
Design and Implementation of an
Integration Framework for an Electronic

Health Record Based Hospital
Information System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Klaus Bayrhammer
Matrikelnummer 0525896

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer/in: Thomas Grechenig

Mitwirkung: Wolfgang Schramm

Wien,

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

To mom and dad

Declaration of Authorship

I, Klaus Bayrhammer, declare that this thesis titled, “Design and Implementation of an Integra-

tion Framework for an Electronic Health Record Based Hospital Information System” and the

work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this

University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Vienna

. .

Place Date Signature

ii

Abstract

The purpose of this thesis was to design and implement an architecture for a hospi-

tal information system, which provides an infrastructure for easy integration of external

systems.

Because of the complexity of managing information in hospital environments, there

are several specialized systems which may have different architectures as well as different

scopes of functions and therefore incompatible interfaces. In order to allow those spe-

cialized systems to exchange data they have to be integrated into an information system.

Therefore, the hospital’s core information system has to provide an open architecture which

supports integration on a system level. During the course of this thesis an integration frame-

work for a hospital information system has been developed. The system uses persistent

one-way messaging which supports loose coupling and complies with the style of service

oriented architectures. In addition, the architecture is based on a complex rule based event

system which is responsible for the distribution of the messages. This system has been con-

nected to a data storage, which holds patient information based on the OpenEHR standard.

Furthermore, an enterprise resource planning tool as well as a picture archiving and

communication system have been integrated as a proof-of-concept. The architecture proved

to be effective in integrating third party systems into the hospital’s information system.

Integrating the ERP system as well as the PACS only required the implementation of a

connector plugin and adding or modifying rules in the rule engine. The validity of this

project is limited to the use cases which have been implemented in the proof-of-concept,

so it would be of further interest whether more complex use cases could be integrated that

easily.

Considering the low complexity that is required for integrating systems as well as the

technical benefits which come along using this architecture, the usage of service oriented

architectures in the health care context seems to be promising. In addition, a message

distribution which is controlled by a rule engine enables the system to exchange or integrate

new subsystems at runtime.

iii

Kurzfassung

Das Ziel dieser Arbeit war der Entwurf und die Entwicklung einer Architektur für ein

Krankenhausinformationssystem, welche einen besonderen Fokus auf die Integrierbarkeit

von externen Systemen legt.

In einem Krankenhausinformationssystem müssen viele unterschiedliche Informatio-

nen bearbeitet werden. Aufgrund der Komplexität der zu verarbeitenden Informationen

gibt es viele spezialisierte Systeme. Diese Systeme basieren oft auf unterschiedlichen Ar-

chitekturen und werden für unterschiedliche Aufgabenbereiche eingesetzt was zu unter-

schiedlichen Strukturen und Schnittstellen führen kann. Um diese Systeme zu verbinden

und den Datenaustausch zwischen ihnen zu ermöglichen müssen sie in ein gemeinsames In-

formationssystem integriert werden. Um diese Integration zu unterstützen muss das Kranken-

hausinformationssystem eine offene Architektur anbieten, welche definierte Schnittstellen

für eine Systemintegration bietet.

Im Zuge dieser Arbeit wurde eine Integrationsframework für ein Krankenhausinforma-

tionssystem entworfen und entwickelt. Die Infrastruktur basiert auf einem komplexen regel-

basierten Eventsystem. Die integrierten Systeme kommunizieren nur über Nachrichten,

welche von dem Regelwerk versandt werden und sind so im Sinne einer serviceorientierten

Architektur lose gekoppelt. Dieses System wurde an einen Datenspeicher, welcher elektro-

nische Patientenakten mittels dem OpenEHR Standard speichert, angebunden. Zusätzlich

wurde ein ERP, sowie ein PACS als Machbarkeitsnachweis in das Informationssystem inte-

griert.

Die konzipierte Architektur erwies sich für die Integration von Drittsystemen als effek-

tiv. Sowohl die Anbindung des ERP Systems, als auch die Integration des PACS erforderten

nur die Entwicklung eines Konnektors sowie die Anpassung von Regeln für die Verteilung

von Nachrichten. Die Aussagekraft dieses Projekts ist beschränkt auf die Anwendungsfälle

welche im Zuge dieser Machbarkeitsstudie umgesetzt wurden. In weiterer Folge wäre es

interessant ob auch komplexere Anwendungsfälle mit ähnlich niedrigem Aufwand in das

Informationssystem integriert werden können.

Bedenkt man die niedrige Komplexität welche die Integration von externen Systemen

mit einer solchen Architektur erfordert, wie auch die technischen Vorteile, welche damit

einhergehen so erscheinen serviceorientierten Architekturen im Krankenhausumfeld dur-

chaus vielversprechend.

iv

Acknowledgements

I wish to express my sincere gratitude to my assistant advisor, Dr. Wolfgang Schramm for his

inspiration, guidance and continuous support without which this thesis would have never been

possible.

I would like to thank my colleagues Michael Fiedler and Harald Köstinger for the invaluable

discussions, ideas and for their constructive criticisms.

Moreover, I am profoundly indebted to my parents, my sister and my brother who have

always offered their unconditional love, understanding and assistance however demanding my

personal and academic endeavors may have been.

Last but not least, I would like to thank Christina who has proved indispensable in every

single respect ever since we first met.

v

Glossary

ADL Archetype Description Language

AM Archetype Model

AQL Archetype Query Language

CDA Clinical Document Architecture

CEN European Committee for Standardization

CMET Common Message Element Type

COTS Commercial Of-The-Shelf

CPR Computer based Patient Record

CRM Customer Relationship Management

DICOM Digital Imaging and Communication in Medicine

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

HIS Hospital Information System

HL7 Health Level 7

ICD-9 International Statistical Classification of Diseases and Related Health Prob-

lems

ICPC International Classification of Primary Care

IHE Integrating the Health Care Enterprise

IS Information System

JMS Java Messaging Service

LIS Laboratory Information System

vi

ACKNOWLEDGEMENTS vii

LOINC Logical Observation Identifiers Names and Codes

OCC Original Component Complexes

OpenEHR Open Electronic Health Record

PACS Picture Archiving and Communication System

POJO Plain Old Java Object

RAC Root Architectural Component

REST Representational State Transfer

RIM Reference Information Model

RIS Radiology Information System

RM Reference Model

RMIM Refined Message Information Model

SM Service Model

SNOMED-CT . Systematized Nomenclature of Medicine - Clinical Terms

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

XML Extensible Markup Language

Contents

Declaration of Authorship ii

Abstract iii

Kurzfassung iv

Acknowledgements v

Contents viii

1 Medical informatics: special chapter hospital information system 2

1.1 Information Systems . 2

Architecture and Infrastructure of Information Systems 3

1.2 Hospital Information Systems . 3

1.3 Electronic Health Records . 4

Strengths and weaknesses . 5

Common requirements . 6

1.4 EHR- and related standards . 7

HL-7 CDA . 7

HL-7 RIM . 8

EN-13606 . 9

OpenEHR . 10

DICOM . 16

viii

CONTENTS ix

IHE Profiles . 17

1.5 Selected highly relevant components in a Hospital Information System 19

Enterprise Resource Planing tools . 19

Picture Archiving and Communication Systems 21

1.6 HIS Security . 23

Security Risks and Threats to Clinical Information 24

Security Policy Model for Clinical Information Systems 24

2 Problem statement and basic idea 27

2.1 Problems of current HIS . 27

2.2 Service oriented and patient centered approach 28

2.3 Related work . 28

3 Evaluating Of-The-Shelf Software For Extending a HIS-Core System 31

3.1 DESMET Project . 32

3.2 DESMET Feature Analysis . 33

4 EHR core system 35

4.1 Underlying standard - OpenEHR . 35

4.2 Architectural decisions . 36

Model layer . 38

Service Layer . 40

Webservice layer . 40

4.3 Exposed interface . 41

EHR-related functions . 41

Composition-related functions . 42

Object reference resolver . 44

5 Integration Framework 46

5.1 Requirements . 46

5.2 Architectural concept . 47

CONTENTS x

Messaging infrastructure - Enterprise Service Bus 48

Content- and rule based routing of messages 49

5.3 EHR core system integration and service exposure 50

Med-core plugin . 50

EHR-http plugin . 53

5.4 Sample Request for Retrieving an EHR . 56

5.5 Design and Developement of an Integration Framework Prototype 58

EHR-core system . 58

HIS Integration Framework Core Components 59

HIS Of-The-Shelf Integration . 60

6 ERP System Evaluation and Integration 61

6.1 Requirements of ERP systems . 61

6.2 Evaluation of Different ERP Systems . 65

6.3 ERP Integration . 70

Sample Openbravo Setup . 71

ERP-ESB Plugin . 71

7 Picture Archiving and Communication Systems Evaluation and Integration 73

7.1 Requirements of PACS . 73

7.2 Evaluation of Different PACS . 78

7.3 PACS Integration . 82

Sample DCM4CHEE Setup . 83

PACS-ESB Plugin . 84

8 Results 89

8.1 Conclusion . 90

8.2 Further work . 91

Bibliography 93

Start

1

CHAPTER 1
Medical informatics: special chapter

hospital information system

The main goal of this thesis was to create a proof-of-concept of a future-proof integration archi-

tecture for a hospital information system (HIS). If we want to know what a HIS is we have to

start by defining an information system (IS) itself.

1.1 Information Systems

An information system is the part of an enterprise that processes and stores data, information and

knowledge. More specifically, it can be defined as the socio-technical subsystem of an enterprise

which comprises all information processing as well as the associated human or technical actors

in their respective information processing roles [1].

“Socio-” describes the human components involved in this system, which could be physi-

cians, administrative staff, IT-staff, researchers, etc. “Technical” refers to the tooling which

is used in this information system and can therefore include computers, alongside telephones,

scanners or patient records.

If a system involves computer-based information processing it is called a computer-supported

information system. An information system can be divided into subsystems which are called

2

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 3

sub-information systems. Each subsystem can carry out specific tasks or provide specific data.

Subsystems which use computer based tools are called the computer-supported parts of an in-

formation system. The other subsystems are called conventional or paper-based parts [1].

Architecture and Infrastructure of Information Systems

The architecture of an information system describes its fundamental organization, represented

by its components, their relationships to each other and to the environment. As the name already

suggests it also guides its design and evolution [2]. Basically the architecture of information

systems can be summed up by the enterprise functions they provide. This includes the business

processes they support and the processing tools which are used together with their relationships

to each other [1].

Probably there are multiple different views of an information system. An example would

be an enterprise function view which primarily looks at the enterprise functions or a process

view primarily looking at the business processes. Architectures which are equivalent regarding

specific rules, vocabulary, semantic interpretation and analyses can be summarized in an archi-

tectural style [3]. More formally an architectural style characterizes a family of systems that are

related by shared structural and semantic properties [4].

Another important term in designing software systems is the infrastructure of a system. The

infrastructure describes the information system regarding the types, numbers and availability of

information processing tools used in a specific environment or enterprise. [1].

1.2 Hospital Information Systems

With the definition of information systems in mind, it is quite obvious how a hospital infor-

mation system is defined. A hospital information system is the socio-technical subsystem of a

hospital, which comprises all information processing as well as the associated human or techni-

cal actors in their respective information processing roles. Considering this definition a hospital

has got an information system from the beginning of its existence [1]. Typical parts in a hospital

information system are business processes, application components, physical data processing

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 4

components and hospital functions.

When new components are integrated into a hospital information system or a new hospital

information system is designed from scratch, the staff of the hospital has to be seen as an impor-

tant part of the information system itself. Therefore it is highly recommended to consider and

re-analyze the needs of end-users in every phase of the software’s life cycle. [1].

The main goal of a hospital information system is to provide the basis for a well-functioning

patient care and patient administration. In addition, the HIS has to support the hospitals eco-

nomic management and it has to comply with all legal requirements.

To support patient care and administration the common tasks of hospital information systems

are [1]:

• Primarily, to make patients information available. This information should be available

on time, at the desired location, to authorized staff only and it should be presented in a

usable form.

• To make knowledge, e.g. about diseases, about side effects and interactions of medication

to support diagnostics and therapy.

• To expose information about the quality of patient care and the economic situation of the

hospital.

1.3 Electronic Health Records

When it comes to storing and retrieving a patient’s data, hospitals make use of the concept of

patient records. A patient record comprise all data and documents, which is collected during

a patient’s treatment by a health care provider. This data can be stored conventionally (paper-

based) or electronically. A patient record contains a set of sub-documentations which have

different goals and properties [5].

With this explanation in mind we can go on to the definition of electronic health records.

There are several terms which are used instead of electronic health record, like electronic patient

record, computerized patient record, electronic medical record, etc. With minor deviations they

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 5

all aim for the same target, but there are several different definitions, describing the structure

and goals of electronic health records. In the simplest definition the electronic health record is

“a computer-stored collection of health information about one person linked by a person iden-

tifier“ [6]. A more complex definition would be ”A computer-based patient record (CPR) is an

electronic patient record that resides in a system specifically designed to support users by pro-

viding accessibility to complete and accurate data, alerts, reminders, clinical decision support

systems, links to medical knowledge, and other aids“ [7].

Strengths and weaknesses

The drawbacks of a conventional paper-based patient record are obvious. They are only available

at one place at the same time and can be lost. An attribute based retrieval of information is not

possible and it cannot be sorted and filtered by user defined criteria. Weed pointed out, that in

the current form they are full of serious defects, diffuse, subjective and incomplete [8]. And even

worse, over the past few years there had been no improvements [9]. In certain circumstances the

integration of different media types is not even possible. As a result there could be more than

one patient record existing for one person.

Electronic health records have their strengths where conventional patient records have their

weaknesses. They can be accessed on multiple different locations at the same time and it is very

unlikely that they get lost. The data can be sorted, filtered and retrieved by user-defined criteria.

The integration of different types of media, like lab results or medical images, can be achieved

rather easily.

On the other hand, paper-based records can easily be extended by just adding further pages

or print-outs to the record. There is no technical equipment required to retrieve data as well as

there is no need of technical knowledge to use the system. The paper-based patient record has

been used and optimized for decades and therefore clinical staff is used to working with these

kinds of records [9].

This is where electronic health records still have their drawbacks. A prerequisite for intro-

ducing an EHR to a hospital is, that the hospital is equipped sufficiently. This includes worksta-

tions as well as a networking infrastructure. Additionally, the hospital needs to train the medical

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 6

staff in using the electronic system.

Common requirements

When designing a electronic health records there are various different requirements that arise

from the context of its planned use. First of all there are functional requirements which need to

be satisfied. The main functional goal of an electronic health record is to consequently provide

non-redundant documentation where stored information can be used by clinical or administrative

staff. The literature which describes functional requirements for electronic patient records is

extensive [7, 10, 11].

The most important functional requirements for a electronic health records are [11]:

• Use standardized classification systems to assure communication of interpretable medical

data.

• Flexibility in respect of the structure of documentation. It has to be easily extensible and

reorganizable.

• Flexibility in using the system. This includes the possibility to create custom views to

mash up data and to allow free navigation.

• Integration of all required functionalities and data.

But an electronic health record does not only have to provide functional features. There are

a lot of requirements concerning usability and presentation of data. This is a crucial success

factor for all medical information systems. It includes the possibility of context dependent links,

flexible and fast navigation as well as a shallow navigation depth.

Last but not least there are ethical requirements which come along when processing sensitive

information. Those ethical requirements include the protection of sensitive data as well as a

differentiated security mechanism [9, 12].

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 7

1.4 EHR- and related standards

Health care providers all over the globe are faced with the challenge of improving the patient

care’s quality and efficiency. This can be achieved by shared-care, which means health care

providers need to share treatment data. Sharing this data is bound to an extended co-operation

and communication of heath care information systems [13]. To assure the semantic interoper-

ability and a seamless patient care over boundaries of information systems, standards need to

be defined. Those standards need to describe the terminologies, communication interfaces and

technologies as well as a common model for storing and exchanging documents.

