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Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit der Untersuchung des praktisches Nutzens von formalen
Transformationen in der Answer-Set Programmen. Answer-Set Programmierung (ASP)
ist ein für deklaratives Problemlösen bestimmter Formalismus, der auf Prinzipien des
nichtmonotonen Schließens aufbaut.

Wir beginnen mit einer Übersicht des heutigen Stands in dem Feld. Unsere Unter-
suchungen basieren auf zwei unterschiedlichen Transformationssysteme – eines, dass auf
bestimmten syntaktischen Transformationen basiert; und ein zweites, welches auf se-
mantischen Bedingungen aufbaut und redundante Regeln so wie Literale entfernt.

Anschließend wird eine Diskussion über die Implementierung von Algorithmen zur Bes-
timmung der Anwendbarkeit von Regeln für diese zwei Systeme durchgeführt. Danach
zeigen wir mit Hilfe der Interaktionseigenschaften der Transformationen, wie die Eingabe-
daten intern effektiv behandelt werden können.

Eine Implementierung in Python wird benutzt, um eine Untersuchung der Anwend-
barkeit der Transformationen bezüglich unterschiedlichen Beispielprogrammen durch-
zuführen. Analysiert werden, unter anderem, Studentenprogramme, zufallsgenerierte
Programme, und automatisch generierte Programme erzeugt von verschiedenen Front-
ends für deklaratives Problemlösen.

Die Resultate zeigen, dass die betrachteten Transformationen nur eine geringe Anwend-
barkeit besitzen. Außer für den Fall von Zufallsprogrammem wird nur eine kleine Anzahl
von Anwendungsinstanzen gefunden. Folgen von anwendbaren Transformationen sind
praktisch nicht existent.

Somit ist der praktische Nutzen für diese in der Literatur diskutierten Transformationen
für Online- oder Offline-Optimierung gering.
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Abstract

The focus of this thesis is the examination of the practicality of applying known formal
transformations of answer-set programs. Answer-set programming (ASP) is a formalism
for declarative problem solving, based on the principles of non-monotonic reasoning.

The research is started by constructing an overview of well-defined transformations ex-
isting in the scientific literature. We consider two systems of transformations – one
composed of certain syntactic transformations; the other of the semantic removal of
rules and literals.

This work then discusses algorithms for implementing applicability checking within the
two systems, either existing ones from the literature, or new ones. Next, it is shown
how to effectively process input data within the defined frameworks, utilizing properties
related to the interactions between the transformations.

With the help of a Python implementation, several data sets composed of answer-set
programs are checked for transformation applicability, including student-written pro-
grams, randomly-generated programs, and programs created by various front-ends for
declarative problem solving.

The results obtained show that the utility of applying the considered program trans-
formations is quite low. Barring random input, only a small number of applicable
transformation instances is found. Moreover, sequences of transformation applications
are almost non-existent.

Hence, there is little practical gain in using the considered transformation for online or
offline optimization.
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Chapter 1

Introduction

Answer-Set programming (ASP) is a formalism that has steadily been gaining in pop-
ularity in the recent years. As a declarative logic-oriented programming language, it
is especially suited to solving problems related to knowledge representation. It also
possesses the advantage of being able to express non-monotonic knowledge.

One of the developments in the area has been the construction of different frameworks
for solving reasoning tasks based on various ASP interpreters. Such frameworks usually
employ their own language for problem definition (often similar in some way to an ASP
variant), translating the obtained specification into a logic program which is then fed
to an underlying ASP solver. Finally, the output from such a solver is collected and
processed. The described approach has the obvious advantage of limiting the necessary
work to problem-specific issues, be it diagnosis [EFLP99], planning [EFL+04, EFL+03],
or some other task.

On the other hand, such automatic, generalized compilation from the specification lan-
guage of the framework to ASP has the inherent danger of creating some sort of subop-
timality. However, what actually amounts to being “suboptimal” is ambiguous in this
context.

A rational interpretation of optimality would concentrate on redundancy present in the
program. In other words, the existence of some shorter program (for example, one with
less rules) semantically equivalent to the output of the framework’s compiler infers the
possibility for improvement. The crux of the matter in both cases is located in the term
“semantically equivalent”. ASP, due to its non-monotonic nature, has several definitions
of equivalence – two programs with the same semantics can have a different meaning
with the introduction of additional knowledge, identical in both cases. This issue shall
be discussed in the coming sections of this thesis.

The goal of this thesis is to examine the actual practicality of using program transfor-
mations on various programs from multiple sources, including those generated by ASP
solvers, but also “human-made” data. With regard to the remarks made above, the main
benchmark will be the number of rules and the size of their head and body sets. This is
because there is a certain problem with a runtime benchmark, apart from the differences
by using different solvers.
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Chapter 1 Introduction

To illustrate the above points, let us consider the following program:

P = {a←}.

For this very basic program, one can very easily find another one that is equivalent, i.e.,
one that has the same semantics, or informally, “meaning”, say:

{a←,
c← not a}.

This trivial example illustrates the fact that each program has a potential for having a
large set of other programs equivalent to it (especially for certain kinds of equivalence).
It is therefore inefficient, if not futile (given lack of bound on the size of programs), to
simply enumerate all equivalent variants. Instead, simplification by executing a sequence
of previously defined transformations will be attempted. The main criteria here are the
length of the program and the amount of time it takes to verify whether one can apply
the transformations to the supplied input.

The thesis is organized as follows. The next chapter introduces the necessary syntactical
and semantical notions of answer-set programming. Chapter 3 will provide an overview
of the current research results in the field of equivalence-preserving transformations of
logic programs under the answer-set semantics. In Chapter 4, the transformations used
for the purpose of data analysis are selected, and algorithms for testing of their applica-
bility are developed, researched, and analyzed. Chapter 5 considers the transformations
in the context of their respective systems, exploring the properties that emerge from their
interaction with one another. Chapter 6 presents the software framework developed for
the experiments, and demonstrates the results on various data sets. The final chapter
interprets those results and lists the conclusions made, suggesting further research as
well.
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Chapter 2

Answer-Set Programming

This chapter introduces the basic concepts of answer-set programming [GL88, GL91],
needed for the understanding of this thesis. Firstly, we discuss syntactical notions and
afterwards semantic ones.

2.1 Syntax

The sets of constants, variables, and predicates are pairwise disjoint subsets of some
language L.1 Additionally, the set of constants, also called domain, denoted by C, may
be either finite or infinite. A term is either a constant (a 0-ary function) or a variable.
An atom is a predicate symbol, followed by a comma-delimited list of terms with length
corresponding to the symbol’s arity, in parentheses (an atom with a 0-ary predicate
omits those parentheses, for brevity). A literal is an atom optionally preceded by ¬, the
sign of strong negation. We actually distinguish between two types of negation: besides
¬, we also have default negation, denoted by ‘not’, also referred to as negation as failure.
A NAF literal is a literal optionally preceded by ‘not’.

We use |l| to denote the predicate symbol of literal l, and n(p) to denote the arity of
a predicate symbol p. The set of all predicate symbols present in atoms of a given
construct X (either a rule, program, or a set of atoms) is denoted by RX .

A rule is a pair of the form

a1 ∨ . . . ∨ al ← b1, . . . , bm, not c1, . . . , not cn ,

where a1, . . . , al, b1, . . . , bm, c1, . . . , cn are literals.

We call a1 ∨ . . .∨ al the head of the rule and b1, . . . , bm, not c1, . . . , not cn the body of the
rule.

A rule is

1By convention, variables start with an uppercase letter or an underscore, whereas constants begin
with a lowercase letter or number.
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Chapter 2 Answer-Set Programming

• basic if n = 0,

• disjunctive if l > 1,

• normal if it is non-disjunctive and every literal is positive, and

• ground if every literal is ground, i.e., if it contains no variables.

Additionally, a rule of the form

← b1, . . . , bm, not c1, . . . , not cn

is called a constraint.

A program is a finite set of rules. The above taxonomy of rules applies to programs for
which every member rule possesses the classifying property.

Some definitions regarding rules need to be fixed for a simpler specification of several
concepts later on. For any given rule r:

• H(r) is the set of all literals occurring in the head of r,

• B+(r) is the positive body of r, i.e., the set of all literals occurring in the body of
r which are not preceded by ‘not’,

• B−(r) is the negative body of r, i.e., the set of all default negated literals occurring
in the body of r with ‘not’ removed, and

• B(r) = B+(r)∪notB−(r), where, for a given set of literals S, notS = {not a : a ∈
S}.

Therefore, a given rule might also be represented in set notation as

H(r)← B+(r), notB−(r).

The final three syntactical concepts, the notions of safety, grounding, and head-cycle
freeness, possess a large significance to semantics.

A rule r is safe if every variable in all literals contained in H(r) and B−(r) is also
contained in a literal in B+(r). A program is safe if all its rules are safe. This thesis
deals only with safe programs.

For non-ground programs, a variable assignment ϑ is a function assigning a symbol
from the set V of variables to a constant from the domain C. A grounding of an atom
is generated by replacing all variable symbols by the corresponding constant symbols
in the atom. Groundings for a literal, rule, or a program are defined analogously. In
general, for a variable assignment ϑ, the grounding of an object a (whether an atom,
literal, rule, program, or a set of these) with respect to ϑ is denoted as aϑ.

Given a ground program P , the positive dependency graph of P , GP , is a directed graph
defined as

GP = (VP , EP ),

4



Chapter 2 Answer-Set Programming

where VP is the set of all possible atoms generated from RP and the constants in P ,
and

EP = {(a, b) : a ∈ H(r), b ∈ B+(r), and r ∈ P}.

A rule r in a ground program P is head-cycle free (HCF) iff, for all pairs of distinct
atoms a, b ∈ H(r), no cycle containing both a and b exists in GP .

A rule r in any program P is HCF under C, iff, for each C ⊆ C, the grounding of r with
respect to C is HCF in the grounding of P with respect to C [EFT+06].

To specify some of the declarative algorithms introduced in this thesis, the notion of
aggregates will be introduced. An aggregate is a special construct enabling a potentially
higher expressiveness of a program [FLPP04]. To begin with, by a symbolic set we
understand an expression of the form {Vars : Conj}, where Vars is a tuple of variables
and Conj is a conjunction of literals. Furthermore, a ground set is a set of pairs of
the form (t1, . . . , tn : Conj ), where t1, . . . , tn is a list of constants and Conj is a ground
conjunction of NAF literals. Then, an aggregate function is an expression of the form

fS,

where f is the name of the function and S is either a symbolic set or a ground set (in
the latter case, fS is a ground aggregate function).

An aggregate atom has the form
fS ≺ n,

where ≺∈ {=, <,≤, >,≥}, fS is an aggregate function, and n, called right guard, is a
positive number. Aggregate atoms may appear in bodies of rules but not in heads.

By a local variable of a rule r we understand a variable which appears solely in an
aggregate function in r. A variable which is not local is global. The notion of safety
can be extended to rules with aggregates thus: we call a rule r safe if (i) each global
variable of r appears in a positive literal of the body of r which itself does not occur in an
aggregate atom; (ii) each local variable of r that appears in a symbolic set {Vars : Conj}
also appears in a positive literal in Conj . Finally, a program is safe if all of its rules are
safe.

2.2 Semantics

To begin with, we need to introduce the notion of an interpretation – it is a consistent set
of literals, i.e., one which does not contain an atom p and its negation ¬p. Furthermore,
for a ground program P , an interpretation I is a model of P if, for all r ∈ P ,

B+(r) ⊆ I and B−(r) ∩ I = ∅ implies H(r) ∩ I 6= ∅.

5



Chapter 2 Answer-Set Programming

A rule that fulfills the antecedent of the implication is applicable under I, whereas
a rule for which additionally the consequent is true is applied under I. Note that a
constraint can never fulfill the consequent, so if it is applicable under an interpretation,
that interpretation is not a model for the specified program.

For a ground basic program P , an interpretation I is an answer set of P if it is minimal
among the set of models of P .

Example 1. Consider
P = {a ∨ b ∨ c←}.

Since the single rule of P is applicable under any interpretation (it is a disjunctive fact),
then, the set of models of P is

{{a, b, c}, {a, c}, {a, b}, {b, c}, {a}, {b}, {c}}.

However, due to the minimality condition only {a}, {b}, and {c} are answer sets of P .

Having defined answer sets for ground basic programs, let us next consider the case of
arbitrary ground programs. To this end, we define the reduct of a ground program P
under an interpretation I, denoted by P I , as follows:

1. Remove any rule r for which B−(r) ∩ I 6= ∅, and

2. for all remaining rules, remove all default negated literals from their bodies.

The result is a ground basic program. Then, an interpretation I of a program P is an
answer set of P if it is an answer set of P I . Answer sets are, informally, “results” of the
program. The set of all answer sets for P is denoted by AS(P ).

The concepts of a model and an answer set of a non-ground program are defined analo-
gously by applying them to a program created from all possible rule groundings.

Defining the semantics of programs allows for considering the equivalence between a pair
of them. This is not as simple as, for example, equivalence of formulas under zero- or
first-order logic, due to the aforementioned non-monotonicity of ASP. In what follows,
three common notions of equivalence are introduced:

• two programs P and S are ordinarily equivalent equivalent iff AS(P ) = AS(S);
denoted by P ≡o S,

• two programs P and S are strongly equivalent iff AS(P ∪ R) = AS(S ∪ R), for
any program R, denoted by P ≡s S [LPV01],

• two programs P and S are uniformly equivalent iff AS(P ∪ F ) = AS(S ∪ F ), for
any set of ground facts F , denoted by P ≡u S [Mah88, EF03].

6
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As one can observe from the above definitions, equivalence in ASP is often determined
not only by the current semantics, but also by adding new information to the program.
The relevance of this phenomenon to the research conducted within the thesis shall be
discussed later on.

Two problems related to determining AS(P ) given P are of interest for our purposes as
well; namely, those of brave and cautious reasoning:

• brave reasoning – given a program P and a set Q of NAF literals, determine
whether there exists an A ∈ AS(P ) such that ← Q is applicable under A,

• cautious reasoning – given a program P and a set Q of NAF literals, determine
whether, for all A ∈ AS(P ), ← Q is applicable under A.

For both reasoning modes, ← Q is called a query.

Example 2. Consider the program from Example 1. Taking into account its answer
sets, the query ← a succeeds under brave reasoning (due to the answer set {a}), but fails
under cautious reasoning (due to the answer sets {b} and {c}).

