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”Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
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Kurzfassung

In den letzten Jahren haben sich zunehmend Mehrkernprozessoren im
Bereich der Universalrechner etabliert. Um die Vorteile der zunehmend
ansteigenden Anzahl von Rechenkernen nutzen zu können, sind Program-
mierparadigmen notwendig, welche die Ableitung von Nebenläufigkeiten
erleichtern bzw. erst ermöglichen. S-Net ist eine deklarative Koordina-
tionssprache, deren Ziel es ist, die Programmierung von Nebenläufigkeit
und die Programmierung von Programmlogik zu trennen. Es wird die Ko-
ordination von Netzen bestehend aus asynchronen, zustandslosen Kom-
ponenten, sogenannten Boxen, die mittels typisierter Datenströme ver-
bunden sind, definiert. Boxen werden in einer konventionellen Program-
miersprache geschrieben und haben einen einzigen Eingangs- und einen
einzigen Ausgangsdatenstrom. Netzwerke werden in S-Net durch alge-
braische Formeln ausgedrückt, bestehend aus vier Kombinatoren, nämlich
serieller und paralleler Komposition, sowie serieller und paralleler Repli-
kation.

Das Ziel dieser Arbeit ist es, das bestehende Laufzeitsystem da-
hingehend zu erweitern, dass es zwei Anforderungen genügt. Erstens
soll es ermöglicht werden, Informationen über die Ausführungszeiten der
Laufzeitkomponenten oder die Auslastung der Kommunikationskanäle zu
sammeln. Zweitens soll es die Möglichkeit zur Kontrolle des Schedulings
der Komponenten geben.

Durch Recherche von bestehenden Systemen, welche auf Datenstrom-
verarbeitung basieren, und insbesondere deren Laufzeitsystemen, wurden
Konzepte für eine neue Ausführungsschicht erarbeitet. Ein Light-weight
Parallel Execution Layer (LPEL), d.h. eine leichtgewichtige parallele
Ausführungsschicht, wurde entwickelt, welche Komponenten, die mittels
gerichteter und gepufferter Datenströme kommunizieren, auf User-Ebene
verwaltet, wobei besonderes Augenmerk auf die Anforderungen des S-
Net Modells gelegt werden musste. Mechanismen, die dem Stand der
Technik entsprechen, z.B. nebenläufige Datenstrukturen und Lock-free
Algorithmen, wurden bei der Umsetzung verwendet.

Um die Konzepttauglichkeit nachzuweisen, wurde die Ausführungs-
schicht als Programmbibliothek in der Programmiersprache C entwickelt,
und das bestehende S-Net Laufzeitsystem darauf portiert. Experimente
mit der neuen Schicht zeigen eine effiziente Ressourcennutzung selbst
bei vielen zu verwaltenden Komponenten. Die zur Laufzeit gewonnene
Information kann erfolgreich verwendet werden, um den erforderlichen
Rechenaufwand der Komponenten zu ermitteln, sowie um anwendungs-
spezifische Scheduling- und Platzierungsstrategien abzuleiten.

Schlagworte: S-Net, Datenstromverarbeitung, Prozessnetzwerke, Ko-
ordinationssprache, User-level Threading, Nebenläufige Datenstrukturen,
Shared-Memory Programmierung
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Abstract

In recent years, multicore technology became prevalent in the area
of general-purpose computing. In order to facilitate the benefits of the
steadily increasing number of cores, programming paradigms are neces-
sary that support or even enable the derivation of concurrency. S-Net is
a declarative coordination language which aims to separate the concerns
of computation and organisation of concurrent execution by defining the
coordination behaviour of networks of asynchronous, stateless compo-
nents (called boxes) and their orderly interconnection via typed streams.
Boxes are written in any conventional language, connected to the stream-
ing network with a single input and a single output stream. Streaming
networks are expressed in S-Net itself as algebraic formulae built out of
four network combinators, namely serial and parallel composition, and
serial and parallel replication.

The aim of this thesis is to extend the multi-threaded S-Net run-
time system to fulfil two requirements. First, to enable the collection of
monitoring information such as execution time of components, or buffer
usage along communication paths. Second, to provide a way to control
scheduling of components.

By analysing existing stream-processing frameworks with respect to
their runtime system implementations, concepts for a new execution layer
were devised. A Light-weight Parallel Execution Layer (LPEL) has been
developed, which manages tasks communicating via unidirectional single-
producer single-consumer buffered streams in user-space, with special
focus on the requirements imposed by the S-Net model. State-of-the-
art techniques, like concurrent data structures and lock-free algorithms,
have been employed.

As a proof of concept, the layer is implemented as a separate li-
brary in the C programming language, and S-Net is ported onto it.
Experiments with the new layer show efficient resource utilisation when
having to handle many components. The profiling information can be
used to calculate computational costs of components as well as to derive
application-specific scheduling and placement strategies.

Keywords: S-Net, Stream-Processing, Process Networks, Coordi-
nation Language, User-level Threading, Concurrent Data Structures,
Shared-Memory Programming
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Chapter 1

Introduction

In recent years, multicore technology has become prevalent in the area of
general-purpose computing. In order to facilitate the benefits of multiple cores,
application programs require explicit parallelization. This is in sharp contrast
to the benefits of increase of clock frequency and mechanisms to maximise
throughput of sequential instructions, which could speed sequential programs
up without any additional effort required from the programmer. But paral-
lel programming in the conventional style is difficult, because computation is
intertwined with the organisation of concurrent execution, including the decom-
position of the problem or the data, and utilising rather low-level mechanisms
for communication and synchronisation. There exist different approaches to
tackle the difficulty of developing programs that utilise the available paral-
lelism of the hardware. One of these approaches is to separate the concerns of
computation and coordination via so-called coordination languages.

S-Net [GSS10] is a declarative coordination language and component tech-
nology, which enables turning sequential legacy code written in conventional
languages into asynchronous components that interact with each other via a
stream-processing network. More precisely, S-Net defines the coordination
behaviour of networks of asynchronous, stateless components (boxes) and their
orderly interconnection via typed streams. Boxes are written in any conven-
tional language, connected to the streaming network with a single input and
a single output stream. Streaming networks are expressed in S-Net itself as
algebraic formulae built out of four network combinators, namely serial and
parallel composition, and serial and parallel replication.

1.1 Motivation

There exists a runtime system [GP10] for S-Net, that utilises PThreads (POSIX
Threads, [Ins95]) to provide concurrent execution. In this system, each box is
mapped to a PThread, as well as the runtime entities that perform the routing
of records through the S-Net network at split and merge points. Communi-
cation takes place via bounded buffers in shared memory, for synchronisation
the primitives provided by the PThreads interface are used.

The aim of this thesis is to extend the current runtime system to fulfil two
requirements:

1



2 CHAPTER 1. INTRODUCTION

1. Enable the collection of monitoring information such as execution time
of components, or buffer usage along communication paths.

2. Provide a way to control scheduling of components.

The motivation behind this is twofold:
First, there are ongoing efforts to equip S-Net with facilities for self-

adaptation and reconfiguration of networks [PSG08]. In order to trigger per-
formance-based reconfiguration decisions, which is the working agenda of an
ongoing IST FP7 project, runtime performance measurements are required.
Second, the possibility to employ different scheduling policies should make the
runtime system open for adaptation to the needs of (soft) real-time applica-
tions.

Both requirements can be tackled by implementing a layer that elevates
the dispatching of S-Net runtime entities from kernel-space (PThreads as
operating system threads) into user-space.

1.2 Contribution

In this thesis, a Light-weight Parallel Execution Layer (LPEL) is developed that
provides the necessary mechanisms of managing tasks in user-space, with a fo-
cus on efficient synchronisation and communication, while diligently utilising
the available processing and memory resources in a shared-memory multipro-
cessor setting. Special effort is made to adhere to a modular design, and to
allow the collection of profiling information during the execution, while keeping
the introduced overhead for the latter low.

The development includes a thorough investigation of general concepts that
are involved with user-level task management. The underlying ideas of S-
Net are presented, and the relation to the computational model of Process
Networks is outlined. Apart from identifying requirements and constraints that
the model of S-Net imposes on task management, existing runtime system
implementations of Process Networks and other stream processing frameworks
are analysed, to explore the design space and to gather ideas that can be
adopted for the design of the LPEL.

The design of the layer incorporates light-weight synchronisation techniques
to keep the overhead at a minimum. The layer is not exclusively targeted
towards the S-Net runtime system, but it has at least the necessary properties
so that the S-Net runtime system can be built upon it.

As a proof of concept, an implementation of the layer is provided as a
separate library, and the current S-Net runtime system is ported onto it.
A comparison of both the variants of the runtime system demonstrates the
performance improvements that can be attributed to the LPEL, even with the
extensive collecting of profiling information.

1.3 Outline

The remainder of this thesis is structured as follows.
Chapter 2 provides some theoretical prerequisites to different models of

computation, S-Net, and the scheduling of processes.
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In Chapter 3 different existing implementations of frameworks for stream-
ing networks and runtime systems for Process Networks are reviewed and the
applicability of their concepts to the LPEL is analysed. It also gives a brief
introduction to the existing runtime system of S-Net.

The exploration of the design space of LPEL as well as the final design
decisions are described in Chapter 4. In addition, the chapter describes the
concepts of the core components of LPEL and the synchronisation mechanisms
in detail.

An implementation is presented as proof of concept in Chapter 5, also
describing the integration with the existing S-Net runtime system.

Chapter 6 contains an evaluation of the LPEL, which involves two aspects.
On one hand, the overall performance of the LPEL featured S-Net runtime
system is compared against the variant without LPEL. On the other hand, the
monitoring information is analysed with respect to its usefulness to identify
computational costs and performance bottlenecks.

Chapter 7 concludes this thesis, providing directions for further research.





Chapter 2

Theoretical Background

In this chapter, we provide some theoretical background for different models of
computation related to stream processing, in particular Kahn Process Networks
and S-Net. The model as such poses certain requirements upon the scheduling
of processes, and identifying the relations and differences between them will
help in making the right design decisions for the user-space task management
layer we intend to develop. Then, the concepts of user-level scheduling and
kernel-level scheduling are explained. Concurrent data structures constitute
the last part of this chapter.

2.1 Models of Computation

2.1.1 Kahn Process Networks

Kahn process networks (KPNs, [Kah74]) are a distributed model of com-
putation, where deterministic sequential processes are communicating solely
through unbounded FIFO channels. A process may have multiple input and
output channels, to which it reads and writes atomic data elements (tokens).
Writing to a channel is non-blocking, i.e., it always succeeds and does not stall
the process, while reading from a channel is blocking, i.e., a process reading
from an empty channel is stalled and only allowed to continue if data is avail-
able again on the input channel. Activation of a process in order to consume
newly available data is often called a firing of a process. Processes cannot
test input channels for availability of data without consuming it, and as pro-
cesses themselves are deterministic, the whole KPN is deterministic such that
the channels always contain the same sequence of tokens, regardless of any
computation or communication delays. Note that processes can be arbitrarily
connected, i.e., the network may contain cycles and multiple channels between
two nodes.

2.1.2 Synchronous Dataflow

In the KPN model, a process is not restricted regarding the number of tokens
it might write to a channel or read from a channel (as long as there is data
available). Synchronous Dataflow (SDF, [LM87]) is a more restricted model
that is commonly used for signal processing applications. In SDF, when a

5
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process is allowed to perform its computation (i.e., it fires), the consumption
and production rates of tokens from input and to output channels are fixed and
hence known a-priori. Note that while in a KPN a process might conceptually
produce an infinite number of tokens during a single firing, this is impossible
with SDF.

2.1.3 Scheduling of Process Networks

The term scheduling refers to the timely mapping of processes onto available
processors. There exist two different approaches to scheduling: Static schedul-
ing means that the schedule is determined at compile-time, whereas dynamic
scheduling means that the schedule is determined at run-time. The computa-
tional model restricts, when scheduling takes place: In the restricted model of
SDF, a schedule can be determined statically at compile time, whereas in the
general model of KPNs this is impossible to do efficiently [Buc93].

A dynamic scheduling algorithm operates on a set of ready processes. When-
ever a processor becomes available, the scheduler selects a ready process and
assigns it to the processor. Two general approaches can be distinguished for
deciding which processes are ready at any given point in time.

Data-driven Scheduling

In data-driven scheduling, any process that has tokens available at its input
channel (which it wants to read from) is ready. Running processes may produce
tokens on their output channels, leading to other processes becoming ready. If
a process has no input data available anymore, it is no longer ready. Data-
driven scheduling lends itself to parallel execution. But a major disadvantage
is that a network can execute in an unbounded way without ever producing
output. Because the channels are conceptually unbounded, a process can con-
tinue producing tokens without being interrupted. Although other processes
may become ready by the produced data of the running process, a naive exe-
cution will not make progress towards global output and eventually run out of
memory.

Demand-driven Scheduling

In demand-driven scheduling, the demand for data is the driving force behind
the algorithm. Initially, the process producing the global output is the only
process being ready. As it has no data available on its inputs, it is blocked,
and the demand for data is propagated to the processes producing the needed
input. Demand is propagated through the whole KPN until it reaches the
global input, which will eventually produce the requested data. As soon as
the data has been produced, the process which demanded the data is executed.
This procedure continues, until again the output process is in need of new input
data. The demand for data repeatedly propagates from outputs to inputs and
back, every time inducing a chain of (possibly expensive) context switches. The
major disadvantage of demand-driven scheduling is that it implicitly constructs
a chain of sequential process execution that is not very suitable for massive
parallelism.
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Hybrid Approaches for Scheduling

A promising solution for efficient scheduling lies in hybrid approaches. In an
early paper [KM77], Kahn and MacQueen have proposed a parallel mode of
execution which basically is demand-driven but with the following difference.
A process that has produced demanded data is not suspended immediately,
but allowed to execute in parallel with the consumer until it has produced a
number of tokens in excess on the output channel. Therefore, each channel c
is assigned an anticipation coefficient A(c). A producer requested through c
is allowed to produce an additional A(c) tokens on c after it has fulfilled its
demand before it gets stalled. The anticipation coefficient is set as the channel
is passed as an input parameter to a new process.

Another solution, proposed by Parks [Par95], is to bound the size of the
channels, and to execute the processes in a data-driven fashion. Processes will
not only block upon attempting to read from an empty input channel, but also
upon attempting to write to a full output channel. This approach is efficient
and easily implementable, yet well-suited for exploiting parallelism. A major
disadvantage of this approach is, that bounds on the channels can introduce
artificial deadlocks, i.e., all processes block, and at least one process blocks on a
full channel. It is artificial, because with conceptually unbounded channels, this
situation cannot occur. Parks introduced an algorithm to resolve the deadlock
by identifying a full channel that causes a producer to block and to increase
its size.

A more detailed overview of scheduling approaches of KPNs and a refine-
ment of Parks’ deadlock resolution algorithm can be found in [BH01].
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2.2 S-Net

S-Net [GSS10] is a declarative coordination language based on stream pro-
cessing. It achieves a near-complete separation of concerns between computa-
tion and communication. Asynchronous, stateless components written in con-
ventional languages interact with each other in a streaming network. S-Net
defines the coordination of these components, called boxes, and their orderly
interconnection via typed streams, while leaving the specification and concrete
operational behaviour to conventional languages.

