

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Ein leichtgewichtiger Open-Source-Ansatz
für das Anforderungsmanagement

Behebung häufiger Mängel typischerweise verwendeter Werkzeuge
und Evaluierung eines Prototypen mit erfahrenen Anwendern

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Jaros
Matrikelnummer 0225848

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: ao. Univ. Prof. Stefan Biffl
Mitwirkung: Dr. Matthias Heindl

Wien, 20/09/2010

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Lightweight Open-Source Tool Support
for Requirements Management

Addressing Major Shortcomings of Typically Used Req M Tools,
Development of a Prototype and Evaluation with Expe rienced Users

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Jaros
Matrikelnummer 0225848

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: ao. Univ. Prof. Stefan Biffl
Mitwirkung: Dr. Matthias Heindl

Wien, 20/09/2010

 I

Erklärung zur Verfassung der Arbeit

Michael Jaros

Laudongasse 58/16

1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten

Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als

Entlehnung kenntlich gemacht habe.

Wien, 20/09/2010

 II

Acknowledgments

I would like to thank Stefan Biffl for his supervision and advice, Matthias Heindl for his

constant mentoring and valuable counsel in scientific matters, and Dietmar Winkler for his

input on empirical studies.

Furthermore, I want to thank Siemens Austria for the chance to work on an interesting project

in an industrial context. Special thanks go to my former superior Franz Reinisch for sharing

much of his long-term practical experience in application lifecycle management and giving

helpful feedback on the prototype.

I want to thank my friend and colleague Alexander Wagner for the outstanding collaboration

at Siemens and in several projects. I thank everyone who took part in the usability test or in

the web survey for their important contributions.

Last, but not least, I would like to express my gratitude to my parents Rosa and Herbert and

my brother Alexander who have supported me not only in my studies, and I want to direct an

especially warm thank you to my partner Eva Maria who is always there for me.

 III

Abstract
Requirements Engineering (RE) deals with elicitation, analysis, documentation and

management of requirements. It is a crucial success factor in software development projects.

Project Managers and Requirements Engineers need tool support for Requirements

Management (ReqM) to enable collaboration on requirements and to keep track of

requirements changes, especially in projects that are distributed or have many requirements.

Commercial tools typically have (1) (high) license and training costs, their use is (2)

sophisticated and hard to learn; they offer (3) limited integration with other tools and (4)

limited extensibility. Most open-source tools are not subject to these limitations and have

therefore become increasingly popular in the past few years (e. g. Subversion, Bugzilla).

However, the few existing open-source ReqM solutions suffer from poor state of development

and lack of quality. Furthermore, most of the existing ReqM tools have the following

shortcomings: (1) Limited versioning without reverting, branching or baselining, (2)

inadequate traceability support without user-defined trace types, (3) strongly limited

integration with other tools (e. g. configuration and test management, defect tracking).

In order to address these issues, I have developed the open-source ReqM plug-in TreqPro for

the collaboration platform Trac. TreqPro provides (1) extended versioning functionality, (2)

flexible traceability support, (3) good integration with other tools, and (4) high extensibility.

For evaluating the TreqPro prototype, 8 ReqM experts at Siemens Austria participated in a

usability pilot study in which I compared the prototype with the Siemens Austria standard tool

Requisite Pro and the open-source tool Trac considering (a) user satisfaction, (b) execution

time and (c) completeness for 9 standard use cases. Furthermore, I have created a

comprehensive ReqM tool feature catalog as a basis for the prototype development from

expert interviews, a web survey and existing work.

In the pilot study, the prototype displayed considerable improvements in all 3 measured

parameters (a), (b), and (c) compared to existing tools. Satisfaction could be improved by

40 % compared to Trac and by 61 % compared to Requisite Pro. Execution time could be

improved by 34 % compared to Trac and 39 % compared to Requisite Pro. Completeness

could be improved by 87 % compared to Trac and 74 % compared to Requisite Pro.

Furthermore, the participants gave valuable qualitative feedback on the prototype.

 IV

Kurzfassung
Requirements Engineering (RE) beschäftigt sich mit der Ermittlung, Analyse, Dokumentation
und Verwaltung von Anforderungen (Requirements) und ist ein wichtiger Erfolgsfaktor für
Softwareprojekte. Projektleiter und Anforderungs-Manager benötigen Toolunterstützung für
Requirements Management (ReqM), um Zusammenarbeit an Anforderungen zu ermöglichen
und Änderungen zu verfolgen, besonders in verteilten Projekten oder solchen mit vielen
Anforderungen.

Kommerzielle Werkzeuge haben (1) hohe Lizenz- und Trainingskosten, ihre Benutzung ist (2)
kompliziert und schwer zu erlernen, und sie verfügen über (3) unzureichende Integration mit
anderen Werkzeugen und sind nur eingeschränkt erweiterbar. Die meisten Open-Source-
Werkzeuge unterliegen nicht diesen Einschränkungen und wurden aus diesem Grund in den
letzten Jahren immer beliebter (z. B. Subversion, Bugzilla). Allerdings werden die meisten
dieser Open-Source ReqM-Lösungen nicht mehr weiterentwickelt bzw. ist die Qualität der
Software für den Produktiveinsatz nicht ausreichend. Weiters weisen die meisten ReqM-Tools
die folgenden Mängel auf: (1) Eingeschränkte Versionierung ohne Reverting, Branching oder
Baselining, (2) unzureichende Unterstützung von Traceability ohne benutzerdefinierte
Beziehungstypen, (3) stark eingeschränkte Integration mit anderen Werkzeugen (z. B.
Configuration Management-, Test Management-, Defect Tracking-Werkzeuge).

Zur Behebung dieser Mängel entwickle ich die Open-Source ReqM Erweiterung TreqPro für
die Plattform Trac, welche (1) erweiterte Versionierungs-Funktionalität, (2) flexible
Unterstützung für Traceability, (3) gute Integration mit anderen Werkzeugen sowie (4) hohe
Erweiterbarkeit bietet.

Zur Evaluierung des Prototypen nahmen 8 ReqM-Experten bei Siemens Österreich an einer
Usability-Pilotstudie teil, in welcher ich TreqPro den bei Siemens Österreich üblicherweise
verwendeten Werkzeugen Requisite Pro und Trac gegenüberstellte, wobei (a) Zufriedenheit
der Benutzer, (b) Ausführungszeit sowie (c) die Vollständigkeit im Rahmen der Ausführung
von 9 Standard-Anwendungsfällen untersucht wurden. Darüber hinaus habe ich in einem
umfangreichen Anforderungskatalog für ReqM-Werkzeuge als Grundlage für die
Entwicklung des Prototypen Information aus Experteninterviews, einer Web-Umfrage sowie
bisherigen Arbeiten zusammengeführt.

In der Pilotstudie wies der Prototyp im Vergleich zu existierenden Werkzeugen signifikante
Verbesserungen in allen 3 gemessenen Parametern (a), (b) und (c) auf: Die Zufriedenheit
konnte um 40 % im Vergleich zu Trac und um 61 % im Vergleich zu Requisite Pro verbessert
warden. Die Ausführungszeit konnte um 34 % im Vergleich zu Trac und um 39 % im
Vergleich zu Requisite Pro verbessert werden. Die Vollständigkeit konnte um 87 % im
Vergleich zu Trac und um 74 % im Vergleich zu Requisite Pro verbessert werden. Die
Teilnehmer gaben für die Weiterentwicklung des Prototypen wertvolles Feedback.

Contents

Erklärung zur Verfassung der Arbeit ... I
Acknowledgments .. II

Abstract .. III

Kurzfassung .. IV
1 Introduction ... 1

1.1 Requirements Engineering and Requirements Management 1

1.1.1 Requirements .. 1
1.1.2 Requirements Engineering (RE) .. 2

1.1.3 Requirements Management (ReqM) .. 2

1.2 Existing ReqM Tools and their Shortcomings .. 2

1.2.1 Free/Libre Open-Source Software (FLOSS) .. 3

1.2.2 FLOSS Supporting Software Development ... 3

1.2.3 Proprietary ReqM Tools ... 4
1.2.4 FLOSS ReqM Tools ... 4
1.2.5 Shortcomings of Existing ReqM Tools .. 5

1.3 Approach for an Improved ReqM Tool ... 6

1.3.1 Elicitation and Validation of ReqM Tool Features .. 6

1.3.2 Development of an OS ReqM Prototype .. 6

1.4 Evaluation of the Catalog and the Prototype ... 7

2 Related Work ... 8
2.1 RE and ReqM Basics ... 8
2.2 Sources of ReqM Tool Features .. 8

2.2.1 ReqM Tool and/or Feature Databases .. 9

2.2.2 Literature on ReqM Tool Features ... 9

2.3 Importance of Requirements Traceability ... 12

2.4 Importance of Requirements Versioning ... 15

2.5 Importance of ReqM Tool Integration ... 16
2.6 Open-Source Software Development and Wiki-Based Requirements Management 17

2.7 Existing ReqM Tools in the Siemens Austria Context .. 18

2.7.1 IBM Rational Requisiste Pro .. 19
2.7.2 Trac ... 19
2.7.3 Well-known Tools Not Typically Used at Siemens Austria 19

3 TreqPro – An Improved ReqM Concept ... 20
3.1 Overview of the Approach .. 20
3.2 Research Questions .. 21

3.2.1 RQ1: Which features are essential for ReqM tool support? 21

3.2.2 RQ2: How can requirements versioning, traceability and tool integration be
improved with TreqPro (compared to Siemens Standard ReqM tools)? 22

3.3 Elicitation and Validation of a ReqM Tool Feature Catalog 23

3.3.1 Sources of ReqM Tool Features ... 23

3.3.2 Abstraction of Requirements to Artifacts ... 23

3.3.3 Elicitation and Validation of the Catalog. .. 24

3.4 Development of the TreqPro Prototype ... 24
3.4.1 Concept for Improved ReqM Tool Support ... 24

3.4.2 Essential Use Cases .. 28
3.4.3 User Interface Concept ... 35
3.4.4 Software Architecture .. 38
3.4.5 Feature Matrix of all 3 Compared Tools .. 42

4 Evaluation ... 44

4.1 Evaluation of the Feature Catalog ... 44
4.1.1 Factors Affecting this Part of the Evaluation ... 45

4.1.2 Evaluation Method for the Feature Catalog ... 46

4.1.3 Realization and Practical Aspects of the Evaluation .. 47

4.2 Evaluation of the TreqPro Prototype ... 49
4.2.1 Factors Affecting this Part of the Evaluation ... 49

4.2.2 Evaluation Method for the Prototype ... 51

4.2.3 Realization and Practical Aspects of the Evaluation .. 53

4.3 Threats to Validity ... 59
4.3.1 Threats Regarding the Evaluation of the Catalog .. 59

4.3.2 Threats Regarding the Evaluation of the Prototype ... 59

5 Results ... 61

5.1 Evaluation Results of the Tool Feature Catalog .. 61

5.1.1 Summary .. 61
5.1.2 Survey Response Rate .. 61
5.1.3 Response Feature Classification ... 61

5.1.4 Feature Coverage .. 64
5.1.5 Features not in the Catalog ... 64

5.2 Evaluation of the TreqPro Prototype ... 65
5.2.1 Summary of Results ... 66
5.2.2 Task 1 – Basic Navigation and Management ... 73

5.2.3 Task 2 – Forward Traceability ... 76

5.2.4 Task 3 – Traceability and Tool Integration .. 78

5.2.5 Task 4 – Versioning ... 80
5.2.6 Task 5 – Simple Query ... 83
5.2.7 Task 6 – Project Template Configuration .. 84

5.2.8 Task 7 – Requirements Document ... 86

5.2.9 Task 8 – Semantic Tracing ... 88
5.2.10 Task 9 – Graphical Navigation ... 90

6 Discussion and Further Work ... 91
6.1 Quantitative Results ... 91

6.1.1 User Satisfaction (s) ... 91
6.1.2 Execution Time (t) ... 91
6.1.3 Completeness (c) .. 92

6.2 Qualitative Results ... 92
6.3 Further Work ... 93

7 Conclusion .. 95

Appendix A: Catalog of ReqM Tool Features ... 97
A1 Setup, Customization, Administration and Usability .. 97

A1.1 Custom Requirement Types ... 97

A1.2 User Administration ... 97
A1.3 Usability ... 97
A1.4 Adaptability and Extendibility of Tool Functionalities 97

A1.5 Online Help and Documentation .. 98

A1.6 System Prerequisites .. 98
A1.7 Installation and Administration .. 98
A1.8 Scalability, Concurrency and Distribution ... 98

A1.9 Partial reuse of Project Settings and Data .. 98

A2 Capturing, Editing and Managing Requirements .. 98

A2.1 Flexible/Customizable Implementation of the desired RE Process 98

A2.2 Reusability of Process Templates... 99

A2.3 Input and Import Methods for Requirements and Related Artifacts 99

A2.4 Artifact Representation .. 100
A2.5 Artifact Categorization and Structuring ... 100

A2.6 Artifact Identification ... 100
A2.7 Artifact Reuse ... 101
A2.8 Artifact Query System .. 101
A2.9 Validation Support ... 101
A2.10 Artifact Prioritization Methods .. 101
A2.11 Description of Domain-Specific Terms ... 101

A2.12 Groupware Functionality .. 101
A2.13 Journal Functionality .. 102
A2.14 Modeling .. 102
A2.15 Notification on Requirements Change ... 102

A2.16 Offline Editing of Artifacts. ... 102
A3 Configuration Management Aspects ... 102

A3.1 Configurable Change Management Process... 102

A3.2 Artifact Versions and Branches .. 103

A3.3 Artifact Baselines ... 103
A3.4 Comparison of Versions ... 103
A3.5 History of Artifacts ... 103

A4 Traceability of Requirements .. 103
A4.1 Traceability between Requirements and other Artifacts 103

A4.2 Precision of Traces into Source Code .. 104

A4.3 Change Impact Analysis ... 104
A4.4 Support of Comprehensibility of a Trace ... 104

A4.5 M:N Relationships .. 104

A4.6 Manual Trace Generation ... 105
A4.7 Automated Trace Generation and Bidirectionality .. 105

A4.8 Mandatory vs. Optional Traces .. 105

A4.9 Trace Representation .. 105
A4.10 Traceability across Tool Borders ... 105

A4.11 Traceability between Projects .. 106
A5 Document and Report Generation ... 106

A5.1 Report Generation .. 106
A5.2 WYSIWYG Editor ... 106
A5.3 Charts and Graphs in Reports ... 107
A5.4 Report Formatting .. 107
A5.5 Report Document Formats ... 107

A6 Interfaces to other Tools .. 107
A6.1 Integration with Development Environments .. 107

A6.2 Integration with Configuration Management Tools / Systems 107

A6.3 Integration with Test Management Tools / Systems .. 107

A6.4 Long Term Archiving Functionality .. 107

A6.5 Interfaces .. 107
A7 Costs .. 108

A7.1 Adequate Cost-benefit Ratio .. 108

List of Tables ... 109

List of Figures ... 110

References ... 111

 1

1 Introduction
This chapter gives an overview on the field of Requirements Engineering (section 1.1),

existing ReqM tools and their shortcomings (1.2), the approach of addressing these

shortcomings (section 1.3), and the method of evaluation that will be used (section 1.4).

1.1 Requirements Engineering and

Requirements Management

This subsection gives an introduction into the nature and importance of requirements

(section 1.1.1), and the fields of requirements engineering (section 1.1.2) and requirements

management (section 1.1.3).

1.1.1 Requirements

Requirements describe behaviour, constraints and other properties of a software system as

well as its context and domain. Requirements usually specify what a system should do instead

of how to do it. However it is hard to draw the line and requirements often do contain

technical aspects as well. It is possible to specify different types and granularities of

requirements, ranging from very general system properties to very specific constraints on a

certain operation.

Wrong requirements can lead to the following effects [Kot98]:

• The system is delivered late.

• Customers' expectations are not met.

• The system is unreliable.

• Maintenance and improvement costs are high.

 2

1.1.2 Requirements Engineering (RE)

Requirements Engineering (RE) is the process of

"[…] discovering, documenting, maintaining a set of requirements for a computer-

based system." [Kot98]

An RE process is a structured approach for finding, discussing and documenting

requirements. Requirements the stakeholders have agreed upon are written into a

requirements specification document and are subject to validation (consistency,

completeness).

According to Leffingwell and Widrig [Lef03], errors concerning requirements in a software

project are both the most common errors and the most expensive errors to fix.

1.1.3 Requirements Management (ReqM)

Requirements Management (ReqM) is

… a systematic approach to eliciting, organizing and documenting the requirements of

the system, and a process that establishes and maintains agreement between the

customer and the project team on the changing requirements of the system. [Lef03]

According to Kotonya and Sommerville [Kot98], change control and change impact

assessment are two major ReqM activities.

1.2 Existing ReqM Tools and their Shortcomings

This section describes the existing tools together with their drawbacks. Tools can be divided

into FLOSS and proprietary tools. Section 1.2.1, gives an introduction to free/libre open-

source software (FLOSS). Section 1.2.2 explains the benefits of using FLOSS in software

development. Section 1.2.3 describes proprietary, section 1.2.4 FLOSS ReqM tools. Section

1.2.5 lists the shortcomings of existing ReqM tools.

 3

1.2.1 Free/Libre Open-Source Software (FLOSS)

Free/Libre Open-Source Software is software with a license that allows obtaining, studying,

changing and copying its source code. Simplified, the terms free software, libre software and

open-source software stand for the same sort of software. People speaking of free or libre

software usually prefer pointing out the societal aspects, and people speaking of open-source

software mainly mention the economic aspects of FLOSS. The term FLOSS has been created

to speak of such software without bias to either of the two groups.

FLOSS is not a new invention. In the 1950s and 1960s it was normal for software users to

have the freedoms provided by FLOSS. Towards the end of that period, the software costs

started increasing dramatically. Manufacturers began using technical measures to prevent

users from studying or copying the source code and copyright law was extended to encompass

software. This way, software could be sold separately as a product with a simple business

model. In the 1980s, the MIT researcher Richard Stallman started working on the GNU

project (which is the basis of several free operating systems) and founded the Free Software

Foundation. Together with the Linux kernel developed by Linus Torvalds in 1991, the

operating system Gnu/Linux became very popular in the following years. A typical Gnu/linux

installation consists of thousands of FLOSS packages maintained by developers from all over

the world.

In general, FLOSS did not spread as much on desktop systems as it did on servers: In January

2010, the market share of free web server software is about 70 % [Net10]. The market share

of free operating systems on desktop computers is only estimated around 1 % [Wik10b].

FLOSS is strongly used on mobile and embedded devices. FLOSS operating systems have

greater shares on newer markets such as the netbook market (about 30 % in 2009 [Lai09])

and the mobile device market (more than 17 % estimated only for Android in 2010 [Hei10]).

