of writes in a PAR. While the undo buffer is maintained in ordinary memory, it must
be small enough for a quick rollback on preemption. Since a PAR is aborted on every
context switch, at most one PAR is aborted on a context switch. The worst-case blocking
time is determined by the maximum number of writes performed in a PAR.

PARs avoid several issues of lock-based mutual exclusion: deadlocks, violation of
isolation due to programmer errors and lock acquisition overhead. PARs also compose
easier than locks and might require fewer context switches.

Similar to the RTTM implementation, the basic programming interface is a method
annotation. PARs are an STM variant for uniprocessors, while RTTM is an HTM system
for CMPs. While PARs were devised to minimize blocking time for higher priority tasks,
there is no notion of priority in RTTM.

Inside a PAR, duplicate methods which maintain the undo buffer through additional
instructions are invoked instead of the original methods. The PAR implementation does
also target a real-time Java Virtual Machine. Similar to the RTTM implementation, the
PAR implementation uses the exception mechanism of Java to abort a PAR and does
not track writes to local variables. Some issues were encountered when integrating the
PAR semantics into the (virtual) machine. Some modifications of the virtual machine
kernel state should not be undone when aborting a PAR. Virtual machine kernel code is
therefore compiled without logging. The exception handling mechanism was modified
to specially treat exceptions aborting a transaction. Other integration issues are also
described in the paper. Similar to RTTM, there are restrictions to the code executed in
PARs. On an undo buffer overflow, interrupts are disabled, which is similar to an early
commit.

2.2. TRANSACTIONAL MEMORY FOR REAL-TIME SYSTEMS 15

Other related real-time capable work

Real-Time Support for Software Transactional Memory (RT-STM) [SQV09] is, to our
knowledge, the only transactional memory system besides RTTM where concurrent
real-time transactions run on a multicore. The paper focuses on the scheduling of these
transactions. While RTTM strives to guarantee deadline compliance, RT-STM reduces
the number of deadline violations of soft real-time transactions. The paper formalizes
real-time transactions and introduces a deadline-based real-time scheduler. Existing
STMs are adapted and the performance with different real-time scheduling policies is
compared.

Supporting lock-free synchronization in Pfair-scheduled real-time systems [HA06]
bounds the number of retries when using lock-free synchronization on multiprocessor
systems using proportionate fairness real-time scheduling. Such lock-free operations
are however not intended as a replacement for locking synchronization. Instead they
should allow more efficient implementation of simple data structures, such as queues.
Assumptions regarding the behavior of the lock-free algorithms are also made for the
analysis: when a lock-free operation is retried and how long the operation takes at most.

Response time analysis of software transactional memory-based distributed real-time
systems [FRJ09] considers distributed systems where each node executes separated STMs.
An algorithm to bound the response time is presented. There is also work on real-time
database transactions (e.g. [ARMJ97]) and lock-free data structures for real-time systems
(e.g. [HA06], [ARJ97]).

CHAPTER 3
Characterization of implementation

Transactional memory systems differ greatly both in their semantics and in their im-
plementation [LR07, Ch. 2]. In the following, we will describe the semantics, the
programming interface and the implementation characteristics of the RTTM prototype
implementation developed as part of this thesis. The paper proposing RTTM [SBV10b],
as presented in Section 1.2, does not specify details of the behavior and leaves some
decisions to the implementation.

Table 3.1 on the following page explains some terms used in the following which
were not introduced yet. With respect to other terminology, the thesis follows [LR07].

3.1 Semantics

RTTM transactions satisfy the ACI semantics – failure atomicity, consistency and iso-
lation – that is the key property of transactional memory systems [LR07, Ch. 1]. ACI
semantics have been introduced in Section 1.1. In Section 1.2, esp. page 5, I have argued
that RTTM satisfies these properties. Atomicity is fulfilled because each transaction
performs its changes only in a non-interruptible step (during the commit/early commit),
if at all. Isolation is fulfilled because there is only a single commit token passed in
the serialization order of transactions. In the current implementation, transactions have
exactly-once semantics (and not at-most-once semantics). In the temporal domain, the
number of retries of a transaction is bounded by the number of conflicting transactions
(see page 6).

If a program is segregated, i.e. “all mutable shared memory locations are accessed
either exclusively inside or exclusively outside a transaction” [MBS+08], there are no
problems with the interaction of transactional and non-transactional code [MBS+08]. If

17

18 CHAPTER 3. CHARACTERIZATION OF IMPLEMENTATION

Term Definition

Commit/Committing
transaction

From the point of view of other CPUs, there are few dif-
ferences between a committing and an early committing
transaction (disregarding temporal behavior). In both cases
the commit token is held and there are writes to the shared
memory and corresponding broadcasts.
Therefore the term commit resp. committing transaction
also refers to an early commit resp. early committing trans-
actions, unless otherwise noted.

Preceding transaction All successful transactions are totally ordered by the order in
which they acquire the single commit token. A transaction
t2 is preceded by another transaction t1 iff t2 has not yet
acquired the commit token when t1 does.

Succeeding
transaction

A transaction t2 succeeds another transaction t1 iff t2 acquires
the commit token after t1.

Nested transaction Any transaction which is executed as part of another trans-
action.

Doomed transaction A transaction td which is conflicting with a preceding trans-
action t1 (i.e. td read from an address which will be broad-
casted by t1). td will fail (at the latest) during t1’s commit.

Current write set/
Current read set

The shared memory addresses written/read by a transaction
until a certain point in time.

Table 3.1: Glossary of used terms

a program is not segregated, the semantics are more involved. In the following, we will
discuss the semantics w.r.t. the interaction of transactional and non-transactional code.

RTTM implements the write
hb
→read model presented in [GMP06, Section 3.3]. In this

model, the happens-before (hb) relationship between transactions only contains happens-
before edges from transactions writing a certain memory location to transactions reading a
certain memory location. In RTTM, all transactional reads and writes satisfy the happens-

before relation, as illustrated in Table 1.1 on page 6. The write
hb
→read model supports

the data handoff idiom outlined in Table 3.2 on the facing page. The RTTM model does
also support a number of interactions between transactional and non-transactional code

which are not supported by the write
hb
→read model [GMP06, Section 3.4].

Transactional memory systems are said to provide strong isolation if each access
during non-transactional execution does behave as if the access was executed in an
individual transaction [LR07]. Many software TM systems do not provide strong isola-
tion, since it apparently has high overheads [SMDS07]. RTTM also does not provide

3.1. SEMANTICS 19

Initially, ready = false

Thread 1 Thread 2

data = 42;
atomic {
ready = true;
}

atomic {
tmp = ready;
}
if (tmp) {
r1 = data;
}

Table 3.2: Example of data-handoff from [GMP06]. tmp == true⇒ r1 == 42

strong isolation. Weak isolation only isolates transactions from each other. In the case
of weak isolation, one could demand that transactional and non-transactional accesses
to a memory location must not overlap in time [SMDS07]. This requirement implies
a partition into shared objects and objects private to some thread at any point in time
[SMDS07]. A transaction may conduct privatization of an object O by modifying the
shared data such that O will not be accessed by any subsequent transactions (e.g. remove
an item from a linked list). This may however lead to privatization problems, which
occur in some software TM systems [SMDS07]. In [MBS+08, Section 3], privatization
safety is defined as the requirement “that an STM must respect a happens-before ordering
relation from a transactional access S1 to a conflicting non-transactional access S2”.1 In
the case of RTTM, the happens-before ordering relation is established by a transaction
in the same task as S2 (preceding S2). This is depicted in Table 3.3 on the next page.
RTTM provides privatization safety.2

Publication safety is defined as the requirement “that an STM must respect a happens-
before ordering relation from a non-transactional access S1 to a conflicting transactional
access S2” [MBS+08]. In RTTM, the happens-before ordering relation is established by
a transaction in the same task as S1 (following S1). This is depicted in Table 3.4 on the
following page. Publication safety is not supported by RTTM, since data races can occur
(see the example in Table 3.5 on the next page).

We think that RTTM also implements encounter-time lock atomicity [MBS+08,
Section 7]. In a “semantically equivalent lock-based [execution] where each transaction
is protected by some minimal set of locks such that two transactions share a common
lock if and only if they conflict”, these locks are acquired “at any point before the

1In this context, conflicting means that the transactional and non-transactional access go to the same
memory location.

2RTTM is not affected by privatization problems, since it uses deferred updates and a single commit
token. The use of a single commit token implies commit linearization, which provides privatization safety
[MBS+08, Section 4.1.2].

20 CHAPTER 3. CHARACTERIZATION OF IMPLEMENTATION

Thread 1 Thread 2

atomic {
S1;
}

atomic {
// privatization
}
S2;

Table 3.3: Privatization safety (from [MBS+08]). S1 and S2 are conflicting.

Thread 1 Thread 2

S1;
atomic {
// publication
}

atomic {
S2;
}

Table 3.4: Publication safety (from [MBS+08]). S1 and S2 are conflicting.

Initially data = 42, ready = false , val = 0

Thread 1 Thread 2

data = 1;
atomic {
ready = true;
}

atomic {
tmp = data;

if (ready)
val = tmp;

}

Table 3.5: Data race during publication (from [MBS+08]). val == 42 is allowed by the
RTTM semantics.

3.1. SEMANTICS 21

corresponding data is accessed” [MBS+08]. Encounter-time lock atomicity does support
publication in a conditional (see Table 3.6).3 [MBS+08] lists some idioms stronger than
encounter-time lock acquisition which are not supported by the RTTM implementation.

Initially data = 42, ready = false , val = 0

Thread 1 Thread 2

data = 1;
atomic {
ready = true;
}

atomic {
if (ready)
val = data;

}

Table 3.6: Publication in a conditional (example from [MBS+08]) is supported by RTTM.
val != 42

Since the RTTM implementation tracks memory accesses at the word level, there are
no problems with the granularity of transactional/non-transactional memory accesses,
i.e. granular safety [MBS+08] is provided. Observable consistency [MBS+08] and
speculation safety [MBS+08] is supported.4 For an in-depth discussion of the implications
of the various safety properties supported or not supported by RTTM, see [MBS+08].

Stronger semantics? More publication patterns could be supported if all writes to
the shared memory would be broadcasted (which would be feasible in the prototype
implementation). I assume that the semantics would then correspond to asymmetric
lock atomicity [MBS+08]. The possible abort of transactions by non-transactional code
would need to be accounted for in the WCET analysis, however. A notable property of
RTTM is that conflicts are asymmetric, i.e. if transaction t1 possibly aborts t2, this does
not imply that t2 possibly aborts t1. A transaction aborts automatically only if its read
set overlaps with the write set of a preceding transaction. This prevents a behavior more
similar to single global lock atomicity, where the program executes as if each transaction
was protected by a single global lock.

An RTTM implementation could support strong isolation (for data types residing
in a single memory word),5 if, in addition, commits happened atomically. Else, one
read could already see the modifications of a transaction and a successive read could see
a value not yet updated by the transaction. As an alternative, static analysis could be
considered to ensure segregation into transactional and non-transactional memory.

3Speculative code motion is then disallowed. The RTTM implementation does not use compiler or
hardware reordering.

4Observable consistency and speculation safety are supported because the update of the shared memory
is deferred.

5Only long and double types do not reside in a single memory word.

22 CHAPTER 3. CHARACTERIZATION OF IMPLEMENTATION

Transaction nesting The implementation allows transactions to be nested. Nested
transactions are flattened, i.e. aborting a nested transaction causes an outer transaction
to abort, and committing a nested transaction has no effect. To support not flattened
transactions, a more advanced write buffer and read tag memory would be necessary.

Exceptions Exceptions always abort, rather than commit, the current transaction. Ter-
minating exceptions, which attempt to commit the transaction, are not supported. Han-
dling of exceptions inside a transaction (catch or finally blocks) is also currently not
supported, since it interferes with the transaction abort mechanism.

3.2 Implementation characteristics
In this section, we characterize the implementation techniques used for the RTTM
prototype. This is mostly done with regard to the taxonomy presented in [LR07, Ch. 2.3].
Most characteristics follow from the RTTM proposal.

Granularity of conflict detection RTTM conflict detection has word granularity,
detecting conflicting accesses to a memory word. In the implementation platform JOP, all
Java data items (such as elements of a boolean[]) and all implementation specific data
structures modified in a transaction occupy one or more dedicated memory words. This
excludes false positives. The conflict detection is currently largely language agnostic.

Direct or Deferred Update RTTM uses deferred update (the write buffer) during
normal operation, as most HTM systems do. Memory words are updated in place. The
single commit token makes updating the shared memory easy. On a buffer overflow/early
commit, direct update is used.

Concurrency control RTTM uses optimistic concurrency control. W.r.t. progress
guarantees, RTTM provides wait freedom if there is a single thread per CPU and as long
as certain schedulability conditions are met [SBV10b] (and as long as no thread stalls
while performing an early commit).

Conflict Detection RTTM detects conflicts among transactions late (i.e. not when they
appear), during validation of a transaction. For each transaction, a read set and a write
set is maintained, which remains private to the transaction. RTTM uses lazy invalidation,
as defined in [Sco06]. According to [Sco06], this is the weakest consistency-ensuring
conflict definition.

3.3. PROGRAMMING INTERFACE 23

public class RingBuffer<T> {
// ...

@atomic public T read() {
if (rdPtr == wrPtr) {
return null;
}
T val = data[rdPtr++];
if (rdPtr == data.length) {
rdPtr = 0;
}
return val;
}
}

Listing 3.1: Example of atomic method

Contention management The contention resolution policy of RTTM is to always abort
the conflicting transaction(s) which is (are) not committing. As argued in [SBV10b], the
execution remains time-predictable if certain schedulability conditions are met.

3.3 Programming interface
Transactions are created by the programmer using an @atomic method annotation,
as depicted in Listing 3.1. The @atomic annotation is the sole interface needed to
use the functionality of RTTM, providing a simple interface for programming parallel
systems.6 The annotation provides the code executed in and invoked by the method with
semantics as discussed in Section 3.1. Most Java language features are supported inside a
transaction, as will be discussed in Section 5.2. The restriction to entire methods instead
of code blocks is a pragmatic decision.7 Annotated methods are modified at link time.
A drawback of the restriction to atomic methods is that it may lead to fragmentation of
code.

As an alternative, transactions may also be implemented using a special low-level
method directly accessing the memory-mapped RTTM hardware interface, which will be
described at page 31. An example is in the appendix (Listing B.2 on page 76). I believe
that the use of a language feature is substantially less laborious and less error-prone.

6Since Java method annotations do not alter the method signature, they can be transparently added
without compromising an interface.

7Code transformations are simpler and most local variables do not need to be restored on a transaction
retry, as detailed in Section 4.3.1.

24 CHAPTER 3. CHARACTERIZATION OF IMPLEMENTATION

3.3.1 Software commands
RTTM software commands provide additional functionality to the programmer. Software
commands are invoked as Java methods. Their use can complicate the programming
model of RTTM.

retry() The retry() statement, as introduced in [HMPJH05], lets the programmer
roll back and restart the current transaction, as is also done transparently by RTTM if
a conflict is detected. retry() can serve as a mechanism to coordinate transactions.
[HMPJH05] proposes to delay the transaction restart until the data accessed has been
changed. In an RTTM transaction, such a behavior can be attained by looping until
an anticipated condition becomes true: while (!condition); . If a shared memory
value evaluated in the condition is updated, the transaction will automatically retry.8

If an early commit was initiated earlier because of a buffer overflow or by the
application, any writes before the retry() software command were already written to
the shared memory and cannot be undone, violating the atomicity of transactions.9

abort() The abort() statement aborts the current transaction. It performs a rollback
of all changes in the transaction and then exits the atomic method throwing a Java excep-
tion.10 It has not been investigated which criteria should be used to abort a transaction.
As in the case of the retry() statement, if an early commit was initiated earlier, any
writes before the abort() software command will violate the atomicity of transactions.11

earlyCommit() An early commit is tried a) if the read tag memory or write buffer
overflows or b) upon executing I/O operations (which usually cannot be rolled back). The
implementation does not automatically try to commit before an I/O operation. Instead, the
programmer needs to manually invoke the earlyCommit() software command before an
I/O operation. Listing 3.2 on the next page shows an example use of the earlyCommit()
software command to output an atomic snapshot. Because it blocks other transactions
while generating output, this style of use is at most suited for diagnostic purposes.