The separation of coordination and communication is achieved by restrict-
ing a box to be connected to its environment by two typed streams, a single
input stream and a single output stream (SISO). Data on the streams is or-
ganised as records of label-value pairs. Operationally, a box is characterised as
stream transformer function, mapping a single record from the input stream
to a (possibly empty) stream of records on the output stream. Boxes execute
fully asynchronously, i.e., as soon as a record is available in the input stream,
a box may start computing and producing records on the output stream. In
order to allow for dynamic reconfiguration of networks, a box has no internal
state that it can carry over between two consecutive activations.

The motivation of SISO boxes comes from separating coordination and
computation. This way, the box is relieved from questions to what extent
to synchronise on multiple input streams, and to which of multiple output
streams records are written to. These questions clearly are in the domain of
coordination.

Thanks to the restriction to a SISO stream box interface, whole networks
can be described through algebraic formulae. Network combinators are unary
or binary operators that take sub-networks as operands and construct a net-
work that again has a single input and single output stream. Hence, network
construction becomes an inductive process, with boxes as base cases. S-Net
provides a total of four network combinators: Static serial and parallel compo-
sition of heterogeneous components as well as dynamic serial and parallel repli-
cation of homogeneous components. Routing through the network is achieved
by a employing typed streams and records.

As a result, algorithmic aspects are encapsulated in the form of a box func-
tion, whereas any communication and synchronisation actions are happening
in the coordination language. In the following sections, the concepts of S-Net
are explained in more detail.

2.2.1 The type system of S-Net

The type system of S-Net is based on non-recursive variant records with record
subtyping. A type in S-Net is a non-empty set of anonymous record variants,
and each record variant is a possibly empty set of named record entries. Record
entries are either fields or tags. The former consist of a label associated with
data, while the latter are plain integer numbers. The data of fields is opaque
to the coordination layer of S-Net, while the tags are interpreted as integers
in the coordination layer as well as within a user-defined box.

To give an example, an S-Net type looks like as follows:

{<rectangle>, x, y, dx, dy} | {<circle>, x, y, radius}
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In this example, the items enclosed by curly braces are record variants, the
whole type is the set of both record variants, denoted by a vertical bar. The
record entries within angular brackets are tags, whereas the other entries are
fields.

Record subtyping

Record subtyping is based on the understanding that a subtype is more specific
than its supertype(s). For example,

{<circle>, x, y, radius, colour}

is a subtype of

{<circle>, x, y, radius}

where the type containing a circle record variant with the additional colour
field is a subtype of the type containing the circle variant without that field.
The position of the fields and the tag is not relevant, it is the set inclusion
relationship between the record entries of the two record variants which defines
the subtype relation. Another example for a subtype relation is

{<circle>, x, y, radius}

being a subtype of

{<circle>, x, y, radius} | {<rectangle>, x, y, dx, dy}

where the type on the left hand side containing only circle variants is a
subtype of the type on the right hand side, which encompasses both circles
and rectangles.

Type Signatures

Type signatures describe the stream-to-stream transformation performed by a
box or a network. A type signature is a non-empty set of type mappings each
relating an input type to an output type. The input type specifies the records
a box or network accepts for processing, the output type specifies the records
that may be produced in response. For example, the type signature

{a,b} | {c,d} -> {<x>} | {<y>} , {e} -> {z}

describes a network that accepts records that either contain fields a and b or
fields c and d or field e. In response to a record of the latter type, records with
field z are produced, in all other cases records are produced either containing
a tag x or a tag y.

As boxes and networks accept subtypes of record variants, excess fields and
tags of a record entry are handled in a specific way: Any field or tag of an
incoming record that is not listed in the input type of the box or the network
is bypassed and added to any outgoing record created in response, unless that
record already contains a field or a tag with the same label. This mechanism
is called flow inheritance.
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Figure 2.1: An S-Net box has a typed single input and a typed single output
stream.

2.2.2 Boxes

Boxes constitute the atomic building blocks of streaming networks in S-Net.
Having a single input and a single output stream, they act as stream trans-
formers, i.e., for each record on their input stream, they produce a sequence
of records on their output stream, where the length of the sequence is possibly
dependent on the input data. Boxes are declared by a unique name and a box
signature, for example (cf. Figure 2.1):

box foo( (a,b,<t>) -> (a,b) | (<t>) );

Box foo accepts records that have fields a, b and tag t and either outputs
records containing fields a and b or records containing tag t only. Box signa-
tures are similar to type signatures, except that they only have a single-variant
input type, and round brackets are used to show that the order of fields and
tags does matter in the context of a box. It is dependent on the actual box
implementation how many records are produced and of which of the output
variants they are, hence this information can be only determined at runtime.

The box implementation can be in any programming language, it just has
to provide an interface to the C language. An example box implementation
with the signature above is given as follows, in C:

snet_handle_t *foo(snet_handle_t *hnd,

int *a, mytype_t *b, int t)

{

/* some computation on a, b, and t */

snetout(hnd, 1, a, b);

while( cond(b,t) != 1 ) {

/* some computation on b, t */

snetout(hnd, 2, t);

}

snetout(hnd, 1, a, b);

return hnd;

}

The parameter hnd is an opaque pointer to provide contextual information
to the runtime system when making calls to it. Such a call is snetout which
allows to produce records to the output stream at an arbitrary point during
the computation. The second parameter of snetout is a number specifying
which output type variant is used. Note that producing records possibly could
be done within an endless loop, triggered by a single input record, in which
case the box would act as data source.
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Filter Boxes

For convenience, there exist so-called built-in filters which allow simple house-
keeping operations for which the knowledge of the field values is not required.
These operations include:

• elimination of fields and tags from records

• copying fields and tags

• adding tags

• splitting records

• simple computations on tag values

Synchrocells

Often it is desirable to merge one or more records together into a single one.
This cannot be achieved by user-defined boxes, as it would require them to
have a state. In S-Net, synchrocells are the only stateful boxes, providing
the only way to combine records. A synchrocell keeps incoming records which
match one of the patterns until all patterns have been matched. The records
are then merged into a single one and emitted to the output stream. It provides
only storage for one record of each pattern. Records with an already matched
pattern are forwarded directly to the output stream. After emitting the merged
records, the synchrocell serves as identity function, forwarding all incoming
records. If a continuous merging of records is desired, the synchrocell must be
placed into a serial replication network combinator. Network combinators are
explained in the next section.

2.2.3 Network composition

Complex streaming networks with boxes as atomic building blocks are defined
hierarchically in S-Net. This is possible due to the SISO property of boxes
and sub-networks. Network combinators either are unary or binary, with sub-
networks as operands, and create a compound network that again has a single
input and a single output stream. Hence, network composition is an inductive
process with boxes as base cases. As a result, whole networks can be expressed
by single algebraic formulae rather than by complex wiring lists. Routing
decisions are made at split points of the network, they are based upon the
type of the sub-networks and the type of the actual record. Furthermore, the
networks created by the combinators are acyclic, which eliminates the problem
of deadlock due to circular dependencies, which general process networks are
prone to. This is a distinctive characteristic of S-Net. Figure 2.2 illustrates
the four network combinators.

Serial composition. The binary serial combinator .. connects two com-
ponents such that the output of the left operand constitutes the input of the
right operand. Serial composition establishes computational pipelines, where
records are processed through a sequence of computational steps.

Parallel composition. The binary parallel combinator | combines its ope-
rands in parallel. An incoming record is sent to exactly one operand, more
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Figure 2.2: Network combinators of S-Net: serial composition (top-left), par-
allel composition (top-right), serial replication (bottom-left) and indexed par-
allel replication (bottom-right).

precisely, the operand which type signature matches the type of the record
best.

Serial replication. The serial replication combinator * replicates its com-
ponent (left operand) infinitely many times and connects the replicas by serial
composition. The right operand constitutes a termination pattern, such that
each record that is a subtype of this pattern leaves the replication pipeline
through the output stream. Actual replication is demand-driven, hence the
network is extended dynamically during runtime.

Parallel replication. The parallel replication combinator ! replicates its
component (left operand) conceptually infinitely many times and connects
them in parallel. The right operand is a tag. Each incoming record must
have this tag and is sent to the replica with the actual tag value in the record.
Again, replicas are created dynamically during runtime.

Deterministic combinators. For all combinators except the serial compo-
sition, there exist deterministic variants. Generally, each record that enters
a sub-network on the input stream induces a (possibly empty) sequence of
records that leave the sub-network on the output stream. The sequences of
outgoing records on the output stream, induced by subsequent records on the
input stream, are allowed to interleave or be completely reordered. Determin-
istic variants of the combinators prohibit this interleaving and preserve the
order of the outgoing sequences of records. They are denoted as || for parallel
composition, ** for serial replication and !! for parallel replication.
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2.2.4 Relation to KPNs

The computational model of S-Net is somewhat similar to KPNs, considering
that the building blocks – boxes in S-Net and processes in KPNs – are not
limited with respect to the items they may produce. In S-Net, a box can be
executed as soon as there is data available on its input stream. Likewise, KPNs
block on input channels if there is no data available.

On the other hand, there are striking differences between these two models:

• A box is invoked once for each record that is present on the input stream
subsequently, whereas in KPNs the process itself has to implement a loop
that reads subsequent data from its incoming communication channel(s).

• S-Net boxes only have a single input stream and a single output stream.
Regular boxes are required to be stateless, whereas KPN processes can
have a state. It is important to note that in S-Net split and merge points
are in the domain of the coordination language itself.

• Routing of records is managed by the type system of S-Net at split
points, not by the boxes themselves.

• S-Net networks are acyclic.

• Parts of an S-Net network are dynamically expanded on demand to
facilitate serial and parallel replication.

• S-Net networks are non-deterministic: records that arrive at non-deter-
ministic merge points, are forwarded immediately. This is the source of
non-determinism in S-Net compared to KPNs, in which a process is not
capable of testing for data availability on its input channels, but can only
perform a blocking read (and write) operation on a single channel.

Despite these differences, we will see in Chapter 3.2, that the runtime system
implementation of S-Net is based on the execution model of Parks [Par95] for
KPNs.

2.3 Operating System Threading Facilities

Multithreading refers to the ability of an operating system to support multi-
ple, concurrent paths of execution in the shared address space within a single
process. Communication of threads through shared data is simple as a vari-
able or a dynamically-allocated block of memory has the same address in every
thread. Thus, pointer-based data structures can be shared between threads
without problems, as long as the accesses are properly synchronised.

2.3.1 Kernel- and User-level Threads

There are two broad categories of thread implementation:

Kernel-level threads (KLTs)
Kernel-level threads (or kernel threads) are managed entirely by the op-
erating system. Modern operating systems facilitate the benefits from
multiple cores by scheduling multiple threads from the same process si-
multaneously on the cores.
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User-level threads (ULTs)
User-level threads (or user threads) are managed entirely by a user-space
threading library or a user-space application, the operating system is not
aware of their existence.

KLT vs. ULT

Both types have their advantages and disadvantages. A drawback of a pure
ULT strategy (only ULTs in a single process) is that a multithreaded appli-
cation cannot take advantage of multiple cores, as an OS kernel assigns one
process to only one processor at a time and is unaware of the ULTs. There-
fore, only a single ULT within a process can execute at a time. As a result,
application-level multiprogramming utilises only a single core.

As an advantage, scheduling of ULTs can be application specific. One appli-
cation may benefit most from a simple round-robin scheduling algorithm, while
another might benefit from a priority-based scheduling algorithm. Hence, the
scheduling algorithm can be tailored to the application without disturbing the
underlying OS scheduler. In a pure KLT approach, the OS scheduler would be
ignorant of and as a result disturb the scheduling requirements of the applica-
tion.

Another benefit of ULTs lies in terms of cost: the transfer of control from
one thread to another within the same process does not require a mode switch
to the kernel, as with KLTs. The cost becomes even larger if, as common in
modern operating systems, KLTs are subject to preemption: The operating
system may interrupt a KLT at arbitrary points of its execution, typically if
it has executed a given amount of time, and reschedule them at a later point.
Also, the costs of thread creation and destruction are higher for KLTs than for
ULTs.

2.3.2 Threading models

Generally, two possible designs of a threading model can be distinguished. In
the 1:1 model, each application thread has a dedicated KLT. This situation is
depicted in Figure 2.3.

Figure 2.3: 1:1 threading model: Each application thread has a dedicated
kernel-level thread (KLT), sketched by a 1:1 mapping from user-level threads
(ULTs) to KLTs.
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Figure 2.4: m:n threading model: an application is utilising ULTs on top of
KLTs, on each KLT a set of ULTs is managed.

To facilitate the advantages of both KLTs and ULTs, an application or a
user-space library could handle multiplexing of many ULTs over fewer KLTs,
in order to benefit from multiple processor cores. This model is referred to
as m:n model, illustrated in Figure 2.4. Especially applications with a high
level of concurrency, i.e., applications that use a large number of threads, could
benefit from such a scheme, as the operating system is not flooded with many
KLTs and kept busy with switching between them trying to provide each of
them an equal time share of the processors.

Ideally, exactly as many KLTs are utilised as there are processor cores, such
that the KLTs are executed in parallel, each on a dedicated processor core. The
application itself uses these KLTs to execute ULTs in parallel on top of them.
Figure 2.4 depicts the case where an application utilises two KLTs to manage
several ULTs on top of each KLT. The ULT management layer is depicted as
grey rectangle.

ULTs of an application might also depend in a specific way on each other,
such that the user-level scheduler of an application can exploit these dependen-
cies by scheduling ULTs cooperatively. As opposed to preemptive scheduling, a
cooperative scheduler does not preempt a ULT during execution. Instead, the
ULT has to yield to allow other ULTs to be executed.

Thus, a disadvantage of ULTs is that if a ULT performs a blocking system
call, e.g., an I/O operation where the whole KLT is blocked, as a result, all the
other ULTs on that KLT are delayed. One solution is to wrap blocking system
calls in helper functions, which issue an asynchronous non-blocking system
call, execute other ULTs and periodically check if the call has finished. This
technique is often referred to as jacketing.

A more comprehensive discussion about OS threading facilities can be found
in any actual textbook about operating system design, e.g., [Sta09].
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2.4 Concurrent Data Structures

Shared-memory multiprocessors concurrently execute multiple threads of com-
putation which communicate and synchronise through data structures in shared
memory. The efficiency of these data structures is crucial to performance, but
concurrent data structures are generally far more difficult to design than their
sequential counterparts. The challenge arises in designing scalable concurrent
data structures that continue to perform well as the number of threads ac-
cessing these data structures is increasing. Before continuing, we give two
definitions in the context of parallel programming:

Speedup
Let T1 be the execution time of an application when run on a single
processor and TP be the execution time when run on P processors. Then,
the speedup of an application when run P processors is given by the ratio

SP =
T1

TP
.

Ideally one wants linear speedup, i.e., when using P processors a speedup
of P is achieved.

Scalability
Applications whose speedup SP grows with P are called scalable, i.e., if
TP < TP−1 , ∀P > 1.

2.4.1 Locking

The traditional approach to keep a shared data structure in a consistent state
is to use a mutual exclusion lock (or mutex ). At any point in time, the lock is
held by at most one thread which is then allowed to read and write the shared
data. If a thread wants to access the shared data structure currently locked by
another thread, it must wait until the lock is released again.