1.2.2 FLOSS Supporting Software Development

In the last few years, there has been a trend to use FLOSS to support software development

wherever possible [For04]. Examples for widely-used open-source software:

• Programming Languages: Perl, PHP, Python, Ruby

• Application Frameworks: Spring, Hibernate, Struts, Propel, Cocoon …

 4

• Development Tools: Eclipse, CVS, Subversion, GCC, Make, Ant, Trac …

FLOSS has the following advantages:

• Ease of Use: In Genereal, FLOSS is not as overloaded with features as many

proprietary products are.

• Availability: FLOSS is usually easy to obtain. In many FLOSS distributions,

installation and configuration of a FLOSS product can be a matter of just a few

commands or mouse clicks.

• License Costs: Most FLOSS is not only free as in „free speech“, but also free as in

„free beer“, although this is no mandatory implication of a FLOSS license. Even if

there are no license costs, there are still training and maintenance costs.

• Extensibility: FLOSS can be easily extended. If enough people are interested into

a product, they can quickly build up a community where many can contribute to

development.

While there are open-source tools for all parts of a software development process, there is

almost no open-source software for requirements management (ReqM).

1.2.3 Proprietary ReqM Tools

There are lots of proprietary ReqM tools. These are only a few examples, but there are

directories with full listings, see section 2.2.1. A few well-known proprietary tools are IBM

Rational Requisite Pro, IBM Rational DOORs, and Borland CaliberRM.

Also, many requirements managers use means like text documents or spreadsheets for smaller

projects. These documents are typically created using proprietary standard tools.

1.2.4 FLOSS ReqM Tools

While there are FLOSS tools for all parts of the software development process, there is almost

no FLOSS for requirements management (ReqM).

 5

The most notable open-source ReqM tool is the Open-Source Requirements Management

Tool (OSRMT) [Ost10]. However, development has stalled, and there haven’t been any

releases since 2007.

Wikis, Ticket Systems or full collaboration platforms like Trac [Tra10] or Redmine [Red10]

can be used for Requirements Management. Usually, these solutions have major drawbacks,

but may work well in small projects.

1.2.5 Shortcomings of Existing ReqM Tools

Existing tools have several shortcomings. In this work, I address 3 of the most important

shortcomings which are further described in the following sections.

1.2.5.1 Limited Requirements Traceability

Existing tools provide only limited ways to trace requirements. First of all, there is usually

only one single type of link between requirements, but one cannot express different

relationships between requirements., e. g. «includes», «is derived from»., «is in conflict

with».

Furthermore, it is difficult to maintain traceability if part of the data is managed by a different

tool, for example if a requirement should be tested and there are different tools for

requirements management and test management.

1.2.5.2 Limited Requirements Versioning

Existing tools only implement basic historization of requirements. This means, that the history

of changes is recorded, but the user cannot go back to any old version or branch requirements.

Furthermore, only limited baselining support is offered by these tools.

1.2.5.3 Limited Integration with other Tools

Existing tools usually provide complex interfaces to other tools from the same manufacturer,

but very little interoperability with other tools. Each tool has its own database and does not

share data with other tools.

 6

1.3 Approach for an Improved ReqM Tool

In order to address the shortcomings mentioned in section 1.2.5, I first create a catalog of

ReqM tool features as described in section 1.3.1. Using this catalog I build a ReqM tool

prototype as described in section 1.3.2. This section gives an overview on the approach which

is described in more detail in chapter 3.

1.3.1 Elicitation and Validation of ReqM Tool Features

In order to answer RQ1 and learn about ReqM tool features considered most important, I

create an extensive catalog of ReqM tool requirements using existing scientific work, expert

interviews, and a web survey among ReqM experts. The creation of the catalog is described in

section 3.3.

1.3.2 Development of an OS ReqM Prototype

I develop a ReqM tool prototype as a plug-in for the web-based open-source collaboration

platform Trac. The prototype will address the shortcomings of existing tools as explained

briefly in the following paragraphs. For more detailed information, please see section 3.4.

1.3.2.1 Addressing Limited Integration

All tools will work as plug-ins to the Trac platform, sharing one single database and one

version control repository. The platform will provide basic interconnectivity between its plug-

ins and basic services like the formatting of content with wiki syntax.

1.3.2.2 Addressing Limited Traceability

All data involved in the development process will be kept in one single relational database

and one version control repository as far as possible. It will be possible to create trace types,

so that each artifact can be linked to each other with any trace type.

I will put some effort into the development of an experimental graphical requirements

navigation plug-in that will clearly display whole paths of different relations between

requirements and other artifacts.

 7

1.3.2.3 Addressing Limited Versioning

Every version of an artifact will be stored together with a link to its predecessor. This way it is

not only possible to go back to any version, but also to have two versions with the same

predecessor, which can be called a branch.

It will be possible to create baselines which are basically lists of artifact versions. As a

baseline is meant to freeze that list of requirement versions, a stored procedure in the database

will guarantee the consistency of the baseline.

It will be possible not only to compare arbitrary versions of an artifact, but also to compare

whole project versions and easily identify changes.

1.4 Evaluation of the Catalog and the Prototype

I will conduct a survey to complete the ReqM tool feature catalog and to assess its validity.

I will evaluate the TreqPro ReqM prototype in a usability test with ReqM experts. In this

usability test I will compare the TreqPro prototype with two existing ReqM solutions

regarding user satisfaction, execution time and completeness considering 9 common tasks. In

addition, this test will probably generate valuable qualitative feedback on the prototype.

I expect the parts of the concept that are new compared to related work to be a good start for

dealing with the shortcomings of existing ReqM software. There will probably be

considerable improvement in the three measured parameters (user satisfaction, execution

time, and completeness) compared to the Siemens Austria standard tool IBM Rational

Requisite Pro.

 8

2 Related Work
This section gives an overview about related work. It has subsections for the field of RQ1

(ReqM tool features) as well as the three main fields of interest for RQ2 (traceability,

versioning and tool integration). Introductory material can be found in section 2.1. Work

about open-source tools in software development was placed in section 2.6. A list of ReqM

tools can be found in section 2.7.

2.1 RE and ReqM Basics

The books listed in this section are standard introductory literature in the field of requirements

management.

Dean Leffingwell and Don Widrig give a comprehensive insight into the management of

software requirements with use cases [Lef03]. Their work is a rather practical guide and

explains many techniques from understanding the problem to building and testing the system.

It has become a standard reference for practical requirements engineering.

Gerald Kotonya and Ian Sommerville combine a theoretical expedition into the field of

Requirements Engineering with an extensive discussion of available techniques [Kot98].

Their book is a detailed introductory work on requirements engineering.

Ian Sommerville and Pete Sawyer provide an elaborate guide of best practices [Som97] in

requirements engineering. The book treats different aspects of requirements engineering. As

there are few dependencies between the guidelines, the adaptation to the own company's

processes should be easy.

2.2 Sources of ReqM Tool Features

This subsection summarizes related work concerning ReqM tool features in general.

 9

2.2.1 ReqM Tool and/or Feature Databases

Tool feature databases basically offer lists of ReqM tools with an optional search and/or filter

functionality. These databases are an important source of available ReqM tool features for

creation of a ReqM tool feature catalog (see section 3.3).

The INCOSE tool survey [INC10] is a database with web access that allows ReqM tool

creators to maintain a list of their tools' features. For visitors, it provides an extensive

overview of ReqM tool features and comparison between different ReqM tools.

Ludwig Consulting Services, LLC maintain a website with information about requirements

management [Lud10]. The site contains a comprehensive list of about 40 ReqM tools, but

filtering is not possible, and there are no descriptions.

The NASDAQ stock market maintains a small catalog of important requirements management

tools [NAS10]. Filters allow finding tools specified by certain criteria.

2.2.2 Literature on ReqM Tool Features

In addition to the tool databases listed above, the research findings on ReqM tool features

published by several authors are a source of ReqM tool features for the creation of a ReqM

tool feature catalog (see section 3.3). In contrast to the tool feature databases listed in section

2.2.1, these research results allow estimating the importance of each ReqM tool feature.

Therefore, the papers listed in this section are of vital importance.

Matthias Hoffmann, Nikolaus Kühn, and Matthias Weber have developed an elaborate catalog

of requirements for RM tools [Hof04]. Due to their work for the automotive industry, their

catalog has not been created especially for software development, but due to their general

approach, their work is applicable to other domains but automotive development as well. The

following paragraphs summarize core statements of the authors' work as well as the most

important ReqM tool features:

The developer should be able to freely define a Requirements Model. Different Views on the

same data should be available. Enrichment of the requirements with Formatting and

External Content is quite important as well as Change Management and Comments,

 10

Documentation of the History, Baselining of the current state of requirements, and

Traceability through user-friendly, semantic, directed linking between requirements.

Different methods of analysis of requirements, tool integration, import of requirements

specifications. Document Generation for official as well as internal purposes should be

available. Collaborative Working on the same data is as important as checking out data for

Offline Use. It would be a good idea not to require a client application installed on computers

by providing Web Access to the RM tool. Central Installation and Administration is a

central requirement from the project administrators' point of view. Administrators want to

have a security concept with Roles and Permissions. There should be no Size Restrictions

on requirement data or user count as limits are hard to pre-estimate. Workflow Management is

not considered such an important feature. Extensibility is very important to allow reacting to

new situations. There are various requirements concerning the database (data safety,

performance …) and encryption.

Bernd Kretzel has elaborated a list of criteria and requirements for an RE tool as well as a tool

selection process at Siemens IT Services and Solutions [Kre06]. Although his scope is more

general than just on ReqM, the list of required RE tool features can give valuable hints on

criteria for a good ReqM tool solution. The author has provided a detailed tree of required

features in the following categories:

• Overview of RE Main Activities

• RE as an integrated part of the process

• Requirements Elicitation

• Requirements Analysis and Negotiation

• Requirements Documentation

• Requirements Validation

• Requirements Prioritization

• Requirements Tracing

• Analysis and Reports

• Usability and Administration

Kretzel lists a few essential features of RE tools:

• Centralized requirements storage and management

 11

• History of old requirement versions

• Attributes adding additional information to requirements

• Traces showing relationships between requirements and allowing change impact

analysis

• Reports

"In general the tools do not support the elicitation step well. Some tools provide e. g. a

discussion feature but it seems that the tools are not designed to support this early step

of the process. [...] Although the top tools provide nice export features, there are no

proper report features. Furthermore, the import feature is often very complex and

hard to use."

On the other hand, the top tools can be easily used for requirement management. RequisitePro

excels in simplicity. CaliberRM seems to be like “the big sister” of RequisitePro because it

provides similar concepts but more features which make the work with CaliberRM more

complex than with RequisitePro. DOORS provides concepts different from those in

CaliberRM and RequisitePro. The tool provides even more features as CaliberRM and is

therefore also more complex to use.

Kretzl lists several existing tools that proved to work well in various disciplines: CaliberRM,

RequisitePro, and DOORS.

Matthias Heindl, Franz Reinisch, Stefan Biffl, and Alex Egyed have evaluated a value based

RE tool selection approach developed at Siemens IT Solutions and Services PSE [Hei06].

After documenting an RE process description of the RE activities, the authors elaborate a

feature tree providing a good overview of RE tool features. The tree (which has also been

used in Bernd Kretzl's work [Kre06]) is then used as a checklist for evaluation of RE tools,

which can be compared with a rating model. A value model helps project managers to rate the

importance of features for their projects to find the best tool for their needs.

"The approach is straight-forward and seems to be a good means for project

managers to compare requirements tools and select the most valuable tool for a

particular project."

 12

As mentioned before, the priorization of ReqM tool features is important for the creation of a

ReqM tool feature catalog.

2.3 Importance of Requirements Traceability

In this work, I identify requirements traceability as a feature of ReqM tools in need of

improvement. The literature listed in this section substantiates the importance of “process-

driven”, continuous traceability for requirements management.

Ramesh et al. point out the importance of traceability for the development of computer

systems [Ram97]:

"A major concern in the development of complex, large-scale computer intensive

systems, especially those with evolving requirements, is ensuring that the design of

the system meets the current set of requirements. In this context, it is essential

to maintain the traceability of requirements to various outputs or artifacts produced

during the system design process."

Finkelstein and Emmerich state that traceability is required to support document-intensive

business processes such as requirements management [Fin00].

One of the most important early works in the field of requirements traceability was published

by Gotel and Finkelstein who have investigated the requirements traceability problem

[Got94]. They distinguish between pre-RS (requirements specification) traceability and post-

RS traceability:

• "Pre-RS traceability, which is concerned with those aspects of a requirement's life

prior to its inclusion in the RS (requirement production).

• Post-RS traceability, which is concerned with those aspects of a requirement's life that

result from its inclusion in the RS (requirement deployment)."

According to the authors, there is need for improvement especially in the field of pre-RS

traceability. The authors propose increasing modeling of the social infrastructure of

 13

requirements production to guarantee the continued ability to “locate and access”

requirements contributors and facilitating the contributors’ informal communication.

Ramesh et al. have developed a framework for a traceability scheme and discuss the impact of

traceability on quality software engineering [Ram01]. They present issues and lessons learned

during the introduction of traceability practice in an organization.

The authors point out the need for clearly defined traceability models, which require

traceability between requirements and all system components:

"In order to achieve this objective, it is essential that traceability be maintained

through all phases of the systems [sic!] development process, from the requirements as

stated or contracted by the customer, through analysis, design, implementation to

testing the final product."

This traceability information can be used

• to prove the fulfillment of requirements,

• to prove that the right design decisions were made,

• for change impact analysis, and

• for maintainance mechanisms.

The authors introduce a framework to describe traceability information. This framework is

built on a metamodel and can be used to document traceability practice in a concrete project

or organization and to develop similar models in other contexts. The authors tested their

approach in a case study.

It turned out that break of traceability in early development stages decreased the effectivity of

traceability efforts in later stages. The authors found that providing traceability throughout the

development life cycle is difficult if the information interchange between the tools does not

work seamlessly.

The authors' results confirm their expectation that traceability can be used to increase

software quality.

 14

Hoffmann et al. point out, that a user-friendly implementation of traceability is of high

importance [Hof04]. Furthermore, they demand the following features of this implementation:

• mandatory links for certain requirements

• clearly visible direction of links from a source to a target

• bidirectional navigability of links

• different link types

• m:n links

• graphical representation of links

• restriction of link vs. requirement types (certain requirement types allow certain link

types)

• links across project boundaries

Bala Ramesh and Matthias Jarke [Ram01] discuss existing modeling frameworks for

organization of traces. They have elicitated the most important kinds of traceability links from

their observations and built new models with them. The authors mention four link types,

which they describe in detail:

• Satisfaction links

• Evolution links

• Rationale links

• Dependency links

The authors state that the majority of present traceability tools do not offer differentiation

between link types.

"Moreover, most tools just offer mechanisms for persistent storage and display of

traceability information, but they do not support the process of capturing and reusing

traces by guidance or enforcement in a systematic manner; those that do tend to have

very rigid process models."

Spanoudakis et al. [Spa05] present a roadmap of recent publications related to traceability and

issues still open for research. The authors distinguish between manual, semi-automatic and

automatic generation of traceability. With manual generation, traceability has to be created

 15

by the user for each artifact in the application lifecycle which makes it the most ineffective

method of establishing traceability due to its high effort for the user and the high probability

of errors. Multiple ways of generating traceability in a semi- and full-automatic way have

been proposed in order to overcome these limitations. The authors summarize several

approaches to semi-automatic generation of traceability: Generation through predefined links,

event-based generation and process-driven generation of traceability. Process-driven

generation of traceability is the approach most interesting for my work because it can

establish traceability on the fly during development and fits well into the set of existing tools

used for the TreqPro prototype. It currently has a good cost-benefit ratio compared to the

manual and the automatic approaches of generating traceability. Current approaches for

automatic generation require implementing advanced techniques which are still in an

experimental stage and sophisticated to implement.

Gerhart Totz has discussed plugin-based requirements tracing in his master’s thesis [Tot07].

He has enabled developers to easily create traces from source code to requirements artifacts

(across tool borders) from their integrated development environment. Compared to two

traditional forms of requirements tracing (Spreadsheet and Requisite Pro), the necessary effort

for establishing traceability could be reduced to 1/6. This is interesting for my work because

establishing traceability in an easy-to-use way is essential in order to achieve an improvement

in this area.

2.4 Importance of Requirements Versioning

In this work, I identify requirements versioning as a feature of ReqM tools in need of

improvement. The literature listed in this section substantiates the importance of requirements

versioning and baselining for requirements management.

Hoffmann et al. point out, that the "documentation of the history" of requirements (to which I

refer as versioning in this work) is of high importance (++) [Hof04]. Furthermore, they

demand the following features of this implementation (the importance of each feature is

signaled with the symbols "++", "+" and "-" for "high", "medium" and "low" as done by the

authors):

• all objects must be versioned (++)

 16

• changes are trackable to smallest data units (++)

• old versions remain available (++)

• reverting to any old version is possible at any time (++)

• change reports (++)

• automatic incrementation of IDs (+)

• major and minor versions are possible (+)

• visualization of changes (+)

• analyze changes to generate information about the project's progress (+)

• change categorization for analysation of changes (+)

• change comments (-)

The authors also mention the importance of baselining (++) for freezing the state of the

project, e. g. before a major development step or after a review.

The exact checklist of versioning subfeatures a ReqM tool should provide given by the

authors is useful for the design of a ReqM tool prototype.

2.5 Importance of ReqM Tool Integration

In this work, I identify the integration of ReqM tools with other tools as a feature in need of

improvement. The literature listed in this section substantiates the importance of tool

integration for requirements management.

Finkelstein et al. consider the integration of ReqM tools with configuration management and

other tools an important field of development for the short-time future [Fin00]. The authors

also mention distribution and web integration as two medium-term future developments.

Hoffmann et al. describe tool integration as an important ReqM tool requirement and as a

prerequisite for complete traceability [Hof04]. Furthermore, they demand the following

features of its implementation (the importance of each feature is signaled with the symbols

"++", "+" and "-" for "high", "medium" and "low" as done by the authors):

• No redundancy must be generated through linking between tools (++)

 17

• The access rights of linked objects must be respected across tool borders (++)

• Linking to smallest possible data structure should be possible (++)

• The tool should allow integration with Configuration Management (++), Test

Management (++), Issue Tracking (+), Modeling (+), Communication (+),

Performance Analysis (-), Project Management(-)

• Automatic Synchronization between Tools (+)

• Links to external links should be treated the same as internal links (+)

• Full navigability of links (+)

• Support for Integration Platforms (-)

• Connection transparent in both tools (-)

Carey Schwaber (Forrester, Inc.) describes that the focus in application lifecycle management

(ALM) should be rather on the connection between tools than on the tools themselves

[For06]. Schwaber criticizes the use of separate tools and multiple repositories which

integrate poorly with each other, which additionally leads to redundancies and

inconsistencies. She explains that the efforts spent in maintaining synchronization between

tools lower the productivity. Schwaber proposes a shared ALM platform that provides

common functionality to the tools (which link into the platform) as well as a unified interface

to multiple repositories.

