
Automatische Generierung von
Arrangements für Solo-Gitarre
auf der Basis von Lead Sheets

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Arnaud Moreau
Matrikelnummer 0325440

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Univ.-Prof. DI Dr. Gerhard Widmer

Wien, 15.10.2010
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Automatic generation of
solo-guitar arrangements from

lead sheets

DIPLOMA THESIS

in Partial Fulfillment of the Requirements for the Degree

Master of Science

completing the studies of

Computer Graphics/Digital Image Processing

by

Arnaud Moreau
Matriculation number 0325440

at the
Faculty of Informatics of the Vienna University of Technology

Under the direction of
Supervisor: Univ.-Prof. DI Dr. Gerhard Widmer

Vienna, 10/15/2010
(Signature Author) (Signature Supervisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Abstract

In this work the process of automatically arranging songs for solo-guitar by a com-
puter on the basis of melodic and harmonic information contained in lead sheets is analyzed
and discussed. The problem is defined and broken down to sub problems (guitar fingering,
music segmentation) and solutions are presented and discussed. The focus of this work is
mainly on technical rather than musical aspects. First an overview on the state of the art
is given. Furthermore a prototype implementation is presented that incorporates many of
herein discussed thoughts. The primary target of the implemented algorithm is to ensure
the playability of the arrangement on the guitar, which imposes by nature constraints on
the result. The results are generated using a genetic algorithm that optimizes the arrange-
ments towards better playability. Background information on problems, methods (genetic
algorithms) and data representations (MusicXML) is given in the introduction part. The ar-
rangements produced by the prototype based on a testbed of six songs in the genre of Bossa
Nova are discussed in detail. This work concludes with an outlook on future work.

Kurzfassung

In dieser Arbeit wird der Prozess des automatischen Arrangierens von Liedern für Solo-
Gitarre mit Hilfe eines Computers auf der Basis von melodischer und harmonischer Infor-
mation, die in Lead Sheets enthalten ist, analysiert und diskutiert. Das Problem wird de-
finiert und in Subprobleme aufgespalten (Fingersatz, Musiksegmentierung) und Lösungen
werden präsentiert und diskutiert. Der Hauptfokus dieser Arbeit liegt eher auf den techni-
schen als den musikalischen Aspekten. Zuerst wird eine Übersicht auf den aktuellen Stand
der Technik geboten. Weiters wird eine Prototyp Implemenentierung vorgestellt, die viele
der in dieser Arbeit geäußerten Ideen einbezieht. Das primäre Ziel des implementierten Al-
gorithmus ist es, die Spielbarkeit des Arrangements auf der Gitarre, die von Natur aus die
Ergebnisse einschränkt, zu gewährleisten. Die Resultate werden mit Hilfe eines genetischen
Algorithmus generiert, der die Arrangements in Richtung besserer Spielbarkeit optimiert.
Es werden Hintergrundinformationen über Probleme, Methoden (genetische Algorithmen)
und Datenrepräsentationen in einem Einführungsteil bereit gestellt. Die Arrangements, die
vom Prototypen erzeugt wurden, werden anhand eines Datensatzes aus sechs Bossa Nova
Liedern im Detail diskutiert. Diese Arbeit endet mit einem Ausblick auf mögliche zukünf-
tige Entwicklungen.

Acknowledgements

This work would not have been possible without the help of countless people. First there is
Prof. Widmer, who thankfully accepted to supervise it. He is incredibly inspiring, supporting
and contributed helpful comments all along the way (and it was a long one!). I am thankful that
he is one of the very few geniuses with whom I had the honor to work in my life.

My parents Doris and Rémy Moreau who have supported me with all their dedication. My
uncle Gerhard Dirmoser who brought me to the field of computer science. Helmut Schönleitner,
for having me taught everything I know about music. My partner Judith Weißengruber who
withstood my moods and endless moaning and constantly attempts to make me a better person
(which is not an easy thing to do). I would also like to thank Daniele Radicioni, the author of
very important, illuminating and thorough articles [RAL04, RL05a, RL05b, Rad06, RL07] for
his input on the guitar-fingering subject.

Many thanks also to Judith Weißengruber and Laura Trunkenpolz for their editorial work
and all the contributors (and uploaders) to the wonderful projects Musescore and Wikifonia.

Joe Zawinul, Richard Bona, Mother’s finest, Yes, John McLaughlin, Trilok Gurtu, Antonio
Forcione, Joni Mitchell, Steps ahead, Nguyên Lê, Red Hot Chili Peppers, The Beatles, Shakti,
Mahavishnu Orchestra, The Police, Sting, U2, Jimmy Hendrix, Helmut Schönleitner and many
more for making the best music on this planet.

iii

Contents

Abstract i

Kurzfassung i

Acknowledgements iii

Contents v

List of Algorithms vii

List of Figures vii

List of Listings ix

List of Tables ix

I Introduction 1

1 Motivation 3

2 State of the art 5
2.1 Music arrangement . 5
2.2 The guitar . 7
2.3 Segmentation . 9

3 Algorithms and data representation 11
3.1 Music notation . 11
3.2 Genetic algorithms . 15
3.3 Constraint satisfaction problems . 19

II Methodology 23

4 Framework 25

v

4.1 Goals . 25
4.2 Design . 26

5 Arrangement algorithm 31
5.1 Segmentation . 31
5.2 Genetic algorithm . 35

III Results 47

6 Executing the arrangement algorithm 49
6.1 Segmentation . 50
6.2 Genetic algorithm . 54

7 Conclusion and Outlook 57
7.1 Future work . 57

A Lead sheets and arrangements 59
A.1 One Note Samba . 60
A.2 The Girl from Ipanema . 63
A.3 Corcovado . 67
A.4 Desafinado . 70
A.5 A Felicidade . 75
A.6 How Insensitive . 80

Acronyms and abbreviations 83

Bibliography 85

Erklärung zur Verfassung der Arbeit 91

List of Algorithms

1 AC-3 as defined in [Kum92]. 20
2 Backtracking as defined in [RN03] . 21
3 Algorithm computing the local boundary detection model as defined in [Cam01]. 32
4 Algorithm that searches optimal segments from LBDM data. 33
5 Algorithm to segment an arrangement into MEL, CHO and MIX blocks. 39

List of Figures

2.1 A prototypical electric guitar. (GreyCat, "File:Electric guitar parts.jpg" May 22,
2010 via Wikimedia Commons, Creative Commons Attribution-Share Alike 2.5
Generic license) . 7

2.2 The first 12 frets of a guitar fretboard. The pitch is indicated in MIDI number. See
Figure 3.2 in [Rad06]. 8

2.3 This diagram shows the number of different position on the fretboard for playing
the indicated pitch (given as MIDI number) on the x-axis. See Figure 3.3 in [Rad06]. 9

2.4 The LBDM applied to the first 8 bars of the song "How Insensitive" by Antonio
Carlos Jobim. The blue line shows the resulting LBDM boundary-strength function. 10

3.1 An example tablature. (Guitar intro from "Stairway to Heaven" by Jimmy Page and
Robert Plant) . 12

3.2 Single point crossover. (Rgarvage, "File:SinglePointCrossover.png" May 30, 2010
via Wikipedia, Creative Commons Attribution-ShareAlike 3.0 license) 17

3.3 The map coloring problem (a): Each region V1 . . . V4 has to be painted with one
color such that no two neighboring regions have the same color; (b) shows the equiv-
alent constraint graph. See Figure 3.9 from [Rad06]. 19

4.1 UML diagram of the classes representing notes. 26

vii

4.2 UML diagram of the classes representing the guitar. 27
4.3 A demonstration of the difference between position (a) and onset (b) representation. 28
4.4 UML diagram of the classes representing higher level data structures. 28

5.1 Visualization of the segmentation tree and the corresponding LBDM boundary-
strength function from the song "The Girl from Ipanema". 34

5.2 Illustration of the weight function as defined in Equation 5.3 with µ = 25 and δ = 9. 35
5.3 Definition and visualization of different movement types in guitar performance ac-

cording to [Rad06]. 44
5.4 fret_stretch functions for the index finger (from [Rad06]). 45
5.5 This figure shows examples of a MEL and a CHO block including fingering that

is used to illustrate the functionality of the fitness function. Guitar string and fret
information are contained in the lower tablature staff and fingers are indicated in the
upper staff. 45

6.1 (Pseudo) Bossa Nova pattern used for potential chord note positions. 54
6.2 Demonstration of the optimization process of the first segment in the song "Corcov-

ado". The blue line in both plots shows the fitness score of the best candidate in the
population over generations, the green line indicates the mean fitness in the popula-
tion. The plot below zooms in the same data of the first 700 generations, such that
the increase in the mean fitness after the first generation can be seen distinctly. . . . 55

A.1 One Note Samba by Antonio Carlos Jobim – Lead Sheet (tom, "One Note Samba"
July 23rd, 2007 via Wikifonia [Fou10], c© reserved by Musicopy) 60

A.2 One Note Samba – Arrangement . 61
A.3 The Girl from Ipanema by Antonio Carlos Jobim – Lead Sheet (benoit, "The Girl

from Ipanema" November 5th, 2006 via Wikifonia [Fou10], c© reserved by Musicopy) 63
A.4 The Girl from Ipanema – Arrangement . 65
A.5 Corcovado by Antonio Carlos Jobim – Lead Sheet (Musicdad, "Corcovado – Quiet

Nights Of Quiet Stars" August 9th, 2010 via Wikifonia [Fou10], c© reserved by
Musicopy) . 67

A.6 Corcovado – Arrangement . 68
A.7 Desafinado by Antonio Carlos Jobim – Lead Sheet (lasconic, "Desafinado – Slightly

out of Tune" December 18th, 2008 via Wikifonia [Fou10], c© reserved by Musicopy) 70
A.8 Desafinado – Arrangement . 72
A.9 A Felicidade by Antonio Carlos Jobim – Lead Sheet (TxRx, "A Felicidade" January

24th, 2009 via Wikifonia [Fou10], c© reserved by Musicopy) 75
A.10 A Felicidade – Arrangement . 77
A.11 How Insensitive by Antonio Carlos Jobim – Lead Sheet (Mauro58, "How Insensitive

– Insensatez" September 19th, 2009 via Wikifonia [Fou10], c© reserved by Musicopy) 80
A.12 How Insensitive – Arrangement . 81

List of Listings

3.1 MusicXML file example; header information, metadata. 13
3.2 MusicXML file example; notes, rests and chord symbols. 14
3.3 MusicXML file example; tablature. 14

List of Tables

5.1 Specification of the maximum finger span from [Rad06] 37

6.1 Overview of test songs – result reference . 49
6.2 One Note Samba – Segmentation . 50
6.3 The Girl from Ipanema – Segmentation . 51
6.4 Corcovado – Segmentation . 52
6.5 Desafinado – Segmentation . 52
6.6 A Felicidade – Segmentation . 53
6.7 How Insensitive – Segmentation . 53

A.1 Overview of test songs – origin information . 59

ix

Part I

Introduction

1

CHAPTER 1
Motivation

Ein Anfänger der Gitarre hat Eifer.
(A beginner of guitar playing has enthusiasm.)

Mnemonic often found in german guitar teaching
books to remember the tuning of the strings.

This thesis is about arranging songs that are given as lead sheets (containing melody and
chord symbols) with the help of a computer software. The goal of this arrangement process is
that the result, which already contains fingering information, can be played by a single performer
on the guitar. For this purpose not only the melody is included in the arrangement, but also chord
notes on musically reasonable positions.

Although the guitar is an instrument most commonly used to accompany singers or instru-
mental musicians, there comes a time for each guitar player when she/he performs a piece on
her/his own. Since in the Jazz or Pop genre a song is notated in the form of a lead sheet one has
to not only play the melody of the piece but also use the given chords to enhance the arrange-
ment. That is often a tedious intellectual task, because one has to find the correct fingering for
the melody and also insert other harmonically interesting notes that have to fit the rhythmic but
also the cognitive and bio-mechanical context.

The practical aspects about having a software that can arrange songs from lead sheets are the
following: It can be used to save a lot of time for the musician, even if its results are interpreted
as suggestions or ideas rather than carved-in-stone. Teachers can use it to provide their students’
favorite songs without having too much trouble doing the work themselves. Also said students
can use it for arrangement without having enough knowledge to do it themselves, they could
then use them as a basis to learn about harmonic concepts and guitar fingering. A necessary
feature for this would be the possibility to adjust the level of difficulty.

From a scientific perspective automatic arrangement is a rather unexplored problem (for a
literature review see Chapter 2.1) and can still originate interesting results from a musicology
but also a computer science point of view. The problem poses a huge challenge to algorithms
due to its many degrees of freedom (not only the complexity of the guitar fingering problem –

3

see Section 2.2 for a more detailed discussion – but also the harmonic and rhythmic possibilities
are nearly endless). Moreover the point of evaluating the resulting arrangement is an open
issue, as there is neither an exactly defined "correct" solution nor a database of lead sheets and
corresponding arrangements from multiple human "experts" to compare automatically generated
results to. Furthermore the evaluation is context and genre dependent.

In the remainder of this part the discussed problem in all its facets and used technology to
solve it is described in more detail including a state-of-the-art literature review. This leads to Part
II (Methodology), where the prototype implementation is introduced. At the end the resulting
generated arrangements are discussed and a line of future work is proposed.

CHAPTER 2
State of the art

The following sections describe problems that come up on the way to automatic arrangement. A
snapshot on current literature is provided as well as an overview on the terminology used in this
thesis. First the topic of (automatic) music arrangement is covered, then the guitar is introduced
together with the guitar fingering problem. The chapter concludes with melodic segmentation.

2.1 Music arrangement

According to [Wik10] the American Federation of Musicians1 defines arranging as

"the art of preparing and adapting an already written composition for presenta-
tion in other than its original form. An arrangement may include reharmonization,
paraphrasing, and/or development of a composition, so that it fully represents the
melodic, harmonic, and rhythmic structure".

This describes exactly the process of music arrangement as understood in this thesis. Here, an
already existing composition (given in the form of a lead-sheet – see Section 3.1.1) is trans-
formed to another musical form (solo-guitar instrumentation) while preserving the musical idea
of the piece. In an extended sense this could also include reharmonization or other composi-
tional techniques, which, however, is not within the scope of this work. An arranger could use
the following steps to carry out the process of arrangement:

1. Decide on a musical genre.

2. Put the melody in the score.

3. Decide on where to put additional harmony notes in the score (the rhythm patterns are
determined by the genre).

1http://en.wikipedia.org/wiki/American_Federation_of_Musicians

5

http://en.wikipedia.org/wiki/American_Federation_of_Musicians

4. Decide on chord voicings (not only determined by the sound but also by the playability
on the instrument).

5. Extend the chord progression where appropriate (transition chords) or change the given
chord information (reharmonization, chord substitution).

6. Put the bass notes independently of the other chord notes (bassline).

7. Find an appropriate fingering for the performer.

One issue of rather philosophic nature is the question what the musical idea of a piece is and
whether it exists at all. Diverging opinions about the musical idea of a given piece suggest that it
is a more subjective rather than objective thing. Is it even distinct from the piece of music itself?
Here we view any form of musical notation as a guideline for the performer, as we assume that
the piece itself exists only as the interpretation in the performance.

Turning to the literature about automatic arrangement, there is one master thesis by Daniel
Tuohy [Tuo06] and published extracts thereof [TP06b, TP06a] that discuss this topic particularly
for the guitar. In this work a genetic algorithm (GA) or a greedy hill-climber (HC) arranges
music in arbitrary form (e.g. Symphony No. 2 Mvt. II by Rachmaninoff) for solo-guitar. For
that purpose all notes in the original score are annotated (in this case manually – but the author
points out potential published algorithms to perform this task) by a weight that assesses their
importance in the piece. This is how the composition is preserved, however other factors like
playability2 are also taken into account. The author then presents different kinds of GAs and an
artificial neural network (ANN) to find the fingering (tablature) of the arrangement.

Other work describes arrangement in another context: In [NK97] the authors examine the
ability of chaotic neural networks to generate variations of an original melody. The system pre-
sented in [CV06] re-arranges (or rather re-mixes) music segments according to a target affective
state, thus it is not consistent with the term arrangement as used here in a more narrow sense.

Related work in automatic arrangement for the piano has been done by Emura et al. [EMY08].
They present a system that arranges Jazz songs given by lead-sheets on the basis of Jazz har-
mony theory considering the concept of voicing (assignment and ordering of chord notes based
on a given chord symbol). The user is required to choose voicing type and matching approach
strategies (smooth connection of neighboring chords) and the algorithm inserts chord notes on
every melody note position. The system is compared against commercially available arrange-
ment software like "Band in a box" by means of an expert survey. Chiu and coworkers [CSH09]
propose a similar arrangement system for piano as Tuohy et al. [TP06b] do for guitar. The orig-
inal score is analyzed to identify phrases and estimate their importance, then they are selected
for inclusion in the final piano arrangement considering playability.

When considering the literature in the field of computer music, it is surprising that a lot of
work was done in automatic composition or improvisation (representative selection: [GB91,
RIHL93, Bil94, Jac95, Mar96, TI00, Mir01, GJC03, KM07, Ari09]) whereas the more re-
stricted process of automatic arrangement, being presumably a more suitable task for computers,
was given little thought so far in comparison [NK97, CV06, TP06b, TP06a, Tuo06, EMY08,

2Playability in this thesis always assumes a performer having an average sized hand with 5 fingers.

CSH09]. Although of course these two tasks are heavily related and the solutions and results are
beneficial to one another.

2.2 The guitar

The guitar (see Figure 2.1) is a stringed instrument consisting of a body (9) and a neck (7) to
which the strings (usually six) are attached. The pitch is changed by pressing down a string on
the fretboard (4) and the sound is produced by plucking the same string.

Definition 1. To denote pitch the scientific pitch notation3 is used, as defined in [You39]. The
note name is composed of a letter {C,D,E, F,G,A,B,C}, accidentals {], [} and an octave
number, starting with the reference note C0 = 16.352Hz. In addition to that the MIDI number
may be given as defined in [Ass96], starting at MIDI note 0, C−1 = 8.1758Hz, and extending
above MIDI note 127, G9 = 12543.875Hz.

Figure 2.1: A prototypical electric guitar. (GreyCat, "File:Electric guitar parts.jpg" May 22,
2010 via Wikimedia Commons, Creative Commons Attribution-Share Alike 2.5 Generic license)

Definition 2. Two different notations for fingered position on the guitar fretboard are used:
3http://en.wikipedia.org/wiki/Scientific_pitch_notation

http://en.wikipedia.org/wiki/Scientific_pitch_notation

1. 2-tuples in the form (string, fret)

2. 3-tuples in the form (string, fret, finger)

string = {1 . . . 6} ordered from highest to lowest pitch. fret = {0 . . . n}, 0 denoting plucking
the empty string, n denoting the number of frets on the guitar. finger = {1 . . . 4}, denoting the
fingers from index to pinky.

The standard tuning of the six strings is from lowest to highest pitch (MIDI number given
in parentheses): E2 (40), A2 (45), D3 (50), G3 (55), B3 (59), E4 (64). The diagram in Figure
2.2 shows the pitches of all playable notes on the first 12 frets of a guitar in standard tuning.
Since one fret alters the pitch by one half-tone, the 12th fret of a string sounds one octave above
the tuning note. From the diagram you can also see that due to the overlap of the string’s pitch
ranges one given note can be played on multiple positions on the fretboard. For example the
note F3 (53) can be played on the following positions: (6, 13), (5, 8), (4, 3).

Figure 2.2: The first 12 frets of a guitar fretboard. The pitch is indicated in MIDI number. See
Figure 3.2 in [Rad06].

If we ask how many different positions there are for a given pitch we can consider the
diagram in Figure 2.3. It shows that a given note on average can be played on 2.94 different
positions if we consider a guitar with a fretboard that has 22 frets (like the one depicted in
Figure 2.1).

A sub problem in automatic arrangement for guitar is the guitar fingering problem (finding
fingering positions (string, fret) or (string, fret, finger) for each note in a given score), that
is addressed in [WL97, MY02, RD04, TDSR04, TP05, TP06c, RAL04, RL05a, RL05b, Rad06,
RL07]. Since there are up to 5 positions for each given note (see Figure 2.3), a score containing
n notes can generate up to 5n different fingerings. If you additionally consider that each of those
positions can be played by 4 different fingers in the worst case, the complexity can grow up to
20n [Rad06].

In order to arrange music for solo-guitar one has to consider the playability on the instru-
ment, which is governed by cognitive as well as bio-mechanical constraints. The most compre-
hensive work in this field can be found in [Rad06], where a complete model for the performer’s

search for fingering positions is devised. All possible fingerings of a given note in the score are
seen as vertices of a graph, which are connected to the subsequent vertices. Polyphonic passages
are modeled as constraint satisfaction problems (CSPs) and are connected to neighboring notes
the same way. Furthermore the edges of this graph are annotated by a difficulty score, which has
also been used in this work to assess playability, because the validity of this algorithm has been
proven experimentally. The solution to the fingering problem is then to find the shortest path
through the graph. There is also work describing solutions to the fingering problem for other
instruments – in this example [AKNR07] for the piano – that is also modeled as a graph search
problem.

