
Diploma Thesis

The Keller-Segel Model in Rd:
Global Existence in the Case of Linear

and Non-Linear Diffusion

Institute for

Analysis and Scientific Computing

Vienna University of Technology

supervised by

Univ.Prof. Dr.rer.nat. Ansgar JÜNGEL
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Abstract

The goal of this diploma thesis was to write out and extend the paper [14] by Martin Burger,

Marco di Francesco and Yasim Dolak-Struss, dealing with two different versions of the so

called Keller-Segel model, describing diffusion and movement of certain cells and a chemoat-

tractant in a liquid. They achieved global-in-time existence under certain restrictions on the

parameters and analysed the long time behaviour of the densities for linear and non-linear

diffusion in the special case where overcrowding does not occur.

The author of this thesis was able to prove that similar results can be obtained for a wider

class of differential equations both in the case of linear and non-linear diffusion, either for

subcritical mass or for models where overcrowding is prevented. It was shown that under al-

most natural restrictions on the sensitivity and diffusivity functions, global-in-time solutions

exist.
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1 Introduction

1.1 Introduction to the Keller-Segel Model

The following short introduction to the class of Keller-Segel type differential equations is a

brief version of the extensive historical survey of the Keller-Segel model given in [12].

We start by considering a density of cells ρ(x, t) and a density of a chemoattractant S(x, t).

Assuming that the total mass of the cells is conserved, we conclude that the change of mass

in a small volume D ∈ Rd is equal to the total flow through the boundary ∂D of D.

Hence,

∂

∂t

∫
D

ρ(x, t) dx = −
∫
∂D

Jρ(x, t) · ν ds,

where Jρ(x, t) denotes the flow of the density of cells and ν is the outward pointing unit

surface normal. Now the flow should depend linearly on

1. the gradient of ρ (diffusion) and

2. the gradient of S (attraction).

Therefore we obtain

Jρ(x, t) = −k1(ρ, S)∇ρ+ k2(ρ, S)∇S,

for non-negative functions k1(x), k2(x). Inserting this into the integral equation yields

∫
D

∂ρ(x, t)

∂t
dx =

∫
∂D

k1(ρ, S)
∂ρ

∂ν
− k2(ρ, S)

∂S

∂ν
ds

=

∫
D

div (k1(ρ, S)∇ρ− k2(ρ, S)∇S) dx,

where we have used Gauss’ divergence theorem. This equation is clearly fulfilled if ρ and S

satisfy the pointwise differential equation

∂ρ

∂t
= div (k1(ρ, S)∇ρ− k2(ρ, S)∇S) . (1.1)

For an equation describing the behaviour of the chemoattractant S we shall assume that S

diffuses and, taking into account that the chemoattractant is produced by the cells, we have

a source term proportional to the density of cells and to a function k4(S) > 0. Since this will

lead to a behaviour where the total mass of S increases (for there is a source but no drain)
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we shall also assume that the chemoattractant is decomposed with a rate proportional to

the density S. Therefore the integral equation reads∫
D

∂S(x, t)

∂t
dx =

∫
D

div (k3(ρ, S)∇S) dx︸ ︷︷ ︸
diffusion

+

∫
D

k4(S)ρ dx︸ ︷︷ ︸
source

−R
∫
D

S dx︸ ︷︷ ︸
drain

,

and again, switching to the pointwise differential equation

∂S

∂t
= div (k3(ρ, S)∇S)−RS + k4(S)ρ. (1.2)

Therefore we get the famous system of differential equations∂ρ
∂t = div (k1(ρ, S)∇ρ− k2(ρ, S)∇S)

∂S
∂t = div (k3(ρ, S)∇S)−RS + k4(S)ρ,

(1.3)

that was first presented by E. F. Keller and L. A. Segel in [13].

In the following we shall also assume that the diffusion of the chemical is much faster than

the motion of the cells (due to diffusion and attraction), which will consequently lead to a

parabolic-elliptic system:

If we consider a time intervall [t0, t1] that is small compared to the motion of the cells but

large compared to the motion of the chemoattractant, we can assume that the change in the

density ρ is negligable. The second equation of (1.3) then reads

∂S

∂t
= div (k3(ρ0, S)∇S)−RS + k4(S)ρ0. (1.4)

where ρ0 = ρ(t0) ≈ ρ(t1). Since we assume that the chemical diffuses very fast, we expect

that S has almost reached the equilibrium state (here we shall also assume that there is an

equilibrium state for every ρ0) at time t1 and therefore

0 = div (k3(ρ(t1), S(t1))∇S(t1))−RS(t1) + k4(S(t1))ρ(t1). (1.5)

Now we simply state that our solution shall statisfy this quasi-stationary equation for each

time t1 and obtain the coupled parabolic-elliptic system of non-linear partial differential

equations ∂ρ
∂t = div (k1(ρ, S)∇ρ− k2(ρ, S)∇S)

0 = div (k3(ρ, S)∇S)−RS + k4(S)ρ.
(1.6)

In the following we will analyse two special cases of the system (1.6) for x ∈ Rd.
In chapter 2 we will fix

k1(ρ, S) = ε

k2(ρ, S) = f(ρ)

k3(ρ, S) = R = 1

k4(S) = 1

 =⇒

∂ρ
∂t = ε∆ρ− div (f(ρ)∇S)

0 = ∆S − S + ρ,
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and obtain a model with linear diffusion, whereas in chapter 3 on the other hand we will fix

k1(ρ, S) = εm(ρ)

k2(ρ, S) = m(ρ)

k3(ρ, S) = R = 1

k4(S) = 1

 =⇒

∂ρ
∂t = div (m(ρ)∇(ερ− S))

0 = ∆S − S + ρ.

This choice leads to a degenerated problem at points where m(ρ(x, t)) = 0 and the diffusion

vanishes. Here, ε ∈ R+ and f(x) and m(x) are functions R → R. Similar to the results in

[14] (parabolic-elliptic-system) and [15] (parabolic-parabolic-system), where these two cases

are studied for f(x) = m(x) = x(1 − x), we will achieve global-in-time existence and other

properties such as positiviy and conservation of mass under almost natural restrictions on

f(x), m(x) and ρ0.

We will also analyse the existence of stationary solutions for both cases and come to the

conclusion that there exist no stationary solutions in the case of linear diffusion if the mass

is too small. In the case of non-linear diffusion on the other hand, we will prove existence

of stationary solutions with arbitrarily small mass at least for one space-dimension.

Before we proceed, we will shortly recall definitions and basic results from the theory of

Sobolev spaces both for further reference and to introduce the notation used in chapter 2

and 3.
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1.2 Introduction to Sobolev Spaces

Here, we want to briefly recall some basic definitions and properties of Sobolev spaces. A

detailed elaboration, and proofs of the stated propositions can be found in [2, Chapter 5]

and [1] for the ordinary Sobolev spaces and [8] for the Sobolev spaces including time.

In the following, let Ω ⊂ Rd be an open set, not necessarily bounded, but ∂Ω ∈ C1 if there

is a boundary.

Definition 1.1 (Wm,p-spaces). Let m ∈ N and 1 ≤ p ≤ ∞. Then we define the Sobolev

space Wm,p(Ω) as the set of functions u ∈ Lp(Ω) satisifying,

Dαu ∈ Lp(Ω), for all multiindices |α| ≤ m.

Here, Dα denotes the partial derivative in the sense of distributions.

The Sobolevspaces Wm,p are reflexive Banachspaces with the following norms

‖u‖pWm,p(Ω) =
∑
|α|≤m

‖Dαu‖pLp(Ω), for p <∞

‖u‖Wm,p(Ω) = max
|α|≤m

‖Dαu‖Lp(Ω), for p =∞.

Definition 1.2 (Hm-spaces). Fixing p = 2 leads to an important class of Hilbert spaces

Hm(Ω) := Wm,2(Ω) with the inner product

< ϕ,ψ >Hm =
∑
|α|≤m

< Dαϕ,Dαψ >L2(Ω) .

Proposition 1.3 (Density). Let 1 ≤ p <∞. Then C∞(Ω)∩Wm,p(Ω) is dense in Wm,p(Ω).

Definition 1.4 (H−m-spaces). By definition H−m(Ω) = (Hm(Ω))
′

is the dual space of Hm.

H−m is a reflexive Banach space with the operator norm. For u ∈ H−m(Ω) and ϕ ∈ Hm(Ω)

we use the following notation

u(ϕ) =: < u,ϕ >H−m ,

indicating that for functions with enough regularity, for example u ∈ L2(Ω) the H−m bracket

can be seen as the inner product:

< u,ϕ >H−m = u(ϕ) = < u,ϕ >L2 .

Definition 1.5 (Wm,p
0 -spaces). Similar to the Wm,p-spaces (taking proposition 1.3 into

account) we define the space Wm,p
0 (Ω) := C∞0 (Ω)

‖.‖Wm,p

as the closure of C∞0 (Ω) with

respect to the Wm,p(Ω)-norm. Again, fixing p = 2 leads to a class of Hilbert spaces Hm
0 (Ω)

with the inner product given by definition 1.2.
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Since we want to study equations in space and time we have to introduce suitable Sobolev

spaces that also inlcude time.

Definition 1.6 (Cm(0, T, B)-spaces). Let B be a reflexive Banach space and T > 0 and

m ∈ N0. The space Cm(0, T, B) defined as the set of all m-times continuous differentiable

functions u : [0, T ]→ B with the norm

‖u‖Cm(0,T,B) =

m∑
i=0

max
0≤t≤T

‖u(i)(t)‖B

Definition 1.7 (Lp(0, T, B)-spaces). Let B be a reflexive Banach space and T > 0 and

p ∈ [1,∞]. The space Lp(0, T, B) is the set of all measureable functions u : [0, T ] → B

satisfying

‖u‖Lp(0,T,B) =

(∫ T

0

‖u(t)‖pB dt

)1/p

< ∞, for p <∞

‖u‖L∞(0,T,B) = ess sup
0≤t≤T

‖u(t)‖B < ∞.

Finally let us introduce the standard space for dealing with parabolic equations:

Definition 1.8 (W 1,2(0, T, V,H)-spaces). Let V be a seperable reflexive Banach space and

H a seperable Hilbert space such that there exists a continuous embedding V ↪→ H. Then

we define

W 1,2(0, T, V,H) :=

{
ψ ∈ L2(0, T, V ) | ∂

∂t
ψ ∈ L2(0, T, V ′)

}
.

Proposition 1.9. Let the assumptions on V and H be the same as in definition 1.8. Then,

• W 1,2(0, T, V,H) is a Banach space with the natural norm

‖u‖W 1,2(0,T,V,H) := ‖u‖L2(0,T,V ) + ‖ut‖L2(0,T,V ′).

• C1(0, T, V ) is dense in W 1,2(0, T, V,H).

• the embedding W 1,2(0, T, V,H) ↪→ C0(0, T,H) is continuous.

• for u ∈W 1,2(0, T, V,H), the function t→ ‖u(t)‖H is absolutely continuous (especially

differentiable almost everywhere) and

∂

∂t
‖u(t)‖2H = 2 < ut(t), u(t) >V ′ .

In order to prove boundedness (in the case where overcrowding is prevented), we will need

the following two propositions. For a proof we refer to [6, Theorem 1.56 and Theorem 1.57].
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Proposition 1.10. Let G ∈ C1(R) with G′ ∈ L∞(R) and in addition G(0) = 0 if Ω is

not bounded. Whenever u ∈ W 1,p(Ω) (for 1 ≤ p < ∞), G(u) belongs to W 1,p(Ω) with

∇G(u) = G′(u)∇u.

If Ω is bounded and u ∈W 1,p
0 (Ω̄), then G(u) also belongs to W 1,p

0 (Ω̄).

Proposition 1.11 (Stampaccia’s theorem). For 1 ≤ p < ∞ and u ∈ W 1,p(Ω) or u ∈
W 1,p

0 (Ω̄) (in the case of bounded domains). Then [u]+,[u]− and [u− c]+ for some constant

c > 0 belong to W 1,p(Ω) (or W 1,p
0 (Ω̄) respectively) and the weak derivatives are given by

∇[u]+ = χR+(u)∇u,

∇[u]− = χR−(u)∇u and

∇[u− c]+ = χR+(u− c)∇u

where χI(x) denotes the characteristic function statisfying χI(x) = 0 if x /∈ I and χI(x) = 1

if x ∈ I.

More tools and definitions that will be needed, especially in the case of non-linear diffusion,

are to be found in the appendix (chapter 5) or directly before their application.
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2 Linear Diffusion for General Attraction Terms

In this chapter we consider the Cauchy-problem for the parabolic-elliptic-system
∂ρ
∂t = ε∆ρ− div (f(ρ)∇S)

−∆S + S = ρ

ρ(x, 0) = ρ0(x)

(2.7)

where x ∈ Rd, d ≥ 1, t ≥ 0, ε > 0, f : R → R locally Lipschitz continuous (with local

Lipschitz constant LM on the intervall [−M,M ]), and ρ0 ∈ L∞(Rd) ∩ L1(Rd). For reasons

of simplicity we shall also assume that f(0) = 0. We will see later that this assumption

is not necessary to prove existence of a local-in-time solution but it shortens some of the

proofs and seems to be a natural restriction. Intuitively, it is evident that the particle flux

originates only in diffusion if ρ(x0, t0) = 0 at a point (x0, t0) ∈ Rd×R+. In order to develop

a suitable definition of weak solutions of (2.7) and prove the existence of solutions, we need

some expertise on the linear theory first.

2.1 Non-Homogeneous Heat Equation in Rd

We first turn our attention to the non-homogeneous heat equation on the whole space
∂ρ
∂t = ε∆ρ+ f

ρ(x, 0) = ρ0(x) ∈ L2(Rd)

(x, t) ∈ Rd × [0, T ] and f(x, t) ∈ L2(Rd × [0, T ]).

(2.8)

Luckily, due to the Fourier transform, an explicit representation formula for the solution of

(2.8) can be derived at least for ρ0(x) ∈ C(Rd) and f(x, t) ∈ C([0, T ] × Rd). We recall the

following proposition (see for instance [2, Chapter 2.3]):

Proposition 2.12. Let ρ0(x) ∈ C(Rd) and f(x, t) ∈ C([0, T ]×Rd). Then the strong solution

ρ ∈ C∞((0, T )× Rd) ∩ C([0, T ]× Rd) of the heat equation is given by

ρ(x, t) = (G ∗ ρ0)(x, t) +

∫ t

0

∫
Rd

G(x− y, t− s)f(y, s) dyds (2.9)

wherein G(x, t) = 1
(4πεt)d/2

e−
|x|2
4εt is called the fundamental solution of the heat equation or

the heat convolution kernel.

Since the existence result in proposition 2.12 does not yield integrability we need to prove

the following:

12
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Corollary 2.13. Let ρ ∈ C∞((0, T ) × Rd) ∩ C([0, T ] × Rd) be the strong solution of the

non-homogeneous heat equation provided by proposition 2.12 and let the right hand side

f(x) ∈ C([0, T ]×Rd) and the inital data ρ0 ∈ C(Rd) additionally be in L2([0, T ]×Rd) and

L2(Rd) respectively. Then, ρ ∈W 1,2(0, T,H1(Rd), L2(Rd)).

Proof. Multiplying the heat equation (2.8) by ρ and integrating with respect to x yields∫
Rd

∂ρ

∂t
ρ dx =

∫
Rd
ε∆ρ · ρ+ fρ dx

⇒ 1

2

∂

∂t

∫
Rd
ρ2 dx = −ε

∫
Rd
|∇ρ|2 dx+

∫
Rd
fρ dx,

where we have used integration by parts. Using Young’s inequality on the last term leads

to

1

2

∂

∂t

∫
Rd
ρ2 dx+ ε

∫
Rd
|∇ρ|2 dx ≤ γ

2

∫
Rd
f2 dx+

1

2γ

∫
Rd
ρ2 dx

⇒ ∂

∂t
‖ρ(., t)‖2L2(Rd) + 2‖∇ρ(., t)‖2L2(Rd) ≤ ‖f(., t)‖2L2(Rd) + ‖ρ(., t)‖2L2(Rd),

where we have fixed γ = 1. Applying Gronwall’s lemma (see for instance [2, Appendix j])

gives us

‖ρ(., t)‖2L2(Rd) ≤ et ·
(
‖ρ0‖2L2(Rd) +

∫ t

0

‖f(., s)‖2L2(Rd) ds

)
≤ et ·

(
‖ρ0‖2L2(Rd) + ‖f‖2L2([0,T ]×Rd)

)
⇒ ‖ρ‖2L2([0,T ]×Rd) ≤

(
eT − 1

)
·
(
‖ρ0‖2L2(Rd) + ‖f‖2L2([0,T ]×Rd)

)
,

where we have integrated with respect to t. Therefore, by inserting the L2(Rd)-estimate of

ρ(., t), we obtain

∂

∂t
‖ρ(., t)‖2L2(Rd) + 2‖∇ρ(., t)‖2L2(Rd) ≤ ‖f(., t)‖2L2(Rd)

+ et ·
(
‖ρ0‖2L2(Rd) + ‖f‖2L2([0,T ]×Rd)

)
.

Integrating with respect to 0 ≤ t ≤ T leads to

‖ρ(., t)‖2L2([0,T ]×Rd) + 2‖∇ρ‖2L2([0,T ]×Rd) ≤ eT ·
(
‖ρ0‖2L2(Rd) + ‖f‖2L2([0,T ]×Rd)

)
,

which implies that ρ ∈ L2(0, T,H1(Rd)).
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For the estimate of ρt we consider a testfunction ϕ ∈ L2(0, T,H1(Rd)) and obtain similarly∫ T

0

< ρt, ϕ >H−1(Rd) dt =

∫
[0,T ]×Rd

∂ρ

∂t
ϕ dxdt

=

∫
[0,T ]×Rd

ε∆ρ · ϕ+ fϕ dxdt

= −ε
∫

[0,T ]×Rd
∇ρ · ∇ϕdxdt+

∫
[0,T ]×Rd

fϕ dxdt

≤ ε‖∇ρ‖L2([0,T ]×Rd)‖∇ϕ‖L2([0,T ]×Rd)

+ ‖f‖L2([0,T ]×Rd)‖ϕ‖L2([0,T ]×Rd)

≤
(
ε‖∇ρ‖L2([0,T ]×Rd) + ‖f‖L2([0,T ]×Rd)

)
· ‖ϕ‖L2(0,T,H1(Rd)),

where we have used Cauchy Schwarz’s inequality. Now the estimate of ∇ρ, which we have

already proven, shows that∫ T

0

< ρt, ϕ >H−1(Rd) dt ≤ C(ρ0, f, T )‖ϕ‖L2(0,T,H1(Rd)),

and therefore ρt ∈ L2(0, T,H−1(Ω)).