2.6 Open-Source Software Development and

Wiki-Based Requirements Management

The works presented in this section underline the importance of using open-source software

and processes in software development. They also give requirements and practical guidelines

for wiki-based requirements management.

Liz Barnett compares the open-source development model with traditional and agile

development models [For04]. She presents the open-source approach as a way to encounter

the time and budget issues of most software development projects. The author considers it

important to adopt some open-source process aspects like team communication, user

involvement, automated generation of documentation, building up a knowledge base, and

increasing transparency. Involving users in development can facilitate requirements

 18

engineering, design and testing. Barnett also proposes collective code ownership which is a

large change from the traditionall permission-based approaches – every developer is allowed

to change every part of the system.

Barnett's findings align with the general trend to use open-source software in software

development projects. The prototype developed in this work will eventually become open-

source software. While a typical open-source development process will not be applied

instantly (as the prototype is part of a master's thesis), existing open-source components will

be used as a basis for the prototype.

In a recent paper, Oezguer Uenalan, Norman Riegel, Sebastian Weber, Joerg Doerr treat the

use of wiki-based solutions for requirements management and also specify a few basic

requirements for wiki software used for RM [Uen08]:

• Classification of requirements

• Specification of a documentation model

• Creation of a versioned and structured specification document out of different artifacts

• Collaboratively review requirements specifications and save the review state for each

artifact

• Support a change management process

• Provide traceability information for impact analysis

This work is especially interesting because with Trac one of the 3 compared tools uses a wiki

and tickets to depict requirements.

2.7 Existing ReqM Tools in the Siemens Austria

Context

Many requirements managers use simple standard software (text processing software,

spreadsheet software) for requirements management. There are of course specialized tools. In

this section, I describe the tools Requisite Pro (section 2.7.1) and Trac (section 2.7.2)

commonly used at Siemens Austria. These tools are also the reference for comparison with

 19

the ReqM tool prototype in this work. I conclude this section with an overview of other well-

known ReqM tools (section 2.7.3).

2.7.1 IBM Rational Requisiste Pro

Rational Requisite Pro [IBM10] is a dedicated requirements management tool. It is a desktop

application, but a simple web interface has been added recently. One of its strengths is the

integration with Microsoft Word, where requirements can be marked and are then

automatically included in the database. Due to the software's evolution, some newer features

like baselining have been added, but not been integrated seamlessly. Experts also frequently

complain about the old-fashioned user interface. The integration with Requisite Pro works

well for other Rational tools such as ClearQuest, but is very difficult for third-party or open-

source tools.

2.7.2 Trac

Trac [Tra10] by Edgewall Software is an open-source web-based collaboration platform

written in python. It allows tight integration with the Subversion [Sub10] version control

system and is extensible via plug-ins. Two of Trac's main components are a wiki and a ticket

system. For small projects, Trac is ideal as an allrounder solution because it can provide

(together with subversion) version control, issue tracking, documentation, requirements and

other services from one hand. Due to its plug-in architecture, Trac is very flexible and can

easily be adapted to any project's specific requirements.

2.7.3 Well-known Tools Not Typically Used at Siemens

Austria

Some well-known and frequently-used ReqM tools are Borland CaliberRM [Bor10], MKS

Doors [MKS10], Sparx Enterprise Architect [Spa10], Geensoft Reqtify [Gee10]. This list

was obtained from interviews with some ReqM experts (see section 3.3.1) and is neither

ordered nor complete.

 20

3 TreqPro – An Improved
ReqM Concept

After giving an overview on the overall approach to an improved concept for an open-source

requirements management tool in section 3.1, I describe the two research questions discussed

in this work in section 3.2. The research questions are followed by a more detailed view of the

approach in sections 3.3 (RQ1) and 3.4 (RQ2).

3.1 Overview of the Approach

This section gives an overview of the approach taken in this work to provide improved open-

source requirements management compared to existing solutions (Figure 1).

Figure 1: Simplified overview of approach to improved ReqM tool support

 21

The following list gives an overview on each of the steps outlined in Figure 1. Steps (1) – (4)

are outlined in detail in section 3.3. Steps (5) – (7) are discussed in section 3.4.

(1) I hold informal interviews with 5 ReqM experts at Siemens Austria in order to get an

overview of important features and shortcomings of existing ReqM tools. The results of

these interviews (a) are collected for the following steps.

(2) Using interview results (a) and existing work (b), I create an extensive catalog of ReqM

tool features (c).

(3) For the evaluation of the catalog (c), I prepare a web survey (d) using the open-source

tool limesurvey.

(4) The data yielded by the survey (d) is used to improve and validate the feature

catalog (c). This is accomplished with a web survey. The results of the evaluation (e)

encompass a list of features considered important by participants and an improved

feature catalog.

(5) Using the improved feature catalog from (e), I develop a ReqM tool prototype (f).

(6) I prepare the evaluation of the prototype (f) which is realized as a usability test with

ReqM experts. This encompasses the creation of a sample project with valid and

consistent test data, the deployment of the prototype (f) to a virtual machine, and the

creation of extensive survey response sheets. All these artifacts (g) are used in the

following steps.

(7) 8 participants take part in the tests, where each test uses a set of artifacts from (g). I

record the results (h) consisting of quantitative and qualitative parameters.

3.2 Research Questions

This section outlines the actual research questions RQ1 (section 3.2.1) and RQ2

(section 3.2.2) posed in this work. The approach taken for each of these questions is described

in more detail in sections 3.3 (for RQ1) and 3.4 (for RQ2).

3.2.1 RQ1: Which features are essential for ReqM tool

support?

On one hand, many requirements managers (especially in smaller projects) use standard

software for elicitation and management of requirements such as text processing software and

 22

spreadsheet software. On the other hand, there are numerous existing ReqM tools with a

variety of different features.

It is not obvious, which features should be included in a good ReqM tool. This research

question therefore aims at discovering the features considered most important by requirements

managers. It is vital to answer this question to affirm the relevance of RQ2, and to elicitate

features that should be included in a first prototype.

3.2.2 RQ2: How can requirements versioning, traceability

and tool integration be improved with TreqPro

(compared to Siemens Standard ReqM tools)?

I have identified three major shortcomings in existing ReqM tools (see section 1.2.5):

Requirements traceability (see section 1.2.5.1) is typically limited in two ways: (1)

Traceability can only be established among requirements managed inside the tool, but not

towards design documents, source code, test cases, etc. (2) Traces cannot have multiple user-

defined types.

Requirements versioning (see section 1.2.5.2) is typically implemented in a simple, linear

way that does not allow switching back to old versions of a requirement, creating baselines of

the whole project, or comparing baselines and artifact versions in a clear and easy way.

ReqM tool integration (see section 1.2.5.3) is typically possible between tools of the same

manufacturer, but hard to achieve with third-party tools. For example, it is hard to link

requirements to source code with some ReqM tools. Data is usually spread across multiple

repositories, which creates redundancies and complicates usage of the data in other tools.

In this work, I investigate, how these shortcomings of ReqM tools can be addressed by

developing a general concept of addressing the shortcomings and implementing that concept

in a prototype.

 23

3.3 Elicitation and Validation of a ReqM Tool

Feature Catalog

RQ1 addresses features necessary for ReqM tool support. In this part of the work, I create a

comprehensive catalog of ReqM tool features from multiple sources.

3.3.1 Sources of ReqM Tool Features

As outlined in section 2.2, I use 2 primary sources of ReqM tool features: Tool databases and

existing literature. To supplement the knowledge gained from these sources I hold several

interviews with ReqM experts and project managers at Siemens Austria to elicit up-to-date

information about requirements for ReqM tools. The interviews are held in an informal way

and all information is recorded in written form.

3.3.2 Abstraction of Requirements to Artifacts

I collect and sort the requirements for ReqM tools acquired in the previous step. Furthermore,

I introduce an abstraction from requirements to artifacts in order to allow the concepts

introduced for requirements to be applied to similar domains like test management.

Each artifact can have one or more attributes. An attribute can contain any data that is

associated with the artifact. Artifacts can be connected to each other by relations, as shown in

Figure 2.

Figure 2: Abstraction of requirements to artifacts with attributes and relations

Both attributes and relations have types. Depending on the implementation, this allows

semantic tracing, enforcement of certain relations, and better structuring of requirements.

 24

3.3.3 Elicitation and Validation of the Catalog.

The full feature catalog is included as Appendix A. The catalog will be evaluated using a web

survey, see section 4.1.

3.4 Development of the TreqPro Prototype

RQ2 deals with a concept to improve ReqM compared to existing tool solutions, especially in

the field of the 3 shortcomings described in section 3.2.2. In this part of the work, I describe

such a concept and create an open-source ReqM tool prototype which implements that

concept.

3.4.1 Concept for Improved ReqM Tool Support

The following sections describe how I use existing open-source tools to create an open-source

ReqM tool as well as each major shortcoming identified before (see section 3.2.2) and how I

plan to address it.

3.4.1.1 Building an Open-Source Solution

There are already many commercial, proprietary ReqM tools. These tools typically have

potentially high license and training costs, and their use is sophisticated and hard to learn.

Proprietary tools only offer limited integration (especially with third-party tools) and limited

extensibility. Most FLOSS tools (further referred to as ‘open-source tools’, see section 1.2.1)

are not subject to these limitations. Open-source tools have therefore become increasingly

popular in software development in the past few years (e. g. Subversion, Bugzilla). At the

moment, there are no usable open-source ReqM tools. The most notable open-source ReqM

tool is the open-source requirements management tool (OSRMT) [Ost10]. OSRMT has not

been maintained since 2007. Considering the advantages of open-source software, I have

decided to create a web-based open-source solution as a base for the improved ReqM concept.

I use the revision control system Subversion [Sub10], the collaboration platform Trac

[Tra10] and a few existing Trac plug-ins to build the new ReqM tool prototype TreqPro.

3.4.1.2 Traceability

Traceability helps avoid redundancies in requirements and

allows anticipating the effects of requirements changes.

throughout all phases of development

to be established manually. ReqM tools should therefore try to facilitate establishing

traceability as much as possible.

The generation of traceability is a critical factor, because the quality of traceability decreases

with increasing effort for the user

the authors, manual generation of traceability requires much effort on the user side and is

error-prone. Techniques for full

implement. In the prototype, I use the semi

of traceability described by Spanoudakis et al

Figure 3: Process-driven generation of

Inside the prototype, traceability with multiple named relation types, further referred to as

"semantic tracing", has been implemented to different extent for practical reasons as described

in the following paragraphs.

25

Traceability helps avoid redundancies in requirements and “over-engineering” in design and

allows anticipating the effects of requirements changes. It is important to maintain traceability

hout all phases of development [Ram97]. This is difficult to achiev

to be established manually. ReqM tools should therefore try to facilitate establishing

traceability as much as possible.

The generation of traceability is a critical factor, because the quality of traceability decreases

increasing effort for the user, as explained by Spanoudakis et al. [Spa05

anual generation of traceability requires much effort on the user side and is

prone. Techniques for full-automatic generation are still in development and difficult to

In the prototype, I use the semi-automatic approach of process-

Spanoudakis et al.

generation of traceability [Spa05] (figure derived from original by

raceability with multiple named relation types, further referred to as

"semantic tracing", has been implemented to different extent for practical reasons as described

engineering” in design and

It is important to maintain traceability

This is difficult to achieve if traceability has

to be established manually. ReqM tools should therefore try to facilitate establishing

The generation of traceability is a critical factor, because the quality of traceability decreases

Spa05]. According to

anual generation of traceability requires much effort on the user side and is

automatic generation are still in development and difficult to

-driven generation

derived from original by [Rei09])

raceability with multiple named relation types, further referred to as

"semantic tracing", has been implemented to different extent for practical reasons as described

 26

TreqPro Artifacts and TreqPro Artifacts – Full Semantic Tracing

TreqPro artifacts can be linked to each other using relations. Each relation has a named

relation type. Relations can be created using an artifact browser from any artifact’s view or

using a traceability matrix. I have developed an experimental graphical relation browser that

can display an overview of multiple related artifacts for quick navigation.

Tickets and TreqPro Artifacts – Limited Semantic Tracing

Tickets and other TreqPro artifacts (such as requirements) can be associated with each other

from the ticket view as well as from the artifact view using a simple selection list. This type of

association is not named, but basic semantics are provided by displaying of the artifact/ticket

type on the opposite part of the association. This implementation is not optimal because the

kind of relation differs from the one used between artifacts. In further work, this should be

improved to provide only one kind of relation.

Task Tickets and Changesets – Limited Semantic Tracing

When committing a changeset to a subversion repository, a hook script associates the change

with the respective tickets if mentioned in the commit message. It is possible to add additional

validation or action in the hook script, e. g. to only allow commits to open tickets, or to

automatically close tickets. This implementation is not optimal because the kind of relation

differs from the one used between artifacts. In further work, this should be improved to

provide only one kind of relation.

3.4.1.3 Versioning

Versioning vs. History

Some existing ReqM tools record the history of changes without the possibility to view a full

diff or restore an old version. Viewing the exact changes allows users a much better

understanding of the evolution of a requirement. Versioning can be implemented by simply

storing each version or by storing the first version plus differential information for each

change.

 27

Linear Versioning vs. Extended Versioning with Branching

Many software systems which implement some kind of versioning only offer linear

versioning, i. e. each version has zero or one predecessor and zero or one successor. Linear

versioning has the advantage that it is easy to use and easy to implement. A major drawback

is that after restoring an old version, all newer versions have to be discarded as soon as

changes are made to that old version – otherwise that version would have multiple successors.

By allowing more than one successor, this disadvantage can be removed. Linear versioning is

a subset of the extended versioning, and it is not necessary to use branching if the user wants

to use simple linear versioning. Each version still has zero or one predecessor in extended

versioning.

Figure 4: Linear versioning (1) vs. extended versioning with branching (2)

Project Versioning and Baselining

The state of a requirements project while working on requirements is called a “working

version”. At certain points in the project’s lifecycle, it is important to make a snapshot of all

requirements to have a basis for negotiations or presentation of a certain state of the project.

Such a snapshot is called a baseline.

A project version is technically a list of artifact versions. While a working version can be

modified, a baseline is a read-only snapshot of the contained artifact versions. A baseline

cannot be changed after creation. It is therefore important to guarantee that the contents of a

baseline cannot be altered or deleted:

• Each change of an artifact creates a new version of that artifact.

• Each baseline contains zero or one versions of each artifact in the project.

• The database prevents deletion of any version that is used in a baseline.

 28

Figure 5: A project version can be a working version (modifiable) or a baseline (read-only)

3.4.1.4 Addressing Limited Integration

The TreqPro prototype tries to improve on existing ReqM tool concepts by integrating all

functionality usually distributed among multiple tools into one platform and by using only

two repositories (a relational database and a version control repository). This concept removes

the need for interfaces that are hard to maintain and facilitates data exchange between

different tools.

TreqPro has been developed as a plug-in for the Trac platform, which itself integrates well

with the Subversion version control system. Trac plug-ins can offer functionality to each other

and share the basic services of the collaboration platform, such as wiki, tickets, search,

repository browsing, etc. All Trac plug-ins can access the whole database and thus have

access to all available data.

The Trac platform itself already provides many basic features necessary for ReqM tools. The

TreqPro plug-in adds a data model and special functionality especially designed for

requirements management as well as a highly specialized user-interface for editing and

managing requirements. It is easy to add more functionality to the platform if required by

developing additional plug-ins.

3.4.2 Essential Use Cases

The essential use cases cover basic ReqM functionality as well as functionality that address

the shortcomings of existing ReqM software. I have specified the following essential use

cases.

 29

3.4.2.1 Select a Requirements Project

Use Case EU-1 Select a requirements project

Actors User

Description A user wants to use a specific requirements model. He selects a

requirements project that will be loaded into the application.

Requirements projects can be created, cloned, deleted and baselined. A

baseline can become a work version (e. g. indicated by a '*'), for which

it has to be cloned first.

Normal Course 1. The user indicates that he would like to select a requirements

project.

2. The system displays a list of all requirements projects and their

baselines.

3. The user selects one of the projects and confirms the action.

4. The system loads the selected project

5. The system displays the first artifact.

Preconditions • The user is logged in.

Postconditions • A requirements project is selected.

Table 1: EU-1 Select a requirements project

3.4.2.2 Create a New Requirement

Use Case EU-2 Create a new requirement

Actors User

Description
A user wants to enter a new requirement.

Normal Course 1. The user indicates that he would like to create a new requirement.

2. The user indicates the desired position of the new artifact in the

requirements project.

3. The system displays a form for the new requirement that contains

all the fields that have been defined for the artifact type

'requirement'.

4. The user fills in the form and confirms the action.

5. The system validates all the submitted values.

6. The system creates the artifact as specified.

7. The system creates relations to reflect the position of the artifact as

 30

necessary.

8. The system displays the new artifact.

Preconditions • The user is logged in.

• A requirements project is selected.

Postconditions • A requirements project is selected.

Table 2: EU-2 Create a new requirement

3.4.2.3 Change a Requirement

Use Case EU-3 Change a requirement

Actors User

Description A user wants to change an existing requirement after a customer has

issued a change request. The change request must be linked to the new

version of the requirement.

Normal Course • The user indicates that he would like to change a certain

requirement.

• The user selects the change request that is associated with the

change.

• The system displays a form for the existing requirement that

contains all the fields that have been defined for the artifact type

'requirement'.

• The user makes his changes in the form and confirms the action.

• The system validates all the submitted values and checks the

associated change request.

• The system creates a new version of the requirement artifact as

specified.

• The system closes the change request and/or changes fields in the

change request as appropriate.

• The system creates/modifies/deletes relations to reflect the

position/state of the artifact as necessary.

• The system sets all relations of the changed artifact to 'suspect'.

• The system displays the changed artifact.

Triggers • A customer issues a change request.

Preconditions • The user is logged in.

 31

Postconditions • A new version of the requirement has been created.

Invariants • The existing version of the requirement is never modified.

Table 3: EU-3 Change a requirement

3.4.2.4 Establish Traceability for an Existing Requirement

Use Case EU-4 Establish Traceability for an Existing Requirement

Actors User

Description A user wants to link an existing requirement to a user story (backward

traceability) and to the source code (forward traceability). Other

frequently used link targets would be design documents and test cases.