The significance of the reasoning problems appears in the context of algorithms for
detecting and applying transformations, specifically those that use a translation to a
logic program to obtain the solution – in several cases throughout this thesis, the brave
and cautious reasoning facility of DLV [LPF+06] is used, respectively.

The description of the extension of the semantics with respect to aggregate atoms will
now follow, in accordance to the definitions laid out by Dell’Armi et al. [DFI+03].

For a given symbolic set S, by a local assignment we understand a variable assignment
ϑl of the local variables in S. The grounding of a symbolic set S = {Vars : Conj}
without global variables is given as the following ground set:

{(Varsϑl : Conjϑl) : ϑl is a local assignment for S}.

For S with global variables, given an assignment ϑg only for its global variables (a global
variable assignment), the grounding is constructed by first setting the global variable
values in correspondence to ϑg, and then proceeding in the way described in the preceding
paragraph. The value of a ground set S under an interpretation I is the multiset

{{t1 : (t1, . . . , tn) ∈ SI}},

where

SI := {(t1, . . . , tn) : (t1, . . . , tn : Conj ) ∈ S and Conj is true with respect to I } .

The value of a ground aggregate function fS under I is the result of applying f to the
value of S under I.

A ground aggregate atom A = fS ≺ n is true if both of the following holds:

7



Chapter 2 Answer-Set Programming

• the value of S under I is in the domain of f , and

• the relationship between the value of f(S) under I and n, with respect to ≺, holds.

If A is not true, then it is false.

The definitions of applicability, models, answer sets, etc., are analogous to the ones
applying to the semantics of disjunctive programs without aggregates.

In this thesis, only one aggregate function is utilized: #count. Given the set C of
constants, the domain of #count is the set of all possible multisets generated from C,
and it returns the cardinality of its argument.

There is one final, unassociated definition that needs to be clarified: a renaming is a
bijective function assigning a symbol from a given set of variables (or constants) to a set
of variables (or constants).

8



Chapter 3

A basic overview of
equivalence-preserving
transformations

3.1 General definitions

Research in the field of program transformations has been conducted since at least 14
years from the time of writing of this thesis [BD95], and generally falls into two cate-
gories. Firstly, such transformations are utilized to assist in interpreting the semantics
of logic programs [BZF96]. The second category of literature concentrates chiefly on
simplification of programs [ONG01, EFT+06, CPV07, Hei07, ONA01, Pea04]. It is the
latter that will serve as the focus of this chapter. However, note that the two sets
of articles overlap, as some simplification remains often a desired process in semantic
interpretation.

Regardless of the different uses listed above, the authors of the publications mentioned
above usually want the found transformations to possess some useful property, specifi-
cally to preserve the semantics of the original program in some way. Most attention has
been given to uniform and strong equivalence, as such transformations would have more
use in the context of, for example, refactoring of ASP programs.

Now, in order to correctly approach the process of examination of the intermediary code,
it is necessary to restrict the attention only to transformations which preserve the level
of equivalence necessary in the analyzed case. However, the choice in this situation
is actually only virtual. This is because all knowledge is not contained in the ASP
program per se, but in the contents of the problem specification provided to a framework
utilizing an ASP solver. The intermediary ASP code forms only a semantically equivalent
representation of the original knowledge, and it is regenerated every time said knowledge
becomes modified. Therefore, it follows that here one can adopt the most general type
of equivalence, i.e., ordinary equivalence.

9



Chapter 3 A basic overview of equivalence-preserving transformations

This provides an advantage, because it allows for a larger set of optimizations to be
considered. Indeed, in the literature, there exist cases of transformations where only
and exclusively ordinary equivalence is preserved.

During research for this thesis, two approaches for defining (formalizing) transformations
of logic programs have been found. The first, utilized extensively, considers a transfor-
mation as nothing else but a relation from the set of ASP programs to itself (sometimes,
with subclass restrictions). This straightforward variant possesses two advantages apart
from its simplicity:

• one can easily introduce in the context such concepts as transitive closures, useful
e.g., when defining end results of transformations, and

• the creation of non-deterministic transformations is straightforward.

Another way to define transformations has been provided by Eiter et al. [EFT+06].
Here, the concept of a specific transformation instance (a replacement) and a general-
ized transformation scheme (a replacement schema) have been differentiated and strictly
formalized. This allows for a simpler definition of properties and the creation of appro-
priate proofs, especially in the context of semantic equivalence.

On the other hand, the level of sophistication contained in the definitions given by Eiter
et al. [EFT+06] is more than needed for this thesis. Therefore, it was decided to utilize
the simplified notation variant.

Definition 1. A transformation is a binary relation on the set of all possible programs.

A transformation T is applicable to a program P , or P is eligible for T , iff (P, P ′) ∈ T ,
where P ′ is some program. An element (P, P ′) ∈ T is also called an application of T .

A transformation T is ≡X-preserving iff, for all (P, P ′) ∈ T , P ′ ≡X P .

We also call rules r1, . . . , rn eligible for a transformation T iff there exists some (P, P ′) ∈
T such that r1, . . . , rn ∈ P and P ′ results from P by replacing r1, . . . , rn by rules
r′1, . . . , r

′
m.

Definition 2. A transformation system is a set of transformations.

The two concepts will be required later on, when discussing the choice of transformations
and their interactions.

For the purpose of displaying multiple sequences efficiently, transformations are pre-
sented in the form of trees. Each node in such a tree denotes a program, and each vertex
is labeled with a transformation. Each successor node, then, denotes the program of the
predecessor node changed by the transformation specified in the vertex label.

Additionally, a vertex label may be suffixed with “(n/a)”. This signifies a non-applicable
transformation that has been displayed regardless because the information it conveys is
crucial to the understanding of the accompanying text. In such a case, the successor
and predecessor node are the same programs.

10



Chapter 3 A basic overview of equivalence-preserving transformations

3.2 Specific transformations

In what follows, we present an overview of transformations found in the literature.
The formalization of transformations (replacements schemata) is done according to the
definitions proposed in the preceding section.

Since the “real-life” programs we use for the examination of the transformations are
finite-domain only, this thesis requires a consideration of a finite domain exclusively,
which, as shown by Fink et al. [FPTW07], puts forth different requirements than an
infinite one. Therefore, only those transformations which possess a finite-domain version
should be considered for the comparison later on.

3.2.1 FD-TAUT , FD-CONTRA, and FD-LC0 -1 -0

Definition 3 ([EFT+06]). FD-TAUT allows to eliminate a rule of a program P pro-
viding that, for every ϑ : Vr → C, H(rϑ) ∩B+(rϑ) 6= ∅.1

Definition 4 ([EFT+06]). FD-CONTRA allows to eliminate a rule of a program P
providing that, for every ϑ : Vr → C, B+(rϑ) ∩B−(rϑ) 6= ∅.

Definition 5 ([EFT+06, LC07]). FD-LC0 -1 -0 allows to eliminate a rule of a program
P providing that, for every ϑ : Vr → C,

B+(rϑ) ∩ (H(rϑ) ∪B−(rϑ)) 6= ∅. (3.1)

As shown by Eiter et al. [EFT+06], FD-LC0 -1 -0 encompasses both FD-TAUT and
FD-CONTRA (i.e., all programs or rules eligible for the last two are also eligible for the
former). Additionally, FD-LC0 -1 -0 is ≡s-preserving, as demonstrated by Lin and Chen
[LC07].

Informally speaking, the rules which can be removed by these three transformations
provide no additional knowledge compared to the remaining rules of the program they are
contained in. Specifically, there exists a strong relationship between their applicability
and application under any interpretation.

Example 3. Consider the rule

r = p(X)← p(X) .

It is obvious that this rule is applicable if and only if it is applied. Hence, it has absolutely
no impact on the answer sets of any program containing it. This type of rule is a
tautology, and may be removed both by FD-TAUT and FD-LC0 -1 -0 .

1FD stands for “finite domain”.

11
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Example 4. Consider the rule

r = g(X)← p(X), not p(X) .

Analogously to the previous example, this rule is not applicable if and only if it is not
applied, and therefore again cannot influence a program’s answer sets. This type of rule
may be removed by both FD-CONTRA and FD-LC0 -1 -0 .

An interesting fact to note is the synergistic property of FD-LC0 -1 -0 . Not only can it be
applied to any rule that FD-TAUT or FD-CONTRA are applicable to, it also detects
an additional redundancy-producing class.

Example 5. Consider the rule

r = p(1)← p(X), q(X), not q(0)

and the domain Cr = {0, 1}. The following groundings can be obtained, using all possible
variable substitutions:

p(1)← p(0), q(0), not q(0);

p(1)← p(1), q(1), not q(0) .

Clearly, both rules satisfy Condition (3.1) in the proviso of FD-LC0 -1 -0 , and so FD-LC0 -1 -0

is applicable to r. However, note that one could not attain this result by checking p and
q separately, and by extension, neither FD-TAUT nor FD-CONTRA can be applied to
r autonomously.

3.2.2 RED−, S -IMPL, NONMIN , and SUB

Definition 6 ([EFT+06]). RED− allows to eliminate a rule r in a program P providing
there is a rule s for which H(s) ⊆ B−(r) and B(s) = ∅ holds.

Definition 7 ([EFT+06]). S -IMPL allows to remove a rule r in a program P providing
there exists a rule s ∈ P and an A ⊆ B−(r) such that for every ϑ : VP → Vr ∪ C:

1. B+(sϑ) ⊆ B+(rϑ),

2. H(sϑ) ⊆ H(rϑ) ∪ Aϑ, and

3. B−(sϑ) ⊆ B−(rϑ) \ Aϑ.

Definition 8 ([EFT+06]). NONMIN allows to remove a rule r in a program P providing
there exists a rule s ∈ P such that for every ϑ : VP → Vr ∪ C:

1. B+(sϑ) ⊆ B+(rϑ) and

2. H(sϑ) ⊆ H(rϑ).

12
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Definition 9 ([EFT+06]). SUB allows to remove a rule r in a program P providing
there exists a rule s ∈ P such that for every ϑ : VP → Vr ∪ C:

1. B+(sϑ) ⊆ B+(rϑ),

2. H(sϑ) ⊆ H(r) ∪B−(rϑ), and

3. B−(sϑ) ⊆ B−(rϑ).

We say that a rule s satisfying the condition in the above definition subsumes rule r.

SUB is applicable whenever any of the transformations RED−, S -IMPL, or NONMIN
are applicable. Additionally, all the above transformations preserve strong equivalence
[EFT+06].

Informally, SUB permits to eliminate those rules that are either

• “subsumed” by another rule – meaning that, even though they may be applied in
a model, any alternatives to those in the head of the “subsumer” rule would cause
that such a model would fail the minimality criterion, or

• “precluded” by another rule – this may happen if the rule is applicable whenever
another rule is applicable, the latter having an atom in the head which is also
contained in the head of the former, leading to a situation where the eligible rule
may never be applicable.2

Example 6. Consider a program consisting of the rules

r(X)← s(X),

r(X) ∨ g(X)← s(X), l(X),

m(x)← s(X), not r(X)

over the domain C = {0, 1}. Then, after exhaustively applying SUB , only the rule

r(X)← s(X)

would be left. Also, the second rule could be removed by NONMIN , and the third one by
S -IMPL.

2Of course, the other head atoms of the “precluding” rule must be contained either in the head or also
in the negative body of the “precluded” rule.
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3.2.3 DSuc and variants

Definition 10 ([ONG01]). DSuc allows to remove a ground atom a from each rule that
contains it in its positive body if there exists a fact of the form a← in the program.

A possible variation of DSuc is the following transformation:

Definition 11. FD-DSuc allows to remove an atom l from any rule in a program P
that contains it in its positive body, if, for all ϑ : Vr → C, there exists a ground fact of
the form a ← in P such that lϑ = a, as long as the removal of l would not cause r to
become non-safe.

A similar schema to DSuc and FD-DSuc could be constructed for eliminating rules that
contain a default negated body literal corresponding to a fact (or a set of facts, in case
of non-ground literals). However, this would really just be a subcase of SUB .

A problem with DSuc and FD-DSuc exists, however. For positive programs, it collapses
the entire structure of such programs and yields the set of facts corresponding to the
minimal model. This is not desired for program analysis.

Example 7. Consider a program consisting of the rules

r(1)←,
g(1)←, and
h(X) ∨ s(X)← r(X), g(X)

over the domain C = {1}. While applying DSuc, the first two rules remain unchanged,
while the third rule turns to either

h(X) ∨ s(X)← r(X)

or
h(X) ∨ s(X)← g(X) .

Take note that r(X) and g(X) cannot be both removed by DSuc as this would violate the
safety conditions; additionally, the obtained program is somewhat shorter, and this type
of simplification makes structural analysis somewhat easier.

3.2.4 RED+ and FOLD

Definition 12 ([EFT+06]). RED+ allows to convert a rule r to a rule t of the form
H(r) = H(t), B(r) = B(t) ∪ {not a} providing, for every u ∈ P , every b ∈ H(u), every
ϑa : Va → C, and every ϑb : Vb → C, it holds that aϑa 6= bϑb.
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The peculiarity of RED+ among the transformations discussed so far is that it preserves
only ordinary equivalence [EFT+06]. Also, it is one of the few transformations that
specifically remove literals.

Example 8. Consider the simple program

P = {c(1)←; a(X) ∨ b(X)← c(X), not d(X)}

under the domain C = {1}.

Here is the result of applying RED+:

P ′ = {c(1)←; a(X) ∨ b(X)← c(X), not d(X)} .

The lack of the ability to preserve even uniform equivalence is quite apparent in this
example. It becomes obvious with a simple addition of the fact d(1)←. Then,

AS(P ∪ {d(1)}) = {{c(1)}}

but
AS(P ′ ∪ {d(1)}) = {{c(1), a(1)}, {c(1), b(1)}} .

Definition 13 ([EFT+06]). FOLD allows to convert two rules r and s into a single rule
t providing there exists a renaming δ and an atom a ∈ B−(rδ) ∩B+(s) for which

• H(rδ) = H(s) = H(t),

• B+(rδ) = B+(s) \ {a} = B+(t),

• B−(rδ) \ {a} = B−(s) = B−(t),

and, for every u ∈ P , every b ∈ H(u), every ϑa : Va → C, and ϑb : Vb → C, it holds that
aϑa 6= bϑb.

