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Abstract

Postluckling analysis of perfect elastic structures is useduantify the sensi-
tivity of structures to imperfections. In real structures, as opposed to idealized
ones, imperfections are unavoidable. Imperfection-sensitive structures may fail
at much lower loads than the buckling load of the corresponding perfect struc-
tures. To prevent such failure, the designer should consider the possibility of
converting imperfection-sensitive structures into imperfection-insensitive ones
by varying suitable design parameters.

Sensitivity analysis of the initial postbuckling behavior provides information
about the influence of parametric changes of a structure on its sensitivity to
imperfections. Koiter’s initial postbuckling analysis, in the framework of the
Finite Element Method (FEM), was applied to mathematically describe post-
buckling paths and to quantify the degree of imperfection sensitivity of a struc-
ture. The consistently linearized eigenvalue problem, representing a generalized
eigenvalue problem, was thoroughly analyzed with regard to its usefulness for
classification of structures on the basis of their state of stress at buckling. It was
used for derivation of a mathematical condition for buckling from a membrane
stress state.

Another topic that was investigated in this work is hilltop buckling which is char-
acterized by the coincidence of a bifurcation point and a snap-through point. It
was shown that a structure exhibiting hilltop buckling is inherently imperfection
sensitive. This was the reason for considering hilltop buckling as the starting
point of sensitivity analysis of the initial postbuckling behavior of structures,
aimed at the aforementioned conversion of imperfection-sensitive structures into
imperfection-insensitive ones.

Another special case is zero-stiffness postbuckling, representing a desirable mo-
de of transition from imperfection sensitivity to imperfection insensitivity. A
theoretical investigation of the possibility and predictability of its occurrence
was performed.

In order to support the theoretical findings by numerical results, a considerable
part of the work leading to this dissertation was the implementation of theoretical
results into a computer program based on the FEM. Using finite element routines
from the computer code FEAP, an arc-length method for dealing with nonlinear
problems, Koiter’s postbuckling analysis, and the consistently linearized eigen-
value problem were implemented in MATLAB. Because of limitations of the
interface between the two programs, the practical applicability of the program is
limited to a few thousand degrees of freedom. Nevertheless, this was sufficient
for numerical verification of theoretical results.

The structures investigated in the numerical part of the thesis cover the whole
range of the theoretical work: A pin-jointed two-bar system with two degrees



of freedom, exhibiting zero-stiffness postbuckling, was treated analytically, as
opposed to the other examples for which the FEM was used. The second exam-
ple was avon Misedruss which is characterized by buckling from a membrane
stress state. For this structure, conversion from imperfection sensitivity into im-
perfection insensitivity does not involve zero-stiffness postbuckling. A shallow
cylindrical shell serves as an example of a structure that buckles from a gen-
eral stress state. A parametrized family of two-hinged arches, subjected to a
uniformly distributed load, containing a parabolic arch as a special case, allows
numerical verification of special features related to this special case.



Zusammenfassung

Die Nachbeulanalyse perfekter elastischer Strukturen erldet#n Identifika-

tion als imperfektionssensitiv bzw. imperfektionsinsensitiv. Perfekte Strukturen
stellen Idealisierungen realer Strukturen dar. Imperfektionssensitive Strukturen
versagen gegebenenfalls bei deutlich kleineren Belastungen als der Beullast der
entsprechenden perfekten Strukturen. Deshalb kann man versuchen, éingwspr
lich imperfektionssensitives System durch Variation geeigneter Parameter in ein
imperfektionsinsensitives Systeiberzutihren.

Sensitiviitsanalysen des initialen Nachbeulverhaltens liefern Informéitoem

den Einfluss parametrisierter \@@rderungen einer Struktur auf das Ausmal ih-
rer Imperfektionssensitivit. Die Koiter'sche Nachbeulanalyse, eingebettet in
die Finite Elemente Methode (FEM), wurde zur mathematischen Beschreibung
des Nachbeulpfades und damit zur Quantifizierung des Grades von Imperfek-
tionssensitiviéit bzw. -insensitiviait verwendet. Das konsistent linearisierte Ei-
genwertproblem, ein verallgemeinertes Eigenwertproblem, wurde eingehend auf
seine Eignung zur Klassifikation von Strukturen in Ablgigkeit von der Art

des Spannungszustandes an der Statsirenze untersucht. Es wurde auch zur
Herleitung einer Bedingungif Beulen, ausgehend von einem Membranspan-
nungszustand, verwendet.

Eingehend analysiert wurde ferner Hilltop buckling, worunter man die Koinzi-
denz eines Verzweigungs- mit einem Durchschlagspunkt versteht. Es wurde ge-
zeigt, dass Hilltop buckling imperfektionssensitiv ist. Das war auch der Grund
dafur, Sensitividtsanalysen, die auf die Umwandlung von imperfektionssensi-
tiven in imperfektionsinsensitive Strukturen abzielen, mit Hilltop buckling zu
beginnen.

Zero-stiffness postbuckling, ein Sonderfall bei dem der gesamte Séipfad

auf einem Lastniveau liegt, stellt eine besondéissgige Form de&/bergangs

von Imperfektionssensitivdt zu Imperfektionsinsensitit dar. Es wurde ge-
zeigt, dass diese besondere Form des Nachbeulpfades einen Membranspannungs-
zustand voraussetzt.

Ein wesentlicher Teil der Arbeit, die zu dieser Dissertatiohrfe, war die al-
gorithmischeUbersetzung analytischer Methoden zwecks Integration in ein auf
der FEM basiertes Computerprogramm, um damit die theoretischen Resultate
numerisch zu untermauern.

Unter Verwendung von Routinen des FEM-Programms FEAP wurde ein Bo-
genbngenverfahreriir nichtlineare Probleme, die Koiter'sche Nachbeulanalyse
und das konsistent linearisierte Eigenwertproblem in MATLAB implementiert.
Aufgrund von Besclankungen im Interface zwischen FEAP und MATLAB ist
der Einsatz der entwickelten Software auf Probleme mit einigen wenigen tau-
send Freiheitsgraden beséhkt. Das reicht jedoch aus, um die Ergebnisse der



theoretischerUntersuchungen, etwa anhand des Beispiels einer flachen Zylin-
derschale, zu verifizieren. Die viergmentierten Beispiele wurden so gdwt,

dass ein raglichst groRer Teil der vorgestellten Theorie abgedeckt wird. Das
erste Beispiel ist ein aus gelenkig miteinander verbundenen stagleartteste-
hendes System mit zwei Freiheitsgraden, da®ine bestimmte Parameterwahl
Zero-stiffness postbuckling aufweist. Die Untersuchung wurde analytisch vor-
genommen, im Gegensatz zu den anderen Beispielen, die mittels deamésw
FEM-Programms gébkt wurden. Die zweite Struktur ist ein durch eine im Schei-
tel angebrachte, vertikale elastische Feder versterttesMisesFachwerk, ge-
kennzeichnet durch einen Membranspannungszustand im Vorbeulbereich. Bei
der Transformation dieser urgprglich imperfektionssensitiven in eine imper-
fektionsinsensitive Struktur spielt Zero-stiffness postbuckling keine Rolle. Als
Beispiel ir eine Struktur mit einem allgemeinen Spannungszustand im Vor-
beulbereich wurde eine flache Zylinderschale gellv Anhand einer parame-
trisierten Familie von Zweigelenksgen mit einem Parabelbogen als Spezial-
fall, wurde die tir Verzweigungsbeuleruf einen solche Spezialfall hergeleitete
mathematische Formel verifiziert.
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Chapter 1

Intr oduction

A thorough investigation of the stability of elastic structures does not only in-
volve determination of the stability limit but also consideration of the postbuck-
ling behavior. The reason for this is that the postbuckling behavior of perfect
structures has a great influence on the load-bearing capacities of corresponding
imperfect structures. In case of pronounced imperfection sensitivity of a per-
fect structure, the load at which loss of stability of the corresponding real, i.e.
imperfect structure occurs may be significantly smaller than the load associated
with loss of stability of the perfect structure. A well known example for such a
situation is a thin-walled cylinder subjected to axial loads [5].

Sensitivity analysis means to investigate the influence of changes of design pa-
rameters on the behavior of a system. In the context of stability analysis, it is
performed with the goal to increase the stability limit through variation of suit-
able design variables. Nevertheless, optimization restricted to the buckling load,
i.e. without consideration of the postbuckling path may be unrewarding because
it may lead to a concentration of eigenvalues and deterioration of the postbuck-
ling behavior [36]. Optimization of a structure with respect to stability should
thus also take the postbuckling behavior into account, as was done e.g. by Boch-
enek and Kraelecki [3] and Mbz and Piekarski [23].

The motivation for this work is lack of basic guidelines to design structures such
that they areb initio imperfection insensitive. In order to establish such guide-
lines, the postbuckling behavior of elastic structures must be well understood.
Mathematical tools are necessary to find coherences that are not obvious. An
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important item of the analysis is the classification of structures with regard to
their prebuckling and postbuckling behavior. Special cases of postbuckling be-
havior should be identified and analyzed.

A method for the analysis of the postbuckling behavior in the vicinity of a bifur-
cation point was proposed by Koiter [14]. He used asymptotic series expansions
at the stability limit. This allows a quantitative assessment of the degree of im-
perfection sensitivity or insensitivity. Sensitivity analysis of the postbuckling be-
havior of elastic structures then becomes a sensitivity analysis of the coefficients
in Koiter’s series expansions. In the work by Mang et al. [21, 29], results from
Helnwein’s consistently linearized eigenvalue problem [11] were integrated in
Koiter’s postbuckling analysis. Solutions from the consistently linearized eigen-
value problem, initially proposed by Helnwein [11] and originally intended to
estimate the stability limit, carry information that can be used for classification
of structures with respect to buckling either from a general or a special stress
state. This approach was developed further and applied to special problems by
Mang et al. [16, 17, 20] and Steinboeck et al. [30—32]. Godoy [10] andzMr
and Haftka [22] must be mentioned in this context. In their work on sensitivity
analysis of the postbuckling behavior, they used different series expansions.
Several publications are restricted to special cases that may occur in the course
of sensitivity analysis, such as e.g. zero-stiffness postbuckling, first treated by
Tarnai [34], and multiple hilltop buckling, investigated by Ohsaki and lkeda [24]
and Fuijii and Noguchi [8].

This dissertation is organized as follows: In Chapter 2, basic definitions are
given and the scope of the work is defined. Emphasis is laid on the mathemat-
ical description of loss of stability in elastic structures. In Chapter 3, Koiter’s
postbuckling analysis is reviewed. Chapter 4 is devoted to the treatment of two
special modes of loss of stability, the first of which is hilltop buckling. The core
of this Chapter is the proof that hilltop buckling is imperfection sensitive. The
other special case is zero-stiffness postbuckling. In Chapter 5, the consistently
linearized eigenvalue problem is introduced and some of its properties are in-
vestigated. Classification of bifurcation buckling on the basis of the stress state
from which buckling occurs is the topic of Chapter 6, where results from preced-
ing chapters are used to show how to distinguish between bifurcation buckling
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from a general stress state and a membrane stress state. Chapter 7 contains infor-
mation on the implementation of theoretical concepts into a computer program.
Numerical results are presented in Chapter 8. Conclusions from the theoretical
investigation and the numerical work are drawn in Chapter 9.



Chapter 2

Stability of elastic structures

2.1 Basic definitions

In this work static, conservative, finite dimensional elastistems are studied.

The deformations need not be small but must not be so large that either nonlinear
elasticity or plasticity becomes an issue. Hence, the present work is restricted to
geometric nonlinearity. Proportional loading is assumed.