Regarding performance, a lock introduces a sequential bottleneck, i.e., at
any point in time, at most one operation protected by a lock is doing useful
work. The performance impact of sequentially executed parts is illustrated by
a simple formula based on Amdahl’s Law [Amd67]. Let b be the fraction of the
program that needs to be executed sequentially. If the program requires 1 time
unit when executed on a single processor, then on P processors the sequential
part takes b time units, and the concurrent part takes (1− b)/P time units in
the best case. So for the speedup SP , following inequality holds:

SP ≤
1

b + 1−b
P

The best achievable speedup is given by the limit P →∞, such that

S∞ = lim
P→∞

SP =
1

b
.

For example, if 10% of the application have to be executed sequentially, the
best possible speedup if executed on 10 processors is 5.26, and the best achiev-
able speedup is 10. Reducing the sequentially executed code in the context of
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locking means to employ fine-grained locking schemes, i.e., using multiple locks
of small granularity (small number of instructions within the critical section)
to protect different parts of the data structure.

Another problem of the lock-based approach arises if the thread holding the
lock is delayed, e.g., by being preempted by the operating system. Then, all
other threads that want to acquire the lock are delayed as well. This is called
blocking, and can be avoided by non-blocking algorithms, which, by definition,
do not use locks.

Two-lock queue algorithm. An example of fine grained locking is the two-
lock concurrent queue algorithm of Michael and Scott [MS96]. It is imple-
mented as a singly-linked list, providing an enqueue and a dequeue operation.
Instead of using a single lock for protecting the whole queue upon access at
either end, two separate locks are employed for the head and the tail, allowing
concurrent dequeues and enqueues as never both the head and the tail pointer
have to be accessed within one operation. This is achieved by always keeping a
“dummy” node at the head, such that always at least one node is contained in
the queue. For enqueueing a node, only the tail pointer needs to be accessed:
the next pointer of the tail node is set to the new node, and then the tail
pointer itself is set to the new node. For dequeueing a node, only the head
pointer needs to be accessed, which is the dummy node. If its next pointer is
NULL, the queue is empty. Otherwise, the value of the node pointed to by the
dummy’s next pointer is returned, and the node becomes the new dummy node.
The head pointer is set to the new dummy node, and the previous dummy node
can be de-allocated. Note that both the head and the tail pointers point to the
same node (the dummy node) if the queue is empty. Enqueues and dequeues
can be concurrent because dequeues only read the next pointer of the dummy
node whereas enqueues only write it. There is no need to handle the special
case if the queue is empty before or would become empty after the operation,
requiring synchronisation between enqueues and dequeues. Nonetheless, multi-
ple enqueuers have to synchronise upon the tail lock, dequeuers upon the head
lock.

2.4.2 Wait-, Lock- and Obstruction-freedom

The defining characteristic of a non-blocking algorithm is that stopping a
thread does not prevent the rest of the system from making progress. To put it
more formally, various non-blocking progress conditions can be distinguished:

Wait-freedom
A wait-free operation is guaranteed to complete after a finite number
of its own steps, regardless of the timing behaviour of other operations.
This is the strongest progress condition.

Lock-freedom
A lock-free operation guarantees that after a finite number of its own
steps, some operation completes. Although the operation is subject to
starvation, system-wide progress is guaranteed.

Obstruction-freedom
An obstruction-free operation is guaranteed to complete within a finite
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number of its own steps after it stops encountering interference from other
operations (live-lock is possible). This is the weakest of the progress
conditions.

Atomic Memory Operations

Non-blocking algorithms often are based on atomic memory operations avail-
able on the processor’s instruction set. The fetch-and-increment, fetch-and-
decrement, atomic-swap, and compare-and-swap (CAS) are the most promi-
nent of such instructions. For example, the fetch-and-increment operation can
be used to build a concurrent counter: it atomically loads from a memory lo-
cation, and writes the incremented value back to the location, while the value
read from the memory location is returned to the caller. The CAS operation
atomically loads from a memory location, compares the value read to an ex-
pected value, and stores a new value to the location only if the comparison
succeeds. The return value indicates if the substitution succeeded, either by
a boolean value or by returning the value read from the memory location. A
typical signature of the CAS operation is as follows:

boolean CAS(memory_loc, expected_val, new_val)

Most non-blocking algorithms involve a loop that attempts to perform an
action using one or more CAS operations, and retries when one of the CAS
operations fails. A failure of the CAS operation indicates that another thread
has changed the value stored at the memory location in the meantime. As
many data structures are organised as linked items, changing the data structure
involves exchanging pointers. Such data structures are prone to the ABA
problem as described below.

The ABA Problem

Algorithm 1 sketches a broken lock-free stack implementation. The first operand
of the CAS operation denotes the memory location (a pointer to the top of
the stack in this case), the second operand the expected value, and the third
operand the new value which should be written to the memory location.

Assume the following execution, depicted in Figure 2.5, taken from [AR06].
Initially, the stack contains items A, B, and C. Thread 1 wants to pop an item
from the stack, but just before it reaches the CAS operation, Thread 2 pops A
and B from the stack, and pushes A back onto the stack. Thread 1 continues,
and as it still sees A at the top, it exchanges A with previously read B, which
clearly corrupts the linked stack.

The solution to the ABA problem is to never reuse node A. In a garbage-
collected environment is is simply a matter of not recycling nodes, i.e., once
a node has been popped, it is never pushed again. The garbage collector will
check that the memory of node A is not recycled while there are references to
it.

Without garbage collection, the solution is to make node A slightly different
each time (ABA’). This can be accomplished by appending a serial tag to the
reference to A. But this requires the CAS operation to exchange two memory
locations atomically, one for the pointer and one for the incremented serial
number. Such a CAS operation handling two memory locations is referred to
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Algorithm 1 Broken lock-free stack implementation, subject to the ABA prob-
lem.

Push(n)

1 node *top
2 repeat
3 node *tmp = top
4 n.next = tmp

// if the value in top (memory location) equals tmp,
// n is written to top and CAS returns true

5 until CAS(&top, tmp, n)

Pop()

1 node *new -top, *n
2 repeat
3 n = top
4 new -top = n.next
5 // ABA problem may arise here!
6 until CAS(&top, n, new -top)
7 return n

Figure 2.5: Execution of the broken stack, demonstrating the ABA problem.
The example is taken from [AR06]



20 CHAPTER 2. THEORETICAL BACKGROUND

double compare-and-swap, or CAS2. For example, a CAS2 operation might
have a signature as follows:

boolean CAS2( memory_loc, expected_val, new_val,

memory_loc2, expected_val2, new_val2 )

It is similar to the CAS operation, except that two memory locations are
atomically exchanged. Only if both memory locations contain the expected
values, the new values are written to the memory locations, and the operation
returns true. Otherwise, the memory locations are not written to and the
operation returns false.

A comprehensive survey of concurrent data structures is given by Moir and
Shavit [MS04].



Chapter 3

Related Work

3.1 Existing Process Network Runtime Systems

There exist a variety of runtime systems that implement execution of process
networks. In this section, we will describe some in more detail. The selec-
tion was motivated by the characteristic features they expose which are of
interest for the implementation of the Light-weight Parallel Execution Layer.
Therefore, we restrict our investigation to systems which perform scheduling
dynamically, i.e., scheduling of processes is done at runtime as it is also done
in S-Net.

3.1.1 Nornir

The Nornir runtime system of Vrba et al. [VHG+09a, Vrb09] implements the
algorithm of Parks [Par95] for the execution of Kahn Process Networks (KPNs).
Communication channels between processes are bounded, making execution
possible in finite space. Processes are executed if they are ready, i.e., they are
not blocked by trying to read from an empty channel or trying to write to a
full channel.

An early implementation was built on top of native operating system mech-
anisms, such that each Kahn Process (KP) was a kernel-level thread. Chan-
nels were protected by mutexes and condition variables were used as the sleep
and wakeup mechanism for threads. However, evaluation of this approach
[VHG09b] showed that facilitating user-level threads instead for KPs executed
on top of a few kernel-level threads is considerably more efficient.

Upon startup of the KPN, a specified number of kernel-level threads, re-
ferred to as runners, are created and scheduled by the operating system onto
the available processor cores. KPs are then distributed among the runners.
Each runner has a private run queue of ready KPs, and is employing a work-
stealing scheduling policy. If the private run queue of the runner is empty, it
tries to steal KPs from a randomly chosen runner. A run queue is protected
by a single mutex, which might be problematic on machines with many cores,
as acknowledged in [VHG+09a]. Runners fetch KPs from the head of the pri-
vate run queue, and as processes becoming ready are enqueued at the tail of
the queue, this results in a FIFO order of task scheduling. Other runners at-
tempting to steal ready KPs dequeue them from the tail of the victim’s run

21
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queue, and as a result, most recently unblocked KPs are stolen from the owning
worker.

Communication and synchronisation between KPs is handled as follows.
Each communication channel is protected by a (kernel-level) mutex. As a
result, KPs cannot access the channel concurrently. To avoid delaying the
whole runner while waiting on the release of the channel mutex, a busy-wait
strategy is employed: the KP yields to the scheduler and is put at the end
of the run queue. This allows the runner to execute other KPs from the run
queue, and eventually the previously descheduled KP will be dequeued and
executed by the runner, trying to access the channel again.

KPs can block on communication channels upon a read or a write operation.
They yield execution and the runner does not put them back into the run queue.
If a KP q unblocks a previously blocked KP p then p will be put onto the run
queue where it has been previously executed, which is not necessarily the run
queue of q’s runner. Also, if a p and q are on different runners, then p is inserted
at the head of the owner’s run queue. Hence, the only means a KP can migrate
to another worker, is only by being stolen. This strategy avoids too frequent
process migration among runners and achieves active load distribution instead
of making runners to look for more work.

In order to resolve artificial deadlocks, which arise from the problem of
bounded communication channels and cyclic networks, Nornir facilitates a cen-
tralised deadlock detection and resolution algorithm. The algorithm is invoked
each time a KP would block on another KP on a send or a receive operation.
The centralised graph structure is protected by a single mutex, and KPs that
cannot acquire it, yield to the runner like with the communication channels.

To conclude, Nornir is an efficient runtime system for the execution of
KPNs. But the communication channels and run queues, which are protected
by single locks, are subject for further optimisation.

3.1.2 YAPI

YAPI [dES+00] is a programming interface aimed towards modelling signal
processing applications as process networks. YAPI is not a pure KPN imple-
mentation, as it extends KPN semantics by a channel selector, which allows
a process to block on a (limited) set of channels. The select operation re-
turns the channel on which the next communication action can be completed.
This introduces non-determinism, as channel selection is performed dynami-
cally at runtime. There exists a runtime library written in C++, but the pa-
per [dES+00] gives very few implementation details. The library is download-
able from http://y-api.sourceforge.net/ (Jan 2011), but unfortunately it
does not make use of hardware parallelism and is not maintained anymore.

3.1.3 FastFlow

FastFlow [ADM+09] is a parallel programming framework for multi-core plat-
forms based upon non-blocking lock-free synchronisation mechanisms, partic-
ularly targeted to the development of streaming applications. The authors
observe that especially in shared-cache multicore architectures traditional pro-
gramming models limit scalability severely. These limitations arise from atomic
memory transactions, that exhibit a rather high latency and tend to pollute the

http://y-api.sourceforge.net/


3.2. THE S-NET RUNTIME SYSTEM 23

shared memory hierarchy. They argue, that those operations are not strictly
required when concurrent threads operate in a pipeline fashion, because data
can be streamed from one-stage to the next using fast lock-free single-producer
single-consumer (SPSC) queues, as described by [GMV08]. The FastFlow
framework extends this lock-free SPSC queue approach from simple pipelines to
complex streaming networks, providing low-level constructs such as multiple-
producer multiple-consumer (MPMC) queues and a parallel lock-free mem-
ory allocator (MA), and higher-level constructs like programming skeletons for
task-farms, or the master-worker pattern.

FastFlow builds upon the threading facilities of the operating system, using
kernel-level threads for its application threads. This could have a negative
impact on scalability for very large streaming networks.

3.2 The S-Net Runtime System

As the S-Net runtime system will be the experimental platform for the Light-
weight Parallel Execution Layer, it is described in more detail in this section.

The current multi-threaded runtime system implementation [Pen07, GP10]
of S-Net is targeted at shared-memory architectures and provides means to
distribute parts of an S-Net network over a network cluster of machines. Lat-
ter is based upon an extension of the S-Net core language and is called Dis-
tributed S-Net [GJP09], but this extension is not discussed here.

The runtime system is implemented in the C programming language and
makes use of kernel-level threads via the POSIX Threads (PThreads [Ins95])
programming interface to provide multiple application threads of execution.
In the runtime system, components of a streaming network are mapped to
threads, such that not only each box operates in the context of a thread, but
also each split- and merge point is operating as separate thread, performing
the routing of S-Net records. More precisely, there exists a set of entities such
that each instance of an entity is executed in its own kernel-level thread.

3.2.1 Mapping of S-Net Components onto Threads

Figure 3.1 gives an example of a mapping of an S-Net network onto runtime
system threads. Note that in this simple example for the mapping of four boxes
twice as many threads are created. Threads (instances of entities) communi-
cate through unidirectional streams, which are implemented as bounded circu-
lar buffers. Through these streams, references (pointers) to memory locations
in the shared address space are passed, where the actual records are stored.
Synchronisation takes place through the primitives provided by the PThreads
API, namely mutexes and condition variables. The buffers are accessed mutu-
ally exclusive, and a thread is suspended if it performs a read operation on an
empty stream or if it performs a write operation on a full stream, by waiting
on a condition variable. If a thread writes to an empty stream or reads from
a full stream, it signals the appropriate condition, possibly making suspended
threads ready again. This pattern constitutes a solution for the producer-
consumer synchronisation problem (with bounded buffers) with the concept of
monitors, as described in, e.g., [Sta09].

Apart from data records containing the records as perceived by the S-Net
coordination layer and described in Section 2.2, there exist other types of con-
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(a) Network as described by the algebraic for-
mula (A|B)|(C..D).

(b) Manifestation in the runtime system.

Figure 3.1: Mapping of an S-Net network onto runtime-system entities.

trol records that are communicated by entities. Among theses are records that
allow for deterministic combinators, registration of new input streams (e.g., at
merge points of dynamic replication components), or orderly termination of the
streaming network. Entities also have to incorporate mechanisms to support
flow inheritance for data records.

Each entity executes, after some initialisation code, a main loop, in which
it reads a record from its input stream, performs some action dependent on the
type of the record, and writes record(s) to its output stream(s). The Collector
constitutes a special case because it acts as a merge point and as such does
not only have a single input stream but a set of input streams, as described
below. The set of different entities is fixed and can be classified by the number
of input and output streams.

Single-input single-output (SISO) entities are:

Box. A box entity has a single input stream and a single output stream. It is
a wrapper to the user-supplied box function such that upon arrival of a
data record, the box function will be called with the relevant record data.

Filter. A filter performs simple functionality like splitting or duplicating re-
cords, or adding, stripping or duplicating fields or tags.

Synchrocell. This entity is responsible for merging two or more records. After
successful merging (synchronisation) and writing the compound record
to the output stream, the synchrocell sends a synchronisation record to
its output, containing a reference to its input stream. Afterwards, it
terminates.

There exists only a single type of merge point, with multiple inputs and a
single output:
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Collector. The collector entity has to listen for newly available data on its
input streams. Dependent of its mode of operation, i.e., whether is part
of a deterministic sub-network or not, it either has to listen to all of its
input streams or just a subset of them.

At split points of the network, there are entities with a single input and
multiple outputs. For each split point, a collector entity is created that merges
the subnetworks again to result in a single output stream.

Parallel. The parallel entity implements the router part of the parallel com-
position operator in S-Net.

