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1. Introduction

Within the last decades the growth of the financial markets was accompanied by an increas-
ing number of complex options giving market participants the opportunity to hedge their
portfolio risk as well as to speculate more freely. Since American-style options can be exer-
cised at any point prior and up to maturity, they are a lot more flexible than European-style
options and therefore it is crucial to be able to determine the value of an American option as
accurately as possible.
The objective of this dissertation is to investigate the efficiency of applying the Cross - En-
tropy method to the combinatorial optimization problem of determining the price of an Ameri-
can put option with finite horizon in the standard Black - Scholes as well as in the exponential
Lévy model with normal inverse Gaussian increments.
The Cross - Entropy method, deriving its name from the cross entropy (or Kullback - Leibler)
distance, was introduced in 1997 by Rubinstein as an iterative method involving the following
two steps:

1. Generation of a sample of random data according to a specified random mechanism.

2. Updating the parameters of the random mechanism, on the basis of the data, in order
to produce a "better" sample in the next iteration.

The significance of the Cross - Entropy concept is that it defines a precise mathematical
framework for deriving fast, and in some sense "optimal" updating rules.
Since the price of an American put option can be written as the maximisation problem over
all admissible stopping times within the interval [t, T ], where t is the current time and T the
maturity date of the option, it is possible to apply the Cross Entropy method.
It is also known that the optimal stopping time is the first time when the asset price process
drops beneath the boundary separating the continuation set C from the stopping set D. The
continuation set C consists of the points (t, x) for which continuing is more profitable than
exercising, whereas the stopping set contains the points (t, x) for which immediate exercise
is as profitable as not exercising the option at that time.
So far no closed form solution for the optimal exercising boundary has been found, which
makes numerical methods for pricing American put options so important.

In the algorithm that was used to obtain the option price, the optimal exercising boundary
was approximated by either step functions or a linear combination of basis functions. The
step heights or the coefficients of the basis functions in the linear combination respectively
will be described by a multivariate normal distribution.
In every simulation step of the Cross - Entropy method the mean vector and the covariance
matrix will be updated, which is supposed to lead to better approximations of the optimal
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1. Introduction

exercising boundary.
Since the Cross - Entropy method has so far been successfully applied to various optimiza-
tion problems within the past years, this method may be expected to produce fairly accurate
results here, too.
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2. Financial Markets

Nowadays, a variety of instruments for trade in financial markets is available, yet this dis-
sertation will focus on securities. Contrary to other financial contracts, a security confers a
financial claim to its owner. Dividing the group of securities into the broadest possible sub-
groups, we obtain the economic classification of bonds, stocks and derivatives, as discussed
in Cvitanic and Zapatero [12, p.3], for example.

2.1. Bonds

When purchasing a bond the owner acquires the right to a predetermined and fixed payment
at a future predetermined date, called maturity. Since a bond has a guaranteed payoff at
maturity, which is known in advance, it is referred to as a risk-free security. The reason
for obtaining a bond is that the person has some purchasing power that he would prefer to
delay. Saving money for retirement would be a good example why someone would buy a
bond [12, p.3-5].

2.2. Stocks

A stock, however, entitles its owner to a proportion of any distributed profit by the firm issuing
the stock. In the case that the firm liquidates, an adequate part of the company belongs to
the stockholder [12, p.7]. Due to the randomness of the dividend payments and the absence
of a guaranteed nominal value, buying a stock and selling it at a later time might result in a
profit or a loss respectively.

2.3. Derivatives

The payoff of a derivative is dependent on another financial variable called the underlying.
Two parties agree upon a rule, depending on the value of the underlying, as to when one
party receives a payment from the other party [12, p.9].
Several types of financial instruments satisfy the aforementioned characteristic.

2.3.1. Futures and Forwards

Futures and forwards are contracts where one party agrees to purchase the underlying at a
future predetermined date at a predetermined price from the other party. The other party in
return commits itself to deliver the underlying at that date at the price that has been agreed

8



2. Financial Markets

upon. The only difference between futures and forwards is the way the payments are made.
Forward contracts permit payment only at the expiration date in exchange for the underlying
asset, while futures allow more complex exchanges occurring in stages up to maturity [12,
p.10].
There are various reasons for trading in futures. Speculation on the direction of the price of
the underlying is one possibility and hedging one’s risk is another. We talk about hedging
the position in a derivative if we determine the initial capital and the portfolio process ∆(t)
so that the portfolio value at the exercising time T is exactly the payout of the option [35,
p.218].
A farmer who fears bankruptcy due to an unexpected drop in the price of wheat, may, for
example, enter a futures contract permitting him to sell his wheat at a predetermined future
date at a predetermined price. The disadvantage, though, is that the price of wheat might
go up and he will still only get the price that has been agreed upon.

2.3.2. Options

A call option is a contract between two parties, giving the buyer the right but not the obligation
to obtain an agreed upon quantity of the underlying asset at a fixed predetermined value K,
called the strike price. This leads to a payoff of (St − K)+ when we stop at the time t,
where the + means that we only exercise when the payoff is non negative. A put option,
however, gives the buyer the right but not the obligation to sell an agreed-upon quantity of
the underlying asset according to the amount of the strike price K for each asset. Hence,
the payoff at t is (K − St)+. Cvitanic and Zapatero. point out [12, p.16] that hedging one’s
risk by obtaining an option offers an interesting investment possibility. Possessing a stock
and a put option on the stock is equivalent to a portfolio where the loss in the stock price is
limited.

Vanilla Options

The two standard styles of options, often referred to as plain Vanilla options, are European
and American options in both the put and the call case. The style of the option defines when
the option can be exercised. European-style options can only be exercised at maturity, while
in the case of the American-style option the owner has the right to exercise at any time prior
and up to the expiring date [12, p.13].
Shiryaev points out in [34, p.20] that with the growth of the financial market also the number
of types of options has highly increased over the past decades. They are used to hedge
the risk of portfolios and to speculate. Since American-style options can be exercised more
freely, they are also a lot more flexible than European-style options and therefore it is crucial
to be able to determine the value of an American option as accurately as possible.

In order to allow further conclusions concerning American options, the following definitions,
taken from Shreve [35, p.51, 53, 74], are needed:

Definition 2.1 Assume Ω is a non empty set and T a fixed positive number. Further sup-
pose that for every t ∈ [0, T ] exists a σ-algebra F(t) and that for each s ≤ t every set in
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2. Financial Markets

F(s) is also in F(t). We will call the collection of σ-algebras (F(t))0≤t≤T a filtration.

The σ-algebra F(t) represents the information available at time t.

Definition 2.2 Consider a probability space (Ω,F ,P) and a filtration (F(t))0≤t≤T . A stochastic
process X(t) is called adapted if X(t) is F(t)-measurable for all 0 ≤ t ≤ T .

This means that the information contained in the σ-algebra F(t) is sufficient to calculate the
value of X at t.

Definition 2.3 Consider the probability space (Ω,F ,P) and the filtration (F(t))0≤t≤T , where
T is a fixed positive number. An adapted and integrable stochastic process (M(t))0≤t≤T is
called a martingale if

E
[
M(t)

∣∣F(s)
]

= M(s) for all 0 ≤ s ≤ t ≤ T (2.1)

A martingale has neither a tendency to rise nor to fall in the mean.
An adapted stochastic process (M(t))0≤t≤T is called a submartingale if

E
[
M(t)

∣∣F(s)
]
≥M(s) for all 0 ≤ s ≤ t ≤ T (2.2)

A submartingale has no tendency to fall and might even rise in the mean.
Analogously, an adapted stochastic process (M(t))0≤t≤T is called a supermartingale if

E
[
M(t)

∣∣F(s)
]
≤M(s) for all 0 ≤ s ≤ t ≤ T (2.3)

A supermartingale has no tendency to rise and might even fall in the mean.

In the case of a non-dividend paying American call option it is optimal to wait until matu-
rity to decide whether to exercise or not. The reason for this is that the payoff function
(e−rt(S(t) − K)+)t≥0 is a submartingale under the risk neutral measure and thus rises in
expectation. The submartingale property of the payoff function derives from (e−rtS(t))t≥0

being a martingale and e−rtK non-increasing as t increases, since r > 0, t ≥ 0. Jensen’s
inequality used on the convex function (e−rt(S(t) −K)+) just increases the upward trend.
Hence, the expected payoff will be higher the later the option is exercised and therefore the
price coincides with the price of a European call option on the same underlying and the
same expiration date.
This argument does not work for the American put option, though, since the payoff function
(e−rt(K−S(t))+)t≥0 is a supermartingale. Applying Jensen’s inequality in this case creates
again an upward trend interfering with the supermartingale property [35, p. 363].

Basket Options

The difference between a Basket option and a Vanilla option is that, in the case of the Basket
option, the underlying is driven by the (weighted) sum of multiple assets instead of a single
option, as described by Asmussen and Glynn in [2, p.9].

10



2. Financial Markets

2.3.3. Swaps

A contract, in which two parties agree on an exchange of cash flow with different features is
called a swap. A swap can be imagined as exchanging interest rates on two different types of
bonds. Generally only the interest rate payments are exchanged and not the principal. The
most common swap is, where one party pays a fixed interest rate in exchange for a floating
interest rate from the other party. We talk about fixed interest rates when the payments are
predetermined and constant, whereas floating interest rates involve that after each payment
the following payment is reset according to a rule that has previously been agreed upon [12,
p.18]. Frequently the exchanged interest rates correspond to bonds denominated in different
currencies. To be able to distinguish them, swaps that exchange only the interest rate are
called interest-rate swaps and the ones also exchanging the currency are called currency
swaps. The party that receives the floating interest rate is the buyer of the swap. Once again
major interest when purchasing a swap is in speculation or hedging one’s risk [12, p.18].

2.4. Market Models

Whenever working with a mathematical model, researchers have to balance computational
performance and the adjustment of the model to reality. It can be helpful to work with
extremely simple models at the beginning to get a better understanding of the qualitative
behaviour of the modelled objects. Many basic conclusions obtained by studying simple
models can then be translated into more sophisticated models [12, p.53].
The reason for using continuous-time models to approximate discrete trading is mainly math-
ematical convenience. With a small number of parameters it is already possible to model
complex price dynamics. Differential calculus, only available in continuous-time, permits to
find explicit solutions for many standard pricing and investment problems [12, p.62].

2.4.1. Black - Scholes Model

In order to describe the Black - Scholes model the definition of a Brownian motion, as stated
in [35, p.94], is necessary:

Definition 2.4 Consider the filtered probability space (Ω,F , (F(t))t≥0,P). Further suppose
that for each ω ∈ Ω there exists a continuous function W (t) for t ≥ 0 with W (0) = 0
depending on ω. Then W (t) is called a Brownian motion if for all 0 = t0 < t1 < ... < tm the
increments

W (t1) = W (t1)−W (t0),W (t2)−W (t1), ...,W (tm)−W (tm−1) (2.4)

are independent and each of these increments is normally distributed with

E
[
W (ti+1)−W (ti)

]
= 0 (2.5)

V ar
[
W (ti+1)−W (ti)

]
= ti+1 − ti. (2.6)

11



2. Financial Markets

The first to use Brownian motion to model stock markets was Louis Bachelier in 1900, but
his idea was largely ignored by the other mathematicians and economists of his time. In the
1950s Brownian motion was finally introduced to the economic literature by Paul Samuelson.
Robert C. Merton, Samuelson’s student, developed the model further and in 1973 Fischer
Black and Myron Scholes published a paper responsible for the great success of the model
in the following years.
Since the model uses only a small number of parameters the price dynamics are greatly
simplified. A bigger number of parameters would allow us to match the model and the
available data better, but at the same time the parameter estimates are less precise. Another
problem is the so-called "overfitting", where the model fits the existing data very well, but
does not work with future outcomes of the underlying process [12, p.74].
In the Black - Scholes model we are given a risk-free asset B referred to as a bond or a
bank account, possessing the following dynamics

dB(t) = rB(t)dt, B(0) = 1 (2.7)

where r ≥ 0 is the constant interest rate. It is called risk-free because the payoff is prede-
termined, since it does not have a stochastic component.
Additionally, we have a risky security, called a stock, driven by

dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = x (2.8)

whereas µ is the long-term development of the asset price, referred to as drift, and σ de-
termines how volatile the asset price is. Both variables are kept constant in the standard
Black - Scholes model and there are also no dividends being paid. Solving the equation
(2.8) the stock price at t can be written as

S(t) = x exp

{
σW (t) + (µ− 1

2
σ2)t

}
, (2.9)

where S(0) is the initial stock value. S(t) changes according to a lognormal distribution,
since the logarithm of S(t) is normally distributed. The other assumptions imposed by Black
and Scholes in [5, p.640] on the model are

1. No transaction costs or taxes

2. No restrictions on short selling

Short selling a stock consists in selling a borrowed stock, owned by someone else, and
returning it at a later time [12, p.9].

The limitations to the model, coming from the small number of parameters, are due to the
fact that the user is exposed to unexpected risks of all kinds. Firstly, extreme movements of
the asset price are underestimated by the underlying normal distribution leading to so-called
tail risks, discussed by Cont and Tankov in [11, p.5]. The assumption of instant and costless
trading yielding liquidity risk, which is the risk that the asset cannot be traded quickly enough

12



2. Financial Markets

to prevent loss. Other problems are the assumptions of continuous trading, leading to gap
risk, as well as the assumption of a stationary process yielding volatility risk.
In addition to the aforementioned problems the Black - Scholes model has the problem that
the trajectories of the Brownian motion t 7→ W (t), contrary to the actual evolution of log
prices, are continuous in t and therefore neglect abrupt movements in the price.
Relevant for the investor are also the returns (i.e. the increments of the log-prices), where the
increments of the Brownian motion W (t) have, in fact, the same variance as the empirical
returns. The difference, though, is that the amplitude for the Brownian motion increments
is roughly invariant over time, whereas the returns, observed in the market, exhibit frequent
large peaks in the amplitude, corresponding to the jumps in the price and leading to the tail
risks mentioned above [11, p.2-7].

2.4.2. Exponential Lévy Model

The exponential Lévy model is an approach to take the abrupt changes in price into account.
It is the simplest Markov model with jumps leading to highly variable returns with realistic tail
behaviour without non-stationarity, choosing extreme parameters for the volatility coefficient
or adding unobservable random factors [11, p.6]. Mandelbrot was the first to introduce (non-
Gaussian) Lévy processes to financial econometrics in [25], when he proposed stable Lévy
processes as models for cotton prices.
The following definition is taken from Cont and Tankov [11, p.68]:

Definition 2.5 A cadlag (i.e. right continuous with left limits) stochastic process (X(t))t≥0

on (Ω,F ,P) with values in Rd such that X(0) = 0 is called a Lévy process if it possesses
the following properties:

1. Independent increments: For every increasing sequence of times t0, t1, ..., tn the ran-
dom variables X(t0), X(t1)−X(t0), ..., X(tn)−X(tn−1) are independent.

2. Stationary increments: The law of X(t+ h)−X(t) depends only on h and not on t.

3. Stochastic continuity: ∀ε > 0 : lim
h→0

P(|X(t+ h)−X(t)| ≥ ε) = 0.

Consider (Ω,F , (F(t))0≤t≤T ,P) with finite time horizon T , L(t) a Lévy process and the
exponential model for the asset price dynamics

S(t) = S(0) exp(L(t)) (2.10)

Along with Benth et al. [3] and Rydberg [32] we will confine ourselves to the so-called NIG-
Lévy processes, where the increments of the Lévy process follow a normal inverse Gaussian
distribution.
The random variable X ∼ NIG(α, β, µ, δ) is said to be normal inverse Gaussian distributed
with the parameters α, β, µ and δ if the density can be written as

p(x;α, β, µ, δ) =
δα

π
exp

{
δ
√

(α2 − β2) + β(x− µ)
} K1(α

√
δ2 + (x− µ)2)√

(δ2 + (x− µ)2)
, (2.11)
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2. Financial Markets

where x ∈ R, µ ∈ R, δ > 0, 0 ≤ |β| ≤ α and K1 is the modified Bessel function of the third
kind with index 1

K1(y) =
y

4

∫ ∞
0

1

t2
exp

[
−
(
t+

y2

4t

)]
dt, y ∈ R. (2.12)

To point out the advantages and shortcomings of representing the log prices as Lévy pro-
cesses, we oppose, in the same manner as in Cont and Tankov [11, p.227], the empirical
properties of asset returns with statistical properties of NIG-Lévy processes.
Therefore we need to explain the following properties satisfied by the log prices, observed
in the market.

Absence of autocorrelation: The (linear) autocorrelation of asset returns are often insignif-
icant except on an intraday time scale.

Semi - heavy tails: the distribution of returns displays a semi - heavy tail.

Volatility clustering: If a large change in the log price occurs there is a tendency that it
is followed by a large change of either sign. Likewise small changes are often followed by
small changes [25]. This leads to autocorrelation functions for the absolute returns, or their
square, that are positive, significant and slowly decaying, although the returns themselves
are uncorrelated.

Log - prices NIG-Lévy processes

Absence of autocorrelation in
increments

Satisfied by NIG-Lévy processes

Semi - heavy tails Satisfied by NIG-Lévy processes
Jumps in price trajectories Satisfied by NIG-Lévy process
Volatility clustering Not satisfied since the increments

are independent
Positive autocorrelation in absolute
returns

Not satisfied since the increments
are independent

Table 2.1.: Advantages and disadvantages of NIG-Lévy processes
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3. Survey on Pricing American Options

In this chapter we will discuss various approaches to pricing American put options. The
reason for omitting call options is that the price of an American call option is equivalent to its
European pendant as already mentioned in 2.3.2.
To price an American put option it is necessary to find the optimal exercising time, as pointed
out in chapter 4. Hence, by solving the optimal stopping problem, an optimal stopping rule
can be obtained. This chapter discusses several approaches on pricing American options
and examines their strengths and weaknesses.