Under these conditions, a potential energy function of the system exists. Itis a
functional on the load-displacement space:

V(u,2) :RVxR - R. (2.1)

Equilibria of the system are stationary points of the potential energy function.
Thus, for the finite-dimensional systems considered herein, a necessary and suf-
ficient condition for equilibrium is the vanishing of the first derivativa/gt, 1),
given as

G(u, 2) := Vy(u, ) = F'(u) — AP(u). (2.2)

The mechanical interpretation @&(u, 1) explains its name as out-of-balance
force. F'(u) is the vector of internal forces of the system whergBéu) rep-
resents the external forces where the scalar load multipleanplifies the load
described by the load vect®(u). For a suitable choice of coordinates, espe-
cially in the frame of the FEM,

G(u, ) = F'(u) - AP, (2.3)
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The constant load vectétis referred to as reference load.

The equilibrium solutions form curves in the load-displacement space which can
be locally parametrized as (u(1), 2) up to singular points. Employing the implicit
function theorem allows calculation of a tangent to these curves:

U(d) = (Gu) - G (2.4)
With the nomenclature used in engineering, this reads as
du =
K =P 2.5
T(U) a1 (2.5)

where
Kr(u) = (F'(u))’u = G, (2.6)

is called tangent stiffness matrix. Alternatively, the differential form of (2.5)
may be used:
K1(u) - du = dAP. (2.7)

The implicit function theorem guarantees unigue solutions only as loKg &s
regular. With the help of (2.4kquilibrium paths(connected one-dimensional
sets of solutions of (2.3)) can be constructed. The solution path that contains
the unloaded state, i.e. the solution £10, u = 0), is called primary path

and denoted a8(1). A solution (w, 1o) is called stable if it is a strong local
minimum of the potential energy function. As a consequeKagé€u,) has only
strictly positive eigenvalues. Kfis increased from zero, then, for a specific value

A = s, referred to as theritical load, the equilibrium (¢ := T(1s), As) is just

still stable or just no longer stable.

The tangent stiffness matrix for nonlinear problems can be decomposed as [38]

KT = K0+KO—+K|_ (28)

whereKj is the small-displacement stiffness matrix. For linear problefs,

is the stiffness matrixK,, is the initial stress matrix, depending on the current
stress level, an | is the initial displacement matrix, containing terms that are
linear and quadratic in.

In the following, a notation introduced in [29] will be used:

K1 (1) := Kr(G(D)- (2.9)
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This locally defines a matrix curve along the primary path;(2) indicates
equilibrium states on the primary path wheré&agu) refers to configurations
which, in general, represent out-of-balance states.

2.2 Modes of loss of stability

In the context of this work, loss of stability occurs in therfoof snap-through

or of bifurcation buckling. Both modes of loss of stability are characterized by
the singularity of the tangent stiffness matib. In both cases, at least one of
its eigenvalues equals zero. The corresponding eigenvector is denoted as

Kr-v, =0. (2.10)

If Kt is singular, the implicit function theorem states that (2.4) does not al-
low calculation of a unique local parametrization by There are basically
three reasons why a unique solution of this form does not exist. The first one
is snap-through, characterized by a limit point on the load-displacement path.
The load along the primary path has a local maximum. At such a point, in a
load-controlled setting, the structure would dynamically snap to an equilibrium
solution which may have much larger displacements for the same load level. In
terms of the implicit function theorem, the equilibrium path has a unique tan-
gent but cannot be explicitly described by a function that depends @ an
independent variable. Thus, the extended system

( Kr ‘ P ) (2.11)
has full rank, which implies

v; -P#0. (2.12)

The second reason is the existence of two or more tangents to equilibrium paths
at a point, i.e. aifurcation point. At bifurcation points, two or more equilib-
rium paths intersect. A path that intersects the primary path is cadleondary

path. In this work, only simple bifurcation points are considered, i.e. we restrict
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ourselves to structures for which exactly two equilibrium paths intersect at a bi-
furcation point. Two tangents exist at the bifurcation point. Thus, (2.11) does
not have full rank which, together with a defecttof of 1, implies

v; -P=0. (2.13)

The third reason, mentioned just for the sake of completeness, is the technically
irrelevant case of an isolated solution, which means that the solution is not part
of an equilibrium path. Such a solution cannot be obtained by the techniques
generally used in the context of the nonlinear FEM where equilibrium paths are
determined incrementally.

The coincidence of a snap-through point and a bifurcation point is dailléaip
buckling. The stiffness matrix has a defect of at least two. The eigenspace
associated with the eigenvalue zero, containing the snap-through mode and the
bifurcation buckling mode, is at least of dimension two.

On the basis of the preceding considerations, stability limits can be summarized
as follows:

For snap-through,

di=0, Ky-du=0, du"-P=0. (2.14)
For bifurcation of equilibrium,
d1#0, Kr-du#0, v]-P=0, Ky-v, =0. (2.15)
For hilltop buckling,

d1=0, K;-du=0, v]-P=0, Kr-v,=0. (2.16)

2.3 Imperfection insensitivity

The difference in the load level with respect to the one rafgito the stability
limit can be written as

AA(k, 1) = ()0 + LK) + BK)n° + (K)n* + O (2.17)
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wheren denotes an independent path parameter describing the secondary path
and«x represents a design parameter of the structure. In Chapter 3, a method
for calculation of the coefficients of (2.17) will be presented. A criterion for
imperfection insensitivity using the coefficients of (2.17) is given by (see [31])

dke{2,4,6,...}: A >0, A4 =0VieNwithi<k (2.18)

In most cases, this simply reducestp = 0, A, > 0. Following Bochenek
[2], a condition for stability at the bifurcation point and, thus, for imperfection
insensitivity is given as

A,(@)sign(p)= 0, Yo € [p1, ¢2], (2.19)

where A(¢) denotes the load level along the secondary path as a function of a
degree of freedoma of the system under consideration angl, [g»] stands for an
interval containing the configuration at incipient buckling.

The two definitions of imperfection insensitivity agree with the exception of
zero-stiffness postbucklivghich is a special case that will be discussed in Sec-
tion 4.2

2.4 Linear stability problems and linear
prebuckling paths

Taking into account that for a given structure either the stalplioblem or the
primary path or both can be linear or nonlinear, four combinations are possible.
We talk of a linear stability problem if (2.8) degenerates to

Kr(1) = Ko + K1 (2.20)

whereKy andK; are constant matrices. This is the cas&|f vanishes and

K, = 1K1 [38]. Consequently, computation of the buckling logds simplified
because the condition for loss of stability, i.e. #et) = 0, is just a polynomial
equation inl. A stiffness matrix as in (2.20) is obtained e.g. for in-plane loaded
plates with linear prebuckling paths [38]. The reasonable assumption of stability
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in the unloaded statd, = 0, requires thak is positive definite.
A linear prebuckling path is at hand if

G.(2) =k, 0.)=0 (2.21)
wherek is a constant vector. Then, (2.5) becomes
Kr-k=P. (2.22)
Differentiation along the primary path yields
Kr,-k=0. (2.23)

This shows thatzm is singular in this case, requiring special treatment (see
Chapter 5).

Steinboeck et al. [30] have shown that linear prebuckling paths and linear stabil-
ity problems are not mutually conditional.



Chapter 3

Koiter’s initial postbuckling
analysis

The main tool for assessment of the postbuckling behavior, used in this work,
is Koiter’s initial postbuckling analysis. In his pioneering work, Koiter [14]
introduced a method to find series expansions for the load and the displacement
along the secondary path.

3.1 Series expansion of the postbuckling path

The basic idea consists of describing the secondary patk loal-displacement
space in terms of the loat{r) and the displacement offsef;) from the primary
path, wherep denotes an independent path parameter. Thus, [@Boon the
secondary path is characterized by its loHgg) = Ag and its displacement
0(A(ng)) + v(ne). This is illustrated in Figure 3.11(n) andv(n) are replaced by
their respective Taylor series expansions,

v(n) = vin + V2’72 + "3773 + V4’74 + 0(775), (3.1)

An) = As + an + Aan” + Aan® + Ay + O(°), (3.2)

from which the coefficients are calculated successively, employing the equilib-
rium equations. Equilibrium along the secondary path is expressed as

G(n) = G(U(A)) + v(n), A(n)) = 0. (3.3)
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=U
Uc G(A(78)) G(A(78)) +v(778)

Figure 3.1: Parametrization of the secondary path for Koiter’s initial postbuck-
ling analysis.

Inserting (3.1) and (3.2) into the Taylor series of (3.3) and ordering terms ac-
cording to the power order afgives

G(n) = Gun + Gon® + Gan® + Gay* + O(°) = 0. (3.4)

Under the assumption of sufficient smoothnes§&6f), a necessary and suffi-
cient condition for its vanishing is the vanishing of each coefficient of its series
expansion in terms of, at the bifurcation poin. This gives a set of equations
allowing sequential calculation of the coefficiemsand 4;. Exemplarily, the
first three equations are given here:

Gy =Ky v, =0, (3.5)

— — 1
G, =Kt~ v, + /llKT,/l "Vt EKT’U VvV, = 0, (36)

G3 =Kt V3 + /lzKTJ "V
— 1 ~
+ /11KT’/1 “Vy + E/?'%KT’/U "Vt KT,U V9V,

1 1 .
Differentiation of K+ andK, with respect tal is to be understood as the di-

rectional derivative in the direction of the tangent to the primary path. A more
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detailed explanation of this notation together with expressions for the coeffi-
cients up to sixth order can be found in [21].
Equation (3.5) allows calculation of, as the bifurcation point is characterized
by the singularity of the tangent stiffness matrix. This relation determmes
only up to a constant factor.

vyl =1 (3.8)

or
vi -Kyg-vy=-1 (3.9)

represent constraint equations that rengdeunique. Premultiplication of (3.6)
with v] enables calculation of;:

T .
1v, - Kyy v, ®v,

1= —= — (3.10)
2 VI . KT,/l . vl
Oncea4; is known, (3.6) provides,:
~ — 1

This singular equation does not have a unique solution, but the existence of a
solution is guaranteed by the fact that the right-hand side is orthogonghioa
consequence of (3.10). In order to makeand the coefficients of higher order,

to which analogous considerations apply, unique,

v, L, ]=2,3,... (3.12)
1 k

has proved to be a reasonable choice for additional constraints [6].
Proceeding in the same manngrjs obtained from (3.7) as

1 1 =
Ao = R (E/IEVI . KT,/M VY,
v K,
— 1
+ /11 (VI . KT,/I “V, + EVIKT’UA Y ®V1) (313)
T . 1 T .

Structures witht; # 0 are inherently imperfection sensitive [30] because of the
decrease of the load for either> 0 orn < 0. Such structures will be excluded
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from the following considerations. If; = 0, then, at least for an arbitrarily small
neighborhood o8, A(n) either increases or decreases for bpth 0 andp > 0.
Restriction to1; = 0 significantly simplifies further calculations. Moreover,
this restriction is necessary for conversion of originally imperfection-sensitive
structures into imperfection insensitive ones in the course of sensitivity analysis
of the initial postbuckling behavior by means of variation of a suitable design
parameter. For conciseness, we will introduce abbreviations in the expressions
for A,, 13 and A4, where terms containing; as a factor were dropped. These
expressions are given as follows:

A= dy, (3.14)
Az = bl/lz + dz, (315)
Ag = al/lg + bz/lz + b1/13 + d3. (316)

The full expressions for the terms in (3.14)-(3.16) can be found in Appendix A.

