
������������	
��
������������

��������	
��

���
�������������������������������

���������������

��������������������

��

������������� �

�������
����
��������������!"#"$%%

������
&����'��()����(�����������������������*��������'��+����

	������
	������,��-�� .*���.�� (.���/�.0���.���.�����.����.���.� �. ��.����(���	�((�
���1�����-���/�.0���.����.���.�����.�����������2��,��

+���2�%3.45.64%% �� ��

7*���������(��8��(�����,��9 7*���������(��	������,��9

�����������*��������'��+���
�0%434�+����:�;����/�����%5�:����.�<350%0#==4%04�:�111.�1���.��.��

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract:

The UML is an industry-wide accepted modeling standard that offers 13
diagram types using simple notation. Although there is broad tool support
many of these tools are hard to use. They suffer from non-optimal designed
user interfaces that rely on hard decipherable icons, use of pop-up windows,
nested menus and tab-panes, etc. An alternative to plain graphical metaphors
is text-based user input. The open-source tool UMLet integrates the text-based
approach into modeling by creating elements and even entire diagrams by the
use of simple grammar.

This work compares the efficiency of traditional graphical user interfaces
and UMLet’s text-based approach in the context of explorative UML modeling
using a set of representative use-cases that are essential to UML modeling. The
evaluation features a simplified method for quantitative measuring of user in-
terfaces focused on the amount of user interactions needed to fulfill a task.

UMLet is a lightweight UML sketching tool. Its development is focused on
a simple user interface. Fast diagram creation at the speed of paper modeling
but with the advantage of more flexibility when altering the design.

UMLet’s architecture is design-pattern based. Since it is provided as an open
source tool, well known source code constructs assist and ease the contribution
of source code by users.

An unobtrusive user interface is achieved by avoiding pop-up windows. The
information used to specify the entities is not spread across several windows but
can be entered at a single place. The text-based user interface increases inter-
action speed when creating diagrams. The modifications are instantly assigned
to the selected element where the changes take effect just in time. UMLet even
provides entirely grammar empowered diagram types. Sequence diagrams, ac-
tivity diagrams, and a number of smaller elements can be built using a simple
yet powerful syntax.

A key feature of UMLet is its expandable modular structure accomplished
with a built-in Java compiler. Users may implement their custom elements on
the fly using Java. The tool provides a simple template element explaining all
necessary components that can be easily edited. Sharing the self-created ele-
ments is as easy as providing the Java source code files.

Support for a broad variety of notations is provided by the above-mentioned
custom elements feature and the fact that UMLet comes with a nearly full-
featured UML support.

1

Kurzfassung:

UML ist ein industrieweit anerkannter Modellieungs-Standard mit 13 Dia-
grammtypen und einfacher Notation. Obwohl es breite Tool-Unterstützung gibt,
sind viele dieser Tools nur schwer bedienbar. Sie leiden unter nicht optimal
entworfenen Benutzeroberflächen mit schwer entzifferbaren Icons, Pop-Up Fen-
stern, verschachtelten Menüs und Tab-Panes, etc. Text-basierte Benutzereinga-
be bietet eine Alternative zu bekannten grafischen Metaphern. Das open-source
Tool UMLet integriert den text-basierten Ansatz beim Modellieren, um Elemen-
te und Diagramme mittels einfacher Grammatik zu erstellen.

Diese Arbeit vergleicht die Effizienz herkömmlicher GUIs mit UMLets text-
basiertem Interface im Kontext des explorativen UML Modellierens auf Basis
repräsentativer Use-Cases. Die Evaluierung beruht auf einer vereinfachten Me-
thode zur quantifizierten Messung von Benutzeroberflächen. Sie betrachtet die
Anzahl der durch den Nutzer erforderlichen Interaktionen zur Erfüllung einer
Aufgabe.

UMLet ist ein leichtgewichtiges Werkzeug zur UML Modellierung. Der Fokus
liegt auf einem einfachen und verständlichen Bedienungskonzept. Die Erstellung
von Diagrammen so einfach und schnell wie mit Papier und Bleistift, aber mit
den Vorteilen bei der Modifikation und Verfeinerung am Bildschirm.

Da UMLet ein quelloffenes Projekt ist, basiert die Architektur auf Design-
Patterns um die Verständlichkeit zur erhöhen und Beiträge aus der Community
zu fördern.

Das unaufdringliche Bedienungskonzept entsteht unter anderem durch den
Verzicht auf Pop-Up Fenster. Die Information zur Spezifizierung von Entitäten
ist nicht über mehrere Fenster verteilt, sondern an einem einzelnen Ort kon-
zentriert. Ein text-basiertes Interface erhöht die Bedienungsgeschwindigkeit bei
der Erstellung von Diagrammen. Einfache aber zugleich mächtige Syntax er-
laubt die Modifikation einzelner Elemente, und sogar ganzer Diagrammtypen,
wie beispielsweise Sequenzdiagramme oder Activity-Diagramme.

Eines der Schlüsselfeatures UMLets ist seine erweiterbare, modulare Struk-
tur mithilfe eines integrierten Java-Compilers. Die Benutzer können anhand
eines einfachen Templates, das bereits alle notwendige Basisfunktionalität auf-
weist, einfach und schnell mittels Java ihre eigenen Elemente erstellen. Diese
selbst erstellten Elemente können auch einfach an weitere Benutzer verteilt wer-
den, da sie einfache Java-Quelldateien sind.

UMLet bietet eine fast komplette Unterstützung für UML 2.0 und ist nicht
zuletzt durch die Erweiterbarkeit mit Hilfe der genannten Custom-Elements an
die jeweiligen Anforderungen leicht anpassbar.

2

Eidesstattliche Erklärung:

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass
ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –,
die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent-
nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Wien, 14.03.2011

Ludwig Meyer

3

4

Contents

1 Introduction 9

2 UML and Design Patterns 15

2.1 Visual modeling with the UML 15

2.1.1 Modeling with the UML 18

2.1.2 Diagrams . 19

2.1.3 Views . 45

2.1.4 Summary . 46

2.2 Design patterns with UMLet . 47

2.2.1 Design patterns used within UMLet 50

2.2.2 More design patterns . 57

2.2.3 Antipatterns . 60

2.2.4 Summary . 61

3 Requirements for lightweight UML tools 63

3.1 Easy to use . 63

3.2 Easy to learn . 64

3.3 Easy to deploy . 64

3.4 Relaxed standards restrictions . 64

4 Related work 67

4.1 Generic . 67

4.2 Application areas . 67

4.3 Tools . 68

4.4 User interface design . 68

4.5 Lightweight UML tools and text-based input 69

4.5.1 ArgoUML . 69

4.5.2 Violet . 69

4.5.3 Dia . 71

4.5.4 UML Pad . 72

4.5.5 Visual Paradigm . 72

4.5.6 Rational Rose . 73

5

5 UMLet’s agile approach 75

5.1 Simple standard file format . 76
5.2 Independence from platforms and operating systems 79
5.3 Duality: Application / Plug-in 81
5.4 Transparency . 82
5.5 Easy expandability (custom palettes and dynamic custom elements) 83
5.6 Unobtrusiveness . 85
5.7 Fast diagram creation . 85
5.8 Interoperability . 88
5.9 Educational use . 88
5.10 Trade-offs . 89
5.11 Summary . 89

6 Comparison: UMLet versus Rational Rose 91

6.1 Usability . 91
6.1.1 Element selection . 91
6.1.2 Diagram creation . 92
6.1.3 Model types . 93
6.1.4 Deleting elements . 93
6.1.5 Duplicating elements . 95
6.1.6 More issues . 95
6.1.7 Summary . 96

6.2 Evaluation . 96
6.3 Hypothesis . 97
6.4 Evaluated UML tools . 97

6.4.1 Rational Rose . 97
6.4.2 UMLet: Lightweight UML modeling 99

6.5 UML tool usage . 102
6.6 Testing scenarios and rules . 103
6.7 Discussion . 104
6.8 Conclusion and further research 107
6.9 Appendix: Use case description 107

6.9.1 Create a simple class . 107
6.9.2 Extend a simple class with attributes 108
6.9.3 Extend a simple class with operations 108
6.9.4 Modify an attribute’s characteristics 108
6.9.5 Duplicate a class . 109
6.9.6 Add an aggregation to a two-class diagram 110
6.9.7 Modify an aggregation to a generalization 110
6.9.8 Change the direction of a generalization 110
6.9.9 Delete one class . 111
6.9.10 Undo class delete . 111
6.9.11 Create a simple class diagram 111
6.9.12 Create a simple sequence diagram 114
6.9.13 Change the message direction 115
6.9.14 Change the message flavor 116

6

6.9.15 Add a message to the sequence diagram 117
6.9.16 Create a sequence diagram 117

7 Discussion 121

7.1 Summary . 121
7.2 Results . 123
7.3 Development progress of UML tools 126
7.4 End user experience . 126
7.5 A critical look at UMLet’s present problems 128
7.6 UMLet’s future . 128

8 Summary and Future Work 129

8.1 Summary . 129
8.1.1 UML . 129
8.1.2 Design Patterns . 129
8.1.3 Requirements for lightweight UML tools 130
8.1.4 UMLet’s agile approach 130
8.1.5 Competitors and Features 130
8.1.6 Quantitative Evaluation 131

8.2 Future Work . 131

9 Appendix 133

9.1 Template file for custom elements 133

List of Figures 137

Bibliography 139

7

8

Chapter 1

Introduction

Models are essential to the understanding of systems and processes. The UML
is a widely accepted modeling standard offering 13 diagram types. Although
the UML offers simple notation many tools are difficult to use. They rely on
conventional user interface design with hard decipherable icons, use of modal
dialog pop-ups, nested menus and tab-panes, etc.

Text-based input bears an alternative to plain graphical metaphors. UMLet
integrates the text-based approach into UML modeling by creating elements
and even entire diagrams by the use of simple grammar. This work compares
the efficiency of traditional graphical user interfaces and UMLet’s text-based
approach in the context of explorative UML sketching.

The research hypothesis is that text-based user input can reduce the number
of user interactions with a graphical user interface, increase the speed of user
input and lead to a more efficient user interface. Chapter 6 explains the moti-
vation, presents the context and setup of the evaluation to prove the hypothesis.

UML and design patterns

The Unified Modeling Language (UML) has become an accepted standard no-
tation in software engineering. UML is standardized and further developed by
the UML Partners consortium formed by well-known companies. It provides
a graphical notation and at the moment it features 13 different diagram types
suitable for most phases of the design process of software development from
requirements engineering to deployment.

Chapter two is divided into two parts. Part one gives an introduction to
visual modeling with the UML, its diagrams, and elements. Part two gives an
overview of common design patterns.
In the development of UMLet design patterns play a significant role. Since the
tool is open source all users are invited to modify UMLet to match their spe-

9

cial needs and contribute their ideas to the project. To help people understand
UMLet’s structure and internals, design patterns are used where applicable and
reasonable.

The chapter’s part on design patterns introduces the so called GOF patterns
as they are utilized in UMLet. The other GOF patterns and the concept of anti
patterns are introduced shortly as well.

Requirements for lightweight modeling

Chapter three discusses the requirements of lightweight UML tools:

1. Easy to use: A well designed user interface is essential for all software
applications made for direct communication with humans.

2. Easy to learn: The design of the software and its workflows should be
easily understandable and usable.

3. Easy to deploy: When deploying a software tool to more than one work-
station and operating system, the process of software installation may be
critical. Using a software tool for educational processes requires simple
installation processes, especially when students are required to install the
software on their home computers.

4. Relaxed standards restrictions: Explorative sketching is the process of
creating not necessarily exact and complete diagrams. Tools that enforce
strict standards conformity slow down the design process and draw too
much attention to the software tool itself, than to the creation and devel-
opment progress.

Fowler [20] expresses his opinion about explorative sketching and strict and
detailed model creation:

“Almost all the time, my use of the UML is as sketches. I find
the UML sketches useful with forward and reverse engineering and in
both conceptual and software perspectives. I’m not a fan of detailed
forward-engineered blueprints; I believe that it’s too difficult to do
well and slows down a development effort. Blueprinting to a level of
subsystem interfaces is reasonable, but even then you should expect
to change those interfaces as developers implement the interactions
across the interface. The value of reverse-engineered blueprints is
dependent on how the tool works. If it’s used as a dynamic browser,
it can be very helpful; if it generates a large document, all it does is
kill trees.” [20, page 6]

10

Related work

Chapter 4 presents related work on the UML, the usage of UML, and UML
tools. It furthermore presents relevant work on alternative user interfaces as
well as suggestions to good user interface design, and the assessment of user
interfaces. Raskin’s [36] work on quantitative measuring methods on user in-
terfaces is the basis of chapter 6’s evaluation. An outline of UMLet’s direct
competitors completes this chapter.

Lightweight tools

An article on ZDNet.com summarizes some e-mails and memos of top Microsoft
executive Bill Gates and top level employee Ray Ozzie about the future chal-
lenges of the internet and discusses their competitors like Adobe, Google, Skype
and others. In one of the key statements Microsoft’s Chief Software Architect
Ray Ozzie points out the need of simplicity of software tools:

“’Developers needing tools and libraries to do their work just
search the Internet, download, develop and integrate, deploy, refine,’
Ozzie wrote. ’Speed, simplicity and loose coupling are paramount.’ ”
[‘Gates memo warns of ’disruptive’ changes’, 2005 ZDNet]1

UMLet is such a lightweight UML sketching tool. It has a simple user inter-
face avoiding pop-ups. The simplicity of its user interface makes it easy to use
and easy to learn, as stated above.
It features a simple standard file format using XML to ease the integration
into other tools. A simple XSL transformation might even generate source code
stubs from UMLet diagrams.

Having been developed using pure Java UMLet is independent from op-
erating systems and platforms. It is possible to deploy UMLet to Windows,
Unix/Linux, Apple, and all other platforms that have a Java runtime environ-
ment. It does not use any platform-specific features or need any configuration
settings.
UMLet may be used as a stand alone Java application and furthermore can be
integrated into the Eclipse software development environment as a plug-in. It
uses a transparent way of drawing to the display device making the development
independent from the actual output device.

Customizable palettes simplify UMLet’s usage. Rather than using tiny icons
UMLet’s palettes hold the graphical elements in their real size. This feature al-
lows the user to identify the elements directly because the palettes do not only
show the elements in their real size, but also their different occurrences and
example usages. Custom elements allow flexible element creation using Java
featuring a compiler at runtime. These custom elements may be shared easily

1http://www.zdnet.com.au/gates-memo-warns-of-disruptive-changes-139221468.htm

11

by distributing the Java source files.

Making UMLet interoperable with common publishing software, it offers to
export the diagrams to a variety of wide spread formats like EPS, PDF and
others.

Chapter 5 discusses UMLet’s design goals and solution approaches.

Educational use

Using software tools in education requires not only adequate licensing models
but there are some requirements that are crucial for a successful course. These
requirements cover issues like support for different publishing formats to import
the diagrams into text processing applications or publish them on web pages.

A critical issue is the simplicity of the tool’s user interfaces. Especially in ed-
ucation, software tools need to have simple user interfaces to allow the students
to concentrate on solving their exercises and not bother by complicated software.

Another question is the possibility to expand the tool to match the require-
ments of the course. UML tools often lag behind UML’s standardization process,
providing only a subset of the standard in force. UMLet offers the users the
possibility to add their custom elements and diagram types.

The heterogeneous computer system environments as they can be found in
schools and universities require the software tools to utilize simple ways of inte-
gration. The development of UMLet also addresses this issue requiring minimal
user intervention.

Tool comparison

Most UML tools use windows and pop-up dialogs with more or less difficult user
interfaces to modify the characteristics of their elements. UMLet approaches
this issue by introducing a text-based modification method using a single cen-
tralized attributes window. The elements feature a simple syntax. There are
even entire diagram types that may be created using a simple yet powerful
grammar.
Chapter 6 focuses on the comparison of UMLet and the market-leading tool in
software engineering Rational Rose. The comparison is based on a set of 16
representative use cases covering basic tasks and the more sophisticated chal-
lenges of creating UML diagrams. Both tools are evaluated and compared using
a simplified method for quantitative measuring of user interface design.

12

Results

Chapter 7 presents a summary and discussion of the evaluation’s results. It fur-
thermore takes a look at the development progress of UML tools, takes a critical
look at UMLet and its present problems and presents feedback and experiences
of users of UMLet.
Finally chapter 8 gives an overall summary and motivation for future work.

Note: Parts of this work have been previously published in this paper [4].

13

14

Chapter 2

UML and Design Patterns

2.1 Visual modeling with the UML

“Graphical design notations have been with us for a while. For
me, the primary value is in communication and understanding. A
good diagram can often help communicate ideas about a design, par-
ticularly when you want to avoid a lot of details. Diagrams can also
help you understand either a software system or a business process.
As part of a team trying to figure out something, diagrams both
help understanding and communicate that understanding through-
out a team. Although they aren’t, at least yet, a replacement for
textual programming languages, they are a helpful assistant.” [20,
page XXVI]

There are a number of people proposing different notations for visual model-
ing. The notations with the actual strongest support are Booch, OMT (Object
Modeling Technology) and UML.

1. The Booch Method: Grady Booch, the inventor of the graphical nota-
tion named after him, has written several books on the benefits of visual
modeling. At the time of developing this notation he worked at Rational
Software Corporation. This notation utilizes clouds for representing ob-
jects and a set of arrows for representing the relationships between these
objects.

2. Object Modeling Technology: OMT was developed by another famous
person in the field of software engineering: Dr. James Rumbaugh. OMT
uses simpler graphical objects than Booch for illustrating.

3. The Unified Modeling Language (UML): The UML notation was born by
the collaboration of Grady Booch, Dr. James Rumbaugh, Ivar Jacobson
working at Rational Software Corporation and others. While the UML

15

elements closely match those of Booch and OMT, UML integrates elements
from further notations.

“The consolidation of these three methods, that became the
UML, started in 1993. Each of the three amigos of UML began
to incorporate ideas from the other methodologies. Official unifica-
tion of the methodologies continued until late 1995, when version 0.8
of the Unified Method was introduced. The Unified Method was re-
fined and changed to the Unified Modeling Language in 1996. UML
1.0 was ratified and given to the Object Technology Group in 1997,
and many major software development companies began adopting
it. In 1997, OMG released UML 1.1 as an industry standard. Over
the past years, UML has evolved to incorporate new ideas such as
web-based systems and data modeling.” [8, page 12]

In 1996 the UML Partners consortium was formed by well known compa-
nies such as IBM, Microsoft, HP, Digital Equipment, Oracle and many others
participating in the further development and allowing the UML to develop inde-
pendently of any of the companies to form an industry-wide accepted standard.

A big advantage of the UML is the fact that it is available to everyone for
free without the hassle of fees and licenses. It is backed by a number of tools and
available books that were written without any fear of patent or license struggles.

UML is the acronym for Unified Modeling Language.

Unified: A common language is the base for communication. The Object
Management Group (OMG) and Rational Software Corporation (which was
meanwhile acquired by IBM in 2003), who initially created the UML, had to
merge the best and most accepted techniques and engineering practices, bring
the standards together and unify the approaches and procedures (see below).

Rumbaugh et. al. [38, page 9] state that the term unified also refers to the
unification across:

• historical methods and concepts,

• the development cycle meaning that the same concepts and notations may
be seamlessly utilized within the different stages of development without
the need for transformation from one technique to another,

• application domains stating that the UML is applicable for large scale
systems, real-time applications and other more or less specialized systems
as well

• implementation languages and platforms being independent from any spe-
cific programming language and runtime or development environments

16

• the development process intended to be the underlying modeling language
supporting an iterative and incremental development process

• the internal concepts providing seamless and coherent modeling concepts
easing the application of them on well-known and unknown situations.

Model: A model is a simplified representation of reality. The simplification is
done by applying valid abstractions. Models are used to illustrate a part of the
real world while eliminating unnecessary or too complex details. By managing
the used abstractions, models help handling the complexity of problems. A
definition:

“An approximation, representation or idealization of selected as-
pects of the structure, behavior, operation, or other characteristics
of a real-world process, concept, or system. Note: models may have
other models as components.” [27, page 133]

“[...] a useful technique is to abstract the system into a simplified
model, removing the minutia of the system in order to have a more
understandable version. The purpose of modeling is to simplify the
details down to an understandable ”essence” but to not oversimplify
to the point that the model does not adequately represent the real
system. In this way, we can think about the system without being
buried in the details.” [30, page 295]

Models combine semantics and presentation.

“The semantic aspect captures the meaning of the application as
a network of logical constructs, such as classes, associations, states,
use cases, and messages. The semantic model elements carry the
meaning of the model [...]. The semantic information is often called
the model. A semantic model has a syntactic structure, well formed-
ness rules, and execution dynamics. These parts are often described
separately (as in the UML definition models), but they are tightly
interrelated parts of a single coherent model.” [38, page 19]

“The visual presentation shows semantic information in a form
that can be seen, browsed, and edited by humans. Presentation
elements carry the visual presentation of the model – that is, they
show it in a form directly apprehensible by humans. They do not
add meaning, but they do organize the presentation to emphasize
the arrangement of the model in a usable way. They therefore guide
human understanding of a model.” [38, page 20]

Language: Without any form of language, it would not be possible to com-
municate at all. The key to successful communication is that all members who
want to communicate with each other, agree to a set of symbols and the set
of rules to qualify the semantics: the language. A language does not funda-
mentally have to be composed of written or spoken words. UML uses abstract

17

symbols like rectangles to define the limits of an entity like objects and arrows
to represent messages or relations between the participants of the system.

2.1.1 Modeling with the UML

The UML is based on the object-oriented approach and therefore it is not only
focused on software engineering problems but it is possible to describe problems
occurring in the subject areas of the real world business like finance and eco-
nomics. The sequence diagram is not only capable of showing the life-cycle of a
set of object instances in a piece of software, but it’s potential covers describing
complex financial transactions or stock exchange processes.

“The Unified Modeling Language (UML) is a general-purpose vi-
sual modeling language that is used to specify, visualize, construct,
and document the artifacts of a software system. It captures deci-
sions and understanding about systems that must be constructed.
It is used to understand, design, browse, configure, maintain, and
control information about such systems. It is intended for use with
all development methods, lifecycle stages, application domains, and
media. The modeling language is intended to unify past experience
about modeling techniques and to incorporate current software best
practices into a standard approach.” [38, page 3]

The object-oriented approach in software design provides solutions to model
entities (objects) and their relationships that may represent complex processes.
By applying these techniques to business modeling allows speaking in the same
language using the same terms. Achieving this allows using the same names in
the software design and the real world.

“For example, a ”thing,” such as a payroll withholding stub, de-
scribed in the business domain might relate to a “thing” that appears
again in the software domain – a payroll withholding record, for ex-
ample. If we can be fortunate enough to use the same techniques
or very similar techniques for both problem analysis and solution
design, the two activities can share these same work products.” [30,
page 61]

“One of the goals of business models is to develop a model of the
business that can be used to drive application development.” [30,
page 62]

“The use of object-oriented modeling for the purpose of business
engineering has generated a lot of interest. Object-oriented models
have proven to be an excellent method for modeling the business
processes in a company. A business process provides some value to
the customer of the business (or perhaps the customer’s customer).

18

When a company uses techniques such as Business Process Reengi-
neering (BPR) or Total Quality Management (TQM), the processes
are analyzed, improved, and implemented in the company. Using
an object-oriented modeling language to model and document the
processes also makes it easier to use these models when building the
information systems in the company.” [17, page 13]

UML itself is defined by a meta-model. A meta-model is a stereotype of
a model. It expresses how to describe models. The meta-model of the UML
describes the structure of UML models. The exact knowledge of UML’s meta-
model is only necessary if it is important to have exact models. For example
if the diagram is used for source code creation or other UML-based processing
like model verification.