With the emergence of computers in the last decades also sampling-based computational
methods have become increasingly popular as a tool for researchers as well as practitioners
in various areas ranging from statistics, finance, probability over economics and operations
research to biology, chemistry and physics. Therefore the number of books and articles
dealing with simulation and Monte Carlo methods is vast. Let us just mention some of the
classical references as Hammersley & Handscomb [20], Rubinstein [29], Ripley [28], Fish-
man [15] or Glasserman [19].
Recently financial mathematics has become one of the main fields of application for stochas-
tics, due to the fact that they are based on a well-established theory, but with upcoming chal-
lenges from a theoretical as well as from a computational point of view [2, p.6]. The pricing
of options, where the different developments of the underlying are simulated, is a typical
example. Practically it is not possible to take every path of the underlying into account and
thus a predetermined number of paths are generated using stochastic simulation.

Unless stated differently, the base reference for this survey is the chapter about pricing
American options in Glasserman [19], where a very detailed summary can be found. The
main concept is that all simulation methods for pricing American options are affected by
sources of bias. The estimation of the price is biased high if information about the future is
included in the process of deciding when to exercise. Low bias, however, is a result of using
a suboptimal exercising rule.
The following definition, taken from [26, p.27], is important for further conclusion:

Definition 3.1 A stopping time is a measurable function τ : Ω→ [0,∞], that satisfies
τ <∞ P− a.s. and for all sets of the form {τ ≤ t} we have {τ ≤ t} ∈ F(t) for all t ≥ 0.

As discussed more extensively in chapter 4, the value of the American put option can be
described by

V (x) = sup
τ

Ex
[
e−rτ (K −X(τ))+

]
, (3.1)
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where the expectation is taken under the risk neutral measure. The supremum considered
in (3.1) is taken over all admissible stopping times in [0, T ], stopping times that take values
between 0 and the maturity T and are adapted to the natural filtration of X given by FXt =
σ(Xs : 0 ≤ s ≤ t) for t ≥ 0. We suppose that the stochastic process (X(t))t≥0 is an
Rd-valued Markov process recording the information on the prices of the underlying asset
and all the other financial variables. To obtain the Markov property it may be necessary to
augment the state vector to include variables such as the stochastic volatility. The supremum
in (3.1) is obtained by an optimal stopping time

τ = inf {t ≥ 0 : Xt ≤ b(t)} (3.2)

for some optimal exercising boundary b(t), as pointed out in Glasserman [19, p.422]. Prop-
erties of the optimal exercising boundary will be discussed in more detail in section 4.7.1.
Working with a finite number of exercise times m, as necessary in computer simulations,
a characterization of the American option value through dynamic programming comes by
naturally. Denoting the payoff function at the exercise date ti with hi, we obtain the following
recursion

Vm(x) = hm(x) (3.3)

Vi−1(x) = max
{
hi−1(x),E

[
Vi(Xi)

∣∣Xi−1 = x
]}
, i = 1, ...,m, (3.4)

where the payoff function is already augmented to contain the discount factor. The first
equation points out that at maturity the option is exercised immediately. Should the payoff
be negative, the option is not exercised and the payoff is 0. At all other time steps ti−1 the
decision to exercise depends on the continuation value

Ci−1(x) = Ex
[
Vi(Xi)

∣∣Xi−1 = x
]

for i = 1, ...,m− 1. (3.5)

If at ti−1 the continuation value is larger than the immediate payoff hi−1 the option is not
exercised at ti−1. If the immediate payoff hi−1 at ti−1 exceeds the continuation value Ci−1,
however, the option is exercised.

3.1. Parametric Approximations

Rather than finding the best approximation for the value of the American put option, this
method contents itself with finding the most accurate value within a parametric class of
stopping rules τθ, θ ∈ Θ. Thereby the optimal stopping problem is reduced to an optimization
problem, that can be solved more easily and written as

V θ
0 = sup

θ∈Θ
E
[
hτ(θ)(Xτ(θ))

]
(3.6)

Since the stopping times used are a subclass of all the admissible stopping times in (3.1) it
follows that the optimal value, within the parametric class, V θ

0 satisfies

V θ
0 ≤ V0, (3.7)
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where V0 denotes the true value of the American put and thereby that a consistent estimator
of V θ

0 underestimates V0.
The subsequent algorithm produces an estimator with a low bias

1. Simulate n1 samples X(j) =
(
X

(j)
0 , X

(j)
1 , ..., X

(j)
m

)
, j = 1, ..., n1 of the Markov chain.

2. Find the parameter θ̂ maximizing the following expression

V̂ θ̂
0 =

1

n1

n1∑
j=1

hτ (j)(θ̂)

(
X

(j)

τ (j)(θ̂)

)
, (3.8)

whereas τ (j)(θ) denotes the exercising time of the jth replication for the parameter θ.

3. Generate another n2 independent replications of the Markov Chain (X0, X1, ..., Xm).
Use the stopping rule τ(θ̂) found in 2. to calculate

V̂ θ̂
0 =

1

n2

n1+n2∑
j=n1+1

hτ (j)(θ̂)

(
X

(j)

τ (j)(θ̂)

)
(3.9)

To determine the in-sample maximum θ̂ in step 2, the future development of the underlying
asset price is taken into account. Thus the estimator in step 2 is biased high. Together with
the low bias obtained by using a suboptimal stopping time, the algorithm produces an esti-
mator with unpredictable bias. To avoid that, an additional simulation step is added, where
the stopping rule from step 2 is used on an independent sample offsetting the high bias in
step 2 and resulting in a low biased estimator.
The most difficult part of this algorithm and therefore focus for optimization, is to find a
parameter maximizing step 2. Within the last 15 years there have been various distinct ap-
proaches, ranging from the reduction of the optimization problem in step 2 to a sequence of
one-dimensional searches as the ones by Andersen in [1], over the estimation of derivatives
with respect to the parameters in order to find an optimal parameter, like Fu and Hu in [17],
up to the description of the exercise region at each time step by two parameters like Garcia
in [18].

3.2. Random Tree Methods

The strength of this algorithm is that it merely assumes more than the ability to simulate
paths of the underlying Markov chain. As result we obtain a high as well as a low biased
estimator, each converging to the true value of the American option. The major drawback of
this method, though, is that the computational effort increases exponentially with the number
of exercise dates making it unsuitable for simulations with more than 5 exercise dates.
Having two estimators, one converging to the true value from above and one from below,
permits the creation of a confidence interval. Assume that V̂n(c) and v̂n(c), where c is
the branching parameter, are sample means of n independent replications of the Markov
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chain and as estimators of V0 biased high and low respectively. By generating a confidence
interval for E(V̂n(c)) with halfwidth Hn(c),

V̂n(c)±Hn(c) (3.10)

and one for E(v̂n(c)) with halfwidth Ln(c) for v̂n(c) respectively, a confidence interval for V0

can be constructed as follows

(v̂n(c)− Ln(c), V̂n(c) +Hn(c)) (3.11)

By increasing the number c of successor nodes as well as the number of independent repli-
cations n, the confidence interval can be tightened at the cost of computational effort.
By means of this method the high estimator is acquired through applying backward induction
to the random tree. The tree structure is obtained by choosing a branching parameter c ≥ 2
which determines the number of successor nodes for each node, as can be observed in
Figure 3.1. All successor nodes of Xi(t) are generated by the conditional law of Xt+1 given
X(t) = Xi(t).

Figure 3.1.: Random Tree with branching parameter c = 3

Using the backward induction recursion, the discounted value of the American option is

Vm ≡ hm (3.12)

Vi(x) = max
{
hi(x),E

[
Vi+1(Xi+1)

∣∣Xi = x
]}
, i = 1, ...,m− 1 (3.13)

Considering the structure of the tree, the high estimator at each nodeXj1...ji
i ( j1...ji denotes

the path in the tree from the initial state on) is

V̂ j1...jm
m = hm(Xj1...jm

m ) (3.14)
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for the terminal nodes and

V̂ j1...ji
i = max

{
hi(X

j1...ji
i ) ,

1

c

c∑
j=1

V̂ j1...jij
i+1

}
(3.15)

for the rest of the nodes, working backwards through the tree. To construct a confidence
interval we fix the branching parameter c and produce n replicates of the random tree. The
sample mean V 0(n, c) of V̂0 as well as the sample standard deviation sV (n, c) are obtained
by using the n replications of the tree. This way we can write the (1− δ) confidence interval
for E(V̂0) as

V 0(n, c)± zδ/2
sV (n, c)√

n
, (3.16)

whereas zδ/2 is the (1− δ
2) quantile of the normal distribution.

As in all Monte Carlo methods the high bias is removed by separating the decision to exer-
cise from the value of continuation.
One way to achieve this is to use the following estimators suggested in Broadie and Glasser-
man [7].

v̂j1j2...jmm = hm(Xj1j2...jm
m ), (3.17)

v̂j1j2...jii =
1

c

c∑
k=1

v̂j1j2...jiik , (3.18)

with

v̂j1j2...jiik =

{
hi(X

j1j2...ji
i ), if 1

c−1

∑c
j=1,j 6=k v̂

j1j2...jij
i+1 ≤ hi(Xj1j2...ji

i )

v̂j1j2...jiki+1 , else.
(3.19)

Sample mean v0(n, c) and sample standard deviation sv(n, c) can be acquired in the same
manner as for the high estimator resulting in a confidence interval

v0(n, c)± zδ/2
sv(n, c)√

n
(3.20)

for E(v̂0). Thereby a confidence interval for V0 can be constructed like in (3.11).

Optimization techniques for the Random Tree method range from Depth First Processing
implementation, over reduction of the needed storage space up to Pruning and Variance
Reduction techniques used by Broadie et al. in [8].

3.3. State Space Partitioning

Contrary to the random tree method, in this method the states are not generated randomly,
but the whole state space of the underlying Markov chain (X0, X1, ..., Xm) is partitioned
in advance. At each possible exercising time ti the state space of Xi is partitioned into
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bi subsets Ai1, ..., Aibi , starting with b0 = 1 and A01 = {X0} at the initial time 0. Then
transition probabilities are defined

pijk = P
(
Xi+1 ∈ Ai+1,k

∣∣Xi ∈ Aij
)
, (3.21)

for all j = 1, ..., bi, k = 1, ..., bi+1 and i = 0, ...,m − 1 , where the transition probability is 0
if P(Xi ∈ Aij) = 0. Thereby the payoff at each state at time ti can be calculated for each
i = 1, ...,m and j = 1, ..., bi by

hij = E
[
hi(Xi)

∣∣Xi ∈ Aij
]

(3.22)

Hence, the option price can be estimated by V01, following the backward recursion

Vij = max {hij ,
bi+1∑
k=1

pijk Vi+1,k} , (3.23)

starting with Vmj = hmj for all i = 0, 1, ...,m− 1, j = 1, ..., bi.
By simulating a large number of replications of the underlying Markov chain (X0, X1, ..., Xm)
the transition probabilities pijk and average payoffs hij can be estimated. Hence the estimate
for Vij can be defined as follows

V̂ij = max
{
ĥij ,

bi+1∑
k=1

p̂ijk V̂i+1,k

}
, (3.24)

for j = 1, ..., bi, i = 0, 1, ...,m−1. Accordingly, V̂01 is the estimate for V01. The strong law of
large numbers ensures that, by increasing the number of replications of the Markov chain,
the estimates p̂ijk and ĥij converge to pijk and hij . Since the mapping from p̂ijk and ĥij to

V̂ij is continuous, it follows that V̂01 converges to V01, resulting in a consistent estimator.
As in the case of the parametric approach before, an additional simulation step is needed
to obtain an estimator that is biased low, otherwise no conclusions about the bias of the
estimator could be obtained. Again the first simulation phase is used to receive a stopping
rule

τ = min {0 ≤ i ≤ m : hi(Xi) ≥ ViJi} , (3.25)

where Ji is the subset at ti containing Xi. In the case that the inequality is never satisfied τ
is m. Using this stopping rule at the second simulation phase it is ensured that the estimator
will be biased low, because no stopping rule exceeds the payoff of the optimal stopping rule.
The considerable drawback of this approach is that the partitioning of the state space, main
challenge of this method, has to be fitted to the form of the payoff and therefore cannot be
applied to numerous different American options. Also the a priori finding of partitions is not
convenient for high-dimensional state spaces as the computational requirement increases
exponentially with the dimension of the state space.
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3.4. Stochastic Mesh Methods

The stochastic mesh method is another Monte Carlo approach to approximating the price of
an American put option. Main difference to the Random Tree method is that the estimator
for the option value at each node at time step ti uses all successive states from time step
ti+1 instead of just a subset. The method’s name derives directly from its major advantage
over the Random Tree method. By using all states at the consecutive time step a mesh
structure is obtained. This way the number of states at each time step is kept constant and
the exponential growth making the random tree method inefficient is omitted.
A simple way to construct the mesh is to sample a number of independent paths of the
underlying Markov chain (X0, X1, ..., Xm) with the same starting point. Then each node
at each time step and all nodes at the consecutive time step are connected, leading to the
mesh structure. Thereafter weights W i

jk (i.e. Likelihood ratio weights) are allocated to each
connection, giving the probability that being at Xij , which denotes the jth node at time ti,
the next state will be Xi+1,k. Figure 3.2, taken from Glasserman [19, p.444], demonstrates
the construction of the stochastic mesh.

Figure 3.2.: Construction of the stochastic mesh

The actual pricing is similar to the Random Tree method. First the value at the terminal
nodes at time step m is set to the associated payoff

V̂mj = hm(Xmj) ∀j =1, ..., b, (3.26)

where b is the number of states at each time step. Then moving backwards through the
mesh the estimator is obtained by

V̂ij = max

{
hi(Xij),

1

b

b∑
k=1

W i
jkV̂i+1,k

}
(3.27)

The value at the root node is defined by the formula

V̂0 =
1

b

b∑
k=1

V̂1k, (3.28)
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assuming that it is not possible to exercise at t0, otherwise the maximum over (3.28) and
h0(X0) has to be considered. The way the value at each node in (3.27) is determined looks
superficially very much like the one in the state space partitioning method, but the major
difference is that nodes used in the recursion are randomly sampled, whereas in the former
method they are fixed subsets of the state space.
The following 3 conditions, imposed on the mesh, provide all necessities for an inductive
argument showing that the estimator V̂0 from (3.28) is biased high.

1. {X0, ...,Xi−1} and {Xi+1, ...,Xm} are independent, given Xi for all i = 1, ...,m −
1, where Xi = (Xi1, ..., Xib) consists of all nodes at time step ti, representing the
state of the mesh at that time. This condition is naturally satisfied when the mesh is
constructed by the independent path method mentioned above.

2. Each weight W i
jk is a deterministic function of Xi and Xi+1.

3. 1
b

∑b
k=1 E

[
W i
jkVi+1(Xi+1,k)

∣∣Xi

]
= Ci(Xij), implying that if the true option values

are known at ti+1, the true continuation value at time step ti can be determined this
way.

As in the previous methods the low estimator for the option price is obtained by using the
strategy to exercise the option the first time the immediate payoff equals or exceeds the
value of continuation. To be able to define the continuation value though, the weights W i

jk at
each step ti have to be extended from Xi1, ..., Xib to every point in the state space, resulting
in a weight function W i

k(x). Then the continuation value can be defined as

Ĉi(x) =
1

b

b∑
k=1

W i
k(x)V̂i+1,k (3.29)

Now the aforementioned strategy can be written as the stopping rule

τ̂ = min
{
i : hi(Xi) ≥ Ĉi(Xi)

}
(3.30)

Simulating a new path, independent from the ones used to construct the mesh, this stopping
rule yields the estimator

v̂ = hτ̂ (Xτ̂ ) (3.31)

for the true option price. Since no stopping rule can be better than the optimal one, the
estimator is indeed biased low.
Main drawback of this method is that the transition densities, necessary for the maximum
likelihood weights, may not exist. To by-pass this problem the weights can be selected by
solving a constrained optimization problem as was done by Broadie et al. in [9].

3.5. Regression-Based Methods

The aim of this method is to estimate the continuation value through regression. A big
advantage of this method is that it can be applied to many different settings and is relatively
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fast. It is also the method, where knowledge as well as intuition can be exploited to the full
extent, when it comes to choosing the regression functions, which are responsible for the
accuracy of the algorithm. Therefore the success of the algorithm is strongly dependent on
the choice of these basis functions.
The regression method can be easily used in combination with a stochastic mesh framework,
where it is used to determine the mesh weights. There the continuation value is written as a
linear combination of basis functions ψr : Rd 7→ R

E
[
Vi+1(Xi+1)

∣∣Xi = x
]

=

M∑
r=1

βirψr(x), (3.32)

where βir are constants for all r = 1, ...,M . Equivalently, the equation (3.32) can be written
as

Ci(x) = β>i ψ(x), (3.33)

where β>i = (βi1, ..., βiM ) and ψ(x) = (ψ1(x), ..., ψM (x))>. Under the assumption that the
equation (3.32) holds, the vector βi has the form

βi = (E
[
ψ(Xi)ψ(Xi)

>])−1E
[
ψ(Xi)Vi+1(Xi+1)

]
≡ B−1

ψ BψV (3.34)

Supposing that the values Vi+1(Xi+1,j) are known for i = 1, ..., b, the least square estimator
of βi is given by

β̂i = B̂−1
ψ B̂ψV , (3.35)

whereas B̂ψ and B̂ψV represent the sample counterparts of the aforementioned (3.34). In
practice, though, the value Vi+1 also needs to be estimated by V̂i+1. The estimate of the
continuation value then becomes

Ĉi(x) = β̂>i ψ(x) (3.36)

The whole algorithm to price American options can therefore be written in the following steps

1. Simulate b independent paths of the underlying Markov chain

2. Set value at terminal nodes to V̂mj = hm(Xmj) for j = 1, ..., b

3. Use backward induction for i=m-1,...,1

a) Use regression to determine the estimators β̂i

b) Calculate V̂ij = max
{
hi(Xij), Ĉi(Xij)

}
, j = 1, ..., b

4. Set V̂0 = 1
b

∑b
k=1 V̂1k

The low estimator is once more obtained by following the stopping strategy to exercise when
the immediate payoff is at least as high as the continuation value, obtained before from an
independent simulation.

In Egorova and Ivanova [14] further numerical methods are described in detail.
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4.1. Risk-Neutral Pricing in the Black - Scholes Model

In this section we want to discuss the basic conditions necessary to acquire a unique price
for every derivative security in the standard Black - Scholes model. In order to price a
derivative security we have to change the considered probability measure to the risk neutral
measure.