3.2 Symmetry

In many practical applications, structures have geomeyriansetry properties
and are loaded symmetrically. This results in symmetry of the bifurcation be-
havior (Figure 3.2). This situation was investigated by Steinboeck et al. [31]. In
this work, the basis for the considerations was symmetry of the potential energy
function, expressed by

V(u,2) =V(T -u,Q) (3.17)

whereT € RN x RN is an element of a suitable symmetry group. The displace-
ment of the primary path of such a structure lies in the subspa&&' ahat is
invariant undeiT.

Symmetric load-displacement behavior is characterized by

Am) = A=n), v =T-v(=n), Gwm)=T-0(10)). (3.18)

This results in
A=A3=A5=---=0. (3.19)
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Figure 3.2: Symmetric bifurcation: An elemehtof a symmetry group exists
which maps the two branches of the secondary path onto each other.

Comparing the conditions for symmetric postbuckling (3.18) with those for im-
perfection insensitivity (2.18), it becomes clear that symmetry is not necessary
for conversion of imperfection sensitive structures into imperfection insensitive
ones. Neverthelesq; = 0 is necessary which constitutes a restricted form of
asymmetry in the sense that at least in an arbitrarily small neighborhood of the

stability limit the load either increases or decreases on both branches of the sec-
ondary path. [30].



CHAPTER 3. KOITER’S INITIAL POSTBUCKLING ANALYSIS 15

3.3 The coefficientsy; and a}

Thecoefficientsa; andaj, defined in Appendix A, play an important role in this
work. In [29], a; was denoted as nonlinearity factor. This is due to the fact that
for linear stability problems, characterized Ey = Kg+ 4K 4, a; = 0. However,
a; = 0 does not imply linearity of the primary path.
Once the stability limit is found and, is calculatedy, can be used to (locally)
define a function

(1) :=vl -Kr(d) - vy (3.20)

Note that in this definition onIRT depends on whereay, is constanta; and
a; are obtained as

11 a(s)
=3 o) (3.21)
and
v _ _1— f,/l/l/l(/ls) (3 22)

T )
The evolution ofa; in the course of sensitivity analysis of the initial postbuck-
ling behavior is determined by the evolution ©f1). The connection between
the load-displacement path of the structure &0y is sketched in Figure 3.3.
At all bifurcation points where, is the zero eigenvector &€, f(1) = 0. This
is, of course, the case at the stability limit. If a second intersection of the primary
path and the secondary path exists ang ifs also the eigenvector referring to
this bifurcation point,f (1) = 0 will also hold for this point. Such a situation was
found to be the case for the two-degree-of-freedom systems presented in Section
8.1. Figure 3.3 refers to such a situation.
At the stability limit, the stiffness matrix is positive semidefinite. Thiygis) <
0. Consequently, the sign aef depends only on the curvature ff) at the sta-
bility limit. At hilltop buckling (see Figure 3.3(a)), the vertical tangent, as a
consequence of the local maximum of the load, together with a negative curva-
ture of f(1) impliesa; = —. Formally, (3.21) and (3.22) have to be calculated
as limits from the left. In a situation as shown in Figure 3.3(b), the curvature of
f(1) at s and consequentlyy, is still negative. After the sign transition, either
in form of a point of inflection or of a planar point di{1) at 1s, characterized
by a; = 0, the curvature of (1) eventually becomes positive (see Figure 3.3(c)),
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Figure3.3: Sensitivity analysis of a simple structure, load-displacement path and
vi - Kt(2) - v, (a) at the start with hilltop buckling, (b) before conversion from
imperfection sensitivity into imperfection insensitivity (c) after conversion into
imperfection insensitivity (d) after change from a non-monotonic to a monoton-
ically increasing primary path.
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implying a; > 0. The curve becomes flatter as the load along the primary path
becomes monotonous in consequence of the increased stiffness of the structure.
Typically, the decrease in the curvature with increasing stronger than the
decrease in the slope 6{1), leading toa; — 0 (see Figure 3.3(d)).

The function (3.20) can be used in a computer program tcdiiradiso for general
examples. The restriction in the preceding considerations concerning the eigen-
vectory, at the second bifurcation point is not necessary to calcaatesing

(3.21) at the stability limit. If onlya; anda;] are needed, it suffices to find the
stability limit andv, and then calculate samples of (3.20). These scalar values
can easily be stored and used for numerical differentiation. Thus, there is no
need to solve an eigenproblem or store large global tangent stiffness matrices.



Chapter 4

Specialmodes of buckling and
postbuckling

4.1 Hilltop buckling

Hilltop buckling is characterized by the coincidence of a bifurcapomt with

a snap-through point on the load-displacement pathS.e. D, as depicted in
Figure 4.1. In this figure, the primary path is marked as | and the secondary path
as Il.

Mathematically, hilltop buckling is characterized by a defect of the tangent stiff-

Figure 4.1: Load-displacement path for the case of hilltop buckling.
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ness matriXK 1 of at least 2, where one eigenvector, denotewd, ais orthogonal

to the load vector whereas the other ong, id not. This situation was studied

e.g. by Fujii and Noguchi [8].

Hilltop buckling is always imperfection sensitive. To prove this, analysis tools
must be used which do natpriori rule out the possibility of imperfection in-
sensitivity. This requirement restricts the use of Koiter’s postbuckling analysis
where the displacements describing the secondary path are considered as relative
to the ones representing the primary path which is describéd.f)y For hilltop
buckling, it is impossible to find even an arbitrarily small neighborhood of the
critical loadAs = A(n = 0) such that in this neighborhoadd.) is well defined

for all values ofA.

The initial postbuckling behavior at a turning point is described similarly as in
Koiter’s postbuckling analysis, using, however, absolute instead of relative dis-
placements. The starting point is again the out-of-balance fG(cet). As

before, a series expansion is used to describe the secondary path in parameter
form:

;1(77) = ;ls + ;1177 + ;12772 + ;13773 + 0(774), (4.1)

W(17) = Wo + Wi + W2772 + W3773 + 0(774)’ (4.2)

where (v, 1s) defines the critical point, characterized fy= 0. Now, the do-
main ofG(u, 1) can be restricted to the path described by (4.1) and (4.2),

G(n) = G(w(n), A(m)), (4.3)

and, by analogy to Koiter's postbuckling analysis, a Taylor series can be for-
mulated forG(r). For the given purpose, an expansion up to quadratic terms
suffices:

G@) = Go + G + G + O(®) = 0. (4.4)
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In (4.4),
Go=0 by definition, (4.5)
G1=G,=(Gu-w,-1,P), =Ky wi - 1P, (4.6)
- 1A 1,4
G2 =56, =5 (Guw W, 0w,

~ ~ ~ 2 A A
+G’u . WJ777 + G,/M (/l,]) + G,/l/l,nn)
S

= KT,u W1 ®WwWq + KT - Wy — ;125 (47)

Equation (4.6) contains two unknowni, andw;, and thus has no unique solu-
tion for a general buckling point. This is why in Koiter’s postbuckling analysis,
displacements relative to the primary path, in form of the sk{ifj to ti(2), were

used. For the special case of hilltop buckling, however, there are two eigenvec-
tors corresponding to the eigenvalue 0 of the stiffness mtrix These eigen-
vectors represent the two modes of loss of stability. The eigenvector correspond-
ing to the snap-through mode is denoted asThis vector is not perpendicular

to the load vector (contrary to the eigenvector corresponding to the bifurcation
mode). We can multiply (4.6) and (4.7) from the left b§y"¢l thus eliminating

the terms containingT. This allows successive calculation of the unknowns.

As follows from (4.6),

dii” - (K - wy — 4P) = -4, (d" - P) = 0. (4.8)
By definition, di” - P # 0, which implies
A =0 (4.9)

for hilltop buckling. Inserting (4.9) into (4.6), shows that can be chosen
arbitrarily from the nullspace dZT. A reasonable choice i, = v,, i.e. the
eigenvector oK1 corresponding to the bifurcation buckling mode. By analogy,
(4.7) gives

-1 (1 A=
dUT . (_KT,u TWL QW + K - Wy — /lzp)

2
1 R _
= EoluT Ky Wi ®Wy — di" -P =0, (4.10)
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allowing calculation ofl, from (4.10) as

A 1

= ———di" ‘Kry:wi®w; = Kryrdi®ew;, (4.11)
2(dd" - P) ’ ( " - ﬂ )

noting thatKr, is the third derivative of the potential energy function, which

allows re-ordering of multiplications with the vectors in (4.11)0 id an in-

finitesimal displacement increment of the primary path, satisfying the equation
K - di = dap. (4.12)

The vector d becomes an eigenvector &f; at a snap-through point where
da = 0. To determine the sign ofiduniquely, it is stipulated that dA 8 for the
prebuckling domain. Then

o (du”- @s > 0 can be easily shown: By definition{iti- P # 0 at the
snap-through point. Premultiplication of (4.12) witti'dand division by
dAa gives ~

di’™ - Ky - di
da
The left-hand side of (4.13) is always positive before the critical point as
a consequence of the positive definitenesk of As the signof d’ - P
does not jump, @' - P is non-zero at the critical point by definition and
has only positive values before this point, tr(dﬁT . ﬂs > 0.

—di’-P. (4.13)

o W] -Ky, : dii®w; has the same sign a§ -Kr,, : 00w, = v] Ky, vy,
but is bounded, sincelichas the same orientation (sign)@aswhereas its
norm can be chosen such thidfi|| < co.

e The sign of the expressioq - KU -v, is always negative in a sufficiently
close neighborhood of the critical point. This becomes clear if this ex-
pression is viewed as the derivative f - K+(2) - v,, see also Section
3.3.

Finally, (4.11) yields

A~

KTu dd W <0 (414)

e

>O
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Since (4.14) proves that the slope of the secondary path locally around the hilltop
buckling point is negative, the condition for imperfection insensitivity in (2.18)

is not fulfilled, rendering the structure imperfection sensitive.

When it comes to choosing a suitable normalizationfothe possibility of the
occurrence of hilltop buckling must be checked. Following from

[Tl = 00 = [[Kplla = oo, (4.15)

we get
v - Krg-vi=-1 = |vl2—0 (4.16)

at hilltop buckling. As the Euclidean norm ef influences all the other terms in
Koiter’s postbuckling analysis, this leads to

A =0, vl — 0. (4.17)

Figuratively speaking, the parametrization of the secondary path close to hilltop
buckling is very slow. Points with large values of the path parameter are still very
close to the stability limit. The result is that for a situation where imperfection
sensitivity is most pronounced, reflected by a steep decrease of the load along
the secondary path, the load coefficiehteend to zero. This may be misleading,

if the degree of imperfection sensitivity is assessed by means & remedy

is to use the normalization conditidir,|[> = 1. Nevertheless, for theoretical
derivations, it is reasonable to use the condition (3.9).

4.2 Zero-stiffness postbuckling

Zero-stiffness postbuckling may occur as a special form stlpekling behav-

ior. Its characteristic feature is a strictly horizontal postbuckling path emanating
from a linear or nonlinear primary path at the critical point, as illustrated in Fig-
ure 4.2. This allows the structure to take on an arbitrary displacement along the
postbuckling path without a change of the external load. Thus, each point on a
zero-stiffness postbuckling path can be viewed as a neutral state of equilibrium.
Tarnai [34] has pioneered research on zero-stiffness postbuckling, including pre-
sentation of two simple examples. According to Tarnai, zero-stiffness structures
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Figure 4.2: Load-displacement path in the case of zero-stiffness postbuckling.

represené special kind of mechanism in which internal forces are present but are
continuously re-arranged during the motion along the equilibrium path. Schranz
et al. [29] presented a numerical example which was further elaborated by Stein-
boeck et al. [32]. Schenk et al. [28] discussed tensegrity structures exhibiting
zero-stiffness postbuckling paths.
In the context of Koiter’'s postbuckling analysis, zero-stiffness postbuckling is
defined by

A4i=0 Vi e N. (4.18)

The potential energy along the secondary path is constant. Zero-stiffness post-
buckling marks the onset of imperfection insensitivity in the course of sensitiv-
ity analysis of the initial postbuckling path. It is a particularly favorable form of
transition from imperfection sensitivity to insensitivity because all coefficignts
with even subscripts change their signs from negative to positive, as was shown
numerically.