If the earlyCommit() software command succeeded,12 a subsequent abort of the
transaction might violate the atomicity of the transaction, since all writes go directly to
the shared memory during an early commit. An abort might happen a) if an exception
terminating the current transaction is thrown due to a programming error or b) might be
caused by the application (using the abort() or retry() software command).

8This programming style will not work if an early commit has been performed in the transaction.
9retry() could be ignored during an early commit.

10As the AbortException is an unchecked exception derived from RuntimeException, an atomic
method is not required to declare it in the throws clause.

11abort() could also be ignored during an early commit.
12Impossible for a transaction failing due to a conflict, since it will never acquire the commit token.

3.4. SCHEDULING 25

@atomic public void snapshot() {
// grab commit token
rttm.Commands.earlyCommit();
// can do I/O now

System.out.println("Linked list contents:");
// iterate through linked list
for (LinkedObject o = head; o != null; o = o.getNext()) {
System.out.println(o.getData());
}
}

Listing 3.2: Example use of earlyCommit() software command

3.3.2 Diagnostics
For diagnostic purposes some basic per-CPU statistics, including the transaction commit
and retry count and the maximum read set and write set size, may be measured without a
probe effect.13

3.4 Scheduling
Context switches during a transaction are currently not possible. While executing a
transaction, all interrupts are disabled. It would be straightforward to support context
switches/interrupts during a transaction. Such a context switch/interrupt would simply
abort the current transaction.14 Transactions violating a deadline could then be aborted.

13See class rttm.Diagnostics.
14In JOP, interrupts are issued in a manner similar to exceptions (see page 53). In the RTTM implemen-

tation, Java exceptions are used to abort a transaction (see Section 4.3.2). When switching back to the
thread running the interrupted transaction, an exception could be thrown to retry the transaction.

CHAPTER 4
Implementation

The RTTM prototype is implemented on the Java Optimized Processor (JOP), a Java
Virtual Machine in hardware (see Section 1.3). RTTM is a hardware transactional
memory system and language independent, as most HW TM systems [LR07, Ch. 4.1].
The prototype implementation does however rely on some of the strong guarantees and
features of the Java programming language and the Java Virtual Machine (JVM), as will
be discussed in the following.

Significant parts of the functionality are implemented in software, which is also eased
by the properties of the implementation platform. Figure 4.1 on the following page shows
the layers in the RTTM implementation. The interfaces between them and the layers’
implementation will be discussed in this chapter.

4.1 HW/SW-Partitioning

Next, we justify the partitioning in hardware and software and give an overview of the
RTTM implementation. Memory accesses and conflict detection need to be implemented
in hardware to be time-predictable and efficient. If the flush of the write buffer during the
commit was to be performed by the CPU, additional HW-SW interfaces would be needed.
On the other hand, the abort of transactions is currently implemented using the exception
handling mechanism of Java – similar to the approach of the Preemptible Atomic Regions
software TM [MBC+05]. The implementation does not introduce new CPU instructions.

The hardware part of RTTM has a simplified view of transactions. The hardware
ignores the control flow associated with a transaction abort and has no concept of the retry
of a transaction or of transaction nesting. The decision to keep the hardware simple has
the benefit of keeping the interface between the CPU and the RTTM-specific hardware

27

28 CHAPTER 4. IMPLEMENTATION

RTTM SW layerJOP runtime
system

Application

Memory arbiter

RTTM HW layer

Method calls
@atomic,

SW commands

HW commandsBytecodes

SimpCon

SimpCon

(Enhanced
transactions)

(Simple transactions)

JOP core

Figure 4.1: RTTM implementation layers

simple and of requiring no changes to the CPU. It also avoids race conditions between the
CPU and RTTM which would make maintaining the nesting count consistent difficult.

The software part of RTTM is implemented in a transaction wrapper which is
transparently added to atomic methods at link time. The transaction wrapper implements
a) the abort and retry of transactions and b) the nesting of transactions and c) saves and
restores relevant CPU state. The use of software makes the implementation more flexible,
e.g. w.r.t. the retry/abort strategy and the handling of Java exceptions.

4.2 Hardware layer
RTTM has been implemented by extending the CMP version of JOP (see page 8 and
[Pit09]). In the conventional JOP CMP, each CPU is individually connected to the
memory arbiter, as shown in Figure 4.2 on the next page. I/O is individually connected
to each CPU.

1Figure adapted from [Pit09].

4.2. HARDWARE LAYER 29

CPU 0

Memory arbiter

Shared memory

CPU 1 CPU 2

Figure 4.2: Conventional JOP CMP components1

CPU 0 CPU 1 CPU 2

RTTM module 0 RTTM module 1 RTTM module 2

Memory arbiter

Shared memory

Transaction
coordinator

Commit
token

Figure 4.3: Hardware components related to RTTM implementation

30 CHAPTER 4. IMPLEMENTATION

In the RTTM implementation, depicted in Figure 4.3 on the preceding page, an
RTTM module has been inserted between each CPU and the arbiter. The RTTM module
comprises most of the RTTM functionality implemented in hardware. It contains the
write buffer and read tag memory introduced in Section 1.2. The transaction coordinator
grants the single commit token to an RTTM module requesting it.2 An RTTM module
which has been granted the token holds the token until it has completed the transaction.

The RTTM implementation does not introduce new (JVM bytecode or microcode)
instructions. Communication of the RTTM SW layer with the RTTM module is memory-
mapped.3

4.2.1 The RTTM module
The interfaces of an RTTM module are depicted in Figure 4.4 and will be described next.

CPU

RTTM module

Memory arbiter
Transaction
coordinator

Hardware
commands

SimpCon
mem. IF

SimpCon
mem. IF Rollback

Request/
hold

commit
token

Grant
commit
token

Write set
broadcast

Master

Slave

Master

Slave

Figure 4.4: Interfaces of an RTTM module

2In case of conflicting requests, the commit token is currently granted to the RTTM module with the
lowest CPU ID.

3As the Java language is memory safe, JOP-specific special bytecodes are used to access memory
addresses mapped to the RTTM module.

4.2. HARDWARE LAYER 31

HW Command Description

start_transaction Start transaction
end_transaction Attempt to obtain commit token and commit
early_commit Programmer tries to obtain commit token for the

remainder of the transaction using the early-
Commit() software command

aborted Ends a hardware-side transaction. Either the
RTTM SW layer confirms that it has interrupted
the (doomed) transaction or the programmer per-
formed an abort() or retry() software com-
mand.

Table 4.1: Hardware commands

Hardware commands The hardware commands start, commit or abort a transaction
in the RTTM module. Each atomic method body is transparently supplemented by a
transaction wrapper at link time. The transaction wrapper, executing on the CPU, trans-
parently issues the memory-mapped hardware commands.4 Some hardware commands
may also be issued by the application (indirectly, using the software commands presented
in Section 3.3.1), but this is not needed in a basic transaction.5 The hardware commands
are listed in Table 4.1 and will be described in the context of their use in the RTTM
module state machine.

SimpCon memory interface Memory accesses are handled by the SimpCon SoC
interconnect introduced in Section 1.4. Table 4.2 on the following page lists the SimpCon
signals used to connect a) the CPU (master) and RTTM module (slave) and b) the RTTM
module (master) and memory arbiter (slave). The following signals are RTTM-specific:

• The tm_cache flag is only used on the CPU to RTTM module interconnect. If
cleared, it indicates that a memory access should bypass the read tag memory and
write buffer. This flag can be cleared for several types of memory accesses (see
Section 4.2.10) and is important because of the restricted size of fully associative
caches.

• The tm_broadcast flag is only used on the RTTM module to arbiter intercon-
nect. It indicates that an address being written to the shared memory should be

4Hardware commands do not actually use dedicated signals, but are mapped into an unused part of the
memory address space which is routed through the RTTM module.

5As a not recommended alternative, the hardware commands may also be issued directly (see List-
ing B.2 on page 76 in Appendix B).

32 CHAPTER 4. IMPLEMENTATION

Signal Width Set by Description

address 23 Master Memory address6

wr_data 32 Master Data written
rd_data 32 Slave Data read
rd 1 Master Start read access
wr 1 Master Start write access
rdy_cnt 2 Slave Cycles until memory access fin-

ishes (3 ≡ unbounded; used for
pipelining)

tm_cache 1 Master
(CPU)

Indicates if memory access is
tracked (only on CPU to RTTM
module interconnect)

tm_broadcast 1 Master
(RTTM
module)

Indicates memory address broad-
cast (only on RTTM module to
arbiter interconnect)

Table 4.2: SimpCon signals in RTTM implementation

broadcasted to all other RTTM modules, as described on page 4.

Write set broadcast If an RTTM module issues a write to the memory arbiter with the
tm_broadcast flag set, the arbiter will broadcast the write address to all RTTM modules.
These will check for overlaps with their current read set (if executing a transaction).
Broadcasts and shared memory reads are scheduled such that any conflicts are detected
and no false conflicts are detected.

Rollback If the RTTM module detects a conflict to a committing transaction, it sets
the rollback signal to initiate a rollback in the software layer.

Request/hold commit token & Grant commit token The signal to request/hold the
commit token is set by the RTTM module when (i) the CPU issues an end_transaction
or early_commit HW command or (ii) if the read tag memory or write buffer overflows
(see page 5). The request/hold signal remains set until a) the transaction is aborted (due
to a conflict or upon an explicit request by the application) or b) until the transaction
has been committed. In the case b), the RTTM module has been granted the commit
token by the transaction coordinator before committing. When the request/hold signal is
cleared, the commit token returns to the transaction coordinator.

623 bits is the typical JOP address space width.

4.2. HARDWARE LAYER 33

4.2.2 The memory arbiter
The RTTM implementation adapts the memory arbiter of the JOP CMP. For the JOP,
multiple memory arbiter versions implementing different arbitration policies are available
[Pit09]. A time division multiple access (TDMA) policy was found to be best for a time-
predictable processor in [Pit09]. This policy was adapted as follows for RTTM: When
a transaction performs a commit, all writes to the shared memory are broadcasted to
the other RTTM modules. During the commit, all TDMA slots of processors executing
transactions are temporarily reallocated to the committing processor. This reallocation
of slots limits the inconsistent state observed by conflicting transactions, as will be
discussed in Section 4.3.3.

Memory arbiter behavior requirements The RTTM implementation makes some
assumptions about the order in which memory accesses are performed by the memory
arbiter and the shared memory to guarantee detection of conflicts between transactions.
If an RTTM moduleM has not found a broadcasted addressA in its current read set, as
tracked through the read tag memory – i.e. no conflict has been detected –, a read ofA
byM must return the new value written toA (or an even newer value).

The requirement is satisfied if the following conditions are met: a) All (read or write)
memory accesses are serialized at some point in the memory arbiter, which precedes
the point where writes are broadcasted, if applicable. b) Consider a serialization where
the read access is scheduled by the memory arbiter before the write access/broadcast.
This is the only possible conflict due to a), i.e. the only case where the old value ofA is
returned.7 The read tag memory must now already have been updated w.r.t. the access to
A at the time when the broadcast is processed. If so, the conflict will be detected.

A written address must also be broadcasted by the memory arbiter at the latest in the
cycle when it sets rdy_cnt below 3 (to guarantee conflict detection in case the commit
token is released immediately afterwards and granted to a conflicting transaction, which
is waiting for the commit token).

These conditions are met by the transaction cache implementing the read tag memory
and write buffer and by the used TDMA arbiter and their interconnect.

4.2.3 Influence of target technology
The RTTM prototype implementation targets field programmable gate arrays (FPGAs).
FPGAs have a predefined structure and therefore logic feasible on application-specific in-
tegrated circuits (ASICs) might not synthesize efficiently on FPGAs [WCN+07]. RTTM
requires fully associative tags to track the read set and write set. In the case of the read
set, the tag memory is necessary to detect conflicts to the committing transaction. In

7See also the data hazards in Table 1.1 on page 6.

34 CHAPTER 4. IMPLEMENTATION

the case of the write set, the tag memory is necessary when values written during a
transaction are read again. Full associativity is required to avoid tag memory overflows.
Fully associative tags are expensive to implement in hardware [Hyd03, Ch. 11.4.2], since
each tag needs to be compared to (a part of) the accessed address.

The main target for the RTTM prototype implementation is the Altera Cyclone II
EP2C70 FPGA. This medium-size low-cost FPGA provides ∼68000 logic cells (LCs)
and in addition memory blocks with a total capacity of ∼1 Mibit. Each logic cell supports
combinatorial logic through a 4 bit lookup table and can save the result in a single flip-
flop. Since each logic cell can hold at most 1 bit of memory, large memories cannot be
efficiently implemented using logic cells. The memory blocks can implement memories
of different word size and capacity. Each of the 250 memory blocks on the EP2C70 has
a capacity of 4 Kibit. One or more memory blocks can serve as the main component of
various types of memories such as multi-port RAMs and FIFOs. These memories are
either instantiated using intellectual property blocks provided by the manufacturer or
during hardware synthesis (if appropriate coding styles are used).

In order to hold the addresses and the data in the read tag memory and the write
buffer, an RTTM implementation needs a few Kibit of memory per processor core. In the
typical case that shared memory addresses are 19 bit wide and data words are 32 bit wide,
a write buffer with 64 entries needs 64 × 19 = 1216 bits of memory for the tag memory
and 64 × 32 = 2048 bits of memory for the buffered data. The RTTM implementation
uses FPGA memory blocks whenever feasible. All the memories, except the tag memory,
are implemented using memory blocks.

4.2.4 Tag memory implementation
The fully associative tag memory needed for both the read tag memory and the write
buffer is the most resource consuming part of the RTTM implementation (cf. measure-
ments in Table 6.2 on page 62). Each tag needs to be compared for hit detection. The
functionality of fully associative tags corresponds to those of a simple content address-
able memory (CAM), where the memory deduces storage addresses from data words.
Current FPGA technology seems not to be well suited for CAM/fully associative tags im-
plementation [WCN+07, GLD00]. One of the challenges encountered in the FPGA-based
implementation of the TCC prototype [WCN+07, Section 5] was the implementation of
memory structures with high associativity.

The fully associative tag memory cannot directly be implemented using memory
blocks, since each tag needs to be compared for hit detection. When using only logic
cells, in the typical case mentioned in the last section, the tag memory occupies at least
1216 logic cells, since each only contains a single flip-flop [GLD00, Section 3]. The
actual implementation8 needs 1630 LCs in this case, and hit detection for at least 64

8The implementation of the tag memory was adapted from a prototype created by Martin Schoeberl.

4.2. HARDWARE LAYER 35

l <= (others => ’0’);
for i in 0 to lines-1 loop
if h(i)=’1’ then
l <= to_unsigned(i, way_bits);
exit;
end if;
end loop;

Listing 4.1: Line encoder with priority. h, an array with the tag comparison results, is
encoded to l.

l <= (others => ’0’);
for i in 0 to way_bits-1 loop
for j in 0 to lines-1 loop
n := to_unsigned(j, way_bits);
if n(i)=’1’ and h(j)=’1’ then
l(i) <= ’1’;
end if;
end loop;
end loop;

Listing 4.2: Line encoder without priority. h is encoded to l.

entries is feasible in a single cycle (see Section 6.1).9 Since the write buffer and read tag
memory are invalidated at the end of each hardware transaction or on a buffer overflow, a
simple “replacement” strategy using a strictly increasing counter is used.