FOLD preserves uniform equivalence, as shown by Eiter et al. [EFT+06].

Example 9. Consider the program consisting of the rules

a(X) ∨ b(X)← c(X), not d(X),

a(X) ∨ b(X)← c(X), not d(X),

g(X)← k(X), b(X), and
g(X)← k(X), not b(X)

over the domain C = {0, 1}. Using FOLD , the first two rules may be combined to

a(X) ∨ b(X)← c(X) .

However, the final two rules may not be changed by applying FOLD , as the atom a from
the definition in this case is a(X), being also contained in the head of the other rules
with respect to grounding.
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3.2.5 FAILURE

Definition 14 ([ONG01]). FAILURE allows to remove any rule which in its positive
body contains an atom a which is not contained in a head of any rule in the program.

A finite-domain version of FAILURE can be constructed in analogy to FD-DSuc. The
transformation, in general, preserves only ordinary equivalence [ONG01] .

Example 10. Consider the following program:

P = {g ←; f ← h} .

After applying FAILURE , the following program is obtained:

P ={g ←} .

The lack of uniform (and strong) equivalence preservation may be demonstrated by ap-
pending h← to each program. Then,

AS(P ∪ {h}) = {{g, f, h}}

but
AS(P ′ ∪ {h}) = {{g, h}} .

FAILURE could be interesting in the context of searching for redundant rules.

3.2.6 LSH

Definition 15 ([EFT+06]). LSH allows to remove a rule r if r is head-cycle-free in P
and, for all Vr → C, |H(rϑ)| = |H(r)| > 1, replacing it with a set Nr defined as follows:

Nr = {h← B(r), notH(r) \ h | h ∈ H(r)}.

Unlike the other transformations presented, LSH performs no reduction and actually
increases the number of rules in a program after its application. Additionally, it has
been shown to preserve uniform equivalence [EFT+06].

As a matter of fact, we would dispense with this means of removing disjunction since
it was shown by Eiter et al. [EFTW04a] that there always exists a uniformly (and an
ordinarily) equivalent normal program to a given disjunctive one. However, the context
of the results obtained in that paper is incompatible with the one in this thesis, as we
consider finite domains only.

16



Chapter 3 A basic overview of equivalence-preserving transformations

Example 11. Consider the program consisting of the rules

a(1) ∨ b(1)←,
b(1) ∨ c(1)←, and
g(X) ∨ h(X)← k(X)

over the domain C = {1}. After using LSH exhaustively, the resulting program contains
the following rules:

a(1) ∨ b(1)←,
b(1) ∨ c(1)←,
g(X)← k(X), noth(X),

h(X)← k(X), not g(X) .

The first two rules cannot be modified by LSH , because they share a head atom (namely
b(1)), and so are not head-cycle-free in the program. There exists no such problem with
the final rule, however, and it becomes converted into two new rules. Finally, note how
LSH is unable to render a safe program non-safe – it transfers atoms exclusively between
the head and the negative body.

3.2.7 Miscellaneous other transformations

What follows is a short description of some remaining, potentially interesting transfor-
mations, compressed into a summary form:

• SUPRA [EFTW04b] – if a fact classically follows from a program, add it to the pro-
gram. This transformation only preserves ordinary equivalence and may theoreti-
cally lead to the applicability of other transformation schemata. The main problem
of SUPRA is its potential for the same structural destruction as (FD-)DSuc.

• SRRE , for E ∈ {O,U, S}, the semantic removal of redundant rules under ordinary,
uniform, and strong equivalence, respectively [EFTW04b] – simply check whether
P \ {r} ≡e P , where e ∈ {o, u, s}. These rules would be useful to implement,
especially in order to compare their effectiveness with syntactic transformations.

• SRLE , for E ∈ {O,U, S}, deals with the semantic removal of redundant liter-
als [EFTW04b]. As for the previous rules, analogous observations can be made,
with similar utility.

• GPPE and WGPPE [EFTW04b] – the first allows to remove a rule, while both
add several rules in its place. These transformations may cause an exponential
explosion of the program. Nevertheless, they are interesting to analyze since they
can make other replacement schemata applicable. However, both are only available
for the ground case.
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• WGPPE⊕ and WGPPE	 [Hei07] – these are non-ground variants of the two pre-
vious transformations. Since they will be discussed further, their full definitions
will be provided in what follows.

Definition 16 ([Hei07]). For a program P , a domain C, a rule r ∈ P , and an atom
a ∈ B+(r), WGPPE⊕ allows to transform P into

P ∪{H(rθ)∪ (H(r′θ′) \ {aθ})← (B+(rθ) \ {aθ})∪B(r′θ′), notB−(r′θ′) : (r, θ, θ′) ∈ QC}

provided that

QC ⊆ {(r, θ, θ′) : there is some b ∈ H(r) such that aθ = bθ′,
for some groundings θ, θ′ over C}.

Definition 17 ([Hei07]). For a program P , a domain C, a rule r ∈ P , and an atom
a ∈ B+(r), WGPPE	 allows to transform P into

P ∪ {H(r′θ′) \ {aθ} ← (B+(rθ) \ {aθ}) ∪B+(r′θ′),

not(B−(rθ) ∪H(rθ) ∪B−(r′θ′) \ {aθ′}) : (r, θ, θ′) ∈ QC}

provided that

QC ⊆ {(r, θ, θ′) : there is some b ∈ B−(r) such that aθ = bθ′,
for some groundings θ, θ′ over C}.
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Chapter 4

Detecting transformation eligibility

4.1 General discussion

We now discuss methods for detecting the applicability of transformations and specifying
a suitable transformation system. Several considerations should be taken into account.
Of course, transformations that are trivially subsumed by other transformations are
completely disregarded as a preliminary measure.

Availability of existing algorithms for determining applicability certainly is a first. Vari-
ous ones already fulfill this condition but others require further development. However,
for some transformations, e.g., for FD-LC0 -1 -0 , a solution is easy, as shown further on.

The performance of applicability testing is an important factor as well. For example,
while the test for FD-LC0 -1 -0 only requires a check of all literals within a single rule,
the one for SUB requires an analysis of the entire program to verify the applicability for
any candidate.

Furthermore, consequences of interaction with other transformations need to be consid-
ered. As an illustration, note that if a rule gets removed by, e.g., FD-LC0 -1 -0 , all its
head literals cease to exist in the context of the program, and thus this transformation
may enable the application of FOLD , among others.

Finally, it is advantageous to prioritize those transformation that provide “stronger”
equivalence preservation. To preserve strong or even uniform equivalence may prove
more beneficial than only preserving ordinary equivalence, mainly because more of the
structure may remain intact. In the most extreme case – that is, if a program has
no answer sets to begin with –, transformations preserving ordinary equivalence will
reduce the program to the empty set. Conversely, using transformations preserving
ordinary equivalence may provide an advantage of a faster check and of more room for
improvement, as those often subsume one preserving strong or uniform equivalence.

With all the factors in mind, it remains to select the transformations included in the
system used for our subsequent experiments.
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With regard to the availability of algorithms, SUB and LSH have theirs defined explicitly
[Tra06], whereas FOLD is handled implicitly in a reduction proof [EFT+06]. Not only
that, but all of these transformations preserve strong equivalence, and they are, for
the most part, unique in their effect. Therefore, it was decided to include them in the
system.

As already mentioned, another transformation that preserves strong equivalence and
would be easy to introduce into the system is FD-LC0 -1 -0 , in view of its dependence on
a very simple precondition, implying that every rule may be analyzed in isolation. Due
to these facts, it will be made a part of the system as well.

Now, adding DSuc, FAILURE , and SUPRA into the mix may cause some problems. As
already mentioned, they either only preserve ordinary equivalence or may destroy the
structure of the program. An analogous situation occurs with RED+. This problem
disqualifies those transformations from the final system.

We continue with WGPPE⊕ and WGPPE	. Their advantage could lie in the al-
ready noted theoretical ability to enable other transformations. However, WGPPE⊕

andWGPPE	 not only cause a potentially large increase in the number of rules in the
program, they also ground each rule they are applied to. This hinders any attempts
at structural analysis. More specifically, of the transformations already selected (apart
from the semantic ones), it is readily apparent that the application of either WGPPE⊕

or WGPPE	 would be of little advantage: FD-LC0 -1 -0 would not be affected at all,
SUB would be enabled only in some specific (and possibly artificial) cases; the same
applies to LSH and FOLD . Furthermore, WGPPE⊕ and WGPPE	 are somewhat
“non-compatible” with the the other transformations – the two generate ground rules,
which the other ones cannot efficiently process. This can be best illustrated with an
example:

Example 12. Consider the program

P = {g(X)← h(X), c(X), not e(X);

h(X)← k(X), e(X)}.

After applying WGPPE⊕ in the domain {1, 2, 3} we obtain the following result:

P ′ = P ∪ {g(1)← c(1), k(1), e(1);

g(2)← c(2), k(2), e(2);

g(3)← c(3), k(3), e(3)}.

Not only is the resulting program longer than the original, it is also ground, and therefore
less suitable for applying a number of other transformations. Therefore, it is best to leave
WGPPE⊕ and WGPPE	 out of our area of interest, especially since no algorithm for
them has been created to date.

To summarize,
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• we use {FD-LC0 -1 -0 , SUB ,FOLD ,LSH } as our primary transformation system,
and

• treat SRRS and SRLS as alternative transformations, to be applied in a separate
run.

4.2 SUB eligibility detection

4.2.1 Preprocessing

SUB is a difficult transformation to analyze, in the sense that it requires a comparison
between each and every rule, with the naive approach having an average-, best-, and
worst-case execution time of O(|P |2). Therefore, it may be prudent to devise a pre-
processing step in order to improve performance. For this, the following algorithm has
been created.

Definition 18. SUBPREPROP(r, s, C, alg) denotes the following algorithm, where r
and s are rules, C is a finite domain, and alg signifies an algorithm for solving SUB ,
whose arguments comprise r, s, and C:

1. If one of the following conditions holds:

• |B+(r)| < |B+(s)|,

• |H(r)|+ |B−(r)| < |H(s)|,

• |B−(r)| < |B−(s)|, or

• Rs * Rr,

return false.

2. Otherwise, return alg(r, s, C).

Theorem 1. If alg is correct and complete, then so is SUBPREPROP .

Proof. Assume that alg is correct and complete but SUBPREPROP is not.

First of all, we note that the first step of SUBPREPROP always terminates since we
deal with finite rules only. Hence, SUBPREPROP terminates iff alg terminates.

We distinguish the following cases:

1. Suppose there are rules r and s which are eligible for SUB but SUBPREPROP
returns false. This may only happen if alg returns false. But by the completeness
of alg it must hold that r and s are not eligible for SUB . This is in violation of our
assumption and thus whenever rules are eligible for SUB , SUBPREPROP must
return true whenever it terminates.
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2. Suppose now that there are rules r and s which are not eligible for SUB but
SUBPREPROP returns true. By construction of SUBPREPROP , this means that
alg returns true. Since alg is correct, it follows that r and s must be eligible for
SUB , a contradiction. Therefore, if rules are not eligible for SUB , SUBPREPROP
returns false or does not terminate.

Of course, even with SUBPREPROP , the worst-case time for comparison still reaches
O(|P |2). However, this reduction might quite possibly translate into faster execution
during practical usage.

4.2.2 Imperative approach

We first define a straightforward imperative algorithm for solving SUB .

Definition 19. SUBIMP(r, s, C) is defined as follows, where r and s are rules, and C
is a finite set of constants:

1. For each ϑ : Vr ∪ Vs → C, if one of the following conditions does not hold, then
return false:

• B+(sϑ) ⊆ B+(rϑ),

• H(sϑ) ⊆ H(r) ∪B−(rϑ), or

• B−(sϑ) ⊆ B−(rϑ).

2. Otherwise, return true.

Theorem 2. For any rule r and any finite set C of constants, SUBIMP(r, s, C) returns
true for some rule s iff r is eligible for SUB .

Proof. This follows directly from the definitions of SUBIMP and SUB .

This algorithm might seem inefficient at first glance, however it possesses certain ad-
vantages. First and foremost, there is a large potential for implementation-specific op-
timization, such as caching. Not only that, but the algorithm is intended to run with
SUBPREPROP , possibly significantly cutting down the execution time.
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4.2.3 Declarative approach

This approach uses the algorithm presented by Traxler [Tra06]. The basis of the eligi-
bility testing is a reduction to the Boolean query problem (BCQ), which is the following
task: given a set F of facts and a rule t of the form

a← b1, ..., bn,

where a, b1, ..., bn are propositional atoms, decide whether there exists a stable model of
F ∪ {t} containing a.

The algorithm itself has the following form, given rules r and s:

1. Replace every symbol in |B+(s)∪B+(r)| ∩ |H(s)∪ (H(r)∪B−(r))| in such a way
that the cardinality of the new set |B+(s) ∪B+(r)| is unchanged.

2. Replace every symbol in |B−(s)∪B−(r)|∩|H(s)∪(H(r)∪B−(r))∪B+(s)∪B+(r)|
in such a way that the cardinality of the new set |B−(s) ∪B−(r)| is unchanged.

3. Define:

• A := H(s) ∪B+(s) ∪B−(s) and

• B := (H(r) ∪B−(r)) ∪B+(r) ∪B−(r).

4. Replace every variable in B by a new unique constant symbol not occurring in
A ∪B.

5. Generate a propositional atom b not occurring in A ∪B.

6. Solve the BCQ problem for t = b← A and F = B. If the result is positive, return
true, else return false.

As shown by Traxler [Tra06], the algorithm returns true if s subsumes r, and false
otherwise.

4.3 LSH eligibility detection and modification

To solve the problem of testing whether LSH may be applied to a given rule, we can
again make use of an algorithm due to Traxler [Tra06], defined next.

Given a program P and rule r ∈ P , perform the following steps:

1. Let CP be the set of constants in P and create a new setD such that the cardinality
of D is four times greater than the cardinality of CP .

2. Generate a relational symbol p not occurring in P .

3. Define A := {p(x) : x ∈ D}.
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4. Define

B :=
⋃
r∈P

{{b← a, {p(x) : x ∈ Vb} : a ∈ H(r), b ∈ B+(r)} : H(r) 6= ∅, B+(r) 6= ∅}.