HL-7 CDA

“The CDA Release 2.0 provides an exchange model for clinical documents (such as discharge

summaries and progress notes) - and brings the health care industry closer to the realization of

an electronic medical record. By leveraging the use of XML, the HL-7 Reference Information

Model (RIM) and coded vocabularies, the CDA makes documents both machine-readable - so

they are easily parsed and processed electronically - and human-readable - so they can be easily

retrieved and used by the people who need them. CDA documents can be displayed using XML-

aware Web browsers or wireless applications such as cell phones.” 1

HL-7-Clinical Document Architecture (CDA) is a document markup standard which de-

scribes the structure and semantics of clinical documents [14]. Key aspects of the HL-7-CDA

are:

• CDA documents are encoded in XML.

• CDA documents are based on HL-7-RIM and use HL-7v3 data types.

• CDA documents are expressive and flexible. Templates can be used to constrain the

generic CDA specification.

The scope of HL-7-CDA is to standardize clinical documents for the purpose of exchange.

The data format outside the exchange context is not specified in this standard. “The CDA does
1http://www.hl7.org/implement/standards/cda.cfm, last access: 28-12-2010-15:45

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 8

not specify the creation or management of documents, only their exchange markup. While it

may be possible to directly use the CDA Schema in a document authoring environment, such

use is outside the CDA specification.” [14]

A CDA document contains services and observations which have to following characteris-

tics.

• Persistence - An unmodified clinical document has to exist for a time period which is

specified by regulatory requirements.

• Stewardship - A clinical document is maintained by a health care provider entrusted with

with its care.

• Potential for authentication - Clinical documents need to be legally authenticated.

• Context - A default context for each clinical document is established.

• Wholeness - The authentication of a clinical document is only valid for the whole docu-

ment in its context. It does not apply to specific parts of the document only.

• Human readability - The clinical document is readable by humans.

The payload of HL-7 CDA documents is solely based on HL-7 RIM classes and HL-7v3

data types.

HL-7 RIM

For assuring interoperability between systems using HL-7v3 standard, all exchanged data has

to be based on a common information model as well as a common binding vocabulary. “At the

domain-specific level, CMETs, RMIMs, the temporal and procedural conditions expressed by

Interaction Diagrams or State Diagrams as well as Application Roles, from which trigger events

and interactions result, must be standardized” [13].

Therefore the HL-7 Reference Information Model (HL-7 RIM) has been designed, speci-

fying common data types for health care applications. “HL7’s RIM is a comprehensive, non-

discipline specific, object-oriented information model of patient care and of the providers, insti-

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 9

tutions, and activities involved” [15]. The current HL-7 RIM standard specifies six generic core

classes.

• Entity - Any person, material, location or institution

• Roles - The role an entity holds (e.g. physician, patient, ..)

• Participation - The actual role of an entity in a specific act (e.g. patient, witness, ..)

• Act - A health care related activity

• Role Link - A collector class to manage the relationship of entities and their corresponding

roles.

• Act Relationship - A collector class for chaining acts.

The concepts of inheritance or specialization (adding characteristics) and cloning (duplicat-

ing classes and their characteristics) enables the HL-7 RIM to be tailored to domain specific

requirements [16, 17].

Although the HL-7 RIM is a very generic standard, there are some very critical reviews

arising, pointing out incoherences in the standard [18].

EN-13606

“The European Committee for Standardization (CEN) is a business facilitator in Europe, remov-

ing trade barriers for European industry and consumers.” 2. In 1999 this organization designed

the first international architecture of an EHR, the CEN-ENV 13606. According to common

CEN guidelines, a CEN ENV has to be reviewed and re-evaluated after three years to cancel,

adopt or revise the specification [19]. The currently valid specification, EN-13606, consist of

five parts [20]:

• Part 1 - Reference model: A scalable, generic information model to represent health in-

formation.
2http://www.cexn.eu/cen/AboutUs/Pages/default.aspx, last access 2011-02-21 11:39

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 10

• Part 2 - Archetype interchange specification: Archetypes define or constrain legal com-

binations of the reference model. When communicating between different EHRs an

archetype model is used to represent archetypes.

• Part 3 - Reference archetypes and term lists: A basic set of archetypes and terms used in

a clinical environment.

• Part 4 - Security: A privilege-based security mechanism to access EHR data.

• Part 5 - Exchange models: This part is still under development, but it will specify the

messaging model and the data formats to exchange EHR data.

EN-13606 is solely based on HL-7-RIM, a set of data type definitions harmonized between

HL-7, CEN and the EHR Domain Information Model. EN-13606 focuses on structural aspects,

which are described through platform independent models [13].

According to EN-13606 an electronic health record comprises two components, Root Archi-

tectural Component (RAC) and a Record Component. The Record Component is established by

Original Component Complexes (OCC), Selected Component Complexes, Data Items, and Link

Items. There have been four components which can be used in the OCC are folders, composi-

tions, headed sections, and clusters. They can be combined recursively to build a hierarchical

information model. All components have been defined in one single architectural model, “thus

characterizing ENV 13606 as the one-model approach.” [13].

OpenEHR

OpenEHR is is an electronic health record standard, which is developed by the OpenEHR foun-

dation. The aim of the OpenEHR foundation is the “development of an open, interoperable

health computing platform, of which a major component is clinically effective and interoperable

electronic health care records (EHRs).” [21].

The OpenEHR specification describes a standard for storing and sharing EHRs within an

open architecture. OpenEHR does that by using a two-level concept. The first level defines a

reference model (RM in figure 1.1). This is a general framework, in which all relevant clinical

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 11

Figure 1.1: OpenEHR Architecture [22]

data can be reliably stored and exchanged. In the second level rules are defined, how to use

specific clinical concepts in an electronic health record. These rules, called archetypes (AM in

figure 1.1), represent the clinicians’ agreed requirements for sharing specific data [23, 22]. The

Service Model (SM in figure 1.1) describes a bridge between knowledge resources and informa-

tion models. The ISO RM/OPD information and computation viewpoints are fully supported in

the current OpenEHR release [24].

OpenEHR Reference Model

The reference model in the OpenEHR specification describes the general structure of the elec-

tronic health record. It standardizes how contextual information is stored and how clinical in-

formation is safely managed and organized. In the reference model each patient has got a single

EHR which contains multiple compositions. A composition stores all information based on a

specific event, for example a physical examination or a blood sugar measurement. Those com-

positions can optionally be grouped in folders. Those folders can be used to group information

around an episode of care [23, 25].

Like conventional paper-based patient records, compositions contains some kind of head-

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 12

Figure 1.2: OpenEHR high level structures [25]

ings, which are called sections. Those sections can contain one or more entries, which are

clinical statements, like a drug, a measurement or a lab result. Each entry can comprise several

data items, which are the pieces of information in this entry. For example a medication entry

would contain several data items which describe the medication’s from, dose and name. Those

entries are the most important data types in the OpenEHR reference model, because they define

the semantics of all hard information in the record. Furthermore, some meta data concerning the

composition is required, like by whom or when it was created. [23, 25].

Beside that, the OpenEHR’s reference model specifies functionalities like versioning, label-

ing of data, auditing, access control, status and control information as well as support for stateful

content and record linking [23].

OpenEHR Archetypes

OpenEHR defines rules which describe how the reference model can be used in a certain context

and re-used in multiple levels of the reference model. Those rules are called Archetypes [26]. An

example for such an archetype would be, for example the patient admission form has to contain

an entry about the reason the patient visited the hospital, as well as an entry with the priority

with the patients injury. Another example would be a medication archetype which requires a set

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 13

Figure 1.3: OpenEHR reference model [23]

of items, such as an item called “drug name”, which is mandatory and must contain a value from

the MIMS medication code set, as well as an item called Form with further properties [23].

From a technical point of view, archetypes use the concept of specialization by restriction.

With archetypes it is possible to define constraint patterns on types, attributes, relationships

and classes without cloning or renaming as it is required in HL-7v3. To define archetypes an

Archetype Description Language (ADL) is used, which provides even more functionalities than

just defining constraints. It is specifically designed to integrate established terminology stan-

dards and code sets, like ICD-9, ICPC, LOINC or SNOMED-CT [27, 23].

Benefits of using Archetypes

The key benefit of an archetype-based system, like OpenEHR is, the separation of clinical,

record management and technical concepts. This supports the users with real clinical experience,

because they can focus on the problem of modeling clinical concepts. They know a common

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 14

Figure 1.4: OpenEHR sample archetype [23]

framework will take care of the health records interoperability and legally safe records [23].

From a technical perspective the archetype concept makes OpenEHR future-proof and in-

dependent of changing clinical knowledge. OpenEHR systems can be implemented based on

the OpenEHR reference model by using the standardized methods for storing, querying, updat-

ing and exchanging data [26]. New archetype versions, as well as completely new archetypes

can be added to the system at runtime, so there are no downtimes required while the system

evolves [23].

OpenEHR Versioning

The versioning of information in electronic health records is an integral feature. Because of that,

the requirements for versioning are specified in detail in the OpenEHR standard. The standard

requires versioning for selected top-level elements, like EHRs and compositions only. OpenEHR

heavily relies on the concepts of change-set based versioning and the virtual version tree [22].

The change-sets in the OpenEHR context are called contributions, which consist of new or

changed items in the repository. From a technical point of view, the contributions act like trans-

actions. Storing a contribution brings the repository from one consistent state into another con-

sistent state. This is necessary, because arbitrary combinations of changes to single controlled

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 15

Figure 1.5: OpenEHR version control structures [22]

items could lead to an inconsistent state which is dangerous when clinical data is involved[22].

OpenEHR uses the concept of a virtual version tree as an underlying versioning model. In

this design approach data is commited into a repository in lumps, each lump being the data of

one version. Each version of an object has its place within the version tree which is managed by

a version object. Furthermore, the design guarantees, that no matter where data is created , there

are no inconsitencies due to sharing. So OpenEHR is fully capable of sharing data in a shared

care context. [22].

OpenEHR and Interoperability

There are various reasons why development and adoption of both international and national

standards for interoperability is important in the context of electronic health records [28]:

• Sharing patient information between health care professionals in a multi-disciplinary field.

• Interoperability within organizations of an enterprise or a region.

• Supporting compatibility and interoperability between software from different vendors.

OpenEHR supports exchanging patient data encoded in the XML format. These messages

can be easily interpreted using any standard toolkits. Furthermore, OpenEHR is compliant with

various established standards. For example the EN-13606 specification is a complete subset

of the OpenEHR specification. Moreover is compatible with HL-7v2 and the HL-7 Clinical

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 16

Figure 1.6: Relationship of OpenEHR, CEN-13606 and HL-7-CDA [28]

Document Architecture (CDA), whose messages can be translated into OpenEHR data. So the

OpenEHR specification provides both, functional interoperability, as well as semantic interop-

erability [28, 23].

DICOM

The Digital Imaging and COmmunication in Medicine (DICOM) is the most established in-

ternational standard for digital medical imaging. The DICOM standard specifies all necessary

requirements for diagnostically accurate presentation and processing of medical images. But

DICOM is more than only a file format. It is a data transfer, display and storage protocol which

aims for covering all requirements which arise when working with digital medical imaging [29].

The DICOM standard has got a major role when it comes to digital medical imaging and has left

a mark on contemporary medicine by providing [30]:

• A universal standard of digital medicine. All standard medical imaging devices produce

DICOM images and communicate by using the DICOM protocol. Furthermore, health

care work-flows are implicitly constrained by a set of DICOM rules.

• Excellent image quality. DICOM uses the most advanced image representation techniques

and for example provides up to 16 bits of shades of gray for monochrome image dis-

play [31, 30].

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 17

• Full support for numerous image-acquisition parameters and different data types. DICOM

stores a lot of image related parameters, such as size of the object, slice thickness or a

patients 3D position. This information enriches the image and allows better processing

and interpretation of the data [32].

• Complete encoding of medical data. DICOM encodes more than 2000 standardized at-

tributes (based on the DICOM data dictionary) to convey meta-information about the im-

age, like a patients name or its diagnostics.

• Clarity in describing digital imaging devices and their functionality. The DICOM stan-

dard describes the required functionality for a digital imaging device in a strict but device

independent way. This minimizes the space for errors.

The latest specification of the DICOM standard can be found on the DICOM homepage 3

and is publicly available. Currently the DICOM standard holds 16 parts (volumes 1-18, with 9

and 13 being retired). The last publicly available revision, released in 2009, was used.

IHE Profiles

Standards often describe systems more abstract than engineers would need to design and build

a system. This always leaves some space for the engineers interpretation. Because of that, it

always requires a major effort to connect different systems in the health care context, even if

they all comply with international standards [33]. There is no clear guideline on how to use the

information provided in the standard to solving specific clinical problems. This leads to gaps

between the formal specification of standards and the actual implementation of the standard [34].

The integrating the health care enterprise (IHE) initiative was founded to fill this gap. The

IHE process gives health care providers a way to communicate their integration requirements in

order to guarantee an optimal patient care. Based on these needs, representatives of information

systems and imaging companies build and document a reference implementation of established

standards to provide the needed functionality. Their selections are stored in the IHE technical

framework [33].
3ftp://medical.nema.org/medical/dicom/2009/, last access 29-12-2010 11:31

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 18

Figure 1.7: IHE Technical Architecture [33]

The IHE technical framework is set of road maps on how to apply established standards to

solve system integration problems. This framework uses the DICOM and the HL-7 standards to

describe specific integration solutions. The IHE technical framework makes use of following or

defines following concepts:

• A data model which shows the relationships between key frames. This data model is based

on the data models of DICOM and HL-7.

• The concept of IHE actors. Those actors are used to describe a systems in enterprises

in generic, product-neutral terms. Actors exchange messages in order to execute specific

tasks.

• Integration profiles are the discrete unit of functionality. Those integration profiles address

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 19

a specific clinical and may require several actors and transactions. Currently there are 11

IHE integration profiles defined 4.

1.5 Selected highly relevant components in a Hospital Information

System

In most cases a hospital information system is no big monolithic application which provides all

the required functionalities. As mentioned in 1.2 there are a lot of different functional require-

ments for a HIS. The common architecture for a HIS therefore is, to define leading systems for

a specific group of requirements, e.g. to use picture archiving and communication systems for

medical imaging. Those systems will be integrated into the HIS’ core system by the standardized

interfaces they provide. In this section we will take a closer look at enterprise resource planning

tools and picture archiving and communication systems-

Enterprise Resource Planing tools

Hospitals are complex, information intensive systems which are community-served and quality-

focused, which differs them from other types of organizations [35]. But like other types of

organizations, the limitation of resources such as budget, personnel, and facilities forces health

care organizations to learn to manage their operations efficiently to overcome these constraints.

Therefore information technology, especially enterprise resource planning (ERP) tools have

proven to be a key component in enhancing an organization’s efficiency.

Enterprise resource planning (ERP) tools are packaged application software solutions which

seek to integrate the complete range of business processes and functions in order to present a

uniform view of the business from a single information and IT architecture [36]. ERP tools tend

to be very generic and therefore highly configurable. This gives them the ability to accommodate

at least the basic needs of most sectors of the economy. But when it comes down to using ERP

systems in the health care sector bigger vendors like Oracle 5 or SAP 6 try to provide customized
4http://wiki.ihe.net/index.php?title=Profiles, last access 28-12-2010 21:13
5http://www.oracle.com/us/industries/healthcare/index.html, last access 2011-03-02 01:51
6http://www.sap.com/industries/healthcare/index.epx, last access 2011-03-02 01:51

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 20

health care solutions.

For health care providers operations can be classified into key functions including finance

and accounting, logistics and supply chain management, facilities management, human re-

sources, business planning and performance improvement and information management [35].

What those operations have in common is, that they all create a huge amount of data, which

needs to be processed. This is where ERP-tools come into play. They can support standardized

processes by supplying necessary data or directing users through well defined work-flows [37].

In the past, many hospitals tried to introduce information-technology systems, like ERP-

tools [38] or electronic medical records, in order to improve the quality of their service or pro-

vide real-time resource monitoring. In general ERP-tools provide various functionalities, such

as customer relationship management (CRM), project and quality management or business in-

telligence reports [37]. But in the health care environment, human resources, supply chain man-

agement and financial and accounting functionalities tend to be of predominant importance [35].

Although ERP-tools are getting popular more and more, and the range of functions they pro-

vide gets bigger and bigger, many ERP adoption projects were not successfully finished or ended

up taking a long time for implementation and integration into the firms business process [37].