“How much does the meta-model affect a user of the modeling
language? The answer depends mostly on the mode of usage. A
sketcher usually doesn’t care too much; a blueprinter should care
rather more. It’s vitally important to those who use the UML as
a programming language, as it defines the abstract syntax of that
language.” [20, page 9]

2.1.2 Diagrams

UML features 13 official classified diagram types that are grouped together
into diagrams that describe structural characteristics, behavioral description
and interaction specification, while the latter is a subgroup of the behavioral
diagrams.

“[...] the UML’s authors do not see diagrams as the central part
of the UML. As a result, the diagram types are not particularly
rigid. Often, you can legally use elements from one diagram type
on another diagram. The UML standard indicates that certain ele-
ments are typically drawn on certain diagram types, but this is not
a prescription.” [20, page 11]

The by the UML 2 standard defined diagrams are:

1. Class Diagram

2. Component Diagram

3. Composite Structure Diagram

4. Deployment Diagram

5. Object Diagram

6. Package Diagram

19

7. Activity Diagram

8. Use case Diagram

9. State Machine Diagram

10. Sequence Diagram

11. Communication Diagram

12. Interaction overview

13. Timing Diagram

Class diagram

The nature of class diagrams is to describe the classes of a system and the var-
ious static relationships among them.

A class describes things of a certain type. These things may be classified
and ordered within a generalization hierarchy represented by inheritance. Like
the Worker presented in figure 2.2 is a specialized kind of Person. Classes
describe groups of related objects having a state and behavior. The states are
represented by attributes and associations subsumed by the term property.

“A class is the descriptor for a set of objects with similar struc-
ture, behavior, and relationships. All attributes and operations are
attached to classes or other classifiers.” [38, page 50]

The basic element of a class a diagram is the class. It may occur in different
flavours from just having a name to a full blown representation with attributes
and operations (Figure 2.3).

Classes may show details with their properties and operations and their
visibility constraints. Properties and operations may be specified with their
visibility marks: ’+’, ’-’ and ’#’. While the plus represents global visibility
and the minus an invisibility outside the objects borders, the hashing symbol
represents Java’s protected state (this is not part of the UML2 standard, but
in common use). So-called class variables that are uniquely shared within all
instances are underlined.

Figure 2.3 also shows how to specify data types of variables and return pa-
rameters.

Properties represent the variables of a class. There are two ways of specifying
the properties of classes:

1. Attributes can have additional visibility marks and additional type de-
scriptors.

20

Package Diagram

Object Diagram

Deployment Diagram

Composite Structure Diagram

Component Diagram

Class Diagram

Timing Diagram

Interaction Overview Diagram

Communication Diagram

Sequence Diagram

Interaction Diagram

State Machine Diagram

Use Case Diagram

Activity Diagram

Diagram

Behavior Diagram Structure Diagram

Figure 2.1: UML’s diagram classification following [20, page XXVI]

21

Cramp

size

Hammer

weight

Person

name

address

Worker

job

workingOperation()

Tool

name

Abstract classes

have italic titles

Class diagram:

A worker may use

different tools.

1..n 1

uses

Figure 2.2: A class diagram featuring inheritance and relationships

2. Associations are represented by solid lines connecting the elements and
its name. Directions may be shown by small filled arrows near the name,
or by an open arrow head at the destination. Another way to specify an
association is to attach an association class to it. Figure 2.4 shows three
examples.

Qualified associations have an extension at the end of the arrow forming
a box with the qualification. The qualification is used with one–to–many or
many–to–many associations. It qualifies each single association. See figure 2.5

“A qualified association is the UML equivalent of a programming
concept variously known as associative arrays, maps, hashes, and
dictionaries.” [20, page 74]

Aggregations and compositions are special types of associations. In contrast
to the composite structure diagram that describes a set of collaborating elements
the aggregation/composition describes the composition of objects forming a
superior system. The difference between the aggregation and composition is
that the composition represents strong ownership — it owns its parts. If the
object formed by the composition is not instantiated yet, the parts are not
instantiated too and the same behavior applies for destroying the composite:
all parts are destroyed too.

22

«Stereotype»

Package::FatClass

{Some Properties}

-id: Long

-ClassAttribute: Long

#Operation(i: int): int

+AbstractOperation()

Responsibilities

-- Resp1

-- Resp2

SimpleClass

Figure 2.3: Basic versus full blown class representation

Association class:

Every file-user-pair

gets its own attribute

values from the

association class.

AccessRights

Read

Write

User

CarDriver

1 1

drives Car

1..n 1..m

teaches to StudentTeacher

0..n 0..n

accessible byFile

Association:

Shows common relationships

between classes.

Figure 2.4: Associations

23

order number
1..n 1

Qualified association:

Choice of one entity from an n-relation.

In the catalog the order number selects

exactly one product.

ProductCatalog

Figure 2.5: Qualified association

“Aggregation is a special case of association. The aggregate indi-
cates that the relationship between the classes is some sort of ’whole-
part’. One example of an aggregate is a car that consists of four
wheels, an engine, a chassis, a gear box, and so on. [...] An aggre-
gation represents a strict relationship indicating the composition of
a class, not the runtime architecture.” [17, page 111]

“A composition is a stronger form of association in which the
composite has sole responsibility for managing its parts, such as
their allocation and de–allocation.” [38, page 56]

Aggregation and composition are graphically distinguished by the type of
diamond they have. The aggregation owns a hollow diamond at the side of the
composite (Figure 2.6), while the composition is drawn with a filled diamond
(Figure 2.7).

Bouquet
part

Flower

Figure 2.6: Aggregation

The multiplicity is shown on both ends of the association and describes how
many participants are required or may be engaged. If an association has no
multiplicity specified a value of one is taken by default.

• 1 requires exactly one object

• 0..1 allows zero or one occurrence

• * describes zero or an unbound number

24

UIButton

Label

Rectangle

Figure 2.7: Composition

• it is also possible to define an upper bound and a lower bound like 3..5

UMLet’s textual description for relations covering inheritance, associations,
and other dependencies notated by arrows is as follows:

lt=<.>

m1=1

m2=2

r1=Role 1

r2=Role 2

q1=qualification 1

q2=qualification 2

Name

qualification 1
1 Role 1 qualification 2

2Role 2
Name

Figure 2.8: Relations in UMLet

While lt specifies the line type and form of the arrow heads, m1 and m2

specify multiplicities, r1 and r2 specify the roles, q1 and q2 name the qualifi-
cations, and the un-noted string name names the association. So UMLet allows
one to modify the type and appearance of a relation in a very simple way. The
given example is depicted in figure 2.8.

Generalization, Specialization and Inheritance: Generalization is the process
of abstraction from a more specified item to a more general item. Like the term
’house’ is a generalization of ’hut’ and ’sky scraper’, or ’animal’ is a generaliza-
tion for ’bird’, and ’fish’ but not for ’tree’. Specialization is the reverse process
of generalization and specifies a particular item with more details. The object
oriented approach utilizes inheritance to model generalization and specializa-
tion. The class diagram uses a special type of relation to express generalization.
The arrow is headed towards the more general class. See figure 2.9.

25

Some programming languages like C++ or Eiffel allow multiple inheritance,
which means that a class has more than one superclass it inherits attributes
and methods from. Java prohibits multiple inheritance from classes but offers a
compromise by allowing inheritance from one superclass while allowing one to
implement additional interfaces. See figure 2.10.

Circle

radius

Figure

posX

posY

getPos() : point

draw()

Multiple inheritance:

Subclasses inherit attributes and

operations from all parents.

Figure

posX

posY

getPos() : point

draw()

Inheritance:

Subclasses inherit

attributes and operations.

CircleButton

Circle

radius

Button

label

notify()

Figure 2.9: Inheritance

Dependency: A dependency describes a relation between at least two ele-
ments. Although associations and generalizations fall into the definition of a
dependency, they have special names and semantics.

“A dependency exists between two elements if changes to the
definition of one element (the supplier) may cause changes to the
other (the client). With classes, dependencies exist for various rea-
sons: One class sends a message to another; one class has another
as part of its data; one class mentions another as a parameter to an

26

ComponentAdapter

«Interface»

MouseListener

mouseClicked()

...

«Interface»

MouseMotionListener

mouseDragged()

mouseMoved()

«Interface»

ActionListener

actionPerformed()

«Interface»

ItemListener

itemStateChanged()

«Interface»

KeyListener

keyPressed()

keyReleased()

...

«Interface»

WindowListener

windowActivated()

windowClosed()

...

UniversalListener

Figure 2.10: A class inheriting from one superclass and implementing multiple
interfaces

27

operation. If a class changes its interface, any message sent to that
class may no longer be valid.” [20, page 47]

Dependencies are represented by dashed lines, and a stereotype classifying
it. If it is directed it features an open arrow head (see figure 2.11).

ListIterator

hasNext()

next()

List

add()

remove()

«use»

Figure 2.11: Dependency

Constraints: UML is not very restrictive about how to specify constraints.
The only rule is to use surrounding brackets. There is no special syntax or
guidelines. Fowler[20] suggests using natural language to avoid misinterpreta-
tion:

“You can use natural language, a programming language, or
the UML’s formal Object Constraint Language (OCL) [...], which
is based on predicate calculus. Using a formal notation avoids the
risk of misinterpretation due to ambiguous natural language. How-
ever, it introduces the risk of misinterpretation due to writers and
reader not really understanding OCL. So unless you have readers
who are comfortable with predicate calculus, I’d suggest using nat-
ural language.” [20, pages 49–50]

Figure 2.12 shows constraints on a class and on one of its attributes.

SimpleClass

- max:int {max >= 0}

{this.title = this.text.first}

Figure 2.12: Constraints

Templates allow one to specify the type of parameters of an element. Usually
templates are used to specify the types of elements of lists, sets and collections.

28

Languages like C++ and Java since its 1.5 specification have support for tem-
plated classes also called parameterized classes.

UMLet uses parameterized classes where applicable. The following example
presents a HashMap that’s key and value parameters are bound to the types of
String and ElementObject. See also figure 2.13

private HashMap<String,ElementObject> elementsH;

String, ElementObject

HashMap

Figure 2.13: Templated class

“A template is the descriptor for an element with one or more un-
bound formal parameters. It defines a family of potential elements,
each specified by binding the parameters to actual values. Typi-
cally, the parameters are classifiers that represent attribute types,
but they can also be integers or even operations.” [38, page 639]

To express that a class is templated there is a dashed rectangle on the upper
right corner of the class element.

Active classes indicate that each instance has its own thread of control, like
processes of operating systems that are encapsulated and protect their internals
and which have their own memory space. Active classes differ from normal
classes by the additional vertical lines in their graphical representation (figure
2.14).

Component diagram

Component diagrams are used to show the components of a system, how they
are broken down and how they interact. The components are connected via
interfaces using the ball-and-socket notation.

“The component diagram shows the organizations and depen-
dencies among components and artifacts. The components represent
cleanly grouped and encapsulated elements from the logical archi-
tecture. The components are typically implemented as files in the
development environment; these are modeled as artifacts.” [17, page
272]

29

Active class:

Active classes own a thread of control

«interface»

List

«interface»

Queue

Thread

1 1

handles
PrinterQueue Printer

Figure 2.14: Active class

Fowler [20] states that component diagrams are an aid for marketing rep-
resentatives that help them in communicating and selling components to cus-
tomers. Because of that the decomposition of the system is not only a technical
question but also a question of marketing.

“The important point is that components represent pieces that
are independently purchasable and upgradeable. As a result, divid-
ing a system into components is as much a marketing decision as it
is a technical decision [...].” [20, page 141]

Composite structure diagram

The composite structure diagram shows the runtime architecture of a composite
element or a system of collaborating objects. It depicts the parts of a struc-
ture – how object instances are composed together forming the structure. See
figure 2.16 for an example.

“A diagram that shows the internal structure (including parts
and connectors) of a structured classifier or collaboration. There is
no rigid line between a composite structure diagram and a general
class diagram.” [38, page 264]

“Though similar to a class diagram, a composite structure dia-
gram shows parts and connectors. The parts are not necessarily clas-
sifiers in the model, and they do not represent particular instances;

30

 HTTP

 Server

 User

 Web-Application

 XML

GUI

XML

GUI

 DB

 Server

 Application

 Server

Figure 2.15: Component diagram

31

they are roles that classifiers will play. Parts are shown in a similar
manner to objects, but the name is not underlined. The diagram
specifies the structural features that will be required to support the
enclosing classifier.” [17, page 258]

Component

Component

 Component

«delegate»

«delegate»

SQL

GUI

SQL

GUI

Figure 2.16: Composite structure diagram

Deployment diagram

The deployment diagram is used to show the artifacts and devices of runtime
and execution environments.

“Deployment diagrams show a system’s physical layout, revealing
which pieces of software run on what pieces of hardware.” [20, page
96]

32

“It is the ultimate physical description of the system topology,
describing the structure of the hardware units and the software that
executes on each unit. In such an architecture, it should be possible
to look at a specific node in the topology, see which components are
executing in that node and which logical elements (classes, objects,
collaborations, and so on) are implemented in the component, and
finally trace those elements to the initial requirement analysis of the
system (which could have been done through use-case analysis).” [17,
page 273]

The main actors of this diagram type are nodes and communication paths.
Nodes represent real (device) or virtual hosts (execution environment) like com-
puters, mobile devices or virtual machines and interpreters capable of executing
software. Inside nodes artifacts are physical representations of software like class
files, JARs, executables or scripts and also databases meaning that this artifact
is deployed on that node at runtime.

WebClient

Database

Web

Server
Application

Server

Deployment diagram

showing the physical

architecture.

base.jar

package2.jarpackage1.jar

Figure 2.17: Deployment diagram

Object diagram

Object diagrams are similar to class diagrams, but they focus on instances of
classes and their dynamic characteristics using mostly the same notation.

33

“An object diagram is a snapshot of the objects in a system at
a point in time. Because it shows instances rather than classes, an
object diagram is often called an instance diagram.” [20, page 87]

Object diagrams do not define a system, but are a method of giving examples,
assisting the understanding of a system’s definition.

“Snapshots are examples of systems, not definitions of systems.
The definition of system structure and behavior is the goal of mod-
eling and design. Examples can help to clarify meanings to humans,
but they are not definitions.” [38, page 67]

To express the difference to the static class diagram, object names are un-
derlined and may contain detailed value specifications.

Point1 : Point

posX=0.0

posY=0.0

Point2 : Point

posX=100.5

posY=60.0

Rectangle : Figure

Object diagram:

Snapshot of a system.

part ofpart of

Figure 2.18: Object diagram

Package diagram

Packages group together UML elements into a superior structure for managing
larger systems. Package diagrams are not bound to classes but work together
with various UML elements, although they are mainly used with classes.

Package diagrams have a hierarchic structure meaning that packages can
contain nested packages. Packages provide a namespace to their elements. One
element may be contained in one package only but can be uniquely referenced
using a qualified name including the sequence of all names of the packages above.

34

The contents of packages may be marked with visibility modifiers as it is
done in the class diagram.

The package diagram is useful to show the dependencies between the ele-
ments of large systems. Package diagrams directly correspond to Java’s package
scheme or to the namespace concept of C++ and .NET. The UML defines rules
how package diagrams are to be used. But Fowler [20] states that users should
bend these rules to match the actual needs reducing the risk of misunderstand-
ings.

“Different programming environments have different rules about
visibility between their packaging constructs; you should follow the
convention of your programming environment, even if it means bend-
ing the UML’s rules.” [20, page 90]

UML 2 offers two notations of the package diagram.
A package is drawn as a rectangle with a small rectangle attached to it like

the common folder icon. One way to show the contents of a package is to place
the elements right into the package. The other option is to attach the proposed
elements by using a branched line with a circle having a small cross (or plus).
See figure 2.19 for examples.

UMLet assists the second way of defining a package diagram with a special
element using grammar. The grammar to the package hierarchy on the image
is:

java.util

concurrent

>atomic

locks

<jar

logging

prefs

regex

zip

Activity diagram

The activity diagram is related to the state machine diagram (also: state chart dia-
gram) and is capable of modeling parallel behavior and is concerned with activities,
their inputs and outputs. It shows the flow of activities and defines the sequence of
execution.

“Activity diagrams focus on the dynamic flow of a system. While
interaction diagrams focus on messages between instances and state ma-
chines show the life-cycle progress of a classifier, activity diagrams capture
movement and process without having to reference a class or object.” [17,
page 207]

“Activity diagrams are a technique to describe procedural logic, busi-
ness process, and work flow. In many ways, they play a role similar to
flowcharts, but the principal difference between them and flowchart nota-
tion is that they support parallel behavior.” [20, page 117]

35

base

Actor

Class

Entity

java.util

concurrent

atomic

locks

jar

logging

prefs

regex

zip

Alternative package diagram

java.util

com.umlet.control

«access»

«import»

CustomClass

radius

TemplateClass

com.umlet.element

custom

Figure 2.19: Package diagrams

36

The basic elements of an activity diagram are actions and edges describing the
flow of control. An activity refers to a sequence of actions meaning that the activity
diagram shows a single activity composed of a set of sequential actions.

Actions are shown as rectangles with rounded edges containing a naming string.
The edges which represent transitions are drawn as arrows with optional information
and constraints like a condition in combination with a decision branch. Additional
elements are heavy bars depicting forks and joins, decisions and merges represented as
diamonds and elements for sending and receiving signals. The beginning and ending
of an activity diagram are normally depicted with an initial node shown as a filled
circle and the final node depicted as a circle surrounding a filled circle.

Within systems utilizing parallelism transactions have to be synchronized which
is modeled with heavy bars representing AND-conditions while merges, drawn by di-
amonds or just by simultaneous incoming edges, represent OR-conditions. Another
special element is the flow end to show the end of a flow in concurrent actions, while
the other flows or the superior activity is not affected. The flow end is drawn as a
circle having a cross within.

UMLet provides special assistance to the creation of activity diagrams. With a
simple but powerful syntax activity diagrams may be textually built. The diagram in
figure 2.20 is derived by the following syntax:

title:activity diagram

start->if(value == true){action1:a1}(else){action2:a2}

a1->join:j1

a2->j1

j1->forkH:f1{action3:a3}{action4:a4}{action5:a5}

a3->fend:fe

a4->syncH:s1

a5->s1

s1->end

Use case diagram

“Use cases are a technique for capturing the functional requirements of
a system. Use cases work by describing thy typical interactions between
the users of a system and the system itself, providing a narrative of how
a system is used.” [20, page 99]

Use cases are sets of scenarios to solve a common goal. Users are referred as actors
though they don’t necessarily have to be human since an external computer system
may act as an actor.

Use cases help to describe the functional requirements of a system represented as
an external view onto the system. This implies that a use case does not need to have
correlations to classes or other fine grained system internals.

Use case diagrams consist of actors, use cases and a system, but the UML makes
no hard constraints on the set of allowed elements since the goal of modeling is to
create simple to understand but detailed models.

Actors are usually represented by class like entities with the stereotype <<actor>>

or by stickmen. Use cases are drawn with an ellipsis containing the name of the use

37

activity diagram

action2

action4 action5

action1

action3

[value == true]

[else]

Figure 2.20: Activity diagram

38

case represented. Optionally the name of the use case may be placed below the ellipsis.
The system is drawn as a rectangle containing the use cases while the actors interact
with the system by participating in one or more use cases.

The relationships between use cases include

• associations

• extend relationships

• include relationships

• generalizations

The include relationship means that the included use case is part of another use
case. Extend relationships describe an incremental extension of a base use case mean-
ing that the extended use case is defined independently of the extending use case. So
while the included relationship describes a mandatory inclusion behavior, the extends
relationship is an optional inclusion — the extended use case may, but does not have
to make use of the extension use case.

State machine diagram

“All objects have a state; the state is a result of previous activities
performed by the object and is typically determined by the values of its
attributes and links to other objects. A class can have a specific attribute
that specifies the state, or the state can be determined by the values of
the ’normal’ attributes in the object.” [17, page 247]

The state machine diagram (also referred as state chart diagram) describes a state
machine with it’s simple states, state transitions and composite states. State machines
may describe the behavior of objects using states and state transitions triggered by
external or internal events. The actions and activities of the object are fired by the
transitions.

“State machines may be used to describe user interfaces, device con-
trollers, and other reactive subsystems. They may also be used to describe
passive objects that go through several qualitatively distinct phases dur-
ing their lifetime, each of which has its own special behavior.” [38, page
35]

The state machine diagram utilizes states (rectangles with rounded borders), forks
and synchronization (heavy bars), decisions (diamonds) and start and end states (filled
circles and filled circles surrounded by a circle).

State changes may have guarding conditions that have to be true in order to fire the
transition. If a state offers more than one state transition, guarding conditions which
have to be mutually exclusive are used to select one single transition if applicable. If
within a state an event occurs that is not applicable to any of the transitions leading
away from the state, nothing happens and the state is retained.

The activities of the object (like methods) are activated and performed between
the states while the state transition is in progress - in contrast to the activity diagram,
where the activities happen within the activities. These activities do not have to be
simple in any way, but can implicate time and resource consuming procedures.

The state machine diagram starts at that state marked with the start state also
called initial pseudo state.

39

"reorder materials"

extends "get materials".

Only if there are too

view materials they

are reordered.

"create invoice" includes

"check creditability".

So every time the boss creates

the invoice he also checks the

customers creditability.

reorder materials

get materials

Use case: Message exchange between

actors without revealing the internals of the processes.

Customer

make emergency

call

Worker

Boss

instruct

create invoice

«include»

check

creditability

«extend»

Plumber Inc.

Figure 2.21: Use case diagram

40

States can have internal activities and internal transitions: Internal activities de-
scribes internal behavior triggered by events. There are three reserved standard events
defined: entry for activities to be done when entering the state, exit defines the activ-
ities done before leaving the state and do defines activities that are performed while
residing in the state like searching, polling or calculating. Internal transitions initi-
ate activities that do not involve a state change, so they never trigger entry or exit

activities.

last state

some complex state

entry/ init something

exit/ update something

first state

Figure 2.22: State machine diagram

Sequence diagram

Sequence diagrams are the most common kind of interaction diagrams focusing on the
sequence of interactions between affected objects and show the life time of objects and
their communication using messages within a use case. They allow a very detailed
description of how the objects interact with each other.

Every object is defined by a box with the object’s name, a lifeline heading from
the top to the bottom of the diagram and boxes showing its activity. The messages are
drawn with horizontal arrows pointing from the sender to the receiver. If the receiver
of the message is equal to the sender the arrow may be drawn as an arc or a rectangular
shape beginning and ending in the same object. The appearance of messages defines
their semantics: While asynchronous messages are drawn with an open arrow head,
synchronous messages have a filled arrow head and the method response messages
feature a dashed line. Interaction frames allow the grouping of interactions allowing
them to be looped or requiring entry conditions.

“One use of a sequence diagram is to show the behavior sequence of
a use case. When behavior is implemented, each message on a sequence
diagram corresponds to an operation on a class or an event trigger on a
transition in a state machine.” [38, page 38]

Like with the activity diagram UMLet provides special support to this type of
diagram by a textual description language.

title:sequence diagram

alpha:A|_beta:B_|_gamma:G_

41

 sequence diagram

interaction frame

Figure 2.23: Sequence diagram

1->>2:1,2

2-/>1:async Msg.

3->>>1:1,3

1.>3:1,3:async return Msg

1->1:1:self

iframe{:interaction frame

2->3:2,3:async Msg.

iframe}

Communication diagram

The communication diagram is related to the sequence diagram since it focuses
on how objects interact with each other and in what order they send and re-
ceive messages. The obvious difference between the two diagrams is that the
communication diagram has no time line and no limitation on the arrangement
of the objects so they can be placed the way they fit best and may show best
their relation to other objects.

Messages are modeled as lines between the affected objects without arrow
heads. Instead a small arrow is placed aside the line depicting the direction of
the message. To define the sequence the messages are sent, each message gets
a number.