Star. For serial replication, at the beginning and after each stage of the serial
replication pipeline there is a star entity, that either routes records to the
collector for leaving the pipeline or to the next instance (which is also
created if it does not exist). Newly created instances are registered at the
collector, i.e., a record containing the address of the output stream of the
created instance is sent to the collector. Hence, for a serial replication
pipeline of depth N , for a single box 2N + 2 threads are created: N box
entities, N + 1 star entities and one collector.

Split. Parallel replication is handled by the split entity. Dependent on the
specified tag value of an incoming data record, it sends the record to an
existing instance matching this value, or, if it does not exist yet, to a
newly created instance for that value. The split entity also is connected
to the corresponding collector directly to be able to register new instances
like the star entity.

3.2.2 Execution model

Although the S-Net model is quite different from the KPN model, the runtime
manifestation of a S-Net resembles an extended, acyclic and dynamically re-
configurable KPN executed with bounded buffers according to the proposal of
Parks [Par95]. The extension lies, like with YAPI (cf. Section 3.1.2), in intro-
ducing non-determinism by allowing for testing on input channels. As networks
are acyclic, deadlock detection and resolution due to bounded buffers is not an
issue. Although S-Net boxes do not have a state, the runtime system entities
are stateful, like KPs.

3.2.3 Desired Extensions and Adaptations of the Runtime
System

As S-Net networks potentially can grow very large due to replication, the
excessive use of kernel-level threads will surely impact scalability and overall
system performance. Furthermore, scheduling is completely within the scope of
the operating system, which is undesirable, for example, for applications with
real-time constraints. Also, the fact that each application thread is executed as
kernel-level thread makes profiling execution traces difficult. Execution time
of components can hardly be measured in a convenient way as the operating
system can preempt the threads at arbitrary points in time. If each thread
outputs its profiling information in a separate resource, e.g., file, the system
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is flooded with concurrent I/O requests, which have to be serialised. On the
other hand, if a file is shared, mutual access also has to be ensured. Both
options result in a sequential bottleneck, severely affecting scalability.

Hence, extensions to the S-Net runtime system are desired, that

(a) allow for profiling execution of S-Net networks, and

(b) enable application-specific scheduling policies

The Light-weight Parallel Execution Layer as described in the next chapter
tackles the challenge to provide these extensions.



Chapter 4

The Light-weight Parallel Execution
Layer

In this chapter, the design of the Light-weight Parallel Execution Layer (LPEL)
is outlined. First, the requirements are gathered, and the design space is char-
acterised. Then, the overall architecture and each of the core components of
the LPEL is described in detail.

4.1 Requirements and Design Space

The main purpose of the LPEL is to provide an efficient and flexible execution
platform for stream processing applications in a shared-memory setting. Al-
though it is primarily targeted towards the S-Net runtime system, it can be
used without S-Net as a basis for other streaming applications, e.g., process
networks, as well. The LPEL at least provides the necessary properties such
that the S-Net runtime system can be built on top of it. Hence, most of the
properties of the S-Net runtime system execution model are adopted. For
example, communication will also take place by asynchronous message pass-
ing through bounded buffers. In Chapter 5, the required modifications of the
runtime system to fit on top of the LPEL are discussed.

The desired extensions of the S-Net runtime system are tackled by provid-
ing a layer for user-space thread management, similar to the work of Vrba et
al. [VHG+09a]. First, by using user-level threads for S-Net entities, control
of their scheduling is elevated from the operating system to the application.
Scheduling must remain adaptable to the needs of an application. For example,
scheduling requirements for an application with real-time constraints are dif-
ferent than for scientific simulations. Therefore, using a fixed scheduling policy
is not an option.

Second, user-space thread management makes profiling executions of S-
Net networks much easier. As the knowledge of when execution of a user-level
thread is started and stopped is available to the layer, time-stamping these
events will provide reasonable execution-time estimates. In addition, stream
communication is required to be monitored. As profiling is intrusive to the
execution, care must be taken to introduce as little overhead by monitoring as
possible. It is also desired to be able to switch off monitoring completely.

Of course, the LPEL must provide good scalability and make use of the
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availability of processor cores. Hence, multiple kernel-level threads must be
employed, leading to an m:n threading model (cf. Section 2.3). Scalability
must be ensured by employing concurrent data structures and lock-free tech-
niques where possible and beneficial. This applies to mechanisms regarding
synchronisation between user-level threads as well as synchronisation between
kernel-level threads.

As the resulting layer will be similar to the runtime system for KPNs de-
scribed in Section 3.1.1, the ideas and experiences of that project can be used
and improvements, e.g., for synchronisation mechanisms, incorporated. Addi-
tional requirements of the LPEL include:

• Support for non-determinism by testing of availability of new data on
input channels (required at merge points)

• Dynamic (de-)construction of the streaming network during runtime

• Provide the possibility to adapt the scheduling policy to the needs of the
application.

What is out of scope of this work, is implementing elaborate scheduling and
placement strategies. The architecture and modules are provided, but only
simple policies are used that do not use any information about the application.

4.1.1 General Concepts

Like the existing multi-threaded S-Net runtime system, the LPEL builds upon
the scheduling model of Parks [Par95] for process networks: Tasks are con-
nected by (uni-directional) streams, which are modelled as bounded buffers.
They are suspended from execution upon reading from a full stream and writ-
ing to an empty stream. This model allows for an easy implementation and
lends to parallel execution.

Bounded buffers provide a mechanism for back-pressure, but can lead to
artificial deadlock in circular networks. As S-Net networks are strictly non-
circular, a deadlock resolution like the one described in [Par95, BH01] is not
necessary for them.

The main difference of the LPEL compared to the existing multi-threaded
S-Net runtime system lies in the threading model. While the latter incor-
porates a 1:1 threading model (cf. Section 2.3), in the LPEL the tasks are
not directly executed as operating system threads, but executed as user-level
threads in the context of a worker. As LPEL tasks only require specific syn-
chronisation constructs, task management is tailored to these constructs which
can be implemented efficiently.

Architecture

The architecture of the LPEL is depicted in Figure 4.1. The bottom layer
contains all lower-level mechanisms and services that the LPEL builds upon.
These include kernel-level threading, assigning a KLT to a specified core (set-
ting the thread’s core affinity) atomic memory operations and the ability to
perform context-switching from user mode.

On top of the architecture stack is the S-Net runtime system. It uses
the facilities that the LPEL provides for (user-space) thread management and
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Figure 4.1: The architecture of the LPEL. It builds upon the low-level mech-
anisms for threading that the operating system provides as well as hardware-
specific atomic operations. The LPEL is the substrate for executing process
networks, particularly S-Net.

communication between them. Also configuration and adaptation of various
LPEL modules is possible from the uppermost layer.

The middle layer depicts the LPEL with its core modules. These are de-
scribed in detail in the following sections.

4.2 Workers

One of the key ideas of the LPEL is that there exist workers which run in
parallel and manage disjoint sets of tasks in user-space. Tasks are the pro-
cessing nodes of the stream processing network to be executed. The number
of workers depends on the processing resources, i.e., ideally for each processor
one worker exists. Workers themselves are scheduled by the operating system,
but in an ideal setting the operating system is restricted to always execute
a specific worker on the same processor. We say, the worker is pinned to a
core. Keeping a worker and related data on the same processor helps to pre-
serve cache locality and avoid the cost for thread migration. If there exist as
many pinned workers as processors, we have a bijective mapping from workers
to cores. In order to keep the synchronisation overhead between workers low,
special care is taken to have as little data as possible shared or concurrently
accessed by the workers.

In the most general of such a workers-tasks pattern, the tasks can be ar-
bitrary chunks of work. They can be stateful or stateless, have their own
execution stack or use the same stack as the worker, etc., all which depends
on the requirements of the environment. Although the specific characteristics
of LPEL tasks are described in the next section, it can already be mentioned
here that each LPEL task has its own execution stack. As tasks are managed
entirely in user-space within an operating system thread, switching between
tasks does not involve expensive context switching to and from the operating-
system kernel. This effectively constitutes a two-level scheduling scheme in
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which the OS kernel schedules the worker threads (in kernel-space) and the
workers schedule their tasks (in user-space).

One advantage of such a two-level scheduling scheme is, besides reduced
context-switching overhead, that the workers have control when and how often
to dispatch their tasks, and this flexibility allows us to assign priorities to tasks,
dependent on a given scheduling policy (see Section 4.2.3).

Another advantage is that the operating system is not swamped with kernel-
space threads that might be all active at the same time, as it would be the case
if a task is executed directly as a kernel-space thread. Instead, the number of
workers effectively defines the level of concurrency exploited by the execution
layer, potentially utilising the available parallelism automatically, if each worker
runs on a processor core and the workload is distributed on the workers equally.

The fact that each worker manages its own set of tasks and all task-sets are
disjoint helps to achieve a good caching behaviour, as tasks are not migrated too
frequently between processor cores. Task migration has to be done explicitly
as opposed to fetching tasks from a global task-pool, where a task could be
executed on a different processor core each time, and hence has to be loaded
into the core’s cache each time. From the scheduling perspective, explicit task
migration allows mid- and long-term planning for long-lived applications that
might have to satisfy (soft) real-time constraints. On the other hand, a diligent
assignment of tasks to workers and load-balancing strategies are essential to
compensate for inevitable load-imbalance.

Figure 4.2 depicts the organisation of workers. Each worker runs on a
kernel-level thread pinned to a core. Tasks are illustrated as circles labelled T .
Execution of tasks is based on ready-sets, a worker fetches a task from the
ready set and dispatches it. Communication between and with workers is
accomplished by sending messages to their mailboxes. These concepts are
explained in more detail in the next sections.

4.2.1 Execution of tasks

After initialisation, each worker operates in a loop that performs following
steps:

1. Pick a task eligible for execution (a task that is ready)

2. Switch execution context to the context of the task (the task is dispatched
by the worker)

3. Execution is passed back to the worker (context switch)

4. Output collected profiling (=monitoring) information for that task

5. Fetch and process messages from the mailbox

6. Go to step 1.

Workers execute tasks in a co-operative manner, i.e., a task is not inter-
rupted by its (or another) worker but has to give up execution by itself. It can
do so by either finishing its computation, or by being suspended during calling
a blocking subroutine. The latter puts the task in a blocked state as it waits
on an event triggered by another task, and gives execution back to the worker.
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Figure 4.2: Each worker runs as a pinned kernel-level thread on a separate core
and manages its own set of (user-space) tasks. Mailboxes facilitate communi-
cation among workers.

To be more precise, as in the stream processing network the only means how
tasks can communicate and synchronise upon each other are streams, the only
blocking functions are certain stream operations. For example, if a task calls
StreamRead() to read an item from a stream, the task is suspended if the
stream is empty. Streams are described in detail in Section 4.4.

If in step 1 of the worker loop no tasks are ready for execution, it either
could instantly poll the state of its tasks, or it could suspend itself and rely
on an external notification if a task becomes ready. The latter is clearly the
better choice if one wants to avoid wasting CPU-cycles.

4.2.2 Communication over Mailboxes

To allow notification of workers, either from outside of a worker or among
workers, each worker is equipped with a mailbox, and communication takes
place by message passing. As the workers access the mailboxes of each other
concurrently, with a possibly high contention, special efforts are required to
keep the synchronisation overhead low at this point. Therefore, concurrent
data structures (see Section 2.4) are used.

The mailbox of a worker basically consists of a message queue, in which
messages are enqueued by other workers and dequeued only by the owning
worker. The number of messages a worker can receive is not bounded a-priori,
therefore fixed-size arrays are not desirable. Hence, a variation of the two-lock
queue algorithm of Michael and Scott [MS96] is used.

In the original two-lock algorithm, the queue is implemented as a singly
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linked-list that improves the naive single-lock approach by having separate
locks for the head and tail pointers. This allows an enqueue operation to
execute in parallel with a dequeue operation, and is achieved by always keeping
a “dummy” node in the queue, at the head (cf. Section 2.4.1). Enqueuers have
to synchronise upon the tail-lock, dequeuers upon the head-lock.

In our case, only the queue-owning worker dequeues messages from the
queue, and this multiple-producer single-consumer (MPSC) scenario effectively
makes the head-lock superfluous. Hence, for the dequeue operation, no atomic
operation is involved at all, for the enqueue operation, two pointer assignments
have to be protected by a lock.

Note that because a dummy node is always kept at the head of the queue,
the dequeue operation requires the message to be copied, as the node holding
the received message becomes the new dummy node. The previous dummy
node can be de-allocated.

As mentioned in the previous subsection, a worker thread suspends its ex-
ecution if it has no ready tasks to execute. To facilitate this behaviour, the
mailbox M is equipped with a semaphore M.sem. Before dequeueing a mes-
sage node in the Receive operation, a P(M.sem) (wait) is issued, and after
enqueueing a message node in the Send operation, a V(M.sem) (signal) is
issued. As a result, if the mailbox contains no messages, a receive operation
will lead to the worker thread to be suspended upon a receive operation. In
addition to the send and receive operations, an operation Has-Incoming is
provided. This enables the worker to check if there are incoming messages.
This is required, because in step 5 of the worker loop a worker fetches all in-
coming messages, if there are any, before starting its next loop iteration. Only
if there are no ready tasks in step 1, the worker calls Receive on its mailbox,
which potentially suspends its execution until a new message arrives.

Algorithm 2 displays the pseudo-code for the mailbox operations. Each
message node n has a pointer to the next node n.next , and a message field
n.msg . A mailbox M has, besides the semaphore M.sem, a pointer to the
head M.head and the tail M.tail of the queue, and a tail lock M.tail -lock .

Free-pool of message nodes

To avoid permanent reallocation of memory for list-nodes (=messages), each
mailbox employs a pool of free messages. The procedure for sending and re-
ceiving a message is as follows. Assume, a message is sent from worker A to
worker B. The whole operation involves following steps:

1. A obtains a message node m from the free-pool of B. If the free pool is
empty, allocate a new node for m.

2. A writes the contents of the message to m.

3. A performs an enqueue operation on B’s message queue.

4. B eventually obtains m by a dequeue operation on its message queue.

5. B reads the contents of m for further usage.

6. B puts m back to its own free-pool.
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Algorithm 2 Send, Receive, and Has-Incoming operations of the worker
mailbox.

Send(M,msg)

Place a message msg into mailbox M .

1 node *n = alloc-node() // Allocate a new message node
2 n.msg = msg // Set message field

3 lock(M.tail -lock) // Aquire tail lock
// Critical Section

4 M. tail .next = n // Link node n at the end of the list
5 M. tail = n // Swing tail to node n
6 unlock(M. tail -lock) // Release tail lock

7 V (M.sem) // Signal the semaphore

Receive(M)

Fetch a message from the mailbox M .
The worker will be blocked if there is no message available.

1 P (M.sem) // Wait on the semaphore

2 node *n = M.head // Read head, points to dummy node
3 message msg = n.next .msg // n.next exists,

// message is copied
4 M.head = n.next // Swing head to next node,

// it becomes the new dummy node
5 free-node(n) // Free the old dummy node

6 return msg

Has-Incoming(M)

Test, if the mailbox M has incoming messages.

1 if M.head .next 6= null
2 return true
3 else
4 return false
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Algorithm 3 Push and Pop operations of the lock-free stack of free message
nodes.

Push(S, n)

Push node n onto stack S. S. top points to the
top node of the stack, or is null if the stack is empty.

