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Abstract This thesis presents a mathematical approach and theoretical treatment of a

central challenge of modern housing policy: deconcentrating poverty via “housing

mobility programs”. The idea is to move poor families into middle-class neighbor-

hoods without inducing the inhabitants of these communities to outward migration

or “flight”. The emphasis is put on the search for an optimal compromise between

preserving the established population in a neighborhood and facilitate the inflow of

marginalized families. The problem is treated by methods of optimal control theory

using the MATLABR© toolbox OCMat developed by Dieter Grass (currently project

assistant in the research unit for Operation Research and Control Systems at the

Vienna University of Technology). The analyzed scenarios exhibit unique solutions

but also cases of indifference, for which two optimal solutions exists.

Keywords Dynamic segregation · Nonlinear optimal control · OCMat Toolbox · Indif-

ference point
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CHAPTER 1
Introduction

This thesis deals with the problem faced by a social planner who wants to integrate a

stream of poor families into a middle-class area without evoking middle-class flight. Plac-

ing too many poor families in a short time would induce current residents to emigrate

and even deter other affluent residents from moving in. Both possibilities would reduce

the tax base of the community to which the poor families are relocated, and that is

counterproductive. But placing too few marginalized families squanders the opportunity

to use the resources of the community to help to assimilate poor families into middle class.

This problem has very concrete, practical motivations. It has received considerable atten-

tion in academic research including the analysis of group effects, social interactions and

networks, in particular with respect to the design of efficient social policies. However,

this kind of problem has rarely been addressed with powerful analytic methods such as

optimal control applied in the present work.

Social interactions are mathematically closely associated with non-linearities and mul-

tiple equilibria. The existence of multiple equilibria is related to the existence of so-called

Skiba or DNSS points. Multiplicity means that for given initial states there exist multiple

optimal solutions; thus the decision-maker is indifferent about which option to choose,

i.e., at such a threshold different optimal paths exist. Small movements away from the

threshold typical resolve the indifference and lead to a unique optimal solution. Sethi

(1977, 1979), Skiba (1978) and Deckert and Nishimura (1983) explored these points of

indifference for the first time when they considered a special class of optimal control

problems. In recognition of their studies these points of indifference are denoted as DNSS

(Dechert-Nishimura-Sethi-Skiba) or simply Skiba points.

The following work analyzes the strategy of a housing mobility program, which places

poor families into middle-class areas, by using methods of optimal control theory. The

underlying premise is that poor families can do better on a variety of social, health, educa-

5



tion, and economic indicators if they have the opportunity to choose good-quality housing

in more-affluent destination communities. The fundamental management question is, how

best could such a strategy look like?

This thesis is organized as follows. Chapter 2 provides a short overview of the

recent problems of segregation in the USA as well as in Europe. The mentioned European

countries are England, Germany, Sweden and France. In Chapter 3 the formulation of

the mathematical model in terms of a two-state optimal control model is formulated. The

following Chapter 4 provides a description of the OCMat toolbox used for the numerical

analysis. Chapter 5 discusses the analyses including the investigation of the canonical

system, phase portraits and bifurcation diagrams. Finally, cases of indifference are dis-

cussed. The thesis closes with a summary, which contains conclusions resulting from the

underlying analyses and several policy implications.
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CHAPTER 2
Policy Context

2.1 The USA in words and figures

According to the United States Census Bureau (2011b) the number of inhabitants of the

US expands every twelve seconds by one person. It makes the United States to the third

largest country by population with about 308 million people.

This rather high number of people living in the U.S. is not so much caused by a birthrate

but rather by a large-scale immigration from many countries. The birthrate is 30% under

the world average, which is still higher than that of most of the European countries. One

person immigrates to the country every 43 seconds as per United States Census Bureau

(2011b), so the United States are one of the world’s most ethnically diverse and multicul-

tural nations.

One of the key problems concerning this kind of expansion is the slow process of assim-

ilation of the immigrants. Social inhomogeneity accompanies unemployment and delin-

quency and it breeds ethnical segregation followed by urban decay. The United States

Census Bureau estimates the number of illegal immigrants at about 11.2 million in 2010.

The population growth of Hispanic Americans provides the major demographic trend.

Between 2000 and 2008, the country’s Hispanic population increased by 32%.

Bernstein and Edwards (2008) claim in their publication “An Older and More Diverse

Nation by Midcentury” the following:

“Minorities, now roughly one-third of the U.S. population, are expected to

become the majority in 2042, with the nation projected to be 54% minority

in 2050. By 2023, minorities will comprise more than half of all children.”

The Annual Estimates of the the United States Census Bureau (2011a) provides the

following composition of the US population in 2009:
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• 79.6% White

• 12.9% African American

• 4.6% Asian American

• 1.0% American Indian and Alaskan Native

• 0.2% Native Hawaiian and Other Pacific Islander

• 1.7% Multiracial

Additionally this study assumes 15.4% of the whole population to be Hispanic1, which

means 46.9 million people. Hence White Americans are the largest racial group, African

Americans are the nation’s largest racial minority and Asian Americans are the country’s

second largest racial minority. Since 1998, China, India, and the Philippines have been

in the top four sending countries every year. According to the United States Census Bu-

reau, about 80% of Americans live in urban areas, including suburbs. The “Population

Estimates” of the Bureau (2009) specify nine cities with more than one million residents.

The biggest metropolises are New York, Los Angeles, Chicago and Houston city with

more than two million inhabitants. However, this expansion is associated with large-scale

unemployment, where according to the Bureau of Labor Statistics (August, 2011) the

average rate amounts to 9.1%. Heavily affected are teenagers by an unemployment of

25.4%, furthermore African Americans by 16.7% and Hispanics by 13.3%, as per the Eco-

nomic of Labor Statistics (August, 2011). By comparison, as per Die Presse (August 31,

2011), the European Union records an unemployment of 10% with Austria’s at 3.7%. The

teenager-unemployment in Austria is added up to 7.8%.

Paul Starr (2008)2 wrote in his article “A New Deal of Their Own” the following:

“America does not do well by its young. [...] In a UNICEF (2007) study last

year measuring the well-being of children and adolescents in 21 rich countries,

the United States ranked next to last. According to U.S. Census Bureau

data, 17% of children in 2006 were growing up in families with incomes below

the poverty line – just about the same proportion as in the 1970s. [...] The

persistent problems affecting children and the deteriorating economic position

of young adults stand in contrast to the historic improvement in the well-being

of the elderly during the same period.”

1Hispanic or Latino origin is independent of race and is termed "ethnicity" by the United States

Census Bureau. (The racial categories are: American Indian and Alaska Native, White, Black or African

American, Asian, Native Hawaiian and Other Pacific Islander.)
2Co-editor of the U.S. magazine “American Prospect”, which is a biweekly magazine covering politics,

culture, and policy from a liberal perspective.
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According to DeNavas-Walt et al. (2008) the United States denotes the greatest income

inequality among developed nations. This report demonstrates also the varying level of

income in different states. Maryland has the highest income added up to $68,080 and Mis-

sissippi the lowest one by $36,338. Furthermore it sheds light on the American poverty

status. In 2008, 13.2% of all Americans lived in poverty, which included more than 30

million people. The harmful effects of high-poverty areas are thought to be especially

severe for children whose behavior and prospects may be particularly susceptible to a

number of neighborhood characteristics, such as peer group influences, school quality,

and the availability of supervised after school activities.

One possibility to reduce destitution is deconcentration of poverty, e.g., via housing mo-

bility programs. By means of dynamic optimization models, this work examines the

problem faced by a social planner who wants to integrate poor families into middle-class

neighborhoods faced by segregation without inducing “middle-class-flight”3.

However, one central question is whether flight is driven more by the current inflow of

poor immigrants or by their accumulation over time. On that point, there appears to be

some reasons to believe it is the current inflow (Ellen, 2000).

Charles T. Clotfelter4 is of the opinion, that the Brown v. Board of Education (1954)5

decision of the Supreme Court - ordering the abrogation of racial segregation of public

schools - was and remains the major factor actuating the flight of white Americans from

mixed-race communities (Clotfelter, 2004). It is worth to mention, however, that the com-

plexity of problems caused by racial segregation has been a frequently discussed subject

at least since the Declaration of Independence, July 4, 1776.

Already, 40 years ago Thomas Schelling6 has already analyzed this segregative behav-

ior of communities (Schelling, 1971). He showed in his segregation model that a small

preference for one’s neighbors to be of the same color could lead to total segregation. He

used coins on graph paper to demonstrate his theory by placing pennies and nickels in

different patterns on the “board” and then moving them one by one if they were in an

“unhappy” situation.

The rule, this model operates on, is that for every colored cell, if greater than 33% of the

3Middle-class-flight is a demographic and sociological term denoting the trend when middle-class

people flee desegregated communities due to anxiety of accustomed social standards.
4Professor of Public Policy Studies and Professor of Economics and Law at Duke University.
5Supreme Court of the United States: Full name of the case: Oliver Brown et al. v. Board of

Education of Topeka et al.
6Thomas Crombie Schelling (born April 14, 1921) is an American economist and Professor of Foreign

Affairs, National Security, Nuclear Strategy, and Arms Control at the School of Public Policy at University

of Maryland, College Park. He received the Nobel Prize in Economic Sciences 2005 “for having enhanced

our understanding of conflict and cooperation through game-theory analysis”.
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adjacent cells are of a different color, the cell moves to another randomly selected cell.

Furthermore, the systemic effects are found to be overwhelming: there is no simple corre-

spondence of individual incentive to collective results. Schelling deduced an “exaggerated

separation and patterning result from the dynamics of movement. Inferences about indi-

vidual motives can usually not be drawn from aggregate patterns” (Schelling, 1971). It is

still a powerful example of an “invisible-hand” explanation.

Over the past 10 years the US government has placed an increased emphasis on anti-

poverty programs via public housing developments. “The Moving to Opportunity for Fair

Housing” (MTO) program directed by HUD (U.S. Department of Housing and Urban De-

velopment, 1999) is one of these experimental housing mobility programs (Elhassan et al.,

1999). According to the “Moving to Opportunity Interim Impacts Evaluation” Report,

MTO was designed to answer questions about what happens when very poor families have

the chance to move out of subsidized housing in the poorest neighborhoods of five very

large American cities, namely Baltimore, Boston, Chicago, Los Angeles, and New York.

MTO was a demonstration program: its unique approach combined tenant-based housing

vouchers with location restrictions and housing counseling.

The participant families had to live in public housing or private assisted housing in areas

of the central cities with very high poverty rates (40% or more), have very low incomes,

and have children under 18 years. The mean poverty rate of baseline locations was, in

fact, higher than 56%. The experimental Section 8 group was offered housing vouchers

that could only be used in low-poverty neighborhoods (where less than 10% of the pop-

ulation was poor, base year 1990) and local counseling agencies helped to find and lease

units in qualifying neighborhoods.