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

0

1

2

3

4

5

6

MIDI pitch number

nu
m

be
r

of
 fi

ng
er

e
d

po
si

tio
ns

Figure 2.3: This diagram shows the number of different position on the fretboard for playing the
indicated pitch (given as MIDI number) on the x-axis. See Figure 3.3 in [Rad06].

2.3 Segmentation

Segmentation as discussed here means to identify perceptual boundaries in a given melody. It
allows us to break down a song into musically meaningful pieces such that each can be processed
individually by an arrangement algorithm, which is required to reduce complexity. The input
to such a segmentation algorithm is a representation of the melody and the output is a set of
boundaries for segments. In this work the local boundary detection model (LBDM), developed
by Emilios Cambouropoulos [Cam97, Cam01, MO02, Cam06], is adapted.

The LBDM considers three change features (differences between two subsequent notes in the
melody), namely pitch intervals, inter-onset intervals (IOI) and rests. The design of the algorithm
makes it also possible to include differences of another kind like harmonic intervals (distances
between successive chords). Between consecutive feature values a degree-of-change function
is computed and then the sum of this degree-of-change function of neighboring intervals is
multiplied by the absolute feature value of the current interval. This function is then normalized

!! "Dm

! $! !
A7/C%
!& ! '!! (!&) * + ,!

G/B

! ! "!' *- -
Cm6

!' ! -% .!

Music engraving by LilyPond 2.12.2—www.lilypond.org

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

onset

LB
D

M
 b

ou
nd

ar
y

st
re

ng
th

 fu
nc

tio
n

Figure 2.4: The LBDM applied to the first 8 bars of the song "How Insensitive" by Antonio
Carlos Jobim. The blue line shows the resulting LBDM boundary-strength function.

and the three traces are combined using a weighted average. Local maxima in the resulting one-
dimensional boundary-strength function represent potential segment boundaries. The detailed
algorithm can be found in Section 5.1, Algorithm 3. An example of the boundary-strength
function is depicted in Figure 2.4, where the LBDM is applied to the first 8 bars of the song
"How Insensitive". Using the information about the boundary strength given by the LBDM
an optimization algorithm finds segments, such that their lengths do not vary too much. For
this purpose all possible segments are represented by a tree, with the full melody as the root
node. The boundary-strength values determine where the segment nodes are split. A weighting
function evaluates the segment nodes by their length and the optimal combination of segments is
found by taking the maximum node on the path from each leaf node to the root. The optimization
algorithm is described in Section 5.1, Algorithm 4.

CHAPTER 3
Algorithms and data representation

In this chapter the basic concepts of the technology that is used in the prototype implementa-
tion are introduced. The first Section 3.1 deals with music notation systems and representation
thereof in the computer. Lead-sheets are used as the input to the arrangement algorithm pre-
sented in part II and tablature allows to display guitar fingering along with the arrangement. A
format for symbolic music that represents both is MusicXML, which is described thereafter. The
next sections describe genetic algorithms and constraint satisfaction problems. The arrangement
process is basically a GA that evolves full arrangements, already including guitar fingering in-
formation. Whenever more than one note is played simultaneously multiple constraints apply
to the fingering of the chord [Rad06]. Each such instance can be modeled as a constraint satis-
faction problem (CSP) and the solution of which provides feasible fingering positions for each
chord note.

3.1 Music notation

There are 3 basic music notation systems used in this work. Modern western music notation
is used within lead sheets, which we assume that the reader is familiar with. Lead sheets are a
good way to tightly hold all information that is used as an input to the arranging system (melody
and chord symbols). The resulting arrangements will be notated again in modern western music
notation together with the so-called tablature, that is able to display and store guitar fingering.
Luckily there exists a data format that supports all the used notation forms (MusicXML), which
is described thereafter.

3.1.1 Lead sheets

Lead sheets are a common music notation form especially in Jazz and popular music. As you
can see in Appendix A, they usually contains 3 types of information:

• Melody (in modern western music notation)

11

• Harmony (in chord symbols, above the melody staff)

• Lyrics (optional, below the melody staff)

In some cases lead sheets contain also suggestions for accompaniment or tempo, however the
main purpose of lead sheets is to give the musician enough information to improvise, perform
or arrange the piece. In Appendix A lead sheets of famous Bossa Nova songs by Antonio Carlos
Jobim are depicted. They are available at an online collection of lead sheets called Wikifonia1

[Fou10] where users can upload and share music. There are also printed collections of lead
sheets called "Real book" or "Fake book" which are published by several vendors. The included
songs are sometimes referred to as "Jazz Standards", which underlines their importance to Jazz
musicians.

3.1.2 Tablature

Tablature is a common notation system amongst guitarists and other string instrument players.
The example in Figure 3.1 consists of two staffs; the first shows the part played by the guitar
in modern western music notation, the second indicates fingering positions in tablature format.
The tablature staff consists of one line for each string on the instrument, starting (top-down) with
the highest pitched one. The numbers on those lines indicate the fret positions, but there are also
other closely guitar-related symbols like bends, hammer-ons, pull-offs, slides, etc.

&
T
A
B

44Guitar

Guitar

‰ œ œ œ œ œ œ œ˙ ˙#

5
5
5 7

5
5
7

7 6

Am Cmaj 7#5/G#
œ œ œ œ œ œ œ œ˙ ˙
8
5
5
8 2

3
2
2

5 4

C/G D/F#
œ œ jœ œ jœ œ œw
0
1

2
1

0
1

2
3

Fmaj7

œœœ œœœ ˙̇̇ Œ
0
0
2

1
2
0

1
2
0

G/B Am

Stairway to Heaven - Intro
Jimmy Page and Robert Plant

Figure 3.1: An example tablature. (Guitar intro from "Stairway to Heaven" by Jimmy Page and
Robert Plant)

The score in Figure 3.1 shows the beginning of the song "Stairway to Heaven" by the british
band Led Zeppelin as played by Jimmy Page. It is one of the classic benchmark songs for
rock guitar players. Tablature is in general easier to read than modern western music notation,

1http://www.wikifonia.org

http://www.wikifonia.org

that is why the format is very popular amongst hobby musicians, that cannot or do not want to
read "normal" scores. However, to show all the information necessary to perform a song it is
indispensable to include also the part in modern western music notation, because for example
the representation of rhythmic information is not well defined in tablature. To overcome this
weakness people often include stems, flags and beams in tablature instead of adding another
staff.

3.1.3 MusicXML

MusicXML [Goo06] is an open format for sheet music developed by the company Recordare
LLC2. The design goals were to make an internet-friendly and human-readable (thus XML) in-
terchange format that would be suitable for a lot of different applications – not only notation,
but also optical music recognition (OMR), sequencing, digital libraries – and at the same time
supported by all major vendors thereof. The DTD3 and XSD4 definitions of MusicXML (avail-
able under a royalty-free license) along with tutorials, examples and related publications can be
found in [LLC10]. As mentioned earlier MusicXML supports all notation forms related to guitar
arrangement of lead sheets.

Listing 3.1: MusicXML file example; header information, metadata.� �
1 <?xml v e r s i o n =" 1 . 0 " e n c o d i n g ="UTF−8" ?>
2 < !DOCTYPE s c o r e−p a r t w i s e PUBLIC "−// R e c o r d a r e / / DTD MusicXML 2 . 0 P a r t w i s e / / EN" " h t t p : / /www. musicxml .

o rg / d t d s / p a r t w i s e . d t d ">
3 < s c o r e−p a r t w i s e v e r s i o n =" 2 . 0 ">
4 <movement− t i t l e > S t a i r w a y t o Heaven − I n t r o < / movement− t i t l e >
5 < i d e n t i f i c a t i o n >
6 < c r e a t o r t y p e =" composer ">Jimmy Page and Ro be r t P l a n t < / c r e a t o r >
7 < / i d e n t i f i c a t i o n >
8 < p a r t− l i s t >
9 < s c o r e−p a r t i d =" P1 ">

10 < p a r t−name> G u i t a r < / p a r t−name>
11 < p a r t−a b b r e v i a t i o n > Gt r . < / p a r t−a b b r e v i a t i o n >
12 < s c o r e−i n s t r u m e n t i d =" P1−I2 ">
13 < i n s t r u m e n t−name> G u i t a r < / i n s t r u m e n t−name>
14 < / s c o r e−i n s t r u m e n t >
15 < / s c o r e−p a r t >
16 < s c o r e−p a r t i d =" P2 ">
17 < p a r t−name> G u i t a r < / p a r t−name>
18 < p a r t−a b b r e v i a t i o n > Gt r . < / p a r t−a b b r e v i a t i o n >
19 < s c o r e−i n s t r u m e n t i d =" P2−I3 ">
20 < i n s t r u m e n t−name> G u i t a r < / i n s t r u m e n t−name>
21 < / s c o r e−i n s t r u m e n t >
22 < / s c o r e−p a r t >
23 < / p a r t− l i s t >� �

The Listing 3.1 shows the beginning of the MusicXML file corresponding to the music de-
picted in Figure 3.1. You can see a standard XML header referencing the MusicXML partwise
DTD. The two different top-level elements (score-partwise and score-timewise) de-
termine the overall structure of parts and measures. If score-partwise is chosen, a part is
defined first, containing all the measures. The score-timewise implements the exact oppo-
site ordering. In the example in Listing 3.1 the 2 parts are defined in the part-list element (they
are both guitar parts – one for standard staff and one for tablature staff).

2http://www.recordare.com/
3http://www.recordare.com/dtds/index.html
4http://www.recordare.com/xsd/index.html

http://www.recordare.com/
http://www.recordare.com/dtds/index.html
http://www.recordare.com/xsd/index.html

Listing 3.2: MusicXML file example; notes, rests and chord symbols.� �
24 < p a r t i d =" P1 ">
25 <measure number=" 1 ">
26 < a t t r i b u t e s >
27 < d i v i s i o n s >2< / d i v i s i o n s >
28 <key>
29 < f i f t h s >0< / f i f t h s >
30 <mode>minor < / mode>
31 < / key>
32 < t ime >
33 < b e a t s >4< / b e a t s >
34 < bea t−t y p e >4< / bea t−t y p e >
35 < / t ime >
36 < c l e f >
37 < s i g n >G< / s i g n >
38 < l i n e >2< / l i n e >
39 < / c l e f >
40 < t r a n s p o s e >
41 < d i a t o n i c >0< / d i a t o n i c >
42 < c h r o m a t i c >0< / c h r o m a t i c >
43 < oc t ave−change >−1< / oc t ave−change >
44 < / t r a n s p o s e >
45 < / a t t r i b u t e s >
46 <harmony>
47 < r o o t >
48 < r o o t−s t e p >A< / r o o t−s t e p >
49 < / r o o t >
50 < k ind >minor < / k ind >
51 < / harmony>
52 < n o t e >
53 < r e s t / >
54 < d u r a t i o n >1< / d u r a t i o n >
55 < v o i c e >1< / v o i c e >
56 < t y p e > e i g h t h < / t y p e >
57 < / n o t e >
58 < n o t e >
59 < p i t c h >
60 < s t e p >C< / s t e p >
61 < o c t a v e >5< / o c t a v e >
62 < / p i t c h >
63 < d u r a t i o n >1< / d u r a t i o n >
64 < v o i c e >1< / v o i c e >
65 < t y p e > e i g h t h < / t y p e >
66 <stem >up< / s tem >
67 <beam number=" 1 "> b e g i n < / beam>
68 < / n o t e >
69 . . .� �

In the Listing 3.2 it can be seen that parts contain measures. At the beginning of the staff
attributes like key and time signatures are defined. Duration of notes in MusicXML are defined
as fractions, where the denominator (number of divisions per quarter note) is defined in the
divisions element and the duration element is specified within the note elements. It
can also be seen what other elements are commonly defined per note: pitch, voice number, type
(which should only affect the note’s display and could also be deduced from the duration), stem
and beam. Chord symbols are given before the note that they are associated with. They consist
of a root note, kind (33 different kinds are supported) and bass note element (if applicable).

Listing 3.3: MusicXML file example; tablature.� �
182 < p a r t i d =" P2 ">
183 <measure number=" 1 ">
184 < a t t r i b u t e s >
185 < d i v i s i o n s >2< / d i v i s i o n s >
186 <key>
187 < f i f t h s >0< / f i f t h s >
188 <mode>minor < / mode>
189 < / key>

190 < c l e f >
191 < s i g n >TAB< / s i g n >
192 < l i n e >5< / l i n e >
193 < / c l e f >
194 < s t a f f−d e t a i l s >
195 < s t a f f−l i n e s >6< / s t a f f−l i n e s >
196 < s t a f f−t u n i n g l i n e =" 1 ">
197 < t u n i n g−s t e p >E< / t u n i n g−s t e p >
198 < t u n i n g−o c t a v e >2< / t u n i n g−o c t a v e >
199 < / s t a f f−t u n i n g >
200 < s t a f f−t u n i n g l i n e =" 2 ">
201 < t u n i n g−s t e p >A< / t u n i n g−s t e p >
202 < t u n i n g−o c t a v e >2< / t u n i n g−o c t a v e >
203 < / s t a f f−t u n i n g >
204 < s t a f f−t u n i n g l i n e =" 3 ">
205 < t u n i n g−s t e p >D< / t u n i n g−s t e p >
206 < t u n i n g−o c t a v e >3< / t u n i n g−o c t a v e >
207 < / s t a f f−t u n i n g >
208 < s t a f f−t u n i n g l i n e =" 4 ">
209 < t u n i n g−s t e p >G< / t u n i n g−s t e p >
210 < t u n i n g−o c t a v e >3< / t u n i n g−o c t a v e >
211 < / s t a f f−t u n i n g >
212 < s t a f f−t u n i n g l i n e =" 5 ">
213 < t u n i n g−s t e p >B< / t u n i n g−s t e p >
214 < t u n i n g−o c t a v e >3< / t u n i n g−o c t a v e >
215 < / s t a f f−t u n i n g >
216 < s t a f f−t u n i n g l i n e =" 6 ">
217 < t u n i n g−s t e p >E< / t u n i n g−s t e p >
218 < t u n i n g−o c t a v e >4< / t u n i n g−o c t a v e >
219 < / s t a f f−t u n i n g >
220 < s t a f f−s i z e >150< / s t a f f−s i z e >
221 < / s t a f f−d e t a i l s >
222 < / a t t r i b u t e s >
223 < n o t e >
224 < r e s t / >
225 < d u r a t i o n >1< / d u r a t i o n >
226 < v o i c e >1< / v o i c e >
227 < t y p e > e i g h t h < / t y p e >
228 < / n o t e >
229 < n o t e >
230 < p i t c h >
231 < s t e p >C< / s t e p >
232 < o c t a v e >4< / o c t a v e >
233 < / p i t c h >
234 < d u r a t i o n >1< / d u r a t i o n >
235 < v o i c e >1< / v o i c e >
236 < t y p e > e i g h t h < / t y p e >
237 <stem >none< / s tem >
238 < n o t a t i o n s >
239 < t e c h n i c a l >
240 < s t r i n g >3< / s t r i n g >
241 < f r e t >5< / f r e t >
242 < / t e c h n i c a l >
243 < / n o t a t i o n s >
244 < / n o t e >
245 . . .� �

In Listing 3.3 the beginning of the tablature part is shown. The basic structure is the
same, only the clef element changes and the tuning of the string-lines is specified in the
attributes element. The same notes as in the previous part have to be included again,
specifying the string and fret number within the notations element.

3.2 Genetic algorithms

GAs are search and optimization algorithms inspired by biological evolution. Solutions to the
optimization problem (candidates) are encoded in chromosomes (a set of parameters that define

a proposed solution to the optimization problem). The difference between candidate and chro-
mosome is equivalent to the difference between genotype (genetic information) and phenotype
(observable properties like morphology) in natural evolution. A population of chromosomes
is evolved over generations to originate chromosomes with a hopefully higher fitness score.
The first population is filled with randomly initialized chromosomes to cover a wide range in the
search space. From this population chromosomes are selected (the ones with higher fitness score
should be selected more likely) for crossover (combination of chromosomes). This process is re-
peated to fill a new generation of chromosomes. Sometimes also (the fittest) chromosomes from
the previous generation are copied to the new generation unchanged (elitism). After that the
population is subjected to random mutation. This cycle is repeated until a termination criterion
is reached. For an overview on GAs and much more consult [Mit98].

In an example we analyze a GA that breeds the string HELLO WORLD. An implementation
of this GA can be found in [Dc10].

3.2.1 Representation

The first thing that is needed for a GA to operate is the representation of the solution to the
problem as a chromosome. In most cases it is an array or list of arbitrary type (to facilitate
crossover and mutation operations), but also tree structures (genetic programming) or graphs are
used. In our example the chromosome is an array of characters (fixed length: 11).

3.2.2 Fitness

A chromosome needs to be assigned a fitness score, which measures its quality and enables a
comparison between candidates. In some problems (especially art related) a fitness function is
hard to define and thus in some cases the user assigns it (interactive fitness function). In the
example we measure the difference to the target string (by counting non-matching characters).

3.2.3 Operators

Several operators are used in the evolution process. They guide the flow of the GA targeted at
improving the score but also keeping dispersion to not get caught in local optima.

Initialization

The initialization process fills the first generation of chromosomes with more or less random
candidates, which ensures a uniform sampling of the search space. In the example implemen-
tation the characters in the chromosomes are assigned randomly to one of 26 characters of the
alphabet or the whitespace character.

Selection

Selection is a process guided by chance that is supposed to select candidates proportional to
their fitness score for crossover. Small samples of less fit chromosomes that are likely to be

selected along with fitter chromosomes keep the population diverse and prevent premature con-
vergence. The most popular methods are roulette wheel selection or tournament selection. In
the example roulette wheel selection is used, which selects candidates according to the following
probability (fi denotes the fitness score of the ith chromosome and N denotes the total number
of chromosomes in the population):

pi =
fi∑N

j=1 fj

(3.1)

Crossover

The crossover operation breeds 2 offsprings from 2 parent chromosomes. The procedure is
dependent on the chromosome representation, but in general the parent chromosomes are cut at
a random point and the new offsprings are made of one slice of each parent (see Figure 3.2).
This procedure is called one-point crossover, but it can easily be extended to n-point crossover.
Crossover is intended to produce on average fitter candidates for the new population.

Figure 3.2: Single point crossover. (Rgarvage, "File:SinglePointCrossover.png" May 30, 2010
via Wikipedia, Creative Commons Attribution-ShareAlike 3.0 license)

Mutation

Mutation changes random elements in a chromosome which allows to introduce new ideas to
the population. In an array-like chromosome representation, like in the example, each element
is reinitialized in a random fashion with a certain probability (here pM = 0.02). The purpose
of mutation is to preserve and introduce diversity, such that local minima are avoided and the
chromosomes of the population do not become too similar to each other.

Termination

It depends on the problem at hand which termination criterion makes the most sense. Typically
a GA is terminated if a certain number of generations is reached or when no change (improve-
ment) over a certain number of generations in the fitness score of the best chromosome in the
population is observed. In the example we know exactly the fitness score we want to achieve, so
the GA stops when the target string is found.

This is the output of the example GA (StringsExample from the Watchmaker frame-
work in [Dc10]). It uses a population size of 100 and 5% elitism (which means that the fittest
5 chromosomes are retained in the next population). One can see beautifully how the chromo-
somes converge to the target string, which is reached in the 33rd generation:

Generation 0: HHKTHOFZVLT
Generation 1: YQLHLQQOYB
Generation 2: VAXXOYJOOKD
Generation 3: VAXXOYJOOKD
Generation 4: HGXROKXVRFW
Generation 5: HGXROZIXVND
Generation 6: WEFL IWPDAF
Generation 7: HGITBCWPDLK
Generation 8: HGXROVWPDLK
Generation 9: HGXLYYJOOKD
Generation 10: HBLLYYJOOKD
Generation 11: JEFLOYJOOQD
Generation 12: DEQROKWOOKD
Generation 13: HBLLYYJODLK
Generation 14: HEQROXWOOKD
Generation 15: HHLLYYWOOKD
Generation 16: HHLLYKWOOKD
Generation 17: HHLLYYWOOKD
Generation 18: HBLLOKWOOZD
Generation 19: HBLLOKWORMC
Generation 20: HEOLYKWORBD
Generation 21: HHLLYYWORBD
Generation 22: JELLOKWORBD
Generation 23: HELLOKWOOKD
Generation 24: HELLOUWORKD
Generation 25: HELLOOWORQD
Generation 26: HELLOAWORLC
Generation 27: HELLOAWORLU
Generation 28: HELLOOWORYD
Generation 29: HELLOAWORLD
Generation 30: HELLOAWORLD
Generation 31: HELLOAWORLD
Generation 32: HELLOVWORLD
Generation 33: HELLO WORLD
Evolution result: HELLO WORLD

3.2.4 Constraint handling in GAs

An open research topic is the handling of constraints in GAs (how can the generation of invalid
chromosomes be avoided), which is relevant to the problem at hand (not all combinations of
guitar fingerings are possible). The easiest solution would be to assign a penalty in the fitness
score of an invalid candidate (or even 0 or∞, which is called death-penalty). Another solution is
to avoid generating invalid chromosomes in the initialization, crossover and mutation operations.
A good overview on this subject can be found in [Coe02].