Normal Course 1. The user indicates that he would like to link the current artifact to

the user story using the "derived_from" relation.

2. The system validates all the submitted values.

3. Thes system creates a new bidirectional relation souce_of /

derived_from between a new version of the user story and a new

version of the selected requirement.

4. The system displays the new version of the requirement.

Triggers • A new requirement has been entered.

Preconditions • The user is logged in.

• The user has entered a new requirement.

• The new requirement has been selected and is displayed.

• There is a user story the new requirement is derived from.

Postconditions • A new bidirectional relation to the user story has been created.

• A new relation to the source code has been created.

Invariants • The relations and attributes of the existing version of the user story

are not modified.

• The relations and attributes of the existing version of the

requirement are not modified.

Table 4: EU-4 Establish traceability for an existing requirement

 32

3.4.2.5 Query, Filter and Sort Requirements According to Certain

Criteria

Use Case EU-5 Query, filter and sort requirements according to certain criteria

Actors User

Description A user wants to find all requirements derived from user stories by a

certain user.

Normal Course 1. The user indicates that he would like to issue a query.

2. The user enters the query using SQL and assisted input to find all

requirements which are linked to user stories which are linked to

user profiles where the fist name is 'Frank'.

3. The system checks and filters the SQL code and then retrieves the

desired artifacts.

4. The system displays the results in a formatted, sortable and

clickable list.

5. The user indicates that he would like to sort the list by date.

6. The system displays the list sorted by date.

7. The user clicks the first requirement.

8. The system displays the requirement.

Preconditions • The user is logged in.

Table 5: EU-5 Query, filter and sort requirements according to certain criteria

3.4.2.6 Add a new Field to an Artifact Type

Use Case EU-6 Add a new field to an artifact type

Actors Project Administrator

Description A user wants to add the new field 'cost' to the the artifact type

'requirement'.

Normal Course 1. The user indicates that he would like to modify a certain

requirements model.

2. The system loads the specified requirements model and displays

all artifact types.

3. The user indicates that he would like to modify the artifact type

'requirement'.

4. The system loads the specified artifact type and displays all

 33

attribute types.

5. The user indicates that he would like to add a new mandatory field

with the data type 'float', the name 'cost', and the default value

'0.0'.

6. The system creates the new mandatory attribute type 'cost' with

data type 'float' and default value '0.0'.

7. The system adds the new attribute type 'cost' to the allowed

attribute types of the artifact 'requirement'.

8. The system loads the artifact type 'requirement' and displays all

attribute types (including the new one) again.

Preconditions • The administrator is logged in.

• There is at least one requirements project containing meaningful

data.

• The artifact type 'requirement' exists.

Postconditions • A new attribute type 'cost' has been created and added to the

artifact type 'requirement'.

Table 6: EU-6 Add a new field to an artifact type

3.4.2.7 Generate a Requirements Document

Use Case EU-7 Generate a requirements document

Actors User

Description A user wants to generate a requirements specification document out of

existing artifacts. The project is automatically baselined.

Normal Course 1. The user indicates that he would like to create a requirements

specification document.

2. The system informs the user that all artifacts in the project will be

baselined.

3. The user confirms the action.

4. The system creates a requirements specification document and

adds it to the project.

5. The system creates a baseline that includes all artifacts in the

project.

6. The system changes the view to display the newly created

requirements specification document.

 34

Preconditions • The user is logged in.

• A requirements project is selected.

• The project contains artifacts.

Postconditions • A requirements specification document has been created.

• The requirements specification document is part of a new baseline

that has been created.

Table 7: EU-7 Generate a requirements document

3.4.2.8 Compare Two Project Versions

Use Case EU-8 Compare two project versions

Actors User

Description A user wants to get aan overview about two project tversions (which

are either read-only baselines or read-write working versions).

Normal Course 1. The user indicates that he would like to compare baselines.

2. The system displays a list of all available baselines for the current

project.

3. The user selects two baselines.

4. The system displays all versions in the two baselines in a way so

the user can easily recognize differences.

Preconditions • The user is logged in.

• A requirements project is selected.

• The project contains two or more baselines which contains further

data.

Postconditions • A requirements project is selected.

Table 8: EU-8 Compare two project versions

3.4.2.9 Compare Two Artifact Versions

Use Case EU-9 Compare two artifact versions

Actors User

Description A user wants to see all differences between two versions of the same

artifact.

Normal Course 1. The user indicates that he would like to see the history of an

artifact.

 35

2. The system displays all available artifact versions in a tree.

3. The user selects two versions to compare.

4. The system displays a diff of the two versions.

Preconditions • The user is logged in.

• A requirements project is selected.

• The project contains artifacts.

Table 9: EU-9 Compare two artifact versions

3.4.2.10 Graphical Navigation

Use Case EU-10 Graphical navigation

Actors User

Description A user wants to navigate to an artifact that is connected to the current

artifact over a distance of at least 2 relations.

Normal Course 1. The user indicates that he would like to see artifacts related to the

current artifact.

2. The system displays a graphical view of all related artifacts.

3. The user selects the new artifact.

4. The system loads, selects and displays the given artifact.

Preconditions • The user is logged in.

• An artifact is selected and displayed.

Postconditions • The new artifact, which has a distance of at least two relations to

the first artifact, is selected and displayed.

Table 10: EU-10 Graphical navigation

3.4.3 User Interface Concept

The TreqPro user interface is designed after the use cases. The following section gives a

schematic overview of the user interface with a focus on the main screen (Figure 6). The

description is supplemented by screenshots of the most important interfaces.

Project Browser

The project browser displays a list of all projects and all project versions for the selected

project. It allows comparing two specific project versions to each other and highlights the

differences. It also allows creating baselines and selecting specific project versions as well as

changing the selected project.

 36

Figure 6: User interface concept showing partition of the main screen that allows viewing (1), editing (2),

managing relations (3), and accessing the history (4) of the currently selected artefact.

Main

The main view contains a tree view as navigation next to a tab control with the following tabs:

The view tab (1) is a textual display consisting of all attributes of an artifact (Figure 7). The

edit tab (2) contains editing fields for all artifacts and also allows wiki syntax editing for

fields with appropriate type (Figure 8). The relations tab (3) shows all relations from this

artifact to any other artifact in a textual and graphical, experimental way (Figure 10). The

history tab (4) shows all versions of the selected artifact and allows comparing specific

versions and highlighting the differences or selecting any existing artifact version into the

current project version (for reverting or branching, see Figure 9).

Figure 7: The view of a selected artifact displays all its attributes.

 37

Figure 8: The application allows direct editing of each attribute and multi-line editing with wiki syntax.

Figure 9: The exact changes between two arbitrary versions are clearly highlighted.

Figure 10: The experimental graphical navigation allows viewing relations across multiple artifacts.

Trace Matrix

The trace matrix is a table showing all relations of the selected type and allowing for an

overview and quick setting of multiple relations. Large trace matrices can be prevented using

filters.

Type Configuration

The relation type configuration consists of names for both relation directions, relation

modifiers like 'composite', and allowed artifact types on each side of the relation. The artifact

type configuration allows managing attribute type details (name, data type, control type,

order) for each artifact type.

Document Generator

The document generator implemented in the prototype has a very simple user interface with

only two buttons, one for CSV export and one for PDF export.

3.4.4 Software Architecture

This section describes architectural aspects of the TreqPro prototype.

3.4.4.1 Integration of the Prototype

The prototype is implemented as a plug

[Tra10]. It is programmed in P

python egg. A PostgreSQL relational database and a Subversion version control repository

provide persistence. See Figure

3.4.4.2 Internal Architecture

TreqPro is a distributed application. Its architecture is therefore described separately for the

client and the server side of the application (

38

The document generator implemented in the prototype has a very simple user interface with

buttons, one for CSV export and one for PDF export.

Architecture

This section describes architectural aspects of the TreqPro prototype.

Integration of the Prototype into the Trac Platform

The prototype is implemented as a plug-in to the open-source collaboration platform Trac

It is programmed in Python [Pyt10] and installed into a Trac environment as a

A PostgreSQL relational database and a Subversion version control repository

Figure 11 for an overview of the platform.

Figure 11: TreqPro software stack.

Internal Architecture

TreqPro is a distributed application. Its architecture is therefore described separately for the

server side of the application (Figure 12).

The document generator implemented in the prototype has a very simple user interface with

into the Trac Platform

source collaboration platform Trac

installed into a Trac environment as a

A PostgreSQL relational database and a Subversion version control repository

TreqPro is a distributed application. Its architecture is therefore described separately for the

 39

Figure 12: Architectural Overview

User Interface (Client)

TreqPro is a web application that is accessible via web browser. It has been tested most

extensively with Mozilla Firefox 2 and Mozilla Firefox 3.

TreqPro contains JavaScript code that is executed by the web browser on the client side. The

JavaScript code is used for creating the tree in the main view, validating input forms and

many small improvements of the user experience (e. g. text box resizing). The graphical

presentation of relations is also realized using JavaScript.

The following FLOSS JavaScript libraries are used by TreqPro:

• Yahoo UI Library (2.7.0b) for tabs and the tree view

• JQuery (1.7.2)

• JavaScript InfoVis Toolkit (1.1.3)

User Interface / Business Logic (Server)

This part of the application is Python code. TreqPro is built on the Trac platform and therefore

implements several Trac interfaces. Its user interface is highly integrated with Trac. There is

one request handler (implementing Trac’s RequestHandler interface) for each main part of the

application and one for AJAX requests. Each request handler handles the server-side part of

the user interface and contains the business logic. Most of the user interface is defined in

Genshi XML templates which are provided with data by the request handlers. Table 11 gives

an overview on the modules of the user interface.

 40

ajax.py AJAX requests, main screen

ajax_projects.py AJAX requests, project browser

artifact_browser.py artifact browser

diff.py project diffs

main.py main screen

matrix.py trace matrix

projects.py project browser

reqdocgen.py document generator

types.py type configuration

Table 11: Modules of the user interface

DAO / Entities (Server)

The entity layer (Figure 13) maps artifacts, relations, projects, project versions, artifact types

and relation types as well as some helper objects. The entities are designed around the Active

Record pattern [Fow03].

Figure 13: Excerpt of the TreqPro object model

Unit Tests / Import Tools (Server)

To assess the quality of the DAO layer, a set of unit tests is created that can be run from the

IDE using PyUnit. The unit tests are extremely important because adding new features to the

DAO layer can cause already tested code to fail, and manual regression testing would be

sophisticated.

 41

A script to import artifact data from a CSV file is also available. This is highly useful for

testing purposes.

Database (Server)

The PostgreSQL database (Figure 14) contains constraints and stored procedures to ensure the

consistency of the data (especially for versioning and baselines). The plug-in shares a

PostgreSQL database with other Trac plug-ins. Other database management systems are

currently not supported due to the use of non-portable stored procedures.

Figure 14: Excerpt of the TreqPro database schema

3.4.4.3 TreqPro's Dependencies

The prototype uses the Document Generator plug-in by Alexander Wagner to generate a

Requirements Document.

 42

To set up the development environment on a MS Windows XP SP3 system, at least the

following software packages are required:

• Python 2.5.4

o eGenix-mx-base 3.1.2

o psycopg2 2.0.10-pg8.3.7

o setuptools 0.6c9

o svn-python 1.6.6

o Genshi 0.5.1

• Postgresql 8.3.7-1

• JRE 6 Update 20

• Eclipse SDK 3.5

• Trac 0.11.4

• Subversion 1.6.6

• Adobe Reader 9.3.2

• Mozilla Firefox 3.5.10

• TortoiseSVN 1.6.7

3.4.5 Feature Matrix of all 3 Compared Tools

The feature matrix (Table 12) compares important features in the 3 evaluated tools (++

implemented, + partially implemented, – not implemented). The features are taken from the

catalog (see section 3.3).

 43

 Group A

Requisite

Pro

Group B

Trac

Group C

TreqPro

web interface – ++ ++

full project template configuration

(artifacts and relations)
+ – ++

semantic tracing

(relation types)
– – ++

suspect tracing ++ – –

basic versioning ++ ++ ++

baselining ++ – ++

branching – – ++

comparison of baselines + – ++

comparison of artifact versions + – ++

traceability across tool borders + + ++

traceability matrix ++ – ++

wysiwyg editing + + +

report generation + – ++

IDE integration – – –

configuration management integration – ++ ++

test management integration – + +

graphical navigation – – +

workflow support for requirements – – –

Table 12: Feature matrix of the 3 tools compared in the evaluation

 44

4 Evaluation
To answer the research questions, I carry out an evaluation consisting of 2 parts. Each part

deals with one of the research questions. The evaluation is designed as an empiric study and

aligned to published best practices [Vis02].

RQ1: What features are essential for ReqM tool support?

This part evaluates the completeness of the feature catalog for ReqM tool support. This

research question will be addressed with a survey. This part is described in section 4.1.

RQ2: How can requirements versioning, traceability and tool integration be improved

with TreqPro (compared to Siemens Standard ReqM tools)?

This part evaluates with a usability test how well the tool integration concept implemented in

the TreqPro prototype addresses the shortcomings compared to an existing commercial

product and an existing open-source solution, both commonly used at Siemens Austria. This

part is described in section 4.2.

4.1 Evaluation of the Feature Catalog

This part of the evaluation will test, to which extent essential requirements for ReqM tools are

covered in the feature catalog that I have created.

This part can be split up into the following questions:

1. How well does the feature catalog cover essential ReqM tool features?

2. What important ReqM tool features are not yet in the feature catalog?

The feature catalog for ReqM tools created in this work will be compared to the results of a

survey among ReqM experts. In this survey, each of the experts will be asked to provide a list

of the ReqM tool features that he or she considers most important.

 45

4.1.1 Factors Affecting this Part of the Evaluation

The following factors affect this part of the evaluation (Table 13).

nr Number of recipients: The number of recipients of the survey

invitation e-mail

np Number of participants: The number of recipients actually

returning a correctly filled-out survey form

q Number of features asked: The number of features that each

participant is asked to provide

r Response rate: Number of participants in relation to the number

of recipients (r = np / nr)

 List of Features: All features provided by participants, sorted

 List of Feature Classes: A classification of all the features

provided by participants

s Number of feature classes

f1 … fs Absolute frequency per class: Number of features assigned to

each class

t Number of feature classes covered in the catalog

t’ Number of feature classes not covered in the catalog

u Feature Coverage: Number of feature classes covered in the

catalog in relation to the total number of feature classes (u = t / s)

Table 13: Factors affecting the evaluation of the feature catalog

The detailed interaction of these factors is displayed in Figure 15 in the following section.

 46

4.1.2 Evaluation Method for the Feature Catalog

This section outlines the process of this part of the evaluation in detail (see Figure 15).

Figure 15: The features listed in survey responses are classified and the catalog’s coverage of these

features is calculated.

The feature catalog is evaluated inside Siemens Austria using a web survey.

 47

4.1.2.1 Preparation of Evaluation

1. The organizer prepares a web survey form and an e-mail invitation asking

participants to list a certain number of tool features that are essential for ReqM tools

in their opinion:

• The survey form has to outline the advantages of the catalog and its possible use

for comparing future ReqM tools.

• The short time necessary for taking part in the survey should also be mentioned.

• The participants are asked to answer freely so they can give unexpected answers.

• The participants should give general answers that do not include specific

technologies.

• There will be a small reward to encourage the recipients to participate: The first

5 participants receive a copy of the feature catalog.

The organizer selects nr=100 recipients from the ReqM TechnoWeb.

4.1.2.2 Execution of Evaluation

2. The organizer submits the e-mail to all recipients.

3. A subset of the recipients (=participants) go to the web survey and fill out the form.

4. Each participant returns the form via e-mail. The organizer collects all the responses

and calculates the response rate r = np / nr as the number of responses in relation to

the number of recipients.

5. The organizer aggregates all the responses into a single sorted list of features.

6. The organizer classifies the features using a similar granularity as used in the feature

catalog. The classification yields a list of feature classes, the number of feature

classes s, and the absolute frequencies f1 … fs for each feature class.

7. The organizer assigns each of the feature classes either to the category “covered” (if

it is in the catalog) or to the category “non-covered” (if it is not in the catalog). The

organizer calculates the feature coverage u = t / s as the number of covered feature

classes t in relation to the total number of feature classes s.

4.1.3 Realization and Practical Aspects of the Evaluation

The survey is realized as a web survey that is created using the open-source tool Limesurvey

and hosted on a dedicated webserver on the internet. The survey is advertised among 453

 48

experts in the fields Requirements Engineering, Test, Project Management and Software

Architecture inside the Siemens corporation. The experts are invited via private message in

Siemens’ technology networking tool. After an introductory screen (Figure 16), the survey

collects the participant’s field of work and the optional fields name, e-mail address and

company. On the third screen, there is only one question asking the participant to provide an

ordered list of the ReqM tool features the participant considers most important (Figure 17).

There is a large textbox for additional remarks. Filling out the survey should take only about 5

minutes.

Figure 16: Introductory screen of the web survey

 49

Figure 17: Only one question (with room for remarks) is posed in the survey.

4.2 Evaluation of the TreqPro Prototype

The TreqPro prototype demonstrates how a lightweight open-source solution can cover

essential ReqM features. This part of the evaluation examines, how well the concept

implemented in the prototype addresses the identified main shortcomings of existing

solutions:

• Limited requirements traceability (see section 1.2.5.1)

• Limited requirements versioning (see section 1.2.5.2)

• Limited ReqM tool integration (see section 1.2.5.3)

4.2.1 Factors Affecting this Part of the Evaluation

The following factors affect this part of the evaluation (Table 14).

 50

 9 Tasks: The tasks are based on the essential use cases (EUs, see

section 3.4.2) and should be carried out by each participant using

solution A, B or C, depending on his/her group. Tasks that cannot be

carried out due to technical limitations of a solution are removed from

all survey forms for that solution.

p Number of participants: Participants will be divided in three equally

trained groups, one for each tested solution.

s1,1 … s8,p User Satisfaction: The user satisfaction concerning a specific task. This

parameter exists for each task and for each participant.

t1,1 … t8,p Execution Time: The time necessary to complete a task. This parameter

exists for each task and for each participant.

u1,1 … u8,p Task Completeness: The completeness of the task after execution (a

number from 0 to 1). This parameter exists for each task and for each

participant.

Statistical Data: The following measures can be derived from the three basic

measures above. They are useful for the actual purpose evaluation because they

allow to compare the three groups:

sA, sB, sC Average User Satisfaction per Group

s1,A, s1,B, s1,C Average User Satisfaction per Task and per Group

tA, tB, tC Average Execution Time per Group

t1,A, t1,B, t1,C Average Execution Time per Task and per Group

uA, uB, uC Average Task Completeness per Group

u1,A, u1,B, u1,C Average Task Completeness per Task and per Group

Table 14: Factors affecting the evaluation of the prototype

 51

4.2.2 Evaluation Method for the Prototype

This section outlines the general process of this part of the evaluation in detail (see Figure 18).