Many different factors need to be considered when adopting ERPs. For example organizational

characteristics like structure, size, and culture has been recognized as important factors affecting

ERP adoption [39]. The integration of the ERP system could also change some of the compa-

nies characteristics. For the organization it is necessary to know how to handle these changes so

they won’t cause problems, like resistance from users, which is one of the key concerns in ERP

adoptions [40].

Health care providers have been known to be very engaged in new medical technologies,

but considered as a late adopter in terms of integrating information technologies or supporting

business operation by information technologies [35]. In the past IT in hospitals was only used for

billing and financial activities [41]. But the trend goes clearly to supporting more complex and

complicated processes using IT. This should help hospitals to reduce costs, use their resources

more efficiently and last but not least meeting the patients expectations.

Even though a lot of hospitals use ERP systems now, it is rather rare, that this ERP system is

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 21

the only information system in the hospital, nor are they using all of the ERP’s functionalities.

This is explained by the unique character of the health care context [35]. Typically ERP systems

are not capable of handling all hospital related processes. Therefore specialized systems, like

picturing archiving and communication systems (PACS) or decision support systems are needed.

Several health care organizations adopt the “best of breed” concept which considers specialized

systems for different operations [37]. Most these “best of breed” approaches include an in-house

ERP system which is in charge of material management, financial and accounting tasks or other

health care operations.

Picture Archiving and Communication Systems

Every state-of-the-art digital radiology department is supported by two main computer systems.

First the Radiology Information System (RIS) which is in charge of all text-based functional-

ities, like material management, billing or shift plans. This system cooperates closely with a

Picturing Archiving and Communication System (PACS). The PACS provides all image-related

functionalities, such as storage, acquisition or local distribution [42].

A PACS integrates many components which are needed for medical imaging in clinical prac-

tice. Depending on the context, a PACS can either comprise just a few components communi-

cating with each other or be a hospital-integrated or enterprise system [43]. Today most of

the PACS installed are large-scale PACS according to the conditions specified by Baumann in

1996 [44, 45].

During the time PACS systems evolved three architectural styles established, which are

mainly used. These three styles are:

• Stand-alone

• Client-Server

• Web-based

Regardless the architectural style the PACS is based on, there are three major components

in a PACS. The image and data acquisition gateway, a PACS server and archive and display

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 22

Figure 1.8: PACS architecture [43]

workstations integrated in a digital network [43].

The PACS retrieves images from imaging devices (modalities) and enriches them with tex-

tual data from the hospital information system or the radiology information system. There are

two sorts gateways the PACS server and archive retrieves its data from. First the database gate-

way which provides the textual data, like patient’s name or diagnostics, and secondly the image

acquisition gateway. The image acquisition gateway delivers the image data from the imaging

devices. A major task in a PACS is the acquisition of images in reliably and timely manner

through the imaging acquisition gateway and to enrich this image with textual data from the

database gateway. The acquired images of the current imaging device are encoded and ex-

changed using the DICOM standard [43].

“The four major ingredients in the PACS infrastructure design concept are system standard-

ization, open architecture and connectivity, reliability and security”[43]. All current PACS sys-

tems aim to support as many established industrial standards as possible. For example images

are exchanged using the DICOM standard, textual data is stored in ASCII Text, IHE profiles

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 23

describe the work-flows or XML is used to represent and spread the data in the Internet. Besides

that, it is crucial for a PACS to provide standardized interfaces, so other components can retrieve

data regardless the actual implementation of the PACS. Due to the rapid change of technologies

most PACS are based on an open and extensible architecture. Furthermore, the reliability of

PACS is very important because of two reasons. Firstly, a PACS consists of multiple compo-

nents, so the probability of one failing is high. Secondly a PACS handles critical patient data, so

long downtimes cannot be accepted. Therefore fault tolerant measures like error detection, in-

telligent software recovery or hardware redundancy is used. Last but not least the patient’s data

is very sensitive and has to be protected against unauthorized access. The security concept in a

PACS has to deal with misuse of data as well as behavioral violation and physical intrusion [46].

1.6 HIS Security

Dealing with sensitive, personal medical data, health information systems need to meet com-

prehensive security requirements. Regarding security concepts in general, we have to look for

security, safety and quality [47].

Security and privacy contain a wide range of aspects, political as well as social, organiza-

tional and technical. Establishing a secure infrastructure where an information system can be

built on is a highly complex task. As a result many recommendations and best practices evolved.

The ISO/IEC Standard 17799 “Information technology - Code of practice for information secu-

rity management” defines a the common guidelines an information system should comply with.

Furthermore, the ISO/IEC IS 15048 “Information Technology - Security Evaluation Criteria”

(known as Common Criteria) provides common security evaluation criteria [48].

The standards mentioned before are domain independent so they have to be supplemented

with the EU directives 2007/47/EG (known as medical devices directive) which defines rules a

medical device has to comply with.

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 24

Security Risks and Threats to Clinical Information

The main security threat within a hospital information system comes from abuse by insiders. The

effects on aggregating the personal medical data is foreseeable. The likelihood that information

will be improperly disclosed depends on its value, and the number of people who have access to

it. The aggregation of this information increases both these risk factors [49].

For obvious medico-legal reasons, integrity and availability of hospital information systems

are crucial. Like phone, mail or fax messages software systems are prone to failures. But in

contrast software bugs may not be as evident as the failure mode of a telephone or fax. Software

bugs could alter laboratory results or reports without changing it too much that it would be

rejected [50].

Beside the random software bugs there are malicious failures as well. Especially in a shared

care environment it may be possible for outsiders to intercept or modify messages. But the

majority of attacks on system integrity is carried out by insiders. Typical cases are attempts to

shift liability by altering records of malpractice, to abuse prescription systems or straightforward

theft or fraud by changing records of stocks or contracts [50].

In addition, there are system level effects as well. For instance attacks on the integrity may

be more likely by the loss of confidentiality. If, as in the USA, medical records become widely

used outside of clinical practice for hiring and credit decisions, then there will be motives to

alter them [50].

However, the biggest problem may be if patients loose the trust in the confidentiality of

their personal medical data. If they do, they will suppress relevant information, which results in

inaccurate records, as well as poor treatment and to an increased risk to others from spreading

infectious disease [51].

Security Policy Model for Clinical Information Systems

A security policy model is a scheme for specifying and enforcing security policies. A security

policy model for clinical information systems comparable to the Bell-LaPadula model for mil-

itary systems [52] and the Clark-Wilson model for banking systems [53] has been proposed by

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 25

Ross Anderson [51]. This policy model is based on the rule set rocemmended by the General

Medical Council 7 and the British Medical Association 8.

This model defines nine security policies and principles:

Access control lists

Each identifiable clinical record shall be marked with an access control list containing the

list of people which should be able to access the record in any way. It should prevent the others

to access the record at all.

Record opening

This security policy model avoids multilevel objects and recommends multiple records. Be-

cause of that, clinicians have to be able to open records with themselves and the patient on the

access control list.

Control

A single clinician has to be marked as being responsible for the patient. This clinician alone

is able to add or remove health care professionals to the access control list.

Consent and notification

The patient must approve a modification on an access control list of his medical record. The

only exceptions to this rule are in case of an emergency or of statutory exemptions.

Persistence

There rules on how long to medical record have to be kept at least. No one should have the

ability to delete clinical information until the appropriate time period has expired.

Attribution

The whole access to clinical information has be marked on the record with the subjects name,

date and time. Furthermore, an audit trail must be kept of all deletions.

Information flow

When there are multiple records for a single patient with different access control lists, the

information flow is only allowed from the less to the more sensitive record.

Aggregation control
7http://www.gmc-uk.org/, last access 2011-05-16 23:34
8http://www.bma.org.uk/, last access 2011-05-16 23:33

CHAPTER 1. MEDICAL INFORMATICS: SPECIAL CHAPTER HOSPITAL
INFORMATION SYSTEM 26

Clinicians in charge of a safe-haven may be added to a large number of access control lists,

making them vulnerable to inducements. In order to prevent this, patients have to be notified if

any person whom it is proposed to add to their access control list already has access to health

information of a large number of people.

Trusted Computing Base

All computer systems which handle sensitive, personal medical information shall have a

subsystem that enforces all principles effectively.

CHAPTER 2
Problem statement and basic idea

The main goal of this thesis is to do a proof of concept for a future-proof integration architecture

for a hospital information system. To be able to design and implement such a system it is

absolutely necessary to understand the problems current HIS are confronted with.

2.1 Problems of current HIS

Although there has been a reformation in the recent HIS development, many of those systems are

still management-centered systems. To improve the quality of the patient’s care in a hospital,

those systems should be patient-centered clinical systems. In consequence, electronic health

records should be the basic design concept [54].

As already discussed in 1.4, the first international approaches to standardize electronic pa-

tient records are relatively new. In contrast, computer based hospital information systems are

used for decades. Because of that, it is unlikely for older HIS to support, standards which have

been released recently. In addition, the implementation is normally steered by software compa-

nies, who build independent systems, which tend to lack interoperability [54, 55].

Another urgent problem is the integration of specialized systems, within the hospitals en-

vironment. Normally a HIS is no big monolithic software package. There is a core HIS,

which integrates several specialized systems, e.g. PACS, RIS or ERP-tools [56]. Those tools

27

CHAPTER 2. PROBLEM STATEMENT AND BASIC IDEA 28

are defined as the leading systems for specific tasks and operations, but they have to provide

interfaces to trigger processes or provide data for the core hospital information system. Fur-

thermore, they have to retrieve data from the HIS as well as triggering work-flows in the core

system [57, 58, 59].

All in all there is a great need for interoperability for systems in a health care environment.

This does not only include sharing information between hospital information systems, but as

well communicating information between the different software components within a HIS [58].

2.2 Service oriented and patient centered approach

To solve the problems stated above the architecture of a hospital information system has to

make integration of subsystems as easy as possible. Further on, the data has to be stored patient-

centric and established standards, such as EN13606, HL-7, DICOM or IHE Profiles have to be

supported.

To accomplish the interoperability of different subsystems, the architectural style used, is

a service oriented architecture. By using this style different components act as services which

only communicate via defined interfaces. This implies a loose coupling of components which

gives the maximum flexibility when changing implementations of components which are already

used, as well as integrating new software packages [58].

To comply with the requirements of a patient-centric system, the OpenEHR standard is

used as an electronic health record implementation. As stated before (see 1.4), EN-13606 is a

complete subset of the OpenEHR specification and the archetyped concept of OpenEHR seems

promising because it is extensible, as well es vendor-independent.

2.3 Related work

A research project which is based on OpenEHR as well is Opereffa 1. The Opereffa project

is a prototype project for implementing the OpenEHR standard. In contrast to the practical
1http://opereffa.chime.ucl.ac.uk/, last access 2011-01-14 21:13

CHAPTER 2. PROBLEM STATEMENT AND BASIC IDEA 29

part of this thesis, Opereffa uses a relational database (MySQL 2) for storing and retrieving the

OpenEHR data. Further on, Opereffa does provide a graphical user interface which is dynami-

cally rendered according to the rules specified by the OpenEHR archetypes and templates.

In addition, the OpenEHR research community is very active and some countries like Aus-

tralia or Sweden invest heavily in the OpenEHR development. Because of this there has been a

steady development of the OpenEHR standard, but unfortunately a lack in practical applications.

There has also been research towards the use of service oriented hospital information sys-

tems. In [55] the problem of integrating distributed health care information systems is described.

A possible solution has been suggested in [56] where a SOA enabled Health Information Inte-

gration Platform has been designed. The same topic is addressed by [59] where a more general

approach of how to use service oriented architectures in health care information integration envi-

ronment is described. In addition, [58] discusses the implications of service oriented architecture

for large scale distributed health care enterprises. More focusing on technical aspects, [60] dis-

cusses the use of webservices in the health care context.

2http://www.mysql.com/, last access 2011-02-07 21:54

Middle

30

CHAPTER 3
Evaluating Of-The-Shelf Software For

Extending a HIS-Core System

Many large scale systems depend on commercial of-the-shelf software (COTS). This type of

software is evolved, supported by a vendor and used without modification of the internals. En-

terprises can get many benefits when using of-the-shelf software. For example, improvements

of the performance are made within the product. Moreover it provides the chance of a faster

delivery for end-users as well as sharing development costs of new features with other users of

the software [61].

Besides those benefits, the risk of vendor or system lock-in arise when using commercial

software. An organization locked into a vendor relies on its service, products and updates.

Switching to another vendor would entail significant costs. The use and adoption of open source

software can reduce the risk of vendor lock-in as well as the dependency to specific vendors [62].

When designing large scale systems, which depend on so called COTS software, the evalua-

tion as well as the selection of those products is a critical factor for the success of the project. Yet

many organizations struggle with the process of evaluation and selection. Given that problem

some methodical evaluation processes evolved. Two very popular methods are the DESMET

software evaluation [63] and Process for COTS Software Product Evaluation [61].

31

CHAPTER 3. EVALUATING OF-THE-SHELF SOFTWARE FOR EXTENDING A
HIS-CORE SYSTEM 32

3.1 DESMET Project

“DESMET was a collaborative project part- funded by the UK Department of Trade and Industry

which aimed to develop and evaluate a method for evaluating software engineering methods and

tools.” [63]. The focus of the a DESMET evaluation is to evaluate specific methods or tools for

a particular organization. An organization can either be a company as well as a research group.

The DESMET method provides guidelines for an evaluator to plan and execute an evaluation.

The result of this evaluation is unbiased and reliable, which increases the chance of choosing the

tool which suits the best.

DESMET evaluations are context-dependent. The tool which is determined the best in a

certain evaluation is the best for the given circumstances. So it may be that an evaluation may

come to a different result, if it is executed in two different companies. This is because the context

in those two companies may be different. However, DESMET describes one evaluation strategy

which is based on a formal experiment [63]. This kind of evaluation is context-independent,

because of the context-independent nature of formal experiments [64].

A prerequisite which is formulated in the DESMET evaluation is, that the object which

should be evaluated is one of the following [63]:

• A generic method which is a generic paradigm for some aspects of software development.

• A method which is a specific approach within a generic paradigm.

• A tool which is a software application that supports a well-defined activity.

Furthermore, DESMET defines two types of evaluation strategies which aim for different

goals. The quantitative evaluation can be used when you want to determine the expected benefit

of a new method or tool in measurable terms. On the other hand, the qualitative evaluation

assesses the appropriateness of a method or a tool. It can be measured in features provided, the

characteristics of its supplier or the training requirements [63].

CHAPTER 3. EVALUATING OF-THE-SHELF SOFTWARE FOR EXTENDING A
HIS-CORE SYSTEM 33

3.2 DESMET Feature Analysis

In the course of this thesis an open source ERP system (see 6) as well as an open source PACS

(see 7) have to be evaluated in respect of their integration capabilities. DESMET describes

various ways of evaluating tools or methods. For each of them there are recommendations given

when to choose the specific method. For the evaluations which had been done during this thesis,

a large number of tools could be possible fits. Those tools have to be evaluated in a short period

of time. In respect of those two conditions, the Feature Analysis - Screening mode had been

chosen.

This evaluation strategy is based on reviews of marketing and technical documentation rather

than trials of the tools themselves. In the simplest form a feature analysis is a list of “yes/no”

questions. When it comes to evaluating complex software tools, the requirements become

fuzzier. Some products meet certain aspects of a requirement. It that case more sophisticated

scoring systems come into play. In such cases you have to provide scores for the degree the

feature is provided.

The process of evaluating a specific tool can be broken down into nine steps [63]:

1. Select a set of candidate method/tools to evaluate

2. Decide the required properties or features of the item being evaluated.

3. Prioritize those properties or features with respect to the requirements of the method/tool

users.

4. Decide the level of confidence that is required in the results and therefore select the level

of rigor required of the feature analysis.

5. Agree on a scoring/ranking system that can be applied to all the features.

6. Allocate the responsibilities for carrying out the actual feature evaluation.

7. Carry out the evaluation to determine how well the products being evaluated meet the

criteria that have been set.

CHAPTER 3. EVALUATING OF-THE-SHELF SOFTWARE FOR EXTENDING A
HIS-CORE SYSTEM 34

8. Analyze and interpret the results.

9. Present the results to the appropriate decision-makers.

CHAPTER 4
EHR core system

As already mentioned above, we want to use a service oriented approach for connecting the

different components of a hospital information system. This implies, that each service can be

deployed independently from each other and that each service provides an interface for other

services to consume.