3.3 Constraint satisfaction problems

A constraint satisfaction problem consists of variables, a domain for each variable (finite set
of possible values) and a set of constraints. The goal is to find an assignment of values to all
variables that satisfies all given constraints. In the situation where CSPs are used in this thesis
the variables are chord notes and the corresponding domains consist of the possible fingered
positions for each note. To simultaneously played notes constraints like "only one note can
be played on a given string" apply, so when generating the first population in the arrangement
GA all such CSP instances are solved using the algorithms described here. CSPs are defined
formally in [Kum92] as follows:

Definition 3. A CSP P = {X,D,C} is defined by a set of variables, X = {X1, X2, . . . , Xn},
and a set of constraints, C = {C1, C2, . . . , Cm}. Each variable Xi has a domain Di of pos-
sible values. Each constraint Ci involves a subset of the variables and specifies the allowed
combinations of values for the current subset. An assignment that satisfies all constraints is a
consistent assignment, and a solution to a CSP is an assignment to all the variables, such that
all constraints are satisfied.

Figure 3.3: The map coloring problem (a): Each region V1 . . . V4 has to be painted with one color
such that no two neighboring regions have the same color; (b) shows the equivalent constraint
graph. See Figure 3.9 from [Rad06].

A CSP can be visualized using a constraint graph, where the vertices represent the variables
and an edge (or arc) represents a constraint between two variables. For one example see Figure
3.3. One step to solving a given CSP is to eliminate all values from all domains that will never

be part of the final solution. This leads hopefully to a simplified problem which can be solved
more efficiently. This technique is called constraint propagation. The resulting CSP satisfies the
properties of arc-consistency, which is defined in [Rad06] in the following way:

Definition 4. Given a CSP P = {X,D,C} with Cij ∈ C, a variable Xi is arc-consistent
relatively to Xj if and only if ∀di ∈ Di, ∃dj ∈ Dj such that (di, dj) ∈ Cij . The arc defined
by {Xi, Xj} is arc-consistent if and only if Xi is arc-consistent relatively to Xj and Xj is
arc-consistent relatively to Xi. A CSP is called arc-consistent if and only if all of its arcs are
arc-consistent.

Algorithm 1 AC-3 as defined in [Kum92].

1: Q← {(Xi, Xj) ∈ arcs(G), i 6= j}
2: while Q not empty do
3: select and delete any arc (Xk, Xm) from Q
4: revised← false
5: for all dk ∈ Dk do
6: found← false
7: for all dm ∈ Dm do
8: if (dk, dm) satisfies all constraints Ckm ∈ C then
9: found← true

10: break
11: end if
12: end for
13: if ¬ found then
14: remove dk from Dk

15: revised← true
16: end if
17: end for
18: if revised then
19: Q← Q ∪ {(Xi, Xk): (Xi, Xk) ∈ arcs(G), i 6= k, i 6= m}
20: end if
21: end while

Algorithm 1 is called AC-3 and can be used to make a given CSP arc-consistent. It deletes
every value di ∈ Di for which the condition given in Definition 4 doesn’t hold. Of course if the
domain of a variable Xi changes all previously revised arcs (Xj , Xi) have to be checked again.
Instead of revising all domains that have been inspected already the AC-3 algorithm only revises
domains that can possibly be affected, thus reducing complexity.

Given the now arc-consistent CSP it is still necessary to perform a search on the remaining
values as the now revised domains only reduce search complexity, but the CSP can still have 0,
1 or more solutions [Kum92].

In this case the search can be performed by Algorithm 2 called Backtracking. This algorithm
can be thought of as a depth-first-search (DFS) in a tree where the nodes correspond to an

Algorithm 2 Backtracking as defined in [RN03]

1: Backtrack(assignment, CSP)
2: if assignment is complete then
3: return assignment
4: end if
5: Xi ← select unassigned variable from CSP
6: for all dj ∈ Di do
7: if dj is consistent with assignment then
8: add {Xi = dj} to assignment
9: result← Backtrack(assignment, CSP)

10: if result 6= failure then
11: return result
12: end if
13: remove {Xi = dj} from assignment
14: end if
15: end for
16: return failure

assignment of a value to a variable and each level denotes a variable. As soon as an assignment
is not found to be consistent the whole subtree is pruned and the search is continued in the level
above.

Part II

Methodology

23

CHAPTER 4
Framework

In order to perform experiments on symbolic musical data one needs a framework to represent all
the information that is dealt with. This chapter describes the framework on which the prototype
implementation is based.

4.1 Goals

The prototype implementation is used to conduct first experiments in automatic arrangement
based on lead-sheets. The major goal was to incorporate all available information in the input
lead-sheet on a melodic, rhythmic and harmonic level. Regarding the results it was attempted to
focus more on the playability aspect than on musical sophistication. Therefore the arrangement
rules are kept rather simple:

1. Notes shall be inserted at fixed rhythmic positions, governed by a given rhythmic pattern.

2. The melody note shall be the highest note at any given chord in the arrangement.

3. The bass or root note, if present, shall be the lowest note at any given chord in the arrange-
ment.

4. The arrangement shall not contain fingerings that are impossible to play (defined by the
criteria found in [Rad06] and Section 5.2).

5. Both input lead-sheets and output arrangements shall be read/written in MusicXML for-
mat.

Because of point 1 the test songs have to belong to one musical genre that fits the rhythmic
accompaniment pattern. A GA was chosen to optimize both the arrangement and fingering angle
of the problem. This gives the search space an enormous size, but the nature of the instrument
as well as bio-mechanical properties also pose constraints on the result (see also point 4). GAs
are unconstrainted search techniques and are thus very bad at dealing with constraints [Coe02].
However various strategies to resolve this problem exist, see Section 5.2 for more details.

25

4.2 Design

Both the framework and the prototype have been implemented in the Java programming lan-
guage. Various libraries are used to reduce the implementation effort: JFreeChart 1.0.13
for data plotting, Watchmaker-framework 0.7.1 for GAs, Proxymusic 2.0 for read-
ing and writing MusicXML and commons-math 2.0 for fraction arithmetics. There are two
main entry points to the framework (package gArranger.main). One program GArranger-
GenerateCandidates has the task to generate candidates (see Section 5.2) and save them to
disk, the other program GArrangerGenerateSolutions executes the GA for arrangement
by reading the previously saved candidates from disk. This has the advantage that the part where
candidates are randomly generated doesn’t have to be executed every time a new arrangement is
generated, which saves a significant amount of computation time during the experiments.

<<abstract>>

GNote
-semiToneCount: int

#GNote(semiToneCount:int)
+alter(in delta:int): GNote
+getNatural(): GNote
+getSharp(): GNote
+getFlat(): GNote
+getUpperGivenInterval(interval:GInterval): GNote
+getName(): String

<<abstract>>

GAlteredNote
-natural: GNaturalNote
-name: String

+getNatural(): GNaturalNote
+getName(): String

GFlatNote

+getSharp(): GNaturalNote
+getFlat(): GDoubleFlatNote
+getUpperGivenInterval(interval:GInterval): GNote

GSharpNote

+getSharp(): GDoubleSharpNote
+getFlat(): GNaturalNote
+getUpperGivenInterval(interval:GInterval): GNote

GNaturalNote
-name: String

+getNatural(): GNaturalNote
+getSharp(): GSharpNote
+getFlat(): GFlatNote
+getUpperGivenInterval(interval:GInterval)
+getName(): String

GPitchedNote
-octave: int
-pitch: int

+GPitchedNote(note:GNote,octave:int)
+<<static>> getNoteByName(name:String): GPitchedNote
+alter(delta:int): GPitchedNote
+getNatural(): GPitchedNote
+getSharp(): GPitchedNote
+getFlat(): GPitchedNote
+getUpperGivenInterval(interval:GInterval): GPitchedNote
+getName(): String
+isLower(other:GPitchedNote): boolean

GFret
-string: GString
-fret: int
-finger: int

Figure 4.1: UML diagram of the classes representing notes.

The first kind of objects that are needed for a program to deal with symbolic music is notes.
The object oriented design of all note representations is based on the work described in [Pac94]
and the UML diagram can be found in Figure 4.1. In this prototype three different types of
notes are required: notes representing pitch-classes (octave independent), pitched notes (octave
dependent) and fingered positions. The base class for all types of notes is GNote. Together
with its derived classes it represents pitch-classes (GNote) that are mostly needed to describe
intervals and chords.

The GNote abstract base class is split into the classes GNaturalNote and GAltered-
Note; the leaves of this inheritance tree are GFlatNote and GSharpNote. Implemented
note arithmetics include computing neighboring natural, sharp and flat notes from any given
note and returning the upper note of an interval, all in consideration of enharmonic equiva-

lence1. Pitched notes (GPitchedNote) are derived from GNote and occur in melodies. The
additional information needed to pinpoint the specific pitch is the octave in which the note is
played. The combination of pitch class and octave is also the foundation of the scientific pitch
notation described in Definition 1. Finally the class representing fingered positions (GFret)
is derived from GPitchedNote. As mentioned in Section 2.2 a pitched note alone is not a
unique specification of a position on the fretboard of a guitar, therefore the guitar string, fret
number and finger number as additional attributes are needed.

Other data structures that are based on GNote derived classes are GInterval and GChord,
together they are assembled in the package gArranger.data.harmony. The main func-
tionality of those classes is to transform the chord symbol in the lead sheet (e.g. Cmaj7, E[7]9)
into a set of notes. The GInterval class mainly provides the building blocks for this process.

GString
-number: int
-note: GPitchedNote

+getFret(note:GPitchedNote): int

GGuitar
-nFrets: int
-strings: List<GString>

+<<static>> getStandardGuitar(): GGuitar
+getFrets(note:GPitchedNote): List<GFret>
+getFrets(note:GNote): List<GFret>
+getFrets(note:GNote,highest:GPitchedNote): List<GFret>
+isPlayable(note:GPitchedNote): boolean
+getString(note:GPitchedNote,fret:int): GString

Figure 4.2: UML diagram of the classes representing the guitar.

The modeling of the guitar can be seen as an UML diagram in Figure 4.2. It consists of a list
of strings and the number of playable frets. The factory method constructs a standard electric
guitar as depicted in Figure 2.1 with 22 frets. A guitar string GString holds a number and a
pitch. The methods in GGuitar can be used to compute possible frets for pitched notes and
also pitch-classes as well as determine if a given note is playable with this guitar instance.

The last component for modeling symbolic music is rhythm. For this purpose the class
Event<T> is created to assign position and duration properties to any timed object (can be
chord symbols as well as notes in a melody). Position and duration are stored as fractions,
which corresponds to the common way of denoting rhythmical information ("sixteenth note"),
but also how duration is represented in MusicXML (see also Section 3.1). In various algorithms
(segmentation for instance) event progressions are represented as a sequence of onsets and off-
sets (measure-independent format), which is not stored explicitly but computed on demand,
accessible via methods (like getOnsets) in classes representing measures (GMeasure) and

1The implemented prototype is required to be able to differentiate between a minor sixth (C – A[) and an
augmented fifth (C – G]), two different names for the same pitch difference. More on enharmonic equivalence can
be found in http://en.wikipedia.org/wiki/Enharmonic

http://en.wikipedia.org/wiki/Enharmonic

! " !# $! !# !#% &

Music engraving by LilyPond 2.12.2—www.lilypond.org

(a) 1 5
2

7
2

9
2 1 . . .

(b) 0 3
2

5
2

7
2 4 . . .

Figure 4.3: A demonstration of the difference between position (a) and onset (b) representation.

sequences of measures (GPart). Figure 4.3 demonstrates the difference between the two for-
mats. The line (a) shows the position information stored in a Event<T> object. The counter
starts at 1 and it is reset at each new measure. Onsets however start at 0 and continue across
measure boundaries, thus this representation does not depend on a measure-context.

GMeasure<T extends GPitchedNote>
-notes: List<List<Event<T>>
-chords: List<Event<GChord>>
-divisions: int
-key: GKey
-time: GTime
-clef: GClef

#addVoice(): boolean
#addEvent(voice:int,event:Event<T>): boolean
#addRest(voice:int,rest:Rest): boolean
+addEvent(note:T,position:Fraction,duration:Fraction,
 tied:boolean)
+addHarmony(chord:GChord,position:Fraction): boolean
+removeEvents(from:Fraction,to:Fraction): void
+getEventsOnPosition(position:Fraction): List<Event<T>>
+getOverlappingEvents(position:Fraction,
 duration:Fraction): List<Event<T>>
+getChordOnPosition(position:Fraction): Event<GChord>
+iterator(): Iterator<Event<T>>

GPart<T extends GPitchedNote>
-measures: List<GMeasure<T>>
-barlines: HashMap<Integer, List<GBarline>>
-id: String
-partName: String

+addBarline(line:GBarline,mIdx:int): boolean
+getBarlines(mIdx:int): List<GBarline>
+addMeasure(measure:GMeasure): boolean
+split(splitPoints:GMarker): List<GPart>
+merge(other:GPart<T>,splitPoint:GMarker)
+getEventsInSegment(from:GMarker,to:GMarker): List<Event<T>>
+getOnsets(): Fraction[]
+getSegmentation(): List<GMarker>
+iterator(): Iterator<Event<T>>
+getTiedIterator(from:GMarker,to:GMarker): Iterator<Event<T>>

Event<T>
-event: T
-position: Fraction
-duration: Fraction
-tied: boolean

+isOverlap(other:Event<T>): boolean

GPartialMeasure<T extends GPitchedNote>
-duration: Fraction

#addEvent(voice:int,event:Event<T>): boolean
#addRest(voice:int,rest:Rest): boolean

Rest
 event: T = null

Iterable<Event<T>>
+iterator(): Iterator<Event<T>>

GMarker
-mIdx: int
-position: Fraction
-type: Type = {MEL,CHO,MIX}

Figure 4.4: UML diagram of the classes representing higher level data structures.

The UML diagram of classes mentioned above can be seen in Figure 4.4. GMeasure is im-
plemented in a self-organizing way. For example: a measure can have multiple voices, which is
a way to handle polyphonic passages on a single staff. The GMeasure object decides transpar-
ently when it is necessary to open new voices according to the following rule: If there is a note in
the same position, having the same duration or free space (rest) in any of the existing voices the

new note will be added there, otherwise a new voice has to be created. GMeasure also stores a
chord symbol track. The protected methods addEvent(voice, event) and addRest are
low-level implementations that are overridden in GPartialMeasure and called in the public
interface method addEvent(note, position, duration, tied). The GMeasure
class also manages Rest objects (that are derived from Event<T>) within voices, thus the user
never has to care about inconsistent or invalid states of the measure. Rests are also not included
when the iterator is used to read event data from a GMeasure object.

More methods to query/manipulate data are also available that are mostly called by the wrap-
ping class GPart, like removeEvents or getEventsOnPosition. GPart maintains a
sequence of GMeasure objects and offers higher-level access/manipulation methods. Positions
within GPart objects are denoted by GMarker objects, that include a measure index. Fur-
ther use of this class in association with the method getSegmentation is also discussed in
Section 5.2. GPart objects can also be iterated either with consideration of ties or without. Im-
portant operations for segmentation (see Section 5.1) and crossover (see Section 5.2) are split
and merge.

CHAPTER 5
Arrangement algorithm

This chapter describes the workings of the main arrangement intelligence. The sequence is as
follows:

1. The melody and chord symbols are read from the input lead sheet.

2. The melody is segmented into n parts.

3. Each part is processed by the arrangement GA separately.

4. The result parts are merged into the final output arrangement.

5.1 Segmentation

Breaking the song into several pieces before proceeding with arrangement by a GA is necessary
to reduce the search space, as also suggested in [Tuo06], Section 4.4.2 or [TP06b]. A break is
best introduced when the performer is free to move his/her hand. Also criteria on a semantic
level are relevant, such as end of phrases or motives. Both considerations are well addressed in
the local boundary detection model (LBDM) by Cambouropoulos [Cam01], which is discussed
in the subsequent subsection.

All segmentation related classes are assembled in the package gArranger.segmenta-
tion.

5.1.1 Local boundary detection model

The LBDM is based on two rules [Cam01]:

Change rule Boundary strengths shall be proportional to the degree of change between two
consecutive intervals.

Proximity rule The boundary assigned to the larger interval is proportionally stronger.

31

The feature values on which the LBDM is based are differences between the consecutive notes
of a melody on various levels: The implementation outlined in Algorithm 3 uses pitch intervals,
inter-onset intervals (IOI) and rest intervals (the difference between current onset and previous
offset). A big advantage of the LBDM is that it can easily be adapted to include other features
such as chord progressions or double bar-lines.

After feature extraction a degree-of-change function is computed on all three levels (imple-
menting the change rule) and then multiplied by the absolute value of each interval (implement-
ing the proximity rule), so if in two instances the degree-of-change function has equal values
(as in note successions sixteenth to eighth and quarter to half) the boundary value on the second
transition will be greater. The degree-of-change function is denoted asRk in Algorithm 3, and as
Sk after the multiplication with the absolute interval value Pk. This trace is then normalized to
the range [0, 1]. The final boundary function b is a weighted average over the strength sequences
Sk, here the following weight values are used: wpitch = 0.15, wioi = 0.5 and wrest = 0.35. Lo-
cal maxima in the final boundary function indicate suitable segment boundaries and the optimal
segmentation is searched in a subsequent step.

Algorithm 3 Algorithm computing the local boundary detection model as defined in [Cam01].

1: n← number of notes - 1
2: for i = 1 . . . n do
3: Ppitch(i− 1)← |pitch(i)− pitch(i− 1)|
4: Pioi(i− 1)← onset(i)− onset(i− 1)
5: Prest(i− 1)← onset(i)− offset(i− 1)
6: end for
7: for all k ∈ {pitch, ioi, rest} do

8: Rk(i, i+ 1)←
{
|Pk(i)−Pk(i+1)|
Pk(i)+Pk(i+1) ifPk(i) + Pk(i+ 1) 6= 0

0 if otherwise
9: Sk(i)← Pk(i) · (Rk(i− 1, i) +Rk(i, i+ 1))

10: Sk ← Sk−min(Sk)
max(Sk)−min(Sk)

11: end for
12: b(i)←∑

k∈{pitch,ioi,rest}wk · Sk(i)

5.1.2 Finding optimal segments

The LBDM provides a quantification of the potential of each interval to become a segment
border, however the optimal combination of segment borders to form the final segmentation has
still to be determined. The criterion to define this optimality is based on the segment length. It
shall be around the same value for all segments and not vary too much. Therefore a function is
defined to assess segments. This weight function is derived from the gaussian function shown
in Equation 5.1 (the argument x denoting the segment length). Without the normalization factor
that is part of the gaussian probability density function this weight takes values in the range (0, 1]

and reaches its maximum when x = µ.

f(x) = e−
1
2
(x−µ
σ

)2 (5.1)

Algorithm 4 Algorithm that searches optimal segments from LBDM data.

1: borders← {(i, b(i)): b(i− 1) < b(i) ∧ b(i+ 1) < b(i)}
2: borders← borders ∪ {(−1, 1.0), (n, 1.0)}
3: tree← buildTree(borders)
4: for all leaves ∈ tree do
5: max← {nodei ∈ pathToRoot(leaf):wnodei > wnodek ∧ i 6= k}
6: segm← segm ∪max
7: end for
8: for all nodes ∈ segm do
9: segm← segm− (segm ∩ pathToRoot(node))

10: end for
11: for all nodes ∈ segm do
12: if wnodei+nodei+1

> wnodei + wnodei+1
then

13: segm← segm− nodei − nodei+1 ∪ (nodei + nodei+1)
14: end if
15: end for

With the help of this function we can find the optimal segmentation using the method shown
in Algorithm 4. Figure 5.1 visualizes this process by means of an example. First the local
maxima of the LBDM function are extracted as potential segment borders. From this initial
segmentation a tree is built (the root node being the segment that represents the whole song).
Each node is further broken down according to the maximum boundary values in the segment.
This process is repeated for every new segment node until there are no more local maxima left.
Then the path from each leaf node (corresponding to the initial segments built directly from all
LBDM maxima) to the root is searched for the segments having the highest weight according to
the function in Equation 5.1. Those are stored in the list segm.