Theorem 4.1 The Itô integral∫ t

0
∆(u)dW (u), 0 ≤ t ≤ T (4.1)

is a martingale [35, p.134].

Theorem 4.2 (Girsanov)
Suppose we are given a probability space (Ω,F ,P), (W (t))0≤t≤T is a Brownian motion and
(F(t))0≤t≤T a filtration for this Brownian motion. Let (Θ(t))0≤t≤T be an adapted process
and define further

Z(t) = exp{−
∫ t

0
Θ(u)dW (u)− 1

2

∫ t

0
Θ2(u)du} (4.2)

W̃ (t) = W (t) +

∫ t

0
Θ(u)du (4.3)

Assuming that

E

∫ T

0
Θ2(u)Z2(u)du <∞ (4.4)

and setting Z = Z(T ) we obtain: EZ = 1 and under the probability measure

P̃(A) =

∫
A
Z(ω)dP(ω), for all A ∈ F (4.5)

the process (W̃ (t))0≤t≤T is a Brownian motion.

We will refer to P̃ as the risk neutral measure, since it turns the discounted expected payoff
of any derivative into a martingale. Further, since Z satisfies per definition P(Z > 0) = 1
the probability measures P and P̃ agree on which sets have probability 0 - i.e. which asset
price developments are possible [35, p.210].
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4.1.1. Stock and Portfolio under the Risk-Neutral Measure

Let us consider the usual price process dynamic

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), 0 ≤ t ≤ T (4.6)

and the discount process

D(t) = exp

{
−
∫ t

0
R(s)ds

}
(4.7)

then the discounted price process D(t)S(t) is

D(t)S(t) = S(0) exp

{∫ t

0
σ(s)dW (s) +

∫ t

0
(µ(s)−R(s)− 1

2
σ(t)2)ds

}
(4.8)

One way to determine the differential of D(t)S(t) is Itô’s product rule, proved in Shreve [35,
p.168]. Since the theorem is stated for Itô processes let us first give the definition of an Itô
process as in Shreve [35, p.143]:

Definition 4.1 Let W (t), t ≥ 0, be a Brownian motion, and let F(t), ≥ 0, be an associated
filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +

∫ t

0
δ(u)dW (u) +

∫ t

0
θ(u)du, (4.9)

(4.10)

where X(0) is nonrandom and δ(u) and θ(u) are adapted stochastic processes.

This allows us to state Itô’s product rule as follows.

Theorem 4.3 (Itô’s product rule)
Suppose we have two Itô processes X(t) and Y (t). Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t) (4.11)

Therefore we have

d(D(t)S(t)) = σ(t)D(t)S(t)[Θ(t)dt+ dW (t)], (4.12)

where the market price of risk is defined by

Θ(t) =
µ(t)−R(t)

σ(t)
. (4.13)

Since the differential of the discounted price process in (4.12) has a dt term, D(t)S(t) is not
a martingale under P.
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Using Girsanov’s theorem to change the probability measure from P to the risk neutral mea-
sure P̃, where we use the market price of risk from (4.13) to obtain the Brownian motion W̃ ,
the discounted price process D(t)S(t) can be written as

D(t)S(t) = S(0) +

∫ t

0
σ(u)D(u)S(u)dW̃ (u) (4.14)

and according to (4.1) is a martingale. The change of measure entails a change in the mean
rate of return of the stock from µ(t) to R(t). However, the volatility, telling us which price
paths are possible, stays the same [35, p.217].

The portfolio consists of shares in the stock as well as in the bond and the changes in the
portfolio value can be described by

dX(t) = ∆(t)dS(t) +R(t)[X(t)−∆(t)S(t)]dt, (4.15)

where ∆(t) represents the shares of stock at each time t and X(0) is the initial capital.
Investing and borrowing money is done at the interest rate R(t). After plugging in (4.6) for
dS(t), using the notation (4.13) and regrouping the terms, (4.15) becomes

dX(t) = R(t)X(t)dt+ ∆(t)σ(t)S(t)
[
Θ(t)dt+ dW (t)

]
(4.16)

Let us consider the discounted portfolio value now. It can be seen that

d(D(t)X(t)) = ∆(t)σ(t)D(t)S(t)
[
Θ(t)dt+ dW (t)

]
(4.17)

= ∆(t)d(D(t)S(t)) (4.18)

= ∆(t)σ(t)D(t)S(t)dW̃ (t) (4.19)

Hence the discounted portfolio value is a martingale and changes in its value are solely due
to changes in the discounted stock price [35, p.217].
In order to derive the value of a derivative with payoff V (T ), assumed to be F(T ) measur-
able, at maturity T , we need to hedge the position in the derivative - determine the initial
capital X(0) and the portfolio process ∆(t) leading to X(T ) = V (T ) almost surely [35,
p.218]. When this is accomplished the fact that D(t)X(t) is a martingale under the risk
neutral measure P̃ implies

D(t)X(t) = EP̃

[
D(T )X(T )

∣∣F(t)
]

= EP̃

[
D(T )V (T )

∣∣F(t)
]

(4.20)

with V (t)
def
= X(t) the price of the derivative - the capital necessary to hedge the short

position in the derivative with payoff V (T ).

Theorem 4.4 (Martingale Representation Theorem)
Consider the probability space (Ω,F , P ), the Brownian motion (W (t))0≤t≤T and the filtra-
tion (F(t))0≤t≤T generated by the Brownian motion. Any stochastic process (M(t))0≤t≤T
that is a martingale with respect to (F(t))0≤t≤T has the representation

M(t) = M(0) +

∫ t

0
Γ(u)dW (u), 0 ≤ t ≤ T (4.21)

where (Γ(u))0≤u≤T is an adapted process [35, p.221].
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This theorem is crucial to proving the existence of a hedging portfolio and uncovers that the
only source of uncertainty in this context is the Brownian motion.

Corollary 4.1 If we restrict the filtration (F(t))0≤t≤T in the Girsanov theorem to the one gen-
erated by the Brownian motion (W (t))0≤t≤T the same results still apply. Additionally, we ac-
quire that if ˜(M(t))0≤t≤T is a martingale under the risk neutral measure P̃ and (Γ̃(u))0≤t≤T
an adapted process, M̃(t) can be written, as done in [35, p.222], as

M̃(t) = M̃(0) +

∫ t

0
Γ̃(u)dW̃ (u) 0 ≤ t ≤ T (4.22)

Taking into account that D(0)V (0) = V (0), the discounted price process D(t)V (t), which
is a martingale under P̃, can be written in the form

D(t)V (t) = V (0) +

∫ t

0
Γ̃(u)dW̃ (u) 0 ≤ t ≤ T (4.23)

Integrating (4.17) we obtain the second representation of the discounted portfolio value

D(t)X(t) = X(0) +

∫ t

0
∆(u)σ(u)D(u)S(u)dW̃ (u), 0 ≤ t ≤ T (4.24)

Since we want X(t) = V (t) for all t, it is necessary that X(0) = V (0) and to choose the
portfolio process (∆(t))0≤t≤T according to

∆(t) =
Γ̃(t)

σ(t)D(t)S(t)
, 0 ≤ t ≤ T (4.25)

This way a hedge in the short position in the derivative with payoff V (T ) at T is possible
under the following assumptions:

1. The volatility σ(t) is not zero.

2. The filtration (F(t))0≤t≤T is generated by the Brownian motion (W (t))0≤t≤T .

4.1.2. Arbitrage and Market Completeness

Definition 4.2 An arbitrage possibility is a portfolio value process X(t) satisfying X(0) = 0
and

P(X(T ) ≥ 0) = 1, P(X(T ) > 0) > 0, (4.26)

for some T > 0.

The definition above is taken from Shreve [35, p.230] and implies that it is possible that we
start with 0 capital and without any risk of losing money end up with a profit with positive
probability, which is a feature in market models economists ideally like to have absent with
the argument that any arbitrage possibility will vanish due to an increase in interest from
market participants, leading to an adjustment of the prices [35, p.230].
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Theorem 4.5 (First fundamental theorem of asset pricing)
There is no arbitrage possibility in the market model if it has a risk-neutral probability mea-
sure.

Definition 4.3 A market model is said to be complete if every derivative security can be
hedged.

Theorem 4.6 (Second fundamental theorem of asset pricing)
Consider a market model that has a risk-neutral probability measure. The model is complete
if and only if the risk-neutral probability measure is unique.

Proofs of the fundamental theorems of asset pricing as well as the definition of a complete
market model are offered in [35, p.230ff].

The fundamental theorems state that if there is a unique process Θ(t) solving the market
price of risk equation (4.13), then there exists also a unique risk neutral measure and hence
the market model does not permit arbitrage and is complete.

4.2. Pricing and Hedging in Incomplete Markets

As pointed out in section 4.1 the standard Black - Scholes model is an example of a com-
plete market. Hence, any option can be perfectly replicated by a self-financing strategy
involving the underlying and cash. In markets like that, options are redundant since they are
replaceable by trading in the underlying.
In real markets, though, perfect hedging is impossible and options enable market partic-
ipants to hedge risks that cannot be hedged by trading in the underlying only. This way,
an option allows the market participant to transfer his risk, which was the purpose for the
creation of derivative markets in the first place [31].
In discontinuous price models riskless replication is an exception rather than the rule, but
this even makes them fit reality better.

In incomplete markets, as well as in the real markets, a perfect hedge does not exist, be-
cause of the so-called residual risk. Thus, when pricing options in incomplete markets, the
goal is to approximate a target payoff with a trading strategy and not to find the cost of repli-
cating it [11, p.320].
In order to approximate an option price we have to take the residual risk into account by
specifying a way of measuring and subsequently minimizing it. Hence, the value of an
option in an incomplete market is the cost of the hedging strategy with an additional risk
premium. Obviously, we obtain different hedging approaches when choosing different ways
of measuring the risk, like super-hedging, utility maximization and mean-variance hedging
[11, p.320].
If only interested in arbitrage-free pricing of options, without taking the residual risk into ac-
count, one can choose any equivalent martingale measure as self-consistent pricing rule.
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However, the obtained option price does not correspond to a specific hedging strategy any-
more, contrary to the Black - Scholes case.
In a market model without Gaussian component it is not possible to obtain an equivalent
martingale measure by changing the drift. Hence, we have to alter the distribution of jumps,
leading to a greater variety of equivalent measures [11, p.310].
It is also important to realize that a P-Lévy process (X(t))t≥0 does not have to be a Q-Lévy
process anymore after changing the measure from P to Q, since the increments might nei-
ther be independent nor stationary [11, p.292].
In the case of an exponential Lévy model, however, it is possible to remain in the class of ex-
ponential Lévy processes using the Esscher transform to change to a risk neutral measure.

Cont and Tankov point out in [11, p.80] that, due to the Lévy-Itô decomposition, the distribu-
tion of every Lévy process is uniquely defined by a vector γ, a positive definite matrix A and
a positive measure ν. The Lévy-Itô decomposition states that every Lévy process (X(t))t≥0

can be represented by the sum of a Gaussian component and a discontinuous component,
where the first is accountable for the continuous movement of the process (X(t))t≥0 and
the second incorporates the jumps of the process (X(t))t≥0 . The compendium of the three
quantities to (A, ν, γ) is called characteristic triplet, whereas γ represents the drift vector
and A the covariance matrix of the Gaussian component of (X(t))t≥0 (but note that there is
also a contribution to the overall drift coming from a possible compensation). The measure
ν is called Lévy measure and is defined as in Cont and Tankov [11, p.76] as

Definition 4.4 Consider the Lévy process (X(t))t≥0 on Rd. The measure ν on Rd definded
by

ν(A) = E [#{t ∈ [0, 1] : ∆X(t) 6= 0,∆X(t) ∈ A}] , A ∈ B(Rd), (4.27)

is called the Lévy measure of X, where ν(A) is the expected number of jumps per unit time,
where the jump size ∆X(t) belongs to A.

Theorem 4.7 Consider the Lévy process (X(t))t≥0 . If for θ ∈ Rd we have∫
|x|≥1

eθxν(dx) <∞, (4.28)

it follows that the measure

ν̃(dx) := eθxν(dx) (4.29)

is a Lévy measure and for any Lévy process (X(t))t≥0 on Rd with characteristic triplet
(A, ν, γ) the process with characteristic triplet (A, ν̃, γ) is also a Lévy process called Esscher
transform of X [11, p.110].

Using the Theorems 33.1 and 33.2 from Sato [33, p.218] we obtain an equivalent probability,
where the Lévy process (X(t))t≥0 with characteristic triplet (A, ν, γ) is changed to a Lévy
process with the new triplet (A, ν̃, γ̃), where

γ̃ = γ +

∫ 1

1
x(eθx − 1)ν(dx). (4.30)
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Theorem 4.8 (Absence of arbitrage in exp-Lévy models)
Considering the Lévy process (X,P), the exponential Lévy model S(t) = e(rt+X(t)) is
arbitrage-free, if the trajectories of X are neither almost surely increasing nor almost surely
decreasing. Therefore an equivalent martingale measure Q exists, such that (e−rtS(t))0≤t≤T
is a Q-martingale, where r is the interest rate.
The corresponding Radon-Nikodym derivative to the measure change is

dQ
∣∣
Ft

dP
∣∣
Ft

=
eθX(t)

E
[
eθX(t)

] , (4.31)

as pointed out in [11, p.310].

This shows that exponential Lévy models are arbitrage-free, but since exponential Lévy
models are also incomplete market models there exists more than one equivalent martin-
gale measure.
Although having many possible ways of pricing an option might seem to be undesirable for
a market model, it is a realistic property shared with real markets [11, p.316].
In the Black - Scholes model option prices are uniquely determined once a model is esti-
mated from historical events and often does not coincide with traded option prices, whereas
the flexibility of an incomplete market allows the exponential Lévy model to reproduce the
market prices correctly [11, p.316].
For further reading we refer to Delbaen and Schachermayer [13], Kabanov in [22] and Cerny
and Shiryaev [10], where no-arbitrage theorems and relation with equivalent martingale
measures are discussed at length.

4.3. The American Option as a Stopping-Time Problem

To determine the unique price of an American put option we need the following definitions,
stated in Peskir and Shiryaev [26, p.91ff], allowing us to rewrite the problem.

Definition 4.5 Suppose we are given a phase space (E, E), a family of probability spaces
(Ω,F , (F(t))t≥0,Px, x ∈ E), where each Px is a probability measure on (Ω,F) and a
stochastic processX = (X(t))t≥0 where eachX(t) is F(t)/E - measurable. If the following
properties are fulfilled

1. the function P(t, x;B) = Px(X(t) ∈ B) is E-measurable in x

2. P(0, x;E\{x}) = 0, for x ∈ E

3. for all s, t ≥ 0 and B ∈ E , the Markov property holds:

Px(X(t+ s) ∈ B
∣∣F(t)) = P(s,X(t);B) P − a.s. (4.32)

4. for any ω ∈ Ω and h > 0 there exists ω′ ∈ Ω such that X(t + h, ω) = X(t, ω′) for all
t ≥ 0.
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the processX is said to be a (time-homogeneous) Markov process on (Ω,F , (F(t))t≥0,Px, x ∈
E) with the time independent transition function P(t, x;B).

In order to define a strong Markov process we need to state the definition of a stopping time
σ-algebra, as in [27, p.5], first

Definition 4.6 Let τ be a stopping time. The stopping time σ-algebra is defined as

F(τ) = {A ∈ F : A ∩ {τ ≤ t} ∈ F(t) : t ≥ 0}. (4.33)

Definition 4.7 If a stochastic process satisfies in addition to being a Markov process also
the property

Px(X(τ + s) ∈ B
∣∣F(τ)) = PXτ (X(s) ∈ B) Px − a.s. on {τ <∞} (4.34)

for all stopping times τ , it is called a strong Markov process.

It is very convenient to assume that the process (X(t))t≥0 is a strong Markov process de-
fined on (Ω,F , (F(t))t≥0,Px) and taking values in a measurable space (E,B) with E = Rd
and B the Borel σ-algebra on Rd. Should the Markov property be violated somehow, an
augmentation of the state vector can often establish this property [19, p. 422]. We presume
that the process (X(t))t≥0 starts at x under Px, is right-continuous and left-continuous over
stopping times (i.e. if τn ↑ τ are stopping times, then Xτn → Xτ Px a.s. as n → ∞).
In addition we assume that (F(t) )t≥0 is right-continuous, ensuring that the first entry time
to open and closed sets are stopping times. It is also indispensable to presume that x 7→
Px(F ) is measurable ∀F ∈ F , the mapping x 7→ Ex(Z) is measurable for each bounded or
non-negative random variable Z.

The major difference between a European and an American option is that in the case of
an American option the option can be exercised at any given time prior and up to maturity.
Since the exercising time is unknown in advance, the price of an American option differs
from (4.20), where the exercise time is predetermined. In order to hedge the short position
in an American option it is necessary to find the optimal stopping time that would maximize
the payoff for the option holder. Until the optimal exercising time the American put option
is a martingale, afterwards the option has a downward drift, making it a supermartingale.
Consequently, the short position can be hedged in the usual way as long as the option price
is a martingale and after the optimal exercising time the owner of the short position can take
money off the table [35, p.354]. It is shown in [35, p.359] that the price the writer of the
American put option has to demand in order to fulfil the contract is at least

V (x) = sup
τ

Ex
[
e−rτ (K −X(τ))+

]
, (4.35)

where the expectation is taken under the risk-neutral measure. The supremum considered
in (4.35) is taken over all admissible stopping times τ of X within [0, T ]. The admissible set
of stopping times we are considering in (4.35) consists of all possible exercising strategies
using only the available information up to that point of the Markov process X, i.e. τ is
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adapted to the natural filtration of X, FXt [35, p.340]. V (x) is the smallest initial capital
allowing us to hedge a short position in the American put option [35, p.368].
The maturity date T can either be∞ or take values in (0,∞). If we assume that T <∞ we
have the slightly different optimal stopping problem:

V (t, x) = sup
0≤τ≤T−t

Et, x
[
e−rτ (K −X(t+ τ))+

]
(4.36)

Other than that the rest of time T − t changes when the initial state changes in its first
argument, no argument is seriously affected by this change so that the following results are
applicable in both cases. Another side effect of the finite horizon is that we get the terminal
condition V (T, x) = e−rT (K −X(T ))+ ∀x ∈ E, making sure that the first-entry time to the
stopping set D will be finite.
To guarantee the existence of the expected value in (4.35), we have to ensure that

Ex
[

sup
0≤t≤T

|(e−rτ (K −X(t))+)|
]
<∞, (4.37)

for all x ∈ E and T ∈ [0,∞] [26, p.35].
Taking into account that the stochastic process we are considering is a strong Markov pro-
cess and that stopping times are only using the information up to the present point, it is
plausible that we are capable to decide optimally at any time to stop and exercise or to
continue. Hence, it is possible to split the state space E into the two complementary sets
C and D denoting the continuation set and the stopping set respectively. These sets are
determined by the deterministic functions V (x), representing the value of the option at x,
and the gain function at x

G(x) = (K − x)+. (4.38)

The idea is to stop at the first time t ≥ 0 when exercising the option is as profitable as
continuing [26, p.36]. This is reflected by the form of the continuation set C and the stopping
set D

C = {x ∈ E : V (x) > G(x)} (4.39)

D = {x ∈ E : V (x) = G(x)} (4.40)

Hence, as stopping time we consider the first entry-time

τD = inf {t ≥ 0 : X(t) ∈ D} (4.41)

4.3.1. About the Existence of an Optimal Stopping Time

The following definitions, taken from Bourbaki [6, p.166] as well as from Peskir and Shiryaev
[26, p.37], are necessary to draw conclusions as to the existence of an optimal stopping
time.