Considering this, the first service which has been developed was the EHR core system. The

requirements for this EHR core system are quite simple. It has to store all patient-related data

in a patient-centered, standardized data model. Furthermore, it has to provide versioning and

archiving features. According to the architecture, the EHR core system has to expose CRU(D)

functions for patient related data via webservices.

4.1 Underlying standard - OpenEHR

First of all, an underlying standard has to be selected, which can be used to store patient infor-

mation. As already mentioned before, there are various standards describing different concepts

of electronic health records, e.g. OpenEHR (see 1.4) or EN-13606 (see 1.4).

For this proof of concept, the OpenEHR standard has been selected, because of multiple

reasons [21].

35

CHAPTER 4. EHR CORE SYSTEM 36

• OpenEHR is a standard, which is actively developed by a transparent foundation, the

OpenEHR foundation.

• OpenEHR complies with the EN-13606 standard, because EN-13606 is a complete subset

of OpenEHR.

• OpenEHR has an archetype-based architecture, and therefore separates clinical knowledge

from the technical infrastructure. Furthermore, the model of clinical concepts can be

extended by just defining new archetypes and templates in a domain specific language. A

technical framework will take care of interoperability, usability and legally safe records.

• OpenEHR provides a reference implementation, developed in the Java programming lan-

guage, which contains basic functionalities for the reference model as well as the archetype

model.

In addition, there aren’t many HIS, which are based on OpenEHR. So the practical part of

this thesis can be seen as a further proof of how effective the OpenEHR standard can be used.

4.2 Architectural decisions

Because of the service oriented architecture used in the hospital system itself, the EHR core

system has to provide a webservice or RESTful service interface. This is the only architectural

requirement, which has to be satisfied in order to comply with the HIS’ architecture.

To design the internal architecture of the EHR core system in a future-proof way, a multi-

layered approach has been chosen. Three layers have been used encapsulate the different func-

tionalities. Those three layers are

• A model layer, which is responsible for storing, retrieving and versioning all patient-

related data.

• A service layer, which holds the business logic of this component.

• A webservice layer, which exposes SOAP webservices and RESTful services.

CHAPTER 4. EHR CORE SYSTEM 37

Figure 4.1: EHR core system architecture

CHAPTER 4. EHR CORE SYSTEM 38

Those three layers, as well as the concepts and frameworks used, will be described in the

following sections.

Model layer

The most important requirement for the model layer is to conform with the data model specified

by the OpenEHR standard. This data model is designed hierarchically and supports an archetype

concept. It also specifies requirements for archiving and versioning.

Because of the size of OpenEHR standard’s data model, the model layer of the EHR core

system only supports a subset of all components specified. The supported components are:

• EHR root objects - This object relates to a single patient and is immutable after its creation.

It is the entry point for component parts of the EHR.

• Compositions - A contribution is a “unit of information corresponding to the interaction

of a health care agent with the EHR” [25].

• Sections - Those sections can be seen as some kind of heading in a composition. This

sections define a logical structure for authors, who creates and updates records, as well as

a navigational structure for readers, who consume existing data.

• Entries - An entry is a single “clinical statement”, which can be a single sentence, but also

a microbiology result.

The composition, as well as sections and entries are archetpyed, which means they are de-

fined by archetypes (see 4.2).

After the set of supported components has been defined, a tool or framework has to be

selected. There are various choices of how to store and retrieve information in state-of-the-art

software systems.

The most popular approach is using a relational database. Opereffa 1, another project us-

ing OpenEHR as a basis to implement a HIS, uses a relational database (MySQL 2) to store
1http://opereffa.chime.ucl.ac.uk/, last access 2011-01-14 21:13
2http://www.mysql.com/, last access 2011-02-07 20:56

CHAPTER 4. EHR CORE SYSTEM 39

Figure 4.2: Relationship of Compositions, Sections, Entries and Archetypes [25]

their information. Modern relational databases do support a wide range of functions and there

are several established products available as open source. But as the name suggests relational

databases are based on a relational data model. In contrast, OpenEHR specifies a hierarchical

and due to the archetype-concept, highly flexible, data model.

Another technology, which became popular in the past few years are No-SQL databases.

Those No-SQL databases are not based on a relational data model. There are three types of

No-SQL databases.

• A key/value store - This type of database only holds key-value pairs. Those databases are

highly flexible and scalable, but the modeling of relationships between tuples is difficult.

• A document based store - The database only stores documents with meta data attached to

it.

CHAPTER 4. EHR CORE SYSTEM 40

• A graph-based database - Graph-based No-SQL databases support a hierarchical data

model. All information is stored in a graph, where nodes hold information. Addition-

ally there can be meta data attached to a node.

For the proof of concept, a graph-based No-SQL database has been selected, because it fully

supports the hierarchical data model, specified by the OpenEHR standard. Specifically, Apache

Jackrabbit 3, an implementation of the JSR-170 4 and JSR-283 5 has been selected, because this

specification provides extensive versioning features out of the box.

Service Layer

The service layer of the EHR core system holds the business logic. This includes aggregation or

composition of data, as well as an input validation.

The service layer has been built using the spring-framework 6. This framework provides sup-

port for aspect oriented programming, as well as inversion of control and dependency injection.

This reduces the need of tight coupling inside of the service layer itself.

Furthermore, a fault barrier surrounds the service layer. This fault barrier catches all kinds of

exceptions and marshals them into a custom EHR core exception. By using this fault-barrier the

EHR core system can satisfy the contract, that it only throws EHR exceptions into the webservice

layer.

Webservice layer

The webservice layer has to expose the services provided by the layer via defined interface. In

case of the EHR core system, the service have been exposed via SOAP and REST.

First of all the choice for using RESTful services to expose the business functionality was

quite obvious. Most of the services identified so far have been resource based, like retrieve an

EHR root object with the given id, or retrieve all compositions for a given EHR. This is exactly
3http://jackrabbit.apache.org/, last access 2011-01-17 12:39
4http://jcp.org/en/jsr/detail?id=170, last access 2011-01-17 12:40
5http://jcp.org/en/jsr/detail?id=283, last access 2011-01-17 12:40
6http://www.springsource.org/, last access 2011-02-21

CHAPTER 4. EHR CORE SYSTEM 41

what REST has been designed for. The payload of these service is marshaled as XML using

xStream 7.

After the first implementation an interoperability issue came up with using .NET to build

services depending on the EHR core system. Because the OpenEHR reference implementation

is only available in the Java programming language, .NET requires WSDL files to create stubs.

Therefore all services exposed via REST have also been exposed via SOAP.

ApacheCXF has been used as a technical framework to expose both, REST and SOAP ser-

vices. The choice was made in favor of ApacheCXF, because the integration with the spring-

framework was good and the documentation of CXF concerning REST and webservices was

extensive.

4.3 Exposed interface

The functions exposed by the EHR core system are described in the following sections. They

are split up in functions related to the EHR root object, the compositions of an EHR as well as

the object reference resolver.

EHR-related functions

The exposed functions which are related to the EHR root object are relatively simple. The EHR

core system exposes a method for creating an EHR stub, called createEHR. This method can be

used to create a stub object of the EHR root object containing the EHR core system’s specific

parameters, like the system-ID. Furthermore, the interface provides a method for storing the

EHR root object. Therefore a complete EHR root object has to be passed to the method. This

function only supports storing of EHRs with an ID, that has not been assigned already. Because

of the immutability of the EHR root object it cannot be modified either. Last but not least the

interface exposes a retrieval mechanism for finding EHR root objects based on their ID. The ID

of the EHR object has to be in the form root::extension [25].

/**

7http://xstream.codehaus.org/, last access 2011-02-07 21:01

CHAPTER 4. EHR CORE SYSTEM 42

* Retrieve an EHR based on its ID

* @param id identifier in the form root::extension

* @return an EHR object if found, null otherwise

*/

@WebMethod

EHR getEhr(@WebParam String id);

/**

* Saves an EHR Object in the repository

* @param ehr complete EHR object

* @return an EHR object if saved correctly

*/

@WebMethod

EHR saveEHR(@WebParam EHR ehr);

/**

* Create a stub EHR object with the correct system-ID of

* the EHR core system

* @return EHR root object stub

*/

@WebMethod

EHR createEHR();

Listing 4.1: Interface of the EHR core system for the EHR’s root object related functions

Composition-related functions

The exposed functions which are related to the storing and retrieval of compositions are quite

similar the EHR functions. It provides functionalities for creating, storing and retrieving com-

positions. But in contrast to the EHR-related functions, it is possible to modify an already stored

composition. Although the functionalities for versioning haven’t been exposed yet, all compo-

sitions are completely versioned by the Jackrabbit framework. Furthermore, each composition

is bound to an EHR root object. Therefore the ID of the root object is needed in order to re-

trieve the correct composition or attach a new composition to the correct EHR. According to

CHAPTER 4. EHR CORE SYSTEM 43

the OpenEHR’s information model compositions contain sections and entries (see figure 4.2).

Those data-fields are stored in the composition object itself.

/**

* Create an empty composition. If the parentId is set

* it will be stored as a child of the given composition

*

* @param parentId Id of the parnet Composition

* @return the created Composition

*/

@PUT

@Path("/{parentId}/composition")

String createComposition(@PathParam("parentId") String parentId);

/**

* Modifies an existing composition

*

* @param parentId the id of the EHR-root object

* @param composition the composition to be stored

* @return composition the stored composition

*/

@POST

@Path("{parentId}/composition")

String saveComposition(@PathParam("parentId") String parentId, @Multipart(

value="composition", type="application/xml") String composition);

/**

* Retrieve a Composition

*

* @param parentId the ID of the EHR-root object

* @param id identifier of the composition

* @return composition the composition if found

*/

@GET

@Path("/{parentId}/composition/{id}")

CHAPTER 4. EHR CORE SYSTEM 44

String getComposition(@PathParam("parentId")String parentId, @PathParam("id")

String id);

Listing 4.2: Interface of the EHR core system for the composition related functions

Object reference resolver

Another important concept, which is heavily used in the OpenEHR’s reference implementation

is the object reference. In order to support interoperability between different OpenEHR im-

plementations, the relationships of different EHR objects are modeled with so called “object

references”. An object’s locatable path is defined by three different attributes:

• Namespace - Namespace to which this identifier belongs in the local system context

(and possibly in any other OpenEHR compliant environment) e.g. "terminology", "de-

mographic".

• Type - Name of the class of object to which this identifier type refers, e.g. "PARTY",

"PERSON", "GUIDELINE" etc. These class names are from the relevant reference model.

• ID - Identifier of the object

With these three attributes any object within the EHR core system can be uniquely specified.

/**

* Retrieve the object with the given namespace/type/id combination

*

* @param namespace namespace of the object

* @param type type of the object

* @param id id of the object in to form root::extension

* @return the object if found marshalled in XML

*/

@GET

@Path("obj/{namespace}/{type}/{id}")

String resolveObjectRef(@PathParam("namespace") String namespace, @PathParam

("type") String type, @PathParam("id") String id);

Listing 4.3: Interface of the EHR core system for the object resolver

CHAPTER 4. EHR CORE SYSTEM 45

For example when calling the resolveObjectRef function with the parameters Namespace

= “ehrCore”, Type=“EHR” and ID=“1234” we would retrieve the EHR root object with the Id

1234 of the ehr core system.

CHAPTER 5
Integration Framework

A stable, reliable and extensibility software architecture is the foundation any enterprise soft-

ware solution is based on. The architecture of a software system describes its basic design

principles as well as its strategies for data integration, function integration or work-flow inte-

gration [65]. Especially enterprise systems in the health care context have to integrate several

different specialized subsystems by using standardized interfaces.

5.1 Requirements

The requirements to software architecture can be analyzed quite similar to the functional re-

quirements of a software application itself. They arise from functional as well as non-functional

requirements, organizational factors as well as social and cultural factors. So the requirements

engineering for software architecture includes working with all stakeholders and gathering all

their requirements.

In a computerbased information systems in health care or more specifically a hospital envi-

ronment the most critical requirements are [57]:

• The integration of new subsystems should be as easy and seamless as possible.

• Different subsystems have to be interoperable.

46

CHAPTER 5. INTEGRATION FRAMEWORK 47

• The system has to comply with current security and privacy standards.

• The communication inside the architecture has to be reliable and persistent.

Those requirements arise from a technical perspective but they also address legal issues.

5.2 Architectural concept

As already mentioned in 2.2, the architectural style we used to satisfy those requirements was a

service oriented architecture. By using this style a loose coupling of components is guaranteed

which comes along with a high interoperability and easy integration of subsystems. This gives

the system the maximum flexibility in terms of integrating new subsystems into the hospital

information system.

Furthermore, the whole system is based on a complex one-way-messaging event processor.

This concept is based on asynchronous communication, where message distribution is controlled

by a rules engine. These components are described in detail in sections 5.2 and 5.3.

The main issues which are addressed with this architecture are

• It has to be possible to integrate all standard or de-facto standard protocols and tools with

minimal overhead. The integration of a new protocol/tool should not be more complex

than writing a plugin to marshal and unmarshal the requests and responses in XML. Those

messages should be enriched with the required meta information and be placed on the HIS’

message processing queue.

• Those plugins do not have to know each other and do not have to communicate with each

other directly. Instead they should just place events with a additional meta information on

the HIS’ message processing queue.

• It has to be possible to distribute the plugins on different physical systems, in order to

guarantee high scalability.

CHAPTER 5. INTEGRATION FRAMEWORK 48

Messaging infrastructure - Enterprise Service Bus

In the last section, the HIS’ message processing queue was mentioned several times, but the

technical infrastructure of this messaging system has not been discussed yet. As already stated

in the requirements section (see 5.1) all messaging in a hospital information system has to be

reliable and persistent. In the Java enterprise world there is a popular standard, called Java

Messaging System (JMS), which addresses exactly this problem.

The JMS specification describes two data structures, queues and topics, which are an imple-

mentation of a producer-consumer and the publish-subscriber pattern. These data structures can

be used in a persistent mode where all messages are stored in a persistent storage, which could

be a database as well as a file system. In case of exceptions during the processing of a message,

the message is placed on the data structure again, so the communication is persistent as well as

reliable.

Because handling multiple queues and topics without a framework isn’t too comfortable

there are multiple state-of-the-art JMS-frameworks. There are various frameworks available,

from simple messaging frameworks, like Apache ActiveMQ 1 over data distribution platforms,

like Hazelcast 2 to high-end service oriented infrastructure frameworks, like enterprise service

buses 3.

The framework which supports our service oriented architecture the best is an enterprise

service bus. ESB’s provide a lot of enterprise features, like security, transaction management,

business process management as well as naming and directory services. All of those features are

based on a reliable service oriented infrastructure. For the practical part the enterprise service

bus of JBoss have been chosen, because of its extensive documentation, its license (LGPLv2.1)

but most of all because it integrates a lot of established java frameworks, like the drools rule

engine 4.
1http://activemq.apache.org/, last access 2011-01-27 12:28
2http://www.hazelcast.com/, last access 2011-01-27 12:29
3http://www.jboss.org/jbossesb, last access 2011-01-27 12:30
4http://www.jboss.org/drools, last access 2011-02-07 21:15

CHAPTER 5. INTEGRATION FRAMEWORK 49

Content- and rule based routing of messages

The most integral part in this architecture is the distribution of messages. The main concept

of our service oriented architecture is based on reliable and persistent one-way messaging, so

the whole communication is carried out asynchronously. Another important design principle is,

that the different components deployed on the enterprise service bus do not have to know each

other. The most important argument for using asynchronous communication is, that requests can

deliver multiple results. In addition, the client does not have to wait for a synchronous result of

the request and can carry out other computations without blocking the process.

In order to satisfy the two requirements mentioned before, a plugin called ESB-core has

been developed. This plugin is responsible for the distribution of messages based on specific

meta information. So the whole system is a complex event-based system, which is controlled by

a set of rules.

One message can either be sent to zero, one or more recipients. In order to achieve this,

each plugin has to be registered in the ESB-core plugin, with a service category and a service

name. So each plugin has to provide a defined interface which can be invoked by the ESB-

core plugin in case a message should be delivered to this plugin. Last but not least the rules

for distributing messages in the ESB-core plugin have to be added or modified for this plugin.