The major questions were: What are the impacts of joining the MTO demonstration on

household location and on the housing and neighborhood conditions of the participants?

What are the impacts of moving to a low-poverty neighborhood on the employment, in-

come, education, health, and social well-being of family members?

A summary assessment of the findings and the impact estimates suggest that: the findings

do provide convincing evidence that MTO had real effects on the lives of participating

families in the domain of housing conditions and assistance and on the characteristics

of the schools attended by their children; there is no convincing evidence of effects on

educational performance, employment and earnings, household income, food security, or

self-sufficiency.

However, the ability to measure those effects quantitatively is limited. There are a num-

ber of reasons to expect that observing the MTO population over a longer period of time
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may reveal significant program impacts in domains with no mid-term effects. There are

strong theoretical reasons why it may take many years for the full effects of neighborhood

to manifest themselves. Developmental outcomes such as educational performance almost

certainly reflect the cumulative experience of the child from an early age. The analyses

found at least modest evidence of increasingly favorable effects over time (Elhassan et al.,

1999).

2.2 Fighting segregation in Europe

This section provides insights into the problem of economical and cultural segregation in

Europe. It was already a phenomenon of the middle age’s urban development, in as much

as merchants and manufacturers lived in different parts of the town. Beside of vocational

segregation, an ethnical and religious separation could also be seen in form of the emer-

gence of Jewish Ghettos.

By a rising cultural and ethnical consciousness the issue of segregation became a fre-

quently discussed topic. There are common political attempts to reduce social diversity,

with regard to increase social welfare. The high number of scientific studies in the fields of

economics, sociology, political science, or Operation Research regarding social segregation

shows a significant interest in this topic as well as significant importance. The following

pages describe a short excerpt of the variety of numerous scientific investigations.

Economic Segregation in England: Causes, Consequences, and

Policy

The exploration from England carried out by Meen et al. (2005) investigates what makes

it difficult to achieve communities with a sustainable mix of incomes and tenures .

Some key findings of their analysis are7:

• Patterns of segregation in England have changed little over the past 20 years or

more.

• Evidence confirms that ‘one-size-fits-all’ policies do not work. Different areas need

different policies. Areas with very high levels of deprivation need intensive help

to reach a ‘take-off’ point before the private sector is likely to become involved.

Otherwise, they become stuck in a poverty trap, segregated from other parts of the

community.

• The resources required to reach the take-off point are large in the most deprived

areas.

7read on: http://www.jrf.org.uk/sites/files/jrf/0645.pdf, (July 3, 2011, Vienna)
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• Segregation and integration depend particularly on where young, high-income house-

holds – the most mobile group – choose to move to. Internationally, some of the

fastest growing cities have attracted these groups. They are attracted by facili-

ties such as adequate sporting and cultural centres but deterred by areas of high

deprivation, unemployment and council taxes. Policies, therefore, have to promote

virtuous circles, to avoid the cumulative processes of decline that have been observed

historically.

• It is particularly difficult to design policies to attract back older households to cities

in order to promote integration, because people tend to move home significantly less

as they get older. In general, once households have left urban areas, most tend to

stay away.

Living and Learning Separately? Ethnic Segregation of School

Children in Copenhagen

Schindler Rangvid (2007) discusses the relation between residential segregation due to

ethnical differences and school segregation in Copenhagen8.

“The evidence from Copenhagen suggests that low residential segregation

does not necessarily translate into moderate school segregation: when school

choice options are available (public and, in particular, private), low residential

segregation is compatible with high school segregation levels. A decomposition

suggests that socioeconomic differences do not seem to be the main driving-

force behind school segregation.”

Restructuring of Housing and Ethnic Segregation: Recent

Developments in Berlin

Kemper (1998) discusses social segregation caused by a historic event, the fall of the Wall

in 1989, followed by massive economical changes in the years of reunification, which were

accompanied by a large influx of immigrants. The new immigrants were added to the

long-resident guest-worker population settled down in the western part of the city.

“This paper investigates the housing situation of the increasing population

of foreigners before and after unification as well as the changing segregation of

ethnic minorities. After a comparison of the different housing systems in East

and West Berlin and their consequences for ethnic segregation in the 1980s,

the main elements of the housing transformation since 1990 are identified and

related to the changing residential patterns of foreigners. The patterns of four

8read on http://usj.sagepub.com/content/44/7/1329.abstract, (July 3, 2011, Vienna)
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selected nationalities with divergent migration motives are analyzed in more

detail. The paper draws attention to differences between East and West Berlin

as well as to recent convergences between the two parts of the city.”

Public Housing and Residential Segregation of Immigrants in

France, 1968-1999

Following the riots in the suburbs of 2005 in France the media highlighted the conse-

quences of segregation and turned the point of scientific interest tightened in economical

and social researches to understand and solve the enduring problem of the evolution of

immigrant segregation. Verdugo (2011) documents the large increase in public housing

participation rates of non-European immigrants after 1980 and discusses how public hous-

ing participation is related to contemporary segregation.

Gaschet and Gaussier (2004) constitute three main reasons to explain the formation of

the phenomenon of segregate cities:

“The first one is directly tied to the traditional monocentric model of the

New Urban Economics (Fujita, 1989) [...]. Two opposing forces are identi-

fied. First, rich households have a high opportunity cost of time and are thus

attracted by the accessibility to the city centre. However, as the housing con-

sumption increases with income, rich people are attracted by low prices in the

suburbs. The location of richest households thus depends on the evolution

of the ratio of the commuting cost to land consumption with income, which

can be consistent with a variety of location patterns [...]. The second main

approach of urban segregation is a consequence of the preference of house-

holds for living in relative homogeneous neighbourhoods in terms of income

or ethnic origin (Schelling, 1971) [...]. Thirdly, the occurrence of segregation

can be related to housing policies, such as the low apartment’s rents programs

intended for low income households. [...]”
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CHAPTER 3
The Model

The two-state model presented here was first described by Caulkins et al. (1999). While

Caulkins et al. (2005a,b) deal with a simplified one-state variant of this model Grass and

Tragler (2010) recently studied the full model for the first time. This thesis continues the

analysis started in the latter publication.

The model described in what follows is clearly stylized, and many considerations are

suppressed in the interest of framing an essential and transparent dynamic of the prob-

lem. One key measure of the health of a given neighborhood is taken to be the number

of middle-class families who live there at time t, denoted by the state variable X(t). The

second state variable Y (t) represents the number of poor families in the town. With

this additional second state variable one can model explicitly the social advancement of

marginal families placed by a formal public program into the middle class, with other

words the gradual process by which a family remaining in the neighborhood moves up

the socio-economic ladder over time. The key policy variable is the rate at which poor

families are placed in the neighborhood, denoted by the control variable u(t)1.

The number of middle-class families, X, varies over time due to three main influences.

First, there are the underlying natural or “uncontrolled” dynamics that would pertain even

if there were no external intervention (i.e., u ≡ 0). In many respects, housing markets

operate like other economic markets, with price adjusting to balance supply and demand

and the population converging to some optimal city size (Henderson, 1974), so the hous-

ing stock is fixed at a size that would under normal circumstances support some given

population (without loss of generality normalized to be unity, X = 1). If the resident

population grew beyond this normal level (X > 1), residents would flow to less congested

middle-class neighborhoods. Conversely, if the population falls below that level (X < 1),

supposably local prices would decline, attracting immigration from other, comparable

1Note that the time argument t will mostly be omitted in what follows.
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middle-class neighborhoods2. To describe this natural adjustment process, the logistic

growth curve will be adopted.

The second factor influencing the number of middle-class families is “middle-class flight”

induced by the placement of poor families in the neighborhood. The complexity of the

incitement of middle-class flight is enormous. Flight may be provoked not only by immi-

gration into the residential neighborhood but rather by immigration of children into the

school district (e.g., Clotfelter, 2001; Fairlie, 2002). Some subgroups appear more likely

to flee than others. For instance, Ellen (2000) argues that homeowners are more likely to

leave than are renters and that families with children are more likely to flee than families

without children, particularly if the children attend public schools. Furthermore she ex-

plains, “whites do not appear to care very much about the proportion of a neighborhood

that is African-American, [but] whites do tend to avoid neighborhoods in which the pro-

portion of families who are African-American is increasing (independent of the current

size of the minority population)”. This is akin to the finding of Betts and Fairlie (2003)

in the context of native-born and immigrant population that “for every four immigrants

who arrive in public high schools, it is estimated that one native student switches to a

private school”. The answer to a central question whether flight is driven more by the

current inflow of poor immigrants or by their accumulation over time3 seems to be: the

current inflow. So the middle-class flight is assumed to depend primarily as the flow u of

marginal families to the stock of current, established families.

The third and final factor influencing changes in the stock of middle-class residents is

the social advancement of poor families, which is the rate at which incoming families are

“assimilated”. The hope is that immersion in a middle-class neighborhood will improve

outcomes, including labor market participations and income and educational outcomes

for the children, which translate into social opportunity and higher incomes over time.

However, in accordance with Mayer and Jencks (1989), there is a possibility that affluent

neighbors provoke resentment among the poor over their relative deprivation. A satis-

fying short-term result such as improving social welfare of the neighborhood is almost

impractical. Rather, the work is aimed at the long-term benefits as mentioned above.

Summing up the effects influencing the population system, Figure 3.1 illustrates the dy-

namics of the model.

2If the population base of the whole city is changing, i.e., if it is booming or eroding, the neighbor-

hood’s normal population density would accordingly change. This analysis assumes the normal population

to be constant over time.
3Understood relative to the size of the stock of middle-class families.
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Figure 3.1: Placing the poor to the middle-class neighborhood

Together, these considerations suggest the following dynamic optimization problem

with two state variables:

max
u(·)≥0

∫ ∞

0

e−rt
[

ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)
]

dt

s.t. Ẋ = own dynamics − middle-class flight + social advancement

Ẏ = own dynamics − social advancement + u,

where r is the (non-negative) time discount rate4, while ρX and ρY describe how the

decision-maker values directly the presence of established families and of marginal fam-

ilies, respectively. If ρX = 0, then the decision-maker is only concerned about placing

as many families as possible. If ρX > 0, then the decision-maker also values directly

the presence of established families, e.g., because they pay taxes. Presumably, ρX > ρY ;

however, as we will see later, omitting this assumption reveals interesting insights. Fur-

ther, a weight σ attached to the control terms in the objective function is introduced to

allow to put easily more or less emphasis on the contributions from the control variable u

relative to those from the state variables X and Y . The control costs are assumed to be

quadratic with c denoting the cost coefficient. What value of parameter c makes sense is

best thought of by leaving aside the ρXX(t) + ρY Y (t) terms, which means by reference

only to the instanteaneous part of the objective function, which is σ(u(t) − cu(t)2), i.e.,

put the total emphasis on the control. These control terms are maximized when u = 1
2c

.

A value of c = 2 implies u = 0.25 as the optimal level of the control, which means placing

one poor family per four middle-class families per year. Placing one poor family per two

middle-class families would be exorbitantly aggressive and would result in less benefit.