For specific details of the realization see section 4.2.3.

Figure 18: The organizer prepares a personal VM and a personal survey form for each participant. The

participants are divided into 3 groups, and each group executes the same tasks with one of 3 tools.

 52

4.2.2.1 Preparation of Evaluation

1. The organizer creates 9 tasks that should be executed with all three solutions, if

possible.

2. The organizer selects and invites ReqM experts for the test. p is the number of

participants.

3. The organizer divides the participants into three groups with a similar RE knowledge /

experience level. Each group will test one of the three solutions. The organizer

documents the process of finding an optimal group distribution.

4. The organizer prepares 3 master survey forms (one for each group). Each survey form

contains:

• Participant Data

• General Test Introduction

• Scenario Description

• Domain Glossary

• Task Description for the 9 tasks with

o Time Measurement and

o Feedback Form

Tasks that are not applicable to a solution for technical reasons are grayed out in

the survey form for that group.

• Notes taken during the test by the organizer (appended after the test).

5. The organizer creates 3 master VMs and provides each of them with its own set of test

data (one for each group, see Figure 19):

• Group A: Requisite Pro, Requisite Pro Project and SVN Repository

• Group B: Trac Environment and SVN Repository

• Group C: PostgreSQL Database, Trac Environment with TreqPro Plugin and SVN

Repository

6. The organizer clones each master VM so that there is one personal VM for each

participant. This VM is used for the usability test and will be kept after the test to

check the completeness of tasks, if necessary.

4.2.2.2 Execution of Evaluation

7. Each participant executes the usability test:

a. The organizer hands the participant his/her personal survey form prepared in

step 4.

 53

b. The organizer starts the participant’s personal VM prepared in step 6.

c. The participant fills out his/her personal data, reads the instructions and

scenario information, and carries out each task, recording start and stop time

and answering questions in the survey form. After that, the participant fills in

the after-test survey.

d. The organizer takes notes, answers questions and gives hints if necessary.

8. The organizer calculates the results.

a. The three base factors are calculated for each participant and for each task:

• User Satisfaction

• Execution Time

• Task Completeness

b. The following extended factors are derived from the base factors:

• Average User Satisfaction, Execution Time and Task Completeness for

each task

• Average User Satisfaction, Execution Time and Task Completeness for

each group

4.2.3 Realization and Practical Aspects of the Evaluation

In concrast to the general, formal description in the previous section, this subsection describes

practical details of each evaluation step. The numbers in parentheses indicate the formal step

in the previous section that each paragraph refers to, see Figure 18.

4.2.3.1 Preparation of Tasks (1)

From the essential use cases (see section 3.4.2), I have derived 9 tasks for the usability test.

Each participant receives a questionnaire containing all tasks.

In this questionnaire, each task is followed by questions for the quantitative parameters

satisfaction and time as well as the general qualitative question for free comments. Some of

the tasks contain multiple questions for satisfaction for different parts of the tasks so more

detailed information about possible shortcomings of the tools can be obtained. The third

quantitative parameter (completeness) is obtained separately from the questionnaire.

I will describe each task briefly in the following paragraphs.

 54

Task 1 – Basic Navigation and Management

The participant executes basic ReqM operations such as finding, creating, editing, copying,

and moving artifacts.

Task 2 – Forward Traceability

The participant creates a new task ticket, assigns it to a developer, links it to a requirement

and finds out about source code associated with another task ticket.

Task 3 – Traceability and Tool Integration

The participant uses a subversion client to commit a source code changeset to the version

control repository and reflects the changes in the associated task ticket. The participant also

finds out about requirements associated with the task.

Task 4 – Versioning

The participant executes multiple advanced versioning operations including comparison of the

working version with an existing baseline, comparison of artifact versions, reverting artifacts

to older versions, and branching artifacts.

Task 5 – Simple Query

The participant executes a simple search for an artifact by a given keyword.

Task 6 – Project Template Configuration

The participant modifies the project template configuration by adding an attribute type to an

artifact type.

Task 7 – Requirements Document

The participant creates a requirements specification document in the PDF format containing

all requirements in the project. This task is followed by additional qualitative questions about

applicability of the requirements specification document as well as necessary changes for

sharing with management and/or customers.

Task 8 – Semantic Tracing

The participant first creates a new relation type and then uses this relation type to link two

artifacts.

 55

Task 9 – Graphical Navigation Interface

In this task, participants navigate from one requirement to another across multiple relations

graphically.

4.2.3.2 Selection and Distribution of Participants (2, 3)

The participants are distributed to the three groups in a way as equally as possible mainly

concerning tool experience, but also concerning RE experience. None of the participants had

any real experience with the prototype tool, but one of the participants in the TreqPro group

already knew the prototype a little. Table 15 lists all participants and their experience levels.

Number Role RE Experience

0 – 3 (most)

Experience with

respective Tool

0 – 3 (most)

Group

1 PM, Design 1,0 0,0 TreqPro

2 RE 3,0 0,0 TreqPro

3 Consulting 2,0 0,0 TreqPro

4 Development 1,0 3,0 Trac

5 PM, Design, Development 1,5 2,0 Trac

6 CM 0,0 1,0 Trac

7 CM 0,5 0,5 Requisite Pro

8 RE 3,0 3,0 Requisite Pro

Table 15: Usability test participant overview

4.2.3.3 Preparation of Survey Forms (4)

The survey forms are created to elicit both quantitative and qualitative input during the

usability tests. The forms contain both the tasks (see section 4.2.3.1) and room for answers.

They are filled out by each participant before, during and after the usability test.

In addition to the tasks and related questions, the survey form contains the following sections:

 56

Introduction

The introduction describes the basics of the usability test, what to pay attention to and how

long it will take.

Test Scenario

The scenario section gives an overview of the fictional project "TechnoWeb 2" in detail so the

participant can get an idea of the project.

Glossary

The glossary explains the most important ReqM terms.

Before-Test Survey

• Number

• Group

• Contact Information

• Main Occupation in Software Projects

• ReqM Experience

• Experience with the ReqM Tool Tested

• Expectations towards the Tool

After-Test Survey

• Fulfillment of expectations

• Positive Impressions

• Negative Impressions

• Comments

4.2.3.4 Preparation of VMs (5, 6)

To ensure equal conditions for all the usability tests and to increase replicability, all the tests

are executed in virtual machines. The virtual machines are created and executed using Sun

VirtualBox 3.1.2r56127 and the following virtual hardware configuration:

• 1 processor

• 512 MB RAM

 57

• 10 GB dynamic disk image

• 20 MB video memory, no hardware acceleration

• PCnet-FAST III (NAT)

VirtualBox does not support cloning VMs yet, so the virtual machine settings are cloned

manually using the GUI. Disk images are cloned using the command line tool VBoxManage

as follows (but with the absolute paths):

VBoxManage clonevdi "source.vdi" "target.vdi"

The disk images are handled as follows. First of all a master image with the operating system

and the following software is installed:

• MS Windows XP SP3 (German) + all available security updates

• VBox Guest Additions 3.1.2

• Mozilla Firefox (3.5.9)

• MS Office Professional 2003 (German)

• Adobe Reader 9.3 (German)

• Python 2.5.4

o trac 0.11

o svn-python 1.6.6

o setuptools 0.6c9

o pycopg2-2.0.10

o genshi 0.5.1

o eGenix mx base 3.1.2

• PostgreSQL 8.3

• Subversion 1.6.6 (r40053)

• TortoiseSVN 1.6.6.17493

All unneeded GUI elements are disabled. Automatic update reminders and similar

notifications are disabled.

After that, the master image is cloned 3 times to create 3

Each image is configured to match the requirements of its

following additional software is installed:

• TreqPro prototype r945

• IBM Rational Requisite Pro

In a third step, each of the three images is cloned so that there is a personal VM image for

each participant. This way it is guaranteed that all participants inside a group find equal

conditions.

Figure 19: Overview of

4.2.3.5 Test Execution and Analysis of Results

After completion of the preparations, an appointment is made with each of the participants. I

meet the participant in a quiet location, explain the procedure of the test,

the survey form, start the participant’s personal VM,
58

age is cloned 3 times to create 3 images (one for each tool /

ed to match the requirements of its tool. Depending on the group the

following additional software is installed:

TreqPro prototype r945

IBM Rational Requisite Pro 7.1.1.0

In a third step, each of the three images is cloned so that there is a personal VM image for

This way it is guaranteed that all participants inside a group find equal

Overview of artifact generation for the usability test

Test Execution and Analysis of Results (7, 8)

After completion of the preparations, an appointment is made with each of the participants. I

meet the participant in a quiet location, explain the procedure of the test, hand

the survey form, start the participant’s personal VM, have him fill in his personal data, and

images (one for each tool / group).

Depending on the group the

In a third step, each of the three images is cloned so that there is a personal VM image for

This way it is guaranteed that all participants inside a group find equal

artifact generation for the usability test

After completion of the preparations, an appointment is made with each of the participants. I

hand the participant

ill in his personal data, and

 59

have him execute each task in the VM (recording start and stop time). While the participant

executes the steps in each task, I take notes of his actions and comments and answer his

questions. After completion of the test, I pose some more questions if anything is unclear and

thank the participant for his contribution. I shut down the VM and back it up in a safe place. I

permanently attach my notes to the survey form and store them in a safe place.

I collect the quantitative data obtained in each of the 8 usability tests in a spreadsheet

document and the qualitative data in a text document for further processing. I calculate

statistical measures for the quantitative data, see section 5.2.

4.3 Threats to Validity

I have identified the following threats to validity for each part of the evaluation:

4.3.1 Threats Regarding the Evaluation of the Catalog

• A low response rate (see Table 13 on page 45) increases the chance that the lack of

important features in the catalog remains unnoticed. The ideal (but unrealistic)

response rate is 1.

• A low feature coverage (see Table 13 on page 45) indicates that important

shortcomings of ReqM Tools may have remained unidentified so far. The ideal feature

coverage is 1.

• Granularity of the Feedback: Participant feedback at different granularities (e. g.

“Create an MS-Word Document” vs. “Create a Requirements Document”) can distort

the feature coverage.

• Completeness: Less important features will never be listed because each participant

makes a list of only the 5 most important ones.

4.3.2 Threats Regarding the Evaluation of the Prototype

• Generalizability: The results for the small group of participants taking part in the

usability test are not necessarily representative for all ReqM users.

• Generalizability: Solutions A and B are the two most used solutions in the Siemens

Austria context, however they are only two of many ReqM solutions, and the results

might vary in a different context.

 60

• Participant Selection: The participants selected are the ones that are most easily

available at Siemens Austria and not necessarily representative for all requirements

managers.

• Group Selection: It is difficult to build 3 equally qualified groups. If the

qualifications are not balanced well, the results may be distorted.

• Comparability: The common task cannot be executed in each solution in exactly the

same way, so approximation has to take place (different features have to be used for

the same functionality). The approximation could distort the results, for example if

solution X explicitly supports a feature but solution Y can only be used with a

workaround for the same task).

• Granularity of the Feedback: It is important that this part of the evaluation reflects

the quality of the concept, not the quality of the implementation. Participants will

give feedback both on details of the implementation and on the concept which must

be treated seperately.

• Participant Expectancies: Test participants might give answers that favor one of the

solutions consciously or unconsciously.

 61

5 Results
This chapter describes the results of the evaluation of the tool feature catalog (5.1) and the

results of the evaluation of the ReqM tool prototype (5.2).

5.1 Evaluation Results of the Tool Feature

Catalog

This section describes the evaluation results of the tool feature catalog. The catalog was

evaluated using a web survey. After a summary given in section 5.1.1, the survey response

rate is outlined in section 5.1.2. The features are classified in section 5.1.3, the feature

coverage is described in section 5.1.4, and features not in the catalog are listed in

section 5.1.5.

5.1.1 Summary

I have collected 70 features from the participants of the web survey. 97 % of the features were

already covered by the feature catalog. However, due to the low absolute number of

participants (14), the results of the web survey cannot be considered representative among all

ReqM tool users.

5.1.2 Survey Response Rate

Number of Recipients 453

(RE 148, Test 53, PM 85, Design 167)

Number of Participants 14

Response Rate 3 %

Table 16: Recipients, participants and response rate

5.1.3 Response Feature Classification

From the raw results of the survey, I have created a sorted list which I have then subjected to

classification. The classes are taken from the main sections of the feature catalog. I have

divided these classes into more fine-grained categories to get a more exact classification.

 62

5.1.3.1 List of Feature Classes, Categories and Absolute Frequencies

Table 17 lists the classes from the feature catalog in bold letters as well as the corresponding

fine-grained categories and the absolute frequencies for each class and category.

Class / Category Abs. Freq.
Setup, Customization, Administration and
Usability 29

System Properties 9
UI 3
Customization 10
Ease of Use 7

Capturing, Editing and Managing
Requirements 7

Collaboration 3
Change Management 4

Configuration Management Aspects 3

Traceability of Requirements 10

Document and Report Generation 14
Import/Export 7
Search, Filtering, Sorting and Reporting 7

Interfaces to Other Tools 7

Costs 0

Table 17: Classification and categories of tool features listed by participants

Both classification schemes are illustrated in Figure 20 and Figure 21.

 63

Figure 20: Classification of tool features by new fine-grained categories

Figure 21: Classification of tool features by coarse-grained classes from feature catalog (x-axis) and new

fine-grained categories (colors)

An interpretation of this data is given in the following section.

0 2 4 6 8 10 12

System Properties

UI

Customization

Ease of Use

Collaboration

Change Management

Versioning

Traceability

Import/Export

Search, Filtering, Sorting and Reporting

Integration

Frequency

0 10 20 30 40

Setup, Customization, Administration

and Usability

Capturing, Editing and Managing

Requirements

Configuration Management Aspects

Traceability of Requirements

Document and Report Generation

Interfaces to Other Tools

Costs

Integration Search, Filtering, Sorting and Reporting

Import/Export Traceability

Versioning Change Management

Collaboration Customization

Ease of Use UI

 64

5.1.3.2 Interpretation of Classification

The features are distributed across the fine-grained categories (Figure 20) in a steady manner.

The distribution is not as uniform when considering the more coarse-grained sections of the

catalog (Figure 21). This indicates that the first section of the catalog should be divided into

several sections.

The frequencies in the fine-grained categories displayed two deviations from the expected

pattern:

• 3 of 70 listed features (4 %) belonged to the 'versioning' category. As versioning was a

central topic in several expert interviews, I would have expected a higher priorization

of this feature class.

• 7 of 70 listed features (10 %) belonged into the 'usability' category and 3 of 70 (4 %)

listed features belonged into the 'UI' category. In other words, 14 % of the features

were actually non-functional, usability-related requirements. The high priority given to

usability-related requirements suggests that the experts consider usability too low in

some existing tools.

5.1.4 Feature Coverage

Number of features listed by participants and

covered in catalog

68

Total number of listed features 70

Feature Coverage 97 %

Table 18: Feature Coverage

5.1.5 Features not in the Catalog

There were 2 specific features that were not included in the catalog:

• Refactoring of requirements

• SAP integration (e. g. for indicating requirement costs to the sales department)

 65

5.2 Evaluation of the TreqPro Prototype

The evaluation of the prototype was carried out as a usability test as described in section 4.2.

The usability tests yielded both qualitative and quantitative results for each of its 9 tasks. This

section first gives an overview of the results (section 5.2.1) and then presents the detailed

results for each task in the sections 5.2.2 – 5.2.10.

The following quantities were recorded in this evaluation:

 satisfaction (s) – A measure of usability of a specific application feature as experienced

by a participant. The satisfaction is given on a scale from 0 (worst) to 3 (best) rounded

to 2 decimal places. 3 (very easy) means as much as it could not be any easier to use,

and 0 (very difficult) means that it could not be any more difficult or sophisticated to

use (within reasonable boundaries).

 time (t) – Time it took the user to complete a task. The time was measured by the

participant himself and checked by the test manager using the clock in the test VM’s

task bar. Special care had to be taken to record only working time and stop the watch if

the participant started talking about anything not related specifically to the current task.

The time is given in minutes rounded to 30 seconds.

 completeness (c) – Percentage of the task completed by the user. Each task consisted of

several subtasks. Each subtask could be completed not at all (0), half (0.5) or full (1).

The completeness for a task was calculated as the arithmetic mean of all its subtasks.

The completeness is given in percent rounded to 0 decimal places.

 arithmetic mean (AM) – The arithmetic mean has the same unit and precision as the

respective quantity.

 coefficient of variation (CV) – The coefficient of variation is the average deviation

from the arithmetic mean in percent of the arithmetic mean (rounded to 0 decimal

places) and allows to compare deviations on the different scales of the 3 parameters s, t

and c.

 66

5.2.1 Summary of Results

This section summarizes all quantitative (section 5.2.1.1) and qualitative (section 5.2.1.2)

results of the evaluation of the prototype.

5.2.1.1 Average Quantitative Results

Only tasks 1 to 5 could be completed (i. e. c > 50 %) with all 3 tools. Therefore only these

tasks were used to compare satisfaction and time, but all tasks were used to compare

completeness.

1. The arithmetic mean (satisfaction and completeness) or the sum (time) was calculated

for each participant over all compared tasks.

2. The arithmetic mean and coefficient of variation were calculated over all participants

in that group. The CVs indicate the deviation from the AM inside the respective

groups.

Table 19 gives an overview of the quantitative results:

Task TreqPro

AM

TreqPro

CV

Trac

AM

Trac

CV

Requ. Pro

AM

Requ. Pro

CV

Ø s1-5 2,43 12 % 1,74 28 % 1,51 15 %

∑ t1-5 31 min 21 % 47 min 21 % 51 min 11 %

Ø c 99 % 2 % 53 % 9 % 57 % 5 %

Table 19: Summary of quantitative results

The following subsections explain the summarized results for each of the 3 quantities

satisfaction, time and completeness. The detailed results for each task can be found in sections

5.2.2 – 5.2.10.

 67

Satisfaction

This subsection gives an overview of the average satisfaction results for all the tasks.

Figure 22: Average satisfaction (s) for each tool and task

The results clearly show a significantly higher satisfaction of participants with TreqPro

compared to the other tools. The open source tool Trac showed about the same satisfaction as

the commercial tool Requisite Pro.

The coefficient of variation for the satisfaction was relatively high inside the Trac group,

which I investigated further: It turned out that the two users with less Trac tool experience

were much more satisfied (2.55 and 2.05) with the results than the Trac expert (1.35), even

though they could complete less of the given tasks (49 % and 53 %) compared to the expert

(58 %).