Each message processed by the ESB-core plugin has to contain specific meta information in

order to be processed correctly. The most important meta information for messages processed

by the ESB-core plugin is the so called event type. This event type specifies the type of the

message-event, like “REQUEST_RETRIEVE_EHR”. This is the main property the distribution

of messages is based on. Furthermore, each message can contain multiple payloads, which are

not modified by the ESB-core plugin.

With this technical infrastructure, the plugins do not need to know each other. They only

have to send messages enriched with the required meta information, like the type of the message,

to the ESB-core plugin. Consequently they can only receive messages from the ESB-core plugin

via an exposed interface. In addition, each message has got an unique id. If a message is a

response-message, it’s meta data contains the correlating id of the request message so they can

be connected by the consumer.

CHAPTER 5. INTEGRATION FRAMEWORK 50

Figure 5.1: ESB-core system architecture

5.3 EHR core system integration and service exposure

As a first step of the proof-of-concept we want to integrate the functions provided by the EHR-

core system (see 4) into the hospital information system and expose them over the HIS’ architec-

ture. Therefore two separate plugins are needed. Firstly of all we need a plugin, which connects

the EHR core system to the HIS’, called the med-core plugin. And secondly a plugin is required

to expose the functionality by using webservices or RESTful services, called ehr-http plugin.

Those two plugins will be described in detail in the following sections.

Med-core plugin

As already mentioned before, a plugin is required which connects the EHR-core system to the

HIS’ integration architecture. The design of a so called connector is quite simple so are its

requirements.

1. Receive a message from the ESB-core system.

2. Unmarshal and parse the message.

3. Invoke the correct functions on the EHR-core system.

CHAPTER 5. INTEGRATION FRAMEWORK 51

Figure 5.2: Med-core plugin communication

4. Parse and marshal the response of the invocation.

5. Marshal its response payload.

6. Add the necessary meta information to the response message.

7. Place the message on the ESB-core system for further distribution

In order to be able to receive messages from the ESB-core system the med-core plugin has to

expose an interface to the HIS. Because we want to comply with a service oriented architecture

design, the best way of exposing an interface on an enterprise service bus is to create a message

queue and expose its service category and its service name. Additionally, business rules for

message distribution have to be added to the ESB-core system. (see listing 5.1)

rule "MedCore REQ_RETRIEVE_COMPOSITION"

when

m : Message ()

CHAPTER 5. INTEGRATION FRAMEWORK 52

p : String(toString == "REQ_RETRIEVE_COMPOSITION")

then

destinations.add("MedCore");

end

rule "MedCore RES_RETRIEVE_COMPOSITION"

when

m : Message ()

p : String(toString == "RES_RETRIEVE_COMPOSITION")

then

destinations.add("EhrHttpStorage");

end

Listing 5.1: ESB-core rules distributing retrieve composition requests and responses

The way the payload is unmarshaled depends on whether it is a plain string or a marshaled

XML representation of a java object. If the payload is a String, no unmarshaling has to be

done. In case the payload is a XML representation of a Plain Old Java Object (POJO) the java

XML framework xStream 5 is used. xStream is a highly configurable and library with excellent

performance for serializing and deserializing java objects to XML. Besides the payload which

need to be unmarshaled, the type of the event is of high importance. It specifies which method

to invoke. This event type is delivered in the meta data of the transferred message. For example

the event type “REQ_RETRIEVE_COMPOSITION” indicates that the method for retrieving

compositions should be invoked.

In the next step the correct method on the EHR core system has to be invoked. This system

exposes SOAP services as well as RESTful services (see 4.2). Because the methods provided

by the EHR-core system are resource based the med-core plugin will use the RESTful imple-

mentation of the EHR-core services. For this purpose the Apache CXF framework has been

used, mainly because it has already been of good use in implementing the EHR core system’s

webservices.

Once the invocation has been done correctly the result has to be marshaled into XML so it

can be transferred. For this purpose we use the xStream library again.
5http://xstream.codehaus.org/, last access 2011-01-27 13:32

CHAPTER 5. INTEGRATION FRAMEWORK 53

The last step comprises two dependent tasks. Firstly the message which should be dis-

tributed, has to created and secondly it has to be distributed. For the first part the message has

to be created and enriched with the necessary meta data. This would be, the correlating id of the

request message as well as the correlating response event. For example if the event type of the

request message is “REQ_RETRIEVE_COMPOSITION” the corresponding event type would

be “RES_RETRIEVE_COMPOSITION”. The REQ prefix indicates a request and the RES pre-

fix indicates a response. Of course the marshaled payload has to be stored in the message as

well. Afterwards, the message can be send asynchronously to the ESB-core system for further

distribution.

EHR-http plugin

We have specified the med-core connector plugin, which is able to receive messages, invoke

methods on the EHR-core system and distribute the response. Now it is necessary to expose

those functionalities over the hospital information systems architecture. Due to the asynchronous

nature of the architecture this has to be done by in two steps. Firstly we have to expose an inter-

face other services can invoke and secondly we have to publish the result when it is available.

Exposing the functions

Exposing the functions over the functions over the hospital information systems architecture is

quite simple. First of all the functions have to be exposed via webservices or RESTful services.

The interfaces are similar to the interfaces defined by the EHR-core system (see listing 4.3).

If a webservice method is invoked, a message is created which can be passed to the ESB-core

system. This message contains the necessary meta information, like the event type. Furthermore,

each message has a unique identifier which is stored as a part of the meta information as well.

Due to the asynchronous nature of the architecture it is not possible to instantly return a result.

To enable to match responses to the corresponding requests, this unique identifier is returned as

a result of the invoked webservices. Fetching the result for a specific request can than be done

by using this identifier.

CHAPTER 5. INTEGRATION FRAMEWORK 54

Figure 5.3: ehr-http plugin communication

Retrieving the result

Fetching the result is a key issue when using asynchronous communication patterns. There are

two best practices when it comes to returning the result to a caller. The first approach is, that the

result is stored in a data structure and can be fetched via polling. This approach is implemented

in the J2EE world by using so called Futures. The second approach is, that the caller implements

a specified interface and provides a callback URL where the callee can deliver the result once it

is computed.

In the practical part of this thesis both approaches have been implemented in order to guar-

antee the highest flexibility for consumers of the service.

The polling approach is implemented quite straight forward. A webservice method has been

implemented which returns results based on the unique identifier returned by the request. A mi-

CHAPTER 5. INTEGRATION FRAMEWORK 55

nor problem is, that the result of a request placed on a java message queue by the ESB-core plu-

gin, which does not allow random access based on specific attributes. For the polling approach

it is absolutely necessary to access messages based on their correlation identifier. Therefore all

results are fetched from the queue and placed on a distributed hash map immediately. The library

used for this hash map is Hazelcast 6, which is a highly scalable open source library completely

written in the java programming language.

/**

* Fetch the result for a request with the given id

* @param id the id of the correlating request

* @return result in xml

*/

@WebMethod

String getResult(@WebParam String id);

Listing 5.2: Interface for polling the result of an invocation of a ehr-http method

The second approach is the callback approach. Because the HIS’ architecture is a service

oriented architecture, the callback has to be designed in a way it complies to the SoA principles.

In order to satisfy this requirement the callback is specified as a webservice callback. The

interface which has to be implemented by the caller is listed in listing 5.3. The callback specifies

an ID parameter which is the correlating identifier of the request as well as a result parameter

which holds the concrete result marshaled in XML. So the caller has to implement the callback

interface and host it on a webserver of his choice. Besides that the caller has to specify the

URL where the callback should be invoked. So the caller has to specify the callback URL on

invocation of the webservice (see listing 5.4). In order to have the callback URL available once

the result is available it has to be cached in some kind of distributed data structure. Similar to

the caching of the result when using the polling approach, a Hazelcast distributed hash map fits

perfectly. The callback URL is stored by using the unique identifier of the request as a key.

Once the result is available, the callback URL can be looked up in the map and if specified the

callback can be invoked.

/**

6http://www.hazelcast.com/, last access 1011-01-28 20:31

CHAPTER 5. INTEGRATION FRAMEWORK 56

* Callback interface for retrieving results of ehr-http requests

* @param id correlating id of the request

* @param result result object marshaled in XML

*/

@WebMethod

void handleCallback(@WebParam String id, @WebParam result);

Listing 5.3: Callback interface ehr-http method results

/**

* Retrieve the data of a patient with the given ID

* @param id patients ID

* @param callbackUrl null if no callback required, complete URI to the

callbackWebservice

* @return an id which can be given to fetch the data with the getResult(

String) method.

*/

@WebMethod

String getEhr(@WebParam String id, @WebParam String callbackUrl);

Listing 5.4: Callback parameter in ehr-http methods

5.4 Sample Request for Retrieving an EHR

Now the components have been defined, it is interesting how they communicate with each other.

In this section a complete work-flow for retrieving an EHR-Object from the EHR core system is

described (see figure 5.4).

1. Caller invokes the retrieveEHR webservice method on the ehr-http plugin.

2. The ehr-http plugin publishes a message on the ESB core queue.

3. The ESB core system consumes the message.

4. The rules engine processes the message according to its rules (“MedCore REQ_RETRIEVE_EHR”)

and publishes a new message on the med-core plugin queue.

CHAPTER 5. INTEGRATION FRAMEWORK 57

Figure 5.4: Sample request for retrieving an EHR

CHAPTER 5. INTEGRATION FRAMEWORK 58

5. The med-core plugin consumes the message.

6. According to the message, the med-core plugin invokes the retrieveEHR method on the

EHR core system.

7. The result of this call is marshaled and published on the ESB core queue.

8. The ESB core system consumes the event.

9. According to the rules defined in the drools engine (“MedCore RES_RETRIEVE_EHR”)

a new message is published on the ehr-http plugin queue.

10. The ehr-http plugin consumes the message.

11. The webservice callback on the webserver of the client is invoked.

5.5 Design and Developement of an Integration Framework

Prototype

In the course of this thesis an integration framework for a hospital information system has been

implemented, to prove that the architectural concept works out. The prototyped components can

be grouped into three different categories: EHR-core system, HIS integration framework core

components and HIS integration plugins.

EHR-core system

The EHR-core system used to store all EHR-related data. The database schema complies with

the OpenEHR information model, only a subset of the whole OpenEHR functionality has been

implemented. The identified feature set is sufficient to demonstrate a patient’s admission, his

operations and treatments as well as his discharge. A more detailed list of limitations is described

in 4.

CHAPTER 5. INTEGRATION FRAMEWORK 59

Figure 5.5: Integration Framework Prototype

HIS Integration Framework Core Components

The core components of the HIS integration framework are responsible for providing an infras-

tructure where integration of plugins can be achieved in a common way. The JBoss enterprise

service bus provides this infrastructure. In addition, the rule engine based on drools is responsi-

ble for facilitating the communication between different services (see 5.2).

The other core components, the ehr-core-plugin and the ehr-http-plugin are responsible for

exposing EHR-related data. The ehr-core-plugin encapsulates the EHR-core-system and pro-

vides functions for storing and retrieving EHR-data (see 5.3). The ehr-http-plugin exposes the

EHR-related data via webservices to different clients. This plugin provides the same functional-

ity as the ehr-core-plugin (see 5.3). The implementation of clients of the ehr-http-plugin has not

been part of the proof of concept.

CHAPTER 5. INTEGRATION FRAMEWORK 60

HIS Of-The-Shelf Integration

The main goal of this thesis is to provide an way to easily integrate different subsystems into a

HIS core system. As a proof-of-concept an ERP tool (Openbravo) as well as a PACS (DCM4CHEE)

have been integrated. The integration of the ERP tool is limited to updating the stock in a defined

warehouse (see 6.3). The integration of the PACS is limited to the retrieval of a patient’s data

stored (see 7.3.

CHAPTER 6
ERP System Evaluation and

Integration

To prove that the architectural concept which has been designed in 5 works out, we want to

integrate an enterprise resource planning tool. Therefore we need to evaluate different ERP

tools in order to find the one which fits our needs the best in the context of our architecture. To

evaluate the ERP tools we use the DESMET feature analysis (see 3.2).

6.1 Requirements of ERP systems

According to the DESMET feature analysis [63] a set of desired features have been described.

For every feature a metric has been designed which defines a score. The more of the required

or desired functionalities a feature provides the higher is the score. Those scores range from -1

(worst) to 5 (best) for every feature to make them comparable.

In addition, each feature has got an importance which can be mandatory, highly desirable,

desirable or nice to have. Mandatory features are must-have features. If a product gets a negative

score on a mandatory feature it is eliminated. When all the products are evaluated a final score

is calculated to determine the product which fits best. In order to make the different degrees of

61

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 62

Score Description
-5 Wrong or irritating documentation
0 No documentation
1 Frequently asked questions
2 Up to date documentation (html/pdf) for the latest and each major ver-

sion
3 Tutorials for common actions (e.g. installation, first steps)
4 Screen casts for common actions (e.g. installation, first steps)
5 Online demo server with sample data

Table 6.1: Evaluation metric for ERP-documentation

importance visible in the final score, mandatory features scores are multiplied by four, highly

desirable by 3, desirable by 2 and nice to have features keep their score.

Documentation

Importance: Highly desirable

Because modern enterprise resource planning tools are of high complexity a good docu-

mentation is absolutely important. Modern documentations can have various forms [66]. The

most common form of documentation, which nearly all software projects provide, is a list of fre-

quently asked questions. Those so called FAQs give answers to common pitfalls. Another form

of documentation, normally is the most extensive one, is the traditional written documentation

which is provided in a common format (html or pdf). For new users tutorials are good sources of

information. They provide information about common actions, for example installation or first

steps). Because some tasks are hard to explain with words, screen casts can help users to repeat

the tasks without problems. Furthermore, it is very hard to get a first impression of the product

just by reading the documentation. Thats why screen casts and an online-demo server can be

very useful when it comes down to decide whether to take a closer look at the product.

License

Importance: Mandatory

The license an enterprise resource planning tool is shipped with is of highest interest to

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 63

Score Description
-5 Copyright
1 Strong copyleft (e.g. GPLv3)
3 Weak copyleft (e.g. LGPL, MPL)
5 No copyright/copyleft (e.g. Apache License)

Table 6.2: Evaluation metric for ERP-licenses

our feature analysis [67]. If a ERP tool is shipped with copyright, which requires the authors

permission to redistribute or adapt the tool, it is not suitable for our project. A required form

of license would be some kind of copyleft or without copyleft. There is a distinction between

strong copyleft, like GPLv3 1 and weak copyleft, like LGPLv3 2 or the Mozilla Public License 3.

The desired form of license would be a license without copyleft like the Apache License 4.

Integration technologies

Importance: Mandatory

The integration interfaces and technologies an ERP-tool provides are key features in context

of our evaluation. We try to build a hospital information system based on a service oriented

architecture (SoA). Therefore it would be highly desirable if the chosen tool exposes interfaces

with technologies which support a SoA approach. It would also be possible to use shared mem-

ory, shared database schema or vendor specific technologies or interfaces, but the preferred way

would be exposed webservice (SOAP) [60] interfaces or in the best case CRUD access to all

relevant domain objects via RESTful Services [68].

Support

Importance: Desirable

As already mentioned above modern ERP-tools are of high complexity. Therefore it is nec-

essary to have some kind of support where you can phrase questions or problems and have a
1http://www.gnu.org/licenses/gpl.html, last access 2011-01-11 22:51
2http://www.gnu.org/licenses/lgpl.html, last access 2011-01-11 22:51
3http://www.mozilla.org/MPL/MPL-1.1.html, last access 2011-01-11 22:51
4http://www.apache.org/licenses/LICENSE-2.0.html, last access 2011-01-11 22:51

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 64

Score Description
-5 Not working properly, makes things worse
0 No integration technologies or integration-interfaces
1 Shared memory or shared database access
2 Vendor specific technologies or interfaces
3 Interfaces for webservices (e.g. SOAP)
5 REST-Interfaces for all the necessary business-objects (including gen-

erated wadl or xsd)

Table 6.3: Evaluation metric for ERP-Integration technologies

Score Description
0 No support at all
1 Open mailing lists
2 User forum
4 Open developer forum
5 Open up to date bug tracker providing workarounds for known bugs

Table 6.4: Evaluation metric for ERP-support

chance of getting a qualified and helpful answer. The basic form of support, which at least most

open source projects provide, is an open mailing list where you can email your questions, hope

for an answer or search the mailing lists archive for similar problems. Another way of support

is a user- or a developer forum, where users try to help each other or developer try to give sup-

port [69]. Furthermore, bug tracker can provide a lot of useful information if they are open to

the community and provide workarounds for known bugs and problems.