Zero-stiffness postbuckling represents a special case of postbuckling behavior
for which the criteria for imperfection insensitivity, given as (2.18) and (2.19),
respectively, do not agree. It is is classified imperfection sensitive according
to (2.18) but imperfection insensitive with regard to (2.19). Jia et al. [13] have
shown that zero-stiffness postbuckling is imperfection insensitive in the follow-
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ing sense: for imperfections preventing the investigated structure from bifur-
cation buckling, the load-displacement path is characterized by a monotonically
increasing load in the neighborhood of the bifurcation point of the corresponding
perfect structure. Moreover, by investigating the potential energy of this struc-
ture, Jia et al. [13] have shown that zero-stiffness postbuckling is imperfection
insensitive.
Equation (4.18) would require checking infinitely many terms to be sure that
a structure indeed exhibits zero-stiffness postbuckling. This is neither possible
nor necessary, as was shown in [19]. A necessary condition is buckling from
a membrane stress state. Derivation of a necessary and sufficient condition for
such a stress state is the topic of Chapter 6. If, for bifurcation buckling from a
membrane stress state,

A1 =A=23=2,=0, (4.19)

zero-stiffness postbuckling will occur. An example is given in Section 8.1. It
will be shown in Section 8.3 that (4.19) is not sufficient if bifurcation buckling
occurs from a general stress state.



Chapter 5

The consistently linearized
eigenvalue problem

5.1 Definition

For finite dimensional systems, Helnwein [11, 12] introducedstivealled con-
sistently linearized eigenproblem. His motivation was to obtain estimates for
the buckling load without tracing the primary path in the vicinity of the stability
limit and, thus, having to solve the fully nonlinear eigenvalue problem which is
numerically demanding because of the singularitef[4].

The main motivation to deal with the consistently linearized eigenproblem in this
work is its role in various classification approaches as presented e.g. in [21, 32].
Solutions of the consistently linearized eigenvalue problem are used to gain ad-
ditional information about structures indicating a specific postbuckling behavior.
It plays a pivotal role in the deduction of equations necessary for the classifica-
tion given in Chapter 6. The connection with Koiter’s postbuckling analysis be-
comes obvious through the appearanca,ainda; in this analysis as well as in

the mathematical formulation of the consistently linearized eigenvalue problem.
This formulation reads as

[Kr(2) + (2" - DK ()| -v* = 0. (5.1)

This eigenvalue problem is solved for every valuelofWith K(1) € RVN,
(5.1) in general haBl solution pairs(/l]f(/l), v]?(/l)). The index 1 will be assigned
to the solution pair that fulfillsi;(1s) = As, v;(1s) = v,. Because of the singu-
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larity of K1(1s), such a solution pair always exists. In genekaj,andK , are
symmetric, real, and regular almost everywhere. Under these conditions, (5.1)
can be rewritten as

- (FKVT,A(/l))_l [FKVT(/l) - /lRT,/l(/l)] V=AY (5.2)

constituting an ordinary eigenvalue problem. As a consequencé®| sodution
pairs are always real. Furthermore, a basis of RNe consisting of pairwise
orthogonal eigenvectong, exists. The indefiniteness &f, does not play a
role here.

In the following, it will be assumed, thaM solution pairs exist. It is noted that
this is not the case for linear stability problems. In their most simple form with
2 degrees of freedom, their tangent stiffness matrix can be written as

— a-ba O
Kr(1) = ( ) (5.3)
0 c
The eigenproblem then is
-ba O -b 0
[[a ] - /l)[ )] v =0, (5.4)
0 ¢ 0 0

From the first line, the solution; = a/b with the eigenvector; = [1 0]" can
be calculated. A second eigenpair does not exist.

5.2 Properties of eigenvalues and eigenvectors

Specializing (5.1) for the first solution pair gives
[Kr() + (45 = DK7a(1)] -5 = 0. (5.5)

In the following, the arguments will not be written explicitly. The first derivative
of (5.5) with respect ta results in

[ﬂi,ﬁm + (47 - ﬂ)RT,M] v+ [KT + (4] - ﬂ)RT,A] v, =0. (5.6)
Premultiplication of (5.6) with/;™ gives
;T K- v

y
A ,=—(1] - )——="—. (5.7)
Vit Ky v
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Because all matrices are symmetric,
Vit - |Kr + (45 = DK7a] = [K7 + (15 = DK7,] -5 = 0. (5.8)
The second derivative of (5.5) with respectiteesults in
[/li,uiZT,/l + (20, - 1)RT,M + (4 - A)ET,AM] V]
+ 2[5 Kra+ (15 = DKy -1, (5.9)
+ [RT + (/Fi - /I)RTA] . VIM =0.
The third derivative of (5.5) with respect fiogives
[ﬂ;’AAﬂRT,J + 3/F£MRT,M + (8, - Z)RT,AM + (41— /I)RT,/MM] V]
+3 [ﬂi’l/lki'r’/l + (21?;./1 — l)RT,/l/l + (/l;_ — /I)RT,/I/M] . V;/l
+3 [/Fl‘,/leT,/l + (/q - /l)k"r,,ujl . Viu
+[Kr + (4 = K| - v 0 = 0.

(5.10)

Special orthogonalities of the eigenvectors of the consistetnly linearized eigen-
problem follow from its mathematical structure. Premultiplying (5.5)1&?5/
gives

viT- [K + (2] = DKa| - v; = 0. (5.11)

Specializing (5.1) for the j-th solution pair, premultiplying the resulting relation
by »:T and making use of the symmetry i§f andKr, yields

viT - [Kr + (4] = DKra] - vy = 0. (5.12)
Subtraction of (5.12) from (5.11) gives
viT (15 = K| - vi =0. (5.13)

With 4] # A;, which holds for distinct eigenvalues, (5.13) results in

—_ 55 ~
v Rvi=0 22 T .Kyovi=0. (5.14)

For a basis of the eigenvectors of (5.i), can be written as

N
Vi, = Z Cuyv. (5.15)
=1



CHAPTER 5. THE CONSISTENTLY LINEARIZED EIGENPROBLEM 28

Using (5.15) and (5.14) in (5.6) gives
—_— N —_— —_—
(5= T Ky vy + ) w7 [Ky + (4 - DKo - e = 0. (5.16)
k=2

If we assume that the; are pairwise distinct, (5.14) holds is replaced by
v;. This simplifies (5.16) and allows calculation@f :

(3 = ;T Kra-vi + v [Kr + (4 - DK, | - covf = 0. (5.17)

Using
viT - [Kr + (4] = DKa| v =0 (5.18)

which implies

v]‘T Ky - vi=—(4] - /I)VTT K- Vi, (5.19)

gives

(-2 vi'Kru-v

-1 T Reyv

Cyj = (5.20)

v; has to be normalized in order to fully defing,. Note thatc;; depends linearly
on the norm ob}. Using the condition

Vil Ky -vi= -1, (5.21)

C11 can be calculated by differentiating (5.21) and using the orthogonality rela-
tions (5.14):

T 1o % T 1 %
2V1 * KT’/] * Vl,/l + Vl * KT’/]_/] * Vl

=2viT Ky Cavt +viT - Ky - v =0, (5.22)
1viT- RT,M V] 2y 1 1 = i
= Cyy = —5—1” ——— = évlT K- Ve (5.23)
vi K]

At the stability limity; = v,. Hence

Ci1=a1. (524)
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Thus, a representation fef , can be written as

N
=

No@i =) VT Koy

1 T -
=-(vi -Kru-vi)vi- — — i (5.25)
2( ) = (41 - 49) Vit - Kra-v;
v ., 1S calculated directly, using (5.25):
N
V?,/M = Clmv} + C]_]_Vi/l + Z(Clj”lv*j‘ + CleT,/l)' (526)
j=2
Forvi, a similar representation as in (5.25) can be introduced:
N
Vi, = Z Vi (5.27)
k=1

Inserting (5.25) and (5.27) into (5.26) gives

N N N
2 %
Vi/M = [Cll + Cll,/l + Z Clejl] V;_ + Z ((Cljcll + Clj,/l) Vj + C]_j Z CjkV; .
j=2 j=2 k=2
(5.28)

The definitions forc;; andc,; can be found in (5.23) and (5.20), respectively.
The other coefficients appearing in (5.28) are defined as

j
-, (5.29)
2 Vil - Ky,
(=2 viT - K- v
_(/1*J ) s (5.30)

i Tk vk 'KT,,yvk

T T
12vi - Kraa-vi,+vi Ko vg
Ci1a = 5 — , (5.31)
vi -Kri-v]

T 1¢
1vi - Kraa-v

Cjj =

Cik =
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(A7, = DO - K- v) + (4 = DO - K- v3)
(A5 = )T Kra-v)
(A1 - ﬂ)(VTT : RT,M/t v+ V]-FT : RT,M : Vb)
(4 = )07 K v))
-0 K- v ((Ag, = 4,007 - E” V) + (4 = )W K -v)
(4 = 20T - Ky v))?
.\ (47 =0T K vy) (VTT K- Vit vl Kt Vi 4)

(A5 = 207 - K vy

Cija = —

(5.32)

For calculation of (5.31), use of the constancy of the denominator of the expres-
sion forc,; (see (5.21)) was made. The derivatives/pfvith respect tol can
now be specialized for the stability limit, for which

Ap=4, A,=0, vi=v. (5.33)
This leads to
C11 = aq, (534)
Gj=0, j=2,...,N, (5.35)
Ci1.4 = 2& + 3a;. (5.36)
This gives
Vi, = av (5.37)
and
N

vi-K Y
v = 3@+ )y, + I S (5.38)
1,22 17T 9171 - #) (4 ¥ )
=2 (e /lj)(Vj “Kra- Vj)

Calculation of the derivatives of; provides information about the function
A3(4). A3 ,, given in (5.7), can now be specialized for the stability limit:
iT : RT,M : V; stab. limit

%
/Fi,/l = _(/Fi - /1)
vil - Ky v;

0. (5.39)

Premultiplication of higher-order derivatives of the consistently linearized eigen-
problem allows calculation of; ,, and4] ,,, and specialization of the obtained
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relations for the stability limit:

K T-Kru-v
X « 71 AV . 1 , 1.4
A =—24, T o T (41-4) T o N
vi -Kra-v] vy -Kyi-v]
* v T s
or -1 V1 TV, )t Ky vy, (5.40)
-y, - ATy -y
V1 T4V vi - Kra-vg
stab. limit
=  —-2a.
ALy = —; 38 v Ky v+ B, -2v'- K -V
1,040 — N 1,4471 TAaa" Y1 1.1 1 LIZ |

Vil Kra- Vi
+ (= AT K Vs
+ 35 i Ky Vi + 4, — DT K- v+ (45 = T - K vl
+ 305 01 - K v+ (3= v - K- vi )

Stabi”mit—]_Z(aﬁ " a,i)

(5.41)
The preceding considerations allow examination of the eigenvalue ajfve
At the stability limit (4 = 1), this curve has a horizontal tangent (4+ 0) and
its curvature equals2a,, as follows from specialization of the general expres-
sion for the curvature at the stability limit

/l*

1,11 stab. limit

= —3
(1+ A*lj)z

X = 22, (5.42)

The derivative of the curvature with respect tol is given as

3
* %2 \2 * %2 #2 1

3 AL L+ 77 )% =347 A (1 + 1 ))2 stab. limit
sy = = A

@+a2)° (5.43)
= —12(& + a).

