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Abstract

Modeling and reconstruction of urban environments is currently the subject of intensive
research. There is a wide range of possible applications, including virtual environments
like cyber-tourism, computer games, and the entertainment industries in general, as well
as urban planning and architecture, security planning and training, traffic simulation, driv-
ing guidance and telecommunications, to name but a few. The research directions are
spread across the disciplines of computer vision, computer graphics, image processing,
photogrammetry and remote sensing, as well as architecture and the geosciences. Recon-
struction is a complex problem and requires an entire pipeline of different tasks.

In this thesis we focus on processing of images of façades which is one specific subarea
of urban reconstruction. The goal of our research is to provide novel algorithmic solutions
for problems in façade imagery processing. In particular, the contribution of this thesis is
the following:

First, we introduce a system for generation of approximate orthogonal façade images. The
method is a combination of automatic and interactive tools in order to provide a convenient
way to generate high-quality results.

The second problem addressed in this thesis is façade image segmentation. In particular,
usually by segmentation we mean the subdivision of the façade into windows and other
architectural elements. We address this topic with two different algorithms for detection of
grids over the façade image.

Finally, we introduce one more façade processing algorithm, this time with the goal to
improve the quality of the façade appearance. The algorithm propagates visual information
across the image in order to remove potential obstacles and occluding objects.

The output is intended as source for textures in urban reconstruction projects. The con-
struction of large three-dimensional urban environments itself is beyond the scope of this
thesis. However, we propose a suite of tools together with mathematical foundations that
contribute to the state-of-the-art and provide helpful building blocks important for large
scale urban reconstruction projects.





Kurzfassung

Modellierung und Rekonstruktion von städtischen Gebieten ist derzeit Gegenstand intensi-
ver Forschung. Der Hauptgrund dieser Anstrengung ist das breite Spektrum möglicher An-
wendungen von detaillierten Computermodellen. Beispiele davon sind virtuelle Umgebun-
gen für Cyber-Tourismus, Computerspiele, und die Unterhaltungsindustrie im Allgemei-
nen, sowie Stadtplanung und Architektur, Sicherheitsplanung und Ausbildung, Verkehrssi-
mulation, Navigation und Telekommunikation. Auch die Forschungsrichtungen sind über
verschiedene Gebiete gestreut, wie Computer Vision, Computergrafik, Bildverarbeitung,
Photogrammmetrie und Fernerkundung sowie Architektur und Geowissenschaften. Rekon-
struktion ist ein komplexes Problem und es erfordert eine ganze Palette von verschiedenen
Aufgaben.

In dieser Dissertation konzentrieren wir uns auf die Verarbeitung von Bildern von Fas-
saden und damit auf einen bestimmten Teilbereich der maschinellen Stadtrekonstruktion.
Das Ziel unserer Forschung ist es neue algorithmische Lösungen für spezielle Probleme in
Fassadebildverarbeitung zu entwickeln. Der Beitrag dieser Arbeit ist der folgende:

Zuerst stellen wir ein System zur Erzeugung von annähernd orthogonalen Ansichten von
Fassaden vor. Diese Methode ist eine Kombination aus automatischen und interaktiven
Werkzeugen und bietet eine bequeme Möglichkeit qualitativ hochwertige Ergebnisse zu
generieren.

Das zweite Problem, welches in dieser Arbeit behandelt wird, ist Fassadensegmentierung.
In der Regel unter Segmentierung versteht man die Unterteilung der Fassade in Fenster
und andere architektonische Elemente. Wir sprechen dieses Thema mit zwei verschiedenen
Algorithmen zur Erkennung von regulären Strukturen in Fassadenbildern an.

Schließlich stellen wir einen Fassadenbild-Verbesserungsalgorithmus vor, mit dem Ziel,
die Qualität des Fassaden-Aussehens zu verbessern. Der Algorithmus propagiert visuelle
Information über das Bild, um mögliche Hindernisse und verdeckende Objekte zu entfer-
nen.

Die Ausgabe unserer Algorithmen ist als Quelle für Texturen in Stadtrekonstruktionspro-
jekten bestimmt. Die Entwicklung von großen dreidimensionalen urbanen Umgebungen
selbst sprengt den Rahmen dieser Arbeit. Allerdings erarbeiten wir eine Sammlung von
Werkzeugen zusammen mit ihren mathematischen Grundlagen, die zum Stand der Wis-
senschaft beitragen und als Bausteine in komplexen Rekonstruktionsprojekten zum Tragen
kommen können.
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1. Introduction

Cities are the centers of our world. They are fascinating, attracting, inspiring, and even
forwarding the mankind since all times. They have attracted a lot of attention in literature
and science and have been investigated from many points of view in a broad spectrum of
disciplines: from social over cultural, economical to technological. In this dissertation we
elaborate on cities as well – we look at them from the computer science point of view.

We are interested in virtual urban worlds whose generation has become affordable in re-
cent time due to the enormous expansion of information technology in the last twenty
years. Nowadays, modeling and reconstruction of urban environments has become an esti-
mated multi-billion dollar industry and it is currently the subject of intensive research. The
reason of this effort is the wide range of possible applications, including cyber-tourism,
computer games, and the entertainment industries in general, all of which have recognized
the potential of virtual worlds. The generation of large urban environments has been a key
aspect of several recent movies and computer games, with modeling times reaching several
man years. Also, the digital maps industry has become ubiquitous and can be encountered
in many everyday usage items like mobile phones and cars. Other prominent examples are
the two versatile projects Google Earth and Microsoft Virtual Earth. From an economi-
cal standpoint there is an enormous benefit of being able to quickly generate high-quality
digital worlds in the growing virtual consumption market.

Besides entertainment-inspired applications, city planners, local governments, and scien-
tists are also using advanced three-dimensional simulation and visualization software to
plan and manage traffic, public transportation, telecommunication, water resources, and
green spaces. In addition, these stakeholders seek to better understand urban resiliency,
urban sprawl, impact of large urban projects (e.g. airports), and urban development. Typi-
cally, data acquisition is a significant obstacle to using the aforementioned simulations and
analyses. Furthermore, security training, emergency management, and civil protection and
disaster control as well as driving simulation can benefit from virtual urban worlds.

Urban modeling and reconstruction is also very suitable for archaeological research. The
challenge in archaeological modeling is to combine data acquired directly from building
remains with knowledge from diverse sources, such as books, old maps, and paintings.
Archaeologists can use this technology to reconstruct ancient environments by using the
acquired data as constraints while encoding other sources of information in the knowledge
database. Additionally, the generated models are suitable for education in architecture and
urban planning.
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Enabling the aforementioned goals implicitly involves a synergistic effort spanning mul-
tiple research fields, including computer graphics, image processing, computer vision,
pattern recognition, photogrammetry and remote sensing, computer aided design, geo-
sciences, and mobile-technology. Urban reconstruction is a massive and complex problem
requiring a large and diverse pipeline of tasks such as data acquisition, data modeling, 3d
reconstruction, geometry extraction and texture generation.

In this thesis, we seek to provide a computer graphics contribution to the interdisciplinary
field of reconstruction, modeling, and user interaction. In light of the ever vanishing bor-
ders between computer graphics, image processing and computer vision, we also span
multiple fields. However, we focus on methods related to image-based modeling using
images as the input source.

1.1. Challenges

The ultimate goal of most computer based reconstruction approaches is to provide as auto-
matic solutions as possible, but it is usually not feasible to reach fully automatic systems.
The related vision problems quickly result in huge optimization tasks, where global as well
as local, and top-down as well as bottom-up processes need to be considered. Especially
automatic recognition tasks are affected by these problems. This means that global pro-
cesses are based on local circumstances and processes, whose parameters often depend
on global estimates. This problem also appears in the top down-bottom up paradox: The
detection of regions of interest is both context-dependent (top down), since we expect a
well defined, underlying subject, and context free (bottom-up), since we do not know the
underlying subject and want to estimate the model from the data. This issue is generally
known as the “chicken or egg” dilemma.

There is no unique solution to this fundamental problem of automatic systems. Most so-
lutions try to find a balance between these constraints and are located somewhere between
them or try to combine two or more passes over the data (e.g., top-down and bottom-up
[HZ09]).

Often, an additional price to pay for automation is the loss of quality. From the point of
view of interactive computer graphics, the quality of solutions of pure computer vision al-
gorithms is quite low, while especially for high-quality productions like the movie industry,
the expected standard of the models is very high. In such situations the remedy is either
pure manual modeling or at least manual quality control over the data.

For these reasons many recent approaches employ compromise solutions that cast the prob-
lem in such a way that both the user and the machine can focus on tasks which are easy to
solve for each of them. Simple user interactions, which can be performed even by unskilled
users, often provide the quantum of knowledge that is needed to break out of the “chicken
or egg” dilemma.

2



1.2 Problem Statement

1.2. Problem Statement

The particular research problem which is the subject of this dissertation is the question of
how to optimally process the façade image in order to obtain maximum quality textures
for virtual city models. This research subject is inspired by problems that occur in practice
in the reconstruction of urban environments due to the limitations given during the data
acquisition process.

For example, in general it is usually not possible to obtain an approximated orthogonal
projective photo of a façade. Such image could be simulated by a frontal photography
taken with a telescope lens from a very wide distance. In reality, façades lie in streets
which are often narrow and such a photo cannot be shot because of other buildings present
in the neighborhood. Further, it is hardly possible to capture the entire façade with one
camera shot. One possible remedy is either a spherical (fish-eye) or a very wide angle lens
that covers a bigger viewport. Unfortunately, photos from such lenses usually suffer under
strong distortions. Another possibility is to take multiple camera shots and to combine
them into a single image. However, in any case post-processing is required in order to
generate the final façade image.

The second common obstacle, which occurs very frequently in urban imagery, is the prob-
lem of unwanted objects in front of the buildings, such as traffic lights, street signs, vehi-
cles, and pedestrians. In general it is not possible to recover the visual information that has
been missed through such an obstruction.

In order to solve these problems, we formulate a set of research questions which split the
subject into particular steps:

• How can we generate an optimal orthogonal view of a façade from a set of perspec-
tive photographs taken from the ground by a typical hand-held consumer camera?

• How can we generate an accurate, plausible tiling of an approximately orthogonal
façade such that repetitive elements can be determined? Further constrains are both
competitive speed and quality.

• How can we generate high-quality façade image that is free of obstacles and occlud-
ing objects from a single, approximately orthogonal façade image?

1.3. Contribution

The contribution of this thesis is a set of solutions which address the questions mentioned
in the previous section.

In Chapter 3 we propose a method to generate an approximate orthogonal façade texture
based on a set of perspective input photographs. Our approach is to sample a rectified
approximation over the façade-plane from the input sources. In order to avoid kinks and
seams which may remain on transitions between pixels from different source images we

3
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introduce post-processing steps, like color adjustment and gradient domain stitching by
solving a global Poisson integration. The output of this stage can serve as input for the
algorithms presented in Chapters 4 and 5.

One of the still challenging tasks in façade processing is the detection and segmentation
of details such as windows and ornaments. These are considered key elements of realistic
representations of urban environments. In this context, the windows of typical buildings
can be seen as patterns that occur multiple times within a rather regular arrangement. Con-
sidering a building’s façade on a frontal and orthogonal image, the search for the dominant
features can be restricted to only the axis-aligned horizontal and vertical directions.

In Chapter 4 we propose a method that handles precisely such façades and assumes that
there must be horizontal and vertical repetitions of similar patterns. Using a Monte Carlo
sampling approach, this method is able to segment repetitive patterns on orthogonal images
along the axes even if the pattern is partially occluded. Additionally, it is very fast and can
be used as a preprocessing step for finer segmentation stages. The output of this stage
served usually also as input to the image enhancements algorithm presented in Chapter 6.

In Chapter 5 we introduce the second novel, data driven method to infer distributions of
rectilinear grids over a simple, orthographic-rectified façade image. This approach is in-
spired by unsupervised learning methods like data clustering and matrix factorization. This
methods allows to segment façades in a global manner and to omit any local feature detec-
tion operations.

Finally we address the problem of removing unwanted image content in a single view or-
thographic façade image. We exploit the regular structure present in building façades that
can be detected, e.g., by the method proposed in Chapter 4. Guided by the detected sym-
metry prevalent in the image, we introduce a propagation process removes larger unwanted
image objects such as traffic lights, street signs, or cables as well as smaller noise, such as
reflections in the windows. This method is described in Chapter 6.

Contributing Scientific Publications

During the research on the topic of this thesis, we have published the following scientific
papers and reports [MWR∗09, MRM∗10, MLS∗10, Mus10]:

• Przemyslaw Musialski, Christian Luksch, Michael Schwärzler, Matthias Buchetics,
Stefan Maierhofer, and Werner Purgathofer. Interactive Multi-View Façade Image
Editing. In Vision, Modeling, Visualisation (VMV’10), 2010.

• Przemyslaw Musialski, Meinrad Recheis, Stefan Maierhofer, Peter Wonka, and
Werner Purgathofer. Tiling of Ortho-Rectified Façade Images. In Spring Con-
ference on Computer Graphics (SCCG’10), Budmerice, 2010.

• Przemyslaw Musialski, Peter Wonka, Meinrad Recheis, Stefan Maierhofer, and
Werner Purgathofer. Symmetry-Based Façade Repair. In Marcus A. Magnor,
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Bodo Rosenhahn, and Holger Theisel, editors, Vision, Modeling, Visualisation
(VMV’09), pages 3–10. DNB, 2009.

• Przemyslaw Musialski. Axis-Aligned Segmentation of Orthographic Façade Im-
ages. Technical Report Nr VRVIS-009-2010, VRVis Research Center, Vienna, June
2010.

Furthermore, during the research on the thesis, the author has contributed to a number of
other publications:

• Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor Completion
for Estimating Missing Values in Visual Data. In 2009 IEEE 12th International
Conference on Computer Vision (ICCV’09), Kyoto, Japan, 2009. IEEE.

• Matthias Baldauf and Przemyslaw Musialski. A Device-aware Spatial 3D Visu-
alization Platform for Mobile Urban Exploration. In The Fourth International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2010), Florence, Italy, 2010. IARIA.

• Matthias Baldauf, Peter Fröhlich, and Przemyslaw Musialski. A Lightweight 3D
Visualization Approach for Mobile City Exploration. In First International Work-
shop on Trends in Pervasive and Ubiquitous Geotechnology and Geoinformation
GIScience conference (TIPUGG’08), 2008.

• Matthias Baldauf, Peter Fröhlich, and Przemyslaw Musialski. Integrating User-
Generated Content and Pervasive Communications - WikiVienna: Community-
Based City Reconstruction. IEEE Pervasive Computing, 7(4):58–61, October
2008.

• Przemyslaw Musialski. Point Cloud to Model Registration. Technical Report Nr
VRVIS-009-2009, VRVis Research Center, Vienna, June 2009.

These papers are related to image processing [LMWY09], or to the topic of urban recon-
struction and rendering for mobile devices as the papers by Matthias Baldauf [BFM08a,
BFM08b, BM10]. Also a Technical Report about registration of point clouds to urban
models has been published by the author [Mus09]. An excerpt of this report is available in
Appendix B.
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2. Related Work

This chapter is intended to provide a comprehensive overview over the work done on
image-based urban modeling and reconstruction in recent years. While a considerable
body of work already exists, this topic is still under very active research. The area of
image-driven urban reconstruction spreads basically over three research communities:
computer graphics, computer vision and last but not least photogrammetry and remote
sensing. While the first two fields are clearly positioned in computer science and aim
mainly at computational methods for reconstruction (CV) and interactive modeling (CG),
photogrammetry developed a research strand on its own due to its roots in measuring and
documenting the world. We want to point out the main concepts of this wide-spread topic.

2.1. Overview

It is quite a difficult task to classify all the existing approaches. In this review, we try to
loosely order relevant papers from manual to automatic methods, but note that this is not
always possible. In Figure 2.1, we depict the main building blocks of the reconstruction
process. In this thesis, the term modeling is used for interactive methods, and the term
reconstruction for automatic ones.

We omit fully manual modeling, even if it is probably still the most widely applied form of
reconstruction in many architectural and engineering bureaus. From the scientific point of
view, the manual modeling pipeline is generally well researched. An interesting overview
of methods for the generation of polygonal 3d models from CAD-plans has been recently
presented by Yin et al. [YWR09].

In Section 2.2, we first review methods which aim at image-based façade processing such
as image stitching, panorama imaging or segmentation into elements such as doors, win-
dows, and other domain-specific features. We handle the façade topic explicitly and sub-
stantially because it is of particular importance for the algorithms presented in this thesis.

In Section 2.3, we introduce automatic sparse reconstruction systems, often using structure-
from-motion formulations. Such systems have reached a rather mature state in recent time
and often serve as preprocessing stages for many other methods since they provide quite
accurate camera parameters. Many methods, even the interactive ones, rely on this module
as a starting point for further computations. For this reason we introduce this approach
prior to any modeling or reconstruction solution.
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Figure 2.1.: Overview of image-based reconstruction approaches, from which we omit fully man-
ual methods like CAD-modeling. We report about interactive methods that utilize both user input
and automatic algorithms as well as about fully automatic methods. Note that this is a schematic
illustration and in practice many solutions cannot be classified strictly into a particular bin. Fur-
thermore, there might be more crossover connections between particular stages.

In Section 2.4, our survey addresses image-based interactive modeling approaches. Here
we present a variety of concepts borrowed from fully automatic algorithms and adapted for
quick interactive use.

In Section 2.5 we briefly introduce the methodology of procedural modeling that proved
in recent time to be the tool of choice for urban synthesis. Since we are interested in urban
reconstruction, we only touch this topic in order to provide a basis for the next section.

In Section 2.6, we describe the basic concepts of inverse procedural modeling which is
recently receiving significant attention due to its ability to compute a compact and editable
representation. We expect more methods based on this idea in the near future.

Further, for the purpose of the completeness of this survey, we also briefly mention the
approach of generative modeling in Section 2.7.

In Section 2.8, we focus on photogrammetric reconstruction, which covers another sig-
nificant body of research work from the computer vision community. However, for com-
pactness and since the focus of our work is image-based methods, we omit pure LIDAR
driven approaches, which nonetheless are of significant importance to the field.

Finally, in Section 2.9, we introduce the concepts of dense reconstruction based on plane
sweep and depth map fusion algorithms.

2.2. Façade Image Processing

The problem of processing of urban imagery for reconstruction purposes has been subject
of very active research in the recent two decades. Many different approaches for extraction
of façade texture, structure, façade elements and façade geometry have been proposed.
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Figure 2.2.: A multi-viewpoint panorama of a street in Antwerp composed from 107 photographs
taken about one meter apart with a hand-held camera. Figure courtesy of [AAC∗06].

Here we discuss façade texture generation as well as methods for façade segmentation
and window detection. We will review methods that cast the façade reconstruction as
an traditional image processing and pattern recognition problem or define it as a feature
detection challenge.

Recently there are novel methods that cast the problem as a global one and usually pro-
pose grammars in order to fit a top-down model. They provide (stochastic) optimization
solvers in order to derive the parameters of the model from the façade data. This kind of
segmentation algorithms is referred to as inverse procedural modeling and we review them
in detail in Section 2.6.

2.2.1. Panorama Imaging

Panoramas are traditionally generated for the purpose to picturise wide landscapes or sim-
ilar sights. In praxis, panoramas are composed out of several shots taken at approximately
the same location [Sze06].