The highest advantage (i. e. difference to the closest other tool) was measured in basic

requirements operations with a difference of 1.33 (on a scale from 0 to 3), followed by

versioning with a difference of 0.92 and project template configuration with 0.75.

With the prototype, satisfaction could be improved by 40 % compared to the existing tool

Trac and by 61 % compared to the existing tool Requisite Pro.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Ø TreqPro Ø Trac Ø

RequisitePro

ø s (task 1-5)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Ø TreqPro

Ø Trac

Ø Req. Pro

 68

Time

This subsection gives an overview of the average time results for all the tasks.

Figure 23: Average execution time (t) for each tool and task

The results show that TreqPro performed significantly (40 – 50 %) better than at least one of

the other tools in tasks 1, 2 and 4, i. e. it took participants only about half the time to carry out

basic requirements operations, establish forward traceability and use different versioning

functions. There was no significant difference in execution time in tasks 3, 5, and 6 which

consisted of tool integration, search for specific requirements, and project template

configuration.

The average total time for all tasks with TreqPro was 35 % smaller than with Trac and 40 %

smaller than with Requisite Pro.

With the prototype, execution time could be improved by 34 % compared to the existing tool

Trac and by 39 % compared to the existing tool Requisite Pro.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Ø TreqPro Ø Trac Ø

RequisitePro
∑ t (task 1-5)

0

2

4

6

8

10

12

14

16

18

Ø TreqPro

Ø Trac

Ø Req. Pro

 69

Completeness

This subsection gives an overview of the average completeness results for all the tasks.

Figure 24: Average completeness (c) for each tool and task.

The average completeness with TreqPro was 99 %, while it was only 53 % with Trac and

57 % with Requisite Pro. Only one participant could not complete one task (Task 8) with

TreqPro because of usability issues.

TreqPro was the only tool in which tasks 7, 8 and 9 could be completed (c > 50 %). Task 6

could not be completed in Trac.

With the prototype, completeness could be improved by 87 % compared to the existing tool

Trac and by 74 % compared to the existing tool Requisite Pro.

5.2.1.2 Qualitative Feedback

This subsection gives an overview about qualitative results of the usability test that has been

aggregated and grouped by the main fields of interest (traceability, versioning, tool

integration).

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Ø TreqPro Ø Trac Ø

RequisitePro
ø c

0%

20%

40%

60%

80%

100%

Ø TreqPro

Ø Trac

Ø Req. Pro

 70

Qualitative Feedback on TreqPro

Traceability

Display and creation of traces does not yet seem to be as intuitive as desired. Minor

improvements, such as moving the relevant command from the relations tab to the context

menu, will probably address this.

Versioning

TreqPro has the most advanced versioning capabilities and allows extended techniques like

baselining and branching with a fair amount of usability. Not all users however require full

versioning support. Instead some would rather have more workflow support. The comparison

of both artifact and project versions is straightforward.

Tool Integration

The integration with issue tracking and version control worked seamlessly.

User Interface, Basic Operations, and Document Generation

TreqPro has the best user interface of the three tools, even though not all planned features

(drag & drop, artifact browser …) have been implemented fully. Basic Copy/Move operations

took much more effort in both other tools, mainly because requirements cannot be directly

edited without limitations. TreqPro allows generating a requirements specification document

in the PDF format containing all requirements. However, the exact contents of the document

are not configurable yet. TreqPro contains an experimental implementation of a graphical

requirements browser.

Qualitative Feedback on Trac

Traceability

Establishing task-source traceability is a manual, error-prone process in Trac, but it is possible

to obtain a high level of traceability due to the integration of version control.

Versioning

Trac’s wiki versioning is linear and does not support baselining or branching, however

workarounds for baselining are possible. Users could choose to use tickets instead of wiki

pages to store requirements. Trac tickets support workflows and allow for better structuring

than wiki pages, but they do not support versioning, which makes baselining very difficult.

 71

Extended techniques such as baselining and branching are only possible through workarounds

which are hard to understand for users. While Trac allows for easy comparing of two

requirement versions, it is difficult to compare whole project versions.

Tool Integration

The integration with issue tracking and version control worked seamlessly.

User Interface, Basic Operations, and Document Generation

Trac does not offer project templates, which leads to inconsistent structuring and formatting

of requirements. On the other hand it is quite a simple tool that gives much freedom to its

users. Multiple browser windows or tabs are necessary to do copy/move operations quickly,

but these operations are still error-prone. Trac does not offer automatic generation or checking

of requirements IDs. Trac is generally easy to use, but as the tests showed, it can be

sophisticated for new users. Trac does not come with any document export functionality.

Qualitative Feedback on Requisite Pro

Traceability

It is not possible to maintain m:n relations across tool borders with Requisite Pro in a practical

way. Relations inside Requisite Pro can be created, but they cannot have a type.

Versioning

In Requisite Pro it is difficult to identify changes between requirements, and it is even more

difficult and inconvenient to compare project versions. In both cases, the differences are not

highlighted, so minor changes are difficult to spot.

Tool Integration

Only little integration was possible with the issue tracking and version control systems. Users

like the integration with MS Word, which works well in many basic scenarios, but leads to

many problems on the other hand (e. g. search and change management do not work fully any

more, copy/move operations are more difficult).

User Interface, Basic Operations, Collaboration and Document Generation

Requirements in Requisite Pro can be copied and moved conveniently, if they are stored in

the database only. If requirements are stored in word documents, copying and moving is

tedious. While the basic concept and database of Requisite Pro are sufficient for most small

 72

and medium-sized projects, its user interface is its great weakness. Direct editing of

requirements is sometimes difficult because of many small UI problems. Requirements that

are not in the database, but in a Word document, are not included in the change history.

Collaboration on one project is difficult in Requisite Pro, especially if Word documents are

used, because only one user can edit each document at a time. Requisite Pro cannot be easily

customized; extension of its functionality is possible through the extensibility interface. The

search for specific requirements can be difficult, because only one search result is displayed at

a time, and because the database and each document must be searched separately. Requisite

Pro allows generation of one report per requirement type in the DOC format. Document

generation is inconvenient and has severe bugs, but external tools (like SODA) can be used

for better results. The menus are not well-structured; therefore it takes new users some time to

find the desired functionality (e. g. project template configuration).

 73

5.2.2 Task 1 – Basic Navigation and Management

5.2.2.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 3,00 0 % 1,67 34 % 1,50 47 %

t 9,33 34 % 16,67 24 % 16,5 21 %

c 100 % 0 % 96 % 3 % 83 % 28 %

Table 20: Quantitative results for Task 1

Figure 25: Average satisfaction (s), execution time (t) and completeness (c) for Task 1

5.2.2.2 Qualitative Feedback

TreqPro

• 3 of 3 participants especially mentioned TreqPro’s good user interface.

• 2 participants used the query box to find artifacts quickly.

• The lack of drag & drop functionality confused participants at first glance. After they

first tried it, all participants described the cut/paste method as intuitive.

• All participants liked UI features like text box resizing for easier requirements editing.

• It was very easy for participants already familiar with Trac to use the wiki syntax for

requirements descriptions.

• Possible improvements:

o less verbose notices

o automatic restriction and more filtering options on search results

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0

5

10

15

20

t 0%

20%

40%

60%

80%

100%

c

 74

Trac

• All 3 participants stated that copy and move operations take a lot of time because all

page names and links must be modified manually multiple times (which is redundant

and error-prone).

• All 3 participants used more than one browser window or tab for copy and move

operations.

• All 3 participants complained about lack of project template support, which resulted in

inconsistently structured requirements.

• 2 participants less familiar with Trac would like to have WYSIWYG support for wiki

text editing.

• 2 participants were missing automatic generation and duplicate-checking of

requirement IDs.

• 2 participants mentioned the lack of workflows in Trac wiki pages as used in the

example. They stated that they would rather use tickets instead of wiki pages for

requirements management, even though Trac tickets do not offer versioning and it

would not be possible to create baselines of requirements.

• 1 participant stated that he considered Trac suitable even for projects with many

requirements, but that a high level of tool experience would be required.

Requisite Pro

• 2 of 2 participants concluded that copying and moving requirements is inconvenient

with Requisite Pro.

• 2 participants stated that the tool has bad usability. Some features are missing, some

features are patched together and integrated badly (e. g. comparison of baselines).

• 1 participant described MS Word integration as a good and intuitive feature, but this

integration has drawbacks: The synchronization between the RequisitePro database

and the word documents works one-way only, i. e. if the structure in the database is

modified, the documents are not updated. Also, renumbering of requirements does not

work automatically (which could be seen as a feature).

• Usability for requirement editing in RequisitePro is very cumbersome:

o 1 participant mentioned the editing of multi-line attributes in a single-line

textbox.

 75

o 1 participant demonstrated bad mouse wheel support in dialog windows.

o Formatting of requirements is possible in the Word documents, but not in the

database.

• Only requirements in the database are included in the change history. To include more

data in the change history, one workaround would be to define one requirement type

for each field of a requirement, but this is very inconvenient and makes report

generation almost impossible (because a report can only be created for one

requirement type at a time).

• 1 participant described that when working together on requirements, it is better to use

multiple documents because of file locking.

 76

5.2.3 Task 2 – Forward Traceability

5.2.3.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 2.33 33 % 1.83 32 % 2 35 %

t 6.00 29 % 7.00 38 % 12 35 %

c 100 % 0 % 83 % 17 % 75 % 0 %

Table 21: Quantitative results for Task 2

Figure 26: Average satisfaction (s), execution time (t) and completeness (c) for Task 2

5.2.3.2 Qualitative Feedback

TreqPro

• It took 2 of 3 participants some time to find the tickets associated with an artifact.

• 2 participants explicitily mentioned TreqPro’s good user interface during this task.

• 2 participants associated ticket and artifact from the ticket actions box, one user did it

the other way around using the controls in the artifact’s tickets box.

• 1 participant noted that the list for artifact selection in ticket action box does not have

any filters and will be to long in large projects (TreqPro’s built-in artifact browser

provides a solution for this, but it has not been integrated into all parts of the

application yet).

• 1 participant suggested to allow creating traces via context menu („trace to“).

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 77

• 1 participant suggested that direct view of linked source files is better than the indirect

way over tasks.

Trac

• All 3 participants used either more than one tab or more than one window in the web

browser in this task.

• 2 participants noted that it is very inconvenient to create links with Trac, especially

with bidirectional relations, mainly because of the necessary redundant, manual

changes.

• 1 participant noted that this task can be accomplished very well with Trac if the user

has enough experience with this tool.

• 1 participant created absolute links between artifacts which can lead to problems if the

project‘s URL changes.

• 1 participant (who did not have any Trac experience, but technical background) did

not manage to link a ticket and a wiki page even with repeated, detailed instructions.

Requisite Pro

• All 2 participants managed to add links from MS Word documents to Trac tickets

which resulted in unidirectional "clickable" traceability from the requirements

documents to the tickets.

• All 2 participants gave suggestions for traceability from Trac to Requisite Pro, but the

user would have had to look up the reference manually in every case.

• 1 of 2 participants described RequisitePro as unsuccessful (literally: "nicht

zielführend").

• 1 participant described a workaround for addition of a custom field to trac tickets for

the relation (custom fields in ticket sections in trac.ini). The user confirmed the test

manager’s objections that this would not work for m:n relations and that there would

not be a clickable bi-directional link.

• 1 participant described the option of adding an attribute for the Trac ticket URL, but

this would not be possible for more m:n relations (more than 1 URL).

 78

5.2.4 Task 3 – Traceability and Tool Integration

5.2.4.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 2.67 22 % 2.08 30 % 2.13 8 %

t 5.00 0 % 5.33 29 % 5.00 28 %

c 100 % 0 % 100 % 0 % 100 % 0 %

Table 22: Quantitative results for Task 3

Figure 27: Average satisfaction (s), execution time (t) and completeness (c) for Task 3

5.2.4.2 Qualitative Feedback

TreqPro

• 2 participants suggested displaying the artifact name instead of id and version in

hyperlinks.

• 1 participant liked the example project ("extremely nice").

• 1 participant expressed general appreciation of the tool during this task ("super").

• 1 participant noted that a selection of open tickets would be very useful when

constructing the commit message.

• 1 participant asked how he could find a ticket most easily. The test manager suggested

entering the ticket number in the search box in the top right corner.

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 79

Trac

• 1 participant explained that there are many steps necessary to establish task-source

traceability (commit, find ticket number, find or store revision number, manually

create link in ticket). He added that the method is error-prone in projects with many

tickets and/or many commits. He also noted that the linking parts (revision in ticket,

ticket in revision) of the traceability process may be accidentally left out because the

process is not enforced in the workflow.

• 1 participant did not store or remember the revision number of the commit as

requested in the task and used the Trac timeline to look up the revision number

manually.

Requisite Pro

• 1 participant stated that a direct relation / trace link cannot be created across tool

borders (between Requisite Pro and Trac).

• All 2 participants did not store or remember the revision number of the commit as

requested in the task and used the Subversion repository browser to look up the

revision number.

 80

5.2.5 Task 4 – Versioning

5.2.5.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 2.58 20 % 1.67 53 % 0.88 20 %

t 8.67 35 % 17.00 26 % 16.00 18 %

c 100 % 0 % 71 % 36 % 57 % 0 %

Table 23: Quantitative results for Task 4

Figure 28: Average satisfaction (s), execution time (t) and completeness (c) for Task 4

5.2.5.2 Qualitative Feedback

TreqPro

• All 3 participants liked the free switching between existing versions of an artifact

("switch back is very easy", "na bumm, das geht?", "das ist aber toll").

• 1 participant stated that the diffs are difficult to read if the way of displaying

differences with the color scheme is unknown to the user. The same participant first

had some problems identifying the nature of changes (added vs. modified), but then

described the diff capabilities of the application as sensational ("spektakulär").

• 1 participant stated that the user interface should give some hints on how to do the

branching of artifacts.

• 1 participant would prefer a one-column radio button user interface for the selection of

versions to compare.

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%
20%
40%
60%
80%

100%

c

 81

Trac

• All 3 participants were confused by the implementation of baselines used in the

example project (wiki page with links to specific versions of each requirement) even

though the concept was explained in detail by the test manager.

• 2 participants concluded that the comparison of project versions (baselines) is very

difficult in Trac, as every page has to be checked manually (because the current

version of a wiki page is not visible 'from outside' via its link as a specific version is).

1 participant did not manage to compare two project versions.

• 2 participants stated that changes on a single requirement can be tracked very well

using Trac's wiki compare functionality.

• 2 participants accidentally compared two wrong versions of a requirement.

• 2 participants stated that restoring of previous versions is easy if the changes can be

permanently deleted, but difficult if they should be preserved.

• 2 participants stated that branching is very difficult in Trac, as it can only be

accomplished using workarounds and the results cannot be used practicably. 1

participant could not think of any workaround for branching.

• Trac displays the wiki source code of the latest version only, which makes manual

"branching" even more difficult (because the rendered text has to be taken and

reformatted if an old version is needed).

Requisite Pro

• When looking for baselines, 1 participant checked for milestones in the Trac ticket

system (but none were present in the example project).

• 1 participant stated that going back in previous versions is not possible in Requisite

Pro.

• 1 participant described Requisite Pro as "far too circumstantial" as far as versioning

support is concerned and added that some problems (e. g. going back to old versions,

branching) just could not be solved.

• When comparing baselines, all 2 participants first tried to view the last baseline, then

stated that they had to create a new baseline to compare the existing one to the current

state of the project.

 82

• When creating a new baseline, all 2 participants had minor difficulties and got

multiple error messages when configuring the directories for baseline creation because

of the sub-optimal user interface for directory selection. 1 participant stated that this

functionality is "not too easy to use". All 2 participants got a concurrency error

message and had to close the project to create the baseline.

• When comparing baselines, 1 participant stated that a colored view of differences

"would be great".

• All 2 participants stated that that TreqPro does not allow going back to old versions of

a requirement. 1 user stated that it is possible to go back manually, and that this

workaround would be very impractical for many changes and/or many versions.

• 1 participant stated that the comparison of project versions is implemented badly, but

acceptable ("zumutbar") for experienced RequisitePro users.

 83

5.2.6 Task 5 – Simple Query

5.2.6.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 3.00 0 % 2.67 22 % 2.00 0 %

t 1.67 69 % 1.00 0 % 1.50 47 %

c 100 % 0 % 100 % 0 % 100 % 0 %

Table 24: Quantitative results for Task 5

Figure 29: Average satisfaction (s), execution time (t) and completeness (c) for Task 5

5.2.6.2 Qualitative Feedback

TreqPro

• 1 participant stated that better filtering of results (e. g. by artifact types) is necessary.

Trac

• 1 participant stated that the search is easy, but better filtering of results (e. g. by

artifact types) is necessary.

RequisitePro

• 2 participants stated that a list of search results would be much better than jumping

between the results.

• 1 participant mentioned that filtering by type would be a good feature.

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 84

5.2.7 Task 6 – Project Template Configuration

5.2.7.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 3.00 0 % 2.25 47 %

t 2.33 66 % 2.50 85 %

c 100 % 0 % 0 % 0 % 100 % 0 %

Table 25: Quantitative results for Task 6

Figure 30: Average satisfaction (s), execution time (t) and completeness (c) for Task 6

5.2.7.2 Qualitative Feedback

TreqPro

• 1 participant stated that he would have expected the project template configuration in

Trac's admin area rather than in the TreqPro menu.

Trac

• All 3 participants concluded that Trac does not allow configuring a project template

and that therefore the task cannot be performed.

• 1 participant suggested using the Trac plugin PageTemplates to support entering

requirements in a predefined form.

• 2 participants suggested to use tickets instead of wiki pages because

o custom fields can be defined for tickets and

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 85

o tickets have a workflow,

even though Trac tickets do not support versioning. Both participants agreed that

tickets cannot be used if versioning or baselining is required.

Requisite Pro

• 1 participant had severe difficulties finding the project template configuration.

 86

5.2.8 Task 7 – Requirements Document

5.2.8.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 3.00 0 %

t 1.00 100 %

c 100 % 0 % 0 % 0 % 0 % 0 %

Table 26: Quantitative results for Task 7

Figure 31: Average satisfaction (s), execution time (t) and completeness (c) for Task 7

5.2.8.2 Qualitative Feedback

TreqPro

• It took 1 participant some time to find the document generator.

• 1 participant liked the quick and easy generation process.