The second equal sign in (5.43) holds at all points withh = 0 and, conse-
quently, at the stability limit. I&; + a2 = 0 at the stability limit, the curvature of
the eigenvalue curve has a local extremum.




Chapter 6

Classificationof elastic structures
regarding sensitivity analysis of
their initial postbuckling behavior

Buckling may occur from a general stress state or a membrane stress state which
may be viewed as a constraint imposed on a general stress state. This suggests
the existence of constraints in the frame of sensitivity analysis of the initial post-
buckling behavior. An example for such a constraint is (4.19) which, for the spe-
cial case of bifurcation from a membrane stress state, implies zero-stiffness post-
buckling. For bifurcation buckling from a general stress state, however, (4.19)
does not impose a restriction on the coefficiebisi > 4. Hence, it is impor-

tant to know whether bifurcation buckling occurs from a general or a membrane
stress state.

In the following, a necessary and sufficient condition for bifurcation buckling
from a membrane stress state will be presented. It was derived by Mang and
verified numerically by the author of this dissertation [15].
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6.1 A necessary and sufficient condition for
bifur cation buckling from a membrane stress
state

The first derivative of (5.5) with respect fois obtained as (see (5.6))
| 40K+ (45 = DK ] v+ [Kr + (45 = DKa| 45, = 0. (6.1)

With the help of (5.5) and (5.25), (6.1) can be rewritten as

i Kra+Kru| vi-
-1 :

Vil Ky v,

N
Kr + (45 - DK, - ’ _ vi=0. (6.2
| ] ;(ﬂi—ﬂ]f)(v]fT-KT,A-v]‘) '

Specialization of (6.2) for the stability limit where (see (5.33))

A-1=0, A4,=0, vi=v, (6.3)
resulting in
/li/l O /li/l/l
— === —— = =1 6.4
-1 0 a;,-1 Lad (6.4)
yields
— — —_ N VTT 'RT,AA'Vl
[_/q,/l/lKT,/l + KT,M] vy =Ky Z - J* = - vi|=0. (6.5
=2 (/11 - /lj)(vj Kt Vj)
Interpreting
N Vi RT,AA vy
Vi = 3 +a)vy + J i (6.6)

v.
* * >k W k J
=2 (A1 - /lj)(vj “Kra- Vj)

(see (5.38)) formally as the vector acceleration of a moving particle at the point
on the vector curve; (1) (see Figure 6.1) that represents the stability limit (point
S with 2 = 1g),

(viw), = 3@ +aw, (6.7)
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Figure 6.1: Bifurcation from a general stress state: sketef)(aj in the vicinity
of the stability limit S for the special case af € R3 (o: osculating plane,
v: normal planey: rectifying plane;T: tangent vectorN: normal vector,B:
binormal vector{T| = [N| = |B| = 1).

is the tangential acceleration and

N T 1w
VT Ky 141

121 = : - Vi (6.8)
i, ,-zzzuz—ap(vﬂKmv]f)‘

is the normal acceleration of the particle at this point. For bifurcation buckling
from a membrane stress state, the aforementioned constraint is characterized by
the disintegration of (6.5) into

RT,/M V= /l;_’/ukd'r’/l Vg (69)

and

N T. K
vii - Kru-v,

Kr- _ vi|=0. (6.10)
JZ; (43 = DT - Kra-v)) ‘
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Premultiplication of (6.9) by/]fT, ] # 1, and consideration of the orthogonality
condition (5.14.1) gives

v Kru-vi=0 Vje(23,... N} (6.11)

which shows that (6.10) is satisfied. Premultiplication of (6.9ybgnd consid-
eration of (5.21) results in

A= K- v, (6.12)

Equation (6.12) would also have been obtained by premultiplication of (6.1) by
v:T and consideration of (2.10) and (5.21), i.e. without disintegration of (5.6)
to (6.9) and (6.10). The character of (6.9) as a constraint condition becomes
apparent if (6.12) is inserted into (6.9) which gives

[RT,/M + (VI . FKT,AA . Vl)ki‘r’/l] V= 0. (613)
Substitution of (6.11) into (6.8) yields

(viu), =0, (6.14)
resulting in
Viulds) = (viu(ds), = 3(& +ap)v, (6.15)

(see Figure 6.2). At point S, the vector curve shown in Figure 6.2 does not only
intersect the osculatory and the normal plane but also the rectifying plane. Figure
6.2 shows that the length and the direction/gf depend om. For the special
case that only the length ef depends on, i.e.

(620) 1 . .
Cj=0¥1 = ¥ -Kru-vi=0 Vje(23,...,N}, (6.16)

V?I:/l = C]_]_V?;_. (617)
If neither the length nor the direction f depends on,
vi,=0 Vi (6.18)

which requires
RT,,MZO B KT =Kp+ 4K, (619)
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Figure 6.2: Bifurcation from a membrane stress state: sketotj(@j in the
vicinity of the stability limit S for the special case af € R3 (o: osculating
plane,v: normal planer: rectifying planeT: tangent vectorN: normal vector,
B: binormal vector{T| = |N| = |B| = 1).

whereK, andK are constant matrices defining a linear stability problem (see
(2.20).
The first and the second derivative of (2.5) are obtained as

FK‘TJ U, + RT U= 0 (620)

and
Krw U+ 2Kt U +Kr-u0 =0, (6.21)

respectively. Premultiplication of (2.5), (6.20), and (6.21)byand considera-
tion of (2.10) result in the following relations for the stability limit:

v; -P=0, (6.22)

vi Ky u, =0, (6.23)

V-]I_- . RT,AA . U’/l + ZVI . ’IZT’/] . U’/u =0. (624)
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Substitution of (6.9) into the expression for the first term in (6.24) and consider-
ation of (6.23) gives

VI . RT,AA U, = /l’{,MVI . R'T,/l U, = 0. (625)
Substitution of (6.25) into (6.24) yields
vl Ky u,, =0. (6.26)

Hence, disintegration of (6.1) entails disintegration of (6.24) as a characteristic
feature of bifurcation buckling from a membrane stress state. For

Krau=0 or uyu=0, (6.27)

this disintegration is trivial.
Elimination ofv] - Rm in (6.26) with the help of (6.9) results in

1 —
= v Ky U =0. (6.28)
1,a2
If and only if
A, =0, (6.29)
then, following from (6.9),
Kra-v,=0. (6.30)
Hence,
VI . iZT,/M U= 0 (631)

is a necessary condition for bifurcation buckling from a membrane stress state.
In order to prove that (6.31) is also a sufficient condition for buckling from a

membrane stress state,, is expressed as a linear combination of the eigenvec-
tors of (5.1),

Uaa = Civq + CoVy + -+ - + CNVYs (6.32)

with [37]

G=—vT -Kry-uy vT-Kri-vi=-1 Vie{l,2,...,N}.  (6.33)



CHAPTER 6. CLASSIFICATION OF ELASTIC STRUCTURES 38

Substitution of (6.33) into (6.31) gives
T o _ T 10 T *
V- KT,/M U = C1 (Vl . KT,/M . Vl) + C (Vl . KT,/M . V2) + ...
ooy (] - Kraa-vy) =0. (6.34)

Substitution of
C = —V—lr . KT,/l - U1, (635)

which follows from (6.33.1), into (6.24), yields
vl -Kpa Uy — 26 =0. (6.36)
Expressing alsa , as a linear combination of the eigenvectors of (5.1) results in
U, = by, + bovy + -+ + byvy (6.37)
with [37]
bi=—vT -Kry-uy, v -Kpg-vi=-1 Vie{l,2,...,N}.  (6.38)

Satisfaction of (6.23) requires
b, = 0. (6.39)

Substitution of (6.37) into (6.36) and consideration of (6.39) gives
by (v] - Ky - v3) + -+ by (v] - Ky vi) — 2 = 0. (6.40)
Expressing; in (6.40) with the help of (6.34) interms @4, . . ., cy, yields
[bz (VI . RT,M . vl) + 202] (VI . RT,M . VZ) +- 4
+ [bN (VI K vl) + ZCN] (VI K- v”,‘\l) =0. (6.41)
Equation (6.41) is satisfied if and only if the orthogonality condition
vi Kru-v,=0 Vje{23,...,N} (6.42)

holds. This orthogonality condition (see (6.11)) follows from (6.13) which was
used for derivation of the condition for bifurcation buckling from a membrane
stress state (see (6.31)). Hence, (6.31) is a necessary and sufficient condition for
bifurcation buckling from a membrane stress state.

This condition applies to the following four cases:
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(@) 'KVT,M # 0, u,, # 0, nonlinear stability problem, nonlinear prebuckling
paths,

(b) FKVT,M # 0, uy, = 0, nonlinear stability problem, linear prebuckling paths,
(c) RT,M =0, uy, # 0, linear stability problem, nonlinear prebuckling paths,

(d) FKVT,M =0, uy, = 0, linear stability problem, linear prebuckling paths.

Case (a) shows that the existence of a membrane stress state does not rule out
the possibility of a nonlinear stability problem with bifurcation buckling from
nonlinear prebuckling paths. A classical example for this case igdhéMlises

truss [5] for which (6.31) will be verified in Section 8.2. The cases (b) and (c)
demonstrate that linear stability problems and linear prebuckling paths are not
mutually conditional [33].

6.2 Bifurcation buckling from a membrane stress
state as a special case in the frame of
sensitivity analysis of bifurcation buckling
from a general stress state

If, in the frame of sensitivity analysis of bifurcation bucklinggeneral stress

state for a specific value of the design parameter becomes a membrane stress
state, bifurcation buckling from such a stress state will occur as a special case
of bifurcation buckling from a general stress state. To deal with such a situation
requires investigation of specific features of sensitivity analysis of bifurcation
buckling both from a general and a membrane stress state.

The starting point for the following considerations is the expression for the co-
sine of the angle enclosed by the directions ef ,, andv, which is collinear
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l /

Figure 6.3:a2 + a; asa function of the design parameter

with (vj,M)” (see Figure 6.1). With the help of (6.6), gofs obtained as

T
Vi Vi 3(35 +a)

|V | V* | B N T 2 w1 5 .
1 1,41 Vil KT,/M Y vil oyl
Jg(a§+aj)2+2( ‘ -

J J
=2

cosy =

(41 - Ijﬂ)(VTT K- V) ViV

(6.43)
It is emphasized that the vector cumigl) in Figure 6.1 refers to a specific value
of x. For each value ot such a vector curve exists. Figure 6.3 shows a typical
qualitative shape of the functiaaf + a; in the numerator of 6.43 in the frame of
sensitivity analysis of bifurcation bucklings(x = ko) = aj(k = ) = —oo refers
to hilltop buckling which is characterized by the coincidence of the bifurcation
point with a snap-through point [20k, is the value of the design parameter at
hilltop buckling which is chosen as the starting point of sensitivity analysis. The
second term under the square root in the denominator of (6.43) represents the
influence of non-membrane (non-axial) deformations on bifurcation buckling.
For hilltop buckling, both terms in the denominator of (6.43) become infinite.



CHAPTER 6. CLASSIFICATION OF ELASTIC STRUCTURES 41

Tow==)  (v,),

Figure 6.4: Sensitivity analysis of bifurcation buckling from a general stress
state.( A(k = ko): starting pointO(x = «): end point (& = a; = 0 trivially).

Hence,
N TR 2 T

Z v K7y Vi -V
(- )T Keaov)) vion
9(a + a;)?