For urban environments, often the composed image is generated along a path of cam-
era movement, referred to as strip panorama. The goal of those methods is to generate
views with more than one viewpoint in order to provide novel insights into the given data.
One such variant are pushbroom images, which are orthogonal along the horizontal axis
[GH97,SK03], and the similar x-slit images presented by Zomet et al. [ZFPW03]. Similar
approaches for generation of strip-panoramic images have been proposed also by Zheng
[Zhe03] and Roman et al. [RGL04]. Agarwala et al. [AAC∗06] aims at the creation of
long multi-view strip panoramas of street scenes, where each building is projected approx-
imately orthogonal on the proxy plane. Optimal source images for particular pixels are
chosen using a constrained MRF-optimization process. Similarly to the approach of Ro-
man et al. [RGL04], it is inspired by the artistic work of Michael Koller [Kol06]. While
our approach presented in Chapter 3 shares several ideas with these papers, our focus lies
on estimating an orthographic projection, and on the removal of all disturbing occluders,
in order to provide high-quality façade texture.
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Figure 2.3.: This example shows how manipulation of the perspective structure of the image can
be used to generate a multi-perspective image with reduced distortion. The diagram below each is
a plan view of the scene, with the input video camera moving along the indicated path and looking
upwards. Figure courtesy of [RGL04].

2.2.2. Image Stitching

Stitching of image content from several sources is an old matter, often also referred to as
image- or photomosaics. We mention this topic since it has many applications in the field
of urban imagery. Especially panoramic images presented in the previous section, as well
as projective textures which are described in Section 2.4.2 rely on these techniques. In
Chapter 3 we introduce our interactive method which also uses image stitching.

The stitching of two signals of different intensity usually causes a visible junction between
them. An early solution to this problem were transition zones and multi-resolution blend-
ing [BA83]. Pérez et al. [PGB03] introduced a powerful method for this purpose: image
editing in the gradient domain. There is a number of further papers tackling, improving,
accelerating and making use of this idea [PGB03, ADA∗04, Aga07, MP08]. Zomet et al.
presented an image stitching method for long images [ZLPW06]. Recently, McCann et al.
[MP08] introduced an interactive painting system which allows the user to paint directly in
the gradient domain, and the Poisson equation is solved online by a GPGPU solver. Also
Jeschke et al. proposed a real-time solver [JCW09]. The foundations behind the gradi-
ent domain image editing method are described in the aforementioned papers as well as
in the ICCV 2007 Course-Notes [AR07]. For the completeness, we shall provide a brief
overview of this approach in Section 3.3.4.

2.2.3. Symmetry Detection

Symmetry is abound in typical architecture which is mostly the result of economical, man-
ufacturing as well as aesthetical reasons. Some recent approaches exploit this and try to
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Figure 2.4.: This example shows automatic symmetry detection results performed on point-clouds
of architectural objects. Figure courtesy of [PMW∗08].

detect the inherent symmetry in order to infer some information about structure of the
façade. Symmetry in general is a topic that inspires researchers since the year one.

In image processing, early attempts have been done by [RWY95] who introduced con-
tinuous symmetry transform for images. Next, a considerable load of work on this topic
has been done by Liu and collaborators [LCT04]. They detect crystallographic groups in
repetitive image patterns using a dominant peak extraction method from the autocorrelation
surface. Further succeeding approaches specialize on detecting affine symmetry groups in
2d [LHXS05, LE06] or 3d [MGP06, PSG∗06]. Recent follow-ups of these approaches in-
troduce data-driven modeling methods like symmetrization [MGP07] and 3d lattice fitting
[PMW∗08]. Further, recent image processing approaches tend to utilize the detected sym-
metry of regular [HLEL06] and near-regular patterns [LLH04,LBHL08] in order to model
new images.

2.2.4. Repetitive Patterns

Another important research direction, which is often referred to in image-driven urban
reconstruction, is the detection of repetitive patterns in images. Bailey [Bai97] shows that
it is possible to detect repetitive image patterns by self-filtering in the frequency domain.
He is able to reconstruct missing data in highly repetitive images. Hsu et al. [HLL01] use
wavelet decomposition of the autocorrelation surface to segment a regular texture image
into tiles.

Turina et al. [TTvG01, TTMvG01] detect repetitive patterns on planar surfaces under per-
spective skew using Hough transforms and application of various grouping strategies. They
also demonstrate some good results on building façades but there is no application for ur-
ban reconstruction using this approach yet.

Boiman and Irani [BI07] detect irregularities in images using cross-correlation and Shecht-
man and Irani [SI07] apply a similar approach to identify local self similarities in images
from which they generate very robust feature descriptors.
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Figure 2.5.: Façade in-painting. The left image is the original image. Middle: the lamp and satellite
dishes together with a large set of randomly positioned squares has been selected as missing parts
(80% of the façade shown in white). The right image is the result of the tensor completion algorithm
proposed in [LMWY09].

2.2.5. Image Factorization

Matrix factorization is a topic of lineaer algebra for a long time [Str05], but just recently is
has become interesting in the context of façade imagery. This is due to the fact that images
are usually stored in matrix form in computer memory. For this reason it is an obvious idea
to apply matrix factorization algorithms on them.

One, well known matrix factorization algorithm is the singular value decomposition (SVD)
[Str05]. It allows to express a matrix as a weighted product of basis functions that are a set
of orthonormal vectors sorted by the variance of the data. In other words, the coordinate
system around the data is chosen in such a way, that the information can be expressed by a
minimal (optimal) number of bases in the least squares sense. This kind of representation
of image data allows e.g., for efficient compression of images of low-rank [HTF09].

Façade images are known to be low-rank, which means that they can be approximated
quite well with only view basis functions of the SVD. The approach presented by Ali et al.
[AYRW09] makes an advantage of this fact and exploits it in order to render massive urban
models. They introduce a compression algorithm in order to overcome a memory transfer
bottleneck and to render the models from a compressed representation directly. For this
purpose they also provide a binary factorization algorithm.

Liu, Musialski and colleagues [LMWY09] propose an algorithm to estimate missing values
in tensors of visual data, where a tensor is a generalization of the matrix concept. Their
algorithm is built on studies about matrix completion using the matrix trace norm and
relaxation techniques to achieve a globally optimal solution. Façade data is well suited for
such algorithms due to many repetitions (see Figure 2.5).

2.2.6. Segmentation

Most earlier works, which aim in façade structure detection, are based on morphological
segmentation and locally acting filtering methods.
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The first paper to list here is the work of Wang et al. [WTT∗02] who concentrate on
the appearance of the textured models and the detection of windows. They introduce a
façade texture that is based on the (weighted) average of several source images projected
on the block-model (called consensus texture façade or CTF). This texture serves for both
texturing and a source for detection of further detail, like windows (called in the paper “mi-
crostructure”). They propose an oriented-region-growing approach (ORG) that is based on
iterative enlarging of small seed-boxes until they best fit windows in the CTF. In order
to synchronize the boxes they introduce a periodic pattern fixing algorithm (PPF). The as-
sumption that windows are darker than their surrounding façade is, however, weak and may
work well only for airborne pictures. Ground based photography often reflect buildings or
the bright sky, especially when shot in an urban environment.

Another use of morphological segmentation is presented by Tsai et al. [TLLH05] who
calculate a greenness index (GI) to identify and suppress occlusions by vegetation on their
façade textures which they extract from drive-by video recordings. They replicate the
features along the detected mirroring axes in order to remove occlusions by vegetation. On
the cleaned textures they also apply ORG to find dark window regions. They proposed
also further extensions to their method to process video input [TLH06, TCLH06]. They
use corner detection in order to find interest points over video frames and register them to
each other. Then, a common, rectified texture is generated from the input.

Lee and Nevatia [LN04] propose a window detection method that uses only edges. They
project the edges horizontally and vertically to get the marginal edge pixel distributions
from which they infer the façade subdivision. They assume that these have peaks where
windows are located. From the thresholded marginals they construct a grid which ap-
proximates the window outlines. They then match the window outlines against the image
edges to detect the correct outlines of the windows. Also in this thesis we present a novel
symmetry-based segmentation method for semi-regular façades in Chapter 4.

Unsupervised segmentation is also the topic of Burochin et al. [BTP09]. In this paper the
authors present a method for hierarchical, recursive splitting of façade elements in hori-
zontal and vertical direction. This is applied on a “calibrated” façade image, which means
that the camera parameters of the actual photograph are known. The image is subdivided
according to the radiometric properties by minimizing edge energies. Such kind of global
splitting appears to be a promising approach for pre-processing tasks of urban images.

2.2.7. Window Detection

Many methods rely on template matching to model windows and other façade detail. The
advantage of template matching is that reconstruction results look very realistic. On the
other hand, the disadvantage is that results are in most cases not authentic because there is
no template database that contains all possible shapes.

Schindler and Bauer [SB03] match shape templates against point clouds. Also Mayer and
Reznik [MR07] efficiently match template images from a manually constructed window
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Figure 2.6.: Comparison of a photo to a sparse reconstruction of a huge number of unordered
photographs. Figure courtesy of [SSG∗10].

image database against their façades. Müller et al. [MZWvG07] match appearance of their
geometric 3d window models against façade tiles. Haugeard et al. [HPFP09] introduce an
algorithm for inexact graph matching, which is able to extract a window as a sub-graph of
the graph of all contours of the façade image. This serves as an basis to retrieve similar
windows from a database of images of façades.

Some have also combined template matching with machine learning, like Ali et al.
[ASJ∗07] who propose to train a classifier or [DF08] who uses Adaboost [SS99], such
that it identifies a high percentage of windows even in images with perspective distortion.
Their attempt allows to find appropriate features in order to detect windows automatically
in rectified images.

Another approach, which is based on rectangle detection, is the window-pane detection
algorithm by Cech and Sara [CS08] that identifies strictly axis-aligned rectangular pixel
configurations in a MRF. Given the fact that the majority of windows and other façade
elements are rectangular, a common approach to façade reconstruction is searching for
rectangles or assuming that all windows are rectangular. Almost all methods discussed
here somehow assume rectangular shapes in some stages of their algorithms but do not
solely rely on it.

2.3. Sparse Reconstruction

In recent years, there has been a considerable trend to feature-based sparse multi-view
stereo algorithms, which aim at fully automatic sparse reconstruction. The advantage of
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Figure 2.7.: Line-Based Structure from Motion: 2d line features are automatically detected by
grouping edge pixels according to vanishing directions. Figure courtesy of [SKD06].

this approach is its ability to deliver quite accurate extrinsic camera parameters (orienta-
tion of the cameras to each other) and also, especially the newer methods, approximated
intrinsic parameters (the focal length, the principal point and also the skew factor) of the
cameras. Often sparse systems use a structure-from-motion methodology, since video se-
quences are used as input as well. However, sparse systems have been extended to pure
image-based methods, where the time-coherence does not play any role. The output of
sparse methods is usually a set of images which are registered with respect to each other,
and a sparse, colored point-cloud.

2.3.1. Structure from Motion

One of the key inventions in this area are robust feature-point detection algorithms, like
SIFT [Low04] or SURF [BETvG08], which allow for efficient pairing of corresponding
points across multiple images. As input, multiple photographs are provided to the system,
and from each one a sparse set of feature-points is extracted and matched. Once multiple
images with corresponding features have been established, the extrinsic (i.e., pose in 3d
space) and intrinsic (i.e. focal length) parameters as well as the fundamental matrix of
their cameras can be determined [Nis04]. Given camera parameters, fundamental matrix
and corresponding feature points, 3d space points can be triangulated∗ [HZ04]. Robust
estimation algorithms (e.g. RANSAC [FB81]) and advanced non-linear bundle-adjustment
solvers [TMHF99,LA04] are typically used to compute highly accurate point-clouds of 3d
structure out of ordinary photographs. The advantage of this approach is its conceptual

∗Note that the term “triangulation” has at least three different meanings depending on the context. In computer
graphics “triangulation” usually means that a set of space points (2d or 3d) is topologically connected to a
triangle mesh. In contrast, in computer vision the expression “stereo structure triangulation” means that 3d
space points are determined from known camera matrices, the fundamental matrix and corresponding point-
pairs [HZ04]. This is more related to the meaning used in photogrammetry and remote sensing, as well as in
trigonometry and geometry, where triangulation denotes a method of determining the location of a point by
measuring angles to it from known points at either end of a fixed baseline, rather than measuring distances to
the point directly. The point can then be fixed as the third point of a triangle with one known side and two
known angles.
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Figure 2.8.: Results of interactive modeling method presented by Sinha et al. [SSS∗08].

simplicity and robustness. It is quite general, since it is a bottom-up approach in its nature,
and it does not expect any model imposed on the data.

2.3.2. Image-Based Sparse Systems

The structure-from-motion method is used to register multiple images to one another and
to orient and position them in 3d space. It is based on feature matching, pose estimation,
and bundle adjustment. An example is the ARC3D web service [arc10], to which people
can upload images and get (sparse or dense) 3d data as well as camera parameters back
[VvG06]. Images of buildings are among the most often uploaded data. More recently,
similar systems, but more dedicated to city exploration and reconstruction, have been pro-
posed [SSS06,SSS07,SGSS08,GSC∗07,IZB07,ASS∗09]. We also utilize a similar solution
in order to provide registered multi-view input to our method in Chapter 3, Section 3.3.1.

2.4. Interactive Modeling

Manual modeling of architecture is a tedious and time consuming task. However, for a long
time (in the 80’s and 90’s) it was the only way to obtain 3d models of urban sites. Debevec
et al. [DTM96] introduced a hybrid semi-automatic method that combines geometry-based
modeling with image-based modeling into one pipeline. This system makes it possible to
model 3d geometry under the preservation of epipolar constraints that are computed from
a set of perspective photographs of the target scene. In [DTM96] the images are regis-
tered to each other by manually establishing corresponding features between them. Since
the images are shot from different positions, correspondences allow to establish epipolar-
geometric relations between them which can be set up as a non-linear optimization prob-
lem.

The geometry of the scane is modeled with polyhedral blocks, which is based on a number
of assumptions: (1) Most architectural scenes are well modeled by an arrangement of
geometric primitives. (2) Blocks implicitly contain common architectural elements such
as parallel lines and right angles. (3) Manipulating block primitives is convenient since
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Figure 2.9.: Interactive modeling of geometry in video. Left: Replicating the bollard by dragging
the mouse. Right: Replicating a row of bollards. Figure courtesy of [vdHDT∗07a].

they are at a suitably high level of abstraction; individual features such as points and lines
are less manageable. (4) A surface model of the scene is readily obtained from the blocks,
so there is no need to infer surfaces from discrete features. (5) Modeling in terms of
blocks and relationships greatly reduces the number of parameters that the reconstruction
algorithm needs to recover. These observations turned out to be quite appropriate and have
subsequently been applied in several other automatic and semi-automatic approaches.

2.4.1. Modeling with Epipolar Constraints

Debevecs seminal paper can be seen as a starting point of a series of follow-up works which
deserve to be classified with the term image-based modeling. Inspired by this work, there
have been a number of methods based mainly on the strict assumptions of the epipolar
geometry across a number of perspective images. These provide well formulated geo-
metric problems that are solved by (non-linear) optimization. The most commonly used
geometric constraints in 3d-multi-view vision are the paradigms of parallelism and orthog-
onality prevalently present in indoor and outdoor architectural scenes, often detected via
the corresponding vanishing points and their layout. Similar methods, which try to solve
the problem without user interaction, like Liebowitz [LZ98] and Werner and Zisserman
[WZ02], are handled in Section 2.8.

Liebowitz et al. [LCZ99] presented a set of methods for creating 3d graphical models of
scenes from a limited numbers of images in situations where no scene coordinate measure-
ments are available. The method employs constraints available from geometric relation-
ships, which are common in architectural scenes, such as parallelism and orthogonality,
together with constraints available from the camera. Also Cipolla et al. [CR99], and Lee
and Nevatia [LN03] proposed systems for recovering 3d models from uncalibrated images
of architectural scenes based on the observations of the constraints of epipolar geometry.

A series of papers published by van den Hengel and colleagues describes building blocks of
an image- and video-based reconstruction system. The method in [vdHDT∗06] uses camera
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Figure 2.10.: Interactive façade modeling results. Figure courtesy of [XFT∗08].

parameters and point-clouds generated by a structure-from-motion process (Section 2.3)
as a starting point for developing a higher level model of the scene. The system relies on
the user to provide a minimal amount of structure information from which more complex
geometry is extrapolated. The regularity typically present in man-made environments is
used to minimize the interaction required, but also to improve the accuracy of fit. They
extend their higher level model in [vdHDT∗07a], such that the scene is represented as a
hierarchical set of parameterized shapes. Relations between shapes, such as adjacency and
alignment are specified interactively, such that the user is asked to provide only high level
scene information and the remaining detail is provided through geometric analysis of the
image set (cf. Figure 2.9). In a follow-up work [vdHDT∗07b] they present the VideoTrace-
system for interactively generating 3d models that also relies on sketches drawn by the user
under the constraints of 3d information obtained from epipolar geometry.

Sinha et al. [SSS∗08] presented an interactive system for generating textured 3d models of
architectural structures from unordered sets of photographs. It is also based on structure-
from-motion as the initial information for cameras and structure. This work introduced
novel, simplified interactions such as drawing of outlines overlaid on 2d photographs. The
3d structure is then automatically computed by combining the 2d interaction with the multi-
view geometric information from structure-from-motion analysis. The system utilizes van-
ishing point constraints during the reconstruction, which is useful for architectural scenes.
The approach enables to accurately model polygonal faces from 2d interactions in one of
the input images (cf. Figure 2.8).

Another interactive image-based approach to façade modeling has been introduced by Xiao
et al. [XFT∗08]. It uses images captured along streets and also relies on structure-from-
motion (cf Section 2.3) as source for camera parameters and initial 3d data. It considers
façades as flat rectangular planes or simple developable surfaces with an associated tex-
ture. Textures are composed from the input images. In their system the façades are interac-
tively subdivided in a top-down manner and structured as a graph of rectilinear elementary
patches. This is then followed by a bottom-up merging with the detection of reflectional
symmetry and repetitive patterns. All tasks are combined with user interaction who is re-
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Figure 2.11.: Projective texturing approach. Images registered to each other (including camera
parameters) and a 3d model are brought into a common coordinate frame. For each texel the
optimal color is specified by optimization algorithms. Figure courtesy of [GWOH10].

sponsible to permanently correct misinterpretations of the automatic routines (cf. Figure
2.10).

A method to recover 3d models from a single image was presented by Jiang et al. [JTC09].
Their approach is similar to those mentioned above but is relies on only one input image.
The limitation of this approach is that it only performs for highly symmetric objects, be-
cause the epipolar constraints are derived from shape symmetries. Thus they present also a
novel algorithm to calibrate the camera from a single image, and introduce a method which
allows for 3d points recovery similar to structure-from-motion. These serve again as input
for further, interactive modeling and texturing steps which finally result in complete 3d
polygonal models. While in general this method is quite interesting, it is very limited in
the number of possible objects which can be modeled.

2.4.2. Projective Texturing

In the literature the expression façade texture generation means mostly the synthesis of
a new façade image from one or more photographs. Usually, the goal is to generate an
undistorted, rectified and approximately orthogonal image of the façade.

This problem can be addressed by projective texturing of urban sites from perspective
photographs. One of the pioneering works was the “Façade” system introduced by Paul
Debevec et al. [DTM96]. Their paper proposes an interactive modeling tool that allows the
user to model 3d architecture from photographs under the constraints of epipolar geometry,
and to sample projective textures on building façades. There have been a number of parallel
and follow-up publications aiming at urban modeling from images [LZ98, SHS98, CT99,
SA02], which utilized the projection of photographs in order to obtain approximated ortho-
images. We mention some of theme also in the interactive image-based modeling context
in Section 2.4.1.
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More recent approaches introduce semi-automatic systems, which support the user during
the modeling process. They are based on input from video [vdHDT∗07c] or image collec-
tions [ARB07,SSS∗08,XFT∗08] and they introduce texture sampling as part of their model-
ing pipeline. All these approaches rely on user interaction in order to improve the quality of
the results. There are also fully automatic attempts (some of them in the photogrammetry
literature) which aim at texture generation for existing models [TKO08, KZZL10]. Re-
cently Xiao et al. presented an automated attempt at the modeling and texturing [XFZ∗09]
of street sites. Kopf et al. present a method for photo enhancement by information obtained
from a projection on a 3d model [KNC∗08].