To prove that we can apply this approach for f(x, t) ∈ L2(Rd × [0, T ]) and ρ0(x) ∈ L2(Rd)
(but not necessarily continuous), and that the function defined by (2.9) does indeed exist

and is a solution of (2.8) in some sense, we need some properties of the heat kernel, which

are summarised in the following lemma.

Lemma 2.14. The heat kernel G fulfils

‖G(., t)‖L1(Rd) = 1 (2.10)

‖∇G(., t)‖Lp(Rd) = C(p, ε, d)t−
dp−d+p

2p , p ≥ 1 (2.11)∫
Rd
∇G(x, t) dx = 0 ∈ Rd (2.12)

14
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Proof. The estimates are easily obtained by straightforward computation.

‖G(., t)‖L1 =
1

(4πεt)d/2

∫
Rd
e−
|x|2
4εt dx =

( 1

(4πεt)1/2

∫
R
e−

x2

4εt dx
)d

=

∣∣∣∣∣ x√
4εt

= z√
2

dx√
4εt

= dz√
2

∣∣∣∣∣ =
( 1√

2π

∫
R
e−

z2

2 dz
)d

= 1

‖∇G(., t)‖p
Lp(Rd)

=
1

(4πεt)dp/2

∫
Rd

∣∣∣∣(− 2x

4εt

)
e−
|x|2
4εt

∣∣∣∣p dx
= C(p, ε, d)t−

dp
2 −p

∫
Rd
|x|pe−

p|x|2
4εt dx =

∣∣∣∣∣ x( p
4εt )

1/2 = u

dx( p
4εt )

d/2 = du

∣∣∣∣∣
= C(p, ε, d)t−

dp
2 −p+p/2+d/2

∫
Rd
|u|pe−|u|

2

du︸ ︷︷ ︸
=C′(d,p)<∞

= C(p, ε, d)t−p
dp−d+p

2p

∫
Rd

∂

∂xi
G(x, t) dx = C

∫
Rd
xie
− |x|

2

4εt dx

= C ′
(∫ ∞
−∞

e−
z2

4εt dz
)d−1

·
(∫ ∞
−∞

ze−
z2

4εt dz︸ ︷︷ ︸
=0

)
= 0

Now we have the proper tools to prove

Theorem 2.15. Let f(x, t) ∈ L2(Rd× [0, T ]) and ρ0(x) ∈ L2(Rd). Then, the representation

formula (2.9) yields a weak solution ρ(x, t) ∈W 1,2(0, T,H1(Rd), L2(Rd)) of the heat equation

(2.8) in the following sense:

•
∫ t

0

<
∂

∂t
ρ, ϕ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇ϕ+ fϕ dxds

∀ϕ ∈ L2(0, T,H1(Rd)) (2.13)

• ρ(., 0) = ρ0(.)

If, in addition, f(x, t) ∈ L2(0, T,Hm(Rd)) and ρ0(x) ∈ Hm(Rd) for some m ∈ N0, then

there even holds ρ(x, t) ∈ L2(0, T,Hm+1(Rd)) ∩ L∞(0, T,Hm(Rd)).

Proof. Let us start by considering sequences

fn ∈ C∞([0, T ]× Rd) ∩ L2([0, T ]× Rd), fn → f in L2([0, T ]× Rd) and

ρ0,n ∈ C∞(Rd) ∩ L2(Rd), ρ0,n → ρ0 in L2(Rd).
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The existence of these sequences is justified by proposition 1.3, telling us that the space

C∞([0, T ]×Rd)∩L2([0, T ]×Rd) is dense in L2([0, T ]×Rd). According to proposition 2.12

we now define, for all n ∈ N, ρn as the strong solution of the heat equation (2.8) given by

the representation formula (2.9) with source fn and inital data ρ0,n.

Our first aim is to prove that the sequence ρn ∈ C∞((0, T )×Rd)∩C([0, T ]×Rd)∩W 1,2 is

a Cauchy sequence in W 1,2 := W 1,2(0, T,H1(Rd), L2(Rd)).
Let, for fixed m,n ∈ N, ρn − ρm =: ρ̄, fn − fm =: f̄ and ρ0,n − ρ0,m =: ρ̄0. Subtracting the

differential equations for ρn and ρm yields

∂

∂t
ρ̄ = ε∆ρ̄+ f̄ (2.14)

multiplying by ρ̄ and integrating over Rd leads to∫
Rd

∂

∂t
ρ̄ · ρ̄ dx = ε

∫
Rd

∆ρ̄ · ρ̄+ f̄ ρ̄ dx

⇒ 1

2

∂

∂t

∫
Rd
ρ̄2 dx = −ε

∫
Rd
∇ρ̄ · ∇ρ̄+ f̄ ρ̄ dx

⇒ ∂

∂t
‖ρ̄‖2L2(Rd) ≤ −2ε‖∇ρ̄‖2L2(Rd) + ‖f̄‖2L2(Rd) + ‖ρ̄‖2L2(Rd) (2.15)

⇒ ∂

∂t
‖ρ̄‖2L2(Rd) ≤ ‖f̄‖2L2(Rd) + ‖ρ̄‖2L2(Rd),

where we have used integration by parts and Young’s inequality. Applying Gronwall’s lemma

gives us

‖ρ̄(., t)‖2L2(Rd) ≤ et · (‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,t]))

≤ et · (‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,T ]))

⇒ ‖ρ̄‖2L2(Rd×[0,T ]) ≤ (eT − 1) · (‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,T ])). (2.16)

For the estimate of the gradient of ρ̄ we take the inequality (2.15) and integrate with respect

to t from 0 to T

‖ρ̄(., T )‖2L2(Rd) − ‖ρ̄0‖2L2(Rd) ≤ −2ε‖∇ρ̄‖2L2(Rd×[0,T ]) + ‖f̄‖2L2(Rd×[0,T ]) + ‖ρ̄‖2L2(Rd×[0,T ])

⇒ 2ε‖∇ρ̄‖2L2(Rd×[0,T ]) ≤ ‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,T ]) + ‖ρ̄‖2L2(Rd×[0,T ])

⇒ 2ε‖∇ρ̄‖2L2(Rd×[0,T ]) ≤ eT · (‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,T ])), (2.17)

where we have used the estimate (2.16) for ‖ρ̄‖L2(Rd×[0,T ]) from above.

To achieve convergence in W 1,2 we need an additional estimate for ‖ ∂∂t ρ̄‖L2(0,T,H−1(Rd)). For

this purpose let ϕ ∈ L2(0, T,H1(Rd)), ‖ϕ‖L2(0,T,H1(Rd)) ≤ 1. Then, multiplying equation

16
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(2.14) by ϕ and integrating over Rd × [0, T ] yields∫ T

0

<
∂

∂t
ρ̄, ϕ >H−1(Rd) dt =

∫
Rd×[0,T ]

∂

∂t
ρ̄ϕ dxdt

= −ε
∫
Rd×[0,T ]

∇ρ̄ · ∇ϕ+ f̄ϕ dxdt

≤ ε‖∇ρ̄‖L2(Rd×[0,T ])‖∇ϕ‖L2(Rd×[0,T ])

+‖f̄‖L2(Rd×[0,T ])‖ϕ‖L2(Rd×[0,T ]),

where we applied Cauchy-Schwarz’s inequality. Taking into account the assumption on ϕ

and the estimate (2.17) for the gradient of ρ̄ leads to∫ T

0

<
∂

∂t
ρ̄, ϕ >H−1(Rd) dt ≤

eT

2
· (‖ρ̄0‖2L2(Rd) + ‖f̄‖2L2(Rd×[0,T ])) + ‖f̄‖L2(Rd×[0,T ])

=
eT

2
‖ρ̄0‖2L2(Rd) + (

eT

2
+ 1)‖f̄‖2L2(Rd×[0,T ]). (2.18)

In conclusion we obtain

‖ρ̄‖2W 1,2 = ‖ρ̄‖2L2(0,T,L2(Rd)) + ‖∇ρ̄‖2L2(0,T,L2(Rd)) + ‖ρ̄‖2L2(0,T,H−1(Rd))

≤
(
eT

3ε+ 1

2ε
− 1
)
· ‖ρ̄0‖2L2(Rd) + eT

3ε+ 1

2ε
‖f̄‖2L2(Rd×[0,T ]) (2.19)

Since fn → f in L2([0, T ] × Rd) and ρ0,n → ρ0 in L2(Rd), the difference ‖ρm − ρn‖W 1,2

vanishes as m,n→∞ and therefore ρn is a Cauchy sequence. Since W 1,2 is a Banach space

this implies that the sequence converges to ρ′ ∈ W 1,2 in the sense of W 1,2. As already

used, the functions ρn naturally satisfy the weak formulation of the heat equation (2.13)

by simply multiplying by ϕ, integrating over Rd × [0, T ] and applying integration by parts.

Because of the convergence in W 1,2 we just proved we can pass the limit and establish the

weak formulation for ρ′∫ t

0

<
∂

∂t
ρ′, ϕ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ′ · ∇ϕ+ fϕ dxds

for all functions ϕ ∈ L2(0, T,H1(Rd)) and ρ′(., 0) = ρ0(.). In order to complete the proof

we have to show that ρ′ = ρ, wherein ρ denotes the function we obtain by inserting f and

ρ0 into the representation formula (2.9). It is, of course, sufficient to prove that ‖ρn −

17
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ρ‖L2(Rd×[0,T ]) → 0.

‖ρn − ρ‖L2(Rd) ≤ ‖G ∗ (ρ0,n − ρ0)‖L2(Rd) +

∥∥∥∥∫ t

0

G(., t− s) ∗ (fn(., s)− f(., s)) ds

∥∥∥∥
L2(Rd)

≤ ‖G‖L1(Rd)‖(ρ0,n − ρ0)‖L2(Rd)

+

∫ t

0

‖G(., t− s) ∗ (fn(., s)− f(., s))‖L2(Rd)ds

≤ ‖(ρ0,n − ρ0)‖L2(Rd) +

∫ t

0

‖G(., t− s)‖L1(Rd)‖fn(., s)− f(., s)‖L2(Rd) ds

≤ ‖(ρ0,n − ρ0)‖L2(Rd) +

∫ t

0

‖fn(., s)− f(., s)‖L2(Rd) ds

≤ ‖(ρ0,n − ρ0)‖L2(Rd) + t1/2 · ‖fn(., s)− f(., s)‖L2(Rd×[0,t])

≤ ‖(ρ0,n − ρ0)‖L2(Rd) + t1/2 · ‖fn(., s)− f(., s)‖L2(Rd×[0,T ]),

where we have used the inequalties of Hölder and Cauchy-Schwarz and ‖G‖L1(Rd) = 1.

By construction of the sequences, we can find, for every δ > 0, an integer N(δ) ∈ N such

that ‖(ρ0,n− ρ0)‖L2(Rd) < δ and ‖fn(., s)− f(., s)‖L2(Rd×[0,T ]) < δ. Integrating with respect

to t yields

‖ρn − ρ‖2L2(Rd)×[0,T ] ≤
∫ T

0

(δ + t1/2δ)2 dt

≤ Tδ2

6
(3T + 8T 1/2 + 6)

δ→0−→ 0.

For the higher regularity we can assume that fn → f in L2(0, T,Hm(Rd)) and ρ0,n → ρ0 in

Hm(Rd). Just like before, we subtract the strong formulation of the heat equation for ρn

and ρm, respectively. Since ρn, ρm ∈ C∞((0, T )× Rd), we can differentiate the equation

∂

∂t
Dα(ρn − ρm) = ε∆Dα(ρn − ρm) +Dα(fn − fm)

for some multiindex |α| ≤ m. Multiplying by ρ̄α := Dα(ρn − ρm) and integrating with

respect to x leads to

1

2

∂

∂t

∫
Rd
ρ̄2
α dx = −ε

∫
Rd
|∇ρ̄α|2 dx+

∫
Rd
ρ̄αf̄α dx

⇒ ∂

∂t
‖ρ̄α(., t)‖2L2(Rd) ≤ −2ε‖∇ρ̄α(., t)‖2L2(Rd) + γ‖ρ̄α(., t)‖2L2(Rd) +

1

γ
‖f̄α(., t)‖2L2(Rd).

18
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Choosing γ = 1, omitting the norm of ∇ρ̄α and applying Gronwall’s lemma leads to

‖ρ̄α(., t)‖2L2(Rd) ≤ et‖ρ̄α(., 0)‖2L2(Rd) +

∫ t

0

et−s‖f̄α(., s)‖2L2(Rd) ds

≤ et‖ρ̄α(., 0)‖2L2(Rd) + et
∫ t

0

‖f̄α(., s)‖2L2(Rd) ds

≤ et‖ρ̄α(., 0)‖2L2(Rd) + et‖f̄α‖2L2([0,t]×Rd)

≤ eT ‖ρ̄α(., 0)‖2L2(Rd) + eT ‖f̄α‖2L2([0,T ]×Rd)

⇒ ‖ρ̄α(., t)‖L∞(0,T,L2(Rd)) → 0, for n,m→∞.

Here we used that ‖f̄α‖L2([0,T ]×Rd) ≤ ‖fn − fm‖L2(0,T,Hm(Rd)) for |α| ≤ m (and the same

relation for the inital data). Taking again the inequality from above and integrating with

respect to t yields

‖ρ̄α(., t)‖2L2(Rd) + 2ε‖∇ρ̄α(., t)‖2L2([0,T ]×Rd) ≤ ‖ρ̄α(., 0)‖2L2(Rd) + ‖ρ̄α(., t)‖2L2([0,T ]×Rd)

+‖f̄α(., t)‖2L2([0,T ]×Rd).

Together with the previous result we have

‖∇ρ̄α(., t)‖L2([0,T ]×Rd) → 0, for n,m→∞.

Since this holds true for every multiindex α, |α| ≤ m, we can conclude that ρn converges in

L2(0, T,Hm+1(Rd)) ∩ L∞(0, T,Hm(Rd)).

Unfortunately, we will see that f ∈ L2(0, T, L2(Rd)) is not wide enough to cover the situation

we will have to deal with later on. Therefore, we will prove a more general version of the

previous lemma.

Theorem 2.16. Let f(x, t) = div(V (x, t)), V ∈
(
L∞(0, T, L2(Rd))

)d
. Then, the function ρ

defined by

ρ(x, t) = (G ∗ ρ0)(x, t)−
∫ t

0

∫
Rd
∇G(x− y, t− s) · V (y, s) dyds (2.20)

belongs to W 1,2 := W 1,2(0, T,H1(Rd), L2(Rd)) and satisfies, for all ϕ ∈ L2(0, T,H1(Rd)),
the following equation∫ t

0

<
∂

∂t
ρ, ϕ >H−1 ds = −

∫ t

0

∫
Rd
ε∇ρ · ∇ϕ+ V · ∇ϕdxds. (2.21)

In addition, there holds ρ(., 0) = ρ0(.) and therefore ρ is called a weak solution of the heat

equation.

Proof. The proof will basically be the same as in the previous lemma and we will therefore

keep the calculations shorter. In addition, we can assume that the initial data ρ0 = 0. The
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solution for arbitrary ρ0 is then given by the sum of the solution ρh of the homogeneous

heat equation with inital data ρ0 (for which the previous lemma can be applied) and ρp, the

solution of the non-homogeneous heat equation with inital data equal to zero.

We start by taking a sequence Vn ∈
(
C∞([0, T ]× Rd) ∩ L∞(0, T, L2(Rd))

)d
that converges

towards V in
(
L∞(0, T, L2(Rd))

)d
. Then the sequence fn = div(Vn) ∈ C∞([0, T ]×Rd) leads

to a sequence ρn ∈ C∞((0, T )×Rd)∩C([0, T ]×Rd)∩W 1,2 of solutions of the heat equation

(see remark 2.17), such that there holds

ρn(x, t) = (G ∗ ρ0)(x, t) +

∫ t

0

∫
Rd

G(x− y, t− s) div(Vn(y, s)) dyds (2.22)

= (G ∗ ρ0)(x, t)−
∫ t

0

∫
Rd
∇G(x− y, t− s) · Vn(y, s) dyds (2.23)

∂ρn
∂t

= ε∆ρn + div(Vn). (2.24)

Now we consider for fixed n,m ∈ N, the differences ρ̄ = ρn − ρm and V̄ = Vn − Vm.

Let ‖Vn − Vm‖(L2([0,T ]×Rd))d ≤ δ. Then, by using the same procedure as in the proof of

theorem 2.15 we obtain

1

2

∂

∂t
‖ρ̄‖2L2(Rd) =

∫
Rd
−ε∇ρ̄ · ∇ρ̄− V̄ · ∇ρ̄ dx

≤ −ε‖∇ρ̄‖2L2(Rd) +
α

2
‖∇ρ̄‖2L2(Rd) +

1

2α
‖V̄ ‖2(L2(Rd))d .

And therefore by integrating with respect to t and then fixing α = ε we obtain in the same

way as before

‖ρ̄‖L2([0,T ]×Rd) ≤ C(ε, T )‖V̄ ‖(L∞(0,T,L2(Rd)))d ≤ C(ε, T ) · δ

‖∇ρ̄‖L2([0,T ]×Rd) ≤ C ′(ε, T )‖V̄ ‖(L∞(0,T,L2(Rd)))d ≤ C ′(ε, T ) · δ.

This estimates allow us to easily estimate ‖ ∂∂t ρ̄‖L2(0,T,H−1(Rd)) ≤ C ′′(ε, T ) · δ.
Therefore ρn is a Cauchy sequence in W 1,2 and converges towards a function ρ′ ∈ W 1,2.

By using the exact same arguments as in theorem 2.15 we can pass the limit in the weak

formulation and achieve for all ϕ ∈ L2(0, T,H1(Rd))

∫ t

0

<
∂

∂t
ρ′, ϕ >H−1 ds = −

∫ t

0

∫
Rd
ε∇ρ′ · ∇ϕ+ V · ∇ϕdxds.