5. For all s, l ∈ H(r′), where r′ is a grounding of r with respect to to D:

• If s = l or else l is a brave reasoning consequence of A ∪ B ∪ {s} and s is a
brave reasoning consequence of A ∪B ∪ {l}, return false.

• Otherwise, return true.

The algorithm returns true if r is eligible for LSH in P , and false otherwise.

4.4 FD-LC0 -1 -0 eligibility detection

Before we dwell into the subject of testing FD-LC0 -1 -0 eligibility, some general obser-
vations, including those on potential pitfalls, should be made. First of all, unlike its
infinite-domain pendant, FD-LC0 -1 -0 has a more complicated verification procedure, in
that one must ground the rule in order to complete the check – specifically, one must
produce all groundings of that rule with respect to the domain.

Secondly, it is necessary to analyze the groundings of the entire rule and not just of
specific predicates, as demonstrated by Example 5. This induces yet another increase of
the overhead.

Finally, if we derive the domain from the data supplied, one must be aware of avoiding
concentrating solely on the constants within the examined rule. Instead, the extracted
domain should be composed of all the constants in the input program.

The three considerations listed above provide necessary hints which have shaped the
development of the two algorithms described below.

4.4.1 Imperative Approach

In the first approach, we are concerned with checking all possible rule groundings in order
to test FD-LC0 -1 -0 applicability. Of course, explicitly testing all groundings of the rule
under a given domain is unnecessary, and one can make several improvements. One
of these is the observation that only literals with predicate symbols that occur both in
H(r)∪B−(r) and B+(r) are relevant. Hence, the algorithm will need to consider subsets
of the two sets only.1 We use the following definition to simplify the algorithm.

1Of course, the same improvement may be applied to the declarative approach, described below.

24



Chapter 4 Detecting transformation eligibility

Definition 20. Let S1 and S2 be sets of atoms. Then, Com(S1, S2) is given by

{a : a ∈ S1 and there exists an a2 ∈ S2 such that |a2| = |a|}.

Furthermore, the following can be used to reduce the required grounding work:

Lemma 1. Let S1 and S2 be two sets of atoms and C a set of constants. Assume
there exists a predicate symbol p ∈ RS1∪S2 and some i, 1 ≤ i ≤ n(p), such that the i-th
variable of every atom a ∈ S1 ∪ S2 with |a| = p is X, for some variable X. Then, for
every ϑ : C ∪ VS1∪S2 → C,

if Γ
i
(p, ϑ, S1) ∩ Γ

i
(p, ϑ, S2) 6= ∅, then Γ(p, ϑ, S1) ∩ Γ(p, ϑ, S2) 6= ∅,

where

Γ
i
(p, ϑ, Sj) := {p̄(x1ϑ, ..., xi−1ϑ, xi+1ϑ, ..., xmϑ) :

x1, ..., xi−1, xi+1, ..., xm are variables with p(x1, ..., xm) ∈ Sj for some xi}

and

Γ(p, ϑ, Sj) := {p(x1ϑ, ..., xmϑ) : x1, ..., xm are variables with p(x1, ..., xm) ∈ Sj},

for i = 1, 2, m = n(p), and p̄ is a new predicate symbol of arity m− 1.

Proof. Let p ∈ RS1∪S2 be a predicate symbol such that the ith variable of every atom
a ∈ S1∪S2 with |a| = p is X, for 1 ≤ i ≤ n(p). Assume there exists a ϑ : C∪VS1∪S2 → C

such that Γ
i
(p, ϑ, S1) ∩ Γ

i
(p, ϑ, S2) 6= ∅ but Γ(p, ϑ, S1) ∩ Γ(p, ϑ, S2) = ∅. Hence, there

must be variables x1, . . . , xm, x
′
1, . . . , x

′
m such that

p̄(x1ϑ, ..., xi−1ϑ, xi+1ϑ, ..., xnϑ) = p̄(x′1ϑ, ..., x
′
i−1ϑ, x

′
i+1ϑ, ..., x

′
nϑ) (4.1)

but

p(x1ϑ, ..., xnϑ) 6= p(x′1ϑ, ..., x
′
nϑ). (4.2)

From (4.1), it follows that

x1ϑ = x′1ϑ, ..., xi−1ϑ = x′x−1ϑ, xi+1ϑ = x′x+1ϑ, ..., xnϑ = x′nϑ.

But by (4.2) it can only be that xiϑ 6= x′iϑ. Since by hypothesis both xi = X and
x′i = X, we arrive at a contradiction.

Intuitively, the above lemma allows for “cutting out” the variables that would otherwise
have to be fully enumerated.

The algorithm will be constructed from the two components that have been just intro-
duced. The plan is to, firstly, minimize the amount of atoms to be analyzed with the
help of Com, then use Lemma 1 to decrease the size of the grounding, and only then to
check for all the possibilities.

The general algorithm, LC010IMP , is as follows:
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Definition 21. Let r be a rule and C a domain. Then, LC010IMP(r, C) is constructed
as follows:

1. Set

• Q1(r) := Com(B+(r), H(r) ∪B−(r)) and

• Q2(r) := Com(H(r) ∪B−(r), B+(r)).

2. If there exist atoms l1 ∈ Q1(r) and l2 ∈ Q2(r), where l1 = l2 = p(c1, ..., cn), and
where n ≥ 0 and c1, ..., cn are constants, return true.

3. If there exists a predicate symbol p for which all atoms a in Q1(r) ∪ Q2(r) with
|a| = p contain the same variable symbol at some argument position i, reduce the
arity of p by removing the ith argument of every a in Q1(r) ∪ Q2(r), and go back
to Step 2. Otherwise, proceed.

4. Construct all possible groundings on Q1(r) and Q2(r). If all groundings fulfill
Condition (3.1) from the definition of FD-LC0 -1 -0 , return true, else return false.

Of course, in terms of complexity, the worst-case time is only negligibly better than in
a naive enumeration. However, for most practical cases, the introduced simplifications
can provide a noticeable speed-up.

Theorem 3. If LC010IMP(r, C) returns true, then r is eligible for FD-LC0 -1 -0 .

Proof. Assume that the algorithm returns true, but the rule is not eligible for FD-LC0 -1 -0 .
There are two cases where the algorithm returns true, namely in Step 2 or in Step 4:

1. Assume true is returned in Step 2. Then, there exists an l1 ∈ Q1(r) and an l2 ∈
Q2(r) for which l1 = l2 = p(c1, ..., cn). Therefore, trivially, for all VQ1(r)∪Q2(r) → C,

Q1(r)ϑ ∩Q2(r)ϑ 6= ∅.

Due to the construction of Q1(r) (being a subset of B+(r)) and of Q2(r) (being a
subset of H(r) ∪B−(r)), as well as by Lemma 1, it follows that, for all Vr → C,

B+(rϑ) ∩ (H(rϑ) ∪B−(rϑ)) 6= ∅,

regardless of the amount of reductions made in Step 3. However, since r is not
eligible for FD-LC0 -1 -0 by hypothesis, there must be some Vr → C for which

B+(rϑ) ∩ (H(rϑ) ∪B−(rϑ)) = ∅,

a contradiction.

2. Assume true is returned in Step 4. Then, per definition of the algorithm, for all
VQ1(r)∪Q2(r) → C,

Q1(r)ϑ ∩Q2(r)ϑ 6= ∅.
The contradiction can now be reached analogously to Step 2.
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Hence, the contradiction is reached in both subcases, and thus for the general case as
well.

Theorem 4. If r is eligible for FD-LC0 -1 -0 in the domain C, then LC010IMP(r, C)
returns true.

Proof. Assume that r is eligible for FD-LC0 -1 -0 in C but LC010IMP(r, C) returns false,
or does not terminate.

• If any reductions are performed in Step 3, then, by Lemma 1, they have no impact
on the return value of the algorithm. Therefore, the algorithm returns false if it
fails the check in Step 4, i.e., if there exists a ϑ : VQ1(r)∪Q2(r) → C for which

Q1(r)ϑ ∩Q2(r)ϑ 6= ∅.

Because, per definition, Q1(r) and Q2(r) contain only those predicates whose sym-
bols are contained in both B+(r) and H(r) ∪ B−(r), this implies that such a ϑ
satisfies

B+(rϑ) ∩ (H(rϑ) ∪B−(rϑ)) = ∅.

However, this yields a contradiction to the assumption that r is eligible for FD-LC0 -1 -0 .

• The execution of each step is bounded by

1. the number of literals in r,

2. the number of literals in Q1(r) and Q2(r), where each cannot, by definition
of Com, be greater in size than r,

3. the number of literals in r together with the arities of those literals, and

4. the number of elements in C.

Because

– rules, by definition, are of finite size,

– literals, by definition, have a finite arity, and

– supplied domains can only be finite by definition of the algorithm,

LC010IMP must always terminate.

Therefore, the assumption leads to a contradiction in either case.
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4.4.2 Declarative approach

We now discuss an approach to reduce the problem of testing whether a rule is eligible
for FD-LC0 -1 -0 to brave reasoning over the answer sets of a program.

An idea for a solution handling this issue could be to have the algorithm represent all
possible groundings through answer sets of a specially crafted program. Then, produce
a query to verify the FD-LC0 -1 -0 applicability condition.

A problem arises here – the query would have to ask about the existence of a common
element, from potentially many alternatives. However, reasoning queries in ASP are by
nature conjunctive, not disjunctive. Fortunately, there is a simple workaround for this
problem. One may verify by the query whether no common element exist, and if it is
true for at least one answer set (which, as already said, represents a single grounding),
then FD-LC0 -1 -0 would not be applicable for the considered rule.

Definition 22. The algorithm, LC010DEC (r, C), where r denotes a rule and C a do-
main, has the following form:

1. Create set C :=

{
C if C 6= ∅;
{c} otherwise.

2. Define a bijective function fr with the domain Vr and the co-domain being the set
of all possible constant symbols, excluding elements of C.

3. Construct the program

Or ={var(fr(x)) : x ∈ Vr}

∪ {
∨
c∈C

inter(c,X)← var(X)}

∪ {l← {inter(v, fr(v)) : v a variable in l} : l ∈ H(r) ∪B−(r)},

where var and inter are predicate symbols not occurring in r.

4. Perform brave reasoning over the answer sets of Or with the query

{inter(v, fr(v)) : v ∈ Vr}, notB+(r).

If the query evaluates to false, then return true, otherwise return false.

We note that Or provides all possible groundings of the variables in r, under C, via the
disjunctive rules generating one grounding per answer set. The query checks whether
there is an answer set (corresponding to an interpretation) such that the set of the
grounded atoms fromH(r)∪B−(r) is disjoint with the set of grounded atoms from B+(r).
If there exists such an answer set, then the application of the query returns true, which
means that the transformation cannot be applied. Otherwise, in each interpretation, the
two sets possess at least one common element, and the transformation is applicable.
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Example 13. Applying the algorithm to the rule

r1 = p(1)← p(X), q(X), not q(0)

over the domain {0, 1} we obtain

Or = {var(constForX)←;

inter(0, X) ∨ inter(1, X)← var(X);

p(1)←;

q(0)←},

where constForX is a constant assigned to X.

The query then is
inter(X, constForX), not p(X), not q(X).

The program possesses two answer sets:

{var(constForX), p(1), q(0), inter(1, constForX)}

and
{var(constForX), p(1), q(0), inter(0, constForX)}.

Evidently, the query yields false for both answer sets. Hence, it is also bravely false,
and, according to the algorithm, the rule is eligible for the transformation.

Example 14. Applying the algorithm to the rule

r2 = f(X, 1, Z)← f(X, Y, Z)

over the domain {0, 1}, we obtain

Or = {var(constForX)←;

var(constForY )←;

var(constForZ)←;

inter(0, X) ∨ inter(1, X)← var(X);

f(X, 1, Z)← inter(X, constForX), inter(Z, constForZ)},

where constForX, constForY , and constForZ are constants assigned to X, Y , and Z,
respectively.

With the query

inter(X, constForX), inter(Y, constForY ), inter(Z, constForZ), notf(X, Y, Z)

29



Chapter 4 Detecting transformation eligibility

the program has eight (= 23, three variables with two possible values each) answer sets:

{var(constForX), var(constForY ), var(constForZ), inter(1, constForX),

inter(1, constForY ), inter(1, constForZ), f(1, 1, 1)},
{var(constForX), var(constForY ), var(constForZ), inter(1, constForX),

inter(0, constForY ), inter(1, constForZ), f(1, 1, 1)},
{var(constForX), var(constForY ), var(constForZ), inter(0, constForX),

inter(1, constForY ), inter(1, constForZ), f(0, 1, 1)},
{var(constForX), var(constForY ), var(constForZ), inter(0, constForX),

inter(0, constForY ), inter(1, constForZ), f(0, 1, 1)},
{var(constForX), var(constForY ), var(constForZ), inter(1, constForX),

inter(1, constForY ), inter(0, constForZ), f(1, 1, 0)},
{var(constForX), var(constForY ), var(constForZ), inter(0, constForX),

inter(1, constForY ), inter(0, constForZ), f(0, 1, 0)},
{var(constForX), var(constForY ), var(constForZ), inter(1, constForX),

inter(0, constForY ), inter(0, constForZ), f(1, 1, 0)},
{var(constForX), var(constForY ), var(constForZ), inter(0, constForX),

inter(0, constForY ), inter(0, constForZ), f(0, 1, 0)}.

The query is bravely true as evidenced by several answer sets, the first one being an
example. Therefore, the examined rule is neither a tautology nor a contradiction under
the given domain.

In what follows we analyze the adequacy of the algorithm.

The program always generates at least one answer set, since it is basic. Furthermore,
the only rule that may induce multiple answer sets in Or is∨

c∈C

inter(c,X)← var(X),

since all other rules of Or are normal. The rule induces k answer sets for every atom
with the predicate symbol var, where k = |C|. Hence, the total number of answer sets
is equal to k|Vr| = |C||Vr|, as there are exactly |Vr| atoms with the predicate symbol var
in Or. The number corresponds to the amount of possible groundings of r under C.

Lemma 2. For a program Or for a given rule r, under a given nonempty domain C,
there is a one-to-one correspondence between the answer sets of Or and the possible
groundings of r under C. More specifically,

1. for each grounding ϑ : Vr → C of r, there exists exactly one answer set of Or

containing, for every v ∈ Vr, exactly one literal of the form inter(vϑ, fr(v)), and
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2. for each answer set A of Or, there exists exactly one valid grounding ϑ : Vr → C
such that for every

inter(x, y) ∈ A,

vϑ = x and fr(v) = y, for some v ∈ Vr.