Tools for interactive, projective texture generation, enhancement, and synthesis for archi-
tectural imagery have recently been presented by Pavic et al. [PSK06], Korah and Ras-
mussen [KR07b], Eisenacher et al. [ELS08], and Musialski et al. [MWR∗09, MLS∗10].
Another branch are feature-based sparse reconstruction methods, which also make use of
projective imaging [SSS06, SSS07, SGSS08].

Finally, there are methods, which do not focus on architecture, but on the problem of
projective texturing in general [NK01, PDG05, LI07, TS08, TBTS08, GWOH10]. All of
these methods are based on a per-pixel sampling of appropriate color values from a set of
registered images (cf. Figure 2.11).

Image-based rendering is related to our work as well: Debevec et al. introduced such a
system in [DYB98] that was followed by other involved image-based rendering methods
[BBM∗01, EDM∗08]. These approaches aim more at real-time performance than at high-
quality images.

2.5. Procedural Modeling

Procedural architectural modeling is an approach to model urban environments by the
means of rules defined by production systems, like Chomsky grammars [Sip96], L-systems
[PL90, PHT93], shape grammars [Sti75] or set grammars [WWSR03]. In architecture,
Stiny pioneered the idea of shape grammars [Sti75]. These shape grammars were success-
fully used for the construction and analysis of architectural design. The reader shall refer
to the recent comprehensive state-of-the-art report of the Eurographics by Vanegas et al.
[VAW∗10] for a comprehensive review of this matter.

In this section we provide a brief overview over the literature which aims at synthesis of
urban models, but we limit ourself only the seminal works in the area.

2.5.1. City Generation Systems

The generation of whole city models is a matter which has become active with the emerge
of virtual worlds like computer games. Other application synthesized cities are e.g. simula-
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Figure 2.12.: A virtual city modeled automatically. Approximately 26000 buildings were created.
Figure courtesy of [PM01].

tion and urban planning. In general, the goal is here not to reconstruct given environments,
but to generate plausible city models, usually including texture and fine level details.

One of the first papers that proposes automatic generation of whole urban environments is
the work of Parish and Müller [PM01]. Their system uses a procedural approach based on
L-systems to model cities. From various input image maps, such as land-water boundaries
and population density, they generate highways and streets, land lots, and compute the
geometry for the model. This work can be seen as pioneering in this scope and it was the
starting point of the software know as the CityEngine [Mül10] system.

Further work on this topic focus on refinement and extension of the original idea. Inter-
active modeling of whole cities with improved algorithms for street network generation as
well as flexible user modeling operations is proposed by Chen et al. [CKX∗08]. Interac-
tive reconfiguration of cities as well as connection to real Geographic Information Systems
(GIS) is handled in Aliaga et al. [ABVA08].

Vanegas et al. [VABW09] aim in more compete urban design which includes, except
the geometric, also the behavioral modeling of urban spaces. Their system provides an
interactive city modeling interface that interacts with an iterative optimization process in
order to reaching equilibrium state during modeling. This allows to create realistically
looking data for huge cities which are then generated by the above mentioned CityEngine
within seconds.

2.5.2. Procedural Modeling of Buildings

In order to make the shape grammars better suitable for modeling, Parish, Müller, Wonka
and others [PM01,WWSR03,MVW∗06,MWH∗06,WMV∗08] introduced a procedural ar-
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Figure 2.13.: Variations of a building modeled procedurally by the method presented by Müller et
al. [MWH∗06].

chitecture generation framework. In such systems, buildings are modeled using two inter-
locked grammars and an attribute matching system. The shape grammar (also called split
grammar) starts from an initial shape and splits this shape recursively. The splits to be
applied and the symbols to be chosen are determined in a separate ”design“ grammar, the
control grammar, which is invoked for each rule selection step. Furthermore, the control
grammar refines the attributes in the grammar during the derivation . Figure 2.14 shows a
result generated by he system proposed by Wonka et al. [WWSR03]. The system is quite
complex, and it is difficult to design the rules for both the split grammar and the design
grammar so that they work together seamlessly. This problem has been partially resolved
by interactive rule editing tools like presented by Lipp et al. [LWW08].

In another work, Marvie et al. [MPB05] presented a FL-system, which is an extension of
a L-system, that allows to generate any kind of object hierarchy on the fly. It is a modi-
fication of the classical L-system rewriting mechanism that produces a string of symbols
interpreted afterwards. The authors show that thanks to this extension, their approach is
able to simulate all of the existing solutions proposed by classical L-systems, as well as to
generate VRML97 scene graphs and geometry.

Whiting et al. [WOD09] proposed a system that is able to procedurally model a specific
architectural style: masonry buildings. Their approach takes additional constraints into
account, like the knowledge of masonry style. Moreover, it introduces structural feasibility
into procedural modeling. This allows for more realistic structural models that can be
interacted with in physical simulations.

Also Merrel and Manocha [Mer07, MM08, MM09] provide a system for generation of
architecture based on procedural modeling and additional constraints. Further, it is an
example based system, such that user-provided examples are analyzed in the first stage and
in the next stage rules and geometry are synthesized accordingly.

Finally, we shall mention the work presented by Finkenzeller [Fin08]. He introduced
a method for manual modeling and modifying of detailed building façades that adapt
to geometry automatically, such that the user can modify the façade’s outline, window
placement, and different styles on an abstract level. He makes use of predefined tree-
representations of buildings structure which allows the user to model by specifying the
architectural style and thus the appearance. The system generates then the geometry. The
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Figure 2.14.: Left: This image shows several buildings generated with split grammars, a modeling
tool introduced in this paper. Right: The terminal shapes of the grammar are rendered as little
boxes. A scene of this complexity can be automatically generated within a few seconds. Figure
courtesy of [WWSR03].

limitation of this methods is the complicated way of the creation of the rules and architec-
tural styles.

2.6. Inverse Procedural Modeling

In the previous chapter we have introduced the concept of procedural modeling. It provides
an elegant and fast way to generate huge, complex and realistically looking urban sites.
Due to its generative nature it can also be referred to as forward procedural modeling. A
recent survey [VAW∗10] presents this approach for synthesis of urban environments.

2.6.1. Inverse Modeling of Buildings

On the other hand, the paradigm of grammar driven building model construction is not
limited only to pure synthesis, but also to the reconstruction of existing buildings. A
very complete, yet manual solution to this problem has been presented by Aliaga et al.
[ARB07]. This paper presents an inverse procedural modeling system for whole urban
buildings. They extract manually a repertoire of grammars from a set of photographs of
a building and utilize this information in order to visualize a realistic and textured urban
model. This approach allows for quick modifications of the architectural structures, like
number of floors or windows in a floor. The disadvantage of this approach is the quite labor
intensive grammar creation process.

Another approach to inverse procedural modeling has been recently proposed by Bokeloh
et al. [BWS10]. This work aims in slightly a different goal: automatic extraction of
grammars by the means of an exemplar geometric model. Further the paper discusses the
idea of a general rewriting system and context free rules for geometry, thus it provides
important cues to the still very novel research topic.
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Figure 2.15.: Example of inverse procedural modeling. Figure courtesy of [ARB07].

Also Vanegas et al. [VAB10] proposed a method to extract block models of buildings from
images based on a grammar and Stava et al. a technique to infer a compact grammar from
arbitrary 2d vector content [SBM∗10].

The paper of Dick et al. [DTC04] describes an automatic acquisition attempt of three di-
mensional architectural models from short image sequences. The approach is Bayesian and
model based. Bayesian methods necessitate the formulation of a prior distribution; how-
ever designing a generative model for buildings is a difficult task. In order to overcome
this a building is described as a set of walls together with a “Lego” kit of parameterized
primitives, such as doors or windows. A prior on wall layout, and a prior on the param-
eters of each primitive can then be defined. Part of this prior is learnt from training data
and part comes from expert architects. The validity of the prior is tested by generating
example buildings using Markov Chain Monte Carlo (MCMC) and verifying that plausi-
ble buildings are generated under varying conditions. The same MCMC machinery can
also be used for optimizing the structure recovery, this time generating a range of possible
solutions from the posterior. The fact that a range of solutions can be presented allows the
user to select the best when the structure recovery is ambiguous.

A general work which aims on grammar driven segmentation has been published by Han
and Zhu [HZ05,HZ09]. It presents a simple attribute graph grammar as a generative repre-
sentation for made-made scenes and proposes a top-down/bottom-up inference algorithm
for parsing image-content. Is simplifies the objects which can be detected to quare boxes
in order to limit the grammar space. Nevertheless, this approach provides a good starting
point for inverse procedural image segmentation.
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Figure 2.16.: Example of inverse procedural modeling: A labeled 3d model is generated from
several images of an architectural scene. Figure courtesy of [DTC04].

2.6.2. Inverse Modeling of Façades

It appears plausible to adapt the concept of inverse procedural modeling to reconstruct
façades. In this section we discuss the class of solutions that are driven by hierarchical, rule
based segmentation algorithms. They cut down a façade into small irreducible parts which
are arranged according to hierarchical context free grammar rules. A single-view approach
for rule extraction from segmentation of simple regular façades has been published by
Müller et al. [MZWvG07] who cut the façade image into floors and tiles. The tiles are
then synchronized, split and finally procedural rules are extracted.

However, already Alegre and Dellaert [AD04] proposed a specific set of grammar rules
and a Markov Chain Monte Carlo (MCMC) approach to optimize the parameters in order
to fit the hierarchical model against the façade image. Yet, the model they provide does not
generalize to a large class of building façades. Also Korah and Rasmussen introduced a
method for automatic detection of window-grids in ortho-rectified façade images [KR07a]
based on MCMC optimization. Further, Mayer and Reznik [MR05, MR06, MR07, RM07,
May08] propose a series of papers, where they present a system for façade reconstruction
and window detection by fitting a model by MCMC. Van Gool et al. [vGZBM07] search
for similarity chains in perspective images to identify repeated façade elements. Hohmann
et al. [HKHF09] attempts an interactive solution combined with a façade grammar.

Brenner and Ripperda [BR06, RB07, Rip08, RB09] develop in a series of publications
a system for grammar-based decomposition of façades in elements from images and
laser scans. Also they utilize MCMC for optimization. The papers of Becker et al.
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Figure 2.17.: Left: original image and right: segmentation produced by the method of
[MZWvG07].

[BH07, BHF08, Bec09, BH09] and Pu and Vosselman [PV09a, PV09c] are about build-
ing and detailed façade reconstruction from photographs and LIDAR scans by utilizing
higher order models.

A recent approach [KST∗09] examines a rectified façade image in order to fit a hierarchical
tree grammar. This task is formulated as a Markov Random Field (MRF) [GG84] and
solved by an approximating algorithm. In the following, the tree formulation of the façade
image is converted in to a shape grammar which is responsible to generate a model in
procedural modeling style. Teboul et al. [TSKP10] extend their work by combining a
bottom-up segmentation through superpixels with top-down consistency checks coming
from style rules. The space of possible rules is explored efficiently.

2.7. Generative Modeling

In the context of modeling of urban geometry we shall also mention the approach devel-
oped by Sven Havemann [Hav05]. He proposes a novel model representation method. Its
main feature is that 3d shapes are represented in terms of functions instead of geomet-
ric primitives. Given a set of typically only a few specific parameters, evaluating such a
function results in a model that is one instance of a general shape. The shape description
language (GML) is a full programming language, but it has an quite simple syntax. It can
be regarded as some form of a “mesh creation/manipulation language”. It is designed to fa-
cilitate the composition of more complex modeling operations out of simpler ones. Thus, it
allows to create high-level operators which evaluate to arbitrarily complex, parameterized
shapes.
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Figure 2.18.: A collection of rendered images from the final 3d city model taken from various
vantage points. Figure courtesy of et al. [CLCvG07].

2.8. Photogrammetric Reconstruction

This section provides an overview of automatic approaches for reconstruction of urban
architecture. The common property of these is the demand on minimal user interaction or
even, in the best case, no user-interaction at all. There is quite a variety of approaches,
which either work with aerial or ground-level input data. It is difficult to compare these
methods directly to each other since they have been developed in different contexts (types
of input data, types of reconstructed buildings, level of interactivity, etc.).

Many systems up to the year 2003 have been also reviewed in a comprehensive survey by
Hu et al. [HYN03]. Due to the imagery-related topic of this report, we limit ourselves to
methods that expect image data as (at least partial) input and omit these which work purely
with LIDAR data.

2.8.1. Ground Based

Pollefeys et al. [PvGV∗04] presented an automatic system to build visual models from
images. This work is also one of the papers which pioneers fully automatic structure-from-
motion of urban environments. The system can deal with uncalibrated image sequences
acquired with a hand-held camera and is based on features matched across multiple views.
From these both the structure of the scene and the motion of the camera are retrieved.

A ground-level city modeling framework which integrates two components, reconstruction
and object detection has been presented by Cornelis et al. [CLCvG07]. It proposes a highly
optimized 3d reconstruction pipeline that can run in real-time, thereby offering the possi-
bility of online processing while the survey vehicle is recording. A realistically textured,
compact 3d model of the recorded scene can already be available when the survey vehicle
returns to its home base. The second component is an object detection pipeline, which
detects static and moving cars and localizes them in the reconstructed world coordinate
system.

The paper of Irschara et al. [IZB07] provides a combined sparse-dense method for city
sites reconstruction from unstructured photo-collections. Their work uses images con-
tributed by end-users as input. Hence, the Wiki principle well known from textual knowl-
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Figure 2.19.: Result of the automatic method proposed by Xiao et al. [XFZ∗09].

edge databases is transferred to the goal of incrementally building a virtual representation
of the occupied habitat. In order to achieve this objective, state-of-the-art computer vi-
sion methods, such as structure-from-motion and dense matching are applied and modified
accordingly.

Recently, Xiao et al. [XFZ∗09] attempt to extend their previous method [XFT∗08] in order
to provide an automatic approach to generate street-side 3d photo-realistic models from
images captured along the streets at ground level. They propose a multi-view semantic
segmentation method that recognizes and segments each image at pixel level into seman-
tically meaningful areas, each labeled with a specific object class, such as building, sky,
ground, vegetation and car. A partitioning scheme is then introduced to separate build-
ings into independent blocks using the major line structures of the scene. Finally, for each
block, they propose an inverse patch-based orthographic composition and structure anal-
ysis method for façade modeling that regularizes the noisy and missing reconstructed 3d
data. The system has the advantage of producing visually compelling results by imposing
strong priors of building regularity. The price the method pays for the automatization is
the clearly visible quality loss when compared to [XFT∗08] as can be seen in Figures 2.10
and 2.19.

Furukawa and Ponce [FP07,FP09] presented a novel approach for multi-view stereo recon-
struction. This method is based on small patches, which are optimized in order to deter-
mine 3d structure. This basically generic 3d reconstruction method has been extended and
applied to 3d urban reconstruction in [FCSS09a]. and also successfully extended to recon-
struct interiors [FCSS09b]. Recently, they introduced also large scale city reconstruction
approach [FCSS10] based on the same methodology.

There are several other, outstanding contributions which aim at fully automatic recon-
struction from ground-based imagery, e.g., Teller [Tel98], Stamos and Allen [SA00,SA01,
SA02], Rother and Carlsson [RC02], Schindler and Bauer [SB03], Bauer et al. [BKS∗03],
Kosecka and Zhang [KZ05], and recently also the method of Akbarzadeh et al. [AFM∗06]
as well as Pollefeys et al. [PNF∗07],
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Figure 2.20.: Results of the hybrid method which uses aerial imagery registered to maps and an
inverse procedural grammar. Figure courtesy of Vanegas et al. [VAB10].

2.8.2. Aerial and Hybrid

Besides reconstruction of terrestrial imagery as presented in the previous section, there is
a considerable body of work done on reconstruction of aerial images and LIDAR scans.
There is also a number of approaches that combine terrestrial and aerial images such as the
work of Wang et al. [WYN07].

Further, there are approaches to combine imagery with LIDAR, such as the work of Früh
and Zakhor, who published a series of articles that aim at a fully automatic solution for
large scale urban reconstruction. First they propose an approach for automated generation
of textured 3d city models with both high details at ground level, and complete coverage
for bird’s-eye view [FZ03]. A close-range façade model is acquired at the ground level by
driving a vehicle equipped with laser scanners and a digital camera under normal traffic
conditions on public roads. A far-range digital surface model (DSM), containing com-
plementary roof and terrain shape, is created from airborne laser scans, then triangulated,
and finally texture-mapped with aerial imagery. The façade models are first registered
with respect to the DSM using Monte Carlo localization, and then merged with the DSM
by removing redundant parts and filling gaps. In further work [FZ04] they improve their
method for ground-based acquisition of large-scale 3d city models. Finally, they provide
a comprehensive work which introduces a set of data processing algorithms for generat-
ing textured façade meshes of cities from a series of vertical 2d surface scans and camera
images [FJZ05].

Also the work done by Pu and Vosselman [PV09a,PV09b,PV09c] is mainly about building
and façade reconstruction from point-clouds. Laser data and optical data have a comple-
mentary nature for three dimensional feature extraction. Efficient integration of the two
data sources will lead to a more reliable and automated extraction of three dimensional
features.

Mastin et al. [MKF09] proposed a method for fusion of 3d laser radar (LIDAR) imagery
and aerial optical imagery in order to construct 3d virtual reality models. They utilize the
well known downhill simplex optimization to infer camera pose parameters and discuss
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Figure 2.21.: Automatic urban area reconstruction results from a DSMs (left): without (middle)
and with textures (right). Figure courtesy of [LDZPD10].

three methods for measuring mutual information between LIDAR imagery and optical
imagery and use OpenGL and graphics hardware in the optimization process, which yields
registration times lower than previous methods.

Recently, there have been quite a number of publications in the computer vision literature
which involve several types of input data besides conventional ground based photographs.
In particular, we refer the reader to methods which work with aerial imagery, like Jaynes et
al. [JRH03], Zebedin et al. [ZBKB08], Poullis and You [PY09], Vanegas et al. [VAB10] or
Karantzalos and Paragios [KP10], and Lafarge et al. [LDZPD10], as well as with maps and
geo-references, like Georgiadis et al. [GSGA05], El-hakim et al. [EhWGG05], Pollefeys
et al. [PNF∗07] and Grzeszczuk et al. [GKVH09].

2.9. Dense Reconstruction

In computer vision the term dense matching is generally used for image-based reconstruc-
tion of detailed surfaces as shown in Figure 2.22. In this context, dense denotes that such
systems try to capture information from all pixels in the input images – in contrast to sparse
methods (cf. Section 2.3) where only selected feature points are considered. One of the
most reliable methods for this task is denoted as the he plane sweep approach proposed by
Collins [Col96]. It has been considerably extended in recent years [BZB06, GFM∗07] in
order to perform with modern programmable hardware graphics accelerators [YP03]. In
general, this approach is based on discretization of the target space into a grid. Than, a
plane is swept discreetly through this space along one of its axes and rays are shot from all
pixels of all cameras onto the plane. According to epipolar geometry, intersections of the
rays with each other at their hitpoints on the plane indicate 3d structure points. The plane
sweep method allows to efficiently accumulate these points and to generate dense surface
reconstructions [Col96, BKS∗03].

Dense structure of the surface is also computed by a multi-view stereo matching algo-
rithm proposed by Pollefeys [PvGV∗04]. Vergauwen and Van Gool [VvG06] extended this
method from regular sequences of video frames to still images by improved feature match-
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Figure 2.22.: Examples of dense reconstruction after depth map fusion. Figure courtesy of [IZB07].

ing, additional internal quality checks and - at a time where EXIF data were less wide-
spread - methods to estimate internal camera parameters. This approach was introduced as
the free, public ARC3D web-service, allowing the public to take or collect images, upload
them, and get the result as dense 3d data (and camera calibration parameters).