It can be shown that this indefinite expression is equal to zero. Thus,

= tarfp = g (6.44)

tafp=0 = cosyp = -1, (6.45)
with the negative sign in (6.45.2) following from
a2 +a) = —oo (6.46)
(see Figure 6.3). FaZ + a; = 0, x = oo (see point in Figure 6.3), the second
term under the square root in the denominator of (6.43) is not equal to zero.
Hence, substitution a2 + a; = 0 into (6.43) gives
cosp=0 = v, = (vi/u)l . (6.47)

For the physically meaningless borderline case ofco,

aZ+a;=0 (6.48)
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(see Figure 6.3). Moreover, the second term under the square root in the denom-
inator of (6.43) also becomes zero. Hence,

N 2>i_<T‘4<

Z v’j‘T . RT’M;vl ViV

G (@ - 5T -Krav) ) vion
9(& + a;)?

As « tendsto infinity, the numerator of (6.49) can be shown to tend to zero more

strongly than the denominator. Hence,

=tarfy = g. (6.49)

tafo=0 = cosyp =1, (6.50)

with the positive sign of (6.50.2) following fror& + a; — O0+. Figure 6.4 il-
lustrates the vector functior , (1s(x), x) in the frame of sensitivity analysis of
bifurcation buckling from a general stress state.

For sensitivity analysis for the special case of bifurcation buckling from a mem-
brane stress state, because of (6.14) the vector etinyels(«), ) degenerates to

a straight line coinciding with the abscissa of the system of reference in Figure
6.4.

An interesting difference between the general and the special case exists for

6.7
(i) =0 = a+a=0. (6.51)

For the general case,
a; > 0, a; <0, (6.52)

whereas for the special case
a <0, a; <0. (6.53)

The only point on the vector curvg , (4s(x), ) in Figure 6.4 for which

(VIM)L = 0 is the origin of the system of reference, representing the physically
meaningless end point of this curve in the frame of sensitivity analysis of bifur-
cation buckling from a general stress state. Hence, bifurcation buckling from a
membrane stress state is not contained as a special case of bifurcation buckling
from a general stress state.

It is contained, however, in the form of poi6tin Figure 6.5 which illustrates
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the vector function] , (1s(Ax), Ak) in the frame of sensitivity analysis of bifur-

cation buckling from a general stress state represents e.g. the deviation from
the geometric shape of a structure for which, for a particular load case, only axial
forces occur, as is the case for a thrust-line arch. Hence, for pointFigure
6.5, A« = 0.For this point,

(v;M)” =0, (Vi) =0 (6.54)
which requires (see (6.7) and (6.8)
a2+a;=0 v -Kyu-v,=0 Vje{23,. .. N} (6.55)

The Equations (6.55) are satisfied if and only if

= (A1) 637
Krwu-vi=0 = a=0 = v,=0, (6.56)
= (A2)
KT,/l/l/l "V, = 0 = a} =0, (657)
resulting in
Vi~ V1 (6.58)

Usually,v; , = Oindicates a singular point on the vector cuwl) [37]. In the
given case, however, becausevpf(4 = As) = 0 andv; , (1 = As) = O, pointS
on a sketch of; (1), similar to the one shown in Figure 6.1 and, hence, not shown

=0 (v,)

Figure 6.5: Sensitivity analysis of bifurcation buckling from a general stress
statecontaining bifurcation buckling from a membrane stress state as a special
case.
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herein, is a regular point, representing a planar point on the path. Since (6.56.1)
satisfies (6.13), poirD in Figure 6.5 refers to the special case of buckling from

a membrane stress state. At this point, the vector cufyg1s(A«), A«) has a
singular point in form of a cusp of second kind with a vertical tangent. This is
the consequence of a minimum of bati{x) anda;(«) at pointO.



Chapter 7

Implementation of the theoretical
concepts in a computer program

7.1 Layout of the computer program

In order to verify the theoretical findings, a computer progfamsensitivity
analysis of the initial postbuckling behavior was developed. It is based on Koi-
ter's initial postbuckling analysis and can solve the consistently linearized eigen-
value problem.

Such a program must allow

¢ the input of model data of the structure,
¢ nonlinear finite element analysis,

e calculation of the primary path,

e branch switching to the secondary path,

e calculation of derivatives of the tangent stiffness matrix along the primary
path,

e calculation of directional derivatives of the tangent stiffness matrix for
arbitrary directions, and

e post processing of data to obtain series expansions for the secondary path.
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For programming, basically three software tools were used. The first one is the
finite element software FEAP which offers a wide range of available element
types, in particular, advanced shell elements. The second one is MATLAB, a
high-level programming language as well as a programming environment. The
third software tool is the interface MATFEAP which allows the exchange of data
between FEAP and MATLAB.

A detailed description of a basic version of FEAP can be found in [38] and fur-
ther information is available in [35]. FEAP was chosen because of a wide range
of available element types, in particular, advanced shell elements, and the avail-
ability of the source code, allowing small modifications which are necessary for
the data exchange via the interface to MATLAB.

MATFEAP, available online from David Bindel’'s website [1], allows to start a
finite element calculation in FEAP from MATLAB, to issue FEAP macro com-
mands from within MATLAB, and to read or set variables in FEAP, e.g. dis-
placements, the residual and the tangent stiffness matrix.

In MATLAB, mathematical programming is significantly simplified as com-
pared to low level programming languages. Its strength is the simple and ef-
ficient handling of vector and matrix arrays as well as a wide variety of available
mathematical features including solvers for systems of linear equations and for
linear eigenvalue problems which were used in this work.

The input of the model data is based on the input format of FEAP which uses
input files. When FEAP is started through MATLAB, the model data are pro-
cessed and then FEAP is set to the so-called interactive mode, awaiting macro
commands. The interface MATFEAP allows to start FEAP with input files con-
taining parameters which can be set in MATLAB.

The elements used in the numerical studies are a four-node shell element with
five degrees of freedom at each node (three displacement degrees of freedom and
two degrees of freedom defining the rotation of a director vector) and a beam el-
ement with two nodes with six degrees of freedom each (displacements of the
nodes and rotations of the cross section, referred to global coordinates). FEAP
allows to add additional stiffness to certain degrees of freedom at given nodes.
This is used to model linear springs attached to the structure.

The arc-length algorithm, required for calculation of the nonlinear load-displace-



CHAPTER 7. IMPLEMENTATION 47

ment path, was programmed completely in MATLAB. A detailed description of
the algorithm is given in Subsection 7.3.2.

Pinpointing, representing the iterative process to locate the stability limit, was
steered by the MATLAB program, using the arc-length method. As a measure
for the stability of the equilibrium, an estimate for the lowest eigenvalué-of

was chosen. Itis provided by the MATLAB functi@n gs which uses subspace
iteration. The determinant, often used for determination of loss of stability in
theoretical considerations, cannot be used for numerical work because its com-
putation is costly in case of large matrices . The determinant of such matrices
may be too large for the employed floating point arithmetic unless one is close
enough to the stability limit. The step-length for the arc-length method was cho-
sen by applying the secant method to the lowest eigenvalue as a function of the
arc-length on the primary path. Le¢n) denote the lowest eigenvaluekf in

the n-th step antl(n) be the arc-length in this step, then

L(n+ 1) = L(n) (7.1)

:u(n — 1) -1
u(n)
gives a value for the arc-length in the following step. To start the iteration,
two values ofu must be known. Hence, one initial step has to be made with an
arbitrary arc-length. In order to keep the algorithm stable, a maximum arc-length

was set by assigning
L(n+ 1) — max(L(n + 1), Lmay)- (7.2)

Since only a few structures were analyzed and determination of the complete
secondary path was only necessary for verification purposes, there was no need
for implementation of an advanced strategy for branch switching. With the sta-
bility limit (u s, As) and the estimate @+ ev,, As), the two necessary starting
points for the same arc-length algorithm as was used for the primary path are
available. The magnitude a@f which was tuned manually, is crucial. 4fis
chosen too small, calculation of, fails because of the bad conditionko$, and

if it is too large, the residual at g+ ev,, As) is large, but the algorithm needs a
nearly converged starting point.
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For the academic examples analyzed in this work, restricted to less than a few
thousand degrees of freedom, it is possible to store displacement data for the
whole equilibrium path as well as a sample of the stiffness matrix around the
stability limit for post-processing.

7.2 Post-processing

For verification purposes, the coefficieaisand a; werecomputed in two ways,
either directly using the functiof(1) defined in Section 3.3 or by calculating
A1(4) at five points around the stability limit and using the relations (5.40) and
(5.41) from the consistently linearized eigenproblem. For direct calculation us-
ing f(1) and the finite difference algorithm presented in Subsection 7.3.1, five
evaluations oKt in the vicinity of the stability limit are necessary. Calcula-
tion via the consistently linearized eigenproblem requires five valugg(of in

the vicinity of the stability limit. The eigenproblem is solved with the help of a
MATLAB function which uses subspace iteration. For the solution of the eigen-
problem, a central differential quotient is used to calcuiétg, which makes
two additional evaluations d€+ in the vicinity of the stability limit necessary.

The directional derivative of first order with respecttas defined as

dKT(U) L dKT(UC + 8V1) B KT Ly (7 3)
- - ,u 1- .
dvl u=uc de e=0

Sincev, was already calculated during the pinpointing procksscan be sam-
pled at five points around the stability limit in the directiomgf These points

are then used in the finite difference algorithm. Higher-order directional deriva-
tives ofKt in the direction ofv, are used to computg - Ky, - vy, v, - Ky

v, ® vy, andy, - Ky gyt v, ® v, ® v;. Only symmetric structures were analyzed
numerically. Thusd; = A3 = A5 = --- = 0. Considering the comparably low
computational cost}; was calculated for verification purposes.

In order to calculate, and 1,4, another directional derivative is necessary, even
if 2, and 13 are set equal to zero. The tesh- K+, - v, appears in the equation



CHAPTER 7. IMPLEMENTATION 49

for v,. Consequently, it is necessary for the calculatiomip{see (A.8)) and,
thus, fori, (see (3.16)). Hencd& 1+ has to be sampled at five points around the
stability limit in the direction ofv,,.

7.3 Technical details of the implementation

7.3.1 Finite differences

Koiter's postbuckling analysis requires evaluation of higher-order differential
guotients. Herein, they were approximated by means of finite differences based
on function values at five interpolation nodes. The approximations have the form

5
f006) ~ ) o F(x). (74)
k=1

The task is to fina, for a given set of, which may be non-equidistant. This
can be done by using Taylor series expansiong®f aroundxs:

4
f00) = ) 1 F006) (5 — X0 + 006 - )%, 75)
k=0
4
00 = 3" 5 {9006 - X + 006 - %)), (76)
k=0 "~
) = 106 &
4
0 = D 1 100606 — X + 00k — X)), 79)
k=0
4
06 = D 1 T0)06 — 16 + (056 ~ ). 79
k=0

Insertion of these expansions into (7.4), ordering by powerg,aind compari-
son of coefficients allows efficient calculation of the coefficiangsn form of a
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linear system of equations:

1 1 1 1 1 Ci1 Ci2 C13 Cius
(=%) (—%) 0 (—X) (Xs—Xi)| [Ca C2 Ca3 Coa
(Xa—X1)* (Xs—X2)* O (Xa—X4)* (Xs—X1)*|"[Cs1 Cs2 Caz Cas
(xa=x1)® (a=%)® 0 (x3—x)° (xa—x1)°| |Car Caz Caz Cas
(s —x)* (Xs—Xx)* 0 (xs—Xa)* (xs—x1)?) \Gs1 Cs2 Cs3 Cos

000 O
1 000
={0 2 0 O0f. (7.10)
0 06 O
0 0 0 24
The error of the approximation is given by
5
& = ) GaO((Xs = %°). (7.11)
k=1
As a consequence of (7.10), the coefficienytsare of the form
Ckn = __1t (7.12)
06— %" '
This results in the following order of the error:
5
&=, 00~ %)°"). (7.13)
k=1

This means that the highest order of differentiation that can be approximated by
this method is four. This is just enough to calculajen Koiter’s postbuckling
analysis. In the MATLAB program, (7.10) was solved column-wise, depending
on the required order of differentiation.