Now we need to identify ρ′ with ρ given by the formula (2.20). This can be done easily by

looking at the difference between ρn and ρ:
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‖ρn − ρ‖L2(Rd) ≤
∥∥∥∥∫ t

0

∇G(., t− s) ∗ (Vn(., s)− V (., s)) ds

∥∥∥∥
L2(Rd)

≤
∫ t

0

‖∇G(., t− s)‖L1(Rd)‖Vn(., s)− V (., s)‖(L2(Rd))d ds

≤ C(d, ε) ‖Vn − V ‖(L∞(0,T,L2(Rd)))d

∫ t

0

(t− s)−1/2 ds

≤ C(d, ε) δ t1/2

≤ C(d, ε, T ) δ → 0.

Remark 2.17. For reasons of clarity we skipped a similar result to corollary 2.13 in the

case of f(x, t) = div(V (x, t)), V ∈
(
L∞(0, T, L2(Rd))

)d
. The proof is mainly the same to

the one given above, where f ∈ L2([0, T ]× Rd).

2.2 A Special Elliptic Equation

We now direct our attention to the elliptic equation

−∆S(x) + S(x) = f(x) , x ∈ Rd (2.25)

for f ∈ Lr(Rd), r ≥ 1. Just as in the previous section, thanks to Fourier transformation,

there exists an explicit representation of the solution for smooth f(x) (see for instance [4,

Chapter 12, Example 8]).

Proposition 2.18. Let f(x) ∈ C∞(Rd) with compact support. Then there exists a unique

strong solution S ∈ S(Rd) of equation (2.25) given by

S = B ∗ f , where B(x) :=

∫ ∞
0

e−t−
|x|2
4t

(4πt)d/2
dt (2.26)

is called the Bessel potential. Here S(Rd) denotes the Schwartz space or space of rapidly

decreasing functions.

S :=

{
f ∈ C∞(Rd) | sup

x∈Rd
|xαDβf(x)| <∞ ∀α, β

}
, (2.27)

where α and β are arbitrary multi-indices.

Just as before we need the following properties of B.

Lemma 2.19.

‖B‖L1(Rd) = 1 (2.28)

‖∇B‖L1(Rd) = C < ∞ (2.29)
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Proof. Straightforward compution will lead to the desired properties.

‖B‖L1(Rd) =
1

(4π)d/2

∫ ∞
0

e−t

td/2

∫
Rd
e−
|x|2
4t dx︸ ︷︷ ︸

=(4πt)d/2

dt

=

∫ ∞
0

e−tdt = 1

‖∇B‖L1(Rd) =
1

(4π)d/2

∫ ∞
0

e−t

td/2

∫
Rd

|x|
2t
e−
|x|2
4t dxdt

=

∣∣∣∣∣ x( 1
4t )

1/2 = u

dx( 1
4t )

d/2 = du

∣∣∣∣∣ = C(d)

∫ ∞
0

e−t

t1/2

∫
Rd
|u|e−|u|

2

du︸ ︷︷ ︸
=C′(d)

dt

= C ′′(d)

∫ ∞
0

e−t

t1/2
dt︸ ︷︷ ︸

=
√
π

= C̄(d) <∞

Now we can introduce a suitable defintion of weak solutions of (2.25) and prove existence

and uniqueness.

Theorem 2.20. For every f(x) ∈ L2(Rd) the function S(x) defined by S = B ∗ f , where B

is the Bessel potential, is an element of the Sobolev space H1(Rd) and satisfies∫
Rd
∇S · ∇ϕ+ Sϕ dx =

∫
Rd
fϕ dx (2.30)

for all ϕ ∈ H1(Rd). Therefore S is called a weak solution.

In addition, if S̄ ∈ H1(Rd) satisfies the weak formulation (2.30), then S̄ = S.

Proof. Just like before we want to use an approximation argument. Let fn ∈ C∞0 (Rd) be a

sequence that converges towards f in the sense of L2. Let Sn be the corresponding sequence

defined by Sn = B ∗ fn. The previous proposition tells us that Sn ∈ S(Rd) ⊂ C∞(Rd) are

strong solutions of the elliptic equation −∆Sn(x) + Sn(x) = fn(x).

Since fn, f ∈ L2(Rd), it is easy to see that Sn, S ∈ L2(Rd), where S = B ∗ f .

‖Sn‖L2(Rd) = ‖B ∗ fn‖L2(Rd) ≤ ‖B‖L1(Rd)‖fn‖L2(Rd) = ‖fn‖L2(Rd)

‖S‖L2(Rd) = ‖B ∗ f‖L2(Rd) ≤ ‖B‖L1(Rd)‖f‖L2(Rd) = ‖f‖L2(Rd)

Subtracting the differential equations for Sm and Sn from each other, multiplying the result
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by Sn − Sm and integrating over Rd yields∫
Rd
|∇(Sn − Sm)|2 + (Sn − Sm)2 dx =

∫
Rd

(Sn − Sm)(fn − fm) dx

≤ 1

2

∫
Rd

(Sn − Sm)2 dx+
1

2

∫
Rd

(fn − fm)2 dx,

where we have used Young’s inequality. Therefore

‖Sn − Sm‖2L2(Rd) +
1

2
‖∇(Sn − Sm)‖2L2(Rd) ≤ 1

2
‖fn − fm‖2L2(Rd)

⇒ ‖Sn − Sm‖2H1(Rd) ≤ ‖fn − fm‖2L2(Rd).

Hence, Sn converges in H1(Rd) towards some S′ ∈ H1(Rd). The Sn clearly satisify the weak

formulation (2.30) of the differential equation. Due to the convergence in H1(Rd) we can

pass the limit in the weak formulation and obtain for all ϕ ∈ H1(Rd)∫
Rd
∇S′ · ∇ϕ+ S′ϕdx =

∫
Rd
fϕ dx.

Now we need to identify S′ with S. We do so by simply looking at the difference between

Sn and S

‖Sn − S‖L2(Rd) = ‖B ∗ (fn − f)‖L2(Rd)

≤ ‖B‖L1(Rd)‖fn − f‖L2(Rd)

≤ ‖fn − f‖L2(Rd) → 0,

and therefore Sn → S = S′.

In order to prove uniqueness, we subtract the weak formulations for S and S̄ and use the

difference ϕ = S − S̄ ∈ H1(Rd) as testfunction∫
Rd
∇(S − S̄) · ∇(S − S̄) + (S − S̄)2 dx =

∫
Rd

(f − f)(S − S̄) dx

⇒ ‖∇(S − S̄)‖2L2(Rd) + ‖S − S̄‖2L2(Rd) = 0,

and therefore S = S̄.

Corollary 2.21 (Higher regularity). Let f ∈ H1(Rd)∩L∞(Rd). Then the solution S(x) of

(2.30) given by the convolution S = B ∗ f features also improved regularity, namely

• ‖∇S‖L∞(Rd) ≤ C‖f‖L∞(Rd)

• ‖S‖H2(Rd) ≤ C‖f‖H1(Rd).

Proof. These two inequalities can easily be obtained by using the representation of S

‖∇S‖L∞(Rd) = ‖∇B ∗ f‖L∞(Rd)

≤ ‖∇B‖L1(Rd)‖f‖L∞(Rd)

≤ C‖f‖L∞(Rd),
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where we have used Hölder’s inequality and estimate (2.29). We continue analogously for

the H2-estimate

‖ ∂2

∂xixj
S‖L2(Rd) = ‖ ∂B

∂xi
∗ ∂f
∂xj
‖L2(Rd)

≤ ‖∇B‖L1(Rd)‖∇f‖L2(Rd)

≤ C‖∇f‖H1(Rd).

2.3 Weak Solutions, Local-in-Time Existence

Our aim in this section is to prove existence and uniqueness of a local solution of (2.7).

Because we have explicit representations of the non-homogeneous heat equation and the

elliptic equation we define a solution of our problem as a fixed point of an operator T . To

define T properly, we need to establish the underlying space first.

Definition 2.22. Let T > 0 and M > 0, then we define

XT := L∞(0, T, L1(Rd) ∩ L∞(Rd))

‖f‖XT := ‖f‖L∞(0,T,L1(Rd)) + ‖f‖L∞(0,T,L∞(Rd)) ∀f ∈ XT

XM
T := {f ∈ XT | ‖f‖XT ≤M}.

Definition 2.23. Let ρ0 ∈ L1 ∩ L∞, then for ρ ∈ XM
T we formally define

T (ρ)(x, t) := (G ∗ ρ0)(x, t) +

∫ t

0

∫
Rd
∇G(x− y, t− s) · (f(ρ)∇(B ∗ ρ))(y, s) dyds. (2.31)

In order to define T rigorously (which will be done in lemma 2.25) and identify a fixed point

of T with some kind of weak solution we are looking for, we need the following short lemma.

Lemma 2.24. Let ρ ∈ XM
T for some constants T,M > 0. Then the function defined by

g := f(ρ)∇(B ∗ ρ) is in
(
L∞(0, T, L2)

)d
.

Proof.

‖g‖(L2(Rd))d = ‖f(ρ)∇(B ∗ ρ)‖(L2(Rd))d

≤ ‖f(ρ)‖L∞(Rd)‖∇B ∗ ρ‖(L2(Rd))d

≤ LM‖ρ‖L∞(Rd)‖∇B‖L1(Rd)‖ρ‖L2(Rd)

≤ CLM‖ρ‖L∞(Rd)‖ρ‖L2(Rd)

= CLM‖ρ‖L∞(Rd)‖ρ2‖1/2
L1(Rd)

≤ CLM‖ρ‖L∞(Rd)‖ρ‖
1/2

L1(Rd)
‖ρ‖1/2

L∞(Rd)

= CLM‖ρ‖3/2L∞(Rd)
‖ρ‖1/2

L1(Rd)
,
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where we have used ‖∇B‖L1(Rd) < C (corollary 2.21 of the previous section) and Hölder’s

inequality. Taking the supremum yields

‖g‖(L∞(0,T,L2(Rd)))d ≤ CLM‖ρ‖3/2L∞(0,T,L∞(Rd))
‖ρ‖1/2

L∞(0,T,L1(Rd))

≤ CLMM
2

Due to theorem 2.16, this allows us to understand T (ρ) to be the weak solution of the non-

homogeneous heat equation (2.7). This will be useful both in the following and in addition

a justification to work with T in the first place.

To prove the existence of a fixed point we will take advantage of the Banach fixed point

theorem (also known as the contraction mapping theorem, see for instance [5, Chapter 1]). It

provides us with existence and uniqueness of fixed points of contractive self-maps of banach

spaces.

Theorem 2.25. There exist M > 0 and T > 0 such that T is a self mapping, i.e.

T : XM
T → XM

T .

Proof. Let ρ ∈ XM
T and 1 ≤ r ≤ ∞, then using estimates (2.10), (2.11) and Hölder’s

inequality several times, yields

‖T (ρ)‖Lr ≤ ‖(G ∗ ρ0)(x, t)‖Lr +

∥∥∥∥∫ t

0

∫
Rd
∇G(x− y, t− s)(f(ρ)∇(B ∗ ρ))(y, s) dyds

∥∥∥∥
Lr

≤ ‖G‖L1︸ ︷︷ ︸
= 1

·‖ρ0‖Lr +

∫ t

0

‖(∇G(., t− s) ∗ (f(ρ)∇(B ∗ ρ))(., s))‖Lr ds

≤ ‖ρ0‖Lr +

∫ t

0

‖(∇G)(., t− s)‖L1 · ‖(f(ρ)∇(B ∗ ρ))(., s)‖Lr ds

≤ ‖ρ0‖Lr + C(d) ·
∫ t

0

(t− s)−1/2 · ‖f(ρ(., s))‖L∞‖(∇B ∗ ρ)(., s)‖Lr ds

≤ ‖ρ0‖Lr + C(d) ·
∫ t

0

(t− s)−1/2 · ‖f(ρ(., s))‖L∞‖∇B‖L1‖ρ(., s)‖Lr ds

≤ ‖ρ0‖Lr + C ′(d) · ‖ρ‖L∞(0,T,Lr)‖f(ρ)‖L∞(0,T,L∞)

∫ t

0

(t− s)−1/2 ds

≤ ‖ρ0‖Lr + Cd · ‖ρ‖L∞(0,T,Lr)‖f(ρ)‖L∞(0,T,L∞) · t1/2.

Since ρ ∈ XM
T ⇒ ‖ρ‖L∞(0,T,L∞) ≤ M and f(x) is Lipschitz continuous with f(0) = 0, we

get:

‖T (ρ)‖L∞(0,T,Lr) ≤ ‖ρ0‖Lr + Cd · ‖ρ‖L∞(0,T,Lr) · sup
|x|≤M

|f(x)| · T 1/2 (2.32)

≤ ‖ρ0‖Lr + CdMLM · ‖ρ‖L∞(0,T,Lr)T
1/2. (2.33)
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In particular if we insert r = 1,∞

‖T (ρ)‖L∞(0,T,L1) ≤ ‖ρ0‖L1 + CdM
2LMT

1/2

‖T (ρ)‖L∞(0,T,L∞) ≤ ‖ρ0‖L∞ + CdM
2LMT

1/2.

In conclusion we obtain:

‖T (ρ)‖XT ≤ C1 + T 1/2 · (C2M
2LM )

!
≤M

with constants C1 = ‖ρ0‖L1 + ‖ρ0‖L∞ and C2, C3 depending only on the dimension d and

the diffusion constant ε. The inequality above is clearly satisified if

C1 ≤M and T 1/2 ≤ M − C1

C2M2LM
. (2.34)

Theorem 2.26. There exist M > 0 and T > 0 such that T is a contraction:

‖T (f)− T (g)‖XT < ‖f − g‖XT ∀f, g ∈ XM
T .

Proof. We calculate the difference between two functions ρ1 and ρ2 using similar methods

as in the proof of the theorem above. Note that the term including ρ0 cancels immediately.

Let ρ1, ρ2 ∈ XM
T and 1 ≤ r ≤ ∞

‖T (ρ1)− T (ρ2)‖Lr ≤

≤
∥∥∥∥∫ t

0

(
∇G(., t− s)

)
∗
[(
f(ρ1)(∇B ∗ ρ1)− f(ρ2)(∇B ∗ ρ2)

)
(., s)

]
ds

∥∥∥∥
Lr

≤ C · t1/2 · ‖f(ρ1)(∇B ∗ ρ1)− f(ρ2)(∇B ∗ ρ2)‖L∞(0,T,Lr)

= C · t1/2 · ‖f(ρ1)
(
∇B ∗ (ρ1 − ρ2)

)
+
(
f(ρ1)− f(ρ2)

)
(∇B ∗ ρ2)‖L∞(0,T,Lr)

≤ C · t1/2 · ‖∇B‖L1 · ‖f(ρ1)‖L∞(0,T,L∞) · ‖ρ1 − ρ2‖L∞(0,T,Lr)

+ C · t1/2 · ‖∇B‖L1 · ‖f(ρ1)− f(ρ2)‖L∞(0,T,Lr) · ‖ρ2‖L∞(0,T,L∞)

≤ C ′ · t1/2 ·
(
LM ·M + LM ·M

)
· ‖ρ1 − ρ2‖L∞(0,T,Lr)

≤ C ′′ · t1/2 · LM ·M · ‖ρ1 − ρ2‖L∞(0,T,Lr).

Here, we have used again that f(x) is Lipschitz continuous and f(0) = 0. Similarly to the

proof above we now insert r = 1,∞ and obtain

‖T (ρ1)− T (ρ2)‖L∞(0,T,L1) ≤ C · T 1/2 · LM ·M · ‖ρ1 − ρ2‖L∞(0,T,L1)

‖T (ρ1)− T (ρ2)‖L∞(0,T,L∞) ≤ C · T 1/2 · LM ·M · ‖ρ1 − ρ2‖L∞(0,T,L∞)
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and therefore, for some constant C3(ε, d),

‖T (ρ1)− T (ρ2)‖XT ≤ C3 · T 1/2 · LM ·M · ‖ρ1 − ρ2‖XT
!
≤ ‖ρ1 − ρ2‖XT .

Hence, if

T 1/2 ≤ (C3LMM)−1, (2.35)

then T is a contraction.

Now we easily conclude

Corollary 2.27 (Existence and uniqueness of a fixed point). Let ρ0 ∈ L1 ∩L∞, then there

exists a fixed point ρ(x, t) ∈ XM
T of T for some T > 0.

Proof. If there is a pair M,T that fulfils inequalities (2.34) and (2.35) of the two previous

theorems then T ist a contractive self-mapping on the banach space XM
T and the banach

fixed point theorem provides us with a unique fixed point in XM
T . Let M = 2C1 and

T 1/2 = min(
1

C3LMM
,
M − C1

C2M2LM
)

= min(
1

2C3LMC1
,

1

4C2C1LM
)

=
C4

C1LM

for some constant C4 depending only on ε and d and C1 = ‖ρ0‖L1 + ‖ρ0‖L∞ . This choice

clearly satisfies the two inequalties and therefore the proof is complete.

The following corollary will conclude this section and summarise the results.

Corollary 2.28 (Local existence of weak solution). Let ρ0 ∈ L1 ∩ L∞, then there exists a

unique ρ ∈ XM
T ∩W 1,2(0, T,H1(Rd), L2(Rd)) that satisifies

•
∫ t

0

<
∂

∂t
ρ, ϕ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇ϕ+

(
f(ρ)∇(B ∗ ρ)

)
· ∇ϕdxds

∀ϕ ∈ L2(0, T,H1(Rd)) (2.36)

• ρ(., 0) = ρ0(.)

for some T,M > 0.

Proof. Due to corollary 2.27 there exists a fixed point ρ of T and due to theorem 2.16 from

the previous section we can interpret ρ as a weak solution of the non-homogeneous heat

equation with source div(f(ρ)∇(B ∗ ρ)) and inital data ρ0.
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Remark 2.29 (Initial data in Lp).