Definition 4.8 A real valued function f is said to be lower semi-continuous (lsc) in x0 if
∀ε > 0 : ∃δ > 0 : ∀x ∈ |x− x0| < δ : f(x) > f(x0)− ε.
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Definition 4.9 A real valued function f is said to be upper semi-continuous (usc) in x0 if
∀ε > 0 : ∃δ > 0 : ∀x ∈ |x− x0| < δ : f(x) < f(x0) + ε.

Definition 4.10 A measurable function F : E → R is called superharmonic if

ExF (Xσ) ≤ F (x) (4.42)

for all stopping times σ and ∀x ∈ E, where it is assumed that the left hand-side is well
defined and finite, i.e. F (Xσ) ∈ L1(Px).

On the one hand, the necessary conditions for the existence of an optimal stopping time are

Theorem 4.9 Under the assumption that there exists an optimal stopping time τ∗ in (4.35)
for all x ∈ E, it is possible to show the following:

• The value function V is the smallest superharmonic function which dominates the gain
function G on E.

Assuming additionally that V is lsc and G is usc we obtain:

• The stopping time τD satisfies τD ≤ τ∗ Px − a.s. ∀x ∈ E and is optimal in (4.35).

• The stopped process (V (X(t∧ τD)))t≥0 is a right-continuous martingale under Px for
every x ∈ E.

On the other hand, we have the following sufficient conditions:

Theorem 4.10 Assuring the existence of the expected value in (4.35) by (4.37), supposing
that the smallest superharmonic function V̂ dominating G on E exists and that V̂ is lsc and
G is usc we obtain by setting D = {x ∈ E : V̂ (x) = G(x)} that:

• If Px(τD <∞) = 1 ∀x ∈ E, then V̂ = V and τD is optimal in (4.35)

• If Px(τD < ∞) < 1 for some x ∈ E, then there is no optimal stopping time with
probability 1 in (4.35).

This gives us the following Corollary, which is especially useful in the finite horizon case,
where it guarantees the existence of an optimal stopping time.

Corollary 4.2 (Existence of an optimal stopping time)
In the infinite horizon case we observe the stopping time problem (4.35) with the general
assumption (4.37). The function V is lsc and the function G is usc. If Px(τD <∞) = 1 ∀x ∈
E, then τD is optimal in (4.35). However, if Px(τD < ∞) < 1 for some x ∈ E, then there is
no optimal stopping time with probability 1 in (4.35).
In the finite horizon case we consider (4.36) with a similar condition to (4.37) providing the
existence of the expected value. Simply assuming that V is lsc and G is usc is enough to
ensure that τD is optimal.

Proofs of these theorems can be found in Peskir and Shiryaev [26, p.37ff].

Note that if x 7→ Ex(e−rτ (K −X(τ))+) is continuous (or lsc) for every stopping time τ then
x 7→ V (x) is lsc, giving us the means to apply the corollary from above.
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4.4. Free-Boundary Problems and their Connection to
Stopping-Time Problems

As we saw in the last section the stopping problem (4.35) is directly connected with the
problem of finding the smallest superharmonic function V̂ dominating the gain function G
from (4.38) on E. We have also seen that in this case τD, representing the first-entry time
into the stopping set D, is optimal. Hence we can write for x ∈ E

V (x) = ExG(X(τD)) (4.43)

Due to the Markovian structure of X any function of the form (4.43) is related to a determin-
istic equation.
In the case of the standard Black - Scholes model, where the process X is a geometric
Brownian motion and therefore continuous, (4.43) is connected to a partial differential equa-
tion.
However, when we consider the exponential Lévy model, the process X has jumps and
(4.43) is therefore related to a more general partial integro-differential equation.

To be able to point out the just aforementioned connection some additional definitions, from
Peskir and Shiryaev [26, p.101, 129] are needed first.

Definition 4.11 If X = (X(t))t≥0 is a time-homogeneous Markov process defined on
(Ω,F , (F(t))t≥0,Px) taking values in the state space (E,B) we can define the characteristic
operator as follows

LXF (x) = lim
U↓x

Exf(X(τ(U)))− f(x)

Exτ(U)
(4.44)

where U is a set containing x, τ(U) is the exiting time of U and U ↓ x stands for making U
smaller and smaller until it shrinks to the point x itself in the limit.

Definition 4.12 The boundary ∂C is said to be regular if each of its points satisfies Px(σD =
0) = 1, with σD = inf {t > 0 : X(t) ∈ D}. In words, the boundary is said to be regular if
starting at a boundary point we immediately enter the interior of D.

4.4.1. A Dirichlet Problem and the Solution

The definition of a Dirichlet problem can be described as in Folland [16, p.106]:

Definition 4.13 A Dirichlet problem is to find a function solving a certain (partial) differential
equation on the inside of a given region while having predetermined values on the boundary
of that region.

Consider
F (x) = ExM(X(τD)) (4.45)
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where the function M : ∂C → R, is assumed to be continuous. Using the strong Markov
property of X it is shown in [26, p. 130] that F solves the Dirichlet problem

LXF = 0 , in C (4.46)

F |∂C = M (4.47)

and has the following properties, stated in [26, p.147]:

1. If ∂C is a regular boundary for D, then F is continuous on C = ∂C ∪ C:

F
∣∣
D

= M
∣∣
D

(4.48)

2. If X is a diffusion, like in the standard Black - Scholes model, the smooth fit condition

∂F

∂x

∣∣
∂C

=
∂M

∂x

∣∣
∂C

(4.49)

has to be satisfied.
In the case of the exponential Lévy model, where X has jumps and no diffusion com-
ponent, the smooth fit condition has to be replaced by the continuous fit condition

F
∣∣
∂C

= M
∣∣
∂C

(4.50)

In the case of the American put option we have to apply the preceding results on the dis-
counted version of the gain function G. Replacing the process X by its killed version X̃ -
representing the process, where the sample paths ofX are killed at the constant discounting
rate r ≥ 0 - we can reduce

V (x) = Ex
[
e−rτDG(X(τD))

]
(4.51)

to the Dirichlet problem
V (x) = Ex

[
G(X̃(τD))

]
(4.52)

where V (x) solves

LXV = rV in C, (4.53)

As already mentioned above, the continuation set C and the stopping set D are comple-
mentary sets, i.e. x ∈ C or x ∈ D. Additionally, we have that V is lsc and G is continuous
(usc) implying that C is an open and D is a closed set [26, p. 36]. Therefore the closure of
C, ∂C, is a natural boundary between the two sets for any t ∈ [0, T ].
Since the continuation value V (t, x) is non-increasing in t, we have

∀t1 ≤ t2 : t1, t2 ∈ [0, T ], x ≥ 0 fixed : (t2, x) ∈ C ⇒ (t1, x) ∈ C (4.54)

as well as

∀t1 ≤ t2 : t1, t2 ∈ [0, T ], x ≥ 0 fixed : (t1, x) ∈ D ⇒ (t2, x) ∈ D. (4.55)
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Together with the fact that the function t 7→ b(t) is non-decreasing, as shown in [26, p.384]
for the standard Black - Scholes model and in [23, p.574] for the exponential Lévy model,
we can rewrite the optimal stopping time from (4.41) as

τ = inf{t ≥ 0 : x ≤ b(t)} (4.56)

In the case where T = ∞, we are talking about an option with infinite horizon. There it
is possible to derive the following closed form solution for the asset price in the standard
Black - Scholes model,

V (x) =

σ2

2r

(
K

1+σ2/2r

)1+2r/σ2

x−2r/σ2
, if x ∈ [b,∞),

K − x, if x ∈ (0, b].
(4.57)

as done in [26, p. 377], where b = K
1+σ2/2r

is the constant optimal exercising boundary.

Is the horizon of the problem finite, though, we obtain an additional ∂
∂t term in (4.53),

Vt + LXV = rV in C, (4.58)

which gets in the way of solving the problem explicitly, even in the Black - Scholes model.
In this case, expressing V in terms of ∂C, the closure of the continuation set, leads to
a nonlinear Volterra integral equation for ∂C. So far there is no explicit solution to this
kind of integrals which makes numerical methods so important, as mentioned in Peskir and
Shiryaev [26, p.146].

In (4.52) we see that in order to determine the price of the American put option, it is nec-
essary to estimate the optimal exercising boundary as accurately as possible. In the next
sections we point out possibilities as to how to simulate the price of the underlying for the
standard Black - Scholes model as well as the exponential Lévy model and then discuss the
algorithm used for the estimation of the optimal exercising boundary.

4.5. Simulation of Asset Developments

There are many different approaches for the simulation of the random movement of an
asset price. For the two most popular approaches, already mentioned in 2.4, we will discuss
possibilities to generate random asset paths, necessary for the pricing of derivatives using
Monte Carlo methods.

4.5.1. Simulation of a Brownian Motion

Let (W (t))t≥0 denote a standard Brownian Motion. First the time line has to be partitioned
into equidistant intervals thn = nh for n = 0, 1, 2, ... of length h. Using ∆h

nW = W (thn) −
W (thn−1) and taking into account that the time grid is equidistant, the generation of the
increments ∆h

nW as i.i.d. N (0, h) leads to the straightforward simulation of W h
n by

W h
n = W (thn) = ∆h

1W + ...+ ∆h
nW. (4.59)
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as explained in Asmussen and Glynn [2, p.276].

4.5.2. Simulation of a Normal Inverse Gaussian Levy Processes

In order to simulate paths for the Lévy process L(t) it is necessary to generate random
numbers of the increment process, which we assume to be normal inverse Gaussian. The
fact that the normal inverse Gaussian family of distributions is infinitely divisible, which is
pointed out in Benth et al. [3, p.846], implies

L(t+ ∆t)− L(t) ∼ L(∆t) ∼ NIG(α, β, µ, δ) (4.60)

Therefore we can proceed as in the case of the Brownian motion and simulate the normal
inverse Gaussian random numbers along an equidistant time grid thn = nh for n = 0, 1, 2, ...
of length h. To obtain Lhn = L(thn) use the following property

Lhn = L(thn) = ∆h
1L+ ...+ ∆h

nL, (4.61)

where ∆h
nL = L(thn)− L(thn−1)

This way it all boils down to generating a normal inverse Gaussian random variable X with
the parameters α,β,µ,δ, where 0 ≤ |β| ≤ α, µ ∈ R and δ > 0. We are following the algo-
rithm used by Benth et al. [3, p.847], which was first introduced by Rydberg [32, p.897].
Since the normal inverse Gaussian distribution is defined as a normal variance-mean mix-
ture, with the inverse Gaussian distribution as the mixing density, we can write

X = µ+ βZ +
√
ZY, (4.62)

where Z is sampled from the mixing density with parameters δ2 and α2 − β2 and Y ∼
N (0, 1). This leaves us with the task of generating inverse Gaussian random numbers,
which can be accomplished by sampling first from a χ2(1) random variable V , setting

W = ξ +
ξ2V

2δ2
− ξ

2δ2

√
4ξδ2V + ξ2V 2 (4.63)

and then letting

Z = W1{U1≤ ξ
ξ+W

} +
ξ2

W
1{U1≥ ξ

ξ+W
}, (4.64)

where U1 ∼ Uniform(0, 1) and ξ = δ√
α2−β2

.

4.6. The Cross - Entropy Method

In order to give an introduction to the Cross - Entropy Method the structure set up by Rubin-
stein and Kroese in [30] seems to be best suited.
Descendent from a variance minimization problem for rare-event simulation, it was trans-
formed to become a randomized optimization method, where the primary variance minimiza-
tion approach was exchanged by the problem of minimizing the Kullback-Leibler distance,
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also called Cross - Entropy(CE). The CE between the two probability density functions (pdf)
g and h is defined by

D(g, h) = Egln
g(X)

h(X)
=

∫
g(x)lng(x)µ(dx)−

∫
g(x)lnh(x)µ(dx) (4.65)

and satisfies D(g, h) ≥ 0 and D(g, h) = 0 if and only if h(x) = g(x). Hence, thinking of the
Cross - Entropy as a measurement for the "distance" between two densities proves to be
useful, even though it violates the symmetry property, D(g, h) 6= D(h, g), a distance usually
has to possess.
In rare event simulations the Cross - Entropy method is combined with importance sampling,
a variance reduction method, simulating the problem with a different density, making these
rare events more likely. Often it is convenient to choose a density belonging to the same
distribution family, where only the reference parameter differs.
Although,in general, it is difficult to obtain these reference parameters via time-consuming
variance minimization methods, in the case of the Cross - Entropy method these parameters
can be obtained by a simple and fast adaptive procedure.
It is important to point out that the Cross - Entropy method terminates with probability 1 in
a finite number of steps and produces a consistent (i.e. lim

n→∞
Pr(|tn − θ| ≥ ε) = 0, where

tn is a sequence of estimators and θ the original parameter) and asymptotically normal (i.e.√
n(tn − θ)→ N (0, σ)) estimator for the optimal reference parameter.

4.6.1. Rare Event Simulation

The event l := Pu(S(X) ≥ γ) = EuI{S(X)≥γ}, where S is a real valued function, is consid-
ered to be rare, when the probability that the event occurs is less than 10−5.
In this case, simply sampling from the given density like in the crude Monte Carlo approach

1

N

N∑
i=1

I{S(Xi)≥γ} (4.66)

is very ineffective on account of the sample-size needed to determine an accurate estimation
of the probability of the rare event. Hence, using importance sampling to simulate under a
different density, increasing the probability of the former rare event, enables us to reduce
the sample size significantly.
If f(x;u) is the original density and g(x) the density of the importance sampling, then we
obtain the following estimator for l

l̂ =
1

N

N∑
i=1

I{S(Xi)≥γ}
f(Xi; u)

g(Xi)
(4.67)

where X1,X2, ..,XN are sampled under the density g. It would be optimal if g had the form

g∗(x) =
I{S(Xi)≥γ}f(x; u)

l
(4.68)
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giving us the wanted probability already after just one simulation step. Unfortunately this
density uses the unknown parameter l.
The idea now is to chose a density belonging to the same density family as f(x; u) with a
minimal Kullback-Leibler distance

D(g∗, f) = Eg∗ ln
g∗(X)

f(X; v)
=

∫
g∗(X)lng∗(X)dx−

∫
g∗(X)lnf(X; v)dx (4.69)

between g∗ and f(X; v). Minimizing the Cross - Entropy equals maximizing the second
integral in (4.69). When we also insert g∗ from (4.68) we get

max
v

∫
I{S(x)≥γ}f(x; u)

l
lnf(x; v)dx (4.70)

equalling the program

max
v

D(v) = max
v

EuI{S(X)≥γ}lnf(X; v) (4.71)

leading to the optimal reference parameter v.
The problem with this approach is that the indicator function I{S(X)≥γ} will, just like in the
Crude Monte Carlo case, still be 0 for most of the samples. If, however, we calculated in a
first step Pu(S(X) ≥ γ(t)) for γ(t) < γ the indicator function I{S(Xi)≥γ(t)} would be 6= 0
more often. Thus, a multilevel algorithm adapting the parameter γ(t) and hence v(t) at
every step, achieves what we are looking for.
By reapplying importance sampling on (4.71) we obtain an additional likelihood ratio term in
the program

max
v

D(v) = max
v

EwI{S(X)≥γ}W (X; u,w)lnf(X; v) (4.72)

where

W (X; u,w) =
f(x; u)

f(x; w)
(4.73)

is the likelihood ratio between f(·; u) and f(·; w).
Since the expected value in (4.72) is unknown a so-called stochastic program or stochastic
counterpart to (4.72) is necessary for the actual calculation

max
v

D̂(v) = max
v

1

N

N∑
i=1

I{S(Xi)≥γ}W (Xi; u,w)lnf(Xi; v) (4.74)

As D̂ is usually convex and differentiable with respect to v in applications, the solution v to
(4.74) can be obtained by solving

1

N

N∑
i=1

I{S(Xi)≥γ}W (Xi; u,w)∇lnf(Xi; v) = 0, (4.75)

with ∇g denoting the gradient of g. For the multilevel algorithm the equation (4.74) has to
be adjusted to

max
v

D̂(v) = max
v

1

N

N∑
i=1

I{S(Xi)≥γ̂(t)}W (Xi; u, v̂t−1)lnf(Xi; v) (4.76)
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Summing up the previous results, the following algorithm can be used to determine the rare
event probability estimate.

Algorithm for Rare-Event Simulation with the CE Method

1. Define v̂0 = u. Set t = 1.

2. Generate a sample X1,X2, ..,XN from the density f(·; vt−1) and compute the sample
(1− ρ)-quantile γ̂(t) = S(d(1−ρ)Ne) provided γ̂(t) is less than γ. Otherwise set γ̂(t) =
γ.