Subsequently all segments are eliminated from segm that are already included in another
segment in the same list, this is the case if there is a common element in segm and the path from
the current node to the root. To avoid over-segmentation a second pass merges neighboring
segments if the merged segment has a bigger weight than the sum of the two single weights. In
the example shown in Figure 5.1 this is the case with the boundary marked in green on the plot,
which is eliminated due to this process.

We now want to specify an acceptable range of segment lengths, thus determining suitable
values for parameters µ and σ in Equation 5.1. The parameter values shall be chosen such that
segment lengths in the acceptable range are assigned a weight of 1

2 or higher. The center of this
range will be the parameter µ, but we need to find out what value to assign to parameter σ such

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Pr
ob
ab
ilit
y

Figure 5.1: This figure shows how the segmentation tree (above) is built from the LBDM
boundary-strength function (in the plot below). The root node represents the whole song, in
this case "The Girl from Ipanema". Each segment is split (by adding child nodes) on the maxi-
mum boundary-strength value (in the case of the root node it is the 2 peaks at x-axis values 101
and 106, so it has 3 child nodes). The segmentation tree in this figure is not complete because
of the limited space. Each node in the tree is annotated with the following information: segment
length [[left boundary] [right boundary]] weight; the boundary being composed of (x, y) coor-
dinates of the local maximum in the plot. The nodes marked in red correspond to the segment
boundaries marked in red and green on the plot and represent the final segments. The boundary
in green was removed due to the second pass merging procedure.

that the function 5.1 f(x) ≥ 1
2 . So, if we solve Equation 5.1 with f(x) = 1

2 for σ we get:

σ = ± x− µ√
−2 log 1

2

. (5.2)

According to Equation 5.2 the value of σ is only dependent on the deviation of the segment
length from µ. So a new parameter δ is introduced that specifies the acceptable deviation from
the mean segment length µ. This substitution can then be incorporated into Equation 5.1 to get
the final weight function with two parameters µ and δ shown in Equation 5.3. The parameter
values µ = 25 and δ = 9 have been determined experimentally. They mean that segment lengths
around 25 are assigned a higher weight, especially if x ∈ [16, 34], f(x) will be greater or equal
to 1

2 . Figure 5.2 depicts a plot of Equation 5.3 with the parameter values specified above.

f(x) = e
log 1

2 (x−µ)2

δ2 (5.3)

10 0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

X: 16
Y: 0.5

f(x
)

x

Figure 5.2: Illustration of the weight function as defined in Equation 5.3 with µ = 25 and δ = 9.

5.2 Genetic algorithm

Each lead sheet segment is processed by the arrangement GA. The optimization is already car-
ried out in full "fingering" domain, this means that evolving candidates are represented as full
arrangements including fingering. The only time where (chord) notes are selected or added to
the candidate is when they are generated to fill the first population of the GA. The melody is
always inserted fully with randomly chosen fingering and chord notes are added on the positions
that are given by a rhythmic pattern. Hereby constraints that apply to simultaneously played
notes are considered by solving a CSP on every chord, this makes sure that the first popula-
tion only contains "valid" candidates (in terms of not violating any constraint). Constraints are
also included in the fitness function where every violation causes the candidate to be penalized,
because every mutation operation on a chord note is very likely to cause constraint violations.
Mutation furthermore only changes the fingered position of a randomly selected note, it does
not add or remove notes. Of course by combining candidates (crossover operation) the arrange-
ment can be thinned out or enriched with chord notes. The fitness function optimizes mainly the
fingering of the arrangement by computing a difficulty score (from [Rad06]) that means that the
fingering within chords as well as transitions between chords and notes is evaluated. The main
focus of this work is the playability aspect of arrangement that’s why no musical constraints or
attributes whatsoever are implemented in the fitness function.

The GA was implemented using the Watchmaker Framework for Evolutionary Computation
version 0.7.1 by Daniel W. Dyer [Dc10]. It provides high-performance, multi-threaded and
extensible classes that implement different operators and engines. There are no restrictions
on candidate representations, its type is completely decoupled from the framework. If a custom
implementation of evolutionary operators is needed, one can easily integrate own classes but also
use provided standard algorithms. Operators that have been implemented for the arrangement
task are a CandidateFactory and various EvolutionaryOperator classes (Crossover,
Mutation and Evaluation), all of which are discussed in subsequent subsections.

5.2.1 Chromosome representation and generation

Evolved chromosomes represent full arrangements of lead sheet segments (including fingering
– hence type GPart<GFret>) that were determined using the segmentation algorithm de-
scribed above. There are two implementations that extend AbstractCandidateFactory<
GPart<GFret> >. Those are needed because the process of generating candidates is executed
independently from the rest of the GA execution (see Section 4.2). GTabConstrainted-
Factory actually generates candidates that are usually written to disk by the program GArran-
gerGenerateCandidates. When the rest of the GA is executed those previously generated
candidates have to be read from disk and provided to the other evolutionary operators, for this
purpose GTabStoredFactory is used. The inputs to the candidate generation algorithm
are the melody GPart<GPitchedNote> that also already includes the chord symbols and a
pattern GPattern that determines on which metrical positions chord notes can be inserted.

First the melody notes are included in the candidate GPart. Here all possible fingered
positions (string, fret, finger) for the given note are computed and a randomly chosen one
is inserted. It is also taken care that tied notes end up with the same 3-tuple. Then for each
metrical position in the given GPattern a random subset of the notes in the current chord is
computed (always containing the bass/root note). Now the CSP of assigning fingered positions
to chord notes is solved using first Algorithm 1 to make the CSP arc-consistent and then finding
a random but valid assignment with the backtracking Algorithm 2 in Section 3.3.

There are however a few refinements to this process: The melody note has already been
assigned a fingered position, but it also needs to contribute to the CSP, because it can limit the
domain of other variables (notes). So, the melody note together with possible other already
inserted, simultaneously played notes are also part of the CSP variables, but with a domain
limited to one element. Furthermore two new constraints are introduced: The melody note
needs to be the highest in the chord according to point 2 in Section 4.1 and the bass or root
note the lowest (point 3). Of all possible fingerings, if any, a random one is selected as final
output. This is achieved by shuffling the remaining elements in the domains after making the
CSP arc-consistent (Algorithm 1). The first found assignment by the backtracking Algorithm 2
is taken.

Constraints are represented as implementing classes of the GConstraint interface, which
specifies a method boolean isSatisfied(GFret fret1, GFret fret2). The con-
straints are checked on every pair of fingered positions that are played simultaneously (thus this
method is called on every pair of fingered positions). However this representation is too lim-
ited to cover for example a proper formulation of the barré constraint: The same finger on the
same fret is allowed if only notes on the right side of the barré finger are played additionally.
Checking constraints of that kind would require access to the whole set of fingered positions,
but the representation used here in the process of generating as well as evaluating candidates is
powerful enough for the constraints listed hereafter. See also Section 3.3.1 in [Rad06].

OneNotePerString It is physically impossible to play more than one note at once on the same
string.

HigherNoteOnLowerString Higher notes shall be played on lower strings (assuming strings
are numbered from highest to lowest pitch).

NoHorizontalOverlap The order of finger numbers shall be the same as the order of fret num-
bers, e.g. two fingers cannot intersect. Furthermore barré chords are allowed with any
finger (which is a major difference to [Rad06]).

MaxFingerSpan The fret number difference must not exceed a predefined maximum span be-
tween each distinct pair of fingers defined in table 5.1.

Table 5.1: Specification of the maximum finger span from [Rad06]

index middle ring pinky
index - 2 3 4

middle 2 - 1 3
ring 3 1 - 1

pinky 4 3 1 -

If no solution to the CSP exists the process of generating (almost) random subsets of chord
notes is repeated until a solution is found. Failed subsets are stored for the purpose of not repeat-
ing unnecessary computations. If no possible chord note combination is found the bass/root note
is not a required component any more. This way in the worst case no chord note at all is inserted
if the initial condition (melody note) made the satisfaction of all constraints impossible. All in-
serted chord notes get the duration of the melody note, if there is one, otherwise the GPattern
object determines the duration (difference between subsequent and current metrical position).
All note durations are limited by the duration of one quarter note (to enable long melody notes
with underlying chord accompaniment pattern).

The CSP was implemented in this step to ensure a first population of valid (in terms of the
satisfaction of all constraints) chromosomes. During the remaining execution of the GA it is very
likely that invalid chromosomes are produced by mutation, so a strategy to handle constraints
throughout the remaining process is needed nevertheless. More on this subject can be found in
the next subsection.

5.2.2 Fitness function

As stated in Section 4.1 the main goal is to optimize playability of the resulting arrangement.
This aspect is covered using the ideas presented in [Rad06], where the guitar fingering problem
(assigning fingered positions to a given score) is modeled and a solution is proposed. This model
consists of a graph at which the vertices correspond to fingered positions and the edges model
transitions between them. The author then uses a difficulty score for transitions between fingered
positions to solve the guitar fingering problem by finding the minimal path through the graph.
The same difficulty score can therefore easily be used to estimate the overall playability of a
given arrangement, which is exactly the task at hand.

The implemented fitness function is shown in Equation 5.4. The first component f1 denotes
playability (or rather difficulty - the lower the value the better). If f1 was the only objective, the

final arrangement would end up with less notes, as any additional note also increases difficulty.
Therefore f2 is added, which acts as a counter balance and grows proportional to the number of
notes in the arrangement. Since it behaves inversely to f1 it is placed below the fraction line.
n denotes the number of notes in the arrangement and has been introduced to make the fitness
score independent of the arrangement size. Both components are eventually weighted by factors
α1 and α2 and summed up, which is the easiest way to achieve multi-objective optimization.
More on the detailed computation of f1 and f2 can be found subsequently.

f = α1
f1

n
+ α2

n

f2 + 1
+ penalty (5.4)

Turning to the difficulty score and its computation: according to [Rad06] (Section 3.2) three
different types of movements in guitar performance can be distinguished:

melody (MEL) The performer plays one note at a time.

chord (CHO) The performer plays more than one note at a time.

mixed (MIX) The performer holds at least one note and plays others at the same time.

All three cases are defined and exemplified in Figure 5.3. In summary, a monophonic pas-
sage without any simultaneously played notes is classified as a MEL block. If multiple notes
are played at the same time, starting and ending at the same time, the CHO case is applied.
Everything else involving overlapping notes (one or more held notes with a sequence of chords
or a melody played at the same time) is a MIX case. Algorithm 5 is used to implement the rules
given in Definitions 5 – 10 in Figure 5.3. This segmentation is not only used to compute the dif-
ficulty score according to [Rad06] but also to find suitable split points for crossover. Moreover
the second component of the fitness score f2 is computed as the number of notes within CHO or
MIX blocks.

Overall difficulty f1 is composed of difficulty within each MEL, CHO or MIX block (in-
tra block score) and difficulty of transition between blocks (inter block score). The same basic
function given in Equation 5.5 from [Rad06] is employed within each inter or intra block score.
It is based on the two directions of hand movement on the fretboard – horizontally (along the
fretboard) and vertically (across the fretboard). Therefore difficulty score between two fingered
positions p = (stringp, fretp, fingerp) and q = (stringq, fretq, fingerq) is defined as fol-
lows in [Rad06]:

weight(p,q) = along(p,q) + across(p,q) (5.5)

This is further decomposed to:

along(p,q) = fret_stretch(p,q) + locality(p,q) (5.6)

across(p,q) = vertical_stretch(p,q) (5.7)

fret_stretch is a function of the directed distance measure ∆fret, which is defined as

∆fret(p,q) = fretq − fretp. (5.8)

Algorithm 5 Algorithm to segment an arrangement into MEL, CHO and MIX blocks.

1: blocks← ∅
2: block ← new MEL block
3: for all notes ∈ arrangement do
4: if typeblock = MEL then
5: if onsetprev = onsetcurr ∧ offsetprev = offsetcurr then
6: if onsetblock = onsetprev then
7: typeblock ← CHO
8: else
9: blocks← blocks ∪ block

10: block ← new CHO block
11: end if
12: else if offsetprev ≤ onsetcurr then
13: do nothing
14: else
15: if onsetblock = onsetprev then
16: typeblock ←MIX
17: else
18: blocks← blocks ∪ block
19: block ← new MIX block
20: end if
21: end if
22: else if typeblock = CHO then
23: if onsetprev = onsetcurr ∧ offsetprev = offsetcurr then
24: do nothing
25: else if offsetprev ≤ onsetcurr then
26: blocks← blocks ∪ block
27: block ← new MEL block
28: else
29: typeblock ←MIX
30: end if
31: else if typeblock = MIX then
32: if onsetcurr ≥ offsetprev then
33: blocks← blocks ∪ block
34: block ← new MEL block
35: end if
36: end if
37: end for
38: blocks← blocks ∪ block

Positive values indicate movement towards the body of the instrument, negative values the
other way. The actual fret_stretch function is now dependent on the involved finger pair, as
difficulty varies with fingers and movement direction. Figure 5.4 shows an example for the
fret_stretch functions for the index finger. [Rad06] defines all possible fret_stretch func-
tions in appendix A.

The fret_stretch function employs the same concept of the comfortable span as the con-
straint MaxFingerSpan defined above in table 5.1. The distance of the comfortable span is
assigned the minimum value of 0.5. The second component of the along score is locality,
which accounts for the fact that playing near the neck is easier than playing near the body of the
instrument.

locality(p,q) = α · (fretp + fretq) (5.9)

[Rad06] suggests a value of α = 0.25 for the moderately skilled player, but it can be adjusted
accordingly. One special case that has to be considered are empty strings. If one of the fingered
positions denotes an empty string no fret_stretch is added and locality(p,q) = α · fretq.

Next, across is defined. It depends on the string distance ∆string and as for fret_stretch a
comfortable span can be derived. This is evident from the function vertical_stretch as defined
in [Rad06] and below.

∆string(p,q) = |stringq − stringp| (5.10)

∆finger(p,q) = |fingerq − fingerp| (5.11)

vertical_stretch(p,q) =

0.25 ∆finger(p,q) = 0 ∧ ∆string(p,q) = 0
0.25 ∆finger(p,q) = 1 ∧ (∆string(p,q) = 0

∨∆string(p,q) = 1)
0.25 ∆finger(p,q) = 2 ∧ (∆string(p,q) = 0

∨∆string(p,q) = 2
∨∆string(p,q) = 3)

0.25 ∆finger(p,q) = 3 ∧ (∆string(p,q) = 0
∨∆string(p,q) = 4)

0.5 otherwise

(5.12)

The function weight(p,q) is directly used as a MEL intra block score (applied to every pair
of subsequent notes). We will now demonstrate how to evaluate the intra block score of the
example MEL block depicted in Figure 5.5a. The first two fingered positions are p = (3, 3, 1)
and q = (3, 5, 3) and this is how the weight function is computed:

weight(p,q) = along(p,q) + across(p,q)

weight(p,q) = fret_stretch(p,q) + locality(p,q) + vertical_stretch(p,q)

weight(p,q) = 0.5 + (0.25 · (3 + 5)) + 0.25
weight(p,q) = 2.75

The fret_stretch function in this example can be evaluated by examining Figure 5.4. The
finger pair involved in positions p and q is index-ring, so we have to look up the lower left
function. ∆fret(p,q) = 2, so fret_stretch(p,q) = 0.5. vertical_stretch evaluates to 0.25

because ∆string(p,q) = 0 and ∆finger(p,q) = 2. The full intra block score is then simply
computed by summing up all weight(p,q) function values for all consecutive pairs of fingered
positions.

weight((3,3,1),(3,5,3)) = 0.5 + 0.25 · (3 + 5) + 0.25 2.75
weight((3,5,3),(3,6,4)) = 0.5 + 0.25 · (5 + 6) + 0.25 3.50
weight((3,6,4),(2,4,2)) = 0.5 + 0.25 · (6 + 4) + 0.5 3.50
weight((2,4,2),(3,6,4)) = 0.5 + 0.25 · (4 + 6) + 0.5 3.50
weight((3,6,4),(3,5,3)) = 0.5 + 0.25 · (6 + 5) + 0.25 3.50
weight((3,5,3),(3,3,1)) = 0.5 + 0.25 · (5 + 3) + 0.25 2.75
weight((3,3,1),(4,6,4)) = 0.5 + 0.25 · (3 + 6) + 0.5 3.25∑

= 22.75

The same way as for MEL intra block score, weight is used to assign a score to a CHO
block:

weight(c1,...,cn) =
n−1∑
i=1

n∑
j=i+1

weight(ci,cj) (5.13)

Here the weight of every distinct pair of chord notes is summed up. The same score can be
applied to MIX blocks, because they can for this purpose be treated like a sequence of CHO
blocks. This means that every set of simultaneously played notes is merged to a CHO block,
which requires the held notes being split at the same position as the moving notes in the MIX
block. In this case also the transition weight is added that is defined hereinafter.

Considering the CHO block example in Figure 5.5b the same procedure as demonstrated
above is employed:

weight((4,0,0),(3,2,2)) = 0 + 0.25 · 2 + 0.25 0.75
weight((4,0,0),(2,1,1)) = 0 + 0.25 · 1 + 0.25 0.50
weight((4,0,0),(1,1,1)) = 0 + 0.25 · 1 + 0.25 0.50
weight((3,2,2),(2,1,1)) = 0.5 + 0.25 · (2 + 1) + 0.25 1.50
weight((3,2,2),(1,1,1)) = 0.5 + 0.25 · (2 + 1) + 0.5 1.75
weight((2,1,1),(1,1,1)) = 0.5 + 0.25 · (1 + 1) + 0.5 1.50∑

= 6.50

As transitions between MEL and another MEL are not possible by Definition 5, MIX blocks
are transformed into a sequence of CHO blocks and transition weights are symmetric, only
MEL→CHO and CHO→CHO transitions have to be considered. The following method was
proposed by Daniele Radicioni after inquiry by email, as transitions are not covered in [Rad06]:

trans_weight(p,q) =
{

β1∆fret(p,q) ∆fret(p,q) > 0
−β2∆fret(p,q) otherwise

(5.14)

The factors β1 and β2 reflect the different difficulty of moving the hand towards the body or in
opposite direction. Therefore they were set to β1 = 0.5 and β2 = 0.3. Otherwise only the hand
repositioning is penalized. In case of CHO blocks where multiple notes can be used to compute
trans_weight from, the fret of the index finger is chosen or estimated if not employed.

This is the way the transition weight is evaluated when going from the MEL block in Figure
5.5a to the CHO block in Figure 5.5b (p = (4, 6, 4), q = (2, 1, 1)):

trans_weight(p,q) = −β2∆fret(p,q)

trans_weight(p,q) = −0.3 · (−5)
trans_weight(p,q) = 1.5

Any CHO block, including the ones generated from MIX blocks is checked for compliance
with the same constraints as discussed above. Per violated constraint a penalty of 1000 is added
to f . Penalizing is the easiest and most obvious way of dealing with constraints in GAs as
candidates with (in this GA) higher fitness are less likely to reproduce. Also so-called death
penalty has been implemented where an invalid (at least one constraint is violated) candidate
is assigned a fitness of ∞. As candidates are very likely to violate constraints after mutation
(discussed below) this would lead to very low variation in the population and all (possibly useful)
information in invalid candidates is lost immediately. This is why death penalty was eventually
not used in the GA.

5.2.3 Selection

The simplest fitness-proportionate selection strategy for GAs (roulette wheel selection) de-
scribed in Section 5.2 is used, also because there is a ready made implementation in the Watch-
maker Framework in class RouletteWheelSelection. Of course more sophisticated se-
lection strategies like SigmaScaling or StochasticUniversalSampling exist, but
the selection operation was not a primary object of research in this work.

5.2.4 Crossover

Standard n-point crossover has been implemented for GPart<GFret> objects in class GFret-
Crossover. Chromosomes cannot be split at any point, because notes in the arrangement can
overlap. Therefore first a set of possible split points has to be found in both parents and com-
bined to include common ones to both. The final crossover points are chosen randomly among
them. The same segmentation algorithm as used in the fitness function can also be used for this
purpose, because boundaries between MEL, CHO and MIX blocks as well as all note boundaries
within MEL blocks fulfill the criterion that no note overlaps them.

In rare cases, where there might not be enough common split points to perform the crossover
operation, the n parameter is gradually reduced until enough split points can be found. If none
are found (which should never be the case, except for extremely short or complicated parts) the
parents are returned without change.

5.2.5 Mutation

Any fingered position in a chromosome can be changed by the mutation operation implemented
in class GFretMutation with probability pM = 0.1. If chosen, all possible fingering tu-
ples are computed for the underlying note and the mutated fingered position is substituted for a

random one among them. Also here it has to be taken care of preservation of tied notes. This op-
eration possibly violates constraints, but could also be implemented to include only compatible
notes using CSP solution methods.