The strong assumptions on the initial data are not necessary to achieve a fixed point and

therefore local existence. In fact, ρ0 ∈ Lp(Rd) for some p ≥ 1 is sufficient. To see this, we

can simply define T on L∞(0, T, Lp(Rd)). If we want to prove that T is a self-map and a

contraction, we have to perform the same steps as in the proof above, fixing r = p instead

of r = 1,∞. We will later see that important properties like mass conservation and even

global existence do not necessarily depend on the higher regularity we required. We made

the extra effort because in that way we can interpret ρ as weak solution of (2.7) and this

will be crucial to prove decay estimates as t goes to infinity (section 2.4).

2.4 Properties of the Local Solution and Global Existence

In this section we want to study the long time behaviour of our system. Naturally, the

characteristic for large time or even the existence of a global-in-time solution do heavily

depend on the behaviour of f . We can however, without any further requirements, prove

global existence and strong decay estimates if the inital mass is not to large. Therefore, in

this section, we will not impose any further restrictions on f , we shall just assume that f is

Lipschitz continuous and f(0) = 0.

We start by proving some properties (namely positivity, mass conservation and uniform

L∞-estimates) of the local solution we found in the previous section. These properties will

help us find a global solution. The idea will be to take a T -step in time and take ρ(., T ) as

the new initial value. If we can guarantee that ‖ρ(., t)‖L1 + ‖ρ(., t)‖L∞ does not increase,

we can take another step with the same stepsize T and so on.

Theorem 2.30 (Positivity). Let ρ0(x) > 0, then the local weak solutions ρ(x, t) and S(x, t)

of (2.7) are positive for all 0 ≤ t ≤ T .

Proof. Let us for a moment consider f̃(x) = χR+(x)f(x), where χR+(x) is the characteristic

function of R+. Since f̃(x) is clearly Lipschitz continuous (f(0) = 0), we can find a weak

solution for our new sensitivity function. Using ϕ = [ρ]− = min(0, ρ) as testfunction (see

proposition 1.11) in the weak formulation (2.36) leads to∫ t

0

<
∂

∂t
ρ, [ρ]− >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇[ρ]− + f̃(ρ)∇(B ∗ ρ) · ∇[ρ]− dxds

⇒ 1

2

∫ t

0

∂

∂t
‖[ρ]−‖2L2(Rd) ds = −ε‖∇[ρ]−‖2L2(0,T,L2(Rd))

+

∫ t

0

∫
Rd

[ρ]−f̃(ρ)︸ ︷︷ ︸
=0

∇(B ∗ ρ) · ∇ρ dxds

= −ε‖∇[ρ]−‖2L2(0,T,L2(Rd)).
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And therefore

‖[ρ]−(., t)‖2L2(Rd) + 2ε‖∇[ρ]−‖2L2(0,T,L2(Rd)) = ‖[ρ]−(., 0)‖2L2(Rd)︸ ︷︷ ︸
=0

where we have used that ρ0(x) > 0. Clearly, [ρ]−(x, t) = 0⇔ ρ(x, t) ≥ 0.

Since ρ(x) ≥ 0, the change from f(x) to f̃(x) has not changed anything after all, because

clearly f(x) and f̃(x) are equal on the range of ρ.

For the positivity of S we follow the same procedure. Taking ϕ = [S]− = min(0, S) as

testfunction in the weak formulation of the elliptic equation yields∫
Rd
∇S(., t) · ∇[S]−(., t) dx+

∫
Rd
S(., t)[S]−(., t) dx =

∫
Rd
ρ(., t)︸ ︷︷ ︸
≥0

[S]−(., t)︸ ︷︷ ︸
≤0

dx

⇒ ‖∇[S]−(., t)‖2L2(Rd) + ‖[S]−(., t)‖2L2(Rd) ≤ 0

and therefore [S]−(x, t) = 0⇔ S(x, t) ≥ 0.

Next, we turn our attention to the conservation of mass. Since we can write our model in

divergence form ∂
∂tρ = div(ε∇ρ − f(ρ)∇S), we expect the mass to be conserved and we

will see that this is naturally incorporated in this model.

Theorem 2.31 (Mass conservation). Let M(t) :=
∫
Rd ρ(x, t)dx. Then M(t) = M(0) =: M0

for all t ≤ T .

Proof. Using the representation formula of our weak solution leads directly to

M(t) =

∫
Rd
ρ(x, t) dx

=

∫
Rd

(G ∗ ρ0)(x, t) dx+

∫ t

0

∫
Rd

∫
Rd
∇G(x− y, t− s) dx︸ ︷︷ ︸

= 0

·(f(ρ)∇(B ∗ ρ))(y, s) dyds

=

∫
Rd
ρ0(x, t) dx = M0.

Knowing that the L1-norm of ρ(x, t) is conserved (and 0 ≤ ρ(x, t), assuming that the inital

data is non-negative), we still need a global L∞-bound of ρ. As mentioned before, this can be

done by either restricting the initial data or the sensivity function f(x). In the following, we

turn our attention to the case of subcritical initial mass, however we will discuss properties

of f(x) that will lead to a prevention of overcrowing in section 2.5.

In fact we will prove even more than just global boundedness, but we will derive decay

estimates for the Lp(Rd)-norm for 2 ≤ p ≤ ∞. Numerical results and the substantial
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similarity in the heat equation suggest that the L∞-norm of ρ(x, t) tends to zero as t goes

to infinity. We will see that this is in fact the case if the total mass is small enough.

Let us start by proving Lp decay estimates for 2 ≤ p <∞.

Lemma 2.32. Let f(x) ≥ 0 for x > 0, 0 ≤ ρ0(x) and ρ0(x) ∈ L1(Rd) ∩ L∞(Rd). Then,

there exists a constant C(d, ε, L) depending only on the dimension d, the diffusivity ε and

on the Lipschitz constant L, such that if the total mass satisifies∫
Rd
ρ0 dx < C(d, ε, L). (2.37)

Then the weak solution ρ(x, t) of (2.7) satisifies the decay estimates

‖ρ(t)‖Lp(Rd) ≤ C(t+ 1)−
d(p−1)

2p , 2 ≤ p <∞. (2.38)

Proof. Let ρ ∈ XM
T ∩W 1,2(0, T,H1(Rd), L2(Rd)) be the weak local-in-time solution of (2.36).

Our first step is to prove that ϕ := pρp−1 ∈W 1,2 and we can therefore use it as testfunction

in the weak formulation (2.36).

‖pρp−1‖2L2(Rd) = p2‖ρ2(p−1)‖L1(Rd)

≤ p2‖ρ‖2p−3
L∞(Rd)

‖ρ‖L1(Rd)

≤ p2M2(p−1)

‖p∇ρp−1‖2L2(Rd) = p2(p− 1)2‖ρp−2∇ρ‖2L2(Rd)

≤ p2(p− 1)2‖ρp−2‖2L2(Rd)‖∇ρ‖
2
L2(Rd)

≤ p2(p− 1)2M2(p−2)‖∇ρ‖2L2(Rd) < ∞

< p
∂

∂t
ρp−1, ψ >H−1(Rd) = p(p− 1) < ρp−2 ∂

∂t
ρ, ψ >H−1(Rd)

= p(p− 1) <
∂

∂t
ρ, ρp−2ψ >H−1(Rd)

= p(p− 1)‖ ∂
∂t
ρ‖H−1(Rd)‖ρp−2ψ‖H1(Rd) < ∞

for some testfunction ψ ∈ H1(Rd), ‖ψ‖H1(Rd) ≤ 1. Therefore, we can easily integrate with

30



Keller-Segel Model Stefan Schuchnigg

respect to time and obtain ϕ := pρp−1 ∈W 1,2. Inserting ϕ into the weak formulation yields

∂

∂t

∫
Rd
ρp dx = −εp

∫
Rd
∇ρp−1 · ∇ρ dx+ p

∫
Rd
∇ρp−1f(ρ) · ∇S dx

= −εp(p− 1)

∫
Rd
ρp−2∇ρ · ∇ρ dx+ p(p− 1)

∫
Rd
ρp−2∇ρf(ρ) · ∇S dx

= −4ε(p− 1)

p

∫
Rd
|∇ρp/2|2 dx− p(p− 1)

∫
Rd

(∫ ρ

0

up−2f(u)du

)
·∆S dx

= −4ε(p− 1)

p

∫
Rd
|∇ρp/2|2 dx+ p(p− 1)

∫
Rd

(∫ ρ

0

up−2f(u)du

)
· (ρ− S) dx

≤ −4ε(p− 1)

p

∫
Rd
|∇ρp/2|2 dx+ p(p− 1)

∫
Rd

(∫ ρ

0

up−2f(u)du

)
· ρ dx,

where we have used 0 ≤ ρ and therefore 0 ≤ f(ρ) and S ≥ 0. Here,
∫ ρ

0
up−2f(u)du is a

formal notation denoting the primitive of up−2f(u) evaluated at ρ. Thanks to the Lipschitz

continuity of f we can easily estimate∫ ρ

0

up−2f(u) du =

∫ ρ

0

up−2(f(u)︸︷︷︸
≥0

− f(0)︸︷︷︸
=0

) du ≤ L
∫ ρ

0

up−2(u− 0) du ≤ L

p
ρp.

Combining the two inequalities above leads to

∂

∂t

∫
Rd
ρp dx ≤ −4ε(p− 1)

p

∫
Rd
|∇ρp/2|2 dx+ L(p− 1)

∫
Rd
ρp+1 dx.

Using a version of the Gagliardo-Nirenberg inequality (see for instance [9])

‖ρp+1‖L1 ≤ C(d, p)‖ρ‖Lα‖∇ρp/2‖2L2 ≤ C(d, p)‖ρ0‖1/αL1 ‖∇ρp/2‖2L2

where α = 1 for d = 1, 2 and α = d/2 for d > 2, leads to

∂

∂t
‖ρp‖L1 ≤ −4ε(p− 1)

p
‖∇ρp/2‖2L2 + L(p− 1)C(d, p)‖ρ0‖1/αL1 ‖∇ρp/2‖2L2 .

If 4ε(p − 1)p−1 > L(p − 1)C(d, p)‖ρ0‖1/αL1 ⇔ ‖ρ0‖L1 < ( 4ε
pLC(d,p) )α, the inequality can be

written as
∂

∂t
‖ρp‖L1 + C ′‖∇ρp/2‖2L2 ≤ 0 for some C ′ > 0.

Due to the following interpolation inequalitiy (see for instance [10])

‖ρ‖
(d(p−1)+2)p
d(p−1)

Lp ≤ C ′′‖∇ρp/2‖2L2‖ρ‖
2p

d(p−1)

L1

we can finally conclude
∂

∂t
‖ρp‖L1 + C̄‖ρp‖

d(p−1)+2
d(p−1)

L1 ≤ 0.
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Applying Gronwall’s lemma leads to the polynomial decay

‖ρ(t)‖Lp ≤ (C1t+ C2)−
d(p−1)

2p .

Lemma 2.33. Let ρ0 satisfy the same conditions as in lemma 2.32. Then, the solution

ρ(x, t) satisifies the L∞-decay estimate

‖ρ(t)‖L∞(Rd) ≤ C(t+ 1)−
d
2 . (2.39)

Proof. Using the implicit representation of ρ provided by formula (2.31), we obtain for

t > t0 > 0

‖ρ(., 2t)‖L∞(Rd) = ‖G(., t) ∗ ρ(., t) +

∫ 2t

t

∇G(., 2t− s) ∗ (f(ρ)∇(B ∗ ρ))(., s) ds‖L∞(Rd)

≤ ‖G(., t) ∗ ρ(., t)‖L∞(Rd) +

+

∥∥∥∥∫ 2t

t

∇G(., 2t− s) ∗ (f(ρ)∇(B ∗ ρ))(., s) ds

∥∥∥∥
L∞(Rd)

≤ ‖G(t)‖L∞(Rd)‖ρ(t)‖L1(Rd) +

+

∥∥∥∥∫ t

0

∇G(t− s) ∗ (f(ρ)∇(B ∗ ρ))(t+ s) ds

∥∥∥∥
L∞(Rd)

≤ ‖G(t)‖L∞(Rd)‖ρ0‖L1(Rd) +

+

∫ t

0

‖∇G(t− s)‖Lp(Rd)‖f(ρ)∇(B ∗ ρ)(t+ s)‖Lq(Rd) ds

where we have taken into account that the mass is conserved and applied Hölder’s inequality

(with 1
p + 1

q = 1). Inserting the L∞-estimate for G yields

‖ρ(., 2t)‖L∞(Rd) ≤

≤ C ′t−d/2‖ρ0‖L1(Rd) +

∫ t

0

‖∇G(t− s)‖Lp(Rd)‖f(ρ)∇(B ∗ ρ)(t+ s)‖Lq(Rd) ds

≤ Ct−d/2 +

∫ t

0

‖∇G(t− s)‖Lp(Rd)‖f(ρ(t+ s))‖Lu(Rd)‖∇B‖Lv(Rd)‖ρ(t+ s)‖Lw(Rd) ds

≤ Ct−d/2 + L‖∇B‖Lv(Rd)

∫ t

0

‖∇G(t− s)‖Lp(Rd)‖ρ(t+ s)‖Lu(Rd)‖ρ(t+ s)‖Lw(Rd) ds

for 1
u + 1

v + 1
w = 1

q + 1, where we have used Lipschitz continuity of f and again Hölder’s

inequality. Applying the Lp-estimates proven in lemma 2.32 leads to

‖ρ(x, 2t)‖L∞(Rd) ≤

≤ Ct−d/2 + L‖∇B‖Lv(Rd)

∫ t

0

‖∇G(t− s)‖Lp(Rd)(C1(t+ s) + C2)−
d(u−1)

2u − d(w−1)
2w ds

≤ Ct−d/2 + L‖∇B‖Lv(Rd)

∫ t

0

(t− s)−
d(p−1)

2p − 1
2 (C1(t+ s) + C2)−d+ d

2 ( 1
u+ 1

w ) ds

32



Keller-Segel Model Stefan Schuchnigg

where we have used estimate (2.11) for the convolution kernel G. Choosing p < d
d−1 and

v = 1 implies that the exponent becomes −d+ d
2 ( 1
u + 1

w ) = −d+ d
2

1
q = −d2 ( 1

p +1). Therefore

‖ρ(x, 2t)‖L∞(Rd) ≤ Ct−d/2 + C ′
∫ t

0

(t− s)−
d(p−1)

2p − 1
2 (t+ s+ C ′′)−

d
2 ( 1
p+1) ds

≤ Ct−d/2 + C ′(t+ C ′′)−
d
2 ( 1
p+1)

∫ t

0

(t− s)−
d(p−1)

2p − 1
2 ds

≤ Ct−d/2 + C ′(t+ C ′′)−
d
2 ( 1
p+1)t−

d(p−1)
2p + 1

2

≤ Ct−d/2 + C ′t−d+ 1
2

≤ C̄t−d/2.

Here, the last step is justified by d ≥ 1 ⇔ −d + 1/2 ≤ −d/2. Since ‖ρ(t)‖L∞(Rd) is

bounded by one, we can always find a constant C that provides us with the desired estimate

‖ρ(t)‖L∞(Rd) ≤ C(t+ 1)−
d
2 .

As mentioned above, we can now state a corollary including global existence of weak solu-

tions.

Corollary 2.34 (Global existence of weak solutions). There exists a constant C(d, ε) such

that if

• ‖ρ0‖L1(Rd) < C(d, ε), ρ0 ∈ L∞(Rd), ρ0 ≥ 0;

• f(x) is Lipschitz continuous, f(0) = 0, f(x) ≥ 0 ∀x > 0.

Then, for every T > 0 there exists a unique global weak solution ρ of (2.7) satisfying

• ρ ∈W 1,2(0, T,H1(Rd), L2(Rd))

•
∫ t

0

<
∂

∂t
ρ, ϕ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇ϕ+

(
f(ρ)∇(B ∗ ρ)

)
· ∇ϕdxds

∀ϕ ∈ L2(0, T,H1(Rd))

• ρ(., 0) = ρ0(.)

• ρ(x, t) ≥ 0

• ‖ρ(t)‖L1 = ‖ρ0‖L1

• ‖ρ(t)‖Lp ≤ (C1t+ C2)−
d(p−1)

2p , 2 ≤ p ≤ ∞, C1, C2 ∈ R+.

Proof. We start by taking a T0-step in time, where [0, T0] is the interval of existence of the

local solution. Now we want to take another step with initial data ρ(T0). Since we have a

global bound of the L∞-norm, we can guarantee that the stepsize does not decrease with

every step we take. Therefore, we can extend our solution uniquely to any point T > 0. The

stated properties have already been proven above.
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Figure 1: Three different F1-functions

2.5 Prevention of Overcrowding

In this section we want to find restrictions on f(x) that prevent the system from overcrow-

ding. Therefore we will not need any further assumptions on ρ0 to achieve global existence.

Definition 2.35. For further reference we say a function f(x) has property ( Fb ) if f(x)

is Lipschitz continuous, f(0) = f(b) = 0 for some b > 0 and f(x) ≥ 0 for 0 ≤ x ≤ b.

Lemma 2.36. Let f have ( Fb ), 0 ≤ ρ0 ≤ b and ρ ∈ L1(Rd). Then, the weak solutions ρ

and S are also bounded by b.

Proof. Without loss of generality we shall assume f(x) = 0 for x ≥ b. For general f we just

follow the replacing procedure we already applied proving lemma 2.30.

We start by taking [ρ(x, t)−b]+ = max(ρ(x, t)−b, 0) as testfunction in the weak formulation

(2.36)∫ t

0

<
∂

∂t
ρ, [ρ(x, t)− b]+ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇[ρ(x, t)− b]+ dxds

+

∫ t

0

∫
Rd
f̃(ρ)∇(B ∗ ρ) · ∇[ρ(x, t)− b]+ dxds

⇒ 1

2

∫ t

0

∂

∂t
‖[ρ(x, t)− b]+‖2L2(Rd)ds = −ε‖∇[ρ(x, t)− b]+‖2L2(0,T,L2(Rd))

+

∫ t

0

∫
Rd
χR+ [ρ(x, t)− b]f̃(ρ)︸ ︷︷ ︸

=0

∇(B ∗ ρ) · ∇ρ dxds

= −ε‖∇[ρ(x, t)− b]+‖2L2(0,T,L2(Rd))

and therefore

‖[ρ(x, t)− b]+(., t)‖2L2(Rd) + 2ε‖∇[ρ(x, t)− b]+‖2L2(0,T,L2(Rd)) = ‖[ρ(x, t)− b]+‖2L2(Rd)︸ ︷︷ ︸
=0
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where we have used that ρ0(x) ≤ b. From this it follows that ρ(x, t) ≤ b and subsequently

that S(x, t) ≤ b by using [S(x, t)−b]+ as testfunction in the weak formulation and proceeding

exactly as in the proof of positivity.