• 1 participant suggested to add comprehensive configuration options:

o tabular or full-text view

o visibility and position of each attribute and relation

o traceability information

o free content

o multimedia content

o templates with placeholders

• The participants stated that the document could be used

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 87

o for negotiation with customers (2 participants)

o in reviews (2 participants)

o as an overview (1 participant)

o as an attachment to a software requirements specification (1 participant)

o as a specification for designers (1 participant)

Trac

• All 3 participants concluded that automated document generation is not possible with

Trac, unless a plug-in is used, e. g. the document generator by Alexander Wagner.

• 2 participants added that plain-text export of single wiki pages is possible with Trac.

Requisite Pro

• 1 participant did not know how to create a document.

• 1 participant stated that it is not easily possible with Requisite Pro, but described the

following workaround:

o For each requirement type:

� Create a view.

� Restrict visible fields.

� Select "File / Export to Word".

This workaround does not work together with the fields workaround described in task

1. Furthermore there is a bug that creates too many page breaks if there are many

columns, so that the resulting document is not usable. The participant added that the

resulting document must usually be edited extensively to be of any use.

• 1 participant mentioned the external tool Soda which can be used for document and

report generation.

 88

5.2.9 Task 8 – Semantic Tracing

5.2.9.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 2.00 50 % 1) 1)

t 6.67 57 % 1) 1)

c 92 % 16 % 25 % 0 % 0 % 0 %
1) s and t were not comparable, as only part of this task could be done with this tool.

Table 27: Quantitative results for Task 8

Figure 32: Average satisfaction (s), execution time (t) and completeness (c) for Task 8

5.2.9.2 Qualitative Feedback

TreqPro

• 2 participants were slightly confused by the controls in the artifact browser (filters

button does not disable filters when hidden, scrollbar almost hidden, cancel button far

at the bottom).

• 1 participant managed to create a relation, but never with the specified type (because

he mistook the graphical view relation type selection for the relation type selection for

new relations).

• 1 participant used the trace matrix to create the relation, 1 participant used both the

trace matrix and the target selection. The participant that tried both methods liked the

trace matrix better.

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 89

Trac

• All 3 participants could create bidirectional links manually. 1 participant used absolute

links that will break if the project's URL changes.

• All 3 participants concluded that Trac does not support semantic traces. 1 participant

demonstrated that basic semantics can be added as link text.

Requisite Pro

• All 2 participants concluded that Requisite Pro does not support semantic traces.

• No participant could come up with a workaround.

 90

5.2.10 Task 9 – Graphical Navigation

5.2.10.1 Quantitative Measures

 AM

TreqPro

CV

TreqPro

AM

Trac

CV

Trac

AM

RequisitePro

CV

RequisitePro

s 2.33 25 %

t 1.00 0 %

c 100 % 0 % 0 % 0 % 0 % 0 %

Table 28: Quantitative results for Task 9

Figure 33: Average satisfaction (s), execution time (t) and completeness (c) for Task 9

5.2.10.2 Qualitative Feedback

TreqPro

• 2 users stated (separate from their rating in the 'satisfaction' field) that they liked the

graphical navigation.

Trac

• 0 participants knew a possibility to get graphical navigation in Trac.

Requisite Pro

• 1 participant mentioned Requisite Pro's traceability tree (which has similar

functionality as the graphical navigation in TreqPro) as well as jumping back and forth

between requirements via the requirements' property windows.

0,00
0,50
1,00
1,50
2,00
2,50
3,00

s 0,00

5,00

10,00

15,00

20,00

t 0%

20%

40%

60%

80%

100%

c

 91

6 Discussion and
Further Work

In this chapter, I give an overview of the results and enhancements compared to existing

work. I summarize quantitative results and the improvements of the prototype compared to 2

existing tools in the measured quantities in section 6.1. After that, I give an overview of

qualitative results and the improvements identified in that field in 6.2. I line out possible

further work in section 6.3.

6.1 Quantitative Results

Requirements Managers use standard software (Word Processor, Spreadsheets) or specific

specialized tools for requirements management. As outlined in section 3, I have developed a

new concept to address major shortcomings of existing tools and implemented this concept in

the ReqM tool prototype TreqPro.

In the usability test with a set of common ReqM use cases, the prototype showed

considerable improvements compared to the two existing Siemens standard tools in all 3

measured parameters:

6.1.1 User Satisfaction (s)

The participant satisfaction was significantly greater for TreqPro than for the two existing

tools (+40 % compared to Trac, +61 % compared to Requisite Pro). For several tasks, less

experienced users were considerably more satisfied with the existing tools than more

experienced users. The greatest improvement in satisfaction could be reached in basic

requirements operations. Both existing tools showed similar satisfaction.

6.1.2 Execution Time (t)

The execution time was significantly smaller for TreqPro than for the two existing tools

(-34 % compared to Trac, -39 % compared to Requisite Pro). 3 of 5 compared tasks took the

participants only half the time (40 – 50 %) with TreqPro compared to the other tools, while 2

 92

compared tasks showed no significant change in execution time. The two existing tools

showed similar execution time.

6.1.3 Completeness (c)

With 99 %, the completeness was significantly greater for TreqPro than for the two existing

tools (+87 % compared to Trac with c = 53 % and +74 % compared to Requisite Pro

with c = 57 %). While almost all tasks could be completed with TreqPro, some of the tasks

could not be completed with the other tools because they do not provide the functionality:

• Project Template Configuration

• Document generation

• Semantic Tracing

• Graphical Navigation

6.2 Qualitative Results

Compared to existing tools, the new approach improved on the major shortcomings

traceability, versioning and tool integration.

The usability of the prototype for basic requirements operations acquired extraordinary

commendation. However, there is still room for improvement: The usability of display and

creation of traceability is not optimal yet. Drag & Drop support for the navigation would

make basic operations more intuitive.

On one hand, not all interviewed practitioners found full versioning support necessary. On

the other hand, some of the experts expressed their desire for workflow support in

requirements. This seems to depend largely on the target audience and a tool's "target project

size".

Comparison of requirements and comparison of whole projects, though only implemented

basically, clearly outperformed the comparison capabilities of the other tools.

 93

The results prove that the general approach of building the ReqM tool as a web application

fulfills user expectations in usability of the user interface, direct editing of requirements, and

consistent collaboration on ReqM.

Generally, the approach of graphical navigation in requirements is very promising. The

implementation included in the prototype is highly experimental and was only used for a

simple show-case of easy navigation of relations across multiple artifacts. While a few

frameworks for the navigation of graphs in web applications are available, considerable

development effort would be necessary for a stable solution. As the results show, there is a

high user acceptance of the graphical navigation. The impact of graphical navigation on

usability and productivity of ReqM tools should be subject to further investigation.

The prototype can generate basic requirements documents. In contrast to the existing tools,

it can generate a full specification. However, the prototype implementation is not configurable

in any way, which is an important feature stressed by several test participants. The experts

have proposed a templating system with individual configuration of each included element.

6.3 Further Work

From the usability test, a lot of feedback (defects and improvements) could be gained which is

valuable input for the further development of the prototype. The prototype is not suitable for

production use yet, but its concept proved to address the identified shortcomings. The great

reduction in time and the increase in user satisfaction suggest a promising improvement of

productivity when using an implementation of the concept in a production setting.

From a scientific point of view, I would suggest carrying out an evaluation with an extended

number of participants in a widened context spanning multiple organizations and tools to

learn more about the investigated aspects in comparison to other tools. Such an evaluation

would also display an increased significance compared to the current study.

For this study, the implementation of an improved prototype based on the qualitative

feedback gained through the usability tests would allow for even greater improvements

compared to the existing tools.

 94

From a practical point of view, it would be necessary to provide better integration with

development tools in order to achieve full traceability throughout the development process.

The Mylyn tool for example allows for integration of the Eclipse integrated development

environment with the Trac ticket system and could be adapted to work with TreqPro with

little effort. Improvement and further development of the prototype as an open-source

project could finally lead to an open-source ReqM tool usable in a production setting.

Further necessary improvements for production use include (1) the integration of multimedial

and arbitrary binary content, (2) the addition of workflows for better change management, (3)

a rule engine for flexible customizable configuration of conditions inside the requirements

model, (4) the implementation of suspect tracing, (5) full integration of the Trac permission

system, (6) configurable document generation including relations. An implementation of the

graphical navigation that goes beyond an experimental prototype would highly increase the

usability of the system.

Last, but not least, the performance of the system should be improved to allow for high

numbers of objects as encountered in typical projects.

 95

7 Conclusion
Requirements Engineering (RE) is the economically most critical subfield of software

development. Requirements Management tools help project managers and requirements

engineers collaborate on requirements and keep track of requirements changes. Open-source

tools are typically not inclined to limitations like high license and training costs, sophisticated

use, limited integration with third-party tools or limited extensibility. This explains the

general trend towards using open-source tools in software development. However, there are

only few open-source ReqM tools, they are in poor state of development, and they lack of

quality.

In this work, I have analyzed features of existing ReqM tools and discussed which features

should be included in such tools (RQ1). Using scientific literature and holding interviews with

ReqM experts, I have elaborated a comprehensive catalog of ReqM tool features, which I

have evaluated in a web survey at Siemens Austria. The catalog proved to contain 97 % of the

ReqM features considered important by the participating experts. The participants gave

remarkably high priority to usability of the ReqM tool.

I have worked out three specific, major shortcomings of existing ReqM tools: (1) Limited

versioning, (2) inadequate traceability support, and (3) strongly limited integration with other

tools. I have proposed a concept to address these shortcomings (RQ2) and implemented this

concept in the open-source ReqM tool prototype TreqPro. In a pilot study with 8 ReqM

experts at Siemens Austria I have compared the prototype with two existing tools (the open-

source solution Trac and the proprietary solution Requisite Pro) considering user satisfaction

(s), execution time (t), and completeness (c) when executing a set of 9 standard ReqM use

cases.

I have shown that the prototype displays considerable improvements in all 3 measured

parameters: Satisfaction could be improved by 40 % compared to Trac and by 61 % compared

to Requisite Pro. Execution time could be improved by 34 % compared to Trac and 39 %

compared to Requisite Pro. Completeness could be improved by 87 % compared to Trac and

74 % compared to Requisite Pro.

 96

The participants have given valuable qualitative feedback on the prototype which will be

useful for further development of the application. To affirm the results found in the pilot

study, I have proposed a broader investigation with multiple tools and an extended number of

participants.

 97

Appendix A: Catalog of ReqM Tool Features

A1 Setup, Customization, Administration and

Usability

A1.1 Custom Requirement Types

� Artifact types (e. g. requirement types) can be customized (e. g. there can be
requirements, stakeholder profiles, bug reports), see 0.

A1.2 User Administration
� Users with different permissions can be defined.
� Users can be organized in groups (like ‘project X’). The relationship type is m:n.
� Each group has a default role that new users have in this group.
� A role can have multiple permissions. The relationship type is m:n.
� Users can play roles (like ‘project manager’) in a certain group. The relationship type

is ternary, i. e. a user’s role can be different for every group (for example, user A can
be project manager in one group, but ordinary member in another).

� Permissions can be assigned to a role for objects based on a metadata attribute (e. g. to
all objects with the value “use case” for the attribute “requirement type”, or to all
objects with the value “new” for the attribute “state”).

� Permissions can be assigned to a role for objects in a path-based way (e. g.
directory/package/component etc., similar to path-based subversion authorization).

� Import of large amounts of user data from external sources is supported.
� Integration of external authentication and authorization mechanisms (LDAP …) is

supported.

A1.3 Usability
� Undo functionality is available.
� Search functionality is available.
� Drag & drop is available where appropriate.
� Shortcuts are available for often-used actions.
� Configurations on items in can be inherited in hierarchies, but overruled if necessary.

� Administration: Configurations (e. g. for process types etc.) can be duplicated and
reused.

� User: Attributes and Relations can be inherited (e. g. X «is-in-charge-of» Z, Y is
child of X, Y «is-in-charge-of» Z)

� State-of-the-art usability requirements have to followed, e. g. text box sizes.

A1.4 Adaptability and Extendibility of Tool Functio nalities
� The menu items can be customized.
� Plug-ins can extend functionality.
� Scripts and macros can automate tasks.

 98

A1.5 Online Help and Documentation
� An online help is available.
� Parts of the online help are available as context-sensitive help.
� Comprehensive tool documentation is available.
� Example projects are available.

A1.6 System Prerequisites
� Supported platforms and databases have to be specified exactly. (genau definieren)
� Memory, CPU, disk space necessary may not exceed capabilities of selected

architecture.
� The highest possible amount of requirements managed by the tool has to be specified.

A1.7 Installation and Administration
� There is an easy-to-use administration frontend.
� The administration frontend protects users from errors by validating input.

A1.8 Scalability, Concurrency and Distribution
� Many projects can be managed in parallel (i. e. the tool supports opening more than

one project at the same time).
� Users can work in these projects independently.
� Remote, concurrent, multi-user connections are supported.
� Concurrent editing of requirements is managed appropriately.
� AT LEAST ONE OF

� A rich client is available with full access to the functionality.
OR

� A web client is available with full access to the functionality.

A1.9 Partial reuse of Project Settings and Data
� Configurations can be copied from one project to another.
� Data can be copied from one project to another.

A2 Capturing, Editing and Managing

Requirements

A2.1 Flexible/Customizable Implementation of the desired
RE Process
The desired RE process can be modeled inside the tool as a process template. The RE process
defines the workflow and structure of the requirements data (requirements model).

� Workflows, Lifecycles, Artifact types, Associated Metadata types can be customized.
� Used Tools can be customized.

 99

A2.2 Reusability of Process Templates
� The RE process (including the requirements model) defined in one project can be

reused in another.
� The process remains adaptable for each project.
� Process templates can be duplicated and changed / built upon a master template.
� Process templates are versioned.

A2.3 Input and Import Methods for Requirements and
Related Artifacts
There are various activities which require tool support:

• Requirements elicitation methods:
o Workshops
o Interviews
o Questionnaires
o …

• Other activities affecting requirements:
o Bug Reporting
o Change Request-> activity
o …

All these activities have a source, which is either

• manual input from a stakeholder or
• automatically processed input from an existing artifact (which could also be an old

version of the same artifact).

All these activities have one or more resulting artifacts each having (generally spoken)

• attributes (e. g. title, content, reporter, priority, owner, etc.) and
• relations (e. g. «is-related-to», «refines», «is-responsible-for») with other artifacts.

Examples for resulting artifacts are requirements, bug reports, stakeholder profiles, test cases,
etc.

� Each resulting artifact is bidirectionally linked to its source (see traceability)
� Requirements elicitation methods are supported electronically (e. g. interview or

questionnaire participants fill out an electronic form, workshop participants discuss in
a forum, etc.).

� For the input data of each supported type of activity, adequate editors or adequate
parsers are provided (Requirements could be recognized using tags (“REQ”) created
by the user, structure predefinitions (Requirement Name, Description, Empty Line) or
keywords (“.. shall ..”). Requirements IDs can be extracted from the document); i. e.
the data can be entered into the system in a comfortable way.

o If data can be entered manually (e. g. bug reports, change requests, interview
answers), the forms for entering the data are configurable.

o If data is parsed automatically, multiple sources can be defined.

 100

o If data is parsed from external sources, the parsed entities can be selected
before import, e. g.: The system finds 24 requirements in 2 source documents.
The user chooses to import 21 and to discard 3.

o External documents (MS Office, etc.) can be used as sources. Ideally, there is a
way to use the external tool (e. g. a text processor) interactively to edit the
artifacts, e. g. by tagging certain paragraphs as requirements.

o Each newly entered artifact (e. g. requirement, change request, questionnaire
response, etc.) can have attributes and relations.

� Adequate views for each activity are supported; i. e. the acquired data can be browsed
in a comfortable, meaningful way.

� Checklists help users avoid and identify characteristic, frequent errors (e. g. during
review or interview/questionnaire preparation and execution).

� Response artifacts (e. g. questionnaire responses) can be analyzed automatically (e. g.
by counting of check boxes).

A2.4 Artifact Representation
Artifacts (e. g. requirements, use cases, change requests, stakeholder profiles) can have
attributes and relations, generally spoken. Attributes (e. g. “reporter”, “component”, “state”)
are fields of metadata that structure the information for one specific artifact. They can be used
as search criteria. Relations (e. g. «refines», «is-responsible-for») link different related
artifacts to each other. Traceability is achieved through relations.

� Attributes can be configured independently for each type of artifact (e. g. most
artifacts will have a text attribute, but a bug might also have a “severity” attribute).

� Attributes can have different types (String, Number, Boolean, …).
� Attributes can be mandatory or optional.
� Relations can be configured independently for each type of artifact.
� Relations have a name for each direction.
� Relations can be mandatory or optional.
� Artifacts and relations can be displayed as a graph.
� Artifacts and relations can be displayed as a hierarchical tree (relations: one at a time).
� Artifacts and relations can be displayed as a matrix.
� Artifacts may contain graphical models and mathematical expressions.
� Artifacts may contain arbitrary documents

A2.5 Artifact Categorization and Structuring
� Requirements can be categorized (e. g. by grouping of attributes or providing

hierarchy views).

A2.6 Artifact Identification
� Artifacts can be identified by numbers as well as by symbols.
� Artifacts can be identified automatically or manually.
� IDs are unique across projects.
� IDs contain a project identifier.

 101

A2.7 Artifact Reuse
� Artifacts can be transferred into other projects with few interactions.

A2.8 Artifact Query System
� Artifacts can be queried according to certain criteria (e. g. parts of attribute values,

relations)
� Query results can be filtered according to these criteria.
� Query results can be sorted according to these criteria.

� A set of customizable, predefined queries is available.
� Ad-hoc (i. e. new, not predefined) queries are supported.

A2.9 Validation Support
� Checklists support the user for checking various criteria e. g.

� correctness
� completeness
� consistency
� verification
� comprehensibility
� clarity
� traceability
� modifiability

� The requirement description can be compared with a linguistic pattern (e. g.: “body
must match 'The system shall .*'”).

A2.10 Artifact Prioritization Methods
� Artifacts (e. g. requirements) can be prioritized via assignment of a priority attribute.
� Artifacts can be prioritized via drag & drop.

A2.11 Description of Domain-Specific Terms
For the collection and clarification of domain-specific terms,

� AT LEAST ONE OF
� A glossary or domain knowledge database is available.

OR

� Links to the relevant information are automatically created on domain-
specific terms.

A2.12 Groupware Functionality
� Discussion forums are available.
� Wikis are available.
� Votings are available.

� Multiple stakeholders can assign a field value (e. g. priority) to each artifact (e. g.
requirement).

 102

� An overall result is aggregated automatically.
� Statistical values (mean, standard deviation ...) are available.

� Information can be structured to get an overview over related topics (e. g. categories,
tags …)

A2.13 Journal Functionality
� Journal entries automatically create an overview on actions in the environment (who,

when, what).
� The journal can be exported as a report.