5.2.6 Termination conditions

All termination conditions are implementing classes of interface TerminationCondition
in the Watchmaker Framework. The GA is executed until the fitness value of the best chromo-
some of each generation stagnates for a certain amount of generations (found in class Stagna-
tion). Furthermore the best found candidate must satisfy all constraints.

MEL

!"!!!#$$% "!!& !
Dm7

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 5. a finite sequence of n notes
form a melody S = {s1, s2, . . . , sn}, if for
each pair (si, sj) ∈ S where j = i + 1,
offsetsi ≤ onsetsj .

CHO

! "
4
2

Dm7

###
#

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 6. a set of k ∈ {2, 3, . . . , 6}
simultaneous notes form a chord C =
{c1, . . . , ck}, if for each and every pair
(ci, cj) ∈ C onsetci = onsetcj ∧
offsetci ≤ offsetcj .

MIX

!"""#
Cm

$
%
$

&% %%
%
Fm7

'%%

!"""# &%
"
%
$
B"m7

%%
E"7

'%%

!"""# &%
%

%
%
$
Gm

%
%
%
Fm7

'
%
%

%
%

(!"""# &%% %%%
$$
Cm7

%
%%
F7

'
%%%%

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 7. MIX 1: a finite set of notes
form a mixed passage if given a CHO set
C of k notes, a MEL sequence S of n
notes exists such that for all n, onsetc ≤
onsetsn ∧ offsetc ≥ offsetsn .

!"""#
Cm

$
%
$

&% %%
%
Fm7

'%%

!"""# &%
"
%
$
B"m7

%%
E"7

'%%

!"""# &%
%

%
%
$
Gm

%
%
%
Fm7

'
%
%

%
%

(!"""# &%% %%%
$$
Cm7

%
%%
F7

'
%%%%

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 8. MIX 2: a finite set of notes
form a mixed passage if given an individ-
ual MEL note p, a MEL sequence S of n
notes exists such that for all n, onsetp ≤
onsetsn ∧ offsetp ≥ offsetsn .

!"""#
Cm

$
%
$

&% %%
%
Fm7

'%%

!"""# &%
"
%
$
B"m7

%%
E"7

'%%

!"""# &%
%

%
%
$
Gm

%
%
%
Fm7

'
%
%

%
%

(!"""# &%% %%%
$$
Cm7

%
%%
F7

'
%%%%

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 9. MIX 3: a finite set of notes
form a mixed passage if given an individual
MEL note p, a sequence of q CHOs exists
such that for all q, onsetp ≤ onsetcq ∧
offsetp ≥ offsetcq .

!"""#
Cm

$
%
$

&% %%
%
Fm7

'%%

!"""# &%
"
%
$
B"m7

%%
E"7

'%%

!"""# &%
%

%
%
$
Gm

%
%
%
Fm7

'
%
%

%
%

(!"""# &%% %%%
$$
Cm7

%
%%
F7

'
%%%%

Music engraving by LilyPond 2.12.2—www.lilypond.org

Definition 10. MIX 4: a finite set of notes
form a mixed passage if given a CHO set
C of k notes, a sequence of q CHOs ex-
ists such that for all q, onsetc ≤ onsetcq ∧
offsetc ≥ offsetcq .

Figure 5.3: Definition and visualization of different movement types in guitar performance ac-
cording to [Rad06].

Appendix A

Fret Stretch Weights

Table A.1: Fret Stretch Weights.
IN

D
E

X

1
2
3
4
5

−1−2−3−4−5 0 1 2 3 4 5 −1−2−3−4−5 0 1 2 3 4 5

−1−2−3−4−5 0 1 2 3 4 5 −1−2−3−4−5 0 1 2 3 4 5

1
2
3
4
5

5 4 3 2 1

F
re

t
S
tr

e
tc

h

1

5

4

3

2

1

Delta Fret

1

5

4

3

2

1

Delta Fret
index - index

index - middle

index - ring

index - little

1

5

4

3

2

1

Delta Fret
index - index

index - middle

index - ring

index - little

1

5

4

3

2

1

Delta Fret
index - index

index - middle

index - ring

index - little

1

5

4

3

2

1

Delta Fret
index - index

index - middle

index - ring

index - little

1

88

Figure 5.4: fret_stretch functions for the index finger (from [Rad06]).

6
4

!3 "
3

1!
E"m7#

$

"
%& 6

4! 1!
5

4! 3"" % !
6

2

5

4!
3

'
8

!

Music engraving by LilyPond 2.12.2—www.lilypond.org

(a) MEL block

!"
!#

8

$%

&

Dm7

'''
'

0
2
1
1

2
1
1

Music engraving by LilyPond 2.12.2—www.lilypond.org

(b) CHO block

Figure 5.5: This figure shows examples of a MEL and a CHO block including fingering that is
used to illustrate the functionality of the fitness function. Guitar string and fret information are
contained in the lower tablature staff and fingers are indicated in the upper staff.

Part III

Results

47

CHAPTER 6
Executing the arrangement algorithm

This chapter presents the results obtained by executing the algorithms outlined in Chapter 5. Six
test songs from the Bossa Nova genre that are listed in Table 6.1 have been chosen to demonstrate
the operating mode of both the segmentation and arrangement algorithms. All test songs belong
to the same genre because of the the reason discussed in Section 4.1: The same rhythmic pattern
that governs the insertion of chord notes was used in all of them. These songs have been chosen
precisely because of the following reasons:

• They are well known.

• The genre uses a variety of interesting chord structures.

• There is a strong predominant underlying rhythmic pattern in the melody.

Table 6.1: Overview of test songs – result reference

Name Composer Parts Segmentation Arrangement
One Note Samba Antonio Carlos Jobim 6 Table 6.2 Figure A.2
The Girl from Ipanema Antonio Carlos Jobim 5 Table 6.3 Figure A.4
Corcovado Antonio Carlos Jobim 6 Table 6.4 Figure A.6
Desafinado Antonio Carlos Jobim 7 Table 6.5 Figure A.8
A Felicidade Antonio Carlos Jobim 6 Table 6.6 Figure A.10
How Insensitive Antonio Carlos Jobim 3 Table 6.7 Figure A.12

All test songs were obtained from the online lead sheet collection Wikifonia [Fou10] in Mu-
sicXML format. Only errors were corrected that would have led to wrong interpretation of lead
sheets like when chord symbols were only stored as text annotations and not as a <harmony>
tag that denotes chord symbols or when chord kinds were wrongly spelled (minor-major →
major-minor).

49

The results of the segmentation algorithm are discussed in Section 6.1 and the ones of the
genetic algorithm for arrangement and fingering are discussed in Section 6.2. The complete final
arrangements can then be found in Appendix A.

6.1 Segmentation

Tables 6.2 – 6.7 present the segmentation results for all test songs. The table on the left side
contains one row per segment giving its starting position, ending position and length. Positions
are given as measure index (always starting from 0 – contrary to the convention to denote the first
non-upbeat measure with 1) combined with the beat within the corresponding measure. Beats
are denoted using fractions, as in the MusicXML format, with 1 being equal to the duration of
a quarter note. Therefore a position of (0, 7

2) indicates the 2nd eighth note in the 3rd beat in
the first measure of the piece (see also Figure 4.3). The segment length is given as the number
of notes in the segment, where n tied notes are counted as 1 (as it would correspond to the
onset-offset representation).

The plot on the right side shows the boundary function (blue line) denoted as b in Algorithm
3. Its maxima indicate suitable segment borders. The horizontal axis shows the indexes of
boundaries between two successive notes. That is why the first boundary between the first and
second note in a melody has index 0 and therefore the beginning of the song has index -1. The
final segment boundaries are shown as red dots, including beginning and end of the song with
probability 1, as they are by definition always part of the final segmentation. This is how the
position of the red dots on the horizontal axis relates to the data given in the table: The position
can be thought of as the cumulative sum of the 3rd column in the table that indicates segment
lengths (minus 1).

Table 6.2: One Note Samba – Segmentation

Start End Length

m b m b

0 7
2 8 7

2 30

8 7
2 12 7

2 15

12 7
2 17 1 16

17 1 21 1 23

21 1 28 7
2 38

28 7
2 end 15

In "One Note Samba" (Table 6.2) the segment boundaries perfectly separate the 4-measure
phrases (2 × 4 measures with melody note F, 4 measures with melody note B[and again F),

which corresponds to the first 3 found segments. Afterwards the B part (melody starting with
chord symbol E[m7) is split in 2 pieces because the repeat bar-lines are ignored at the end of it
(therefore the peak that starts the last segment is much more pronounced). The last segment is
again a 4 measure phrase in B[.

Table 6.3: The Girl from Ipanema – Segmentation

Start End Length

m b m b

0 1 8 2 30

8 2 21 11
3 25

21 11
3 26 1 17

26 1 33 5
2 30

33 5
2 end 10

The first segment of "The Girl from Ipanema" (Table 6.3) correctly comprises the 8 measure
theme up to the repeat bar-line. The next 3 × 4 measure phrases are combined into the second
segment. A little flaw is that part B is separated (the remaining 4 measures of part B are not
included because the separating peak is much stronger due to the long note and rest than the
boundary separating parts B and C). The next segment again correctly contains the same theme
as the first, then the last 2 measures are repeated two times. Here the second pass merging
heuristics eliminated the splitting of the last segment where an equally high peak (0.85) would
have created 2 segments with only 5 notes each.

Also in "Corcovado – Quiet Nights Of Quiet Stars" (Table 6.4) all segment boundaries found
by the LBDM correctly separate musical phrases. Only the last 2 segments could have been
better separated by the peak on index 92, because the last 2 phrases are musically similar and
would be better off in one segment together and the note distribution would be more balanced
(14+20 instead of 24+10). The other peak is higher nevertheless because the LBDM does not
consider musical parallelism.

The first 2 segments of "Desafinado – Slightly out of Tune" (Table 6.5) accurately separate
part A until the repeat bar-line. The next boundary is not chosen between parts A and B but
after the first phrase in part B because there is a longer rest and therefore a higher peak. The
global maximum on index 117 (separation between parts B and C) was overruled by the second
pass merging heuristics that preferred 3 segments (27+23+26) over 2 (38+38). The last segment
boundary is again perfect.

In "A Felicidade" (Table 6.6) the segments could not have been chosen better, as they make
perfect sense musically as well as technically.

The musical segmentation in "How Insensitive – Insensatez" (Table 6.7) is very straight-

Table 6.4: Corcovado – Segmentation

Start End Length

m b m b

0 3
2 8 3

2 24

8 3
2 12 3

2 14

12 3
2 18 3

2 23

18 3
2 24 3

2 18

24 3
2 32 5

2 24

32 5
2 end 10

Table 6.5: Desafinado – Segmentation

Start End Length

m b m b

0 3
2 8 3

2 22

8 3
2 16 3

2 25

16 3
2 28 3

2 32

28 3
2 35 7

2 27

35 7
2 44 3

2 23

44 3
2 51 4 26

51 4 end 33

Table 6.6: A Felicidade – Segmentation

Start End Length

m b m b

0 1 17 2 32

17 2 25 1 22

25 1 32 4 21

32 4 44 4 39

44 4 48 4 11

48 4 end 28

Table 6.7: How Insensitive – Segmentation

Start End Length

m b m b

0 1 11 5
2 22

11 5
2 24 1 27

24 1 end 17

forward and would have produced 4 segments (17+17+15+17). However, due to the matching
pitches of the last note of each segment and the first of the next the peaks in the boundary func-
tions are not as high as the ones in the middle of those phrases. That is why this 3 segment
division (22+27+17), with the last segment corresponding to the last musical phrase, is gener-
ated. The peaks on index 4 and 38 have again been ignored due to the second pass merging.

6.2 Genetic algorithm

All arrangements in Appendix A have been produced using the underlying rhythmic pattern
depicted in Figure 6.1. This pattern has replaced the 2 measure Bossa Nova clave1 used in
earlier experiments because repeats or pickup measures are not considered by the arrangement
algorithm, so occasionally the pattern would flip and misalign the main accent on the first beat
in the first measure.

! " " # " "
$

Music engraving by LilyPond 2.12.2—www.lilypond.org

Figure 6.1: (Pseudo) Bossa Nova pattern used for potential chord note positions.

In Figure 6.2 (upper plot) the development of the fitness score in the first segment of Cor-
covado is shown. The fitness score of the best candidate in the population is drawn in blue and
improves from 38.79 to 34.33. At the same time the mean fitness (green) in the population almost
resembles gaussian noise (µ = 252.99, σ = 6.69), but in generation 0, where all candidates in
the population are valid, the mean fitness is significantly lower (73.29), which can be seen in the
lower plot of Figure 6.2, which shows the first 700 generations of the same data. It immediately
increases to the same level that is maintained throughout the optimization process. This is due to
the high penalty in the fitness score and high probability of constraint violation in the mutation
of the candidates, such that only few fully valid candidates remain in the population.

The following parameter values have been used in the genetic algorithm to produce the
results in Appendix A. A generational approach was chosen (as opposed to an island model)
with nP = 2000 chromosomes in the population. An elite percentage (the percentage of the
population with the best fitness score that are preserved unchanged in the next generation) of
pE = 20% and 2-point crossover was applied. The evolution process was stopped if no better
chromosome was found for nG = 700 generations.

The weights of the fitness function were set as α1 = 1 and α2 = 30. Those values have been
found to be a good compromise between playability and the number of notes in the arrangement.
If α1 was too dominant the resulting arrangement would be very thin and vice versa if α2 was
too high the arrangement would be very difficult to play.

"One Note Samba" is a predestinated test song as its melody consists of the same note
throughout long passages such that the contribution of chord notes can be seen and heard easily.
The first segment was unfortunately not well optimized in terms of guitar fingering although the

1http://en.wikipedia.org/wiki/Bossa_nova

http://en.wikipedia.org/wiki/Bossa_nova

0 1000 2000 3000 4000 5000 6000 7000
34

35

36

37

38

39

Fi
tn

es
s

sc
or

e

Generation number
0 1000 2000 3000 4000 5000 6000 7000

50

100

150

200

250

300

M
ea

n
fit

ne
ss

 in
 p

op
ul

at
io

n

0 100 200 300 400 500 600 700
34

35

36

37

38

39

Fi
tn

es
s

sc
or

e

Generation number
0 100 200 300 400 500 600 700

50

100

150

200

250

300

M
ea

n
fit

ne
ss

 in
 p

op
ul

at
io

n

Figure 6.2: Demonstration of the optimization process of the first segment in the song "Corcov-
ado". The blue line in both plots shows the fitness score of the best candidate in the population
over generations, the green line indicates the mean fitness in the population. The plot below
zooms in the same data of the first 700 generations, such that the increase in the mean fitness
after the first generation can be seen distinctly.

middle parts could very well be played right away. Big differences can be seen in the fingering of
CHO or MIX passages and neighboring MEL sections as melody positions are often very messy
("One Note Samba", measures 0 and 1) and the transitions between them are sometimes abrupt
(measure 3), which means that the performer’s hand would have to move quickly along the
fretboard. Very often ("One Note Samba", segment 1, second ending; "The Girl from Ipanema",
beginning, part B; etc.) the problem is that fingerings are not consistent locally and especially
fingering in MEL blocks could be optimized easily.

A second shortcoming is the lack of consideration of harmonic information in the fitness
score. This is reflected in the chord voicings that seem random (which they are!) and most
significantly in the bass line (D] or A on B7[5 in measures 8 and 15 of "One Note Samba"; A on
Fmaj7 in measure 8-9 of "Girl from Ipanema"; etc.). "A Felicidade" lacks bass notes in the first
part altogether. On the other hand the last part of "Corcovado" among others is very well done
in terms of bass notes.

In "Girl from Ipanema" the approach of inserting chord notes at fixed positions fails in
some parts due to the triplets in the melody (measures 22, 24, 31, 33, 35) which creates a very
interesting polyrhythm. Further examples can be found in "A Felicidade".

When inserted chords are not bound by the melody note this can result in musical "outliers"
as can be seen in the first chord on "Corcovado", further examples are in measures 15 and 17 of
"How Insensitive". But those chords can also fill empty measures with an accompaniment pat-
tern (measure 16 in "One Note Samba") or by chance create nice final chords (as in "Corcovado",
last measure).

Due to constraints in the MusicXML format the chord symbol changes in the last line of
"A Felicidade" where one melody note spans over 4 measures and two chord symbols are given
at each one are not correctly reflected in the arrangement since chord positions are represented
implicitly (the sequence of <note> and <harmony> tags determines the position). Therefore
if two chord symbols have to be written over a whole note, both chord symbols will be in-
serted successively at the same position and the second chord symbol will be moved graphically
(relative-x attribute) to the right. That is why only the first chord symbol ended up in the
arrangement.

The main problem of the arrangement algorithm as presented here is the absence of musical
criteria. Most significantly when listening to the result arrangements the bass or root note of
chords is often missing in critical positions (first beat of every measure), which disrupts the
listening experience. One method to overcome this would be to add penalties for missing bass
or root note in the fitness function. Furthermore the chord note selection could also be evaluated
therein as not all chord notes are created equal (thirds and sevenths are more salient features than
fifths).

The segmentation could also be optimized: considering bar-lines, repeats and chord pro-
gressions (cadences) would improve finding significant musical boundaries in the music. Fur-
thermore when repeats are unfolded the usage of two-measure patterns for chord note insertion
would be possible without the danger of misalignment.

Last but not least, the GA’s handling of constraints could also be improved by considering
them also in mutation. For example when a chord note is selected for mutation the emerging CSP
could be solved such that only valid candidates remain in the population. This would certainly
make the optimization more targeted.

CHAPTER 7
Conclusion and Outlook

In this work the subject of automatic arrangement of lead sheets for solo-guitar was exam-
ined and a prototype system proposed that constitutes a first attempt towards solving this multi-
faceted problem. As mentioned before automatic arrangement is far from being exhausted in
scientific discussion and as a result offers much space for new ideas and algorithms.

Here the arrangement together with the guitar fingering problem was solved using a ge-
netic algorithm, where chord notes were inserted on given metrical positions and arrangements
(already in fingered-positions-domain) were optimized mainly towards playability.

All in all the arrangements produced by this algorithm are a first step in exploration of the
subject. They are not as advanced that a guitar performer could immediately pick up a guitar and
play them right away, but they are also not completely impossible or musically far out. Some
passages actually contain good arrangement ideas, that can be further used. The possibility of
creating arrangements based on melody and harmony information with a genetic algorithm has
been studied in this work among others. Nevertheless far more work can and should be invested
to further understand the subject.

7.1 Future work

Studying the results it should be questioned whether genetic algorithms are the most suitable
approach in automatic arrangement due to the highly constrained nature of the problem. For
the arrangement part itself there may be found a fitness function that satisfactorily implements
certain rules or models how arrangement is supposed to work. But the fingering problem is
probably better solved in a post processing step using already well established and efficient
algorithms like the one presented in [Rad06].

A next step in working on the problem would be to study arrangement theory from books or
query a team of professional arrangers on how experts approach the problem. Also in other fields
expert systems that were derived from expert knowledge have achieved great success. Maybe a
more constructional or rule-based algorithm would be worth developing. Together with several
experts a data set could also be collected or created that can be used for learning or evaluation.

57

How generated arrangements are compared against some gold standard (and what that might be)
in a systematic way is anyway a completely unsolved problem.

More work needs to be done in feeding arrangement algorithms with harmonic knowledge.
Some ideas from [PEB05, PEBB05, PEB06, Pai08] in the areas of modeling chord progressions
and harmonization as well as [Pac99, Pac00, PR01, Che04] in harmonization and analysis/syn-
thesis of jazz chord sequences might help here. Such models can be used to introduce transition
chords or interludes in arrangements. One issue in arrangement is also the concept of chord
voicing, that has been considered in [EMY08] for arranging piano music. Furthermore more ad-
vanced methods to represent and deal with rhythm are needed. Rhythm representation, analysis
and modeling are the main subject-matter in [PGBE08, TT08b, TT08a, Tou02]; guitar accom-
paniment with a focus on Bossa Nova can be found in [DST+03, DST+04]. It is evident that
further research would greatly benefit from results obtained in the fields of automatic accompa-
niment, improvisation, composition or harmonization.

New tools are also required to carry on with research: the symbolic music framework de-
veloped for this work is far from being complete and robust. An open issue is also visualization
(notation) of music in MusicXML or other representations. Here a library for transforming mu-
sic into a visual representation in conjunction with the framework mentioned above would make
many things easier.

APPENDIX A
Lead sheets and arrangements

In this appendix all input lead sheets and resulting arrangements discussed in chapter 6 can be
found. Table A.1 lists all test songs and gives additional origin information. All songs were
composed by Antonio Carlos Jobim.