Another approach for the reconstruction of dense structures is to perform pairwise dense
matching of any two to each other registererd views and than to combine the computed
depth-maps with each other. Usually this approach is denoted as depth map fusion. There
are several ideas how to perform this, such as Goesele et al. [GCS06], Zach et al. [ZPB07,
IZB07], Merrell et al. [MAW∗07] and finally the recent novel approach by Micucik and
Kosecka [MK10].

Generally, recent approaches deliver quite impressive results (see Figure 2.22) on the one
hand, on the other, these systems usually provide dense polygonal meshes without any
higher-level knowledge of the underling scene. This stays in contrast to the inverse proce-
dural methods mentioned in Section 2.6. We are hopefully to expect approaches which try
to grasp the best of both worlds in order to provide dense structure combined with semantic
information in future.

2.10. Summary

Urban modeling and reconstruction is a very wide topic. This review tries to provide a
comprehensive overview of the most important concepts in this field from the point of
view of computer graphics research.

First of all we want to argue that the problem of image stitching and blending has reached
a very mature stage – especially with the introduction of gradient domain methods. This
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Figure 2.23.: Comparison of 3d models created by different methods. Left: Vergauwen and van
Gool [VvG06], middle: Furukawa and Ponce [FP07], right: Micusik and Kosecka [MK10]. Figure
courtesy of [MK10].

research topic of image processing helps a lot in the field of urban reconstruction, which
depends on high qualitative input imagery.

Regarding multi-view image processing, image registration, and especially structure-from-
motion algorithms we can also say that the systems have become quite mature. The de-
velopment of these methods in recent years, especially with the help of automatic robust
feature-detection algorithms, pushed the boundaries of the state-of-the-art to new frontiers.
One can say that structure-from-motion has also reached a mature state and is basically
solved for small or medium sized input datasets. The problem of large scale reconstruction
is still in active research.

Finally, one essential problem is the integration of the research on reconstruction of the
world. Besides the concurring global commercial companies, there is also a slight diver-
gence in the scientific fields. We mean here the parallel research in the computer science
disciplines (CG and CV) and photogrammetry and remote sensing. This report tries to con-
tribute to the idea of interdisciplinary by providing a literature review composed of works
of all of the mentioned fields.
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3. Façade Image Acquisition

In this chapter we propose a system for generating high-quality approximated orthographic
façade textures based on a set of perspective source photographs taken by a consumer
hand-held camera. Our approach is to sample a combined orthographic approximation
over the façade-plane from the input photos. In order to avoid kinks and seams which
may occur on transitions between different source images, we introduce color adjustment
and gradient domain stitching by solving a Poisson equation in real-time. In order to add
maximum control on the one hand and easy interaction on the other, we provide several
editing interactions allowing for user-guided post-processing.

3.1. Introduction

The generation of high-quality façade imagery is a key element of realistic representa-
tion of urban environments. Orthographic and rectified façades are also a prerequisite of
several structure detection and segmentation algorithms, such as [MZWvG07, MWR∗09,
MRM∗10].

We address the problem of texture generation, which remains a challenging task. Our
contribution is a system which provides the ability to create such images from a set of
perspective photographs taken by a consumer hand-held camera. The proposed method
combines robust automatic processing steps with user interaction. This combination is
meant to resolve some remaining weak points of fully automatic attempts and to improve
the quality of the output.

3.2. Overview

The goal of this work is to provide a convenient and robust way to generate approximations
of ortho-rectified images of building façades. The only input we use is a set of photographs
of the targeted building taken from the ground using a hand-held, consumer-level camera.
These images have to be registered to each other, thus we present a brief overview of
multi-view registration and structure-from-motion in Section 3.3.1.
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Input Images Structure from Motion Plane Fitting Mulit-View Projection Interactive
Postprocessing

Figure 3.1.: Schematic overview of our system: we compute a sparse point cloud of the scene using
structure-from-motion; then, we fit a dominant plane to the point cloud. Next, we project the images
of the shots onto the plane and store their colors in a per pixel stack. Finally, we allow the user to
brush over the stack in order to remove unwanted content by choosing the best source.

We expect the object in front of the cameras to be approximately planar, like a single
façade, such that it can be substituted by simple geometry, which we call proxy geometry.
In Section 3.3.2 we propose one possible solution to this problem.

In Section 3.3.3 we describe the details of the multi-view projection method. Our approach
is straightforward: we span a grid of desired resolution over the façade-plane. Then, for
each pixel in the target resolution we determine which camera shot is optimally projecting
onto it, and we collect its color information. At this point two problems arise: The first
occurs if two neighboring pixels in the target resolution are filled by color samples from
different source images. Usually this results in a visible seam between them. To resolve
this we propose color correction and gradient-domain stitching. This is handled in Section
3.3.4. The second problem relates to the actual image content. For some shots we might
obtain color samples which belong to external objects that occlude the façade, like vehicles,
vegetation, etc. We approach this in a semi-automatic manner in Section 3.3.5 and by
turning to user interaction in Section 3.3.6.

Ultimately, the final image is composed according to the automatic and manual corrections
in the gradient-domain and an online Poisson solver provides the result (Section 5.3).

3.3. Multi-View Ortho-Rectification

In the introduction we mentioned the demand for orthogonal-rectified textures for urban
buildings. In this section we present our method for generation of such imagery. We
shall introduce the preprocessing steps, like image registration, and explain the approach
of multi-view imaging and stitching in the gradient domain.

3.3.1. Structure From Motion

In order to gain more information from the images, they need to be registered among each
other. The input to this stage are clusters of images retrieved in the previous stage. We re-
sort to the classic sparse stereo structure-from-motion (SfM) method to register the images
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Figure 3.2.: Top: top view on the point cloud computed by the structure-from-motion (SfM) module.
The dominant plane is clearly detectable. The circles indicate objects in front of the façade. Bottom
left: frontal view of the point-cloud, right: with plane fit into it.

to one another and to orient and position them in 3d space. This method is based on fea-
ture matching, pose estimation, and bundle adjustment [PvGV∗04]. Multiple photographs
are provided to the modlue and from each one a sparse set of SIFT feature-points is ex-
tracted [Low04]. Once multiple images with corresponding features have been established,
the extrinsic (i.e., pose in 3d space) properties of their cameras can be determined. Since
we are dealing with mostly planar objects, we use a calibrated approach for unstructured
photographs, such as the one described by Irschara et al. [IZB07]. In accordance with
epipolar geometry given known camera parameters, the 3d positions of the corresponding
2d features in the photos can be triangulated, which provides a cloud of 3d space points.

3.3.2. Proxy Geometry

Plane Fitting. The SfM procedure delivers a sparse point-cloud of the triangulated
points in 3d space. If we have not encountered any serious mismatches between the pho-
tographs, the points are distributed such that they form a more-or-less coherent planar
manifold of the 3d space (cf. Figure 3.2).
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For the case that we have well defined geometry and the computed point cloud, we refer
to geometry registration method presented in Appendix B. In order to compute the proxy
geometry, we introduce here a rudimentary plane detection algorithm based on RANSAC
[FB81] for outlier removal followed by least squares fitting. It should be noted, that this
algorithm is a simplified version and it can be applied only if we expect the points to lie on
only one proxy plane.

Let the set of the 3d points be X = {x}n
i=1. In the following, we perform RANSAC on

the set such that we obtain only a thin layer of the points X∗ ⊆ X. The “thickness” of the
layer is controlled by the distance threshold ε of the RANSAC procedure. Next, the plane
is defined by a 4d vector π composed of the normal n and the distance to the origin d. We
perform a least squares fit by minimizing the sum of squared distances of all points x ∈X∗
to π:

Eπ = ∑
i
‖nT xi−d‖2 −→min .

We solve this system of equations using a SVD solver. Depending on the accuracy of the
computed point-cloud (which depends a great deal on the quality of the camera and the
lens) there might be the need for iterative adjustment of the plane. In this case, we repeat
the procedure on the X∗ set with a smaller value of ε . This plane serves as projection
canvas for further texture projection tasks.

Façade Boundary. So far we have a set of registered shots including their camera
properties, a sparse point cloud in 3d space and a dominant plane fitted into the cloud. All
the previous steps have been computed fully automatically. The only user interaction if
any was the selection of proper input images for the SfM procedure.

At this stage there arises the problem of defining the actual façade extent. While there
have been attempts to solve such problems automatically, these are error prone and not
well defined. On the other hand, this is quite an easy task for a human provided with an
appropriate user interface. For this reason, we propose a GUI that allows the user to

• navigate in 3d though the scene,

• look at the scene from the computed shot positions,

• adjust the 3d plane by resizing and rotating it (see Figure 3.3),

• preview the texture by projecting best single-shot image onto the plane,

• finally, also align the whole coordinate system of the scene with the one of the proxy
plane,

• and, finally, align the coordinate system of the scene with the one of the proxy plane.

After the adjustment of the façade boundary, the application is ready for the next step:
multi-view projective texturing.
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Figure 3.3.: View at the façade plane through one of the projecting cameras. In this view it is easy
to adjust the façade-bounds interactively. Left: during the adjustment. Right: final result.

3.3.3. Viewpoint Projection.

The two objectives of our approach are (1) to produce as orthogonal as possible an approx-
imation of the façade image and (2) to work around as many occluders located in front of
the façade surface as possible.

In this section we address the issue of sampling as orthogonal an approximation as possible
of the façade image and describe the way how the pixels, which project on the image-plane,
are chosen.

Scene Geometry. First of all we address the rough geometric issues of the multi-view
projection. We distinguish different cases of camera placement, where only one is valid
and the others are classified as invalid and shots of this class are rejected. Figure 3.4
depicts this issue: the invalid cases occur when the camera is behind the plane (C3 and
C4) or when it is in the front, but not all four rays from its center through the corners of
the frustum intersect the image plane (C1). The valid case is when the camera is in front
of the façade plane and all rays intersect the image plane in a finite distance, such that
the projected shape is a finite trapezoid that intersects the façade rectangle (cf. Figure 3.4,
left). If not all rays intersect the plane, only a part of the image is finitely projected onto the
plane and a part meets the plane at a line at infinity. Even if this case might be considered
as partially valid, pixels from such a projection are very strongly elongated along the plane
and thus prone to cause sampling artifacts. Since we expect to have enough information
from the valid cameras anyway, we simply reject them as invalid ones.

Shot Selection. Our approach is based on the fact that we have multiple projective cen-
ters along the horizontal axis in world space (since we are using ground-based hand-held
cameras). This allows us to compose the target image I in such a way that each pixel is
chosen from an optimal camera. As a measure for this optimality, we use an objective
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Figure 3.4.: Left: Example of valid (C2) and invalid cameras in the system. Right: the area of the
intersection R∩P in determines the “quality” of the projecting camera.

function composed of the camera to plane-normal incidence angle ϕ and a term which
expresses the area covered by the footprint of the original pixel projected onto the proxy
plane.

From the law of sines we know that the length of a projected segment depends on the
distance of the camera center to the plane and the projection angle. Figure 3.5, left hand
side, depicts this relation, where the length of the segment BC depends on the angles α ,
ϕ1, ϕ2 and the length of AM.

We denote the distance of each camera ck to each pixel pi as dik, than we approximate the
projection area as Aik = (dik/dmax)

−2 . We normalize dik such that it lies between 0 and 1,
which is a chosen maximum distance dmax (i.e. the most distant camera). For the angular
term, we use the dot product of the plane normal and the normalized vector vik = ‖ck−pi‖,
such that: Bik = nT vik . This value is naturally distributed in the range 0 . . .1. Both terms
are weighted by the empirical parameters λ1+λ2 = 1, such that the final objective function
is:

EI = ∑
i

∑
k

λ1Aik +λ2Bik −→max , (3.1)

where i iterates over all target pixels and k over all valid cameras. We choose λ2 = 0.7 in
our experiments.

Image Stacks. In order to accumulate the projections, we span a grid of desired res-
olution over the detected and bounded façade plane. Then, for each pixel in the target
resolution, we determine a set of cameras which project optimally according to the afore-
mentioned constraints. We store this values in a volume of the size width × height ×
number of shots attached to the proxy, which we call image stack due to its layered nature.
Left hand side of Figure 3.5 shows a schematic, 2d top view of this idea. Image stacks
have been demonstrated to be a very effective structure in the work of Agarwala et al.
[ADA∗04], where they were used for interactive photomontage.
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Figure 3.5.: Left: The relations of the projection, where the length of BC only depends on the angles
α , ϕ1, ϕ2 and the length of AM. Right: Projection from the shots onto the image stack. For each
pixel indicated by the numbers on the right, the best cameras are chosen, and the projected value
is stored in the respective layer of the stack.

3.3.4. Seamless Stitching

The result of the algorithm presented in the previous section is already an approximation of
an orthogonal façade image. One remaining problem are the visible seams along transitions
between pixels from different sources, which we address by a gradient-domain stitching
algorithm.

GPU Poisson Solver. In Section 2.2.2 we have mentioned the idea of Poisson image
editing, which where presented in [PGB03]. The beauty of this method manifests itself in
both the elegance of its formulation and the practical results. It is based on the insight that
one can stitch the derivatives of two signals instead the signals themselves. The derivative
functions have the advantage that the intensity differences between them are relative, and
not absolute as in the original signals. Thus, any differences in the amplitude of the original
signals vanish in their gradient fields. We can compute them in the discrete case of an image
I as forward differences:

∂ I
∂x

= I(x+1,y)− I(x,y) (3.2)

∂ I
∂y

= I(x,y+1)− I(x,y) . (3.3)

After editing (e.g., deleting, amplifying) and combining (e.g., blending, averaging) of the
derivatives of one or more images, one obtains a modified gradient field G = [Gx Gy]

T .
Unfortunately, this is usually a non-integrable vector field, since its curl is not equal to zero,
and thus one cannot reconstruct the original signal by a trivial summation. This problem
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is addressed by solving for the best approximation of the primitive (original) signal by
minimizing the following sum of squared differences:

EU = ‖∇U−G‖2

=

(
∂U
∂x
−Gx

)2

+

(
∂U
∂y
−Gx

)2

−→min . (3.4)

In other words, we are looking for a new image U , whose gradient field ∇U is closest to G
in the least squares sense. This can be formulated as a Poisson equation:

∇
2U =

∂Gx

∂x
+

∂Gy

∂y
,

which results in a sparse system of linear equations that can be solved using least squares.
Since we strive for real-time performance, we adapt a GPU solver proposed by [MP08],
which is a multi-grid solution [AR07]. It performs at real-time rates with up to four mega
pixel images (on an NVIDIA GeForce GTX 285), which allows not only for the stitching of
precomputed layers but also interactive editing of the layers. We elaborate this in Section
3.3.6.

Stitching. For the mentioned multi-view approach we combine the pieces from different
images in the gradient domain for the entire façade image, and then we solve the Poisson
equation with Neuman boundary conditions. This means that we do not define any borders
around the façade, but fill the initial values with zeros [AR07].

Color Correction. Despite the fact that we are using a Poisson image editing approach,
we perform a simple color correction procedure before the actual stitching process. This
provides better initial values and has turned out to be useful in cases where we have slight
transition in the illumination of the façade. In practice this happens very often, since the
global illumination (sun, clouds) changes. We resort to a simple approach presented by
Reinhard et al. [RAGS01], where we just shift the mean µ and the standard deviation σ

of all images in the stack to common values. (there are more sophisticated methods in
recent literature, like [SS10], but in our case we do not see any significant advantage of
such approaches).

Unlike their method, we perform the linear shift in the RGB color space, since we do not
aim for an appearance change but just for slight color correction. Thus, for each pixel we
shift each color channel to zero-mean and scale all points by the factor given by the ratio of
the standard deviation of the actual shot to the key-image, followed by a back-translation
to the key-image mean:

cout =
σkey

σin
(cin−µin)+µkey ,
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Figure 3.6.: Occlusion masks of two shots generated by splatting the 3d points onto the proxy plane.
Shots are looking at the proxy, the overlayed masks are in proxy-plane space. The final result of
this scene is shown in Figure 3.12.

where c stands for each color channel separately. The key-values are chosen from an input
shot with the largest projected area on the bounded façade plane. In fact, since we are
interested in an equality of colors in the stack, the choice of the reference color is not of a
very big importance. Also other heuristics are conceivable, such as an averaging over all
shots or just taking the first shot.

3.3.5. Occlusion Handling

The described multi-view projection delivers optimal color samples for the ortho-façade
pixels as long as the proxy geometry of the scene is visible from the cameras. However,
in real-life data we usually encounter a number of obstacles between the camera and the
façade: pedestrians, street signs, vehicles, vegetation, etc. These, if projected on the plane
provide unwanted and disturbing artifacts. To counter this, we introduce two ways to
integrate the occlusion into the scene.

Point-Footprint Projection. The first idea is based on the observation that many 3d
points of the SfM point cloud do not belong to the proxy, but to other objects in front of
the camera (see Figure 3.2, top, red circles). Hence, they represent potential obstacles and
we splat these points onto the image-plane, such that their footprints provide an additional
visibility term Vik to the source-selection function presented in Equation 3.1:

EI = ∑
i

∑
k
(λ1Aik +λ2Bik) ·Vik −→max , (3.5)

In our implementation, we introduce the Vik term as a per-shot mask, which contains per-
pixel visibility information from the splatted 3d points (shown in Figure 3.6). According to
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u’v’

HP
uvxyz

Figure 3.7.: Left: projection of the 3d scene by a shot-camera Pk. Note the occluder in front.
Middle: We compute a homography Hk of the façade-plane to the view-port. Right: in the vertex
shader the scene is transformed by the shot view projection Pk and Hk.

this value, a shot might be considered as an occluded one, even if its score from Equation
3.1 is high.

Geometric Occluders. One further way to include the occluding objects into the scene
is to explicitly model their geometry. We do so by allowing the user to model bigger objects
roughly by primitive shapes such as cuboids. An example is shown in Figure 3.11, where
a shop in front of the façade has been approximated by a 3d box and entirely removed. We
add this information in the same manner as with the 3d points above. However, we assign
the modeled occluder maximum confidence value.

Implementation. We implement the occlusion test in hardware. Let us denote the shot-
camera projection by Pk. For each shot we compute the homography Hk that maps the
façade proxy projected by Pk to the target image space. In the vertex shader we transform
the entire scene by Pk and Hk, such that we obtain the result in the target resolution (see
Figure 3.7). In the pixel shader, the interpolated depth of the projection of the scene is
tested with the proxy plane. In a second pass, 3d points in front of the proxy are splatted
by the same mapping as above onto the target. The radius of their footprints depends on
the distance to the target and is weighted using a radial falloff-kernel (see Figure 3.12).
The results are accumulated in a per shot mask, which acts as the occlusion term Vik in
Equation 3.5.

3.3.6. User Interaction

Finally, our system allows the user to directly edit on the projected façade image. To
accomplish this we introduce several brushing-modi which can be applied locally and pre-
cisely in order to repair small details. The brush operations exploit the fact that we have
multiple information per pixel stored in the image stack. On the top of the stack (and thus
visible) lies the color taken from the camera that best maximizes Equation 3.5. However,
neither the automatic, 3d point footprint method, nor the interactive geometry modeling
method presented above ensure the removal of all outliers. With the help of interactive
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3.3 Multi-View Ortho-Rectification

Figure 3.8.: Interactive brushing. Left: color stripes indicate regions stemming from different
cameras. Middle: the eraser brush brings the yellow layer to the front (over the purple). Right: the
growing brush pulls the gray layer over the purple one. Blue storks indicate the user actions.

brushing in the gradient domain, our system provides the user convenient editing tools to
control the final result. The following brushes relax the results provided by Equation 3.5
and change the order in the stack.

Growing Brush. This brush is thought to “grow” a region projected from one image
over an other region. It captures the shot where the user starts to brush (by clicking). While
holding the mouse button down, the captured shot is propagated interactively to others. As
a visual aid, the user can overlay the multi-view image with a colored indication layer, such
that regions stemming from different sources are highlighted by different colors, as shown
in Figure 3.8.