7.3.2 Arc-length algorithm

In the analysis of geometrically nonlinear structures, computation of equilibrium
paths past the stability limit, especially for the case of hilltop buckling, requires
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strategies that are more advanced than the Newton-Raphson method. An arc-
length algorithm, introduced by Crisfield [7], was used. His work was based on

a solution procedure proposed by Riks [26]. An overview over arc-length and
other control methods can be found in [27].

The basic idea of an arc-length algorithm is to restrict the arc-length of each
increment in the load-displacement space. In the algorithm applied in this work,
the equilibrium iteration within each increment consists of several steps. The
first one is called the predictor step whereas the others are referred to as corrector
steps.

For this Subsection, vectors in the load-displacement space will be denated by

t:(j) (7.14)

In many applications, the numerical values in the load-direction are much larger
than those in the displacement-directions. In order to reduce this large disparity
which may lead to numerical problems, scalar products are computed as

tTt=u"-u+y?2? (7.15)

with ¢ € (0,1). In the following, the position vectors of points in the load-
displacement space will be indicated by a single subscript,tg.g. (Ua, 1a)";
vectors connecting such points have two subscripts identifying these points, e.g.
taB.

The equilibrium iteration withing each increment starts at an equilibrium point
Z. In the first increment, this represents the unloaded position. The target is to
find an equilibrium solution, the distance of which fr@ymeasured in the norm
induced by the scalar product defined in (7.15), is equal to the arbitrarily chosen
valueL. The tangential direction & is given as

_(U.a(12)
ﬁ_( 1 ) (7.16)

The first iteration step is characterized by the lerigth the direction ot”. For
this purpose, a multiplier faf is calculated, subject to

L

=
,/ul SUy + Y2

Adp = (7.17)



CHAPTER 7. IMPLEMENTATION 52

(b)

Figure7.1: (a) possible solutioms andB of the predictor step, starting from the
last converged solutiod; (b) possible solution€ andD of the corrector step,
starting from the solutiod of the preceding step.
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The two intersections of the tangent to the equilibrium path with the circle
aroundZ, denoted a®\ andB (see Figure 7.1(a)), are obtained as

tag = t2 + Alpt”. (7.18)

The sign in (7.18) is chosen according to the following rule: The correct direc-
tion is the one which encloses an acute angle with the last increxpewhere

Y is the last converged solution befate For the first increment, only one equi-
librium solution is known. In this case the plus sign is chosen.

Without loss of generality, leA be the result from the predictor step. After this
step, several corrector steps follow. They are repeated until an equilibrium solu-
tion is reached within a specified tolerance, measured in terms of the norm of the
residual. Each corrector step consists of two parts, the first of which is defined

as
Ur
tR = 7.19
( 0) (7.19)
whereug solves
K7(Ua) - Ur = G(Ua, 4n). (7.20)

A correction that is restricted to the directiontBfcorresponds with the Newton-
Raphson-method. The second part of the corrector step is given.gts?, with

tQ = (”Q), (7.21)
1
whereug is calculated from
K1(Up) - Ug = P. (7.22)

Adcor Must be calculated such that the arc length of the stdp i§he two
solutions are the point€ andD in Figure 7.1(b). The quadratic equation for
Adcor, given as

(tza+tr+ Adeotd)" - (tza+ tr + Adeat?d) = L, (7.23)
has the two solutionf\Aer); ». This gives

tC,D =ta+tg+ (A/lcor)l,th- (724)
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The point which is closer t@\ is chosen as the result from the corrector step.
Therefore,
tEA ’ (tZA +tr+ A/lcortQ) (7.25)

should be maximized. It is sufficient to check only the term in (7.25) which
depends omA.,. Hence,

tEA ’ ((A/lcor)th) > tEA' ((A/lcor)ZtQ), (7.26)

is checked. If it is satisfied, (Ad;): is chosen as the result of the corrector step.
If this is not the case, (A4d;). represents the result of the corrector step.

For iterative pinpointing, it may be necessary to change the direction on the
equilibrium path, i.e. to go backwards once the stability limit was passed. In this
case, it is sufficient to invert the condition for the choice of the correct point in
the predictor step whereas the corrector steps remain unchanged.



Chapter 8

Numerical investigation

8.1 Two-bar system

Figure 8.1 shows a planar, static, conservative system witldegrees of free-
dom. Unlike the following examples, this structure was not analyzed by the
FEM but investigated analytically, using the computer algebra system Maple.
The description of this system closely follows [32]. Both rigid bars, 1 and 2,
have the same length L, and in the non-buckled state they are in-line. The bars
are linked at one end and supported by turning-and-sliding joints at their other
ends. A horizontal linear elastic spring of stiffnésand a vertical linear elastic
spring of stiffnesgk are attached to turning-and-sliding joints. A spring of stiff-
nessuk pulls the two bars back into their in-line position. The system is loaded

Figure 8.1: Pin-jointed two-bar system.
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by a vertical loadiP at the vertical turning-and-sliding joint, which results in

the reference load vectdt = (P, 0)". The two displacement coordinates are
the angless; andu,, summarized in the vectar = (uy, U,)". In order to write

the out-of-balance forc@ for the structure as defined in (2.2), other coordinates
would have to be chosen. In fact, the angjevould have to be replaced by the
vertical position of the upper turning-and-sliding joint. This would only require

a simple coordinate transformation. For convenience, however, the angées
chosen as a coordinate. The unloaded position, delineated in blue, is defined by
u = (U, 0)". This system was first investigated in [29] and later on in [32]. The
potential energy expression follows as

V(u, ) = 2«kL2 (sin(lo) — sin(w) cos(y))? + ’u—ZKL2 sirf(uy)

+ 2kL2 (cos(ug) — cos(u) cos(y))? — AP2L (sin(u) — sin(w) cos(y)). (8.1)

The equilibrium equation¥,, = 0 andV,,, = 0 are satisfied for the primary path
where

u=0 (8.2)
and
2Lk . .
A= -5 ((1 - k) sin(w) — cos(up) tan(u) + « Sin(Wo)) , (8.3)
and for the secondary path with
3 4  cosfug
U ==+ arccos( 24— cos(u ) (8.4)
and
A= %( (“4 — cog{uyo) tan(u) + Ksin(ulo)) . (8.5)
—H

Since a perfect system is assumed, the sign,as indeterminate, i.e. it is
not known into which direction the two bars will buckle. The tangent-stiffness
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Figure8.2: Selected results from sensitivity analysis of the initial postbuckling
behavior of the pin-jointed two-bar system shown in Figure 8.1: projections of
load-displacement paths onto the plane= 0 for (a) hilltop buckling, (b) zero-
stiffness postbuckling, (c) imperfection insensitivity.
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matrix is obtained as

Kr =
k(1 + sin(uo) sin(u) — 2 sirf(uy))
+1 + cos(ug) cos(u) — 2 cog(uy) 0
— A5 sin(w)
4k|_2 2kL
 (sin(uo) sin(wy) — sir’(uy))
0 +cos(Uo) cos(u) — cog(uy)
—A5pr sin(w)
(8.6)

Uyg € (-n/2,7/2), u € R* andk € R* are parameters that can be varied in
order to achieve qualitative changes of the system. However, in the following
only « is varied. The remaining two parameters were chosem as3/5 and
Up = 0.67026 such that hilltop buckling occurs fer= 0, representing the
starting point for sensitivity analysis of the initial postbuckling behavior. The
projection of the load-displacement path for hilltop buckling is shown in Figure
8.2(a).

If » = u,, the relevant coefficients of the series expansion (3.2) follow as

L =0, /lzzk_l- (k —pu/4) ,
P 1- coZ(Uyo)
V™ - w4y
14 (iosz(u;?)2 (8.7)
23 =0. PV (1—-u/4)

12 cod(uy)

(1 - /4y
Thus, 1, is proportional tol,. Forx = 0 (hilltop buckling), the perfect system is
imperfection sensitive (1< 0) andAs exceeds the ultimate load of any imper-
fect system. Increasing the parameter.e. the stiffness of the vertical spring,
improves the postbuckling behavior insofarashecomes positive, see Figure
8.3. The system is imperfection insensitive kor u/4. Figure 8.2(b) refers to
k = u/4, for which zero-stiffness postbuckling occurs. /Ais further increased,
the primary path becomes monotonically increasing. This situation is shown in
Figure 8.2(c). A comparison of Figures 8.2(a), 8.2(b), and 8.2(c) shows that the
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Figure 8.3: Coefficientd, and A, of Koiter’s initial postbuckling analysis, both
increasing linearly and crossing 0 at the same value of
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Figure 8.4: Coefficiend; (k) exhibiting the predicted behavior (see Section 3.3).

bifurcation pointS is increasing less strongly with increasinghan the snap-
through pointD. Hence, the two points are diverging from each other.
Figure 8.4 shows, as a function of the design parameterlt conforms with

the theoretical considerations in Section 3.3.

8.2 Von Misestruss

Figure 8.5 shows avon Misestruss supplemented by a vertical spring with a
spring constantk wherek = 1IN/cmandxk € R is a scaling parameter. Actually,
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Kk

u 10

Yap

Figure 8.5:Von Misestruss with an elastic vertical spring attached to the load
point.

only one half of the truss is analyzed in order to avoid a multiple bifurcation
point which is not in the scope of the present work. The undeformed length of
the bar,L, is 100cm, the initial position of the load pointk,o, is 30.9cm. The

side length of the quadratic cross sectianjs 17cm, the elastic modulug,

is 2.8x 10"kN/cn?. The reference load vectd®, is (P, 0)" with the vertical
reference load® = 1IN. In the unbuckled configuration the bar is straight. A
detailed analytical treatment of a similar structure can be found in [32] and [29]
where the only difference is that the side length of the cross section was chosen
such that hilltop buckling occurs far = 0. This was avoided here because of
numerical instabilities at hilltop buckling in Koiter’s initial postbuckling anal-
ysis when using the FEM. The structure was discretized using 30 FEAP beam
elements for finite displacements. kot 0, the bifurcation poin§ is relatively

close to the snap-through poibt (Figure 8.6(a)), the structure is imperfection
sensitive. Stiffening the vertical spring by increasingnproves the postbuck-

ling behavior, expressed by a linear increaselgk) (Figure 8.7(a)). Figure
8.6(b) refers to the situation characterizedy= 0. Because ofi; < 0, zero-
stiffness postbuckling does not occur. A further increased, the primary path
eventually becomes monotonically increasing (Figure 8.6(c)). Figure 8.8 shows
a; anda; as functions ok. The functiond,(«) andds(«) are shown exemplarily

in Figure 8.9. Figure 8.10 serves the purpose of verification of the condition for
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Figure8.6: A as a function of the vertical displacement of the load point, for

three different values of the top spring stiffnesga)c = 0, 1, < 0, (b)c = 5.55,
A= 0,/14 <0, (C)C = 12,/7.2 > O,/14 > 0.
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Figure8.7: Coefficientsl, and i, of Koiter’s initial postbuckling analysis. Both
coefficients are monotonic functions af Although their zeros are close, zero-
stiffness postbuckling does not occur.

bifurcation buckling from a membrane stress state (see (6.31)).
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Figure8.8: a; anda; as functions ok, starting with negative values because the

bifurcation point is relatively close to the snap-through point, and converging to
0 ask — oo.
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Figure8.9: Coefficientd, andd; required for computation of; as
functions of«.
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Figure8.10: Verification of the condition for bifurcation buckling from a pre-
buckling membrane stress state (see (6.31)): While the norrf - G 1. is

relatively smooth and clearly non-zere,,- Ky, - 0, is zero apart from “nu-
merical noise”.