Material management

Importance: Mandatory

In the context of our evaluation we need a basic implementation of a material manage-

ment system. CRUD functionalities which are accessible via integration technologies mentioned

in 6.1 are needed as well as the possibility to customize work-flows for reducing or increasing

the stock of products. Furthermore, a build-in restocking mechanism is desired.

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 65

Score Description
-5 No material management
2 Material management which provides simple CRUD functionalities
4 Material management provides building customized work-flows
5 Build in support for restocking

Table 6.5: Evaluation metric for material management in ERP-Tools

Score Description
-5 Closed source
5 Open source

Table 6.6: Evaluation metric for open source ERP-Tools

Open source

Importance: Mandatory

It is mandatory for our application to have the source code of the ERP-system available.

This gives us the possibility to adapt the system to our needs or remove functionality which is

not needed at all [70].

6.2 Evaluation of Different ERP Systems

Before the real DESMET feature analysis can be started, a set of possible ERP-tools have to

selected. The main criteria was whether the tool was available as open source as well as the

maturity of the system. In the process of this screening four tools looked promising. Those four

where Openbravo, Compiere, OpenERP and Apache OfBiz. Those four tools then have been

evaluated based on the metrics defined in 6.1.

Openbravo

According to the Openbravo website 5 Openbravo is “the leading web-based open source ERP”.

It supports features like procurement management warehouse and material management or fi-
5http://www.openbravo.com, last access 2011-01-11 22:51

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 66

Imp. Feature Score Description
M Open Source 5 Completely open source
M License 3 Openbravo Public License Version 1.1 –

Based on Mozilla Public License (MPL)
M Integration tech-

nologies
5 REST supported via XML and JSON for all

domain objects, SOAP-Services for a subset
of the domain objects

M Material manage-
ment

5 Warehouse management, order fulfillment,
work-flow customization

HD Documentation 5 Screen casts, online demo, tutorials, docu-
mentation and FAQs available

D Support 5 Forums available, custom issue tracker avail-
able

Table 6.7: Openbravo feature analysis

nancial management out of the box. The documentation of Openbravo is extensive including

screen casts, an online demo server as well as an up to date wiki with tutorials and guides. The

support includes a developer forum as well as a custom open issue tracker. Last but not least

Openbravo supports CRUD access to all relevant domain objects and furthermore, all database

tables by exposed RESTful services. A minor drawback is, that Openbravo does not provide

wadl-files which describe the REST services. Instead there is a XSD schema file available de-

scribing the data structures which can be consumed by the services. Furthermore, Openbravo

is shipped with an Openbravo Public License which is based on the Mozilla Public License

(limited copyleft).

Compiere

According to the Compiere website 6 Compiere is “The most modern, adaptable and affordable

ERP solution”. Like Openbravo, Compiere supports features like procurement management,

warehouse and material management or financial management out of the box. They provide

videos as product demos, tutorials and a documentation, but they have no online demo server

available. In terms of support Compiere provides a custom issue tracker (called request system)
6http://www.compiere.com, last access 2011-01-11 22:51

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 67

ImportanceFeature Score Description
M Open Source 5 Completely open source
M License 1 COMPIERE PUBLIC LICENSE based on

GPLv3
M Integration tech-

nologies
5 webservices over HTTP/HTTPS (Amazon

WS-Style)
M Material manage-

ment
5 Warehouse management, order fulfillment,

work-flow customization
HD Documentation 4 Product-demos (videos), tutorials documenta-

tion and FAQs available
D Support 5 Forums available, Custom support request

system

Table 6.8: Compiere feature analysis

and a developer forum. Compiere also exposes webservices over HTTP/HTTPS for all business

processes. After all a major drawback is, that Compiere comes with the Compiere Public License

which is based on the GPLv3, and that Compiere provides professional and enterprise editions

which are not freely available as open source.

OpenERP

OpenERP 7 is an open source enterprise resource planning tool which supports operations like

CRM, purchase, warehouse management, accounting and human resources out of the box. It

is completely open source and the documentation is as extensive as the Openbravo’s. This

includes online demo servers, screen casts, tutorials as well as standard documentation. The

development is coordinated using Launchpad as an issue tracking system and there are developer

and user forums available as well. For integration with other systems OpenERP only provides

SOAP-services, RESTful services are planned in a future release. OpenERP is shipped with an

OpenERP Public License which is based on the AGPLv3, which includes a copyleft.
7http://www.openerp.com, last access 2011-01-11 22:51

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 68

ImportanceFeature Score Description
M Open Source 5 Completely open source
M License 1 OpenERP Public License based on AGPLv3
M Integration tech-

nologies
3 Service exposed via SOAP, REST support

planned in future release
M Material manage-

ment
5 Warehouse management, order fulfillment,

work-flow customization
HD Documentation 5 Several screen casts on openerp.tv, online

demo, tutorials, documentation, FAQs
D Support 5 Forums available, Launchpad as bug tracker

Table 6.9: OpenERP feature analysis

Apache OfBiz

Apache OfBiz 8 is an open source enterprise automation software project licensed under the

Apache License Version 2.0. Apache OfBiz supports order management, warehouse manage-

ment, fulfillment, accounting and general work effort management out of the box. The docu-

mentation includes an online demo server, extensive screen casts hosted on youtube 9, tutorials

and standard documentation. A developer forum is available and so is an issue tracking sys-

tem (JIRA). Apache OfBiz supports REST only via third party frameworks but provides SOAP

endpoints for all business processes.

Final Scores and Decision

As mentioned in 6.1 the final scores are computed as the product of the scored point of the

functionality multiplied by the importance-factor. Table 6.11 shows the final scores of each

evaluated ERP system compared to the others.

Overall Apache OfBiz and Openbravo did get the highest score. They were tied in manda-

tory points (72/80) and did get the full score on highly desirable (15/15) and desirable (10/10)

features. Apache OfBiz did lack 8 points on the integration technology metric because they

only support SOAP services and on the other hand, Openbravo lost 8 points because the license
8http://ofbiz.apache.org, last access 2011-01-11 22:51
9http://www.youtube.com/ofBiz, last access 2011-02-07 12:43

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 69

ImportanceFeature Score Description
M Open Source 5 Completely open source
M License 5 Apache License
M Integration tech-

nologies
3 REST only possible via a third party frame-

work like apache wink, Service exposed via
SOAP

M Material manage-
ment

5 Warehouse management, order fulfillment,
work-flow customization

HD Documentation 5 Online Demo, screen casts via youtube, tuto-
rials, documentation, FAQs

D Support 5 Forum available, JIRA as bug tracker

Table 6.10: Apache OfBiz feature analysis

ImportanceFeature Openbravo Compiere OpenERP Apache Of-
Biz

M Open Source 20 20 20 20
M License 12 4 4 20
M Integration tech-

nologies
20 20 12 12

M Material manage-
ment

20 20 20 20

HD Documentation 15 12 15 15
D Support 10 10 10 10

Mandatory Score 72 64 56 72
Highly Desirable
Score

15 12 15 15

Desirable Score 10 10 10 10
Final Score 97 86 81 97

Table 6.11: Final score of feature analysis

(MPL) it is released with.

The decision was made in favor of Openbravo, because concept of their RESTful service

implementation looks promising. Furthermore, the documentation in Openbravo’s wiki seems

to be very good when it comes to integrating Openbravo into other systems.

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 70

Figure 6.1: Final score of feature analysis

6.3 ERP Integration

After the evaluation is done, the ERP system which got the best score has to be integrated into the

hospital information system. As a proof of concept only one use case will be implemented. For

this one use case the material management is chosen, because this is one of the most important

features an ERP system has to provide in a hospital environment. To sufficiently provide those

features a few preconditions have to be set:

• A user based authentication has to be provided

• A material warehouse for medical supplies has to be defined in the ERP system

• An item with name “cotton bud” has to be stored in this warehouse a specific quantity.

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 71

The requirements for this use case are rather simple. If we do a physical examination,

which is technically speaking storing a physical examination composition, we want to reduce

the amount of cotton buds available in this hospital by 2.

Sample Openbravo Setup

First of all Openbravo has to be set up correctly in order to satisfy all the preconditions required

for the use case. The initial setup can be done in various ways. Openbravo is available as a

traditional installation (e.g. available over the apt repositories) or as deployable package for the

amazon EC2 cloud. For this work the traditional installation has been selected.

In the Openbravo default configuration a set of default users, companies, warehouses and

items is available. For the sake of simplicity a new item, called “cotton bud” is created in an

existing warehouse. Afterwards a load of cotton buds is stored in the warehouse. At last a

user with the permissions to reduce the quantity of cotton buds is created. With this setup all

preconditions, specified in 6.3, are satisfied.

ERP-ESB Plugin

As described in 5.2 the integration of different subsystems is done via implementing plugins

which are deployed on the HIS’ enterprise service bus. The plugin is named ERP-ESB because

it integrates the ERP system in the enterprise service bus. The ERP-ESB’s logic is quite simple.

It has to receive messages and parses them to find out whether it should trigger an ERP process

or not. If the quantity of a medical supply should be reduced, it retrieves the actual quantity from

the ERP system and updates the quantity via RESTful services.

One unanswered question question is, how the plugin receives the correct messages. This is

done via the content- and rule based routing which is described in 5.2. When a specific event

occurs (RES_MODIFY_COMPOSITION the response message from modifying a composition)

the ERP integration is invoked automatically. The rule itself complete rule can be seen in the

listing 6.1

rule "MedCore RES_MODIFY_COMPOSITION"

when

CHAPTER 6. ERP SYSTEM EVALUATION AND INTEGRATION 72

Figure 6.2: erp-esb plugin communication

m : Message ()

p : String(toString == "RES_MODIFY_COMPOSITION")

then

destinations.add("EhrHttpStorage");

destinations.add("ERPService");

end

Listing 6.1: ERP Integration Rule

CHAPTER 7
Picture Archiving and Communication

Systems Evaluation and Integration

As a further proof of concept, we want to integrate a PACS into the hospital information system.

Therefore we need to evaluate different PACS in order to find the one which fits our needs the

best in the context of our architecture. Again we use DESMET feature analysis 3.2 for evaluating

different systems. It should be mentioned that this evaluation does not evaluate the clinical use

of PACS, it just evaluates the integration functionalities it provides.

7.1 Requirements of PACS

According to the DESMET feature analysis [63] a set of desired features have been described.

For every feature a metric has been designed which defines a score. The more of the required

or desired functionalities a feature provides the higher is the score. Those scores range from -1

(worst) to 5 (best) for every feature to make them comparable.

In addition, each feature has got an importance which can be mandatory, highly desirable,

desirable or nice to have. Mandatory features are must-have features. If a product gets a negative

score on a mandatory feature it is eliminated. When all the products are evaluated a final score

is calculated to determine the product which fits best. In order to make the different degrees of

73

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 74

Score Description
-5 No DICOM Integration
1 DICOM Storage
3 DICOM Query/Retrieve
5 DICOM Web Access to DICOM Persistent Objects (WADO)

Table 7.1: Evaluation metric for PACS DICOM Integration

importance visible in the final score, mandatory features scores are multiplied by four, highly

desirable by 3, desirable by 2 and nice to have features keep their score.

DICOM Integration

Importance: Mandatory

The most important functionality the PACS has to provide is a proper implementation of

DICOM standards. The use case the PACS should be used for requires DICOM storage and a

mechanism to retrieve data over a specified DICOM interface. This problem is addressed by

two different DICOM standards, the DICOM Query/Retrieve and the Web Access to DICOM

Persistent Objects (WADO). Later would be preferable because of the service oriented nature of

the reference architecture of the hospital information system itself.

License

Importance: Mandatory

The license a PACS is shipped with is of highest interest to our feature analysis [67]. If a

PACS is shipped with copyright, which requires the authors permission to redistribute or adapt

the tool, it is not suitable for our project. A required form of license would be some kind of

copyleft or without copyleft. There is a distinction between strong copyleft, like GPLv3 1 and

weak copyleft, like LGPLv3 2 or the Mozilla Public License 3. The desired form of license

would be a license without copyleft like the Apache License 4.
1http://www.gnu.org/licenses/gpl.html, last access 2011-01-11 22:51
2http://www.gnu.org/licenses/lgpl.html, last access 2011-01-11 22:51
3http://www.mozilla.org/MPL/MPL-1.1.html, last access 2011-01-11 22:51
4http://www.apache.org/licenses/LICENSE-2.0.html, last access 2011-01-11 22:51

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 75

Score Description
-1 Copyright
1 Strong copyleft (e.g. GPLv3)
3 Weak copyleft (e.g. LGPL, MPL)
5 No copyright/copyleft (e.g. Apache License, BSD, MIT)

Table 7.2: Evaluation metric for PACS-licenses

Score Description
-1 Closed source
5 Open source

Table 7.3: Evaluation metric for open source PACS-Tools

Score Description
0 No IHE Profiles used
3 Several IHE Profiles used
5 Design based on IHE Profiles

Table 7.4: Evaluation metric for PACS integration of IHE Profiles

Open source

Importance: Mandatory

It is mandatory for our application to have the source code of the PACS available. This gives

the possibility to adapt the system to our needs or remove functionality which is not needed at

all.

IHE Profiles

Importance: Highly Desirable

As already mentioned in 1.4, IHE-Profiles are an important concept when it comes to inte-

grating different systems in a health care context. Therefore it is highly desirable for a PACS to

support IHE Profiles or have a design based on IHE-Profiles to enable the usage of those when

integrating different systems.

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 76

Score Description
-1 Wrong or irritating documentation
0 No documentation
1 Frequently asked questions
2 Up to date documentation (html/pdf) for the

latest and each major version
3 Tutorials for common actions (e.g. installation, first steps)
4 Screen casts for common actions (e.g. installation, first steps)
5 Online demo server with sample data

Table 7.5: Evaluation metric for PACS-documentation

Documentation

Importance: Highly desirable

Because modern picture archiving and communication systems are of high complexity a

good documentation is absolutely important. Modern documentations can have various forms [66].

The most common form of documentation, which nearly all software projects provide, is a list

of frequently asked questions. Those so called FAQs give answers to common pitfalls. Another

form of documentation, which normally is the most extensive form of documentation, is the

traditional written documentation which is provided in a common format (html or pdf). For new

users tutorials are good sources of information, which provide information about common ac-

tions (for example installation or first steps). Because some tasks are hard to explain with words,

screen casts can help users to repeat the tasks without problems. Furthermore, it is very hard to

get a first impression of the product just be reading the documentation. Thats why screen casts

and a online-demo server can be very useful when it comes down to decide whether to take a

closer look onto the product.

Extensibility

Importance: Highly Desirable

The most fundamental objects in the DICOM standard are service classes and information

objects. The combination of these two units is a functional unit of DICOM. These units are called

service-object-pair classes (SOPs). The communication between DICOM-compatible devices

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 77

Score Description
-5 New SOPs cannot be added
1 Modification of source code is always required
3 Modification of source code is sometimes required
5 New SOPs can be added at runtime

Table 7.6: Evaluation metric for PACS extensibility regarding adding new SOPs

Score Description
1 One operating system supported
2 Two operating systems supported
3 Three operating systems supported
5 Multi-platform (more than 3)

Table 7.7: Evaluation metric for PACS regarding supported operating systems

involves exchanging SOP instances by using DICOM messages, which is the communication

version of a SOP class.

Therefore it is important for a PACS to support as many service-object-pair classes as pos-

sible. Because new SOPs can be developed regularly it is crucial to have the possibility to add

those new SOPs without doing invasive changes.

Operating System

Importance: Highly Desirable

Modern PACS should be available on as many platforms as possible. This gives the user the

chance to host the PACS of his choice on the operating system of his choice.

Ongoing Development

Importance: Highly Desirable

A vital community and ongoing development and maintenance are signs of a stable product.