Table A.1: Overview of test songs – origin information

Name Published By Published on Link
One Note Samba tom July 23rd, 2007 http://www.wikifonia.org/node/362

The Girl from Ipanema benoit November 5th, 2006 http://www.wikifonia.org/node/129

Corcovado Musicdad August 9th, 2010 http://www.wikifonia.org/node/6778

Desafinado lasconic December 18th, 2008 http://www.wikifonia.org/node/1025

A Felicidade TxRx January 24th, 2009 http://www.wikifonia.org/node/1167

How Insensitive Mauro58 September 19th, 2009 http://www.wikifonia.org/node/2697

59

http://www.wikifonia.org/node/362
http://www.wikifonia.org/node/129
http://www.wikifonia.org/node/6778
http://www.wikifonia.org/node/1025
http://www.wikifonia.org/node/1167
http://www.wikifonia.org/node/2697

wikifon
�� � ��

B
7(�5)

�
Cm

7

� � ���� � � � ���
Dm

7

� � �� �� � �� � � � � � �� ��� ��
D�7

��
B
7(�5)

�� � �� ��� � � ��
5

� � �� ���
Dm

7

� � �� ��
Cm

7

�
D�7
� � � �

�
A�7
�� �� � �

1

� � ��
9

� �� �� � �� �
Fm

7

� � � � ��
E�maj

7

� ��
B�7
� � �

� B
7(�5)

� ��
Cm

7

� � ���
B�6
	13

� � �� ���
Dm

7

� � �� � � �
D�7
� �� �

��� � �
D�maj

7

� � ��� �� � ��

17 � � � �� � ��

E�m7

� �� � �� � � ��
A�7
� �

���� � � �
C�maj

7

� � � �
21

� �� �
Cm

7(�5)

�� �
B
7(�5)

� ���� �� � ��� ���� ��
D�m7

� �� � � � ���
G�7
� ��

�
A�7
�� �� � �

2

� � ��
25

� �� �� � �� ��
Fm

7

� � � � ��
E�maj

7

� �
B�7
� � �

�
B�6
��

	� � ��
29

� �� � �� ��
D�6
� � � �� � �

C�maj
7

�
C
7

� ��

1

One Note Samba

Music by Antonio Carlos Jobim

Copyright reserved by Musi©opy
Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

bb 44 ..

.

.

‰ œ Jœ

10
6

œ
J
œœ Jœ Jœ œœœ

jœœœœ

20 20
22

6
10
7
10

1
1
2
5

Dm7

jœœ
œ

.œ ‰ œœœbb

jœœb
Œ

œ
Ó

1
5
5

6
1
1
4

15
16

6

Db7

œœb
J
œœ Jœ Jœ œœ

œ J
œœ

15
16

1
1 6

10
8
8

20
20

Cm7

V bb ˙ ‰ œœn
jœœ

Œ
œ

Ó

15
14

15
14

19

B7b5

œœn J
œœ Jœ Jœ œœœœ

jœ
œ

20
19

20
22

20

1
1
2
0

6

5

Dm7

jœœ
œ

.œ ‰ œœb
jœœb

Œ
œ

Ó

6
5
5

6

20
16

10
11

6

Db7

œœ
œ

jœœ
œ Jœ Jœ œœœœ

jœœ
œ

6
8
8

1
3
3

6 6
8
10
8

10
8
8

Cm7

V bb ˙ ‰ œ
œn

jœ

œnœ# œ
Ó

6
0

6

711
9

B7b5

1œœ J
œœ Jœ Jœ œœ

J

œ
œœ

1
6
6

6
6

6 6
6

6
5
3

Fm7

jœœ .œ ‰ œ
œœ

jœ

œŒ œœ Ó

6
6

6 6

0
6

6

6
0
6

Bb7

œ
œ J

œ
œ

Jœ Jœ œ
œœ J

œœ

6

6

6

6

6 6
0
6

11
12

Ebmaj7

V bb ˙ ‰ œœœb
jœœŒ

œ
Ó

1
4
1

6
613

Ab7

œœb
jœœ

œ Jœ Jœ œœœœn
jœœ

œ

6
6

1
1
0

1 1
1
2
0

1
1
0

Dm7

jœ
œ

œ jœ jœ jœœ
œb

b œ
Ó Œ ‰ J

œ
œ

1

0

1 1
6
4
4

1
0

4

Db7

œœ
œb

b
jœ

œœ Jœ Jœ œ
œ

Jœ

1
0

4

1
0
3

1
6

0

6

Cm7 B7b5

V bb œ
œœ œœœ

‰ œœœ

jœ
œœ

1
0
1

0
0
6

0
0
6

1

0
1

Bb6

Jœ J
œ

J
œœœ

bb J
œ

J
œ

J

œœœœ
Jœ

J

œœœœ
bb

6 8 9
7
8
11 9 8

7
8
6

6 4
2
3
1

Ebm7
J

œœœ
b

Jœ
jœœœœb

b Jœb
Jœ

jœœœœ
Jœ

jœœœœœ

2
3
1

1
4
4
3
4

2 1
6
4
3
4

4
1
4
4
3
4

Ab7

.œ jœ
‰ jœœœœbb

jœb
jœœœœœœ Ó

5 3
1
1
3
4

2
1
1
1
4

3
4

Dbmaj7

One Note Samba
Antonio Carlos Jobim

V bb .œ jœ
‰ œœœœb

b jœœœœœœœb Ó

1
3

4
1
3
4

4
1
3
4

1
3
4

Jœb Jœ

J

œ
œb

b
J
œb

J
œ

J

œ
œ
œb

b Jœ

J

œ
œœb

b

18 20
16

16

9
12

6
4
4

4 2

2
4

Dbm7

J
œœbb Jœ

jœœœ
œb

b Jœb
Jœ

jœœœœb Jœ J
œœb

0

21
18

2
3
2
2

4
8

0
3
4
2

2
8
4

Gb7

V bb ..

.

.

.œ jœb
‰ jœœœbb

jœb
jœ

œœ Ó

8 6
3
4
2 14

4

711

Bmaj7

.œb jœ ‰ œœ
œn

jœœœ
œ Ó

2
10

6
2
2 20

17

4

2

Cm7b5 B7b5

2œ
œœ J

œ
œœ Jœ Jœ œ

œ J

œ
œœ

2
6
5
3

6
5
3
11 11

13

6
5
8

Fm7

jœœ
œ

.œ ‰ œœ
œ

jœœ
œœŒ

œœ
Ó

6
4

8

6
11
10

10

6
6

5
6

6
3

Bb7

V bb œœ
œ J

œœ Jœ Jœ œ
œ J

œœœœ

6
7
6

20
17

11
15

11

6
7
5
6

Ebmaj7

˙ ‰ œœb
jœ

œbœœœ
œb Ó

6
9

6

6
4
5
6

4

Ab7

œ
œb J

œœœb Jœ Jœ œœœ J
œœœ

6

4

6
6
6

6 6
6
6

6
6
6

Db6

jœœœb œ jœ œ œ

Ó Œ ‰ J
œœ

6
6
6

6 6 6 6
0

8

C7

V bb œ
œb J

œ
œ Jœ Jœ œ

œb
J

œœœœ

6
0

6
0

6 6

7

6
3
3
6

Bmaj7 Bb6

œœœœ
œ
œœ

‰ œœœ
jœœ

œ

3
3
3
1

6
0
6

3
3
3

6
7

6

2 One Note Samba

wikifon
�� �

gen
walk

�
so

goes

�
ma

��
cool

I

�
so sways

ne

�
and
pa

A ���
tle,
ing

��
when
when

�
that
and

���

like
young

�
ba
ly,

a
and

��

she
and

��
When
Tall

�
Fmaj

7

she's
and

��

walks
tan

�
G
7

swings
Girl

�
from

���
sam
love

�
that
The

��

�� �
Fmaj

7

�
"ah!"

�
"ah!"

�
G�7

�

2

� ���
5

� �
es,
es, one

one

�
each
each

���
Gm

7

� �

pass
pass

�
she
she

� � �
es
es

1

�
Fmaj

7

goes
goes
�

��
pass
pass

�
she
she

�
G�7

� � 	�
ly.

�� � �
How

�

B

11

� � �
but

� �
I

G�maj
7

�
Oh,

�
3

so

C�7
�

sad

���
3

watch

� �
her

�

� 	�
her?

�
 � � �
Yes,

�15

� � �
can

�
I

F
m7

�
 �
3

�
I

D
7

�
love

��
3

tell

 �
her

but

��
3

ly

� � � �
each

19

� � �
I

�
would

�
heart

Gm
7

� �
3

E�7
�

glad

� ��
3

give

�
my

not

� �
at

Gm
7

�
straight

�
a

�
3

head

C
7(�9)

�
me.

23

� � �
3

walks

�
to

�
the

� 3

day

Am
7

�
when

�
she

�
she

� 3

looks

D
7(�9)

�
sea,

�

ma

�
walk

�
goes

�
pa

�
I

� �
ne

���
27
C

ing

��
when

�
and

���
young

�
and

��
and

��
Tall

�
Fmaj

7

and

��
tan

� �
G
7

Girl

�
From

��
love

�
the

�
ly,

�

�
She

� �
3

just

Fmaj
7

�
see

G�7
� � �

does

�
n't

31

� � �
es

�
I

�
smile,

Gm
7

� � �
she

� �
pass

�
3

she

�
does

�
n't

G�7
� � �

but

�

1

The Girl from Ipanema

Music by Antonio Carlos Jobim

Copyright reserved by Musi©opy

� � �35

� � �
No,

�
Fmaj

7

�
see

G�7
� � �

n't

Fmaj
7

�
see

�
3

she

�
does

2

Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

b 44 ..

.

.

.œ jœ jœ œœ

jœ
œœœœ

œœœ Ó

3
9

0
3
3

3
2
2
3
1

5
2
3

Fmaj7

œœœœ
œ J

œ
œ Jœ Jœ

J
œ
œ Jœ J

œœ
œ

3
1
2
2
1

5
3

5
9
8

7
3
5
3

œœ
œ

n œœ œ
Jœ

jœœœ
œ

3
4

3

9
10

14
3

3
3
4

3

G7

V b
jœœ

œ
Jœ

J
œœ Jœ Jœ

jœœœœ
n Jœ Jœ

3
3

3

3
5
5
5 5

4
5
3
17
15

Jœ œ Jœ Jœ
jœœ

œ Jœ
jœ

œœ

7 7
3
3

3
10

0

0
3

Gm7

jœ
œœ

œ jœ jœ jœ
œb œ

Ó Œ ‰
J
œœœb

b

0

0
3

5 5 5
4

3
2
4
2

Gb7

1œœœ .˙
Œ œ ‰ œ Jœ

1
5
5
3

5
3 3 3

Fmaj7

V b ..

.

.

wœb œœb ‰
œ

Jœ

4
7
6

8
7

Gb7

2œœœ œ

‰
œ j

œŒ
.˙

2
0
5
3

5
3

5

5

Fmaj7

w
Œ œ ‰ œœ ‰

5

5
2
0

w

6

Gbmaj7

œ œb œ œb œ œ
3 3

21
10

13

1
8

V b .œb
jœb ˙œœbb Ó

6 8
4
7

B7

.˙ ‰ J
œœb

18
19

w
Œ

œ
‰

œ Jœ

19 19 19

F#m7

œœ œ œ# œ# œœ
3 3 3

Ó Œ ‰ Jœ#

18
19

14
18

11
4

7

9

V b .œ
jœ# ˙œœœ# Œ ‰

œ
Jœ

5
16

2
4
5 17

17

D7

.˙ ‰ jœ
œœ#œ œ ‰

œ
‰

5

4
517

17
17

wœœ œœœ ‰
œ
œ J

œœœ

3
5

3
5
3

3

3

3
5
3

Gm7

œ
œ

œ œ œ œœ
3 3 3

Ó Œ ‰
Jœ

5

5
11

5

17
14
3

3

The Girl from Ipanema
Antonio Carlos Jobim

V b .œ
jœ ˙

Ó ‰
œ Jœ

1

17
13 13

Eb7

˙ ‰ r
œœb

œ œ3 3

œ
Ó

3
6

5 6

13

œ
œ œ œ œ œ
3

3

Ó Œ ‰ J
œœ

8
1 3

0 1 3
1
2

Am7

.˙# œœ
œ

b œœœ Œ ‰ J
œ
œ

4 5
4
0

4
2
0

5
0

D7b9

V b
œœœ
œ

#b œ œ œ œ œ
3

3

Ó Œ ‰
J

œœœ
6
7
8
0

3
1 3

0
6
3
0
3

Gm7

w# œ
œœ

b œœœ ‰
œœœœ J

œœœœ

2
2
2
3

3
5
3

2
3
2
3

2
3
5
3

C7b9

.œ jœ jœ œœœœœ

jœ
œœœ

œœœ Ó

3
9

0
3
2
2
3
1

3

2
3
1

5
2
3

Fmaj7

œ
œœ
œ J

œ
œ Jœ Jœ J

œœ Jœ
jœ

œœ
œ

3
2
2
1

5
3
5

0

15 17

3
2
2
1

V b œœ
œ

œ
œ
œ

œ
Jœ

jœœœœœ
n

3
3

3

0

3
3

14
7

3
0
3
5
3

G7

jœœ
œ

Jœ
jœœœœ

œ
n Jœ Jœ J

œœœ Jœ
jœ

œ
œ

3
3

3

3 0
3
4
3
3

5
9
9
10 17

5

3
3

.œ jœ jœ jœ
œ

jœ
jœœ

œ
œ Ó

15
6
15
15

17
17
173

3

Gm7

.œ jœ œ œ œ
3

œb Ó ‰
J

œ
œb

14
5
14

3

14

3

2

Gb7

V b wœœ œ ‰ œœ Jœ

0

10
8 8

7
8 8

Fmaj7

œœœb
bb jœœœ

œb
b

jœ œ œ œ
3

Ó Œ ‰ Jœ

0
6
4

2
3
2
2

0 0 0
3
2

Gb7

wœ œ
‰ œ Jœ

0

10
1

2
1

Fmaj7

œ
œb

b jœ
œb

b
jœ œ œ œ

3

Ó Œ ‰ Jœ

0

4 2
2

0 0 0
3
4

Gb7

wœ œ
‰

œ Jœ

0
1 1 1 1

Fmaj7

V b .˙ ‰ jœœŒ
œ

‰
œ

‰

1
3

1 1

2 The Girl from Ipanema

wikifon
�

tar

�
Gm

7

� �
float

�
my

� � �
gui

� � �
ing

� �
on

� �
the

�
si

��
Qui

� ��
D�
� �

Qui

�
et

� �
nights

� �
of

�
qui

�
et

�
chords

� �
from

�
et

�
stars,

�
A�dim7

�

and

�
qui

��
B�13
���

Qui

�
et

� �
thoughts

�� �
et

�
dreams,

� �
6

G�7
�

sur

�
rounds

�
Fdim

7

� �
C
7

�� �
lence

�
tha

� �� �
Fm

7

��
us,

�
Fmaj

7

� � �

�
ing

�
on

��
win

� �
dow

�
look

� ��
11

� � �
the

Dm
7

�
moun

�
walks

� �
qui

� Aaug
7

��
by

Em
7

� �
qui

�
et

� � �
and

�
a

��
et

�
streams,

�
D
9

want

� ���
is

� �
where

� �
I

�� �
to

�
be.

� �
15

A�dim7

�
sea.

���� �
tains

�
and

� �
the ly!

�
D
9

� �
This

�
How

�
love

� �� �

�
flick

�
C
7

�
er

��
3

the
�
al

�
of

� ��
G�7
�

life's

�
em

�19 � �
you

� �
so

�
close

� �
til

�
fin

A�dim7

� �
Here,

�
with

�� �
un

�
Gm

7

�� �
to

�
me,

�
Em

7

� �
belone

� �
ly,

� �
23

� 	 �
liev

�
ing

�
was

� � �
Fm

7

� �
life

Fdim
7

� � �
ber.

�
Fmaj

7

� �
was

� �
lost

�
and

B�7(�5)
��

I,

�
who
	� �

�
you

Em
7

��
found

� �� �
with

�
Aaug

7

� �28
Dm

7

� � �
a

�Am
7

�
on

� �
ly

� �
gic

G
7(�9)

�
joke,

� �
have

�
bit

�
ter

�
tra

�

� ��
my

�
love.

�
C
6

 �33

� �
mean

�
ing

�
of

Dm
7

� � �
the

�
�

tence,

�
oh,

� ���
ex

G
9

�
is

�

1

Corcovado
Quiet Nights Of Quiet Stars

Words & Music by Antonio Carlos Jobim, Gene Lees (English)

Copyright reserved by Musi©opy
Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

22 J

œœœbb œ
Jœ Jœ œ

œb J
œœ

13
13
11

5 3
0

3

4

0
2

Db

jœœb jœn
œb

‰
œ jœŒ

.˙

0
2 3

9
4 4

0

jœœœb
b∫

œ
Jœ Jœ œœb

jœ
œœ

0
0
4

0
3

0
3
1

0

0
4

Abdim7

V
jœ

œœ∫b

jœ œœœ
b ‰

œœ

jœ
œŒ

.˙

0

0
4

3 0
0
4

0
4

0

4

0

jœ
œ

œ
Jœ Jœ œ

œœ

jœ
œ

3

3

3 1 3
5
0
3

3

3

Gm7

jœœ
œ

b œ Jœ Jœ œœb J
œœ

3
3
3

1
1 0

4

0

4

C7 Gb7

.œ jœ ˙œ Œ ‰ œœ Jœ

3

13
3
1

3

Fdim7 Fmaj7

V .˙ ‰ jœœ
œ

œ œœ ‰ œœ ‰

1
2

1
3

3
1

2
3

jœ
œœ

b œ
Jœ Jœ œ

œ
Jœ

4

3
1

3 1 3 1

3

3

Fm7

jœœ œ
jœ ˙

Ó ‰ œœœb
bb

J
œœœ

3
3

1 3
1
1
1

1
1
1

Bb13

jœ
œ

œ
Jœ Jœ œœœ J

œœœ

0

0

1 0 1 0
0
2

6
4
7

Em7

V
jœ

œ
œ

jœ œœ
œ

‰
œ
œ

j
œŒ

.˙

6
0
0

0
6
5
0

0
0 0

6

A aug7
J

œ
œ

œ
Jœ Jœ œœœœ

jœœ
œ

5

0

0
3
0
3
2
2
3

0
1
0

D9

jœœœ
œ

jœ jœ jœœœœ#

œ
Ó Œ ‰ J

œ
œ

0
2
0

3
0

3
2
3
2

6
5
0

Dm7

jœœ
œ

œ
jœ œ œ

Ó Œ ‰
J

œœ
œb

∫b

6
5
0

0 1 0 1
3
4

4

Abdim7

V
jœœœ∫b œn jœ jœ

œœbb
jœœ∫Ó ‰

.œ

1
3
1

0
3

2
4

0
4

5

J
œœ œ

Jœ Jœ œœœœ

jœœœœ#

0

17

0
3

0
3
2
2
5

0
2
4
5

D9

jœ
œ

œ
jœ ˙

Ó ‰
œœœ#

J
œœœ

0

5

3
0

5
4
5

1
2
0

Corcovado
Antonio Carlos Jobim

V
jœœ

œb
b∫ œ

Jœ Jœ œ
œœb

jœ
œœ∫

0
3
4

0
3
0

3

2
4

0

0
4

Abdim7

jœ
œœ∫b Jœ

œ
œœ

Jœ
œœœ∫b

jœ
œb

0

0
4

3
0

0
4

3
3
1 7

7

˙ œ œ œ
3

Œ œ Œ ‰
J
œœ

5
3 1

8
0
3

Gm7

jœœœ
œ Jœ Jœ œ

œœbb J
œœœbb

3
0
3

1
1 0

4
2

0
3
4

C7 Gb7

V .œ jœ ˙œœb
Œ ‰ œ Jœ

30
3 3 3

Fdim7 Fmaj7

.˙ ‰ jœ
œœœ œ ‰ œ ‰

1

0
1

3
3 3

jœ
œ

b
œ

Jœb Jœ
jœœ

œ

b
Jœ

jœœ
œ

b

1
1

8 6 4
1

1

3 1
1

1

Fm7

.œ jœ ˙œ
œb

b Ó

0
3

6
6

Bb7b5

V œœœ

jœœ
œ

Jœ Jœ J
œœ Jœ Jœ

0
2
0

4
0
0

7 5 3
5
10

0

Em7

.œ jœ ˙
Ó ‰ œ

œ J
œ
œ

3 1
0
0

5
0

Am7

œ

œ
jœ

œ
Jœ Jœ

jœ
œ Jœ Jœ

8

0
5
0

5 3
6
0

0
3

Dm7

jœœ
œ

b œ Jœ Jœ
œ

J

œ
œœ

5
6
3

0 1 3
3
1
0

G7b9

V
wœœ œœ ‰ œ Jœ

0
2

2
0 0 0

Em7

˙ ‰
œœœ#

jœœœ
œ
œ

œ Ó

0
4
5

0
4
5

2

0
2

A aug7

œ

œ J

œ

œ
Jœ Jœ

jœœœ Jœ
jœœœ

8

0
17
0

5 3 1
2
0

0
3
2
0

Dm7

jœ
œœ

œ Jœ Jœ
œœ

jœœ

1
0
3

0 1 3
2

15
15

G9

w
Ó ‰ œ Jœ

15 15

C6

V .˙ ‰ jœœœœŒ œ ‰ œ ‰

5
5
0
3

15 17

2 Corcovado

wikifon
��

ver

�
o

� �
dy,
pitch,

� �
mel
fe

� G
7(�5)

�� �� � �A

kiss

� �
a
es

�
nev
raised

� �
Fmaj

7

�

Once

�
Love

�
is

your

� �
like

to

�	 �� �
ing
a

�� �
er
me

�
end

�
so

pho

� �
ny,
rich,

� ��
sym
seem

Am

7(�5)

�

D
7(�9)

�
5

� � �
have

or

� �
com
ches

�
pared
tra

�Gm
7

� �
Po

Now

�
ets
the

� �
to
does

�	 �� �
a

n't

C
7

�� �
it

tion

�	 �
of

� �
�

the

�
D
7

�� �
ing

�
1

moon,

��
D
7(�9)

�
9

� �
pho

�
ny

� �
con

�

Gm

7

� �
A

�
sym

�	 �� �
the

�
light

�	
duc

A
7(�9)

�

by

�
ted

�

���
tune.