1 node *tmp
2 repeat
3 tmp = S. top
4 n.next = tmp
5 until CAS(&S. top, tmp, n)

Pop(S)

Pop a node from stack S. S.out-cnt is the out counter
to avoid the ABA problem. Returns null if the stack is empty.

1 node *tmp, int oc
2 repeat
3 tmp = S. top
4 oc = S.out-cnt
5 if tmp == null
6 return null
7 until CAS2( &S. top, tmp, tmp .next ,

&S.out-cnt , oc, oc + 1 )
8 tmp .next = null
9 return tmp

Note that this way message nodes do not change their mailbox. If a worker
picked a free node from its own free-pool, message nodes would migrate from
one worker to another, causing two potential problems. On one hand, if message
flow is unbalanced, i.e., worker A sends messages to worker B more frequently
than vice-versa, A’s free-pool will permanently be empty, causing allocation
of new message nodes. On the other hand, as a number of message nodes is
pre-allocated in the initialisation phase, the nodes are located in proximate
memory locations. This will presumably lead to better performance, when a
worker fetches all incoming messages from its mailbox.

This results in the free-pool of being accessed in a multi-consumer single-
producer (MCSP) way: Only the receiver ever puts the node of the consumed
message back to its own free-pool.

The free-pool is implemented as lock-free stack, like the one first described
by Treiber [Tre86]. It requires a single Compare-and-Swap (CAS) instruction
for the push operation and a single Double-Compare-and-Swap (CAS2) instruc-
tion, as described on page 20 in Section 2.4.2, for the pop operation. CAS2 is
required, as the lock-free stack is subject to the ABA problem. An out counter
is updated along with the pointer upon each successful CAS2 operation, indi-
cating the number of successful pop operations on the stack. Algorithm 3 lists
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the stack operations of the lock-free stack S. The fields S. top and S.out-cnt
are accessed concurrently and subject to change during the stack operations.

4.2.3 Scheduling

One of the major design decisions was to decouple the order in which tasks
become eligible for execution on a worker from the actual order in which they
are dispatched by that worker. In this context, the term scheduling means
choosing a task from the ready set to be dispatched next (step 1 of the worker
loop).

Decoupling the order of execution of tasks from the order induced by their
state transitions to ready makes it possible to perform priority-driven schedul-
ing. For example, shorter tasks could be preferred over computational-intensive
tasks. Or, taking the topology of the stream-processing network into consider-
ation, tasks of a sub-network containing a critical path of an application could
be preferred over tasks not located on that path.

If a stream-operation within a task t causes another task u to become ready,
the owning worker of t acts dependent on the location of u. Let T be the owning
worker of task t and U be the owning worker of task u. Then, following case
distinction is made:

• If T = U , t is put immediately into the ready set of T .

• Otherwise, T sends a task-wake-up message containing u to U . U even-
tually receives this message and puts u in its own ready set.

So, waking up tasks located on other workers is handled by notification
over mailboxes. This way, the set of ready tasks is only accessed by the owning
worker of these tasks, and due to the lack of concurrent access on the ready
sets, mutual exclusion mechanisms and or concurrent data structures are not
required for their implementation.

For the scheduling module, the implementation is hidden mainly behind
two functions:

Put-Ready(T, t)
Worker T puts a task t into its ready set.

t = Fetch-Ready(T )
Worker T fetches a task from its ready set, storing the result in t.

Although a worker may only access its own ready set, it is possible for each
worker to have its own, application-specific scheduling policy.

4.3 Tasks

In this section we first describe the characteristics of an LPEL task, imposed
by the underlying computational model. Afterwards, we describe how they are
actually designed in the LPEL.
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4.3.1 Stateful vs. stateless

As outlined in Section 2.1.2, for Synchronous Dataflow networks (SDF) the
consumption and production rates of each process are known a-priori. Hence,
also the demands of input data as well as the resource demands of the outbound
communication channels are known a-priori, which makes static scheduling
possible, such that processes can successfully complete their computation upon
each firing. In the more general model of Kahn Process Networks (KPN),
the consumption/production rates are not known a-priori. Due to the use of
bounded communication channels, it is possible that a process cannot complete
its computation as a write to a full buffer at an outgoing channel fails. This
requires the current state of the process to be saved, such that it can be resumed
if the outgoing channel has available space again.

As the LPEL is designed with the requirements of the S-Net runtime sys-
tem in mind, we must consider how S-Net boxes are handled in the runtime
system and what that means in the perspective of a S-Net user, i.e., box
implementor.

Most important of all is the fact that S-Net boxes are stateless. They are
not allowed to have any permanent internal state, which allows for constructs
like serial replication. From an S-Net users perspective, a box is executed
(fired) each time a record is available on its input stream (remember, boxes
are also SISO). The user has no notion of the streams between the boxes to be
bounded, as a consequence the suspending of a box is completely transparent
to the user.

Another relevant aspect of the S-Net model is that the box is not restricted
on how many records it is allowed to emit upon each firing. The box could
act as an emitter, e.g., triggered by a single input record, it could instantly
produce output records in a possibly endless loop. Operationally, the box is
a stream transformer function T . It maps each single record from its input
stream to a possibly empty stream of records on the output stream:

T : a 7→ b1, b2, b3, . . . , bn

where n is an input-data dependent function n(a).
The S-Net runtime system implements box handling as a simple function

call to the user-written box function, performed within a box-entity. The inter-
nals of the box function are not accessible from within the box-entity, in fact it
can be pre-compiled, only a reference to the box function must be supplied to
the box-entity. The box-entity executes a loop in which it reads records from
the input stream, and calls the box function each time the input record contains
data for the box (there also exist records that are only used within the runtime
system and therefore are invisible to the user, e.g., which are responsible for
handling of deterministic S-Net combinators, synchronisation in synchro-cells
and proper termination, cf. Section 3.2). The box-entity passes an additional
parameter to the box function, constituting of a (from the user’s perspective)
opaque handle. Within the box, this handle is passed to the SNetOut() func-
tion, which is provided by the runtime system and used for writing records to
the outgoing stream. It is not needed to be specified where to write the record,
as each box has only a single output stream. The handle contains, besides
S-Net specific type information of the box, a pointer to the outgoing stream.
The SNetOut() function uses this information to properly write the record to
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the outgoing stream. As this write operation could encounter a full buffer, the
whole box-entity must be suspended.

It is important to emphasise the fact that while the box function itself must
not contain any state, the box-entity does require a state in the form of an
execution stack, due to the possibility of being suspended during the execution
of its box function.

Currently, all the entities of the multi-threaded S-Net runtime system are
mapped to a separate (kernel-space) thread, but we want to map these enti-
ties to (user-space) LPEL tasks. Of course, one could argue that the necessary
state saving upon a stream operation encountering a full or empty buffer within
runtime system entities could be performed by the runtime-system explicitly,
removing the need of an execution stack. Dispatching an entity would result
in a plain function call, passing the previously stored state as additional pa-
rameter. In fact, apart from the box-entity, every other entity of the S-Net
runtime system could be rewritten to express this behaviour. But for the box
entity, the execution stack of the box must be saved in any case.

One could make the distinction of tasks with and without a separate exe-
cution stack, but this would require a far more difficult task wake-up handling,
and for the sake of simplicity, we decided to save the execution stack for every
LPEL task.

To summarise, LPEL tasks necessarily do have a state, in the form of an
execution stack, hence comprising a user-space thread.

4.3.2 Task Control Block (TCB)

Like operating-system processes, which are managed with a data structure
called process control block (PCB), also LPEL tasks are managed with a similar
data structure, the task control block (TCB). The TCB of an LPEL task
contains the following information:

TID Newly created tasks get assigned a unique task identifier (TID) in as-
cending order.

STATE State of the task. Can be one of created, running, ready, blocked
or zombie.

PTR Pointers for linking tasks together in a list.

WCTX Reference to the worker context of the worker the task is currently
assigned to.

SYNC Data needed for synchronisation of the task with other tasks, currently
only needed for polling stream sets (cf. 4.4.5).

SCHED Task-specific scheduler data, whose actual contents are dependent
on the scheduling module.

FLAGS Flags specifying which information to collect for accounting during
execution.

ACCNT Accounting information: start/stop timestamps of last dispatch, a
dispatch counter, and a list of “dirty” streams, i.e., streams on which a
stream operation was performed.
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Figure 4.3: Life-cycle of an LPEL task.

STACK The hardware context and execution stack.

4.3.3 Life-cycle of a Task

The life-cycle of a task is depicted in Figure 4.3. Initially, a task request
message is sent to a specified worker, containing the task function, stack size
of the execution stack and flags. Upon receiving a task request, the worker
creates the task control block, assigning a unique task identifier (TID), setting
the STATE to created, storing a reference to its worker context (WCTX),
and initialising the other remaining structure. After this initialisation phase,
its state is set to ready and the task is put into the ready set of the worker.

A ready task is eventually dispatched by the worker, putting it into the
running state. As mentioned before, tasks are dispatched cooperatively, i.e.,
they are not preempted in their execution, but have to give up execution vol-
untarily. There are three possibilities for a function to call from within a task
to give up execution:

exit()
The task has finished its computation. State changes to zombie.

yield()
The task interrupts its execution for no particular reason, just to avoid
monopolising the worker. State changes to ready.

block()
The task has to wait for an event before it can resume its computation.
This function usually is called from within a blocking stream operation.
State changes to blocked.

The transitions from and to the running state involve a task context
switch. Upon dispatching a task the context is switched from the worker to
the task, and the task resumes its execution after the last instruction of its
previous dispatch. If a task gives up execution, the context of the worker is
restored to the point where it has dispatched the task. Then the worker de-
cides what to do with the returned task, depending on its state upon return.
If the task’s state is zombie, the TCB of the task is destroyed. But instead of
freeing the memory, the TCB structure is stored in a local list such that it can
be reused upon arrival of a new task request. If the state is ready, the task
is put in the worker’s ready set immediately. Nothing is done if the state is
blocked: events that cause a task to become ready again will place the task
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Function call Description State changes to Reaction of worker

exit() The task has finished zombie Destroy TCB
its computation

yield() The task interrupts to ready Put into ready-set
avoid monopolising the
worker

block() The task has to wait blocked Do nothing
for an event

Table 4.1: A task gives back execution to the worker by calling a blocking
function. The worker reacts depending on the state of the returning task.

into the ready set or send a task-wakeup message, dependent on the location
of the task (see Section 4.2.3).

The transitions back from the running state are summarised in Table 4.1.

4.3.4 Monitoring of Tasks

For monitoring purposes, the TCB contains an ACCNT structure.
Upon each dispatch of a task, a dispatch counter d is incremented and

stored in the ACCNT structure. Also, a timestamp tstart,d is captured before
the switch to the task’s context, and a timestamp tstop,d after the switch back
to the worker’s context.

Additionally, during the execution of the task, information about activity
on streams is collected, which is described in detail in Section 4.4.4. The
worker outputs (if desired) the monitored information for that task after each
dispatch d.

From the execution times at each dispatch d, already some basic measures
can be obtained. The difference Td = tstop,d − tstart,d gives the execution time
of that dispatch d. From this information the total execution time is simply
derived as

Ttotal =

dmax∑
d=1

Td,

and the average execution time of a task is derived as

Tavg =
Ttotal

dmax
.

The ACCNT structure also contains a timestamp of the task creation, tcreat,
which enables to calculate the task’s alive time

Talive = tstop,dmax
− tcreat,

and based on this the idle time

Tidle = Talive − Ttotal.
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Figure 4.4: Tasks communicate over uni-directional single-producer single-
consumer streams, implemented as bounded buffers.

Figure 4.5: Tasks communicating over a stream, being dispatched in parallel.

4.4 Streams

One of the most important components of the LPEL are the uni-directional
communication channels between the tasks, the realisations of streams. They
provide the only means of communication between tasks, and stream operations
encapsulate the necessary synchronisation mechanisms to block tasks and make
them ready again. Thus, as a stream basically is designed as bounded first-in
first-out (FIFO) buffer (Figure 4.4), a task t trying to write to a full stream or
to read from an empty stream needs to be blocked. A task u reading from the
full stream or writing to the empty stream will put the previously unsuccessful
task t in ready state again (i.e., u wakes t up).

It must be pointed out that the problem of synchronising tasks upon the
stream operations lies in user-space, i.e., tasks are suspended, whereas the
worker continues running its main loop and will pick another ready task for
execution. Still, two tasks communicating over a stream can execute the write
and read operations truly in parallel, by being located on different workers on
different cores and being dispatched at the same time, as shown in Figure 4.5.
This must be kept in mind for the design and verification of the synchronisation
mechanisms devised.

As explained in Section 2.2, the S-Net model allows for non-deterministic
behaviour at merge points, which subsequently requires the runtime system to
be able to test the availability of data in streams at collector-entities. This is
done by providing a Peek operation besides the Read and Write operations
on streams. As we will see, also a Poll operation is required, to allow a task
to wake up if any of a given set of streams has data available that can be read.

In the next subsections we gradually refine the synchronisation mechanisms
provided by streams, starting with the currently employed solution in the multi-
threaded S-Net runtime system, which is suitable for multiple producers and
multiple consumers.

Then we will consider the underlying buffer for the stream data and see that
we can access the items without using mutual exclusion given there exists only
a single consumer and a single producer. Afterwards, we derive the mechanism
to suspend and re-activate tasks blocked on streams, again exploiting the fact
that we only have a single producer and a single consumer.
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Algorithm 4 Monitor-based solution for the producer-consumer problem.

Initially, B.count = B.nextin = B.nextout = 0

Write(B, x)

Write an item x into the buffer of monitor B.

1 lock(B.door) // Enter monitor B
2 if B.count == size // Buffer is full, avoid overflow
3 cond-wait(B.notfull , B.door)
4 B.buf [B.nextin] = x // Place the item in the buffer
5 B.nextin = B.nextin + 1 mod size
6 B.count = B.count + 1
7 cond-signal(B.notempty) // Resume any waiting consumer
8 unlock(B.door) // Exit monitor B

Read(B)

Read an item x from the buffer of monitor B.

1 lock(B.door) // Enter monitor B
2 if B.count == 0 // Buffer is empty, avoid underflow
3 cond-wait(B.notempty , B.door)
4 item x = B.buf [B.nextout ]) // Retrieve the item from the buffer
5 B.nextout = B.nextout + 1 mod size
6 B.count = B.count − 1
7 cond-signal(B.notfull) // Resume any waiting producer
8 unlock(B.door) // Exit monitor B

4.4.1 Monitor-based solution

The (bounded buffer) producer-consumer problem is a well-known and studied
multi-process synchronisation problem. In the multi-threaded S-Net runtime
system (cf. Section 3.2), the problem of synchronisation between the (kernel-
space) threads is solved with the concept of monitors, i.e., by the usage of
condition variables and mutexes, which the PThread API provides.

Algorithm 4 depicts the monitor-based solution for the producer-consumer
problem. Entering and leaving the buffer-monitor B is explicitly done by ac-
quiring and releasing a lock B.door in the stream operations Read and Write.
The condition variables B.notempty and B.notfull are used for suspending and
signalling producers and consumers. Upon waiting on a condition, the lock
B.door is released, and re-acquired automatically when the thread is resumed.
The counter B.count keeps track of the number of elements contained in the
actual buffer B.buf , which has a capacity of size items. The counters B.nextin
and B.nextout point to the position in the buffer B.buf where the nested item
is stored to or loaded from, and they are incremented each time modulo the
buffer size.