“Communication diagrams can be used to show quite complex in-
teractions between objects. However, learning the numbering scheme

42

of messages can take some time, but once learned, it is rather easy
to use. The main difference between communication diagrams and
sequence diagrams is that communication diagrams show the ac-
tual objects and their relations (the “network of objects” that are
communicating with their relations implied by the paths of commu-
nication), which in many situations can ease the understanding of
the interaction.” [17, page 185]

The syntax of the message labels is quite complicated and follows this scheme
(see [17, pages 183–184] for further details):

[predecessor] [guard-condition] sequence-expression return-value

predecessor := sequence-number [’,’ sequence-number]*

guard-condition := ’[’ condition-clause ’]’

sequence-expression := [integer | name] [recurrence]

recurrence := (’*’ ’[’iteration-clause’]’) | (’[’condition-clause’]’)

The predecessor is used for synchronization, meaning that all messages listed with
their sequence number have to be performed first. The guard-condition is used to
express that the message is only sent, if the stated condition is true. The sequence-
expression shows in what order the messages are performed. Additional iteration may
be modeled like *[i=1..n]and the condition option may be used to model branches.
The return value should be assigned to a message signature (method signature) like
a=calc(b, c). Figure 2.24 shows a communication diagram with sequences and a
message having a guard-condition.

1: authorise customer

3: [is not VIP] debit customer

:Timer:CallCenter

:AccountingBilling

2: log timedo phone call

:Actor

Figure 2.24: Communication diagram

Communication diagrams were called collaboration diagram before UML 2.0.

Interaction overview diagram

The interaction overview diagram is a specialized variant of the activity diagram rep-
resenting interactions. Like the name of this diagram type indicates, it provides an
overview of the flow of control in a system. The nodes of the diagrams are interactions
or interaction uses. While interactions can be any type of interaction diagrams like an

43

activity diagram, a sequence diagram or a communication diagram, interaction uses
are named references to interaction diagrams.

Interaction overview diagrams are a mixture of activity diagrams and sequence
diagrams.

“This is a strange mixture of concepts from activity diagrams and se-
quence diagrams. It tries to mix the control flow mechanism among nodes
from activity diagrams with the sequence of messages among lifelines from
sequence diagrams.” [38, page 412]

Timing diagram

The timing diagram is used to show object interactions and state changes along the
linear time axis. It describes the state changes over time stimulated by external or
internal events of the observed objects.

“A timing diagram provides a convenient way to show active objects
and their state changes during their interactions with other active objects
and system resources. The X-axis of the timing diagram has the time
units, while the Y-axis shows the objects and their states.” [17, page 230]

[38, page 653] say that timing diagrams are an alternative way of displaying se-
quence diagrams that shows state changes explicitly on a lifeline. The differences to
the standard sequence diagram are:

• The diagram is drawn horizontally from left to right. The time axis corresponds
to the x-axis.

• The lifelines are arranged vertically in separate compartments.

• Lifelines are not straight linear, but perform level jumps to show state changes.
Every level represents a unique state.

• Alternatively lifelines may follow a straight line with different state or value
marks.

• Tick marks may define time intervals and/or discrete events on an optional
metric time axis.

• The times of the different lifelines are synchronized.

• Values of objects may be given.

The timing diagram is widely used to describe complex processes in real-time sys-
tems, and digital electronics to show state changes with optional time constraints like
slew rates. This is the maximum rise time logical gates need to change their logical
state from low to high.

UMLet has no support for this type of diagram yet, since its way of composition
is different to all other diagrams.

44

2.1.3 Views

Another way of approaching the UML and it’s diagrams are the so called views. Al-
though they are not part of the UML standard itself they help to use the UML and
make the challenge of describing a system easier. Views provide a toolkit for describing
the system from a specific point of view. Since the stakeholders like customers, system
analysts and developers concentrate on different aspects, the proposed views help to
cover the respective aspects.

“A system description requires a number of views, where each view
represents a projection of the complete system that shows a particular
aspect.” [17, page 21]

Each view suggests the use of a set of diagram types for description, but these
diagram types are not mutually exclusive, so one diagram type may be used in more
than one view.

“By looking at the system from different views, it is possible to con-
centrate on one aspect of the system at a time. A diagram in a particular
view needs to be simple enough to communicate information clearly, yet
coherent with the other diagrams and views so that the complete picture
of the system is described by all the views put together.” [17, page 21]

Since the view concept is not part of the UML itself different authors and tools offer
different or additional views, than the ones presented here, concentrating on further
points of view to a system.

1. Use-Case view: The use-case view provides tools and methods for describing
and documenting a system by investigating the system from the viewpoints of
system external actors. Use cases allow the actors of the system to be human
users or other computer systems. While in the requirements analysis phase the
use-case view is utilized by system analysts and customers it is also used in the
testing phase by testers to verify the systems with the stated requirements.

“The use-case view is central, because its contents drive the devel-
opment of the other views. The final goal of the system is to provide
the functionality described in this view —- along with some nonfunc-
tional properties. Hence, this view affects all the others. This view
is also used to validate the system and finally to verify the function-
ing of the system by testing the use-case view with the customers
(asking, “Is this what you want?”) and against the finished system
(asking, “Does the system work as specified?”).” [17, page 23]

2. Logical view: The basic structure of a system and its functionality is aggregated
by the logical view and diagrams. The designers and developers of a system use
the methods of this view to describe and design the static parts of the system
and their collaborations.

“In contrast to the use-case view, the logical view looks inside
the system. It describes both the static structure (classes, objects,
and relationships) and the dynamic collaborations that occur when
the objects send messages to each other to provide a given function.
Properties such as persistence and concurrency are also defined, as
well as the interfaces and the internal structure of classes. The static

45

structure is described in class and object diagrams. The dynamic
modeling is described in state machines, and interaction and activity
diagrams.” [17, page 23]

3. Implementation view: The implementation view is not very fine grained. It
concentrates on the main modules of the system and their interactions.

“It is mainly for developers and consists of the main software ar-
tifacts. The artifacts include different types of code modules shown
with their structure and dependencies. Additional information about
the components, such as resource allocation (responsibility for a com-
ponent) or other administrative information, such as a progress report
for the development work, can also be added.” [17, page 23]

4. Process view: This view allows one to describe how a system is composed from
the parts that represent resources or control tasks and processes of the system.
It shows how to organize these parts and control and synchronize them to work
together.

“The emphasis on a view that shows concurrency provides critical
information for developers and integrators of the system. The view
consists of dynamic diagrams (state machines, and interaction and
activity diagrams) and implementation diagrams (interaction and de-
ployment diagrams).” [17, page 23]

5. Deployment view: The deployment view shows how the system is fragmented
and distributed to the execution environments and the communication among
them.

“The deployment view is used by developers, integrators, and
testers and is represented by the deployment diagram. This view
also includes a mapping that shows how the artifacts are deployed
in the physical architecture, for example, which programs or objects
execute on each respective computer.” [17, page 24]

2.1.4 Summary

The UML is a standardized modeling language controlled by the OMG that has devel-
oped from different methods of describing systems and requirements. After the soft-
ware industry recognized UML’s potential the UML Partners consortium was joined
by a number of well known companies representing broad acceptance.

The UML provides a set of tools to describe a system and it’s details. The UML
2.0 standard features 13 different diagram types specialized to cover the respective
structural and behavioral aspects of the system.

UML is not like strictly constrained law, but it is an agreed standard that provides
notations allowing the users to adapt in a way that may ease the understanding of
what is meant.

Views like those proposed by [17] and others help to approach the task of describing
a system by observing it from different points of view, since different participants have
different angles to the system.

46

2.2 Design patterns with UMLet

This chapter will present design patterns and why they are used within UMLet: The
fact that the structure of design patterns may be easily illustrated using UMLet is not
the primary idea of this chapter. The more interesting question is how the knowledge
of design patterns affects the design and implementation of UMLet and what users of
UMLet gain from a structured and clear design.

The question of why UMLet is developed with special respect to design patterns
is as follows: On one hand using design patterns eases the development. And on the
other hand design patterns help to explain the structure of UMLet and ease the un-
derstanding of the source codes since UMLet is released as open source. So users may
freely adapt, modify and extend UMLet to their needs.

One goal of design patterns is structuring the design of software components. A
software system gets very hard do maintain if the objects are too closely engaged.
Good software design and design patterns help to decouple the involved objects and
provide strong structures and procedures.

“In other words, design patterns describe how objects communicate
without become entangled in each other’s data models and methods.
Keeping this separation has always been an objective of good OO pro-
gramming, and if you have been trying to keep objects minding their own
business, you are probably using some of the common design patterns
already.” [12, page 11]

“Design patterns help to improve communication software quality since
they address a fundamental challenge in large-scale software development:
communication of architectural knowledge among developers.” [39]

It is not enough to write code in a common and widely accepted programming
language. The use of a structured design helps to get into an existing software sys-
tem. Design patterns provide the basis for structuring the components of the software
system, provide standardized terms and allow thinking and discussing on a higher
level.

“A design pattern represents a recurring solution to a design problem
within a particular domain (such as business data processing, telecommu-
nications, graphical user interfaces, databases, and distributed communi-
cation software) [1]. Design patterns facilitate architectural level reuse by
providing “blueprints” that guide the definition, composition, and evalu-
ation of key components in a software system. In general, a large amount
of experience reuse is possible at the architectural level. However, reusing
design patterns does not necessarily result in direct reuse of algorithms,
detailed designs, interfaces, or implementations.” [39]

Often the book “Design Patterns: Elements of Reusable Object-Oriented Software”
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [22] (also known
as the Gang of Four, or GoF) is referred as the birth of mainstream design patterns.
But design patterns have been used before that time: Christopher Alexander described
patterns applied to the construction of towns and buildings in the 1970s.

47

“Cristopher Alexander says, ’Each pattern describes a problem which
occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing the same way twice’
[AIS+77, page x]. Even though Alexander was talking about patterns in
buildings and towns, what he says is true about object-oriented design
patterns. Our solutions are expressed in terms of objects and interfaces
instead of walls and doors, but at the core of both kinds of patterns is a
solution to a problem in a context.” [22, pages 2–3]

“I like to think of a pattern as a best practice solution to a common re-
curring problem. That is, a pattern documents and explains an important
or challenging problem that can occur when designing or implementing
an application, and then discusses a best practice solution to that prob-
lem. Over time, patterns begin to embody the collective knowledge and
experiences of the industry that spawned it.” [31, page XIV]

Since the publication by Gamma et. al.[22], design patterns have been a common
discussion topic of software developers around the world. ALur et. al. [1] state that
design patterns are not developed or invented by a specific person or organization, but
design patterns are discovered within recurring software designs. By identifying, nam-
ing and documenting the patterns these authors provide a high value to the software
developer community.

“Of course, while the Gang of Four work resulted in patterns becoming
a common discussion topic in software development teams around the
world, the important point to remember is that the patterns they describe
were not invented by these authors. Instead, having recognized recurring
designs in numerous projects, the authors identified and documented this
collection.” [1, page 9]

Because Gamma et. al.[22] was pretty much the first work on design patterns in
the field of software engineering, these design patterns are well known to most software
developers. But there are also more authors and books with interesting and important
design patterns.

It is worth mentioning that design patterns are not referred to by a single name
only, as a result of the development process of software engineering itself. Although it
is recommendable to agree on a common name, there are several names describing the
same pattern: The abstract factory is also known as kit while the factory method some-
times is called virtual constructor. The decorator pattern may be found as wrapper

and the chain of responsibility is referred to as event handler, bureaucrat and responder.

Gamma et. al. [22, page 3] state that a design pattern is basically defined by four
elements:

1. Name: The name of a design pattern usually describes the particular design
problem, its solution and consequences in short. Naming allows designing and
discussing at a higher level of abstraction.

2. Problem: The problem defines the problem space, the implications, the condi-
tions and the context to which the design pattern applies to.

3. Solution: Describes the way the design pattern solves the problem, which el-
ements are used, their relations, responsibilities and collaborations. A design

48

pattern is like a template and provides an abstract description of a design prob-
lem and how to solve it.

4. Consequences: Designing patterns describing general problems imply trade-offs
when applying to specific problems. These trade-offs, costs and benefits are
described by the consequences allowing to evaluate the impact on the system.

“A design pattern names, abstracts, and identifies the key aspects of
a common design structure that makes it useful for creating a reusable
object-oriented design. The design pattern identifies the participating
classes and interfaces, their roles and collaborations, and the distribution
of responsibilities. Each design pattern focuses on a particular object-
oriented design problem or issue. It describes when it applies, whether it
can be applied in view of other design constraints, and the consequences
and trade-offs of its use.” [22, pages 3–4]

Following Gamma et. al. [22] design patterns can be divided into the three major
groups:

1. Creational patterns help designing for the process of instantiating classes.

“Creational design patterns abstract the instantiation process.
They help make a system independent of how its objects are cre-
ated, composed, and represented. A class creational pattern uses
inheritance to vary the class that’s instantiated, whereas an object
creational pattern will delegate instantiation to another object.” [22,
page 81]

2. Structural patterns combine classes and objects into larger structures. While
structural class patterns deal with classes at compile-time, describing interfaces
and implementations by inheritance, structural object patterns combine objects
to form new functionality and may be modified at run-time.

“Structural patterns are concerned with how classes and objects
are composed to form larger structures. Structural class patterns use
inheritance to compose interfaces or implementations. [...] Rather
than composing interfaces or implementations, structural object pat-
terns describe ways to compose objects to realize new functionality.
The added flexibility of object composition comes from the ability to
change the composition at run-time, which is impossible with static
class composition.” [22, page 137]

3. Behavioral patterns do not only describe class and object relations but they
describe the communication and responsibilities among these classes and objects.

“Behavioral patterns are concerned with algorithms and the as-
signment of responsibilities between objects. Behavioral patterns de-
scribe not just patterns of objects or classes but also the patterns of
communication between them. These patterns characterize complex
control flow that’s difficult to follow at run-time. They shift your
focus away from flow of control to let you concentrate just on the
way objects are interconnected.” [22, page 221]

49

2.2.1 Design patterns used within UMLet

As stated at the beginning of this chapter UMLet was designed to be modified and
extended by its users. In order to ease these intentions UMLet’s design features a set
of well known design patterns. The following section will illustrate the used design
patterns.

Prototype

A prototype is used when the instantiation of a class is very expensive (time consuming
or resource intensive) or the system has no knowledge of how objects are created
— applications that load classes dynamically cannot refer to the classes constructor
statically. The object creation is replaced by object cloning and modification. But
prototyping is sometimes hard or even impossible to implement. Adding a cloning
method may be impossible with classes that already exist. Classes that have internals
that don’t support cloning or implement circular references can not be cloned. The
prototype pattern belongs to the creational patterns.

prototype

return copy of self

p=prototype.clone() Prototype

clone()

Prototype

clone()

Prototype

clone()

Client

operation()

Figure 2.25: Prototype

UMLet uses the prototype pattern to create new instances of its entities (graphical
elements). The application framework simply asks the entity to create a new instance
of itself using the cloneFromMe() method which is defined in the superclass:

public Entity CloneFromMe() {

try {

//get class of dynamic object

java.lang.Class cx= this.getClass();

Entity c = (Entity)cx.newInstance();

c.setState(this.getPanelAttributes()); //copy states

c.setBounds(this.getBounds());

c.sourceFilePath=this.sourceFilePath;

c._javaSource = this._javaSource;

return c;

} catch (InstantiationException e) {

50

System.err.println("UMLet->Entity/"+

this.getClass().toString()+": "+e);

} catch (IllegalAccessException e) {

System.err.println("UMLet->Entity/"+

this.getClass().toString()+": "+e);

}

return null;

}

Note the use of Java’s reflection to gain the type of the actual object to be cloned.
One could expect that Entity just provides an abstract cloneFromMe() method to be
overridden by it’s subclasses. This is just for convenience, allowing one to spare this
method in the custom element template used for extending UMLet.

Singleton

This creational pattern is one of the most commonly used patterns. It is used to pro-
vide and ensure a single instance of a class.

UMLet makes intensive use of the singleton design pattern, to express that there
is only one instance of an object. Like UMLet’s main class Umlet, the event listener
implementation UniversalListener and the command processor Controller are sin-
gletons.

Singleton

static instance

getInstance()

Figure 2.26: Singleton

private UniversalListener() {} //hide the constructor

private static UniversalListener _instance;

public static UniversalListener getInstance() {

if (_instance==null) _instance=new UniversalListener();

return _instance;

}

When considering the use of the singleton pattern the question arises if it is better
to uses eager initialization or lazy initialization. While eager initialization requires
the extra resources from the beginning, with lazy initialization the resources may not
be occupied if the singleton is never requested. Another point is the time needed for
initialization: If it is a time-consuming process to create the object, eager initializa-
tion may be the choice within time critical software systems. When the singleton is
implemented using lazy initialization special care has to be taken in multi threaded
applications. There has to be a concurrency control to avoid multiple initialization
of the singleton breaking the singleton pattern concept. Concurrency control may be
implemented in Java by synchronizing the method.

51

Adapter

The adapter pattern is a structural pattern. Adapters provide a class with an addi-
tional interface enabling it to work together with classes with incompatible interfaces,
by using inheritance or object composition.

Adaptee

specificRequest()

adaptee.specificRequest()

Adapter

request()

Target

request()

Client

Figure 2.27: Adapter

UMLet implements this design pattern to be used as an Eclipse-IDE plug-in. The
UmletEditor class integrates UMLet as an Eclipse editor into the development envi-
ronment. UMLet provides its functionality on one side, while the Eclipse framework
offers a standardized interface. To make both interfaces work together the adapter
pattern is the first choice.

Composite

The composite pattern is a structural pattern and offers to handle a composition of
objects in the same way as a single entity of such an object. It represents the primitive
object and its container in an abstract class.
Like with trees there are nodes that have children and nodes that don’t. The composite
pattern helps to simplify implementation since there is no need to distinguish between
compositions and simple types.

UMLet uses this pattern with the Container class of the java.swing package to
combine sets of entities. The container is handled by the paint() method of the
drawing panel like a single entity.

Command

The command pattern belongs to the behavioral patterns. A command encapsulates
requests to an object into a command-object offering flexible execution of the requests.
These command objects may be stored into FIFO (first in first out) structures and
used to implement a do-undo functionality.

The do-undo functionality of UMLet is realized using the command pattern. Sim-
ple commands are wrapped into command-objects and processed by the command

52

Client

children
Composite

operation()

add(Component)

remove(Component)

getChild(index)

Component

operation()

add(Component)

remove(Component)

getChild(index)

Leaf

operation()

Figure 2.28: Composite

processor.

public abstract class Command {

public void execute() {

Umlet.getInstance().setChanged(true); //set diagram changed flag

}

public void undo() {

Umlet.getInstance().setChanged(true);

}

}

public class Controller {

private Vector<Command> commands=new Vector<Command>(); //command queue

public void executeCommandWithoutUndo(Command newCommand) {

newCommand.execute();

}

public void executeCommand(Command newCommand) {

[...]

//add the command to the command queue for possible undo

commands.add(newCommand);

newCommand.execute();

[...]

}

}

53

CommandQueue

Controller

executeCommand()

executeCommandWithoutUndo()

undo()

redo()

Command

Controller.executeCommand(

 new MoveLinePoint(r,where,diffx,diffy));

RemoveElementResize

Move MoveLinePoint

UniversalListener

mouseDragged()

Figure 2.29: Command

54

Iterator

An iterator offers an alternative to iterate through a set of objects without knowing the
implementation of the underlying aggregation object. There may be also specialized
iterators that interpret or filter the contents returning only specific elements of the
set. This pattern belongs to the group of behavioral patterns.

List

Client

ListIterator

«Interface»

Iterator

hasNext()

next()

Figure 2.30: Iterator

Java offers the Iterator interface to provide defined methods for iterating over
object sets like lists, sets and queues. As an example UMLet uses the iterator to
iterate over the set of interactions within the sequence diagram using the hasNext()

and next() methods provided by the iterator.

private Set[]<Interaction> level; //the set of interactions

public boolean controlBoxExists(int levelNum, int objNum) {

Iterator<Interaction> it = level[levelNum-1].iterator();

while (it.hasNext()) {

Interaction ia = it.next();

if (ia.hasControl(objNum)) return true;

}

return false;

}

Observer

This design pattern enables triggering a state change of a set of related objects by
a state change of a single object defining a one–to–many dependency. The observer
pattern is commonly used to implement the command-action behavior of modern user
interfaces where entities like menu items, buttons, and other gadgets respond to user
inputs or data source updates. It is a behavioral pattern.

The observer pattern is utilized by Java’s EventListeners. UMLet’s UniversalListener
class implements all listeners for the occurring user interface events like mouse clicks
on buttons, menu items and graphical elements and diverse key pressing events. The
following code sample illustrates the coupling of the EventListener and the object that
fires the events:

//create the menu item

55

Event listener

listening for menu

events.

Command

execute()

UniversalListener

actionPerformed()

MenuItemMenuUmlet

Figure 2.31: Observer

JMenuItem iSaveAsPdf=new JMenuItem("Save as PDF..");

//add it to the file menu

iFile.add(iSaveAsPdf);

//connect item with the event listener

iSaveAsPdf.addActionListener(UniversalListener.getInstance());

By selecting the ”Save as PDF...” menu item the actionPerformed() method of
the listener is invoked. It has to distinguish between the possible event sources and
delegate the appropriate action.

public void actionPerformed(ActionEvent e) {

//was the event fired by a menu item?

if(e.getSource() instanceof JMenuItem) {

JMenuItem item=(JMenuItem)e.getSource();

if (item.getText().equals("Save as PDF..")) {

Umlet.getInstance().doSaveAsPdf(null);

}

}

}

Interpreter

The interpreter describes a definition of a grammar for languages following regular
expressions. This pattern is a behavioral pattern.
The interpreter pattern is not a typical design pattern providing a simple explanation
of how to interpret and implement it. It rather documents the fact of what is intended
to be implemented: a parser for a grammar.

“The Interpreter pattern generally describes defining a grammar for

56

that language and using that grammar to interpret statements in that
language.” [12, page 145]

“Whenever you introduce an interpreter into a program, you need
to provide a simple way for the program user to enter commands in that
language. It can be as simple as the Macro record button we noted earlier,
or it can be an editable text field [...].” [12, page 153]

UMLet uses this pattern extensively to provide grammars for its elements and di-
agrams. See the sequence diagram in section 2.1 for a grammar example.

Another example of an interpreter pattern is Java’s java.util.Formatter. This
class is intended to format strings as it is done with the printf() function in C:

formatter.format("%4$2s %3$2s %2$2s %1$2s",

"a", "b", "c", "d") //" d c b a"

2.2.2 More design patterns

The following section will present additional design patterns that were not explicitly
used when implementing UMLet though some occur within the implementation of Java
itself.

Abstract factory

The abstract factory provides an interface for the production of instances of a fam-
ily of related classes. It is one level above the factory pattern. It is a creational pattern.

An example of an abstract factory is the Toolkit class in the java.awt package
which provides the interface for creating user interface objects like buttons and dialogs.
The abstract factory does not provide concrete methods but just defines the interface
for the concrete factory whose implementation creates the actual objects.

Factory method

In contrast to the abstract factory the pattern of the factory method provides an in-
terface for the creation of a single product instead of a family of products. It provides
an interface for object creation but passes the responsibility of which type is to be
created to its subclasses.

Factory methods are often used to implement the abstract factory pattern, by
providing the concrete factory with the accurate methods for object creation. The
factory method pattern is a creational pattern.

Builder

A Builder is a creational pattern and separates the construction of a complex object
from its representation. The construction mechanism can build different representa-
tions. A builder constructs a composite object by combining objects by the requested
scheme, while hiding the composition mechanism.