Since we have a uniform L∞-bound, we can state the same result for global existence as in

the previous section (of course without the decay estimates):

Corollary 2.37 (Global existence of weak solutions with prevention of overcrowding). If

• 0 ≤ ρ0 ≤ b, ρ0 ∈ L1(Rd);

• f(x) has (Fb);

then, for every T > 0 there exists a unique global weak solution ρ of (2.7) satisfying

• ρ ∈W 1,2(0, T,H1(Rd), L2(Rd))

•
∫ t

0

<
∂

∂t
ρ, ϕ >H−1 ds = −ε

∫ t

0

∫
Rd
∇ρ · ∇ϕ+

(
f(ρ)∇(B ∗ ρ)

)
· ∇ϕdxds

∀ϕ ∈ L2(0, T,H1(Rd))

• ρ(., 0) = ρ0(.)

• 0 ≤ ρ(x, t) ≤ b

• ‖ρ(t)‖L1 = ‖ρ0‖L1 .

2.6 Stationary Solutions and Energy of the System

Another interesting question is whether stationary solutions exist. For the case of small

initial mass we have already proven that there cannot be any stationary solutions because

of the decay estimates (see corollary 2.34).

Our aim in this section is to derive a suitable functional that is non-increasing for every

solution and derive characteristics of stationary solutions.

We start by defining an energy function E(ρ, S):

Definition 2.38 (Energy functional). Let g(x) : Rd → Rd be a two times differentiable

and Lipschitz continuous function satisfying g(0) = 0. Then we define the energy function

E(ρ, S) : (H1(Rd) ∩ L1(Rd))2 −→ R in the following way

E(ρ, S) :=
1

2

∫
Rd

(|∇S|2 + S2) dx−
∫
Rd
ρS dx+ ε

∫
Rd
g(ρ) dx. (2.40)

Since S ∈ H1(Rd) and ρ ∈ L1(Rd) ∩ L2(Rd) (and g(x) is Lipschitz continuous) all three

integrals exist and E(ρ, S) is well defined.

Now we want to analyse what happens if we insert our weak solution into the functional.
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Lemma 2.39 (Partial derivatives). Let ρ, S satisfy the weak formulation of the elliptic

equation −∆S+S = ρ. Then, the partial derivatives of E in direction ξ ∈ H1(Rd)∩L1(Rd)
at the point (ρ, S) ∈ (H1(Rd) ∩ L1(Rd))2 exist, and are given by

DSE(ρ, S)(ξ) = 0 , ∀ξ ∈ H1(Rd) ∩ L1(Rd)

DρE(ρ, S)(ξ) = −
∫
Rd
ξS dx+ ε

∫
Rd
g′(ρ)ξ dx.

Proof. Since DSE(ρ, S) and DρE(ρ, S) are clearly linear functionals we only need to prove

that the difference quotient goes to zero. Let ξ ∈ H1(Rd) ∩ L1(Rd), then we compute

E(ρ, S + ξ)− E(ρ, S)−DSE(ρ, S)(ξ) =

=
1

2

∫
Rd

(|∇(S + ξ)|2 + (S + ξ)2) dx−
∫
Rd
ρ(S + ξ) dx+ ε

∫
Rd
g(ρ) dx

−1

2

∫
Rd

(|∇S|2 + S2) dx+

∫
Rd
ρS dx− ε

∫
Rd
g(ρ) dx

=
1

2

∫
Rd

2∇S · ∇ξ + |∇ξ|2 + 2Sξ + ξ2 dx−
∫
Rd
ρξ dx

=
1

2

∫
Rd
|∇ξ|2 + ξ2 dx+

∫
Rd
∇S · ∇ξ + Sξ − ρξ dx︸ ︷︷ ︸

=0

=
1

2
‖∇ξ‖2L2(Rd) +

1

2
‖ξ‖2L2(Rd)

=
1

2
‖ξ‖2H1(Rd) ≤ ‖ξ‖

2
H1(Rd).

Where we have used that S satisifies the elliptic equation and ξ ∈ H1(Rd) is a valid test-

function. Therefore, it follows

|E(ρ, S + ξ)− E(ρ, S)−DSE(ρ, S)(ξ)|
‖ξ‖L1(Rd) + ‖ξ‖H1(Rd)

≤
‖ξ‖2H1(Rd)

‖ξ‖L1(Rd) + ‖ξ‖H1(Rd)

≤
‖ξ‖2H1(Rd)

‖ξ‖H1(Rd)

≤ ‖ξ‖H1(Rd)
ξ→0−→ 0.

Here, ξ → 0 means that ‖ξ‖L1(Rd) + ‖ξ‖H1(Rd) → 0.
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Slightly more effort is needed to prove the result for the partial derivative with respect to ρ.

E(ρ+ ξ, S)− E(ρ, S)−DρE(ρ, S)(ξ) =

=
1

2

∫
Rd

(|∇S|2 + S2) dx−
∫
Rd

(ρ+ ξ)S dx+

∫
Rd
g(ρ+ ξ) dx

−1

2

∫
Rd

(|∇S|2 + S2) dx+

∫
Rd
ρS dx− ε

∫
Rd
g(ρ) dx

+

∫
Rd
ξSdx− ε

∫
Rd
g′(ρ)ξdx

= ε

∫
Rd
g(ρ+ ξ)− g(ρ)− g′(ρ)ξ dx.

Since g(x) is differentiable, the operator G : ψ → g(ψ) : H1(Rd)∩L1(Rd)→ L1(Rd) is clearly

Frechet differentiable and its derivative is given by DG(ψ)(ξ) = g′(ψ)ξ. Therefore, there

exists for every ε > 0 a δ > 0 satisfying ‖G(ψ+ξ)−G(ψ)−g′(ψ)ξ‖L1(Rd) ≤ ε‖ξ‖H1(Rd)∩L1(Rd)

for all ξ with ‖ξ‖H1(Rd)∩L1(Rd) < δ. Using this reasoning in the equation above yields

|E(ρ+ ξ, S)− E(ρ, S)−DρE(ρ, S)(ξ)|
‖ξ‖H1(Rd)∩L1(Rd)

≤ ε
ε‖ξ‖H1(Rd)∩L1(Rd)

‖ξ‖H1(Rd)∩L1(Rd)

≤ εε
ε→0−→ 0.

Now we want to use the results from above and turn our attention to the energy in the

evolving system.

Lemma 2.40. Let (ρ, S) be a pair of weak solutions of (2.7) and e(t) := E(ρ(., t), S(., t)).

Then its time derivative is given by

∂e

∂t
= −

∫
Rd

(εg′′(ρ)∇ρ−∇S) · (ε∇ρ− f(ρ)∇S) dx.

Proof. Unfortunately, we cannot differentiate with respect to t by using the chain rule be-

cause we would need ∂
∂tρ,

∂
∂tS ∈ L

1(Rd)∩H1(Rd). Therefore we start by taking an approxi-

mating sequence of functions ρn ∈ L2(0, T, L1(Rd) ∩ H1(Rd)) ∩ C∞([0, T ] × Rd) (and the

corresponding sequence Sn) such that ‖ρn − ρ‖W 1,2 → 0.
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Now we can compute

∂e

∂t
=

∂

∂t
E(ρn(., t), Sn(., t))

= DSE(ρn, Sn)(
∂Sn
∂t

) +DρE(ρn, Sn)(
∂ρn
∂t

)

=

∫
Rd

∂ρn
∂t

(εg′(ρn)− Sn) dx

= <
∂ρn
∂t

, εg′(ρn)− Sn >L2(Rd)

= <
∂ρn
∂t

, εg′(ρn)− Sn >L2(Rd) − <
∂ρn
∂t

, εg′(ρ)− S >L2(Rd)

+ <
∂ρn
∂t

, εg′(ρ)− S >L2(Rd) − <
∂ρ

∂t
, εg′(ρ)− S >H−1(Rd)

+ <
∂ρ

∂t
, εg′(ρ)− S >H−1(Rd)

= ε <
∂ρn
∂t

, g′(ρn)− g′(ρ) >L2(Rd) + <
∂ρn
∂t

, S − Sn >L2(Rd)

+ <
∂ρn
∂t
− ∂ρ

∂t
, εg′(ρ)− S >H−1(Rd) + <

∂ρ

∂t
, εg′(ρ)− S >H−1(Rd),

where we have inserted several terms and juggled them around a bit. Therefore we get

| ∂
∂t
E(ρn(., t), Sn(., t))− < ∂ρ

∂t
, εg′(ρ)− S >H−1(Rd) | ≤

≤ ε‖∂ρn
∂t
‖L2(Rd)‖g′(ρn)− g′(ρ)‖L2(Rd) + ‖∂ρn

∂t
‖L2(Rd)‖S − Sn‖L2(Rd)

+‖∂ρn
∂t
− ∂ρ

∂t
‖H−1(Rd)‖εg′(ρ)− S‖H1(Rd).

Now the assumed convergence implies that ‖∂ρn∂t ‖L2(Rd) is uniformly bounded and the norms

‖S − Sn‖L2(Rd) → 0 and ‖g′(ρn) − g′(ρ)‖L2(Rd) → 0 as n goes to infinity. Therefore we

conclude

∂

∂t
E(ρn(., t), Sn(., t)) = <

∂ρ

∂t
, εg′(ρ)− S >H−1(Rd)

= − < ε∇ρ− f(ρ)∇S,∇(εg′(ρ)− S) >(L2(Rd))d

= −
∫
Rd

(ε∇ρ− f(ρ)∇S) · (εg′′(ρ)∇ρ−∇S) dx.

Intuitively, we would like to choose g(x) in such a way that g′′(x)f(x) = 1. But since

we only assumed that f(x) is Lipschitz continuous and f(x) ≥ 0, problems will occur

at points x0 ∈ R where f(x0) = 0. To overcome this problem, we define a sequence of

functions gα(x) ∈ C2(Rd) ∩C0,1(Rd) for α > 0 in the following way: g′′α(x) = 1
f(x)+α . Since

f(x) + α ≥ α > 0, the function gα(x) is two times differentiable and Lipschitz continuous
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and we can use the derivations from above. Now we can extract necessary conditions for

stationary solutions.

Lemma 2.41 (Stationary solutions). Let f(x) be Lipschitz continuous, f(x) ≥ 0, f(0) = 0

and (ρ(x), S(x)) be a pair of stationary weak solutions of (2.7). Then, there holds

• ε∇ρ = f(ρ)∇S or (2.41)

• f(ρ) = 0. (2.42)

Proof. Since we have stationary solutions, every functional is also time independent and

therefore its derivative with respect to time is equal to zero. Taking the sequence of functions

gα from above and using the result from lemma 2.40 yields

0 =
∂

∂t
Egα(ρ, S)

= −
∫
Rd

(εg′′α(ρ)∇ρ−∇S) · (ε∇ρ− f(ρ)∇S) dx

= −
∫
f(ρ(x))=0

(ε
∇ρ

f(ρ) + α
−∇S) · (ε∇ρ− f(ρ)∇S) dx

−
∫
f(ρ(x)) 6=0

(ε
∇ρ

f(ρ) + α
−∇S) · (ε∇ρ− f(ρ)∇S) dx

= −
∫
f(ρ(x))=0

(ε
∇ρ
α
−∇S) · ε∇ρ dx−

∫
f(ρ(x))6=0

1

f(ρ)
|ε∇ρ− f(ρ)∇S|2 dx

+

∫
f(ρ(x)) 6=0

(ε∇ρ− f(ρ)∇S) · ∇ρ ·
( ε

f(ρ) + α
− ε

f(ρ)

)
dx

= − 1

α

∫
f(ρ(x))=0

ε2|∇ρ|2 dx+

∫
f(ρ(x))=0

ε∇ρ · ∇S dx

−ε
∫
f(ρ(x)) 6=0

(ε∇ρ− f(ρ)∇S) · ∇ρ · α

(f(ρ) + α)f(ρ)
dx

−
∫
f(ρ(x)) 6=0

1

f(ρ)
|ε∇ρ− f(ρ)∇S|2 dx

≤ −ε
2

α

∫
f(ρ(x))=0

|∇ρ|2 dx+ ε
(∫

f(ρ(x))=0

|∇ρ|2 dx
)1/2

︸ ︷︷ ︸
=C1

(∫
f(ρ(x))=0

|∇S|2 dx
)1/2

︸ ︷︷ ︸
=C2

+αε

∫
f(ρ(x)) 6=0

|ε∇ρ− f(ρ)∇S| |∇ρ|
f2(ρ)

dx−
∫
f(ρ(x)) 6=0

1

f(ρ)
|ε∇ρ− f(ρ)∇S|2 dx,

where we have used Cauchy-Schwarz’s inequality. Now let 0 < α ≤ C1

C2
if C1, C2 > 0 or

α > 0 if C1 = 0 or C2 = 0. Then, −C
2
1

α + C1C2 ≤ 0, and we get
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0 =
∂

∂t
Egα(ρ), S) ≤ −

∫
f(ρ(x)) 6=0

1

f(ρ)
|ε∇ρ− f(ρ)∇S|2 dx

+αε

∫
f(ρ(x)) 6=0

|ε∇ρ− f(ρ)∇S| |∇ρ|
f2(ρ)

dx

Now passing on to the limit α→ 0 in this inequality yields

0 ≤ −
∫
f(ρ(x)) 6=0

1

f(ρ)
|ε∇ρ− f(ρ)∇S|2 dx

And therefore ε∇ρ = f(ρ)∇S or f(ρ) = 0.

Remark 2.42. It may feel like we have beaten around the bush here for some time. The main

difficulty is that the functional Eg does not necessarily exist for some g(x) with g′′(x) = 1
f(x) .

Though g(x) is always two times differentiable, it does not have to be Lipschitz continuous

and we therefore cannot expect the integral
∫
Rd g(ρ)dx to be well defined. (See example 2.45).

Remark 2.43 (Energy dissipation). If we assume a-priori that the solution is smooth en-

ough, such that the functial exists for each fixed time, the exact same steps as in lemma 2.41

lead to

∂

∂t
Egα(ρ, S) ≤ 0.

We therefore say that the system is dissipative.

Now we want to show that the relation between ρ and S given in lemma 2.41 can easily lead

to non-existence of stationary solutions.

Example 2.44 (Non-existence of non-trivial continuous stationary solutions). Let f(x) = x

and (ρ(x), S(x)) ∈ (H1(Rd)∩C(Rd))2 be a pair of stationary solutions. Due to lemma 2.41

we have ε∇ρ = ρ∇S or ρ = 0. These equations are equivalent to ρ = e
S+C
ε or ρ = 0 for some

constant C ∈ R. Let us assume that ρ 6= 0 on a maximal domain Ω. Now since S(x) ≥ 0,

it follows that ρ ≥ e
C
ε in Ω and therefore Ω has to be bounded. Because we assumed that

ρ ∈ C(Rd) and ρ = 0 on Ωc, we conclude that there are no stationary solutions.

The next example shall emphasize that problems can occur when defining the energy func-

tional for unsuitable choices of f(x).
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Example 2.45 (Non-existence of the energy functional). Let d = 1 and f(x) = 4x3/2. Then

g(x) = −x1/2 satisfies g′′(x)f(x) = 1 ∀x ∈ R+. Now, choosing as inital data the function

ρ0 = min(|x|−3/2, 1) ∈ L∞(R) ∩ L1(R), we immediately see that the integral
∫
R g(ρ0)dx =∫ 1

−1
(−1)dx+ 2

∫∞
1

(−|x|−3/4)dx does not exist.

Still, we can specify conditions for stationary solutions, namely −2ερ−1/2 = S+C for some

constant C ∈ R or ρ = 0.

Remark 2.46. The non-existence of stationary solutions (especially in the case of small

mass, where we have derived the decay-estimates) is one of the main reasons for conside-

ring the model with non-linear diffusion in the next chapter. We will see that in that case

stationary solutions exist for arbitrary mass.

In chapter 4 we will see that this has also great influence on the behaviour of time dependent

solutions. Solutions of the model with linear diffusion will either decay to zero or blow up

(in the case with no prevention of overcrowding), solutions of the model with non-linear

diffusion on the other hand seem to converge towards a (non-trivial) stationary solution.
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3 Non-Linear Diffusion with Prevention of Overcrow-

ding

In this chapter we want to turn our attention to the slightly different non-linear model


∂ρ
∂t = div (m(ρ)∇(ερ− S))

−∆S + S = ρ

ρ(x, 0) = ρ0(x), x ∈ Rd.

(3.43)

In this chapter we will only consider functions m(x) that imply a prevention of overcrowding

similar to section 2.5. Note that this restriction (that leads to global boundedness) is not

necessary in order to achieve global existence and can be replaced by an assumption on the

initital data (‖ρ0‖L1(Rd) < C), which would lead to decay estimates similar to lemma 2.33.

Therefore, let m(x) be Lipschitz continuous, differentiable, m(0) = m(1) = 0 and let m(x) >

Axβ(1 − x)β for constants β ≥ 0, A > 0 and for all x ∈ (0, 1). Similar to the case of linear

diffusion let 0 ≤ ρ0 ≤ 1 and ρ0 ∈ L1(Rd).
The main technical difference in comparison to the model in previous chapter is that the non-

linearity also affects the diffusion term. Since no representation formula is known (in contrast

to the previous chapter where we could obtain one from the non-linear heat equation), we

will need a different approach.

Before we derive a suitable defintion of weak solutions, let us briefly recall a well known

result from the linear theory of parabolic differential equations, a proof can be found for

instance in [2, Chapter 7.1].

Proposition 3.47 (Existence of weak solutions for linear parabolic equations). Let Ω be

a bounded subset of Rd, aij , bi, c ∈ L∞([0, T ] × Ω) and f ∈ L2([0, T ] × Ω). Additionally,

let g ∈ L2(Ω) and
∑d
i,j=1 ai,j(x, t)ξiξj ≥ θ|ξ|2 for all (x, t) ∈ Ω × [0, T ], ξ ∈ Rd and some

θ > 0.