3. Use the same sample X1,X2, ..,XN to solve the stochastic program (4.76). Denote
the solution by v̂(t).

4. If γ̂(t) < γ, set t = t+ 1 and reiterate from Step 2. Else proceed with Step 5.

5. Estimate the rare-event probability l with

l̂ =
1

N

N∑
i=1

I{S(Xi)≥γ}W (Xi; u, v̂T ) (4.77)

where T denotes the final number of iterations.

4.6.2. Combinatorial Optimization Problems

Assume that we have a maximization problem over the finite state space X , where S is a
real valued performance function

S(x∗) = γ∗ = max
x∈X

S(x) (4.78)

To be able to use the previous section, we need to rewrite the problem in form of an estima-
tion problem using the indicator functions I{S(x)≥γ} for various level γ ∈ R. Additionally, we
are going to consider a family of discrete densities {f(·; v,v ∈ V}, where V is the parameter
set. Then the associated stochastic problem has the following form

l(γ) = Pu(S(X) ≥ γ) =
∑
x

I{S(x)≥γ}f(x; u) = EuI{S(x)≥γ} (4.79)

with a certain u ∈ V .
The transformation into the associated stochastic problem is based on the fact that for γ
approaching γ∗ from below, the probability of the sample S(Xi) being bigger than γ de-
creases up to the point of making it a rare-event. Hence it is possible to estimate l(γ) by
(4.77) with the reference parameter v∗ determined via (4.74), where the likelihood ratio term
W (X; u,w) is set to 1. The likelihood ratio term is not important, because the original den-
sity parameter was arbitrary anyway. Thus the algorithm adapted to optimization problems
is the following
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CE Algorithm for Optimization Problems

1. Define v̂0 = u. Set the level counter t = 1.

2. Generate a sample X1,X2, ..,XN from the density f(·; vt−1) and compute the sample
(1− ρ)-quantile γ̂(t) of the performances.

3. Use the same sample X1,X2, ..,XN and solve the stochastic program (4.76) with
W = 1. Denote the solution by v̂(t)

4. If for some t ≥ d, say d = 5,

γ̂(t) = γ̂t−1 = ... = γ̂t−d

then stop; otherwise set t = t+ 1 and reiterate from Step 2.

4.6.3. Smoothed Updating

To prevent 0s and 1s in the parameter vectors, which are unwanted due to the fact that once
the entry is 0 or 1, it most often remains like this forever, we can adapt the updating rule
which simply replaces v(t− 1) by v(t) to

v(t) = αŵ(t) + (1− α)v(t− 1)

where ŵ(t) is the vector derived in (4.76), ensuring a smoothed updating procedure without
0s and 1s.

4.7. Adjustment of the CE Method for Pricing American Options

The Cross - Entropy Method for Combinatorial Optimization seeks to solve problems of the
form

S(x∗) = γ∗ = max
x∈X

S(x) (4.80)

by following the algorithm already mentioned in section 4.6

1. Define v̂0 = u. Set the level counter t = 1.

2. Generate a sample X1,X2, ..,XN from the density f(·; vt−1) and compute the sample
(1− ρ)-quantile γ̂(t) of the performances.

3. Use the same sample X1,X2, ..,XN and solve the stochastic program (4.76) with
W = 1. Denote the solution by v̂(t)

4. If for some t ≥ d, say d = 5,

γ̂(t) = γ̂t−1 = ... = γ̂t−d

then stop; otherwise set t = t+ 1 and reiterate from Step 2.
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As pointed out before in section 4.4, the problem of determining the fair price of an American
put option with finite horizon can be rewritten as

V (t, x) = sup
0≤τ≤T−t

Et, x
[
e−rτ (K −X(t+ τ))+

]
, (4.81)

where the supremum is taken over all admissible stopping times τ of X in [0, T − t].
It is shown in Peskir and Shiryaev [26, p.123] and also brought up in section 4.4 that (4.81)
can be rewritten as

V (t, x) = Et, x
[
e−rτD(K −X(t+ τD))+

]
(4.82)

implying that the highest expected payoff will be obtained by exercising according to the
strategy

τD = inf {0 ≤ s ≤ T − t : ((t+ s), X(t+ s)) ∈ D} (4.83)

= inf {0 ≤ s ≤ T − t : X(t+ s) ≤ b(t+ s)} , (4.84)

where D = {(s, x) ∈ [t, T ] × (0,∞) : V (t + s, x) = G(t + s, x)} and b(t) is the optimal
exercising boundary on [0, T ].

4.7.1. Properties of the Optimal Exercising Boundary

Since we aim to simulate the optimal exercising boundary with the Cross - Entropy algorithm,
it is necessary to learn more about its properties.

In Peskir and Shiryaev [26, p.384], the case where the underlying is driven by a geometric
Brownian motion is studied. They give proof of the following important properties:

1. 0 < b∗ ≤ b(0+) < K,

2. b(T−) = K,

3. t 7→ b(t) non decreasing and convex on [0, T ],

where b∗ is the constant optimal exercising boundary for the perpetual American option on
the same underlying with the same parameters and K is the strike price.
In the case of an exponential Lévy model similar conclusions as those above apply, as
demonstrated by Lamberton and Mikou in [23, p.574], where, under the assumption that

ν((−∞, 0)) > 0, (4.85)

we know that the optimal exercising boundary b(t) has to satisfy

1. 0 ≤ b(t) < K for all t ∈ [0, T ),

2. t 7→ b(t) non decreasing and continuous on [0, T ).
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The major differences between the two cases are that in the exponential Lévy model we
only know that the boundary will always be positive and continuous, whereas in the stan-
dard Black - Scholes model we know that the boundary will always be positive and at least
as large as the constant value of the perpetual American put option b∗ as well as convex.
Contrary to the Black - Scholes model, the optimal exercising boundary in the exponential
Lévy model is not continuous on the whole interval [0, T ], since Levendorskii showed in [24,
p.533] that at the maturity date T , the boundary has a discontinuity.

4.7.2. The Choice of Basis Functions

Up to now there has existed no closed form solution for the optimal exercising boundary.
Therefore, in this algorithm, the optimal boundary function is approximated by basis func-
tions. At the very beginning we used a 2-step function, satisfying the necessary conditions
mentioned above, to estimate the optimal exercising boundary b(t) on [0, 1]. The random
steps were generated by a bivariate normal distribution with µ = 0 and Σ = I2 . Gradually
the program was refined to any maturity T and a 64-step boundary function, accompanied
by a generalization from a bivariate to a multivariate normal distribution with µ = 0 and
Σ = In.
After that the approximating step functions were replaced by linear combinations of the basis
functions

tn, tn−1, ..., t, 1 for n ≥ 0 (4.86)

There the multivariate normal distributed parameters, optimized by the Cross Entropy algo-
rithm, were the coefficients αk, k = 0, ..n+ 2 of the linear combination

b̃(t) =

n∑
k=0

αn−kt
k (4.87)

The basis functions were altered once more to

t2n, t2n−2, ..., t2, 1 (4.88)

in the hope of achieving an approximation of the optimal exercising boundary that would fit
the properties from 4.7.1 better.

When sticking to the algorithm above, the program carries out the subsequent steps

4.7.3. Pricing American Put Options

1. Initialize µ0,Σ0 and set the level counter t = 1.

2. Generate a large number of paths according to the price dynamics of the Black -
Scholes or exponential Lévy model, respectively. These paths represent the various
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developments of the underlying asset.
This way we do not actually compute the price of the option in the model, but within
the empirical distribution of the simulated paths.

3. Generate a sample X1,X2, ..,XN of optimal exercising boundary parameters, which
are N (·;µt−1,Σt−1) distributed. Each parameter set Xi = (Xi1,Xi2, ...,Xik) repre-
sents a boundary.

3.1. In the case where the optimal exercising boundary is approximated by step func-
tions with k steps, the distribution of the steps is
Nk(·;µt−1,Σt−1).

3.2. When the optimal exercising boundary is approximated by a linear combination of
k basis functions, their coefficients in the linear combination areNk(·;µt−1,Σt−1)
distributed .

4. Compute the sample (1 − ρ)-quantile γ̂(t) of the payoffs of each Xi. The boundary
parameters for which the payoff is ≥ γ̂(t) are the elite sample E .

5. Use the same sample X1,X2, ..,XN to update the parameters according to (4.76)
and denote the solution by µt = (µt1, µt2, ..., µtk),Σt = (σijt )1≤i,j≤k :

µti =
1

|E|
∑
Xl∈E

Xli for all i = 1, ..., k (4.89)

(4.90)

σijt =
1

|E| − 1

∑
Xr∈E

(Xri − µti)(Xrj − µtj) for all i, j = 1, ..., k (4.91)

(4.92)

6. If for some t ≥ d, say d = 5,

γ̂(t) = γ̂t−1 = ... = γ̂t−d

then stop; otherwise set t = t+ 1 and reiterate from Step 2.

4.7.4. Initial Parameters

Since the initial parameters µ0, Σ0 influence the time needed for the algorithm to converge,
it was necessary to test various possibilities until satisfying initial parameters were found.
In the case where we approximated the optimal exercising boundary by means of a step
function, we ended up with the following iterative method for their determination:

• Start with a 2 step boundary function where the initial parameters for the bivariate
normal distribution are

µ0 =

(
b∗,

1

2
b∗ +

1

2
K

)
, (4.93)
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Σ0 = I2K
2. (4.94)

with b∗ the constant optimal exercising boundary for the perpetual American option
with the same parameters, I2 the 2 dimensional identity matrix andK the strike price.
The vector of expectations µ0, mentioned in (4.93), was chosen, because the optimal
exercising boundary is increasing in t and satisfies 0 < b∗ ≤ b(0−) as well as b(T−) =
K. Moreover, the covariance matrix Σ of a multivariate normal distribution has to be
positive definite, which a diagonal matrix with positive entries obviously satisfies. The
fact that the initial covariance matrix Σ0 is a diagonal matrix also implies that the initial
steps are uncorrelated in the first round of simulations in the algorithm 4.7.3 until the
parameters get updated. The reason for taking Σ0 instead of the identity matrix I2 is
that this way the standard deviation is equal to the strike price K, implying that about
68% of the random numbers simulated will be in the interval

[b∗ −K, b∗ +K] (4.95)

for the first boundary step and in the interval[
1

2
b∗ − 1

2
K,

1

2
b∗ +

3

2
K

]
(4.96)

for the second.

• To obtain the initial parameters µ0 and Σ0 for a 4-step boundary function, we can thus
use the final values of the 2-step boundary parameters, µ̃1 and µ̃2, in the following
way

µ0 =

(
µ̃1,

1

2
µ̃1 +

1

2
µ̃2, µ̃2,

1

2
µ̃2 +

1

2
K

)
. (4.97)

The initial covariance matrix, a diagonal matrix with positive entries, is determined as
follows

diag(Σ0) =

(µ(1)
0 − µ

(2)
0

2

)2

, ...,

(
µ

(3)
0 − µ

(4)
0

2

)2

,

(
µ

(4)
0 −K

2

)2
 . (4.98)

The reason for taking Σ0 instead of the identity matrix I2 is that this way the standard
deviation is half the distance between two consecutive boundary steps.

• This procedure can be iterated arbitrarily, where in each iteration the number of steps
for the boundary function is doubled.

In the case where we approximated the optimal exercising boundary by a polynomial function
an iterative method is not possible, since changing the degree of the polynomial renders the
parameters of the former step useless. Hence, we simply used

µ0 =

[
1

2
b∗ +

1

2
K, ...,

1

2
b∗ +

1

2
K

]
, (4.99)

45



4. Methods

where b∗ is the value of the perpetual American put option in the standard Black - Scholes
model and 0 in the exponential Lévy model, and

Σ0 = In

(
K

Tn

)2

, (4.100)

where n+ 1 is the number of basis functions used. The square root of the additional factor
in (4.100) is a rough estimation of the necessary size of the coefficient accompanying the
basis function with the highest degree to keep its value at maturity T below the strike priceK.

For the parameter update the smoothed updating procedure from 4.6.3 with α = 0.6 was
used.

In the course of the research we discovered an article by Zhang and Fu [36] in which the au-
thors used the Cross - Entropy method to obtain comparable results for their own algorithm,
called MRAS. Unfortunately, a comparison between the Cross - Entropy algorithm devel-
oped there and in this dissertation is not reasonable, since we used an iterative method to
obtain results for a 64 step boundary, whereas in [36] the authors used only 6 exercising
times making an application of our 64-step boundary algorithm impossible.

4.7.5. Pricing Basket Options

The pricing of basket options of American style with arbitrary weights demands a simulation
of the paths for each of the assets in the basket. As found by data analysis, the correlation
between the Brownian motions driving the asset prices is about 0.4. The geometric Brownian
motions, embodying the asset price movements, have to have the same drift, but may vary
in the volatility. As proposed by Asmussen and Glynn in [2, p.49] correlated normal random
variables can be simulated by

X1 = σ1(
√

1− |ρ|Y1 +
√
|ρ|Y3) (4.101)

and
X2 = σ2(

√
1− |ρ|Y2 +

√
|ρ|Y3), (4.102)

where Y1, Y2 and Y3 ∼ N (0, 1) and thus give the means to simulate correlated Brownian
motions. To price the basket option the same algorithm as for single underlying options can
be used with the slight difference that the price dynamics at each time step ti are described
by the (weighted) sum of the underlying assets.
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In this chapter we want to demonstrate the results gathered with the help of the adapted
Cross - Entropy algorithm described in section 4.7.3, where we used the standard Black -
Scholes model from 2.4.1 as well as the exponential Lévy model with normal inverse Gaus-
sian increments from 2.4.2 as market models.

5.1. Standard Black - Scholes Model

In the Black-Scholes model, the algorithm using step functions as well as the one using a
polynomial to approximate the optimal exercising boundary were applied to American-style
vanilla put options as well as Basket options of that type.

5.1.1. American-Style Vanilla Put Option

In the following graphs we want to present the change in the 4-step boundary function,
when the boundary parameters are updated according to the Cross - Entropy algorithm. As
mentioned before, the algorithm calculates the discounted payoff for each path with respect
to the optimal stopping time, depending on the present step function. The parameters of the
step function, approximating the optimal exercising boundary b(t), are updated to maximize
the average discounted payoff. With the change of the step function, the optimal stopping
time may change as well, which can be observed in Figures 5.1 to 5.4, where the following
parameters were used: r = 5%, σ = 25%, T = 5, K = 120% and an elite sample size of
ρ = 5% of the total N = 1.000 simulations for each step of the Cross - Entropy method.

Figure 5.1.: Simulation-step 1 Figure 5.2.: Simulation-step 2
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Figure 5.3.: Simulation-step 3 Figure 5.4.: Simulation-step 4

Figure 5.5.: Simulation-step 5 Figure 5.6.: Simulation-step 6

Shape of the 64-Step Boundary Function

Obviously, the number of steps for the approximating boundary function influences the ac-
curacy of the algorithm directly. The more steps we allow, the more accurate the estimation
of the price for the American option will be. However, increasing the number of steps will
also increase the computational effort needed to come by a result. Therefore it is necessary
to find an appropriate number of steps, which we set to 64. We also observed between
one and two distinct bumps in disagreement with the known convex shape of the boundary
function, which are most probably caused by the fact that we are working with a numerical
method, where rounding errors as well as the limited number of simulation paths take their
toll.
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A typical approximation of the optimal exercising boundary by a 64-step function takes a
shape like in Figure 5.7.

Figure 5.7.: 64-step boundary function

Overview

Considering the Black - Scholes model we used the constant interest rate r = 4% or r = 5%
respectively, the volatility σ = 25% and an initial asset price X(0) = 1. We varied the strike
price from K = 80% to K = 120% of the initial value in 10% steps and the maturity date,
which we measured in years, from T = 1 to T = 5, where we assumed a year to consist of
64 weeks for mathematical convenience.
As representatives of all possible asset price developments, a fixed number of 3.000 paths
was used. This number proved meaningful, since the computational effort increases linearly
in the number of paths, whereas the accuracy of the option price could not be increased
noticeably by using up to 5 times the number of paths.
Additionally, we set the sample size for updating the Cross - Entropy parameters to 1.000,
whereas the actual sample used for the update of the boundary parameters, called elite
sample, were the 5% of the parameters that obtained the highest payoffs.
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With these parameters we obtained the following results for the estimate of the American
put option price:

T=1 T=2 T=3 T=4 T=5

K=0.8 0.017 0.036 0.048 0.058 0.071
K=0.9 0.042 0.064 0.082 0.092 0.103
K=1.0 0.083 0.107 0.124 0.138 0.153
K=1.1 0.140 0.162 0.176 0.194 0.195
K=1.2 0.215 0.233 0.241 0.255 0.265

Table 5.1.: price estimate, when r = 4% and 64-step boundary

T=1 T=2 T=3 T=4 T=5

K=0.8 0.015 0.032 0.041 0.050 0.055
K=0.9 0.040 0.059 0.073 0.085 0.092
K=1.0 0.080 0.100 0.118 0.125 0.134
K=1.1 0.139 0.152 0.172 0.179 0.186
K=1.2 0.212 0.226 0.234 0.246 0.244

Table 5.2.: price estimate, when r = 5% and 64-step boundary

Since our step boundary function b̃(t) is only an approximation of the optimal exercising
boundary b(t), the stopping time

τ̃ = inf
{

0 ≤ s ≤ T − t : Xt+s ≤ b̃(t+ s)
}

(5.1)

is suboptimal, leading to an estimate for the American option price that is biased low.
Also the results in the tables 5.1 and 5.2 are consistent in themselves, since increasing
either the maturity T or the strike price K leads to a higher option price. The price for an
option with interest rate r = 4% exceeds the one for an option with interest rate r = 5%,
since a lower interest rate r demands more initial money to allow to hedge the same risk.
This can be seen when looking at the payoff of the American option for a fixed τ

e(−rτ)(K −Xτ )+, (5.2)

Since the expression in (5.2) is decreasing as a function of r we have

e(−r2τ)(K −Xτ )+ < e(−r1τ)(K −Xτ )+, for r2 > r1 ≥ 0. (5.3)

Applying the supremum over all admissible stopping times on both sides of this inequality
does not change the inequality and hence our results coincide with the theory.
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Approximation of the optimal exercising boundary with basis functions

Alternatively we can simulate b(t) using a linear combination of the basis functions

tn, tn−1, ..., t, 1, for n ≥ 0, (5.4)

where the coefficients in the linear combination are updated with the Cross - Entropy method.
In order to be able to compare the results obtained with the different methods, we used the
same parameters as above (interest rate r = 4% or 5%, volatility σ = 25%, initial value 1,
maturity T = 1, 2, 3, 4, 5, strike price K = 80%, 90%, 100%, 110%, 120% of the initial value,
elite sample ρ = 5% and simulation sample size N = 1.000). As mentioned above in 4.7.2
the basis functions used for the approximation were t4, t3, t2, t, 1.
As an example of the development of the polynomial boundary function we present the fol-
lowing graphs, where r = 4%, σ = 25%, T = 4, K = 80%, ρ = 5% and N = 1.000.