57

Bridge

This structural pattern allows the detachment of an implementation from its abstrac-
tion. It adds a degree of freedom to the rather inflexible concept of inheritance by
letting the implementation develop separately.

Decorator

Just as the adapter pattern adds interfaces to classes, the decorator pattern, which is
also a structural pattern, adds additional functionalities and provides a more flexible
way of extension than inheritance does.

The ComponentView in javax.swing.text is a decorator for the Component and
adds the functionality of the View interface. Another example of a decorator is the
relationship between FilterInputStream and BufferedInputStream of the java.io

package where the latter adds a buffering feature to the input stream reducing I/O
expenses.

Facade

This design pattern belongs to the structural patterns and offers a (often) unified
interface to a set of classes and their related interfaces, thus providing simplified ac-
cessibility. It also decouples the client code from the underlying subsystem and its
possible implementation changes.

This is a widely used pattern that helps in reducing complexity and object coupling.
The simplest example may be an object with a method that calls several other classes.

Flyweight

The flyweight pattern, which is a structural pattern, offers the possibility to share one
instance of a set of interchangeable instances containing the same information avoiding
the memory-intensive expenses of multiple instances.

Proxy

With a proxy the control of an object is moved to an other object that is placed in
front of it providing the same interface. So the proxy hides the information on what is
happening behind it, while presenting the client with a concrete interface. The proxy
design pattern is a structural pattern.

Proxy classes are typically used when the actual targeted object is not ready to
accept requests because it is not yet instantiated, finished loading, or located on a
remote machine and communication is delayed — so clients may send requests to the
proxy which in turn postpones these requests to the buffered object.

An example of the proxy pattern is Java’s Proxy class located in the java.lang.reflect
package. It may be used to send received messages to a single object or to a set of
further objects, while the sender has knowledge of the proxy only.

58

Chain of responsibility

Allows one to avoid the direct coupling of a sender and a receiver of a request by send-
ing the request to a chain of objects which may handle the request or pass it further.
The involved receivers within the chain are independent and do not know of the other
participants, resulting in a loose coupling by the request object that is passed between
them. The chain of responsibility pattern belongs to the behavioral patterns.

EventHandlers may be interpreted as uses of the chain of responsibility pattern.
(See also the observer pattern.)

Mediator

The mediator controls the communication between objects. The objects communicate
to each other via the mediator because it is inserted between the communicating
objects and decouples them by providing a centralized communication interface and
preventing direct object references. This pattern is a behavioral pattern and helps
to reduce the complexity of large sets of interacting objects, by introducing a loose
coupling between the interacting objects.

“The Mediator makes loose coupling possible between objects in a
program. It also localizes the behavior that otherwise would be distributed
among several objects.” [12, page 167]

Memento

This pattern belongs to the group of behavioral patterns and provides the revelation
of an object’s internal state without violating encapsulation to restore that object to
this state at a later point in time.

“While supporting undo/redo operations in graphical interfaces is one
significant use of the Memento pattern, you will also see Mementos used
in database transactions. Here they save the state of data in a transac-
tion where it is necessary to restore the data if the transaction fails or is
incomplete.” [12, page 176]

State

This pattern is a behavioral pattern being used to enable an object to change its
behavior depending on its internal state. The object seems to change its class.

Strategy

The strategy offers to change the implementation of behavior by selecting the algo-
rithm independently from the calling clients, and so is a behavioral pattern.

“Strategy allows you to select one of several algorithms dynamically.
These algorithms can be related in an inheritance hierarchy or they can
be unrelated as long as they implement a common interface.” [12, page
201]

59

This pattern can be found in the LayoutManager of the java.awt package with
the Container playing the context role. The subclasses of LayoutManager use different
algorithms for laying out the components. Like the GridLayoutManager places its
components in a rectangular grid, the FlowLayoutManager orders the components
much like lines of text in a paragraph.

Template method

The template method pattern is a behavioral pattern as well. It defines the skeleton
of an algorithm in an abstract class using a concrete method calling abstract meth-
ods. This way it defers the actual implementation to its subclasses assuring that the
algorithm’s structure is not altered.

A simple example may be given with an abstract class that defines at least two
methods, while one is declared abstract and the other method will call it.

public abstract class Template {

public abstract void doInit(); //abstract methods

public abstract void doPart1();

public abstract void doPart2();

public abstract void doFinish();

public void call() { //algorithm body

doInit();

doPart1();

doPart2();

doFinish();

}

}

The class Template defines a rough procedure or an algorithm and leaves the
actual implementation to its subclasses.

Visitor

Similar to the iterator this pattern is a behavioral pattern and allows one to traverse
through a set of objects. But instead of returning each object the visitor performs
operations on these objects. The visitor pattern allows one to flexibly add additional
functionality to objects by the use of double dispatching.

The objects extended by visitors just have to implement an entry method for the
visitor. The visitor must provide a visit() method to work with the type of the
object to be visited performing the desired action.

public void accept(Visitor v) {

v.visit(this); //double dispatching

}

2.2.3 Antipatterns

For the sake of completeness I want to mention the term antipattern. Antipatterns
describe common bad solutions. The knowledge of the most common antipatterns help
software developers avoid falling into these pitfalls and help save time and resources.

60

“The study and application of antipatterns is one of the next frontiers
of programming. Antipatterns attempt to determine what mistakes are
frequently made, why they are made, and what fixes to the process can
prevent them.” [40, page 11]

Tate [40] covers the topic broadly and shows procedures to avoid bad software
design.

2.2.4 Summary

The idea behind design patterns is to present solutions for common design problems
helping the developers not to reinvent the wheel again and again, to assist discussing
on a higher level and to help understanding existing software systems. Design patterns
are identified design solutions to common recurring problems. Design patterns are not
finished and ready to implement solutions but are a description how to solve a class
of problems.

“Patterns are more than macro expansions - every time you see a
pattern used, it looks a little different. I often say that patterns are half-
baked - meaning you always have to finish them yourself and adapt them
to your own environment.” [19]

Design patterns may be classified by their effect or design level where they are
implemented. There are creational design patterns that help to organize the process
of object creation, structural design patterns that form structures and assist interac-
tivity within the objects and behavioral design patterns that are concerned with how
actions are conducted and how behavior may be managed.

While the design patterns help solve design problems antipatterns refer to common
design failures and knowledge of them helps developers avoid pitfalls.

UMLet is designed to allow users to extend its functionality for their needs not
only by being written using Java as the programming language. The emphasized use of
design patterns helps users that want to extend UMLet understand how it is structured
and how the components work together. Design patterns help one to understand the
existing design as fast as possible.

61

62

Chapter 3

Requirements for
lightweight UML tools

Requirements for lightweight UML tools naturally differ from more sophisticated and
heavy-weight software suites. Heavy-weight tools focus on backing the whole cycle of
software development utilizing some processes like Rational’s Unified Process, provid-
ing round-trip engineering mechanisms for creating source code for different program-
ming languages and vice versa creating models and diagrams from source code. But
this requires users to strictly enforce standards and constraints. The users are forced
to create exact and standards-conforming designs.

Although strict designs and models may seem to be desirable at the first look,
the creation process is complex and time-consuming. In the beginning of a software
project it is often necessary to experiment with a design, and the user wants to modify
the diagram in a convenient and simple manner. Restrictions in work flows and forced
standards make heavy-weight tools unsuitable for design and idea explorations.

Lightweight UML tools are not loaded with tons of features and offer the users the
possibility to sketch their diagrams very efficiently by keeping the tool’s functions and
user interfaces simple. Standards are not enforced restrictively, rather the user is more
like being guided to the standard offering more flexibility in the creation of diagrams.
The purpose of explorative sketching is to create a design to explain an idea rather
than to create a model for implementation.

The requirements for lightweight UML tools are:

3.1 Easy to use

A simple user interface is essential to most applications that require non-trivial user
interactions, especially if the software is intended to be used by a non-closed group of
unspecialized users.

63

3.2 Easy to learn

Although user interfaces have a great influence on how easy it is to get into using a
software, this requirement concentrates on other scopes like how the application assists
the users in fulfilling their tasks. The difference from Easy to use is simply in the level
of interaction. Here we don’t concentrate on how buttons and other user-interface el-
ements are placed or how meaningful icons and illustrations are. The goal is to design
the software and workflows in a way that the users find understandable, usable and
enjoyable.

UMLet meets this requirement by providing element palettes offering the full-sized
elements as they occur and with usage examples.

3.3 Easy to deploy

Simple software deployment is not always an issue. But it is indeed so when the soft-
ware is used on a greater amount of workstations and version changes of the file format
may require upgrades to the software on every single workstation. If the deployment
process is simple, it may be sufficient just to drop some files.
It is also desirable to have the possibility to deploy the software on different operating
systems and platforms instead of being bound to one single environment. Especially
when using software in education, teachers and/or administrators face a wide number
of different platforms and operating systems and operating system versions that may
need individual configuration.

3.4 Relaxed standards restrictions

Sophisticated UML tools like Rational Rose are very restrictive with UML standards,
forcing the users to create strictly correct elements and relations.
Tools intended for easy creation of UML models should allow the creation of diagrams
that might not exactly conform to standards: Explorative sketching describes the cre-
ation of not necessarily exact and /-or completely correct models and diagrams. The
goal of explorative sketching is to play and experiment with the model in order to reach
a goal iteratively. It is also used to sketch a design and modify it while discussing the
model with colleagues and other stakeholders in the requirements analysis phase of
the project where simple and fast modification of the diagram and its elements are
crucial and exact models are not mandatory.

“The ultimate goal of modeling is to produce a description of a system
at some level of detail. The final model must satisfy various validity con-
straints to be meaningful. As in any creative process, however, the result
is not necessarily produced in a linear fashion. Intermediate products will
not satisfy all the validity constraints at every step. In practice, a tool
must handle not only semantically valid models, which satisfy the validity
constraints, but also syntactically valid models, which satisfy certain con-
struction rules but may violate some validity constraints. Semantically
invalid models are not directly usable. Instead they may be thoughtful of

64

as “work in progress” that represent paths to the final result.” [38, page
125]

“On the other hand, during early stages of design, a developer may not
care about the value of a particular property. It might be a value that is
not meaningful at a particular stage, for example, visibility when making
a domain model. Or the value may be meaningful but the modeler may
not have specified it yet, and the developer needs to remember that it still
needs to be chosen.” [38, page 125]

65

66

Chapter 4

Related work

4.1 Generic

UML [9] was originally developed by Grady Booch, James Rumbaugh, and Ivar Ja-
cobson in 1994. The main reason was to standardize the many existing graphical
notations like Booch, OMT, or ERM, and to provide a unified way of describing
different software artifacts (classes, components, packages, etc.) arising in different
software environments (object-oriented platforms, real-time systems, state machines,
etc.). Typical types of UML diagrams are use case, class, or activity diagrams [20].
UML has become a de-facto standard since then. The Object Management Group
(OMG), a non-profit industry consortium, is responsible for defining and maintaining
the UML language specification [42]. As of early 2006, the various parts of UML are
being upgraded to version 2.0.

4.2 Application areas

UML has been applied in many different areas of software engineering. Evans and
Wellings [18] report on the application of UML in real-time systems. Kohler et al. [28]
use a subset of UML in describing a decentralized production control system. Aste-
siano and Reggio [3] apply UML in the context of distributed systems; they rely on
the language’s standardized extension features to adapt it to their specific domain.

UML is also being taught in many software engineering courses; for an experience
report please refer to [13]—Hansen et al. [25] discuss the use of tools in lectures of
object-oriented modeling and criticize on the tool’s common strict standard restric-
tions. Turner et al. [44] report their experiences of introductory computer science
lectures using UML tools.

67

4.3 Tools

Many tools attempt to provide UML support, e.g., IBM’s Rational Rose
(http://www.ibm.com/software/rational), Artisan’s Real-Time Studio
(http://www.artisansw.com), or Borland’s Together
(http://www.borland.com/together). These tools provide round-trip-engineering ca-
pability, i.e., they can produce code stubs from diagrams, diagrams from existing
source code, and ways to keep them in sync when one artifact changes. Other tools,
e.g., UMLet (http://www.umlet.com) or Violet (http://www.horstmann.com/violet/)
focus on the fast creation of UML sketches [11, 6]. An extensive overview of UML tool
features is available at http://www.jeckle.de.

See the next but one section below for a short introduction of UMLet’s direct com-
petitors. Chapter 6 gets into a detailed comparison of UMLet and Rational Rose.

4.4 User interface design

User interface design [36, 43] is not a strictly quantitative engineering discipline: it
requires intuition of users’ habits and environments, common sense, an understand-
ing of graphical representations and their effects, and attention to psychological pro-
cesses during user tasks. An ubiquitous aspect of user interfaces—used widely in
any windows-based operating system—are so-called modal dialogs. Such dialogs are
windows that pop up to request a user input, while freezing input to the rest of the
application. These disruptive dialog windows are described by Quan et al. [35] as
follows: “Dialog boxes that collect parameters for commands often create ephemeral,
unnatural interruptions of a program’s normal execution flow.” Many developers, too,
seem to become aware of this intrusive effect; several well-known applications, like
Microsoft’s suite of development tools or the Firefox Web browser, for example, now
rely on non-modal windows or unobtrusive task bars to provide document search func-
tionality.

For applications with a largely graphical user interface, Moran et al. [33] imple-
mented and refined an alternative user interaction approach—a pen based gesture
recognition. While the gesture-based approach requires some initial learning effort,
the authors report that users found it understandable and easy to use. Chen et al. [11]
apply a whiteboard approach to the creation of UML diagrams in early project stages.
Auer et al. [6] describe a text-based user interface to modify the graphical repre-
sentation of UML diagrams. Several other authors report on possible user interface
improvements for UML tools [41, 45, 29].

It is notoriously tricky to quantify how good a user interface is. Users with dif-
ferent background, experience levels, and goals can’t possibly agree on a single “best”
user interface. Yet several user interface guidelines attempt to provide formal criteria
that should at least minimize bad interface choices and provide some cross-platform
standardization [2].

Other authors, most notably Raskin [36], attempt to provide metrics to measure
the quality or usability of user interfaces. Indeed, a whole family of so-called GOMS

68

methods (goals, operators, methods, selection rules) try to measure usability. For
example, KLM-GOMS relies on 6 primitive operations (pressing a key, moving the
mouse pointer, dragging the mouse pointer, mental preparation, moving hands, and
waiting for command execution), and empirically determined execution times. This
paper uses a similar, simplified approach to evaluate how two UML tools perform some
fundamental UML design workflows.

4.5 Lightweight UML tools and text-based in-
put

As stated above lightweight UML tools have to be easy to use, easy to learn, easy to
deploy and offer relaxed standards restrictions.

4.5.1 ArgoUML

According to the information provided on their web page ArgoUML1 is the leading
open source UML tool. The latest release supports just UML version 1.4. As well as
UMLet, it is cross-platform capable through its pure Java implementation. It features
diverse output formats to provide interoperability with other tools. A key feature
is the the creation of source code from the designed models (Java, C#, C++, PHP).
ArgoUML comes with a complex UI featuring many icons, menus, pop-ups, tab-panes,
and context depending mouse operations with key-modifiers (using alt- and ctrl-keys).

• Easy to use: The user interface is rather complex. Important information is
spread across the screen.

• Easy to learn: Users need substantial effort to use the tool—the manual is more
than 400 pages.

• Easy to deploy: The installation package is only 6,5 MByte large. The tool can
be deployed very simple.

• Relaxed standards restrictions: Since the tool is aimed at the generation of code,
it enforces strict standards restrictions.

The commercial product Poseidon2 is based on ArgoUML emphasizing the use of
DSLs and aims at the model driven software engineering process.

4.5.2 Violet

“Roses are rational, violets are GNU” Mike Godfrey. Violet3 is designed for edu-
cational use and aims at the simple creation of diagrams for export as images and
printing. It is easy to learn and use, and cross-platform capable. It does not provide
as much UML coverage as UMLet does. The simple user-interface is a result of the
small range of functions. Violet may be integrated into web sites as a Java-applet.

• Easy to use: The user interface is very simple. It offers basic drawing assistance.

• Easy to learn: It is very simple and easy to learn ho to draw diagrams.

1http://argouml.tigris.org/
2http://www.gentleware.com/
3http://www.horstmann.com/violet/

69

Figure 4.1: ArgoUML

Figure 4.2: Violet

70

Figure 4.3: Dia

• Easy to deploy: The tool can be deployed and distributed very easy. Its distri-
bution size is only about 300 KByes.

• Relaxed standards restrictions: There is no strict standard enforcement.

4.5.3 Dia

Dia4 is another well known open source diagramming tool. Like Microsoft’s Visio
it’s aim is at general diagram creation, supporting a wide range of notations. There
is special support on entity-relationship diagrams, flow-chart diagrams, and UML. It
may be extended by the user by using an XML description (as a subset of SVG) of
the shapes. Furthermore it features an interface to Python. Export to various formats
eases the interoperability with oder tools. The user interface of Dia utilizes a vast
amount of icons, menus and pop-ups. Dia comes as installable binary for Windows,
Linux or Mac OS. It can export to a large number of formats including VDX (Microsoft
XML for Visio) and DXF (Autodesk Autocad).

• Easy to use: Modeling is interrupted by rather complicated pop-ups for detailed
data input.

4http://live.gnome.org/Dia

71

Figure 4.4: UML Pad

• Easy to learn: The tool itself is simple, but the icons are hard to identify.

• Easy to deploy: The deployment process includes a simple installation proce-
dure. The distribution package is about 17.5 MBytes large, which is acceptable.

• Relaxed standards restrictions: There is no strict standard enforcement.

4.5.4 UML Pad

UML Pad5 is a minimalistic UML drawing tool for Windows. It is possible to export
class diagrams as HTML documents. All other diagrams can be exported as images.
The user-interface features the essential icons. Object details are specified by pop-ups
having tab-panes.

• Easy to use: The user interface is very simple, but there is no drawing assistance
like grids or other help for aligning objects.

• Easy to learn: The tool is very simplistic, and therefore very easy to learn.

• Easy to deploy: Deployment is very simple. Just unpack the 1.5 MByte archive
and start the tool.

• Relaxed standards restrictions: There is no standard enforcement at all.

4.5.5 Visual Paradigm

Visual Paradigm is a heavy weight modeling suite featuring different model types. Be-
sides UML there is support for business process modeling, database modeling, and di-
agramming like mind maps, etc. The tool features round-trip engineering—producing
code from models, and models from code—for different languages. There are 4 com-
mercial editions and a free community edition. The prices of the commercial editions

5http://web.tiscali.it/ggbhome/umlpad/umlpad.htm

72

Figure 4.5: Visual Paradigm

are from 99 USD to 1,399 USD. It is available as Java version (cross-platform) and
Windows as well as Linux and Solaris. The user-interface is complex and features
icons, fancy drop-down menu-lists, pop-up windows, tabbed panes, etc. It features
diverse export and import types. It is even possible to import Rational Rose projects,
although it is not possible to export to Rational Rose.

• Easy to use: The user interface is very complex—the information is spread over
the screen.

• Easy to learn: The software suite is rather complex and features a huge amount
of functions.

• Easy to deploy: Deployment requires the user to download about 200 MBytes
and about 350 MBytes of space after the installation. Even for the free commu-
nity edition it is necessary to register and apply a license key.

• Relaxed standards restrictions: There tool enforces strict standards since it aims
at the generation of code.

4.5.6 Rational Rose

Rational Rose is one of the leading UML tools used in large-scale software development
environments. Rational Rose is no longer sold as a stand alone application, but it is
integrated into a number of CASE software products offered by IBM. Rational Rose
is not intended to be used as a simple sketching tool—it aims at providing assistance
in designing large software systems. It relies on a formal, internal object model that
allows one to view the design from different model perspectives. It features round-trip

73

engineering and export to visual documentation formats.

Since Rational Rose is the de-facto industry standard of UML tools, all other
serious competitors have to match with it. The more detailed discussion on it’s user
interface and features can be found in chapter 6.

74

Chapter 5

UMLet’s agile approach

UMLet is focused on providing a simple but powerful user interface avoiding needless
pop-ups. It assists the user in an unobtrusive way.

To afford simple and broad distribution UMLet’s development focuses on applying
and facilitating widely accepted software standards. So UMLet was developed using
only Java. Its file format is based on the open XML standards. Furthermore there is
no use of any operating system or platform-dependent features. UMLet manages to
run without any special configuration or installation routines achieving a high level of
flexibility and system independency.

Further concepts are based on usability issues and ergonomics. By abandoning
needless windows and pop-ups UMLet provides a smooth and fast way of working.
Without interrupting the work flow by diverse menu and dialog interactions, working
with UMLet turns out to be simple and goal-oriented. Some diagram types feature
a simple yet powerful grammar completely avoiding time-intensive or complex mouse
interactions.

UMLet may be used as a plug-in for the Eclipse software development system
allowing it to combine the requirements analysis and documentation of the to be de-
veloped software system with the source code management. The systems analysts can
share their analysis results directly on a common level using UML and other diagram
types. This combination and aggregation allows the manipulation of documentation
files and source code in parallel within a coherent environment. Furthermore the
documentation files may be shared with other development colleagues automatically
allowing them to get into already existing modules more quickly.

To allow users to easily extend UMLet’s range of elements and diagram types UM-
Let features its custom elements. These custom elements may be developed, extended
and modified within UMLet at runtime using the Java language. These elements may
be easily shared with colleagues as well.

Especially for making the introduction into working with UMLet easy, it features
an element palette panel with the original sized elements, instead of a set of abstract

75

and tiny icons. So users do not need to try several icons in order to find the right one,
instead they can directly identify the correct element. Furthermore these palettes may
be rearranged to match the user’s needs.

This chapter will discuss UMLet’s internal concepts and ideas in more detail.

5.1 Simple standard file format

“XML has emerged as a powerful and easy way to save data in files.
Because it is a standard, XML enables you to save data in a form that
can be accessed by applications other than the ones that created the data.
XML software, much of it free, enables you to access the data in XML
documents using standard application programming interfaces (APIs).”
[24, page 5]

XML is the acronym for eXtensible Markup Language. It is a domain independent
meta-markup language. The term meta-markup describes the fact that it is not a
language to represent data, but it is a tool to describe the languages that handle
specific data. XML is used to define the low level language syntax: How element data
is distinguished from its content, what attributes may be attached and how. So XML
defines the syntax and semantics of a language.

“XML, the eXtensible Markup Language, is not actually a language
in its own right. It is a metalanguage used to construct other languages.
XML is used to create structured, self-describing documents that conform
to a set of rules created for each specific language. XML provides the basis
for a wide variety of industry- and discipline-specific languages. Examples
include Mathematical Markup Language (MathML), Electronic Business
XML (ebXML), and Voice Markup Language (VXML).” [21, page 38]

The big advantage to static mark up languages like HTML is that the set of tags
is infinite. Developers can define their tags to fit their needs. Since HTML is de-
fined for document viewing it is limited to format and layout human readable text.
XML is built to break these limitations and aid representing any data. The only con-
straint that is given is that the data to be contained must be represented by characters.

The fact that XML files are human-readable eases the development and debugging
of applications, since no special file viewer is needed and any text viewing tool may
be used.