However, those judgements are probably tempered by long-run considerations including

4The time discount rate is a measure of focusing on the future. Obviously, the higher r, the less is the

value of the future, the more important is the present welfare of the society. It is customarily between

3% and 7%, therefore r is set to 0.05 as base case.
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assimilation and middle-class flight. For further details see Caulkins et al. (2005a,b).

A standard way to describe the own dynamics is the logistic growth:

own dynamics = aX(1−X),

where X is the relative size of the population, and a (b, respectively) governs the speed

with which the equilibrium population is approached.

The middle-class flight is assumed to be at the form of:

βf
( u

X

)

X,

where β describes the extent of middle-class flight. Betts and Fairlie (2003) found that

one native-born person moved out of the school district for every four immigrants en-

tering (β = 0.25). Flight by facing lower-class could even be stronger than flight from

immigrants, suggesting larger values of β. Ellen (2000) suggests a flight coefficient in the

range of 0.9 − 1.575. In light of this, Caulkins et al. (2005a,b) set β = 0.5 as base case

value. For the increasing function f() we assume that

f
( u

X

)

=
u

X
.

The social advancement term is assumed to be proportional to Y with the propor-

tionality factor γ, which is the rate of assimilation of poor families into middle class.

Furthermore, it is reasonable to make the social advancement term to be an increasing

function of the proportion of neighbors who are middle-class. One of the premises of mov-

ing of opportunity programs is that marginal families will learn from their more affluent

neighbors and adopt the “successful” practices that lead to middle-class status. So one

might imagine that:

social advancement = γY g(X,Y ),

with g() increasing in X. For instance,

g(X,Y ) =

(

kX

kX + Y

)e

,

where e > 0. The constant k reflects the extent to which the neighborhood was integrated.

Therefore, k = 1 describes random mixing, i.e., the proportion of middle-class people to

whom a marginal family is exposed is just equal to the proportion of middle class families

in the town. If k < 1, then the proportion of middle-class families seen is less than their

factual proportion of the population of the town.

Together, all these reflections suggest the following formulation of the model:

max
u(·)≥0

∫ ∞

0

e−rt
[

ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)
]

dt (3.1)
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subject to the dynamic state equations

Ẋ(t) = aX(t)(1−X(t))− βu(t) + γY (t)

(

kX(t)

kX(t) + Y (t)

)e

(3.2)

Ẏ (t) = bY (t)(d− Y (t))− γY (t)

(

kX(t)

kX(t) + Y (t)

)e

+ u(t) (3.3)

with base case parameters shown in Table 3.1.

Table 3.1: Base case model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coefficient on X

ρY 0.01 objective function coefficient on Y

σ 0.01 weight on objective function control terms
c 2 program cost coefficient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
β 0.5 flight coefficient
γ 0.45 assimilation coefficient
k 1 social integration coefficient
e 1 exponent in the social advancement term

After describing the model, the next chapter presents the instrument of the analysis,

a MATLAB-toolbox called OCMat created by Dieter Grass.
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CHAPTER 4
The MATLAB-Toolbox: OCMat

The OCMat1 Toolbox initiated by Dieter Grass enables an appropriate analysis of op-

timal control problems using the MATLABR© language2. The main emphasis of OCMat

is placed on discounted, autonomous, infinite time horizon models though it also pro-

vides extensions to non-autonomous, finite time horizon problems. The concentration on

this restricted class of optimal control models is well founded as these models are the

most commonly investigated problems in economics. The numerical method of the tool-

box used to solve optimal control problems is based on Pontryagin’s Maximum Principle,

which establishes the corresponding canonical system. Essentially, solving optimal control

problems is translated to the problem of analyzing the canonical system. In other words,

Pontryagin’s Maximum Principle defines a boundary value problem (BVP) given by the

canonical system, together with the condition for the initial state and some transversality

condition3.

In addition to the idea of formulating discounted, autonomous, infinite time horizon

optimal control models as BVPs, the occurrence of limit sets (equilibria, limit cycles) of

the canonical system as long-run optimal solution was the key argument for Dieter Grass

to use a continuation method to anaylze those BVPs. In general, continuation means

continuing an already detected solution while varying a model-specific parameter value.

Of course, in the context of a BVP the interest is in the majority of cases not only in con-

tinuing a solution for varying model parameters but also in the continuation of a solution

along varying initial conditions x(0) = x0. Limit sets serve as the first “trivial” solution of

an optimal control problem and can be continued in order to derive optimal solutions for

1OCMat is available via http://orcos.tuwien.ac.at/research/ocmat_software, (September 20,

2011, Vienna).
2MATLAB is a registered trademark of The MathWorks Inc.
3For infinite time horizon problems and under the assumption that the optimal solution converges to

a limit set, the transversality condition can be replaced by a so-called asymptotic boundary condition.

See Grass et al. (2008, Chap. 7.1.4).
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arbitrary initial states. The existence of these solutions generated by every continuation

step is founded by the implicit function theorem.

One can sum up the main ideas used in OCMat as follows:

• transforming the optimal control problem to a boundary value problem;

• using the technique of continuing an already established solution, which is given by

an equilibrium or limit set and

• formulate a so-called asymptotic boundary condition.

More precisely, to introduce the BVP approach, D. Grass starts with the reformulation of

an optimal control problem, where it is assumed that the stable manifold of the equilibrium

(x̂, λ̂) is of dimension n and is the long-run optimal solution. Then, given an initial state

x(0) = x0 ∈ R
n, a trajectory (x(·), λ(·)) has to be found, which satisfies the ODEs of

the canonical system and converges to the equilibrium (x̂, λ̂) (Grass et al., 2008, p352).

Using the definition of local stable manifold this can be formulated so that for some T

(x(T ), λ(T )) ∈ W S
loc(x̂, λ̂),

or approximating W S
loc(x̂, λ̂) by its linearization ES(x̂, λ̂),

(x(T ), λ(T )) ∈ ES(x̂, λ̂),

which provides the terminal condition. Furthermore, the infinite time horizon is replaced

by some finite horizon T . Thus the problem is reduced to a BVP, where initial condition

x(0) = x0 and the terminal condition from above is given.

This short summary of the principles of OCMat presents its key aspects, which serve

as the basis for a better understanding of the present work. However, the capacity of

the toolbox extends the facility of analyzing two-stage optimal control models quickly,

reliably and hence very efficiently, and it also enables the calculation of other problem

classes, such as multi-stage models and differential games.

For further information see the OCMat webpage http://orcos.tuwien.ac.at/research/

ocmat_software, which also provides the slides from lectures by Dieter Grass and an OC-

Mat Manual by Dieter Grass and Andrea Seidl. Further details can be found in Grass

et al. (2008, Chapter 8)

The next chapter describes the analysis of the underlying discounted, autonomous

optimal control model with a specific focus on using OCMat.
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CHAPTER 5
Analysis of the Dynamical System

5.1 Introductory analysis

The analysis of the underlying system happens in the usual manner for an optimal dy-

namic control problem with application of Pontryagin’s Maximum Principle (see, e.g.,

Feichtinger and Hartl, 1986; Grass et al., 2008). It means in its simplest form that the

solution of the control problem is delivered from the solution of the so-called canonical

system provided by the maximum principle. OCMat is used for the numerical analysis of

the system of nonlinear ODEs.

Before the analysis of an optimal control problem with OCMat1 can be started, some

preparing steps have to be done. In particular, a file describing the state dynamics, ob-

jective function, and -possibly- control constraint has to be created and initialized. The

initializing process consists of two steps: after the creation of the file, MATLAB files

containing default information of the model and MATLAB files necessary for the com-

putation have to be generated. For our model, the content of the file has to have the form:

statedynamics=sym(’[a*x1*(1-x1)-beta*u1+gamma*x2*(k*x1/

(k*x1+x2))^e;b*x2*(d-x2)-gamma*x2*(k*x1/(k*x1+x2))^e+u1]’);

objectivefunction=sym(’sigma*(u1-c*u1^2)+rhox*x1+rhoy*x2’);

controlconstraint=sym(’[u1-lb]’);

where the name of the file is used as the models’ name (e.g., BaseCaseModel.m.)

controlconstraint=sym(’[u1-lb]’)means the control constraint is u > 0. The file also

includes the parameter values. It has to be introduced by the comment %General:

%General

1For a detailed description, see Grass (2010-2011).
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r=0.05;

a=2;

b=2;

c=2;

beta=0.5;

gamma=0.45;

e=1;

rhox=0.02;

rhoy=0.01;

d=1;

k=1;

lb=0;

sigma=0.01;

The next step is the initialization of the file by

initocmat(’BaseCaseModel’);

m=ocmodel(’BaseCaseModel’);

files4model(m);

moveocmatfiles(m);

initocmat derives and stores important information from the ocmodel; ocmodel con-

structs an ocmodel. The constructor loads the data previously stored during the initial-

ization process. files4model creates files for the numerical analysis and moveocmatfiles

moves the model files from the standard output directory to the standard model directory2.

After the initialization process, the analysis of the optimal control problem can be started.

It happens in the usual manner, as at first the current-value Hamiltonian is derived, de-

noted by H:

H =σ(u− cu2) + ρxX + ρyY + λ1

(

aX(1−X)− βu1 + γY

(

kX

kX + Y

)e)

+

λ2

(

bY (d− Y )− γY

(

kX

kX + Y

)e

+ u

)

.

Therefore the toolbox needs at first as always the allocation m=ocObj;

With h=hamiltonian(m) the Hamiltonian will be dumped. As the Hamiltonian is con-

tinuously differentiable in u with u ∈ R, the Hamiltonian maximizing condition yields

Hu = σ − 2cσu− λ1β + λ2 = 0.

2These descriptions can be found at http://orcos.tuwien.ac.at/fileadmin/t/orcos/OCMat/

ocmat_lecture1.pdf, (September 20, 2011, Vienna).
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From the Hamiltonian maximizing condition the optimal control u can be expressed as:

u∗ =
σ − λ1β + λ2

2cσ
.

Using furthermore the costate equation

λ̇(t) = rλ(t)−Hx,

the canonical system in the state-costate-space can be calculated. In principle, the toolbox

only needs the command canonicalsystem(m) and it displays the general dynamical

system using the optimal control u∗:

Ẋ = aX(1−X)−
β

σc

(

1

2
σ −

1

2
λ1 +

1

2
λ2

)

+ γY

(

kX

kX + Y

)e

,

Ẏ = bY (d− Y )− γY

(

kX

kX + Y

)e

+
1

σc

(

1

2
σ −

1

2
λ1β +

1

2
λ2

)

,

λ̇1 = rλ1 − ρX − λ1

[

a(1−X)− aX + γY

(

kX

kX + Y

)e

e

(

1

X
−

k

(kX + Y )

)]

+ λ2γY

(

kX

kX + Y

)e

e

(

1

X
−

k

(kX + Y )

)

,

λ̇2 = rλ2 − ρY − λ1

[

γ

(

kX

kX + Y

)e

− γY

(

kX

kX + Y

)e
e

kX + Y

]

− λ2

[

b(d− Y )− bY − γ

(

kX

kX + Y

)e

+ γY

(

kX

kX + Y

)e
e

kX + Y

]

.