This metric is of high importance, because it should prevent a so-called “dead” project to be

chosen. The most preferable version would be a product with fixed release cycles, but for the

sake of simplicity we will evaluate just the latest release date and the latest commit.

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 78

Score Description
-5 No Commit in the last 365 days
0 Last release older than 730 days
2 Last release older than 365 days
5 Last release older than 182 days

Table 7.8: Evaluation metric for PACS ongoing development

Score Description
0 No support at all
1 Open mailing lists
2 User forum
4 Open developer forum
5 Open up to date bug tracker providing workarounds for known bugs

Table 7.9: Evaluation metric for PACS-support

Support

Importance: Desirable

As already mentioned above modern PACS-tools are of high complexity. Therefore it is

necessary to have some kind of support where you can phrase questions or problems and have

a chance of getting a qualified and helpful answer. The basic form of support, which at least

most open source projects provide, is an open mailing list where you can email your questions,

hope for an answer or search the mailing lists archive for similar problems. Another way of

support is a user- or a developer forum, where users try to help each other or developer try to

give support [69]. Furthermore, bug tracker can provide a lot of useful information if they are

open to the community and provide workarounds for known bugs and problems.

7.2 Evaluation of Different PACS

As already discussed in 3.2 a set of possible PACS candidates has to be selected. The main

criteria in this search was, whether the tool is an open source tool and implements any DI-

COM standards. Furthermore, there has already been an evaluation of open source PACS, which

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 79

was done by the University of Leipzig [71]. In this article three open source DICOM frame-

works have been evaluated. According to the screening those three Frameworks seem to be the

most mature open source DICOM frameworks, which are currently available. Those three are

DCMTK, DCM4CHEE and CONQUEST, which have been evaluated according to the metrics

defined in 7.1.

DCMTK

The DICOM Toolkit 5 (DCMTK) is a collection of libraries and applications implementing large

parts of the DICOM standard. It has been used at numerous DICOM demonstrations to provide

central, vendor-independent image storage and work-list servers and is used by hospitals and

companies all over the world.

The DCMTK is actively developed in the C++ programming language. It is completely

open source and licensed under BSD-license. It provides fundamental DICOM functionalities

(storage and query/retrieve). DCMTK is available on various platforms and provides a good

documentation and well documented source code. In addition, there is a support forum and a

wikipage with well known issues or limitations and workarounds.

DCM4CHEE

The DCM4CHE 6 is a collection of open source applications and utilities for the health care

enterprise. The DCM4CHEE is an enterprise image manager and image archive (according to

IHE). It provides HL-7 and DICOM interfaces which are important for storage, retrieval and

work-flow to a health care environment. Furthermore, it provides a web-based user interface for

administrating the server.

The DCM4CHEE is developed in the Java programming language and is shipped with a

JBoss application server. By taking advantage of the JBoss features (JMS, EJBs, JMX, etc.)

and a clean code base, the setup should be familiar for any java developer. As well as the

DCMTK, DCM4CHEE is completely open source and released under a triple license (MPL
5http://dicom.offis.de/dcmtk.php.en, last access 2011-01-07 11:23
6http://www.dcm4che.org/, last access 2011-01-01 11:40

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 80

Imp. Feature Score Description
M Open Source 5 Completely open source
M License 5 Based on a BSD license (no copyleft)
M DICOM Integra-

tion
3 DICOM Storage,Query/Retrieve Imple-

mented
M Operating Systems 5 Linux, Solaris, HP-UX, IRIX, FreeBSD,

OpenBSD and MacOS X.
HD IHE Profiles 0 No IHE Profiles
HD Documentation 3 FAQs, Online Documentation and How-tos

available
HD Extensibility 1 source code modification always required

when adding new SOPs
HD Ongoing Develop-

ment
5 Last stable release 2011-01-06

D Support 5 Forums, Wikipage with known issues and
workarounds

Table 7.10: DCMTK feature analysis

1.1, GPLv2 and LGPLv2). The DCM4CHEE implements the complete DICOM standard and

provides storage, query/retrieve as well as the DICOM web access (WADO). It has a design

based on IHE profiles and assumes the role of several IHE actors, to provide a high level of

interoperability.

CONQUEST

The CONQUEST 7 DICOM software is a fully featured DICOM server, which is developed in a

cooperation of various universities and institutes. It provides a web based user interface as well

as simple DICOM operations (query/retrieve, move and modality work-lists).

CONQUEST is completely open source and is made available with a public domain license.

It does not implement any IHE profiles and the documentation is sufficient, but not extensive. In

contrast a support forum is available where developers are contributing.
7http://www.xs4all.nl/ ingenium/dicom.html, last access 2011-01-07 11:48

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 81

Imp. Feature Score Description
M Open Source 5 Completely open source
M License 3 released under a triple license of Mozilla Pub-

lic License version 1.1 (MPL), the GNU Gen-
eral Public License version 2 or later (GPL),
or the GNU Lesser General Public License
version 2.1 or later (LGPL)

M DICOM Integra-
tion

5 DICOM Storage,Query/Retrieve, WADO Im-
plemented

M Operating Systems 5 Multi-platform (based on Java)
HD IHE Profiles 5 Based on IHE Profiles
HD Documentation 5 FAQs, Online Documentation and How-tos

available, Online Demo Available
HD Extensibility 3 source code modification sometimes required

when adding new SOPs
HD Ongoing Develop-

ment
5 Last stable release 2010-08-27

D Support 5 Forums, and JIRA as bug tracker with
workarounds for known issues available

Table 7.11: DCM4CHEE feature analysis

Imp. Feature Score Description
M Open Source 5 Completely open source
M License 5 Public Domain
M DICOM Integra-

tion
3 DICOM Storage,Query/Retrieve Imple-

mented
M Operating Systems 2 Unix,Windows
HD IHE Profiles 0 No IHE Profiles
HD Documentation 2 Online Documentation
HD Extensibility 1 source code modification required
HD Ongoing Develop-

ment
2 Last stable release 2009-09-29

D Support 4 Forums with developers contributing

Table 7.12: CONQUEST feature analysis

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 82

Imp. Feature DCMTK DCM4CHEE CONQUEST
M Open Source 20 20 20
M License 20 12 20
M DICOM Integration 12 20 12
M Operating Systems 20 20 8
HD IHE Profiles 0 15 0
HD Documentation 12 15 6
HD Extensibility 3 9 3
HD Ongoing Development 15 15 6
D Support 10 10 8

Mandatory Score 72 72 60
Highly Desirable Score 30 54 15
Desirable Score 10 10 8
Final Score 112 136 83

Table 7.13: Final score of the PACS feature analysis

Final Decision

As mentioned in 3.2 the final scores are computed as a product of the scored point of the func-

tionality multiplied by the importance-factor. Table 7.13 and figure 7.1 show the final scores of

each evaluated PACS compared to the others.

In this evaluation the DCM4CHEE PACS was the clear winner. The tool scored the most

points overall (136 out of 151 possible) and in addition, it did get the best score in each im-

portance category. This evaluation leads us to a similar result as it was described in the open

source DICOM framework evaluation done by the University of Leipzig in 2006 [71]. Given

the result, the DCM4CHEE PACS will be used to be integrated into the hospital information

systems architecture.

7.3 PACS Integration

As a further proof of concept for the architecture designed in 5.2 a PACS is integrated into the

hospital information system. Given the result of the software evaluation the DCM4CHEE PACS

is used. As a sample use case the retrieval of patient data from a PACS is selected, because it

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 83

Figure 7.1: Final score of PACS feature analysis

can extend the functionality of the retrieval of patient data from the OpenEHR repository. In

order to guarantee a seamless integration of the PACS into the HIS, the PACS has to support the

DICOM c-find functionality.

Sample DCM4CHEE Setup

The wiki of DCM4CHEE describes various ways of installing a stand-alone version of the

DCM4CHEE PACS 8. In order to avoid problems with the database configuration the distri-

bution using HSQLDB 9 as a database backend is selected. HSQLDB is pure java in-memory

database which does not require a stand-alone server. For the proof of concept the binary dis-

tribution and the contained scripts had been used. Following the Step-by-Step installation guide

on the DCM4CHEE wiki a JBoss application server is configured and the DCM4CHEE is de-
8http://www.dcm4che.org/confluence/display/ee2/Installation, last access 2011-01-07 18:29
9http://hsqldb.org/, last access: 2011-01-07 18:31

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 84

ployed on this server. Because the hospital information system itself is running on a JBoss AS,

the server hosting the PACS has to use a different set of port bindings in order to avoid port

conflicts. Therefore a new JBoss binding file 10 is used.

After completing these steps, the PACS web application as well as the DICOM interfaces are

hosted on this application server. To satisfy all required preconditions a patient with a specific

patient-ID has to be created using the web interface.

PACS-ESB Plugin

Similar to the ERP integration, a plugin for the enterprise service bus has to be implemented

to allow communication between the hospital information system and the PACS itself. This

plugin has to provide the functionality to consume messages delivered by the ESB-core. Those

messages contain IDs of the patients where PACS data is requested. The plugin should retrieve

this data from PACS.

The PACS plugin is triggered by the ESB-core where specific rules are defined for retrieving

patient data. The retrieval of patient has already been implemented in 5.3, but for the integration

of the PACS these functions had to extended. There had been changed to the ehr-http plugin as

well as to the esb-core.

First of all the signature of the getEHR webservice method changed. A new parameter has

been introduced, which specifies the retrieval of the patient data. Now the data can be retrieved

from the either the PACS, the EHR core system or from both storages. The parameter is stored

as a header-parameter in the transferred ESB-message. This did also lead to changes in the

getResult webservice method (see listing 7.1). Before integrating the PACS the HIS got at most

one response for each request. Now there can be either one or two responses which have to be

stored by the ehr-http plugin until they are fetched. In the process, the Hazelcast map which is

used for storing these results changed as well.

/**

* Retrieve the data of a patient with the given ID

* @param id patients ID

10http://docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/Services_Binding_Management-
The_Sample_Bindings_File.html, last access: 2011-01-07 18:32

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 85

Figure 7.2: pacs-esb plugin communication

* @param callbackUrl null if no callback required,

* complete URI to the callbackWebservice

* @param retrieveEhrType type of the source where the patient’s data

* should be fetched. Can be either PACS, MEDCORE or MEDCORE_WITH_PACS

* @return an id which can be given to fetch the data with the

* getResult(String) method.

*/

@WebMethod

String getEhr(@WebParam String id, @WebParam String callbackUrl, @WebParam

RetrieveEhrType retrieveEhrType);

/**

* Fetch the result for a request with the given id

* @param id the id of the correlating request

* @return a list of result in xml

*/

@WebMethod

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 86

List<String> getResult(@WebParam String id);

Listing 7.1: Modified webservice methods in the ehr-http plugin

The changes to the esb-core are limited to a minor adaption in the file which describes the

rules for the message distribution. The rule for retrieving a patients health record is now split

into three rules corresponding to the storage where the data should be fetched. Those rules are

based on the event-key as well as the RetrieveEhrType header parameter (see listing 7.2).

rule "MedCore REQ_RETRIEVE_EHR_MEDCORE_WITH_PACS"

when

m : Message ()

p : String(toString == "REQ_RETRIEVE_EHR")

rt : String(toString == "MEDCORE_WITH_PACS")

then

destinations.add("PacsService");

destinations.add("MedCore");

end

rule "MedCore REQ_RETRIEVE_EHR_PACS"

when

m : Message ()

p : String(toString == "REQ_RETRIEVE_EHR")

rt : String(toString == "PACS")

then

destinations.add("PacsService");

end

rule "MedCore REQ_RETRIEVE_EHR_MEDCORE"

when

m : Message ()

p : String(toString == "REQ_RETRIEVE_EHR")

rt : String(toString == "MEDCORE")

then

destinations.add("MedCore");

CHAPTER 7. PICTURE ARCHIVING AND COMMUNICATION SYSTEMS
EVALUATION AND INTEGRATION 87

end

Listing 7.2: ESB-core rules for triggering the PACS plugin

When the plugin is triggered, it uses an open source DICOM framework 11 to connect to the

PACS. After the connection is established the plugin uses a DICOM c-find to retrieve all relevant

data of a patient (id, name, birth date, sex). This data is marshaled into an XML object and put

onto the esb-core’s queue, where it is forwarded to the ehr-http plugin.

11http://www.dcm4che.org/confluence/display/d2/dcm4che2+DICOM+Toolkit, last access 2011-01-07 19:33

End

88

CHAPTER 8
Results

Especially in the context of hospital information systems it is common to integrate several of

the shelf products like ERP systems, PACS, decision support systems or LIS. Those systems

expose certain interfaces which can rarely by changed and therefore, it is essential to provide

a common infrastructure to enable communication between different systems. Because of the

defined interfaces of such tools it is unavoidable to create a connector component to wrap the

services of the system which should be integrated. In the course of this thesis a prototype for a

hospital information system based on a service oriented architecture has been developed. The

core system makes use of an enterprise service bus for implementing a complex event based

messaging infrastructure. The distribution of messages is then handled by a drools rule engine.

Java message queues are used in order to guarantee reliable and persistent messaging.

Beside the HIS’ core information system an EHR core system was designed and developed,

which is based on the OpenEHR standard. This system made use of the OpenEHR reference

implementation and exposed RESTful as well as SOAP services for creating, modifying and

retrieving patient data. For storing that information a PostgreSQL database was used in combi-

nation with the Apache Jackrabbit framework.

The services for creating, modifying and retrieving electronic health records and OpenEHR

compositions are exposed by a separate module. This component only uses the HIS’ core system

to publish and retrieve messages. The HIS’ core system is responsible for publishing messages

89

CHAPTER 8. RESULTS 90

to another plugin, which acts as a connector for the EHR core system. This plugin invoks the cor-

rect methods on the EHR core system and forwards the results onto HIS’ core system. The HIS’

core system subsequently distributes the results to the plugin which exposed the webservices in

the first hand.

As a proof-of-concept for the integration framework which has been implemented, a picture

archiving and communication system (PACS) as well as a enterprise resource planning (ERP)

tool had to be integrated. In order to find the best suitable PACS and ERP systems, all of

them had to be evaluated using the DESMET software evaluation method. Therefore, several

requirements for these systems have been defined and each of the candidates has been evaluated

by these criteria. Afterwards, the best system according to the DESMET score was chosen to be

integrated into the HIS’ architecture. For each system one use case was implemented. The PACS

is used to retrieve PACS-specfici patient data and the ERP system keeps the material warehouse

up-to-date.

8.1 Conclusion

The motivation for this thesis was roused by two interesting research questions. Firstly, how

chould a hospital information system be designed in order to guarantee highest flexibility in

integrating different subsystems and secondly, can the OpenEHR standard with its reference

implementation be used in practice?

In current enterprise software engineering projects there is a strong trend towards the use

of service oriented architectures. They enforce loose coupling of components and the use of

standardized interfaces and therefore support simple integration of new services. Those proper-

ties of a service oriented architecture fit perfectly into the context healthcare. There are several

open-source frameworks which support service-oriented architectures and enterprise application

integration. For the practical part of this thesis the JBoss Enterprise Service Bus had been used

as it provides lot of enterprise features, like security, transaction management, business process

management as well as naming and directory services which can be of use for further features.

As has been mentioned before a PACS and an ERP system had to be integrated into the

CHAPTER 8. RESULTS 91

HIS in order to prove that the integration of services could easily be possible. When integrating

the PACS system the changes in the HIS core system were only localized in the file describing

the drools rules for the distribution of messages. The development of the connector plugin was

quite straightforward as well, because the plugin only had to invoke an interface which exposes

functionality described in the DICOM standard (DICOM C-FIND). The lion’s share of the work

was to install and configure the standalone PACS. Quite the same applies to the integration of

the ERP system.

All in all, the integration of both, the PACS as well as the ERP system into the HIS, was

quite uncomplicated and straightforward and therefore service-oriented architectures seem to be

promising in the context of hospital information systems.