Proof. Firstly, the only rules that may induce atoms with the predicate symbol inter
are the facts in

{var(fr(x)) : x ∈ Vr}

and the rules ∨
c∈C

inter(c,X)← var(X),

where C = C. By definition, each answer set of Or contains exactly one atom of the
form var(fr(x)), where each fr(x) corresponds to a variable in Vr. Conditions 1 and 2
of the lemma are now shown as follows:

1. a) Assume there exists a valid grounding Gr but no answer set whose subset
consisting of all atoms with the predicate symbol inter is of the form

{inter(vϑ, fr(v), ) : v ∈ Vr}.

Then, at least one of the following two conditions must hold true:

• There exists a variable in Vr for which there is no corresponding inter
atom. However, by the definition of Or, there is always exactly one fact
of the form var(x) for each variable in Vr, and this causes also to exist
a corresponding atom with the predicate symbol inter due to the second
component of Or.

• There exists an atom with the predicate symbol inter with the first term
being outside of C. This is not possible due to the definition of the second
component of Or.

Therefore, this assumption cannot hold.

b) Assume there exists a valid grounding Gr but there is more than one answer
set whose subset consisting of all atoms with the predicate symbol inter is of
the form

{inter(vϑ, fr(v), ) : v ∈ Vr}.

From the definition of the algorithm, every answer set generated, and hence
the two or more fulfilling the condition of our assumption, consist of three
parts:

• the subset that contains all the atoms with the predicate symbol var –
by the definition of the algorithm, this is identical for every answer set,
since fr is fixed,
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• the subset that contains all the atoms with the predicate symbol inter –
by our assumption, this is identical in all the regarded answer sets,

• the optional subset containing either l or nothing. Because all the parts
that contain the atoms with predicate symbol inter are identical in all
regarded answer sets, and the applicability of the rule generating l is
only dependent on those atoms, this part also has to be identical in all
regarded answer sets.

Therefore, all answer sets containing a fixed subset of atoms with the predicate
symbol inter would be exactly the same set. Hence, the assumption cannot
hold.

2. a) Assume there exists an answer set with a subset of the form

{inter(vϑ, fr(v)) : v ∈ Vr}

but there is no possible corresponding grounding Gr of r under C. For there to
be no corresponding grounding, at least one of the following four conditions
would have to occur:

• There exists a v ∈ Vr with no corresponding atom with the predicate
symbol inter. This is not possible, as demonstrated above.

• The answer set contains an atom inter(h, c) with the first term such that
f−1

r (h) /∈ Vr. In order for this to be, var(h) must also be present in the
answer set. By the definition of Or, this may not occur since the only
rules which induce the presence of instances of var are facts from the first
component set, and these only include terms t such that f−1

r (t) ∈ Vr.

• In the considered answer set, there exist two atoms, inter(h1, c1) and
inter(h2, c2), for which h1 = h2 and c1 6= c2. However, there always exists
only one rule in Or that may induce atoms with the predicate symbol
inter in an answer set, and that rule is a disjunctive one, for which the
second terms of the head atoms are pairwise unequal. Furthermore, fr

assigns a unique constant to each v ∈ Vr, by its definition.

• An atom belonging to the answer set has the form inter(h, c), where
f−1

r (h) ∈ Vr and c /∈ C. But, per the definition of the second component
of Or, any atom having the predicate symbol inter may only possess a
second term t fulfilling the constraint t ∈ C. In accordance with the
lemma’s premises, C is non-empty, and, per definition of C, C = C.
Hence, for any atom of the form inter(h, c) in the answer set, it must be
the case that c ∈ C. This assumption cannot hold as well.

b) Assume there exists an answer set with a subset of the form

{inter(vϑ, fr(v)) : v ∈ Vr}
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but there exists more than one possible corresponding grounding Gr of Vr

under C. Since such a subset uniquely associates every variable v ∈ Vr with
exactly one constant each, this means that such an answer set corresponds
to at most one grounding in the way described in Part 2 of the Lemma.
Therefore, this assumption also cannot hold.

Because both components of the lemma have been proven to hold, the lemma holds as
well.

We note that the final component of Or, i.e., the block

{l← {inter(v, fr(v)) : v a variable in l} : l ∈ H(r) ∪B−(r)},

causes the grounding of all literals in H(r) ∪B−(r).

Generally, an answer set of Or has the following form:

{var(fr(x)) : x ∈ Vr} ∪ {inter(c, fr(x)) : x ∈ Vr, c ∈ C}∪
{p(c1, ..., cn) : p(x1, ..., xn) ∈ H(r) ∪B−(r), xi = ci if ci ∈ C, or
ci = k such that there is an inter(k, fr(xi)) otherwise}.

One can equivalently, per Lemma 2, rewrite the third subset to⋃
l∈H(r)∪B−(r)

{lϑ : for each ϑ : Vr → C} (4.3)

for some ϑ : Vr → C.

Preparatorily for the next result we consider an analysis of the answer to the brave
reasoning query: Regardless of the situation, the positive part of the query is always
satisfied under an answer set of any Or, due to the first subset described in the general
answer set characteristic given above.

1. The query returns false. This means that, for every ϑ : Vr → C, there exists a
negative body atom a of the query and an l ∈ H(r) ∪B−(r) such that aϑ = lϑ.

2. The query returns true. This means that there exists a ϑ : Vr → C for which, for
all a, there is no l with aϑ = lϑ.

Theorem 5. LC010DEC (r, C) returns true iff r is eligible for FD-LC0 -1 -0 .

Proof. Recall that a rule is eligible for FD-LC0 -1 -0 iff, for every ϑ : Vr → C, B+(rϑ) ∩
(H(rϑ) ∪B−(rϑ)) 6= ∅.

The algorithm returns true only if the brave query returns false. It only does so in
the situation described in Point 1 of our analysis. Since an atom a is contained in the
negative body part of the query if and only if a ∈ B+(r), it follows from the definition
of FD-LC0 -1 -0 that r is eligible for it.
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Conversely, assume that r is eligible for FD-LC0 -1 -0but the algorithm returns false.
Then, the result of the query on Or is true. By Point 2 of our analysis above, there
exists a ϑ : Vr → C for which, for all a, there is no l with aϑ = lϑ. But that means, by
definition, that the rule is not eligible for FD-LC0 -1 -0 , which is a contradiction to our
assumption.

4.5 FOLD eligibility detection

As with FD-LC0 -1 -0 , for FOLD , there are several points to consider:

• the algorithm has to return not only the result of the applicability test, but also
at least the literal to be reduced.

• from the definition, there is an additional test which requires the examination of
all rules in the program.

This time, for the sake of brevity, only one method will be presented, namely a declarative
one.

However, first an auxiliary definition shall be introduced for describing a set containing
the valid candidates for the FOLD reduction.

Definition 23. Let P be a program P and a an atom. Then, the following sets are
introduced:

Ea := {(r1, r2, l1, l2) : r1, r2 ∈ P, l1 ∈ B+(r1), l2 ∈ B−(r2), |a| = |l1| = |l2|},
E ′a := {(r1, r2, l1, l2) : (r1, r2, l1, l2) ∈ Ea, for each ϑ and b ∈

⋃
r∈P H(r),

l1ϑ 6= bϑ and l2ϑ 6= bϑ}, and
E ′′a := {(r1, r′2, l1, l2) : (r1, r2, l1, l2) ∈ E ′a, r′2 = H(r2)← B+(r2) ∪ {l2},

not(B−(r2)\{l2})}.

Theorem 6. Given a program P and rules r1, r2 ∈ P , if r1 and r2 are eligible for FOLD ,
then, for some a, l1, and l2, (r1, r

′
2, l1, l2) ∈ E ′′a , where r′2 = H(r2)← B+(r2) ∪ {l2}, and

vice versa.

Proof. This follows directly from the definition of FOLD . The generation of Ea and
E ′′a corresponds to the three conditions for the structure of the pairs of rules, and the
generation of E ′a corresponds to the final condition.

The first idea in designing the algorithm might be to create a fully declarative approach,
by checking the entire program for FOLD applicability simultaneously. On the other
hand, E ′′a already offers an efficient way to find candidate rules, without resorting to
a full-blown, potentially bloated logic program. A hybrid approach, i.e., utilizing an
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imperative mechanism for calculation of preliminary data and creating a logic program
for specific, pre-selected candidates, creates arguably a more sensible solution.

However, first, we have to define and evaluate the declarative algorithm itself. The
following part of the section is devoted to this task.

Definition 24. FOLDDECCHECK ((r1, r
′
2, l1, l2), C), where (r1, r

′
2, l1, l2) is a tuple from

the previously defined E ′′a runs in the following way:

1. For the given (r1, r
′
2, l1, l2):

a) Rewrite each constant in such a way that, if one rewrites the variable symbols
in r′2 and r1, the set CV encompassing them will be mutually disjoint with the
set C.

b) Replace each anonymous variable with a new variable symbol.

c) Reify the variables present in each rule, by creating facts of the following form:

var(Type,VarName)← ,

where ‘Type’ is one if the literal encompassing the variable belongs to r1, or
‘two’ otherwise, and ‘VarName’ is the variable symbol with the first character
made lowercase.

d) Define Dv as the set of all facts created during the process described above.

e) Reify the constants present in both rules by creating facts of the following
form:

const(ConstName)← ,

where ‘ConstName’ is the constant symbol.

f) Define Dc as the set of all facts created during the process described above.

g) Reify each literal from the rules, with facts of the following form:

pred(Type,Place,Name,Num,Pos ,Term)← ,

where:

• ‘Type’ is ‘one’ if the literal belongs to r1, and ‘two’ otherwise,

• ‘Place’ is either ‘head ’, ‘bodyp’, or ‘bodyn’,

• ‘Name’ is the predicate symbol of the literals,

• ‘Num’ is a unique counter given to each literal with the same predicate
symbol in a given rule (see discussion below),

• ‘Pos’ is the position within the arity structure of the literal, and

• ‘Term’ is the variable or constant symbol for the given position.
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h) Define Dp as the set of all facts created during the process described above.

i) Define Dguess as:

{rename(X,X)← const(X),

rename(X, Y ) ∨ ¬rename(X, Y )← var(one, X), var(two, Y ),

← rename(X, Y ), rename(X,Z), Y ! = Z,

← rename(X, Y ), rename(Z, Y ), X! = Z,

← var(one,X),#count{Y : rename(X, Y )} = 0,

← var(two,X),#count{Y : rename(Y,X)} = 0}.

j) Define Dcheck as:

{ ← pred(one,Place,Name,Num,Pos ,Term),

#count{AnyNum : pred(two,Place,Name,AnyNum,Pos ,Term2 )} = X,

#count{AnyNum : pred(one,Place,Name,AnyNum,Pos ,Term)} = Y,

rename(Term,Term2 ), X! = Y,

← pred(two,Place,Name,Num,Pos ,Term),

#count{AnyNum : pred(one,Place,Name,AnyNum,Pos ,Term2 )} = X,

#count{AnyNum : pred(two,Place,Name,AnyNum,Pos ,Term)} = Y,

rename(Term2 ,Term), X! = Y }.

k) Define
O = Dv ∪Dc ∪Dp ∪Dguess ∪Dcheck.

2. Evaluate O. If O possesses at least one answer set, output a random one, filtered
for the rename predicate. Otherwise, return false.

Informally speaking, the algorithm constructs a program which “guesses” all the possible
renamings and checks whether each one provides an identity between the rules. The
special #count predicate and the Num element are needed because it is entirely possible
for there to be more than one literal with the same predicate symbol in the given segment
of a particular rule.

A more formal analysis will now follow:

The deciding factor of the program’s output is the answer set of O. Quite obviously, it
will contain all sets of facts Dv, Dc, and Dp. Since Dcheck requires an instance of rename
for any of its rules to be applicable, Dguess must be considered first.

The first rule of Dguess ensures that constants are detected by the constraints of Dguess .

The second rule of Dguess creates an atom with the predicate symbol ¬rename or rename
for every pair in Vr1 × Vr2 . All such possible pairs are created, represented by distinct
answer sets. The other rules remove answer sets for which one of the following is true:

36



Chapter 4 Detecting transformation eligibility

• containing two positive atoms with the predicate symbol rename for a v ∈ Vr2 ,

• containing two positive atoms with the predicate symbol rename for a v ∈ Vr1 ,

• containing no positive atoms with the predicate symbol rename for a v ∈ Vr1 ,

• containing no positive atoms with the predicate symbol rename for a v ∈ Vr2 .

In summary, the four conditions imply that for every v1 ∈ Vr1 there exists exactly one
v2 ∈ Vr2 , and vice versa.

Since the first rule generates answer sets which correspond to any possible relation
between the elements of sets Vr1 and Vr2 , the conditions described above ensure that
only and exactly those answer sets which represent all possible bijections remain.

Dcheck introduces two more constraints, which remove answer sets for which the following
holds:

• For any given atom with the predicate symbol pred corresponding to the first rule,
the number of such atoms with the same predicate name, component of the rule,
position in the predicate, and the given symbol s1, must be equal to the number of
atoms with the predicate symbol pred in the second rule with the same predicate
name, component of the rule, position in the predicate, and the symbol s2 for
which there exists an atom rename(s1, s2) in the given answer set.2

• For any given atom with the predicate symbol pred corresponding to the second
rule, the number of atoms with the predicate symbol pred with the same predicate
name, component of the rule, position in the predicate, and the given symbol s2,
must be equal to the number of pred instances in the first rule with the same
predicate name, component of the rule, position in the predicate, and the symbol
s1 for which there exists an instance of rename(s1, s2) in the given answer set.

Theorem 7. Let r1 and r2 be rules, a an atom, and C a domain. Then, for any literals
l1 and l2 such that (r1, r

′
2, l1, l2) ∈ E ′′a , if FOLDDECCHECK ((r1, r

′
2, l1, l2), C) returns a

renaming, then r1 and r2 are eligible for FOLD .

Proof. Assume the contrary, i.e., that FOLDDECCHECK ((r1, r
′
2, l1, l2), C) returns a re-

naming, for some literals l1 and l2 with (r1, r
′
2, l1, l2) ∈ E ′′a , but r1 and r2 are not reducible

under FOLD .