8.3 Shallow cylindrical shell

Stability analysis of elastic shells and sensitivity anislps$ the initial postbuck-

ling path of such structures are challenging topics that have attracted great in-
terest of researchers [4, 9, 25, 36]. An example belonging to this category of
structures is the shallow cylindrical shell illustrated in Figure 8.11 [29]. The
length of the longitudinal side$, is 508cm, the length of the free edgbsjs
506.45cm, the elevation of the load point,is 12.7cm, the only non-zero com-
ponentP = 0.527kNof the reference load vectéis a vertical load at the load
point, as shown in Figure 8.11. The material parameieandv are given as
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Figure 8.11: Shallow cylindrical shell with an elastic spring attached to the load
point.

310275kN/cn? and 0.3, respectively. The shell thicknésand the stiffness of

a vertical spring attached to the load point, respectively, were chosen as design
parameters in [29].

In this work, the thickness of the shell is selected as the design parameter
whereas the spring stiffness is chosen such that two different special cases oc-
cur. The first one, witlt = 0.72kN'm, is the limit case for no conversion from
imperfection sensitivity into imperfection insensitivity. Ass increasingd, is
increasing, reaching a maximum value of O#4c¥ 5.7. Thereafter], is decreas-

ing until hilltop buckling is eventually reached fer~ 8.0. Load-displacement
paths for these three valuesofre shown in Figure 8.12. This example illus-
trates thatl,(k) may be be a non-monotonic function o{see Figure 8.13(a))

and that stiffening of the structure leading to an increase of the buckling load
may result in a deterioration of the postbuckling behavior, characterized by the
increase of the steepness of the slope of the projection of the secondary path onto
thed — u plane.

In contrast to the two previous examples, in the present example the bifurcation
pointS converges to the snap-through pdh{see Figure 8.12). The reason for

this convergence is that, unlike the increase of the stiffness of the attached elastic
spring in these two examples, the increase of the thickness of the shell has no
influence on the boundary conditions.

For the second case, the spring stiffness is chosen=a2.704kN'm. For this
casel, and, are plotted as functions of the shell thickness in Figure 8.14. Al-
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Figure8.12: A as a function of the vertical displacement of the load point, for
three different values df, ()t = 5.3,1, < 0, (b)t = 5.7, 1, = 0, ()t = 8,
hilltop buckling.
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Figure8.13: (a)1, as a function of the shell thickness, starting from a very thin
shell, ending at hilltop buckling; maximum value for 5.8, (b)a; as a function
of the shell thickness.

though both functions vanish for the same value of the design parameter, zero-
stiffness does not occur because buckling does not occur from a membrane stress
state.

In contrast to Figures 8.3 and 8.7(a), referring to bifurcation buckling from a
membrane stress state, Figures 8.13(a) and 8.14 exhibit non-monotonic func-
tions A,(x). As will be shown in the following, the difference betwegstx) for
bifurcation buckling from a general state of stress and from a membrane stress
state is that for the former non-monotony. i) is possible whereas it is im-
possible for the latter.
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Figure 8.14:1, and A4 asfunctions of the shell thickness for a spring stiffness
c=2.704kN'm.

Derivation of (3.16) with respect to the design parametgelds
/14,,( = al,,(/l% + 2&1/12/12’,( + bz,K/lz + bz/lz,,( + (bl/lg + dg)’,( (88)

Solving the ‘quadratic equation’ (8.8) fdp results in

2y, + by, N VQada, + by, )2 — 4ay [D2ds, + (D1dz + O3 — A4) ]

Ao =
2a1,,< 2a1,/<

(8.9)
The sign before the second term on the right-hand side of (8.9) follows from
knowledge of the value of,. Sinceq, is a real quantity, the discriminant of
(8.9) cannot be negative, i.e.

D = Qaydy, + by, )? — day, [D2ds, + (D13 + d3 — A4), ] = O. (8.10)
D can be rewritten as
D = 44, (8 Az, + ubp, — anbp) + [bF, — 4an(b1ds + ds — Aa), | (8.11)
Following from (8.10) and (8.11),
A0, (80, + A1bp, — A bo) 2 — D3, — Ay, (b1l + ds — Aa),|.  (8.12)

For sensitivity analysis of the initial postbuckling behavior of elastic structures
which buckle from a general stress state,

b%,K - 4a‘1,K(b1/l3 + d3 - /14),K > 0’ (813)
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as was confirmed numerically by the example analyzed in Section 8.4. Since
(8.12) is satisfied for (8.13) and,, = 0, A»(x) may be a non-monotonic function
(see Figures 8.13(a) and 8.14).

For sensitivity analysis of the initial postbuckling behavior of elastic structures
which buckle from a membrane stress state, the expression in (8.13) is not re-
stricted to non-negative values. For

b%,x - 4a1,l<(bl/l3 + d3 - /14),/< < Oa (814)
according to (8.12),
A0 (Bhpu+ aibp, —arby) >0 = 15, #0. (8.15)

In contrast to the situation for bifurcation buckling from a general stress state,
satisfaction of (8.13) together with

A0, (882, + auly, — @y, bp) = 0 (8.16)
is restricted to
/12’,( #0 ai/lz’,( + albz’,( — al,,(bz =0. (817)

Hence 1,(kx) must be a monotonic function.

8.4 Parabolic arch

A parametrized family of two-hinged arches, subjected toifotmly distributed

load p, was investigated by the FEM [18]. The design parameteefers to the
deviation of the geometric form of the axis of the arch from a quadratic parabola
for which Ax = 0, representing a thrust-line arch. The geometric form of the
axis of the arch is given as

xe[0l, y= T—fxa —X) + Aksin(l_TXn). (8.18)

For the numerical sensitivity analysis,and h were chosen as 6mnd 2.4m,
respectively. The side length of the constant quadratic cross-section was chosen
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(@) (b)

Figure8.15: (a) arch axes according to (8.18) (solid line: thrust-line arch, dashed
line: modified configuration), (b) axis of the thrust-line arch (solid line) and
buckling mode (dashed line).

as 0.07m. The modulus of elasticity was assumed as 2@N/n?. For the
chosen configuration of the arches, symmetric bifurcation with an antisymmetric
buckling mode is relevant. Figure 8.15(b) contains the buckling mode for the
special case of a thrust-line arch.
Figures 8.16(a), (b) show the Euclidean nor“fﬁdsﬂ . Vl”z andHRT,W . Vl”z as
functions of the design paramet&k. For the special case of a thrust-line arch
(Ak = 0),

[Krwv, =0 [Kraw-vy|, =0 (8.19)

This implies the vanishing af; anda;, which is illustrated in Figure 8.17. These
results confirm (6.56) and (6.57). Substitutionaaf= a,, = 0 (see Figure
8.17(a)) into (8.12) gives

0> -b3,. (8.20)

At the same time, (8.17.2) is satisfied. The numerical investigation resulted in
A2 > 0 which confirms (8.17.1).
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Figure 8.16: Sensitivity analysis of bifurcation buckling of a family of two-
hinged arches: (@)K r.u - vy|,, (b)||Kt.111- v, ||, as functions of\x representing
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Figure8.17: a; anda; as functions ok. For the special case of a membrane

stress statér_, - v, = 0 andKr_,, - v, = 0 (see Figure 8.16), resulting in the
vanishing ofa; anda;.
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Conclusions

Sensitvity analysis of the initial postbuckling behavior of elastic structures aims
at the conversion of imperfection-sensitive structures into imperfection-insensi-
tive ones by means of minor design changes. The answer to the question of how
to achieve this aim depends on the considered structure and its loading. Hence,
a general answer is impossible. The motivation for this work was the search
for design principles either allowing such a conversion or ensuring imperfec-
tion insensitivity right from the beginning. For this purpose, Koiter’s postbuck-
ling analysis was used together with information obtained from the consistently
linearized eigenvalue problem. Theoretical analysis as well as numerical stud-
ies were performed in a research projetiat framed the work for this thesis.
Notwithstanding that there are still open questions, many pertinent problems
were solved.

One of them was the role of symmetry in sensitivity analysis of the initial post-
buckling behavior. It turned out that, contrary to earlier assertions, symmetry
is not necessary for conversion from imperfection-sensitive into imperfection-
insensitive structures. Nevertheless, the necessary conditierd represents a
restriction on the degree of asymmetry of the initial postbuckling behavior.

A proof was given for the inherent imperfection sensitivity of hilltop buckling.
This proof is important insofar, as its result suggests to avoid hilltop buckling
even if it results in a maximum of the critical load in the feasible range of design

Y“Imperfectionsensitivity: an unfavorable mechanical diagnosis of the initial postbuckling
behavior of structures, calling for an effective design therapy’, funded by the Austrian Academy
of Sciences.
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parameters. The proof uses a similar series expansion as in Koiter’s postbuck-
ling analysis and makes explicit use of the positive semi-definiteneks at

the stability limit.

Scientific work with zero-stiffness postbuckling was primarily of academic inter-
est, as this special form of postbuckling is restricted to rather simple structures.
Interest in structures exhibiting this form of postbuckling behavior is of more
recent date. A necessary condition for zero-stiffness postbuckling is buckling
from a membrane stress state. Insofar as in the frame of sensitivity analysis of
the initial postbuckling behavior of elastic structures all coefficidatchange

their sign from negative to positive, zero-stiffness postbuckling may be consid-
ered as the most favorable form of transition to imperfection insensitivity.

The conception of a membrane stress state as a constraint imposed on a gen-
eral stress state may also serve as an explanation for the restrictig(x)fo

a monotonic function in the frame of sensitivity analysis of the initial postbuck-
ling behavior for the special case of bifurcation buckling from a membrane stress
state.

The presented theory was implemented in a computer program for structural
analysis by the FEM. For symmetric structures, the series expansions of Koi-
ter’s postbuckling analysis were computed up to fourth order. The numerical re-
sults were validated thoroughly because numerical errors are inevitable, arising
primarily through higher-order numerical differentiation and badly conditioned
equation systems in the immediate neighborhood of the stability limit. Although
both problems can be controlled by means of suitable algorithms, they cannot
be eliminated. Nevertheless, the developed algorithms fulfill their main purpose
which is numerical verification of theoretical results.

The thrust of the numerical investigation were sensitivity analyses of the initial
postbuckling behavior of elastic structures. In these analyses, special empha-
sis was laid on symmetry, hilltop buckling, zero-stiffness postbuckling, buckling
from a general stress state as well as from a membrane stress state and, last but
not least, on buckling from a membrane stress state representing a special case
in the frame of sensitivity analysis referring to buckling from a general stress
state. It was shown that the addition of tensile members which overcompen-
sate the decrease in the load carried by the original structure in the postbuckling
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regime are effective means for converting imperfection-sensitive structures into
imperfection-insensitive ones. The increase of the thickness of a structure, on
the other hand, is usually not effective for improving the postbuckling behavior.
The resulting improvement of the prebuckling behavior of the structure, consist-
ing of a stiffening of the prebuckling load-displacement paths and an increase
of the buckling load, is accompanied by a deterioration of the postbuckling be-
havior. A reduction of bending in the prebuckling domain in consequence of
a modification of the original geometric form of the structure will improve the
postbuckling behavior.
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Coefficientsin Koiter’s initial
postbuckling analysis
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