The first step of the analysis is to locate the steady states of the canonical system.

These are the intersections of the state- and costate-isoclines. For that purpose, com-

mand calcep(m) is used, with which one can calculate the equilibria analytically, if the

system is not too complex. The toolbox also provides the possibility to solve the equa-

tions numerically: rand(4,10) means in this special case that for the calculation of the

equilibrium consisting of four entries (i.e., two states- and two corresponding costate-

values: X,Y, λ1, λ2) the numerical calculation starts at ten random initial values. The

toolbox checks if some solutions are admissible, i.e., they satisfy possible constraints and

are actually zeros of the dynamics, with b=isadmissible(m,ocEP,opt). Negativity of

state values is checked with b=isnegativestate(m,ocEP). Also repetitive equilibria can

be removed by ocEP=uniqueoc(ocEP,opt). With ocEP{:} the user gets the calculated

set (X̂, Ŷ , λ̂1, λ̂2). Summing up all these possibilities, the following compound command

can be called for calculating the equilibria of the canonical system3:

ocEP=calcep(m,rand(4,10),opt);b=isadmissible(m,ocEP,opt);ocEP(~b)=[];

b=isnegativestate(m,ocEP);ocEP(b==1)=[];ocEP=uniqueoc(ocEP,opt);ocEP{:}

The result is:
3For setting option, read more on http://orcos.tuwien.ac.at/fileadmin/t/orcos/OCMat/ocmat_

lecture1.pdf, (September 20, 2011, Vienna), and Grass and Seidl (2008).
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ans =

dynprimitive object:

Coordinates:

1.0485

1.0141

0.009113

0.0049762

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.10486

1.1778

-0.0097546

0.0036071

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

1

-1.8606e-010

0.0097561

-0.0095935

Arc identifier: 2

Linearization: [4x4 double]
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The first two entries of the column are the state values and the others the corresponding

costates of the equilibrium. Arc identifier characterizes active or inactive constraints.

In particular, 1 refers to an interior solution u > 0, whereas 2 indicates an equilibrium

with an active control constraint.

In what follows, is necessary to consider the equilibria more closely. The third solu-

tion can be excluded lying in a non-admissible region. To analyze the first and the second

equilibrium, the user can start a continuation process from the state of the first equilib-

rium into the second equilibrium and vice versa by using:

initStruct=initoccont(’extremal’,m,’initpoint’,1,ocEP{1}.dynVar(1,1),

ocEP{2},’IntegrationTime’,500);

If the continuation processes is successful, the corresponding path is superior and the

minor stable path can be excluded.

In the underlying case, the above initialized continuation is successful, i.e., the second

equilibrium can be excluded as well. Therefore, only one unique solution exists in the

optimal system, namely X̂ = 1.0485, Ŷ = 1.0141, λ̂1 = 0.009113 and λ̂2 = 0.0049762.

Finally, the equilibria can be stored by calling m=store(m,ocEP).

To fetch the equilibrium again one has to call ocEP{1}.dynVar4. To get the Jacobian

matrix, the command J=ocEP{1}.linearization can be used.

J =

-2.0853 0.1163 6.2500 -12.5000

-0.1088 -2.1725 -12.5000 25.0000

0.0369 -0.0005 2.1353 0.1088

-0.0005 0.0204 -0.1163 2.2225

Moreover, the eigenvalues and eigenvectors of the Jacobian can be displayed by [eigvec

eigval]=

eig(ocEP{1}):

eigvec =

0.4057 0.4253 0.9996 0.7720

-0.8506 -0.8903 -0.0280 -0.6356

-0.2165 -0.0082 -0.0086 -0.0066

4The class dynprimitive represents the “primitive” solutions, equilibria or limit cycles, of the canonical

system.
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-0.2550 -0.1626 0.0000 0.0028

eigval =

2.1925 0 0 0

0 2.3294 0 0

0 0 -2.1425 0

0 0 0 -2.2794

It exhibits a two-dimensional stable manifold, because the number of eigenvalues ξ satis-

fying Reξ < 0 is two.

The control can be displayed by u=control(m,ocEP{1})5:

u =

0.2605 0.2605

and the value of the Hamiltonian by h=hamiltonian(m,ocEP{1}):

h =

0.0324 0.0324

Summing up the first results, the underlying model with base case parameter values

exhibits four candidates for an optimal solution by solving the canonical system, but only

one of them serves as an equilibrium in the optimal system. That means, the system has

one unique optimal steady state solution (X̂, Ŷ ). The optimal level of middle-class as

well as the optimal level of poor families are slightly above the corresponding carrying

capacities (= 1), with X̂ being insignificantly greater than Ŷ and û being some 4% above

0.25 (cf. Grass and Tragler, 2010).

After this basic analysis of the model, a consideration of the phase portraits will pro-

vide deeper insight into the underlying model.

5.2 Phase portrait

A phase portrait is used to illustrate the trajectories of a dynamical system in some pro-

jection in the state-costate-control space. Phase portraits are an indispensable tool in

5Since the time grid of an octrajectory consists at least of 0 and 1, the coordinate values of an

equilibrium are doubled.
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analyzing dynamical systems.

To plot a phase portrait with OCMat at first the user has to set the options that deter-

mine the quality and the run-time for the computation of the results6. For the calculations

described in the present work the following options are recommended:

opt=setocoptions(opt,’OCCONT’,’InitStepWidth’,0.05/5^4,

’MaxStepWidth’,0.05/5^(0),’MeanIteration’,40,’BVP’,

’AbsTol’,1e-6,’RelTol’,1e-6,’OC’,’BVPSolver’,’bvp5c’);

OCCONT is the main tool for calculating a path with OCMat. It continues an extremal

solution (stable path) by solving a BVP7. Therefor the BVP-solver bvp5c is used8. A

check of violation of the control restriction is integrated in OCCONT. This facility is im-

portant for the calculation of boundary curves and for the continuation of trajectories

in an non-admissible interval. By setting the options the user can determinate different

increments for a well adapted calculation. For further information see Grass et al. (2008,

Chap. 7.2), Grass (2010-2011, Chap. 2.82), and Grass (2010-2011, Chap. 3.125).

The next step is the initialization for the BVP approach. In this case it is done by:

initStruct=initoccont(’extremal’,m,’initpoint’,1:2,[0,1],

ocEP{1},’IntegrationTime’,1000)

Here INITOCCONT returns the initializing structure for the continuation process, extremal

describes the continuation type, i.e., an extremal solution is going to be continued. [0,1]

are the coordinates of the initial state to which the solution is continued. ocEP{1} is an

initial solution for the analyzed BVP and the IntegrationTime denotes for an infinite

time horizon model the truncation time. The toolbox solves the BVP by:

[sol soln]=occont(m,initStruct,opt);

Note that the solution has to be stored at this point by m=store(m) to enable the plot.

To retrieve a result (already stored in m) one can use ocEP=equilibrium(m) for retrieving

the elements of the fields of the equilibrium and ocEx=extremalsol(m) for retrieving the

elements of the field according to the stable path. They are stored in ocResults among

other calculated elements. Note that one can check all the stored calculations made before

6For more information, see http://orcos.tuwien.ac.at/fileadmin/t/orcos/OCMat/ocmat_

lecture2.pdf, (September 20, 2011, Vienna), and Grass and Seidl (2008).
7As specified above, for the numerical computation at first an initial solution has to be provided

which then is continued by OCCONT.
8Note that there are different BVP solver for MATLAB.
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by calling m.ocResults.

After the setting of the necessary options and running the continuation algorithm the

user can plot the phase portrait by the following command:

clf,type=’state’;coordinate=2;statecoordinate=1;

plotphaseocresult(m,type,statecoordinate,coordinate,’only’,

{’ExtremalSolution’}),hold on,

plotphaseocresult(m,type,statecoordinate,coordinate,’only’,

{’Equilibrium’},hold off, figure(gcf)

This command displays the plot of the initialized stable path together with the equilib-

rium (’only’,{’ExtremalSolution’}), (’only’,{’Equilibrium’}) in the phase space,

which means the abscissa outlines the first state and the ordinate the second state (type

=’state’;coordinate=2;statecoordinate=1;). With the command hold on or hold off

the user can choose whether the former plot should be maintained or deleted, respectively.

In the following the process of the above described three steps (initialization, calcula-

tion, saving) will be repeated for some other initial points. The chosen initial states

are [0,1],[2,0],[2,0.5],[0.2,0],[2,1.8],[0.6,2]9. However, the continuation to the

initial point [0,1] failed and the trajectory ends at the point where it starts to be non-

admissible; with other words, this is the point where the control constraint gets violated,

i.e., at the boundary between the space with inactive control constraint and active control

constraint.

As already noted above, the numerical computation of a stable path using BVP allows

the continuation even with a violated control constraint. For this purpose, at first it is

necessary to construct a new initial state10. The first non-admissible solution serves as

the new trivial solution for the continuation. The elements of the field according to the

first violated stable path are stored in extremalsolv(m)11. Now, the user can continue

the trajectory from the violation point to the chosen initial point by calling:

ocExn=extremalsolv(m);

initStruct=initoccont(’extremal’,m,’initpoint’,1:2,[0,1],ocExn{1});

opt=setocoptions(’OCCONT’,’InitStepWidth’,0.01/5^3 , ’MaxStepWidth’,12

9The initial points have to be set in InitStruct by the initialization.
10Reiterating, for the numeric computation an initial solution has to be provided.
11Note that the violation has to occur at the first point (see Grass, 2010-2011, Lecture 3)
12It is advisable to reduce the ‘MaxStepWidth’ and to increase the ‘MeanIteration’ compared to the

default option setting.
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0.01,’MeanIteration’,50);

[sol soln]=occont(m,initStruct,opt);

m=store(m)

and plot it by13

clf,type=’state’;coordinate=2;statecoordinate=1;

plotphaseocresult(m,type,statecoordinate,coordinate,

’only’,{’ExtremalSolution’},’onlyindex’,{[]},’continuous’,’off’,

’limitset’,’off’),hold on,

plotphaseocresult(m,type,statecoordinate,coordinate,

’only’,{’Equilibrium’},’onlyindex’,{[]}),hold off,figure(gcf)

Notice, the set options are extended by ’continuous’,’off’. It provides a distinguish-

ing in color between the part of the trajectory with inactive and the part with active

boundary constraint.

The results of this first analysis are presented in Figure 5.1.