“Domain-specific tagging has a number of advantages, not the least of
which is that its easier for a human to read the source code to determine
what the author intended.” [26, page 5]

“In XML, both markup and content contribute to the information
value of the document. The markup enables computer programs to deter-
mine the functions and boundaries of document parts. The content (reg-
ular text) is what’s important to the reader, but it needs to be presented
in a meaningful way. XML helps the computer format the document to
make it more comprehensible to humans.” [37, page 7]

76

SGML

(Meta-language)

XML

(Meta-language)

VXML

Document

VXML

Shema

ebXML

Document

ebXML

Shema

MathML

Document

MathML

Shema

WML

Document

XHTML

Document

WML

Shema

XHTML

Shema

Figure 5.1: XML language hierarchy [21, page 39]

77

<?xml version="1.0" encoding="UTF-8"?>

<umlet_diagram>

<element>

<type>com.umlet.element.custom.Component</type>

<coordinates>

<x>10</x>

<y>100</y>

<w>160</w>

<h>80</h>

</coordinates>

<panel_attributes>Component</panel_attributes>

<additional_attributes></additional_attributes>

</element>

<element>

<type>com.umlet.element.custom.ActiveClass</type>

<coordinates>

<x>10</x>

<y>20</y>

<w>160</w>

<h>60</h>

</coordinates>

<panel_attributes>ActiveClass</panel_attributes>

<additional_attributes></additional_attributes>

</element>

</umlet_diagram>

The example above shows an UMLet file containing the two elements Component

and ActiveClass with their coordinates within the diagram and their attributes. Fur-
thermore the example demonstrates the connection between tag and data that allows
easy interpretation.

The string representation also assists data transfer between computer systems over
networks and via different platforms and operating systems. Developers do not need
to worry about byte representation issues like byte and word ordering but can rely on
the data and its string representation.

Using a parser is the best practice to use when reading the data contained in XML
files.

“An XML parser is a software component that can read and (in most
cases) validate any XML document. A parser makes data contained in
an XML data structure available to the application that needs to use it.”
[21, page 44]

There are the two common ways to parse XML files: DOM and SAX.

• DOM:
DOM stands for Document Object Model. A parser following the DOM idea
reads the whole document in at once and constructs an element tree in memory.
This method is suitable for relatively small documents only, because of its lack
of speed and mentionable use of memory resources. The advantage compared

78

to SAX is the possibility to modify the element tree, add and remove elements
in a relatively simple way.

“DOM (document object model): A specification that defines the
structure of a document as a collection of objects and how the doc-
ument can be accessed and manipulated. A document object model
is an API (application programming interface), which describes how
programs actually interpret the structure and contents of a docu-
ment.” [37, page 256]

• SAX:

“SAX (Simple API for XML): An event-driven application pro-
gramming interface for manipulating XML documents with Java.
The API describes a flat document model (no object hierarchy or
inheritance) that then allows for quick document processing.” [37,
page 268]

“Using SAX, the parser reads in the XML data source and makes
callbacks to its client application whenever it encounters a distinct
section of the XML document. For example, a SAX event is fired
whenever the end of an XML element has been encountered. The
event includes the name of the element that has just ended.” Gabrick
and Weiss [21, page 44]

UMLet uses the second procedure to retrieve the XML data. Every time an XML
element is detected the endElement()-method of the XMLContentHandler is called
which associates the element type with its data (Figure: 5.2).

XMLContentHandler

XMLContentHandler(jPanel)

startElement(uri, localName, qName, attributes)

endElement(uri, localName, qName)

characters(ch, start, length)

Figure 5.2: XMLContentHandler class

5.2 Independence from platforms and operating
systems

“Platform independence, the separation of an application from the
platform on which it runs, is the essential characteristic of Java. With
Java, software developers can write a program once, and it will run on
any platform that has an implementation of the Java virtual machine.”
[15, page 1612]

79

UMLet’s platform independence is achieved by using only Java for development.
No platform-dependent features are used. So users are not bound to a specific op-
erating system like Windows or Linux. All that is needed to run UMLet is a Java
virtual machine implementation. Java runtime environments are available from Sun
Microsystems for a number of operating systems including Microsoft Windows, Sun
Solaris, Linux and Apple. Other operating systems are supported through Java im-
plementations by IBM and other vendors.

“Why has Java taken over so quickly? The short answer is found in its
platform independence and potential to turn the Web into a much more
dynamic and interactive environment – something that is badly needed.”
[34, page 3]

“In the old days of computer languages [...], programs were designed
to run under a single operating system, more or less, and the name of the
game was to create programs that could run as fast as possible. Almost
over night, the World Wide Web and Java have changed this notion of
operating system-based language environments to platform-independent
network-driven languages and systems.” [34, page 4]

This independence from platforms and operating systems allows UMLet to be used
in heterogeneous fast changing environments like large development sites or universi-
ties with a vast amount of different computer systems.

Since UMLet’s installation process does not even make use of any particular in-
stallation tools, no special operating system-dependent distribution files have to be
provided. The user has just to un-zip the distribution package that he downloaded
and start the contained JAR file. There are also no specific settings or configurations
to be taken. So users do not have to be supported with any installation and configu-
ration aid.

UMLet was (and still is) developed for educational uses:

“When teaching tool-supported software development concepts, both
concepts and tools have to be taught. Using heavyweight tools can both
distract students from the main educational goals [1, 8] and cause sub-
stantial costs - even if UML tool providers often do not charge license fees
to universities.” [7]

The installation packages of heavyweight tools often have 200 megabytes or even
exceed that size:
IBM Rational Rose Enterprise Evaluation V2003.06.15 for Windows 2000, NT, XP
English Japanese C82XPML.exe (354 MB) Date: October, 8th 2005.

The installation process on the computer environment in classrooms may be hard
to automate due to interactive installation procedures. After successful deployment
one has to deal with license keys, eventually with a license server and with license
expiry dates.

UMLet’s distribution, installation and configuration process is kept as small and
simple as possible so that students can manage to set-up UMLet on their own on
their home computers. And since UMLet focuses on the basic features needed for
UML creation, and is not overloaded with tons of features and functions the amount

80

of required computing performance is fairly small. So there is no need for up-to-date
high-end computers, which accommodates students who may not have such advanced
hardware systems at home.

Another important point of development was the licensing issue. Using commer-
cially distributed software packages often includes the burden of obtaining special
licenses for educational use that have to be spread to the students. Leaving the distri-
bution of the software package aside, delivering the license keys can require substantial
effort too. To prevent other persons than the participating students receiving the soft-
ware’s license keys, these keys have to provided on a password-protected FTP server
(or a password-protected area of the web server) or by copying CDs.

UMLet is distributed as open source and protected by the GNU license only. It
may be freely copied and modified for individual needs. There are no license keys,
serial numbers, or activation obstacles.

5.3 Duality: Application / Plug-in

UMLet may also be used as a plug-in for the widespread software development envi-
ronment Eclipse. Eclipse is developed in the Java language but is not bound to it.
So there is support for developing software in other languages like C and C++, C#,
COBOL, Python, Haskell, OCaml and others.

Eclipse was donated to the open source community by IBM. Like SUN Microsys-
tems does with OpenOffice and its StarOffice, IBM offers a commercial version of
Eclipse called WSAD (WebSphere Application Developer) which will be replaced by
the Rational Developer (RAD) in the near future. The difference between these ver-
sions is the delivered features. Eclipse is delivered featuring about 90 plug-ins, WSAD
offers about 500 to 700 plug-ins providing the developers with functionality to develop
web and database applications.

“As long ago as 1988, OTI developed a collaborative development
environment for Smalltalk called ENVY, which was later licensed to IBM
under the name Visual Age. What followed was the development of Visual
Age for Java, but this was still implemented in Smalltalk. Now, OTI
has started the next generation of development tools with Eclipse. Of
course, we find many of the design elements of Visual Age in Eclipse. The
difference is, however, that Eclipse is implemented in Java and that it
features a much more open architecture than Visual Age.” [14, page X]

“Eclipse is an open source community whose projects are focused on
providing an extensible development platform and application frameworks
for building software. Eclipse provides extensible tools and frameworks
that span the software development lifecycle, including support for mod-
eling, language development environments for Java, C/C++ and others,
testing and performance, business intelligence, rich client applications and
embedded development. A large, vibrant ecosystem of major technology
vendors, innovative start-ups, universities and research institutions and
individuals extend, complement and support the Eclipse Platform.” [On-
line: www.eclipse.org]

81

By copying or deflating the UMLet distribution package into Eclipse’s plugins

directory the installation process is already done. UMLet may be invoked by either
double clicking on an already existing UMLet document within the actual Eclipse
project or by starting UMLet’s “New file”-wizard.

Figure 5.3: New file wizard

The advantage of using UMLet as a plug-in within Eclipse is based on the inte-
gration of the documentation into the Eclipse project. When developing software in a
team of software developers, usually a source code versioning system like CVS (Con-
current Versioning System) is used. When checking in the project, all team members
also receive the documentation done with UMLet.

UMLet appears as an editor within Eclipse allowing one to create and modify the
diagrams in common with the source code documents, while still providing full feature
support for all stand-alone functionality like exporting to the publishing formats and
custom element creation.

5.4 Transparency

UMLet is designed using the Java AWT Graphics (java.awt.Graphics) framework for
drawing the elements. There is no distinction between drawing on the screen or in a file.
The output device is irrelevant. For the drawing process it makes no difference what
medium is written to, indeed the paint()-Method of the elements have no knowledge
of anything else than the Graphics class they write to. When exporting the diagram
for example to a JPEG file, UMLet just calls the paint()-Method of all elements
contained in the drawing panel.

public class InitialState extends Entity {

public void paint(Graphics g) {

g.fillOval(0,0,this.getWidth(),this.getHeight());

}

public int getPossibleResizeDirections() {return 0;}

}

82

Figure 5.4: UMLet files integrated in an Eclipse project

5.5 Easy expandability (custom palettes and dy-
namic custom elements)

Instead of using schematized icons for the elements, like most other tools do, UMLet
utilizes an element palette with graphically identical elements. Users can immediately
identify the objects. To be more flexible UMLet supports more than one element
palette. These palettes are usually categorized by the use case. There are palettes for
building class diagrams, activity diagrams, sequence diagrams and more. Users may
also rearrange the palettes to match their needs and speed up working. The desired
palette may be chosen using a drop down box in the menu bar.

Figure 5.5: Palette drop down box

83

Adding new palettes to the list of already existing ones is done by copying/saving
the new palette to the palettes directory and adding the palette.uxf suffix to the
filename like: sequence palette.uxf

A main feature that distinguishes UMLet from other UML tools is the possibility to
integrate user made elements. The so called Custom Elements feature allows users to
extend UMLet’s set of entities and it even allows the creation of entirely new diagram
types. These custom elements may be implemented using the built in Java compiler.
A special reserved text-panel in UMLet allows the modification of the element’s Java
code (see Figure: 5.6).

Figure 5.6: Source code frame

A new custom element may be created by selecting “New Element” from the cus-
tom elements drop down box. The source code of the newly-created element is a well-
commented basic implementation of an UMLet-Entity, providing examples for drawing
the entity, defining the docking/sticking polygon and attribute handling. Since custom
elements are derived from a superclass that implements all needed backend function-
ality like loading, saving, etc. the user may concentrate on the element creation.

For the sample code of a new custom element see the appendix.

Already-existing custom elements may be added to the current diagram using the
drop down box.

Sharing custom elements and palettes is as simple as sending the source files of
the elements ((UMLet installation directory)/custom elements) and the palette
files ((UMLet installation directory)/palettes) respectively by email or burning
them on a CD.

84

UMLet realizes this feature with a built-in Java compiler. The source code is
saved to a file and compiled at runtime by clicking the compile button in the source
code panel of UMLet. Since the source code of the elements are stored to the above-
mentioned directory, users may also edit the source code with what ever editor they
want, although developing the element within UMLet has the advantage of seeing the
changes immediately. The affected elements that are currently edited are marked with
an in progress... message to easily identify these elements.

After successful compilation of the custom element, loading the class code from
the file system and instantiating the object, all instances within the diagram and if
so also within the palettes are exchanged with the new instance. The runtime class
loading from the file system is done by the FileClassLoader. It implements loading
the class data from the file system if it is not found in the system cache, which is the
case when loading the class for the first time. The instantiation of the class is done by
the CustomElementLoader which receives the class data from the FileClassLoader.

5.6 Unobtrusiveness

A design concept that has big weight is that interaction should be unobtrusive. UMLet
does not bother the users with a vast number of windows and pop-ups. Instead UMLet
proposes only few possibilities to enter data. The main input is done in the attributes
panel.

As described in the following section UMLet provides a schematized way of creat-
ing and modifying diagrams and elements, not compelling the user to handle differing
data input varieties. These differing data inputs are normally implied by the way
conventional user interfaces are built.

But there are still pop-ups in use. The built-in Java compiler utilizes a pop-up
window to show error messages that occurred during the compilation of a custom
element, either when opening a file and the custom elements are not compiled yet or
when the compilation process was manually started. Also for naming a new custom
element in the element creation phase UMLet opens a modal dialog box.

5.7 Fast diagram creation

The design decision to avoid pop-ups and diverse configuration windows and only con-
centrate on a single attribute window opened a way of modifying the elements in a
compact and quick manner.

As previously mentioned, conventionally designed user interfaces for data input
imply some restrictions which UMLet solves in an elegant way by introducing its
textual element description:

• Using “copy and paste” to duplicate parts or the full attribute set of an entity.

• Changing the specific type of a relation.

• Extending and modifying elements using syntax instead of options represented
by a complex user interface.

The elements offer an easy to understand syntax of how to modify their charac-
teristics. As an example the class element is represented in its basic canonical form

85

showing its name only surrounded by a rectangle. This is done by simply typing the
class name into the attributes window.

SimpleClass

Figure 5.7: A simple class

By modifying the textual attributes only the class may show additional information
like variables and methods. The class name, variables and methods are separated by
adding a new line consisting just of the string “--”. Special properties, like defining
a method or the class as being abstract is done by surrounding the text line defining
the name of the method or class by the slash character (“/”).

«Stereotype»

Package::FatClass

{Some Properties}

-id: Long

-ClassAttribute: Long

#Operation(i: int): int

+AbstractOperation()

Responsibilities

-- Resp1

-- Resp2

Figure 5.8: A full blown class

It is even possible to change the type of relations by just modifying the attributes.
To change an inheritance to a uses relation all that has to be done is just removing a
“<” from the definition string.

Allowing copy and paste to and from the element’s attributes is a great help when
creating a number of similar elements.

UMLet’s approach lets the users delay their decision as to whether the elements
should be full blown or reduced to basic sizes, supporting them to easily modify the
elements at a later point in time. So the users can concentrate on the coarse diagram
creation and refine it just on demand. Also the users are assisted by the schematized
way of modifying elements. More complex elements are edited in the same way and
since the palettes contain examples of how the elements may be used users get into
using UMLet very quickly.

Creating a sequence diagram the conservative way by arranging the elements by
hand is a time consuming process. UMLet offers a way to create sequence diagrams
in a very fast and simple way by utilizing a simple yet powerful syntax allowing to

86

create, modify and rearrange the diagram in very short time:

 sequence diagram

interaction frame

Figure 5.9: Sequence diagram

The diagram of figure 5.9 is defined by the following properties text:

title:sequence diagram

alpha:A|_beta:B_|_gamma:G_

1->>2:1,2

2-/>1:async Msg.

3->>>1:1,3

1.>3:1,3:async return Msg

1->1:1:self

iframe{:interaction frame

2->3:2,3:async Msg.

iframe}

Every attribute text line corresponds to a line in the diagram. The second line
defines the involved objects allowing UMLet to calculate the needed width of the en-
tire diagram. Method calls and object activities are stated by the number of their
definition. So the second line means a synchronous message from the first object (11)
to the second object (2) and stating an activity of both objects. Line three defines an
asynchronous message while the objects are inactive. A self call is stated in the same
way but that the destination object is equal to the source object. Every message may

1The numbers in brackets correspond to the numbers in the textual representation of the
sequence diagram in order of their appearance.

87

be named while the three parts of a message are divided by the colon (“:”).

Interaction frames that can show activities conditioned by some constraints may
be added by surrounding the desired activities with iframe{: and iframe} marks.

5.8 Interoperability

To grant a maximum of interoperability with standard publishing software UMLet is
capable of exporting the created diagrams into diverse publishing formats. Up to now
UMLet supports exporting to:

• JPG: The broadly used lossy raster images file format developed by the Joint
Photographic Experts Group.

• SVG: The Scalable Vector Graphics format – an open standards file format by
the W3C, is based on XML and is capable of describing two dimensional vector
graphics.

• PDF: The Portable Document Format developed by Adobe Systems is intended
for representing documents independently of platforms, operating systems and
the software the document was created with.

• EPS: EPS is an extension of the by Adobe Systems developed PostScript file
format and is used for PostScript graphics files that are to be embedded into
other documents.

So the diagrams created with UMLet may be easily imported into standard text
processing software and / or used on web pages.

“But many times parts of the models must be inserted in Word docu-
ments, processed with Latex, or just pasted as low-resolution bitmaps to
a PowerPoint presentation. After all, UML is all about communication.
However, few UML tools currently support a wide range of file formats.
Often one has to rely on additional third party tools like Acrobat to pro-
cess UML diagrams outside their creation tool; few tools natively support
high-quality publishing formats. Often the only way to share diagrams is
to print them.” [7]

5.9 Educational use

The concepts presented in this chapter are the basis on which UMLet is developed.
The fact that UMLet is written in Java not only supports software developers, but
it also helps to integrate UMLet in heterogeneous computer system environments like
those found at universities and schools.

• UMLet’s concept of expandability allows the adaption of graphical notations
that may be missing for the purpose of the course.

• The intuitive user interface of UMLet allows students to concentrate on solving
their exercises and not having to struggle with the application wasting time with
badly-designed dialogs and inscrutable help and documentation files.

88

• The simple installation process of the small distribution files prevents setup
frustration.

• Utilizing Java allows application deployment on different operating systems and
platforms. So the students are not bound to a specific operating system in class
rooms but may install UMLet on their home computers easily.

• Providing different common publishing file formats allows the students to easily
process and integrate the created diagrams in their preferred publishing appli-
cations.

“For most students, tools are the real stuff. It is the tool that helps
her or him writing, compiling, and debugging programs. It is the tool
that makes application frameworks accessible and usable. It is the tool
that saves time. It is the tool that is fun to play with. So, learning by
tool usage is highly motivating for students.” [23]

5.10 Trade-offs

After all the positive features UMLet also has to deal with some trade-offs.

UMLet may suffer from problems of the actually used Java virtual machine. There
may be performance issues, when comparing to natively compiled applications. Al-
though modern Java compilers and virtual machines using hot spot optimizers reduce
this problem there are still some performance issues. UMLet may behave a little
slow in some situations, since SUN’s actual AWT (Abstract Windowing Toolkit) and
SWING implementations, that are used for implementing the graphical user interface,
are not very fast.

But this issue may be solved using a native compiler producing platform depen-
dent executables. This option is left to the users if they want to, since UMLet loses
its platform independency by this procedure.

Using palettes instead of small icons implies more space consumption. To reduce
this problem UMLet allows one to minimize the palette panel to gain more space on
the drawing panel.

5.11 Summary

• UMLet features an easy and unobtrusive user interface avoiding unnecessary
windows and pop-ups and providing powerful and fast element creation and
modification.

• Its expandability is achieved by the fact that UMLet is available as open source
and its custom element feature of allowing flexible element creation using Java
at runtime.

• UMLet features a high level of platform and operating system independence
by the use of Java for implementation and distribution without the use of sys-
tem specific installation procedures and an open standards conformed XML file
format.

89

• Users may use and modify UMLet without any constraints, because UMLet is
published under the GPL and available as open source.

• UMLet’s interoperability with standard desktop software is achieved by allowing
one to export the diagrams into a variety of standard publishing formats.

• UMLet may be used as a plug-in in Eclipse integrating documentation into the
Eclipse project.

• Simple implementation of element drawing methods allows transparent usage
on screen and file streams.

• Focus on educational use issues.

90

Chapter 6

Comparison: UMLet versus
Rational Rose

To prove the advantages of UMLet this chapter will compare UMLet against Rational
Rose in its latest version. Section one will discuss some user interface problems that
Rational Rose suffers. The later sections present quantitative comparison of both tools
featuring a simplified GOMS method by counting and comparing the user interactions
needed to execute defined use-cases.

6.1 Usability

This section reflects on some user interface issues users run into when using Rational
Rose, especially when using it the first time, and discusses how UMLet approaches
these problems.

6.1.1 Element selection

Rational Rose provides access to its elements via a toolbox represented by rather
abstract icons. This toolbox can be modified and may hold the following elements:

Figure 6.1: Rational Rose Toolbar featuring icons

These icons are hard to interpret without prior knowledge. Rational Rose offers
help with small tool-tips – but searching for the right icon encumbers a quick and
smooth working process. Alternatively elements may be chosen via the menu by se-
lecting “Tools->Create” and the desired element. This menu is bound to and derived
from the actual diagram type. So it is not possible to mix up elements from different
types of diagrams. Since Rational Rose concentrates on the model and assists the user
to transform the created model into source code and vice versa the limitation may be
desired. But for sketching a design and the ideas behind it, this limitation may not

91

be ideal.

Comparing Rational Rose’s toolbox containing icons to UMLet’s approach using
real size elements in its palettes shows UMLet’s advantage at one glance: The users
don’t have to search for the element from a set of abstract and tiny icons or can not
get stuck with poorly descriptive element names but simply choose at first sight the
desired element from the palette.

“Using the UML doesn’t necessarily imply developing documents or
feeding a complex CASE tool. Many people draw UML diagrams on
whiteboards only during a meeting to help communicate their ideas.”
Fowler [20, page 29]

6.1.2 Diagram creation

Since the class diagram is the most often used UML diagram type, UMLet offers the
major element types of a class diagram in its default palette which is displayed in the
palette panel at startup. So the users can start right away without having to do any
prerequisite configuration or initialization steps like defining diagram types, diagram
names or anything else.

To create a new class diagram the user has to follow the following steps:

1. Right-click the Logical View entry in the browser.

2. Select New->Class diagram from the shortcut menu.

3. Enter the name of the new diagram.

4. Double-click the diagram in the browser to open it.

After creating a class in the diagram drawing panel Rational Rose prompts the
user for the name of the class and offers a vast number of known class names in a
selection box. So it’s easy to integrate classes of the Java-API.

When adding attributes or operations Rational Rose adds an item with a default
name and allows the user to rename the item. Confirmation of the entered name with
the “Enter” key adds a new attribute with another default name. The only way to stop
the process of adding attributes/operations is by making an action with the mouse,
either by clicking a button, menu or simply on an empty space. This uncommon
behavior may appear annoying to new users, while it may be handy when creating
more than a handful of attributes/operations is desired (see figure 6.2).The type of
attributes can be chosen from a selection box which also offers all known types making
it a little difficult to select the desired type because of the huge amount of listed items
(see figure 6.3). The initial value and visibility options can be defined here as well.

Figure 6.2: Adding new attributes to a class in Rational Rose

92

Figure 6.3: Attribute type selection dialog

Alternatively Rational Rose offers a Class Creation Wizard which guides the user
through the class creation process. Unfortunately this wizard only allows one to specify
the basic parameters of the class like if it is a super class, or derived from an existing
class. No attributes, operations or any other specific details may be declared.

6.1.3 Model types

Rational Rose allows the user to select from a set of predefined model types. There
are models for diverse Java versions and other environments. Depending on the se-
lected model type Rational Rose provides class types and attribute types at complying
places. This feature enables the users to work with elements already present in the
selected environment.

6.1.4 Deleting elements

Deleting an element is not as intuitively solved as one could expect. Since Rational
Rose features a model rather than just a diagram, the element to be deleted has to
be removed from the model to avoid errors. Rational Rose presents the model in
a browser–like window where the entities are listed (see figure 6.5). Elements and
associations cannot be removed using the “DEL” key but must be removed from the
model using “Ctrl–D” or using the context menu “Edit->Delete-from-Model” or by
deleting the element in the model browser.

Contrastingly generalizations cannot be deleted in the browser. Also deleting a
generalization from the diagram does not remove it from the model. The user has to
open the dialog of the class that is declared as the specialized one by the generaliza-
tion, then switch to the tab “Relations” and remove the corresponding relation. This

93

Figure 6.4: Rational Rose’s Class Creation Wizard

Figure 6.5: Model Browser

94

is annoying to the user, a time-consuming process and very error-prone if more than
one relation exists.