Eraser Brush. The idea behind this brush is to use pixel samples lying behind the visible
stack layer. Each time the user clicks, the next layer is chosen and its information can be
brushed on the top of the stack. If the last layer is active, it rotates on click over the stack
modulo the number of layers. In this way it is possible to bring information from another
cameras to the front by just clicking on one position. Since other shots have a different
viewpoint, they often do not contain the potential occluder on the same pixels, but shifted
due to the parallax. In other words, this brush brings the next layer information at current
mouse position to the front and gives the user a simple way to switch between the layers
(Figure 3.8).
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3.4. Results

operation 2 MP 3 MP
accumul. 0.05s 0.06s
color corr. 6.0s 8.0s
sampling 9.0s 11.5s

The table on the right shows timings of the
system with 22 input images (8 MP each)
measured at two target resolutions (Intel
Quad Core with NVIDIA GeForce GTX
285). Brushing runs on the same data set
at approx. 40 fps. In Figures 6.1, 3.9, 3.11
and 3.12 we present visual results of our system. Additionally, we refer to the accompa-
nying video material. We usually work with a target resolution of 2 mega pixels, mainly
due to hardware limitations. However, since our system allows the user to freely define the
extent of the projected façade, it is easily possible to focus only on selected parts and apply
the maximum resolution to this subregions only. This “zoom” is of course limited by the
source resolution, which can have up to 16 mega pixels on current hardware with DX9.

Limitations. Our method fails in cases, where in all input images the actual façade is
occluded. In such cases we want to resort to methods that utilize similarity present in
the image. A problem of our current implementation is the limitation of the stack to four
layers due to hardware-API constraints (DX9). We plan to switch to DX10 to resolve this.
Finally, our method is quite hardware intensive, such that it requires graphics cards with
1GB video RAM to perform well.

Future Work. We are considering to extend the system in a way that allows the user to op-
erate in moderate resolutions for real-time interaction while calculating higher resolutions
offline. Furthermore, we want to extend the geometry modeling part of the solution.

Figure 3.9.: A close-up of the image shown in Figure 3.11. Pedestrians and their reflections visible
in the left image have been removed (middle). The colored masks indicating source shots are shown
in the overlayed image.
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3.5. Conclusions

We present a system for generating approximately orthographic façade textures. We pay
particular attention to high-quality, high-resolution and obstacle-free images. Most steps
of our method are fully automatic: image registration, pose estimation, plane fitting as
well as per-pixel projection. On the other hand, some tasks have proven difficult to solve
automatically with adequate quality. For these cases we introduce interactive tools. For the
problem of bounding the actual façade, we provide the user with an easy method to define
the extent. Another difficult problem is the detection and removal of possible occluders in
front of the façades. To solve this, we propose two approaches: projection of SfM outliers
and modeling of additional geometry. The major contribution of our system is the detailed
removal of occluders by exploiting the multi-view information. Our system is intended to
serve as part of a complex urban reconstruction pipeline.

Figure 3.10.: Steps of the multi-view image generation system. Top-left: one of typical perspective
input photographs, please note the occlusion. Top-right: the result of the proposed ortho-image
generation method (note the pedestrians). The second row shows masks indicating source images of
the composition by colors: automatic result (left) and interactively post-processed (right). Bottom:
the final result after interactive post-processing.
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Figure 3.11.: Top left: multi-view stitching without constraints. Top right: multi-view stitching
with geometry constraints. Bottom from left to right: one of the original perspective shots, occlud-
ing geometry has been modeled into the scene, source-indication masks without and including the
geometry occlusion.
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Figure 3.12.: Automatic removal of occluding objects by utilizing the information from structure-
from-motion points. Left: image and its mask after multi-view stitching without the occlusion term.
Middle: results with occlusion term. Right: result with occlusion term post-processed by interactive
brushing. Note that lens flares have been removed as well.
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4. Façade Image Segmentation by Similarity
Voting

Typical building facades consist of regular structures such as windows arranged in a pre-
dominantly grid-like manner. We propose a method that handles precisely such facades
and assumes that there must be horizontal and vertical repetitions of similar patterns. Us-
ing a Monte Carlo sampling approach, this method is able to segment repetitive patterns
on orthogonal images along the axes even if the pattern is partially occluded. Additionally,
it is very fast and can be used as a preprocessing step for finer segmentation stages.

4.1. Introduction

This chapter present the first approach for tiling of approximately orthographic, rectified
façade images. The contribution is a method that processes the horizontal and the ver-
tical directions of a rectified frontal façade image independently and delivers a grid of
axis-aligned splitting lines. These lines delineate image into regions of high horizontal or
vertical translational symmetry. Along these lines, the image can be divided into single
repetitive instances. Our method is robust with respect to noise, discontinuities and partial
occlusions up to a certain threshold. Moreover, running time is in the order of only a few
seconds on mainstream consumer hardware.

To achieve this, we propose a Monte Carlo sampling scheme which operates only on se-
lected image features. While these can be defined by different means, we decided to use
simple Harris Corners [HS88] due to their robust and fast computation. For measuring
similarity between particular features we use a multiresolution version of common opera-
tors, such as Normalized Cross Correlation Coefficient.

The main idea behind the proposed method is to exploit the inherently repetitive nature of
almost all façade elements in order to identify façade tiles, locate them and finally parti-
tion the façade image into tiles. The approach to use only the similarity as segmentation
criterion arose from the challenge of segmenting typical Art Nouveau facades, which are
common in many European cities. Decorated with stucco elements distributed in a rela-
tively unpredictable manner, such facades are particularly challenging to model-based fea-
ture detection approaches. Moreover, facades of this category contain many fine grained
details and are thus very difficult to model or reconstruct automatically.
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Figure 4.1.: The red lines indicate the grid, which has been detected on the façade. The proposed
algorithm is robust to obstacles such as different illumination or reflections in the windows (best
seen in color).

4.2. Overview of the Approach

The algorithm takes as input a single orthogonalized view of a façade. The output is an
orthogonal grid that defines a segmentation of the façade image into repetitive tiles. The
algorithm itself is subdivided in the following stages:

Search for dominant repetitive patterns. To identify the relevant repetitive regions of
a façade image (e.g., floors or windows) it is necessary to search for similar image re-
gions. This is done by comparing small image regions on multiple resolutions of the image
for similarity. Because comparing every pair of potentially corresponding image regions
is computationally prohibitive,a Monte Carlo importance sampling strategy is applied to
collect statistical evidence about any translational similarities. To extract these relevant
patterns out of all the collected evidence the representative offsets are sorted into a his-
togram where large patterns result in large peaks. These are then extracted by Mean Shift
clustering [CM02]. The result of this stage are offsets in pixels that relate directly to the
prevailing repetitive patterns in the image.
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4.3 Search for Dominant Repetitive Patterns

Figure 4.2.: Example of a repetitive pattern in 1D with a highly similar but not identical instance.
Relative differences in signal intensities between instances of the pattern should not influence the
detection algorithm. An appropriate similarity measure must be applied that is insensitive to the
overall intensity level of the region.

Localization and segmentation of the identified patterns. The offsets computed in the
previous step convey the size of important repeating patterns but there is no information
about their location in the image. In order to determine these locations the image has to
be sampled regularly to test the image’s similarity response for a given offset at a given
location. Again, efficient randomized multi-resolution sampling approximates a costly
per-pixel analysis of the image. The computed similarity curves for every offset are the
input to the next stage. Finally the image is partitioned respectively into regions with
and without repetitive patterns. For the regions that exhibit repetitive patterns, the most
dominant pattern is selected and its offset is taken into account in the splitting process.
As a result, the façade is divided into floors and individual window tiles, which can be
processed by further algorithms.

4.3. Search for Dominant Repetitive Patterns

A closer look at the typical structure of facades helps to understand which image patterns
are relevant for window detection. Most facades feature many windows of the same size
and similar appearance. The arrangement of windows is almost always the same for the
floors of the same façade. Common exceptions to this rule are usually the first floors which
are irregular or different from the others. If we consider a sequence of axis-aligned pixels
as a function of the intensities, we notice certain regular repetitions in the signal (Fig. 4.2).
These repetitions are coherent over multiple adjacent pixel lines of the image.
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part of facade
is occluded

Figure 4.3.: Without a priori knowledge about the signal, it is not possible to evaluate the correct-
ness of a split. In this case half of the first window has been occluded, causing a shift in the start of
the repetitive pattern.

A Repetitive Pattern. On a spatial signal it is defined in terms of local self-similarities
in a 1D signal or 2D image. It is characterized by its offset, the smallest distance to the
next most similar recurrence of certain distinguishable features in the original sequence of
the pattern. We call this a repetitive instance (see Figure 4.2). The same image features
that are very important for human vision such as edges and corners are most important for
our repetitive pattern detection algorithm.

To define the border of a repetitive pattern we assume that the pattern begins at the first
distinctive feature (i.e., edge) that is similar to the signal at the characteristic offset and
ends as soon as the signal starts to differ too much from the original instance. We constrain
the input images to complete pictures of a façade, such that it is impossible (except in case
of occlusions like in Figure 4.3) for a pattern to start in the middle of a window. The bounds
of a repetitive pattern are not sharp and have to be defined by a similarity threshold. With
such a threshold, non-repetitive regions can be distinguished from pattern regions.

A difficult problem for image segmentation based on repetitive patterns is the handling of
overlapping patterns. To demonstrate the problem, consider the façade image in Figure
4.4. There are two concurring segmentations based on either the one pattern’s offset or the
other’s. A solution to this problem, which is adopted in this approach, is to exclude some
of the detected patterns according to a priori knowledge or image area constraints.

4.3.1. Similarity Measure

To measure the similarity of image regions we need a robust operator that is suitable for
images of repeated real-world objects that can exhibit a large range of defects. In order to
compare positions with varying intensities, we compute the normalized cross correlation
coefficient (NCC), where we subtract the mean of the intensities x̄ and ȳ of each patch x
and y and normalize the vectors, respectively:
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Figure 4.4.: Two overlapping repetitive patterns and their corresponding splitting lines. There are
often overlapping patterns, especially in Art Nouveau facades that feature a great deal of decor.

‖x,y‖ncc =
(x− x̄)T (y− ȳ)
‖x− x̄‖‖y− ȳ‖

. (4.1)

where ‖·‖ is the Euclidian norm. The size of the respective vectors x and y is equal and is
called window size further on.

Influence of the Window Size. When measuring local similarities, the window size is
an important parameter to consider with respect to performance and robustness. The cross
correlation of small windows like 3×3 or 5×5 pixels can be computed very fast. Larger
window sizes, like 63× 63 or 127× 127, are very expensive to compute due to the com-
putational complexity of cross correlation which is quadratic in the size of the compared
image regions. On the other hand, the quality and robustness of the similarity measure for
two image regions increases with larger windows.

Multi-Resolution Similarity. When measuring patterns, the size of the pattern relative to
the size of the measurement window is very important. If it is too small or too large com-
pared to the measurement window, one will obtain ambiguous results (Fig. 4.5). Rather
than increasing the patch size to improve the robustness of the measure, a very efficient way
is to combine the results of measurements on different scale levels of an image pyramid.
This idea has been successfully used in many texture synthesis algorithms. It is computed
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Figure 4.5.: Left: depending on the window size, features can become ambiguous. Two differently
sized similarity windows with highly similar matches. Right: by comparing with the same patch
size on different resolutions, the ambiguity can be resolved.

by subsequently scaling the image with the factor s (in our case we use s = 1
2 and cubic

down-sampling):

ς(x,y) =
1
Ns

Ns

∑
k
‖xk,yk‖ncc , (4.2)

where Ns is the number of scales and ‖·‖ncc operates on the k-th scale of the input image I.
The similarity ς results from all scale levels that have been taken at the closest position to
the original position in the unscaled picture and are then combined into the final result by
taking the mean. The window size is kept constant, as shown in Figure 4.5 left hand side.
In our empirical tests, we determined that a good tradeoff between speed and robustness is
a size of 15×15 pixels on 3 pyramid levels. This operator on the pyramid is not completely
equivalent to the multi-sized similarity operator on the original image because it introduces
implicit low-pass filtering by down sampling. Even though it is very robust with respect to
real-world noise while being relatively fast compared to using large similarity windows on
the original image.

The image pyramid is computed only once so it does not add to the complexity of the
method. Given that the number of pyramid layers is bound and will not be higher than five
to ten layers depending on the size of the original image (possible image sizes are bound
too) this also does not add to the algorithmic complexity of the multi-resolution similarity
operator. Of course, the higher the pyramid the more computations have to be made for
each similarity value. This added computational cost of evaluating the similarity operator
on multiple pyramid levels can be greatly reduced by a so called early break strategy. An
early break stops the evaluation of all pyramid layers if the similarity value on the higher
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pyramid level is below a certain threshold, since in practice most of the compared regions
are not at all similar.

Finally, it is practically independent of the size of the input images and the size of the
patterns. By using a constant window size the multi-resolution similarity operator on the
image pyramid is highly efficient compared to using large similarity windows on the orig-
inal image.

4.3.2. Monte Carlo Sampling

A common approach to dealing with complex or high-dimensional search spaces are Monte
Carlo (MC) solutions. Using MC sampling to obtain samples of the data allows for a low-
cost approximation of the expensive deterministic computation. Instead of computing the
similarity for every pair of different locations, the Monte Carlo algorithm takes a statistical
probe of the similarity at a number of random positions.

Façade elements such as windows, balconies, etc., are characterized by sharp orthogo-
nal edges and corners. Based on this information we implement an importance sampling
strategy. It is not so important to sample image regions without any salient features be-
cause they might not contain any façade elements. Instead we focus on edges and corners
which are better indicators of façade elements. The implementation of such an edge-based
importance sampling strategy is quite straightforward: an edge image is computed using
Sobel-filtering and Canny edge detection [Can86]. Using this sampling strategy, the ac-
curacy of the result is significantly higher than for simple uniformly distributed random
position sampling of the image, while requiring significantly less samples.

Distinguishing Important Patterns. We propose a sampling process to identify large
image patterns, which casts a number of random samples and sorts the resulting offset into
histogram bins if they meet certain criteria. The resulting histogram represents the distri-
bution of similar offsets in the image. In order to identify these patterns and measure their
offsets, we propose two different criteria to judge what is the best matching corresponding
region for a given location: (1) the threshold criterion and (2) the best match criterion. In
the following we introduce both criteria in form of their histogram classification functions
h(∆) and point out the respective pros and cons.

The threshold criterion simply defines a global threshold for the accepted similarity values.
The histogram classification function h(∆) with threshold criterion for N random samples
and threshold t is given by:

h(∆) =
N

∑
i

{
1 if ς(pi, p∆ )> t
0 otherwise.

(4.3)

This function counts how many samples (random pairs of points) with a given offset ∆ have
a multi-resolution similarity value greater than a fixed threshold t. We have determined em-
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Figure 4.6.: Comparison of histograms resulting from 100k samples with threshold criterion se-
lection (left) and 1k samples with best match criterion selection (right). The broad peaks in the
left hand histogram and high peaks of irrelevant offset combinations are signs of the much higher
overall error of the simple threshold criterion.

pirically that the threshold of 0.8 of normalized cross-correlation operator ensures that only
highly similar matches are counted. By counting only samples with very high similarity
values the variance of the estimated distribution of offsets is significantly lower. However,
a quality criterion with a single fixed threshold still counts many imprecise matches be-
cause the sampled offsets are not compared to each other in any way. Even significant
deviations from the perfect match of two regions may feature insignificantly high similar-
ity values which might be much higher than the threshold. The problem arising from this
fact is, that the results are noisy and the significant offsets may be hard to distinguish from
the rest (see Fig. 4.6).

A more accurate criterion for finding the best recurrence of a spot in the image is the best
match criterion. It compares the similarity values of multiple possible candidate offsets
and chooses the best match. The idea is to draw more than one sample from one random
location, compare them against each other and record only the best match which is the
sample with the highest similarity value.

A definition of the histogram classification function h(∆) implementing the best match
criterion for N random samples from a uniform distribution is given as:

h(∆) =
N

∑
i

{
1 if ∆ = argmax∆ j ς

(
pi, p∆ j

)
,

0 otherwise,
(4.4)

where all ∆ j ∈ {D}. The range {D} defines a set of all possible offsets in the current row
or column of the image with respect to the current sample position.

To sample according to the best match criterion means to count how many times a given
offset ∆ j is the best one in such that its multi resolution-similarity is higher compared to
the similarity of any other offset at the sample location pi. An offset with a high number
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4.3 Search for Dominant Repetitive Patterns

Figure 4.7.: Original histogram (a) and a smoothed and normalized histogram (b). In the smoothed
histogram some close peaks are merged together because of oversmoothing. This reduces the num-
ber of concurring extracted peak locations on the one hand but also degrades precision of the
segmentation on the other hand.

of hits represents a pattern that is more dominant in terms of recurrence similarity and was
found on a large image area.

Extraction of Relevant Patterns. Typically, the dominant patterns are represented by a
number of very similar offsets forming peaks in the histogram. These peaks are superim-
posed with random noise that might corrupt the results unless an appropriate evaluation
method is used. To reduce the impact of noise, the histogram curve can be smoothed with
a blur operator (i.e. a Gaussian kernel).

In this context it is also important to mention the optimal size of the filter kernel. While
for small images up to one megapixels a 3-pixel filter kernel is sufficient it is certainly not
adequate for a 10 megapixel image because it can no longer remove the large-scale noise.
An optimal filter kernel size must therefore be derived from the size of the input image in
order to adapt the filter kernel to the optimal relative size. In the reference implementation
a filter kernel size of n = d

50 proved to be useful for most images, where d is the current
image dimension (width or height), depending of the processing direction. Finally, the
peaks are obtained by mean shift clustering [CM02].

Post-processing of Extracted Offsets. In many cases the extracted offsets include dou-
bles, triples and higher multiples of the smallest offset to the first recurrence. If a pattern
is not uniformly spaced throughout the image, which means that there are differently sized
intervals between the re-occurring regions, it might as well happen that the extracted off-
sets contain combinations of those different offsets (see the annotations in Figure 4.8 for
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Chapter 4: Façade Image Segmentation by Similarity Voting

examples of multiples in a façade image). A simple but efficient solution to this problem
is to remove all offsets that are close to integer multiples of the smallest offsets.

4.4. Localization and Segmentation

We now know which patterns (given by their representative offset) are the prevailing ones
in the image. Now we want to determine the location of each distinct repetitive pattern and
its extent in the image.

4.4.1. The Similarity Curve

We again resort to an estimation using random sampling. The same multi-resolution simi-
larity measure as used in the identification step serves as the criterion for the relevance of a
specific pattern in a specific region. For every different offset the sampled data can be seen
as a similarity curve containing the similarity values for every pixel row y or pixel column
x in the image.

A horizontal similarity curve S(x,∆) for an offset ∆ is defined as follows: the image is
sampled at every pixel column x at N random locations yi. The mean over every pixel row
is the value of the similarity curve at pixel column x (see Figure 4.9):

S (x,∆) =
1
N

N

∑
i

ς (p(x,yi), p∆ (x,yi)) . (4.5)

The definition of the vertical similarity curve is analogous to the horizontal curve in that
for every image row y N samples xi are drawn.

The localization of the patterns is done by comparing the similarity curves for each relevant
offset against each other (see Fig. 4.9 top). By setting the curves in relation to each other, a
decision can be made which image regions “belongs” to which pattern. Moreover, regions
with very low similarity response to all major offsets are considered to be non-repetitive
image regions.