Next, our attention is turned to the boundary curve, i.e., that set of points, where the con-

trol constraint gets active. To calculate and plot it the user needs the following commands:

initStruct=initoccont(’boundary’,m,’initpoint’,2,0,ocExn{1});14

initStruct=initoccont(’boundary’,m,’initpoint’,2,2,ocExn{1});

opt=setocoptions(’OCCONT’,’InitStepWidth’,0.01/5^3 ,’MaxStepWidth’,0.01)

m=store(m) [solb solbn]=occont(m,initStruct,opt);

clf,type=’state’;coordinate=2;statecoordinate=1;

plotphaseocresult(m,type,statecoordinate,coordinate,’only’,

{’BoundaryCurve’},’Color’,[0 0 0])

The continuation is carried out by varying the second coordinate (VARCOORD), while

fixing the first coordinate, to zero and then two (VARVAL), set by ’initpoint’,2,0 and

’initpoint’,2,2. The initial solution is represented by ocExn{1} (OCEXN).

Summing up the descriptions and explanations, the combined commands to plot the

phase portrait in 2D or 3D are:

For a 2D plotting use:

13The plot also contains the equilibrium.
14The general command is initStruct=initoccont(’boundary’,m,’initpoint’,VARCOORD,VARVAL,OCEXN).
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Figure 5.1: Phase portrait. The phase portrait depicts six different tra-
jectories in the state space, where [1.0485, 1.0141] is the equilibrium and
the initial states are [0, 1], [2, 0], [2, 0.5], [0.2, 0], [2, 1.8], [0.6, 2]. The
equilibrium is a unique long-run solution of the optimal system. Notice
that the control constraint is active at the initial point [0, 1] (dashed).

clf,type=’state’;coordinate=2;statecoordinate=1;

plotphaseocresult(m,type,statecoordinate,coordinate,

’only’,{’ExtremalSolution’},’onlyindex’,{[]},’continuous’,’off’,

’limitset’,’off’),hold on,

plotphaseocresult(m,type,statecoordinate,coordinate,

’only’,{’BoundaryCurve’},’onlyindex’,{[]},’continuous’,’off’,

’Color’,[0 0 0]),hold on,

plotphaseocresult(m,type,statecoordinate,coordinate,

’only’,{’Equilibrium’},’onlyindex’,{[]}),hold off,figure(gcf)

For a 3D plotting use:

clf,type=’control’;coordinate=1;statecoordinate1=1;statecoordinate2=2;
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plot3phaseocresult(m,type,statecoordinate1,statecoordinate2,coordinate,

’only’,{’ExtremalSolution’},’onlyindex’,{[]},’continuous’,’off’,

’limitset’,’off’),hold on;

plot3phaseocresult(m,type,statecoordinate1,statecoordinate2,coordinate,

’only’,{’BoundaryCurve’},’onlyindex’,{[]},’associatedsol’,’off’,

’Color’,[1 0 0]),

plot3phaseocresult(m,type,statecoordinate1,statecoordinate2,coordinate,

’only’,{’Equilibrium’},’onlyindex’,{[]}),hold off,figure(gcf)

Note that these commands are extended by some applied functions. For example, the

limit set of the stable path can be marked by ’limitset’,’on’. Furthermore it is pos-

sible to display only some chosen trajectories which are specified by their indices15 by

setting ’onlyindex’.

The corresponding plotting results are depicted in Figures 5.2 and 5.3.

The analysis of the phase portraits reveals that no control should be applied for a

low enough level of middle-class families. This makes economic sense, because when X is

small, both the own growth of the middle-class and its growth due to social advancement

are small, so middle-class flight provoked by active governmental control can easily lead

to shrinkage of the middle-class in the neighborhood. It is counter-productive both in the

short and in the long run (cf. Grass and Tragler, 2010).

The following subsection provides detailed computations on the model by using bifur-

cation diagrams.

5.3 Bifurcation diagrams

In the bifurcation diagram presented in this section we will illustrate the long-term solu-

tions of our optimal control problem by varying single parameters.

The computation of a bifurcation diagram by OCMat bases on calculating the equi-

librium while changing a given parameter iteratively. Assuming that small changes of the

parameters generate only small changes in the equilibrium values, a Newton method can

be used efficiently.

The computation of the bifurcation diagram as a function of any parameter symbolized

by par on an interval between a and b is done by the following command:

n=100;parval=linspace(a,b,n)

15For using this function, the command ‘gettag’ gives a support to find the correct index.
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Figure 5.2: 2D phase portrait with boundary curve. The phase portrait
is an enhancement of Figure 5.1 depicting six trajectories, a unique
equilibrium, and the boundary curve (black dotted) separating the space
with active and inactive control constraint.

ocEPinit=ocEP{1};x=[];for ii=1:n; m=changeparameter(m,’par’,parval(ii));16

ocEP=calcep(m,ocEPinit.dynVar(:,1),[],1);b(ii)=isadmissible(m,ocEP);

ocEPinitold=ocEPinit;ocEPinit=ocEP{1};x=[x [ocEP{1}.dynVar(:,1);parval(ii)]];

end

while 2D or 3D plots are produced by:

plot(parval,x(1,:),parval,x(2,:)); or

plot3(parval,x(1,:),u);hold on;plot3(parval,x(2,:),u);

First of all, the command contains the vector of the interval with 100 steps on which the

parameter moves, followed by setting the initial equilibrium, which has to be continued

for the varying parameter. Then the loop for the calculation starts, which is completed

16ocEP{1} refers to the stored equilibrium.
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Figure 5.3: 3D phase portrait with boundary curve. The phase portrait
is a three-dimensional enhancement of Figure 5.2 depicting six trajec-
tories, a unique equilibrium and the boundary curve (gray) separating
the space with active and inactive control constraint. If the control
constraint is active, u is equal to zero.

by the storage of the calculation.

After this short and general description of the computation of bifurcation diagrams

by OCMat, the results for the underlying model considering all parameters will now be

presented.

Discount rate r

We start our sensitivity analysis of the system with the discount rate r. Figure 5.4 de-

scribes the behavior of the equilibria varying r on the interval from 0 to 2.

The non-negative discount rate is a reflection of a society’s relative valuation of to-

day’s well-being versus the well-being in the future. A large r means that the future

is not highly valued (myopic decision maker), while a small r represents a strong valu-

ation on the well-being in the future (farsighted decision maker). In general, a small

35



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

r

X
,
Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.048

1.049

1.05

1.051

r

X

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.01

1.012

1.014

1.016

1.018

r

Y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.25

0.255

0.26

0.265

0.27

r

u

Figure 5.4: Discount rate r. X(r) (black), Y (r) (gray), u(r) (dot-
dashed). Left panel : optimal population levels of middle-class and poor
people for varying r. Both are above 1, which is the size of the popu-
lations under normal circumstances, i.e., in the uncontrolled scenario.
Right panel : X(r) is increasing, Y (r) is decreasing, and u(r) is as well
decreasing.

change in the discount rate can cause significant effects on the benefits derived far

in the future, so it is very important to be clear about the choice of r. See http:

//en.wikipedia.org/wiki/Social\_discount\_rate, (6th of January, 2011).

In this sense it is very surprising to find that X(r) and Y (r) change only very little

for varying r. X(r) is a slightly increasing and Y (r) a slightly decreasing function, but

for all practical purposes the system is basically invariant with respect to changes of the

discount rate r. The control u(r) is as well a decreasing function, but the changes for

varying r are again insignificant in absolute terms.

Population growth rates a and b

The natural population growth is assumed to be purely logistic. The constant a (resp., b)

defines the maximal growth rate at X = 0 (resp., Y = 0). It represents the proportional

increase of the population X (resp., Y ) in one unit of time, therefore it can be interpreted

as the rate of the housing market adjustment. Later, as the population grows, the sec-

ond term, i.e. −aX2 (resp., −bY 2), becomes larger than the first term, which causes an

antagonistic effect.17

Let (b, c, r, k, β, µ, γ, ρx, ρy, σ) be the set of basic parameters and a the varying parameter,

17see http://en.wikipedia.org/wiki/Logistic_function, (2nd of January, 2011)
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then the canonical system is given by

Ẋ = aX(1−X)−
1

8
+
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8
λ2 +

9
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XY

X + Y
,
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(X + Y )2
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(X + Y )2

)

.

If b is the varying parameter, the canonical system is given by

Ẋ = 2X(1−X)−
1

8
+

25

4
λ1 −

25

2
λ2 +

9

20

XY

X + Y
,

Ẏ = bY (1− Y )−
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4
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9
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X

X + Y
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9

20

XY

(X + Y )2

)

.

The canonical system reveals that a = 0 (resp., b = 0) is not admissible. To calculate X

(resp., Y ), a quadratic equation has to be solved. Since a (resp., b) is the coefficient of

the quadratic term, a division by zero occurs in the quadratic formula used to solve the

quadratic equation. Therefore, the calculation has to be started slightly away from zero.

From a practical point of view, however, this is no restriction, because a zero growth rate

does not really make sense anyhow.

The bifurcation diagrams for a are depicted in Figure 5.5 on an interval beginning at

0.5 and ending at 4. It turns out that X(a) is a decreasing function and that the optimal

level of middle-class families decreases by 20% on the first half of the interval. Y (a) as

well as u(a) are increasing functions. The higher the growth rate of the middle-class

population, the higher the optimal control.

Since b is the growth rate of Y , it is now not surprising that Y (b) is a decreasing

function, while X(b) is increasing, albeit slightly. The higher b, the lower the optimal
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Figure 5.5: Maximal growth rate a at X = 0. X(a) (black), Y (a)
(gray), u(a) (dotdashed). Left panel : optimal population levels of
middle-class and poor people for varying a. The decreasing level of
the middle-class population is all along above its baseline size in the un-
controlled scenario. The level of poor families exceeds X for sufficiently
high a. Right panel : X(a) is decreasing, Y (a) is increasing, and u(a) is
as well increasing. The control becomes almost constant for sufficiently
large a.

intervention of the decision maker. At the beginning of the interval, Y exceeds X sig-

nificantly, but by increasing b, the function Y (b) decreases below X(b). See Figure 5.6,

which depicts the bifurcation diagram of b on an interval beginning by 0.5 and ending at

2.
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Figure 5.6: Maximal growth rate b at Y = 0. X(b) (black), Y (b) (gray),
u(b) (dotdashed). Left panel : optimal population levels of middle-class
and poor people for varying b. The level of the middle-class population
as well as the level of poor people are all along above their baseline size
in the uncontrolled scenario. The level of poor families exceeds X for
small b. Right panel : X(b) is increasing, Y (b) is decreasing, and u(b) is
as well decreasing.
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Program cost coefficient c

This subsection describes the dependence of the equilibria on the program cost coefficient

c. We begin with a short theoretical consideration. Using Pontryagin’s Maximum Prin-

ciple to solve an optimal control problem, one has to consider the Hamiltonian, which

yields a unique optimal control value u∗ by

Hu = σ − 2cσu− λ1β + λ2

Hu = 0

u∗ =
σ − λ1β + λ2

2cσ

It is obvious that c = 0 and σ = 0 are parameter values for which a division by zero occurs.