A subtle issue is the encoding of the lines once the tags have been compared. Since at
most one tag matched and was valid, there is no need for a priority encoder (cf. Listing 4.1
and Listing 4.2).

Comparison to implementation using memory blocks A fully associative tag mem-
ory of considerable address width and depth can be implemented in FPGA memory
blocks using a special technique [auR08, BG02]. The saved addresses are encoded in
the memory blocks in a sparse manner.

In the simple variant, the width of the memory word read from a memory block
corresponds to the number of cache entries. The saved address is split up in parts, each of
which has at most the width required to index the words in a memory block. To represent
a saved address, a bit B is set in each memory block. This bit B is set in the memory
word indexed by the corresponding part of the split up saved address. In the memory

9RTTM needs 4 cycles for a memory operation with a tag memory match. The TCC prototype needs
13 cycles on a TCC cache hit, because a hardcore processor integrated into the FPGA was used.

36 CHAPTER 4. IMPLEMENTATION

word, the index of B corresponds to the cache line for the saved address. A lookup is then
performed by bitwise ANDing the words read from each memory block (with the address
split up as described). A set bit in the AND result indicates that the memory location is
cached at this line. In effect, logic cells used to save cached addresses and to implement
comparators are traded against a significant number of memory bits, where the number
increases exponentially with the width of the split up address part. The number of cache
entries can be increased with an approximately linear increase of resource consumption
by replicating the described structure. A generic implementation for Altera FPGAs is
in Listing B.3 on page 77. Using the memory blocks implementation technique, a tag
memory with 32 entries would require 3 memory blocks on the Cyclone II: each memory
block (with a size of 4 KiB) can implement a memory with 32 bit (read) word size and
128 words (i.e. 7 bits of the split up address). The shared memory addresses with a width
of 19 bits must be split up on 3 memory blocks.

Memory blocks in several FPGA series, including the Cyclone II, lack a “gang reset”
capability. This caused difficulties for the TCC implementation [WCN+07], where each
of a large number of state bits had to be reset in a dedicated cycle. The requirement for a
fast reset before a new hardware-side transaction would also complicate a tag memory
implementation using memory blocks:10 the bits set for each cache line need to be reset
before the line is reused.

An in-depth discussion of the memory block implementation technique is contained
in [BG02].11 FPGA manufacturer Xilinx provides such a content addressable memory
implementation [BG02]. I did not find other fully associative tag memory implementation
techniques offering fast update and hit detection for current FPGAs [Bre99, Xil08,
GLD00].

Table 4.3 on the facing page shows that the fraction of the available memory blocks
consumed by the memory block variant is comparable to the fraction of available logic
cells consumed by the logic cell variant. Note that the memory block variant also requires
logic cells for the encoding of the lines and the reset of the tag memory. Since the JOP
CPU uses a greater fraction of the memory blocks,12 the logic cell variant is implemented.

4.2.5 Interfaces of the read tag memory and write buffer
The interface of the read tag memory is depicted in Figure 4.5 on the facing page. Since
the read tag memory only needs to detect a conflict, it is not necessary to return which tag
matched the provided address. The write buffer, depicted in Figure 4.6 on the next page,
buffers writes during a transaction. The write buffer therefore needs to identify which tag
matched a provided address when data is written or re-read during a transaction.

10But the reset would not necessarily cause a delay when using valid bits synthesized as logic cells.
11[BG02] refers to a Xilinx FPGA series, but I think most considerations are also applicable to other

current FPGAs.
12Cf. total resource consumption in Table 6.3 on page 63 (where the logic cell variant is used).

4.2. HARDWARE LAYER 37

Depth Logic cells variant Memory block variant
Words % LCs of FPGA % mem. blocks of FPGA

16 0.6% –
32 1.2% 1.2%
64 2.4% 2.4%
96 – 3.6%

128 4.7% 4.8%
256 9.3% 9.6%

Table 4.3: Tag memory variants: comparison of (per-CPU) resource requirements

Read tag memory

Address

Hit

MUX
Broadcasted address

Read address

Reset

Add read address

Full

Figure 4.5: Basic read tag memory interface

Write tag memoryAddress

Reset

R/W

Data RAM

Line

Read dataR/W

Written data

Hit

Full

Figure 4.6: Basic write buffer interface (without commit logic)

38 CHAPTER 4. IMPLEMENTATION

4.2.6 The transaction cache
Microbenchmarks run on a behavioral simulation of an RTTM implementation on the
JOP CMP [SBV10b, Muc09] showed that the read set is typically bigger than the write
set. The microbenchmarks also indicated that there is often a large overlap between the
read set and the write set of a transaction. As proposed in [SBV10b], a common tag
memory which tracks both the read set and write set was implemented. Additional read
and dirty bits are used to distinguish the read set and write set. The hardware structure
combining the functionality of the write buffer and read tag memory is designated as
transaction cache. The transaction cache is the central data structure of the RTTM
module. For each memory location tracked, the transaction cache contains the fields
listed in Table 4.4.

Item Width Description Implementation

valid 1 Validity of entry Logic cells
address Varies13 Address of data word Logic cells
read 1 Indicates address was read in transaction Mem. blocks
dirty 1 Indicates address was written in transac-

tion
Mem. blocks

data 32 Data word Mem. blocks

Table 4.4: Transaction cache fields

Since implementing the write buffer means buffering the tentative values of a transac-
tion and since the tag memory of the write buffer and the read tag memory is combined
in the transaction cache, it is a cheap enhancement to also cache the data read during a
transaction. This ensures there is at most one miss for each element of the read set during
a transaction.

The interfaces and the basic components of the transaction cache are depicted on the
next page. The tag memory saves the addresses of both the read set and the write set. It
also detects conflicts with addresses written/broadcasted by a committing transaction.14

The data RAM caches values written or read during the transaction. The write addresses
FIFO stores the addresses of the write set of the transaction. An address is added to the
FIFO when it is first written during a transaction. On a commit, the corresponding data
is written to the shared memory (logic not depicted). The data cache organization of the
TCC prototype is similar [WCN+07, Fig. 1].

13The width (typically 19 bits) corresponds to the number of data words in the shared memory. The
processor actually has a larger address space. Memory not read/written during a transaction (flash) and I/O
is mapped into other parts of the address space.

14These unsynchronized activities are performed interleaved without an impact on the temporal behavior.
This will be discussed on page 46.

4.2. HARDWARE LAYER 39

T
ag

 m
em

or
y

D
at

a
R

A
M

L
in

e

R
e

a
d

d
at

a

W
ri

tte
n

 d
a

ta
 fr

o
m

 C
P

U
 o

r
d

a
ta

 fr
om

 s
h

a
re

d
 m

em
or

y (
o

n
 r

ea
d

 m
is

s)

H
it

F
ul

l

W
rit

e
ad

dr
es

se
s

F
IF

O

G
e

t n
ex

t c
o

m
m

it
a

d
dr

es
s

G
et

P
ut

R
e

se
t

R
/W

C
o

m
m

it
a

dd
re

ss

M
U

X
A

d
d

re
ss

B
ro

ad
ca

st
ed

 a
dd

re
ss

C
o

nf
lic

t d
e

te
ct

io
n

A
d

d
re

ss

A
dd

re
ss

R
e

se
t

H
itD

irt
y

fla
g

w
a

s
se

t

R
/W

Fi
gu

re
4.

7:
Tr

an
sa

ct
io

n
ca

ch
e.

D
as

he
d

lin
es

ar
e

on
ly

us
ed

to
flu

sh
th

e
w

ri
te

se
td

ur
in

g
th

e
co

m
m

it
ph

as
e.

40 CHAPTER 4. IMPLEMENTATION

On a transaction start, the tag memory is invalidated and the write addresses FIFO is
emptied. On each transactional memory access which is a cache miss, the next cache
line is used. In the exceptional case that the tag memory is full, the RTTM logic stalls
the processor and tries to perform an early commit.

The addresses of the write set are also stored in the tag memory. But the tag memory
is implemented using logic cells. In order to not only perform hit detection, but also read
out the addresses in the tag memory, additional logic would be required. The addresses
could be read out using random access or by shifting the addresses through the tag words.
In both cases, this additional logic needs an equivalent of about 40% of the tag memory
LCs.15 A FIFO is implemented very efficiently using the FPGA’s memory blocks, so the
addition of the write addresses FIFO saves hardware resources.16 When using the FIFO,
the commit time does not depend on the read set size.

4.2.7 The state machine

The RTTM module behavior is governed by the state machine on the facing page. The
transaction cache is accessed or bypassed according to the state machine. The state
machine resembles the simplified view of transactions by the hardware layer.

Outside of a transaction the RTTM module is in state BYPASS. A normal suc-
cessful transaction traverses the states in this order: BYPASS, TRANSACTION, WAIT_-
TOKEN, COMMIT, BYPASS. Figure 4.9 on page 42 is a sequence diagram of a successful
transaction. A failed (and usually retried) transaction normally traverses the states
BYPASS, TRANSACTION, ABORT, BYPASS or the states BYPASS, TRANSACTION, WAIT_-
TOKEN, ABORT, BYPASS.

4.2.8 Transaction states

BYPASS This state is active outside of transactions. It is also active in some parts of
a software layer transaction.18 In this state, memory accesses bypass the transaction
cache and any broadcasted addresses are ignored. When an atomic method is invoked
outside of a transaction, the transaction wrapper issues a start_transaction hardware

15With 64 words and 19 bits address width, the tag memory needs 1630 LCs without support for
reading addresses, 2260 LCs with the shifting variant and 2300 LCs with the random access variant.

16In Section 6.1, we will observe that the memory blocks are depleted earlier than the LCs on the used
FPGA. But reading the memory addresses from the tag memory would shift the balance and lead to an
even earlier depletion of LCs. (Consider that we save an equivalent of 40% of the tag memory LCs with a
single memory block.)

17The CPU is stalled by delaying the current memory access. There is always such a memory access
when the CPU needs to be stalled.

18Software layer transactions will be discussed in Section 4.3.1.

4.2. HARDWARE LAYER 41

end_transaction
(or aborted),
release token

Release
token

BYPASS

TRANS-
ACTION

EARLY_
FLUSH

Transaction
continuing

COMMIT

start_transaction

Conflict

Overflow or
early_commit

WAIT_
TOKEN

Token
granted

end_transaction

EARLY_
WAIT_
TOKEN

Token
granted

Conflict

Conflict

ABORT

aborted

EARLY_
COMMIT

aborted

aborted

Figure 4.8: RTTM module state machine. States during which the CPU is stalled17

have a solid background. Hardware commands issued by the RTTM software layer are
monospaced. Dashed lines indicate aborting transactions.

42 CHAPTER 4. IMPLEMENTATION

B
Y

P
A

S
S

W
A

IT
_TO

K
E

N
C

O
M

M
IT

Transaction
wrapper

RTTM
module

start_transaction
end_transaction

Transaction
coordinator

Request token

Grant token

Release token

Atomic section

Commit

T
R

A
N

S
A

C
T

IO
N

B
Y

P
A

S
S

RTTM
module

state

Figure 4.9: Software and hardware components interacting in a normal successful
transaction.

4.2. HARDWARE LAYER 43

command. Then,M transitions to state TRANSACTION.19

TRANSACTION In this state, all memory accesses for which the CPU sets the tm_cache
flag are buffered in the transaction cache, which comprises the role of both the write
buffer and the read tag memory. Other memory accesses bypass the transaction cache.
For the rest of this paragraph, assume that the tm_cache flag is set. A write is cached in
the transaction cache. If a memory read generates a cache miss, the data is read from the
shared memory and also stored in the transaction cache. read and dirty bits associated
with the cache entries track the current read set and current write set.

If a broadcasted address is in the current read set of an RTTM module M, M’s
transaction is conflicting with the committing transaction andM will therefore enter
state ABORT. The CPU can also initiate a transaction abort by issuing an aborted HW
command, triggering a direct transition to BYPASS. Possible causes for a direct abort are
an explicit transaction abort by the application or a thrown Java exception.20 After both
state transitions, the transaction cache is invalidated and the rollback is performed by the
transaction wrapper executing on the CPU.

Upon returning normally from a not nested atomic section, the software transaction
wrapper issues an end_transaction HW command, triggering a transition to WAIT_-
TOKEN. In the exceptional case that a) the transaction cache overflows or b) the application
performs an early commit (see Section 3.3.1),M goes into state EARLY_WAIT_TOKEN.

A conflict may be detected while any of the other state transition conditions is enabled.
The conflict will get priority over all other transitions except the transition with condition
aborted. No two other state transitions can be enabled concurrently.

WAIT_TOKEN The CPU is stalled in this state. The RTTM moduleM tries to acquire the
single commit token from the transaction coordinator. If the commit token is eventually
granted to M, M goes into state COMMIT. If a broadcasted address is in the read set
ofM – tracked through the transaction cache –M’s transaction is conflicting with the
committing transaction and M will therefore enter state ABORT. Any conflict will be
detected while the commit token is still held by another RTTM module committing a
preceding transaction.21

COMMIT If an RTTM moduleM has reached state COMMIT, its current transaction will
succeed. M holds the single commit token while in state COMMIT.M writes the write
set of the transaction, as tracked through the transaction cache, to the shared memory.

19The HW command aborted is ignored when a transaction has already been aborted earlier andM
is back in state BYPASS. See page 53, esp. footnote 40, for an explanation why aborted may be issued
twice.

20See Section 4.3.2.
21Discussed on page 5.

44 CHAPTER 4. IMPLEMENTATION

The write set addresses are also simultaneously broadcasted to all other RTTM modules,
causing any conflicting transactions to abort. After the write set has been written to
the shared memory, the transaction changes are visible to all other transactions and to
non-transactional code.M then releases the commit token and goes back to state BYPASS.
The CPU remains stalled while in state COMMIT and resumes execution whenM goes
back to state BYPASS.

ABORT An RTTM module M enters state ABORT if a conflict with the committing
transaction is detected (i.e. a broadcasted address is in the current read set ofM). M
remains in this state until it is assured that the CPU has observed the conflict and aborted
the execution of the transaction. Upon entering ABORT,M sets the rollback signal to
initiate a rollback on the CPU side, which will be discussed in Section 4.3.2.

While in state ABORT, the behavior of the transaction must be contained, since the
transaction is not always aborted immediately. Memory writes are discarded, since a
(write) buffer overflow might have occurred in an earlier state or might occur in this state
and the transaction must not become visible. Memory is always read from the shared
memory for pragmatic reasons.

An exception thrown due to the rollback signal, or possibly an exception thrown
earlier during the transaction, eventually causes the CPU22 to issue an aborted HW
command. This signals to the RTTM module that the execution of the atomic section has
been aborted. M will reset to state BYPASS.

EARLY_WAIT_TOKEN This state is entered in the exceptional case that a) the transaction
cache overflows or b) the application performs an early commit. The CPU is stalled in
this state.23 The RTTM moduleM tries to acquire the single commit token from the
transaction coordinator. If the commit token is eventually granted toM,M goes into
state EARLY_FLUSH.

If a broadcasted address is in the current read set ofM,M’s transaction is conflicting
with the committing transaction andM will therefore enter state ABORT. Any conflict will
be detected while the commit token is still held by another RTTM module committing a
preceding transaction.

EARLY_FLUSH In EARLY_FLUSH, operations similar to COMMIT are performed. The
CPU remains stalled in state EARLY_FLUSH. The main difference is that the transaction
continues execution upon exiting this state. If an RTTM moduleM has reached state

22The aborted HW command is not issued by the transaction wrapper, but earlier by the code
implementing the exception throwing in order to avoid asynchronous exceptions during exception handling.
Exception handling includes lock unlocking and stack manipulation.

23The CPU waits a) for the current memory access to complete or b) for the early_commit HW
command to finish.