There are two possible subcases:

• There exists only an invalid renaming (which is not a bijection) for the variables
of r1 and r2. But then, it follows from the analysis that no answer set is generated
in this case, and hence, from the last step of the algorithm, that no renaming is
generated.

2Note that if there exists no possible valid bijection due to, e.g., the difference of cardinality between
the two sets of variables, then no answer sets are generated at all.
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• There exists a valid renaming, but there is a literal l in r1 for which there is no
corresponding literal k in r2 with lδ = not kδ. But then, there must exist a position
i in l whose symbol has no unique corresponding symbol in any literal in the other
rule. But then:

– if the symbol is a constant, then the corresponding answer set would be
removed by a constraint in Dcheck, due to the first rule of Dguess,

– if the symbol is a variable, then the corresponding answer set would also be
removed by a constraint in Dcheck, due to the remaining rules of Dguess.

In both cases, the renaming that would have to be returned for the antecedent of
the assumption to hold, could not possibly be represented by any answer set of O,
and hence could not actually be returned by the algorithm.

A contradiction is therefore reached in all subcases.

Theorem 8. Let r1 and r2 be rules, a an atom, and C a domain. Then, for any
literals l1 and l2 such that (r1, r

′
2, l1, l2) ∈ E ′′a , if r1 and r2 are eligible for FOLD , then

FOLDDECCHECK ((r1, r
′
2, l1, l2), C) returns a renaming.

Proof. Assume that r1 and r2 are reducible under FOLD but FOLDDECCHECK ((r1, r
′
2,

l1, l2), C) returns no renaming, for some literals l1 and l2 with (r1, r
′
2, l1, l2) ∈ E ′′a .

Analogously to the above proof, if r1 and r2 are reducible under FOLD , then there must
exist a valid renaming (bijection) for which every atom l ∈ (B(r1) ∪ H(r1)) \ (B(r2) ∪
H(r2)) has a corresponding atom k ∈ (B(r2)∪H(r2))\(B(r1)∪H(r1)) such that lδ = kδ.
Therefore, for all such positions i in l, there is a unique corresponding symbol in a literal
in the other rule. We can distinguish the following two cases:

• If the symbol is a constant, then none of the constraints of Dcheck are applicable,
because of the first rule in Dguess.

• If the symbol is a variable, then there exists at least one answer set for which none
of the constraints of Dcheck are applicable for this symbol, because of the other
rules in Dguess.

Because all symbols share this property, as r1 and r2 are by hypothesis eligible for
FOLD , O must have at least one answer set for the given input rules (recall from the
analysis that any bijection can be potentially created by the algorithm). However, this
is a contradiction with the consequent of the assumption, since the algorithm then must
return the renaming associated with this answer set.

We can now proceed with the overall algorithm for testing FOLD eligibility:

Definition 25. FOLDDEC (P, C), where P is a program and C is a domain, runs in the
following way:

1. Define S := ∅.
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2. For every r, s ∈ P :

• for every predicate symbol a that occurs in either r or s, define E ′′a , and run
FOLDDECCHECK for every element of E ′′a . If FOLDDECCHECK returns
a renaming at least once, add (r, s, a) to O.

3. Return S.

Theorem 9. Let P be a program and C a domain. Then, for all rules r, s ∈ P , r and s
are eligible for FOLD iff (r, s, a) is a member of the output set S of FOLDDEC (P, C),
for some a.

Proof. This follows directly from Theorems 6, 7, and 8.
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Combining transformations

Recall that, in previous chapters, we have narrowed down the choice of transformations
to be used in our experiments to two transformation systems:

• {FD-LC0 -1 -0 , SUB ,FOLD ,LSH }, which contains purely syntactical rules, and

• {SRRS , SRLS}, which contains purely semantical rules.

Having chosen the systems, one must determine a meta-plan for their application. The
first and fundamental step is to study the interaction between the selected transforma-
tions. This is the focus of the present chapter.

5.1 General concepts

We impose the following partial preordering on the set of programs:

Definition 26. Given programs P and P ′, we say that P is shorter than P ′ if either

• the cardinality of P is lower than the cardinality of P ′, or

• the cardinality of P is equal to the cardinality of P ′, but the sum of the cardinalities
of the sets H(r)∪B(r), for every r ∈ P , is lower than the sum of the cardinalities
of H(r) ∪B(r), for every r ∈ P ′.

A rule r1 is shorter than a rule r2 iff the cardinality of the set H(r1) ∪ B(r1) is lower
than the cardinality of the set H(r2) ∪B(r2).

For both of the above notions, longer denotes the inverse relation to shorter.

These orderings allow us to quantify the results of applying several transformations, one
after the other. Thus, the goal of the following discussion shall be to find out what types
of transformation sequences produce the best results in this context. For that, we need
some additional definitions.

Definition 27. Given a transformation system S and a program P , a transformation
tree is a tree with labeled edges constructed as follows:
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1. define P as the root node of the tree,

2. let N := {P},

3. choose one element from N , remove it from N , and define it as O,

4. for every applicable transformation T ∈ S:

a) apply the transformation on O,

b) define the resulting program O′ as a new node, and (O,O′) a new unidirec-
tional edge labeled with T ,

c) let N := N ∪ {O′},

5. if N = ∅ terminate, else go to Step 3.

Definition 28. Let S be a transformation system, P a program, and T the transforma-
tion tree for P and S.

1. A transformation sequence is any path in T .

2. A transformation branch is a transformation sequence that starts at the root node
and terminates at a leaf node of the transformation tree.

3. A proper transformation sequence is a transformation sequence in which a trans-
formation application can only be preceded by an application of a different trans-
formation type, or by a sequence of applications of the same type only if no such
other sequence occurs previously.

4. A maximal reduction is a node for which there is no shorter program in T .

Because, to the best of our knowledge, no research on the sequencing of the transfor-
mations discussed in this thesis has been performed, a proper investigation must be
conducted here.

5.2 Syntactic transformations

The best situation would be if all transformations could invariably be aligned in a pre-
determined sequence. Sadly, as it will be shown, this is impossible in general.

However, this general observation does not imply the non-existence of any ordering.
Indeed, one transformation can always be placed in a predetermined order - namely,
FD-LC0 -1 -0 . More specifically, the following property holds:

Lemma 3. If FD-LC0 -1 -0 is not applicable to a program P , then it is not applicable to
any program P ′ resulting from P by applying any transformation rule from the system
{SUB ,FOLD ,LSH }.
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Proof. Assume that FD-LC0 -1 -0 is not applicable to P and let P ′ be a program resulting
from P by applying some transformation T from {SUB ,FOLD ,LSH }. We distinguish
three cases depending on which transformation was applied.

1. Case T = SUB : Since SUB only removes rules, FD-LC0 -1 -0 clearly cannot become
applicable to P ′, because otherwise P would be already eligible for it.

2. Case T = FOLD : Since, similar to SUB , FOLD only removes rules and atoms, we
obtain likewise that P ′ cannot be eligible for FD-LC0 -1 -0 .

3. Case T = LSH : According to its definition, LSH replaces a rule r by the collection
Nr = {h← B(r), notH(r)\h |h ∈ H(r)} of rules. Now, for each s ∈ Nr, it clearly
holds that B+(r) = B+(s) and H(r) ∪ B−(r) = H(r) ∪ B−(r). Hence, since no
rule in P satisfies the precondition of FD-LC0 -1 -0 , none of the rules introduced by
LSH in P ′ satisfies the preconditions of FD-LC0 -1 -0 either. Therefore, P ′ is not
eligible for FD-LC0 -1 -0 .

Consequently, in the transformation system {FD-LC0 -1 -0 , SUB ,FOLD ,LSH }, applica-
tions of FD-LC0 -1 -0 must always precede applications of SUB , FOLD , and LSH . This
in turn implies the following result:

Theorem 10. In the transformation system {FD-LC0 -1 -0 , SUB ,FOLD ,LSH }, a max-
imal reduction is always guaranteed when applying FD-LC0 -1 -0 at precisely the start of
a transformation sequence.

Unfortunately, other transformations do not share the same feature. The following
property is a case in point.

Theorem 11. In the transformation system {SUB ,FOLD ,LSH }, there is no unique
proper transformation sequence providing a maximal reduction for any input program.

Proof. We show the result by providing two programs, P and P ′, possessing different
proper transformation sequences yielding a maximal reduction.

The two programs are as follows:

P = {a ∨ c← g, P ′ = {← z,
a← not g, not c, k ← c, z,
a← h, not c}; a ∨ c← g, k,

a← k, not g, not c,
c← k, not g, not a}.

Then, all derivation possibilities for P are given in Figure 5.1 while Figure 5.2 depicts
the same for P ′.

Now, the optimal sequence for P is LSH , FOLD , SUB , whereas in the case of P ′, it is
SUB , LSH ,FOLD .
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P
FOLD (n/a)

P
LSH

a← g,not c

c← g,not a

a← not g, not c

a← h, not c
SUB (n/a)

a← g,not c

c← g,not a

a← not g, not c

a← h, not c

P
LSH

a← g,not c

c← g,not a

a← not g,not c

a← h, not c
FOLD

a← not c
c← g,not a

a← h, not c
SUB

a← not c
c← g,not a

P
LSH

a← g,not c

c← g,not a

a← not g,not c

a← h, not c
SUB (n/a)

a← g,not c

c← g,not a

a← not g,not c

a← h, not c
FOLD

a← not c
c← g,not a

a← h, not c

P
SUB (n/a)

P
LSH

a← g,not c

c← g,not a

a← not g,not c

a← h, not c
FOLD

a← not c
c← g,not a

a← h, not c

P
SUB (n/a)

P
FOLD (n/a)

P
LSH

a← g,not c

c← g,not a

a← not g, not c

a← h, not c

P
FOLD (n/a)

P
SUB (n/a)

P
LSH

a← g,not c

c← g,not a

a← not g, not c

a← h, not c

Figure 5.1: The transformation tree for P .

The above is an unfortunate result, since it demonstrates that the search tree for the
“best” transformation sequence may potentially be quite large.

Delving deeper into the matter, even more problems can be encountered, as witnessed
by the next result.

Theorem 12. In the transformation system {SUB ,FOLD ,LSH }, applying only one
kind of transformation in a proper transformation sequence does not guarantee a maximal
reduction for every program.

Proof. Table 5.1 gives programs PT , for T ∈ {SUB ,FOLD ,LSH }, witnessing the result.
In all three cases, the optimal (and, in fact, the only) sequence is one with alternating
applications of the relevant transformations. Note that in Table 5.1, branches of the
search tree in which no eligibility occurs are disregarded, and all derivations are presented
as a single tree.

The preceding results dealt with transformation sequences. Next, we study questions
concerning the permutability of transformation.

Theorem 13. LSH , FOLD , and SUB are in general not pairwise permutable.

Proof. Examples showing the non-permutability of the respective transformations are
depicted in Figure 5.3.
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P ′
FOLD (n/a)

P ′
LSH (n/a)

P ′
SUB← z

a ∨ c← g, k

a← k, not g,not c

c← k, not g,not a

P ′
LSH (n/a)

P ′
FOLD (n/a)

P ′
SUB← z

a ∨ c← g, k

a← k, not g,not c

c← k, not g,not a

P ′
LSH (n/a)

P ′
SUB← z

a ∨ c← g, k

a← k,not g,not c

c← k,not g,not a
FOLD (n/a)← z

a ∨ c← g, k

a← k,not g,not c

c← k,not g,not a

P ′
SUB← z

a ∨ c← g, k

a← k, not g,not c

c← k, not g,not a
LSH← z

a← g, k, not c

c← g, k, not a

a← k, not g, not c

c← k, not g,not a
FOLD x2← z

a← k, not c

c← k, not a

P ′
SUB← z

a ∨ c← g, k

a← k, not g,not c

c← k,not g,not a
FOLD (n/a)← z

a ∨ c← g, k

a← k, not g,not c

c← k, not g,not a
LSH← z

a← g, k, not c

c← g, k, not a

a← k, not g,not c

c← k,not g,not a

P ′
FOLD (n/a)

P ′
SUB← z

a ∨ c← g, k

a← k,not g,not c

c← k, not g,not a
LSH← z

a← g, k, not c

c← g, k, not a

a← k,not g,not c

c← k, not g,not a

Figure 5.2: The transformation tree for P ′.

The results listed above do not exhaust the set of possible local interactions. Specif-
ically, the permutability of transformations with themselves might also possess useful
applications. We start with some useful ancillary properties.

Sublemma 1. Let S be either the transformation system {SUB} or {LSH }. For a
program P with n application possibilities, an application of a transformation reduces
the number of application possibilities in the resulting program P ′ to n− 1.

Proof. For S = {SUB}, the result is an immediate consequence of the fact that an
application of SUB only removes one rule without modifying any other rules.

In case of S = {LSH }, since LSH removes a disjunctive rule in P and replaces it with
non-disjunctive ones, it follows that the program P ′ obtained after an application of
LSH remains head-cycle-free and the number of possibilities for applying LSH in P ′ is
reduced by one.

From the above result, we immediately get the following:

Lemma 4. Let S be either the transformation system {SUB} or {LSH }. Then, given a
program P with n application opportunities, every transformation branch has length n.
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T SUB FOLD LSH

PT

{a← b,
← b,
g ← c, not a,
g ← c, a
f ∨ g ← c, k}

{← a, b,not c,
← a, b, c,
d← a, b, f,
g ← f, a, d,
g ← f, a,not d}

{a ∨ b← g
k ∨ a← g, h, not b,
h ∨ l ∨m← k,
← not l,
← not m}

Transformation
Tree

PSUB
SUB← b

g ← c, not a
g ← c, a

f ∨ g ← c, k
FOLD← b

g ← c

f ∨ g ← c, k
SUB← b

g ← c

PFOLD
FOLD← a, b

d← a, b, f

g ← f, a, d

g ← f, a,not d
SUB← a, b

g ← f, a, d

g ← f, a,not d
FOLD← a, b

g ← f, a, d

PLSH
LSH

a← g,not b

b← g,not a

k ∨ a← g, h, not b

h ∨ l ∨m← k
← not l
← not m

SUB
a← g,not b

b← g,not a

h ∨ l ∨m← k
← not l
← not m

LSH
a← g,not b

b← g,not a

k ∨ a← g, h, not b

h← k, not l,not m

l← k, not h, not m

m← k,not l,not h

← not l
← not m

SUB
a← g,not b

b← g,not a

k ∨ a← g, h, not b

l← k, not h, not m

← not l
← not m

SUB
a← g,not b

b← g,not a

k ∨ a← g, h, not b

← not l
← not m

Table 5.1: Programs and transformation trees for Theorem 12.