Figure 5.8.: Simulation-step 1 Figure 5.9.: Simulation-step 2

Figure 5.10.: Simulation-step 3 Figure 5.11.: Simulation-step 4
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Figure 5.12.: Simulation-step 5 Figure 5.13.: Simulation-step 6

Shape of the Approximating Boundary Function

As can be seen in Figure 5.8, the initial parameters lead to a boundary function that obviously
contradicts the properties in 4.7.1. Within the next 5 steps of the Cross - Entropy method
the polynomial boundary function changes so much that it resembles a function with the
properties mentioned in 4.7.1.
The final approximation of the optimal exercising boundary in most cases has a similar shape
as the one pictured in Figure 5.14 below.

Figure 5.14.: Polynomial boundary function

52



5. Results

Overview

To increase the accuracy of the algorithm a couple of options are available. Obviously, we
could increase the number of paths used to capture all asset developments or the number
of simulations in each step of the Cross - Entropy method, i.e. the elite sample ρN .
Alternatively, we could increase the number of basis functions used to approximate the op-
timal exercising boundary b(t) or simply use different basis functions that fit the demanded
properties for the optimal exercising boundary b(t) better, as suggested in 4.7.2.
In Tables, 5.3 and 5.4, we present the results obtained by using the basis functions t4, t3, t2, t, 1.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.016 0.035 0.046 0.059 0.068
K=0.9 0.042 0.065 0.083 0.093 0.098
K=1.0 0.084 0.109 0.126 0.138 0.147
K=1.1 0.143 0.164 0.182 0.191 0.205
K=1.2 0.219 0.231 0.249 0.257 0.265

Table 5.3.: price, when r = 4% paths 3.000

T=1 T=2 T=3 T=4 T=5

K=0.8 0.014 0.032 0.041 0.052 0.058
K=0.9 0.040 0.062 0.073 0.089 0.092
K=1.0 0.080 0.104 0.118 0.131 0.133
K=1.1 0.137 0.162 0.169 0.182 0.192
K=1.2 0.216 0.223 0.237 0.246 0.253

Table 5.4.: price, when r = 5% paths 3.000

An augmentation of the number of asset price paths from 3.000 to 5.000 yielded the following
results presented in Tables 5.5 and 5.6, where the minimal changes in the price estimates
can be explained by the fact that the payoffs are path-dependent and since the number of
paths is limited minor fluctuations in the price estimates may occur.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.016 0.035 0.047 0.060 0.065
K=0.9 0.042 0.064 0.083 0.090 0.101
K=1.0 0.082 0.111 0.129 0.132 0.149
K=1.1 0.142 0.166 0.179 0.194 0.200
K=1.2 0.215 0.233 0.246 0.261 0.265

Table 5.5.: price, when r = 4% paths 5.000
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T=1 T=2 T=3 T=4 T=5

K=0.8 0.015 0.031 0.043 0.052 0.060
K=0.9 0.038 0.060 0.074 0.084 0.092
K=1.0 0.081 0.105 0.116 0.128 0.134
K=1.1 0.136 0.159 0.171 0.181 0.190
K=1.2 0.212 0.228 0.235 0.247 0.252

Table 5.6.: price, when r = 5% paths 5.000

In the case where we increased the number of basis functions from

t4, t3, t2, t, 1 (5.5)

to

t8, t7, t6, t5, t4, t3, t2, t, 1 (5.6)

the comparison of the results in Tables 5.3 and 5.4 to 5.5 and 5.6 lead to the same conclusion
as above.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.015 0.036 0.049 0.060 0.063
K=0.9 0.043 0.065 0.080 0.091 0.099
K=1.0 0.084 0.111 0.127 0.133 0.145
K=1.1 0.141 0.169 0.180 0.193 0.201
K=1.2 0.216 0.233 0.245 0.257 0.267

Table 5.7.: price, when r = 4% and degree is increased

T=1 T=2 T=3 T=4 T=5

K=0.8 0.016 0.032 0.043 0.054 0.058
K=0.9 0.039 0.061 0.074 0.087 0.092
K=1.0 0.077 0.103 0.120 0.123 0.135
K=1.1 0.136 0.155 0.172 0.183 0.183
K=1.2 0.211 0.230 0.233 0.240 0.252

Table 5.8.: price, when r = 5% and degree is increased

The changes in the option price estimates accompanying a change in the basis functions
from

t4, t3, t2, t, 1 (5.7)

to

t8, t6, t4, t2, 1, (5.8)
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where the actual number of basis functions is unaltered, are presented in Tables 5.9 and
5.10 below.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.015 0.036 0.049 0.060 0.063
K=0.9 0.043 0.065 0.080 0.091 0.099
K=1.0 0.084 0.111 0.127 0.133 0.145
K=1.1 0.141 0.169 0.180 0.193 0.201
K=1.2 0.216 0.233 0.245 0.257 0.267

Table 5.9.: price, when r = 4% and degrees are even

T=1 T=2 T=3 T=4 T=5

K=0.8 0.015 0.032 0.043 0.054 0.058
K=0.9 0.039 0.061 0.074 0.087 0.092
K=1.0 0.077 0.103 0.120 0.123 0.135
K=1.1 0.136 0.155 0.172 0.183 0.183
K=1.2 0.211 0.230 0.233 0.240 0.252

Table 5.10.: price, when r = 5% and degrees are even

Once more no detectable improvement of the option price estimates is noticeable, which
leads us to the conclusion that a deflection from the original parameters causing an in-
crease in the computational effort is not worthwhile.
Further we know that the stopping time, using the approximation b̃(t) of the optimal exercis-
ing boundary b(t)

τ̃ = inf
{

0 ≤ s ≤ T − t : Xt+s ≤ b̃(t+ s)
}

(5.9)

is suboptimal, and therefore yields an estimate for the American option price that is biased
low.
As for step functions the results in Tables 5.3 to 5.10 are consistent in themselves, since
increasing either the maturity T or the strike price K leads to a higher option price. Again
we can observer that the price for an option with interest rate r = 4% is always higher than
the one with an interest rate r = 5%.

Comparison between the two Algorithms

The results obtained by means of the algorithm and presented in Tables 5.1 and 5.2 as well
as in 5.3 and 5.4 show that the approach using a basis function is significantly faster than the
one using a step function, since obtaining the initial parameters through an iterative method
is not necessary. However, the step function approximating the optimal exercising boundary
fits the known properties of the optimal exercising boundary mentioned in section 4.7.1,
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better. Note also that the initial parameters in the polynomial approach have to be chosen in
a way that the approximating boundary function does not exceed the strike price at any time
prior to maturity T . Consequently, the coefficients of the basis functions grow smaller and
smaller as the maturity T increases, which could lead to problems when the precision of the
program is insufficient. Another disadvantage of the approach using a polynomial function
is that in rare occasions we obtain a final approximation of the optimal exercising boundary
that clearly violates the properties mentioned in 4.7.1. The following example using the
parameters r = 5%, σ = 25%, initial asset price X(0) = 1, maturity T = 3 and strike price
K = 1 demonstrates such a boundary.

Figure 5.15.: Polynomial boundary function

The comparison of the results showed that the different estimates were within a 5% range
of each other. Since each model is a simplification of the real markets, the pricing of an
option is always linked to model risk, making it impossible to determine the exact value of an
option. With the Cross - Entropy approach we are, however, able to give a good idea of an
estimate for the American put option.

5.1.2. Basket Option

In order to be able to use the same algorithm as for the simple Vanilla American put option
we assumed that the same boundary conditions are valid for Basket options. Unfortunately,
there is very little known about Basket options, since the theory behind them is more com-
plicated than in the case of an option with one underlying asset. The stopping criterion was
also expected to depend on both underlying asset prices and not just on the sum of them.
For this reason the postulation of a boundary depending only on the sum is clearly very
crooked and therefore the corresponding lower bound obtained by a numerical procedure
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must be expected to be much cruder than in the standard Black - Scholes model with one
underlying asset.
With that in mind, the results obtained can only be seen as rough estimates.
Contrary to the Vanilla American put option, the graphs in Figures 5.16 to 5.19 not only show
the development of one asset price, but the paths of both asset prices and their arithmetic
mean representing the evolution of the driving component of the Basket option.
In the example we used the following parameters: interest rate r = 4%, which obviously
has to be the same for both assets, whereas the volatilities can differ and were chosen to
be σ1 = 25% and σ2 = 30%. The initial values were X1(0) = 0.8 and X2(0) = 1.1, the
maturity set to T = 5 and the strike price K = 1.1.

Figure 5.16.: Simulation-step 1 Figure 5.17.: Simulation-step 2

Figure 5.18.: Simulation-step 3 Figure 5.19.: Simulation-step 4

In Figures 5.16 to 5.19 above, it can be clearly seen how the asset prices influence the
dynamics of the underlying. We can also observe that the changes in the asset price with
the higher volatility fluctuate notably more.
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Shape of the 64-Step Boundary Function for Basket Options

The final approximation of the optimal exercising boundary, in the case of a Basket of two
underlyings, has a shape varying between the one in Figure 5.20 and the one in Figure 5.21
below.
The first graph depicts the approximative boundary for a strike price of K = 0.8, an interest
rate of r = 4%, volatilities of σ1 = 25% and σ2 = 30% for the two underlying assets with
a correlation of 0.4 for their Brownian motions, initial values of 0.8 and 1.1 respectively and
a maturity of T = 5 years. For the same parameters the graph in Figure 5.21 displays an
approximation of the optimal exercising boundary with a strike price of K = 1.1.

Figure 5.20.: Polynomial boundary function, K = 0.8

Figure 5.21.: Polynomial boundary function, K = 1.1

Contrary to Figure 5.21, where the boundary approximation looks similar to the one for
American options on a single underlying, the boundary in Figure 5.20 differs from our ex-
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pectations, since it is obviously not convex.

Overview

In Tables 5.11 and 5.12 the price estimates for an interest rate of r = 4% or 5% respectively,
maturities ranging from T = 1 to T = 5 years and strikes of K = 0.8, 0.9, 1.0, 1.1, 1.2 are
displayed. The geometric Brownian motions driving the underlying assets used the same
drift r and different volatilities σ1 = 25% and σ2 = 30%. The Brownian motions were as-
sumed to have a correlation of 0.4 and 3.000 paths per underlying represented all possible
asset developments.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.000 0.000 0.001 0.003 0.005
K=0.9 0.006 0.013 0.018 0.021 0.024
K=1.0 0.055 0.059 0.065 0.067 0.070
K=1.1 0.149 0.149 0.150 0.150 0.150
K=1.2 0.249 0.250 0.250 0.250 0.250

Table 5.11.: price, when r = 4%

T=1 T=2 T=3 T=4 T=5

K=0.8 0.000 0.000 0.001 0.001 0.002
K=0.9 0.005 0.009 0.012 0.014 0.016
K=1.0 0.051 0.054 0.056 0.058 0.059
K=1.1 0.149 0.149 0.150 0.150 0.147
K=1.2 0.249 0.250 0.250 0.250 0.250

Table 5.12.: price, when r = 5%

Obviously, the calculations performed are not precise enough for the estimation of the price
of a Basket with two underlyings when the duration of the contract is only T = 1 or T = 2
years and has a strike price of K = 0.8 for the used parameters.
We can also observe that there is no difference in the option price between interest rate
r = 4% and r = 5% for a strike of K = 1.1 or K = 1.2. There the algorithm even obtains
the same price for all five maturities T = 1, 2, 3, 4, 5.
The results obtained suggest that, without additional information about the optimal exercis-
ing boundary, the application of the Cross - Entropy algorithm in the present form is not
reasonable.
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5.2. Exponential Lévy Model

In this section we want to present the collected results obtained by the application of the
Cross - Entropy algorithm on the problem of pricing American put options in the exponential
Lévy model with normal inverse Gaussian increments.
First of all it must be said that the exponential Lévy process with normal inverse Gaussian
increments is a pure jump process, implying that there are no continuous parts in the evo-
lution of the asset price. For better legibility, however, the obtained function values were
connected by straight lines similar to the Black - Scholes model.
An obvious disadvantage is that we only have function values on a discrete grid, hence
the actual jump size is impossible to determine. The example below used the parameters
suggested by Rydberg in [32, p.906] for the Deutsche Bank (i.e. r = 4%, α = 75.49,
β = −4.089, µ = 0, δ = 0.012, initial value 1, N = 1.000, ρ = 5%, with 3.000 different asset
paths) to demonstrate the change in the asset price and in the boundary approximation.

Figure 5.22.: Simulation-step 1 Figure 5.23.: Simulation-step 2

Figure 5.24.: Simulation-step 3 Figure 5.25.: Simulation-step 4

60



5. Results

Figure 5.26.: Simulation-step 5 Figure 5.27.: Simulation-step 6

Shape of the 64-step boundary function

A 64-step boundary function was used to obtain good estimates for the prices of American
put options, where the underlying is driven by an exponential Lévy model with normal in-
verse Gaussian increments. Figure 5.28 depicts the general shape of the 64-step boundary
approximation acquired with the Cross - Entropy algorithm and is consistent with the prop-
erties in 4.7.1. Note also that a big change in the price evolution between two consecutive
time steps corresponds to a ’real’ jump in the asset price.

Figure 5.28.: 64-step boundary function
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Overview

Considering the exponential Lévy model with normal inverse Gaussian increments we used
the constant interest rate r = 4% or r = 5% respectively, an initial asset value of 1, ma-
turities T = 1, 2, 3, 4, 5 years and strikes of K = 80%, 90%, 100%, 110%, 120%. The
parameters α = 75.49, β = −4.089, µ = 0 and δ = 0.012 describe the increment process,
where α is the tail heaviness, β the skewness, µ the location and δ the scale.
Once more 3.000 paths were used to simulate all possible asset price developments. Ad-
ditionally, we set the sample size for updating the Cross - Entropy parameters to 1.000,
whereas the actual sample used to update the boundary parameters, called elite sample,
were the 5% of the parameters that obtained the highest payoffs.

With these parameters we obtained the following results for the estimates of the American
put option prices in the exponential Lévy model with normal inverse Gaussian increments:

T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.020 0.034 0.047
K=0.9 0.012 0.036 0.056 0.077 0.095
K=1.0 0.058 0.084 0.112 0.138 0.155
K=1.1 0.132 0.167 0.187 0.213 0.230
K=1.2 0.226 0.249 0.267 0.290 0.303

Table 5.13.: price estimate, when r = 4% and 64-step boundary

T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.020 0.031 0.047
K=0.9 0.012 0.033 0.055 0.074 0.088
K=1.0 0.057 0.088 0.112 0.134 0.146
K=1.1 0.135 0.162 0.182 0.201 0.215
K=1.2 0.223 0.248 0.265 0.273 0.290

Table 5.14.: price estimate, when r = 5% and 64-step boundary

As for the Black - Scholes model the step boundary function b̃(t) is only an approximation
of the optimal exercising boundary b(t), the stopping time

τ̃ = inf
{

0 ≤ s ≤ T − t : Xt+s ≤ b̃(t+ s)
}

(5.10)

is therefore suboptimal, leading to an estimate for the American option price that is biased
low. Also the results in Tables 5.13 and 5.14 are consistent in themselves, since increasing
either the maturity T or the strike price K leads once more to a higher option price. The
price for an option with interest rate r = 4% exceeds the one for an option with interest rate
r = 5%, since a lower interest rate r demands more initial money to allow to hedge the
same risk. Tables 5.13 and 5.14 satisfy this property overall, except for T = 1, K = 1.1
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and T = 2, K = 1.0, where the price estimates are higher for an interest rate of r = 5%.
This difference in the price estimates can be explained by the limited amount of asset paths
used.

Approximation of the optimal exercising boundary with basis functions

As in the standard Black - Scholes model the optimal exercising boundary b(t) was simulated
using a linear combination of the following basis functions

tn, tn−1, ..., t, 1, for n ≥ 0, (5.11)

where the coefficients in the linear combination were updated with the Cross - Entropy
method. To be able to compare the results between the two approaches we used the same
parameters as before (r = 4% or r = 5% respectively, an initial asset value of 1, maturities
T = 1, 2, 3, 4, 5 years, strikes of K = 80%, 90%, 100%, 110%, 120%, 3.000 asset evo-
lutions, 1.000 simulations of the Cross - Entropy with an elite sample of 5%, tail heaviness
α = 75.49, skewness β = −4.089, location µ = 0 and scale parameter δ = 0.012).
As mentioned above in 4.7.2, the basis functions used for the approximation of the optimal
exercising boundary b(t) were t4, t3, t2, t, 1.
Additionally, we increased the number of asset evolutions from 3.000 to 10.000 in a second
run to get an idea of the sensitivity of the price estimates towards the number of asset evo-
lutions.

As an example of the development of the polynomial boundary function as well as the evo-
lution of the asset in an exponential Lévy model we present the following graphs, where
r = 5%, T = 5, K = 120%, ρ = 5% and N = 1.000.

Figure 5.29.: Simulation-step 1 Figure 5.30.: Simulation-step 2
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Figure 5.31.: Simulation-step 3 Figure 5.32.: Simulation-step 4

Figure 5.33.: Simulation-step 5 Figure 5.34.: Simulation-step 6

Shape of the approximating boundary function

Figures 5.29 to 5.34 demonstrate that despite the fact that the initial boundary clearly con-
tradicts the properties in 4.7.1 the final approximation fits the necessary conditions, besides
having a slight downward turn close to maturity. This downward turn originates in the bound-
ary condition that the optimal exercising boundary has to stay beneath the strike price for
the whole interval [0, T ].
The final approximation of the optimal exercising boundary, in most cases, has a similar
shape as the one pictured in Figure 5.35 below, where the following parameters were used:
interest rate r = 5%, T = 5, strike price K = 1.2 and initial value 1.
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Figure 5.35.: Polynomial boundary function

Overview

In Tables 5.15 and 5.18 we present the results obtained by using the basis functions t4, t3, t2, t, 1
for 3.000 as well as for 10.000 paths.