The solution works for multiple producers and multiple consumers. But,
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Algorithm 5 Lamport’s lock-free circular buffer implementation.

Enqueue(item)

Enqueues item in the buffer and returns true, if there is
space left in the buffer. Otherwise, false is returned.

1 if head + 1 mod size == tail
2 return false

3 buffer [head ] = item
4 head = head + 1 mod size
5 return true

Dequeue(item)

If the buffer contains items, the procedure dequeues one, stores it in
item and returns true. Otherwise, false is returned.

1 if head == tail
2 return false

3 item = buffer [tail ]
4 tail = tail + 1 mod size
5 return true

as a stream conceptually is uni-directional and connects exactly two tasks, a
specific solution for the single producer and single consumer case is sufficient.

In order to develop refined synchronisation mechanisms, a close look on the
underlying data structure, the circular bounded buffer, is taken.

4.4.2 Single-Producer Single-Consumer FIFOs

In the situation of a single producer and a single consumer, Algorithm 4, im-
poses following restriction: Even when the consumer is reading an earlier en-
queued element, the producer cannot enqueue an element into a different buffer
slot. Due to the monitor-lock, only one of them could access the buffer at the
same time.

Lamport’s Concurrent Lock-free Queue

Lamport [Lam83] proved that, under sequential consistency, a circular buffer
can be implemented without locks in the single-producer single-consumer case,
as depicted in Algorithm 5. Items are enqueued at the head and dequeued at
the tail. To distinguish the buffer empty from the buffer full case, one buffer
slot always remains free. Note that the resulting queue is even wait-free: The
producer/consumer cannot prohibit the other from progress.

Sequential consistency requires, that a consumer sees the operations for
writing to the buffer and updating the head in the same order as executed by
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Algorithm 6 The FastForward circular buffer implementation.

Enqueue(item)

1 if buffer [head ] 6= ⊥
2 return false

3 // Write-Memory-Barrier here, on weak consistency models,
// if references to external data are transferred

4 buffer [head ] = item
5 head = head + 1 mod size
6 return true

Dequeue(item)

1 item = buffer [tail ]
2 if item == ⊥
3 return false

4 buffer [tail ] = ⊥
5 tail = tail + 1 mod size
6 return true

the producer. Otherwise, it could happen that a consumer reads stale and thus
invalid data from a buffer location. The dual case is similar, possibly resulting
in an overwritten, yet not consumed item.

The next subsection describes a buffer implementation that avoids this
problem. We will use that data structure for the buffers in the LPEL streams.

FastForward Queue

While there is no explicit synchronisation between the producer and the con-
sumer at the algorithmic level, there still exists an implicit synchronisation
between them at the memory layer as the control data (i.e., head and tail) is
still shared. Thus, on modern cache-coherent systems, the queue still results
in cache-line thrashing across caches. Furthermore, to support weaker mem-
ory consistency models, potentially expensive memory barriers are required to
ensure correct ordering between the data writes (buffer) and the control writes
(head/tail).

The FastForward queue [GMV08] eliminates this separation of control and
data by tightly coupling control and data into a single operation. This is
done by employing a known value ⊥ for an empty buffer slot, in order to
use the buffer itself to indicate full and empty conditions. Thus, the head
and tail are not shared and can remain cache resident (provided that they are
located in separate cache-lines). Also, all buffer slots can be occupied by items.
Algorithm 6 depicts the FastForward implementation.

Note that the FastForward queue assumes that every item can be trans-
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ferred in a single write operation. This is no limitation, as for large items
a pointer to an external memory location can be transferred. In the S-Net
runtime system, only references to the records are transmitted through the
buffer anyway. In this case, as ⊥ element, the null-pointer suffices. But pass-
ing references requires a write-memory-barrier for architectures with a weak
memory consistency model, where stores to memory are not necessarily seen in
program order at remote processors. Without a barrier, it could happen that
the write of the reference to the data to the queue buffer is visible to the con-
sumer before the update of the actual data, effectively causing the consumer to
read stale data. Memory barriers are an unavoidable cost for weak consistency
models and must be paid with any communication mechanism, whether based
on lock-free or locking data structures.

For the LPEL, the choice of FastForward as the underlying implementation
for stream buffers also makes the implementation of the operation for testing
the availability of new data at the consumer side very convenient: Simply
return buffer [tail ]. If the buffer is empty, null is returned, which might be
expected for references as items.

4.4.3 Writing and Reading to and from a Stream

Having presented a buffer data structure that allows for concurrent access of
a single consumer and a single producer without explicit synchronisation, the
problem of putting it into a context where tasks are blocked and waken up
upon the transitions to and from empty/full buffers still remains open.

For the producer-consumer problem, a solution based on semaphores exists
that is simple and perfectly fits the problem. Algorithm 7 lists this solution,
already in the context of a stream S, by assuming a single producer and a
single consumer, and that enqueue and dequeue are operations of a FastFor-
ward queue. Semaphore S.e keeps track of the number of empty slots, and
semaphore S.n keeps track of the number of occupied slots.

As in the LPEL stream operations are called from within a task and tasks
are going to be managed by workers, the semaphores used in this algorithm
differ from those used in Algorithm 2 on page 33: They do not suspend the
worker (kernel-space) thread, but only block the (user-space) task. Hence, the
semaphore primitives provided by the operating system cannot be used, but
own primitives have to be developed.

Semaphores usually consist of a counter variable and a queue. A P() (i.e.,
wait) operation decrements the counter, and, if it falls below zero, blocks the
calling process and puts it on the semaphore’s queue. A V() (i.e., signal)
operation increments the counter, and if it still is less than or equal to zero,
then a process is removed from the queue and unblocked. The operations
of a semaphore must be atomic and protected from concurrent access. In a
multi-threaded environment this is achieved by employing spinlocks.

Assigned consumer and producer. We want to further exploit the fact
that there is only a single producer and a single consumer assigned to a stream
S, such that there are exactly two tasks that operate on s. Assume task p is
the producer and task c the consumer of S, and S contains a reference on each
of them, S.prod and S.cons. Then, only p will ever block on S.e and only c will
ever block on S.n. As a result, the queue of the semaphore becomes superfluous
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Algorithm 7 Semaphore-based solution for the (bounded buffer) producer-
consumer problem.

Initially:
semaphore S.e = size
semaphore S.n = 0

Write(S, x)

Write an item x to the stream S.

1 P(S.e) // Wait if number of empty slots ≤ 0
2 enqueue(S.buf , x)
3 V(S.n) // Signal occupied slot

Read(B)

Read an item x from the stream S.

1 P(S.n) // Wait if number of occupied slots ≤ 0
2 dequeue(S.buf , x)
3 V(S.e) // Signal empty slot
4 return x

and the semaphore operations can be reduced to atomic fetch-and-increment
and fetch-and-decrement operations of the counter variable. Algorithm 8 shows
this realisation of the Read and Write operations on a stream. The wake-up
function will, dependent on the location of the task in the argument, either put
that task in the ready set of the currently executing worker directly or notify
its owning worker, as explained in Section 4.2.3.

Wake-up before block. Reducing the semaphore operations to atomic coun-
ter manipulation can lead to following interesting situation. Assume a producer
p encounters a full buffer by fetching and decrementing S.e in line 1 of the
Write operation, reading 0. Before p reaches line 2 where it blocks, i.e., it
returns execution back to the scheduler, a consumer c fetches and increments
S.e in line 4 of the Read operation on the same stream S, reading −1. A value
of −1 indicates that the producer has to be unblocked (wake-up), hence the c
executes line 5 of Read, even before p blocked on line 2 of Write. This situ-
ation would be a problem, if p is executed on a worker before it reached line 2,
but this is avoided, due to the fact that tasks are not preempted. Referring to
Section 4.2.3, if p and c are located on the same worker, p is put into the ready
set. The worker does not fetch p from the ready set until p blocks and returns
execution to the worker. If p and c are located on different workers, the owner
of p is notified by a message in its mailbox. As fetching messages happens be-
tween the execution of tasks, the worker eventually receives the message only
after p has blocked.

Although the use of atomic variables might not exploit all the good cache-
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Algorithm 8 Realization of the stream operations with atomic fetch-and-
increment and fetch-and-decrement operations.

Initially:
semaphore S.e = size
semaphore S.n = 0

Write(S, x)

Write an item x to the stream S.

1 if fetch-and-dec(S.e) == 0
// block currently executing task, i.e., the producer

2 block()

// Enqueue item x in the buffer
3 enqueue(S.buf , x)

4 if fetch-and-inc(S.n) == −1
// consumer is blocked: wake up

5 wake-up(S.cons)

Read(B)

Read an item x from the stream S.

1 if fetch-and-dec(S.n) == 0
// block currently executing task, i.e., the consumer

2 block()

// Dequeue an item from the buffer and store in x
3 dequeue(S.buf , x)

4 if fetch-and-inc(S.e) == −1
// producer is blocked: wake up

5 wake-up(S.prod)
6 return x
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Figure 4.6: Two tasks connected by a stream.

preserving properties of the FastForward queue (atomic variables have to be
shared among threads), it still presents a wait-free solution.

Besides Write and Read, an operation Peek on a stream is provided for
the consumer task. It does neither block the task, nor consume an item from
the stream. It allows to check for available data by returning the next item in
the stream without removing it from the stream, and returns NULL if there
is no item available.

4.4.4 Stream Organisation and Monitoring of Stream
Activity

In order to be able to use a stream, a task has to open it beforehand. A stream
can be opened either for read or for write access, and the Open operation
returns a stream descriptor which needs to be used for successive operations
accessing the stream. After the task has finished using the stream, it has to
close it with the stream descriptor, which becomes invalid then.

Figure 4.6 depicts two tasks A and B connected by a stream. A stream
descriptor is private to each task, i.e., tasks communicating over a stream have
distinct stream descriptors for accessing the stream. It contains, besides a
reference to the accessed stream and the access mode, accounting information
for the task’s usage of that stream. This information includes the number of
items a task has read/written from/to that stream, its state (opened, inuse,
closed or replaced), and flags for indicating if the task has been waken up
by the task on the other end of that stream or if it is blocked on it.

The accounting information is collected for a single dispatch of a task,
and output by the worker after the dispatch. For this purpose, each stream
descriptor sd contains a sd .dirty field. If this field is null then there was no
activity on the stream on behalf of the task, otherwise the sd .dirty field is used
to chain together all stream descriptors that were used for stream operations
during the dispatch in a list. A pointer in the ACCNT field of the TCB points
to the head of the “dirty-list”, which is initially a constant representing the
end of the list, e.g. ⊥.

Let dirty-head denote the head of the dirty-list. Upon a stream operation,
the dirty field sd .dirty of a stream descriptor sd is examined:

• If sd .dirty 6= null, sd is already on the dirty list and nothing needs to
be done.
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Figure 4.7: A collector polls a set of streams. If all streams are empty, the
collector blocks. If an item is written to any of the streams by a producer, the
collector is woken up again.

• Otherwise, the value of dirty-head is stored in sd .dirty and dirty-head is
set to sd .

Upon return from a dispatch of a task, its dirty list is traversed. After the
monitored information of each dirty stream descriptor sd has been outputted,
its state is updated and the flags are cleared. The sd .dirty field is reset to
null, and finally the head pointer in ACCNT of the task’s TCB is reset to ⊥.

Stream Sets. A stream descriptor sd also contains a sd .next field, for the
organisation of stream descriptors in disjoint sets within the task code. There-
fore, functions for adding and removing a stream descriptor to and from a
stream set, as well as for iterating through the members of a stream set, are
provided. This makes it, for example, easy to broadcast data to all streams in a
streams set by using the iterator. But, apart from convenience aspects for the
task programmer, stream sets are needed to implement the Poll operation.

4.4.5 Polling a set of streams

The collector-entities of the S-Net runtime system implementation, which
comprise the merge points of an S-Net, require the functionality of testing
input streams for new data. A collector has to observe a set of streams for the
availability of items on any of them, and if a new item arrives upon an empty
stream, it has to react accordingly (Figure 4.7). In the following discussion,
we refer to the collector task also as consumer, as for each of the streams’
perspective it is on the consuming side.

Instantly iterating through the set of streams, performing a Peek operation
on each stream is no viable solution, as it results in busy-waiting and even
deadlock. A task also could yield its execution after each iteration, but, as of
remaining in ready state, would be dispatched by the worker regardless of the
availability of new data. The result would be computational and organisational
overhead: the task unsuccessfully iterates over the stream set, while the worker
keeps busy dispatching the collector task despite of its lack of progress.

Therefore, an operation is required which puts the polling task in blocked
state if every stream of the set is empty, such that it is unblocked again by the
first producer of a stream contained in the set writing a new item to the stream.
With respect to this behaviour, the term “polling” might be misleading. But



4.4. STREAMS 49

from the task’s perspective, the term fits well as the Poll operation accepts
a set of stream descriptors as parameter and returns a stream descriptor from
this set which refers to the stream with items available, without any notion of
the underlying synchronisation mechanisms.

The Poll operation is implemented by employing three additional shared
variables:

Poll-Flag
A shared flag is located each stream S shared between a producer and
the polling consumer cons, which is referred to as S. is-poll . As the name
suggests, it is used to indicate the producer that the stream is currently
polled, and that it might have to wake up the consumer.

Poll-Token
The second shared variable is a flag located in the SYNC field of the
consumer’s TCB, shared by the consumer and all producers, which is
referred to as cons .poll -token in the following explanations.

Wakeup-SD
The third shared variable is also located in the SYNC field, used for
indicating the consumer which stream descriptor points to the stream
with available items. It will be referred to as cons .wakeup-sd .

The idea of the Poll operation is as follows. If the consumer is blocked,
multiple producers have to compete for unblocking the consumer. In the TCB
of the consumer, there exists a single poll-token. Only the first producer which
can grab the poll-token will unblock the consumer.

Algorithm. Upon a poll operation, the consumer places the single poll-token
in its TCB. Then it iterates through all of the streams in the stream-set to check
whether there is data available or not. In each iteration (a single stream of the
set is considered), following case distinction is made:

• If there is no data available in the stream, the consumer sets the is-poll
flag in the stream which causes the producer to try to grab the poll-token
the next time it writes data to the stream, and the consumer proceeds to
the next stream. We say, the producer is flagged.

• If there is data available, the consumer tries to grab the poll-token itself.

– If it succeeds, then no flagged producer has unblocked the consumer
yet in the meantime, and the consumer does not need to block at
all. It can exit iterating through the streams of the stream-set im-
mediately and return from the Poll operation.

– If the poll-token was already grabbed, the consumer will exit iterat-
ing through the stream set but has to block afterwards, as a producer
registered in one of the previous iterations successfully grabbed the
poll-token.

• The operation returns the stream descriptor pointing to the stream with
newly available data, which was either set by the consumer itself or by
the producer that unblocked the consumer.
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Algorithm 9 lists the pseudo-code for the Poll operation. Note that for this
operation, the same that was explained regarding wake-up before blocking for
the read and write operations holds true: A producer can wake-up a consumer
before it has blocked in the Poll operation. But this is not harmful as the
worker will notice that the consumer is ready again only after the consumer
has returned from execution (cf. page 45).