4.2. HARDWARE LAYER 45

EARLY_FLUSH, its current transaction will succeed.24 M holds the single commit token
while in state EARLY_FLUSH and the subsequent state EARLY_COMMIT. M writes the
current write set of the transaction, as tracked through the transaction cache, to the shared
memory. The current write set addresses are also simultaneously broadcasted to all other
RTTM modules, causing any currently conflicting transactions to abort.

After the current write set has been written to the shared memory, a part of the
transaction changes has become visible. The transaction is then continued in state
EARLY_COMMIT.

EARLY_COMMIT An RTTM module continues to hold the commit token while in state
EARLY_COMMIT. The transaction cache is not used any more in this state, as a buffer
overflow might have happened. Instead, all writes are immediately propagated to the
shared memory. The addresses written are also simultaneously broadcasted to all other
RTTM modules and cause any conflicting transactions to abort.

Upon returning normally from a not nested atomic section, the transaction wrapper
issues an end_transaction HW command, triggering a transition to BYPASS and
the release of the commit token. All transaction changes are now visible to all other
transactions and to non-transactional code.

A transaction in state EARLY_COMMIT might still be aborted in an exceptional situ-
ation, either a) if an exception terminating the current transaction is thrown due to a
programming error or b) by the application (using the abort() or retry() software
command). In this cases, the transaction’s changes to the shared memory will not be
rolled back and violate the atomicity of the transaction.

4.2.9 Pipelining
The JOP CPU uses the SimpCon SoC interconnect for memory access. SimpCon is a
fully synchronous point-to-point master-slave connection (see Section 1.4 and page 31).
SimpCon supports pipelined operations [Sch07]. Early restart of the master is supported
by using a rdy_cnt signal driven by the slave. This signal indicates how many cycles
are at most left to finish a read or write access (possibly an unbounded number).

The RTTM module, acting as a SimpCon slave for the CPU (see Figure 4.4 on
page 30), supports moderately pipelined memory accesses. All memory accesses bypass-
ing or accessing the transaction cache span multiple clock cycles in order to support a
high clock frequency. At most two memory accesses and two addresses broadcasted by a
committing transaction are processed concurrently.

Since the interconnect delay between the CPU, the RTTM module and the memory
arbiter is an issue, even memory accesses bypassing the transaction cache are delayed.

24Unless the transaction is manually aborted by the application or by an exception thrown due to a
programming error.

46 CHAPTER 4. IMPLEMENTATION

Reads therefore need two or three cycles more and writes one cycle more than in the
conventional JOP CMP.25 This is no disadvantage since a higher clock frequency is
possible and since worst-case shared memory access times are high with many cores
[Pit09].

In the transaction cache, there is a potential structural hazard when the tags need to be
compared for both a) a memory access and b) to match an asynchronously broadcasted
address against the current read set (indicated by the multiplexer in Figure 4.7 on page 39).
To prevent the CPU from initiating too many memory accesses without having to set
rdy_cnt too high, only SimpCon pipeline level 2 for read and write memory accesses
is provided by the RTTM module. Pipeline level 2 means that the CPU is allowed to
initiate a new memory access only when the rdy_cnt signal is at most 1, i.e. when the
old memory access will be completed in the next cycle. Since the RTTM module sets
the rdy_cnt signal to 2 or higher in the cycle after a memory access start, the CPU is
allowed to issue memory requests at most every 2 cycles. The memory arbiter is also
allowed to broadcast addresses at most every 2 cycles.26

The hazard can then be resolved without affecting the timing of memory accesses by
delaying the matching of broadcasted addresses by 1 cycle in case of a collision. The
restriction of the rate of memory accesses also has the benefit of reducing potential data
hazards, since all memory accesses are separated by more than one cycle.

4.2.10 Memory access classification
An efficient and predictable implementation of the write buffer and read tag memory
requires a fully associative cache. Fully associative caches are expensive and therefore
the read set and write set of a transaction must be small. Memory areas where no conflict
can arise do not need to be included in the read set and write set. If, in addition, changes
to a memory area during a failed transaction can be ignored, there is no need to buffer
modified data.

The Java Virtual Machine (JVM) specification defines runtime data areas [LY99,
Ch. 3.5], some of which can be excluded from the read set and from write buffering. The
JOP core reproduces most of the memory structure of the JVM in a direct way (using
hardware and microcode), which makes the exclusion of memory areas easy. Some
memory areas where no conflicts can happen are listed in Table 4.5 on the facing page,
together with the corresponding JVM runtime data areas. The Method Area and the
per-class/per-interface Runtime Constant Pool are constant in the JOP implementation.

25For a more detailed discussion of the memory access timing differences, see the analysis of worst-case
temporal behavior in Section 6.2.

26The JOP CPU and the used TDMA memory arbiter satisfy these requirements. There is no impact on
performance.

27Arguments to an atomic method invocation executing a not nested transaction must be restored on a
retry if they might have been modified.

4.2. HARDWARE LAYER 47

Memory area JVM runtime data area No
conflicts

Ignore
writes

Implemented

Instructions Method Area X X X
Stack JVM stack X X27 X

Constants Runtime Constant Pool X X %

Object
representation

(Implementation
specific) X X %

Table 4.5: Non-conflicting memory areas

The implementation specific representation of objects, where e.g. the size of an array or
the pointer to the method vector base is saved, will also not change during a transaction
(see [Sch09, Ch. Runtime Data Structures]).28 The runtime constant pool and the object
representation are not yet excluded from the read set. Since these memory areas are
accessed by dedicated microcode blocks, a filtering mechanism to exclude these areas
from the read set could be incorporated into the microcode and for some bytecodes in
the memory interface.29

The JVM specification defines the Java virtual machine stack [LY99, Ch. 3.6] as
thread-private. Each method can only access its own stack frame. JOP holds the stack in
a dedicated CPU-internal memory. Writes to the stack are therefore not buffered during
a transaction. The fact that only atomic methods – as opposed to code blocks – are
transparently supported and the nature of the stack mean that most changes to the stack
during a failed transaction can be ignored and no elements of the stack need to be restored
when rolling back a transaction.30 JOP uses a special form of an instruction cache, a
method cache (see Section 1.3). The method cache is loaded by dedicated hardware,
which clears the tm_cache SimpCon flag.

Since the size of the read set of a transaction should be bounded by static analysis,
the memory addresses which are actually excluded from the read set should correspond
to the addresses ignored by the static analysis.

An alternative would be conflict detection at the object level instead of the memory
word level by tracking accesses to object handles (or caching of objects similar to
[KHR+08]). This could support a bigger read set.

28At least as long as garbage collection during transactions is not supported.
29In the current implementation – which does not support garbage collection – only part of the

memory accesses of the following JVM bytecodes needs to be tracked: getfield, getstatic,
putfield, putstatic; aaload, baload, caload, daload, faload, iaload, laload, saload;
aastore, bastore, castore, dastore, fastore, iastore, lastore, sastore.

30Method arguments are an exception, as they might be modified. Method arguments are – if needed –
saved and restored by the software transaction wrapper (see Section 4.3.1).

48 CHAPTER 4. IMPLEMENTATION

4.2.11 Summary of hardware integration
The changes to the JOP CMP hardware consist mainly in the addition of the RTTM
module and the transaction coordinator and changes to the memory arbiter. The in-
terface of the RTTM hardware to the conventional part of the CMP consists of those
interfaces of the RTTM hardware which interact directly with a non-RTTM component
(see Figure 4.10). It consists of the SimpCon interconnects to (i) CPU and (ii) shared
memory for memory accesses, (iii) the (memory-mapped) hardware commands and
(iv) the rollback signal which signals a detected conflict with a committing transaction
to the CPU.

On the SimpCon interconnect (i), the CPU sets the tm_cache flag as described in
the previous section. The semantics of the other lines of (i) as well as the semantics of
SimpCon interconnect (ii) remains unchanged.

CPU A

RTTM module A

Memory arbiter

Hardware
commands

SimpCon
mem. IF

SimpCon
mem. IF Rollback

Master

Slave

Master

Slave

SimpCon
mem. IF

Shared memory

Master

Slave

Figure 4.10: Interfaces of an RTTM module and the memory arbiter to the conventional
part of the CMP

The abort of transactions in response to the rollback signal is implemented us-
ing the Java exception handling mechanism which executes on the CPU. The throw-
ing of some conventional Java exceptions, such as the StackOverflowError and the

4.3. SOFTWARE LAYER 49

NullPointerException, is also triggered by hardware mechanisms. A mechanism
to raise exceptions by hardware is therefore available [Sch08, p. 271]. Due to the
asynchrony of conflict detection, an exception may be thrown concurrently or nearly
concurrently by the RTTM module and by CPU hardware mechanisms. The hardware
exception generation mechanism is adapted to always give priority to the exception
generated by the RTTM module.

In addition, signals for inter-CPU synchronization are registered to enhance perfor-
mance. There are no further modifications to the conventional CMP. Changes of the
temporal behavior will be discussed in Section 6.2.

Restrictions on processor behavior The current RTTM implementation poses some
restrictions on the behavior of the processor:

• To avoid structural hazards: the CPU memory SimpCon interconnect has at most
pipeline level 2 (see Section 4.2.9) and the memory arbiter broadcasts addresses at
most every 2 cycles.

• To guarantee conflict detection: the memory arbiter and the shared memory serial-
ize memory accesses and the update of the read tag memory and broadcasts are
fast enough for conflict detection (see page 33).

4.3 Software layer
The hardware layer of the RTTM implementation implements a simplified model of
transactions corresponding to the state machine on page 41. The hardware does not
handle the control flow associated with transaction abort, the retry of a transaction or
transaction nesting. The role of the software layer is mainly to transparently start, abort
and retry transactions, to initiate commits and to support (flattened) nested transactions.31

The behavior of Java programs [GJSB05] is thoroughly specified by the Java Virtual
Machine (JVM) [LY99]. The JVM may also be implemented in hardware (e.g. [MO98,
CW05]). Such hardware directly executes the JVM instruction set, called bytecode.
JOP, the prototype implementation platform for RTTM, is a time-predictable JVM in
hardware.

The RTTM implementation relies on Java language features (exception handling)
and some of the strong guarantees and restrictions of Java and the JVM (known and
limited instruction set, e.g. only method-local jumps). This is uncommon for a hardware
TM32 [LR07, Ch. 4.1] but reduces hardware resource consumption and simplifies the
implementation.

31Some small changes to the runtime system are also necessary, as will be discussed in Section 4.3.4.
32There are multiple STMs which use language features, e.g. [HMPJH05].

50 CHAPTER 4. IMPLEMENTATION

4.3.1 The transaction wrapper

The transaction wrapper implements most of the software functionality of RTTM. The
transaction wrapper encloses the original method body of atomic methods, but retains the
original method signature. It starts, aborts and retries transactions, initiates commits and
supports (flattened) nested transactions, i.e. is mostly glue code. The transaction wrapper
consists of JVM bytecode. It is added at link time.

The transaction wrapper catches any exceptions thrown in the original method body
and processes them appropriately. In a not nested transaction, this try-catch block
is executed in a loop until the transaction has committed or has been aborted. The
behavior of the transaction wrapper is different if the transaction is nested. Upon method
invocation, the transaction wrapper determines whether it is executing a nested transaction
by reading a CPU-local boolean inTransaction.

Not nested transactions In the method invocation corresponding to a not nested
transaction, the transaction wrapper issues hardware commands to the RTTM module.
The RTTM module stalls the CPU while executing some hardware commands and during
memory accesses which overflow the transaction cache (see state machine on page 41).
The RTTM module signals conflicts to the transaction wrapper by throwing a Java
RetryException.

A conceptual model of the transaction wrapper, which assumes that the transaction
is not nested, is on the facing page. First, the transaction wrapper performs some
initializations. The method arguments are copied to dedicated local variables if they
might be modified inside the atomic method.33 Interrupts are disabled. The transaction
wrapper then executes the original method body in a loop until the transaction a) commits
or b) is explicitly aborted by the user or c) a conventional exception is thrown. In the loop
body, the transaction wrapper first signals the RTTM module to start a transaction. Then
the original method body is executed. If no exception was thrown in the original method
body, the transaction wrapper signals the RTTM module to try to commit. The CPU will
then block until a) the commit has succeeded or b) a conflict with a preceding transaction
has been detected. In case b), the RTTM module did never acquire the commit token.
If the commit succeeded, the transaction wrapper re-enables the interrupts. Then the
method returns normally.

The transaction fails if an exception was raised while executing a) the original method
body, b) any methods invoked by it or c) the END_TRANSACTION hardware command.
The transaction is then rolled back. Depending on the thrown exception, the transaction
is retried or the exception is propagated to the invoker of the transaction. If a conflict
was detected or the programmer invoked the retry() software command, the method
arguments are restored, if they might have been modified, and the loop body is executed

33It is determined at link time if any method arguments might be modified in the original method body.

4.3. SOFTWARE LAYER 51

ResultType notNestedTransactionWrapper(int arg1, Object arg2) {
int arg1Copy = arg1;
Object arg2Copy = arg2;

Native.wrMem(0, IO_INTERRUPT_ENABLE);
ResultType result;

while (true) {
Native.wrMem(START_TRANSACTION, IO_HW_COMMAND);

try {
// original atomic method body here,
// with returns redirected to next statement

Native.wrMem(END_TRANSACTION, IO_HW_COMMAND); // commit
} catch (Exception e) {
// exception handling issues ABORTED HW command
if (e instanceof RetryException) {
arg1 = arg1Copy;
arg2 = arg2Copy;
continue;
} else {
Native.wrMem(1, IO_INTERRUPT_ENABLE);
throw e;
}
}
break;
}

Native.wrMem(1, IO_INTERRUPT_ENABLE);
return result;
}

Listing 4.3: Conceptual transaction wrapper for not nested transaction

52 CHAPTER 4. IMPLEMENTATION

again. If a conventional exception was raised due to a programming error or if the
programmer invoked abort(), the exception is propagated to the invoking method.

Nested transactions are transparent to the hardware layer. The implementation only
supports flattened nested transactions: in a nested transaction, the transaction wrapper
does not perform a commit and only rethrows exceptions. The functionality of the nesting
count of transactions is replaced by a CPU-local and a method-local variable.34 The
transaction wrappers maintain a CPU-local boolean inTransaction indicating whether
the current thread is executing a transaction. Each invocation of an atomic method has a
method-local boolean isNotNestedTransaction (added by the transaction wrapper)
indicating whether the invocation corresponds to a not nested transaction. isNot-
NestedTransaction is deduced from inTransaction on method invocation. Java
code corresponding to the entire generated transaction wrapper is shown in Listing B.1
on page 75 in the appendix.

4.3.2 Transaction rollback
Transactions are rolled back by a Java exception. An exception may be thrown due to the
following causes:

• the RTTM module detected a conflict to a committing transaction or

• a programming error or

• an explicit transaction retry/abort by the application.35

If a transaction is rolled back, all its changes that violate failure atomicity must be
undone. A failed transaction might have affected (i) CPU internal state, (ii) the RTTM
module and (iii) the lock implementation (for a synchronized statement or method).
The shared memory is not modified by a failed transaction.36

The changes are undone as follows: The transaction wrapper resets the RTTM mod-
ule state (ii) by issuing an aborted hardware command. The RTTM module invalidates
the transaction cache and goes to the initial BYPASS state. Locks acquired during a
transaction (iii) are unlocked during the rollback of the transaction. Since the rollback
uses the Java exception handling mechanism and the exception handling mechanism

34Maintaining the nesting count is made difficult by race conditions between CPU and RTTM module:
the RTTM module could initiate a rollback of the transaction immediately before or after the nesting count
is modified.

35Zombie transactions seeing an inconsistent global state cannot cause an exception due to e.g. a
division by zero or a null pointer dereference, since they are aborted early enough (after one executed
bytecode).

36Unless an early commit was performed.