Hence, to avoid numerical problems, we exclude those values but start our computations

for very small values of c and σ. Furthermore, considering the canonical system obtained
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Figure 5.7: Program cost coefficient c. X(c) (black), Y (c) (gray), u(c)
(dotdashed). Left panel : optimal population levels of middle-class and
poor people for varying c. As expected, for rising costs the level of
middle-class people is increasing while Y is decreasing as expected.
Right panel : X(c) is increasing, Y (c) is decreasing, and u(c) is as well
decreasing. The decrease in the optimal control is substantial on an
interval of c from 0 to 1, i.e., more than 50%.
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for base case parameters varying only c:
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,

reveals that exactly at c = 0 not only for the control function but also for the canonical

system a division by zero occurs. Note, however, that for the case c = 0 the quadratic

term in the objective function is eliminated, so u appears only linearly, implying that this

hairline case has to be excluded from our analysis based on the assumption of a nonlinear

control.

Figures 5.7 and 5.8 show the bifurcation diagrams for c on different intervals. For low

costs, the optimal level of middle-class people is very low. It is not only significantly

below the level of marginal families but it is also considerably under the “natural” size in

the uncontrolled scenario. In turn, for increasing costs, Y falls below X, and even below

the natural size at 1.

In summary, the higher the costs the higher X, and the lower Y and u.

Flight coefficient β

The following paragraph presents a bifurcation analysis for the flight coefficient β. The

corresponding canonical system serves as basis for the numerical computations. It is given
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Figure 5.8: Program cost coefficient c on different intervals. X(c)
(black), Y (c) (gray), u(c) (dotdashed). Top left panel : For low costs, X
is below its natural size according to normal circumstances (=satura-
tion level), while the level of poor people is considerably high. Top right

panel : For a cost coefficient between 1 and 2 both the level of middle-
class people as well as the level of poor families exceeds the saturation
level. X exceeds Y at c = 1.62.
Bottom left panel : The level of optimal control decreases significantly.
Bottom right panel : The higher the costs, the smaller the marginal ef-
fects on the control term.
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by:
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The analysis reveals a non-monotonic dependence of X on β, which is depicted in

Figure 5.9. For every value of β, the level of middle-class people is above the saturation

level. The minimum of X is at β ∼= 0.9. Y (β) is almost a linearly decreasing function.

It even falls below the saturation level. Also the control is a monotonously decreasing

function.

It is of particular interest to compare two cases for two different values of β while
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Figure 5.9: Flight coefficient β. X(β) (black), Y (β) (gray), u(β) (dot-
dashed). Left panel : non-monotonicity of X. X is all along above its
saturation level. Right panel : X is non-monotonic, Y is almost linearly
decreasing, and the control is decreasing, too.

keeping the middle-class families X at the same level, see Figure 5.10. In case of a very

low level of β as well as for a very high one, the number of middle-class families is high.

That is a very interesting result, which may best be explained by the corresponding im-

pact on the optimal control u. It makes sense that the optimal level of the control is

decreasing with the flight coefficient, which results in a decreasing level of Y . Obviously,
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when β is very small, the middle-class population can grow best. The worst case in terms

of X occurs at some intermediate level of β, while for even higher values of β the assimi-

lation seems to win over the flight, in particular because control is more moderately used

and Y becomes relatively smaller.
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Figure 5.10: Non-monotonic dependence of X on β. X(0.374) =
X(1.546) = 1.06.

The sequence of the phase portraits beginning in Figure 5.11 and ending in Figure 5.16

describes the dynamical change of the equilibrium and the boundary curve by considering

some special values of β. Looking at the phase portraits, it is obvious that by increasing

the flight coefficient, the region with zero control expands significantly.
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Figure 5.11: Left maximum equilibrium level of X for β = 0.
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Figure 5.12: Equilibrium level of X at 1.06 for β = 0.376 (cf. Fig-
ure 5.15).
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Figure 5.13: Base case.
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Figure 5.14: Minimum equilibrium level of X for β = 0.899.
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Figure 5.15: Equilibrium level of X at 1.06 for β = 1.544 (cf. Fig-
ure 5.12).
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Figure 5.16: Right maximum equilibrium level of X for β = 2.
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Assimilation coefficient γ

In this subsection we investigate the impact of the assimilation coefficient on the equi-

librium levels. It is not surprising that Y (γ) is a decreasing function. The higher the

assimilation, the lower the level of poor people. The correlation between γ and Y is al-

most linear. If γ is close to zero, the level of middle-class people is below the saturation

size. Remarkably, the control u increases rather moderately with σ. It means the control

is does not so much depend on the extent of the assimilation of poor people. From an

economic point of view, this is an interesting fining.
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Figure 5.17: Assimilation coefficient γ. X(γ) (black), Y (γ) (gray), u(γ)
(dotdashed). Left panel : For very low level the assimilation coefficient
the level of poor families exceeds the level of middle-class people. Right

panel : X(γ) is increasing, Y (γ) is decreasing, and u(γ) is increasing.

Exponent e in the social advancement term

If the exponent in the social advancement term is equal to zero, the advancement term

becomes γY (t), that is the maximal extent of the social advancement. For all other

positive exponents, the advancement term is smaller. Therefore, for rising e it is optimal

to reduce the control while the level of poor people increases and the number of middle-

class people decreases. See Figure 5.18.

Objective function coefficient ρX

The following analysis considers the objective function coefficient on X, ρX (see Fig-

ures 5.19 and 5.20). Not surprisingly, X(ρX) is increasing and Y (ρX) is decreasing. The

influence of changing ρX on X is obviously inverse to the influence on Y . For very little

ρX , Y exceeds X. This is the case when the social benefit is more or less independent of

middle-class residents, which most likely would be an unrealistic assumption, interpreting

ρX as taxa paid by middle-class people.
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Figure 5.18: Exponent in the social advancement term. X(e) (black),
Y (e) (gray), u(e) (dotdashed). Left panel : For a sufficiently high ex-
ponent e Y exceeds X. For a value close to zero, the poor population
is under its saturation level. Right panel : X(e) is decreasing, Y (e) is
increasing, and u(e) is decreasing.

Obviously, u(ρX) is decreasing for every value of ρX . More precisely, for ρX greater

than approx. 0.1, the optimal level of u in equilibrium is even zero. To find out what
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Figure 5.19: Objective function coefficient ρX . X(ρX) (black), u(ρX)
(gray), u(ρX) (dotdashed). Left panel : For values of ρX greater than
approx. 0.1, it is optimal not to place poor people in the neighborhood.
Right panel : X(ρX) is increasing, Y (ρX) and u(ρX) are decreasing.

happens for values of ρX close to zero, consider Figure 5.21.
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Figure 5.20: Objective function coefficient ρX in the state-control
space. X(ρX) (black), Y (ρX) (gray). The strongest effect of ρX on
the levels of middle-class families and poor people happens on an in-
terval between zero and approx. 0.1.
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Figure 5.21: Objective function coefficient ρX , zoom. X(ρX) (black),
u(ρX) (gray), Y (ρX) (dotdashed). Left panel : At the very beginning of
the interval, X becomes greater than Y . Right panel : u(ρX) decreases
rapidly on the very first section of the interval.
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Objective function coefficient ρY

Figures 5.22 and 5.23 depict the bifurcation diagrams for the objective function coefficient

on Y , ρY . Interpreting ρY as a per capita benefit from poor families, it is obvious that

with increasing ρY the number of poor families and the control value increase, which is

accompanied by a decreasing level of middle-class families. To get a better picture of the

dependence of the equilibrium values on ρY close to zero, see Figure 5.24. It is highly

interesting that both u(ρY ) and Y (ρY ) initially increase significantly, but then saturate

quickly at a level of ρY at approximately 0.2
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Figure 5.22: Objective function coefficient ρY . X(ρY ) (black), Y (ρY )
(gray), u(ρY ) (dotdashed). Left panel : At the very beginning of the
interval, Y surpasses X. Right panel : u(ρX) increases rapidly on the
very first section of the interval, but then saturates quickly.

Carrying capacity d

Next, a short consideration on the carrying capacity of Y , d, is provided (see Figure 5.25.

d denoting the carrying capacity of Y , it is not surprising that by increasing d, Y as well

increases. The correlation between d and Y for d greater than 1 is almost linear which is

not surprising nether. However, for d between 0 and 1, Y (d) is convex. Moreover, even

when the carrying capacity of Y is zero, the equilibrium level of poor people is above 0.3,

which is due to rather high levels of the control.Interestingly, X is also increasing, albeit

moderately. Moreover, u(d) is concave-convex, but practically decreasing.
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Figure 5.23: Objective function coefficient ρY in the state-control space.
X(ρY ) (black), u(ρY ) (gray). The effect of changing ρY is the opposite
of the effect of changing ρX . The greatest effect of ρY on the level of
middle-class families and on the level of poor people happens on an
interval between zero and approx. 0.2.
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Figure 5.24: Objective function coefficient ρY , zoom. X(ρY ) (black),
Y (ρY ) (gray), u(ρY ) (dotdashed).
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Figure 5.25: Carrying capacity d. X(d) (black), Y (d) (gray), Y (d) (dot-
dashed). Left panel : The level of X(d) is slightly increasing but very
close to the saturation level. Y is almost proportional to d, except
for small values of d, where rather high levels of control compensate
for the low saturation level of Y . Right panel : X(d) increases slightly,
Y (d) increases rapidly, and u(d) shows a non-monotonic behavior for
small d but otherwise decreases.

Social integration coefficient

This paragraph describes the bifurcation diagram for the social integration coefficient

symbolized by k, as depicted in Figure 5.26. In general, the impact of the social integration

coefficient on the system is very moderate in absolute values. However, the influence is

as expected, i.e., X(k) is slightly increasing and Y (k) is slightly decreasing. The level

of middle-class people slightly exceeds the natural size. Notably is only the phenomenon

that for high value of k Y falls under its optimal size. Finally, also the control u increases

very moderately.

Weight σ on objective function control terms

This paragraph gives a short consideration on the weight on the objective function control

terms, σ, (see Figures 5.27 and 5.28).

The values of σ for which X, Y , and u are calculated are chosen to be strictly positive.

For the hairline case σ = 0, the effect of the control on the objective function is eliminated

and our model becomes linear in the control.

This case has to be analyzed individually, which is not considered here.

Our analysis shows that for the chosen set of parameter values, σ has almost no impact

on the equilibrium levels of u, X, and Y .
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Figure 5.26: Social integration coefficient k. X(k) (black), Y (k) (gray),
Y (k) (dotdashed). Left panel : X(k) is above its saturation level and
increasing on the whole interval displayes, while Y (k) is decreasing
and eventually falls below its carrying capacity. Right panel : X(k) is
increasing, Y (k) is decreasing, and u(k) is increasing as well.
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Figure 5.27: Weight σ on objective function control terms. X(σ)
(black), Y (σ) (gray), Y (σ) (dotdashed). Left panel : A change of σ

only has an effect at the very beginning of the interval, elsewhere it
has no influence. Both X and Y are above their saturation level. Right

panel : X(σ) is increasing, Y (σ) is decreasing, and u(d) is decreasing.
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Figure 5.28: Weight σ on objective function control terms in the state-
control space. σ(X) (black), σ(Y ) (gray). The strongest effect of σ
both on X and on Y is to be found for low levels of σ.