Adapting the Write operation to support polling. To enable polling,
also the Write operation of a stream has to be modified accordingly. There-
fore, each time before a producer writes an item to a stream S, it has to check
if the stream is currently polled by a consumer, i.e., if the flag S. is-poll is set
(the producer is flagged). If the flag is set, the producer clears it and tries to
grab the poll-token. Following invariant holds within the Poll operation: If
S. is-poll is set, then the atomic counter variable for the full slots S.n ≥ 0.
Informally, a consumer that polls a stream, cannot be blocked in a Read op-
eration. Hence, if a producer unblocks a consumer, it either does so by reading
−1 in S.n, or by successfully grabbing the poll-token.
Algorithm 10 shows the pseudo-code of the modified Write operation.

Until now, we have ignored the fact that checking if the stream is empty and
setting the is-poll flag at the consumer side, resp. writing to the stream and
checking the is-poll flag at the producer side, have to be performed atomically
to avoid a race condition. For this purpose, a lock is associated with the
stream that has to be acquired within the Poll and the Write operations.
But as only at most two tasks compete for the lock within these operations,
i.e., a producer writing to that stream and a consumer polling that stream,
the overhead caused by this lock is expected to be low. Note that the more
frequent Write and Read operations on the same stream are not serialised
by that lock.
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Algorithm 9 Pseudo-code for polling a set of streams.

Poll(S)

Poll a set S of stream descriptors. The calling task is cons.
Returns a stream descriptor sd ∈ S, whose stream is containing
at least one item.

1 local do-block = true
2 cons .poll -token = true // Place the single poll token
3 foreach sd ∈ S
4 stream S = sd .stream

lock(S. lock)
5 if Peek(S) 6= null // Check availability of data

// Try to grab the poll token
6 token = atomic-swap(cons .poll -token, false)
7 if token == true

// Got it, no need to block
8 do-block = false
9 cons .wakeup-sd = sd

10 unlock(S. lock)
11 break // Exit the loop

else
// Register stream as being polled

12 S. is-poll = true
13 unlock(S. lock)

14 if do-block == true
15 block()

16 return cons .wakeup-sd
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Algorithm 10 Modified Write operation to support polling of stream sets.

Write(sd , x)

Write an item x to the stream pointed to by the stream descriptor sd .

1 local poll -wakeup = false
2 stream S = sd .stream
3 if fetch-and-dec(S.e) == 0

// block currently executing task, i.e., the producer
4 block()

5 lock(S. lock)
// Enqueue item x in the buffer

6 enqueue(S.buf , x)
7 if S. is-poll == true
8 poll -wakeup = atomic-swap(S.cons.poll -token, false)
9 S. is-poll = false

10 unlock(S. lock)

11 if fetch-and-inc(S.n) == −1
// consumer is blocked: wake up

12 wake-up(S.cons)
13 elseif poll -wakeup == true
14 update(S.cons.wakeup-sd)
15 wake-up(S.cons)



Chapter 5

Implementation

As a proof of concept of the LPEL design, an implementation is provided. This
chapter gives an overview and some details about it.

The LPEL has been implemented as a standalone library, in the (ISO-) C
programming language and targeted towards POSIX operating systems. As a
first prototype, the Linux operating system was targeted. The LPEL library
contains about 4000 lines of documented code. Library functions are provided
for initialisation, where, for example, the number of workers can be specified,
for the creation and assignment of tasks, and for the use and organisation of
streams within tasks.

For atomic memory operations, the LPEL facilitates the atomic built-ins
of the GNU C Compiler (GCC, [GFSF11]). If GCC is not available, and
for Double Compare-and-Swap (CAS2), inline assembly is provided for the
Intel x86 and x86-64 instruction set architecture (ISA).

The multi-threaded S-Net runtime system has been ported to the LPEL,
to provide a platform available for experiments.

5.1 Kernel-level Threads

The POSIX Threads (PThreads) API is used to create operating system threads
as LPEL workers. Either by using PThreads API extensions or by the means
of operating system calls, these kernel-space threads are pinned to the avail-
able cores, such that each core is assigned a kernel-space thread with a worker
executing on it. These functions are:

int pthread_setaffinity_np( pthread_t thread, size_t cpusetsize,

const cpu_set_t *cpuset);

This PThreads extension accepts the thread handle as first argument, which
is obtained upon thread creation. The cpuset argument is a bitmask which
specifies on which cores the thread is allowed to be scheduled by the operating
system. The i-th bit correspondents with the CPU with id i. For worker
threads, only one bit is set in the bitmask, as a worker is allowed only to run
on a single CPU.

int sched_setaffinity( pid_t pid, size_t cpusetsize,

cpu_set_t *mask);

53
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This is the Linux operating system call for providing the same functionality.
Instead of the thread handle, the Linux process identifier is required as first
argument. Each Linux thread has such an identifier, although often referred
as thread identifier (tid).

For synchronisation of kernel-level threads, mechanisms provided by the
operating system through the POSIX API are facilitated. These are:

Spinlocks which cause a thread to spin in a busy-wait loop if it cannot acquire
the lock. They are used to protect the short critical sections of the tail-
lock in the worker mailbox, and the lock in streams used for supporting
the polling operation. Currently, the spinlock provided by the PThreads
Realtime Extension is employed. Alternatively, usual PThread mutexes
can be used, but care must be taken as they deschedule the thread if the
lock cannot be acquired, causing additional context-switching overhead.

Semaphores for worker mailboxes, used to keep track of the number of mes-
sages in the mailbox and making it possible for a worker to block waiting
for new messages.

5.2 Atomic Operations

The LPEL facilitates atomic operations, i.e., operations for atomic memory
access, for its synchronisation mechanisms. Since version 4.1.2, GCC provides
built-in operations for atomic memory access that are compatible to Intel’s
ICC built-in atomic operations [GFSF11]. These are built-in functions of the
compiler that are translated to atomic instructions of the target architecture
during compilation. If GCC built-ins cannot be used, because, e.g., a different
compiler that does not support them is used, inline assembly containing the in-
structions for the x86 and the x86-64 instruction set architecture is facilitated.
Most instructions require a special instruction called “lock prefix” before the
actual instruction, to ensure that the operation is performed atomically. Ta-
ble 5.1 lists the atomic operations which are required by the LPEL, how they
are used, and how they are implemented by a GCC atomic built-in function
and the x86(-64) instruction set architecture.

A special case is the compare-and-swap-2 (CAS2) function, which has no
GCC built-in implementation. Here the CMPXCHG8B on architectures with
32 bit pointer width and CMPXCHG16B on architectures with 64 bit pointer
width is employed. Rather than operating on distinct memory locations, these
instructions operate on adjacent memory locations. This requires that for the
free node stack of the mailbox, the top pointer and the out counter are stored
in adjacent memory locations (cf. Section 4.2.2).

For other architectures than x86( 64), a fallback solution exists that emu-
lates atomic operations by employing a PThread mutex for each atomic vari-
able. Of course, it is desirable to provide inline assembly for the architectures
that are targeted in the future.
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5.3 User-space Context Switch

Context switching in user-space is achieved with the GNU Portable Coroutine
Library (PCL), [Lib11]. It can be downloaded from http://www.xmailserver.

org/libpcl.html (v1.12, accessed Jan 2011). It provides basic low-level mech-
anisms for context-switching and has functionality to be used in a multi-
threaded (PThreads) environment. PCL is easily portable on almost every
Unix system and on Windows. Mainly four functions are used from the li-
brary:

co create for creating a new context upon creation of a task,

co current for retrieving the context of a worker at initialisation of the worker,

co call for performing an actual context switch, and

co delete for destroying a context, after a task exited.

5.4 Porting S-Net to LPEL

Porting S-Net to LPEL required adding LPEL initialisation to the startup
process. This includes specification of the number of workers and their creation.
Each entity was modified to make use of the LPEL streams, i.e., first opening
a stream and retrieving a stream descriptor before writing and reading to and
from a stream.

5.4.1 Handling of Blocking System Calls

One question which arose was how to handle blocking system calls. This is
especially important for the global input and global output stream of a network.
As the kernel-level threads for reading and writing to these top-level streams
facilitate blocking system calls, e.g., reading from stdin and writing to stdout,
creating task for them and putting them on an ordinary worker could block
the whole worker and prevent it from dispatching its tasks (see Section 2.3).

Our solution was not using asynchronous system calls, but putting these
tasks onto separate “wrappers” that provide a proper worker context, but are
not pinned to a particular core and where each wrapper only executes a single
task. Wrappers either run on one or more processor cores dedicated only to
wrappers, i.e., some cores are reserved for executing wrapper threads instead of
workers, or are distributed among the cores that are executing worker threads.
Latter option is beneficial when only a small number of cores is available and
one does not want to spare cores solely for wrapper threads. In either case,
creating tasks for threads containing blocking system calls is necessary because
streams can only be used in the context of a task.

The same technique was used for being compatible to the Distributed S-
Net extension. Distributed S-Net builds on top of MPI [For94], which is a
message passing interface for communication within a cluster of workstations.
The Distributed S-Net extension employs synchronous message passing, i.e.,
send and receive operations block until the communication partner has received
the message (send) or the message has not arrived yet (receive).

http://www.xmailserver.org/libpcl.html
http://www.xmailserver.org/libpcl.html
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In Distributed S-Net different parts of the streaming network can be lo-
cated at different workstations. Streams between subnetworks are split con-
ceptually in two endpoints such that at the producer location a kernel-level
thread is employed that constantly reads records from the stream and sends
it with an MPI send function. At the consumer site a kernel-level thread con-
stantly receives records with an MPI receive function and forwards it into the
sub-network located on that site. Like with global input and output streams,
these threads are replaced by tasks that are put on a wrapper kernel-level
thread each. Generally, each additional thread is transformed to a task that is
executed on a wrapper.

5.4.2 Placement and Scheduling

Placement and scheduling are separate modules which have to be developed
according to yet to be defined requirements, which is out of the scope of this
thesis. In the prototype implementation, very plain and simple placement and
scheduling strategies are employed.

Assignment. The assignment module performs a static assignment of tasks
to workers. For S-Net, a simple abstraction is used: box-tasks (tasks which
are an instance of a box-entity) are assumed to be computationally intensive,
whereas all other tasks (split/merge-points, synchrocells and filters) are as-
sumed to have almost no computational cost. Hence, boxes are distributed
among workers in a round-robin fashion. All other tasks are placed onto the
worker to which the next box task will be assigned to. The assignment module
produces a file where it outputs the mapping from task-ids to box names or
entity types. This information is useful for the interpretation of the monitoring
logs.

Scheduling. The scheduling module is implemented in a similar, plain way:
workers dispatch their tasks in FIFO order. A call to PutReady puts a task
at the end of a single task-queue, a call to FetchReady returns a task from
its front.

5.4.3 Monitoring

Monitoring can be configured regarding the amount of monitored information.
In the prototype implementation, there are several monitoring levels:

a. Only output information for box-tasks, and only their execution time.

b. Only output information for box-tasks, both execution time and stream
activity.

c. Output information for all tasks, both execution time and stream activity.

d. Like c, but additionally output debug information of the workers, mostly
wait-count and wait-time, i.e., how often and for how long they were
waiting on a new message.
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For each worker, a separate monitoring log file is produced. A log file con-
tains log records, each log record is on a separate line. A log record contains all
information related to a single task dispatch. Following example shall describe
the contents of a log record (the line is wrapped only in this document):

248954687985216 tid 191 disp 3 st Z et 7473

creat 248954684456346 [246,w,C,2,-!*;245,r,C,2,--*;]

248954687985216

Timestamp when the task returned to the worker. Note that timestamps
are taken with the Linux operating system’s clock gettime function, and
the unit is nanoseconds, although the actual precision is implementation
specific of the clock used.

tid 191

Unique task identifier of the task.

disp 3

Dispatch counter for that task, in this case task 191 has been dispatched
3 times in total.

st Z

State of the task. Can be one of Z=zombie, R=ready, Bi=blocked on
input, Bo=blocked on output, Ba=blocked on any (in poll operation).

et 7473

Execution time of the dispatch, i.e., the difference between the timestamp
in the first field and a timestamp taken before the dispatch of the task.
Hence, in this example, the start time of the task can be computed as
248954687985216− 7473 = 248954687977743.

creat 248954684456346

This field is only output if the state is Z. It returns the timestamp taken
when the task was created.

[246,w,C,2,-!*;245,r,C,2,--*;]

List of streams the task used during the last dispatch, and the activity
on each stream. Streams are separated by a semicolon.

The stream activity field is explained using the example 246,w,C,2,-!*:

246

Unique stream identifier. Only two tasks can communicate over a stream
with this id.

w

Mode. Can be either ’w’ or ’r’.

C

State. One of O=opened, C=closed, or I=in use.

2

Total items written (or read, if mode=’r’) to that stream.

-!*

Activity flags. If no flag is set, the pattern is ’---’.
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The first flag (’?’ if set) indicates that the task is blocked on that stream.
The second flag ’!’ indicates, that reading/writing (dependent on mode)
unblocked the task on the other side of the stream.
The third flag ’*’ indicates that items have been read/written to the
stream.

For a worker debug log entry, the format is a timestamp, followed by three
asterisks and the worker debug message, for example (the line is wrapped only
in this document),

248955428585140 *** Worker 1 exited.

wait_cnt 16, wait_time 0.923745482

This message indicates that the worker exited, and during its execution it
was blocked 16 times waiting for a new message to arrive at the mailbox, with
a total waiting time of about 0.92 seconds.

The format of the monitoring log makes it human-readable and easily
parsable. For evaluation, scripts can easily be employed to analyse the mon-
itoring logs of an execution. The time for writing the monitoring log could
be reduced by using a binary format. This is easily achieved as the code for
emitting the monitoring data is located in a separate module. Note that the
time for writing the monitoring data for a task dispatch is not included in the
measured task execution time.

In the next chapter, some experiments conducted for evaluation of the pro-
totype implementation are described. It will also be shown how the monitoring
information can be used for analysing executions.





Chapter 6

Evaluation

In this chapter we present the results of some experiments with the prototype
implementation of the S-Net runtime system on top of the LPEL. In all ex-
periments, we compare the original pure kernel-level threaded (KLT) S-Net
runtime system implementation with the new LPEL-based implementation.

In the first part of this chapter, we conduct an experiment regarding the
performance with many tasks under constant data throughput. Another ex-
periment is targeted on testing performance when tasks are constantly created
and destroyed. Also, the impact of monitoring on execution time is tested.

In the second part of this chapter, we conduct an experiment to assess how
the information provided by monitoring can be used to derive more advanced
strategies for assignment and scheduling.

6.1 Performance Benchmarks

The performance benchmarks have been performed on two different platforms.
The first platform was a Pentium U4100 dual-core notebook with 2x1.3 GHz
and 4 GB of RAM, a Ubuntu Linux 10.04 distribution with kernel version
2.6.32-28 SMP x86 64.

The second platform was a node in a network cluster, a 4-processor, 48-
core system with 256 GB of RAM (4 sockets x 12 cores, 2.2 GHz each, Opteron
6174), QDR Infiniband, and and a Fedora Core 13 Linux distribution with
kernel version 2.6.35-rc4 SMP x86 64.

6.1.1 Deep replication pipeline.

Setup

The first benchmark is an S-Net network only consisting of a box within a
serial replicator. The network definition is as follows:

net star {

box foo((A) -> (A) | (B));

} connect foo*{B};

A stream of 1000 records is sent through the network, with each record
containing a field A with an integer value. The box reads the integer value, and

61
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if it is greater than zero, it decrements the value and writes it to the output
stream. If the value equals zero, a record containing a termination pattern B

is emitted, which then leaves the replication pipeline and the network. So the
record passes as many pipeline stages as specified by its value field.