4.3. SOFTWARE LAYER 53

already performs lock unlocking [LY99, Ch. 3.11.11], no changes are required for lock
support. The CPU internal state (i) comprises a) the stack and b) special purpose registers
(program counter, several pointers to the stack and the current method and class).37 Since
the rollback uses the Java exception handling mechanism, no changes to restore the
special purpose registers are necessary.

Stack rollback The JVM specification defines the JVM stack [LY99, Ch. 3.6] as thread-
private. The (JVM) stack holds frames created on a method invocation and destroyed
on method invocation completion. A frame holds local variables (including method
arguments), the operand stack38 and the saved context of the invoking method.39

JOP holds the stack in a special purpose memory. The nature of the stack means that
most changes to the stack during a failed transaction can be ignored. Once a transaction is
being rolled back, frames created during a transaction only need to support abrupt method
completion through an exception. As only atomic methods, instead of code blocks, are
transparently supported by the implementation, changes to most local variables can be
ignored, as a retry of the transaction will re-initialize these local variables. Method
arguments are an exception, since they are part of the local variables and therefore
mutable in the JVM. Method arguments are – if needed – saved and restored by the
transaction wrapper.

Asynchronous exception handling When the RTTM module detects a conflict, it ini-
tiates a transaction retry by setting the rollback signal. In response, the CPU generates
a Java RetryException. The conflict detection is asynchronous to the execution of in-
structions on the CPU. In JOP, hardware generated exceptions replace the JVM bytecode
executed next. An asynchronous exception thrown due to a detected conflict is therefore
still precise. As for any other exception, the exception handling mechanism will issue
the hardware command aborted to quit the hardware transaction.40

4.3.3 Zombie bytecodes
During a commit, an RTTM transaction S updates the shared memory in place. This
can cause a conflicting transaction Z to observe inconsistent data, i.e. the isolation
property (see page 2) is violated forZ. The occurrence of inconsistencies is illustrated in

37Since the JVM is stack-based, there are relatively few registers whose state has to be kept between
executed bytecodes.

38The JVM is a stack-oriented machine.
39See [Sch09, Section “Runtime Data Structures”] for details about the stack implementation in JOP.
40Any code following the hardware command aborted will therefore not get interrupted. This

exception handling code includes lock unlocking and stack manipulation. aborted itself may be issued
twice if another exception is already being thrown when a second exception is thrown due to a detected
conflict.

54 CHAPTER 4. IMPLEMENTATION

Figure 4.11. This inconsistencies may cause incorrect behavior of the zombie transaction
Z. The RTTM module executingZ will notice the conflict during the commit of S (see
page 5) and retry the transaction.

Transaction
running

Read A2

Write A1
to SHM

Write A2
to SHM

No
conflict

Conflict
detected

Rollback

Transaction Z

Transaction S

Commit

Zombie

Read A1

A1 and A2
might be

inconsistent

Transaction
running

Start
commit

Zombie
bytecode end

Transaction stalled
Transaction

running

Transaction
becomes
zombie

transaction

Transaction
becomes
doomed

transaction

Exception is
thrown

Figure 4.11: TransactionZ reads mutually inconsistent values of A1 and A2 and therefore
becomes a zombie transaction.

In some hardware TM systems and in some software TM systems which are targeting
safe languages such as Java, zombie transactions may also occur [LR07]. Incorrect
behavior such as invalid memory accesses, exceptions, infinite loops or infinite recursions
can be contained in such systems [LR07]. STMs can rely on closed memory systems and
managed runtime environments [DSS06] and HTMs use computer architectural means.

The RTTM implementation, however, needs to restrict the behavior of a zombie
transaction. Some functionality, such as garbage collection and I/O, is not transparently
supported inside a transaction. The control flow must remain consistent, since the Java
exception handling mechanism is used to roll back a transaction. The following data
areas must not appear inconsistent during and after a zombie transaction:

• Method invocation contexts (JOP-specific, see [Sch09, Section “Runtime Data
Structures”])

• Other JVM internal data structures (object structure, array structure, class structure
[Sch09, Section “Runtime Data Structures”]) to avoid corrupting processor state
or corrupting memory

• Local variables used by the transaction wrapper

No garbage collection and object allocation is allowed while a (zombie) transaction
is running. This assures that object references dereferenced by a (zombie) transaction

4.3. SOFTWARE LAYER 55

will point to a consistent structure. A committing transaction therefore updates only
instance/class fields and the components of arrays in the shared memory.

Zombie behavior The memory arbiter providing access to the shared memory nor-
mally follows a TDMA scheduling strategy to make memory accesses time-predictable.
But when a processor C has the commit token, all slots of other processors which are
executing a transaction are reallocated to C. Other processors executing a transaction
are then stalled on a shared memory access. This implicates that no other processor can
observe inconsistent states while C has the commit token. An RTTM moduleDm will
also detect a conflict of its transaction to the committing transaction while C has the
commit token. Dm will then initiate the throwing of a RetryException on its processor
Dp.

This exception is thrown similar to conventional hardware-generated exceptions by
replacing the JVM bytecode executed next. Since the exception throwing is initiated
during C’s commit, at most one bytecode will observe inconsistent state, reducing the
zombie phase of a transaction to a zombie bytecode. The control flow will therefore
not be modified by a zombie transaction. This implicates that code not supported in
a transaction, such as I/O, will not be executed due to a zombie transaction. Since
bytecodes accessing Java objects (i.e. mutable shared memory) take their arguments
from the operand stack and the operations performed by a single bytecode41 are limited,
a zombie bytecode will not even throw an exception due to the zombie inconsistencies.
The RetryException will supersede any exception which is about to be thrown.

Java bytecodes are implemented as microcode sequences. The microcode control
flow is not corrupted due to a zombie transaction.42 Only the double and long data
types occupy multiple data words in the RTTM implementation and the values are not
used in the bytecodes in which they are loaded onto the operand stack. References
to local variables are hardcoded in the bytecodes. The zombie containment of shared
memory accesses is provided by the RTTM hardware. During state TRANSACTION, the
transaction cache buffers any writes to the shared memory. During state ABORT, all writes
to the shared memory are discarded. These are the only possible states during a zombie
transaction.

We think that the restriction of the zombie transaction to a single instruction would
also enable the use of an unsafe language for an RTTM implementation. With the
reallocating arbitration strategy, an early commit stalls not conflicting transactions which
are not yet waiting for the commit token. If the arbiter did not reallocate slots of other
transactions during a commit, the zombie phase of transactions could span multiple

41Some complex bytecodes are implemented using a subset of simpler bytecodes. We only need to
consider the simpler bytecodes then.

42This follows immediately from the observations about microcode branches in [Sch09, Section “Mi-
crocode Path Analysis”], but more generally also because only instance/class fields and components of
arrays are updated.

56 CHAPTER 4. IMPLEMENTATION

Modification Explanation

When throwing an exception,
issue hardware command
aborted

Acknowledge transaction abort due to detected
conflict to RTTM module; abort transaction on
conventional exception. Prevent RTTM module
from throwing exception while exception han-
dling mechanism updates JVM internals non-
atomically.

Bytecodes putfield,
putstatic, aastore:
Remove garbage collection
support

Garbage collection support might lead to dead-
locks when interfering with early commits

Table 4.6: Modifications to JOP runtime system

bytecodes. This might lead to corrupted control flow and wrong method invocations,
which would be a problem since not all functionality is supported inside a transaction. It
is possible to tolerate zombie transactions executing more than a single bytecode while
seeing inconsistent state, but this requires the code reachable with corrupted control flow
from a transaction to be appropriately limited (no I/O, no object allocations. . .).

4.3.4 Summary of runtime system integration
The (small) modifications to the JOP runtime system are summarized in Table 4.6. In
addition, some RTTM-specific classes, exceptions and constants were added.43

4.4 Link time transformations
The original bodies of atomic methods are enclosed by a transaction wrapper at link time.
The Byte Code Engineering Library (BCEL)44 is used to add a header and footer similar
to Listing B.1 on page 75 to the original method body and redirect return statements
in the original method body. The method signature is retained. Non-atomic methods
invoked by an atomic method do not need to be modified.

43See file readme-rttm.txt in the source code.
44See http://jakarta.apache.org/bcel/.

http://jakarta.apache.org/bcel/

CHAPTER 5
Programming for RTTM

Following [LR07, p. 15], transactional memory is, although often presented in the form
of a software library or processor instructions, fundamentally a programming abstraction
and should serve its users, the programmers. Boehm [Boe09] argues that the programmer
should see the synchronization operations just as locks and that there should be no other
constructs exposing properties of the implementation. In RTTM, the basic functionality
is provided by the @atomic method annotation alone. Although the RTTM semantics
does not closely correspond to that of a single global lock (see Section 3.1), I believe it is
sufficiently intuitive in small transactions used for synchronization. But the programming
style must also consider the limitation of the read set size and write set size of transactions.
Transgressions of these maxima as well as I/O in a transaction will degrade performance.
In the current implementation, there are also limitations to code executing in a transaction,
which will be discussed in this chapter.

Existing lock-based programs cannot in general be directly translated to transac-
tion-based RTTM programs. This is because of the differing semantics and because
there are programs where different threads might need to reside concurrently in critical
sections in order to make progress, while transactions are serializable [BLM05]. But it is
questionable if a code section which requires such concurrency would be converted into
an atomic section, which should have a bound on its WCET. RTTM can also be viewed
as an extension of the compare-and-swap instruction “to simplify the implementation of
non-blocking communication algorithms” [SBV10b].

As a hardware transactional memory, RTTM requires a processor with added RTTM
hardware, which is not a big issue as long as reprogrammable FPGAs are used for a
research prototype. The changes to the conventional JOP design flow are small.1

1See file readme-rttm.txt in the source code.

57

58 CHAPTER 5. PROGRAMMING FOR RTTM

5.1 Recommended programming style

The limited size of the read set and write set of a transaction must be considered by the
programmer, since an overflow of the transaction cache causes an early commit. Simple
accesses to data structures such as bounded queues, linked lists and balanced trees have
a bounded read set and write set. A practical way to reduce the read set of a transaction
is to pass data as arguments to an atomic method, since the stack is excluded from the
read set.2

The read set and write set size as well as potential conflicts between transactions
should be determined using static analysis. With data structures that might be reallocated,
the read set and write set size cannot be bounded [SBV10b, Section 5.2]. If big runtime
libraries are used or programs are big, the analysis of potential conflicts might become
computationally infeasible [SBV10b, Section 5.2].3

Interaction of transactional and non-transactional code If transactions are only
used to exchange data over the shared memory and access to each memory location is
either entirely transactional or entirely non-transactional, RTTM behavior is intuitive.4

When using bounded queues, all access to the data in the queues should be performed in
a transaction. When using linked lists, the data handoff idiom [GMP06] (see Table 3.2
on page 19) can be used to access data only outside of transactions.

When a memory address is accessed by both transactional and non-transactional
code, nonintuitive behavior is possible (see semantics in Section 3.1). Two basic patterns
are privatization and publication, which convert “objects” between private and shared
state. RTTM provides privatization safety. This means that changes by a transaction will
be seen by all non-transactional code following a succeeding transaction.

Publication safety is not supported. This means that if a memory location was
modified in a task before a transaction t1, a succeeding transaction t2 might not see the
update of the memory location (see Table 3.5 on page 20). Publication works if the
access to the publicized data is preceded by a condition variable set in t1 (see Table 3.6
on page 21).

If transactions need to be executed in a specific order, a transaction tb can wait for
another transaction ta by reading a condition variable (to be set by ta) in a loop. tb will
then automatically retry once ta commits. Another possibility is to use the retry()
statement (see page 24).

2Modifications to data which is only read before the transaction will not be detected during the
transaction.

3A more detailed discussion of static analysis is found in [SBV10b].
4In this case, the program is segregated, and weak isolation corresponds to strong isolation [MBS+08].

5.2. LIMITATIONS 59

5.2 Limitations
The RTTM implementation imposes limits on code running inside and outside of trans-
actions. Garbage collection is not supported while any transaction is running. Any
functionality potentially involving garbage collection, i.e. direct or indirect use of the
new keyword, is therefore unavailable while any transaction is running. This is because a
garbage collector might reallocate an object seen by a transaction and corrupt the internal
representation of the object (e.g. the size of an array, potentially leading to a corrupted
state).

In the current implementation, support for exceptions inside a transaction is very
limited. Exceptions abort rather than commit a transaction.5 try-catch-finally
statements are not yet supported inside a transaction, since this is complicated by the
(ab)use of the exception handling mechanism for transaction rollback.
synchronized statements or methods are allowed inside a transaction, as long as

the transaction does not perform an early commit. Failing transactions will also acquire
locks and therefore impair performance. If an early commit is performed before the
synchronized statement, the transaction may deadlock with another transaction inside
a synchronized statement. Due to the speculative execution of transactions, wait()
and notify() are not allowed in a transaction.

Once a transaction performing an early commit has obtained the commit token,6

its changes will be written to the shared memory and cannot be undone on a rollback.
Such a rollback might only happen in exceptional situations (see page 45). The RTTM
implementation does not automatically try to do an early commit before an I/O operation.
Instead, the early commit must be performed by the program. Access to special memory
areas (i.e. flash) is not supported inside transactions.

Zombie transactions are very restricted in their behavior (as discussed in Section 4.3.3)
and the RTTM programmer does not need to consider their occurrence.

5.3 Testing and debugging
Testing and debugging of RTTM programs poses some theoretical and practical difficul-
ties, as does the testing and debugging of concurrent systems in general [HcTlH95]. It
might be difficult to reproduce RTTM application executions, since the temporal ordering
of transactions may vary if there are any variations in the temporal behavior of the
application.

A transaction might fail due to a bug in two ways: a) unintended transactional shared
memory accesses can lead to additional detected conflicts and retries (but they should be

5Thrown exceptions should not contain any data, since the data might have been invalidated by the
transaction rollback.

6Such a transaction is therefore not a doomed transaction.

60 CHAPTER 5. PROGRAMMING FOR RTTM

detected by static analysis) or b) an exception thrown during the transaction is propagated
outside of the transaction. Due to a program bug, a transaction might also overflow the
read tag memory/write buffer and acquire the commit token early (this should again be
detected by static analysis). If the transaction fails during an early commit, all its writes
up to now have already become visible in the shared memory. Unintended invocations of
retry(), abort() and earlyCommit() might also cause unwanted behavior.

The RTTM hardware can optionally gather basic per-CPU statistics, such as trans-
action commit and retry count and the maximum read set and write set size.7 As a
hardware TM system, an RTTM implementation would become more complex if it
provided TM-specific debugging functionality [LM06].

The current version of JOP does not support a debugger. Common debugger func-
tionality such as breakpoints is problematic inside transactions, since a transaction may
abort [LM06] or see inconsistent states. As proposed in [LM06], a breakpoint should
probably be delayed until the transaction is guaranteed to observe consistent data by
obtaining the commit token. Similar to other TM systems [LM06], RTTM can be used to
get atomic snapshots of multiple variables while the system is running by reading them
inside a single transaction (and can also set multiple variables in an atomic operation).

7See class rttm.Diagnostics.

CHAPTER 6
Evaluation

This chapter contains a first evaluation of the RTTM implementation. The costs and the
performance of the RTTM hardware are analyzed. Differences of the worst-case behavior
w.r.t. the conventional JOP CMP are discussed. Last, the suitability of Java/JOP for a
resource-efficient implementation of RTTM is discussed.

6.1 Hardware resource consumption and performance
The resource consumption of the RTTM prototype was determined by compiling for
an Altera Cyclone II EP2C70F896C6 FPGA using Altera Quartus II (see Appendix D).
The most relevant characteristics of this FPGA were introduced in Section 4.2.3. For
this target, a single core minimal version of JOP has a maximum clock frequency (Fmax)
of 107 MHz.1 This maximum clock frequency is a guiding value which the RTTM
implementation should try to achieve. The minimal JOP core requires ∼3000 logic cells
(LCs). Table 6.1 on the following page lists more reference values of the implementation
platform.