Summary

Summing up the bifurcation analysis for the parameters, some interesting observations

can be made.

Against expectations, the discount rate r, i.e., the valuation of today’s well-being ver-

sus well-being in the future, has almost no influence on the optimal policy, similarly to

the weight σ on the objective function control terms, which hardly effects the levels of

middle-class people and the level of poor families. On the other hand, different levels of

the program cost coefficient cause crucial variations of the equilibrium values. Remarkable

is also the non-monotonic case occurring for the level of middle-class by varying the flight

coefficient β. Considering the cases of: growth rates (a and b) equal to zero; no cost (c);

no assimilation (γ); and no weight (σ) on the objective function control terms, exhibits

non-admissibility, which causes numerical instabilities but is not of practical relevance.

Finally, Table 5.1 summarizes the slopes of the equilibrium values of X, Y , and u as

to be found in the bifurcation diagrams displayed above.
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Table 5.1: Slopes of equilibria values of X, Y , and u as functions of the
parameters.

Parameter X Y u

r ր ց ց

a ց ր ր

b ր ց ց

c ր ց ց

β ցր ց ց

γ ր ց ր

e ց ր ց

ρX ր ց ց

ρY ց ր ր

d ր ր րց

k ր ց ր

σ ր ց ց

The following subsection discusses the issue of indifference points by analyzing the

underlying model for a special set of parameters. As the analysis was carried out again

by OCMat toolbox, the way of computing indifference points with the toolbox will as well

be subject of the following description.
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5.4 Indifference points

Multiplicity means that for a given initial state there exist multiple optimal solutions. The

set of initial points where the decision-maker is indifferent about which optimal solution

to choose are called points of indifference. Note that indifference points are also denoted

as Skiba points or DNS(S) points in the related literature. At such a point, at least two

different optimal policies exist. However, only a small movement away from such an indif-

ference point provides a unique optimal path (see Grass et al., 2008, Chap. 5). Summing

up, the main properties that an indifference point has to satisfy are multiplicity and sepa-

rability. In contrast, so-called “weak” Skiba points only satisfy the property of separability.

In what follows, a case of indifference will be presented. Note that for this analysis the

set of parameters are specified as summarized in Table 5.2 (cf. Grass and Tragler, 2010,

Sec. 4.1). Table 5.3 highlights those parameters that differ from the base case. Here

Table 5.2: Parameter set exhibiting indifference points.

Parameter Value Description
r 1 discount rate
ρX 0 objective function coefficient on X

ρY 2 objective function coefficient on Y

σ 1 weight on objective function control terms
c 1 program cost coefficient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
β 0.5 flight coefficient
γ 0.5 assimilation coefficient
k 1 social integration coefficient
e 1 exponent in the social advancement term

Table 5.3: Comparison of parameter values on base case vs. indifference
case.

Modified parameter Base case value Indifference case value
r 0.05 1
ρX 0.02 0
ρY 0.01 2
σ 0.01 1
c 2 1
γ 0.45 0.5

we assume that the discount rate is abnormally high. Furthermore, only poor families

are assumed to contribute to the social benefits, which means that the model ignores the

importance of positive social effects caused by middle-class people such as paying taxes.
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However, the investigation of such a case gives interesting methodological insight into the

application of optimal control theory.

Figure 5.29 depicts the indifference curve in the state space together with some tra-

jectories, which point out the meaning of indifference and also characterize the flow of

the optimal vector field. It also shows the boundary curve with a trajectory starting in

an area with u = 0. The indifference curve separates two equilibria with a similar level of

poor families but a low versus high level of middle-class people, respectively. Starting at

any point of the indifference curve, the decision-maker has two options, i.e., choosing the

left or the right solution. Given the vertical shape of the indifference curve, the long-run

outcome primarily depends on the initial value of X.

In both steady states, Y is larger than its carrying capacity, which is not surprising
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Figure 5.29: Indifference curve. The phase portrait of the indifference
case includes both equilibria (dots), some characteristic trajectories
(dark curves), the boundary curve (dotted), the continuation of a path
in a non-admissible area (dashed), and the indifference curve (dot-
dashed).

as only the poor citizens contribute to the objective function, i.e., the government does

not benefit directly from middle-class families. In the left case, the level of X is very low.

Therefore, the social advancement described by
(

kX(t)
kX(t)+Y (t)

)e

is as well on a sufficiently

low level for Y not to shrink too much due to social integration (Note, that the whole social

advancement term is given by γY (t)
(

kX(t)
kX(t)+Y (t)

)e

.), which would be counter-productive

in the given parametrization (ρX = 0).
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Table 5.4: Equilibria in the case of indifference.

left steady state right steady state
X 0.1616 0.9374
Y 1.2461 1.2066
λ1 0.2636 −0.031
λ2 0.5016 0.5092

Figure 5.30 enables an interesting observation considering the optimal levels of the
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Figure 5.30: Indifference curve 3D.

Fig. 5.30 The phase portrait is a 3D illustration of Fig. 5.29 containing both equilibria
(dots), some characteristic trajectories (dark curves), the boundary curve (dotted),
the continuation of a path in a non-admissible area (dashed) and two branches of
the indifference curve (gray) correspond to the two different initial control values,
when starting on the indifference curve and converging to either of two equilibria.
Converging to the left equilibrium requires more control than converging to the right
equilibrium.

control on the indifference curve. The two gray branches of the indifference curve corre-

spond to the two different initial control values, when starting on the indifference curve

and converging to either of the two equilibria. It is obvious that converging to the left

equilibrium requires more control than converging to the right equilibrium. The left equi-

librium has a very low level of middle-class families but the level of poor families is higher

than in the right equilibrium. In the right equilibrium, the level of middle-class people

exceeds the level in the left steady state about six times, but it is still under its own car-
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rying capacity. In other words, the optimal trade-off for the government when converging

to the left equilibrium is to apply an intensive control, that is to invest, and then to profit

from the higher level of poor families. On the other hand, in the right equilibrium the

decision maker profits from the higher level of middle-class people by using a lower control.

Summing up this case, the indifference curve separates two steady states in which the

neighborhood is dominated by poor families. One of these states reflects a “ghettoing”

scenario as showing an underpopulation of middle-class. For further information read on

(Grass and Tragler, 2010, Chap. 4.1).

The following passage describes how to actually calculate indifference curves with OCMat.

After calculating the two equilibria, the user should calculate the corresponding stable

paths18 by using

initStruct=initoccont(’extremal’,m, ’initpoint’,1:2,ocEP{1}.dynVar(1:2,1),

ocEP{2},’IntegrationTime’,500);

opt=setocoptions(’OCCONT’,’InitStepWidth’,0.01/5^4 , ’MaxStepWidth’ ,0.01,

’MeanIteration’,50,’OC’,’BVPSolver’,’bvp5c’);19

[sol soln]=occont(m,initStruct,opt);

m=store(m)20

initStruct=initoccont(’extremal’,m,’initpoint’,1:2,ocEP{2}.dynVar(1:2,1),

ocEP{1},’IntegrationTime’,500);

[sol soln]=occont(m,initStruct,opt);

m=store(m)

and the corresponding Hamiltonians of the stable paths, followed by the intersection

of the Hamiltonians by using

dnss=finddnss(m,1,2)

dnss = 0.2282

1.2427

whereby 1,2 symbolizes the first and the second so-called slice manifolds. For the in-

tersection of the Hamiltonians it is assumed that there is an overlapping region on the

stable paths for which both solutions exist (see Figure 5.31). The Hamiltonian evaluated

18Note, if one of the continuation processes between the equilibria is successful, the corresponding

path is superior and no asymptotic indifference point exists.
19Notice the recommended options.
20Never forget to store after the continuation process.
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along the slice manifold returns the objective function value of the corresponding solution

(up to the factor 1
r
).

The set of commands
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Figure 5.31: Intersection of the Hamiltonians.

clf,type=’hamiltonian’;coordinate=1;statecoordinate1=1;statecoordinate2=2;

plot3phaseocresult(m,type,statecoordinate1,statecoordinate2,coordinate,

’only’,{’SliceManifold’},’onlyindex’,{[]},’continuous’,’off’,’limitset’,’off’,

’Color’, [0.4 0.4 0.4]),hold on;

plot3phaseocresult(m,type,statecoordinate1,statecoordinate2,coordinate,

’only’,{’Equilibrium’},’onlyindex’,{[]},’limitset’, ’on’,’Marker’,’.’,

’MarkerSize’,16), hold off,figure(gcf)

enables a 3D plot of the slice manifold together with the equilibria.

Thereafter, the user can calculate the stable paths starting at the intersection point by

using:

ocEx=extremalsol(m);

initStruct=initoccont(’extremal’,m, ’initpoint’,1:2,dnss,ocEx{1});

[sol soln]=occont(m,initStruct,opt);

m=store(m);
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initStruct=initoccont(’extremal’,m, ’initpoint’,1:2,dnss,ocEx{2});

[sol soln]=occont(m,initStruct,opt);

ocEx=extremalsol(m);

and generate the “dnss object” by calling

ocD=[ocEx{3} ocEx{4}];

For the purpose of calculating the indifference curve, the user has to initialize the BVP

knowing an approximate initial value from the previous Hamiltonian intersection proce-

dure.

initStruct=initoccont(’dnss’,m, ’initpoint’,2,0, ocD); 21

[sol soln]=occont(m,initStruct,opt); soln m=store(m)

initStruct=initoccont(’dnss’,m, ’initpoint’,2,3, ocD);

[sol soln]=occont(m,initStruct,opt); soln m=store(m)

The signal word for the calculation of the indifference curve is dnss. In the under-

lying case, 2 determines the coordinate to be fixed (COOR), while 0 and 3 provide the

values of the fixed coordinate (VAL). ocD is the initial function given by a vector gener-

ated above. To plot other characterizing trajectories the user has to re-call the previous

initialization and vary the value of the fixed coordinate. For more information read on

(Grass, 2010-2011, Lecture 4).

After this general analysis of a spacial case of indifference the next interesting question

is, if there exist more moderate sets of parameters, which also reveal an indifference case.

In the next section such a case will be presented.

5.5 From base case to case of indifference

To illustrate a case of indifference we used a somewhat unrealistic parametrization, which

deviates significantly from the base case (see Table 5.3). In particular, the discount rate

r differs from its base case value by the factor of 20, σ is multiplied by the factor of 100,

the objective function coefficient on X, ρX , is even set to zero, and the objective function

coefficient on Y , ρY , is extremely high. Moreover, the cost coefficient is halved in the case

of indifference compared to the base case, and the assimilation coefficient γ is increased by

more than 10%. The purpose of this section is to find a more moderate parametrization,

21The general command is initStruct=initoccont(’dnss’,m,’initpoint’,COOR,VAL,INITSOL);
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for which such a complex and mathematically interesting behavior occurs.