T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.018 0.032 0.047
K=0.9 0.013 0.034 0.056 0.076 0.096
K=1.0 0.056 0.089 0.116 0.137 0.156
K=1.1 0.133 0.166 0.188 0.210 0.222
K=1.2 0.228 0.253 0.272 0.293 0.302

Table 5.15.: price, when r = 4% paths 3.000
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T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.018 0.032 0.045
K=0.9 0.013 0.033 0.055 0.072 0.089
K=1.0 0.056 0.086 0.111 0.134 0.148
K=1.1 0.132 0.160 0.183 0.201 0.218
K=1.2 0.226 0.247 0.263 0.279 0.292

Table 5.16.: price, when r = 5% paths 3.000

T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.020 0.033 0.047
K=0.9 0.012 0.035 0.056 0.077 0.094
K=1.0 0.058 0.088 0.113 0.136 0.158
K=1.1 0.134 0.165 0.188 0.210 0.229
K=1.2 0.227 0.248 0.274 0.289 0.302

Table 5.17.: price, when r = 4% paths 10.000

T=1 T=2 T=3 T=4 T=5

K=0.8 0.001 0.008 0.019 0.031 0.044
K=0.9 0.012 0.034 0.055 0.073 0.091
K=1.0 0.056 0.087 0.111 0.131 0.149
K=1.1 0.132 0.160 0.184 0.202 0.218
K=1.2 0.224 0.247 0.265 0.280 0.292

Table 5.18.: price, when r = 5% paths 10.000
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Once more no detectable improvement of the option price estimates is noticeable, which
leads us to the conclusion that a deflection from the original parameters causing an increase
in the computational effort is not worthwhile.
As pointed out in the sections above, it is not possible for the boundary approximation to
achieve more accurate estimates of the option price than the optimal exercising boundary
itself. Hence, the estimates obtained above are biased low. As for step functions the results
in Tables 5.15 to 5.18 are consistent in themselves, since increasing either the maturity T or
the strike price K leads to a higher option price. Again we can observe that the price for an
option with interest rate r = 4% is higher than the one with an interest rate r = 5%.

Comparison between the two algorithms

In this model the downward turn of the polynomial boundary approximation close to maturity
occurs more often than in the Black - Scholes model. This is clearly an unwanted feature
of this approach, since the optimal exercising boundary is known to be non-decreasing on
[0, T ], as pointed out in 4.7.1 and mentioned in the sections above. Since the only change in
the program between the two models is the generation of the asset evolutions, the program
using a polynomial approach for the approximation of the optimal exercising boundary b(t)
terminates faster again, whereas the step function boundary satisfies the properties of the
optimal exercising boundary, mentioned in 4.7.1, better. Also in this model the results ob-
tained by the two methods are within a 5% range of each other, giving us reason to believe
that the obtained estimates are sensible.
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The results obtained in section 5 show that both algorithms yield useful estimates of the
American put option with a single underlying asset.
By comparing the price estimates for a fixed strike price in the two models it can be noticed
that the estimates in the standard Black - Scholes model exceed the ones in the exponential
Lévy model under the given set of parameters for a strike price below and up to the initial
value of the asset. The price estimates in the exponential Lévy model, on the contrary, ex-
ceed the ones in the standard Black - Scholes model under the same set of parameters for a
strike price above the initial asset price. Since a higher option price entails a higher average
payoff, which in turn corresponds to a lower average asset evolution, the price estimates
observed suggest that the asset evolution in the exponential Lévy model is less volatile than
in the standard Black - Scholes model.
We could also observe that the final approximation in the step function approach fitted the
known properties of the optimal exercising boundary in 4.7.1 better, since the polynomial ap-
proximation exhibited a downward turn close to the maturity date. This downward turn comes
from the condition that the optimal exercising boundary has to stay beneath the strike price
at all times t ∈ [0, T ]. It was also pointed out in the results that this downward drift occurred
more often in the exponential Lévy model than in the standard Black - Scholes model, which
is caused by the more pessimistic parameter approach in the former model.
The program using the polynomial approach, however, terminated much faster than the one
using the step functions, since in the latter an iterative method, described in 4.7.4, was used
to find the initial parameters of the 64-step function.
In both models various changes in the parameters have been implemented, but neither a
change in the number of asset paths nor in the sample size of the Cross - Entropy method
yielded a notable improvement in the price estimates in either model. In the case where
the optimal exercising boundary was approximated with a polynomial we also increased the
number of the basis functions used, but once more no noticeable improvement was observ-
able.
The results obtained for the Basket options in 5.1.2 enforced our guess that in this case
further research on the optimal exercising boundary is necessary to allow a reasonable
application of the Cross - Entropy algorithm. It would make sense that the optimal exercis-
ing strategy depends on both underlying assets and not only their sum.

Further work following up this dissertation would be to investigate more general stochastic
optimal control problems in finance, as the ones in Björk [4], and their solution via the
Cross - Entropy method.
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For the sake of completeness we state the various algorithms developed for the pricing of
the American put option. The code presented in the next sections is written in MATLAB.

A.1. Cross - Entropy Algorithm, Approximation of the Optimal
Exercising Boundary with Step Functions

1 % INPUT :
2 % r i n t e r e s t ra te
3 % sigma_gbm v o l a t i l i t y gbm
4 % starT , endT alg . determ . opt . p r i ces f o r m a t u r i t i e s f r . s t a r t T to endT
5 % x i n i t i a l asset value
6 % star tK , endK alg . determines opt . p r i ces f o r s t r i k e p r i ces from s t a r t K
7 % to endK
8 % rho rho∗N i s the number o f e l i t e samples
9

10 % f u n c t i o n s needed : gbmx .m
11

12

13 % CONNECTION between t imestep and ac tua l index o f t imestep
14 % ( index −1)/ s teps ize=t imestep
15

16 function [ ] = f ina l_vers ion_pao_s teps ( r , sigma_gbm , s ta r tT , endT , x , s ta r tK , . . .
17 endK ,N, rho , nob_exp , number_of_gbm_paths )
18

19 % f ina l_vers ion_pao_s teps (0 .05 ,0 .25 ,1 ,5 ,1 ,0 .8 ,1 .2 ,1000 ,0 .05 ,6 ,3000)
20

21 for T= s t a r t T : endT ,
22 for K= s t a r t K : 0 . 1 : endK ,
23 t i c ;
24

25 % to save date i n f i lename
26 cdate = date ;
27 % disp lay format
28 format shor t
29

30 % steps ize f o r Gbm
31 n= T∗64−1;
32

33 % saves the parameters from the l a s t round
34 mu2 = [ ] ;
35

36 % t a i l o r the f o l d e r and the f i l e name
37 test fname= spr in t f ( ’ . . . t x t ’ , . . . )
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38 f i d =fopen ( testfname , ’ a ’ ) ;
39 f p r i n t f ( f i d , ’ . . . ’ , . . . ) ;
40

41 % c a l c u l a t e f o r 2 steps then f o r 4 . . u n t i l we reach 2^nob
42 for m=1:nob_exp ,
43

44 % payof f vec to r
45 payo f f=zeros (N, 1 ) ;
46

47 % v a r i a b l e t h a t checks i f l a s t 5 payof fs the same
48 checkpayof f = 0 ;
49

50 % counts i n which round of the CE whi le loop we are
51 roundcount = 0 ;
52

53 % set gamma 0 at each boundary step
54 gamma = [ ] ;
55

56 % simula te Gbm paths
57 % timesteps o f the paths o f Gbm
58 t = ( 0 : 1 : n ) ’ / n ;
59 t = t ∗T ;
60 % i n i t i a l i z e mat r i x f o r Gmb paths
61 % gbmx generates vec wi th n+1 en t r i es , s ince f o r 0 a lso value needed
62 Gbm = zeros ( number_of_gbm_paths , n +1) ;
63 % simula te the gbm path once
64 for k =1: number_of_gbm_paths ,
65 Gbm( k , : ) = gbmx( n , r , sigma_gbm , T , x ) ;
66 end
67

68

69 % i n i t i a l i z e boundary
70

71 % const . opt im . exe rc i s i ng boundary perpe tua l American put case
72 % opt ima l exe rc i s i ng boundary i n the f i n i t e case i s always above
73 perpetual_opt_boundary = K/ (1+ sigma_gbm ^2/ (2∗ r ) )
74

75 % f o r the p l o t
76 perpet_vec = [ ] ;
77 for k =1:n+1 ,
78 perpet_vec = [ perpet_vec perpetual_opt_boundary ] ;
79 end
80

81 % i n i t i a l i z e boundary , value a t every t ime of Gbm
82 b = zeros (N, n +1) ;
83

84 % l i n e a r f u n c t i o n s t a r t i n g a t the const perpe tua l op t ima l exerc ise bound
85 % ends at the s t r i k e p r i ce
86 mu= [ ] ;
87 i f (m==1)
88 for k =0:1 ,
89 mu=[mu (1−k /2 )∗ perpetual_opt_boundary+k∗1/2∗K ] ;
90 end
91 % i n i t i a l standard d i v i a t i o n i s s t r i k e p r i ce
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92 SIGMA=eye (2 )∗K^2;
93 else
94 % l a s t i s a a r i t m e t i c middle between l a s t o f former step and K
95 for k =1:2^(m−1)−1,
96 mu = [mu mu2(1 , k ) 1/2∗mu2(1 , k )+1/2∗mu2(1 , k + 1 ) ] ;
97 end
98 mu=[mu mu2(1 ,2^ (m−1)) 1/2∗mu2(1 ,2^ (m−1))+1/2∗K ] ;
99 SIGMA=eye (2^m) ;

100 for k =1:2^m−2,
101 SIGMA( k , k )= (mu(1 , k+1)−mu(1 , k ) ) ^ 2 / 4 ;
102 end
103 SIGMA(2^m−1,2^m−1)=SIGMA(2^m−2,2^m−2);
104 SIGMA(2^m,2^m)=SIGMA(2^m−2,2^m−2);
105 end
106

107 mu
108 SIGMA
109 f p r i n t f ( f i d , ’m = % d \ r \ n \ r \ n ’ ,m) ;
110 f p r i n t f ( f i d , ’mu=\ r \ n ’ ) ;
111 dlmwrite ( testfname ,mu, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
112 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
113 f p r i n t f ( f i d , ’ \ r \ n SIGMA=\ r \ n ’ ) ;
114 dlmwrite ( testfname ,SIGMA, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
115 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
116

117 mnrn = [ ] ;
118 % smoothed updat ing parameter between 0.3 and 0.9
119 smoothed_upd_param = 0 . 6 ;
120

121 % MAIN
122 % Cross entropy evaluates the opt ima l boundaries
123 while ( checkpayof f ==0 ) ,
124

125 roundcount = roundcount+1
126 f p r i n t f ( f i d , ’ \ r \ n \ n roundcount = % d \ r \ n ’ , roundcount ) ;
127

128 % f o r each sample c a l c u l a t e the payo f f
129 for k =1:N,
130

131 % begin c a l c u l a t i o n o f one spec ia l payo f f
132 mnrn ( k , : ) = mvnrnd (mu,SIGMA ) ;
133 boundary_correct = 0 ;
134 % numbers o f s imu la t i on f o r a c o r r e c t boundary
135 simnumber_for_correct_boundary = 0;
136

137 % check i f boundary has the r i g h t shape : inc reas ing >0 , <=K
138 while ( boundary_correct ==0)
139

140 % assume boundary cor rec t , check a l l p r o p e r t i e s
141 % i f one i s not s a t i s f i e d new boundary
142 boundary_correct =1;
143

144 simnumber_for_correct_boundary = simnumber_for_correct_boundary +1;
145

71



A. Algorithms

146 % value of boundary f o r each step of Gbm
147

148 % s t a r t s above perpe tua l opt value and below K
149 i f ( mnrn ( k ,1) < perpetual_opt_boundary | | mnrn ( k ,1) >K)
150 boundary_correct =0;
151 end
152

153 i f ( boundary_correct ==1)
154 for j =2:2^m,
155 i f ( mnrn ( k , j ) <mnrn ( k , j −1) | | ( mnrn ( k , j ) > K ) )
156 boundary_correct = 0 ;
157 % i f boundary i n c o r r e c t look d i r e c t l y f o r new one
158 break
159 end
160 end
161 end
162

163 % boundary not co r rec t , determine new one
164 i f ( boundary_correct ==0)
165 mnrn ( k , : ) = mvnrnd (mu,SIGMA ) ;
166 end
167

168 end
169

170 % simnumber_for_correct_boundary
171 % mnrn ( j , : )
172

173 % make boundary f u n c t i o n out o f the steps
174 for j =1 : (2^m−1) ,
175 for i =1: f loor ( ( n +1) /2^m) ,
176 b ( k , ( j −1)∗ f loor ( ( n +1) /2^m)+ i )=mnrn ( k , j ) ;
177 end
178 end
179

180 for j =1 : ( n+1)−(2^m−1)∗ f loor ( ( n +1) /2^m) ,
181 b ( k , ( 2 ^m−1)∗ f loor ( ( n +1) /2^m)+ j )=mnrn ( k ,2^m) ;
182 end
183 % b ( k , : )
184

185 % checkout s topp ingt ime f o r each path
186 % i n i t i a l i z a t i o n
187 stopping_t ime_index = ones ( number_of_gbm_paths , 1 ) ’ ;
188 stopping_t ime = ones ( number_of_gbm_paths , 1 ) ;
189

190 for j =1: number_of_gbm_paths ,
191 % f i n d f i r s t h i t t i n g t ime
192 % take i n t o account t h a t boundary changes
193 % i f no value goes below the cu r ren t boundary u n t i l ma tu r i t y
194 % exerc ise anyway
195

196 % checkvar =1 t e l l s me t h a t s topp ing t ime was al ready found
197 checkvar = 0 ;
198

199 % f i n d stopp ing t ime
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200 while ( checkvar == 0 && ( stopping_t ime_index ( j ) < n +1) )
201 i f (Gbm( j , s topping_t ime_index ( j ) ) <= b ( k , s topping_t ime_index ( j ) ) )
202 checkvar = 1 ;
203 else
204 stopping_t ime_index ( j ) = stopping_t ime_index ( j )+1 ;
205 end
206 end
207

208 % conver t from index of Gbm to ac tua l t ime
209 stopping_t ime ( j ) = ( s topping_t ime_index ( j )−1)∗T / n ;
210

211 % p l o t Gbm paths wi th cu r ren t boundary
212 i f ( j ==1 && k==1) % p l o t s same paths wi th updated boundary
213 f igure ( ’ v i s i b l e ’ , ’ o f f ’ ) ;
214 plot ( t ,Gbm( j , : ) , ’ b ’ ) ;
215 xlabel ( ’ t ’ ) ; ylabel ( ’X( t ) ’ ) ;
216 hold on
217 plot ( t , b ( k , : ) , ’ r s ’ , ’ MarkerEdgeColor ’ , ’ r ’ , . . .
218 ’ MarkerFaceColor ’ , ’ r ’ , ’ MarkerSize ’ , 1 ) ;
219 plot ( s topp ing_t ime ( j ) ,Gbm( j , s topping_t ime_index ( j ) ) , . . .
220 ’ go ’ , ’ L ineWidth ’ , 2 ) ;
221 legend ( ’ asset ’ , ’ s tep func t . ’ , ’ opt . stopp . t ime ’ , ’ Locat ion ’ , ’ Best ’ ) ;
222 hold o f f
223 % auto save f i g u r e s
224 fname = spr in t f ( ’ . . . ’ , . . ) ;
225 saveas ( gcf , fname ) ;
226 end
227 end
228

229 for j =1: number_of_gbm_paths ,
230 payo f f ( k ) = payo f f ( k ) + exp(− r ∗stopping_t ime ( j ) ) ∗ . . .
231 max ( 0 , (K−Gbm( j , s topping_t ime_index ( j ) ) ) ) ;
232 end
233 payo f f ( k ) = 1 / number_of_gbm_paths∗payo f f ( k ) ;
234 % payof f ( k ) i s performance of one sample
235 end
236

237

238 % begin UPDATE parameters
239 % gives the order s t a t i s t i c f o r payo f f vec to r
240 [ payof f_sor ted , IX ] = sort ( payof f , 1 ) ;
241

242 % boundary c o e f f i c i e n t s belonging to those payof fs
243 % s o r t the m u l t i v a r i a t e normal parameters and update them
244 sorted_sample=mnrn ( IX , : ) ;
245

246 % get new l e v e l f o r CE
247 gamma( roundcount )= payo f f_sor ted ( c e i l ((1− rho )∗N ) ) ;
248

249 SIGMA2 = zeros (2^m,2^m) ;
250

251 % f o r the e l i t e sample c a l c u l a t e the
252 % average expected value o f f i r s t step o f boundary
253
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254 % f o r the c o e f f i c i e n t o f each power c a l c u l a t e average of the e l i t e s .
255 for k =1:2^m,
256 mu2(1 , k )=0 ;
257 for j = c e i l ((1− rho )∗N) : N,
258 mu2(1 , k ) = mu2(1 , k )+ sorted_sample ( j , k ) ;
259 end
260 mu2(1 , k ) = 1 / ( f loor ( rho∗N)+1)∗mu2(1 , k ) ;
261 mu(1 , k ) = smoothed_upd_param∗mu2(1 , k ) + . . .
262 (1−smoothed_upd_param )∗mu(1 , k ) ;
263 end
264

265 % same f o r t h e i r covar iance mat r i x
266 for k =1:2^m,
267 for j =1:2^m,
268 for i = c e i l ((1− rho )∗N) : N,
269 SIGMA2( k , j ) = SIGMA2( k , j )+ ( sorted_sample ( i , k)−mu(1 , k ) ) ∗ . . .
270 ( sorted_sample ( i , j )−mu(1 , j ) ) ;
271 end
272