Then, there exists a unique u(x, t) ∈W 1,2(0, T,H1
0 (Ω), L2(Ω)) satisifying

< ut, ϕ >H−1(Ω) +

∫
Ω

d∑
i,j=1

ai,j
∂u

∂xi

∂ϕ

∂xj
+

d∑
i=1

bi
∂u

∂xi
ϕ+ cuϕ dx =

∫
Ω

fϕ dx, and

u(., 0) = g(.)

for all times 0 ≤ t ≤ T and for all ϕ ∈ L2(0, T,H1
0 (Ω)). Therefore, u is called the weak

solution of the linear parabolic equation.
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3.1 Weak Solutions

Now, let us turn our attention back to the system of non-linear equations. By multiplying

(3.43) by a W 1,2-function and integrating by parts one obtains∫ t

0

< ρt, ϕ >H−1 ds+

∫ t

0

∫
Rd

[ε · ∇M(ρ)−m(ρ)∇S] · ∇ϕdxds = 0 (3.44)∫ t

0

∫
Rd
∇S · ∇ϕ+ (S − ρ)ϕdxds = 0 (3.45)

Where ∂M(x)
∂x = m(x), M(0) = 0.

Definition 3.48. A pair of functions (ρ, S) is called weak solution of (3.43) if the following

conditions are satisfied:

1. ρt ∈ L2([0, T ], H−1(Rd))

2. M(ρ) ∈ L2([0, T ], H1(Rd))

3. ρ ∈ L∞([0, T ]× Rd) and 0 ≤ ρ(x, t) ≤ 1 almost everywhere in [0, T ]× Rd.

4. S ∈ L2([0, T ], H1(Rd))

5. For all ϕ ∈ L2(0, T,H1(Rd)) the relations (3.44) and (3.45) hold.

6. ρ(., 0) = ρ0(.) ∈ L1(Rd) and 0 ≤ ρ0 ≤ 1

The subject of the following section is to prove existence of weak solutions. The main

technical difficulties are in particular the degeneracy of the diffusion coefficient at the values

ρ = 0, 1 and the unboundedness of the domain. To overcome this problems we will first

consider a non-degenerated-problem on a closed ball with Dirichlet boundary conditions.

Then we will pass the limit in the diffusion coefficient and finally send the radius of the ball

to infinity.

3.1.1 Regularized Problem on a Ball

Before we proceed we shall introduce some short-hand-notations.

• Ω :=
{
x ∈ Rd| |x| ≤ R

}
• X := W 1,2(0, T,H1

0 (Ω), L2(Ω))

• B := L2(0, T, L2(Ω))

• f : R→ R, f(x) = max(min(x, 1), 0)
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Figure 2: Cut-off-function

By adding αε∇ρ to the diffiusion term, equation (3.44) becomes

∫ t

0

< ρt, ϕ >H−1 ds+

∫ t

0

∫
Ω

[ε · ∇M(ρ) + αε∇ρ−m(ρ)∇S] · ∇ϕdxds = 0 (3.46)

Now we define an Operator T (ρ̃) = ρ that maps B → B. To keep things clear, we will first

write down the plain definition without going into existence details and work on that issue

in the following lemma.

Definition 3.49. Let ρ0,R := ρ0|Ω. Then for ρ̃ ∈ B we shall define the operator T in two

steps:

1. S is the weak solution of the linear elliptic equation −∆S + S = f(ρ̃) for x ∈ Ω and

−∆S + S = 0 for |x| > R. It is given by S = B ∗ (χΩf(ρ̃)).

2. T (ρ̃) := ρ is the weak solution of the linear parabolic equation

ρt − ε · div(A∇ρ) + b · ∇ρ = h,

with inital data ρ(., 0) = ρ0,R(.) and homogeneous Dirichlet boundary conditions.

for

A(x, t) := m(f(ρ̃(x, t))) + α

b(x, t) := m′(f(ρ̃(x, t)))∇S(x, t)

h(x, t) := −m(f(ρ̃(x, t))) ·∆S(x, t)

As mentioned above, first of all we need to make sure that the operator T described above

is at least well defined and that it maps B → B.

Lemma 3.50. For ρ̃ ∈ B there exists a unique ρ ∈ B and S such that the differential

equations from definition 3.49 are satisfied.

44



Keller-Segel Model Stefan Schuchnigg

Proof. In order to apply the theory for linear parabolic equations, we need to make sure that

the coefficients A, b, h satisfy the assumptions of proposition 3.47. Since 0 ≤ m(f(x)) ≤ L

we directly obtain

α ≤ A(x, t) = α+m(f(ρ̃(x, t))) ≤ α+ L

For the L∞-estimate of b we recall the properties of B proven in the first chapter (lemma

2.19)

‖b‖L∞([0,T ]×Ω) = ‖m′(f(ρ̃))∇S‖L∞([0,T ]×Ω)

≤ ‖m′(f(ρ̃))‖L∞([0,T ]×Ω)‖∇S‖L∞([0,T ]×Ω)

≤ L‖∇S‖L∞([0,T ]×Ω)

≤ L‖∇S‖L∞([0,T ]×Rd)

≤ L‖‖∇B‖L1(Rd)‖χΩf(ρ̃)‖L∞(Rd)‖L∞(0,T )

≤ LC(d)‖f(ρ̃)‖L∞([0,T ]×Rd)

≤ LC(d) =: B0,

where we have used that f(x) ≤ 1 and m′(x) ≤ L. Similarly, we obtain an L2-estimate for

S

‖S‖L2(Ω) ≤ ‖S‖L2(Rd)

≤ ‖B‖L1(Rd)‖χΩf(ρ̃)‖L2(Rd)

≤ ‖f(ρ̃)‖L2(Ω).

Since S satisfies the equation ∆S = S−χΩf(ρ̃) in a distributional sense and the right hand

side is in L2(Ω), ∆S has to be square-integrable, too:

‖∆S‖L2(Ω) ≤ ‖S − χΩf(ρ̃)‖L2(Ω)

≤ ‖S‖L2(Ω) + ‖χΩf(ρ̃)‖L2(Ω)

≤ ‖S‖L2(Ω) + ‖f(ρ̃)‖L2(Ω)

≤ 2‖f(ρ̃)‖L2(Ω)

≤ 2C ′(d,R).

Therefore, we can conclude

‖h‖L2(Ω) = ‖m(f(ρ̃))∆S‖L2(Ω)

≤ ‖m(f(ρ̃))‖L∞(Ω)‖∆S‖L2(Ω)

≤ 2LC ′(d,R)

and finally

‖h‖B ≤ C(d,R, T ) =: H0.
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Now, proposition (3.47) provides us with the existence of a unique function ρ belonging to

W 1,2(0, T,H1
0 (Ω), L2(Ω)) satisfying

< ρt, ϕ >H−1(Ω) +

∫
Ω

A∇ρ · ∇ϕ+ b · ∇ρϕ dx =

∫
Ω

hϕdx, (3.47)

and ρ(., 0) = g(.)

for all ϕ ∈ L2(0, T,H1
0 (Ω)). Therefore, the definition of T : B → B is justified.

To prove continuity of T , the coefficients A, b, h need to be continuous with respect to ρ̃ in

some sense, which is clarified by

Lemma 3.51. Let ρ̃k
B→ ρ̃ and let Ak, bk, hk be the corresponding sequences defined by

definition 3.49. Then there exists a subsequence ρ̃′k such that Ak′ → A and bk′ → b almost

everywhere and hk′
B→ h. Here A, b, h are the coefficients associated with ρ̃.

Proof. Since ρ̃k
B→ ρ̃ due to proposition 5.67, there exists a subsequence ρ̃k′ that converges

almost everywhere. Since f(x), m(x) and m′(x) are continuous functions, we directly obtain

m(f(ρ̃k′)) → m(f(ρ̃)) almost everywhere, and

m′(f(ρ̃k′)) → m′(f(ρ̃)) almost everywhere.

Using the representations of Sk′ and S leads to

‖∇Sk′ −∇S‖L∞([0,T ]×Ω) ≤ ‖∇Sk′ −∇S‖L∞([0,T ]×Rd

≤ ‖∇B‖L∞(0,T,L1(Rd))‖χΩf(ρ̃k′)− χΩf(ρ̃)‖L∞([0,T ]×Rd)

≤ C(d)‖f(ρ̃k′)− f(ρ̃)‖L∞([0,T ]×Ω) → 0.

For the convergence of ∆S, we proceed just as before:

‖∆Sk′ −∆S‖B ≤ ‖Sk′ − S‖B + ‖f(ρ̃k′)− f(ρ̃)‖B
≤ ‖Sk′ − S‖B + ‖f(ρ̃k′)− f(ρ̃)‖B
≤ ‖B‖L∞(0,T,L1(Rd))‖f(ρ̃k′)− f(ρ̃)‖B + ‖f(ρ̃k′)− f(ρ̃)‖B
≤ 2‖f(ρ̃k′)− f(ρ̃)‖B → 0.

Now we can combine these convergences and obtain the desired convergences of Ak′ , bk′ and

hk′ .

Another important ingredient in order to prove existence of a fixed point of T will be the

following a-priori estimate:

Lemma 3.52. The operator T satisfies the a-priori estimate ‖T (ρ̃)‖X < Cx, for some

constant Cx depending on α,R, d, T and ‖ρ0‖L2(Ω).
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Proof. Using ϕ = ρ as testfunction in (3.47) leads to

< ρt, ρ >H−1 +

∫
Ω

εA|∇ρ|2 dx = −
∫

Ω

b · ∇ρρ+ hρ dx

⇒ 1

2

∂

∂t
‖ρ(t)‖2L2(Ω) + εα · ‖∇ρ‖2L2(Ω) ≤ B0

∫
Ω

|ρ||∇ρ| dx+

∫
Ω

hρ dx.

Now applying Young’s inequality on both integrals yields

1

2

∂

∂t
‖ρ(t)‖2L2(Ω) + εα · ‖∇ρ‖2L2(Ω) ≤ B0γ

2
‖∇ρ‖2L2(Ω) +

B0

2γ
‖ρ‖2L2(Ω)

+
1

2
H0

2 +
1

2
‖ρ‖2L2(Ω).

Fixing γ = 2εα
B0

and multiplying by two leads to

∂

∂t
‖ρ(t)‖2L2(Ω) ≤ (

B2
0

2εα
+ 1)‖ρ‖2L2(Ω) +H2

0 .

Now Gronwall’s lemma gives us the first a-priori estimate and we obtain:

‖ρ(t)‖2B < C(R, d, T, ‖ρ0‖L2(Ω)). (3.48)

Using again ϕ = ρ, but choosing γ = εα
B0

(so the term including the gradient does not

vanish), leads similarly to

‖∇ρ(t)‖2B < C ′(α,R, d, T, ‖ρ0‖L2(Ω)). (3.49)

These two inequalities allow to estimate < ρt, ϕ >H−1≤ C ′′(α,R, d, T, ‖ρ0‖L2(Ω))‖ϕ‖H1
0 (Ω)

by simply applying Young’s inequality on all terms. Therefore, we obtain the essential

a-priori estimate stated above.

The next step is to prove that T is continuous.

Lemma 3.53. T is continuous, i.e.

ρ̃k
B→ ρ̃ =⇒ T (ρ̃k)

B→ T (ρ̃).

Proof. Let ρ̃k
B→ ρ̃ and therefore ‖ρ̃k‖B ≤ C. Now the a-priori estimate from the previous

lemma tells us that the sequence ρk := T (ρ̃k) is bounded in X and therefore, by defintion

of the spaces B and X, we have ‖ρk‖B ≤ ‖ρk‖X ≤ C ′. Taking into account that a bounded
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sequence is convergent if and only if all convergent subsequences have the same limit (propo-

sition 5.68), we start by taking any convergent subsequence ρ′k
B→ ρ′. Now we want to prove

that independently of the choice of ρ′k we always have ρ′ = T (ρ̃) and therefore ρk
B→ T (ρ̃).

Since ρ′k is bounded in X, there exists a weakly convergent subsequence and we can therfore

assume (without loss of generality) that ρ′k
X
⇀ ρ′ (in addition to the strong convergence in

B).

Applying lemma 3.51 and again switching to the subsequence provided by proposition 5.68

we find that

Ak′ → A a.e.

bk′ → b a.e.

hk′
B→ h

ρk′
X
⇀ ρ′.

Therefore, we can pass on to the limit in the weak formulation (3.47) and obtain

< ρ′t, ϕ >H−1 +

∫
Ω

εA∇ρ′ · ∇ϕ+ b · ∇ρ′ϕdx =

∫
Ω

fϕ dx.

Since the solution of the linear parabolic equation is unique, we can conclude that ρ′ = ρ

for every subsequence ρ′k. Therefore, T is continuous.

Now we can make use of Schauder’s fixed point theorem (see for instance [7, Theorem 10.1])

and prove the following corollary

Corollary 3.54. The operator T has a fixed point ρ ∈ K where K := {ϕ ∈ X | ‖ϕ‖X < Cx}.
Cx denotes the constant given by lemma 3.52.

Proof. Since K is clearly a subset of B and due to the a-priori estimate from lemma 3.52

we can define T : K → K. Since X ↪→ B is compact, K is a convex compact subset of B.

Now we already know that T : B → B is continuous and therefore especially if we restrict

the domain to K. Hence, we can apply Schauder’s fixed point theorem and obtain a fixed

point ρ ∈ K

In the following two corollaries we will derive important estimates for fixed points ρ = T (ρ).

These will become crucial for passing the limit α→ 0.

Corollary 3.55. Let ρ be a fixed point of T . Then we have 0 ≤ ρ, S ≤ 1. The weak

formulation therefore reads

< ρt, ϕ >H−1 +

∫
Ω

ε[m(ρ) + α]∇ρ · ∇ϕdx =

∫
Ω

m(ρ)∇S · ∇ϕdx∫
Ω

∇S · ∇ϕ+ (S − ρ)ϕdx = 0.
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Proof. Since S(., t) ∈ H1(Rd) satisfies∫
Rd
∇S · ∇ϕ+ Sϕdx =

∫
Rd
χΩf(ρ)ϕdx =

∫
Ω

f(ρ)ϕdx

for all ϕ in H1(Rd), we start by using ϕ = [S]− as testfunction:∫
Rd
∇S · ∇[S]− + S[S]− dx =

∫
Ω

f(ρ)︸︷︷︸
≥0

[S]−︸︷︷︸
≤0

dx

⇒ ‖∇[S]−‖2L2(Rd) + ‖[S]−‖2L2(Rd) ≤ 0.

and therefore S ≥ 0. For the upper bound we look at the L∞-norm

‖S‖L∞(Rd) = ‖B ∗ (χΩf(ρ))‖L∞(Rd)

≤ ‖B‖L1(Rd)‖χΩf(ρ)‖L∞(Rd)

≤ ‖B‖L1(Rd)‖f(ρ)‖L∞(Ω)

≤ 1.

Similarly, using ϕ = [ρ]− ∈ W 1,2 as testfunction in the weak formulation (3.47) of the

parabolic equation leads to∫ t

0

< ρt, [ρ]− >H−1 ds+

∫ t

0

∫
Ω

ε[m(f(ρ)) + α]|∇[ρ]−|2 +m′(f(ρ))∇S · ∇ρ[ρ]− dxds =

= −
∫ t

0

∫
Ω

m(f(ρ)) ·∆S[ρ]− ds.

And therefore

1

2
‖[ρ]−(., t)‖2L2(Ω) + εα‖∇[ρ]−‖2B =

1

2
‖[ρ]−(., 0)‖2L2(Ω) −

∫ t

0

∫
Ω

m′(0)∇S · ∇ρ[ρ]− dxds,

where we have used that f(x) = 0 for x ≤ 0 and m(0) = 0. Now, taking into account that

∇ρ[ρ]− = 1
2∇([ρ]−

2
) and 0 ≤ ρ0 ≤ 1 and due to integration by parts we obtain

1

2
‖[ρ]−(., t)‖2L2(Ω) + εα‖∇[ρ]−‖2B =

m′(0)

2

∫ t

0

∫
Ω

∆S[ρ]−
2
dxds

=
L

2

∫ t

0

∫
Ω

(S − ρ)[ρ]−
2
dxds

≤ L

2

∫ t

0

∫
Ω

(1− ρ)[ρ]−
2
dxds

≤ L

2
‖[ρ]−‖2B ,

and therefore

‖[ρ]−(., t)‖2L2(Ω) ≤ L‖[ρ]−‖2B ,
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which implies that ‖[ρ]−(., t)‖L2(Ω) = 0 and therefore ρ ≥ 0. Analogously, using ϕ = [ρ−1]+

as testfunction yields ρ ≤ 1.

Especially the cut-off function f(ρ) is just the identity and we obtain, for fixed points of T ,

the following equation

< ρt, ϕ >H−1 +

∫
Ω

ε[m(ρ) + α]∇ρ · ∇ϕdx = −
∫

Ω

m′(ρ)∇S · ∇ρϕ+m(ρ)∆Sϕdx

=

∫
Ω

m(ρ)∇S · ∇ϕdx,

which is exactly the weak formulation of the regularized equation (3.46). Similarly, the

elliptic equation reads ∫
Ω

∇S · ∇ϕ+ (S − ρ)ϕdx = 0

Corollary 3.56. Let ρ be a fixed point of T . Then we have the following estimates

‖M(ρ)‖L2(0,T,H1
0 (Ω)) ≤ C1 (3.50)

√
α‖ρ‖L2(0,T,H1

0 (Ω)) ≤ C2 (3.51)

‖ρt‖L2(0,T,H−1
0 (Ω)) ≤ C3 (3.52)

with constants Ci independent of α.

Proof. Using ϕ = ρ as testfunction directly leads to

< ρt, ρ >H−1 +

∫
Ω

ε[m(ρ) + α]∇ρ · ∇ρ dx =

∫
Ω

m(ρ)∇S · ∇ρ dx

⇒ 1

2

∂

∂t
‖ρ‖2L2(Ω) + εα

∫
Ω

|∇ρ|2 dx ≤
∫

Ω

M(ρ)(ρ− S) dx

⇒ ∂

∂t
‖ρ‖2L2(Ω) + 2εα‖∇ρ‖2L2(Ω) ≤ 2

∫
Ω

M(ρ)(ρ− S) dx

≤ 2

∫
Ω

M(ρ)ρ dx

= 2

∫
Ω

(∫ ρ

0

m(u)du

)
· ρ dx

≤ 2L

∫
Ω

(∫ ρ

0

udu

)
· ρ dx

≤ L

∫
Ω

ρ3 dx

≤ L

∫
Ω

ρ2 dx,
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and therefore (by using Gronwall’s lemma)

∂

∂t
‖ρ‖2L2(Ω) ≤ L

∫
Ω

ρ2 dx

⇒ ‖ρ(., t)‖2L2(Ω) ≤ eLt‖ρ(., 0)‖2L2(Ω).