4.4.2. Segmentation

The segmentation algorithm iteratively decides what is the most dominant offset in the local
image region and then divides the image accordingly. The decision criterion for finding the
most dominant offset of the next region is the accumulative similarity. In other words, the
segmentation algorithm integrates over the similarity curve of every offset from the current
position to the offset. This means that we need to integrate over a different interval for
every offset. In order to be able to compare these accumulated similarity values against
each other they need to be normalized by the offset. The offset with the highest normalized
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4.4 Localization and Segmentation

Figure 4.8.: Demonstration of a number of possible multiples of offsets A and B which might ob-
scure the results of the histogram extraction. Two, three and four times multiples of an offset happen
quite often and can be easily removed by postprocessing.

accumulated similarity wins and the size of the hereby segmented region is the offset.
The current position advances to the end of this region and the algorithm enters the next
iteration.

The iterative segmentation is defined formally by the position of the next splitting line Li+1
based on the position of the current splitting line Li:

Li+1 = Li + argmax
∆

(
∑

Li+∆ j
x=Li

S(x,∆ j)

∆ j

)
, (4.6)

where ∆ j are the relevant offsets that have been extracted from the image. L0 is initialized
to 0 or to the first row or column that exhibits significant repetitive response on any of the
relevant similarity curves.

The highest value of the integral over the offset’s similarity curve normalized by dividing
through the offset is used to decide at which offset to set the next splitting line, so to say,
which offset represents the following region’s most dominant repetitive pattern best. As
this method cannot account for intervals of non-repetitive nature it is necessary to identify
the image regions where any of the offset’s similarity curve is below a certain threshold
(i.e., 0.3) and apply the iterative segmentation algorithm to the remaining repetitive regions.

A shortcoming of this segmentation method is the fact that an offset ∆ and its non-
fractional multiple N∆ , with N = 2,3,4, . . . , are treated as if they would represent com-
pletely different patterns, even if both offsets are occurring due to instances of a single
pattern. This results in systematic errors when offsets are fighting with their multiples.
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S121

S146

0

1

Figure 4.9.: Illustration of the iterative segmentation algorithm. For each iteration and each major
offset an integral Fi of the similarity curve Si is calculated. Since the integration is over a different
range for every offset, the resulting areas are normalized to allow a comparison. The offset with
the higher normalized area wins the voting for this iteration. In this example in the first iteration
the offset 121 is chosen, in the second iteration the offset 146 is selected, and so on.

Their similarity is quite equal yielding unstable results depending on the random num-
bers used for sampling. A possible solution is to modify the splitting function in order to
slightly prioritize smaller offsets over larger ones with a weighting factor:

ω(∆ j) = 1−
(

∆ j

min∆
ε

)
, (4.7)

where ε is a small penalty factor such as 0.2. Then the iterative segmentation function is
given by:

Li+1 = Li + argmax
∆

(
∑

Li+∆ j
x=Li

S(x,∆ j)

∆ j
ω(∆ j)

)
. (4.8)

The weighting function ω prioritizes the smaller offsets and hence effectively rules out
unwanted multiples if their singular offset is present with a high similarity value. On the
other hand, in case that an offset is the multiple of a smaller offset by accident but the
local image area does not exhibit any smaller pattern then the larger one would still have a
higher similarity value.

4.5. Results

In this section various aspects of the proposed façade segmentation method are examined
and presented. The given numbers and the discussion of the limitations of the approach
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should allow to conduct an objective judgement with respect to quality, correctness, ro-
bustness and performance of the method and its current reference implementation.

4.5.1. Performance

Performance comparison, time (s)
megapixel best match threshold

0,59 1,53 4,32
1,19 3,41 6,33
2,37 8,49 8,33
4,75 18,15 9,23
9,50 37,39 9,61

Figure 4.10.: Running time comparison.

All timings presented here were recorded
on a Intel Dual Core 2.4 GHz computer.
The performance comparison shows the
linear complexity of best-match sampling
vs. the constant complexity of threshold
sampling with respect to image resolution.
It suggests that the best match criterion is
best to be applied for small images while
the threshold criterion is best suited for
large images due to its constant complex-
ity. On the other hand, the results of best-match criterion are more precise, so best-match
sampling is better if high precision is required, i.e., for images where the distance of dif-
ferent patterns which should be distinguished is relatively low.

Best-match vs. Threshold criterion. The table in Figure 4.10 summarizes horizontal
segmentation performance of a façade image with different resolutions using threshold
sampling criterion with a threshold of 0.8 and 50.000 samples. The performance of vertical
segmentation is equivalent to horizontal segmentation.

Complexity. For best match sampling the complexity of the method depends on the
number of samples n and the resolution of the image m in pixels. The algorithmic com-
plexity for best match sampling is therefor limited by an upper bound of O(nm) while the
complexity of the threshold criterion depends solely from the number of samples taken.
The size of the input image does not significantly influence the performance of the thresh-
old criterion method. The algorithmic complexity for sampling with threshold criterion is
therefore limited by an upper bound of O(n), where n is the number of samples taken. If
the number of samples is considered to be a fixed constant (because the number of sam-
ples does not dynamically change once an appropriate number has been chosen), then the
complexity of “best match” is actually linear O(n) with respect to image size n and the
complexity of the threshold criterion is constant O(1) for increasingly larger images.

Impact of the probe size. The performance of this segmentation method is not only
dependent on the image size but also on the number of samples taken. Table 4.1 shows
the horizontal segmentation performance of a typical façade image with a resolution of
0.4 megapixels and different numbers of samples. For the threshold sampling criterion, a
threshold of 0.8 was used.
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Figure 4.11.: Performance comparison of the sampling criteria "best match" versus “threshold”.
The graph displays the running time of each sampling strategy as a function of image size.

Parallelization. The algorithm is parallelizable in several ways to leverage of the com-
putational power of contemporary multi-core processor architectures. For instance, one
could divide the workload of the sampling stage by the number of processors available p,
so that every thread takes N

p samples individually in order to get a complete number of N
samples. This approach does not require any synchronization between the independent pro-
cessing threads until the end when the histogram is evaluated. The individual histograms of
each thread can be merged for the extraction of the major offsets. Our experiments showed
clearly that allowing the algorithm to run on two cores yields the expected performance
gain by reducing the execution time to a half of the time needed on a single core.

4.5.2. Quality

The precision of the segmentation method presented in this work is given by the average
deviation from the exact solution on an appropriate number of test cases. For this purpose
the algorithm has been tested against a hand-crafted image with exactly spaced instances of
a pattern. The following table lists the average deviation of 50 runs each for both sampling
criteria as a percentage of the exact solution.

The slight fuzziness of the segmentation results are due to the applied Monte Carlo random
sampling. For example, if the windows on a façade image are spaced by an offset of
300 pixels, then a 2% deviation means that the resulting detected offsets may be off by 5
pixels. The relative representation of the error as percent of the exact result has been chosen
because the absolute error grows proportionally with the absolute size of the patterns.
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Resolution independence. The current implementation is able to successfully segment
façade images starting from a lower limit resolution of 100 kilopixels up to extremely
large images which are bound only by the memory capacity of the machine. Due to the
adaptive multi-resolution sampling the segmentation results are very stable for an image
under extremely different resolutions.

All parameters are defined relative to image dimensions. The advantage of such an ap-
proach is that the algorithm automatically adapts to the resolution of the input image and
yields correct results without tweaking any parameters.

Of course, results are always more precise on high-resolution images. It may happen, that
on low-resolution images not all offsets are measured correctly because they are either
smaller than the smallest correlation window in the image pyramid or they are too close
to other offsets and their peaks are merged during histogram smoothing. For good results
a minimum resolution of one megapixel is suggested for use of this method, although in
certain cases it has been observed to work quite well with much lower resolution images.

Robustness to Gaussian blur. The robustness with respect to typical image damage is
demonstrated by showing the results of tests against incrementally more blurry and noisy
versions of the same picture. The following table compares the robustness to blurriness of
the best match sampling method with the threshold method.

Under extreme blurring the importance sampling strategy fails and too few samples are
drawn. This is due to the method’s focus on image discontinuities such as edges and
corners. With increasing blur such image features vanish. Nevertheless, the method can be
considered robust against blurriness.

Robustness to random noise. The following table compares the robustness of the best-
match sampling method against the threshold method with respect to overlaid random
noise.

Obviously the two different sampling methods behave completely different with random
noise applied to the input images. The best-match sampling criterion is extremely robust
and is even under heavy interference with random noise able to find the regular pattern
beneath. Threshold sampling, on the other hand, is quite fragile with noisy images. This
is due to the fixed similarity threshold criterion, which must be fulfilled for each sample in
order to be stored in the histogram. In order to perform well with degrading image quality
and noise, this threshold would need to be adapted dynamically. This would be a possible
subject of further improvement. In Figure 4.13, bottom row we demonstrate the robustness
of the segmentation algorithm on a real-world image – the algorithm reliably detects the
repetitive pattern even though it is heavily obscured by blur and irregular vegetation.
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Figure 4.12.: The test images: under Gaussian blur with different radii (top) and under increasing
levels of random noise (bottom).

4.6. Conclusions

We have proposed a novel method for fast recognition of repetitive patterns along horizon-
tal and vertical axes of the image. The method is entirely based on the assumption that
explicit analysis of the image content could never lead to a generalized method and that
measurement of repetitive similarities is enough to identify and segment façade elements.
As the results show, this approach was successful, both in a reliable and efficient man-
ner. However, by using only information on the translational symmetry of a set of random
image locations it is not possible to discriminate certain areas as background signal and
identify others as foreground. In other words, by not analyzing the content we are not
able to identify any concrete objects in the image or distinguish them from uninteresting
background noise.

For future work we see room for speed improvements of the Monte Carlo sampler by
applying more sophisticated importance sampling of the underlying PDF. An additional
possible extension is the introduction of a finer similarity measure for windows based on
local reflective symmetry, which is extensively present on common facades.
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4.6 Conclusions

Figure 4.13.: Results. The red lines indicate the grid that has been automatically detected on each
façade (best seen in color).
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Best match criterion Threshold criterion
samples time (s) correct samples time (s) correct

2 0,07 no 50 0,008 no
5 0,2 no 500 0,07 no

10 0,57 yes 1.000 0,12 no
20 0,81 yes 2.000 0,25 yes
40 1,64 yes 5.000 0,71 yes
60 2,19 yes 10.000 1,29 yes
80 3,15 yes 20.000 2,63 yes

100 3,99 yes 50.000 6,59 yes
200 7,01 yes 100.000 12,91 yes
500 18,87 yes
1000 36,67 yes

Table 4.1.: Probe size dependence.

best-match threshold
average error 1.67% 1.66%

standard deviation 0% 0.35%

Table 4.2.: Precision. See description in the text.

radius best-match correct threshold correct
1 yes yes
2 yes yes
5 yes no

10 no no

Table 4.3.: Robustness to Gaussian blur.

noise (%) best-match correct threshold correct
50 yes yes
100 yes no
200 yes no
400 yes no
600 no no

Table 4.4.: Robustness to random noise.
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5. Façade Image Segmentation by
Clustering

In this chapter we introduce a novel, data driven method to infer distributions of rectilinear
grids over a simple, orthographic-rectified façade image inspired by unsupervised learning
methods like data clustering. The resulting tilings can be arranged hierarchically and serve
as a starting point for a interactive modeling process.

5.1. Introduction

In this chapter we introduce a novel approach for deriving structure of building façades
directly from one approximately orthogonal image∗. Our method is based on the observa-
tion that most architectural objects and its sub elements, such as windows, doors, quoins,
ledges, pilasters, etc. have a simple structure favoring the rectangular shape. Thus, we
preprocess the input façade photographs to be well aligned and introduce a novel way of
interpreting them: we treat them directly as data matrices. Figure 5.1 illustrates this idea,
such that an image can be seen either as rows or as a columns of data points.

Looking at a façade from this point of view allows us to apply algorithms designed for
analysis and mining of high-dimensional data such as cluster analysis and dimensionality
reductions [HTF09]. This analysis provides us the global information about the distribu-
tion of the structure of the façade and gives us the clue for further processing in finer steps.
In particular, after clustering and segmentation of the rows or columns we obtain the dis-
tributions of the floors or windows. We combine the results of the horizontal and vertical
directions and obtain a façade decomposition into a rectilinear grid. This representation
can also be seen as planar tiling (see Figure 5.3).

5.2. Façade Approximation

As mentioned, we treat rectified façade photographs directly as matrices. In particular, we
take the input façade of the size m×n, where n = number of columns and m = number of

∗In Chapter 3 we propose a method for how to obtains such an image from a set of photographs. Alternatively,
in Appendix A we show a simple single-view approach to this problem.
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Figure 5.1.: Façade images can be interpreted directly as matrices. Those contain either n-column
vectors or m-row vectors.

rows of pixels. We consider the rows and the columns of the image as vectors, such that
the columns are n−vectors ∈ Rm space and rows are m−vectors ∈ Rn space:

X =
[
c1 . . .cn

]
m×n =

rT
1
...

rT
m


m×n

.

This idea can be easily extended to color-images, where the dimensionality of each space
grows by the factor of 3 and we concatenate the color-elements to one vector. In the case
we want to represent the façade-data in an other color space (e.g. RGB, LUV, YCC, XYZ),
we can first convert the image to the desired color space and then create the vectors. This
is due to that the ordering of the data is basically independent of the color space. In the
following we will refer to the actual data-vectors (feature-vectors, data-points, variables or
observations) as row-vectors xi of the data matrix X independently of the actual chosen
façade orientation. The actual elements x ji of the variables will be referred to as attributes
(properties, dimensions).

5.2.1. Preprocessing

Gradient Suppression. The façade image’s illumination gradient can adversely affect
the quality of the vectors used in clustering. In order to suppress it, we carry out a technique
from mathematical morphology called the white top hat function h(I) [Mey78]. Given a
grayscale image, the white top hat transformation is performed by subtracting the opened
image from the original: h(I) = I− γ(I). The morphological opening of an image em-
phasizes the dimmer areas of the image. Subtracting the opened image from the original
amounts to favoring the reduction in intensity of brighter areas in the original. For color
images we carry out the white top hat separately on each of the three image channels.
Since the local intensities of the opened image are close to those of the original, simply
subtracting the opened image from the original can lead to contrast reduction arising from
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(a) (b) (c) (d) (e)

Figure 5.2.: Overview of the clustering procedure: (a) the input data X is clustered by either (b)
K-means or more sophisticated spectral clustering methods (refer to Section 5.2.2). The result of
this stage (c) is then post-processed by 1d graph-cut segmentation algorithm (d), which minimizes
the “length” of the boundary between the clusters. This results in removing of isolated points in
the clusters (e).

inadequate numerical precision. Instead, We subtract only half of the per-pixel intensity of
the opened image from the original and then add back the average intensity of the halved
opened image to the difference image. Moreover, we found that carrying out a light Gaus-
sian blur (σ = 9) on the opened image (opened using a 7× 7 square structuring element)
results in better looking results than by relying on morphological opening alone. While
component-wise operations such as this one can alter the color balance of the image, we
have found that gradient suppression leads to better performance in the clustering step.

Dissimilarity. In order to measure the distance of particular feature vectors we need to
define a metric that will allow us to compare particular features. In fact, specifying an
appropriate dissimilarity measure is far more important in obtaining success with clustering
than choice of clustering algorithm [HTF09].

In our case, the features are vectors containing color information in each attribute. This
kind of data lies in a metric space, where two range values can be compared by the dis-
tance d j

(
x ji,x ji′

)
= ‖x ji− x ji′‖. Distance of two feature vectors xi and xi′ is the (possibly

weighted) sum of their components. Di,i′ = ∑
p
j w jd j‖x ji,x ji′‖ = ‖xi,xi′‖, ∑

p
j w j = 1 . In

our case we usually use either the Euclidean distance ‖·‖ssd or normalized cross correlation
‖·‖ncc.

5.2.2. Clustering

We treat the vectors as data-points in a high-dimensional features space and use this rep-
resentation for the analysis of the façade-image. Here we resort to mathematical methods
of unsupervised learning, where the goal is to directly infer properties of the data-set and
the underling probability density function (PDF) without any knowledge of correct data-
samples or degree-of-error. In order to solve such problems the tool of choice is cluster
analysis, which aims at grouping or segmenting a set of feature-vectors into subsets or
clusters, such that features within one cluster are more closely related to each another than
those assigned to other clusters [HTF09].
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K-Means. One of the most known and widely used clustering algorithms is the K-means
method. Its basic idea is straightforward: let the set X = {x1, . . . ,xn} be all points in the
data matrix X. Given a random initial partitioning into K clusters, compute the centroid of
each cluster Ck. The clusters are determined by minimizing the sum of squared errors:

Ek =
K

∑
k=1

∑
xi∈Ck

‖xi−mk‖2
2 −→min,

where mk =
1
nk

∑i∈Ck
xi is the centroid of the cluster Ck with nk points within. Then for each

data-point xi in a particular cluster, check whether there is another centroid that is closer
than the present cluster centroid. If that is the case, then a redistribution is made. The
algorithm usually has rather fast convergence, but one cannot guarantee that the algorithm
finds the global minimum. The simplest heuristic to address this issue is to re-run K-
means a chosen number of times, and to keep the solution with the best minimization
result [HTF09].

Spectral Clustering. Spectral clustering is a generalization of standard clustering meth-
ods, and it is designed for situations where the data-points are not lying in convex clusters
that can be grouped by spherical or elliptical metric. In spectral methods the actual cluster-
ing problem is casted as a graph partitioning problem, where we identify connected com-
ponents with clusters. The data-points are represented as nodes and the similarity between
the points represents the weights on the graph edges.

The simplest representation of such a graph is the adjacency matrix A that is a n×n sym-
metric matrix where each element wi j equals 1 if there is an edge between nodes i and j
or 0 elsewhere. A more accurate representation is the affinity (also referred as similarity)
matrix W, where each element wi j stores some weight on the edge between nodes i and j.
Usually the weight is computed as a radial-kernel Gram∗ matrix, which is

wi j = exp
(
−d2/σ

2)
with σ > 0 that is a scale parameter.

Now the graph can be partitioned, such that edges between different groups have low
weight, and within a group have high weight. This structural relation is characterized
by the spectrum of the graph, which can be obtained from the graph Laplacian matrix L.
To construct it, first one needs the diagonal degree matrix D, whose each (i, i)-element
is the sum of each row of W. From the degree matrix and the similarity matrix one can
construct the Laplacian matrix, where there are several possible approaches to define it

∗Gram matrix is the matrix of all possible inner products of a set of vectors.
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}
Figure 5.3.: Clustering in both directions performed independently.

(see [Lux07, WZ08] for an overview). For our purpose we have found that the normalized
combinatorial Laplacian matrix as presented in [MS01] delivers best results:

L = D−1W .

The spectrum of the graph is obtained from the eigen-decomposition L = ZVZ−1, where
the diagonal of V contains the eigenvalues and the columns of Z are the eigenvectors of
L respective. Note that Z is orthogonal. Depending on the number K of expected clusters
one needs to compute only K eigenvectors corresponding to the K-largest (or smallest
depending of the definition of L [NJW01]) eigenvectors. Now the eigenvectors form a
matrix U of the size m×K and its rows can be interpreted as m points ∈ RK space, which
can be now separated by ordinary K-means method. Finally we can assign each cluster
label of each of those points to the original points in the matrix X. Obviously, since we are
working with very few clusters (usually 2-10) spectral clustering turns out to be, besides
its other properties, an effective tool for dimensionality reduction.

5.2.3. Segmentation Optimization

Clustering the façade horizontal or vertical image line vectors into K clusters and then
labeling each vector according to its corresponding cluster does not guarantee that the
labeling turn out to be spatially coherent, as illustrated in Figure 5.2 (c). Here we denote
the image space along the horizontal and vertical axes as the spatial domain – in other
words the order of the pixels in the image. This is due to the fact that neither the used
metric nor the clustering algorithm itself take the spatial distribution of pixel-rows (or
columns) into account.