We measured the resource consumption (used logic cells and memory blocks) of
selected components and the maximum clock frequency.2 The target Fmax was 100 MHz.
The size of the transaction cache tag memory (corresponding to the size of the union of
the read set and write set) and the number of cores was varied. Components of interest
are the CPU-local RTTM modules and the transaction cache tag memory contained in the
RTTM modules. Other RTTM-specific hardware does not consume significant resources
or limit the maximum frequency.

1In the source code accessible as described in Appendix C, these optimizations are found in revision
7cf39dd75a29dd0d370737dec53cdd9d72f67f7b.

2The maximum clock frequency was estimated using the Classic Timing Analysis of Quartus II.

61

62 CHAPTER 6. EVALUATION

FPGA capacity Shared mem. Minimal JOP core

LCs Mem. blocks Mem. bits Addr. width LCs Mem. bits Fmax

68416 250 1024000 19 bits ∼3000 ∼65000 107 MHz

Table 6.1: Implementation platform reference values

Tag memory RTTM other RTTM memory Ratio RTTM/Total Fmax

Words LCs LCs ratio LCs KiB Mem. blocks LCs Mem. blocks MHz

16 440 1 540 0.1 4 23% 19% 100
32 830 1.9 560 0.21 4 30% 19% 102
64 1630 3.7 560 0.41 4 41% 19% 95
128 3210 7.3 580 0.83 4 54% 19% 88
256 6390 14.6 580 1.66 6 69% 26% 81
512 12680 29 580 3.31 9 81% 35% 73

Table 6.2: Scaling with tag memory size on a quad-core. All absolute resource numbers
are per-CPU.

Tag memory sizes up to 64 words do not limit the maximum clock frequency much
(see Table 6.2). Higher clock frequencies for big tag memories could be supported by
expanding the hit detection to more than one cycle. The tag memory does not need many
logic cells more than the minimum implied by the memory requirements (e.g. 1630 logic
cells instead of 1216 logic cells; cf. column 2 of Table 6.2 and page 34). The ratio of the
resources consumed by the RTTM hardware to the total consumed resources is depicted
in columns 7 and 8. For tag memory sizes up to 64 words, the RTTM hardware does not
dominate the hardware resource consumption. 32 words suffice to atomically try to move
an item from a linked list to another using a simple object-oriented implementation.3

The resources used for the tag memory grow linearly with the number of words, as can
be seen from the relative size of the tag memory in column 3. The number of logic
cells used for other RTTM hardware is nearly constant (column 4). While an RTTM
implementation needs few memory bits to cache the data and the write set (column 5)
– usually a single memory block for each one suffices – it also uses dedicated memory
blocks to independently set the read and dirty bits (column 6). The RTTM hardware
still consumes a bigger fraction of the logic cells available in the FPGA than of the
memory blocks available (not depicted).

The horizontal scalability of the design is also satisfying, as the maximum clock

3See rttm.tests.LinkedListContention.snatch() and rttm.common.LinkedList in the
source code. Further examples of read set and write set sizes are found in [SBV10b, Muc09].

6.2. WORST-CASE TEMPORAL BEHAVIOR 63

Cores Fmax (MHz) LCs used Mem. blocks used

2 102 16% 17%
4 95 31% 34%
6 97 47% 50%
8 96 63% 67%

10 96 78% 84%
12 91 93% 100%

Table 6.3: Scaling with # of cores (with a tag memory size of 64 words)

frequency does not drop much even with a high number of cores and a corresponding
high resource utilization (see Table 6.3). As the expensive part of the RTTM hardware is
CPU-local, the RTTM/total resource consumption ratio does not shift significantly with
the number of cores.

JOP CMP performance enhancements In the JOP CMP supporting RTTM, an
RTTM module is inserted into each point-to-point SimpCon connection from a CPU
to the memory arbiter. By registering all SimpCon signals in the RTTM module, a
significant speedup is achieved compared to the non-RTTM JOP CMP using the TDMA
arbiter, especially if a high number of cores is used. I think that the non-RTTM JOP
CMP could also benefit from an additional stage in the TDMA memory arbiter, since
the higher operating frequency should easily compensate for 1 or 2 additional cycles per
uncached memory access.4

6.2 Worst-case temporal behavior
JOP is designed to make worst-case execution time (WCET) analysis easy. The WCET
analysis of JOP is described in [SPPH10]. It consists of microcode WCET analysis
and Java application WCET analysis. The microcode WCET analysis results in WCET
bounds for individual bytecodes. It needs to be performed only once for a particular
processor (hardware/microcode) version. Remarkably, there are no timing dependencies
between bytecodes. Therefore it is easy to calculate the WCET of basic blocks.5 Java
application WCET analysis is performed at the bytecode level for application code. It
is tool-based and requires some annotations at the source code level to bound complex
loops.

4The signals for inter-CPU synchronization were also registered in the RTTM implementation. I think
that this leads to a looser coupling of the CPUs with respect to their placement on the FPGA.

5In [SPPH10], basic blocks are sequences of instructions without any jumps or jump targets.

64 CHAPTER 6. EVALUATION

In the CMP version of JOP [Pit09], the main memory is accessed through a memory
arbiter; WCET bounds for bytecodes accessing the main memory differ from the single
core version. WCET analysis is extended to the JOP CMP using a time division multiple
access (TDMA) memory arbitration policy in [Pit09, Ch. 5], where the WCET of
bytecodes which access the main memory is bounded.

For this preliminary discussion, we assume that only the basic @atomic programming
interface is used. Transactions are aborted if they conflict with a committing transaction
and are (re-)executed until they commit. We also assume that no early commits occur –
which should be assured through static analysis – and that each memory access performed
by the arbiter takes at least 4 cycles.

CPU 0 CPU 1

RTTM module 0 RTTM module 1

Memory arbiter Transaction
coordinator

SimpCon SimpCon

SimpCon
SimpCon

Master Master

Master Master

Slave Slave

Slave Grant token

Request
token

Request
token

Figure 6.1: Components and interfaces which affect temporal behavior

Memory accesses The insertion of the RTTM module between CPU and memory
arbiter (see Figure 6.1) and the addition of the transaction cache change the timing of
memory accesses. The memory accesses use the synchronous SimpCon interconnect (see
Section 1.4). Of particular interest for the worst-case behavior is the rdy_cnt SimpCon
signal. It indicates the number of cycles at most left until the memory access is finished
(3 ≡ unbounded) and determines when the CPU restarts execution as a memory access is
finishing.

6.2. WORST-CASE TEMPORAL BEHAVIOR 65

Compared to [Pit09, Section 5.4.4], the analysis of non-transactional memory ac-
cesses6 needs to be modified as follows: Insert one additional cycle before each memory
access is scheduled on the arbiter. In the case of a read access, insert another additional
cycle after each memory access finishes (i.e. rdy_cnt = 0) on the arbiter.7 In the case
of a write access, the rdy_cnt signal generated by the RTTM module for the CPU is
derived from the memory arbiter to RTTM module signal as depicted in Table 6.4.

Memory arbiter to RTTM module 3 2 1 0
RTTM module to CPU 3 3 0 0

Table 6.4: During a non-transactional write access, rdy_cnt values to the CPU are
derived from rdy_cnt values to the RTTM module.8

For transactional memory accesses:9 if a read access is a transaction cache miss,
insert two additional cycles before each memory access is scheduled on the arbiter and
insert another additional cycle after each memory access finishes. In this case, the RTTM
module delays the rdy_cnt signal set by the memory arbiter for one cycle. For each
memory location in the read set, there is at most one miss during a hardware transaction.
If a read access is a transaction cache hit, 4 cycles are required to complete the access
and the sequence of rdy_cnt values supplied by the RTTM module to the CPU is X,10

3, 1, 0. In the case of a transactional write access, 4 cycles are required to complete the
access and the rdy_cnt values are also X, 3, 1, 0.

To calculate the WCET of bytecodes, this information should be integrated into the
algorithm outlined in Listing 5.1 in [Pit09]. If the memory controller of the CPU would
normally restart during rdy_cnt = 2, the possible absence of this value needs to be
accounted for in the WCET analysis. There is also an assumption regarding the SimpCon
interconnect between RTTM module and memory arbiter: the memory arbiter generates
a rdy_cnt sequence passing through all rdy_cnt values smaller than 3, i.e. X, (3, . . . ,
3,) 2, 1, 0 (so that the RTTM module can react to a finishing memory access without
delay).11

The RTTM hardware commands (see page 31) are translated to the implementation-
specific bytecode jopsys_wrmem at link time. This bytecode directly writes to the

6Memory accesses which are executed in a state other than TRANSACTION or with the tm_cache flag
cleared.

7The RTTM module generates the following sequence of rdy_cnt values: X (not yet valid), 3, . . . , 3,
2, 1, 0.

8The rdy_cnt signal generated by the RTTM module for the CPU is allowed to run ahead of the
rdy_cnt signal generated by the memory arbiter for the RTTM module because the next memory access
will be delayed anyway.

9Memory accesses which are executed in state TRANSACTION with the tm_cache flag set.
10Since SimpCon is a synchronous interconnect, rdy_cnt is not yet valid (X) during the cycle in which

the memory access is started.
11This assumption is satisfied in the current implementation.

66 CHAPTER 6. EVALUATION

specified memory address.12 The RTTM module intercepts these memory accesses. The
execution time of jopsys_wrmem depends on the hardware command:

• start_transaction and aborted take 7 cycles.

• The duration of end_transaction and early_commit depends on how long it
takes to acquire the commit token or detect a conflict.

During a commit, each element of the write set is written to the shared memory once.
The RTTM module issues each write one cycle after the previous write finishes (with
rdy_cnt = 0). The first write is issued 4 cycles after the RTTM module has received the
commit token. When the memory arbiter finishes the last write, the RTTM module will
return rdy_cnt 0 in the following cycle.

Interference of commits There is also a timing difference in the behavior of the
modified TDMA memory arbiter (see Section 4.2.2) w.r.t. the conventional TDMA
memory arbiter analyzed in [Pit09]: while the transaction coordinator has granted the
commit token to an RTTM module, time slots of CPUs executing a transaction might be
reallocated to the committing CPU, i.e. all read memory accesses of CPUs executing a
transaction might be stalled by the memory arbiter.

The registering of signals for inter-CPU synchronization causes lock allocation and
a CMP synchronization signal to be delayed by one cycle compared to the hitherto
implementation.13

6.3 Discussion
Next, we discuss how features of Java and JOP enable a simple and more resource-
efficient implementation of RTTM.

Benefits of using Java Java and the JVM have some characteristics which facilitate the
implementation of RTTM. The Java exception handling mechanism can be used to roll
back transactions. The memory model makes it possible to exclude often-used memory
locations such as the stack from the read set and write set. Because the instruction set
of the JVM does not contain difficult to analyze instructions that are used in unsafe
environments (such as non-local jumps), transformations can be performed at link time
(and a standard Java compiler can be used). Link-time modification of transactions is easy

12The memory address and value are taken from the operand stack.
13The described signals use the port sync_out_array in cmpsync.vhd in the source code.

6.3. DISCUSSION 67

for the bytecode instruction set.14 It would be straightforward to generate a customized
transaction wrapper for each transaction which leaves out unnecessary operations, such
as the handling of nested transactions. The implementation does not rely on the memory
safety of Java, since the behavior of zombie transactions is restricted by other means.

Using Java also eases the tool-based static analysis of the read set and write set size
and of conflicts among transactions [SBV10b].

Suitability of JOP CMP RTTM is nearly transparently integrated into the JOP CMP
by inserting the RTTM module in the individual SimpCon interconnects of CPUs and
memory arbiter. In the core, no structural changes were required.15 The implementation
of a part of RTTM in software also supports this transparency. I think it is also beneficial
to use a hardware implementation of the JVM, which directly executes Java bytecode,
since it is relatively cheap to distinguish different types of memory accesses in hardware,
some of which can be excluded from the read set. The JOP architecture also contains
dedicated memories for the stack and the method cache, both of which can be excluded
from the read set and from write buffering.

Implementation limitations The RTTM implementation is a research prototype. I
think that the restriction of (transparent) atomic sections to entire methods – instead of
code blocks – might lead to fragmentation of code (or to transactions which have a big
read set/write set). The restriction to atomic methods also leads to unnecessary method
invocations. Method invocations are also associated with a transaction retry.16

14There are multiple frameworks for analyzing and modifying Java class files, which contain the
bytecode instructions. The JOP build toolchain uses the Byte Code Engineering Library (BCEL, see
http://jakarta.apache.org/bcel/).

15See Section 4.2.11.
16The method invocations are com.jopdesign.sys.JVMHelp.except() and com.jopdesign.-

sys.JVMHelp.handleException() and com.jopdesign.sys.JVM.f_athrow().

http://jakarta.apache.org/bcel/

CHAPTER 7
Conclusion

Real-time transactional memory (RTTM) is the first transactional memory system in-
tended for hard real-time systems running on chip multiprocessors (CMPs). In this
thesis, RTTM was implemented on the JOP CMP, which is a Java Virtual Machine
(JVM) implemented in hardware. A medium-size, low-cost FPGA such as the Altera
Cyclone II EP2C70 can implement a 12-core version of JOP with support for RTTM.
This configuration consumes almost all available resources while still running at 85%
of the single core speed. A fully associative tag memory is necessary for predictably
tracking addresses read and written in a transaction. This tag memory can apparently
not be implemented efficiently in an FPGA and consumes most of the RTTM-specific
hardware. The operating frequency is not significantly limited by a big tag memory.
Using a tag memory tracking 64 words, transactions of moderate complexity can be
implemented. Thus we conclude that the implementation of RTTM on FPGAs is feasible
[SH10]. The relatively high hardware requirements for the fully associative tag memory
are however a drawback of RTTM.

A FIFO replacement strategy can be used for the tag memory. The performance of
the tag memory implemented using logic cells is good (single cycle hit detection). The
logic cell variant was preferred to a variant using FPGA memory blocks, since in the
case of the JOP CMP the inefficient use of additional memory blocks would deplete the
available memory blocks when using many cores.

Part of RTTM was implemented in software. The motivation for this is to ease the
integration of RTTM into the CPU and to lower the hardware resource requirements.
In a pure hardware implementation, additional hardware would be required to save and
restore CPU state. Instead, the Java exception mechanism is used to restore the CPU state.
RTTM can then be integrated into the JOP CMP in a nonintrusive, nearly transparent
way. JOP implements much of the JVM architecture directly in hardware and microcode.
This makes it possible to use the strong guarantees of the JVM (e.g. stack is thread-local,

69

70 CHAPTER 7. CONCLUSION

memory accesses can be classified according to the bytecode causing them) to obtain an
implementation consuming less hardware.

In RTTM, zombie transactions may occur if a transaction is continued after a shared
memory location has been modified by another transaction. A modified memory arbitra-
tion strategy limits the zombie part of a transaction to a single bytecode without requiring
changes to the core. This simplifies the reasoning about zombie transactions.

The main design goals of RTTM are a) a simple programming model and b) analyz-
able timing properties [SBV10b]. The basic programming model of the implementation
is the @atomic method annotation. Assuming tool-based analysis of the read set and
write set size and a segregated program, i.e. there are either only transactional or non-
transactional accesses to a memory location, the programmer does not need to consider
many limitations when using transactions for synchronization only. When accessing a
memory location both inside and outside of a transaction, access to a publicized memory
location must be guarded with a conditional due to the restricted semantics. I think that
the restriction of the @atomic annotation to entire methods can lead to fragmentation of
code; as an alternative, annotations of code blocks could be supported.