Accordingly, we have

‖ρ(., T )‖2L2(Ω) + 2εα‖∇ρ‖2B ≤ eLT ‖ρ(., 0)‖2L2(Ω)

⇒ α‖∇ρ‖2B ≤ eLT

2ε
‖ρ(., 0)‖2L2(Ω).

Now, using M(ρ) as testfunction (see lemma 5.70), we similarly obtain

< ρt,M(ρ) >H−1 +

∫
Ω

ε[m(ρ) + α]∇ρ · ∇M(ρ) dx =

∫
Ω

m(ρ)∇S · ∇M(ρ) dx

⇒ ∂

∂t
‖M(ρ)‖L1(Ω) + ε

∫
Ω

|∇M(ρ)|2 + αm(ρ)|∇ρ|2 dx = −
∫

Ω

(∫ ρ

0

m2(u)du

)
·∆S dx

⇒ ∂

∂t
‖M(ρ)‖L1(Ω) + ε

∫
Ω

|∇M(ρ)|2 dx ≤
∫

Ω

(∫ ρ

0

m2(u)du

)
· (ρ− S) dx

⇒ ∂

∂t
‖M(ρ)‖L1(Ω) + ε‖∇M(ρ)‖2L2(Ω) ≤

∫
Ω

(∫ ρ

0

m2(u)du

)
· ρ dx

≤ L2

∫
Ω

(∫ ρ

0

u2du

)
· ρ dx

=
L2

3

∫
Ω

ρ4 dx

=
L2

3

∫
Ω

ρ2 dx

≤ L2

3
eLt‖ρ(., 0)‖2L2(Ω),

where we have used that m(x) is Lipschitz continuous and ρ ≥ 0. Integrating with respect

to t yields

‖M(ρ)(., T )‖L1(Ω) + ε‖∇M(ρ)‖2B ≤ L

3
(eLT − 1)‖ρ(., 0)‖2L2(Ω) + ‖M(ρ)(., 0)‖L1(Ω)

=
L

3
(eLT − 1)‖ρ(., 0)‖2L2(Ω) + ‖M(ρ0)‖L1(Ω)

≤ L

3
(eLT − 1)‖ρ(., 0)‖2L2(Ω) +

L

6
‖ρ3

0‖L1(Ω)

≤ L

6
(2eLT − 1)‖ρ(., 0)‖2L2(Ω),

where we have used thatM(x) ≤ Lx
3

6 and ρ0 ≤ 1. Due to Poincare’s inequality (proposition

5.71) there exists a constant such that ‖ψ‖H1(Ω) ≤ C‖∇ψ‖L2(Ω) and we have proven the

first estimate.

51



Keller-Segel Model Stefan Schuchnigg

For the estimate of ρt we consider a function ϕ ∈ H1(Ω).

< ρt, ϕ >H−1 =

∫
Ω

(
− ε[m(ρ) + α]∇ρ+m(ρ)∇S

)
· ∇ϕdx

≤ ‖ε[m(ρ) + α]∇ρ+m(ρ)∇S‖L2(Ω) ‖∇ϕ‖L2(Ω)

≤ ‖ε[m(ρ) + α]∇ρ+m(ρ)∇S‖L2(Ω) ‖ϕ‖H1(Ω)

≤
(
ε‖m(ρ)∇ρ‖L2(Ω) + εα‖∇ρ‖L2(Ω) + ‖m(ρ)∇S‖L2(Ω)

)
· ‖ϕ‖H1(Ω)

≤
(
ε‖∇M(ρ)‖L2(Ω) + εα‖ρ‖H1(Ω) + L‖ρ‖L2(Ω)‖∇S‖L∞(Ω)) · ‖ϕ‖H1(Ω)

≤
(
ε‖∇M(ρ)‖L2(Ω) + ε

√
α0

√
α‖ρ‖H1(Ω) + L‖ρ‖L2(Ω)C

)
· ‖ϕ‖H1(Ω)

≤ C(ρ0, α0) · ‖ϕ‖H1(Ω)

where we have used Cauchy-Schwarz’s inequality Hölder’s inequality and the estimates we

have already proven. This holds true for all α ≤ α0 and implies that ‖ρt‖H−1(Ω) ≤ C for

some constant independent of α (for α small).

3.1.2 Limit α→ 0

In order to pass on the limit α→ 0, we need several terms to converge. Looking at the weak

formulation of the regularized equation (3.46), we need to ensure that

• (ρα)t ⇀ ρt in L2(0, T,H−1(Ω)) (3.53)

• ∇M(ρα) ⇀ ∇M(ρ) in L2(0, T, L2(Ω)) (3.54)

• m(ρα)∇Sα ⇀m(ρ)∇S in L2(0, T, L2(Ω)) (3.55)

• ε∇ρα ⇀ 0 in L2(0, T, L2(Ω)) (3.56)

• ρα ⇀ ρ in L2(0, T, L2(Ω)) (3.57)

• Sα ⇀ S in L2(0, T,H1(Ω)). (3.58)

The main difficulty is not to prove that the sequences converge but to identify the limits

with the desired functions. For this purpose it is necessary to have an additional strong

convergence of ρα in B. This can be done by proving that the sequence ρα is uniformly

bounded in a function space that is compact in B. The most natural space would be of

course W 1,2(0, T,H1
0 (Ω), L2(Ω)), but unfortunately we can not expect that the H1

0 (Ω)-norm

of ρα does not increase for α→ 0 (although (ρα)t is uniformly bounded, see estimate (3.52)).

The idea is to make use of estimate (3.50) which tells us that ‖M(ρα)‖L2(0,T,H1
0 (Ω)) ≤ C1

and shift the regularity from M(ρα) to ρα. For this purpose we need to additionally assume

that the inverse function M−1(x) is Hölder continuous. The following lemma will give us a

sufficient condition.
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Lemma 3.57. Let m(x) ≥ Axβ(1 − x)β for some β ≥ 0. Then the inverse function M−1

of M(x) exists and satisfies

|M−1(y2)−M−1(y1)| < C(A, β)|y2 − y1|θ, ∀y2, y1 ∈ {y ∈ R| ∃x ∈ [0, 1], M(x) = y}

for θ = (2β + 1)−1 < 1 and C =
(

6β

A

)θ
> 0.

Proof. Since m(x) > 0, it follows that M(x) is strictly increasing and therefore invertible

on its range. Now let y1 = M(x1) and y2 = M(x2) and without loss of generality x2 > x1.

C(A, β)|y2 − y1|θ = C(A, β)|M(x2)−M(x1)|θ

= C(A, β)

∣∣∣∣∫ x2

x1

m(u) du

∣∣∣∣θ
≥ C(A, β)

(∫ x2

x1

Auβ(1− u)β du

)θ
= C(A, β)Aθ‖u(1− u)‖βθ

Lβ([x1,x2])

= 6βθ‖u(1− u)‖βθ
Lβ([x1,x2])

‖1‖βθLq([x1,x2])(x2 − x1)−
βθ
q︸ ︷︷ ︸

=1

.

For 1
β + 1

q = 1 ⇔ β
q = β − 1 we can apply Hölder’s inequality (reversed) and obtain

C(A, β)|y2 − y1|θ ≥ 6βθ‖u(1− u)‖βθL1([x1,x2])(x2 − x1)θ(1−β)

= 6βθ
(−x3

2 + x3
1

3
+
x2

2 − x2
1

2

)βθ
(x2 − x1)θ(1−β)

= 6βθ(x2 − x1)βθ
(
− x2

2 + x1x2 + x2
1

3
+
x1 + x2

2

)βθ
(x2 − x1)θ(1−β)

= 6βθ(x2 − x1)θ
(x2

2 − 2x1x2 + x2
1

6
+
−3x2

2 − 3x2
1

6
+
x1 + x2

2

)βθ
= 6βθ(x2 − x1)θ

( (x2 − x1)2

6
+

(x2 − x2
2) + (x1 − x2

1)

2︸ ︷︷ ︸
≥0

)βθ

≥ 6βθ(x2 − x1)θ
( (x2 − x1)2

6

)βθ
= (x2 − x1)2βθ+θ

= M−1(y2)−M−1(y1).

As mentioned above, we will use this to prove that ρα is uniformly bounded in a functional

space that is compact in B. For this purpose we briefly recall the lemma of Chavent-Chaffre,

the proof of which is straightforward and will be omitted.
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Proposition 3.58 (Chavent-Chaffre). Let Ω be an open subset of Rd, 0 < s < 1 and

1 < p < ∞. In addition, let f : R → R, f(0) = 0 be a Hölder continuous function with

exponent θ ∈ (0, 1) and constant cH > 0. Then, there holds

‖f(u)‖W sθ,p/θ(Ω) ≤ cH‖u‖θW s,p(Ω)

for all u ∈W s,p(Ω).

Applying the proposition with s ∈ (0, 1), p = 2, f = M−1 to the function u = M(ρ) ∈
W s,p(Ω) ⊂W 1,p(Ω) leads to

‖ρ‖W sθ,2/θ(Ω) = ‖M−1(M(ρ))‖W sθ,2/θ(Ω)

≤ cH‖M(ρ)‖θW s,2(Ω)

≤ cH‖M(ρ)‖θW 1,2(Ω)

for θ = (2β + 1)−1 and cH =
(

6β

A

)θ
. Taking the a-priori estimate (3.50) into account yields

‖ρ‖L2(0,T,W sθ,2/θ(Ω)) ≤ cH‖M(ρ)‖θL2(0,T,W 1,2(Ω)) ≤ cHC
θ
1 .

Furthermore, the compact embedding W sθ,2/θ(Ω) ↪→ L2/θ(Ω) (proposition 5.73) allows us

to apply the lemma of Aubin (proposition 5.74) and we deduce L2(0, T,W sθ,2/θ(Ω), L2(Ω))

is compact in B.

Hence, there exists a strongly convergent subsequence ρα′
B→ ρ. Therefore, proposition 5.67

tells us that we can achieve that ρα′ converges pointwise almost everywhere by switching

again to a subsequence.

Since m(x) and M(x) are continuous bounded functions, we can now apply lemma 5.69 and

it follows that m(ρα′)
B→ m(ρ) and M(ρα′)

B→ M(ρ). We already know that M(ρα′) and

(ρα′)t converge weakly in L2(0, T,H1
0 (Ω)) and L2(0, T,H−1(Ω)), respectively. Because of

the strong convergence in B we can identify the limits and deduce

• (ρα′)t ⇀ ρt in L2(0, T,H−1(Ω)) (3.59)

• ∇M(ρα′) ⇀ ∇M(ρ) in L2(0, T, L2(Ω)) (3.60)

• m(ρα′)→ m(ρ) in L2(0, T, L2(Ω)) (3.61)

• ρα′ → ρ in L2(0, T, L2(Ω)) ∩ L∞(0, T, L∞(Ω)) (3.62)

Because of the strong convergence in B of ρα′ it is easy to see that Sα′ = B ∗ ρα′ converges

towards S in L2(0, T,H1
0 (Ω)) and ∇Sα′ → ∇S almost everywhere.

Therefore we finally arrive at the following existence

Corollary 3.59 (Existence for the degenerate equation). Let m(x) satisfy the assumptions

of lemma 3.57 and 0 ≤ ρ0 ≤ 1. Then, there exists a solution satisifying definition 3.48

(replacing Rd with Ω).
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Proof. Since

εα′
∫ t

0

∫
Ω

∇ρα′ · ∇ϕdxds ≤
√
α′‖
√
α′∇ρα′‖L2(0,T,L2(Ω))‖ϕ‖L2(0,T,H1

0 (Ω))

≤
√
α′C2‖ϕ‖L2(0,T,H1

0 (Ω)) → 0,

where we have used the estimate (3.51), we can pass the limit in the weak formulation. Since

a (weakly) convergent sequence is uniformly bounded, regularity follows directly from the

convergences.

3.1.3 Limit R→∞

In this section we want to finally send the radius of the ball to infintiy. Let ρR, SR be the

weak solutions of the degenerated problem for some fixed radius R given by corollary 3.59.

Again, we will need a-priori estimates independent of the radius R. Let us recall what we

have already proven:

• 0 ≤ ρR, SR ≤ 1

• ‖ρR(., t)‖2L2(Ω) ≤ eLt‖ρR,0‖2L2(Ω) ≤ eLt‖ρ0‖2L2(Rd)

• ‖M(ρR)‖L2(0,T,H1(Ω)) ≤ C(T )‖ρR,0‖L2(Ω) ≤ C(T )‖ρ0‖L2(Rd)

• ‖(ρR)t‖L2(0,T,H−1(Ω)) ≤ C ′(T )‖ρR,0‖L2(Ω) ≤ C ′(T )‖ρ0‖L2(Rd).

And therefore (regarding the solutions ρR from the previous section on a ball with radius R

as functions in Rd with ρR(Rd\Ω) = 0)

‖ρR(., t)‖2L2(Rd) ≤ eLt‖ρ0‖2L2(Rd)

‖M(ρR)‖L2(0,T,H1(Rd)) ≤ C(T )‖ρ0‖L2(Rd)

‖(ρR)t‖L2(0,T,H−1(Rd)) ≤ C ′(T )‖ρ0‖L2(Rd).

Therefore, we can easily conclude uniform bounds for SR

‖SR‖L2(0,T,L2(Rd)) ≤ ‖B ∗ χΩRρR‖L2(0,T,L2(Rd))

≤ ‖B‖L∞(0,T,L1(Rd))‖χΩRρR‖L2(0,T,L2(Rd))

≤ ‖ρR‖L2(0,T,L2(ΩR))

≤ C(T )‖ρ0‖L2(Rd)

‖∇SR‖L2(0,T,L2(Rd)) ≤ ‖∇B ∗ χΩRρR‖L2(0,T,L2(Rd))

≤ ‖∇B‖L∞(0,T,L1(Rd))‖χΩRρR‖L2(0,T,L2(Rd))

≤ C‖ρR‖L2(0,T,L2(ΩR))

≤ C ′(T )‖ρ0‖L2(Rd),

and similarly
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‖∇SR‖L∞(0,T,L∞(Rd)) ≤ ‖∇B ∗ χΩRρR‖L∞(0,T,L∞(Rd))

≤ ‖∇B‖L∞(0,T,L1(Rd))‖χΩRρR‖L∞(0,T,L∞(Rd))

≤ C‖ρR‖L∞(0,T,L∞(ΩR))

≤ C.

Therefore we have

‖m(ρR)∇S‖L2(0,T,L2(Rd)) ≤ ‖∇S‖L∞(0,T,L∞(Rd))‖m(ρR)‖L2(0,T,L2(Rd))

≤ C‖m(ρR)‖L2(0,T,L2(Rd))

≤ CL‖ρR‖L2(0,T,L2(Rd))

≤ C ′(T )‖ρ0‖L2(Rd).

If we look at a sequence Rn → ∞ and the corresponding sequence ρn, Sn we can deduce

that there exist subsequences such that

(ρn)t ⇀ g1 in L2(0, T,H−1(Rd)) (3.63)

∇M(ρn) ⇀ g2 in L2(0, T, L2(Rd)) (3.64)

m(ρn)∇Sn ⇀ g3 in L2(0, T, L2(Rd)) (3.65)

ρn ⇀ ρ in L2(0, T, L2(Rd)) (3.66)

Sn ⇀ g5 in L2(0, T,H1(Rd)). (3.67)

These are exactly the desired convergences necessary to perform the limit in the weak for-

mulation. Just as before, the remaining problem is to identify the limits. Unfortunately,

we cannot directly use the same approach as in the previous section, because the compact

embeddings we applied do not work in the case of unbounded domains. In fact, we cannot

expect a strong convergence at all and we will therefore pursue a different strategy.

We start by proving the following

Lemma 3.60. For each fixed R′, there exists a subsequence Rn′ ⊂ Rn such that ρ′n → ρ in

L∞([0, T ]× ΩR′).

Proof. Since

‖M(ρn)‖L2(0,T,H1(ΩR′ ))
≤ ‖M(ρn)‖L2(0,T,H1(Rd)) ≤ C(T, d)

due to the lemma of Chavent-Chaffre (see proposition 3.58 and the following) and the Hölder

continuity of M−1 (see lemma 3.57), we can deduce that

‖ρn‖L2(0,T,W sθ,2/θ(ΩR′ ))
≤ C(θ, cH , T, d).
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Again, by taking into account that the embedding W sθ,2/θ(ΩR′) ↪→ L2(ΩR′) is compact

(proposition 5.73), we conclude that there exists a subsequence ρ′n satisifying ρ′n → ρ in

L2([0, T ]× ΩR′).

Using proposition 5.67 once again leads to the desired subsequence that converges in L∞.

Now we can easily prove

Corollary 3.61. Let ρn ⇀ ρ in L2(0, T, L2(Rd)) and S = B ∗ ρ. Then, there exists a

subsequence ρn′ satisfying

(ρn′)t → ρt in D′([0, T ]× Rd)

∇M(ρn′) → ∇M(ρ) in D′([0, T ]× Rd)

m(ρn′)∇Sn′ → m(ρ)∇S in D′([0, T ]× Rd)

Sn′ → S in D′([0, T ]× Rd).