Thus it is not ensured that similar pixel-rows in the sequence are grouped together into one
cluster. In order to consider this issue, we reformulate the problem as a 1d Markov Random
Field (MRF) and optimize the result of the clustering stage iteratively, such that pixel-rows
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which are single (potential outlier) in the spatial domain are assigned to the nearest cluster
with respect to both feature-space and spatial metric. In other words, we apply a “local
force” on the pixel rows (columns) which holds coherent spatial gropes together and a
“global force” that keeps account of proper clustering. Both forces are balanced such that
we obtain an approximate optimal global solution for this problem.

Suppose we have a labeling problem where the task is to assign to each image row (or
column) xi some label from a finite label set L containing K labels. Let X be the set of
all rows (columns) in the façade image and f (x) the label assigned to the row x. Further,
let f = { f1 (xi) , . . . , fK (xi)}n

i=1 ∈ F be the collection of all possible labelings. Now we
solve for the optimal labeling using the α-expansion algorithm [BVZ01] by minimizing
an energy functional E over all possible horizontal (or vertical) image line vector labelings
[KZ04, BK04];

E( f ) = Edata( f )+λ ·Esmooth( f ) −→min,

where λ expresses the relative confidence in the two terms of E. We define the data term
Edata( f ) of E to express the cumulative distance of each image line vector xi from its
assigned cluster centroid m f (xi),

Edata( f ) = ∑
xi∈X
‖xi−m f (xi)‖,

where X = {x1, . . . ,xn} and ‖·‖ is either ‖·‖2 or ‖·‖ncc. We define the smoothness term
Esmooth( f ) of E to promote spatial coherence for the cluster labels of adjacent image line
vectors,

Esmooth( f ) = ∑
{xi,x j}∈N

{
1 if f (xi) 6= f (x j)
0 otherwise,

where N is the set of all adjacent pairs of image line vectors {xi,x j} ⊂ X . Applying
this optimization after clustering allows to correct iteratively the initial guess under the
consideration of spatial coherence. Figure 5.2 (e) depicts the result of this regularization
technique.

We apply the segmentation algorithm independently on both horizontal and vertical direc-
tions and combine the results into a grid as shown in Figure 5.3

5.3. Results

In this section we present several results of the clustering driven subdivision process. The
value of K mirrors the number of “different” types of elements which appear in one direc-
tion of the façade. We usually choose the number of cluster K to be 2, which splits the
image in “window” and “non-window” regions. In fact it depends on the façades’ struc-
ture. In Figure 5.5 we show three examples of typical façades decomposed into a grid with
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the value of K = 2 in the horizontal direction. In the vertical direction, we usually use
the value of K = 3 that decomposes the façade in “window”, “non-window” and “ground-
floor” elements.

In Figure 5.4 we show an example of hierarchical splitting of the façade. First it has been
decomposed in three regions: roof, floors and ground-floor. Than a separate tiling has
been applied to each region. Currently we are providing the information of the number of
clusters manually.

5.4. Conclusions

We presented an novel algorithm for robust façade segmentation based on unsupervised
learning methodology. It performs on orthogonal and rectified façade imagery and provides
quite stable segmentations without the usage of the notoriously error prone local edge
detection. Our method involves global information and thus provides best segmentations
with respect to the whole façade image. Its current limitation is the problem of the choice
of the number of clusters which has to be selected by the user.

In future we plan to extend this approach to a inverse procedural modeling tool (cf. Section
2.6) such that the system will automatically obtain an appropriate value for the number of
elements. We believe that rule sets, similar as proposed, e.g, by Aliaga et al. [ARB07], can
be defined for a wide set of typical façades. We also want to encode the hierarchy which
can be imposed over the façade model in a set of procedural rules. These will be than
automatically chosen accordingly to the information obtained by the proposed clustering
algorithm. Also its parameters will be derived in order to best fit the given façade image.

We believe that such automatic systems, combined with minor higher-level knowledge
from the user, such as the number of potential clusters, will provide further contributions
to the field of inverse procedural modeling.

Figure 5.4.: Example of hierarchical clustering, where the roof, middle and ground-floors have
been subdivided with an own set of parameters.
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Figure 5.5.: Examples of the segmentation algorithm. Clustering in both directions performed
independently followed by Graph-Cut regularization. In all three cases the number of vertical
clusters has been set to K = 2. In the upper example also the horizontal K = 2, the second and
third example has the horizontal K = 3.
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Figure 5.6.: Further results of the segmentation algorithm performed on various façade images.
We used different combinations for the values of K but restricted it always only to 2 or 3 clusters.
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6. Façade Image Enhancement

In this chapter we address the problem of removing unwanted image content in a single
orthographic façade image. We exploit the regular structure present in building façades
and introduce a diffusion process that is guided by the symmetry prevalent in the image. It
removes larger unwanted image objects such as traffic lights, street signs, or cables as well
as smaller noise, such as reflections in the windows. The output is intended as source for
textures in urban reconstruction projects.

6.1. Introduction

This chapter introduces a special image-processing method based on symmetry propaga-
tion. The proposed algorithm takes a single ortho-rectified façade image as input and tries
to remove unwanted content, such as wall impurities, cables, and street signs (Figure 6.1).
While this approach is similar to image in-painting in some respects, our goal and method-
ology are fairly different. First, we do not want to manually mark the irregularities by hand
before removing them, but we would like to identify them automatically. Second, the focus
of our algorithm is not a smooth transition or texture propagation from nearby regions, but
structure propagation from detected symmetries. In principle, our algorithm is general and
removes irregularities over a regular structure. While there are several potential applica-
tions for such an approach, the main motivation and probably most important use is the
processing of façade images. Façade images are a vital component of three-dimensional
urban reconstruction and we see applications in areas such as Internet and car-based map-
ping technology, urban simulation, and computer games.

Our contribution is twofold. First, we detect regular structures using a combination of
Monte Carlo sampling and user interaction. Second, we use a diffusion-like process that
tries to smooth across symmetries. It is a novel image processing technique that utilizes
spatial symmetry in order to minimize asymmetric variations inherit in the image.

6.2. Overview

The basic idea behind this work is to exploit the repetitive occurrence of façade elements
to reconstruct its clean and most plausible appearance. In order to handle the repetitive
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Figure 6.1.: The input image on the left contains a traffic light and several cables. To the right we
show the result of our algorithm with the unwanted objects successfully removed.

nature we introduce the concept of a global symmetry neighborhood, which provides some
basic information about the actual image. While there is conceptually no limitation on the
topological complexity of the neighborhood-graph, we currently assume that the supplied
image has strong translational and reflective repetitive elements as in the case of a building.

In section 6.3 we introduce a basic method to automatically determine the dominant sym-
metry in an image. The method is based on a Monte Carlo importance sampling strategy
of image patch pairs and histogram evaluation and it yields the translational and reflective-
translational symmetry in the rectified image.

In section 6.4 we introduce a novel method that utilizes the inherent symmetry in order to
reconstruct the façade image. Missing or occluded elements, clutter and damage as well
as small perspective distortion are dislodged and replaced by the information that can be
accessed over the symmetry neighborhood in the entire image.

In section 6.5 we present and discuss restored façade images and finally we conclude our
work in section 6.6.

6.3. Symmetry Detection

In our context, we define symmetry as a transformation T on an image. Given a pixel
location x of the input image I, we define T such that

I(x) = I(T(x)) (6.1)

where I(x) denotes the intensity or color vector at x. As T we consider the 2-dimensional
translations and reflections along the x-axis.

The goal of this stage is to determine the parameters of dominant transformations in the
image automatically. For this purpose we refer to the algorithm presented in Chapter 4,
which is a histogram voting scheme. The peaks of the histograms identify translational and
reflective offsets in the image which occur most often and can be considered dominant. We
use the dominant repetitions to define the transformations T for each pixel in the image.
This allows us to define a symmetry neighborhood in form of a regular grid as depicted
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Output ImageInput Image Region Mask Symmetry Sampling Symmetry Diffusion

Figure 6.2.: This figure shows an overview of the system. We take a single façade image as input I.
For the case that the image does contain strongly asymmetric parts, we allow the user to define a
region of interest. In this region we detect the dominant translational and reflective symmetries and
propagate the symmetry over the image automatically.

in Figure 6.3. Depending on the actual application, we can use all symmetry neighbor,
or only those which lie either in horizontal or vertical or both direction to the current
position. In praxis it has turned out that only these neighbors result in adequate coverage
of the symmetry neighborhood.

6.4. Symmetry Propagation

6.4.1. Motivation

The symmetry propagation stage is the actual heart of our algorithm. Our idea behind this
approach is motivated by the classical non-linear diffusion filter as presented by Perona and
Malik [PM90]. They presented a powerful method for discontinuity-preserving smoothing
and denoising of images based on a divergence equation

∂ I
∂ t

= div(g(‖∇I‖)∇I) , (6.2)

where g(x) is a flux-stopping function, which constrains the diffusion to pixels which have
respectively small difference in range. It is usually of the form

g(x) = exp
(
− x2

2σ2

)
where x denotes the distance in the range. Later it has been shown [Bar01,Bar02] that this
solution is also equivalent to the bilateral smoothing filter [TM98]. Hereby the basic idea
is to apply a constrained Gaussian filtering to the image, such that steep range transitions
become preserved. As a constraint an edge-penalty function has been introduced, which
acts in principle the same way as the flux-stopping term mentioned above. The bilateral
filter in a local neighborhood Nx of a pixel x in image I can be stated as:

I′x =
1

Wx
∑

y∈Nx

gs (‖x− y‖)gr (|Ix− Iy|) Ix , (6.3)
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Figure 6.3.: Symmetry Neighborhood. Blue circles denote symmetry neighbors of the red one.

where
Wx = ∑

y
gs (‖x− y‖)gr (|Ix− Iy|)

is a normalization term. There are two Gaussian functions in this equation: the usual gs

acting in the spatial domain and gr applied on the range between the actually pixels values
Ix and Iy. The subscripts s and r denote the standard deviations σs and σr of the respective
Gaussians. The result obtained is an image smoothed only in regions where the range
difference is small enough to be emphasized by Gr.

More recently, non-local means filtering has been proposed as a new class of solutions to
the image denoising problem [BCM05, BCM07, DFKE07]. It is based on the observation
that pixels with similar neighborhood usually appear quite often in an image. Non-local
filtering exploits this observation by computing a noise-reduced image by weighted aver-
aging of many similar pixels:

I′x =
1

Wx
∑
y∈I

w(x,y) Ix . (6.4)

The term Wx = ∑y∈I w(x,y) is the normalizing constant, such that all w(x,y) ∈ [0,1] and
∑y w(i, j) = 1. The weights w are computed according to the squared Euclidean norm of
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Figure 6.4.: Recursive rejection of outliers. From left to right, at each step the point with the
biggest distance to the mean (blue point) is removed and a new mean is computed, until the change
is smaller than a given threshold.

local neighborhoods Nx and Ny, respectively. Writing the respective neighborhoods as
vectors x and y, the distance penalty function once again has the form:

w(x,y) = exp
(
−‖x−y‖2

h2

)
.

The parameter h acts as a degree of filtering [BCM07].

6.4.2. Iterative Symmetry Propagation

The approaches mentioned act (either locally or globally) on pixel neighborhoods in order
to approximate a new image that is nearly noise-free, while a Gaussian penalty function is
a common ingredient of these methods.

Our symmetry propagation algorithm is inspired by both bilateral- as well as non-local
filtering. The main difference is that methods mentioned above aim at image repair by
removing of noise that is a consequence of deficiencies in signal processing. We call it
intrinsic noise. In contrast, our aim is the removal of both the intrinsic image noise as well
as the extrinsic noise, e.g., traffic lights, cables, vegetation, missing elements and other
interferences that are inherent in real world data. It is evident that the second class of
noise can be removed only under certain circumstances: (1) there must be enough repeated
content in the image and (2) there must be a strategy how to localize that information.
The first one is a general assumption that for each location to be repaired there is enough
information in the image which can be reused. For the second we resort to the symmetry
and expect that the feasible information is arranged in a manner which can be expressed in
terms of symmetry transformations T of the form I(x) = I (T(x)).

In section 6.3 we have presented an elementary symmetry detection scheme. Having de-
termined the global symmetry, each pixel x in the image corresponds to a number of other
pixels which can be addressed by the symmetry transformation T (see Equation 6.1). We
shall refer to those pixels as the symmetry neighborhood Sx of the image location x. By the
application of T, it is possible to collect other neighbors and to obtain a set of points, which
all correspond to a similarity in the image. Depending on the collection scheme, either all
or only a subset of all possible symmetry neighbors can be accessed (see Fig. 6.3).
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Having this information at a pixel, we now compute its actual consistency with its symme-
try neighbors. Here we use different local neighborhood Nx as in the symmetry sampling
stage from section 6.3. We have determined empirically that sizes between 3× 3 and
11×11 deliver reasonable results for our input images. With Nx as a vector x of intensity
values we can compute the mean vector for all points xi ∈ Sx with n = |Sx| as

x̄ =
1
n

n

∑
i

xi .

If we would like to apply unconstrained symmetry propagation to the image, the actual
new color value for the output pixel I′x would be the middle element in x̄, which also
equals the simple average color over all symmetry neighbors. But we are interested in
some constraints, which will allow us to determine which of the pixels belong to the most
symmetric façade image and which are potentially clutter. Following the first assumption
that the majority of the pixels in Sx contain valid values, we introduce a scheme inspired
by Expectation Maximization to reject outliers. It utilizes the fact that if there are more
valid pixels they will also be more similar and thus lie denser to each other in the space
defined by the local neighborhood vectors xi. In this case we define the outlier as the point
which has the biggest distance to the mean x̄:

xi = argmax
xi∈Sx

K
(
‖xi− x̄‖2) , (6.5)

where K is a Gaussian kernel. Now we can remove the i-th vector from Sx and recompute
the mean x̄. We define the difference of the mean as:

mi+ =
∑i xiK

(
‖xi− x̄‖2

)
∑i K (‖xi− x̄‖2)

− x̄ , (6.6)

which is basically the mean-shift [CM02]. We use this vector to determine maximal mode
of the distribution of the points in the Sx. We proceed iteratively until either the mean x̄
does not change more than a given threshold ε or only one point is left in Sx. We measure
the change as |m|, which gives a indication how much does the pixel alters after each
iteration. Using a sufficiently small ε this procedure delivers the most dense cluster of the
symmetry neighborhood (see Fig. 6.4).

To determine the final color of the output pixel we additionally apply bilateral filtering over
the local neighborhoods remained in Sx after the optimization, such that the output pixel
value is:

I′x =
1

Wx
∑
S

∑
N

gs (‖x− y‖)gr (|Ix− Iy|) Ix , (6.7)

where Wx is an appropriate weight according to equation 6.3. We do this in order to smooth
possibly remaining variations caused by inaccuracy of the symmetry transformation.
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6.5 Results

Image parts, which violate the detected symmetry are replaced by pixels which become
amplified by strong symmetry. In case of strong asymmetries some of them can still remain
in the image after the first iteration. In this case we apply further passes of the algorithm
until no more changes can be observed in the image. This is usually already the case after
the second iteration, as shown in Figure 6.5.

6.5. Results

We have implemented the algorithm in a mixture of C# and MATLAB and ran it on an
Intel Core2 Quad Q6600 @ 2.4 GHz, 8 GB RAM and Vista64 computer. We show image
pairs of input façades and the result of our symmetry propagation in Figures 6.6, 6.7 and
6.8. The running times for the first four examples are reported in Table 6.1. Note that the
running time depends not only on the size of the image, but also on the number of symmetry
neighbors and the degree of distortion. On images with a large symmetry neighborhood
the running time takes up to several minuets. As an example observe image #3, whose
running time is shorter than, e.g., image #2 in spite of the former’s lower resolution. This
is due to the quite large symmetry neighborhood of the façade and the variable number of
iterations of the outlier rejection routine.

The last example in Figure 6.9, depicts a failure case of our algorithm. In the upper story
the outlier rejection method could not determine the actual wall color coherently.

6.6. Discussion and Conclusions

6.6.1. Limitations

The optimization technique presented in section 6.4 does not always converge to an opti-
mum. While this is usually not a big problem, the bad situation occurs when the symmetry
neighborhood of a pixel contains two or more (roughly) equally balanced clusters. In this
case it is not guaranteed that the algorithm converges to the right configuration. Further-
more, neighboring pixels might converge at different clusters, which yields strong artifacts
in the image, as shown in Figure 6.9 (septically the upper story of the building). We are

Image 1 2 3 4
resolution 1140x1420 1802x1160 990x1400 548x884

3×3 4.3 8.5 12.2 3.1
11×11 41.7 61.2 87.8 34.1

Table 6.1.: Comparison of the running times (given in seconds) for the first 4 images presented in
Figures 6.6 and 6.7. The images were computed with a local neighborhood of 3× 3 and 11× 11
pixels over 5 iterations.
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currently working on an improved optimization method for our algorithm as well as on a
more flexible symmetry detection strategy.

6.6.2. Conclusions

In this chapter we presented a method to remove irregularities in a single approximately
orthographic façade image using a symmetry propagation process. The symmetry is first
detected using Monte Carlo sampling and encoded in a symmetry neighborhood. The
symmetry is then propagated while performing edge-preserving smoothing on the image.
This method can remove unwanted features, such as traffic lights, cables, signs and cars
that are typically present in a façade image. It is not necessary to manually segment the
unwanted image elements prior to running the algorithm, except for providing a coarse
region mask. The output is intended to serve as input to rendering pipelines such as, e.g.,
Ali et al. [AYRW09]. We believe that our work is a useful solution to an important image
processing step necessary in urban reconstruction projects.

Figure 6.5.: Left: An artificial test image with high symmetry (with a symmetry confidence map).
Middle: The distortion has been removed in two iterations. Right: The ground truth.
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Figure 6.6.: We show image pairs of input façades and the result of our symmetry propagation.
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Figure 6.7.: We show image pairs of input façades and the result of our symmetry propagation.
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Figure 6.8.: We show image pairs of input façades and the result of our symmetry propagation.

Figure 6.9.: A failure case of our algorithm. In the upper story the outlier rejection method could
not determine the actual wall color coherently, which results in destroyed structure of the original
image..
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7. Conclusions and Outlook

In this dissertation we propose a set of algorithms for processing of façade imagery in the
context of urban reconstruction. The aim of the algorithms is to provide improvements to
the current state-of-the-art in the generation of high-quality façade textures. In particular,
we show that we can generate high-quality images which are not possible to be taken by
conventional image acquisition techniques.

7.1. Conclusions

In Chapter 3 we present a complete pipeline for generating of orthogonal façade images.
We show the details of the approach and propose a solution, where we combine image
processing and reconstruction algorithms, such as structure-from-motion and poisson im-
age blending, and build novel approaches on top of this methodology in order to remove
obstacles in the façade image. One of them is automatic based on a heuristic, the two oth-
ers are user assisted. It turns out that even if the automatic approach often provides very
good results, in order to achieve the best quality, user interaction is a necessary tool of the
pipeline. In this context it has to be mentioned that user interaction in modern computer
assisted vision applications can be implemented in a very efficient and subtle manner. The
goal should be to provide the user simple interaction tools, like brushes which can be used
even by an unskilled user.

Another key contribution of this thesis are two approaches to façade segmentation. The
method presented in Chapter 4 is based on random sampling of image features in order to
detect dominant repetitions. It is inspired by the family of symmetry sampling algorithms
based on voting schemes. Our method introduces simplifications which take the specific
properties of the rectangular nature of façades into account.

The novel approach for façade segmentation presented in Chapter 5 introduces a method
not documented in the literature before. It is inspired by matrix factorization, data mining
and generally by the linear algebra of the field of unsupervised learning [HTF09]. Our
method provides a simple yet impressive way to segment architectural (thus mainly rectan-
gular and axis-aligned) imagery very efficiently. We believe that this approach will serve
as a basis for further urban modeling solutions.