The differences in the temporal behavior of the conventional JOP CMP and the RTTM
implementation have been analyzed. While all operations have a bounded execution time,
there are significant differences to the WCET analysis of the conventional JOP CMP. A
full WCET analysis of the RTTM implementation is considered future work.

Summary of contributions
The contributions of this thesis are the following:

• The first implementation of a time-predictable hardware transactional memory for
chip multiprocessors is described and evaluated.

• Hardware savings in the TM implementation which are permitted by a safe lan-
guage (Java) and a virtual machine (Java Virtual Machine) are discussed.

• The semantics of RTTM is analyzed.

• Restrictions of transactional code in the implementation are discussed.

• Different FPGA implementation techniques for a fully associative tag memory are
compared in the context of the JOP CMP.

71

Future Work
The next step in the development of RTTM should be the adaptation of multi-threaded
real-word workloads with real-time constraints for the prototype implementation and their
evaluation. Both applications with lock-based synchronization and wait-free algorithms
could be adapted to use transactions. Implementation of real-word workloads should also
enable better assessment of the suitability of the RTTM programming model. Currently,
the implementation restricts (transparently created) atomic sections to entire methods,
since Java does not allow annotations at the code block level. A workaround would be to
modify the Java compiler [Caz10]. Instead, we propose to (ab)use the synchronized
code block together with a special purpose class to indicate atomic sections.1

Use of a single global lock is a simple alternative to obtain semantics comparable
to RTTM. An important research question is under which circumstances the RTTM
implementation shows better performance than such coarse-grained locking. If there
are only “few” cores and there is “low” contention for the single lock, the coarse-
grained locking is preferable, since it avoids the need for expensive special hardware.
This research question does not only cover measured execution times, but also WCET
estimates. To calculate WCET bounds, the bytecode WCET estimation from [Pit09]
should be adapted to RTTM. Transaction commits, retries and the wait time for the
commit token need to be integrated in the WCET analysis. The static analysis of the size
of the read set and write set and the conflicts among transactions should be tool-based.2

In CMP versions of JOP with many cores, the bandwidth of the main memory is the
bottleneck due to missing data caches [SPPH10, Section 8.6]. Possibilities to implement
such a data cache with analyzable benefits even in the worst case are being investigated
[SPPH10]. Because of the high costs of the fully associative tag memory, it should be
reused as part of such a data cache – possibly the object cache evaluated in [SBV10a] –
during non-transactional operation.

Other points of interest include the possibility of the integration of the RTTM imple-
mentation with a future real-time garbage collector for CMPs and the implementation
cost on an ASIC instead of an FPGA (esp. w.r.t. the fully associative tag memory).

1The appropriate restrictions of the JVM bytecode and the control flow inside a synchronized block
should make it possible to transform such code in a transaction safely and without great effort during link
time.

2RTTM can be used even without a static analysis of a) conflicts among transactions and b) the read
set and write set size. But due to the indeterministic nature of multithreaded programs, a) an unexpected
number of retries or b) early commits performed due to read set/write set overflows may lead to deadline
violations not observed during testing.

APPENDIX A
Acronyms

ASIC Application-Specific Integrated Circuit

CAM Content Addressable Memory

CISC Complex Instruction Set Computer

CLDC Connected Limited Device Configuration

CMP Chip Multiprocessor

FIFO First In, First Out

FPGA Field-Programmable Gate Array

hb happens-before

HTM Hardware Transactional Memory

HW Hardware

IF Interface

JOP Java Optimized Processor

JVM Java Virtual Machine

LC Logic Cell

MUX Multiplexer

PARs Preemptible Atomic Regions

73

74 APPENDIX A. ACRONYMS

RISC Reduced Instruction Set Computer

RTTM Real-Time Transactional Memory

SoC System-on-Chip

STM Software Transactional Memory

SW Software

TCC Transactional Memory Coherence and Consistency

TDMA Time Division Multiple Access

TM Transactional Memory

VHDL Very High Speed Integrated Circuit Hardware Description Language

WCET Worst-Case Execution Time

APPENDIX B
Code Listings

Listing B.1: Java code similar to generated transaction wrapper (see Section 4.3.1)

public static int atomicMethod(int arg0) throws RetryException,
AbortException, Throwable {
int arg0Copy = 0xdeadbeef; // make compiler happy
boolean isNotNestedTransaction =
!Utils.inTransaction[Native.rdMem(IO_CPU_ID)];

if (isNotNestedTransaction) {
arg0Copy = arg0; // save method arguments
Native.wrMem(0, IO_INT_ENA); // disable interrupts
Utils.inTransaction[Native.rdMem(IO_CPU_ID)] = true;
}

while (true) {
if (isNotNestedTransaction) {
Native.wrMem(TM_START_TRANSACTION, MEM_TM_MAGIC);
}

try {
// Not really a method invocation
// The original method body is inserted here, return
// statements in it are redirected to the next statement
int result = originalMethodBody(arg0);

if (isNotNestedTransaction) {

// try commit

75

76 APPENDIX B. CODE LISTINGS

Native.wrMem(TM_END_TRANSACTION, MEM_TM_MAGIC);
// no exceptions happen after here

Utils.inTransaction[Native.rdMem(IO_CPU_ID)] = false;
Native.wrMem(1, IO_INT_ENA); // re-enable interrupts
}
return result;
} catch (Throwable e) {
// exception handling issues ABORTED HW command
// e is RetryException, AbortException or other exception

if (isNotNestedTransaction) {
// reference comparison is enough for singleton
if (e == RetryException.instance) {
// restore method arguments
arg0 = arg0Copy;
} else {
// transaction was manually aborted or a bug triggered
Utils.inTransaction[Native.rdMem(IO_CPU_ID)] = false;
Native.wrMem(1, IO_INT_ENA); // re-enable interrupts
throw e;
}
} else { // nested transaction: propagate exception
throw e;
}
}
}
}
}

Listing B.2 shows how a basic transaction consisting of a code block can be imple-
mented non-transparently using hardware commands (see page 31). HW commands
are invoked using the JOP-specific special method Native.wrMem(). During linking,
calls to this method are replaced by a JOP-specific special bytecode. The nesting and
the explicit abort of transactions is however not supported by the listed code. It is also
assumed that no interrupts will occur.

Listing B.2: Basic transaction directly using the memory-mapped RTTM hardware
interface

import com.jopdesign.sys.Native;
import static com.jopdesign.sys.Const.*;

77

public class SimpleTransactionWithDirectHWAccess {

public void nonTransactionalMethod() {
// non-transactional code...

{
// save any locals written in transaction

while (true) {
Native.wrMem(TM_START_TRANSACTION, MEM_TM_MAGIC);

try {
// transactional code block

Native.wrMem(TM_END_TRANSACTION, MEM_TM_MAGIC);
break;
} catch (Throwable e) {
// restore any locals written in transaction
}
}
}

// non-transactional code...
}

}

Listing B.3: Generic content addressable memory (corresponding to fully associative
tags) using memory blocks from [auR08]. The M4K component is the memory block.
The address conversion is performed in line 3 and 4 of the PORT MAP of m4k_inst.
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
USE IEEE.STD_LOGIC_MISC.ALL;

-- A single M4K can make a 32 word, 7-bit wide CAM. This script can be parameterized to
chain them together into wider/deeper CAMs.

-- Please keep the depth a multiple of 32, and the width a multiple of 7. If you don’t
need a width that is a multiple of 7, just tie off the extra

-- bits so they always match(both when writing and matching)

ENTITY M4K_CAM IS
GENERIC (
NUM_WORDS : INTEGER := 64; -- Must be multiple of 32
WRADDR_WIDTH : INTEGER := 6; -- Enter log2(NUM_WORDS).
WIDTH : INTEGER := 21 -- Must be multiple of 7

78 APPENDIX B. CODE LISTINGS

);
PORT
(
-- Write Ports
wrdata : IN std_logic_vector(WIDTH-1 DOWNTO 0);
wraddress : IN std_logic_vector(WRADDR_WIDTH-1 DOWNTO 0);
wrdelete_n : IN std_logic;
wren : IN std_logic;
wrclock : IN std_logic;

-- Match Ports
matchdata : IN std_logic_vector(WIDTH-1 DOWNTO 0);
matchen : IN std_logic;
matchclock : IN std_logic;
matchaddr : OUT std_logic_vector(WRADDR_WIDTH-1 DOWNTO 0); -- encoded output. Remove

this if unnecessary, as lot of logic needed to encode.
match_onehot : BUFFER std_logic_vector(NUM_WORDS-1 DOWNTO 0); -- one-hot output
match : OUT std_logic -- Determines if there is a match
);
end M4K_CAM ;

ARCHITECTURE arch OF M4K_CAM IS

COMPONENT M4K
PORT
(
data : IN STD_LOGIC_VECTOR (0 DOWNTO 0);
wren : IN STD_LOGIC := ’1’;
wraddress : IN STD_LOGIC_VECTOR (11 DOWNTO 0);
rdaddress : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
rden : IN STD_LOGIC := ’1’;
wrclock : IN STD_LOGIC ;
rdclock : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
);
END COMPONENT;

CONSTANT NUM_M4KS_DEPTH : INTEGER := NUM_WORDS/32;
CONSTANT NUM_M4KS_WIDTH : INTEGER := WIDTH/7;

SIGNAL data: std_logic_vector(0 DOWNTO 0);
SIGNAL address: std_logic_vector(WIDTH+4 DOWNTO 0);
SIGNAL m4k_wren : STD_LOGIC_VECTOR(NUM_M4KS_DEPTH-1 DOWNTO 0);
TYPE single_match_array IS ARRAY (NUM_M4KS_WIDTH-1 DOWNTO 0) OF STD_LOGIC_VECTOR(

NUM_WORDS-1 DOWNTO 0);
SIGNAL single_match_onehot : single_match_array;

begin

data(0) <= wrdelete_n;

instantiate_M4Ks_depth : FOR i IN 0 TO NUM_M4KS_DEPTH-1 GENERATE

m4k_wren(i) <= wren WHEN (to_integer(unsigned(wraddress(WRADDR_WIDTH-1 DOWNTO 5))) = i)
ELSE ’0’;

79

instantiate_M4Ks_width : FOR j IN 0 TO NUM_M4KS_WIDTH-1 GENERATE

m4k_inst : M4K
PORT MAP (
data(0) => data(0),
wren => m4k_wren(i),
wraddress => wrdata(7*j+6 DOWNTO 7*j) & wraddress(4 DOWNTO 0) ,
rdaddress => matchdata(7*j+6 DOWNTO 7*j),
rden => matchen,
wrclock => wrclock,
rdclock => matchclock,
q => single_match_onehot(j)(i*32+31 DOWNTO i*32)
);

END GENERATE instantiate_M4Ks_width;
END GENERATE instantiate_M4Ks_depth;

-- For a match, all the M4Ks must output a 1 on the same bit. This ANDs them together to
find the correct output. For example, if the word is 14 bits long,

-- and we do a match on "0000001_0000011" then the first 7 bits might match many
locations and the second 7 bits might match many locations. We only want

-- the locations that match both bits(i.e. AND them together)
PROCESS(single_match_onehot)
variable var_match_onehot : std_logic_vector(NUM_WORDS-1 DOWNTO 0);
BEGIN
var_match_onehot := single_match_onehot(0)(NUM_WORDS-1 DOWNTO 0); -- need to

initialize with a 1 the ones that could possibly match up
FOR k IN 0 TO NUM_M4KS_WIDTH-1 LOOP
FOR m IN 0 TO NUM_WORDS-1 LOOP
var_match_onehot(m) := var_match_onehot(m) AND single_match_onehot(k)(m);
END LOOP;
END LOOP;
match_onehot <= var_match_onehot;
END PROCESS;

-- This process encodes the match output. So 000...0001000 becomes 11. (Bit 3 is on, so
output a binary 3)

-- Note that this does not do priority encoding. So if there are multiple matches, this
will give erroneous data.

PROCESS(match_onehot)
variable code : STD_LOGIC_VECTOR(matchaddr’RANGE);
BEGIN
code := (others => ’0’);
for N in match_onehot’RANGE loop
if match_onehot(N) = ’1’ then
code := code OR std_logic_vector(to_unsigned(N, code’LENGTH));
end if;
end loop;
matchaddr <= code;
END PROCESS;

match <= OR_REDUCE(match_onehot);

end;

APPENDIX C
Source code availability

The source code for the implementation and evaluation of RTTM is licensed under
the GNU General Public License, Version 3. The source code is part of the Java
Optimized Processor JOP and may be obtained from http://www.jopdesign.com/.
The implementation uses the VHDL and Java programming languages. The file vhdl/
rttm/readme-rttm.txt in the source code gives an introduction.

81

http://www.jopdesign.com/

APPENDIX D
Measurements

The resource consumption was determined by compiling for the EP2C70F896C6 FPGA
using Altera Quartus II 9.0sp2 Web Edition, which is freely available at http://www.
altera.com/. The maximum clock frequency was estimated using the Classic Timing
Analysis of Quartus II.

The source code of the RTTM implementation is in a Git repository accessible as
described in Appendix C. The revision used for the measurements can be obtained by
running the commands in Listing D.1; the current revision, as of May 2010, should
perform slightly better w.r.t. resource usage and maximum clock frequency. The changes
in the file vhdl/rttm/performance-measurements.patch disable unused hardware
and disable RTTM instrumentation, which is not implemented efficiently yet.

#!/bin/bash
git checkout a5501f726629e5c2d3ad9bfc1545f62ea4711fe5
git show a8e3223174c9acb53d4dcc3cae14e97ce80b8df9:vhdl/rttm/
performance-measurements.patch|git apply -

Listing D.1: Script to obtain source code used for measurements

83

http://www.altera.com/
http://www.altera.com/

Index

@atomic, 23

abort, 2
abort(), 24
aborted, 31, 41, 53
abstraction, 1
arbiter, 8, 33
ASIC, 33
asymmetric lock atomicity, 21
atomic method, 23, 31, 56, 67
atomic section, 6, 23, 67, 76
atomic snapshot, 60
atomicity, 2, 12, 17, 24, 52

broadcast, 4–6, 12, 32
bugs, 59
Byte Code Engineering Library, 56
bytecode, 7, 47, 53, 55

chip multiprocessor, 1, 4, 8
commit, 2, 4, 18
commit linearization, 19
commit token, 5, 12, 30
compare-and-swap, 57
composability, 1
concurrency, 1, 2, 22
confirm cache, 11
conflict, 3–5
conflict detection, 3, 6
Connected Limited Device Configura-

tion, 7
consistency, 2, 17

content addressable memory, 34, 36, 77
contention resolution policy, 23
context switch, 25
contributions, 70
current read set, 18, 32, 33, 43
current write set, 18, 43

data handoff, 18
data word granularity, 4, 13, 21
deadlock, 2
depends cache, 11
doomed transaction, 18
durability, 2

early commit, 5, 14, 18, 24, 43, 58
earlyCommit(), 24
encounter-time lock atomicity, 19
exactly-once semantics, 17
exceptions, 22, 52

flattened transaction, 22
FPGA, 33

garbage collection, 56, 59
granular safety, 21

happens-before, 18
hardware commands, 31, 76
hardware transactional memory, 3

I/O, 59
inconsistent data, 6
interrupt, 25, 50, 76

85

86 INDEX

isolation, 2, 12, 14, 17

Java, 14, 49
Java Optimized Processor, 7, 56
Java Virtual Machine, 7, 27, 47, 49
jumps, 49

language agnostic, 22, 27
late conflict detection, 3, 6
lazy invalidation, 22
link time, 56, 66
lock-based concurrency control, 1
logic cells, 34, 61

memory blocks, 34, 35
memory safety, 54, 67
method annotation, 23, 56
Method Area, 47
method cache, 7
microcode, 7, 47
monitor, 1, 59
mutex, 1

nested transaction, 18
nesting count, 52
nondeterminism, 1, 59

observable consistency, 21
optimistic concurrency control, 2
overflow, 5, 7, 34

parallel programming, 1
pipelining, 45
preceding transaction, 18
precise exception, 53
privatization, 19
progress guarantees, 22
publication, 19

rdy_cnt, 8, 45, 64
read set, 3, 4, 6, 13, 22
read tag memory, 4, 38
ready counter, 8

Real-time Specification for Java, 14
Real-time transactional memory, 3
resource consumption, 34, 36, 61, 83
retry(), 24
RetryException, 50, 53, 55
rollback, 52
rollback, 44, 53
RTTM module, 30
Runtime Constant Pool, 47

Safety Critical Java, 8
segregated program, 17, 21, 58
semaphore, 1
SimpCon, 8, 31, 45
single global lock atomicity, 2, 21
software commands, 24
software transactional memory, 3
speculation safety, 21
state machine, 40
state of the art, 3, 8, 13
static analysis, 6, 47, 58
strong isolation, 18, 58
succeeding transaction, 18

timing analysis, 61, 83
tm_cache, 31, 46
TRANSACTION, 40
transaction cache, 38
transaction coordinator, 30, 32, 66
transaction wrapper, 28, 50, 75
transactional memory, 2
Transactional Memory Coherence and

Consistency, 12, 34, 36

WCET, 7, 63
weak isolation, 19, 58
write buffer, 4, 38

write
hb
→read model, 18

write set, 3, 4, 6, 13, 22

zombie bytecode, 53
zombie transaction, 6, 53

Bibliography

[ARJ97] James H. Anderson, Srikanth Ramamurthy, and Kevin Jeffay. Real-time
computing with lock-free shared objects. ACM Trans. Comput. Syst.,
15(2):134–165, 1997.