6.1.5 Duplicating elements

Also duplicating elements can not be done by simply selecting the elements and ap-
plying any common copy and paste methods. Although the elements are visually
duplicated in the diagram, they are not duplicated in Rational Rose’s model, but in-
stead these instances refer to the same element in the model. If the user modifies the
copied element in the diagram, the original element is changed as well.

This behavior is obscure and not intuitive, which is a pain for users that are new
to Rational Rose.

6.1.6 More issues

A handy feature of Rational Rose is its auto layout function which rearranges the se-
lected elements automatically. It also resizes the elements so their content, the names
of attributes and operations, fit into the frame. The result is a tidy diagram.

Rational Rose shows an unpleasant undo functionality. Surprisingly the insertion
or modification of elements and dependencies cannot be undone within Rational Rose.
The creation of an element cannot be undone, but has to be deleted. Also the alter-
ation of the name of an attribute or operation can not be undone, but it has to be
done by hand. UMLet is way more flexible and user oriented.

Rational Rose does not offer the same flexibility as UMLet does with the modifi-
cation of the type of a dependency. Within Rational Rose the user has either to delete
and re-create the new dependency or do the modification (if even possible) within a
dialog. For example if the user creates an aggregation of two classes. So he connects
Class1 with Class2 and may find that the aggregation he made follows the wrong
direction. Rational Rose requires the user to do the following:

1. Open the context menu of the aggregation.

2. Select “Open Specification...” to open the dialog.

3. Switch to the tab “Role B Detail” and uncheck the Aggregate-check box.

4. Switch to the tab “Role A Detail” and activate the corresponding check box.

UMLet allows one to do this type of modification with a fraction of activities and
time. The user just has to modify the textual attributes of the aggregation and replace
the string “->>>>” to “<<<<-” or swap the beginning and end of the aggregation in
the diagram. So UMLet offers an intuitive way of changing the characteristics of
dependencies and other UML elements. UMLet even lets the user change the type of
dependency by modifying the attribute string by removing or adding a “<” or “>”.

95

6.1.7 Summary

All these mentioned issues hamper the user when he just wants to sketch simple dia-
grams. Rational Rose is too complicated and overloaded for this purpose.

UMLet allows the user to get used to the tool in a much shorter time than Rational
Rose does. UMLet allows the user to start sketching right after the application start.
There are no questions or setup options. UMLet offers in its default palette the most
common element types.

UMLet features a more agile approach than Rational Rose. UMLet allows fast
sketching and refining the diagram on demand rather than forcing the user to specify
any details.

6.2 Evaluation

The Unified Modeling Language (UML) [9] has become the standard graphical notation
in software engineering. Different diagram types support most phases and workflows of
the software process, including requirement engineering, design, implementation and
deployment. UML is supported by a variety of tools trying to deliver on the elusive
promise of computer-aided software engineering [16].

In practice, UML is applied in three main scenarios. First, UML is the notation
of choice when creating early drafts of requirement specifications, and software or
database designs. Use case diagrams and design sketches are often created from scratch
and modified over several iterations. The diagrams do not have to adhere to the strict
UML standards; they are used in an explorative way [38, page 125].

Second, in large-scale software engineering environments, software design and im-
plementation are kept in sync using sophisticated round-trip engineering tools [32].
These are capable of generating code stubs from design blueprints, of generating di-
agrams from existing code, and of propagating changes from one artifact to others.
The models and diagrams must conform to formal criteria; only in this way are the
tools able to handle the relations between diagrams and code.

Finally, such round-trip engineering tools are also able to effortlessly generate UML
documentation from large existing code bases. This is an easy way to provide clients
with a seemingly vast amount of system documentation, which is often required by
contract but seldom maintained consistently during a project’s lifetime.

This paper looks at the first application scenario—UML sketching—, and more
precisely at tools supporting the sketching process. We argue that UML is applied
differently in that scenario, and that tools aimed at providing formal UML support
and complex round-trip-engineering might be inadequate to cover it. We compare the
commercial UML tool Rational Rose to the open-source tool UMLet [6] and quantita-
tively assess the tools’ usability for explorative sketching. Rational Rose was chosen
because it is the leading UML modeling tool in large-scale industrial environments.
UMLet, on the other hand, provides a low-complexity user interface and thus a base-
line for our comparison.

We assess the tools’ usability by measuring the complexity of 16 common UML

96

modeling patterns, or use cases. Examples for such use cases are changing class at-
tributes, modifying dependencies, or adding messages in a UML diagram. The applied
usability measures rely on concepts outlined in [36].

6.3 Hypothesis

Classical text-based applications like command line interfaces (i.e. Unix) are known to
be complex and critical to erroneous input (i.e. using the rm command with wildcards).
On the other side graphical user interfaces can become slow and cumbersome—looking
for a specific icon within a large list of other abstract and hardly decipherable icons.

The unobtrusive combination of both—a graphical user interface combined with a
smart text-based interface can improve the application’s usability. Hence the research
hypothesis is that text-based user input can reduce the number of user inter-

actions with a graphical user interface, increase the speed of user input and

lead to a more efficient user interface.

This hypothesis is tested using a quantitative method counting user interactions
needed to fulfill given use cases. The assessed tools are the industry-standard tool
Rational Rose and the open-source tool UMLet. Rational Rose features a classical
graphical user interface. UMLet’s user interface design reduces the amount of distrac-
tion caused by typical UI elements like pop-up windows, tab-panes, abstract icons,
etc. It features a text-based approach with an easy to learn syntax.

The dataset which the assessment is based on, features 16 use cases that are
essential to UML sketching. See below for their detailed description.

6.4 Evaluated UML tools

This section gives a short introduction to the evaluated UML tools: one of the leading
industry-strength UML tools, Rational Rose, and the open-source tool UMLet.

6.4.1 Rational Rose

Rational Rose is one of the leading UML tools used in large-scale software development
environments. Rational Rose is no longer sold as a stand alone application, but it is
integrated into a number of CASE software products offered by IBM.

Rational Rose is not intended to be used as a simple sketching tool—it aims at
providing assistance in designing large software systems. It relies on a formal, internal
object model that allows one to view the design from different model perspectives.

Rational Rose was originally developed in 1992 at Rational Software Labs, using
ADA and later Smalltalk. Version 1.0 supported the Booch notation only, since it
was based on a tool developed by Grady Booch that created graphical representations
of ADA program structures. Version 2.0 was released in 1993, supporting Microsoft

97

Windows. After James Rumbaugh joined Rational, version 3.0 supported the OMT
notation and featured some of the first round-trip engineering capability for C++. In
1996, Rose 4.0 was released, including Ivar Jacobson’s use cases, improved round-trip
engineering, and basic support for Visual Basic. Rose 98 featured UML notation,
activity diagrams, and Java support. Rose 2000 shipped with an HTML generator
and increased UML conformity. Rose 2001 supported J2EE and IBM’s VisualAge for
Java. Rational was acquired by IBM in 2003.

Model views and round-trip engineering

Rational Rose uses a formal model framework to store all design elements and their
relationships. This way, Rational Rose can create different views of the design and
ease the transformation of one diagram type to another. As an example, if the user
changes the name of an element in one diagram view, it changes consistently in all
other diagrams.

Rational Rose allows one to create a model from scratch or to start from a set of
predefined models. Users can select from model templates like Java, VC-MFC, VB,
etc. Figure 6.6 shows Rose’s model browser. It is used to navigate through the model,
and to add and delete diagrams, entities and relationships.

Figure 6.6: Rational Rose’s model browser

A key feature of Rational Rose is its round-trip engineering capability which allows
one to generate source code from the model and model elements from source code.
Round trip engineering consists of two parts:

• Forward Engineering : Changes to the UML model are translated into source
code changes.

98

• Reverse Engineering : Changes to the source code are updated in the model’s
elements.

In our own experience, and based on reports from several fellow IT managers,
this round-trip engineering process is not flawless. Large-scale industrial IT projects
involve several different programming languages, operating systems, databases, class
frameworks and batch scripts, in addition to a version control system, a code docu-
mentation tool, etc. This diversity alone makes keeping these systems and artifacts in
sync a complex challenge.

6.4.2 UMLet: Lightweight UML modeling

UMLet is a small UML sketching tool. It aims at early life-cycle UML modeling
and UML education. It is distributed as open source tool under the terms of the
GNU General Public License. Since it is developed in Java it is operating system
independent. UMLet may also be used as a plug-in within the integrated development
environment Eclipse to better integrate UML models with a project’s source code
artifacts.

UMLet was originally developed in 2001 at the Vienna University of Technology.
The first versions were designed to run as an applet in a browser, with diagrams
being stored on a central server. The setup of this client/server solution proved too
tedious for average UML users and students; the following versions were therefore
released as a stand-alone Java application. Several features were added in the following
years: versions 1 to 3 provided export capabilities, integration in the Eclipse IDE, and
user-defined element palettes. Versions 4 to 7 added new UML diagram types and
user-defined UML elements via on-the-fly Java compilation. The main user interface
concept remains the text-based UML element description.

Text-based modeling

UML tools usually treat UML elements as visual objects, whose appearance can be
edited by changing their attributes. This is mostly done through pop-up dialog boxes.
See figure 6.7 for an example of Rose’s dialog to edit a UML class element and its
attributes. The dialog contains 8 tabs, and approximately 40 user interface elements.

UMLet’s user interface is different: it allows users to define the look of a UML
element by editing a textual description of it. For example, the UML class element in
figure 6.8 is defined by the following lines:

MyClass

--

id: Long

ClassAttribute: Long

--

MyClass(i: int)

someOperation(): Object

The double dash denotes the lines that are separating class title, attributes and
methods. Changing the title, or adding and removing new attributes and methods is
done by editing the textual description of the class.

Not only simple UML elements like classes can be modified like this. UMLet
also provides more complex diagram types entirely defined by a text grammar. The
sequence diagram of figure 6.9, for example, is defined as follows:

99

Figure 6.7: Rational Rose: Class Specification Dialog

Figure 6.8: Class element

100

title: Sequence Diagram

alpha:A|_beta:B_|_gamma:G_

1->>2:1,2

2-/>1:async Msg.

3->>>1:1,3

1.>3:1,3:async return Msg

1->1:1:self

iframe{:interaction frame

2-/>3:2,3:async Msg.

iframe}

Figure 6.9: Sequence diagram using a simple grammar

When the textual description of a UML element is edited by the user, the element’s
graphical representation is updated in real time—no separate dialog or confirmation
is necessary. The text editor also provides standard copy/paste functionality, which is
useful, for example, when adding several private attributes and corresponding get/set-
methods to a class.

Figure 6.10 shows the user interface’s three main parts: diagram panel, element
palette panel and the text panel to edit the UML element attributes.

UMLet’s element palettes are normal UML diagrams: they show the available di-
agram elements in real size rather than as tiny, abstract icons. The users can quickly
identify the elements without having to interpret icons or navigate menus; see fig-
ure 6.10. And as a palette is just another UML diagram, it can be rearranged or
modified to show the most useful elements or element configurations for a given envi-
ronment.

101

Figure 6.10: UMLet’s user interface

6.5 UML tool usage

This section describes the three main usages of UML tools: explorative UML sketching,
round-trip engineering, and system documentation. To perform the complex round-
trip engineering and documentation, tools must enforce formal language constructs
more rigorously. They can thus become unsuitable for simple explorative sketching.

Explorative UML modeling is the fast creation of UML sketches. Those sketches
often do not have to be precise or final or completely UML compliant. The goal of
explorative sketching is to play and experiment with the model, to reach a better idea
of the design iteratively, and to discuss the model with colleagues and other stake-
holders in the requirements analysis phase. Explorative sketching may also be used in
UML education—UML examples can focus on key language elements while disregard-
ing distracting details. A simple and fast modification of the diagram and its elements
is crucial.

Round-trip engineering aims to keep the design and the actual implementation of
the software project synchronized. This should guarantee that the high-level abstrac-
tion and the low-level both implementation remain valid over the project’s lifetime.
This is important, for example, if changes to an application’s overall software archi-
tecture should be made—the abstract design view is the natural starting point for
such a refactoring effort. If the design view, however, does no longer represent the
actual implementation, the refactoring must start on the implementation level and it
becomes less transparent and more tedious.

Documenting existing artifacts is another major application for UML tools. It is
often motivated by the fact that large projects require extensive system documenta-
tion. Unfortunately, a common measure for the quality of the documentation is its
size, as precision and understandability are difficult to assess. An easy way to create
massive amounts of documentation is to reverse-engineer diagrams from existing code.
These generated diagrams are often very hard to interpret since, unlike hand made
diagrams, they can’t hide unnecessary details or make use of the elements’ spatial

102

orientation.

This paper focuses on the first application of UML tools, UML sketching. This is a
fundamental UML tool application—every design tool, at several points in a project’s
life cycle, is likely to be used as a UML sketchpad. If it is too cumbersome to use,
users will turn away and settle for improvised PowerPoint graphs or scanned notes.

6.6 Testing scenarios and rules

There are several methods to examine the usability and ergonomics of user interfaces.
The most straightforward method might be to examine user behavior while they ex-
ecute well defined use cases. This method can be combined with video recordings or
even eye tracking recordings. Examinations like this, however, are very time consum-
ing and expensive.

Raskin [36] discusses an alternative method for quantifying user interface usabil-
ity: GOMS (Goals, Operators, Methods, and Selections rules). GOMS, developed by
Stuart Card, Thomas Moran and Allen Newell, evaluates a user interface by analyz-
ing elementary actions like pointing and clicking with the mouse, or typing on the
keyboard. These elementary actions are weighted with time factors.

We simplify this method by concentrating on mouse clicks and combined keyboard
inputs, while disregarding mouse movements or individual key presses. We also do
not weight the elementary actions, and only count the number of actions needed to
complete a given use case.

The following list gives a set of representative use cases which are typical to the
creation of UML diagrams. We concentrate on class diagrams and sequence diagrams,
since the creation and modification of other UML diagram types is very similar.

1. Create a simple class: Starting from an empty diagram we create a simple
class element without defining any attributes or operations.

2. Extend a simple class with attributes: Extend the simple class with one
attribute without specifying special characteristics.

3. Extend a simple class with operations: Extend the (simple) class with one
operation without specifying a special return value or input parameters.

4. Modify an attribute’s characteristics: Modify the attribute; define it to be
protected and specify its type as Object.

5. Duplicate a class: Make a copy of the class.

6. Add an aggregation to a two-class diagram: Add an aggregation depen-
dency between two classes.

7. Modify an aggregation to a generalization: Change the aggregation de-
pendency to a generalization dependency.

8. Change the direction of a generalization: Change the direction of the
generalization, so the specialized class becomes the parent class.

9. Delete one class: Remove one class from the diagram.

10. Undo class delete: Undo removing one class from the diagram.

103

11. Create a simple class diagram: Create a slightly more complex class dia-
gram. The composite design pattern—consisting of 4 classes and three different
relationship types—is implemented.

12. Create a simple sequence diagram: Create a simple sequence diagram
consisting of two objects. Object One sends a synchronous message to object
Two.

13. Change the message direction: Change the direction of a message in a
sequence diagram.

14. Change the message type: Change the message type from synchronous to
asynchronous.

15. Add a message to the sequence diagram: Add a named message to the
sequence diagram from object One to object Two.

16. Create a sequence diagram: Create a sequence diagram of the process of
browsing with a Web browser to a Web site. The involved objects are User,
Browser, Web server, DNS. Object types and message types are not specified.

As an example, these are the individual user interactions required for use case 1,
with Rational Rose and UMLet:

Create a simple class:

Starting from an empty diagram we create a simple class element without defining any at-
tributes or operations.

• Starting point: An empty diagram

• Goal: A diagram with a simple class element

User interactions required by UMLet: 2

1. Create the class by double clicking on the simple class on the palette.

2. Rename the class to “MyClass”.

User interactions required by Rational Rose: 4

1. Select the class element by clicking on the class icon on the tool bar.

2. Place the class element by clicking in the diagram window.

3. Rename the class to “MyClass”.

4. Click into the diagram window to complete the naming operation.

For an extensive description of all use cases, please refer to the appendix.

6.7 Discussion

The results of the test are summarized in table 6.1 and figure 6.11. It shows that
UMLet requires substantially fewer user interactions than Rational Rose; there
are only a few tasks that can be executed faster in Rational Rose. To complete
simple but frequent tasks when creating UML sketches, users are required to

104

Use Case # UI # UI Abs. Rel.

UMLet R.Rose Diff. Diff.

1 Create a class 2 4 +2 100%
2 Extend class with attributes 5 4 -1 -20%
3 Extend class with one operation 5 4 -1 -20%
4 Modify an attribute 5 10 +5 100%
5 Duplicate a class 1 11 +10 1000%
6 Add an aggregation 4 2 -2 -50%
7 Modify an aggregation 1 5 +4 400%
8 Change a generalization 1 5 +4 400%
9 Delete a class 2 3 +1 50%
10 Undo class delete 2 2 +/-0 0%
11 Simple class diagram 39 48 +9 23%
12 Simple sequence diagram 4 29 +25 625%
13 Change message direction 3 11 +8 266%
14 Change message type 3 5 +2 66%
15 Add a message 3 4 +1 33%
16 Create a sequence diagram 12 49 +37 308%

Median Relative Difference 83%
UI = number of user interactions

Table 6.1: Results

perform about 80% more interactions with Rational Rose than UMLet.1

Surprisingly, duplicating a class element (use case 5) in Rational Rose is an
extremely cost intensive task. It requires 11 interactions in Rose, and just one
in UMLet.

Apart from use case 5, use case 16 shows the maximum performance advan-
tage of all tested use cases. The reason is UMLet’s special grammar for sequence
diagrams. It especially frees the user from the task of placing and resizing the
various sub-elements’ graphical representations. In order to keep the grammar’s
syntax simple, UMLet makes some trade-offs and does not support the full func-
tional range of the UML sequence diagram. UMLet does provide support for
creating such diagrams conventionally, using individually placed elements. In
this case, however, UMLet’s advantage shrinks.

As documented in table 6.1, operations like changing the direction of depen-
dencies (use case 8) or changing the type of dependencies (use case 7) are very
simple using UMLet. Rational Rose’s way of dealing with this is more time-
consuming. In theory, this seems be o.k.—after all, a dependency’s direction or
type seems to be so fundamental that changing it does not make sense in most
cases. We found, however, that these use cases actually occur quite often when
sketching diagrams, especially if the wrong relation was inadvertently added to
the diagram, if the classes responsibilities change, or if inheritance structures
are broken up and changed to looser class relations.

Although not covered by our test, even the simple task of adding multi-
plicities can turn out to be a struggle. Rational Rose offers two ways of adding
multiplicities to a relation. Either the user selects it from a list box in one of the
tabs of the specification dialog (requiring 6 user interactions), or the user selects
the multiplicity type from the context menu (requiring 3 user interactions). The

1The sign test rejects the null hypothesis of a zero median difference; it is significant at
the 5% level.

105

��

��

��

��

��

��

���	

��
��������	

�
�
	
�
��
�

	
�
�
�

�
�
�

�

�

��

��

��

� � � � � � � � � �� �� �� �� �� �� ��

��	����	���

Figure 6.11: Results

problem is that the user then often realizes that the multiplicity was added at
the wrong side of the relation. So he is often forced to delete the multiplicity
and re-add it. Mistakes like these occur in UMLet, too, but the correction can
be done in a single user interaction using the text-based attribute specification,
whereas Rose requires the entire process to be repeated.

The comparison of the two tools should not determine a “better” UML
tool—after all, the tools have widely different aims. UMLet, in this paper,
should merely denote a baseline, a low-complexity approach to which Rational
Rose, one of the leading UML tools, can be compared with respect to fast UML
sketching. Our comparison indicates that Rational Rose, on average, requires
almost two times as many user interactions as necessary.

Is this merely the consequence of the fact that Rational Rose has many more
features, and has to enforce more formal UML standards? Or, more generally,
do tools dealing with complex demands necessarily become more complex?

We don’t think so. A good example is Microsoft’s suite of integrated de-
velopment environments, Visual Studio. While offering an astonishing array of
options and features, the basic functionalities of programming—typing, search-
ing, looking up object members—continue to be very easy to use. The search
functionality was actually improved over time (it is now non-modal, and offers a
history of searches) without sacrificing usability; the object member lookup still
hides complex functionality behind an unobtrusive and efficient user interface.

Tools thus are able to both tackle complex requirements, and to provide
intuitive base functionality. In the quest to offer ever-more features, this goal
should not be neglected.

106

6.8 Conclusion and further research

This paper compares two UML tools with respect to their suitability for ex-
plorative UML sketching. Several common UML design tasks were tested to
determine the number of required user interactions.

The large, standard-conforming and -enforcing Rational Rose was found to
require substantially more user interactions than UMLet. As Rational Rose’s
design goals have to accommodate a wide range of requirements, fast and explo-
rative UML sketching becomes less intuitive and more tedious. This is assessed
by comparing Rational Rose to UMLet, a tool specifically tailored to creating
UML sketches.

We argue that as tools get more complex, developers must make sure to
avoid compromising on important base functionality—otherwise, a tool will
cover more requirements, but important ones less well.

Further research will focus on

• aspects of tool complexity and integration, especially on ways to integrate
separate interactive and highly graphical applications;

• refined user interaction measures, that take into account not just the num-
ber of user interactions, but their type and complexity (like decoding an
icon’s meaning, or clicking on small, scattered buttons).

6.9 Appendix: Use case description

6.9.1 Create a simple class

Starting from an empty diagram we create a simple class element without defining any at-
tributes or operations.

• Starting point: An empty diagram

• Goal: A diagram with a simple class element

User interactions required by UMLet: 2

1. Create the class by double clicking on the simple class on the palette.

2. Rename the class to “MyClass”.

User interactions required by Rational Rose: 4

1. Select the class element by clicking on the class icon on the tool bar.

2. Place the class element by clicking in the diagram window.

3. Rename the class to “MyClass”.

4. Click into the diagram window to complete the naming operation.

107

6.9.2 Extend a simple class with attributes
Extend the simple class with one attribute without specifying special characteristics.

• Starting point: A simple class element

• Goal: A class with one attribute

User interactions required by UMLet: 5

1. Select the class element by clicking on it.

2. Click into the text attributes window.

3. Specify the separation line by adding the “--”-line to the textual representation.

4. Add the attribute’s name.

5. Resize the class to make the attribute fully visible.

User interactions required by Rational Rose: 4

1. Open the context menu of the class element by right clicking on it.

2. Select “New Attribute” from the context menu.

3. Type the attribute’s name.

4. Click into the diagram window to complete the naming operation.

6.9.3 Extend a simple class with operations
Extend the (simple) class with one operation without specifying a special return value or input
parameters.

• Starting point: A (simple) class element

• Goal: A class with one operation

User interactions required by UMLet: 5

1. Select the class element by clicking on it.

2. Click into the text attributes window.

3. Specify the separation line by adding the “--”-line to the textual representation.

4. Add the operation’s name.

5. Resize the class to make the operation fully visible.

User interactions required by Rational Rose: 4

1. Open the context menu of the class element by right clicking on it.

2. Select “New Operation” from the context menu.

3. Type the operation’s name.

4. Click into the diagram window to complete the naming operation.

6.9.4 Modify an attribute’s characteristics
Modify the attribute; define it to be protected and specify its type to Object.