�� �
C
7(�9)

��
out

� G�maj
7

�� �
of

�13

� � � �
song

�
�
of

�
love

G
7(�9)

� �
But

� �
our

�
slight

� �� �
ly

� �� �
is

to

�
sing,

� �� Fmaj
7

�� �� �
2

E
7(#9)

�
17 �

to

 �

me

� �
you

�
we

Gm
7

� �
Seems

�
the

�
tune

� �� �
used

�
changed

B�m6

�

�
E
7

�
swing.

�
Bm

7

�
21

� �
We

	 �
used

�� �
bos

� �
sa

�
no

�
Amaj

7

� �
Like

�
the

	
love

�	 �� �
should

�
B�dim7

�� �
va

�

�
time,

� �
E
7

�
Bm

7

�� �
fect

�
B

25

� � �
mo

�
nize

�
B�dim7

�
Amaj

7

�� �
to

	 �
har

� �� 	 �� �
in

�
per

��
two

�
souls

�
ven

�
rhyme;

� E
7

��
don't

	 ���
e

�� �
'Cause

��29 �
you

�	 �
song

�	 �

dif

�
Amaj

7

is

�
the

�
Now

�� �
the

���
��
Bm

7

�
wordsf'rent

��
F	m7

	 �
and

�

1

Desafinado
Slightly out of Tune

Words & Music by Antonio Carlos Jobim, Jon Hendricks

Copyright reserved by Musi©opy

��
ways

�
croon,

�
hearts al

�
would

��
G
7

��
33 ��

got

� �
mel

�
the

��
so

�
And

�
for

���
Cmaj

7

what

��
dy

��
Dm

7

�
our

��
C	dim7

�
o

�

C
7(�9)

��
of

�
tune?

� G
7

� �37

� �
heart

 �
 �

that's

Gm
7

�
good's

 �

a

� �
ly

�
out

� ���
slight

E�m6

�

� �
to be,

� �
� G

7(�5)

�� � �
C

41

� � �
heart

� �
to

�
mine

� �
the

Fmaj
7

� �
Tune

�
your

� �	 �� �
it

�
used

�� �
way

�

lov

�
D
7

�

�
a

� �
song

 �

of

� � �
ing,

�45

We're

���
in

�
har

� ��
C
7

Gm
7

� �
Join

�
me

��
with

� �
and

�
sing

 ��Am
7(�5)

�
mo

� ��	 �
ny

� Dm
7

�� �� �
too

� � �
There'll

�
be

49

� �
in

�
tune

B�m6

�
 �
long,

Gm
7

�
bound

� �
to

 �

get

� �� �
be

�
fore

� Fmaj
7

�
a

�
gain

�

plete

�
com

� �
ly,

�
to

� �
me

�� � � � �
53

you

�
Thensa

�
fi

�
na

� �
do

� �

G
7

�
no

�
de

� � �
heart

� �
longs

�
E�9

be

�
your

�
when

�

F
6

�� � �
me.

�
	

C
7

�� �
a

�
long

� � �
C
7

�57

�
be

�
slight

�
ly

�
out

�
with

G
7

�
wont'

�
You'll

�
sing

� �
of

�
tune

� Gm
7

�

2

Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

b 44 ..

.

.

jœ

œ
œ Jœ Jœ

œœœ
J
œ
œ

0

1

1 3
0

15
19
17

0

3

Fmaj7
J
œœœ œ

Jœ Jœ
œœœn

J
œ
œ

0
1
3
3 2 3

5
3 15

13

jœœœn œb jœ ˙
Ó ‰ œ Jœ

15
14
15

11
6

5 5

G7b5

w
Œ œ ‰ œ Jœ

5 5 5

V b jœœœ
œ Jœ Jœ

œ
œ J

œœœ

3
0
3

3
0 1 3

3
10
8
10

Gm7

jœ
œ

œ
Jœ Jœ

œœ
œ J

œ
œ

10

8

5 4
0
3
3

8
0

C7

jœœ
œ

b œ jœ ˙
Ó ‰ œ Jœ

8
8
0

4

18
17 17

A ø

w
Œ œ ‰ œ Jœ

17 17 17

D7b9

V b
1

jœœ
Jœ J

œ
Jœ Jœ œ

jœœœ
œ

1

0
3

7
8 6

10
3 6

3
3
3

Gm7

jœœ
œ

œ
Jœ Jœ

œœ
œ

#
jœœ

œ

6
5

0

5
4

0
6
0

7
8
0

A7b9

J
œœ œ

Jœ# Jœ œœœ# J
œœ

7
7

5 2
3
4
3

13
17

D7

w
Œ œ# ‰ œ Jœ

14 17
15

D7b9

V b ..

.

.

J

œ
œ

b œ
Jœ Jœ œœœ

œ
b

jœœ
œœn

9
0

4 3
6 3

1
3
3

4
3

2
3

G7b9

jœœœ
œ

œ
Jœ Jœ œœœ

œ
n

J
œœœ

4
3
3
3

3 1
3
4
3
3

6
7
5

jœ
œb œb jœ ˙
Ó ‰ œ Jœ

6
4

2
6

4 4

Gbmaj7

˙ ‰ œœ
œ

b jœ
œœ œ Ó

0
6
3

8
86

3

C7b9

V b
2jœœœ

œ
J
œ

Jœ œ

œ

jœ
œœ

2

3
0
3

8
13 10

3

3

6

5
3

Gm7 J

œœœœœ
b œ

Jœ Jœ œ
œœ

jœœœœ

6
6
6
5
6
19

12
6

10
6

3
2
3
1

Bbm6

jœ
œœ

œ
jœ ˙

Ó ‰ œ Jœ

3

3
1
15 17

17
15

Fmaj7

w
Œ

œœ# ‰
œœn Jœ

17
16

14
16

17

E7#9

Desafinado
Antonio Carlos Jobim

V b œœ
œ

Jœ Jœ#
Jœ

œœœ
œ

Jœ

4
2

5
14 16

9
7
6
6
5

14

Amaj7

Jœ œ
Jœ Jœ

œ
œœbb

Jœ

22

6
3

4
0

0

Bbdim7

w

Bm7

˙ ‰ œœœ## Jœ

6
6
7

9

E7

V b Jœ
œ#

Jœ Jœ
œœœ
œ

Jœ

16

0 2
2
1

5

5

Amaj7

œ jœœœ
œ

n∫b
Jœ Jœ

œœ
œ

nb Jœ

3
6
5
6

11
3
6

6

5

Bbdim7

Jœ œn Jœ ˙

9
5

Bm7

˙ ‰
œœ
œ

n# jœœ
œ

n

12
13

12

4
5
0

E7

V b
jœœ

œ
œ Jœ# Jœ# œœœ

œ

jœœœ
œ

n

6
6
5

5
2

13
5
5
6
0

7
5
6
0

Amaj7
J

œœœœ##
œ

Jœ Jœ
œœœ J

œœœ

7
5
6
4

5
2 3

6
4

0
6
4

F#m7

jœ
œœn

œ#
Jœ Jœ

œ
œœ J

œœn

0

5
7

2
5 7

0
7

0
4

Bm7

˙ ‰ œœ

œ

jœœœn
Ó

0
7

0
22
22

9

E7

V b J
œœn

œ
Jœ Jœ

œœœ J
œœœ

22
19

14
3 5

5
5 12

14
15

Cmaj7

œœ#
jœœ

œ#

jœ jœ œœœ
jœ

œÓ ‰
.œ

12
16

6
8
9

9 3
2
4

3
4

1

C#dim7

œœœ
jœœœœ

jœ jœ jœœœ
œ

Ó Œ ‰ Jœ

12
15
15

7
7
8
10

3
3
3
5

3
3

Dm7

˙ ‰
jœ

œœn
Jœ

jœ
œœœ

n

3

2
3

3 5
0
0
3

G7

V b
jœ

œœ

œ Jœ Jœ œ
œ J

œ
œ

6

0
3

5 6 5
0

8

5

Gm7
J

œ
œœb

œ
Jœ Jœ

œœb Jœ

8

8
6

6 5 6
4

3

Ebm6

w

G7

˙ ‰
œœ
œ

b jœ
œ

6
6
3

2

3

C7b9

j
œœ

œ Jœ Jœ
œ

œ J
œ
œ

0
1

1 3
0 1

1

0

3

Fmaj7

2 Desafinado

V b
J
œ
œ œ

Jœ Jœ
œœœ
œ

Jœ

0

3
3 2 3

2
2
1

1

jœœn œb jœ ˙
Ó ‰ œ Jœ

1
0 2

6

3
3

G7b5

w
œ

œ ‰ œ
Jœ

3
5 5

3

jœœœ
œ Jœ Jœ

œ jœœœœ

3
0
3

3
0 1 3

6
3
0
3

Gm7

V b
jœœœœ

œ
Jœ Jœ

œœ
œ J

œœ
œ

6
3
2
3

0
4

0
3
3

10
11
10

C7

.œ jœb jœ œœœ
œ

nb
jœœœ

œœ
Ó

9 8 7
4
5
0

6
4
7

13
14

A ø

jœœœ
œ

.œ œ œ
Œ

œ
Œ ‰ J

œ
œ

6
7
5
0

10 5
7 5

0

D7

.œ jœ jœ œ
jœœ

œ
œ
œ Ó

8 6 5 3 6
6
0

6

6

Gm7

V b
J

œœ
œ

œ
Jœ Jœ œ

œœb

jœœ
œ

b

6
6

6

5 3
6

4
6

5
6

6

Bbm6

˙ jœ œœœ

jœœ œœ Ó

0
5
3

3
6

5
3

Fmaj7

˙ ‰
J

œœ
œ

jœœœœ

jœœœ

5
5
0

3
5
3
5

5
2
0

Dm7

jœ
œ

jœ jœ
œ

jœ jœ
œ jœÓ ‰

.œ

6
0

6 6
0

6
15 5 5

6

G7

V b jœ
œ

n œ
jœ œ œ

Ó Œ ‰ Jœ

0

3

3
0

6 6
5

.œ jœ jœ œ
œb

jœœb
œ Ó

10 10 10 10

11

13
13

11

Eb9

jœœb .œ œ jœ
jœœœb

n
Œ

œ
œ

b
Ó

13
13

6
7

5
3
1

6
6

jœ
œœ

Jœ
jœœ

œ
n Jœ Jœ œœœ

jœ

œ

6
0
3

1 1
0

3

6 6 6
4
5

6

3

G7

V b œ

œ

jœœœ
œ

Jœ Jœ
œœ

jœœ
œ

6

3

0
3
3
3

4
0
5

3
3
3

Gm7 C7

jœœœ
œ jœ ˙

Ó ‰ œœ Jœ

3
5
3

6 6
2
0 0

F6

œœ œ
œ

‰ œœ
œ

jœ
œ

0
5

5

3

0
3
3

0

3

C7

3Desafinado

wikifon
��

Cm
6

�
Cm

maj7
Cm

7

� �
Fe
Fe

� ��� � �� �
Tris

Moderate Bossa Nova
Cm

te
te

�
tem
tem

Cm

�
fim.
fim.

�
za
za

A�9
�

ñao
ñao

�
B�7Fm

7

�
5

� ���
ci
ci

D
7(�9)

�
da
da

�
Gm/D

�
li
li

� �
de

	
Gm

�
sim.
sim.

 �
de

� �
ta.
ma

�

 �

mo a
mo a

Dm
7(�5)

�
go
plu

G
7

� �
De or
que o

9

� ��� �
fe
fe

C
7(�9)

�
li

E�maj
7

�
A
A

E�6
� �

de é
de é

Fm
7
/E�

�
co
coli

�
ci
ci

Fm
7

�
da
da

E�7
�

B�m7

�
flor.
ar.

�
A
7(�5)

�13

� ��� �
nu
vae

�
ma
le

Fm

�
pe

Cm

�
val
ven

�
hae
tu

�
la
pe

�
de
lovan

�
ta
do

Dm
7(�5)

�
cil
bré

G
7

��
le
vi

�
ve os
da

la.
vè.

�
E

Pre

17

� ��� �
tran
tão

G
7

�
qui
le

A�
� �

Bril
Vô

�
ha
a

Cm

�
pois
tem

�
de
a

�
la
ve

�
de

mas

Fm
7

��
de a
pa-

To Coda
Cm

�
mor.

B
7(�9)

�21

� ��� �
mo u

que ha

� �
na
ja

Dm
7(�5)

Cm

�
cai
ci

�
co
sa

 	 �
ma
sem

G
7

��
la

ven

�
gri
to

� �
ce.

��
pa

�
re

�25

� ��� �
Fe

�
ci

A�7
�

da

�
li

E�
�
A

�
po

E�
�

bre

�
de

�
do

� ��
val.

�
A

29

� ��� �
lu

E�7
�

saõ

B�m7

�
A

�
gran

�
de i

�
car

E�aug7
�

na

A�6
�
do

1

A Felicidade

Words & Music by Antonio Carlos Jobim, Vinicius de Moraes

Copyright reserved by Musi©opy

�
ro.

�
en

�
tei

�
Por

33

� ���
B�7
�

bal

Fm
7

�
gen

�
te

�
tra

E�
�
a

�
ho

�
ha

�
o

�
Fm

7(�5)

ta

�
si

C
7(�9)

� 3

a

�
fan

� ��� �
a.

B�7
� �

De

37 �
to

 �
de

Am
7(�5)

�
son

Am
7(�5)

�
un

�
mo

Daug
7

�
3

men

�
Pra

�
fa

Gm

7(�5)

�
zer

�
ho.

Daug
7

�
3

�
G
7

�
Dm

7(�5)

�
nei

�
ra.

� �
E

41

� ��� �
ou

�
de

�
pi

�
di

E�
�
rei

� � �
jar

�
ra

�
ta ou

���
ra

� �
45

� ��� � � �
Tris-

Cm

�
tu

�
do

 �
se a

G
7

� �
ta

Cm

�
fei

�
na

	 �
quar

� �
ca

Dm
7(�5)

�
bar

�
to

	 ��
ja

Dm
7(�5)

�
ven sem

G
7

� �
pa

� �
�

49

� ���
Cm

�
rar.

�
sa

 �
que ha

��
Pre

�
ci

�
to

	 �
sem

Dm

7(�5)

�
ven

G
7

� �
pa

53

� ��� � � �
Pre

Cm

�
rar.

 �
que ha

� �
ja

�
ci

�
sa

�
temñao

�
A�9

�
za

57

� ��� � �
Cm

�
rar.

� �
Tris

�
te

�CmCm
6

����
61

�
CmCm

maj7

fim.

�
Cm

�
Cm

7
Cm

maj7

�
CmCm

6

2

Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

bbb 22 ..

.

.

œ Ó

17

w
œ œ Œ ‰ Jœ

13

15 15 15

Cm

œ
œ

œ
œ

œ œ

13

15

11

10
19

11

Ab9

wœ œœn
‰

œ Jœ

12
10 9

11
10 10

Cm

˙ ‰ œ jœnœ œ
Œ

œ

15 1213
10

12

Cm7 Cm6

V bbb
.˙ œ

Ó Œ ‰ Jœ

6
12
12

Gm/D

.˙n œ#
Ó Œ ‰ Jœ

10
11
12

D7b9

wœ œ
‰

œ
Jœ

22
18 18 22 18

Gm

˙ ‰ œ
œ

jœ

Œ
œ

Ó

19

18

6

20

Fm7 Bb7

wœ
œ

œ
œ ‰

œ
J
œ
œ

3
3
1

3
1

4 3

6

Ebmaj7

V bbb
œœœ

œ œ œ
Ó Œ ‰ Jœ

3
1
1 20

4

17
15

Eb6 C7b9

œ œ
œ

œn œ
Ó Œ ‰ J

œœ

17
6
3

5
10
10
11

Fm7 Fm7/Eb

.œ jœ œ œ
Ó Œ ‰ Jœ

18 18
22
22

D ø G7

œœ œœœ
œ œ

Ó Œ ‰ Jœ

10
10

8
10
8

12 13
15

Cm

œœœ
œœ œ œ

Ó Œ ‰ Jœ

8
5
8 20

20
13

1
1

Fm

V bbb wb œœ œ ‰
œ

Jœ

6
8
6 6

8
6

Bbm7

˙ ‰ œ
œn

jœœœ
œn

#
œ œ Ó

3

7

9
8
5
5

6
6

Eb7 A7b5

œœ œ
œ

œ œ
Ó Œ ‰ Jœ

4
6

5

4

4 6
6

Ab

œ
œ œ

œ

Œ œ
Œ

˙
‰ Jœ

3
0

3

3

4
3

0

G7

œ
œ

œ
œ

œ œ
Ó Œ ‰ Jœ

1

3

4

3

1 3

3

Cm

V bbb œ
œ œ

Œ œ
Œ

˙
‰ Jœ

6
0

0
31
0

D ø G7

œ
œ

œ
œ

n œ œ
Ó Œ ‰ J

œœ

8
0

7
5

6
4
0
3

Cm

œ
œ

jœœ# jœ œ œ
Ó Œ ‰

Jœ

8
0

2
3

1
4

3

D ø G7

wœ œ ‰ œœ Jœ

5
6

5 5
6 6

Cm

˙ ‰ œœ#n
jœ

œœ#nœ œ Ó

4
4

1
1
26

4

Fm7 B7b9

A Felicidade
Antonio Carlos Jobim

V bbb œœ œœ
œ œ

Ó Œ ‰ Jœ

3
1

1
1

3 4
0

Eb

œœ œ
œ

œ œ
Ó Œ ‰ Jœ

5
6

3

4

4
1
1

Ab7

œ
œ

jœœ
jœ ˙

Ó ‰ œ Jœ

3
1

1
1

3

6 6

Eb

.˙ ‰ jœœœ œ ‰ œ ‰

7 0
66 6 6

œ œœ œ œ

4 6
3

3 4

Bbm7

V bbb œ
œ

œ
œ

œ œ
Ó Œ ‰ Jœn

1

1

3

1
4

3
0

Eb7 Ebaug7

w
œ œ ‰ œ Jœ

6

6
6 6 6

Ab6

˙ ‰ jœœ

œ
œ Ó

3
4

15
6

˙ œ œ
œœ œ Œ ‰ J

œœ

6 1
11

6
8 8

10
8

Fm7

œ
œ
œ

˙ œ

Œ
œœ

Œ ‰ J
œ
œ

6

6
6

11 13
10
8

13
13

Bb7

V bbb
˙ œ œ
œ œœ Œ ‰ Jœ

8

17
17

6
8
6

18

Eb

œ
œ

˙ œ

Œ
œ

Œ ‰ J

œ
œ

17

15
22

10

18

11

11

œœn œ
œn

œ œ œ
3

Ó Œ ‰ J
œœ#

19
19

17

17

6
14 15

16
17

A ø D aug7

œ
œ

œ
œœn

œ œ œn
3

Ó Œ ‰ Jœ

8

11

8

6
5

11
19
17

A ø D aug7

˙ œ œ œ
3

œœb œœ Ó

15 15
18

8

16
15

16
15

G ø C7b9

V bbb
œœœb œœ

œ
œ œ

4
4
3

13
13
13

17

F ø Bb7

˙ jœ
jœœœ

œ
œ

œœ Ó

4 6
3
6

8

1
3
1

Eb

œ
œœ

jœ jœ jœ jœ
œ œ

Ó Œ ‰ Jœ

13

13
11

22
10 8

11

5
6

œœ .˙
Œ

œ
‰

œ Jœ

20
20

20
20 22 22

D ø

V bbb ..