[ARMJ97] James H. Anderson, Srikanth Ramamurthy, Mark Moir, and Kevin Jeffay.
Lock-free transactions for real-time systems. In In Real-Time Databases:
Issues and Applications, pages 107–114. Kluwer Academic Publishers,
1997.

[auR08] alteraforum.com user Rysc. Parameterized CAMs. Posted at http://www.
alteraforum.com/forum/showpost.php?p=7735&postcount=6,
2008.

[BG02] Jean-Louis Brelet and Lakshmi Gopalakrishnan. Using Virtex-II Block
RAM for High Performance Read/Write CAMs. Xilinx Applica-
tion Note 260, http://www.xilinx.com/support/documentation/
application_notes/xapp260.pdf, 2002.

[BHHR] Jayaram Bobba, Mark Hill, Tim Harris, and Ravi Rajwar. Transactional
memory bibliography. http://www.cs.wisc.edu/trans-memory/
biblio/.

[BLM05] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Deconstruct-
ing transactions: The subtleties of atomicity. In Fourth Annual Workshop
on Duplicating, Deconstructing, and Debunking. 2005.

[Boe09] Hans-J. Boehm. Transactional memory should be an implementation
technique, not a programming interface. In HotPar ’09: Proc. 1st Workshop
on Hot Topics in Parallelism, 2009.

[Bre99] Jean-Louis Brelet. An Overview of Multiple CAM Designs in Virtex
Family Devices. Xilinx Application Note 201, http://www.xilinx.
com/support/documentation/application_notes/xapp201.pdf,
1999.

87

http://www.alteraforum.com/forum/showpost.php?p=7735&postcount=6
http://www.alteraforum.com/forum/showpost.php?p=7735&postcount=6
http://www.xilinx.com/support/documentation/application_notes/xapp260.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp260.pdf
http://www.cs.wisc.edu/trans-memory/biblio/
http://www.cs.wisc.edu/trans-memory/biblio/
http://www.xilinx.com/support/documentation/application_notes/xapp201.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp201.pdf

88 BIBLIOGRAPHY

[Caz10] Walter Cazzola. @Java. A Java Annotation Extension. http://homes.
dico.unimi.it/~cazzola/atjava.html, 2010.

[CW05] P. Capewell and I. Watson. A RISC hardware platform for low power Java.
In VLSI Design. 18th International Conference on, pages 138–143, 2005.

[DFL+06] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. Hybrid transactional memory. SIGPLAN
Not., 41(11):336–346, 2006.

[DS07] Dave Dice and Nir Shavit. Understanding tradeoffs in software transactional
memory. In CGO ’07: Proceedings of the International Symposium on
Code Generation and Optimization, pages 21–33, Washington, DC, USA,
2007. IEEE Computer Society.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In In
Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[FRJ09] Sherif F. Fahmy, Binoy Ravindran, and E. D. Jensen. Response time
analysis of software transactional memory-based distributed real-time sys-
tems. In SAC ’09: Proceedings of the 2009 ACM symposium on Applied
Computing, pages 334–338, New York, NY, USA, 2009. ACM.

[GB00] James Gosling and Greg Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition). Addison-Wesley Professional, 2005.

[GLD00] Steve Guccione, Delon Levi, and Daniel Downs. A reconfigurable content
addressable memory. In IPDPS ’00: Proceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processing, pages 882–889, London,
UK, 2000. Springer-Verlag.

[GMP06] Dan Grossman, Jeremy Manson, and William Pugh. What do high-level
memory models mean for transactions? In MSPC ’06: Proceedings of the
2006 workshop on Memory system performance and correctness, pages
62–69, New York, NY, USA, 2006. ACM.

[Goo83] James R. Goodman. Using cache memory to reduce processor-memory
traffic. In ISCA ’83: Proceedings of the 10th annual international sym-
posium on Computer architecture, pages 124–131, New York, NY, USA,
1983. ACM.

http://homes.dico.unimi.it/~cazzola/atjava.html
http://homes.dico.unimi.it/~cazzola/atjava.html

BIBLIOGRAPHY 89

[GZU+09] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian Cristal,
Eduard Ayguade, Tim Harris, and Mateo Valero. QuakeTM: parallelizing
a complex sequential application using transactional memory. In ICS

’09: Proceedings of the 23rd international conference on Supercomputing,
pages 126–135, New York, NY, USA, 2009. ACM.

[HA06] Philip Holman and James H. Anderson. Supporting lock-free synchroniza-
tion in Pfair-scheduled real-time systems. J. Parallel Distrib. Comput.,
66(1):47–67, 2006.

[HcTlH95] Gwan-Hwan Hwang, Kuo chung Tai, and Ting lu Huang. Reachability
testing: An approach to testing concurrent software. International Journal
of Software Engineering and Knowledge Engineering, 5:493–510, 1995.

[Her06] Maurice Herlihy. The art of multiprocessor programming. ACM, New
York, NY, USA, 2006.

[HHL+09] Thomas Henties, James J. Hunt, Doug Locke, Kelvin Nilsen, Martin Schoe-
berl, and Jan Vitek. Java for safety-critical applications. In 2nd Interna-
tional Workshop on the Certification of Safety-Critical Software Controlled
Systems (SafeCert 2009), 2009.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 289–300. 1993.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 48–60, New York, NY, USA, 2005. ACM.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surv., 15(4):287–317, 1983.

[HWC+04] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg,
M.K. Prabhu, Honggo Wijaya, C. Kozyrakis, and K. Olukotun. Transac-
tional memory coherence and consistency. In Computer Architecture, 2004.
Proceedings. 31st Annual International Symposium on, pages 102–113,
2004.

[Hyd03] Randall Hyde. Write Great Code: Understanding the Machine. No Starch
Press, San Francisco, CA, USA, 2003.

90 BIBLIOGRAPHY

[KHR+08] Behram Khan, Matthew Horsnell, Ian Rogers, Mikel Luján, Andrew Dinn,
and Ian Watson. An object-aware hardware transactional memory system.
In HPCC ’08: Proceedings of the 2008 10th IEEE International Conference
on High Performance Computing and Communications, pages 93–102,
Washington, DC, USA, 2008. IEEE Computer Society.

[KMVR90] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data
structures on distributed memory architectures. In PPOPP ’90: Proceed-
ings of the second ACM SIGPLAN symposium on Principles & practice of
parallel programming, pages 177–186, New York, NY, USA, 1990. ACM.

[Kni86] Tom Knight. An architecture for mostly functional languages. In LFP
’86: Proceedings of the 1986 ACM conference on LISP and functional
programming, pages 105–112, New York, NY, USA, 1986. ACM.

[Kop08] Hermann Kopetz. The complexity challenge in embedded system design.
In ISORC ’08: Proceedings of the 2008 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing, pages 3–12, Washington, DC,
USA, 2008. IEEE Computer Society.

[Lie04] Sean Lie. Hardware support for unbounded transactional memory. Master’s
thesis, 2004. Massachusetts Institute of Technology.

[LM06] Yossi Lev and Mark Moir. Debugging with transactional memory. In Pro-
ceedings of the First ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing. 2006.

[LR07] Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, 2007.

[Luc08] Victor Luchangco. Against lock-based semantics for transactional memory.
In SPAA ’08: Proceedings of the twentieth annual symposium on Paral-
lelism in algorithms and architectures, pages 98–100, New York, NY, USA,
2008. ACM.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[MBC+05] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek
Prochazka, Bin Xin, and Jan Vitek. Preemptible Atomic Regions for Real-
Time Java. In RTSS ’05: Proceedings of the 26th IEEE International
Real-Time Systems Symposium, pages 62–71, Washington, DC, USA, 2005.
IEEE Computer Society. Extended version available at http://www.cs.
purdue.edu/homes/jv/pubs/rtss05.pdf.

http://www.cs.purdue.edu/homes/jv/pubs/rtss05.pdf
http://www.cs.purdue.edu/homes/jv/pubs/rtss05.pdf

BIBLIOGRAPHY 91

[MBM+06] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,
and David A. Wood. LogTM: Log-based Transactional Memory. In
Proceedings of the 12th International Symposium on High-Performance
Computer Architecture, pages 254–265. 2006.

[MBS+08] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-
Tabatabai, Richard L. Hudson, Bratin Saha, and Adam Welc. Single global
lock semantics in a weakly atomic STM. SIGPLAN Not., 43(5):15–26,
2008.

[MCC+05] Austen Mcdonald, Jaewoong Chung, Hassan Chafi, Chi Cao Minh, Brian D.
Carlstrom, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun.
Characterization of TCC on chip-multiprocessors. In Proceedings of the
14th International Conference on Parallel Architectures and Compilation
Techniques, pages 63–74. IEEE Computer Society, 2005.

[MO98] H. McGhan and M. O’Connor. PicoJava: a direct execution engine for Java
bytecode. Computer, 31(10):22–30, 1998.

[Moo98] G. E. Moore. Cramming More Components Onto Integrated Circuits.
Proceedings of the IEEE, 86(1):82–85, 1998.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proc. 15th ACM
Symp. on Principles of Distributed Computing, pages 267–275, 1996.

[Muc09] Michael Muck. Transactional Memory Beispiele für den Jop Multiprozes-
sor Simulator. Term paper, 2009.

[OH05] Kunle Olukotun and Lance Hammond. The future of microprocessors.
Queue, 3(7):26–29, 2005.

[Pit09] Christof Pitter. Time-Predictable Java Chip-Multiprocessor. PhD thesis,
Vienna University of Technology, 2009.

[SBV10a] Martin Schoeberl, Walter Binder, and Alex Villazon. Object cache evalua-
tion. Technical report, 2010. Available at http://www.jopdesign.com/
doc/troceval.pdf.

[SBV10b] Martin Schoeberl, Florian Brandner, and Jan Vitek. RTTM: Real-time
transactional memory. In Proceedings of the 25th ACM Symposium on
Applied Computing, Sierre, Switzerland, 2010. ACM Press. Available at
http://www.jopdesign.com/doc/rttm.pdf.

http://www.jopdesign.com/doc/troceval.pdf
http://www.jopdesign.com/doc/troceval.pdf
http://www.jopdesign.com/doc/rttm.pdf

92 BIBLIOGRAPHY

[Sch05] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-
Time Systems. PhD thesis, Vienna University of Technology, 2005.

[Sch07] Martin Schoeberl. SimpCon - a simple and efficient SoC interconnect. In
Proceedings of the 15th Austrian Workshop on Microelectronics, Austrochip
2007, Graz, Austria, 2007.

[Sch08] Martin Schoeberl. A Java processor architecture for embedded real-time
systems. J. Syst. Archit., 54(1-2):265–286, 2008.

[Sch09] Martin Schoeberl. JOP Reference Handbook: Building Embedded Sys-
tems with a Java Processor. CreateSpace, 2009. ISBN 978-1438239699.
Available at http://www.jopdesign.com/doc/handbook.pdf.

[Sco06] Michael L. Scott. Sequential specification of transactional memory se-
mantics. In ACM SIGPLAN Workshop on Transactional Computing. 2006.
Held in conjunction with PLDI 2006.

[SDMS08] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L.
Scott. Ordering-based semantics for software transactional memory. In
OPODIS ’08: Proceedings of the 12th International Conference on Prin-
ciples of Distributed Systems, pages 275–294, Berlin, Heidelberg, 2008.
Springer-Verlag.

[SH10] Martin Schoeberl and Peter Hilber. Design and Implementation of Real-
Time Transactional Memory. In FPL ’10: Proceedings of the 20th Interna-
tional Conference on Field Programmable Logic and Applications, Milano,
Italy, 2010.

[SMDS07] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.
Scott. Privatization techniques for software transactional memory. In
PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 338–339, New York, NY, USA,
2007. ACM.

[SPPH10] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and
Benedikt Huber. Worst-case execution time analysis for a Java proces-
sor. Software: Practice and Experience, accepted for publication, 2010.

[SQV09] Toufik Sarni, Audrey Queudet, and Patrick Valduriez. Real-Time Support
for Software Transactional Memory. Real-Time Computing Systems and
Applications, International Workshop on, 0:477–485, 2009.

http://www.jopdesign.com/doc/handbook.pdf

BIBLIOGRAPHY 93

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 204–213, New York, NY, USA, 1995. ACM.

[Sun03] Sun Microsystems, Inc. Connected Limited Device Configuration
Specification, Version 1.1, 2003. http://jcp.org/aboutJava/
communityprocess/final/jsr139/.

[WCN+07] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge,
Christos Kozyrakis, and Kunle Olukotun. A practical FPGA-based frame-
work for novel CMP research. In FPGA ’07: Proceedings of the 2007
ACM/SIGDA 15th international symposium on Field programmable gate
arrays, pages 116–125, New York, NY, USA, 2007. ACM.

[Xil08] Xilinx. Content-Addressable Memory v6.1. Xilinx product
specification, http://www.xilinx.com/support/documentation/
ip_documentation/cam_ds253.pdf, 2008.

http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://www.xilinx.com/support/documentation/ip_documentation/cam_ds253.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cam_ds253.pdf

	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Transactional memory
	Real-time transactional memory (RTTM)
	The Java Optimized Processor
	The SimpCon SoC interconnect
	Problem statement
	Overview

	Related Work
	Hardware transactional memory
	Transactional memory for real-time systems

	Characterization of implementation
	Semantics
	Implementation characteristics
	Programming interface
	Software commands
	Diagnostics

	Scheduling

	Implementation
	HW/SW-Partitioning
	Hardware layer
	The RTTM module
	The memory arbiter
	Influence of target technology
	Tag memory implementation
	Interfaces of the read tag memory and write buffer
	The transaction cache
	The state machine
	Transaction states
	Pipelining
	Memory access classification
	Summary of hardware integration

	Software layer
	The transaction wrapper
	Transaction rollback
	Zombie bytecodes
	Summary of runtime system integration

	Link time transformations

	Programming for RTTM
	Recommended programming style
	Limitations
	Testing and debugging

	Evaluation
	Hardware resource consumption and performance
	Worst-case temporal behavior
	Discussion

	Conclusion
	Summary of contributions
	Future Work

	Acronyms
	Code Listings
	Source code availability
	Measurements
	Index
	Bibliography