The second question was whether OpenEHR could be used in practice. Of course, the sig-

nificance of the practical work is limited to the use cases which have been implemented (cre-

ating, modifying and retrieving electronic health records and OpenEHR compositions), but for

those use cases the OpenEHR standard and in particular the OpenEHR reference implementa-

tion could be used extremely well. The documentation concerning the OpenEHR architecture as

well as the OpenEHR information model was extensive and easily understandable. Furthermore,

the OpenEHR reference implementation is based on state-of-the-art software development and

deployment frameworks, like maven 1, and its documentation and coding style is of high quality.

In retrospect, the concept of the integration architecture based on the OpenEHR standard

proved to work well for integrating different information systems.

8.2 Further work

An enhancement of high value would be the development of a graphical user interface which

would have to be dynamically rendered by the rules defined by OpenEHR templates and archetypes.

There could be several different types of the user interface adapted to the context of its use. For

example a medical view for physicians, supporting the hospital staff, a patient view, where pa-

tients can retrieve their data, or a view for teaching, where students can do diagnosis based on
1http://www.maven.org, last access 2011-02-04 14:12

CHAPTER 8. RESULTS 92

Figure 8.1: Possible further topics

specific facts. In this context the integration of a patient master index would be valuable as well.

In the course of this thesis a common infrastructure for a hospital information system has

been designed. A lot of components could be integrated using this infrastructure in order to

carry out specific tasks. For instance decision support systems could be connected to the EHR

core system in order to provide decision support. Another example would be the integration of

a terminology service. It would also be interesting to create a plugin for sharing EHR data using

HL-7 or EDI-FACT. A few of these possible components can be seen in figure 8.1.

Last but not least, the practical part of this thesis has been carried out as a proof-of-concept,

so it has to be kept in mind that there are several technical topics which have not been addressed,

for example a distributed transaction management. Further on, a consistent validation concept as

well as a consistent concept for exception handling could be implemented and in addition, a dy-

namic service lookup registry could be used to integrate new services or change implementations

during runtime.

Bibliography

[1] R. Haux, A. Winter, E. Ammenwerth, and B.Brigl. Strategic Information Management in

Hospitals: An Introduction to Hospital Information Systems. Springer, 2002.

[2] IEEE Architecture Working Group. Ieee std 1471-2000, recommended practice for archi-

tectural description of software-intensive systems. Technical report, IEEE, 2000.

[3] Robert T. Monroe, Andrew Kompanek, Ralph E. Melton, and David Garlan. Architectural

styles, design patterns, and objects. IEEE Software, 14(1):43–52, 1997.

[4] Garlan D. Abowd G., Allen R. Using style to give meaning to software architecture. In

Proceedings of SIGSOFT ’93: Foundations of Software Engineering, volume 118 of Soft-

ware Engineering Notes, pages 9 – 20, 1993.

[5] Florian Leiner. Medizinische Dokumentation. Schattauer, 2006.

[6] C.P. Waegemann. Current status of epr development in the us. In Proceedings of Toward

An Electronic Health Record Europe, pages 116 – 118, 1999.

[7] R.S. Dick, E.B. Steen, and D.E. Detmer. The computer-based patient record: an essential

technology for health care. National Academy Press, Washington, 1991.

[8] L.L. weed. Medical records, medical education, and patient care. Press of Case Western

Reserve University, 1969.

[9] Peter Haas. Medizinische Informationssysteme Und Elektronische Krankenakten. Springer,

2005.

93

BIBLIOGRAPHY 94

[10] Judith A. Effken. Different lenses, improved outcomes: a new approach to the analysis and

design of healthcare information systems. I. J. Medical Informatics, 65(1):59–74, 2002.

[11] Astrid M van Ginneken. The computerized patient record: balancing effort and benefit.

International journal of Medical Informatics, 65(2):97–120, 2002.

[12] J Wainer, CJ Campos, MD Salinas, and D Sigulem. Security requirements for a lifelong

electronic health record system: an opinion. The open medical informatics journal, 2:160–

165, 2008.

[13] B. Blobel, K Engel, and P Pharow. Semantic interoperability–HL7 Version 3 compared

to advanced architecture standards. Methods of information in medicine, 45(4):343–53,

January 2006.

[14] Robert H Dolin, Liora Alschuler, Sandy Boyer, Calvin Beebe, Fred M Behlen, Paul V

Biron, and Amnon Shabo Shvo. HL7 Clinical Document Architecture, Release 2. Journal

of the American Medical Informatics Association : JAMIA, 13(1):30–9, 2004.

[15] S. Gaion, S. Mininel, F. Vatta, and W. Ukovich. Design of a domain model for clinical

engineering within the HL7 Reference Information Model. In Health Care Management

(WHCM), 2010 IEEE Workshop on, pages 1 –6, 2010.

[16] T. J. Eggebraaten, J. W. Tenner, and J. C. Dubbels. A health-care data model based on the

HL7 Reference Information Model. IBM Systems Journal, 46(1):5 –18, 2007.

[17] J. Lyman, S. Pelletier, K. Scully, J. Boyd, J. Dalton, S. Tropello, and C. Egyhazy. Applying

the HL7 reference information model to a clinical data warehouse. In Systems, Man and

Cybernetics, 2003. IEEE International Conference on, volume 5, pages 4249 – 4255, 2003.

[18] Barry Smith and Werner Ceusters. Hl7 rim: An incoherent standard. In MIE, volume 124

of Studies in Health Technology and Informatics, pages 133–138. IOS Press, 2006.

[19] Comité Européen de Normalisation. TC 251 "Health informatics". online at

http://www.centc251.org.

BIBLIOGRAPHY 95

[20] Catalina Martínez-Costa, Marcos Menárguez Tortosa, and Jesualdo Tomás Fernández-

Breis. Towards ISO 13606 and openEHR Archetype-Based Semantic Interoperability.

volume 150 of Studies in Health Technology and Informatics, pages 260–264. IOS Press,

2009.

[21] P. Schloeffel, S. Heard, D. Kalra, D. Lloyd, and T. Beale. OpenEHR - Introducing

openEHR, 2006.

[22] T. Beale and S. Heard. OpenEHR - Architecture Overview, 2008.

[23] Andrew Goodchild Mark Gibson. Electronic Health Records and openEHR The openEHR

Foundation. online at http://portal.extensia.com.au/.

[24] T. Beale. OpenEHR - ISO 18308 Conformance Statement, 2006.

[25] T. Beale, S. Heard, D. Kalra, and D. Lloyd. OpenEHR - EHR Information Model, 2008.

[26] T. Beale and S. Heard. OpenEHR - Archetype Definitions and Principles, 2007.

[27] T. Beale and S. Heard. OpenEHR - Archetype Definition Language 2.0, 2007.

[28] Peter Schloeffel, Thomas Beale, George Hayworth, Sam Heard, and Heather Leslie. The

relationship between CEN 13606 , HL7 , and openEHR. 7.

[29] C Horii. Part Four : A Nontechnical Introduction to DICOM1. RadioGraphics,

(October):1297–1309, 1997.

[30] Oleg S. Pianykh. Digital Imaging and Communications in Medicine (DICOM): A Practical

Introduction and Survival Guide. Springer, 2008.

[31] Antoine Rosset, Luca Spadola, and Osman Ratib. OsiriX: an open-source software for

navigating in multidimensional DICOM images. Journal of digital imaging : the official

journal of the Society for Computer Applications in Radiology, 17(3):205–16, September

2004.

BIBLIOGRAPHY 96

[32] Matthew a. Wright, Dennis Ballance, Ian D. Robertson, and Brian Poteet. Introduction To

DICOM for the Practicing Veterinarian. Veterinary Radiology & Ultrasound, 49:S14–S18,

January 2008.

[33] C Carr. IHE: a model for driving adoption of standards. Computerized Medical Imaging

and Graphics, 27(2-3):137–146, June 2003.

[34] JM Corrigan, LT Kohn, MS Donaldson, SK Maguire, and KC Pike. Crossing the Quality

Chasm: A New Health System for the 21st Century. National Academy Press, Washington,

DC, 2001.

[35] James R. Langabeer. Health Care Operations Management: A Quantitative Approach to

Business and Logistics. August 2007.

[36] Jinyoul Lee, Keng Siau, and Soongoo Hong. Enterprise integration with ERP and EAI.

Communications of the ACM, 46(2):54–60, February 2003.

[37] Chonyacha Suebsin and Nathasit Gerdsri. Technology Adoption : A Case Study of ERP

Implementation in One of Healthcare Organizations in Thailand. 2010.

[38] Khaled Alfawaz. Critical Success Factors in Enterprise Resource Planning Implementa-

tion: A Case Study in Saudi Arabia Hospital.

[39] D.A. Brachos Kostopoulos, K.C. and G.P. Prastacos. Determining factors of ERP adop-

tion: An indicative study in the Greek market. International Engineering Management

Converence, pages 287–291, 2004.

[40] Nuri Basoglu, Tugrul Daim, and Onur Kerimoglu. Organizational adoption of enterprise

resource planning systems: A conceptual framework. The Journal of High Technology

Management Research, 18(1):73 – 97, 2007.

[41] K.J. Trimmer, L.D.K. Pumphrey, and C. Wiggins. ERP implementation in rural health

care. Journal of Management in Medicine, 16:113–132, 2002.

[42] Keith J. Dreyer. PACS: A guide to the digital revolution. Springer, 2006.

BIBLIOGRAPHY 97

[43] H. K. Huang. PACS and Imaging Informatics: Basic Principles and Applications. John

Wiley & Sons, 2010.

[44] Roger Bauman, Guenther Gell, and Samuel Dwyer. Large picture archiving and commu-

nication systems of the world—part 1. Journal of Digital Imaging, 9:99–103, 1996.

[45] Roger Bauman, Guenther Gell, and Samuel Dwyer. Large picture archiving and commu-

nication systems of the world—part 2. Journal of Digital Imaging, 9:172–177, 1996.

[46] Herman Oosterwijk. PACS Fundamentals. O Tech, 2004.

[47] C. Laske. Legal issues in medical informatics: A bird’s eye view. I O S PRESS, 1996.

[48] Bernd Bobel. Analysis, Design and Implementation of Secure and Interoperable Dis-

tributed Health Information Systems. IOS Press, 2002.

[49] RH Smuckler. Health care information: Access and protection. 1994.

[50] Ross J. Anderson. A security policy model for clinical information systems. In IEEE

Symposium on Security and Privacy, pages 30–43. IEEE Computer Society, 1996.

[51] Bryden Darley, Antony Griew, Kathryn McLoughlin, and John Williams. How to Keep a

Clinical Confidence. HMSO, 1995.

[52] Ian Sutherland. Relating bell-lapadula-style security models to information models. In

CSFW, pages 112–123, 1988.

[53] Qingui Xu and Guixiong Liu. Configuring clark-wilson integrity model to enforce flexible

protection. In CIS (2), pages 15–20. IEEE Computer Society, 2009.

[54] Ren Hong-min, Zhang Jing-zhou, and Yan Zhi-ying. Research on regional his intercon-

nection architectures based on electronic medical record. In Software Engineering, 2009.

WCSE ’09. WRI World Congress on, volume 1, pages 84 –88, May 2009.

[55] J.A. Maldonado, M. Robles, and C. Cano. Integration of distributed healthcare informa-

tion systems: application of CEN/TC251 ENV13606. In Engineering in Medicine and

BIBLIOGRAPHY 98

Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the

IEEE, volume 4, pages 3731 – 3734, 2001.

[56] Haiyan Chen, Shigang Qin, Jianxun Liu, and Jian Cao. SOA-Enabled Health Information

Integration Platform (HIIP): A Case Study. In Semantics, Knowledge and Grid, 2009,

pages 384 –387, 2009.

[57] J.K. Zhang and W. Xu. Web Service-based Healthcare Information System (WSHIS): A

Case Study for System Interoperability Concern in Healthcare Field. In Biomedical and

Pharmaceutical Engineering, 2006. ICBPE 2006. International Conference on, pages 588

–594, 2006.

[58] E. Vasilescu and S.K. Mun. Service Oriented Architecture (SOA) Implications for Large

Scale Distributed Health Care Enterprises. In Distributed Diagnosis and Home Healthcare,

2006. D2H2. 1st Transdisciplinary Conference on, pages 91 –94, 2006.

[59] Weiping Wang, Mingming Wang, and Shijun Zhu. Healthcare information system integra-

tion: a service oriented approach. In Services Systems and Services Management, 2005.

Proceedings of ICSSSM ’05. 2005 International Conference on, volume 2, pages 1475 –

1480, 2005.

[60] Meg Murray and Meg C Murray. An Initial Investigation of Web Services in Healthcare.

Information Systems, 2003.

[61] Santiago Comella-Dorda, John C. Dean, Edwin Morris, and Patricia Oberndorf. A process

for cots software product evaluation. In In proceedings of the International Conference on

COTS-Based Software Systems ICCBSS, pages 86–96, 2002.

[62] K. Ven, I. Verelst, and H. Mannaert. Should you adopt open source software? Software,

IEEE, 25(3):54 –59, 2008.

[63] B. Kitchenham, S. Linkman, and D. Law. DESMET: a methodology for evaluating soft-

ware engineering methods and tools. Computing & Control Engineering Journal, 8(3):120,

1997.

BIBLIOGRAPHY 99

[64] S.L. Pfleeger. Experimental design and analysis in software engineering. Annals of Soft-

ware Engineering, 1(1):219–253, 1995.

[65] Xudong Lu, Huilong Duan, Haomin Li, Chenhui Zhao, and Jiye An. The architecture

of enterprise hospital information system. IEEE Engineering in Medicine and Biology

Society, 7:6957–60, January 2005.

[66] Andrew Forward and Timothy C. Lethbridge. The relevance of software documentation,

tools and technologies: a survey. In Proceedings of the 2002 ACM symposium on Document

engineering, DocEng ’02, pages 26–33, 2002.

[67] Andrew M. St. Laurent. Understanding Open Source and Free Software Licensing.

O’Reilly Media, Inc., 2004.

[68] Pauline Ratnasingham and Paul Pavlou. The Role of Web Services in Business to Business

Electronic Comerce. Information Systems, 2002.

[69] Vandana Singh. Knowledge creation, sharing and reuse in online technical support for

open source software. PhD thesis, Champaign, IL, USA, 2008.

[70] Nicole Serrano and Jose Mare Sarriegi. Open Source Software ERPs: A New Alternative

for an Old Need. IEEE Software, 23:94–97, 2006.

[71] A. Vazquez, S. Bohn, M. Gessat, and O. Burgert. Evaluation of Open Source DICOM

Frameworks, 2006.

	Declaration of Authorship
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	Medical informatics: special chapter hospital information system
	Information Systems
	Architecture and Infrastructure of Information Systems

	Hospital Information Systems
	Electronic Health Records
	Strengths and weaknesses
	Common requirements

	EHR- and related standards
	HL-7 CDA
	HL-7 RIM
	EN-13606
	OpenEHR
	DICOM
	IHE Profiles

	Selected highly relevant components in a Hospital Information System
	Enterprise Resource Planing tools
	Picture Archiving and Communication Systems

	HIS Security
	Security Risks and Threats to Clinical Information
	Security Policy Model for Clinical Information Systems

	Problem statement and basic idea
	Problems of current HIS
	Service oriented and patient centered approach
	Related work

	Evaluating Of-The-Shelf Software For Extending a HIS-Core System
	DESMET Project
	DESMET Feature Analysis

	EHR core system
	Underlying standard - OpenEHR
	Architectural decisions
	Model layer
	Service Layer
	Webservice layer

	Exposed interface
	EHR-related functions
	Composition-related functions
	Object reference resolver

	Integration Framework
	Requirements
	Architectural concept
	Messaging infrastructure - Enterprise Service Bus
	Content- and rule based routing of messages

	EHR core system integration and service exposure
	Med-core plugin
	EHR-http plugin

	Sample Request for Retrieving an EHR
	Design and Developement of an Integration Framework Prototype
	EHR-core system
	HIS Integration Framework Core Components
	HIS Of-The-Shelf Integration

	ERP System Evaluation and Integration
	Requirements of ERP systems
	Evaluation of Different ERP Systems
	ERP Integration
	Sample Openbravo Setup
	ERP-ESB Plugin

	Picture Archiving and Communication Systems Evaluation and Integration
	Requirements of PACS
	Evaluation of Different PACS
	PACS Integration
	Sample DCM4CHEE Setup
	PACS-ESB Plugin

	Results
	Conclusion
	Further work

	Bibliography