A2.14 Modeling
� Multiple aspects of the desired system can be modeled in the tool (e. g. with UML or

similar).
� Models created with the tool can be included in artifacts to help understand the

requirements described there.
� Models can be linked (allows for reuse) to the artifacts.
� Models can be embedded in the artifacts.

A2.15 Notification on Requirements Change
� The owner / reporter of an artifact can be notified on change or state transition of the

artifact.
� The owner can also be notified if related artifacts change, i. e. if any relation is

“suspect”, see 0.

A2.16 Offline Editing of Artifacts.
Artifacts can be locked and edited offline. After merging the changes, the artifacts are
unlocked automatically.

A3 Configuration Management Aspects

A3.1 Configurable Change Management Process
Depending on what processes are used, requirements may not be modified arbitrarily at all
times. For example, the creator of a requirement might want to edit it to correct errors, but
others should not be able to modify the requirement without formally issuing a change
request.

It is quite common to allow “free” editing of requirements up to a certain date, when the
features are “frozen” in a specification document and contracts are signed. All subsequent
changes (not only to requirements, but also to other types of artifacts) have to pass the change
management process.

 103

When a requirement is changed, its relations to other requirements can be regarded as
‘suspect’, as the related requirements have to be validated / verified.

� All parts of the change process (like states and roles) can be configured.

A3.2 Artifact Versions and Branches
� Artifacts are versioned.
� Versions have a unique identifier.
� Multiple versions of an artifact can exist in parallel (branching).
� The tool supports working on different branches (e. g. with different databases).

A3.3 Artifact Baselines
� The state (including attributes and relations) of a certain set of artifacts in specific

versions can be frozen (baselining).

A3.4 Comparison of Versions
� Different versions of artifacts can be compared.
� Deltas between these versions can be identified (e. g. through side-by-side displaying

and highlighting).
� Requirements change packages can be identified.

A3.5 History of Artifacts
� The history of all artifacts can be retrieved.
� Creator and creation date can be retrieved for all artifacts.
� State transitions can be retrieved for all artifacts.

A4 Traceability of Requirements

A4.1 Traceability between Requirements and other
Artifacts

Traceability between requirements allows for completeness of information about the creation
of a requirement by linking to other artifacts that were included in the elicitation process. It
supports change impact analysis, requirements validation, compliance verification, and
regression test selection.

Basically, each artifact that is related to a requirement should be traceable to the other related
artifacts. Each trace link should be available bi-directionally:

� Requirements can be traced to
� other requirements (e. g. traces between functional and relevant non-functional

requirements)

 104

� interviews
� stakeholders
� questionnaires
� questionnaire respondents
� workshop documents
� stakeholders (interviews, workshop documents)
� change requests
� review protocols (to identify who has checked a requirement at what date/time
� system design components (in order to understand which design components

contain which requirements)
� the source code
(and vice versa)

� Interview documents can be traced back to stakeholders (and vice versa).
� Questionnaire responses can be traced back to respondents (and vice versa).
� System design components can be traced to the source code (in order to understand

which parts of source code implement which system design components) (and vice
versa).

A4.2 Precision of Traces into Source Code
� Traces can be created at different precision levels.
� Traces can be done at method level.
� Traces can be done at class level.
� Traces can be done at component level.
� Traces can be done at changeset level.

A4.3 Change Impact Analysis
� The traces can be followed from one artifact to another.
� Inconsistencies between different artifacts can be identified.
� For a changing artifact, all traces from the changing artifact to related artifacts, are

highlighted as suspect to indicate that the traced-to artifacts have to be checked for
necessary adaptations.

� After the change has been implemented in these artifacts, the traces can be set on valid
again manually.

A4.4 Support of Comprehensibility of a Trace
� It is possible to assign names to trace types, e. g. “tests” / “is tested by” for better

comprehensibility of traces.

A4.5 M:N Relationships
� M:N traces are allowed (e. g. one requirement to many classes, or one class to many

requirements).

 105

A4.6 Manual Trace Generation
� Traces can be created manually by dragging from one artifact to another artifact.
� Traces can be created manually be adding a target artifact into a list in the source

artifact.
� Traces can be created automatically by inserting a trace in a traceability matrix.

A4.7 Automated Trace Generation and Bidirectionality
Traces can be created automatically to reduce effort.

� AT LEAST ONE OF
� Automatic trace generation is done by parsing inserted requirements keys in source

code files.
 OR

� Automatic trace generation is done by comparing text patterns in the requirements
description.

� Bidirectionality is established automatically (by also creating the B-A reverse trace for
each A-B trace created manually or automatically).

A4.8 Mandatory vs. Optional Traces
� A tracing policy allows the user to configure the necessity of traces.
� The creation of mandatory traces is enforced.

A4.9 Trace Representation
� Traces can be represented as a traceability graph with nodes and edges.
� Traces can be represented as a tree structure, e. g. with one requirement as the parent

and related requirements as its children.
� Traces can be represented in traceability matrices.
� Starting from a single requirement, all related artifacts (other requirements, test cases,

source code) can be accessed.

A4.10 Traceability across Tool Borders
Most RE tools offer adequate traceability between objects managed inside the tool, but poor,
mostly unidirectional traceability regarding external sources (e. g. RM tools, modeling tools,
IDEs, test management tools). Better, bidirectional traceability could be established

• by offering a good interface to other tools (e. g. a simple way to access each artifact
managed inside the tool, like a URL in a web-based tool) as well as

• by offering user-defined, searchable fields and / or links to access artifacts managed in
other tools.

� There is a simple way to access each artifact managed inside the tool and link to it.
� Each type of artifact managed inside the tool can have user-defined fields.
� There is a simple way to search and filter for specific values of user-defined fields.

 106

� There is a synchronization mechanism that highlights changes each tool if something
changes in the other.

A4.11 Traceability between Projects
� Artifacts in one project can be related to artifacts in a different project.

A5 Document and Report Generation

A5.1 Report Generation
Reporting is useful for gaining information about the project status, presenting results to
stakeholders and generating specification documents. Some commonly used reports are:

• Traceability Reports: These reports are used to provide an overview about inter-

artifact dependencies.
• Diff Reports: These reports are used to compare two artifacts to ease verification of

the changes.
• Requirements Coverage Reports: These reports are used to assess the coverage of

requirements with test cases.
• Requirements Documents: These documents consist of a structured overview of

requirements.

It is often important to allow reporting across tool borders, i. e. to access external data sources
from the reporting tool.

� EITHER
� The tool contains adequate reporting functionality.

OR

� The tool provides an adequate interface to a reporting solution (e. g. BIRT,
SODA).

� Various types of reports about the requirements can be generated (requirements per
stakeholders, requirements which satisfy defined criteria, reports about traces /
suspected links, status report about the compliance of requirements).

� The data (attributes, relations) included in the report can be freely chosen:
� The data can be filtered by specific attribute values like ‘priority == high’ or

relations like ‘«is-responsible» for requirement X’.
� The artifacts to display can be selected in the user interface (e. g. a subset of all

requirements).
� Reports can contain statistical values (sum, average …) and simple calculations to

provide metrics for the project status.

A5.2 WYSIWYG Editor
� A WYSIWYG editor allows for preview on the generated reports.

 107

A5.3 Charts and Graphs in Reports
� Artifact data can be displayed in diagrams, graphs, and data charts.
� The graphical output can be sorted and filtered, see 0.

A5.4 Report Formatting
� The layout can be defined using templates specifying pages, headers, footers …
� Templates can be imported from an external source in addition to defining them in the

tool.

A5.5 Report Document Formats
� Reports and documents can be created in PDF format.
� Reports and documents can be created as MS Office documents.

A6 Interfaces to other Tools

A6.1 Integration with Development Environments
The integration of IDEs allows for direct linking of source code to artifacts. The RE tool must
provide an adequate interface.

� Development Environments (Eclipse, NetBeans, VisualStudio …) is/can be integrated.

A6.2 Integration with Configuration Management Tools /
Systems

� A Source Management tool (Subversion, CVS, SourceSafe ...) is/can be integrated.

A6.3 Integration with Test Management Tools / Systems
� EITHER

� The tool provides functionality for test case management.
 OR

� A TM tool is integrated to manage test cases and link them to requirements.

A6.4 Long Term Archiving Functionality
� Environment, resources and documents can be archived in a format that allows

reactivation of the project or at least retrieval of relevant information.

A6.5 Interfaces
� The database is accessible via ODBC.
� Data exchange via XML is possible.

 108

A7 Costs

A7.1 Adequate Cost-benefit Ratio
The cost-benefit ratio (considering license and training costs) of the tool must be acceptable.

 109

List of Tables
Table 1: EU-1 Select a requirements project ... 29

Table 2: EU-2 Create a new requirement .. 30

Table 3: EU-3 Change a requirement .. 31

Table 4: EU-4 Establish traceability for an existing requirement ... 31

Table 5: EU-5 Query, filter and sort requirements according to certain criteria ... 32

Table 6: EU-6 Add a new field to an artifact type .. 33

Table 7: EU-7 Generate a requirements document ... 34

Table 8: EU-8 Compare two project versions ... 34

Table 9: EU-9 Compare two artifact versions ... 35

Table 10: EU-10 Graphical navigation ... 35

Table 11: Modules of the user interface .. 40

Table 12: Feature matrix of the 3 tools compared in the evaluation ... 43

Table 13: Factors affecting the evaluation of the feature catalog .. 45

Table 14: Factors affecting the evaluation of the prototype .. 50

Table 15: Usability test participant overview .. 55

Table 16: Recipients, participants and response rate... 61

Table 17: Classification and categories of tool features listed by participants .. 62

Table 18: Feature Coverage .. 64

Table 19: Summary of quantitative results.. 66

Table 20: Quantitative results for Task 1 .. 73

Table 21: Quantitative results for Task 2 .. 76

Table 22: Quantitative results for Task 3 .. 78

Table 23: Quantitative results for Task 4 .. 80

Table 24: Quantitative results for Task 5 .. 83

Table 25: Quantitative results for Task 6 .. 84

Table 26: Quantitative results for Task 7 .. 86

Table 27: Quantitative results for Task 8 .. 88

Table 28: Quantitative results for Task 9 .. 90

 110

List of Figures
Figure 1: Simplified overview of approach to improved ReqM tool support ... 20

Figure 2: Abstraction of requirements to artifacts with attributes and relations ... 23

Figure 3: Process-driven generation of traceability [Spa05] (figure derived from original by [Rei09]) 25

Figure 4: Linear versioning (1) vs. extended versioning with branching (2) .. 27

Figure 5: A project version can be a working version (modifiable) or a baseline (read-only) 28

Figure 6: User interface concept showing partition of the main screen that allows viewing (1), editing (2),

managing relations (3), and accessing the history (4) of the currently selected artefact. 36

Figure 7: The view of a selected artifact displays all its attributes. ... 36

Figure 8: The application allows direct editing of each attribute and multi-line editing with wiki syntax. 37

Figure 9: The exact changes between two arbitrary versions are clearly highlighted. .. 37

Figure 10: The experimental graphical navigation allows viewing relations across multiple artifacts. 37

Figure 11: TreqPro software stack. ... 38

Figure 12: Architectural Overview ... 39

Figure 13: Excerpt of the TreqPro object model ... 40

Figure 14: Excerpt of the TreqPro database schema ... 41

Figure 15: The features listed in survey responses are classified and the catalog’s coverage of these features is

calculated. ... 46

Figure 16: Introductory screen of the web survey ... 48

Figure 17: Only one question (with room for remarks) is posed in the survey. .. 49

Figure 18: The organizer prepares a personal VM and a personal survey form for each participant. The

participants are divided into 3 groups, and each group executes the same tasks with one of 3 tools.

 .. 51

Figure 19: Overview of artifact generation for the usability test .. 58

Figure 20: Classification of tool features by new fine-grained categories .. 63

Figure 21: Classification of tool features by coarse-grained classes from feature catalog (x-axis) and new fine-

grained categories (colors) .. 63

Figure 22: Average satisfaction (s) for each tool and task .. 67

Figure 23: Average execution time (t) for each tool and task ... 68

Figure 24: Average completeness (c) for each tool and task. .. 69

Figure 25: Average satisfaction (s), execution time (t) and completeness (c) for Task 1 73

Figure 26: Average satisfaction (s), execution time (t) and completeness (c) for Task 2 76

Figure 27: Average satisfaction (s), execution time (t) and completeness (c) for Task 3 78

Figure 28: Average satisfaction (s), execution time (t) and completeness (c) for Task 4 80

Figure 29: Average satisfaction (s), execution time (t) and completeness (c) for Task 5 83

Figure 30: Average satisfaction (s), execution time (t) and completeness (c) for Task 6 84

Figure 31: Average satisfaction (s), execution time (t) and completeness (c) for Task 7 86

Figure 32: Average satisfaction (s), execution time (t) and completeness (c) for Task 8 88

Figure 33: Average satisfaction (s), execution time (t) and completeness (c) for Task 9 90

 111

References

[Bor10] Borland. CaliberRM Homepage. Available at:

http://www.borland.com/us/products/caliber/index.html.

Accessed August 25, 2010.

[Fin00] Finkelstein A, Emmerich W. The future of requirements management tools.

Paper presented at: in Quirchmayr, G., Wagner R., and Wimmer M. (Eds.)

(2000): Information Systems in Public Administration and Law. Österreichische

Computer Gesellschaft, 2000.

[For04] Barnett L. Applying Open Source Processes In Corporate Development

Organizations (Forrester, Inc.). Best Practices. May 2004.

[For06] Schwaber C. The Changing Face Of Application Lifecycle Management

(Forrester, Inc.). August 2006.

[Fow03] Fowler M. Active Record. Patterns of enterprise application architecture:

Addison-Wesley; 2003:160ff.

[Gee10] Geensoft. Reqtify Homepage. Available at: http://www.geensoft.com/.

[Got94] Gotel OCZ, Finkelstein CW. An analysis of the requirements traceability

problem. Paper presented at: Requirements Engineering, 1994., Proceedings of

the First International Conference on, 1994.

[Hei06] Heindl M, Reinisch F, Biffl S, Egyed A. Value-Based Selection of Requirements

Engineering Tool Support. Paper presented at: EUROMICRO '06: Proceedings

of the 32nd EUROMICRO Conference on Software Engineering and Advanced

Applications, 2006.

[Hei10] Heise Mobile. Press Report "Android is 2nd in Wireless Operating Systems"

(German). Available at:

http://www.heise.de/newsticker/meldung/Google-Android-auf-Platz-2-der-

Wireless-Betriebssysteme-1077483.html. Accessed September 16, 2010.

[Hof04] Hoffmann M, Kuhn N, Weber M, Bittner M. Requirements for requirements

management tools. Paper presented at: Requirements Engineering Conference,

2004. Proceedings. 12th IEEE International, 2004.

[IBM10] IBM. Rational Requisite Pro Homepage. Available at:

 112

http://www.ibm.com/software/awdtools/reqpro/. Accessed August 25, 2010.

[IEE94] IEEE recommended practice for software requirements specifications. Paper

presented at: IEEE Std 830-1993, 1994.

[INC10] INCOSE Tool Survey. Available at:

http://www.incose.org/ProductsPubs/products/rmsurvey.aspx.

Accessed August 12, 2010.

[Kot98] Kotonya, Sommerville. Requirements Engineering. West Sussex: Wiley; 1998.

[Kre06] Kretzl B. Diplomarbeit

[Lai09] Lai E. Linux's share of netbooks surging, not sagging, says analyst -

computerworld.com. November 4, 2009. Available at:

http://www.computerworld.com/s/article/9140343/Linux_s_share_of_netbooks_

surging_not_sagging_says_analyst. Accessed September 16, 2010.

[Lef03] Leffingwell, Widrig. Managing Software Requirements - Second Edition - A Use

Case Approach. Boston, MA 02116: Pearson Education, Inc.; 2003.

[Lud10] Ludwig Consulting Services L. Requirements Management Tools. Managing

Requirements. Available at:

http://www.jiludwig.com/Requirements_Management_Tools.html.

Accessed August 13, 2010.

[MKS10] MKS. DOORs Homepage. Available at:

http://www.mks.com/solutions/discipline/rm/requirements-management.

Accessed August 26, 2010.

[NAS10] Market NS. Directory of Requirements Management Software. Available at:

http://software.nasdaq.com/requirements-management-software.

Accessed August 12, 1010.

[Net10] Netcraft Ltd. January 2010 Web Server Survey. Available at:

http://news.netcraft.com/archives/2010/01/. Accessed September 16, 2010.

[Ost10] SourceForge Project Page for OSRMT. Available at:

http://sourceforge.net/projects/osrmt/. Accessed August 12, 2010.

[Pyt10] Python. Available at: http://www.python.org/. Accessed August 12, 2010.

[Ram01] Ramesh B, Jarke M. Toward Reference Models for Requirements Traceability.

IEEE Trans. Softw. Eng.. 2001:58-93.

[Ram97] Ramesh B, Stubbs C, Powers T, Edwards M. Requirements traceability: Theory

 113

and practice. Ann. Softw. Eng.. 1997;3:397-415.

[Red10] Lang JP. Redmine Project Website. Available at:

http://www.redmine.org/. Accessed August 12, 2010.

[Rei09] Reinisch F. Presentation at Subconf on Oct 29, 2009

[Som97] Sommerville, Sawyer. Requirements Engineering - A Good Practice Guide.

West Sussex: Wiley; 1997.

[Spa05] Spanoudakis G, Zisman A. Software Traceability: A Roadmap. Handbook of

Software Engineering and Knowledge Engineering. 2005;Vol. III: Recent

Advancements.

[Spa10] Systems S. Enterprise Architect Homepage. Available at:

http://www.sparxsystems.com/products/ea/index.html.

Accessed August 26, 2010.

[Sub10] CollabNet. Subversion Home Page. Available at:

http://subversion.tigris.org/. Accessed August 26, 2010.

[Tot07] Totz G. Pluginbasiertes Requirements-Tracing in der Softwareentwicklung

[Tra10] Trac Project Website (Edgewall Software). Available at:

http://trac.edgewall.org/. Accessed August 12, 2010.

[Uen08] Uenalan O, Riegel N, Weber S, Doerr J. Using enhanced wiki-based solutions

for managing requirements. Paper presented at: Managing Requirements

Knowledge. MARK '08., 2008.

[Vis02] Freimut B, Punter T, Biffl S, Ciolkowski M. State-of-the-Art in Empirical

Studies: Virtuelles Software Engineering Kompetenzzentrum (VISEK); 2002.

ViSEK/007/E.

[Wik10b] Wikipedia-En. Usage share of operating systems. Available at:

http://en.wikipedia.org/w/index.php?title=Usage_share_of_operating_systems&

oldid=352719161. Accessed March 29, 2010.