273 % no −1 since we have f l o o r ( )+1
274 SIGMA2( k , j ) = 1 / ( f loor ( rho∗N) )∗SIGMA2( k , j ) ;
275 SIGMA( k , j ) = smoothed_upd_param∗SIGMA2( k , j ) + . . .
276 (1−smoothed_upd_param )∗SIGMA( k , j ) ;
277 end
278 end
279

280 % i f l a s t 5 payof fs the same 3 d i g i t s behind the comma, stop a lgo r i thm
281 i f ( roundcount > 4 && . . .
282 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −1) ) )&&. . .
283 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −2) ) )&&. . .
284 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −3) ) )&&. . .
285 ( f loor (1000∗gamma( roundcount ) ) == f loor (1000∗gamma( roundcount −4) ) ) )
286 checkpayof f =1;
287 end
288 end
289 % end main
290

291 % save parameterss to use i t i n the next s imu la t i on step where we have
292 % double as many boundary steps
293 mu2 = mu
294 SIGMA2 = SIGMA
295 l e v e l s _ f o r _ p a y o f f = gamma’
296 roundcount
297 f p r i n t f ( f i d , ’ \ r \ n mu2=\ r \ n ’ ) ;
298 dlmwrite ( testfname ,mu2, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
299 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
300 f p r i n t f ( f i d , ’ \ r \ n SIGMA2=\ r \ n ’ ) ;
301 dlmwrite ( testfname ,SIGMA2, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
302 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
303 f p r i n t f ( f i d , ’ \ r \ n l e v e l s _ f o r _ p a y o f f = \ r \ n \ r \ n ’ ) ;
304 dlmwrite ( testfname , l eve l s_ fo r_payo f f , ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , . . .
305 ’ newl ine ’ , ’ pc ’ , ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
306 f p r i n t f ( f i d , ’ \ r \ n roundcount = % d \ r \ n \ r \ n \ r \ n \ r \ n ’ , roundcount ) ;
307 end
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308

309 fclose ( f i d ) ;
310 % w r i t e the f i n a l p r i ce i n ex t ra f i l e
311 p r i c e l i s t = spr in t f ( ’ . . . \ \ p r i ces . t x t ’ )
312 p r i c e i d =fopen ( p r i c e l i s t , ’ a ’ ) ;
313 f p r i n t f ( p r i c e i d , ’ . . . ’ , . . . ) ;
314 fclose ( p r i c e i d ) ;
315 toc ;
316 end
317 end

A.2. Cross - Entropy Algorithm, Approximation of the Optimal
Exercising Boundary with a Linear Combination of Basis
Functions

1 % INPUT :
2 % n steps ize f o r Gbm
3 % r d r i f t parameter
4 % sigma_gbm v o l a t i l i t y gbm
5 % T matu r i t y date
6 % x s t a r t i n g po in t f o r Gbm
7 % K s t r i k e p r i ce
8 % M number o f sample = number o f avarage payof fs
9 % rho : rho∗N number o f e l i t e samples

10 % the f u n c t i o n gbmx i s needed
11

12 % CONNECTION between t imestep and ac tua l index o f t imestep
13 % ( index −1)/ s teps ize=t imestep
14

15 function [ ] = f i n a l _ v e r s i o n _ p a o _ p o l y _ a l l ( r , sigma_gbm , s ta r tT , endT , x , . . .
16 s ta r tK , endK ,N, rho , polygrad , number_of_gbm_paths )
17 % f i n a l _ v e r s i o n _ p a o _ p o l y _ a l l (0 .04 ,0 .25 ,1 ,5 ,1 ,0 .8 ,1 .2 ,1000 ,0 .05 ,4 ,3000)
18

19 for T= s t a r t T : endT ,
20 for K= s t a r t K : 0 . 1 : endK ,
21 t i c ;
22 % degree has to be an even number
23 i f (mod( polygrad , 2 ) ~= 0)
24 polygrad=polygrad +1;
25 f p r i n t f ( ’ polynomialdegree was not even , so added 1 degree ’ )
26 end
27

28 % 64 weeks per year to compare r e s u l t s
29 n=T∗64−1;
30 % i n polynomia l case set nob=# c o e f f i c i e n t s
31 nob=polygrad +1;
32

33 % t a i l o r the f o l d e r and the f i l e name
34 test fname= spr in t f ( ’ . . . t x t ’ . . . ) )
35 f i d =fopen ( testfname , ’ a ’ ) ;
36 f p r i n t f ( f i d , ’ . . . ’ , . . . ) ;
37
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38 % payof f vec to r
39 payo f f=zeros (N, 1 ) ;
40

41 % v a r i a b l e t h a t checks i f l a s t 5 payof fs the same
42 checkpayof f = 0 ;
43

44 % counts i n which round of the CE whi le loop we are
45 roundcount = 0 ;
46

47 % simula te Gbm paths
48 % timesteps o f the paths o f Gbm
49 t = ( 0 : 1 : n ) ’ / n ;
50 t = t ∗T ;
51 % i n i t i a l i z e mat r i x f o r Gbm paths
52 % gbmx generates vec wi th n+1 en t r i es , s ince f o r 0 a lso value needed
53 Gbm = zeros ( number_of_gbm_paths , n +1) ;
54 %simula te the gbm path once
55 for i =1: number_of_gbm_paths ,
56 Gbm( i , : ) = gbmx( n , r , sigma_gbm , T , x ) ;
57 end
58

59 % i n i t i a l i z e boundary
60 % boundary f u n c t i o n i s : sum of bas is f u n c t i o n s
61

62 % i n i t i a l i z e boundary , value a t every t ime of Gbm
63 b = zeros (N, n +1) ;
64

65 % const . opt im . exe rc i s i ng boundary perpe tua l American put case
66 % opt ima l exe rc i s i ng boundary i n the f i n i t e case i s always above
67 perpetual_opt_boundary = K/ (1+ sigma_gbm ^2/ (2∗ r ) )
68

69 % c o e f f i c i e n t s
70 alpha=zeros (N, polygrad +1) ;
71

72 mu=alpha ( 1 , : ) ;
73

74 f a c t o r =K/ T^ polygrad ;
75 SIGMA=eye ( polygrad +1)∗ f a c t o r ^2 ;
76

77 % constant value has to be at l e a s t as la rge as perpe tua l op t ion value
78 SIGMA( polygrad +1 , polygrad +1)= (1 /2∗ perpetual_opt_boundary +1/2∗K) ^ 2 / 4 ;
79

80 f p r i n t f ( f i d , ’mu=\ r \ n ’ ) ;
81 dlmwrite ( testfname ,mu, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
82 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
83 f p r i n t f ( f i d , ’ \ r \ n SIGMA=\ r \ n ’ ) ;
84 dlmwrite ( testfname ,SIGMA, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
85 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
86

87

88 % MAIN
89 % Cross entropy evaluates the opt ima l boundaries
90 while ( checkpayof f ==0 ) ,
91
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92 roundcount = roundcount+1
93 % f o r each sample c a l c u l a t e the payo f f
94 for j =1:N,
95

96 % begin c a l c u l a t i o n o f one spec ia l payo f f
97 alpha ( j , : ) = mvnrnd (mu,SIGMA ) ;
98 boundary_correct = 0 ;
99 % numbers o f s imu la t i on f o r a c o r r e c t boundary

100 simnumber_for_correct_boundary = 0;
101

102 % check i f boundary has the r i g h t shape : inc reas ing >0 , <=K
103 % value not less than l a s t one
104 while ( boundary_correct ==0)
105

106 % assume boundary cor rec t , check a l l p r o p e r t i e s
107 % i f one i s not s a t i s f i e d new boundary
108 boundary_correct =1;
109

110 simnumber_for_correct_boundary = simnumber_for_correct_boundary +1;
111

112 % value of boundary f o r each step of Gbm
113 b ( j , : ) = polyval ( alpha ( j , 1 : polygrad +1) , t ) ;
114

115 % check i f boundary above perpe t_va l and below K at each step
116 i f ( boundary_correct ==1)
117 for k =1:n+1 ,
118 i f ( b ( j , k ) < perpetual_opt_boundary | | b ( j , k ) > K)
119 boundary_correct = 0 ;
120 % f p r i n t f ( ’ the problem i s index %d wi th value %d \ r \ n ’ , k , b ( j , k ) ) ;
121 break ;
122 end
123 end
124 end
125

126 % boundary not co r rec t , determine new one
127 i f ( boundary_correct ==0)
128 alpha ( j , : ) = mvnrnd (mu,SIGMA ) ;
129 end
130 end
131

132 % simnumber_for_correct_boundary
133

134 % checkout s topp ingt ime f o r each path
135 % i n i t i a l i z a t i o n
136 stopping_t ime_index = ones ( number_of_gbm_paths , 1 ) ’ ;
137 stopping_t ime = ones ( number_of_gbm_paths , 1 ) ;
138

139 for i =1: number_of_gbm_paths ,
140 % f i n d f i r s t h i t t i n g t ime
141 % take i n t o account t h a t boundary changes
142 % i f no value goes below the cu r ren t boundary u n t i l ma tu r i t y
143 % exerc ise anyway
144

145 % checkvar =1 t e l l s me t h a t s topp ing t ime was al ready found
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146 checkvar = 0 ;
147

148 % f i n d stopp ing t ime
149 while ( checkvar == 0 && ( stopping_t ime_index ( i ) < n +1) )
150 i f (Gbm( i , s topping_t ime_index ( i ) ) <= b ( j , s topping_t ime_index ( i ) ) )
151 checkvar = 1 ;
152 else
153 stopping_t ime_index ( i ) = stopping_t ime_index ( i )+1 ;
154 end
155 end
156

157 % conver t from index of Gbm to ac tua l t ime
158 stopping_t ime ( i ) = ( s topping_t ime_index ( i )−1)∗T / n ;
159

160 % p l o t Gbm paths wi th cu r ren t boundary
161 i f ( i ==1 && j ==1)
162 f igure ( ’ v i s i b l e ’ , ’ o f f ’ ) ;
163 plot ( t ,Gbm( i , : ) , ’ b ’ ) , t i t l e ( ’Gbm mi t boundaries ’ ) ; xlabel ( ’ t ’ ) ; grid
164 hold on
165 plot ( t , b ( j , : ) , ’ r ’ , s topp ing_t ime ( i ) , . . .
166 Gbm( i , s topping_t ime_index ( i ) ) , ’ go ’ )
167 hold o f f
168 fname = spr in t f ( ’ . . . png ’ , . . . ) ;
169 saveas ( gcf , fname ) ;
170 end
171 end
172

173 for p=1: number_of_gbm_paths ,
174 payo f f ( j ) = payo f f ( j ) + . . .
175 exp(− r ∗stopping_t ime ( p ) )∗max( 0 , (K−Gbm( p , s topping_t ime_index ( p ) ) ) ) ;
176 end
177 payo f f ( j ) = 1 / number_of_gbm_paths∗payo f f ( j ) ;
178 % end payo f f ( j )
179 end
180

181 % begin UPDATE parameters
182 % gives the order s t a t i s t i c f o r payo f f vec to r
183 [ payof f_sor ted , IX ] = sort ( payof f , 1 ) ;
184 % boundary c o e f f i c i e n t s belonging to those payof fs
185 sorted_sample=alpha ( IX , : ) ;
186

187 % get new leve l , normal ly (1− rho )∗# sims , f i r s t t u rn rho sample o f fewer
188 % simsu la t i ons
189 gamma( roundcount )= payo f f_sor ted ( c e i l ((1− rho )∗N ) ) ;
190

191 SIGMA = zeros ( polygrad +1 , polygrad +1) ;
192

193 % f o r the rho∗N boundaries t h a t brought the h ighes t payo f f c a l c u l a t e the
194 % average expected value o f f i r s t step o f boundary
195

196 % f o r the c o e f f i c i e n t o f each power c a l c u l a t e average of the e l i t e s .
197 for q=1: polygrad +1 ,
198 mu(1 , q )=0 ;
199 for i = c e i l ((1− rho )∗N) : N,
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200 mu(1 , q ) = mu(1 , q)+ sorted_sample ( i , q ) ;
201 end
202 mu(1 , q ) = 1 / ( f loor ( rho∗N)+1)∗mu(1 , q ) ;
203 end
204

205 % same f o r t h e i r covar iance mat r i x
206 % could be opt imized by j u s t c a l c u l a t i n g the upper t r i a n g l e and then
207 % transposing , diag zeros and adding to o r i g i n a l
208 for q=1: polygrad +1 ,
209 for l =1: polygrad +1 ,
210 for i = c e i l ((1− rho )∗N) : N,
211 SIGMA( q , l ) = SIGMA( q , l )+ ( sorted_sample ( i , q)−mu(1 , q ) ) . . .
212 ∗ ( sorted_sample ( i , l )−mu(1 , l ) ) ;
213 end
214 SIGMA( q , l ) = 1 / ( f loor ( rho∗N) )∗SIGMA( q , l ) ;
215 end
216 end
217

218

219 % i f l a s t 5 payof fs the same − 3 d i g i t s behind the comma, stop a lgo r i t hm
220 i f ( roundcount > 4 && . . .
221 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −1))) && . . .
222 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −2))) && . . .
223 ( f loor (1000∗gamma( roundcount ) )== f loor (1000∗gamma( roundcount −3))) && . . .
224 ( f loor (1000∗gamma( roundcount ) ) == f loor (1000∗gamma( roundcount −4) ) ) )
225 checkpayof f =1;
226 end
227

228 mu
229 SIGMA
230 end
231 % end main
232

233 l e v e l s _ f o r _ p a y o f f = [ ] ;
234 l e v e l s _ f o r _ p a y o f f = gamma’
235 roundcount
236 f p r i n t f ( f i d , ’ \ r \ n mu=\ r \ n ’ ) ;
237 dlmwrite ( testfname ,mu, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
238 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
239 f p r i n t f ( f i d , ’ \ r \ n SIGMA=\ r \ n ’ ) ;
240 dlmwrite ( testfname ,SIGMA, ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , ’ newl ine ’ , ’ pc ’ , . . .
241 ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
242 f p r i n t f ( f i d , ’ \ r \ n l e v e l s _ f o r _ p a y o f f = \ r \ n \ r \ n ’ ) ;
243 dlmwrite ( testfname , l eve l s_ fo r_payo f f , ’−append ’ , ’ d e l i m i t e r ’ , ’ \ t ’ , . . .
244 ’ newl ine ’ , ’ pc ’ , ’ p r e c i s i o n ’ ,3 , ’ r o f f s e t ’ ,1 ) ;
245 f p r i n t f ( f i d , ’ \ r \ n roundcount = %d \ r \ n \ r \ n \ r \ n \ r \ n ’ , roundcount ) ;
246 fclose ( f i d ) ;
247 % w r i t e the f i n a l p r i ce i n ex t ra f i l e
248 p r i c e l i s t = spr in t f ( ’ . . . \ \ p r i ces . t x t ’ )
249 p r i c e i d =fopen ( p r i c e l i s t , ’ a ’ ) ;
250 f p r i n t f ( p r i c e i d , ’ . . . ’ , . . . ;
251 fclose ( p r i c e i d ) ;
252 toc ;
253 end
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254 end

A.3. Generation of a Geometric Brownian Motion

1 % geometr ic_brownian (N, r , alpha , T ) s imula tes a geometr ic Brownian motion
2 % on [0 ,T ] using N normal ly d i s t r i b u t e d steps and parameters r and alpha
3

4 function [X ] = gbmx(N, r , alpha , T , x )
5 % gbmx(100 ,0 .04 ,0 .25 ,5 ,1 )
6

7 % t i s the column vec to r [0 1 /N 2/N . . . 1 ]
8 t = ( 0 : 1 :N ) ’ /N;
9 t = t ∗T ;

10

11 % exp lena t ion : Z~N(0 ,1 ) −> X= s q r t ( h )∗Z~N(0 , h ) , here h=T / n
12 % S i s running sum of N( 0 , 1 /N) va r i a b l e s
13 W = [ 0 ; cumsum( randn (N , 1 ) ) ] / sqrt (N ) ;
14 W = W∗sqrt (T ) ;
15

16 Y = ( r−(alpha ^ 2 ) / 2 )∗ t + alpha ∗ W;
17

18 X = x∗exp (Y ) ;

A.4. Generation of an Exponential Lévy Process with NIG
Increments

1 % simula tes normal inverse gaussian r . v . , used as the d i s t r i b u t i o n f o r the
2 % increments o f the levy process
3 % S0 >0
4

5 function [S ] = normal inversegauss ( n , alpha , beta ,mu, de l ta , T , s t a r t )
6 % normal inversegauss (100 ,75.49 , −4.089 ,0 ,0.012 ,5 ,1)
7

8 % n=T∗64−1;
9 % t i s the column vec to r [0 1 /N 2/N . . . 1 ]

10 t = ( 0 : 1 : n ) ’ / n ;
11 t = t ∗T ;
12 x i = de l t a / sqrt ( alpha ^2 − beta ^ 2 ) ;
13

14 L = [ ] ;
15 S = [ ] ;
16 U= [ ] ;
17 V = [ ] ;
18 W= [ ] ;
19 X = [ ] ;
20 Y = [ ] ;
21 Z = [ ] ;
22

23 for i =1:n ,
24 V( i ) = randn ( 1 , 1 ) ^ 2 ;
25 W( i ) = x i + x i ^2∗V( i ) / (2∗ de l t a ^2) − x i / ( 2∗ de l t a ^ 2 ) ∗ . . .
26 sqrt (4∗ x i ∗ de l t a ^2∗V( i ) + x i ^2∗V( i ) ^ 2 ) ;
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27 U( i ) = u n i f r n d ( 0 , 1 ) ;
28 i f (U( i ) < x i / ( x i + W( i ) ) )
29 Z( i ) = W( i ) ;
30 else
31 Z( i ) = x i ^2 /W( i ) ;
32 end
33 Y( i ) = randn ( 1 , 1 ) ;
34 X( i ) = mu + beta∗Z( i ) + sqrt (Z ( i ) )∗Y( i ) ;
35 end
36

37 L = [0 cumsum(X ) ] ;
38 S = s t a r t ∗exp ( L ) ;
39 S = S ’ ;
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