Proof. We start by choosing a testfunction ψ ∈ D([0, T ]×Rd). Since ψ has compact support

K, there exists a radius R′ such that K is a subset of ΩR′ . Now we can easily estimate

| < (ρn)t − ρt, ψ >D′ | = | < ρ− ρn, ψt >D′ |

=

∣∣∣∣∣
∫

[0,T ]×Rd
(ρ− ρn) · ψt dxdt

∣∣∣∣∣
=

∣∣∣∣∣
∫

[0,T ]×ΩR′

(ρ− ρn) · ψt dxdt

∣∣∣∣∣
≤ ‖ρ− ρn‖L∞([0,T ]×ΩR′ )

∣∣∣∣∣
∫

[0,T ]×ΩR′

ψt dxdt

∣∣∣∣∣ .
Now the previous lemma 3.60 tells us that there exists a subsequence ρn′ that converges

almost everywhere and therefore

|< (ρn′)t − ρt, ψ >D′ | → 0,

for every fixed ψ ∈ D(Rd) ⇒ (ρn′)t ⇀ ρt in D′([0, T ]× Rd).
Now starting with the subsequence ρn′ from above, we similarly get for ψ ∈

(
D([0, T ]× Rd)

)d
< m(ρn′)∇Sn′ −m(ρ)∇S, ψ >D′ =

∫
[0,T ]×Rd

(m(ρn′)∇Sn′ −m(ρ)∇S) · ψ dxdt

=

∫
[0,T ]×Rd

(m(ρn′)∇Sn′ −m(ρ)∇Sn′) · ψ dxdt

+

∫
[0,T ]×Rd

(m(ρ)∇Sn′ −m(ρ)∇S) · ψ dxdt

=

∫
[0,T ]×Rd

(m(ρn′)−m(ρ))∇Sn′ · ψ dxdt

+

∫
[0,T ]×Rd

m(ρ)(∇Sn′ −∇S) · ψ dxdt,
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and therefore, using that m(x) is Lipschitz continuous and applying Hölder’s inequality,

|< m(ρn′)∇Sn′ −m(ρ)∇S, ψ >D′ | ≤

≤ L‖ρn′ − ρ‖L∞([0,T ]×ΩR′ )
‖∇Sn′‖L∞([0,T ]×ΩR′ )

∫
[0,T ]×Rd

|ψ| dxdt

+L‖∇Sn′ −∇S‖L∞([0,T ]×ΩR′ )

∫
[0,T ]×Rd

|ψ| dxdt

≤ 2LC(d)‖ρn′ − ρ‖L∞([0,T ]×ΩR′ )

∫
[0,T ]×Rd

|ψ| dxdt → 0,

where we have used that ρn′ → ρ almost everywhere. The proof of the remaining conver-

gences follows the exact same pattern and will be omitted.

Now we are well prepared to state the final theorem of this section.

Theorem 3.62 (Existence of weak solutions). Let ρ0 ∈ L∞(Rd)∩L1(Rd), 0 ≤ ρ0 ≤ 1, m(x)

Lipschitz continuous, m(0) = m(1) = 0, m(x) > Axβ(1−x)β for some constants A > 0 and

β ≥ 0 and for all x ∈ (0, 1).

Then, there exists a weak solution of (3.43) in the sense of definition 3.48 for any time

T > 0.

Proof. Since (ρ′n)t ⇀ g1 in L2(0, T,H−1(Rd)), it also converges in a weaker sense, namely

(ρ′n)t ⇀ g1 in D′([0, T ] × Rd). Now corollary 3.61 tells us that there exists a subsequence

that satisifies

(ρn′′)t → ρt in D′([0, T ]× Rd).

Since we started with a D′([0, T ] × Rd)-convergent sequence (ρn′)t in the first place, the

subsequence (ρn′′)t has to have the same limit, and therefore ρt = g1.

The exact same argument can be applied for all needed convergences (3.63)-(3.67) and we

finally deduce

(ρn)t ⇀ ρt in L2(0, T,H−1(Rd))

∇M(ρn) ⇀ ∇M(ρ) in L2(0, T, L2(Rd))

m(ρn)∇Sn ⇀ m(ρ)∇S in L2(0, T, L2(Rd))

ρn ⇀ ρ in L2(0, T, L2(Rd))

Sn ⇀ S in L2(0, T,H1(Rd)).

Therefore we can pass the limit in the weak formulation and obtain
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∫ t

0

< ρt, ϕ >H−1 ds+

∫ t

0

∫
Rd

[ε · ∇M(ρ)−m(ρ)∇S] · ∇ϕdxds = 0∫ t

0

∫
Rd
∇S · ∇ϕ+ (S − ρ)ϕdxds = 0

for all ϕ ∈ L2(0, T,H1
0 (ΩR′)) for some R′ > 0.

Since
⋃
i∈N L

2(0, T,H1
0 (Ωi)) ⊃ D([0, T ]×Rd) is dense in L2(0, T,H1(R)) we can also admit

ϕ ∈ L2(0, T,H1(R)). The required properties of ρ and S in the defintion 3.48 result directly

from the weak convergences.

3.2 Energy Dissipation

In this section we will define an energy functional and formally prove the non-positivity of

its derivative with respect to time. The proof can be made rigorous by applying a similar

approximation procedure we have already employed in section 2.6 (energy dissipation for

linear diffusion).

Definition 3.63 (Energy functional). For ρ ∈ L1(Rd) and 0 ≤ ρ ≤ 1, we define the

following energy functional

E(ρ) :=

∫
Rd
ρ(ερ− B ∗ ρ)dx (3.68)

Lemma 3.64 (Dissipation of energy and stationary solutions). Let ρ(x, t) be a solution of

(3.43). Then
∂

∂t
E(ρ(., t)) ≤ 0.

In addition, if ∂
∂tE(ρ(., t)) = 0, then m(ρ) = 0 or ∇(ερ− B ∗ ρ) = 0.

Proof. As mentioned above we will only do a formal computation, assuming ρ is sufficiently

smooth.

∂

∂t
E(ρ(., t)) =

∫
Rd
ρt(ερ− B ∗ ρ) + ρ(ερt − B ∗ ρt) dx

=

∫
Rd
ρt(2ερ− B ∗ ρ)− ρ(B ∗ ρt) dx.
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Since B is even, the second term can be rewritten in the following way:∫
Rd
ρ(B ∗ ρt) dx =

∫
Rd

∫
Rd
ρ(x, t)B(x− y)ρt(y, t) dydx

=

∫
Rd

∫
Rd
ρ(x, t)B(y − x)ρt(y, t) dxdy

=

∫
Rd

(ρ ∗ B)(y, t)ρt(y, t) dy

=

∫
Rd

(ρ ∗ B)ρt dx,

and therefore we obtain

∂

∂t
E(ρ(., t)) = 2

∫
Rd
ρt(ερ− B ∗ ρ) dx

= 2

∫
Rd

div (m(ρ)∇(ερ− B ∗ ρ)) (ερ− B ∗ ρ) dx

= −2

∫
Rd
m(ρ) |∇(ερ− B ∗ ρ)|2 dx ≤ 0.

In contrary to chapter 2, where solutions with small mass decay to zero, we can construct

solutions with arbitrarily small mass:

Theorem 3.65. Let 0 < ε < 1 and d = 1. Then, for every M0 < K(ε), there exists

at least one pair of stationary solutions ρ(x), S(x) of (3.43) satisfying 0 ≤ ρ ≤ 1 and∫
R ρ(x)dx = M0.

Proof. As suggested by lemma 3.64, we say that our pair of functions shall satisfyερ = S + C for |x| < R,

ρ = 0 for |x| ≥ R,

for constants R > 0 and C ∈ R. Inserting S = ερ− C into the elliptic equation yields

−ερ′′ + ερ− εC = ρ

⇒ ρ′′ = − 1− ε
ε︸ ︷︷ ︸

=:α2

(ρ− C ′).

This differential equation can be easily solved and we obtain for ρ′(0) = 0 and ρ(R) = 0

ρ(x) = C ′ ·
(

1− cos(αx)
cos(αR)

)
for |x| < R,

ρ(x) = 0 for |x| ≥ R.
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The differential equation −S′′(x) + S(x) = ρ(x) for x ∈ R and ερ(x)− S(x) = constant for

x < R leads to

S(x) = C ′ ·
(

1− ε cos(αx)
cos(αR)

)
for |x| < R,

S(x) = C ′ · (1− ε) · eR−|x| for |x| ≥ R.

The remaining constants C ′ and R will be determined from S′(R−) = S′(R+) (i.e. S is

continuously differentiable) and
∫
R ρ(x)dx = M0, which yields

C ′εα
sin(αR)

cos(αR)
= −C ′ · (1− ε)

⇒ tan(αR) = − 1

α

1− ε
ε︸ ︷︷ ︸

=α2

= −α.

Since R,α > 0, we use the second branch of the arctan and obtain R = π−arctan(α)
α . For the

last constant we compute

M0 =

∫
R
ρ(x)dx = 2

∫ R

0

ρ(x)dx = 2C ′ ·
(
R− tan(αR)

α

)
= 2C ′ · (R+ 1)

⇒ C ′ =
M0

2 · (R+ 1)
.

Since we only searched for solutions ρ < 1 and ρ is decreasing by construction, we get an

upper bound for C ′, namely

ρ(0) = C ′ ·
(

1− 1

cos(αR)

)
≤ 1,

and therefore after inserting R from above

M0 ≤
2

α
· α+ π + arctan(α)√

α2 + 1 + 1
=: K(ε).

Remark 3.66 (Stationary solutions with larger mass). A similar approch with
ρ = 1 for |x| ≤ R1

ερ = S + C for R1 < |x| < R0,

ρ = 0 for |x| ≥ R0,

for 0 < R1 < R0 will (in combination with theorem 3.65) lead to the existence of stationary

solutions with arbitrary mass. Since the calculations of the occuring constants are rather

lengthy we will omit the derivation.
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(a) M0 = 2, ε = 0.5 (b) M0 = 1, ε = 0.5

(c) M0 = 2, ε = 0.8 (d) M0 = 1, ε = 0.8

Figure 3: Stationary solutions of theorem 3.65 for different values of M0 and ε
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4 Numerical Results

In this chapter we want to discuss numerical solutions for different choices of f(x) (for

the linear model) and m(x) (for the non-linear model) in one dimension, on an intervall

with homogeneous Neumann boundary conditions. For reasons of simplicity we use finite

differences in space and then solve the resulting non-linear system of ordinary differential

equations (in time) by making use of an implicit one-step formula. Note that the use of

an implicit scheme is indispensable since numerical results show that we cannot expect the

absolute values of the eigenvalues of the Jacobian to be (stay) small.

We start by comparing the effects of different choices of ε and f(x) in the case of linear

diffusion.

(a) f(x) = x(1− x), ε = 0.01,

t = 0

(b) t = 100 (c) t = 1000

(d) f(x) = x, ε = 0.01,

t = 0

(e) t = 2 (f) t = 4

Figure 4: Behaviour for supercritical mass

Since ε is small compared to the total mass, we can not expect our solution ρ to decay in
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L∞ for t → ∞. In the first case (f(x) = x(1 − x)) we observe global boundedness (i.e.

prevention of overcrowding, see section 2.5), whereas in the second case a typical behaviour

for Keller-Segel models with no prevention of overcrowding, a so called blow-up, occurs. (see

for example [12] for details about blow-up phenomena in Keller-Segel-type equations).

A completly different situation is observed in the case of subcritical mass (see lemma 2.33)

or equivalently for large ε:

(a) f(x) = x(1− x), ε = 0.5,

t = 0

(b) t = 1 (c) t = 2

(d) f(x) = x, ε = 0.5,

t = 0

(e) t = 1 (f) t = 2

Figure 5: Behaviour for subcritical mass

Obviously, the diffusion term is dominant for both functions f(x) and therefore ρ → M0

b−a
as t → ∞, where M0 denotes the total mass and x ∈ [a, b]. Therefore, if we consider this

numerical solution as an approximation for the solution on R, we obtain, just as expected,

that ρ→ 0 for [a, b]→ R and t→∞.

If we insert the same initial data and ε = 0.5 into the second model, we expect a completely
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different behaviour. Since stationary solutions exist, we suppose that the solutions do not

decay to zero but they tend towards a stationary state. As shown in the following, numerical

results emphasise our expectations. Here, the second set of plots illustrates the difference

between the numerical solution (shown in the first set), and the stationary solution given

by theorem 3.65.

(a) t = 0 (b) t = 10 (c) t = 150

(d) t = 0 (e) t = 10 (f) t = 150

Figure 6: Behaviour in the case of non-linear diffusion

Another interesting difference between linear and non-linear diffusion is the completely dif-

ferent behaviour considering the speed of propagation. As proven in [14], for f(x) = x(1−
x),m ass spreads with infinite speed in the linear model whereas the non-linear model has a

finite rate of dispersion. This is not surprising when comparing the differential equations to

other similar models like the heat equation and the porous medium equation, respectively.

Finally, we want to study a choice of initial data that visualises the effect of attraction.

Therefore, we consider a function ρ0 with two peaks next to each other and choose the

diffusion constant not too large in order to prevent pure diffusion. Again, we will first look

at the model with linear diffusion:
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(a) t = 0 (b) t = 5 (c) t = 10

(d) t = 100 (e) t = 1000 (f) t = 2000

Figure 7: Linear diffusion for f(x) = x(1− x) and ε = 0.07

Here we see that initially, due to attraction, the cells tend to clump together. Later however,

since the total mass is not large enough, the diffusion becomes dominant and ρ→ 0. In the

case of non-linear diffusion on the contrary, since the diffusion depends on the density ρ and

becomes zero for ρ = 0, the solutions tends (just like before) to a stationary solution of the

model.

(a) t = 0 (b) t = 1 (c) t = 5 (d) t = 50

Figure 8: Non-linear diffusion for f(x) = x(1− x) and ε = 0.5
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5 Appendix

The following proposition is one of the most fundamental tools in the theory of non-linear

partial differential equations (and of course many other fields). A proof can be found, for

instance, in [3, Théorème IV.9].

Proposition 5.67 (Dominated convergence). Let Ω ⊂ Rd an open set and fk ∈ Lp(Ω) a

sequence.

1. (1 ≤ p <∞) If fk → f almost everywhere in Ω for k →∞ and there exists a function

g ∈ Lp(Ω) satisfying |fk| ≤ g in Ω for every k ∈ N, then f ∈ Lp(Ω) and fk → f in

Lp(Ω).

2. (1 ≤ p ≤ ∞) If fk → f in Lp(Ω), then there exists a subsequence fk′ and a function

g ∈ Lp(Ω) satisfying fk′ → f almost everywhere in Ω and |fk′ | ≤ g,∀k′.

Another standard tool for proving convergence is the following

Proposition 5.68. Let B be a reflexive Banach space and uk ∈ B a bounded sequence.

1. uk is (weakly) convergent towards u if and only if all (weakly) convergent subsequences

uk′ have the same limit u.

2. There exists a weakly convergent subsequence uk′
B
⇀ u and ‖u‖B ≤ lim inf‖uk′‖B.

A proof can be found, for instance, in [8, Proposition 21.23]

The proof of the following useful lemma is a straightforward application of proposition 5.67

and 5.68 and will be omitted.

Lemma 5.69. Let Ω ⊂ Rd be a bounded open set, f : R → R continuous and bounded.

Then there holds

uk
B→ u ⇒ f(uk)

B→ f(u),

for B = Lp(Ω) and 1 ≤ p <∞.

The next lemma is a generalisation of proposition 1.9 and will be crucial in order to prove

estimates for fixed points.

Lemma 5.70. Let Ω ⊂ Rd be a bounded open set, u ∈W 1,2(0, T,H1
0 (Ω), L2(Ω)), F : R→ R

Lipschitz continuous, differentiable and F (0) = 0. Then there holds

1. F (u) ∈ L2(0, T,H1
0 (Ω)),

2. ∇F (u) = f(u)∇u, where F ′(x) = f(x),
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3. t 7→ ‖F(u(., t))‖L1(Ω), where F ′(x) = F (x), F(0) = 0, is an absolute continuous

function and

4. < ut, F (u) >H−1= ∂
∂t‖F(u(., t))‖L1(Ω).

Proof. We start by simply estimating and using the Lipschitz continuity of F (x) and pro-

position 1.10 for the identification ∇F (u) = F ′(u)∇u

‖F (u)‖2L2(0,T,L2(Ω)) =

∫
Ω×[0,T ]

|F (u)|2 dxdt

≤ L2

∫
Ω×[0,T ]

|u|2 dxdt < ∞ and

‖∇F (u)‖2L2(0,T,L2(Ω)) =

∫
Ω×[0,T ]

|∇F (u)|2 dxdt

=

∫
Ω×[0,T ]

|F ′(u)∇u|2 dxdt

≤ L2

∫
Ω×[0,T ]

|∇u|2 dxdt < ∞.

The proof of the remaining properties is similar to the the proof of proposition 1.9, which

can be found in [2, Chapter 8, Theorem 3].

The following inequality is widely used in the theory of partial differential equations on

bounded domains and a proof can be found in [7, Theorem 7.17].

Proposition 5.71 (Poincaré inequality). Let Ω ⊂ Rd be a bounded open set, ∂Ω ∈ C1 and

1 ≤ p <∞. Then there is a constant CP > 0 satisfying

‖u‖Lp(Ω) < CP ‖∇u‖Lp(Ω),

for all functions u ∈W 1,p
0 (Ω).

Definition 5.72 (Fractional Sobolev spaces). Let 0 < s < 1 < p < ∞ and Ω be an open

subset of Rd. Then we define:

W s,p(Ω) :=
{
u ∈ Lp(Ω) | ‖u‖W s,p(Ω) <∞

}
, where

‖u‖pW s,p(Ω) :=

∫
Ω2

|u(x)− u(y)|p

|x− y|ps
dxdy.

These spaces are reflexive Banach spaces. Another important property is the following

embedding into Lebesgue spaces (see for instance [1, chapter VII]).
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Proposition 5.73. Let 1 > s′ > s > 0, Ω bounded with ∂Ω ∈ C1 and
p ≤ r ≤ np/(n− sp) for n > sp,

p ≤ r <∞ for n = sp and

p ≤ r ≤ ∞ for n < sp

then W s′,p(Ω) ↪→ Lr(Ω) and W 1,p(Ω) ↪→W s′,p(Ω) are both compact embeddings.

The following proposition, known as Aubin’s lemma, will allow us to achieve strong conver-

gence for a sequence that is bounded in a fractional Sobolev space. A proof of this result

can be found for instance in [11, Corollary 4].

Proposition 5.74 (Aubin’s lemma). Let V be a seperable reflexive Banach space and H a

seperable Hilbert space such that there exists a compact embedding V ↪→ H. Furthermore let

1 < p <∞. Then the embedding W 1,p(0, T, V,H) ↪→ Lp(0, T,H) is compact.
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