Chapter 7: Conclusions and Outlook

In general, the problem of façade segmentation is much harder than expected. The main
reason is that it is not clear if there exists a general top-down model for all façades. More-
over, this task naturally suffers under the “chicken or the egg” dilemma and it is in general
an unsolvable task. Segmentation algorithms depend on the context, and this is an impor-
tant conclusion of this work. We have taken this issue into account and propose methods
that exploit special higher level knowledge in order to solve the problem and, if necessary,
minimal user interaction. We believe that this strategy is the optimal one if the goal is the
generation of high-quality segmentations with a minimal number of errors.

In Chapter 6 we present a novel image processing method which we call symmetry prop-
agation. This idea is inspired by both the rectangular and the repetitive nature of façades.
We develop the theory behind the method and show its effects on a number of orthogonal
façade images. Our basic idea is quite general and the removal of occlusions by the means
of symmetry information is a vital idea that inspired others in order to process laser scan
data [ZSW∗10]. Architectural imagery is ideally suited for such approaches, but also other,
more general image processing algorithms that exploit this clue are still under development
[CZM∗10].

Additionally, the presented dissertation provides a comprehensive overview over the wide
spread and rather young research field of image-based modeling and reconstruction. It
intentionally balances on the border between graphics and vision in order to grasp the
best of both worlds – the quality of graphics and the automation of vision. Even if this
is not fully possible, we believe that this research direction is target-aimed and leads to
successful development of next generation interactive image-based modeling tools for the
virtual reconstruction of our world.

7.2. Outlook

This thesis is the result of over three years of research on the topic of image based-urban
reconstruction. The presented contributions as well as the extensive studies of a huge col-
lection of related literature allows us to provide an outlook into the future of the addressed
research field.

Urban reconstruction is by far not solved yet. For the future there is still a lot of work to be
done. Even if there has been significant progress in the field of single-image and recently
also in multi-image processing, such robust methods actually open the door for further,
advanced image processing algorithms.

Segmentation by matrix factorization is an unexplored topic. The approach in this thesis
gives a seeding building block for this topic, but we believe that higher-order knowledge
of architecture in combination with image segmentation in context of unsupervised, robust
methods is a promising combination and will provide solutions in the future.

However, a probably even more undeveloped topic is inverse procedural modeling. For
urban reconstruction grammar driven approaches promise semantic segmentation, but the
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approach is still not well defined and an automatic solution is in its infancy. Nevertheless,
we believe that this approach has a future in reasonable time.

One essential problem is the integration of the research on the reconstruction of the world.
Besides the concurring global commercial companies, there is also a slight divergence in
the scientific fields. We mean here the parallel research in the computer science disciplines
(CG and CV) and photogrammetry and remote sensing field. In particular, problems of
storage, GIS, GPS and geo-registration as well as the cooperation of researchers of com-
puter sciences and photogrammetry and remote sensing could be improved. This thesis
tries to contribute to this idea by providing an interdisciplinary literature review composed
of works of all of the mentioned fields.
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A. Homography

A homography is an invertible transformation from one projective plane to another which
is characterized by mapping straight lines to straight lines. Homography is also termed
collineation, linear projective transformation or projectivity in the literature. Any two
images of the same planar surface (i.e. a flat building facade) are related by a homography.
Given a point pa on surface a and a corresponding point pb on surface b and a homography
matrix H which represents a bijective projection between the planes a and b:

pa =

xa

ya

1

 ,p′b =
w′xb

w′yb
w′

 ,Hab =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (A.1)

then either point on one of the surfaces can be expressed as the matrix product of the
homography matrix H and its corresponding projected point on the other surface:

p′b = Habpa (A.2)

An important property of this transformation is its bijectivity. It means the projection can
be reversed by the inverse homography matrix.

Hba = H−1
ab (A.3)

Note that matrix multiplication can not directly express a division. This is why the homog-
raphy can only be described as matrix operation in projective geometry where the points
are represented as homogeneous coordinates. The result of the matrix multiplication in
equation A.2 p′b in general consists of a homogeneous component other than 1. In the
mathematical concept of projective geometry p equals p′b. However, if we want values that
are equal to euclidean 2D coordinates we just need to divide through the homogeneous
component w of the vector and ignore the third coordinate which is 1.

pb = p′b/w′ =

xb
yb
1


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Calculating the Homography from Corresponding Image Points Using the homog-
raphy we can project the perspective image into a corresponding orthogonalized image:
p′b = Habpa. Provided that we know at least four corresponding pairs of points ai and
bi = (xi,yi,zi) in the images a and b, we can calculate the homography matrix relating
the linear transformation from plane a to plane b by means of solving the resulting linear
equation. First we separate the homography matrix H into its three basis vectors Pi:

H =

PT
1

PT
2

PT
3


From the four corresponding pairs of points we obtain eight equations such that:

xiP3ai− ziP1ai = 0

yiP3ai− ziP2ai = 0

By solving this linear equation system the components of the homography matrix can be
calculated.
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B. Point Cloud to Model Registration

It is easy to register the point-cloud in the model manually until a certain degree of accuracy
- one can move, scale and rotate the point-cloud in a CAD or modeling software very easy
into the near of its proper extends. Unfortunately it is an almost impossible task to do
it accurate enough for any useful application. Here we present registrations algorithms,
which allow us to solve such a task under certain conditions.

This report will present and compare three of them: The classical Iterated Closed Points
(also referred as Iterated Corresponding Points) algorithm [BM92] based on the rigid 3d
registration method of Horn [Hor87]. The second and the third are based on the vector-
field of the motion, which has to be traversed by the the point-cloud in order to move from
its initial position into the optimal one. This methods will be elaborated in more detail in
section B.

The Horn-Method (ICP)

The actual Horn method [Hor87] was intended to compute the similarity transformation
between two point-clouds in different coordinate systems. Basically, one needs only three
non-coplanar corresponding points of both systems to do so. Of course one can compute a
least-square solution of a larger set of corresponding points. Than, the similarity transfor-
mation is split into the three basic operations: translation and rotation (for the Euclidean
transformation) and scale (for a similarity). Horn proposes to compute the translation
vector t of two corresponding point-clouds {xi} and {yi} by the means of their (possibly
weighted) barycenters:

t = cy− cx =
1

W ∑
i

wiyi−
1

W ∑
i

wixi,

with W = ∑i wi. The vector t gives us the translational relationship between the point-sets.
For further convenience, we can also translate both point-clouds into the origin. Then, we
can determine the rotational part of the mapping explicitly as:

x′ = Rx . (B.1)
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Horn proposes to rewrite the rotation into an unit quaternion. With this approach we can
rewrite:

∑
i

yT
i Rxi = aT ·∑

i

(
YT

i · X̃i
)
·a = aT Ma −→max . (B.2)

This maximizes the quadratic form under the quadratic constraint

‖a‖2 = aT a = 1 ,

which leads to the solution of a general eigenvalue problem. The largest eigenvalue of
the matrix M of Equation B.2 gives the actual solution as a quaternion a ∈ R4. By the
application of the rotation of the quaternion to the point-cloud we have determined the
optimal rigid transformation of both point-clouds. For further details as well as how to
determine the scale in order to perform similarity mappings refer to Horn [Hor87].

ICP While the Horn-Method works basically only with given point-to-point correspon-
dences, it can be easily extended to the iterated closest point approach. We do so by
iteratively alternating of the two steps: translation and rotation computation. This method
is one version of the ICP algorithm, and the objective function can be defined as:

F = ∑
i
‖xi+−yi‖2 −→min . (B.3)

Between each iteration we need to compute new point-to-point correspondences xi+ and
yi. For big data sets this is usually the computationally most expensive task and can be
countered with accelerations for nearest neighbor search, e.g., kd-trees.

The Helical Motion Method

Figure B.1.: Motion along a helix.
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Point-to-Point. The Helical-Motion Algorithm is inspired by the track which a rigid
body has to traverse to reach the optimal position with respect to a reference point-cloud.
During this journey the body moves iteratively along helices: it translates and rotates along
some axis: the goal is to determine this axis and the angular velocity. This motion can by
formalized by a vector field of the form:

v(x) = c̄+ c×x. (B.4)

The unknowns are the both vectors c and c̄. By linearizing the problem we can approximate
the new positions of the points by x′ = xi + v(xi). Now the objective function can be
formulated as:

∑
i
(xi +v(xi)−yi)

2 = ∑
i
(c̄+ c×xi +xi−yi)

2 . (B.5)

This quadratic function can be solved explicitly by a system of linear equations. To do so,
we can formulate the problem in matrix form as:

F = ∑
i
(c×xi + c̄+xi−yi)

2

= CT AC+2BT C+D (B.6)

where

B = ∑
i

[
xi× (xi−yi)

xi−yi

]
and D is a constant:

D = ∑
i
(xi−yi)

2 .

The more tricky part is the matrix A which is the normal equation of the matrix MT M,
where we can factorize the cross-product by the skew-symmetric matrix [x]×:

M =
[
[x]× I

]
=

 0 xz −xy 1 0 0
−xz 0 xx 0 1 0
xy −xx 0 0 0 1

 . (B.7)

Finally, the unknowns vector is defined as a six-by-one matrix:

C =

[
c
c̄

]
(B.8)

and we solve a system of six linear equations as:

CT MT MC = AC =−B

which equals
C = A−1 (−B) . (B.9)
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This system can be easily solved by i.e. LU-decomposition of the matrix A.

Point-to-Plane. A second registration algorithm based on the idea of helical-motion
of a rigid body is equivalent to the Gauss-Newton iterative solution. The main advantage
of this approach is that it converges quadratically to the (local) minimum [PLH04]. The
idea here is to minimize the squared distance between the points of the data point cloud
and the tangent planes of the reference surface. To do so, we have to compute the closest
point-pairs as in the algorithm before. Than we need to determine a tangent plane on each
foot-point on the surface and drop a perpendicular from point xi onto this tangent plane.
Now the goal is to minimize the square of this distance iteratively. Let us denote the two
corresponding points as xi and yi. The normal can be defined as

ni =
xi−yi

‖xi−yi‖
. (B.10)

The location of the point xi can be approximated by the velocity field x′i = xi + v(xi) as
defined in equation B.4. The squared distance to the tangent plane is given by:

d2(x′i) =
((

x′i−yi
)
·ni
)2

= ((c×xi + c̄+xi−yi) ·ni)
2 = (c̄ni + cn̄i +di)

2 , (B.11)

where n̄i = xi×ni. The objective function is finally then:

F = ∑
i
(c̄ni + cn̄i +di)

2

= CT AC+2BT C+D . (B.12)

The matrix A is the normal equation of the objective function, where ai is a one-by-six
vector ai = [xi×ni,ni]. Thus the matrix A a six-by-six matrix:

A = ∑
i

aT
i ai

The column vector B is a six-by-one vector:

B = ∑
i

diaT
i .

Finally, we can solve this system linearly as in the algorithm before as AC+B = 0, where
C is the same unknown vector as in equation B.8. For more details on this algorithm refer
to [PLH04] and for its analysis to [PHYH06].

Transformation. The two algorithms above end up with the both vectors c and c̄. In
order to determine the transformation matrix we can use the Plücker coordinates along the
trajectory (for detail refer to [PLH04] and Fig. B.1). According to Figure B.1, the Plücker
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coordinates (g, ḡ) of the axis A, the pitch p and the angular velocity ω are computed from
(c, c̄) as:

g =
c
‖c‖

ḡ =
c̄− pc
‖c‖

p =
c̄c
c2 ω = ‖c‖ .

Summary

During the implementation and the experiments it has turned out that all three algorithms
have their pros and cons. The Horn-Method performs basically quite well, especially for
pure rotations. Its disadvantages come out in cases where one wants to register point-
clouds containing non-uniform spaced points. Due to the barycenter-based translation it
does not always converge properly.

The Helical-Motion algorithms are very interesting interpretations of the problem. Basi-
cally it turned out that the point-to-point, linearly converging algorithm has the most worst
performance: is converges quite slowly, never as close to the reference data as the point-
to-plane version and it also often gets trapped into a local minimum. Nevertheless, it is
still a practical algorithm, especially for the case of iterative registration of more the two
data sets [PLH04]. Finally, the Gauss-Newton equivalent point-to-tangent-plane version
of the algorithm has surely best performance: it converges quite fast and also closer to
the reference than any other of the algorithms. Of course it also can get stuck in an local
minimum. This problem is acute to all of the algorithms and it should be overcome by
providing proper starting conditions to all of them. This can be done manually, as in the
case of the Stephansdom dataset as well it could be accomplished by stochastic algorithms
as Monte-Carlo-Markov-Chain solved by Simulated Annealing (MCMC).

A short video to this appendix can be downloaded at:
http://www.youtube.com/watch?v=MxyyZ0907nM
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[MK10] MIČUŠÍK B., KOŠECKÁ J.: Multi-view Superpixel Stereo in Urban Environments.
International Journal of Computer Vision 89, 1 (Mar. 2010), 106–119. 31, 32

[MKF09] MASTIN A., KEPNER J., FISHER J.: Automatic registration of LIDAR and optical
images of urban scenes. In 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition (Miami, FL, June 2009), IEEE, pp. 2639–2646. 29

[Mül10] MÜLLER P.: Procedural Inc. http://www.procedural.com, October 2010. 21

[MLS∗10] MUSIALSKI P., LUKSCH C., SCHWÄRZLER M., BUCHETICS M., MAIERHOFER S.,
PURGATHOFER W.: Interactive Multi-View Façade Image Editing. In Vision, Modeling,
Visualisation (VMV’10) (2010). 4, 5, 20

[MM08] MERRELL P., MANOCHA D.: Continuous model synthesis. ACM Transactions on
Graphics 27, 5 (Dec. 2008), 1. 22

[MM09] MERRELL P., MANOCHA D.: Constraint-based model synthesis. In 2009 SIAM/ACM
Joint Conference on Geometric and Physical Modeling on - SPM ’09 (New York, New York,
USA, 2009), ACM Press, p. 101. 22

[MP08] MCCANN J., POLLARD N. S.: Real-time gradient-domain painting. ACM Transactions
on Graphics 27, 3 (Aug. 2008), 1. 10, 40

[MPB05] MARVIE J.-E., PERRET J., BOUATOUCH K.: The FL-system: a functional L-system
for procedural geometric modeling. The Visual Computer 21, 5 (May 2005), 329–339. 22

[MR05] MAYER H., REZNIK S.: Building Façade Interpretation from Image Sequences. In
Proceedings of the ISPRS Workshop CMRT 2005 (Vienna, 2005), vol. XXXVI, pp. 55–60.
25

[MR06] MAYER H., REZNIK S.: MCMC Linked with Implicit Shape Models and Plane Sweep-
ing for 3D Building Facade Interpretation in Image Sequences. In PCV ’06, Photogrammet-
ric Computer Vision (2006), ISPRS Comm. III Symposium, IAPRS, pp. 130–135. 25

[MR07] MAYER H., REZNIK S.: Building facade interpretation from uncalibrated wide-baseline
image sequences. ISPRS Journal of Photogrammetry and Remote Sensing 61, 6 (Feb. 2007),
371–380. 13, 25

[MRM∗10] MUSIALSKI P., RECHEIS M., MAIERHOFER S., WONKA P., PURGATHOFER W.:
Tiling of Ortho-Rectified Façade Images. In Spring Conference on Computer Graphics
(SCCG’10) (Budmerice, 2010). 4, 5, 33

[MS01] MEILA M., SHI J.: A Random Walks View of Spectral Segmentation. In Proc. Int.
Conf. Artificial Intelligence and Statistics (2001). 71

[Mus09] MUSIALSKI P.: Point Cloud to Model Registration. Tech. rep., VRVis Research Center,
Vienna, July 2009. 5

[Mus10] MUSIALSKI P.: Axis-Aligned Segmentation of Orthographic Façade Images. Tech.
rep., VRVis Research Center, Vienna, September 2010. 4, 5

[MVW∗06] MÜLLER P., VEREENOOGHE T., WONKA P., PAAP I., VAN GOOL L.: Procedural
3D Reconstruction of Puuc Buildings in Xkipché. In The 7th International Symposium on
Virtual Reality, Archaeology and Cultural Heritage, VAST (2006) (2006), EG, pp. 139–146.
21

109



References

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A., VAN GOOL L.: Procedural
modeling of buildings. ACM Transactions on Graphics 25, 3 (July 2006), 614. 21, 22

[MWR∗09] MUSIALSKI P., WONKA P., RECHEIS M., MAIERHOFER S., PURGATHOFER W.:
Symmetry-Based Façade Repair. In Vision, Modeling, Visualisation (VMV’09) (2009), Mag-
nor M. A., Rosenhahn B., Theisel H., (Eds.), DNB, pp. 3–10. 4, 5, 20, 33

[MZWvG07] MÜLLER P., ZENG G., WONKA P., VAN GOOL L.: Image-based procedural mod-
eling of facades. ACM Transactions on Graphics 26, 3 (July 2007), 85. 14, 25, 26, 33

[Nis04] NISTÉR D.: An efficient solution to the five-point relative pose problem. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 26, 6 (June 2004), 756–77. 15

[NJW01] NG A., JORDAN M., WEISS Y.: On Spectral Clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems (2001), Dietterich T., Becker S.,
Ghahramani Z., (Eds.), MIT Press, pp. 849–856. 71

[NK01] NEUGEBAUER P. J., KLEIN K.: Texturing 3D Models of Real World Objects from
Multiple Unregistered Photographic Views. Computer Graphics Forum 18, 3 (Sept. 2001),
245–256. 20

[PDG05] PORQUET D., DISCHLER J.-M., GHAZANFARPOUR D.: Real-time high-quality View-
Dependent Texture Mapping using per-pixel visibility. In Proceedings of the 3rd interna-
tional conference on Computer graphics and interactive techniques in Australasia and South
East Asia - GRAPHITE ’05 (New York, New York, USA, 2005), ACM Press, p. 213. 20

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing. ACM Transactions on
Graphics 22, 3 (July 2003), 313. 10, 39

[PHT93] PRUSINKIEWICZ P., HAMMEL M., TN C.: A Fractal Model of Mountains with Rivers
A Fractal Model of Mountains with Rivers. In Proceeding of Graphics Interface ’93 (1993),
no. May, pp. 174–180. 20

[PHYH06] POTTMANN H., HUANG Q.-X., YANG Y.-L., HU S.-M.: Geometry and Conver-
gence Analysis of Algorithms for Registration of 3D Shapes. International Journal of
Computer Vision 67, 3 (Mar. 2006), 277–296. 98

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty of plants. Springer-
Verlag New York, Inc., New York, 1990. 20

[PLH04] POTTMANN H., LEOPOLDSEDER S., HOFER M.: Registration without ICP. Computer
Vision and Image Understanding 95, 1 (July 2004), 54–71. 98, 99

[PM90] PERONA P., MALIK J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 7 (July 1990), 629–
639. 79

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of cities. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’01
(New York, New York, USA, 2001), ACM Press, pp. 301–308. 21

[PMW∗08] PAULY M., MITRA N. J., WALLNER J., POTTMANN H., GUIBAS L. J.: Discovering
structural regularity in 3D geometry. ACM Transactions on Graphics 27, 3 (Aug. 2008), 1.
11

[PNF∗07] POLLEFEYS M., NISTÉR D., FRAHM J.-M., AKBARZADEH A., MORDOHAI P.,
CLIPP B., ENGELS C., GALLUP D., KIM S.-J., MERRELL P., SALMI C., SINHA S. N.,

110



References

TALTON B., WANG L., YANG Q., STEWÉNIUS H., YANG R., WELCH G., TOWLES H.:
Detailed Real-Time Urban 3D Reconstruction from Video. International Journal of Com-
puter Vision 78, 2-3 (Oct. 2007), 143–167. 28, 30

[PSG∗06] PODOLAK J., SHILANE P., GOLOVINSKIY A., RUSINKIEWICZ S., FUNKHOUSER
T.: A planar-reflective symmetry transform for 3D shapes. ACM Transactions on Graphics
25, 3 (July 2006), 549. 11
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