This lemma is needed for the following theorem.

Theorem 14. For the transformation system S being either {SUB} or {LSH }, each
transformation branch generates the same program.

Proof. By Lemma 4, each transformation branch has the same length. Furthermore, any
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• Non-permutability of LSH and SUB :

a ∨ b← c
← c, not b

SUB (n/a)
a ∨ b← c
← c, not b

LSH
a← c, not b

b← c, not a

← c, not b

a ∨ b← c
← c, not b

LSH
a← c, not b

b← c, not a

← c, not b
SUB

b← c, not a

← c, not b

• Non-permutability of FOLD and SUB :

g ← a

g ← not a

b← c
a ∨ b← c

FOLD (n/a)g ← a

g ← not a

b← c
a ∨ b← c

SUBg ← a

g ← not a

b← c

g ← a

g ← not a

b← c
a ∨ b← c

SUBg ← a

g ← not a

b← c
FOLDg ←

a ∨ b←

• Non-permutability of FOLD and LSH :

a ∨ c← g

a← not g,not c
FOLD (n/a)

a ∨ c← g

a← not g,not c
LSH

a← g,not c

c← g, not a

a← not g,not c

a ∨ c← g

a← not g,not c
LSH

a← g,not c

c← g,not a

a← not g,not c
FOLD

c← g,not a

a← not c

Figure 5.3: Counterexamples for Theorem 13.

two instances of either SUB or LSH are clearly permutable, hence the result follows.

However, the last property is not attainable in general for other transformation systems,
as illustrated next.

Theorem 15. Given a program P and the transformation system S = {FOLD}, two
transformation branches in the transformation tree for P and S may generate different
end programs.

Proof. Consider the program P , comprising the following rules:

a← g, h; a← h, not g; and a← g, noth.
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It is obvious that, in this case, FOLD can be applied in two different manners. However,
once the application has been made, one cannot proceed further, and the end results
differ.

One final theorem in this section provides an important result, in terms of relevancy to
the choice of search strategy.

Theorem 16. Any transformation sequence in the transformation tree for a program
under the transformation system S = {FD-LC0 -1 -0 , SUB ,FOLD ,LSH } is finite.

Proof. We note the following facts about S:

1. Among the transformations in S, only LSH increases the number of rules and
literals.

2. LSH may only be applicable if there are disjunctive rules present.

3. No transformation in S can create new disjunctive rules, only remove them.

4. None of FD-LC0 -1 -0 , SUB , or FOLD may have a non-negative effect on the number
of rules in the program – all of them have to remove a rule when applied.

5. We only deal with finite programs.

This implies that LSH may be applied only a finite amount of times. Regardless of
the sequence we follow, after a finite amount of steps (due to Facts 2 and 5), we reach
a point where no application of LSH will be possible. We are then only left with
FD-LC0 -1 -0 , SUB , or FOLD , which may, at best, reduce the program to an empty
program. Because the program is finite, and due to Fact 4, this can be done only in
a finite amount of steps. Therefore, each transformation sequence in the system of
{FD-LC0 -1 -0 , SUB ,FOLD ,LSH } is finite.

5.3 Semantic transformations

We now address issues of the transformation system {SRRS , SRLS}. An initial idea
would be to always place rule elimination first. However, this should not be done, as
shown below.

Theorem 17. In the transformation system S = {SRRS , SRLS}, the sequence SRRS ,
SRLS does not always guarantee maximal reduction.

Proof. Consider the program consisting of the following rules:

a←; b←; d←; e←; l ∨ c← a; and c← b, d, e.

For this program, the only way to obtain a maximal reduction is to apply SRLS by
removing l, and then SRRS by removing the last rule.
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On the other hand, there may be a number of cases where SRLS emulates SRRS , i.e.,
instead of one rule elimination, there are multiple literal eliminations. Being not efficient,
this can be avoided by utilizing a “soft” hierarchy, namely:

1. Apply rule elimination first,

2. apply literal elimination on the results of rule elimination, or on the original results
if none of the latter have been obtained, and

3. if no rule or literal eliminations have been found during this phase, terminate.
Otherwise, go back to Step 1,

We chose this strategy for our test setup, as discussed in the next chapter.

5.4 Summary

To recapitulate, the following results have been obtained:

• FD-LC0 -1 -0 is always to be used at the start of any transformation sequence;

• permutations of transformation sequences of type LSH and SUB produce the same
output,

• there is no risk of an infinitely-long branch of the transformation tree, and

• a “soft” applicability testing hierarchy has been chosen for the semantic system.

In summary, the exhaustive search tree (which must be constructed, because there is no
optimal strategy) may have a fair size. Fortunately, the analysis and optimization con-
ducted as part of this thesis is considered to be strictly offline, providing some leeway.

Nevertheless, the only option seems to be an explicit, uninformed tree search. Moreover,
it must expand the entire structure, as there exists no information on the parameters on
the goal. Unlike in searching, e.g., for a specific element or a minimal path, the optimal
solution can be singled out only by comparison with its alternatives, by itself having no
defined utility.

Theoretically, in the transformation system chosen, it is entirely possible for two se-
quences to have one or more “common points”, i.e., places along the execution path
where the intermediate program is identical. Here lies the first clue towards a more
efficient analytical system.

The idea is to construct an efficient look-up table (for example, by providing hash
indices). Its goal would be to “glue together” branches of the sequence tree. Such an
improvement could decrease run-time significantly, depending on the program as input,
simply by avoiding duplicate calculations.

Finally, an important choice to be made is one between two main types of tree search:
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• breadth-first-search (BFS) – where, upon entering a node, all of its children nodes
are checked, before moving to the further successor nodes, or

• depth-first-search (DFS) – where, upon entering a node, each child’s descendants
are checked first and foremost, and only then the next child is processed.

The choice is only illusory – whichever algorithm will be utilized, it will make the in-
formation on the duplicate available immediately, making them equally effective in the
context of generating the complete tree.

To conclude, the system will generate unidirectional graphs representing the exhaustive
search tree, with nodes referring to programs, and vertices to transformations and asso-
ciated operations. The invariant is that a program occurs only once in the graph. This
graph will be generated either by BFS or DFS, as the utility of both of them remains
the same, under the given conditions.
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Experimental results

6.1 The analysis and optimization system

We start with deciding on the general structure of the system. One potential problem
that might be encountered relates to the lack of knowledge of the kind of results that
might be obtained. It remains entirely within the realm of possibility that the set of
data attributes chosen for analysis before the experiment is not sufficient to describe the
product. Therefore, effort should be directed into generating an output as generic as
possible – in other words, for the data to be relatively “raw”. Figure 6.1 illustrates the
application of this principle. The system is divided into two portions, one producing
data as generic as possible (dubbed the experimentation framework, or just framework),
the other, completely independent and interchangeable, putting that data into analysis
(referred to as the analyzer).

We now discuss the details of the structure of the experimentation framework. Since
the expectation is that there will be multiple samples to test, the framework should be
prepared to accept a set of input programs. This implies the approach of the main loop,
as shown in Figure 6.1. Each experimentation step is split into two phases, delegated to
separate components – the parser and the sequence tree builder.

The role of the parser is converting the input program into a data structure appropriate
for the tree builder to process. As foreshadowed in the previous chapter, since the
programs that are written in practice are usually quite small, of the order of dozens
of rules (especially versus thousands of lines of code in the case of most imperative
programs), focus has been placed on providing as much of a memory-time trade-off as
possible. For example, unit-time access to internal representations of constants and
variables has been provided at program- and rule-level.

The tree builder receives the data structure mirroring the input, and constructs the
exhaustive sequence tree. This process is illustrated by Figure 6.2. The builder runs
the applicability test for each transformation in turn, generating new nodes whenever
applicability has been detected. If the program generated after applying the current
transformation is unique within the set of programs generated previously, a new node
is made, with the node itself representing the program, and the vertex standing for the
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Figure 6.1: The structure of the system: dashed lines indicate data flow.

transformation that was required to convert the predecessor program. However, if the
resultant program has already occurred, only the appropriate vertex is created, therefore
avoiding duplication.

Additionally, two limiting parameters may be delivered at start-up: the maximal depth
of the transformation tree for a program, and the timeout, also on the basis of programs
per input. These may become useful in the case of programs which would otherwise take
a prohibitively long amount of time to verify.

Care was taken to keep the transformation-definition component generic, in order to
make an easy extension of the system possible. All a developer needs in order to add a
new transformation is to extend a specific class in the API and follow some basic conven-
tions. Specifically, each transformation class extends the class “AbstractTransformation”,
and contains the following methods:

• the constructor, which accepts and stores two arguments – the input program and
the domain (this is already implemented in the abstract class),

• generateCandidates(), which, quite appropriately, generates a candidate tuple
(this can be, for example, be a pair of rules) constituting a meaningful transfor-
mation candidate,
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Figure 6.2: The functionality of the tree builder. The first row shows what happens when
the generated program is globally unique in the context of the already created
transformation sequence. The second row demonstrates the alternative case.

• one or more methods with the name scheme of algoXXXX, representing algo-
rithmic variants for the transformation, and run by accepting a candidate and
returning either None1 (if the transformation is not applicable for the given can-
didate tuple), or a list of operations corresponding to a valid application of the
transformation, based on the mentioned candidate tuple, and

• applyAlgo, again, already implemented in the abstract class, which runs the ap-
propriate algorithm through the generated candidates.

Additionally, each transformation possesses the following attributes:

• its priority relative to the other transformations (transformations having the same
priority are understood to be applied interchangeably), and

• whether the transformation is idempotent or not.

All transformation classes are placed in a single directory, which is scanned at start-up
by the program, in order to generate the appropriate run-time options.

Because the programs used in practice are not particularly large as already pointed out,
it was decided to store the entire transformation tree, along with the following data:

• the total time it took to complete the transformation analysis, summed up as well
as categorized per transformation type,

1The equivalent of null in other languages.
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• information whether any of the termination conditions were reached (i.e., whether
time-out has been reached or the maximal depth was exceeded),

• the complete program corresponding to each node,

• the transformations used for the transition between the nodes, including the op-
erations (literal addition or removal, etc.) corresponding to those transformation
instances.

This solution enables an exhaustive offline examination of the transformation process.
The data format is simply a serialized data structure, which allows for an easy and
straightforward construction of analyzers – one needs to simply unserialize the data
stored in the .done file in order to obtain the complete, easy-to-traverse data structure.

As with any application, one of the fundamental choices facing a programmer imple-
menting a system is one of what programming language to use. In this case, attention
has been turned to Python2, which is a high-level, object-oriented language with dy-
namic typing. It is chiefly an interpreted language (although the interpreter creates a
form of byte code á la Java on the fly, to facilitate faster repeated executions), sacrificing
some efficiency for rapid prototyping and portability.

The main advantage of the language is, however, its design – not only in a “batteries
included” philosophy which netted in a very comprehensive standard library, but in the
syntax of the language itself – sequences (arrays, dictionaries, hash sets, etc.) may be
manipulated to a quite large degree of complexity with very little code, thanks to such
features as list comprehension. For example, the mathematical statement

A := {a2 : a ∈ B, a > 3}

and the code

A = [a**2 for a in B if a > 3]

share a correspondence in the language. The ability to naturally express set-based
mathematical formulas, and other features already mentioned in the current section,
make Python well-suited for scientific application, as long as minimizing runtime is not
the absolute priority. These qualities of the language in our context have indeed been
noted in several publications [Hin02, Fan04].

For the parser component, ANTLR was utilized. ANTLR is a parser generator capable
of generating output in several languages, Python included. The syntactical structure of
the generated program model was constructed “by hand”, however, in order to provide
the transformation algorithms with efficient access to program components (such as
variables, constants, and predicates), at the cost of somewhat increased memory usage
and slightly slower transformation application time.

2http://www.python.org/
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6.2 Test setup

The primary goal here is to determine the practicability of using the chosen transfor-
mations for offline optimization of programs. Therefore, the tests concentrate on the
number of reductions performed.

The results of the analysis will be viewed through the following criteria, in particular:

• the number of non timed-out analysis runs,

• the average, maximal, minimal, and median time for non timed-out analysis runs,

• the maximal depth of the transformation tree,

• the number of literals and rules in the input programs, and

• the histograms of performable reductions and runtime of the analysis system.

For syntactic transformations, the declarative algorithms have been used, whenever ap-
plicable. The time-out has been set to 60 minutes for ensuring a complete result.

All experiments have been performed on a machine with a quad-core Intel Core i7 CPU
920 having a 2.67GHz processor frequency and 8 MB L3 Cache, 12 GB of RAM, and
two 1.5 TB HDDs with a 7200 RPM rotation speed, set up in a RAID 1 configuration.
As solver we used DLV ; the specific version was the Oct 2007 release for Linux, build
BEN/Oct 11 2007 gcc 4.1.2 20061115 (prerelease) (Debian 4.1.1-21).

As already discussed, the transformation systems underlying our experiments are, on the
one hand, {FD-LC0 -1 -0 , SUB ,FOLD ,LSH } (in which case, the imperative algorithm
was used for FD-LC0 -1 -0 , and the declarative ones for the others) and, on the other
hand, {SRRS , SRLS}.

6.3 Data Sets

Next, we briefly describe the the data sets used for our experiments.

6.3.1 Student data

The first benchmark class is comprised of a small selection of programs written by stu-
dents of the Vienna University of Technology for a laboratory course on logic program-
ming. The programs were supposed to solve a problem of assigning papers to reviewers,
with some constraints given.

Note that, although the programs are correct in the programming language sense (they
are interpretable), they do not necessarily provide correct solutions to the problem. This
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is because they are unfiltered submissions, and as such, should provide more diversity
to the examination.

Although this set is rather small, it nevertheless possesses a high relevance as it represents
a sample of “pure ASP code” (i.e., no front-ends used) written by non-experts. Therefore,
the results obtained here will be indicative of using the transformations within a possible
assistance tool for those learning answer-set programming.