.

.

˙ ‰ jœœn jœ jœŒ
œ

Œ
œ

14
15

8 8
22

8

G7

œ
œ

œ

œ

n œ œ
Ó Œ ‰ Jœ

8
5

7

8

6
4

3

Cm

œœ
jœœ# jœ œ œ

Ó Œ ‰ Jœ

3
3

2
3

1
4
0

D ø G7

œœ œ
‰

œ
jœœŒ

.˙

1
1 5

3
5
6

5

Cm

œœ
œ
œ

‰
jœ

œ
œ

1
1

3

3

3

3

3

2 A Felicidade

V bbb w

1

Cm

˙ ‰ œ
œ

jœ
œÓ Œ

œ

4

3

4

3

3

œ œ
œ

n œ œ
Ó Œ ‰ Jœ

8 7
0

6
4
0

œœ
jœ

œ
jœ œ œ

Ó Œ ‰ Jœ

3
3 7

0

1
4
0

D ø G7

w

1

Cm

˙ ‰
œ jœÓ Œ

œ

3 3

3

V bbb
œ œ

œ
n œ œ

Ó Œ ‰ Jœ

8 7
0

6
4

3

œ
œ

jœ
œ

jœ œ œ
Ó Œ ‰ Jœ

8
0

11
0

1
4

0

D ø G7

w

1

Cm

˙ ‰
œœ jœÓ Œ

œ

1
3 3

3

w

8

V bbb
œ œ

œ
œ œ

Ó Œ ‰ Jœ

11
0

10
11

11

Ab9

wœ œœn
‰

œ Jœ

12
10 9

11
10 13

Cm

w
œ œ

‰ œn Jœ

11
10

12
10

Cm

w
Œ

œ
‰

œ
J
œœn

10 10 9
11

Cm

wœ œn ‰ œ Jœ

10
12 12

10

Cm7

V bbb
œ
œ œœ

‰ œœ

jœœœ

3

3
0
3

0
3

4
0
3

Cm

3A Felicidade

wikifon
�� � � ���� ����

Dm

� � �� ��
A
7
/C�

�

	

� � �5

� � �� � �
Cm

6

 � � � �	
G/B

�� � �

� ����
9 	���

B�6
� � �� �	

E�aug7
�

�	 �13

� � � �
A
7

��
Em

7(�5)

 � � � �	
Dm

� �� ��

� ����
17 	���

F

� � �� �	
Fdim

�

����
21 ���

Gm
6

��

Dm

�
Dm

�
A
7

�
3

�

� ����
25 	�� �

Cm
7

�
F
7

� �
E
7

� � �	
Bm

7

���	
�	
Dm

� � �29

� �
Gm

6

 � ��
�� � ��
A
7

�	

1

How Insensitive
Insensatez

Music by Antonio Carlos Jobim

Copyright reserved by Musi©opy
Offered by Wikifonia.org - Sponsored by Wikifonia foundation - Music engraving by Lilypond

V

T
A
B

b 44 ..

.

.

w
œ œ ‰ œ Jœ

5

0 0 0 0

Dm

œœ
œ

jœœ
œ œ

œ
Jœ

5
6
0

2
0

6
10
0

11

wœ# œ
‰

œ
Jœ

10
11 11 11

0

A7/C#

œ
œ

jœœ#

œ œœ# Jœ

10

12
7
9

11
14
11

11

V b
˙ ‰

œ

jœœœ œ
Œ

Jœ#
‰

5

8

5
55 5

9

Cm6

J

œ
œ

œn œ œœ J
œœ

8
0

7 6
10
10

5
5

.œ jœ ˙œn
Œ ‰

œ
Jœ

3
0

4
0

G/B

˙ ‰ œœn jœœn
œ

Ó

3
4 0

7

3

wœ œ
‰

œ
Jœ

8
8 8 8

8

Bb6

V b œœ
jœ

œ

œ œœ
jœ

œœ

8
8

6

6

5 3
3

5
0

6

w
œb

œb
‰ œb Jœ

3

4

4

6

4

Ebaug7

œœb
J

œ
œb

œ œ Jœ

3
4

3

6

10
3

14

˙ Œ jœ#
jœœœ

œ œ
‰

œœ ‰

22
11 12
13
1222 22

8
7

E ø
J

œœœ
œ œb œœœ#

J
œ
œ

15
14
17

10
4

8
11
12

12
12

A7

V b .œ jœ ˙œœ Œ ‰
œ Jœ

15
12
10

17 17

Dm

˙ ‰ œœœ
jœ

œ
œ

Ó

22
19
22

5

517

wœ œ ‰
œ Jœ

15
12 12 15 15

F

œœœ J

œ
œœ œ œœ

œ J

œœœ

15
15
13

20

19
20

8 6
5

5

12
10
8

wœœb œœœb
‰ œ J

œœœ

6
6
8

4
6
8 8

4
6
8

Fdim

V b œœœœbb
jœ

œœb
b œ œœ Jœ

6
4
6
8

4

2
1
22

15
16

22

.˙ œœ œ
Œ ‰ J

œœ

14 10
15 12 7

10

Dm

œœ
œ
œœ œ œ œ

3

Ó Œ ‰ Jœ

7
10

15

13
15

9
17 19

17

Gm6 A7

wœ œ ‰ œ Jœ

15
17

17 17
17

Dm

œœ œ
œœ ‰ œœœ jœ

15
17

5

3
5

10
7
10

5

How Insensitive
Antonio Carlos Jobim

V b wœ œ
‰

œ Jœ

15
15 15 15 15

Cm7

œœb jœ
œ

œ œ
œ

jœœœ
œ

15
18

1

1

3 1

3

3
4
2

1

F7

wœn œ
‰

œ Jœ

0

9
0 0 0

Bm7

œœ# jœœn
œ œœ

jœ
œ
œ

0
1

2
0

1 0
3

1
1

0

E7

˙ ‰

œ

jœœœ œ
Œ Jœ#

‰

0

3

5
0

5
3 4

Gm6

V b ..

.

.

J
œ
œ

œb œ œ
œ

jœ
œ

3
2

2 1
5

0

0

0

A7

.œ jœ ˙
œ Ó

3

5

Dm

˙ ‰
œ
œ J

œ
œ

5

0

5

0

2 How Insensitive

Acronyms and abbreviations

MIDI Musical Instrument Digital Interface

GA Genetic algorithm

HC Hill climber

ANN Artificial neural network

CSP Constraint satisfaction problem

LBDM Local boundary detection model

IOI Inter-onset intervals

OMR Optical music recognition

DFS Depth first search

IOI Inter-onset interval

83

Bibliography

[AKNR07] Alia Al Kasimi, Eric Nichols, and Christopher Raphael. A simple algorithm for
automatic generation of polyphonic piano fingerings. In Simon Dixon, David Bain-
bridge, and Rainer Typke, editors, Proceedings of the 8th International Symposium
on Music Information Retrieval (ISMIR), pages 355–356, Vienna, Austria, Septem-
ber 2007. Österreichische Computer Gesellschaft.

[Ari09] Christopher Ariza. The interrogator as critic: The turing test and the evaluation of
generative music systems. Comput. Music J., 33(2):48–70, 2009.

[Ass96] MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Specification,
1996.

[Bil94] J. A. Biles. Genjam: A genetic algorithm for generating jazz solos. In Proceedings
of the International Computer Music Conference, pages 131–137, Aarhus, Den-
mark, 1994.

[Cam97] Emilios Cambouropoulos. Musical rhythm: A formal model for determining local
boundaries, accents and metre in a melodic surface. In Music, Gestalt, and Com-
puting - Studies in Cognitive and Systematic Musicology, pages 277–293, London,
UK, 1997. Springer-Verlag.

[Cam01] Emilios Cambouropoulos. The local boundary detection model (LBDM) and its
application in the study of expressive timing. In Proceedings of the International
Computer Music Conference (ICMC’01), Havana, Cuba, September 2001.

[Cam06] Emilios Cambouropoulos. Musical parallelism and melodic segmentation: A com-
putational approach. Music Perception: An Interdisciplinary Journal, 23(3):249–
267, February 2006.

[Che04] Marc Chemillier. Toward a formal study of jazz chord sequences generated by
Steedman’s grammar. Soft Computing, 8(9):617–622, 2004.

[Coe02] Carlos A. Coello Coello. Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: A survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering, 191(11-12):1245–1287, 2002.

85

[CSH09] Shih-Chuan Chiu, Man-Kwan Shan, and Jiun-Long Huang. Automatic system for
the arrangement of piano reductions. In Multimedia, 2009. ISM ’09. 11th IEEE
International Symposium on, pages 459 –464, 14-16 2009.

[CV06] Jae-woo Chung and G. Scott Vercoe. The affective remixer: personalized music
arranging. In CHI ’06: CHI ’06 extended abstracts on Human factors in computing
systems, pages 393–398, New York, NY, USA, 2006. ACM.

[Dc10] Daniel W. Dyer and contributors. Watchmaker framework for evolutionary com-
putation. http://watchmaker.uncommons.org/, 2010. Accessed on May
20th, 2010.

[DST+03] Márcio Dahia, Hugo Santana, Ernesto Trajano, Carlos Sandroni, and Geber Ra-
malho. Generating rhythmic accompaniment for guitar: the Cyber-João case study.
In IX Brazilian Symposium on Computer Music: Music as Emergent Behaviour,
Campinas, Brazil, 2003.

[DST+04] Márcio Dahia, Hugo Santana, Ernesto Trajano, Geber Ramalho, Carlos Sandroni,
and Giordano Cabral. Using patterns to generate rhythmic accompaniment for gui-
tar. In Sound and Music Computing Conference, Paris, 2004.

[EMY08] Norio Emura, Masanobu Miura, and Masuzo Yanagida. A modular system generat-
ing jazz-style arrangement for a given set of a melody and its chord name sequence.
Acoustical science and technology, 29(1):51–57, 2008.

[Fou10] Wikifonia Foundation. Wikifonia. http://www.wikifonia.org/, 2010. Ac-
cessed on September 14th, 2010.

[GB91] P. M. Gibson and J. A. Byrne. NEUROGEN, musical composition using genetic
algorithms and cooperating neural networks. In Second International Conference
on Artificial Neural Networks, pages 309–313, Bournemouth, UK, November 1991.

[GJC03] Andrew Gartland-Jones and Peter Copley. The suitability of genetic algorithms for
musical composition. Contemporary Music Review, 22(3):43–55, September 2003.

[Goo06] Michael Good. Lessons from the adoption of MusicXML as an interchange stan-
dard. In XML 2006 Conference Proceedings, Boston, MA, December 2006.

[Jac95] Bruce L. Jacob. Composing with genetic algorithms. In Proceedings of the Inter-
national Computer Music Conference (ICMC), Banff, Alberta, September 1995.

[KM07] Robert M. Keller and David R. Morrison. A grammatical approach to automatic
improvisation. In C. Spyridis, A. Georgaki, G. Kouroupetroglou, and C. Anagnos-
topoulou, editors, Proceedings of the 4th Sound and Music Computing Conference
(SMC07), Lefkada, Greece, July 2007.

[Kum92] Vipin Kumar. Algorithms for constraint-satisfaction problems: a survey. AI Mag.,
13(1):32–44, 1992.

http://watchmaker.uncommons.org/
http://www.wikifonia.org/

[LLC10] Recordare LLC. MusicXML definition, version 2.0. http://www.
recordare.com/xml.html, 2010. Accessed on May 20th, 2010.

[Mar96] Andrew Martin. Reaction–diffusion systems for algorithmic composition. Org.
Sound, 1(3):195–201, 1996.

[Mir01] Eduardo Miranda. Composing Music with Computers (Music Technology). Focal
Press, June 2001.

[Mit98] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1998.

[MO02] Massimo Melucci and Nicola Orio. Evaluating automatic melody segmentation
aimed at music information retrieval. In JCDL ’02: Proceedings of the 2nd
ACM/IEEE-CS joint conference on Digital libraries, pages 310–311, New York,
NY, USA, 2002. ACM.

[MY02] Masanobu Miura and Masuzo Yanagida. Finger-position determination and tabla-
ture generation for novice guitar players. In Catherine Stevens, Denis Burnham,
Gary McPherson, Emery Schubert, and James Renwick, editors, Proceedings of the
7th International Conference on Music Perception and Cognition (ICMPC), pages
701–704, Sydney, July 2002. AMPS and Causal Productions.

[NK97] Tomomasa Nagashima and Jun Kawashima. Experimental study on arranging music
by chaotic neural network. International Journal of Intelligent Systems, 12(4):323–
339, 1997.

[Pac94] François Pachet. An object-oriented representation of pitch-classes, intervals, scales
and chords. In Actes des 1res Journées d’Informatique Musicale, Bordeaux res
Journées d’Informatique Musicale, Bordeaux, pages 19–34, 1994.

[Pac99] François Pachet. Surprising harmonies. International Journal of Computing Antic-
ipatory Systems, 4, February 1999.

[Pac00] François Pachet. Computer analysis of jazz chord sequence: Is Solar a blues? In
Eduardo Reck Miranda, editor, Readings in Music and Artificial Intelligence, pages
85–113. Harwood Academic Publishers, 2000.

[Pai08] Jean-François Paiement. Probabilistic models for music. PhD thesis, Ecole Poly-
technique Fédérale de Lausanne (EPFL), Lausanne, 2008.

[PEB05] Jean-François Paiement, Douglas Eck, and Samy Bengio. A Probabilistic Model
for Chord Progressions. In Proceedings of the Sixth International Conference on
Music Information Retrieval (ISMIR), 2005. IDIAP-RR 05-57.

[PEB06] Jean-François Paiement, Douglas Eck, and Samy Bengio. Probabilistic melodic
harmonization. In Luc Lamontagne and Mario Marchand, editors, Canadian Con-
ference on AI, volume 4013 of Lecture Notes in Computer Science, pages 218–229.
Springer, 2006.

http://www.recordare.com/xml.html
http://www.recordare.com/xml.html

[PEBB05] Jean-François Paiement, Douglas Eck, Samy Bengio, and David Barber. A graph-
ical model for chord progressions embedded in a psychoacoustic space. In ICML
’05: Proceedings of the 22nd international conference on Machine learning, pages
641–648, New York, NY, USA, 2005. ACM.

[PGBE08] Jean-François Paiement, Yves Grandvalet, Samy Bengio, and Douglas Eck. A dis-
tance model for rhythms. In ICML ’08: Proceedings of the 25th International
Conference on Machine Learning, pages 736–743, Helsinki, Finland, 2008. ACM.
IDIAP-RR 08-33.

[PR01] François Pachet and Pierre Roy. Musical harmonization with constraints: A survey.
Constraints, 6(1):7–19, 2001.

[Rad06] Daniele P. Radicioni. Computational Modeling of Fingering in Music Performance.
PhD thesis, Centro di Scienza Cognitiva, Università degli Studi di Torino, Torino,
Italy, 2006.

[RAL04] Daniele P. Radicioni, Luca Anselma, and Vincenzo Lombardo. A Segmentation-
Based Prototype to Compute String Instruments Fingering. In R. Parncutt,
A. Kessler, and F. Zimmer, editors, Proceedings of the 1st Conference on Inter-
disciplinary Musicology (CIM04), Graz, Austria, April 2004.

[RD04] Aleksander Radisavljevic and Peter Driessen. Path difference learning for guitar fin-
gering problem. In Proceedings of the International Computer Music Conference.
International Computer Music Association, 2004.

[RIHL93] K. Ricanek II, A. Homaifar, and G. Lebby. Genetic algorithm composes music.
In System Theory, 1993. Proceedings SSST ’93., Twenty-Fifth Southeastern Sympo-
sium on, pages 223 –227, 7-9 1993.

[RL05a] Daniele P. Radicioni and Vincenzo Lombardo. Computational Model of Chord
Fingering. In B.G. Bara, L. Barsalou, and M. Bucciarelli, editors, Proceedings of
the 27th Annual Conference of the Cognitive Science Society, pages 1791–1796,
Mahwah, New Jersey, 2005. Lawrence Erlbaum Associates.

[RL05b] Daniele P. Radicioni and Vincenzo Lombardo. Fingering for Music Performance.
In Proceedings of the International Computer Music Conference (ICMC05), pages
527–530, Barcelona, Spain, 2005.

[RL07] Daniele P. Radicioni and Vincenzo Lombardo. A Constraint-based Approach for
Annotating Music Scores with Gestural Information. Constraints, 12(4):405–428,
2007.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[TDSR04] Ernesto Trajano, Márcio Dahia, Hugo Santana, and Geber Ramalho. Automatic
discovery of right hand fingering in guitar accompaniment. In Proceedings of the
International Computer Music Conference (ICMC’04), pages 722–725, 2004.

[TI00] Nao Tokui and Hitoshi Iba. Music composition with interactive evolutionary com-
putation. In Proceedings of Generative Art 2000, the 3rd International Conference
on Generative Art, Milan, Italy, 2000.

[Tou02] Godfried T. Toussaint. A mathematical analysis of african, brazilian and cuban
clave rhythms. In Proceedings of BRIDGES: Mathematical Connections in Art,
Music and Science, pages 157–168, Townson, MD, July 2002.

[TP05] Daniel R. Tuohy and W. D. Potter. A genetic algorithm for the automatic generation
of playable guitar tablature. In Proceedings of the International Computer Music
Conference (ICMC ’05), Barcelona, Spain, September 2005.

[TP06a] Daniel R. Tuohy and W. D. Potter. An evolved neural network/HC hybrid for tab-
lature creation in GA-based guitar arranging. In Proceedings of the International
Computer Music Conference (ICMC’06), New Orleans, Louisiana, November 2006.

[TP06b] Daniel R. Tuohy and W. D. Potter. GA-based music arranging for guitar. In Pro-
ceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC ’06),
pages 3810–3815, Vancouver, BC, Canada, July 2006.

[TP06c] Daniel R. Tuohy and W. D. Potter. Guitar tablature creation with neural networks
and distributed genetic search. In Proceedings of the 19th International Conference
on IEA/AIE’06, Lecture Notes in Artificial Intelligence, pages 244–253, Annecy,
France, June 2006. Springer-Verlag, Berlin.

[TT08a] Eric Thul and Godfried T. Toussaint. Analysis of musical rhythm complexity mea-
sures in a cultural context. In C3S2E ’08: Proceedings of the 2008 C3S2E confer-
ence, pages 1–9, New York, NY, USA, 2008. ACM.

[TT08b] Eric Thul and Godfried T. Toussaint. Rhythm complexity measures: A compari-
son of mathematical models of human perception and performance. In Juan Pablo
Bello, Elaine Chew, and Douglas Turnbull, editors, Proceedings of the 9th Interna-
tional Conference on Music Information Retrieval, Philadelphia, PA, USA, Septem-
ber 2008.

[Tuo06] Daniel R. Tuohy. Creating tablature and arranging music for guitar with genetic
algorithms and artificial neural networks. Master’s thesis, University of Georgia,
Athens, Georgia, 2006.

[Wik10] Wikipedia. Arrangement — Wikipedia, the free encyclopedia, 2010. Accessed May
22nd, 2010.

[WL97] Jeng-Feng Wang and Tsai-Yen Li. Generating guitar scores from a MIDI source.
In Proceedings of 1997 International Symposium on Multimedia Information Pro-
cessing, 1997.

[You39] Robert W. Young. Terminology for logarithmic frequency units. The Journal of the
Acoustical Society of America, 11(1):134–139, 1939.

Erklärung zur Verfassung der Arbeit

Arnaud Moreau
Boerhaavegasse 23/21

A-1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
– einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 15. Oktober 2010
Unterschrift

91

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Algorithms
	List of Figures
	List of Listings
	List of Tables
	I Introduction
	1 Motivation
	2 State of the art
	2.1 Music arrangement
	2.2 The guitar
	2.3 Segmentation

	3 Algorithms and data representation
	3.1 Music notation
	3.2 Genetic algorithms
	3.3 Constraint satisfaction problems

	II Methodology
	4 Framework
	4.1 Goals
	4.2 Design

	5 Arrangement algorithm
	5.1 Segmentation
	5.2 Genetic algorithm

	III Results
	6 Executing the arrangement algorithm
	6.1 Segmentation
	6.2 Genetic algorithm

	7 Conclusion and Outlook
	7.1 Future work

	A Lead sheets and arrangements
	A.1 One Note Samba
	A.2 The Girl from Ipanema
	A.3 Corcovado
	A.4 Desafinado
	A.5 A Felicidade
	A.6 How Insensitive

	Acronyms and abbreviations
	Bibliography
	Erklärung zur Verfassung der Arbeit