A series of analyses on the system parameters summarized in Table 5.5 reveals parameter

settings which exhibit indifference points, but are way closer to base case parameters.

Based on the indifference case from Section 5.4 but doubling the cost coefficient c and

reducing the assimilation coefficient γ to 0.45, i.e., resetting them to base case values, the

new calculation shows another indifference case. As expected, by rising costs and lowering

assimilation in the right equilibrium we find a higher optimal level of middle class families,

while the level of poor people becomes lower. However, in the left equilibrium the level of

middle class people as well as the level of poor families are lower than in the indifference

case discussed in Section 5.4.

Next, the weight on the objective function control terms, σ, will be changed addition-

ally, i.e., a reset to σ = 0.01, which means a division by one hundred. As expected, it

influences the behavior of the system crucially and results in a single solution with a very

low optimal level of middle-class people and an extremely high level of poor people.

Obviously, it is of particular interest to find out, what happens to the equilibria on

the way from σ = 1 (case of indifference) to σ = 0.01 (unique optimal solution). For

σ = 1, the canonical system has three equilibria (see Table 5.5 and Figure 5.32). Two

of them have a two-dimensional stable manifold22, i.e., (X,Y ) = (0.0806, 1.1443) and

(X,Y ) = (1.0175, 1.0762), while the third equilibrium i.e., (X,Y ) = (0.3282, 1.3663)

has only a one-dimensional stable manifold, which is therefore of no further interest

regarding the optimal system. For σ = 0.01, there is only one equilibrium, which is

(X,Y ) = (0.2855, 1.3432). We hence expect that somewhere on the way from σ = 1 to

σ = 0.01 an equilibrium with one-dimensional stable manifold collides with an equilib-

rium with two-dimensional stable manifold to annihilate each other, i.e., a saddle-node-

bifurcation23 occurs. This is indeed the case, as illustrated in Figure 5.32.

Table 5.5

σ X Y No. of Reξ < 0
1 0.0806 1.1443 2
1 0.3282 1.3663 1
1 1.0175 1.0762 2
0.01 0.2855 1.3432 2

Except for the base case scenario all the other cases described above address the eco-

22These two equilibria cause an indifference case, i.e., both of them are locally optimal and there are

points for which the decision-maker is indifferent, which one to choose.
23Another name for saddle-node-bifurcations is blue sky bifurcation.
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Figure 5.32: Saddle-Node-Bifurcation. X(σ) (black), Y (σ) (gray).
Considering σ = 1 the path starting at (X,Y ) = (0.0806, 1.1443) is a
line, the path starting at (X,Y ) = (0.3282, 1.3663) is dashed, and the
path starting at (X,Y ) = (1.0175, 1.0762) is dotdashed. By varying σ

from 1 to 0.01 the dynamics of the canonical system change from three
equilibria to only one equilibrium. A local bifurcation occurs in which
an equilibrium with one-dimensional stable manifold collides with an
equilibrium with two-dimensional stable manifold.

nomically and politically unrealistic situation, in which the decision-maker does not value

the presence of middle-class families, i.e., the relative benefit per unit of time of X is

equal to zero, ρX = 0. For the purpose of realistic applicability of the underlaying model

it is necessary to consider a positive objective function coefficient on X. For instance,

ρX = 0.001 and ρY = 0.02 describes a scenario, in which the presence of middle-class

people is regarded, albeit to a very modest extent. More precisely the social benefit de-

rived from the presence of poor people is twice as high as in the base case and 20 times as

high as the benefit from middle-class families. The analysis reveals again an indifference

case. A sensitivity analysis on ρX shows that even the smallest increase on ρX eliminates

indifference. However, it is possible to reduce the objective function coefficient on Y to

ρY = 0.012 without changing the dynamic behavior of the system.

It is further interesting to observe the dynamic behavior of the system by equalizing

ρX and ρY , where a unique solution occurs. Comparing the results of the scenario with

σ = 0.01, ρY = 0.02, ρX = 0.001, and r = 1 with the same scenario only varying the

discount rate r, which means resetting it to its base case value r = 0.05, two similar indif-

ference cases appear. As already noted above, the effect of varying of the time discount
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rate r is almost negligible.

The last column of the Table 5.6 shows the most moderate parametrization found so

far, which reveals an indifference case. The only remaining crucial difference is probably

the low value of ρX .
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Figure 5.33: Indifference Case with moderate parametrization. The
phase portrait of the indifference case includes both equilibria (dots),
some characteristic trajectories (dark curves), the boundary curve
(dotted), the continuation of a path in a non-admissible area (dashed),
and the indifference curve (dotdashed). The area with zero control is
comparatively small.

Summing up the cases of indifference, the calculations reveal optimal population mixes

dominated by poor families, which may even be underpopulated with respect to middle-

class families (see left equilibria), i.e., “ghettoing” scenarios. As in the base case, no

control should be applied for low enough numbers of middle-class people, but the region

with zero control is significantly smaller, see Figure 5.33.

The main result of this section is the revelation of a parameter set which is most similar

to the base case, differing only in the two parameters ρX and ρY but exhibiting a case

of indifference. The main difference is the interchanging of the emphasis on the benefit

derived directly from the presence of middle-class people and the indirect benefit caused

by poor citizens settled down in the middle-class area.
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Table 5.6: From base case to case of indifference.

Parameter Base Case Different Scenarios
r 0.05 1 1 1 1 1 0.05 0.05
ρX 0.02 0 0 0 0 0.001 0.001 0.001
ρY 0.01 2 2 2 0.02 0.02 0.02 0.012
σ 0.01 1 1 0.01 0.01 0.01 0.01 0.01
c 2 1 2 2 2 2 2 2
γ 0.45 0.5 0.45 0.45 0.45 0.45 0.45 0.45
a 2 2 2 2 2 2 2 2
b 2 2 2 2 2 2 2 2
d 1 1 1 1 1 1 1 1
β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
k 1 1 1 1 1 1 1 1
e 1 1 1 1 1 1 1 1
Coordinates Equilibria
X1 1.0485 0.1616 0.0806 0.2855 0.0806 0.0833 0.0949 0.0795
Y 1 1.0141 1.2461 1.1443 1.3432 1.1443 1.1482 1.1645 1.1427
λ1
1 0.0091 0.2636 0.2051 0.8551 0.0021 0.0011 0.0009 0.0004

λ1
2 0.005 0.5016 0.5589 0.4586 0.0056 0.0056 0.0074 0.0046

X2 0.9374 1.0175 1.0175 1.0184 1.0063 1.0239
Y 2 1.2066 1.0762 1.0762 1.0746 1.0961 1.0644
λ2
1 −0.031 −0.024 −0.0002 0.0001 0.00002 0.0002

λ2
2 0.5092 0.5856 0.0059 0.0059 0.0079 0.00497
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The following chapter provides a summary of the results presented in this thesis and

discusses practical policy implications.
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CHAPTER 6
Summary and Policy Conclusions

The main purpose of the present work was to determine how a social planner can optimally

integrate a stream of poor families into a middle-class area without evoking middle-class

flight. We found probably all possible scenarios, in which either a low level of control,

no control at all, or a high governmental intervention is optimal. The highest level of

social intervention is occurs for a large objective function coefficient on Y , ρY , i.e. by a

relatively high direct valuation of the presence of marginal families. Likewise, it is not

surprising that for low control costs, c, the optimal trade-off is to invest a lot. Very inter-

esting is the result, where even for extremely high costs a certain level of control is optimal.

On the other hand, if the flight coefficient rate β is very high, the strategy of no in-

tervention is optimal, i.e., not to place poor families into the concerned area. Also for

a small growth rate of the middle-class population it is advisable to reduce the control

considerably.

The parameter ρX , which describes how the decision-maker values the presence of es-

tablished middle-class families, influences the system dynamics considerably. If the social

planner assumes a big economic value from middle-class people, the integration of poor

families goes down.

The positive effect of the influx of marginalized people in a settled community stems

from the advancement due to social assimilation, as described by the term

γY (t)

(

kX(t)

kX(t) + Y (t)

)e

.

The assimilation coefficient γ reflects part of the rate at which families initially placed

in a middle-class neighborhood established middle-class status, i.e., the “success” rate for

people who participate in housing mobility programs. That such an assimilation can oc-

cur is an underlying premise of our model.
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If the level of assimilation is very low, the optimal policy is not to invest too much.

In such a case, the optimal level of middle-class families is under its saturation level

(= 1), Y is above it. Considering a very high assimilation coefficient, X exceeds 1 while

Y falls below its saturation level, thus a substantial control is advisable. Varying the

assimilation coefficient γ, no tipping behavior occurs.

Surprisingly, the effect of a change in the social integration coefficient k on the optimal

control is very low, i.e., the level of optimal control is almost constant for a wide range of k.

Considering a quadratic social advancement term (i.e., e = 2 unlike the base case e = 1),

the optimal level of poor families exceeds the optimal level of middle-class people, and

the optimal control is about 25% lower than in the base case.

Naturally, the time discount rate r is a very crucial quantity regarding the system dy-

namics, describing the measure of focusing on the future versus focusing on the presence.

Against all expectations, changing r has hardly any effect on the unique equilibrium of

the canonical system when considering the base case parameter set presuming ρX > ρY .

Similarly modest is the impact of σ, the weight on objective function control terms, on

the solution of the canonical system.

The own “natural” dynamics of the populations middle-class residents and poor fami-

lies are described by the logistic growth rates a and b, respectively. Their impact on the

optimal solution is according to expectations. The higher the growth rate of the middle-

class population, the higher the optimal control. On the opposite, the higher the growth

rate of poor people, the less it is optimal to integrate poor families into the middle-class

neighborhood.

The valuation of the presence of middle-class people versus on the presence of poor peo-

ple is one of the main driving factors of the model. The fundamental analysis took place

under the assumption ρX > ρY . In the base case, ρX is twice as big as ρY . Omitting

this assumption reveals interesting results. If the decision maker is primarily concerned

about marginalized families, the occurrence of multiplicity for some initial states is pos-

sible. For these initial states, which constitute the indifference curve, there are multiple

optimal solutions, thus the decision-maker is indifferent about which to choose. One an-

alyzed indifference case discussed above, for which ρX = 0.001 and ρY = 0.012, reveals

two locally optimal population mixes, both of which are dominated by poor families. One

of the optimal equilibria even exhibits an underpopulation of middle-class. The almost

vertical indifference curve describes initial points for which the level of middle-class people

is about 80% under its saturation level. In other words, in such a “ghettoing” scenario
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turns out to be optimal, which we would expect to be non-diserable in the real world.
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