6.3.2 Random programs

The second benchmark set was created using the ccT-gen program for testing the ccT
tool for equivalence checking of answer-set programs [OSTW06]. The tool is a generator
for random programs and is available from the ccT Web page.3 It has a number of
options, but relevant for our context are the following ones:

• v – determines the number literals,

• p – determines the number of disjunctive rules, and

• q – gives the maximal number of literal instances in the non-disjunctive rules.

In general, the tool generates propositional programs according to the supplied parame-
ters that dictate the complexity of the output. In our experiments, two sets were made:
a simpler one (produced with ccT-gen -v 4 -p 4) and a more complex one (generated
with ccT-gen -v 50 -p 50 -q 50).

The purpose of this data sample is twofold: Firstly, efficacy on purely propositional pro-
grams was tested. Secondly, random data has a tendency to often highlight interesting
anomalies in the results.

6.3.3 PLP

PLP [DST01] is an implementation of an approach due to Delgrande, Schaub, and
Tompits [DST03] for enhancing answer-set programs by the possibility of specifying
preferences between rules. Such an approach allows to influence the number of resultant
answer sets, by giving preference among multiple alternatives in case of conflicts. The
specific method underlying the general preference method is to compile a logic program
with preferences into a standard answer-set program.

For our experiments, we used the compilations of the logic programs with preferences
taken from the PLP Web page.4 They thus comprise one of the benchmark collections
exploiting programs from an ASP front-end; the second such collection is described
next.

3http://www.kr.tuwien.ac.at/research/systems/eq/index.html.
4http://www.cs.uni-potsdam.de/~torsten/plp/.
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6.3.4 DLV K

DLV K [EFL+04, EFL+03] is an integrated front-end for DLV used for specifying and
solving problems related to planning. Using the extension, one may define a planning
scenario, including invariants, a description of the initial state, and possible actions.
One can also set additional parameters for planning, the most prevalent of which is the
concurrency mode in which two or more simultaneous actions may be conducted in a
single step. Like in the PLP approach, a planning specification in the DLV K language
is compiled into standard answer-set programs which can then be processed by DLV .

The data used for the experiments are, as in the first benchmark collection, the com-
pilations of programs written by students as part of their assignments for a laboratory
course on knowledge-based systems at the Vienna University of Technology. The task
of the students required to formalize within the DLV K language the specification of a
particular blocks-world scenario as typically used for illustrating planning problems in
the AI literature.

6.3.5 Diagnosis front-end

The final data set comprises compilations of programs from the diagnosis front-end of
DLV [EFLP99]. The programs again stem from student programs taken from the above
mentioned laboratory course on knowledge-based systems.

The diagnosis front-end is based on the principles of model-based diagnosis and allows
to define

• the correct behavior of a system to be diagnosed (here in terms of a logic program),

• the observations, i.e., measurements on the system revealing the malfunction of
the system, and

• a set of possible defective components.

On the basis of this specification, possible reasons for the observed malfunction are
computed by DLV , by selecting a subset of the possible defective components. As for
the other front-ends, this computation is done by compiling the diagnosis specification
into a standard answer-set program.

In the laboratory course, the task of the students was to diagnose a simple air-conditioning
system.
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6.4 Results

The presentation of the results is is done in two ways – textual and graphical. The
former is achieved in terms of two tables; the latter in terms of pairs of graphs, one per
data set and per transformation system.

Before presenting the results, we give a general description of the format and content of
the tables. The tables contain the following entries:

Set: listing of all data sets in columns.

Total amount: the sum of all programs that have been read successfully.

Total time: the time it took to analyze the programs.

Total amount: the amount of programs that have not timed out.

Maximal time: the largest time needed for a single program to be analyzed.

Minimum time: the smallest time needed for a single program to be analyzed.

Average time: the average time needed for a single program to be analyzed.

Median time: the median time needed for a single program to be analyzed.

Average maximal tree depth: average length of the longest branch in the program’s
transformation tree.

Average number of literals: average number of literal instances in a program.

Average maximal literal reduction: the difference between the number of literal in-
stances in the input and the maximal reduction.

Total number of applications per transformation: the sum of all edges labeled with
the transformation in all transformation trees.

Total time per transformation: the total time the transformation took.

The graphs, in turn, are histograms and should be understood in the following manner:

• The graphs on the left-hand side of the figures describe the difference of the number
of literal instances between the input and the maximal reduction, for each trans-
formation system. The abscissa gives the value of the difference and the ordinate
shows the number of programs in the data sets that are distinguished by having
the given difference.

• The graphs on the right-hand side of the figures describe the runtime for each
program in the data set, again for each transformation system. The abscissa is
the runtime in seconds; the ordinate is the number of programs that required the
given runtime to be processed.
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Table 6.1 gives the results for the syntactic transformations while Table 6.2 gives the
corresponding results for the semantic transformations. The diagrams for the data sets
under the syntactic transformations are depicted in Figures 6.3 to 6.8 and those for the
data sets under the semantic transformations are given in Figures 6.9 to 6.13.

6.5 Observations

The results for the syntactic and the semantic transformations are somewhat different
in detail, hence they shall be described separately.

In the case of the syntactic transformations, most analyzing runs terminated before the
time out. An exception is the DLV K case, where only 2% of the input programs did not
time out. Fortunately, the system faired much better for the other data sets.

The student data displays the most variety in terms of applicable transformations, as
it contains even the sole application of FD-LC0 -1 -0 . Still, the programs here seem to
be mostly optimal, which is surprising given that they were written by persons who
presumably had their first encounter with answer-set programming.

The random programs give a little better result, especially for the first, simpler set.
However, the specifics of the types of applicable transformations make it apparent that
those programs have a similar structure, and hence are not really truly random. Nev-
ertheless, since the programs were not intended to be used to solve a specific problem,
these data sets remain usable as a control group.

The PLP and DLV K data sets both yield zero transformation possibilities. This is to
be expected in the former case – the example programs were written by a professional,
and are exemplary to the front-end converter in question. On the other hand, there was
little possibility for improvement in the DLV K set, since many programs timed out –
that is also a meaningful result, however.

What is surprising is the amount of transformations possible in the diagnosis front-
end. This may, however, be on account that this front-end needs little conversion in
comparison with DLV K , expressing the structure of the original program (a student
submission) more faithfully. Still, the 2.15 average reduction of literal instances, although
the greatest in all the data sets, is nothing remarkable.

The semantic results have the general characteristic of having a higher number of reduc-
tions, but also a higher time-out rate.

The results for the student programs are consistent with the syntactic case. There is
a considerably larger amount of transformations to be applied, however the amount is
still too small to be of any relevance (1.11 per average).
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Set: Student Random 1 Random 2 PLP DLV K Diagnosis
Criterion Result
Total amount: 51 100 100 25 147 755

Statistics for not timed-out programs:
Total time: 17.22min 0.2min 3.99min 24.18min 0.8min 150.11min
Total amount: 51 100 100 25 3 755
Maximum time: 2.99min 0.0min 0.05min 16.8min 0.31min 0.97min
Minimum time: 0.0min 0.0min 0.03min 0.0min 0.24min 0.01min
Average time: 0.34min 0.0min 0.04min 0.97min 0.27min 0.2min
Median time: 0.17min 0.0min 0.04min 0.01min 0.25min 0.12min
Avg. max. tree depth: 0.94 1.3 1.0 0.0 0.0 1.14
Avg. no. of literals: 106.55 18.39 2075.75 245.96 120.67 376.94
Avg. max. literal red.: 0.25 1.05 0.0 0.0 0.0 2.15

Total number of applications per transformation:
FOLD: 0 0 100 0 0 0
LSH : 46 130 0 0 0 859
FD-LC0 -1 -0 : 1 0 0 0 0 0
SUB : 3 60 0 0 0 208

Total time per transformation:
FOLD: 4.92min 1.94min 0.0min 24.0min 0.0min 0.33min
LSH : 12.02min 0.03min 0.12min 0.0min 0.26min 6.18min
FD-LC0 -1 -0 : 0.15min 0.9min 0.01min 0.01min 0.01min 1.17min
SUB : 0.11min 0.61min 0.04min 0.16min 0.53min 140.75min

Table 6.1: Results for the syntactic transformations.

Set: Student Random 1 PLP DLV K Diagnosis
Criterion Result
Total amount: 49 100 18 146 115

Statistics for not timed-out programs:
Total time: 315.73min 23.72min 167.57min 1.37min 675.23min
Total amount: 44 100 7 2 67
Maximum time: 59.55min 0.37min 53.99min 0.69min 59.67min
Minimum time: 0.05min 0.09min 6.6min 0.68min 0.01min
Average time: 7.18min 0.24min 23.94min 0.69min 10.08min
Median time: 0.23min 0.24min 23.51min 0.69min 5.0min
Avg. max. tree depth: 0.5 6.84 8.0 0.0 0.75
Avg. no. of literals: 109.09 18.39 72.43 145.0 251.7
Avg. max. literal red.: 1.11 13.65 8.86 0.0 2.15

Total number of applications per transformation:
SRRS : 1 20493 6928 0 108
SRLS : 2327 2487 5 0 120

Total time per transformation:
SRRS : 56.32min 20.67min 161.86min 0.44min 537.1min
SRLS : 258.98min 1.86min 2.75min 0.93min 137.92min

Table 6.2: Results for the semantic transformations.
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Figure 6.3: Histograms for the Student test set under syntactic transformations.

Figure 6.4: Histograms for the Random 1 test set under syntactic transformations.

Figure 6.5: Histograms for the Random 2 test set under syntactic transformations.
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Figure 6.6: Histograms for the PLP test set under syntactic transformations.

Figure 6.7: Histograms for the DLV K test set under syntactic transformations.

Figure 6.8: Histograms for the Diagnosis test set under syntactic transformations.
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Figure 6.9: Histograms for the Student test set under semantic transformations.

Figure 6.10: Histograms for the Random 1 test set under semantic transformations.

Figure 6.11: Histograms for the PLP test set under semantic transformations.
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Figure 6.12: Histograms for the DLV K test set under semantic transformations.

Figure 6.13: Histograms for the Diagnosis test set under semantic transformations.

The random programs give a mixed result. The first set is the most promising overall,
with a meaningful number of reductions (over 14 per average). This is probably due to
the semantic transformations being structure-agnostic.

Surprisingly, the second-best performance is achieved on PLP programs. However, al-
most two-thirds of the programs timed out, and the ones that did not time out took
almost three hours to be checked. The DLV front-ends netted a similar result as in the
syntactic case, although the time-out rate for diagnosis is again much higher.

In general, the statistics do not paint an encouraging picture on practical applications of
answer-set program transformations. To begin with, the execution times for a number
of transformations, mostly the semantic ones, are prohibitively large. For most applica-
tions, such as IDE integration, they just take too much to operate within the desired time
frame. Normally, for such purposes, it would be desired for the execution time to stay
under two seconds, which is just not the case, except for FD-LC0 -1 -0 , and occasionally
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Algorithm Time (seconds)
SUBDEC 6836
SUBIMP 2991
LCLC010DEC 25719
LCLC010IMP 452

Table 6.3: Results for comparing declarative vs. imperative eligibility-testing algorithms.

for SUB as well as for FOLD if considered in isolation.

The applicability of transformations is also disappointing. In all the data sets, with the
exception of PLP and random programs, the number of applications was found to be
quite low. This especially applies to syntactic transformations.

Similar can be said about transformation chains. It turns out that, for actual data,
the transformation search trees are relatively flat. There is really no net gain in the
exploration of possible sequences – or even worse, it generates additional overhead in
most cases, as it at least doubles (needlessly) the time needed for the checker to run.
For syntactic transformations, that is coupled with the fact that LSH , which was to be
an “enabling” transformation, contributed massively to the time overhead.

Indeed, the only data set that provides any encouraging outcome is the random one.
However, this only highlights that the way humans write programs is quite specific and
structurally organized.

There was some hope of positive results for the simple student data, unfortunately to
no avail. It seems that, per average, students are able to intrinsically grasp the basic
concepts of ASP optimization, and supply relatively good code.

6.6 Declarative vs. imperative algorithms

As an addendum, the effectiveness of the declarative vs. the imperative variants for
eligibility testing will be briefly discussed here. For this, the environment was set up in
the following way:

• all programs from all data sets were added into the data set for this analysis,

• the transformation system was set to only one transformation per run, either
{SUB} or {LSH }, and

• there was one run per algorithm variant, giving four runs in total.
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The results are given in Table 6.3.

Although the SUB result is inconclusive and might be influenced by the solver used, it is
immediately apparent that in the case of FD-LC0 -1 -0 the implementations of declarative
algorithms take far longer to process (well over 10 times). This suggests that there is
little use in utilizing ASP for solving tasks that can be relatively easily expressed and
processed using other programming paradigms. In addition, there is a large overhead
due to the need to encode the problem into answer-set programming, which contributes
further to the slowdown, especially in case of non-experts.
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Conclusion and Outlook

This thesis examined the viability of several transformation rules studied in the litera-
ture for answer-set programs in a practical setting. An overview of the most prevalent
ones has been presented. A selection has been made by constructing two independent
transformation systems for the examinations: {FD-LC0 -1 -0 , SUB ,FOLD ,LSH } for syn-
tactical analysis and {SRRS , SRLS} for semantical elimination.

As a consequence, algorithms have been researched and developed, both imperative and
declarative, in order to automate the transformation applicability checking. After this,
the two systems have then been examined for their properties, and methods have been
found to apply them. Using the thus gained knowledge, a test setup has been coded in
Python, for the purpose of experimenting with a number of data sources – both from
front-ends as well as other data, in particular, student-created programs and random
programs.

The results show that, at least in the case of the transformations used, their utility on
actual programs is severely limited. This is for two reasons.

Firstly, the time it takes for the analysis to finish is, in a number of cases, prohibitively
long. This delay prevents a number of the transformations from being used in optimiza-
tion, such as an assistance tool for an Integrated Development Environment.

The second reason is the simple case of effectiveness – or rather, the lack thereof. For
most data sets, the number of transformations actually detected to be applicable and
performed is low to non-existent. The analysis of the programs written by students has
given especially disappointing results, since it was hoped that beginners to ASP would
simply make less efficient programs, yet it does not seem so.

One must keep in mind, however, that the data supplied in the latter case are final sub-
missions. It would perhaps be interesting to check whether transformation applicability
detection can provide help during the initial program writing process, of course among
the beginners’ group. This presents itself as a viable avenue for further research.
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