• Starting point: A class element with an attribute

• Goal: A class with a more precisely specified attribute

108

User interactions required by UMLet: 5

1. Select the class element by clicking on it.

2. Click into the text attributes window.

3. Add the protected flag “#” in front of the attributes name.

4. Add the attribute’s type (Object) after the attribute’s name.

5. Resize the class to make the attribute and its characteristics fully visible.

User interactions required by Rational Rose: 10

1. Open the context menu of the class element by right clicking on it.

2. Select “Open Specification” to open the Class Specification dialog.

3. Select the tab “Attributes”.

4. Double click on the attribute to open the Class Attribute Specification dialog.

5. Open the pull-down list selector from the “Type” box.

6. Search “Object” in the list by scrolling through the list.

7. Select “Object” from the list by clicking on the item.

8. Choose the “Protected” radio button from the “Export Control” frame.

9. Close the Class Attribute Specification dialog by clicking OK.

10. Close the Class Specification dialog by clicking the OK button.

6.9.5 Duplicate a class

Make a copy of the class.

• Starting point: One class element

• Goal: Two class elements

User interactions required by UMLet: 1

1. Double click on the class in the diagram.

User interactions required by Rational Rose: 11

1. Open the context menu of the class diagram by right clicking on free space in the
diagram.

2. Select “Class wizard...” from the context menu.

3. Select the “Clone the class based on an existing class” radio button.

4. Press the Next button.

5. Select the class to be duplicated from the list box.

6. Press the Next button.

7. Press the Next button on the Class Documentation screen.

8. Press the Next button on the Parent Category screen.

9. Select the class diagram into which the clone shall be placed from the list box.

10. Press the Next button.

11. Press the Finish button.

109

6.9.6 Add an aggregation to a two-class diagram
Add an aggregation dependency between two classes.

• Starting point: A diagram with two classes

• Goal: Two classes with an aggregation dependency

User interactions required by UMLet: 4

1. Scroll the palette panel to the right to see the offered arrow types completely.

2. Create an instance of the aggregation arrow by double clicking on it.

3. Move the head of the aggregation and connect it to the first class.

4. Move the tail of the aggregation and connect it to the second class.

User interactions required by Rational Rose: 2

1. Select the Aggregation tool from the tool bar.

2. Create the aggregation by pressing the left mouse button over the first class, dragging
over to the second class, and releasing the button.

6.9.7 Modify an aggregation to a generalization
Change the aggregation to a generalization.

• Starting point: Two classes with an aggregation dependency

• Goal: Two classes with a generalization dependency

User interactions required by UMLet: 1

1. Change the definition string of the aggregation from “<<<<-” to “<<-” in the attributes
panel.

User interactions required by Rational Rose: 5

1. Open the context menu of the aggregation by right clicking on it.

2. Select the sub-menu Edit from the context menu.

3. Select Delete from Model from the sub-menu.

4. Select the Generalization tool from the tool bar.

5. Create the generalization by pressing the left mouse button over the first class (Class2),
dragging over to the second class (Class1), and releasing the button.

6.9.8 Change the direction of a generalization
Change the direction of the generalization.

• Starting point: Two classes with a generalization dependency: Class2 specializes Class1.

• Goal: Two classes with a generalization dependency: Class1 specializes Class2.

User interactions required by UMLet: 1

1. Change the definition string of the generalization from “<<-” to “->>” in the attributes
panel.

User interactions required by Rational Rose: 5

1. Open the context menu of the aggregation by right clicking on it.

2. Select the sub-menu Edit from the context menu.

3. Select Delete from Model from the sub-menu.

4. Select the Generalization tool from the tool bar.

5. Create the generalization by pressing the left mouse button over the first class (Class1),
dragging over to the second class (Class2), and releasing the button.

110

6.9.9 Delete one class
Remove one class from the diagram.

• Starting point: A diagram with two classes

• Goal: A diagram with one class

User interactions required by UMLet: 2

1. Open the context menu of the to be deleted element by right clicking it.

2. Select the menu item Delete.

User interactions required by Rational Rose: 3

1. Open the context menu of the aggregation by right clicking on it.

2. Select the sub-menu Edit from the context menu.

3. Select Delete from Model from the sub-menu.

6.9.10 Undo class delete
Undo removing one class from the diagram.

• Starting point: A diagram with one class after deleting a second class

• Goal: A diagram with two classes according to the diagram before deleting the class

User interactions required by UMLet: 2

1. Select the Edit menu.

2. Select the Undo menu item.

User interactions required by Rational Rose: 2

1. Select the Edit menu.

2. Select the Undo Delete menu item.

6.9.11 Create a simple class diagram
Create a slightly more complex class diagram. The composite design pattern consists of 4
classes and three different relationship types. Figure 6.12 and figure 6.13 show the results of
UMLet and Rational Rose.

• Starting point: An empty class diagram.

• Goal: A diagram of the composite design pattern.

User interactions required by UMLet: 39

1. Create a class by double clicking on the simple class at the palette.

2. Click into the text attributes window.

3. Rename the class to “Client”.

4. Create a class by double clicking on the simple class at the palette.

5. Move the class.

6. Click into the text attributes window.

7. Rename the class to “Component”.

8. Add operation operation().

9. Add operation add(Component).

111

10. Add operation remove(Component).

11. Add operation get(index).

12. Resize class element.

13. Create a class by double clicking on the simple class at the palette.

14. Move the class.

15. Click into the text attributes window.

16. Rename the class to “Leaf”.

17. Add operation operation().

18. Resize class element.

19. Duplicate class Component by double clicking on it.

20. Move the class element.

21. Click into the text attributes window.

22. Rename the class to “Composite”.

23. Create arrow of type association by double clicking on it in the palette.

24. Move arrow tail to Client.

25. move arrow head to Component.

26. Create arrow of type generalization by double clicking on it in the palette.

27. Move arrow tail to Leaf.

28. Move arrow head to Component.

29. Duplicate generalization arrow by double clicking on it.

30. Move arrow tail to Composite.

31. Move arrow heat to Component.

32. Create arrow of type aggregation by double clicking on it in the palette.

33. Move tail of the arrow to Composite.

34. Move head of the arrow to Component.

35. Create support point by clicking on the aggregation and moving the mouse.

36. Create support point by clicking on the aggregation and moving the mouse.

37. Click into the text attributes window.

38. Add “>” to the textual description of the aggregation to make it directional.

39. Add multiplicity by typing “m2=*”.

User interactions required by Rational Rose: 48

1. Select the class creation tool from the tool bar.

2. Click into the diagram to place the class element.

3. Name the class Client.

4. Click outside of the class to end the class creation process.

5. Select the class creation tool from the tool bar.

6. Place the class element.

7. Name the class Component.

8. Right click on Component to open its context menu.

9. Select “New Operation”.

10. Type name of the new operation operation.

11. Type name of the new operation add.

112

Figure 6.12: Composite pattern using UMLet

12. Type name of the new operation remove.

13. Type name of the new operation get.

14. Click outside of the class to end the operation creation process.

15. Select the class creation tool from the tool bar.

16. Place the class element.

17. Name the class Leaf.

18. Right click on Leaf to open its context menu.

19. Select “New Operation”.

20. Type name of the new operation operation.

21. Click outside of the class to end the operation creation process.

22. Right click on free space in the diagram to open the context menu.

23. Select “Class Wizard”.

24. Select “Clone the class based on an existing class”.

25. Click the “Next” button.

26. Select Component from the selection box.

27. Click the “Next” button.

28. Select the text of the new class name.

29. Change the name to Composite.

30. Move Composite.

31. Click the “Next” button.

32. Click the “Next” button.

33. Click the “Next” button.

34. Click the “Finish” button.

35. Select “Unidirectional Association” creation tool from the tool bar.

36. Click on Client and drag mouse to Component.

37. Move Client.

113

38. Select “Generalization” tool from the tool bar.

39. Click on Leaf and drag the mouse to Component.

40. Select “Generalization” tool from the tool bar.

41. Click on Composite and drag the mouse to Component.

42. Select “Unidirectional Aggregation tool from the tool bar.

43. Click on Composite and drag the mouse to Component.

44. Create support point by clicking on the aggregation and moving the mouse.

45. Create support point by clicking on the aggregation and moving the mouse.

46. Right click on the aggregation to open its context menu.

47. Select the submenu “Multiplicity”.

48. Select “n”.

Figure 6.13: Composite pattern using Rational Rose

6.9.12 Create a simple sequence diagram
Create a simple sequence diagram consisting of two objects. Object One sends a synchronous
message to object Two. Figure 6.14 and figure 6.15 show the created diagrams.

• Starting point: An empty diagram.

• Goal: A sequence diagram with 2 objects and a synchronous message from object One
to object Two.

User interactions required by UMLet: 4

1. Create a new sequence diagram by double clicking the template diagram from the
sequence palette.

2. Select the text from the textual description and delete it.

3. Create both object of the sequence diagram by typing “ One:Object | Two:Object ”.

4. Create the synchronous message by typing “1->>>2:1,2:message”

User interactions required by Rational Rose: 29

1. Right click on “Logical View” or “Use Case View” in the model browser to open the
context menu.

2. Select the “New...” sub menu.

3. Select “Sequence Diagram”.

114

Figure 6.14: UMLet: Simple sequence diagram

4. Name the diagram.

5. Open the diagram window by double clicking on it.

6. Select the “Object” creation tool from the tool bar.

7. Place the object in the diagram.

8. Name the object One.

9. Right click on One to open its context menu.

10. Select “Open Specification...”.

11. Click on the class selector to open the list box.

12. Type Object into the “Name” field of the Class Specification dialog.

13. Click the “OK” button to close the Class Specification dialog.

14. Click the “OK” button to close the Object Specification dialog.

15. Select the “Object” creation tool from the tool bar.

16. Place the object in the diagram.

17. Name the object Two.

18. Right click on Two to open its context menu.

19. Click on the class selector to open the list box.

20. Select “Object”.

21. Click on the “OK” button to close the Object Specification dialog.

22. Select “Object Message” from the tool bar.

23. Click into the life mark of One and drag the mouse to the life mark of Two.

24. Right click on the message to open its context menu.

25. Select “Open Specification...”.

26. Type “message” into the Name field.

27. Select the “Detail” tab.

28. Choose the “Synchronous” radio button.

29. Click the “OK” button.

6.9.13 Change the message direction
Change the direction of a message in a sequence diagram.

• Starting point: A sequence diagram with 2 objects and a synchronous message from
object One to object Two.

• Goal: A sequence diagram with 2 objects and a synchronous message from object Two
to object One.

115

Figure 6.15: Rational Rose: Simple sequence diagram

User interactions required by UMLet: 3

1. Select the sequence diagram in the diagram panel.

2. Select the text panel.

3. Change the textual representation of the message type from “->>>” to “<<<-”.

User interactions required by Rational Rose: 11

1. Right click on the message to open its context menu.

2. Select the sub-menu Edit from the context menu.

3. Select Delete from Model from the sub-menu.

4. Select “Object Message” from the tool bar.

5. Click into the life mark of Two and drag the mouse to the life mark of One.

6. Right click on the message to open its context menu.

7. Select “Open Specification...”.

8. Type “message” into the Name field.

9. Select the “Detail” tab.

10. Choose the “Synchronous” radio button.

11. Click the “OK” button.

6.9.14 Change the message flavor

Change the message type from synchronous to asynchronous.

• Starting point: A sequence diagram with 2 objects and a synchronous message from
object Two to object One.

• Goal: A sequence diagram with 2 objects and an asynchronous message from object
Two to object One.

User interactions required by UMLet: 3

1. Select the sequence diagram in the diagram panel.

2. Select the text panel.

3. Change the textual representation of the message type from “<<<-” to “</-”.

User interactions required by Rational Rose: 5

1. Right click on the message to open its context menu.

2. Select “Open Specification...”.

3. Select the “Detail” tab.

4. Choose the “Synchronous” radio button.

5. Click the “OK” button.

116

6.9.15 Add a message to the sequence diagram
Add a named message to the sequence diagram from object One to object Two. The message
type is not specified.

• Starting point: A sequence diagram with 2 objects and one message with a name.

• Goal: A sequence diagram with 2 objects and two messages with names.

User interactions required by UMLet: 3

1. Select the sequence diagram in the diagram panel.

2. Select the text panel.

3. Add the message by typing: “1->2:1,2:message2”.

User interactions required by Rational Rose: 4

1. Select “Object Message” from the tool bar.

2. Click into the life mark of One and drag the mouse to the life mark of Two.

3. Type “message2” to name the message.

4. End the input process by clicking outside somewhere in the diagram, or by pressing
Enter.

6.9.16 Create a sequence diagram
Create a sequence diagram of the process to browse with a Web browser to a Web site. The
involved objects are User, Browser, Web server, DNS. Object types and message types are
not specified.

• Starting point: An empty diagram.

• Goal: A sequence diagram with 4 objects and 9 messages.

User interactions required by UMLet: 12

1. Create a new sequence diagram by double clicking the template diagram from the
sequence palette.

2. Select the text from the textual description and delete it.

3. Create all four objects of the sequence diagram by typing “ User | Browser | Webserver | DNS ”.

4. Create a synchronous message by typing “1->>>2:1,2:Browse: umlet.com”

5. Create a synchronous message by typing “2->>>4:1,2,4:DNS query: url = umlet.com”

6. Create a synchronous message by typing “4.>>>2:1,2,4:DNS response: IP-Address

= 216.40.33.117”

7. Create a synchronous message by typing “2->>>3:1,2,3:SYN”

8. Create a synchronous message by typing “3->>>2:1,2,3:SYN+ACK”

9. Create a synchronous message by typing “2->>>3:1,2,3:ACK”

10. Create a synchronous message by typing “2->>>3:1,2,3:GET / HTTP”

11. Create a synchronous message by typing “3->>>2:1,2,3:HTTP 200 OK”

12. Create a synchronous message by typing “2.>>>1:1,2:Display”

User interactions required by Rational Rose: 49

1. Right click on “Logical View” or “Use Case View” in the model browser to open the
context menu.

2. Select the “New...” sub menu.

3. Select “Sequence Diagram”.

4. Name the diagram.

117

Figure 6.16: UMLet: Sequence diagram of use case 16

5. Open the diagram window by double clicking on it.

6. Select the “Object” creation tool from the tool bar.

7. Place the object in the diagram.

8. Name the object User.

9. Select the “Object” creation tool from the tool bar.

10. Place the object in the diagram.

11. Name the object Browser.

12. Select the “Object” creation tool from the tool bar.

13. Place the object in the diagram.

14. Name the object Webserver.

15. Select the “Object” creation tool from the tool bar.

16. Place the object in the diagram.

17. Name the object DNS.

18. Move object Browser (alignment)

19. Move object Webserver (alignment)

20. Move object DNS (alignment)

21. Select “Object Message” from the tool bar.

22. Click into the life mark of User and drag the mouse to the life mark of Browser.

23. Name the message: “Browse: umlet.com”.

24. Select “Object Message” from the tool bar.

25. Click into the life mark of Browser and drag the mouse to the life mark of DNS.

26. Name the message: “DNS query: url = umlet.com”.

27. Select “Return Message” from the tool bar.

28. Click into the life mark of DNS and drag the mouse to the life mark of Browser.

29. Name the message: “DNS response: IP-Addres = 216.40.33.117”.

30. Select “Object Message” from the tool bar.

31. Click into the life mark of Browser and drag the mouse to the life mark of Webserver.

32. Name the message: “SYN”.

33. Select “Object Message” from the tool bar.

118

34. Click into the life mark of Webserver and drag the mouse to the life mark of Browser.

35. Name the message: “SYN+ACK”.

36. Select “Object Message” from the tool bar.

37. Click into the life mark of Browser and drag the mouse to the life mark of Webserver.

38. Name the message: “ACK”.

39. Select “Object Message” from the tool bar.

40. Click into the life mark of Browser and drag the mouse to the life mark of Webserver.

41. Name the message: “GET / HTTP”.

42. Select “Object Message” from the tool bar.

43. Click into the life mark of Webserver and drag the mouse to the life mark of Browser.

44. Name the message: “HTTP 200 OK”.

45. Click on the life mark of object User.

46. Resize the life mark to overhang the life mark of Browser.

47. Select “Return Message” from the tool bar.

48. Click into the life mark of Browser and drag the mouse to the life mark of User.

49. Name the message: “Display”.

Figure 6.17: Rational Rose: Sequence diagram of use case 16

119

120

Chapter 7

Discussion

7.1 Summary

Lightweight tools aim at simple usage by reducing complexity to a minimum
and reducing functionality to the basic needs. The UML offers a graphical
notation inviting to sketch and play with the model in early design stages.
Thus lightweight UML tools must cover the following requirements

1. Easy to use: A well designed user interface is essential for all software
applications made for direct communication with humans.

2. Easy to learn: The design of the software and its workflows should be
easily understandable and usable.

3. Easy to deploy: When deploying a software tool to more than one work-
station and operating system, the process of software installation may be
critical. Using a software tool for educational processes requires simple
installation processes, especially when students are required to install the
software on their home computers.

4. Relaxed standards restrictions: Explorative sketching is the process of
creating not necessarily exact and complete diagrams. Tools that enforce
strict standards conformity slow down the design process and draw too
much attention to the software tool itself, than to the creation and devel-
opment progress.

To achieve a simple and lightweight tool, UMLet’s design focuses on the
following concepts:

1. Simple standard file format: A simple XML format is human readable and
can be transformed for the import into other tools.

2. Independence from platforms and operating systems using a 100% Java
implementation.

121

3. Duality: Dual usage as a standalone application or as a plug-in for the
Eclipse-IDE.

4. Transparency: Transparent implementation targeting the display device—
screen, printer, file.

5. Easy expandability by providing custom palettes and dynamic custom
elements featuring a built-in Java compiler and an in detail commented
Java template.

6. Unobtrusiveness: The user interface avoids unnecessary distraction. It
provides a shematized way of creating and modifying diagrams and ele-
ments, not compelling the user to handle differing data input varieties.

7. Fast diagram creation: UMLet supports the creation of simple elements
and complex diagrams by its text-based input featuring simple grammar.

8. Interoperability: Support for a variety of standard export formats to in-
teroperate with other tools.

9. Educational use: The easy integration into heterogeneous computer sys-
tem environments, the simple distribution and installation process, the
expandability on graphical notations, and the lightweight approach makes
UMLet a neat tool in educational use issues.

Users may use and modify UMLet without any restrictions—it is published
under the GPL and distributed as open source. It is designed to allow users
to extend its functionality for their needs not only by being written using Java
as the programming language. The emphasized use of design patterns helps
users that want to extend UMLet understand how it is structured and how the
components work together. Design patterns help one to understand the existing
design as fast as possible.

The three main usages of UML tools: explorative UML sketching, round-
trip engineering, and system documentation. Explorative UML modeling is the
fast creation of UML sketches, which often do not have to be precise or final or
completely UML compliant. Round-trip engineering focuses on the creation of
code from models and vice-versa. Documenting existing artifacts is often mo-
tivated by the fact that large projects require extensive system documentation.
Unfortunately, a common measure for the quality of the documentation is its
size, as precision and understandability are difficult to assess. To perform the
complex round-trip engineering and documentation, tools must enforce formal
language constructs more rigorously. They can thus become unsuitable for sim-
ple explorative sketching.

122

7.2 Results

This section discusses how to compare the quality and effectiveness of user in-
terfaces quantitatively. The applied generic method assesses tools using a set of
relevant use cases that are essential to UML modeling.

Usability engineering and user experience design deal with making good user
interfaces. Since it is hard to measure good design, there exists a number of
guidelines (like Apple [2]), heuristics1, best-practices and rules.
Quantifying and comparing the quality of user interfaces is a challenging task.
Users with different experience levels judge differently on the evaluated inter-
faces. Raskin [36] provides quantifiable metrics to assess the quality of user
interfaces. The GOMS methods measure user interfaces relying on 6 primi-
tive operations (pressing a key, moving the mouse, dragging the mouse, mental
preparation, moving hands, and waiting for command execution). The evalua-
tion of two or more tools using a set of use cases relys on a simplified approach.
Each sub-task of the use case is counted. Thus the evaluation can quantify the
quality and efficiency of the user interfaces. Raskin states that user interfaces
should be as monotonous as possible and modeless.

Chen and Zhang [10] tested two versions of an application—one featuring a
text-based user interface, the other a graphical user interface. They found that
experienced users preferred the text-based approach since it’s more efficient in-
terface, while novice users tended to use the graphical user interface. Their
evaluation was based on the GOMS method as well.

Since Rational Rose is the de-facto industry standard of UML tools, all other
serious competitors have to match with it. Both tools are assessed by applying
a quantitative measuring on the user interface’s complexity. The evaluation
features 16 common use cases on UML modeling like changing class attributes,
modifying dependencies, or adding messages:

1. Create a simple class

2. Extend a simple class with attributes

3. Extend a simple class with operations

4. Modify an attribute’s characteristics

5. Duplicate a class

6. Add an aggregation to a two-class diagram

7. Modify an aggregation to a generalization

8. Change the direction of a generalization

1Jakob Nielsen: http://www.useit.com/papers/heuristic/heuristic list.html

123

9. Delete one class

10. Undo class delete

11. Create a simple class diagram

12. Create a simple sequence diagram

13. Change the message direction

14. Change the message type

15. Add a message to the sequence diagram

16. Create a sequence diagram

As an example, these are the individual user interactions required for use
case 1, with Rational Rose and UMLet:

Create a simple class:

Starting from an empty diagram we create a simple class element without defining any at-
tributes or operations.

• Starting point: An empty diagram

• Goal: A diagram with a simple class element

User interactions required by UMLet: 2

1. Create the class by double clicking on the simple class on the palette.

2. Rename the class to “MyClass”.

User interactions required by Rational Rose: 4

1. Select the class element by clicking on the class icon on the tool bar.

2. Place the class element by clicking in the diagram window.

3. Rename the class to “MyClass”.

4. Click into the diagram window to complete the naming operation.

The results of the evaluation of all 16 use-cases on both tools shows that
users of Rational Rose are required to perform about 80% more interactions.
This is a result of UMLet’s design goals of unobtrusiveness by avoiding unnec-
essary pop-ups and providing a simple and monotonous user interface, and fast
diagram creation featuring text-based element creation. Use case 16 demon-
strates UMLet’s power of grammar-based diagram creation. The creation of
sequence diagrams by textual descriptions is extremly efficient in comparison to
conventional user interface approaches.

These findings are not only applicable on UML tools, but to a wide range
of applications. So far text-based input often was limited to configuration files

124

Use Case # UI # UI Abs. Rel.

UMLet R.Rose Diff. Diff.

1 Create a class 2 4 +2 100%
2 Extend class with attributes 5 4 -1 -20%
3 Extend class with one operation 5 4 -1 -20%
4 Modify an attribute 5 10 +5 100%
5 Duplicate a class 1 11 +10 1000%
6 Add an aggregation 4 2 -2 -50%
7 Modify an aggregation 1 5 +4 400%
8 Change a generalization 1 5 +4 400%
9 Delete a class 2 3 +1 50%
10 Undo class delete 2 2 +/-0 0%
11 Simple class diagram 39 48 +9 23%
12 Simple sequence diagram 4 29 +25 625%
13 Change message direction 3 11 +8 266%
14 Change message type 3 5 +2 66%
15 Add a message 3 4 +1 33%
16 Create a sequence diagram 12 49 +37 308%

Median Relative Difference 83%
UI = number of user interactions

Table 7.1: Results

and specialized applications. The emerging graphical user interfaces tried to
approach all processes using graphical metaphors using mouse and icons, etc.
But there are tasks that can be done more efficiently using text-based input.
Like searching for files or applications—the graphical metaphor provides large
amounts of icons that have to be deciphered by the user.

OS X and Windows Vista introduced a text-based desktop search. The icons
are filtered by the user’s text input and delivers a significantly faster search
process. The process happens in realtime—by typing the search string, every
keystroke refines the result, allowing the user to react instantly by stopping the
search or correcting the search string if necessary.

Lately Google introduced its Instant2 search which features the same behav-
ior in it’s online web search interface. Google states that users save about 2-5
seconds by getting faster results and reduced numbers of required search string
characters. See figure7.1.