For each input sequence of 1000 records, the maximum pipeline depth (i.e.,
the maximum number for the value field) was specified. Then for each record
of the sequence, a number between 0 and the specified maximum depth was
chosen randomly. This sequence was then used for each experiment for that
pipeline depth. The reason for choosing random values for each record is to
force the collector to read records from more than one of its input streams, in
a random order, hence stressing the poll operation.

The benchmark has been executed on both platforms, the dual-core note-
book and the 48-core cluster node. With the default assignment strategy, the
box-tasks are assigned to the workers in a round-robin fashion. As a result,
in each pipeline stage communication among workers is necessary. Another
assignment strategy has been tried which assigns blocks of contiguous pipeline
stages instead of single box-tasks to the workers, to reduce the communication
overhead among them. The benchmark has been performed with various num-
bers of workers. For the LPEL-based implementation, also the impact of using
different monitoring levels was investigated. The aim of this benchmark was to
test the performance with a large number of tasks and constant throughput.

In all experiments, the wall clock time was measured, i.e., the overall time
from start to the end of the computation, including initialisation, as perceived
by the user. As a baseline, the execution time of the pure KLT S-Net runtime-
system implementation was considered, which is labelled as “old” in the dia-
grams, and drawn with a thicker line. For both implementations, a fixed buffer
size of ten records was used.

Results

Dual-core. Figure 6.1 shows the results for the deep replication pipeline
benchmark on the dual-core machine. (a) shows experiments up to a pipeline
depth of 10000. The LPEL variant performs better than the pure KLT imple-
mentation even with a single worker. Two workers lead to another speedup of
∼ 30%, compared to one worker. A speedup of 50% is not achieved due to the
communication overhead between the workers. But the diagram shows that
with two workers the execution is more than twice as fast as with the pure
KLT based implementation.
(b),(c) show the situation for a shorter range. Grouping tasks in blocks does
not cause a significant improvement. But what can be seen is that the graph
of the old implementation is not necessarily monotonically increasing. This
variability can be attributed to the operating system’s scheduling effort.

The overhead caused by monitoring is depicted in Figure 6.2. The moni-
toring levels of the diagram (0,m2,m3,m4) correspond to the monitoring levels
(a,b,c,d) described in Section 5.4.3. It can be seen that the proportions of
the overhead are preserved, with one and two workers. Using the highest
monitoring level with one worker performs still better than the old S-Net
implementation.
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Figure 6.1: Results of the deep replication pipeline benchmark, on the dual-core
machine.
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Figure 6.2: Impact of monitoring on the execution time, on the dual-core
machine.
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48-core. The results for the experiments on the 48-core machine are depicted
on Figures 6.3, 6.4 and 6.5. The diagrams show executions with different num-
bers of worker threads. The performance improvements are not as outstanding
as on the dual-core machine. Furthermore, only few executions, with a specific
number of workers, can compete with the old implementation. On a short
range, with no blocks, no execution with the LPEL was better than the old
implementation. With only two workers, the no-blocks assignment had the
worst performance, it was even twice as slow as with only one worker. The
situation improves when employing the block-assignment strategy, towards a
large number of tasks. Choosing a large blocksize comes with a penalty for
shorter pipelines.

It is also notable that the best executions were performed with a number
of about 16 or 24 workers, which presumably results from increased commu-
nication overheads among the workers or adverse caching effects as each four
processing cores share their L3 caches. Executions with more workers lead
to worse performance. What cannot be seen on Figures 6.3 and 6.4 is, that
the baseline of the execution of the old implementation is “smoothed”. Fig-
ure 6.5 (a) shows several single executions of the old implementation in one
diagram. With an increasing pipeline depth, the execution times expose a big
variability, whereas the execution times for LPEL executions tend to be more
predictable with a number of workers of up to 32.

For a pipeline depth greater than 2500, the old implementation suffers scal-
ability as Figures 6.5(b,c) show, whereas the LPEL-based implementation can
cope with the situation very well.

Figure 6.6 shows the effect of different monitoring levels on executions with
16 and 24 workers on the 48-core machine. Here, monitoring seems to have a
greater impact. A significant part of it can be attributed to the fact that the
workers outputting the monitoring logs compete for writing to the file-system,
and the more workers exist, the more synchronisation on behalf of the operating
system and the IO facilities is required.

6.1.2 Synchronisation Pipeline.

Setup.

This benchmark is aimed at testing performance of task creation and destruc-
tion. A synchrocell is placed in a serial replication combinator:

net synchro connect [|{A},{B}|]*{A,B};

The synchrocell merges a record containing a field A and a record con-
taining a field B, and emits a record containing both A and B. The emitted
record matches the termination pattern and leaves the pipeline immediately.
As a synchrocell is destroyed after a single merging of records, for continuous
synchronisation subsequent stages of the serial replication pipeline are created.
Also, if a record with field A is sent to a synchrocell that has already received a
record with field A, the record is forwarded to the next pipeline stage. For the
benchmark, sequences of five records containing A and five records containing
B are sent into the network, i.e., the synchronic distance between A and B is
Five. The process is repeated N times. These sequences will lead to an unfold-
ing of the serial replication pipeline (task creation) of five times, and then, as
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Figure 6.3: Results of the deep replication pipeline benchmark, on the 48-core
machine.
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the “merge partner” records arrive, to destruction of the synchrocells. Subse-
quent records cause again unfolding of the replication pipeline, etc. Hence, the
system is faced with permanent task creation and destruction. In the results,
N is referred to as pipeline depth. Again, the wall clock time is measured.

Results.

Figure 6.7 shows the results of the synchronisation pipeline benchmark, for the
dual-core machine. The LPEL-based implementation has a speedup of about
two. The number of workers, one or two, does not make any difference.

Figure 6.8 shows the results for the 48-core machine. An interesting fact is
that for depths greater than 300, the execution with the old implementation
failed, as no kernel-level thread could be created anymore. The LPEL-based
implementation yielded the best result for the execution with 16 workers.

6.1.3 Discussion

The performance benchmarks have shown that the LPEL-based implementa-
tion is able to efficiently cope with a very high number of tasks. Although its
scalability on the 48-core machine was observed to be be more limited than on
the dual-core machine, the fact that not all cores were busy with computation
for yielding the best result shows that with the LPEL-layer it is possible to
make deliberate use of processing resources.

What might also be considered a sequential bottleneck, effectively limiting
scalability, is the single collector-task at the merge-point where all records have
to pass through. This bottleneck surely affects both implementations, as it is
inherent to the S-Net network.
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Figure 6.4: Results of the deep replication pipeline benchmark, on the 48-core
machine. (ctd.)
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Figure 6.5: Results of the deep replication pipeline benchmark, on the 48-core
machine. (ctd.2)
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Figure 6.9: The Mandelbrot example network.

6.2 Experimenting with Assignment and Scheduling

As a case study, a real-world example has been selected for analysing moni-
toring information, and to explore how this information can be used to devise
strategies for assignment and scheduling. As no intelligent task-to-worker as-
signment and no dynamic load-balancing is used in the LPEL-based S-Net
runtime system, the pure KLT-based S-Net runtime system is expected to
outperform it initially. The goal is to achieve a comparable performance by de-
riving a more diligent task-to-worker assignment and (worker-local) scheduling
policy.

The example network is an application to compute a fractal image, based
on Mandelbrot sets. The S-Net network is depicted in Figure 6.9. It reads
a single record from the global input stream, defining the view port on the
complex plane. After computing the initial values for that plane, it is split into
strips that can be processed independently by the sub-net depicted within the
parallel replication combinator. After the parallel replication, the strips are
merged together again by a “merge” sub-net.

The experiment was performed on the dual-core machine which was also
used for the benchmarks in the previous section. The plane was cut into eight
strips to be computed independently. The execution time of using both the
old and the LPEL-based implementation was measured, using a simple round-
robin assignment for tasks to workers and a FIFO scheduling policy on each
worker. For benchmarking execution time, an average out of ten executions
was considered.

The execution time of the old implementation was 2.970 seconds, whereas
the execution time of the LPEL-based version was 3.170 seconds. Analysing
the monitoring logs produced by the LPEL-based implementation revealed, by
calculating the average box execution times, that the three boxes escValues,
escTime and normItCount are computationally intensive, whereas the other
boxes can be neglected.

6.2.1 Balanced Assignment

More precisely, analysing the monitoring logs of the workers separately, we
obtained the total and average execution times of the tasks of worker 0:

...

*** genSubPlane: total 0.000000, avg 0.000000

*** splitter: total 0.000178, avg 0.000178

*** escTime: total 1.631908, avg 0.203989

*** normItCount: total 0.360298, avg 0.045037

*** <sync>: total 0.000000, avg 0.000000
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Figure 6.10: Distributing equal boxes on the workers.

*** merge: total 0.004329, avg 0.000541

*** init: total 0.000000, avg 0.000000

*** <parallel>: total 0.000176, avg 0.000007

*** escVals: total 0.000000, avg 0.000000

*** <collector>: total 0.000560, avg 0.000016

*** <split>: total 0.000000, avg 0.000000

...

Similarly, we obtained for the tasks of worker 1:

...

*** genSubPlane: total 0.306727, avg 0.038341

*** splitter: total 0.000000, avg 0.000000

*** escTime: total 0.000000, avg 0.000000

*** normItCount: total 0.000000, avg 0.000000

*** <sync>: total 0.000531, avg 0.000033

*** merge: total 0.000000, avg 0.000000

*** init: total 0.005793, avg 0.000724

*** <parallel>: total 0.000764, avg 0.000032

*** escVals: total 1.861941, avg 0.232743

*** <collector>: total 0.000824, avg 0.000024

*** <split>: total 0.000601, avg 0.000601

...

Effectively, all instances of normItCount and escTime were assigned to
worker 0, whereas all instances of escValues were assigned to worker 1. This
kind of load imbalance, resulting from a simple round-robin assignment of tasks
to workers can be solved by keeping track of how many instances of each box
are assigned to each worker. With this information, it is tried to distribute
equal boxes on the workers, as depicted in Figure 6.10.

Measuring the execution time with the adapted assignment module lead to
an average execution time of 3.013 seconds, which was still higher than the
execution time of the pure KLT based S-Net runtime-system implementation.

6.2.2 Priorities for Scheduling

The monitoring logs for one of the new executions revealed that the workers had
imbalanced wait-times, blocking on their mailbox. (The last entries of 0.740 are
the wait times until the workers received the message to signal termination.)

...

248954687985216 tid 191 disp 3 st Z et 7473

creat 248954684456346 [246,w,C,2,-!*;245,r,C,2,--*;]

248954687997369 *** worker 0 waited (18) for 0.000056292
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Figure 6.11: Prioritising non-box tasks over computationally intensive box-
tasks which could prevent another worker from progress.

248954688005261 tid 4 disp 19 st Z et 4470

creat 248952382164573 [6,w,C,2,--*;246,r,C,2,--*;]

248955428427159 *** worker 0 waited (19) for 0.740413447

248955428433514 *** Worker 0 exited. wait_cnt 19, wait_time 1.034697843

248955428578225 *** worker 1 waited (16) for 0.740584349

248955428585140 *** Worker 1 exited. wait_cnt 16, wait_time 0.923745482

One way to reduce the wait times was assumed to be prioritising “non-box
tasks”, which have a shorter execution time. This would prevent workers to
execute computationally intensive box tasks, while other (shorter) tasks could
be dispatched that could lead to earlier unblocking of tasks on other workers.
Figure 6.11 illustrates this situation. Assume on worker W1 there are two
ready tasks, one a computationally intensive box and one a collector that could
forward data from one of its inputs to its output. At the same time on W2,
there are no ready tasks, but one task that blocks on the collector’s output. If
worker W1 schedules the collector, this will cause worker W2 to dispatch the
task blocked on the collector’s output, whereas by dispatching the box, W2
will be further delayed.

Taking this into consideration, the scheduling module was extended by an-
other task-queue, for employing a priority-based scheduling policy with two
priorities: “non-box tasks” with a high priority, and box tasks with a low pri-
ority. The scheduler first fetches all (ready) tasks from the high priority queue
before fetching tasks from the low priority queue. Tasks becoming unblocked
are inserted into the appropriate queue according to their priority. This was,
due to the modular design of the LPEL, easily achieved. Execution with both
balanced assignment and priority based scheduling lead to an average execution
time of 2.871 seconds, displaying the best performance.

The monitoring logs confirmed the initial assumption, by showing (almost)
balanced wait times for the workers.

...

249246590900603 tid 4 disp 17 st Z et 10895

creat 249244526826468 [6,w,C,2,-!*;246,r,C,2,?-*;]

249247337186439 *** worker 1 waited (16) for 0.746295753

249247337194540 *** Worker 1 exited. wait_cnt 16, wait_time 0.762573869

249247337324864 *** worker 0 waited (16) for 0.746413225

249247337426483 *** Worker 0 exited. wait_cnt 16, wait_time 0.750208474

Table 6.1 summarises the execution times.
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Runtime system and configuration Execution Time

Pure Kernel-level threaded runtime system 2.970 sec
LPEL-based runtime system, naive assignment 3.170 sec
LPEL, with balanced assignment 3.013 sec
LPEL, with bal. ass. +priority scheduling 2.871 sec

Table 6.1: Summary of achieved average execution times for the Mandelbrot
example network.

6.2.3 Discussion

Although the results from the experiments with the Mandelbrot example net-
work cannot simply be generalised, they provide insight of how the information
collected by monitoring can be used to create assignment and scheduling poli-
cies for real-world and large-scale applications.

It also has to be pointed out that the Mandelbrot example only one input
record from the top-level network input stream was processed. In this case, the
efficient stream synchronisation mechanisms of the LPEL are not leveraged to
their full extent. Performance gains are expected to be higher with applications
that have a high and constant data throughput, such that the efficient stream
synchronisation and light-weight task handling mechanisms are exploited, e.g.,
the application domain of signal-processing.



Chapter 7

Conclusion

7.1 Summary

This thesis presented the design and implementation of a light-weight user-
task management layer (LPEL) for stream processing. It presented related
concepts, starting with computational models for stream-processing, following
user-level task management and concurrent data structures, which allow effi-
cient and scalable application designs. Runtime systems for stream processing
were presented, and the multi-threaded runtime system implementation of S-
Net was explained in more detail. Finally, the prototype implementation of
the LPEL, and of S-Net on top of the LPEL were benchmarked.

The architecture of the LPEL allows deliberate allocation of available pro-
cessing resources. Lock-free synchronisation techniques and user-level thread-
ing make it possible to handle a large number of tasks simultaneously. Due to
its modular and flexible approach, different assignment and scheduling policies
can easily be incorporated. Also, detailed profiling information during an ex-
ecution of a streaming network can be gathered. Adopting the LPEL for the
S-Net runtime system makes the latter open for extensions towards profiling-
based dynamic reconfiguration and for running (soft) real-time applications,
by employing appropriate scheduling policies.

7.2 Future Work

The next step in the development of LPEL is to provide dynamic load balancing
strategies to be able to cope with inevitable load imbalance during runtime. In
conjunction with S-Net, appropriate scheduling and assignment heuristics and
policies have to be investigated, preferably considering the measured execution
time of tasks and the network topology. Scheduling policies for applications
that have to meet (soft) real-time constraints have to be developed. Ways have
to be deduced how to use the monitored profiling information for dynamic
reconfiguration decisions. Concepts for how S-Net applications can provide
fault-tolerance and quality of service need to be examined.
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