Mobile devices like PMPs (personal media player) and mobile phones fea-
ture text-based instant search applications as well. Android and iOS devices
can search their contacts lists by typing names or numbers and instantly reduce
the result list iteratively by every key stroke—thus reducing the necessary user
input significantly.

LaTeX is another good example of a broadly accepted text-based interface.
Although there is a number of GUI front ends, its power and simplicity of use
is based on the simple markup language.

2http://www.google.com/instant/

125

Figure 7.1: Google Instant

Tools have to be able to both tackle complex requirements, and provide
intuitive base functionality.

7.3 Development progress of UML tools

After the acquirement of Rational by IBM, Rational Rose has been integrated
into IBM’s software development suites like Visual Age (which was renamed
to Rational Software Architect (RSA) and later on to the Rational Software
Delivery Platform (Rational SDP)). These tools are heavy weight software de-
velopment suites which bind the user to processes and standards, like the unified
rational process. Features like round-trip engineering demand strict standards
conformity, and thus make the modeling process slow and cumbersome. The
past years development show that round-trip engineering was not as widely ac-
cepted as predicted. Several small tools have emerged that are specialized to
well-defined domains. DSLs (domain specific languages) and MDSD (model
driven software development) tools, some using UML notation, compete suc-
cessful against Rational Rose.

The field of computer science education requires lightweight tools like UM-
Let, Violet or UML Pad. These small tools are simple to deploy, simple to learn,
and simple to use as these tools do not enforce strict standards but leave space
for the process of creative and relaxed modeling.

7.4 End user experience

According to the mails incoming from all over the world UMLet is being used
by software developers and systems analysts in diverse companies and organi-
zations like IEEE (Institute of Electrical and Electronics Engineers), Northrop
Grumman Corporation, Debian Linux and NASA (National Aeronautics and

126

Space Administration).

In the following there are some user opinions on UMLet:

“I’m battle weary from UML 2.0 and Poseidon. Its great to see
an open source system that is so easy to use – without all the fluff
that is unnecessary.”

“I really have started enjoying doing UML since using UMLet.
I won’t argue it’s full-featured like the $1000 tools out there, but it
gives me 80% of the functionality for 20% of the work.”

“I’m currently teaching a design patterns class to a group of
16 developers in Denver, CO in the U.S. I’m having them use your
UMLet tool to do all of their diagrams and it is working wonderfully.
They appreciate the simplicity of the tool.”

“In one of the first lectures I took at university, we were taught
UML. For the practical part of the lecture we had to draw several
diagrams. They recommended to use Rational Rose for this purpose.
Since I thought they would recommend the best software tool for us,
I started to use it. But soon I was very frustrated because of the time
I took to learn it. Sure such a tool is very powerful, but the purpose
of learning UML should not be to learn to command the software
application. In my 5th term I discovered UMLet which, I think is
the very tool to for learning UML, since one is not distracted by
all the option of a big grown application. It does what you expect:
drawing UML diagrams. Someone can start to use it immediately.
Even on Linux, which I happen to find very useful, since not all of
us use the Microsoft operating systems.”

“This is a great tool and I find it easier to teach my students
UML diagrams.”

“I am currently in a course that requires me to draw UML class
diagram. I came across your website and and find umlet very suitable
for the use for my course.”

“Of all the tools that I reviewed, yours stands for its simplicity
and ease of use. The concept of an user interface without any popups
is simply genius.”

“Your tool is how they all should work , doing work for me instead
of making me totally frustrated and sucking all my energy out of my
body and brain. I’ have been looking for something that works
for me for several days now and it is all crap out there. All that
marketing talk makes me sick. Thanks for the enlightment.”

127

7.5 A critical look at UMLet’s present problems

Taking a closer look at UMLet naturally uncovers some problems that have
been carried through some versions by the fact of the limited man power at the
development of the tool.

There are some inconsistencies at the syntax in different elements. To sim-
plify the usage there should be a consolidation of the element’s syntaxes and
grammars.

Another issue might be UMLet’s graphical appearance. Since it is intended
to be used for education, and students like software that’s looking cool more
than old style user interfaces, UMLet might need a brush up on its appearance.
But this must be done carefully so as not to displease users that are used to
UMLet.

7.6 UMLet’s future

UMLet’s further development will deal with the following issues:

• Consolidate the syntax of all elements to fix some inconsistencies between
the element’s syntax.

• Automatic resize feature of class elements.

• Movement of entire arrows with one single drag and drop action.

• Further improvements of UMLet’s user interface.

There are plans to make UMLet web based using a SVG (Scalable Vector
Graphics) interface. Users could discuss and share diagrams online. There could
be a UML community with users helping each other.

128

Chapter 8

Summary and Future Work

8.1 Summary

For the quick reader: The proof of the hypothesis is discussed in section 8.1.6
Quantitative Evaluation on page 131.

8.1.1 UML

The UML is a standardized modeling language controlled by the OMG that
has developed from different methods of describing systems and requirements.
After the software industry recognized UML’s potential the UML Partners con-
sortium was joined by a number of well known companies representing broad
acceptance. The UML provides a set of tools to describe a system and it’s
details. The UML 2.0 standard features 13 different diagram types specialized
to cover the respective structural and behavioral aspects of the system. UML
is not like strictly constrained law, but it is an agreed standard that provides
notations allowing the users to adapt in a way that may ease the understanding
of what is meant.

8.1.2 Design Patterns

Design patterns help to understand recurring patterns of software design. The
idea behind design patterns is to present solutions for common design problems
helping the developers not to reinvent the wheel again and again, to assist
discussing on a higher level and to help understanding existing software systems.
Design patterns are identified design solutions to common recurring problems.
Design patterns are not finished and ready to implement solutions but are a
description how to solve a class of problems.
UMLet is designed to allow users to extend its functionality for their needs not
only by being written using Java as the programming language. The emphasized
use of design patterns helps users that want to extend UMLet understand how

129

it is structured and how the components work together. Design patterns help
one to understand the existing design as fast as possible.

8.1.3 Requirements for lightweight UML tools

Simple and understandable lightweight UML tools reduce complexity and func-
tionality to the basic needs. The UML provides a graphical notation that invites
to sketch and play with the model in early design stages. Thus lightweight UML
tools must cover the requirements easy to use, easy to learn, easy to deploy, and
provide relaxed standards restrictions.

While easy to use and easy to learn aim at simple user interfaces and sim-
ple workflows, easy to deploy concerns the fact that the process of distribution
and deployment may be critical—especially if the tool is used for educational
purposes, and students are required to install the software on their home com-
puters. The requirement for relaxed standards restrictions applys to explorative
sketching. This is the process of creating not necessarily exact and complete
diagrams. Tools that enforce strict standards conformity slow down the design
process and draw too much attention to the software tool itself, than to the
creation and development progress.

8.1.4 UMLet’s agile approach

UMLet is such a lightweight UML sketching tool. In order to provide a lightweight
tool UMlet’s design focuses on concepts like unobtrusiveness by avoiding unnec-
essary distractions like pop-ups, fast diagram creation providing a text-based
modeling approach, easy expandability featuring dynamic custom-elements, and
independence from operating systems by using a 100% Java implementation.

8.1.5 Competitors and Features

Chapter 4 presents UMLet’s direct competitors like ArgoUML, Violet and Dia.
But since Rational Rose is the de-facto industry standard of UML tools, all
other serious competitors have to match with it. One main feature of Rational
Rose is its round-trip engineering functionality which allows to generate source
code from UML models and vice versa. Thus requiring the models to be strictly
UML standards conform, reducing the comfort of the model creation process.
UML tools usually treat UML elements as visual objects, whose appearance
can be edited by changing their attributes. This is mostly done through pop-
up dialog boxes. Rational Rose’s dialog to edit a UML class element and its
attributes contains 8 tabs, and approximately 40 user interface elements.

UMLet’s approach to modeling is different. It provides a simple user inter-
face without distracting dialogs and pop-up windows, or hardly decipherable
icons. UMLet offers simple element palettes presenting the real, full-sized el-
ements in context of usage. Fast diagram creation is achieved by text-based

130

modeling featuring powerful grammar to create and modify elements and dia-
grams.

8.1.6 Quantitative Evaluation

The research hypothesis presented in chapter 6 was that text-based user input
can reduce the number of user interactions with a graphical user interface, in-
crease the speed of user input and lead to a more efficient user interface.

To prove the hypothesis and show the potential of text-based modeling the
assessment features a quantitative comparison method. Users with different
experience levels judge differently on user interfaces. Raskin [36] provides quan-
tifiable metrics to assess the quality of user interfaces. The GOMS methods
measure user interfaces relying on 6 primitive operations (pressing a key, mov-
ing the mouse, dragging the mouse, mental preparation, moving hands, and
waiting for command execution). The applied simplified approach concentrates
on mouse clicks and combined keyboard inputs, while disregarding mouse move-
ments or individual key presses.

The evaluation features 16 common use cases that are essential to UML
modeling. The result of the evaluation shows that users of Rational Rose are
required to perform about 80% more interactions. This is an achievement of
UMLet’s design goals of unobstrusivness by avoiding unnecessary pop-ups and
providing a simple and monotonous user interface, and fast diagram creation
featuring text-based element creation. The result proves the hypothesis that
text-based user input can increase the efficiency of user interfaces. Use case 16
demonstrates UMLet’s power of grammar-based diagram creation. The creation
of sequence diagrams by textual descriptions is extremly efficient in comparison
to conventional user interface approaches.

8.2 Future Work

As the evaluation proved, UMLet’s text-based approach is very efficient. Other
applications of the text-based approach show its potential, like searching for
files or applications, as OS X’s or Windows Vista’s desktop searches. The con-
ventional graphical metaphor providing large amounts of icons is replaced by a
text-field where each keystroke is instantly applied on the search result.

UMLet has a sister project named PLOTlet1. The text-based approach is
vertically expanded to the use of plots like bars, lines, and pies. Changing the
type of a plot is as simple of replacing a string in the textual description, as

1www.plotlet.com

131

demonstrated by UMLet.

Some tools offer an expandability possibility by end-user programming. They
offer macros with limited language or API support, or plug-in development suf-
fering from a media break since the implementation is done externally. UMLet
demonstrates EUP [5] by integrating a run-time Java compiler within the appli-
cation. A well commented template, code assistance, and a preview pane, make
expanding UMLet simple.

132

Chapter 9

Appendix

9.1 Template file for custom elements

// Some import to have access to more Java features

import java.awt.*;

import java.util.*;

import com.umlet.control.*;

import com.umlet.element.base.Entity;

public class NewElement extends com.umlet.element.base.Entity {

// Change this method if you want to edit the graphical

// representation of your custom element.

public void paint(Graphics g) {

// Some unimportant initialization stuff; setting color, font

// quality, etc. You should not have to change this.

Graphics2D g2=(Graphics2D) g; g2.setFont(Constants.getFont());

g2.setColor(_activeColor); Constants.getFRC(g2);

// It’s getting interesting here:

// First, the strings you type in the element editor are read and

// split into lines.

// Then, by default, they are printed out on the element, aligned

// to the left.

// Change this to modify this default text printing and to react

// to special strings

// (like the "--" string in the UML class elements which draw a line).

Vector tmp=Constants.decomposeStrings(

this.getPanelAttributes(), "\n");

133

int yPos=Constants.getDistLineToText();

for (int i=0; i<tmp.size(); i++) {

String s=(String)tmp.elementAt(i);

yPos+=Constants.getFontsize();

Constants.write(g2,s,Constants.getFontsize()/2, yPos, false);

yPos+=Constants.getDistTextToText();

}

// Finally, change other graphical attributes using

// drawLine, getWidth, getHeight..

g2.drawLine(0,0,this.getWidth()-Constants.getFontsize(),0);

g2.drawLine(this.getWidth()-Constants.getFontsize(),0,

this.getWidth()-1, Constants.getFontsize());

g2.drawLine(this.getWidth()-1, Constants.getFontsize(),

this.getWidth()-1, this.getHeight()-1);

g2.drawLine(this.getWidth()-1, this.getHeight()-1,

0, this.getHeight()-1);

g2.drawLine(0, this.getHeight()-1, 0, 0);

g2.drawLine(this.getWidth()-Constants.getFontsize(),

0,this.getWidth()-Constants.getFontsize(),

Constants.getFontsize());

g2.drawLine(this.getWidth()-Constants.getFontsize(),

Constants.getFontsize(),this.getWidth()-1,

Constants.getFontsize());

}

// Change this method if you want to set the resize-attributes of

// your custom element

public int getPossibleResizeDirections() {

// Remove from this list the borders you don’t want to be resizeable.

return Constants.RESIZE_TOP | Constants.RESIZE_LEFT |

Constants.RESIZE_BOTTOM | Constants.RESIZE_RIGHT;

}

// Advanced: change this method to modify the area where relations

// stick to your custom element.

public StickingPolygon getStickingBorder() {

// By default, the element returns its outer borders. Change it,

// if your element needs to stick to relations differently.

// See, for example, the source code of the UML interface element.

StickingPolygon p = new StickingPolygon();

p.addLine(new Point(0,0), new Point(this.getWidth()-1,0),

Constants.RESIZE_TOP);

134

p.addLine(new Point(this.getWidth()-1,0),

new Point(this.getWidth()-1,this.getHeight()-1),

Constants.RESIZE_RIGHT);

p.addLine(new Point(this.getWidth()-1,this.getHeight()-1),

new Point(0,this.getHeight()-1),Constants.RESIZE_BOTTOM);

p.addLine(new Point(0,this.getHeight()-1), new Point(0,0),

Constants.RESIZE_LEFT);

return p;

}

}

135

136

List of Figures

2.1 UML’s diagram classification following [20, page XXVI] 21
2.2 A class diagram featuring inheritance and relationships 22
2.3 Basic versus full blown class representation 23
2.4 Associations . 23
2.5 Qualified association . 24
2.6 Aggregation . 24
2.7 Composition . 25
2.8 Relations in UMLet . 25
2.9 Inheritance . 26
2.10 A class inheriting from one superclass and implementing multiple

interfaces . 27
2.11 Dependency . 28
2.12 Constraints . 28
2.13 Templated class . 29
2.14 Active class . 30
2.15 Component diagram . 31
2.16 Composite structure diagram . 32
2.17 Deployment diagram . 33
2.18 Object diagram . 34
2.19 Package diagrams . 36
2.20 Activity diagram . 38
2.21 Use case diagram . 40
2.22 State machine diagram . 41
2.23 Sequence diagram . 42
2.24 Communication diagram . 43
2.25 Prototype . 50
2.26 Singleton . 51
2.27 Adapter . 52
2.28 Composite . 53
2.29 Command . 54
2.30 Iterator . 55
2.31 Observer . 56

4.1 ArgoUML . 70
4.2 Violet . 70

137

4.3 Dia . 71
4.4 UML Pad . 72
4.5 Visual Paradigm . 73

5.1 XML language hierarchy [21, page 39] 77
5.2 XMLContentHandler class . 79
5.3 New file wizard . 82
5.4 UMLet files integrated in an Eclipse project 83
5.5 Palette drop down box . 83
5.6 Source code frame . 84
5.7 A simple class . 86
5.8 A full blown class . 86
5.9 Sequence diagram . 87

6.1 Rational Rose Toolbar featuring icons 91
6.2 Adding new attributes to a class in Rational Rose 92
6.3 Attribute type selection dialog 93
6.4 Rational Rose’s Class Creation Wizard 94
6.5 Model Browser . 94
6.6 Rational Rose’s model browser 98
6.7 Rational Rose: Class Specification Dialog 100
6.8 Class element . 100
6.9 Sequence diagram using a simple grammar 101
6.10 UMLet’s user interface . 102
6.11 Results . 106
6.12 Composite pattern using UMLet 113
6.13 Composite pattern using Rational Rose 114
6.14 UMLet: Simple sequence diagram 115
6.15 Rational Rose: Simple sequence diagram 116
6.16 UMLet: Sequence diagram of use case 16 118
6.17 Rational Rose: Sequence diagram of use case 16 119

7.1 Google Instant . 126

138

Bibliography

[1] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns, Best
Practices and Design Strategies, Second Edition. Prentice Hall, 2003.

[2] Apple Computer Inc. Macintosh Human Interface Guidelines (Apple Tech-
nical Library). Addison Wesley, 2nd edition, 1992.

[3] E. Astesiano and G. Reggio. UML-spaces: a UML profile for distributed
systems coordinated via tuple spaces. In Proceedings of the 5th Interna-
tional Symposium on Autonomous Decentralized Systems, 2001, pages 127–
134, 26-28 March 2001.

[4] Martin Auer, Ludwig Meyer, and Stefan Biffl. Explorative uml modeling -
comparing the usability of uml tools. In Proceedings of the 9th International
Conference on Enterprise Information Systems (ICEIS 2007), pages 466–
474. ICEIS, INSTICC Press, 2007.

[5] Martin Auer, Johannes Poelz, and Stefan Biffl. End-user development in
a graphical user interface setting. In Jose Cordeiro and Joaquim Filipe,
editors, Proceedings of the 11th International Conference on Enterprise
Information Systems, pages 5–14, LNBIP 24, 2009. Springer.

[6] Martin Auer, Thomas Tschurtschenthaler, and Stefan Biffl. A flyweight
UML modeling tool for software development in heterogeneous environ-
ments. In Proceedings of EUROMICRO 2003, Antalya, 2003.

[7] Martin Auer, Thomas Tschurtschenthaler, and Stefan Biffl. A flyweight uml
modelling tool for software development in heterogeneous environments.
Technical report, Institute of Software Technology Vienna University of
Technology, 2003.

[8] Wendy Boggs and Michael Boggs. Mastering UML with Rational Rose
2002. Sybex, 2002.

[9] Grady Booch, James Rumbaugh, , and Ivar Jacobson. Unified Modeling
Language User Guide, The. Addison Wesley, 2nd edition, 2005.

[10] Jung-Wei Chen and Jiajie Zhang. Comparing text-based and graphic user
interfaces for novice and expert users. AMIA Annual Symposium Proceed-
ings, pages 125–9, 2007.

139

[11] Qi Chen, J. Grundy, and J. Hosking. An e-whiteboard application to sup-
port early design-stage sketching of UML diagrams. In Proceedings of the
IEEE Symposium on Human Centric Computing Languages and Environ-
ments, 2003, pages 219–226, 28-31 Oct. 2003.

[12] James W. Cooper. The Design Patterns Java Companion. Addison Wesley,
1998.

[13] H. Dagdeviren, R. Juric, and P. Lees. Experiences of teaching UML within
the information systems curriculum. In 26th International Conference on
Information Technology Interfaces, 2004, volume 1, pages 381–386, 2004.

[14] Berthold Daum. Professional Eclipse 3 for Java Developers. Wrox, 2004.

[15] Harvey M. Deitel, Paul J. Deitel, and Sean E. Santry. Advanced Java 2
Platform: How to Program. Prentice Hall, 2001.

[16] H. Eichelberger. Evaluation-report on the layout facilities of UML
tools. Technical report, Department of Computer Science, University of
Wuerzburg, 2002.

[17] Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. UML2
Toolkit. Wiley Publishing, 2004.

[18] A. S. Evans and A. J. Wellings. UML and the formal development of
safety-critical real-time systems. In IEE Colloquium on Applicable Mod-
elling, Verification and Analysis Techniques for Real-Time Systems (Ref.
No. 1999/006), pages 2/1–2/4, Jan. 1999.

[19] Martin Fowler. Patterns. IEEE Software, March/April, 2003.

[20] Martin Fowler. UML Distilled: a brief guide to the standard object modeling
language. Addison Wesley, 3rd edition, 2003.

[21] Kurt A. Gabrick and David B. Weiss. J2EE and XML Development. Man-
ning, 2002.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[23] Martin Glinz. The teacher: ’concepts!’ the student: ’tools!’ — on the num-
ber and importance of concepts, methods, and tools to be taught in software
engineering education. In Proceedings of the Third International Workshop
on Software Engineering Education, pages 32–34 and 55. Softwaretechnik-
Trends, 1996.

[24] Timothy J. Grose, Gary C. Doney, and Stephen A. Brodsky PhD. Master-
ing XMI: Java Programming with XMI, XML, and UML. Wiley, 2002.

140

[25] Klaus Marius Hansen and Anne Vinter Ratzer. Tool support for collabo-
rative teaching and learning of object-oriented modeling. In Proceedings of
the 7th annual conference on Innovation and technology in computer sci-
ence education, ITiCSE ’02, pages 146–150, New York, NY, USA, 2002.
ACM.

[26] Elliotte Rusty Harold. XML 1.1 Bible, 3rd Edition. Wiley, 2004.

[27] IEEE. IEEE standard computer dictionary: A compilation of ieee standard
computer glossaries. In IEEE Standard Computer Dictionary: A Compila-
tion of IEEE Standard Computer Glossaries. IEEE, 1990.

[28] H.J. Kohler, U. Nickel, J. Niere, and A.Zundorf. Integrating UML diagrams
for production control systems. In Proceedings of the 2000 International
Conference on Software Engineering, 2000, pages 241–251, 4-11 June 2000.

[29] S. Lahtinen and J. Peltonen. Enhancing usability of UML case-tools with
speech recognition. In Proceedings of the IEEE Symposium on Human
Centric Computing Languages and Environments, 2003, pages 227–235,
Oct. 2003.

[30] Dean Leffingwell and Don Widrig. Managing Software Requirements: A
Use Case Approach. Addison Wesley, 2nd edition, 2003.

[31] Floyd Marinescu. EJB Design Patterns, Advanced Patterns, Processes, and
Idioms. Wiley Publishing, 2002.

[32] N. Medvidovic, A. Egyed, and D. S. Rosenblum. Round-trip software en-
gineering using UML: From architecture to design and back. In Proceed-
ings of the 2nd Workshop on Object-Oriented Reengineering (WOOR), 7th
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), Toulouse, France, Sept. 1999.

[33] Thomas P. Moran, Patrick Chiu, and William van Melle. Pen-based inter-
action techniques for organizing material on an electronic whiteboard. In
Proceedings of UIST 1997, Banff, Alberta, pages 105–114, 14–17 October
1997.

[34] Anthony Potts and David H. Friedl Jr. Java Programming Language Hand-
book. Coriolis Group, 1996.

[35] D. Quan, D. Huynh, Dr. Karger, and R Miller. User interface continua-
tions. In Proceedings of the 16th annual ACM Symposium on User interface
software and technology. Vancouver, Canada, pages 145–148, 2003. ISBN:1-
58113-636-6.

[36] Jef Raskin. The Humane Interface: New Directions for Designing Interac-
tive Systems. Addison Wesley, 2000.

[37] Erik T. Ray. Learning XML. O’Reilly & Associates, 2001.

141

[38] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison Wesley, 2 edition, 2004.

[39] Douglas C. Schmidt and Paul Stephenson. Experience using design patterns
to evolve communication software across diverse os platforms. Technical
report, Department of Computer Science Washington University St. Louis,
MO 63130 and Ericsson Inc. Cypress, CA 90630, 1990.

[40] Bruce Tate. Bitter Java. Manning, 2002.

[41] J. Tenzer. Improving UML design tools by formal games. In Proceedings
of the 26th International Conference on Software Engineering, 2004. ICSE
2004, pages 75–77, May 2004.

[42] The Object Man Group. www.omg.org, 2006.

[43] Jenifer Tidwell. Designing Interfaces. O’Reilly Media, 2005.

[44] Scott A. Turner, Manuel A. Pérez-Quiñones, and Stephen H. Edwards.
minimuml: A minimalist approach to uml diagramming for early computer
science education. J. Educ. Resour. Comput., 5, December 2005.

[45] Bin Zhang and Ye sho Chen. Enhancing UML conceptual modeling through
the use of virtual reality. In Proceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences, 2005. HICSS ’05, page 11b, Jan.
2005.

142

